label
int64
0
1
func1
stringlengths
23
97k
id
int64
0
27.3k
0
void ff_mqc_init_contexts(MqcState *mqc) { int i; memset(mqc->cx_states, 0, sizeof(mqc->cx_states)); mqc->cx_states[MQC_CX_UNI] = 2 * 46; mqc->cx_states[MQC_CX_RL] = 2 * 3; mqc->cx_states[0] = 2 * 4; for (i = 0; i < 47; i++) { ff_mqc_qe[2 * i] = ff_mqc_qe[2 * i + 1] = cx_states[i].qe; ff_mqc_nlps[2 * i] = 2 * cx_states[i].nlps + cx_states[i].sw; ff_mqc_nlps[2 * i + 1] = 2 * cx_states[i].nlps + 1 - cx_states[i].sw; ff_mqc_nmps[2 * i] = 2 * cx_states[i].nmps; ff_mqc_nmps[2 * i + 1] = 2 * cx_states[i].nmps + 1; } }
19,124
0
int monitor_read_bdrv_key(BlockDriverState *bs) { char password[256]; int i; if (!bdrv_is_encrypted(bs)) return 0; term_printf("%s (%s) is encrypted.\n", bdrv_get_device_name(bs), bdrv_get_encrypted_filename(bs)); for(i = 0; i < 3; i++) { monitor_readline("Password: ", 1, password, sizeof(password)); if (bdrv_set_key(bs, password) == 0) return 0; term_printf("invalid password\n"); } return -EPERM; }
19,125
0
int bdrv_check(BlockDriverState *bs, BdrvCheckResult *res) { if (bs->drv->bdrv_check == NULL) { return -ENOTSUP; } memset(res, 0, sizeof(*res)); return bs->drv->bdrv_check(bs, res); }
19,127
0
static void vscsi_transfer_data(SCSIRequest *sreq, uint32_t len) { VSCSIState *s = VIO_SPAPR_VSCSI_DEVICE(sreq->bus->qbus.parent); vscsi_req *req = sreq->hba_private; uint8_t *buf; int rc = 0; DPRINTF("VSCSI: SCSI xfer complete tag=0x%x len=0x%x, req=%p\n", sreq->tag, len, req); if (req == NULL) { fprintf(stderr, "VSCSI: Can't find request for tag 0x%x\n", sreq->tag); return; } if (len) { buf = scsi_req_get_buf(sreq); rc = vscsi_srp_transfer_data(s, req, req->writing, buf, len); } if (rc < 0) { fprintf(stderr, "VSCSI: RDMA error rc=%d!\n", rc); vscsi_makeup_sense(s, req, HARDWARE_ERROR, 0, 0); scsi_req_abort(req->sreq, CHECK_CONDITION); return; } /* Start next chunk */ req->data_len -= rc; scsi_req_continue(sreq); }
19,131
0
static inline void cris_alu_m_alloc_temps(TCGv *t) { t[0] = tcg_temp_new(TCG_TYPE_TL); t[1] = tcg_temp_new(TCG_TYPE_TL); }
19,132
0
static void gen_spr_40x (CPUPPCState *env) { /* Cache */ /* XXX : not implemented */ spr_register(env, SPR_40x_DCCR, "DCCR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_40x_DCWR, "DCWR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_40x_ICCR, "ICCR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_BOOKE_ICBDR, "ICBDR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, SPR_NOACCESS, 0x00000000); /* Bus access control */ spr_register(env, SPR_40x_SGR, "SGR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0xFFFFFFFF); spr_register(env, SPR_40x_ZPR, "ZPR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* MMU */ spr_register(env, SPR_40x_PID, "PID", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* Exception */ spr_register(env, SPR_40x_DEAR, "DEAR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_ESR, "ESR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_EVPR, "EVPR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_SRR2, "SRR2", &spr_read_generic, &spr_write_generic, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_SRR3, "SRR3", &spr_read_generic, &spr_write_generic, &spr_read_generic, &spr_write_generic, 0x00000000); /* Timers */ spr_register(env, SPR_40x_PIT, "PIT", SPR_NOACCESS, SPR_NOACCESS, &spr_read_40x_pit, &spr_write_40x_pit, 0x00000000); spr_register(env, SPR_40x_TCR, "TCR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_booke_tcr, 0x00000000); spr_register(env, SPR_40x_TSR, "TSR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_booke_tsr, 0x00000000); /* Debug interface */ /* XXX : not implemented */ spr_register(env, SPR_40x_DAC1, "DAC1", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_DAC2, "DAC2", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_40x_DBCR0, "DBCR0", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_40x_dbcr0, 0x00000000); /* XXX : not implemented */ spr_register(env, SPR_40x_DBSR, "DBSR", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_clear, /* Last reset was system reset */ 0x00000300); /* XXX : not implemented */ spr_register(env, SPR_40x_IAC1, "IAC1", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); spr_register(env, SPR_40x_IAC2, "IAC2", SPR_NOACCESS, SPR_NOACCESS, &spr_read_generic, &spr_write_generic, 0x00000000); }
19,134
0
static av_always_inline void filter_mb_dir(H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize, int mb_xy, int mb_type, int mvy_limit, int first_vertical_edge_done, int dir) { MpegEncContext * const s = &h->s; int edge; const int mbm_xy = dir == 0 ? mb_xy -1 : h->top_mb_xy; const int mbm_type = dir == 0 ? h->left_type[0] : h->top_type; // how often to recheck mv-based bS when iterating between edges static const uint8_t mask_edge_tab[2][8]={{0,3,3,3,1,1,1,1}, {0,3,1,1,3,3,3,3}}; const int mask_edge = mask_edge_tab[dir][(mb_type>>3)&7]; const int edges = mask_edge== 3 && !(h->cbp&15) ? 1 : 4; // how often to recheck mv-based bS when iterating along each edge const int mask_par0 = mb_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)); if(mbm_type && !first_vertical_edge_done){ if (FRAME_MBAFF && (dir == 1) && ((mb_y&1) == 0) && IS_INTERLACED(mbm_type&~mb_type) ) { // This is a special case in the norm where the filtering must // be done twice (one each of the field) even if we are in a // frame macroblock. // unsigned int tmp_linesize = 2 * linesize; unsigned int tmp_uvlinesize = 2 * uvlinesize; int mbn_xy = mb_xy - 2 * s->mb_stride; int j; for(j=0; j<2; j++, mbn_xy += s->mb_stride){ DECLARE_ALIGNED_8(int16_t, bS)[4]; int qp; if( IS_INTRA(mb_type|s->current_picture.mb_type[mbn_xy]) ) { *(uint64_t*)bS= 0x0003000300030003ULL; } else { const uint8_t *mbn_nnz = h->non_zero_count[mbn_xy] + 4+3*8; //FIXME 8x8dct? int i; for( i = 0; i < 4; i++ ) { bS[i] = 1 + !!(h->non_zero_count_cache[scan8[0]+i] | mbn_nnz[i]); } } // Do not use s->qscale as luma quantizer because it has not the same // value in IPCM macroblocks. qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbn_xy] + 1 ) >> 1; tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, tmp_linesize, tmp_uvlinesize); { int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } filter_mb_edgeh( &img_y[j*linesize], tmp_linesize, bS, qp, h ); filter_mb_edgech( &img_cb[j*uvlinesize], tmp_uvlinesize, bS, ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h); filter_mb_edgech( &img_cr[j*uvlinesize], tmp_uvlinesize, bS, ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbn_xy] ) + 1 ) >> 1, h); } }else{ DECLARE_ALIGNED_8(int16_t, bS)[4]; int qp; if( IS_INTRA(mb_type|mbm_type)) { *(uint64_t*)bS= 0x0003000300030003ULL; if ( (!IS_INTERLACED(mb_type|mbm_type)) || ((FRAME_MBAFF || (s->picture_structure != PICT_FRAME)) && (dir == 0)) ) *(uint64_t*)bS= 0x0004000400040004ULL; } else { int i, l; int mv_done; if( dir && FRAME_MBAFF && IS_INTERLACED(mb_type ^ mbm_type)) { *(uint64_t*)bS= 0x0001000100010001ULL; mv_done = 1; } else if( mask_par0 && ((mbm_type & (MB_TYPE_16x16 | (MB_TYPE_8x16 >> dir)))) ) { int b_idx= 8 + 4; int bn_idx= b_idx - (dir ? 8:1); bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, 8 + 4, bn_idx, mvy_limit); mv_done = 1; } else mv_done = 0; for( i = 0; i < 4; i++ ) { int x = dir == 0 ? 0 : i; int y = dir == 0 ? i : 0; int b_idx= 8 + 4 + x + 8*y; int bn_idx= b_idx - (dir ? 8:1); if( h->non_zero_count_cache[b_idx] | h->non_zero_count_cache[bn_idx] ) { bS[i] = 2; } else if(!mv_done) { bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit); } } } /* Filter edge */ // Do not use s->qscale as luma quantizer because it has not the same // value in IPCM macroblocks. if(bS[0]+bS[1]+bS[2]+bS[3]){ qp = ( s->current_picture.qscale_table[mb_xy] + s->current_picture.qscale_table[mbm_xy] + 1 ) >> 1; //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]); tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize); //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } if( dir == 0 ) { filter_mb_edgev( &img_y[0], linesize, bS, qp, h ); { int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1; filter_mb_edgecv( &img_cb[0], uvlinesize, bS, qp, h); if(h->pps.chroma_qp_diff) qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1; filter_mb_edgecv( &img_cr[0], uvlinesize, bS, qp, h); } } else { filter_mb_edgeh( &img_y[0], linesize, bS, qp, h ); { int qp= ( h->chroma_qp[0] + get_chroma_qp( h, 0, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1; filter_mb_edgech( &img_cb[0], uvlinesize, bS, qp, h); if(h->pps.chroma_qp_diff) qp= ( h->chroma_qp[1] + get_chroma_qp( h, 1, s->current_picture.qscale_table[mbm_xy] ) + 1 ) >> 1; filter_mb_edgech( &img_cr[0], uvlinesize, bS, qp, h); } } } } } /* Calculate bS */ for( edge = 1; edge < edges; edge++ ) { DECLARE_ALIGNED_8(int16_t, bS)[4]; int qp; if( IS_8x8DCT(mb_type & (edge<<24)) ) // (edge&1) && IS_8x8DCT(mb_type) continue; if( IS_INTRA(mb_type)) { *(uint64_t*)bS= 0x0003000300030003ULL; } else { int i, l; int mv_done; if( edge & mask_edge ) { *(uint64_t*)bS= 0; mv_done = 1; } else if( mask_par0 ) { int b_idx= 8 + 4 + edge * (dir ? 8:1); int bn_idx= b_idx - (dir ? 8:1); bS[0] = bS[1] = bS[2] = bS[3] = check_mv(h, b_idx, bn_idx, mvy_limit); mv_done = 1; } else mv_done = 0; for( i = 0; i < 4; i++ ) { int x = dir == 0 ? edge : i; int y = dir == 0 ? i : edge; int b_idx= 8 + 4 + x + 8*y; int bn_idx= b_idx - (dir ? 8:1); if( h->non_zero_count_cache[b_idx] | h->non_zero_count_cache[bn_idx] ) { bS[i] = 2; } else if(!mv_done) { bS[i] = check_mv(h, b_idx, bn_idx, mvy_limit); } } if(bS[0]+bS[1]+bS[2]+bS[3] == 0) continue; } /* Filter edge */ // Do not use s->qscale as luma quantizer because it has not the same // value in IPCM macroblocks. qp = s->current_picture.qscale_table[mb_xy]; //tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d, QPc:%d, QPcn:%d\n", mb_x, mb_y, dir, edge, qp, h->chroma_qp[0], s->current_picture.qscale_table[mbn_xy]); tprintf(s->avctx, "filter mb:%d/%d dir:%d edge:%d, QPy:%d ls:%d uvls:%d", mb_x, mb_y, dir, edge, qp, linesize, uvlinesize); //{ int i; for (i = 0; i < 4; i++) tprintf(s->avctx, " bS[%d]:%d", i, bS[i]); tprintf(s->avctx, "\n"); } if( dir == 0 ) { filter_mb_edgev( &img_y[4*edge], linesize, bS, qp, h ); if( (edge&1) == 0 ) { filter_mb_edgecv( &img_cb[2*edge], uvlinesize, bS, h->chroma_qp[0], h); filter_mb_edgecv( &img_cr[2*edge], uvlinesize, bS, h->chroma_qp[1], h); } } else { filter_mb_edgeh( &img_y[4*edge*linesize], linesize, bS, qp, h ); if( (edge&1) == 0 ) { filter_mb_edgech( &img_cb[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[0], h); filter_mb_edgech( &img_cr[2*edge*uvlinesize], uvlinesize, bS, h->chroma_qp[1], h); } } } }
19,135
0
static void char_socket_finalize(Object *obj) { Chardev *chr = CHARDEV(obj); SocketChardev *s = SOCKET_CHARDEV(obj); tcp_chr_free_connection(chr); if (s->reconnect_timer) { g_source_remove(s->reconnect_timer); s->reconnect_timer = 0; } qapi_free_SocketAddressLegacy(s->addr); if (s->listen_tag) { g_source_remove(s->listen_tag); s->listen_tag = 0; } if (s->listen_ioc) { object_unref(OBJECT(s->listen_ioc)); } if (s->tls_creds) { object_unref(OBJECT(s->tls_creds)); } qemu_chr_be_event(chr, CHR_EVENT_CLOSED); }
19,136
0
int kvm_sw_breakpoints_active(CPUState *env) { return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); }
19,138
0
static int usbredir_handle_status(USBRedirDevice *dev, int status, int actual_len) { switch (status) { case usb_redir_success: return actual_len; case usb_redir_stall: return USB_RET_STALL; case usb_redir_cancelled: WARNING("returning cancelled packet to HC?\n"); return USB_RET_NAK; case usb_redir_inval: WARNING("got invalid param error from usb-host?\n"); return USB_RET_NAK; case usb_redir_babble: return USB_RET_BABBLE; case usb_redir_ioerror: case usb_redir_timeout: default: return USB_RET_IOERROR; } }
19,139
0
void ich9_pm_init(PCIDevice *lpc_pci, ICH9LPCPMRegs *pm, qemu_irq sci_irq, qemu_irq cmos_s3) { memory_region_init(&pm->io, "ich9-pm", ICH9_PMIO_SIZE); memory_region_set_enabled(&pm->io, false); memory_region_add_subregion(pci_address_space_io(lpc_pci), 0, &pm->io); acpi_pm_tmr_init(&pm->acpi_regs, ich9_pm_update_sci_fn, &pm->io); acpi_pm1_evt_init(&pm->acpi_regs, ich9_pm_update_sci_fn, &pm->io); acpi_pm1_cnt_init(&pm->acpi_regs, &pm->io); acpi_gpe_init(&pm->acpi_regs, ICH9_PMIO_GPE0_LEN); memory_region_init_io(&pm->io_gpe, &ich9_gpe_ops, pm, "apci-gpe0", ICH9_PMIO_GPE0_LEN); memory_region_add_subregion(&pm->io, ICH9_PMIO_GPE0_STS, &pm->io_gpe); memory_region_init_io(&pm->io_smi, &ich9_smi_ops, pm, "apci-smi", 8); memory_region_add_subregion(&pm->io, ICH9_PMIO_SMI_EN, &pm->io_smi); pm->irq = sci_irq; qemu_register_reset(pm_reset, pm); pm->powerdown_notifier.notify = pm_powerdown_req; qemu_register_powerdown_notifier(&pm->powerdown_notifier); }
19,140
0
static int xen_pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry, uint32_t *val, uint32_t dev_value, uint32_t valid_mask) { XenPTRegInfo *reg = cfg_entry->reg; XenPTRegion *base = NULL; PCIDevice *d = (PCIDevice *)&s->dev; uint32_t writable_mask = 0; uint32_t throughable_mask = get_throughable_mask(s, reg, valid_mask); pcibus_t r_size = 0; uint32_t bar_ro_mask = 0; r_size = d->io_regions[PCI_ROM_SLOT].size; base = &s->bases[PCI_ROM_SLOT]; /* align memory type resource size */ r_size = xen_pt_get_emul_size(base->bar_flag, r_size); /* set emulate mask and read-only mask */ bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE; /* modify emulate register */ writable_mask = ~bar_ro_mask & valid_mask; cfg_entry->data = XEN_PT_MERGE_VALUE(*val, cfg_entry->data, writable_mask); /* create value for writing to I/O device register */ *val = XEN_PT_MERGE_VALUE(*val, dev_value, throughable_mask); return 0; }
19,141
0
static int tcg_match_xori(TCGType type, tcg_target_long val) { if ((s390_facilities & FACILITY_EXT_IMM) == 0) { return 0; } if (type == TCG_TYPE_I32) { /* All 32-bit XORs can be performed with 1 48-bit insn. */ return 1; } /* Look for negative values. These are best to load with LGHI. */ if (val < 0 && val == (int32_t)val) { return 0; } return 1; }
19,143
0
static int block_crypto_open_generic(QCryptoBlockFormat format, QemuOptsList *opts_spec, BlockDriverState *bs, QDict *options, int flags, Error **errp) { BlockCrypto *crypto = bs->opaque; QemuOpts *opts = NULL; Error *local_err = NULL; int ret = -EINVAL; QCryptoBlockOpenOptions *open_opts = NULL; unsigned int cflags = 0; bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file, false, errp); if (!bs->file) { return -EINVAL; } opts = qemu_opts_create(opts_spec, NULL, 0, &error_abort); qemu_opts_absorb_qdict(opts, options, &local_err); if (local_err) { error_propagate(errp, local_err); goto cleanup; } open_opts = block_crypto_open_opts_init(format, opts, errp); if (!open_opts) { goto cleanup; } if (flags & BDRV_O_NO_IO) { cflags |= QCRYPTO_BLOCK_OPEN_NO_IO; } crypto->block = qcrypto_block_open(open_opts, block_crypto_read_func, bs, cflags, errp); if (!crypto->block) { ret = -EIO; goto cleanup; } bs->encrypted = true; bs->valid_key = true; ret = 0; cleanup: qapi_free_QCryptoBlockOpenOptions(open_opts); return ret; }
19,144
0
static int dec_21154_initfn(PCIDevice *dev) { int rc; rc = pci_bridge_initfn(dev); if (rc < 0) { return rc; } pci_config_set_vendor_id(dev->config, PCI_VENDOR_ID_DEC); pci_config_set_device_id(dev->config, PCI_DEVICE_ID_DEC_21154); return 0; }
19,145
0
matroska_ebmlnum_uint (uint8_t *data, uint32_t size, uint64_t *num) { int len_mask = 0x80, read = 1, n = 1, num_ffs = 0; uint64_t total; if (size <= 0) return AVERROR_INVALIDDATA; total = data[0]; while (read <= 8 && !(total & len_mask)) { read++; len_mask >>= 1; } if (read > 8) return AVERROR_INVALIDDATA; if ((total &= (len_mask - 1)) == len_mask - 1) num_ffs++; if (size < read) return AVERROR_INVALIDDATA; while (n < read) { if (data[n] == 0xff) num_ffs++; total = (total << 8) | data[n]; n++; } if (!total) return AVERROR_INVALIDDATA; if (read == num_ffs) *num = (uint64_t)-1; else *num = total; return read; }
19,146
0
static PayloadContext *vorbis_new_extradata(void) { return av_mallocz(sizeof(PayloadContext)); }
19,147
1
static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples) { AVFilterContext *ctx = inlink->dst; AVFilterLink *outlink = ctx->outputs[0]; ShowSpectrumContext *s = ctx->priv; AVFrame *outpicref = s->outpicref; int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w; /* fill a new spectrum column */ /* initialize buffer for combining to black */ clear_combine_buffer(s, z); ctx->internal->execute(ctx, plot_channel, NULL, NULL, s->nb_display_channels); for (y = 0; y < z * 3; y++) { s->combine_buffer[y] += s->color_buffer[0][y]; for (x = 1; x < s->nb_display_channels; x++) { s->combine_buffer[y] += s->color_buffer[x][y]; } } av_frame_make_writable(s->outpicref); /* copy to output */ if (s->orientation == VERTICAL) { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + y * outpicref->linesize[plane]; memmove(p, p + 1, s->w - 1); } } s->xpos = s->w - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 0; y < s->h; y++) { uint8_t *p = outpicref->data[plane] + y * outpicref->linesize[plane]; memmove(p + 1, p, s->w - 1); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] + s->xpos; for (y = 0; y < s->h; y++) { *p = lrintf(av_clipf(s->combine_buffer[3 * y + plane], 0, 255)); p -= outpicref->linesize[plane]; } } } else { if (s->sliding == SCROLL) { for (plane = 0; plane < 3; plane++) { for (y = 1; y < s->h; y++) { memmove(outpicref->data[plane] + (y-1) * outpicref->linesize[plane], outpicref->data[plane] + (y ) * outpicref->linesize[plane], s->w); } } s->xpos = s->h - 1; } else if (s->sliding == RSCROLL) { for (plane = 0; plane < 3; plane++) { for (y = s->h - 1; y >= 1; y--) { memmove(outpicref->data[plane] + (y ) * outpicref->linesize[plane], outpicref->data[plane] + (y-1) * outpicref->linesize[plane], s->w); } } s->xpos = 0; } for (plane = 0; plane < 3; plane++) { uint8_t *p = outpicref->data[plane] + s->start_x + (s->xpos + s->start_y) * outpicref->linesize[plane]; for (x = 0; x < s->w; x++) { *p = lrintf(av_clipf(s->combine_buffer[3 * x + plane], 0, 255)); p++; } } } if (s->sliding != FULLFRAME || s->xpos == 0) outpicref->pts = insamples->pts; s->xpos++; if (s->orientation == VERTICAL && s->xpos >= s->w) s->xpos = 0; if (s->orientation == HORIZONTAL && s->xpos >= s->h) s->xpos = 0; if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) { ret = ff_filter_frame(outlink, av_frame_clone(s->outpicref)); if (ret < 0) return ret; } return s->win_size; }
19,148
1
init_disasm (struct disassemble_info *info) { const struct s390_opcode *opcode; const struct s390_opcode *opcode_end; memset (opc_index, 0, sizeof (opc_index)); opcode_end = s390_opcodes + s390_num_opcodes; for (opcode = s390_opcodes; opcode < opcode_end; opcode++) { opc_index[(int) opcode->opcode[0]] = opcode - s390_opcodes; while ((opcode < opcode_end) && (opcode[1].opcode[0] == opcode->opcode[0])) opcode++; } #ifdef QEMU_DISABLE switch (info->mach) { case bfd_mach_s390_31: current_arch_mask = 1 << S390_OPCODE_ESA; break; case bfd_mach_s390_64: current_arch_mask = 1 << S390_OPCODE_ZARCH; break; default: abort (); } #endif /* QEMU_DISABLE */ init_flag = 1; }
19,149
1
int attribute_align_arg avcodec_open(AVCodecContext *avctx, AVCodec *codec) { int ret= -1; /* If there is a user-supplied mutex locking routine, call it. */ if (ff_lockmgr_cb) { if ((*ff_lockmgr_cb)(&codec_mutex, AV_LOCK_OBTAIN)) return -1; } entangled_thread_counter++; if(entangled_thread_counter != 1){ av_log(avctx, AV_LOG_ERROR, "insufficient thread locking around avcodec_open/close()\n"); goto end; } if(avctx->codec || !codec) goto end; if (codec->priv_data_size > 0) { avctx->priv_data = av_mallocz(codec->priv_data_size); if (!avctx->priv_data) { ret = AVERROR(ENOMEM); goto end; } } else { avctx->priv_data = NULL; } if(avctx->coded_width && avctx->coded_height) avcodec_set_dimensions(avctx, avctx->coded_width, avctx->coded_height); else if(avctx->width && avctx->height) avcodec_set_dimensions(avctx, avctx->width, avctx->height); #define SANE_NB_CHANNELS 128U if (((avctx->coded_width || avctx->coded_height) && av_image_check_size(avctx->coded_width, avctx->coded_height, 0, avctx)) || avctx->channels > SANE_NB_CHANNELS) { ret = AVERROR(EINVAL); goto free_and_end; } avctx->codec = codec; if ((avctx->codec_type == AVMEDIA_TYPE_UNKNOWN || avctx->codec_type == codec->type) && avctx->codec_id == CODEC_ID_NONE) { avctx->codec_type = codec->type; avctx->codec_id = codec->id; } if(avctx->codec_id != codec->id || avctx->codec_type != codec->type){ av_log(avctx, AV_LOG_ERROR, "codec type or id mismatches\n"); goto free_and_end; } avctx->frame_number = 0; if (avctx->codec->max_lowres < avctx->lowres) { av_log(avctx, AV_LOG_ERROR, "The maximum value for lowres supported by the decoder is %d\n", avctx->codec->max_lowres); goto free_and_end; } if(avctx->codec->init){ ret = avctx->codec->init(avctx); if (ret < 0) { goto free_and_end; } } ret=0; end: entangled_thread_counter--; /* Release any user-supplied mutex. */ if (ff_lockmgr_cb) { (*ff_lockmgr_cb)(&codec_mutex, AV_LOCK_RELEASE); } return ret; free_and_end: av_freep(&avctx->priv_data); avctx->codec= NULL; goto end; }
19,150
1
static inline void RENAME(rgb15to24)(const uint8_t *src, uint8_t *dst, unsigned src_size) { const uint16_t *end; #ifdef HAVE_MMX const uint16_t *mm_end; #endif uint8_t *d = (uint8_t *)dst; const uint16_t *s = (uint16_t *)src; end = s + src_size/2; #ifdef HAVE_MMX __asm __volatile(PREFETCH" %0"::"m"(*s):"memory"); mm_end = end - 7; while(s < mm_end) { __asm __volatile( PREFETCH" 32%1\n\t" "movq %1, %%mm0\n\t" "movq %1, %%mm1\n\t" "movq %1, %%mm2\n\t" "pand %2, %%mm0\n\t" "pand %3, %%mm1\n\t" "pand %4, %%mm2\n\t" "psllq $3, %%mm0\n\t" "psrlq $2, %%mm1\n\t" "psrlq $7, %%mm2\n\t" "movq %%mm0, %%mm3\n\t" "movq %%mm1, %%mm4\n\t" "movq %%mm2, %%mm5\n\t" "punpcklwd %5, %%mm0\n\t" "punpcklwd %5, %%mm1\n\t" "punpcklwd %5, %%mm2\n\t" "punpckhwd %5, %%mm3\n\t" "punpckhwd %5, %%mm4\n\t" "punpckhwd %5, %%mm5\n\t" "psllq $8, %%mm1\n\t" "psllq $16, %%mm2\n\t" "por %%mm1, %%mm0\n\t" "por %%mm2, %%mm0\n\t" "psllq $8, %%mm4\n\t" "psllq $16, %%mm5\n\t" "por %%mm4, %%mm3\n\t" "por %%mm5, %%mm3\n\t" "movq %%mm0, %%mm6\n\t" "movq %%mm3, %%mm7\n\t" "movq 8%1, %%mm0\n\t" "movq 8%1, %%mm1\n\t" "movq 8%1, %%mm2\n\t" "pand %2, %%mm0\n\t" "pand %3, %%mm1\n\t" "pand %4, %%mm2\n\t" "psllq $3, %%mm0\n\t" "psrlq $2, %%mm1\n\t" "psrlq $7, %%mm2\n\t" "movq %%mm0, %%mm3\n\t" "movq %%mm1, %%mm4\n\t" "movq %%mm2, %%mm5\n\t" "punpcklwd %5, %%mm0\n\t" "punpcklwd %5, %%mm1\n\t" "punpcklwd %5, %%mm2\n\t" "punpckhwd %5, %%mm3\n\t" "punpckhwd %5, %%mm4\n\t" "punpckhwd %5, %%mm5\n\t" "psllq $8, %%mm1\n\t" "psllq $16, %%mm2\n\t" "por %%mm1, %%mm0\n\t" "por %%mm2, %%mm0\n\t" "psllq $8, %%mm4\n\t" "psllq $16, %%mm5\n\t" "por %%mm4, %%mm3\n\t" "por %%mm5, %%mm3\n\t" :"=m"(*d) :"m"(*s),"m"(mask15b),"m"(mask15g),"m"(mask15r), "m"(mmx_null) :"memory"); /* Borrowed 32 to 24 */ __asm __volatile( "movq %%mm0, %%mm4\n\t" "movq %%mm3, %%mm5\n\t" "movq %%mm6, %%mm0\n\t" "movq %%mm7, %%mm1\n\t" "movq %%mm4, %%mm6\n\t" "movq %%mm5, %%mm7\n\t" "movq %%mm0, %%mm2\n\t" "movq %%mm1, %%mm3\n\t" "psrlq $8, %%mm2\n\t" "psrlq $8, %%mm3\n\t" "psrlq $8, %%mm6\n\t" "psrlq $8, %%mm7\n\t" "pand %2, %%mm0\n\t" "pand %2, %%mm1\n\t" "pand %2, %%mm4\n\t" "pand %2, %%mm5\n\t" "pand %3, %%mm2\n\t" "pand %3, %%mm3\n\t" "pand %3, %%mm6\n\t" "pand %3, %%mm7\n\t" "por %%mm2, %%mm0\n\t" "por %%mm3, %%mm1\n\t" "por %%mm6, %%mm4\n\t" "por %%mm7, %%mm5\n\t" "movq %%mm1, %%mm2\n\t" "movq %%mm4, %%mm3\n\t" "psllq $48, %%mm2\n\t" "psllq $32, %%mm3\n\t" "pand %4, %%mm2\n\t" "pand %5, %%mm3\n\t" "por %%mm2, %%mm0\n\t" "psrlq $16, %%mm1\n\t" "psrlq $32, %%mm4\n\t" "psllq $16, %%mm5\n\t" "por %%mm3, %%mm1\n\t" "pand %6, %%mm5\n\t" "por %%mm5, %%mm4\n\t" MOVNTQ" %%mm0, %0\n\t" MOVNTQ" %%mm1, 8%0\n\t" MOVNTQ" %%mm4, 16%0" :"=m"(*d) :"m"(*s),"m"(mask24l),"m"(mask24h),"m"(mask24hh),"m"(mask24hhh),"m"(mask24hhhh) :"memory"); d += 24; s += 8; } __asm __volatile(SFENCE:::"memory"); __asm __volatile(EMMS:::"memory"); #endif while(s < end) { register uint16_t bgr; bgr = *s++; *d++ = (bgr&0x1F)<<3; *d++ = (bgr&0x3E0)>>2; *d++ = (bgr&0x7C00)>>7; } }
19,151
1
static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIOQuirk *quirk = opaque; VFIOPCIDevice *vdev = quirk->vdev; switch (addr) { case 4: /* address */ if ((data & 0x7fff0000) == 0x10000) { if (data & 0x80000000U && vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) { trace_vfio_rtl8168_window_quirk_write_table( memory_region_name(&quirk->mem), vdev->vbasedev.name); memory_region_dispatch_write(&vdev->pdev.msix_table_mmio, (hwaddr)(data & 0xfff), (uint64_t)quirk->data.address_mask, size, MEMTXATTRS_UNSPECIFIED); } quirk->data.flags = 1; quirk->data.address_match = data; return; } quirk->data.flags = 0; break; case 0: /* data */ quirk->data.address_mask = data; break; } trace_vfio_rtl8168_window_quirk_write_direct( memory_region_name(&quirk->mem), vdev->vbasedev.name); vfio_region_write(&vdev->bars[quirk->data.bar].region, addr + 0x70, data, size); }
19,152
1
void connection_destroy(void *opaque) { Connection *conn = opaque; g_queue_foreach(&conn->primary_list, packet_destroy, NULL); g_queue_free(&conn->primary_list); g_queue_foreach(&conn->secondary_list, packet_destroy, NULL); g_queue_free(&conn->secondary_list); g_slice_free(Connection, conn); }
19,153
1
static void exynos4210_uart_write(void *opaque, hwaddr offset, uint64_t val, unsigned size) { Exynos4210UartState *s = (Exynos4210UartState *)opaque; uint8_t ch; PRINT_DEBUG_EXTEND("UART%d: <0x%04x> %s <- 0x%08llx\n", s->channel, offset, exynos4210_uart_regname(offset), (long long unsigned int)val); switch (offset) { case ULCON: case UBRDIV: case UFRACVAL: s->reg[I_(offset)] = val; exynos4210_uart_update_parameters(s); break; case UFCON: s->reg[I_(UFCON)] = val; if (val & UFCON_Rx_FIFO_RESET) { fifo_reset(&s->rx); s->reg[I_(UFCON)] &= ~UFCON_Rx_FIFO_RESET; PRINT_DEBUG("UART%d: Rx FIFO Reset\n", s->channel); } if (val & UFCON_Tx_FIFO_RESET) { fifo_reset(&s->tx); s->reg[I_(UFCON)] &= ~UFCON_Tx_FIFO_RESET; PRINT_DEBUG("UART%d: Tx FIFO Reset\n", s->channel); } break; case UTXH: if (s->chr) { s->reg[I_(UTRSTAT)] &= ~(UTRSTAT_TRANSMITTER_EMPTY | UTRSTAT_Tx_BUFFER_EMPTY); ch = (uint8_t)val; qemu_chr_fe_write(s->chr, &ch, 1); #if DEBUG_Tx_DATA fprintf(stderr, "%c", ch); #endif s->reg[I_(UTRSTAT)] |= UTRSTAT_TRANSMITTER_EMPTY | UTRSTAT_Tx_BUFFER_EMPTY; s->reg[I_(UINTSP)] |= UINTSP_TXD; exynos4210_uart_update_irq(s); } break; case UINTP: s->reg[I_(UINTP)] &= ~val; s->reg[I_(UINTSP)] &= ~val; PRINT_DEBUG("UART%d: UINTP [%04x] have been cleared: %08x\n", s->channel, offset, s->reg[I_(UINTP)]); exynos4210_uart_update_irq(s); break; case UTRSTAT: case UERSTAT: case UFSTAT: case UMSTAT: case URXH: PRINT_DEBUG("UART%d: Trying to write into RO register: %s [%04x]\n", s->channel, exynos4210_uart_regname(offset), offset); break; case UINTSP: s->reg[I_(UINTSP)] &= ~val; break; case UINTM: s->reg[I_(UINTM)] = val; exynos4210_uart_update_irq(s); break; case UCON: case UMCON: default: s->reg[I_(offset)] = val; break; } }
19,154
1
static void spitz_i2c_setup(PXA2xxState *cpu) { /* Attach the CPU on one end of our I2C bus. */ I2CBus *bus = pxa2xx_i2c_bus(cpu->i2c[0]); DeviceState *wm; /* Attach a WM8750 to the bus */ wm = i2c_create_slave(bus, "wm8750", 0); spitz_wm8750_addr(wm, 0, 0); qdev_connect_gpio_out(cpu->gpio, SPITZ_GPIO_WM, qemu_allocate_irqs(spitz_wm8750_addr, wm, 1)[0]); /* .. and to the sound interface. */ cpu->i2s->opaque = wm; cpu->i2s->codec_out = wm8750_dac_dat; cpu->i2s->codec_in = wm8750_adc_dat; wm8750_data_req_set(wm, cpu->i2s->data_req, cpu->i2s); }
19,155
1
static void m5206_mbar_writel(void *opaque, target_phys_addr_t offset, uint32_t value) { m5206_mbar_state *s = (m5206_mbar_state *)opaque; int width; offset &= 0x3ff; if (offset > 0x200) { hw_error("Bad MBAR write offset 0x%x", (int)offset); } width = m5206_mbar_width[offset >> 2]; if (width < 4) { m5206_mbar_writew(opaque, offset, value >> 16); m5206_mbar_writew(opaque, offset + 2, value & 0xffff); return; } m5206_mbar_write(s, offset, value, 4); }
19,157
1
static int adx_decode(ADXContext *c, int16_t *out, int offset, const uint8_t *in, int ch) { ADXChannelState *prev = &c->prev[ch]; GetBitContext gb; int scale = AV_RB16(in); int i; int s0, s1, s2, d; /* check if this is an EOF packet */ if (scale & 0x8000) return -1; init_get_bits(&gb, in + 2, (BLOCK_SIZE - 2) * 8); out += offset; s1 = prev->s1; s2 = prev->s2; for (i = 0; i < BLOCK_SAMPLES; i++) { d = get_sbits(&gb, 4); s0 = ((d << COEFF_BITS) * scale + c->coeff[0] * s1 + c->coeff[1] * s2) >> COEFF_BITS; s2 = s1; s1 = av_clip_int16(s0); *out++ = s1; } prev->s1 = s1; prev->s2 = s2; return 0; }
19,158
1
static int ff_asf_get_packet(AVFormatContext *s, AVIOContext *pb) { ASFContext *asf = s->priv_data; uint32_t packet_length, padsize; int rsize = 8; int c, d, e, off; // if we do not know packet size, allow skipping up to 32 kB off= 32768; if (s->packet_size > 0) off= (avio_tell(pb) - s->data_offset) % s->packet_size + 3; c=d=e=-1; while(off-- > 0){ c=d; d=e; e= avio_r8(pb); if(c == 0x82 && !d && !e) break; if (c != 0x82) { /** * This code allows handling of -EAGAIN at packet boundaries (i.e. * if the packet sync code above triggers -EAGAIN). This does not * imply complete -EAGAIN handling support at random positions in * the stream. */ if (pb->error == AVERROR(EAGAIN)) return AVERROR(EAGAIN); if (!pb->eof_reached) av_log(s, AV_LOG_ERROR, "ff asf bad header %x at:%"PRId64"\n", c, avio_tell(pb)); if ((c & 0x8f) == 0x82) { if (d || e) { if (!pb->eof_reached) av_log(s, AV_LOG_ERROR, "ff asf bad non zero\n"); c= avio_r8(pb); d= avio_r8(pb); rsize+=3; }else{ avio_seek(pb, -1, SEEK_CUR); //FIXME asf->packet_flags = c; asf->packet_property = d; DO_2BITS(asf->packet_flags >> 5, packet_length, s->packet_size); DO_2BITS(asf->packet_flags >> 1, padsize, 0); // sequence ignored DO_2BITS(asf->packet_flags >> 3, padsize, 0); // padding length //the following checks prevent overflows and infinite loops if(!packet_length || packet_length >= (1U<<29)){ av_log(s, AV_LOG_ERROR, "invalid packet_length %d at:%"PRId64"\n", packet_length, avio_tell(pb)); if(padsize >= packet_length){ av_log(s, AV_LOG_ERROR, "invalid padsize %d at:%"PRId64"\n", padsize, avio_tell(pb)); asf->packet_timestamp = avio_rl32(pb); avio_rl16(pb); /* duration */ // rsize has at least 11 bytes which have to be present if (asf->packet_flags & 0x01) { asf->packet_segsizetype = avio_r8(pb); rsize++; asf->packet_segments = asf->packet_segsizetype & 0x3f; } else { asf->packet_segments = 1; asf->packet_segsizetype = 0x80; asf->packet_size_left = packet_length - padsize - rsize; if (packet_length < asf->hdr.min_pktsize) padsize += asf->hdr.min_pktsize - packet_length; asf->packet_padsize = padsize; av_dlog(s, "packet: size=%d padsize=%d left=%d\n", s->packet_size, asf->packet_padsize, asf->packet_size_left); return 0;
19,159
0
static bool bdrv_start_throttled_reqs(BlockDriverState *bs) { bool drained = false; bool enabled = bs->io_limits_enabled; int i; bs->io_limits_enabled = false; for (i = 0; i < 2; i++) { while (qemu_co_enter_next(&bs->throttled_reqs[i])) { drained = true; } } bs->io_limits_enabled = enabled; return drained; }
19,161
0
static int nbd_co_send_request(BlockDriverState *bs, NBDRequest *request, QEMUIOVector *qiov) { NBDClientSession *s = nbd_get_client_session(bs); int rc, ret, i; qemu_co_mutex_lock(&s->send_mutex); while (s->in_flight == MAX_NBD_REQUESTS) { qemu_co_queue_wait(&s->free_sema, &s->send_mutex); } s->in_flight++; for (i = 0; i < MAX_NBD_REQUESTS; i++) { if (s->recv_coroutine[i] == NULL) { s->recv_coroutine[i] = qemu_coroutine_self(); break; } } g_assert(qemu_in_coroutine()); assert(i < MAX_NBD_REQUESTS); request->handle = INDEX_TO_HANDLE(s, i); if (!s->ioc) { qemu_co_mutex_unlock(&s->send_mutex); return -EPIPE; } if (qiov) { qio_channel_set_cork(s->ioc, true); rc = nbd_send_request(s->ioc, request); if (rc >= 0) { ret = nbd_wr_syncv(s->ioc, qiov->iov, qiov->niov, request->len, false, NULL); if (ret != request->len) { rc = -EIO; } } qio_channel_set_cork(s->ioc, false); } else { rc = nbd_send_request(s->ioc, request); } qemu_co_mutex_unlock(&s->send_mutex); return rc; }
19,162
0
PCIBus *i440fx_init(PCII440FXState **pi440fx_state, int *piix3_devfn, ISABus **isa_bus, qemu_irq *pic, MemoryRegion *address_space_mem, MemoryRegion *address_space_io, ram_addr_t ram_size, hwaddr pci_hole_start, hwaddr pci_hole_size, ram_addr_t above_4g_mem_size, MemoryRegion *pci_address_space, MemoryRegion *ram_memory) { DeviceState *dev; PCIBus *b; PCIDevice *d; PCIHostState *s; PIIX3State *piix3; PCII440FXState *f; unsigned i; I440FXState *i440fx; dev = qdev_create(NULL, TYPE_I440FX_PCI_HOST_BRIDGE); s = PCI_HOST_BRIDGE(dev); b = pci_bus_new(dev, NULL, pci_address_space, address_space_io, 0, TYPE_PCI_BUS); s->bus = b; object_property_add_child(qdev_get_machine(), "i440fx", OBJECT(dev), NULL); qdev_init_nofail(dev); d = pci_create_simple(b, 0, TYPE_I440FX_PCI_DEVICE); *pi440fx_state = I440FX_PCI_DEVICE(d); f = *pi440fx_state; f->system_memory = address_space_mem; f->pci_address_space = pci_address_space; f->ram_memory = ram_memory; i440fx = I440FX_PCI_HOST_BRIDGE(dev); /* Set PCI window size the way seabios has always done it. */ /* Power of 2 so bios can cover it with a single MTRR */ if (ram_size <= 0x80000000) { i440fx->pci_info.w32.begin = 0x80000000; } else if (ram_size <= 0xc0000000) { i440fx->pci_info.w32.begin = 0xc0000000; } else { i440fx->pci_info.w32.begin = 0xe0000000; } memory_region_init_alias(&f->pci_hole, OBJECT(d), "pci-hole", f->pci_address_space, pci_hole_start, pci_hole_size); memory_region_add_subregion(f->system_memory, pci_hole_start, &f->pci_hole); pc_init_pci64_hole(&i440fx->pci_info, 0x100000000ULL + above_4g_mem_size, i440fx->pci_hole64_size); memory_region_init_alias(&f->pci_hole_64bit, OBJECT(d), "pci-hole64", f->pci_address_space, i440fx->pci_info.w64.begin, i440fx->pci_hole64_size); if (i440fx->pci_hole64_size) { memory_region_add_subregion(f->system_memory, i440fx->pci_info.w64.begin, &f->pci_hole_64bit); } memory_region_init_alias(&f->smram_region, OBJECT(d), "smram-region", f->pci_address_space, 0xa0000, 0x20000); memory_region_add_subregion_overlap(f->system_memory, 0xa0000, &f->smram_region, 1); memory_region_set_enabled(&f->smram_region, false); init_pam(dev, f->ram_memory, f->system_memory, f->pci_address_space, &f->pam_regions[0], PAM_BIOS_BASE, PAM_BIOS_SIZE); for (i = 0; i < 12; ++i) { init_pam(dev, f->ram_memory, f->system_memory, f->pci_address_space, &f->pam_regions[i+1], PAM_EXPAN_BASE + i * PAM_EXPAN_SIZE, PAM_EXPAN_SIZE); } /* Xen supports additional interrupt routes from the PCI devices to * the IOAPIC: the four pins of each PCI device on the bus are also * connected to the IOAPIC directly. * These additional routes can be discovered through ACPI. */ if (xen_enabled()) { piix3 = DO_UPCAST(PIIX3State, dev, pci_create_simple_multifunction(b, -1, true, "PIIX3-xen")); pci_bus_irqs(b, xen_piix3_set_irq, xen_pci_slot_get_pirq, piix3, XEN_PIIX_NUM_PIRQS); } else { piix3 = DO_UPCAST(PIIX3State, dev, pci_create_simple_multifunction(b, -1, true, "PIIX3")); pci_bus_irqs(b, piix3_set_irq, pci_slot_get_pirq, piix3, PIIX_NUM_PIRQS); pci_bus_set_route_irq_fn(b, piix3_route_intx_pin_to_irq); } piix3->pic = pic; *isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix3), "isa.0")); *piix3_devfn = piix3->dev.devfn; ram_size = ram_size / 8 / 1024 / 1024; if (ram_size > 255) { ram_size = 255; } d->config[0x57] = ram_size; i440fx_update_memory_mappings(f); return b; }
19,163
0
static int ppc_hash32_pte_update_flags(struct mmu_ctx_hash32 *ctx, target_ulong *pte1p, int ret, int rw) { int store = 0; /* Update page flags */ if (!(*pte1p & HPTE32_R_R)) { /* Update accessed flag */ *pte1p |= HPTE32_R_R; store = 1; } if (!(*pte1p & HPTE32_R_C)) { if (rw == 1 && ret == 0) { /* Update changed flag */ *pte1p |= HPTE32_R_C; store = 1; } else { /* Force page fault for first write access */ ctx->prot &= ~PAGE_WRITE; } } return store; }
19,164
0
static bool cmd_set_features(IDEState *s, uint8_t cmd) { uint16_t *identify_data; if (!s->bs) { ide_abort_command(s); return true; } /* XXX: valid for CDROM ? */ switch (s->feature) { case 0x02: /* write cache enable */ bdrv_set_enable_write_cache(s->bs, true); identify_data = (uint16_t *)s->identify_data; put_le16(identify_data + 85, (1 << 14) | (1 << 5) | 1); return true; case 0x82: /* write cache disable */ bdrv_set_enable_write_cache(s->bs, false); identify_data = (uint16_t *)s->identify_data; put_le16(identify_data + 85, (1 << 14) | 1); ide_flush_cache(s); return false; case 0xcc: /* reverting to power-on defaults enable */ case 0x66: /* reverting to power-on defaults disable */ case 0xaa: /* read look-ahead enable */ case 0x55: /* read look-ahead disable */ case 0x05: /* set advanced power management mode */ case 0x85: /* disable advanced power management mode */ case 0x69: /* NOP */ case 0x67: /* NOP */ case 0x96: /* NOP */ case 0x9a: /* NOP */ case 0x42: /* enable Automatic Acoustic Mode */ case 0xc2: /* disable Automatic Acoustic Mode */ return true; case 0x03: /* set transfer mode */ { uint8_t val = s->nsector & 0x07; identify_data = (uint16_t *)s->identify_data; switch (s->nsector >> 3) { case 0x00: /* pio default */ case 0x01: /* pio mode */ put_le16(identify_data + 62, 0x07); put_le16(identify_data + 63, 0x07); put_le16(identify_data + 88, 0x3f); break; case 0x02: /* sigle word dma mode*/ put_le16(identify_data + 62, 0x07 | (1 << (val + 8))); put_le16(identify_data + 63, 0x07); put_le16(identify_data + 88, 0x3f); break; case 0x04: /* mdma mode */ put_le16(identify_data + 62, 0x07); put_le16(identify_data + 63, 0x07 | (1 << (val + 8))); put_le16(identify_data + 88, 0x3f); break; case 0x08: /* udma mode */ put_le16(identify_data + 62, 0x07); put_le16(identify_data + 63, 0x07); put_le16(identify_data + 88, 0x3f | (1 << (val + 8))); break; default: goto abort_cmd; } return true; } } abort_cmd: ide_abort_command(s); return true; }
19,166
0
static void scsi_unrealize(SCSIDevice *dev, Error **errp) { SCSIDiskState *s = DO_UPCAST(SCSIDiskState, qdev, dev); scsi_device_purge_requests(&s->qdev, SENSE_CODE(NO_SENSE)); blockdev_mark_auto_del(s->qdev.conf.blk); }
19,167
0
uint32 float64_to_uint32_round_to_zero( float64 a STATUS_PARAM ) { int64_t v; uint32 res; v = float64_to_int64_round_to_zero(a STATUS_VAR); if (v < 0) { res = 0; float_raise( float_flag_invalid STATUS_VAR); } else if (v > 0xffffffff) { res = 0xffffffff; float_raise( float_flag_invalid STATUS_VAR); } else { res = v; } return res; }
19,168
0
static int mkv_write_tag(AVFormatContext *s, AVDictionary *m, unsigned int elementid, unsigned int uid, ebml_master *tags) { MatroskaMuxContext *mkv = s->priv_data; ebml_master tag, targets; AVDictionaryEntry *t = NULL; int ret; if (!tags->pos) { ret = mkv_add_seekhead_entry(mkv->main_seekhead, MATROSKA_ID_TAGS, avio_tell(s->pb)); if (ret < 0) return ret; *tags = start_ebml_master(s->pb, MATROSKA_ID_TAGS, 0); } tag = start_ebml_master(s->pb, MATROSKA_ID_TAG, 0); targets = start_ebml_master(s->pb, MATROSKA_ID_TAGTARGETS, 0); if (elementid) put_ebml_uint(s->pb, elementid, uid); end_ebml_master(s->pb, targets); while ((t = av_dict_get(m, "", t, AV_DICT_IGNORE_SUFFIX))) if (av_strcasecmp(t->key, "title") && av_strcasecmp(t->key, "encoding_tool")) mkv_write_simpletag(s->pb, t); end_ebml_master(s->pb, tag); return 0; }
19,169
0
static int decode_audio_specific_config(AACContext *ac, AVCodecContext *avctx, MPEG4AudioConfig *m4ac, const uint8_t *data, int bit_size, int sync_extension) { GetBitContext gb; int i, ret; av_dlog(avctx, "extradata size %d\n", avctx->extradata_size); for (i = 0; i < avctx->extradata_size; i++) av_dlog(avctx, "%02x ", avctx->extradata[i]); av_dlog(avctx, "\n"); init_get_bits(&gb, data, bit_size); if ((i = avpriv_mpeg4audio_get_config(m4ac, data, bit_size, sync_extension)) < 0) return AVERROR_INVALIDDATA; if (m4ac->sampling_index > 12) { av_log(avctx, AV_LOG_ERROR, "invalid sampling rate index %d\n", m4ac->sampling_index); return AVERROR_INVALIDDATA; } skip_bits_long(&gb, i); switch (m4ac->object_type) { case AOT_AAC_MAIN: case AOT_AAC_LC: case AOT_AAC_LTP: if ((ret = decode_ga_specific_config(ac, avctx, &gb, m4ac, m4ac->chan_config)) < 0) return ret; break; default: av_log(avctx, AV_LOG_ERROR, "Audio object type %s%d is not supported.\n", m4ac->sbr == 1 ? "SBR+" : "", m4ac->object_type); return AVERROR(ENOSYS); } av_dlog(avctx, "AOT %d chan config %d sampling index %d (%d) SBR %d PS %d\n", m4ac->object_type, m4ac->chan_config, m4ac->sampling_index, m4ac->sample_rate, m4ac->sbr, m4ac->ps); return get_bits_count(&gb); }
19,170
0
static int rv34_set_deblock_coef(RV34DecContext *r) { MpegEncContext *s = &r->s; int mvmask = 0, i, j; int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride; int16_t (*motion_val)[2] = s->current_picture_ptr->motion_val[0][midx]; if(s->pict_type == FF_I_TYPE) return 0; for(j = 0; j < 16; j += 8){ for(i = 0; i < 2; i++){ if(is_mv_diff_gt_3(motion_val + i, 1)) mvmask |= 0x11 << (j + i*2); if(is_mv_diff_gt_3(motion_val + i, s->b8_stride)) mvmask |= 0x03 << (j + i*2); } motion_val += s->b8_stride; } return mvmask; }
19,171
0
static int ppc_hash32_get_bat(CPUPPCState *env, struct mmu_ctx_hash32 *ctx, target_ulong virtual, int rw, int type) { target_ulong *BATlt, *BATut, *BATu, *BATl; target_ulong BEPIl, BEPIu, bl; int i, valid, prot; int ret = -1; LOG_BATS("%s: %cBAT v " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', virtual); switch (type) { case ACCESS_CODE: BATlt = env->IBAT[1]; BATut = env->IBAT[0]; break; default: BATlt = env->DBAT[1]; BATut = env->DBAT[0]; break; } for (i = 0; i < env->nb_BATs; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & BATU32_BEPIU; BEPIl = *BATu & BATU32_BEPIL; if (unlikely(env->mmu_model == POWERPC_MMU_601)) { hash32_bat_601_size_prot(env, &bl, &valid, &prot, BATu, BATl); } else { hash32_bat_size_prot(env, &bl, &valid, &prot, BATu, BATl); } LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl); if ((virtual & BATU32_BEPIU) == BEPIu && ((virtual & BATU32_BEPIL) & ~bl) == BEPIl) { /* BAT matches */ if (valid != 0) { /* Get physical address */ ctx->raddr = (*BATl & BATL32_BRPNU) | ((virtual & BATU32_BEPIL & bl) | (*BATl & BATL32_BRPNL)) | (virtual & 0x0001F000); /* Compute access rights */ ctx->prot = prot; ret = ppc_hash32_check_prot(ctx->prot, rw, type); if (ret == 0) { LOG_BATS("BAT %d match: r " TARGET_FMT_plx " prot=%c%c\n", i, ctx->raddr, ctx->prot & PAGE_READ ? 'R' : '-', ctx->prot & PAGE_WRITE ? 'W' : '-'); } break; } } } if (ret < 0) { #if defined(DEBUG_BATS) if (qemu_log_enabled()) { LOG_BATS("no BAT match for " TARGET_FMT_lx ":\n", virtual); for (i = 0; i < 4; i++) { BATu = &BATut[i]; BATl = &BATlt[i]; BEPIu = *BATu & BATU32_BEPIU; BEPIl = *BATu & BATU32_BEPIL; bl = (*BATu & 0x00001FFC) << 15; LOG_BATS("%s: %cBAT%d v " TARGET_FMT_lx " BATu " TARGET_FMT_lx " BATl " TARGET_FMT_lx "\n\t" TARGET_FMT_lx " " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, type == ACCESS_CODE ? 'I' : 'D', i, virtual, *BATu, *BATl, BEPIu, BEPIl, bl); } } #endif } /* No hit */ return ret; }
19,172
0
static uint64_t pl050_read(void *opaque, hwaddr offset, unsigned size) { pl050_state *s = (pl050_state *)opaque; if (offset >= 0xfe0 && offset < 0x1000) return pl050_id[(offset - 0xfe0) >> 2]; switch (offset >> 2) { case 0: /* KMICR */ return s->cr; case 1: /* KMISTAT */ { uint8_t val; uint32_t stat; val = s->last; val = val ^ (val >> 4); val = val ^ (val >> 2); val = (val ^ (val >> 1)) & 1; stat = PL050_TXEMPTY; if (val) stat |= PL050_RXPARITY; if (s->pending) stat |= PL050_RXFULL; return stat; } case 2: /* KMIDATA */ if (s->pending) s->last = ps2_read_data(s->dev); return s->last; case 3: /* KMICLKDIV */ return s->clk; case 4: /* KMIIR */ return s->pending | 2; default: hw_error("pl050_read: Bad offset %x\n", (int)offset); return 0; } }
19,173
0
BlockdevOnError bdrv_get_on_error(BlockDriverState *bs, bool is_read) { return is_read ? bs->on_read_error : bs->on_write_error; }
19,174
0
static int openfile(char *name, int flags, int growable, QDict *opts) { Error *local_err = NULL; if (qemuio_bs) { fprintf(stderr, "file open already, try 'help close'\n"); return 1; } if (growable) { if (bdrv_open(&qemuio_bs, name, NULL, opts, flags | BDRV_O_PROTOCOL, NULL, &local_err)) { fprintf(stderr, "%s: can't open device %s: %s\n", progname, name, error_get_pretty(local_err)); error_free(local_err); return 1; } } else { qemuio_bs = bdrv_new("hda"); if (bdrv_open(&qemuio_bs, name, NULL, opts, flags, NULL, &local_err) < 0) { fprintf(stderr, "%s: can't open device %s: %s\n", progname, name, error_get_pretty(local_err)); error_free(local_err); bdrv_unref(qemuio_bs); qemuio_bs = NULL; return 1; } } return 0; }
19,175
0
static int usb_hid_handle_control(USBDevice *dev, USBPacket *p, int request, int value, int index, int length, uint8_t *data) { USBHIDState *us = DO_UPCAST(USBHIDState, dev, dev); HIDState *hs = &us->hid; int ret; ret = usb_desc_handle_control(dev, p, request, value, index, length, data); if (ret >= 0) { return ret; } ret = 0; switch (request) { case DeviceRequest | USB_REQ_GET_INTERFACE: data[0] = 0; ret = 1; break; case DeviceOutRequest | USB_REQ_SET_INTERFACE: ret = 0; break; /* hid specific requests */ case InterfaceRequest | USB_REQ_GET_DESCRIPTOR: switch (value >> 8) { case 0x22: if (hs->kind == HID_MOUSE) { memcpy(data, qemu_mouse_hid_report_descriptor, sizeof(qemu_mouse_hid_report_descriptor)); ret = sizeof(qemu_mouse_hid_report_descriptor); } else if (hs->kind == HID_TABLET) { memcpy(data, qemu_tablet_hid_report_descriptor, sizeof(qemu_tablet_hid_report_descriptor)); ret = sizeof(qemu_tablet_hid_report_descriptor); } else if (hs->kind == HID_KEYBOARD) { memcpy(data, qemu_keyboard_hid_report_descriptor, sizeof(qemu_keyboard_hid_report_descriptor)); ret = sizeof(qemu_keyboard_hid_report_descriptor); } break; default: goto fail; } break; case GET_REPORT: if (hs->kind == HID_MOUSE || hs->kind == HID_TABLET) { ret = hid_pointer_poll(hs, data, length); } else if (hs->kind == HID_KEYBOARD) { ret = hid_keyboard_poll(hs, data, length); } us->changed = hs->n > 0; break; case SET_REPORT: if (hs->kind == HID_KEYBOARD) { ret = hid_keyboard_write(hs, data, length); } else { goto fail; } break; case GET_PROTOCOL: if (hs->kind != HID_KEYBOARD && hs->kind != HID_MOUSE) { goto fail; } ret = 1; data[0] = us->protocol; break; case SET_PROTOCOL: if (hs->kind != HID_KEYBOARD && hs->kind != HID_MOUSE) { goto fail; } ret = 0; us->protocol = value; break; case GET_IDLE: ret = 1; data[0] = us->idle; break; case SET_IDLE: us->idle = (uint8_t) (value >> 8); usb_hid_set_next_idle(us, qemu_get_clock_ns(vm_clock)); ret = 0; break; default: fail: ret = USB_RET_STALL; break; } return ret; }
19,176
0
void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val) { if (irq < GIC_INTERNAL) { s->priority1[irq][cpu] = val; } else { s->priority2[(irq) - GIC_INTERNAL] = val; } }
19,178
0
static void test_self(void) { Coroutine *coroutine; coroutine = qemu_coroutine_create(verify_self); qemu_coroutine_enter(coroutine, coroutine); }
19,179
0
void object_unparent(Object *obj) { object_ref(obj); if (obj->parent) { object_property_del_child(obj->parent, obj, NULL); } if (obj->class->unparent) { (obj->class->unparent)(obj); } object_unref(obj); }
19,180
0
static int decode_header(MPADecodeContext *s, UINT32 header) { int sample_rate, frame_size, mpeg25, padding; int sample_rate_index, bitrate_index; if (header & (1<<20)) { s->lsf = (header & (1<<19)) ? 0 : 1; mpeg25 = 0; } else { s->lsf = 1; mpeg25 = 1; } s->layer = 4 - ((header >> 17) & 3); /* extract frequency */ sample_rate_index = (header >> 10) & 3; sample_rate = mpa_freq_tab[sample_rate_index] >> (s->lsf + mpeg25); if (sample_rate == 0) return 1; sample_rate_index += 3 * (s->lsf + mpeg25); s->sample_rate_index = sample_rate_index; s->error_protection = ((header >> 16) & 1) ^ 1; bitrate_index = (header >> 12) & 0xf; padding = (header >> 9) & 1; //extension = (header >> 8) & 1; s->mode = (header >> 6) & 3; s->mode_ext = (header >> 4) & 3; //copyright = (header >> 3) & 1; //original = (header >> 2) & 1; //emphasis = header & 3; if (s->mode == MPA_MONO) s->nb_channels = 1; else s->nb_channels = 2; if (bitrate_index != 0) { frame_size = mpa_bitrate_tab[s->lsf][s->layer - 1][bitrate_index]; s->bit_rate = frame_size * 1000; switch(s->layer) { case 1: frame_size = (frame_size * 12000) / sample_rate; frame_size = (frame_size + padding) * 4; break; case 2: frame_size = (frame_size * 144000) / sample_rate; frame_size += padding; break; default: case 3: frame_size = (frame_size * 144000) / (sample_rate << s->lsf); frame_size += padding; break; } s->frame_size = frame_size; } else { /* if no frame size computed, signal it */ if (!s->free_format_frame_size) return 1; /* free format: compute bitrate and real frame size from the frame size we extracted by reading the bitstream */ s->frame_size = s->free_format_frame_size; switch(s->layer) { case 1: s->frame_size += padding * 4; s->bit_rate = (s->frame_size * sample_rate) / 48000; break; case 2: s->frame_size += padding; s->bit_rate = (s->frame_size * sample_rate) / 144000; break; default: case 3: s->frame_size += padding; s->bit_rate = (s->frame_size * (sample_rate << s->lsf)) / 144000; break; } } s->sample_rate = sample_rate; #ifdef DEBUG printf("layer%d, %d Hz, %d kbits/s, ", s->layer, s->sample_rate, s->bit_rate); if (s->nb_channels == 2) { if (s->layer == 3) { if (s->mode_ext & MODE_EXT_MS_STEREO) printf("ms-"); if (s->mode_ext & MODE_EXT_I_STEREO) printf("i-"); } printf("stereo"); } else { printf("mono"); } printf("\n"); #endif return 0; }
19,182
0
static gboolean gd_focus_out_event(GtkWidget *widget, GdkEventCrossing *crossing, gpointer opaque) { VirtualConsole *vc = opaque; GtkDisplayState *s = vc->s; gtk_release_modifiers(s); return TRUE; }
19,183
0
void isa_init_irq(ISADevice *dev, qemu_irq *p, int isairq) { assert(dev->nirqs < ARRAY_SIZE(dev->isairq)); if (isabus->assigned & (1 << isairq)) { hw_error("isa irq %d already assigned", isairq); } isabus->assigned |= (1 << isairq); dev->isairq[dev->nirqs] = isairq; *p = isabus->irqs[isairq]; dev->nirqs++; }
19,185
0
void bdrv_swap(BlockDriverState *bs_new, BlockDriverState *bs_old) { BlockDriverState tmp; /* The code needs to swap the node_name but simply swapping node_list won't * work so first remove the nodes from the graph list, do the swap then * insert them back if needed. */ if (bs_new->node_name[0] != '\0') { QTAILQ_REMOVE(&graph_bdrv_states, bs_new, node_list); } if (bs_old->node_name[0] != '\0') { QTAILQ_REMOVE(&graph_bdrv_states, bs_old, node_list); } /* bs_new must be anonymous and shouldn't have anything fancy enabled */ assert(bs_new->device_name[0] == '\0'); assert(QLIST_EMPTY(&bs_new->dirty_bitmaps)); assert(bs_new->job == NULL); assert(bs_new->dev == NULL); assert(bdrv_op_blocker_is_empty(bs_new)); assert(bs_new->io_limits_enabled == false); assert(!throttle_have_timer(&bs_new->throttle_state)); tmp = *bs_new; *bs_new = *bs_old; *bs_old = tmp; /* there are some fields that should not be swapped, move them back */ bdrv_move_feature_fields(&tmp, bs_old); bdrv_move_feature_fields(bs_old, bs_new); bdrv_move_feature_fields(bs_new, &tmp); /* bs_new shouldn't be in bdrv_states even after the swap! */ assert(bs_new->device_name[0] == '\0'); /* Check a few fields that should remain attached to the device */ assert(bs_new->dev == NULL); assert(bs_new->job == NULL); assert(bdrv_op_blocker_is_empty(bs_new)); assert(bs_new->io_limits_enabled == false); assert(!throttle_have_timer(&bs_new->throttle_state)); /* insert the nodes back into the graph node list if needed */ if (bs_new->node_name[0] != '\0') { QTAILQ_INSERT_TAIL(&graph_bdrv_states, bs_new, node_list); } if (bs_old->node_name[0] != '\0') { QTAILQ_INSERT_TAIL(&graph_bdrv_states, bs_old, node_list); } bdrv_rebind(bs_new); bdrv_rebind(bs_old); }
19,186
0
static int sigp_set_architecture(S390CPU *cpu, uint32_t param, uint64_t *status_reg) { CPUState *cur_cs; S390CPU *cur_cpu; bool all_stopped = true; CPU_FOREACH(cur_cs) { cur_cpu = S390_CPU(cur_cs); if (cur_cpu == cpu) { continue; } if (s390_cpu_get_state(cur_cpu) != CPU_STATE_STOPPED) { all_stopped = false; } } *status_reg &= 0xffffffff00000000ULL; /* Reject set arch order, with czam we're always in z/Arch mode. */ *status_reg |= (all_stopped ? SIGP_STAT_INVALID_PARAMETER : SIGP_STAT_INCORRECT_STATE); return SIGP_CC_STATUS_STORED; }
19,187
0
int kvm_s390_cpu_restart(S390CPU *cpu) { kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0); s390_add_running_cpu(cpu); qemu_cpu_kick(CPU(cpu)); DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env); return 0; }
19,188
0
float64 uint64_to_float64( uint64 a STATUS_PARAM ) { if ( a == 0 ) return 0; return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR ); }
19,189
0
void gt64120_reset(void *opaque) { GT64120State *s = opaque; /* CPU Configuration */ #ifdef TARGET_WORDS_BIGENDIAN s->regs[GT_CPU] = 0x00000000; #else s->regs[GT_CPU] = 0x00001000; #endif s->regs[GT_MULTI] = 0x00000000; /* CPU Address decode FIXME: not complete*/ s->regs[GT_PCI0IOLD] = 0x00000080; s->regs[GT_PCI0IOHD] = 0x0000000f; s->regs[GT_PCI0M0LD] = 0x00000090; s->regs[GT_PCI0M0HD] = 0x0000001f; s->regs[GT_PCI0M1LD] = 0x00000790; s->regs[GT_PCI0M1HD] = 0x0000001f; s->regs[GT_PCI1IOLD] = 0x00000100; s->regs[GT_PCI1IOHD] = 0x0000000f; s->regs[GT_PCI1M0LD] = 0x00000110; s->regs[GT_PCI1M0HD] = 0x0000001f; s->regs[GT_PCI1M1LD] = 0x00000120; s->regs[GT_PCI1M1HD] = 0x0000002f; s->regs[GT_PCI0IOREMAP] = 0x00000080; s->regs[GT_PCI0M0REMAP] = 0x00000090; s->regs[GT_PCI0M1REMAP] = 0x00000790; s->regs[GT_PCI1IOREMAP] = 0x00000100; s->regs[GT_PCI1M0REMAP] = 0x00000110; s->regs[GT_PCI1M1REMAP] = 0x00000120; /* CPU Error Report */ s->regs[GT_CPUERR_ADDRLO] = 0x00000000; s->regs[GT_CPUERR_ADDRHI] = 0x00000000; s->regs[GT_CPUERR_DATALO] = 0xffffffff; s->regs[GT_CPUERR_DATAHI] = 0xffffffff; s->regs[GT_CPUERR_PARITY] = 0x000000ff; /* ECC */ s->regs[GT_ECC_ERRDATALO] = 0x00000000; s->regs[GT_ECC_ERRDATAHI] = 0x00000000; s->regs[GT_ECC_MEM] = 0x00000000; s->regs[GT_ECC_CALC] = 0x00000000; s->regs[GT_ECC_ERRADDR] = 0x00000000; /* SDRAM Parameters */ s->regs[GT_SDRAM_B0] = 0x00000005; s->regs[GT_SDRAM_B1] = 0x00000005; s->regs[GT_SDRAM_B2] = 0x00000005; s->regs[GT_SDRAM_B3] = 0x00000005; /* PCI Internal FIXME: not complete*/ #ifdef TARGET_WORDS_BIGENDIAN s->regs[GT_PCI0_CMD] = 0x00000000; s->regs[GT_PCI1_CMD] = 0x00000000; #else s->regs[GT_PCI0_CMD] = 0x00010001; s->regs[GT_PCI1_CMD] = 0x00010001; #endif s->regs[GT_PCI0_IACK] = 0x00000000; s->regs[GT_PCI1_IACK] = 0x00000000; gt64120_pci_mapping(s); }
19,190
0
uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg) { CPU_DoubleU farg; farg.ll = arg; if (unlikely(float64_is_signaling_nan(farg.d))) { /* sNaN conversion */ farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI); } else if (unlikely(float64_is_quiet_nan(farg.d) || float64_is_infinity(farg.d))) { /* qNan / infinity conversion */ farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI); } else { farg.ll = float64_to_int32(farg.d, &env->fp_status); /* XXX: higher bits are not supposed to be significant. * to make tests easier, return the same as a real PowerPC 750 */ farg.ll |= 0xFFF80000ULL << 32; } return farg.ll; }
19,191
0
static void vfio_add_ext_cap(VFIOPCIDevice *vdev) { PCIDevice *pdev = &vdev->pdev; uint32_t header; uint16_t cap_id, next, size; uint8_t cap_ver; uint8_t *config; /* Only add extended caps if we have them and the guest can see them */ if (!pci_is_express(pdev) || !pci_bus_is_express(pdev->bus) || !pci_get_long(pdev->config + PCI_CONFIG_SPACE_SIZE)) { return; } /* * pcie_add_capability always inserts the new capability at the tail * of the chain. Therefore to end up with a chain that matches the * physical device, we cache the config space to avoid overwriting * the original config space when we parse the extended capabilities. */ config = g_memdup(pdev->config, vdev->config_size); /* * Extended capabilities are chained with each pointing to the next, so we * can drop anything other than the head of the chain simply by modifying * the previous next pointer. For the head of the chain, we can modify the * capability ID to something that cannot match a valid capability. ID * 0 is reserved for this since absence of capabilities is indicated by * 0 for the ID, version, AND next pointer. However, pcie_add_capability() * uses ID 0 as reserved for list management and will incorrectly match and * assert if we attempt to pre-load the head of the chain with this ID. * Use ID 0xFFFF temporarily since it is also seems to be reserved in * part for identifying absence of capabilities in a root complex register * block. If the ID still exists after adding capabilities, switch back to * zero. We'll mark this entire first dword as emulated for this purpose. */ pci_set_long(pdev->config + PCI_CONFIG_SPACE_SIZE, PCI_EXT_CAP(0xFFFF, 0, 0)); pci_set_long(pdev->wmask + PCI_CONFIG_SPACE_SIZE, 0); pci_set_long(vdev->emulated_config_bits + PCI_CONFIG_SPACE_SIZE, ~0); for (next = PCI_CONFIG_SPACE_SIZE; next; next = PCI_EXT_CAP_NEXT(pci_get_long(config + next))) { header = pci_get_long(config + next); cap_id = PCI_EXT_CAP_ID(header); cap_ver = PCI_EXT_CAP_VER(header); /* * If it becomes important to configure extended capabilities to their * actual size, use this as the default when it's something we don't * recognize. Since QEMU doesn't actually handle many of the config * accesses, exact size doesn't seem worthwhile. */ size = vfio_ext_cap_max_size(config, next); /* Use emulated next pointer to allow dropping extended caps */ pci_long_test_and_set_mask(vdev->emulated_config_bits + next, PCI_EXT_CAP_NEXT_MASK); switch (cap_id) { case PCI_EXT_CAP_ID_SRIOV: /* Read-only VF BARs confuse OVMF */ case PCI_EXT_CAP_ID_ARI: /* XXX Needs next function virtualization */ trace_vfio_add_ext_cap_dropped(vdev->vbasedev.name, cap_id, next); break; default: pcie_add_capability(pdev, cap_id, cap_ver, next, size); } } /* Cleanup chain head ID if necessary */ if (pci_get_word(pdev->config + PCI_CONFIG_SPACE_SIZE) == 0xFFFF) { pci_set_word(pdev->config + PCI_CONFIG_SPACE_SIZE, 0); } g_free(config); return; }
19,192
0
bool tcg_target_deposit_valid(int ofs, int len) { return (facilities & FACILITY_GEN_INST_EXT) != 0; }
19,193
0
void handle_diag_308(CPUS390XState *env, uint64_t r1, uint64_t r3) { uint64_t addr = env->regs[r1]; uint64_t subcode = env->regs[r3]; IplParameterBlock *iplb; if (env->psw.mask & PSW_MASK_PSTATE) { program_interrupt(env, PGM_PRIVILEGED, ILEN_LATER_INC); return; } if ((subcode & ~0x0ffffULL) || (subcode > 6)) { program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC); return; } switch (subcode) { case 0: modified_clear_reset(s390_env_get_cpu(env)); if (tcg_enabled()) { cpu_loop_exit(CPU(s390_env_get_cpu(env))); } break; case 1: load_normal_reset(s390_env_get_cpu(env)); if (tcg_enabled()) { cpu_loop_exit(CPU(s390_env_get_cpu(env))); } break; case 3: s390_reipl_request(); if (tcg_enabled()) { cpu_loop_exit(CPU(s390_env_get_cpu(env))); } break; case 5: if ((r1 & 1) || (addr & 0x0fffULL)) { program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC); return; } if (!address_space_access_valid(&address_space_memory, addr, sizeof(IplParameterBlock), false)) { program_interrupt(env, PGM_ADDRESSING, ILEN_LATER_INC); return; } iplb = g_malloc0(sizeof(IplParameterBlock)); cpu_physical_memory_read(addr, iplb, sizeof(iplb->len)); if (!iplb_valid_len(iplb)) { env->regs[r1 + 1] = DIAG_308_RC_INVALID; goto out; } cpu_physical_memory_read(addr, iplb, be32_to_cpu(iplb->len)); if (!iplb_valid_ccw(iplb) && !iplb_valid_fcp(iplb)) { env->regs[r1 + 1] = DIAG_308_RC_INVALID; goto out; } s390_ipl_update_diag308(iplb); env->regs[r1 + 1] = DIAG_308_RC_OK; out: g_free(iplb); return; case 6: if ((r1 & 1) || (addr & 0x0fffULL)) { program_interrupt(env, PGM_SPECIFICATION, ILEN_LATER_INC); return; } if (!address_space_access_valid(&address_space_memory, addr, sizeof(IplParameterBlock), true)) { program_interrupt(env, PGM_ADDRESSING, ILEN_LATER_INC); return; } iplb = s390_ipl_get_iplb(); if (iplb) { cpu_physical_memory_write(addr, iplb, be32_to_cpu(iplb->len)); env->regs[r1 + 1] = DIAG_308_RC_OK; } else { env->regs[r1 + 1] = DIAG_308_RC_NO_CONF; } return; default: hw_error("Unhandled diag308 subcode %" PRIx64, subcode); break; } }
19,194
0
static int avg_bits_per_pixel(int pix_fmt) { int bits; const PixFmtInfo *pf; pf = &pix_fmt_info[pix_fmt]; if (pf->is_packed) { switch(pix_fmt) { case PIX_FMT_RGB24: case PIX_FMT_BGR24: bits = 24; break; case PIX_FMT_RGBA32: bits = 32; break; case PIX_FMT_RGB565: case PIX_FMT_RGB555: bits = 16; break; case PIX_FMT_PAL8: bits = 8; break; default: bits = 32; break; } } else { bits = pf->depth; bits += (2 * pf->depth >> (pf->x_chroma_shift + pf->x_chroma_shift)); } return bits; }
19,195
0
static void tgen_brcond(TCGContext *s, TCGType type, TCGCond c, TCGReg r1, TCGArg c2, int c2const, TCGLabel *l) { int cc; if (facilities & FACILITY_GEN_INST_EXT) { bool is_unsigned = is_unsigned_cond(c); bool in_range; S390Opcode opc; cc = tcg_cond_to_s390_cond[c]; if (!c2const) { opc = (type == TCG_TYPE_I32 ? (is_unsigned ? RIE_CLRJ : RIE_CRJ) : (is_unsigned ? RIE_CLGRJ : RIE_CGRJ)); tgen_compare_branch(s, opc, cc, r1, c2, l); return; } /* COMPARE IMMEDIATE AND BRANCH RELATIVE has an 8-bit immediate field. If the immediate we've been given does not fit that range, we'll fall back to separate compare and branch instructions using the larger comparison range afforded by COMPARE IMMEDIATE. */ if (type == TCG_TYPE_I32) { if (is_unsigned) { opc = RIE_CLIJ; in_range = (uint32_t)c2 == (uint8_t)c2; } else { opc = RIE_CIJ; in_range = (int32_t)c2 == (int8_t)c2; } } else { if (is_unsigned) { opc = RIE_CLGIJ; in_range = (uint64_t)c2 == (uint8_t)c2; } else { opc = RIE_CGIJ; in_range = (int64_t)c2 == (int8_t)c2; } } if (in_range) { tgen_compare_imm_branch(s, opc, cc, r1, c2, l); return; } } cc = tgen_cmp(s, type, c, r1, c2, c2const, false); tgen_branch(s, cc, l); }
19,196
0
static int kvm_get_msrs(CPUState *env) { struct { struct kvm_msrs info; struct kvm_msr_entry entries[100]; } msr_data; struct kvm_msr_entry *msrs = msr_data.entries; int ret, i, n; n = 0; msrs[n++].index = MSR_IA32_SYSENTER_CS; msrs[n++].index = MSR_IA32_SYSENTER_ESP; msrs[n++].index = MSR_IA32_SYSENTER_EIP; if (kvm_has_msr_star(env)) { msrs[n++].index = MSR_STAR; } if (kvm_has_msr_hsave_pa(env)) { msrs[n++].index = MSR_VM_HSAVE_PA; } msrs[n++].index = MSR_IA32_TSC; #ifdef TARGET_X86_64 if (lm_capable_kernel) { msrs[n++].index = MSR_CSTAR; msrs[n++].index = MSR_KERNELGSBASE; msrs[n++].index = MSR_FMASK; msrs[n++].index = MSR_LSTAR; } #endif msrs[n++].index = MSR_KVM_SYSTEM_TIME; msrs[n++].index = MSR_KVM_WALL_CLOCK; #ifdef KVM_CAP_ASYNC_PF msrs[n++].index = MSR_KVM_ASYNC_PF_EN; #endif #ifdef KVM_CAP_MCE if (env->mcg_cap) { msrs[n++].index = MSR_MCG_STATUS; msrs[n++].index = MSR_MCG_CTL; for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) { msrs[n++].index = MSR_MC0_CTL + i; } } #endif msr_data.info.nmsrs = n; ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); if (ret < 0) { return ret; } for (i = 0; i < ret; i++) { switch (msrs[i].index) { case MSR_IA32_SYSENTER_CS: env->sysenter_cs = msrs[i].data; break; case MSR_IA32_SYSENTER_ESP: env->sysenter_esp = msrs[i].data; break; case MSR_IA32_SYSENTER_EIP: env->sysenter_eip = msrs[i].data; break; case MSR_STAR: env->star = msrs[i].data; break; #ifdef TARGET_X86_64 case MSR_CSTAR: env->cstar = msrs[i].data; break; case MSR_KERNELGSBASE: env->kernelgsbase = msrs[i].data; break; case MSR_FMASK: env->fmask = msrs[i].data; break; case MSR_LSTAR: env->lstar = msrs[i].data; break; #endif case MSR_IA32_TSC: env->tsc = msrs[i].data; break; case MSR_VM_HSAVE_PA: env->vm_hsave = msrs[i].data; break; case MSR_KVM_SYSTEM_TIME: env->system_time_msr = msrs[i].data; break; case MSR_KVM_WALL_CLOCK: env->wall_clock_msr = msrs[i].data; break; #ifdef KVM_CAP_MCE case MSR_MCG_STATUS: env->mcg_status = msrs[i].data; break; case MSR_MCG_CTL: env->mcg_ctl = msrs[i].data; break; #endif default: #ifdef KVM_CAP_MCE if (msrs[i].index >= MSR_MC0_CTL && msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) { env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data; } #endif break; #ifdef KVM_CAP_ASYNC_PF case MSR_KVM_ASYNC_PF_EN: env->async_pf_en_msr = msrs[i].data; break; #endif } } return 0; }
19,197
0
static int protocol_client_msg(VncState *vs, char *data, size_t len) { int i; uint16_t limit; switch (data[0]) { case 0: if (len == 1) return 20; set_pixel_format(vs, read_u8(data, 4), read_u8(data, 5), read_u8(data, 6), read_u8(data, 7), read_u16(data, 8), read_u16(data, 10), read_u16(data, 12), read_u8(data, 14), read_u8(data, 15), read_u8(data, 16)); break; case 2: if (len == 1) return 4; if (len == 4) return 4 + (read_u16(data, 2) * 4); limit = read_u16(data, 2); for (i = 0; i < limit; i++) { int32_t val = read_s32(data, 4 + (i * 4)); memcpy(data + 4 + (i * 4), &val, sizeof(val)); } set_encodings(vs, (int32_t *)(data + 4), limit); break; case 3: if (len == 1) return 10; framebuffer_update_request(vs, read_u8(data, 1), read_u16(data, 2), read_u16(data, 4), read_u16(data, 6), read_u16(data, 8)); break; case 4: if (len == 1) return 8; key_event(vs, read_u8(data, 1), read_u32(data, 4)); break; case 5: if (len == 1) return 6; pointer_event(vs, read_u8(data, 1), read_u16(data, 2), read_u16(data, 4)); break; case 6: if (len == 1) return 8; if (len == 8) return 8 + read_u32(data, 4); client_cut_text(vs, read_u32(data, 4), data + 8); break; default: printf("Msg: %d\n", data[0]); vnc_client_error(vs); break; } vnc_read_when(vs, protocol_client_msg, 1); return 0; }
19,199
0
static void mirror_drain(MirrorBlockJob *s) { while (s->in_flight > 0) { mirror_wait_for_io(s); } }
19,200
0
static inline void ide_abort_command(IDEState *s) { ide_transfer_stop(s); s->status = READY_STAT | ERR_STAT; s->error = ABRT_ERR; }
19,202
0
static inline void gen_op_addw_ESP_im(int32_t val) { tcg_gen_ld_tl(cpu_tmp0, cpu_env, offsetof(CPUState, regs[R_ESP])); tcg_gen_addi_tl(cpu_tmp0, cpu_tmp0, val); tcg_gen_st16_tl(cpu_tmp0, cpu_env, offsetof(CPUState, regs[R_ESP]) + REG_W_OFFSET); }
19,203
0
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, QEMUMachineInitArgs *args) { const char *cpu_model = args->cpu_model; unsigned int i; void *iommu, *espdma, *ledma, *nvram; qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS], espdma_irq, ledma_irq; qemu_irq esp_reset, dma_enable; qemu_irq fdc_tc; qemu_irq *cpu_halt; unsigned long kernel_size; DriveInfo *fd[MAX_FD]; FWCfgState *fw_cfg; unsigned int num_vsimms; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for(i = 0; i < smp_cpus; i++) { cpu_devinit(cpu_model, i, hwdef->slavio_base, &cpu_irqs[i]); } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* set up devices */ ram_init(0, args->ram_size, hwdef->max_mem); /* models without ECC don't trap when missing ram is accessed */ if (!hwdef->ecc_base) { empty_slot_init(args->ram_size, hwdef->max_mem - args->ram_size); } prom_init(hwdef->slavio_base, bios_name); slavio_intctl = slavio_intctl_init(hwdef->intctl_base, hwdef->intctl_base + 0x10000ULL, cpu_irqs); for (i = 0; i < 32; i++) { slavio_irq[i] = qdev_get_gpio_in(slavio_intctl, i); } for (i = 0; i < MAX_CPUS; i++) { slavio_cpu_irq[i] = qdev_get_gpio_in(slavio_intctl, 32 + i); } if (hwdef->idreg_base) { idreg_init(hwdef->idreg_base); } if (hwdef->afx_base) { afx_init(hwdef->afx_base); } iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[30]); if (hwdef->iommu_pad_base) { /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased. Software shouldn't use aliased addresses, neither should it crash when does. Using empty_slot instead of aliasing can help with debugging such accesses */ empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len); } espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18], iommu, &espdma_irq, 0); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[16], iommu, &ledma_irq, 1); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } num_vsimms = 0; if (num_vsimms == 0) { tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height, graphic_depth); } for (i = num_vsimms; i < MAX_VSIMMS; i++) { /* vsimm registers probed by OBP */ if (hwdef->vsimm[i].reg_base) { empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000); } } if (hwdef->sx_base) { empty_slot_init(hwdef->sx_base, 0x2000); } lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq); nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, 0x2000, 8); slavio_timer_init_all(hwdef->counter_base, slavio_irq[19], slavio_cpu_irq, smp_cpus); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */ escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1); if (hwdef->apc_base) { apc_init(hwdef->apc_base, cpu_halt[0]); } if (hwdef->fd_base) { /* there is zero or one floppy drive */ memset(fd, 0, sizeof(fd)); fd[0] = drive_get(IF_FLOPPY, 0, 0); sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd, &fdc_tc); } else { fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1); } slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base, slavio_irq[30], fdc_tc); if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, espdma_irq, &esp_reset, &dma_enable); qdev_connect_gpio_out(espdma, 0, esp_reset); qdev_connect_gpio_out(espdma, 1, dma_enable); if (hwdef->cs_base) { sysbus_create_simple("SUNW,CS4231", hwdef->cs_base, slavio_irq[5]); } if (hwdef->dbri_base) { /* ISDN chip with attached CS4215 audio codec */ /* prom space */ empty_slot_init(hwdef->dbri_base+0x1000, 0x30); /* reg space */ empty_slot_init(hwdef->dbri_base+0x10000, 0x100); } if (hwdef->bpp_base) { /* parallel port */ empty_slot_init(hwdef->bpp_base, 0x20); } kernel_size = sun4m_load_kernel(args->kernel_filename, args->initrd_filename, args->ram_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, args->kernel_cmdline, args->boot_device, args->ram_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4m"); if (hwdef->ecc_base) ecc_init(hwdef->ecc_base, slavio_irq[28], hwdef->ecc_version); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_WIDTH, graphic_width); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_HEIGHT, graphic_height); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (args->kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys("cmdline", CMDLINE_ADDR, TARGET_PAGE_SIZE, args->kernel_cmdline); fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, args->kernel_cmdline); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(args->kernel_cmdline) + 1); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, args->boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); }
19,205
0
static inline void gen_op_eval_ble(TCGv dst, TCGv_i32 src) { gen_mov_reg_N(cpu_tmp0, src); gen_mov_reg_V(dst, src); tcg_gen_xor_tl(dst, dst, cpu_tmp0); gen_mov_reg_Z(cpu_tmp0, src); tcg_gen_or_tl(dst, dst, cpu_tmp0); }
19,206
0
static void colo_compare_finalize(Object *obj) { CompareState *s = COLO_COMPARE(obj); qemu_chr_fe_deinit(&s->chr_pri_in, false); qemu_chr_fe_deinit(&s->chr_sec_in, false); qemu_chr_fe_deinit(&s->chr_out, false); g_main_loop_quit(s->compare_loop); qemu_thread_join(&s->thread); /* Release all unhandled packets after compare thead exited */ g_queue_foreach(&s->conn_list, colo_flush_packets, s); g_queue_clear(&s->conn_list); g_hash_table_destroy(s->connection_track_table); g_free(s->pri_indev); g_free(s->sec_indev); g_free(s->outdev); }
19,207
0
static int exec_close(MigrationState *s) { int ret = 0; DPRINTF("exec_close\n"); ret = qemu_fclose(s->opaque); s->opaque = NULL; s->fd = -1; if (ret >= 0 && !(WIFEXITED(ret) && WEXITSTATUS(ret) == 0)) { /* close succeeded, but non-zero exit code: */ ret = -EIO; /* fake errno value */ } return ret; }
19,208
0
static int megasas_handle_abort(MegasasState *s, MegasasCmd *cmd) { uint64_t abort_ctx = le64_to_cpu(cmd->frame->abort.abort_context); target_phys_addr_t abort_addr, addr_hi, addr_lo; MegasasCmd *abort_cmd; addr_hi = le32_to_cpu(cmd->frame->abort.abort_mfi_addr_hi); addr_lo = le32_to_cpu(cmd->frame->abort.abort_mfi_addr_lo); abort_addr = ((uint64_t)addr_hi << 32) | addr_lo; abort_cmd = megasas_lookup_frame(s, abort_addr); if (!abort_cmd) { trace_megasas_abort_no_cmd(cmd->index, abort_ctx); s->event_count++; return MFI_STAT_OK; } if (!megasas_use_queue64(s)) { abort_ctx &= (uint64_t)0xFFFFFFFF; } if (abort_cmd->context != abort_ctx) { trace_megasas_abort_invalid_context(cmd->index, abort_cmd->index, abort_cmd->context); s->event_count++; return MFI_STAT_ABORT_NOT_POSSIBLE; } trace_megasas_abort_frame(cmd->index, abort_cmd->index); megasas_abort_command(abort_cmd); if (!s->event_cmd || abort_cmd != s->event_cmd) { s->event_cmd = NULL; } s->event_count++; return MFI_STAT_OK; }
19,209
0
static bool aio_epoll_enabled(AioContext *ctx) { /* Fall back to ppoll when external clients are disabled. */ return !aio_external_disabled(ctx) && ctx->epoll_enabled; }
19,210
1
av_cold void ff_h264_decode_init_vlc(void){ static int done = 0; if (!done) { int i; int offset; done = 1; chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table; chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size; init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5, &chroma_dc_coeff_token_len [0], 1, 1, &chroma_dc_coeff_token_bits[0], 1, 1, INIT_VLC_USE_NEW_STATIC); chroma422_dc_coeff_token_vlc.table = chroma422_dc_coeff_token_vlc_table; chroma422_dc_coeff_token_vlc.table_allocated = chroma422_dc_coeff_token_vlc_table_size; init_vlc(&chroma422_dc_coeff_token_vlc, CHROMA422_DC_COEFF_TOKEN_VLC_BITS, 4*9, &chroma422_dc_coeff_token_len [0], 1, 1, &chroma422_dc_coeff_token_bits[0], 1, 1, INIT_VLC_USE_NEW_STATIC); offset = 0; for(i=0; i<4; i++){ coeff_token_vlc[i].table = coeff_token_vlc_tables+offset; coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i]; init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17, &coeff_token_len [i][0], 1, 1, &coeff_token_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); offset += coeff_token_vlc_tables_size[i]; } /* * This is a one time safety check to make sure that * the packed static coeff_token_vlc table sizes * were initialized correctly. */ av_assert0(offset == FF_ARRAY_ELEMS(coeff_token_vlc_tables)); for(i=0; i<3; i++){ chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i]; chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size; init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4, &chroma_dc_total_zeros_len [i][0], 1, 1, &chroma_dc_total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<7; i++){ chroma422_dc_total_zeros_vlc[i].table = chroma422_dc_total_zeros_vlc_tables[i]; chroma422_dc_total_zeros_vlc[i].table_allocated = chroma422_dc_total_zeros_vlc_tables_size; init_vlc(&chroma422_dc_total_zeros_vlc[i], CHROMA422_DC_TOTAL_ZEROS_VLC_BITS, 8, &chroma422_dc_total_zeros_len [i][0], 1, 1, &chroma422_dc_total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<15; i++){ total_zeros_vlc[i].table = total_zeros_vlc_tables[i]; total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size; init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16, &total_zeros_len [i][0], 1, 1, &total_zeros_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } for(i=0; i<6; i++){ run_vlc[i].table = run_vlc_tables[i]; run_vlc[i].table_allocated = run_vlc_tables_size; init_vlc(&run_vlc[i], RUN_VLC_BITS, 7, &run_len [i][0], 1, 1, &run_bits[i][0], 1, 1, INIT_VLC_USE_NEW_STATIC); } run7_vlc.table = run7_vlc_table, run7_vlc.table_allocated = run7_vlc_table_size; init_vlc(&run7_vlc, RUN7_VLC_BITS, 16, &run_len [6][0], 1, 1, &run_bits[6][0], 1, 1, INIT_VLC_USE_NEW_STATIC); init_cavlc_level_tab(); } }
19,211
1
static inline void RENAME(yuvPlanartouyvy)(const uint8_t *ysrc, const uint8_t *usrc, const uint8_t *vsrc, uint8_t *dst, unsigned int width, unsigned int height, int lumStride, int chromStride, int dstStride, int vertLumPerChroma) { unsigned y; const unsigned chromWidth= width>>1; for(y=0; y<height; y++) { #ifdef HAVE_MMX //FIXME handle 2 lines a once (fewer prefetch, reuse some chrom, but very likely limited by mem anyway) asm volatile( "xor %%"REG_a", %%"REG_a" \n\t" ".balign 16 \n\t" "1: \n\t" PREFETCH" 32(%1, %%"REG_a", 2) \n\t" PREFETCH" 32(%2, %%"REG_a") \n\t" PREFETCH" 32(%3, %%"REG_a") \n\t" "movq (%2, %%"REG_a"), %%mm0 \n\t" // U(0) "movq %%mm0, %%mm2 \n\t" // U(0) "movq (%3, %%"REG_a"), %%mm1 \n\t" // V(0) "punpcklbw %%mm1, %%mm0 \n\t" // UVUV UVUV(0) "punpckhbw %%mm1, %%mm2 \n\t" // UVUV UVUV(8) "movq (%1, %%"REG_a",2), %%mm3 \n\t" // Y(0) "movq 8(%1, %%"REG_a",2), %%mm5 \n\t" // Y(8) "movq %%mm0, %%mm4 \n\t" // Y(0) "movq %%mm2, %%mm6 \n\t" // Y(8) "punpcklbw %%mm3, %%mm0 \n\t" // YUYV YUYV(0) "punpckhbw %%mm3, %%mm4 \n\t" // YUYV YUYV(4) "punpcklbw %%mm5, %%mm2 \n\t" // YUYV YUYV(8) "punpckhbw %%mm5, %%mm6 \n\t" // YUYV YUYV(12) MOVNTQ" %%mm0, (%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm4, 8(%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm2, 16(%0, %%"REG_a", 4)\n\t" MOVNTQ" %%mm6, 24(%0, %%"REG_a", 4)\n\t" "add $8, %%"REG_a" \n\t" "cmp %4, %%"REG_a" \n\t" " jb 1b \n\t" ::"r"(dst), "r"(ysrc), "r"(usrc), "r"(vsrc), "g" ((long)chromWidth) : "%"REG_a ); #else //FIXME adapt the alpha asm code from yv12->yuy2 #if __WORDSIZE >= 64 int i; uint64_t *ldst = (uint64_t *) dst; const uint8_t *yc = ysrc, *uc = usrc, *vc = vsrc; for(i = 0; i < chromWidth; i += 2){ uint64_t k, l; k = uc[0] + (yc[0] << 8) + (vc[0] << 16) + (yc[1] << 24); l = uc[1] + (yc[2] << 8) + (vc[1] << 16) + (yc[3] << 24); *ldst++ = k + (l << 32); yc += 4; uc += 2; vc += 2; } #else int i, *idst = (int32_t *) dst; const uint8_t *yc = ysrc, *uc = usrc, *vc = vsrc; for(i = 0; i < chromWidth; i++){ #ifdef WORDS_BIGENDIAN *idst++ = (uc[0] << 24)+ (yc[0] << 16) + (vc[0] << 8) + (yc[1] << 0); #else *idst++ = uc[0] + (yc[0] << 8) + (vc[0] << 16) + (yc[1] << 24); #endif yc += 2; uc++; vc++; } #endif #endif if((y&(vertLumPerChroma-1))==(vertLumPerChroma-1) ) { usrc += chromStride; vsrc += chromStride; } ysrc += lumStride; dst += dstStride; } #ifdef HAVE_MMX asm( EMMS" \n\t" SFENCE" \n\t" :::"memory"); #endif }
19,212
1
static inline int get_lowest_part_list_y(H264Context *h, Picture *pic, int n, int height, int y_offset, int list) { int raw_my = h->mv_cache[list][scan8[n]][1]; int filter_height = (raw_my & 3) ? 2 : 0; int full_my = (raw_my >> 2) + y_offset; int top = full_my - filter_height; int bottom = full_my + filter_height + height; return FFMAX(abs(top), bottom); }
19,214
1
int avpriv_dv_produce_packet(DVDemuxContext *c, AVPacket *pkt, uint8_t* buf, int buf_size) { int size, i; uint8_t *ppcm[4] = {0}; if (buf_size < DV_PROFILE_BYTES || !(c->sys = avpriv_dv_frame_profile(c->sys, buf, buf_size)) || buf_size < c->sys->frame_size) { return -1; /* Broken frame, or not enough data */ } /* Queueing audio packet */ /* FIXME: in case of no audio/bad audio we have to do something */ size = dv_extract_audio_info(c, buf); for (i = 0; i < c->ach; i++) { c->audio_pkt[i].size = size; c->audio_pkt[i].pts = c->abytes * 30000*8 / c->ast[i]->codec->bit_rate; ppcm[i] = c->audio_buf[i]; } dv_extract_audio(buf, ppcm, c->sys); /* We work with 720p frames split in half, thus even frames have * channels 0,1 and odd 2,3. */ if (c->sys->height == 720) { if (buf[1] & 0x0C) { c->audio_pkt[2].size = c->audio_pkt[3].size = 0; } else { c->audio_pkt[0].size = c->audio_pkt[1].size = 0; c->abytes += size; } } else { c->abytes += size; } /* Now it's time to return video packet */ size = dv_extract_video_info(c, buf); av_init_packet(pkt); pkt->data = buf; pkt->size = size; pkt->flags |= AV_PKT_FLAG_KEY; pkt->stream_index = c->vst->id; pkt->pts = c->frames; c->frames++; return size; }
19,215
1
static void fw_cfg_io_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = fw_cfg_io_realize; dc->props = fw_cfg_io_properties; }
19,217
1
static int net_socket_listen_init(VLANState *vlan, const char *model, const char *name, const char *host_str) { NetSocketListenState *s; int fd, val, ret; struct sockaddr_in saddr; if (parse_host_port(&saddr, host_str) < 0) return -1; s = g_malloc0(sizeof(NetSocketListenState)); fd = qemu_socket(PF_INET, SOCK_STREAM, 0); if (fd < 0) { perror("socket"); g_free(s); return -1; } socket_set_nonblock(fd); /* allow fast reuse */ val = 1; setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val)); ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)); if (ret < 0) { perror("bind"); g_free(s); return -1; } ret = listen(fd, 0); if (ret < 0) { perror("listen"); g_free(s); return -1; } s->vlan = vlan; s->model = g_strdup(model); s->name = name ? g_strdup(name) : NULL; s->fd = fd; qemu_set_fd_handler(fd, net_socket_accept, NULL, s); return 0; }
19,218
1
static void e1000e_pci_realize(PCIDevice *pci_dev, Error **errp) { static const uint16_t e1000e_pmrb_offset = 0x0C8; static const uint16_t e1000e_pcie_offset = 0x0E0; static const uint16_t e1000e_aer_offset = 0x100; static const uint16_t e1000e_dsn_offset = 0x140; E1000EState *s = E1000E(pci_dev); uint8_t *macaddr; int ret; trace_e1000e_cb_pci_realize(); pci_dev->config_write = e1000e_write_config; pci_dev->config[PCI_CACHE_LINE_SIZE] = 0x10; pci_dev->config[PCI_INTERRUPT_PIN] = 1; pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, s->subsys_ven); pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, s->subsys); s->subsys_ven_used = s->subsys_ven; s->subsys_used = s->subsys; /* Define IO/MMIO regions */ memory_region_init_io(&s->mmio, OBJECT(s), &mmio_ops, s, "e1000e-mmio", E1000E_MMIO_SIZE); pci_register_bar(pci_dev, E1000E_MMIO_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->mmio); /* * We provide a dummy implementation for the flash BAR * for drivers that may theoretically probe for its presence. */ memory_region_init(&s->flash, OBJECT(s), "e1000e-flash", E1000E_FLASH_SIZE); pci_register_bar(pci_dev, E1000E_FLASH_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->flash); memory_region_init_io(&s->io, OBJECT(s), &io_ops, s, "e1000e-io", E1000E_IO_SIZE); pci_register_bar(pci_dev, E1000E_IO_IDX, PCI_BASE_ADDRESS_SPACE_IO, &s->io); memory_region_init(&s->msix, OBJECT(s), "e1000e-msix", E1000E_MSIX_SIZE); pci_register_bar(pci_dev, E1000E_MSIX_IDX, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->msix); /* Create networking backend */ qemu_macaddr_default_if_unset(&s->conf.macaddr); macaddr = s->conf.macaddr.a; e1000e_init_msix(s); if (pcie_endpoint_cap_v1_init(pci_dev, e1000e_pcie_offset) < 0) { hw_error("Failed to initialize PCIe capability"); } ret = msi_init(PCI_DEVICE(s), 0xD0, 1, true, false, NULL); if (ret) { trace_e1000e_msi_init_fail(ret); } if (e1000e_add_pm_capability(pci_dev, e1000e_pmrb_offset, PCI_PM_CAP_DSI) < 0) { hw_error("Failed to initialize PM capability"); } if (pcie_aer_init(pci_dev, e1000e_aer_offset, PCI_ERR_SIZEOF) < 0) { hw_error("Failed to initialize AER capability"); } pcie_dev_ser_num_init(pci_dev, e1000e_dsn_offset, e1000e_gen_dsn(macaddr)); e1000e_init_net_peer(s, pci_dev, macaddr); /* Initialize core */ e1000e_core_realize(s); e1000e_core_pci_realize(&s->core, e1000e_eeprom_template, sizeof(e1000e_eeprom_template), macaddr); }
19,219
1
int ff_ac3_bit_alloc_calc_mask(AC3BitAllocParameters *s, int16_t *band_psd, int start, int end, int fast_gain, int is_lfe, int dba_mode, int dba_nsegs, uint8_t *dba_offsets, uint8_t *dba_lengths, uint8_t *dba_values, int16_t *mask) { int16_t excite[AC3_CRITICAL_BANDS]; /* excitation */ int band; int band_start, band_end, begin, end1; int lowcomp, fastleak, slowleak; /* excitation function */ band_start = ff_ac3_bin_to_band_tab[start]; band_end = ff_ac3_bin_to_band_tab[end-1] + 1; if (band_start == 0) { lowcomp = 0; lowcomp = calc_lowcomp1(lowcomp, band_psd[0], band_psd[1], 384); excite[0] = band_psd[0] - fast_gain - lowcomp; lowcomp = calc_lowcomp1(lowcomp, band_psd[1], band_psd[2], 384); excite[1] = band_psd[1] - fast_gain - lowcomp; begin = 7; for (band = 2; band < 7; band++) { if (!(is_lfe && band == 6)) lowcomp = calc_lowcomp1(lowcomp, band_psd[band], band_psd[band+1], 384); fastleak = band_psd[band] - fast_gain; slowleak = band_psd[band] - s->slow_gain; excite[band] = fastleak - lowcomp; if (!(is_lfe && band == 6)) { if (band_psd[band] <= band_psd[band+1]) { begin = band + 1; break; } } } end1 = FFMIN(band_end, 22); for (band = begin; band < end1; band++) { if (!(is_lfe && band == 6)) lowcomp = calc_lowcomp(lowcomp, band_psd[band], band_psd[band+1], band); fastleak = FFMAX(fastleak - s->fast_decay, band_psd[band] - fast_gain); slowleak = FFMAX(slowleak - s->slow_decay, band_psd[band] - s->slow_gain); excite[band] = FFMAX(fastleak - lowcomp, slowleak); } begin = 22; } else { /* coupling channel */ begin = band_start; fastleak = (s->cpl_fast_leak << 8) + 768; slowleak = (s->cpl_slow_leak << 8) + 768; } for (band = begin; band < band_end; band++) { fastleak = FFMAX(fastleak - s->fast_decay, band_psd[band] - fast_gain); slowleak = FFMAX(slowleak - s->slow_decay, band_psd[band] - s->slow_gain); excite[band] = FFMAX(fastleak, slowleak); } /* compute masking curve */ for (band = band_start; band < band_end; band++) { int tmp = s->db_per_bit - band_psd[band]; if (tmp > 0) { excite[band] += tmp >> 2; } mask[band] = FFMAX(ff_ac3_hearing_threshold_tab[band >> s->sr_shift][s->sr_code], excite[band]); } /* delta bit allocation */ if (dba_mode == DBA_REUSE || dba_mode == DBA_NEW) { int i, seg, delta; if (dba_nsegs > 8) return -1; band = band_start; for (seg = 0; seg < dba_nsegs; seg++) { band += dba_offsets[seg]; if (band >= AC3_CRITICAL_BANDS || dba_lengths[seg] > AC3_CRITICAL_BANDS-band) return -1; if (dba_values[seg] >= 4) { delta = (dba_values[seg] - 3) * 128; } else { delta = (dba_values[seg] - 4) * 128; } for (i = 0; i < dba_lengths[seg]; i++) { mask[band++] += delta; } } } return 0; }
19,220
1
int v9fs_remove_xattr(FsContext *ctx, const char *path, const char *name) { XattrOperations *xops = get_xattr_operations(ctx->xops, name); if (xops) { return xops->removexattr(ctx, path, name); } errno = -EOPNOTSUPP; return -1; }
19,221
1
static void gen_rfsvc(DisasContext *ctx) { #if defined(CONFIG_USER_ONLY) gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); #else if (unlikely(ctx->pr)) { gen_inval_exception(ctx, POWERPC_EXCP_PRIV_OPC); return; } gen_helper_rfsvc(cpu_env); gen_sync_exception(ctx); #endif }
19,222
1
static void pc_init1(QEMUMachineInitArgs *args, int pci_enabled, int kvmclock_enabled) { MemoryRegion *system_memory = get_system_memory(); MemoryRegion *system_io = get_system_io(); int i; ram_addr_t below_4g_mem_size, above_4g_mem_size; PCIBus *pci_bus; ISABus *isa_bus; PCII440FXState *i440fx_state; int piix3_devfn = -1; qemu_irq *cpu_irq; qemu_irq *gsi; qemu_irq *i8259; qemu_irq *smi_irq; GSIState *gsi_state; DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS]; BusState *idebus[MAX_IDE_BUS]; ISADevice *rtc_state; ISADevice *floppy; MemoryRegion *ram_memory; MemoryRegion *pci_memory; MemoryRegion *rom_memory; DeviceState *icc_bridge; FWCfgState *fw_cfg = NULL; PcGuestInfo *guest_info; if (xen_enabled() && xen_hvm_init(&ram_memory) != 0) { fprintf(stderr, "xen hardware virtual machine initialisation failed\n"); exit(1); } icc_bridge = qdev_create(NULL, TYPE_ICC_BRIDGE); object_property_add_child(qdev_get_machine(), "icc-bridge", OBJECT(icc_bridge), NULL); pc_cpus_init(args->cpu_model, icc_bridge); if (kvm_enabled() && kvmclock_enabled) { kvmclock_create(); } if (args->ram_size >= 0xe0000000) { above_4g_mem_size = args->ram_size - 0xe0000000; below_4g_mem_size = 0xe0000000; } else { above_4g_mem_size = 0; below_4g_mem_size = args->ram_size; } if (pci_enabled) { pci_memory = g_new(MemoryRegion, 1); memory_region_init(pci_memory, NULL, "pci", INT64_MAX); rom_memory = pci_memory; } else { pci_memory = NULL; rom_memory = system_memory; } guest_info = pc_guest_info_init(below_4g_mem_size, above_4g_mem_size); guest_info->has_acpi_build = has_acpi_build; guest_info->has_pci_info = has_pci_info; guest_info->isapc_ram_fw = !pci_enabled; /* allocate ram and load rom/bios */ if (!xen_enabled()) { fw_cfg = pc_memory_init(system_memory, args->kernel_filename, args->kernel_cmdline, args->initrd_filename, below_4g_mem_size, above_4g_mem_size, rom_memory, &ram_memory, guest_info); } gsi_state = g_malloc0(sizeof(*gsi_state)); if (kvm_irqchip_in_kernel()) { kvm_pc_setup_irq_routing(pci_enabled); gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state, GSI_NUM_PINS); } else { gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS); } if (pci_enabled) { pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, &isa_bus, gsi, system_memory, system_io, args->ram_size, below_4g_mem_size, 0x100000000ULL - below_4g_mem_size, above_4g_mem_size, pci_memory, ram_memory); } else { pci_bus = NULL; i440fx_state = NULL; isa_bus = isa_bus_new(NULL, system_io); no_hpet = 1; } isa_bus_irqs(isa_bus, gsi); if (kvm_irqchip_in_kernel()) { i8259 = kvm_i8259_init(isa_bus); } else if (xen_enabled()) { i8259 = xen_interrupt_controller_init(); } else { cpu_irq = pc_allocate_cpu_irq(); i8259 = i8259_init(isa_bus, cpu_irq[0]); } for (i = 0; i < ISA_NUM_IRQS; i++) { gsi_state->i8259_irq[i] = i8259[i]; } if (pci_enabled) { ioapic_init_gsi(gsi_state, "i440fx"); } qdev_init_nofail(icc_bridge); pc_register_ferr_irq(gsi[13]); pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL); /* init basic PC hardware */ pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy, xen_enabled()); pc_nic_init(isa_bus, pci_bus); ide_drive_get(hd, MAX_IDE_BUS); if (pci_enabled) { PCIDevice *dev; if (xen_enabled()) { dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1); } else { dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1); } idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0"); idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1"); } else { for(i = 0; i < MAX_IDE_BUS; i++) { ISADevice *dev; dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i], ide_irq[i], hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]); idebus[i] = qdev_get_child_bus(DEVICE(dev), "ide.0"); } } pc_cmos_init(below_4g_mem_size, above_4g_mem_size, args->boot_order, floppy, idebus[0], idebus[1], rtc_state); if (pci_enabled && usb_enabled(false)) { pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci"); } if (pci_enabled && acpi_enabled) { i2c_bus *smbus; smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1); /* TODO: Populate SPD eeprom data. */ smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100, gsi[9], *smi_irq, kvm_enabled(), fw_cfg); smbus_eeprom_init(smbus, 8, NULL, 0); } if (pci_enabled) { pc_pci_device_init(pci_bus); } if (has_pvpanic) { pvpanic_init(isa_bus); } }
19,224
1
static void v9fs_getattr(void *opaque) { int32_t fid; size_t offset = 7; ssize_t retval = 0; struct stat stbuf; V9fsFidState *fidp; uint64_t request_mask; V9fsStatDotl v9stat_dotl; V9fsPDU *pdu = opaque; V9fsState *s = pdu->s; pdu_unmarshal(pdu, offset, "dq", &fid, &request_mask); fidp = get_fid(pdu, fid); if (fidp == NULL) { retval = -ENOENT; goto out_nofid; } /* * Currently we only support BASIC fields in stat, so there is no * need to look at request_mask. */ retval = v9fs_co_lstat(pdu, &fidp->path, &stbuf); if (retval < 0) { goto out; } stat_to_v9stat_dotl(s, &stbuf, &v9stat_dotl); /* fill st_gen if requested and supported by underlying fs */ if (request_mask & P9_STATS_GEN) { retval = v9fs_co_st_gen(pdu, &fidp->path, stbuf.st_mode, &v9stat_dotl); if (retval < 0) { goto out; } v9stat_dotl.st_result_mask |= P9_STATS_GEN; } retval = offset; retval += pdu_marshal(pdu, offset, "A", &v9stat_dotl); out: put_fid(pdu, fidp); out_nofid: trace_v9fs_getattr_return(pdu->tag, pdu->id, v9stat_dotl.st_result_mask, v9stat_dotl.st_mode, v9stat_dotl.st_uid, v9stat_dotl.st_gid); complete_pdu(s, pdu, retval); }
19,225
1
static int parse_audio_var(AVFormatContext *avctx, AVStream *st, const char *name, int size) { AVIOContext *pb = avctx->pb; if (!strcmp(name, "__DIR_COUNT")) { st->nb_frames = var_read_int(pb, size); } else if (!strcmp(name, "AUDIO_FORMAT")) { st->codec->codec_id = var_read_int(pb, size); } else if (!strcmp(name, "COMPRESSION")) { st->codec->codec_tag = var_read_int(pb, size); } else if (!strcmp(name, "DEFAULT_VOL")) { var_read_metadata(avctx, name, size); } else if (!strcmp(name, "NUM_CHANNELS")) { st->codec->channels = var_read_int(pb, size); st->codec->channel_layout = (st->codec->channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO; } else if (!strcmp(name, "SAMPLE_RATE")) { st->codec->sample_rate = var_read_int(pb, size); avpriv_set_pts_info(st, 33, 1, st->codec->sample_rate); } else if (!strcmp(name, "SAMPLE_WIDTH")) { st->codec->bits_per_coded_sample = var_read_int(pb, size) * 8; } else return -1; return 0; }
19,228
1
static void gmc_mmx(uint8_t *dst, uint8_t *src, int stride, int h, int ox, int oy, int dxx, int dxy, int dyx, int dyy, int shift, int r, int width, int height) { const int w = 8; const int ix = ox >> (16 + shift); const int iy = oy >> (16 + shift); const int oxs = ox >> 4; const int oys = oy >> 4; const int dxxs = dxx >> 4; const int dxys = dxy >> 4; const int dyxs = dyx >> 4; const int dyys = dyy >> 4; const uint16_t r4[4] = { r, r, r, r }; const uint16_t dxy4[4] = { dxys, dxys, dxys, dxys }; const uint16_t dyy4[4] = { dyys, dyys, dyys, dyys }; const uint64_t shift2 = 2 * shift; #define MAX_STRIDE 4096U #define MAX_H 8U uint8_t edge_buf[(MAX_H + 1) * MAX_STRIDE]; int x, y; const int dxw = (dxx - (1 << (16 + shift))) * (w - 1); const int dyh = (dyy - (1 << (16 + shift))) * (h - 1); const int dxh = dxy * (h - 1); const int dyw = dyx * (w - 1); int need_emu = (unsigned) ix >= width - w || (unsigned) iy >= height - h; if ( // non-constant fullpel offset (3% of blocks) ((ox ^ (ox + dxw)) | (ox ^ (ox + dxh)) | (ox ^ (ox + dxw + dxh)) | (oy ^ (oy + dyw)) | (oy ^ (oy + dyh)) | (oy ^ (oy + dyw + dyh))) >> (16 + shift) || // uses more than 16 bits of subpel mv (only at huge resolution) (dxx | dxy | dyx | dyy) & 15 || (need_emu && (h > MAX_H || stride > MAX_STRIDE))) { // FIXME could still use mmx for some of the rows ff_gmc_c(dst, src, stride, h, ox, oy, dxx, dxy, dyx, dyy, shift, r, width, height); return; } src += ix + iy * stride; if (need_emu) { ff_emulated_edge_mc_8(edge_buf, src, stride, stride, w + 1, h + 1, ix, iy, width, height); src = edge_buf; } __asm__ volatile ( "movd %0, %%mm6 \n\t" "pxor %%mm7, %%mm7 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" :: "r" (1 << shift)); for (x = 0; x < w; x += 4) { uint16_t dx4[4] = { oxs - dxys + dxxs * (x + 0), oxs - dxys + dxxs * (x + 1), oxs - dxys + dxxs * (x + 2), oxs - dxys + dxxs * (x + 3) }; uint16_t dy4[4] = { oys - dyys + dyxs * (x + 0), oys - dyys + dyxs * (x + 1), oys - dyys + dyxs * (x + 2), oys - dyys + dyxs * (x + 3) }; for (y = 0; y < h; y++) { __asm__ volatile ( "movq %0, %%mm4 \n\t" "movq %1, %%mm5 \n\t" "paddw %2, %%mm4 \n\t" "paddw %3, %%mm5 \n\t" "movq %%mm4, %0 \n\t" "movq %%mm5, %1 \n\t" "psrlw $12, %%mm4 \n\t" "psrlw $12, %%mm5 \n\t" : "+m" (*dx4), "+m" (*dy4) : "m" (*dxy4), "m" (*dyy4)); __asm__ volatile ( "movq %%mm6, %%mm2 \n\t" "movq %%mm6, %%mm1 \n\t" "psubw %%mm4, %%mm2 \n\t" "psubw %%mm5, %%mm1 \n\t" "movq %%mm2, %%mm0 \n\t" "movq %%mm4, %%mm3 \n\t" "pmullw %%mm1, %%mm0 \n\t" // (s - dx) * (s - dy) "pmullw %%mm5, %%mm3 \n\t" // dx * dy "pmullw %%mm5, %%mm2 \n\t" // (s - dx) * dy "pmullw %%mm4, %%mm1 \n\t" // dx * (s - dy) "movd %4, %%mm5 \n\t" "movd %3, %%mm4 \n\t" "punpcklbw %%mm7, %%mm5 \n\t" "punpcklbw %%mm7, %%mm4 \n\t" "pmullw %%mm5, %%mm3 \n\t" // src[1, 1] * dx * dy "pmullw %%mm4, %%mm2 \n\t" // src[0, 1] * (s - dx) * dy "movd %2, %%mm5 \n\t" "movd %1, %%mm4 \n\t" "punpcklbw %%mm7, %%mm5 \n\t" "punpcklbw %%mm7, %%mm4 \n\t" "pmullw %%mm5, %%mm1 \n\t" // src[1, 0] * dx * (s - dy) "pmullw %%mm4, %%mm0 \n\t" // src[0, 0] * (s - dx) * (s - dy) "paddw %5, %%mm1 \n\t" "paddw %%mm3, %%mm2 \n\t" "paddw %%mm1, %%mm0 \n\t" "paddw %%mm2, %%mm0 \n\t" "psrlw %6, %%mm0 \n\t" "packuswb %%mm0, %%mm0 \n\t" "movd %%mm0, %0 \n\t" : "=m" (dst[x + y * stride]) : "m" (src[0]), "m" (src[1]), "m" (src[stride]), "m" (src[stride + 1]), "m" (*r4), "m" (shift2)); src += stride; } src += 4 - h * stride; } }
19,229
1
static int decode_band_types(AACContext *ac, enum BandType band_type[120], int band_type_run_end[120], GetBitContext *gb, IndividualChannelStream *ics) { int g, idx = 0; const int bits = (ics->window_sequence[0] == EIGHT_SHORT_SEQUENCE) ? 3 : 5; for (g = 0; g < ics->num_window_groups; g++) { int k = 0; while (k < ics->max_sfb) { uint8_t sect_end = k; int sect_len_incr; int sect_band_type = get_bits(gb, 4); if (sect_band_type == 12) { av_log(ac->avctx, AV_LOG_ERROR, "invalid band type\n"); return -1; } do { sect_len_incr = get_bits(gb, bits); sect_end += sect_len_incr; if (get_bits_left(gb) < 0) { av_log(ac->avctx, AV_LOG_ERROR, overread_err); return -1; } if (sect_end > ics->max_sfb) { av_log(ac->avctx, AV_LOG_ERROR, "Number of bands (%d) exceeds limit (%d).\n", sect_end, ics->max_sfb); return -1; } } while (sect_len_incr == (1 << bits) - 1); for (; k < sect_end; k++) { band_type [idx] = sect_band_type; band_type_run_end[idx++] = sect_end; } } } return 0; }
19,230
1
target_ulong helper_ldr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2, int mem_idx) { uint64_t tmp; tmp = do_lbu(env, arg2, mem_idx); arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp; if (GET_LMASK64(arg2) >= 1) { tmp = do_lbu(env, GET_OFFSET(arg2, -1), mem_idx); arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8); } if (GET_LMASK64(arg2) >= 2) { tmp = do_lbu(env, GET_OFFSET(arg2, -2), mem_idx); arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16); } if (GET_LMASK64(arg2) >= 3) { tmp = do_lbu(env, GET_OFFSET(arg2, -3), mem_idx); arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24); } if (GET_LMASK64(arg2) >= 4) { tmp = do_lbu(env, GET_OFFSET(arg2, -4), mem_idx); arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32); } if (GET_LMASK64(arg2) >= 5) { tmp = do_lbu(env, GET_OFFSET(arg2, -5), mem_idx); arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40); } if (GET_LMASK64(arg2) >= 6) { tmp = do_lbu(env, GET_OFFSET(arg2, -6), mem_idx); arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48); } if (GET_LMASK64(arg2) == 7) { tmp = do_lbu(env, GET_OFFSET(arg2, -7), mem_idx); arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56); } return arg1; }
19,231
1
int ff_hevc_decode_nal_sps(HEVCContext *s) { const AVPixFmtDescriptor *desc; GetBitContext *gb = &s->HEVClc->gb; int ret = 0; unsigned int sps_id = 0; int log2_diff_max_min_transform_block_size; int bit_depth_chroma, start, vui_present, sublayer_ordering_info; int i; HEVCSPS *sps; AVBufferRef *sps_buf = av_buffer_allocz(sizeof(*sps)); if (!sps_buf) return AVERROR(ENOMEM); sps = (HEVCSPS*)sps_buf->data; av_log(s->avctx, AV_LOG_DEBUG, "Decoding SPS\n"); // Coded parameters sps->vps_id = get_bits(gb, 4); if (sps->vps_id >= MAX_VPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "VPS id out of range: %d\n", sps->vps_id); ret = AVERROR_INVALIDDATA; goto err; } if (!s->vps_list[sps->vps_id]) { av_log(s->avctx, AV_LOG_ERROR, "VPS %d does not exist\n", sps->vps_id); ret = AVERROR_INVALIDDATA; goto err; } sps->max_sub_layers = get_bits(gb, 3) + 1; if (sps->max_sub_layers > MAX_SUB_LAYERS) { av_log(s->avctx, AV_LOG_ERROR, "sps_max_sub_layers out of range: %d\n", sps->max_sub_layers); ret = AVERROR_INVALIDDATA; goto err; } skip_bits1(gb); // temporal_id_nesting_flag if (parse_ptl(s, &sps->ptl, sps->max_sub_layers) < 0) goto err; sps_id = get_ue_golomb_long(gb); if (sps_id >= MAX_SPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "SPS id out of range: %d\n", sps_id); ret = AVERROR_INVALIDDATA; goto err; } sps->chroma_format_idc = get_ue_golomb_long(gb); if (sps->chroma_format_idc == 3) sps->separate_colour_plane_flag = get_bits1(gb); if (sps->separate_colour_plane_flag) sps->chroma_format_idc = 0; sps->width = get_ue_golomb_long(gb); sps->height = get_ue_golomb_long(gb); if ((ret = av_image_check_size(sps->width, sps->height, 0, s->avctx)) < 0) goto err; if (get_bits1(gb)) { // pic_conformance_flag //TODO: * 2 is only valid for 420 sps->pic_conf_win.left_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.right_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.top_offset = get_ue_golomb_long(gb) * 2; sps->pic_conf_win.bottom_offset = get_ue_golomb_long(gb) * 2; if (s->avctx->flags2 & CODEC_FLAG2_IGNORE_CROP) { av_log(s->avctx, AV_LOG_DEBUG, "discarding sps conformance window, " "original values are l:%u r:%u t:%u b:%u\n", sps->pic_conf_win.left_offset, sps->pic_conf_win.right_offset, sps->pic_conf_win.top_offset, sps->pic_conf_win.bottom_offset); sps->pic_conf_win.left_offset = sps->pic_conf_win.right_offset = sps->pic_conf_win.top_offset = sps->pic_conf_win.bottom_offset = 0; } sps->output_window = sps->pic_conf_win; } sps->bit_depth = get_ue_golomb_long(gb) + 8; bit_depth_chroma = get_ue_golomb_long(gb) + 8; if (sps->chroma_format_idc && bit_depth_chroma != sps->bit_depth) { av_log(s->avctx, AV_LOG_ERROR, "Luma bit depth (%d) is different from chroma bit depth (%d), " "this is unsupported.\n", sps->bit_depth, bit_depth_chroma); ret = AVERROR_INVALIDDATA; goto err; } switch (sps->bit_depth) { case 8: if (sps->chroma_format_idc == 0) sps->pix_fmt = AV_PIX_FMT_GRAY8; if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P; break; case 9: if (sps->chroma_format_idc == 0) sps->pix_fmt = AV_PIX_FMT_GRAY16; if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P9; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P9; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P9; break; case 10: if (sps->chroma_format_idc == 0) sps->pix_fmt = AV_PIX_FMT_GRAY16; if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P10; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P10; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P10; break; case 12: if (sps->chroma_format_idc == 0) sps->pix_fmt = AV_PIX_FMT_GRAY16; if (sps->chroma_format_idc == 1) sps->pix_fmt = AV_PIX_FMT_YUV420P12; if (sps->chroma_format_idc == 2) sps->pix_fmt = AV_PIX_FMT_YUV422P12; if (sps->chroma_format_idc == 3) sps->pix_fmt = AV_PIX_FMT_YUV444P12; break; default: av_log(s->avctx, AV_LOG_ERROR, "4:2:0, 4:2:2, 4:4:4 supports are currently specified for 8, 10 and 12 bits.\n"); ret = AVERROR_PATCHWELCOME; goto err; } desc = av_pix_fmt_desc_get(sps->pix_fmt); if (!desc) { ret = AVERROR(EINVAL); goto err; } sps->hshift[0] = sps->vshift[0] = 0; sps->hshift[2] = sps->hshift[1] = desc->log2_chroma_w; sps->vshift[2] = sps->vshift[1] = desc->log2_chroma_h; sps->pixel_shift = sps->bit_depth > 8; sps->log2_max_poc_lsb = get_ue_golomb_long(gb) + 4; if (sps->log2_max_poc_lsb > 16) { av_log(s->avctx, AV_LOG_ERROR, "log2_max_pic_order_cnt_lsb_minus4 out range: %d\n", sps->log2_max_poc_lsb - 4); ret = AVERROR_INVALIDDATA; goto err; } sublayer_ordering_info = get_bits1(gb); start = sublayer_ordering_info ? 0 : sps->max_sub_layers - 1; for (i = start; i < sps->max_sub_layers; i++) { sps->temporal_layer[i].max_dec_pic_buffering = get_ue_golomb_long(gb) + 1; sps->temporal_layer[i].num_reorder_pics = get_ue_golomb_long(gb); sps->temporal_layer[i].max_latency_increase = get_ue_golomb_long(gb) - 1; if (sps->temporal_layer[i].max_dec_pic_buffering > MAX_DPB_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "sps_max_dec_pic_buffering_minus1 out of range: %d\n", sps->temporal_layer[i].max_dec_pic_buffering - 1); ret = AVERROR_INVALIDDATA; goto err; } if (sps->temporal_layer[i].num_reorder_pics > sps->temporal_layer[i].max_dec_pic_buffering - 1) { av_log(s->avctx, AV_LOG_WARNING, "sps_max_num_reorder_pics out of range: %d\n", sps->temporal_layer[i].num_reorder_pics); if (s->avctx->err_recognition & AV_EF_EXPLODE || sps->temporal_layer[i].num_reorder_pics > MAX_DPB_SIZE - 1) { ret = AVERROR_INVALIDDATA; goto err; } sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[i].num_reorder_pics + 1; } } if (!sublayer_ordering_info) { for (i = 0; i < start; i++) { sps->temporal_layer[i].max_dec_pic_buffering = sps->temporal_layer[start].max_dec_pic_buffering; sps->temporal_layer[i].num_reorder_pics = sps->temporal_layer[start].num_reorder_pics; sps->temporal_layer[i].max_latency_increase = sps->temporal_layer[start].max_latency_increase; } } sps->log2_min_cb_size = get_ue_golomb_long(gb) + 3; sps->log2_diff_max_min_coding_block_size = get_ue_golomb_long(gb); sps->log2_min_tb_size = get_ue_golomb_long(gb) + 2; log2_diff_max_min_transform_block_size = get_ue_golomb_long(gb); sps->log2_max_trafo_size = log2_diff_max_min_transform_block_size + sps->log2_min_tb_size; if (sps->log2_min_tb_size >= sps->log2_min_cb_size) { av_log(s->avctx, AV_LOG_ERROR, "Invalid value for log2_min_tb_size"); ret = AVERROR_INVALIDDATA; goto err; } sps->max_transform_hierarchy_depth_inter = get_ue_golomb_long(gb); sps->max_transform_hierarchy_depth_intra = get_ue_golomb_long(gb); sps->scaling_list_enable_flag = get_bits1(gb); if (sps->scaling_list_enable_flag) { set_default_scaling_list_data(&sps->scaling_list); if (get_bits1(gb)) { ret = scaling_list_data(s, &sps->scaling_list, sps); if (ret < 0) goto err; } } sps->amp_enabled_flag = get_bits1(gb); sps->sao_enabled = get_bits1(gb); sps->pcm_enabled_flag = get_bits1(gb); if (sps->pcm_enabled_flag) { sps->pcm.bit_depth = get_bits(gb, 4) + 1; sps->pcm.bit_depth_chroma = get_bits(gb, 4) + 1; sps->pcm.log2_min_pcm_cb_size = get_ue_golomb_long(gb) + 3; sps->pcm.log2_max_pcm_cb_size = sps->pcm.log2_min_pcm_cb_size + get_ue_golomb_long(gb); if (sps->pcm.bit_depth > sps->bit_depth) { av_log(s->avctx, AV_LOG_ERROR, "PCM bit depth (%d) is greater than normal bit depth (%d)\n", sps->pcm.bit_depth, sps->bit_depth); ret = AVERROR_INVALIDDATA; goto err; } sps->pcm.loop_filter_disable_flag = get_bits1(gb); } sps->nb_st_rps = get_ue_golomb_long(gb); if (sps->nb_st_rps > MAX_SHORT_TERM_RPS_COUNT) { av_log(s->avctx, AV_LOG_ERROR, "Too many short term RPS: %d.\n", sps->nb_st_rps); ret = AVERROR_INVALIDDATA; goto err; } for (i = 0; i < sps->nb_st_rps; i++) { if ((ret = ff_hevc_decode_short_term_rps(s, &sps->st_rps[i], sps, 0)) < 0) goto err; } sps->long_term_ref_pics_present_flag = get_bits1(gb); if (sps->long_term_ref_pics_present_flag) { sps->num_long_term_ref_pics_sps = get_ue_golomb_long(gb); if (sps->num_long_term_ref_pics_sps > 31U) { av_log(s->avctx, AV_LOG_ERROR, "num_long_term_ref_pics_sps %d is out of range.\n", sps->num_long_term_ref_pics_sps); goto err; } for (i = 0; i < sps->num_long_term_ref_pics_sps; i++) { sps->lt_ref_pic_poc_lsb_sps[i] = get_bits(gb, sps->log2_max_poc_lsb); sps->used_by_curr_pic_lt_sps_flag[i] = get_bits1(gb); } } sps->sps_temporal_mvp_enabled_flag = get_bits1(gb); sps->sps_strong_intra_smoothing_enable_flag = get_bits1(gb); sps->vui.sar = (AVRational){0, 1}; vui_present = get_bits1(gb); if (vui_present) decode_vui(s, sps); if (get_bits1(gb)) { // sps_extension_flag int sps_extension_flag[1]; for (i = 0; i < 1; i++) sps_extension_flag[i] = get_bits1(gb); skip_bits(gb, 7); //sps_extension_7bits = get_bits(gb, 7); if (sps_extension_flag[0]) { int extended_precision_processing_flag; int high_precision_offsets_enabled_flag; int cabac_bypass_alignment_enabled_flag; sps->transform_skip_rotation_enabled_flag = get_bits1(gb); sps->transform_skip_context_enabled_flag = get_bits1(gb); sps->implicit_rdpcm_enabled_flag = get_bits1(gb); sps->explicit_rdpcm_enabled_flag = get_bits1(gb); extended_precision_processing_flag = get_bits1(gb); if (extended_precision_processing_flag) av_log(s->avctx, AV_LOG_WARNING, "extended_precision_processing_flag not yet implemented\n"); sps->intra_smoothing_disabled_flag = get_bits1(gb); high_precision_offsets_enabled_flag = get_bits1(gb); if (high_precision_offsets_enabled_flag) av_log(s->avctx, AV_LOG_WARNING, "high_precision_offsets_enabled_flag not yet implemented\n"); sps->persistent_rice_adaptation_enabled_flag = get_bits1(gb); cabac_bypass_alignment_enabled_flag = get_bits1(gb); if (cabac_bypass_alignment_enabled_flag) av_log(s->avctx, AV_LOG_WARNING, "cabac_bypass_alignment_enabled_flag not yet implemented\n"); } } if (s->apply_defdispwin) { sps->output_window.left_offset += sps->vui.def_disp_win.left_offset; sps->output_window.right_offset += sps->vui.def_disp_win.right_offset; sps->output_window.top_offset += sps->vui.def_disp_win.top_offset; sps->output_window.bottom_offset += sps->vui.def_disp_win.bottom_offset; } if (sps->output_window.left_offset & (0x1F >> (sps->pixel_shift)) && !(s->avctx->flags & CODEC_FLAG_UNALIGNED)) { sps->output_window.left_offset &= ~(0x1F >> (sps->pixel_shift)); av_log(s->avctx, AV_LOG_WARNING, "Reducing left output window to %d " "chroma samples to preserve alignment.\n", sps->output_window.left_offset); } sps->output_width = sps->width - (sps->output_window.left_offset + sps->output_window.right_offset); sps->output_height = sps->height - (sps->output_window.top_offset + sps->output_window.bottom_offset); if (sps->output_width <= 0 || sps->output_height <= 0) { av_log(s->avctx, AV_LOG_WARNING, "Invalid visible frame dimensions: %dx%d.\n", sps->output_width, sps->output_height); if (s->avctx->err_recognition & AV_EF_EXPLODE) { ret = AVERROR_INVALIDDATA; goto err; } av_log(s->avctx, AV_LOG_WARNING, "Displaying the whole video surface.\n"); memset(&sps->pic_conf_win, 0, sizeof(sps->pic_conf_win)); memset(&sps->output_window, 0, sizeof(sps->output_window)); sps->output_width = sps->width; sps->output_height = sps->height; } // Inferred parameters sps->log2_ctb_size = sps->log2_min_cb_size + sps->log2_diff_max_min_coding_block_size; sps->log2_min_pu_size = sps->log2_min_cb_size - 1; sps->ctb_width = (sps->width + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size; sps->ctb_height = (sps->height + (1 << sps->log2_ctb_size) - 1) >> sps->log2_ctb_size; sps->ctb_size = sps->ctb_width * sps->ctb_height; sps->min_cb_width = sps->width >> sps->log2_min_cb_size; sps->min_cb_height = sps->height >> sps->log2_min_cb_size; sps->min_tb_width = sps->width >> sps->log2_min_tb_size; sps->min_tb_height = sps->height >> sps->log2_min_tb_size; sps->min_pu_width = sps->width >> sps->log2_min_pu_size; sps->min_pu_height = sps->height >> sps->log2_min_pu_size; sps->tb_mask = (1 << (sps->log2_ctb_size - sps->log2_min_tb_size)) - 1; sps->qp_bd_offset = 6 * (sps->bit_depth - 8); if (sps->width & ((1 << sps->log2_min_cb_size) - 1) || sps->height & ((1 << sps->log2_min_cb_size) - 1)) { av_log(s->avctx, AV_LOG_ERROR, "Invalid coded frame dimensions.\n"); goto err; } if (sps->log2_ctb_size > MAX_LOG2_CTB_SIZE) { av_log(s->avctx, AV_LOG_ERROR, "CTB size out of range: 2^%d\n", sps->log2_ctb_size); goto err; } if (sps->max_transform_hierarchy_depth_inter > sps->log2_ctb_size - sps->log2_min_tb_size) { av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_inter out of range: %d\n", sps->max_transform_hierarchy_depth_inter); goto err; } if (sps->max_transform_hierarchy_depth_intra > sps->log2_ctb_size - sps->log2_min_tb_size) { av_log(s->avctx, AV_LOG_ERROR, "max_transform_hierarchy_depth_intra out of range: %d\n", sps->max_transform_hierarchy_depth_intra); goto err; } if (sps->log2_max_trafo_size > FFMIN(sps->log2_ctb_size, 5)) { av_log(s->avctx, AV_LOG_ERROR, "max transform block size out of range: %d\n", sps->log2_max_trafo_size); goto err; } if (get_bits_left(gb) < 0) { av_log(s->avctx, AV_LOG_ERROR, "Overread SPS by %d bits\n", -get_bits_left(gb)); goto err; } if (s->avctx->debug & FF_DEBUG_BITSTREAM) { av_log(s->avctx, AV_LOG_DEBUG, "Parsed SPS: id %d; coded wxh: %dx%d; " "cropped wxh: %dx%d; pix_fmt: %s.\n", sps_id, sps->width, sps->height, sps->output_width, sps->output_height, av_get_pix_fmt_name(sps->pix_fmt)); } /* check if this is a repeat of an already parsed SPS, then keep the * original one. * otherwise drop all PPSes that depend on it */ if (s->sps_list[sps_id] && !memcmp(s->sps_list[sps_id]->data, sps_buf->data, sps_buf->size)) { av_buffer_unref(&sps_buf); } else { for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) { if (s->pps_list[i] && ((HEVCPPS*)s->pps_list[i]->data)->sps_id == sps_id) av_buffer_unref(&s->pps_list[i]); } if (s->sps_list[sps_id] && s->sps == (HEVCSPS*)s->sps_list[sps_id]->data) { av_buffer_unref(&s->current_sps); s->current_sps = av_buffer_ref(s->sps_list[sps_id]); if (!s->current_sps) s->sps = NULL; } av_buffer_unref(&s->sps_list[sps_id]); s->sps_list[sps_id] = sps_buf; } return 0; err: av_buffer_unref(&sps_buf); return ret; }
19,232
1
static BlockDriverAIOCB *quorum_aio_readv(BlockDriverState *bs, int64_t sector_num, QEMUIOVector *qiov, int nb_sectors, BlockDriverCompletionFunc *cb, void *opaque) { BDRVQuorumState *s = bs->opaque; QuorumAIOCB *acb = quorum_aio_get(s, bs, qiov, sector_num, nb_sectors, cb, opaque); int i; acb->is_read = true; for (i = 0; i < s->num_children; i++) { acb->qcrs[i].buf = qemu_blockalign(s->bs[i], qiov->size); qemu_iovec_init(&acb->qcrs[i].qiov, qiov->niov); qemu_iovec_clone(&acb->qcrs[i].qiov, qiov, acb->qcrs[i].buf); } for (i = 0; i < s->num_children; i++) { bdrv_aio_readv(s->bs[i], sector_num, &acb->qcrs[i].qiov, nb_sectors, quorum_aio_cb, &acb->qcrs[i]); } return &acb->common; }
19,234
1
static int tgv_decode_frame(AVCodecContext *avctx, void *data, int *got_frame, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; TgvContext *s = avctx->priv_data; const uint8_t *buf_end = buf + buf_size; AVFrame *frame = data; int chunk_type, ret; if (buf_end - buf < EA_PREAMBLE_SIZE) return AVERROR_INVALIDDATA; chunk_type = AV_RL32(&buf[0]); buf += EA_PREAMBLE_SIZE; if (chunk_type == kVGT_TAG) { int pal_count, i; if(buf_end - buf < 12) { av_log(avctx, AV_LOG_WARNING, "truncated header\n"); return AVERROR_INVALIDDATA; } s->width = AV_RL16(&buf[0]); s->height = AV_RL16(&buf[2]); if (s->avctx->width != s->width || s->avctx->height != s->height) { av_freep(&s->frame_buffer); av_frame_unref(s->last_frame); if ((ret = ff_set_dimensions(s->avctx, s->width, s->height)) < 0) return ret; } pal_count = AV_RL16(&buf[6]); buf += 12; for(i = 0; i < pal_count && i < AVPALETTE_COUNT && buf_end - buf >= 3; i++) { s->palette[i] = 0xFFU << 24 | AV_RB24(buf); buf += 3; } } if ((ret = ff_get_buffer(avctx, frame, AV_GET_BUFFER_FLAG_REF)) < 0) return ret; memcpy(frame->data[1], s->palette, AVPALETTE_SIZE); if (chunk_type == kVGT_TAG) { int y; frame->key_frame = 1; frame->pict_type = AV_PICTURE_TYPE_I; if (!s->frame_buffer && !(s->frame_buffer = av_malloc(s->width * s->height))) return AVERROR(ENOMEM); if (unpack(buf, buf_end, s->frame_buffer, s->avctx->width, s->avctx->height) < 0) { av_log(avctx, AV_LOG_WARNING, "truncated intra frame\n"); return AVERROR_INVALIDDATA; } for (y = 0; y < s->height; y++) memcpy(frame->data[0] + y * frame->linesize[0], s->frame_buffer + y * s->width, s->width); } else { if (!s->last_frame->data[0]) { av_log(avctx, AV_LOG_WARNING, "inter frame without corresponding intra frame\n"); return buf_size; } frame->key_frame = 0; frame->pict_type = AV_PICTURE_TYPE_P; if (tgv_decode_inter(s, frame, buf, buf_end) < 0) { av_log(avctx, AV_LOG_WARNING, "truncated inter frame\n"); return AVERROR_INVALIDDATA; } } av_frame_unref(s->last_frame); if ((ret = av_frame_ref(s->last_frame, frame)) < 0) return ret; *got_frame = 1; return buf_size; }
19,235
1
void HELPER(ove)(CPUOpenRISCState *env, target_ulong test) { if (unlikely(test)) { OpenRISCCPU *cpu = openrisc_env_get_cpu(env); CPUState *cs = CPU(cpu); cs->exception_index = EXCP_RANGE; cpu_loop_exit_restore(cs, GETPC()); } }
19,236
1
void net_slirp_smb(const char *exported_dir) { struct in_addr vserver_addr = { .s_addr = 0 }; if (legacy_smb_export) { fprintf(stderr, "-smb given twice\n"); exit(1); } legacy_smb_export = exported_dir; if (!QTAILQ_EMPTY(&slirp_stacks)) { slirp_smb(QTAILQ_FIRST(&slirp_stacks), NULL, exported_dir, vserver_addr); } }
19,239
1
static int cloop_open(BlockDriverState *bs, QDict *options, int flags, Error **errp) { BDRVCloopState *s = bs->opaque; uint32_t offsets_size, max_compressed_block_size = 1, i; int ret; bs->read_only = 1; /* read header */ ret = bdrv_pread(bs->file, 128, &s->block_size, 4); if (ret < 0) { return ret; s->block_size = be32_to_cpu(s->block_size); ret = bdrv_pread(bs->file, 128 + 4, &s->n_blocks, 4); if (ret < 0) { return ret; s->n_blocks = be32_to_cpu(s->n_blocks); /* read offsets */ offsets_size = s->n_blocks * sizeof(uint64_t); s->offsets = g_malloc(offsets_size); ret = bdrv_pread(bs->file, 128 + 4 + 4, s->offsets, offsets_size); if (ret < 0) { goto fail; for(i=0;i<s->n_blocks;i++) { s->offsets[i] = be64_to_cpu(s->offsets[i]); if (i > 0) { uint32_t size = s->offsets[i] - s->offsets[i - 1]; if (size > max_compressed_block_size) { max_compressed_block_size = size; /* initialize zlib engine */ s->compressed_block = g_malloc(max_compressed_block_size + 1); s->uncompressed_block = g_malloc(s->block_size); if (inflateInit(&s->zstream) != Z_OK) { ret = -EINVAL; goto fail; s->current_block = s->n_blocks; s->sectors_per_block = s->block_size/512; bs->total_sectors = s->n_blocks * s->sectors_per_block; qemu_co_mutex_init(&s->lock); return 0; fail: g_free(s->offsets); g_free(s->compressed_block); g_free(s->uncompressed_block); return ret;
19,240
1
void monitor_init(CharDriverState *hd, int show_banner) { int i; if (is_first_init) { for (i = 0; i < MAX_MON; i++) { monitor_hd[i] = NULL; } is_first_init = 0; } for (i = 0; i < MAX_MON; i++) { if (monitor_hd[i] == NULL) { monitor_hd[i] = hd; break; } } hide_banner = !show_banner; qemu_chr_add_handlers(hd, term_can_read, term_read, term_event, NULL); }
19,241
1
int ff_h264_decode_slice_header(H264Context *h, H264Context *h0) { unsigned int first_mb_in_slice; unsigned int pps_id; int ret; unsigned int slice_type, tmp, i, j; int last_pic_structure, last_pic_droppable; int must_reinit; int needs_reinit = 0; int field_pic_flag, bottom_field_flag; int first_slice = h == h0 && !h0->current_slice; int frame_num, picture_structure, droppable; PPS *pps; h->qpel_put = h->h264qpel.put_h264_qpel_pixels_tab; h->qpel_avg = h->h264qpel.avg_h264_qpel_pixels_tab; first_mb_in_slice = get_ue_golomb_long(&h->gb); if (first_mb_in_slice == 0) { // FIXME better field boundary detection if (h0->current_slice && h->cur_pic_ptr && FIELD_PICTURE(h)) { ff_h264_field_end(h, 1); } h0->current_slice = 0; if (!h0->first_field) { if (h->cur_pic_ptr && !h->droppable) { ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, h->picture_structure == PICT_BOTTOM_FIELD); } h->cur_pic_ptr = NULL; } } slice_type = get_ue_golomb_31(&h->gb); if (slice_type > 9) { av_log(h->avctx, AV_LOG_ERROR, "slice type %d too large at %d %d\n", slice_type, h->mb_x, h->mb_y); return AVERROR_INVALIDDATA; } if (slice_type > 4) { slice_type -= 5; h->slice_type_fixed = 1; } else h->slice_type_fixed = 0; slice_type = golomb_to_pict_type[slice_type]; h->slice_type = slice_type; h->slice_type_nos = slice_type & 3; if (h->nal_unit_type == NAL_IDR_SLICE && h->slice_type_nos != AV_PICTURE_TYPE_I) { av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n"); return AVERROR_INVALIDDATA; } if ( (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) || (h->avctx->skip_frame >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_frame >= AVDISCARD_NONINTRA && h->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != NAL_IDR_SLICE) || h->avctx->skip_frame >= AVDISCARD_ALL) { return SLICE_SKIPED; } // to make a few old functions happy, it's wrong though h->pict_type = h->slice_type; pps_id = get_ue_golomb(&h->gb); if (pps_id >= MAX_PPS_COUNT) { av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", pps_id); return AVERROR_INVALIDDATA; } if (!h0->pps_buffers[pps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing PPS %u referenced\n", pps_id); return AVERROR_INVALIDDATA; } if (h0->au_pps_id >= 0 && pps_id != h0->au_pps_id) { av_log(h->avctx, AV_LOG_ERROR, "PPS change from %d to %d forbidden\n", h0->au_pps_id, pps_id); return AVERROR_INVALIDDATA; } pps = h0->pps_buffers[pps_id]; if (!h0->sps_buffers[pps->sps_id]) { av_log(h->avctx, AV_LOG_ERROR, "non-existing SPS %u referenced\n", h->pps.sps_id); return AVERROR_INVALIDDATA; } if (first_slice) h->pps = *h0->pps_buffers[pps_id]; if (pps->sps_id != h->sps.sps_id || pps->sps_id != h->current_sps_id || h0->sps_buffers[pps->sps_id]->new) { if (!first_slice) { av_log(h->avctx, AV_LOG_ERROR, "SPS changed in the middle of the frame\n"); return AVERROR_INVALIDDATA; } h->sps = *h0->sps_buffers[h->pps.sps_id]; if (h->mb_width != h->sps.mb_width || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc ) needs_reinit = 1; if (h->bit_depth_luma != h->sps.bit_depth_luma || h->chroma_format_idc != h->sps.chroma_format_idc) { h->bit_depth_luma = h->sps.bit_depth_luma; h->chroma_format_idc = h->sps.chroma_format_idc; needs_reinit = 1; } if ((ret = ff_h264_set_parameter_from_sps(h)) < 0) return ret; } h->avctx->profile = ff_h264_get_profile(&h->sps); h->avctx->level = h->sps.level_idc; h->avctx->refs = h->sps.ref_frame_count; must_reinit = (h->context_initialized && ( 16*h->sps.mb_width != h->avctx->coded_width || 16*h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) != h->avctx->coded_height || h->avctx->bits_per_raw_sample != h->sps.bit_depth_luma || h->cur_chroma_format_idc != h->sps.chroma_format_idc || h->mb_width != h->sps.mb_width || h->mb_height != h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag) )); if (non_j_pixfmt(h0->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h0, 0))) must_reinit = 1; if (first_slice && av_cmp_q(h->sps.sar, h->avctx->sample_aspect_ratio)) must_reinit = 1; h->mb_width = h->sps.mb_width; h->mb_height = h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag); h->mb_num = h->mb_width * h->mb_height; h->mb_stride = h->mb_width + 1; h->b_stride = h->mb_width * 4; h->chroma_y_shift = h->sps.chroma_format_idc <= 1; // 400 uses yuv420p h->width = 16 * h->mb_width; h->height = 16 * h->mb_height; ret = init_dimensions(h); if (ret < 0) return ret; if (h->sps.video_signal_type_present_flag) { h->avctx->color_range = h->sps.full_range>0 ? AVCOL_RANGE_JPEG : AVCOL_RANGE_MPEG; if (h->sps.colour_description_present_flag) { if (h->avctx->colorspace != h->sps.colorspace) needs_reinit = 1; h->avctx->color_primaries = h->sps.color_primaries; h->avctx->color_trc = h->sps.color_trc; h->avctx->colorspace = h->sps.colorspace; } } if (h->context_initialized && (must_reinit || needs_reinit)) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "changing width %d -> %d / height %d -> %d on " "slice %d\n", h->width, h->avctx->coded_width, h->height, h->avctx->coded_height, h0->current_slice + 1); return AVERROR_INVALIDDATA; } av_assert1(first_slice); ff_h264_flush_change(h); if ((ret = get_pixel_format(h, 1)) < 0) return ret; h->avctx->pix_fmt = ret; av_log(h->avctx, AV_LOG_INFO, "Reinit context to %dx%d, " "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt)); if ((ret = h264_slice_header_init(h, 1)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (!h->context_initialized) { if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Cannot (re-)initialize context during parallel decoding.\n"); return AVERROR_PATCHWELCOME; } if ((ret = get_pixel_format(h, 1)) < 0) return ret; h->avctx->pix_fmt = ret; if ((ret = h264_slice_header_init(h, 0)) < 0) { av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed\n"); return ret; } } if (h == h0 && h->dequant_coeff_pps != pps_id) { h->dequant_coeff_pps = pps_id; h264_init_dequant_tables(h); } frame_num = get_bits(&h->gb, h->sps.log2_max_frame_num); if (!first_slice) { if (h0->frame_num != frame_num) { av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n", h0->frame_num, frame_num); return AVERROR_INVALIDDATA; } } h->mb_mbaff = 0; h->mb_aff_frame = 0; last_pic_structure = h0->picture_structure; last_pic_droppable = h0->droppable; droppable = h->nal_ref_idc == 0; if (h->sps.frame_mbs_only_flag) { picture_structure = PICT_FRAME; } else { if (!h->sps.direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) { av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n"); return -1; } field_pic_flag = get_bits1(&h->gb); if (field_pic_flag) { bottom_field_flag = get_bits1(&h->gb); picture_structure = PICT_TOP_FIELD + bottom_field_flag; } else { picture_structure = PICT_FRAME; h->mb_aff_frame = h->sps.mb_aff; } } if (h0->current_slice) { if (last_pic_structure != picture_structure || last_pic_droppable != droppable) { av_log(h->avctx, AV_LOG_ERROR, "Changing field mode (%d -> %d) between slices is not allowed\n", last_pic_structure, h->picture_structure); return AVERROR_INVALIDDATA; } else if (!h0->cur_pic_ptr) { av_log(h->avctx, AV_LOG_ERROR, "unset cur_pic_ptr on slice %d\n", h0->current_slice + 1); return AVERROR_INVALIDDATA; } } h->picture_structure = picture_structure; h->droppable = droppable; h->frame_num = frame_num; h->mb_field_decoding_flag = picture_structure != PICT_FRAME; if (h0->current_slice == 0) { /* Shorten frame num gaps so we don't have to allocate reference * frames just to throw them away */ if (h->frame_num != h->prev_frame_num) { int unwrap_prev_frame_num = h->prev_frame_num; int max_frame_num = 1 << h->sps.log2_max_frame_num; if (unwrap_prev_frame_num > h->frame_num) unwrap_prev_frame_num -= max_frame_num; if ((h->frame_num - unwrap_prev_frame_num) > h->sps.ref_frame_count) { unwrap_prev_frame_num = (h->frame_num - h->sps.ref_frame_count) - 1; if (unwrap_prev_frame_num < 0) unwrap_prev_frame_num += max_frame_num; h->prev_frame_num = unwrap_prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * Here, we're using that to see if we should mark previously * decode frames as "finished". * We have to do that before the "dummy" in-between frame allocation, * since that can modify h->cur_pic_ptr. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.buf[0]); assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); /* Mark old field/frame as completed */ if (h0->cur_pic_ptr->tf.owner == h0->avctx) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_BOTTOM_FIELD); } /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { if (h0->cur_pic_ptr->frame_num != h->frame_num) { /* This and previous field were reference, but had * different frame_nums. Consider this field first in * pair. Throw away previous field except for reference * purposes. */ if (last_pic_structure != PICT_FRAME) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, last_pic_structure == PICT_TOP_FIELD); } } else { /* Second field in complementary pair */ if (!((last_pic_structure == PICT_TOP_FIELD && h->picture_structure == PICT_BOTTOM_FIELD) || (last_pic_structure == PICT_BOTTOM_FIELD && h->picture_structure == PICT_TOP_FIELD))) { av_log(h->avctx, AV_LOG_ERROR, "Invalid field mode combination %d/%d\n", last_pic_structure, h->picture_structure); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_INVALIDDATA; } else if (last_pic_droppable != h->droppable) { avpriv_request_sample(h->avctx, "Found reference and non-reference fields in the same frame, which"); h->picture_structure = last_pic_structure; h->droppable = last_pic_droppable; return AVERROR_PATCHWELCOME; } } } } while (h->frame_num != h->prev_frame_num && !h0->first_field && h->frame_num != (h->prev_frame_num + 1) % (1 << h->sps.log2_max_frame_num)) { H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL; av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n", h->frame_num, h->prev_frame_num); if (!h->sps.gaps_in_frame_num_allowed_flag) for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++) h->last_pocs[i] = INT_MIN; ret = h264_frame_start(h); if (ret < 0) { h0->first_field = 0; return ret; } h->prev_frame_num++; h->prev_frame_num %= 1 << h->sps.log2_max_frame_num; h->cur_pic_ptr->frame_num = h->prev_frame_num; h->cur_pic_ptr->invalid_gap = !h->sps.gaps_in_frame_num_allowed_flag; ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0); ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1); ret = ff_generate_sliding_window_mmcos(h, 1); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; ret = ff_h264_execute_ref_pic_marking(h, h->mmco, h->mmco_index); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return ret; /* Error concealment: If a ref is missing, copy the previous ref * in its place. * FIXME: Avoiding a memcpy would be nice, but ref handling makes * many assumptions about there being no actual duplicates. * FIXME: This does not copy padding for out-of-frame motion * vectors. Given we are concealing a lost frame, this probably * is not noticeable by comparison, but it should be fixed. */ if (h->short_ref_count) { if (prev) { av_image_copy(h->short_ref[0]->f.data, h->short_ref[0]->f.linesize, (const uint8_t **)prev->f.data, prev->f.linesize, h->avctx->pix_fmt, h->mb_width * 16, h->mb_height * 16); h->short_ref[0]->poc = prev->poc + 2; } h->short_ref[0]->frame_num = h->prev_frame_num; } } /* See if we have a decoded first field looking for a pair... * We're using that to see whether to continue decoding in that * frame, or to allocate a new one. */ if (h0->first_field) { assert(h0->cur_pic_ptr); assert(h0->cur_pic_ptr->f.buf[0]); assert(h0->cur_pic_ptr->reference != DELAYED_PIC_REF); /* figure out if we have a complementary field pair */ if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) { /* Previous field is unmatched. Don't display it, but let it * remain for reference if marked as such. */ h0->missing_fields ++; h0->cur_pic_ptr = NULL; h0->first_field = FIELD_PICTURE(h); } else { h0->missing_fields = 0; if (h0->cur_pic_ptr->frame_num != h->frame_num) { ff_thread_report_progress(&h0->cur_pic_ptr->tf, INT_MAX, h0->picture_structure==PICT_BOTTOM_FIELD); /* This and the previous field had different frame_nums. * Consider this field first in pair. Throw away previous * one except for reference purposes. */ h0->first_field = 1; h0->cur_pic_ptr = NULL; } else { /* Second field in complementary pair */ h0->first_field = 0; } } } else { /* Frame or first field in a potentially complementary pair */ h0->first_field = FIELD_PICTURE(h); } if (!FIELD_PICTURE(h) || h0->first_field) { if (h264_frame_start(h) < 0) { h0->first_field = 0; return AVERROR_INVALIDDATA; } } else { release_unused_pictures(h, 0); } /* Some macroblocks can be accessed before they're available in case * of lost slices, MBAFF or threading. */ if (FIELD_PICTURE(h)) { for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++) memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table)); } else { memset(h->slice_table, -1, (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table)); } h0->last_slice_type = -1; } if (h != h0 && (ret = clone_slice(h, h0)) < 0) return ret; /* can't be in alloc_tables because linesize isn't known there. * FIXME: redo bipred weight to not require extra buffer? */ for (i = 0; i < h->slice_context_count; i++) if (h->thread_context[i]) { ret = alloc_scratch_buffers(h->thread_context[i], h->linesize); if (ret < 0) return ret; } h->cur_pic_ptr->frame_num = h->frame_num; // FIXME frame_num cleanup av_assert1(h->mb_num == h->mb_width * h->mb_height); if (first_mb_in_slice << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num || first_mb_in_slice >= h->mb_num) { av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n"); return AVERROR_INVALIDDATA; } h->resync_mb_x = h->mb_x = first_mb_in_slice % h->mb_width; h->resync_mb_y = h->mb_y = (first_mb_in_slice / h->mb_width) << FIELD_OR_MBAFF_PICTURE(h); if (h->picture_structure == PICT_BOTTOM_FIELD) h->resync_mb_y = h->mb_y = h->mb_y + 1; av_assert1(h->mb_y < h->mb_height); if (h->picture_structure == PICT_FRAME) { h->curr_pic_num = h->frame_num; h->max_pic_num = 1 << h->sps.log2_max_frame_num; } else { h->curr_pic_num = 2 * h->frame_num + 1; h->max_pic_num = 1 << (h->sps.log2_max_frame_num + 1); } if (h->nal_unit_type == NAL_IDR_SLICE) get_ue_golomb(&h->gb); /* idr_pic_id */ if (h->sps.poc_type == 0) { h->poc_lsb = get_bits(&h->gb, h->sps.log2_max_poc_lsb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc_bottom = get_se_golomb(&h->gb); } if (h->sps.poc_type == 1 && !h->sps.delta_pic_order_always_zero_flag) { h->delta_poc[0] = get_se_golomb(&h->gb); if (h->pps.pic_order_present == 1 && h->picture_structure == PICT_FRAME) h->delta_poc[1] = get_se_golomb(&h->gb); } ff_init_poc(h, h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc); if (h->pps.redundant_pic_cnt_present) h->redundant_pic_count = get_ue_golomb(&h->gb); ret = ff_set_ref_count(h); if (ret < 0) return ret; if (slice_type != AV_PICTURE_TYPE_I && (h0->current_slice == 0 || slice_type != h0->last_slice_type || memcmp(h0->last_ref_count, h0->ref_count, sizeof(h0->ref_count)))) { ff_h264_fill_default_ref_list(h); } if (h->slice_type_nos != AV_PICTURE_TYPE_I) { ret = ff_h264_decode_ref_pic_list_reordering(h); if (ret < 0) { h->ref_count[1] = h->ref_count[0] = 0; return ret; } } if ((h->pps.weighted_pred && h->slice_type_nos == AV_PICTURE_TYPE_P) || (h->pps.weighted_bipred_idc == 1 && h->slice_type_nos == AV_PICTURE_TYPE_B)) ff_pred_weight_table(h); else if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, -1); } else { h->use_weight = 0; for (i = 0; i < 2; i++) { h->luma_weight_flag[i] = 0; h->chroma_weight_flag[i] = 0; } } // If frame-mt is enabled, only update mmco tables for the first slice // in a field. Subsequent slices can temporarily clobber h->mmco_index // or h->mmco, which will cause ref list mix-ups and decoding errors // further down the line. This may break decoding if the first slice is // corrupt, thus we only do this if frame-mt is enabled. if (h->nal_ref_idc) { ret = ff_h264_decode_ref_pic_marking(h0, &h->gb, !(h->avctx->active_thread_type & FF_THREAD_FRAME) || h0->current_slice == 0); if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE)) return AVERROR_INVALIDDATA; } if (FRAME_MBAFF(h)) { ff_h264_fill_mbaff_ref_list(h); if (h->pps.weighted_bipred_idc == 2 && h->slice_type_nos == AV_PICTURE_TYPE_B) { implicit_weight_table(h, 0); implicit_weight_table(h, 1); } } if (h->slice_type_nos == AV_PICTURE_TYPE_B && !h->direct_spatial_mv_pred) ff_h264_direct_dist_scale_factor(h); ff_h264_direct_ref_list_init(h); if (h->slice_type_nos != AV_PICTURE_TYPE_I && h->pps.cabac) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp); return AVERROR_INVALIDDATA; } h->cabac_init_idc = tmp; } h->last_qscale_diff = 0; tmp = h->pps.init_qp + get_se_golomb(&h->gb); if (tmp > 51 + 6 * (h->sps.bit_depth_luma - 8)) { av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp); return AVERROR_INVALIDDATA; } h->qscale = tmp; h->chroma_qp[0] = get_chroma_qp(h, 0, h->qscale); h->chroma_qp[1] = get_chroma_qp(h, 1, h->qscale); // FIXME qscale / qp ... stuff if (h->slice_type == AV_PICTURE_TYPE_SP) get_bits1(&h->gb); /* sp_for_switch_flag */ if (h->slice_type == AV_PICTURE_TYPE_SP || h->slice_type == AV_PICTURE_TYPE_SI) get_se_golomb(&h->gb); /* slice_qs_delta */ h->deblocking_filter = 1; h->slice_alpha_c0_offset = 0; h->slice_beta_offset = 0; if (h->pps.deblocking_filter_parameters_present) { tmp = get_ue_golomb_31(&h->gb); if (tmp > 2) { av_log(h->avctx, AV_LOG_ERROR, "deblocking_filter_idc %u out of range\n", tmp); return AVERROR_INVALIDDATA; } h->deblocking_filter = tmp; if (h->deblocking_filter < 2) h->deblocking_filter ^= 1; // 1<->0 if (h->deblocking_filter) { h->slice_alpha_c0_offset = get_se_golomb(&h->gb) * 2; h->slice_beta_offset = get_se_golomb(&h->gb) * 2; if (h->slice_alpha_c0_offset > 12 || h->slice_alpha_c0_offset < -12 || h->slice_beta_offset > 12 || h->slice_beta_offset < -12) { av_log(h->avctx, AV_LOG_ERROR, "deblocking filter parameters %d %d out of range\n", h->slice_alpha_c0_offset, h->slice_beta_offset); return AVERROR_INVALIDDATA; } } } if (h->avctx->skip_loop_filter >= AVDISCARD_ALL || (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY && h->nal_unit_type != NAL_IDR_SLICE) || (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA && h->slice_type_nos != AV_PICTURE_TYPE_I) || (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR && h->slice_type_nos == AV_PICTURE_TYPE_B) || (h->avctx->skip_loop_filter >= AVDISCARD_NONREF && h->nal_ref_idc == 0)) h->deblocking_filter = 0; if (h->deblocking_filter == 1 && h0->max_contexts > 1) { if (h->avctx->flags2 & CODEC_FLAG2_FAST) { /* Cheat slightly for speed: * Do not bother to deblock across slices. */ h->deblocking_filter = 2; } else { h0->max_contexts = 1; if (!h0->single_decode_warning) { av_log(h->avctx, AV_LOG_INFO, "Cannot parallelize slice decoding with deblocking filter type 1, decoding such frames in sequential order\n" "To parallelize slice decoding you need video encoded with disable_deblocking_filter_idc set to 2 (deblock only edges that do not cross slices).\n" "Setting the flags2 libavcodec option to +fast (-flags2 +fast) will disable deblocking across slices and enable parallel slice decoding " "but will generate non-standard-compliant output.\n"); h0->single_decode_warning = 1; } if (h != h0) { av_log(h->avctx, AV_LOG_ERROR, "Deblocking switched inside frame.\n"); return SLICE_SINGLETHREAD; } } } h->qp_thresh = 15 - FFMIN(h->slice_alpha_c0_offset, h->slice_beta_offset) - FFMAX3(0, h->pps.chroma_qp_index_offset[0], h->pps.chroma_qp_index_offset[1]) + 6 * (h->sps.bit_depth_luma - 8); h0->last_slice_type = slice_type; memcpy(h0->last_ref_count, h0->ref_count, sizeof(h0->last_ref_count)); h->slice_num = ++h0->current_slice; if (h->slice_num) h0->slice_row[(h->slice_num-1)&(MAX_SLICES-1)]= h->resync_mb_y; if ( h0->slice_row[h->slice_num&(MAX_SLICES-1)] + 3 >= h->resync_mb_y && h0->slice_row[h->slice_num&(MAX_SLICES-1)] <= h->resync_mb_y && h->slice_num >= MAX_SLICES) { //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", h->slice_num, MAX_SLICES); } for (j = 0; j < 2; j++) { int id_list[16]; int *ref2frm = h->ref2frm[h->slice_num & (MAX_SLICES - 1)][j]; for (i = 0; i < 16; i++) { id_list[i] = 60; if (j < h->list_count && i < h->ref_count[j] && h->ref_list[j][i].f.buf[0]) { int k; AVBuffer *buf = h->ref_list[j][i].f.buf[0]->buffer; for (k = 0; k < h->short_ref_count; k++) if (h->short_ref[k]->f.buf[0]->buffer == buf) { id_list[i] = k; break; } for (k = 0; k < h->long_ref_count; k++) if (h->long_ref[k] && h->long_ref[k]->f.buf[0]->buffer == buf) { id_list[i] = h->short_ref_count + k; break; } } } ref2frm[0] = ref2frm[1] = -1; for (i = 0; i < 16; i++) ref2frm[i + 2] = 4 * id_list[i] + (h->ref_list[j][i].reference & 3); ref2frm[18 + 0] = ref2frm[18 + 1] = -1; for (i = 16; i < 48; i++) ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] + (h->ref_list[j][i].reference & 3); } h0->au_pps_id = pps_id; h->sps.new = h0->sps_buffers[h->pps.sps_id]->new = 0; h->current_sps_id = h->pps.sps_id; if (h->avctx->debug & FF_DEBUG_PICT_INFO) { av_log(h->avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c%s%s pps:%u frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n", h->slice_num, (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"), first_mb_in_slice, av_get_picture_type_char(h->slice_type), h->slice_type_fixed ? " fix" : "", h->nal_unit_type == NAL_IDR_SLICE ? " IDR" : "", pps_id, h->frame_num, h->cur_pic_ptr->field_poc[0], h->cur_pic_ptr->field_poc[1], h->ref_count[0], h->ref_count[1], h->qscale, h->deblocking_filter, h->slice_alpha_c0_offset, h->slice_beta_offset, h->use_weight, h->use_weight == 1 && h->use_weight_chroma ? "c" : "", h->slice_type == AV_PICTURE_TYPE_B ? (h->direct_spatial_mv_pred ? "SPAT" : "TEMP") : ""); } return 0; }
19,242
1
static void spatial_compose53i_dy_buffered(dwt_compose_t *cs, slice_buffer * sb, int width, int height, int stride_line){ int y= cs->y; int mirror0 = mirror(y-1, height-1); int mirror1 = mirror(y , height-1); int mirror2 = mirror(y+1, height-1); int mirror3 = mirror(y+2, height-1); DWTELEM *b0= cs->b0; DWTELEM *b1= cs->b1; DWTELEM *b2= slice_buffer_get_line(sb, mirror2 * stride_line); DWTELEM *b3= slice_buffer_get_line(sb, mirror3 * stride_line); {START_TIMER if(mirror1 <= mirror3) vertical_compose53iL0(b1, b2, b3, width); if(mirror0 <= mirror2) vertical_compose53iH0(b0, b1, b2, width); STOP_TIMER("vertical_compose53i*")} {START_TIMER if(y-1 >= 0) horizontal_compose53i(b0, width); if(mirror0 <= mirror2) horizontal_compose53i(b1, width); STOP_TIMER("horizontal_compose53i")} cs->b0 = b2; cs->b1 = b3; cs->y += 2; }
19,244
1
void virtio_scsi_handle_ctrl_req(VirtIOSCSI *s, VirtIOSCSIReq *req) { VirtIODevice *vdev = (VirtIODevice *)s; uint32_t type; int r = 0; if (iov_to_buf(req->elem.out_sg, req->elem.out_num, 0, &type, sizeof(type)) < sizeof(type)) { virtio_scsi_bad_req(); return; } virtio_tswap32s(vdev, &type); if (type == VIRTIO_SCSI_T_TMF) { if (virtio_scsi_parse_req(req, sizeof(VirtIOSCSICtrlTMFReq), sizeof(VirtIOSCSICtrlTMFResp)) < 0) { virtio_scsi_bad_req(); } else { r = virtio_scsi_do_tmf(s, req); } } else if (type == VIRTIO_SCSI_T_AN_QUERY || type == VIRTIO_SCSI_T_AN_SUBSCRIBE) { if (virtio_scsi_parse_req(req, sizeof(VirtIOSCSICtrlANReq), sizeof(VirtIOSCSICtrlANResp)) < 0) { virtio_scsi_bad_req(); } else { req->resp.an.event_actual = 0; req->resp.an.response = VIRTIO_SCSI_S_OK; } } if (r == 0) { virtio_scsi_complete_req(req); } else { assert(r == -EINPROGRESS); } }
19,246
1
inline static void RENAME(hcscale)(uint16_t *dst, int dstWidth, uint8_t *src1, uint8_t *src2, int srcW, int xInc, int flags, int canMMX2BeUsed, int16_t *hChrFilter, int16_t *hChrFilterPos, int hChrFilterSize, void *funnyUVCode, int srcFormat, uint8_t *formatConvBuffer) { if(srcFormat==IMGFMT_YUY2) { RENAME(yuy2ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_BGR32) { RENAME(bgr32ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_BGR24) { RENAME(bgr24ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_BGR16) { RENAME(bgr16ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_BGR15) { RENAME(bgr15ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_RGB32) { RENAME(rgb32ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(srcFormat==IMGFMT_RGB24) { RENAME(rgb24ToUV)(formatConvBuffer, formatConvBuffer+2048, src1, src2, srcW); src1= formatConvBuffer; src2= formatConvBuffer+2048; } else if(isGray(srcFormat)) { return; } #ifdef HAVE_MMX // use the new MMX scaler if th mmx2 cant be used (its faster than the x86asm one) if(!(flags&SWS_FAST_BILINEAR) || (!canMMX2BeUsed)) #else if(!(flags&SWS_FAST_BILINEAR)) #endif { RENAME(hScale)(dst , dstWidth, src1, srcW, xInc, hChrFilter, hChrFilterPos, hChrFilterSize); RENAME(hScale)(dst+2048, dstWidth, src2, srcW, xInc, hChrFilter, hChrFilterPos, hChrFilterSize); } else // Fast Bilinear upscale / crap downscale { #ifdef ARCH_X86 #ifdef HAVE_MMX2 int i; if(canMMX2BeUsed) { asm volatile( "pxor %%mm7, %%mm7 \n\t" "pxor %%mm2, %%mm2 \n\t" // 2*xalpha "movd %5, %%mm6 \n\t" // xInc&0xFFFF "punpcklwd %%mm6, %%mm6 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" "movq %%mm6, %%mm2 \n\t" "psllq $16, %%mm2 \n\t" "paddw %%mm6, %%mm2 \n\t" "psllq $16, %%mm2 \n\t" "paddw %%mm6, %%mm2 \n\t" "psllq $16, %%mm2 \n\t" //0,t,2t,3t t=xInc&0xFFFF "movq %%mm2, %%mm4 \n\t" "movd %4, %%mm6 \n\t" //(xInc*4)&0xFFFF "punpcklwd %%mm6, %%mm6 \n\t" "punpcklwd %%mm6, %%mm6 \n\t" "xorl %%eax, %%eax \n\t" // i "movl %0, %%esi \n\t" // src "movl %1, %%edi \n\t" // buf1 "movl %3, %%edx \n\t" // (xInc*4)>>16 "xorl %%ecx, %%ecx \n\t" "xorl %%ebx, %%ebx \n\t" "movw %4, %%bx \n\t" // (xInc*4)&0xFFFF #define FUNNYUVCODE \ PREFETCH" 1024(%%esi) \n\t"\ PREFETCH" 1056(%%esi) \n\t"\ PREFETCH" 1088(%%esi) \n\t"\ "call *%7 \n\t"\ "movq %%mm4, %%mm2 \n\t"\ "xorl %%ecx, %%ecx \n\t" FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE "xorl %%eax, %%eax \n\t" // i "movl %6, %%esi \n\t" // src "movl %1, %%edi \n\t" // buf1 "addl $4096, %%edi \n\t" FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE FUNNYUVCODE :: "m" (src1), "m" (dst), "m" (dstWidth), "m" ((xInc*4)>>16), "m" ((xInc*4)&0xFFFF), "m" (xInc&0xFFFF), "m" (src2), "m" (funnyUVCode) : "%eax", "%ebx", "%ecx", "%edx", "%esi", "%edi" ); for(i=dstWidth-1; (i*xInc)>>16 >=srcW-1; i--) { // printf("%d %d %d\n", dstWidth, i, srcW); dst[i] = src1[srcW-1]*128; dst[i+2048] = src2[srcW-1]*128; } } else { #endif asm volatile( "xorl %%eax, %%eax \n\t" // i "xorl %%ebx, %%ebx \n\t" // xx "xorl %%ecx, %%ecx \n\t" // 2*xalpha ".balign 16 \n\t" "1: \n\t" "movl %0, %%esi \n\t" "movzbl (%%esi, %%ebx), %%edi \n\t" //src[xx] "movzbl 1(%%esi, %%ebx), %%esi \n\t" //src[xx+1] "subl %%edi, %%esi \n\t" //src[xx+1] - src[xx] "imull %%ecx, %%esi \n\t" //(src[xx+1] - src[xx])*2*xalpha "shll $16, %%edi \n\t" "addl %%edi, %%esi \n\t" //src[xx+1]*2*xalpha + src[xx]*(1-2*xalpha) "movl %1, %%edi \n\t" "shrl $9, %%esi \n\t" "movw %%si, (%%edi, %%eax, 2) \n\t" "movzbl (%5, %%ebx), %%edi \n\t" //src[xx] "movzbl 1(%5, %%ebx), %%esi \n\t" //src[xx+1] "subl %%edi, %%esi \n\t" //src[xx+1] - src[xx] "imull %%ecx, %%esi \n\t" //(src[xx+1] - src[xx])*2*xalpha "shll $16, %%edi \n\t" "addl %%edi, %%esi \n\t" //src[xx+1]*2*xalpha + src[xx]*(1-2*xalpha) "movl %1, %%edi \n\t" "shrl $9, %%esi \n\t" "movw %%si, 4096(%%edi, %%eax, 2)\n\t" "addw %4, %%cx \n\t" //2*xalpha += xInc&0xFF "adcl %3, %%ebx \n\t" //xx+= xInc>>8 + carry "addl $1, %%eax \n\t" "cmpl %2, %%eax \n\t" " jb 1b \n\t" :: "m" (src1), "m" (dst), "m" (dstWidth), "m" (xInc>>16), "m" (xInc&0xFFFF), "r" (src2) : "%eax", "%ebx", "%ecx", "%edi", "%esi" ); #ifdef HAVE_MMX2 } //if MMX2 cant be used #endif #else int i; unsigned int xpos=0; for(i=0;i<dstWidth;i++) { register unsigned int xx=xpos>>16; register unsigned int xalpha=(xpos&0xFFFF)>>9; dst[i]=(src1[xx]*(xalpha^127)+src1[xx+1]*xalpha); dst[i+2048]=(src2[xx]*(xalpha^127)+src2[xx+1]*xalpha); /* slower dst[i]= (src1[xx]<<7) + (src1[xx+1] - src1[xx])*xalpha; dst[i+2048]=(src2[xx]<<7) + (src2[xx+1] - src2[xx])*xalpha; */ xpos+=xInc; } #endif } }
19,247
0
static uint64_t sniff_channel_order(uint8_t (*layout_map)[3], int tags) { int i, n, total_non_cc_elements; struct elem_to_channel e2c_vec[MAX_ELEM_ID] = {{ 0 }}; int num_front_channels, num_side_channels, num_back_channels; uint64_t layout; i = 0; num_front_channels = count_paired_channels(layout_map, tags, AAC_CHANNEL_FRONT, &i); if (num_front_channels < 0) return 0; num_side_channels = count_paired_channels(layout_map, tags, AAC_CHANNEL_SIDE, &i); if (num_side_channels < 0) return 0; num_back_channels = count_paired_channels(layout_map, tags, AAC_CHANNEL_BACK, &i); if (num_back_channels < 0) return 0; i = 0; if (num_front_channels & 1) { e2c_vec[i] = (struct elem_to_channel) { .av_position = AV_CH_FRONT_CENTER, .syn_ele = TYPE_SCE, .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_FRONT }; i++; num_front_channels--; } if (num_front_channels >= 4) { i += assign_pair(e2c_vec, layout_map, i, tags, AV_CH_FRONT_LEFT_OF_CENTER, AV_CH_FRONT_RIGHT_OF_CENTER, AAC_CHANNEL_FRONT); num_front_channels -= 2; } if (num_front_channels >= 2) { i += assign_pair(e2c_vec, layout_map, i, tags, AV_CH_FRONT_LEFT, AV_CH_FRONT_RIGHT, AAC_CHANNEL_FRONT); num_front_channels -= 2; } while (num_front_channels >= 2) { i += assign_pair(e2c_vec, layout_map, i, tags, UINT64_MAX, UINT64_MAX, AAC_CHANNEL_FRONT); num_front_channels -= 2; } if (num_side_channels >= 2) { i += assign_pair(e2c_vec, layout_map, i, tags, AV_CH_SIDE_LEFT, AV_CH_SIDE_RIGHT, AAC_CHANNEL_FRONT); num_side_channels -= 2; } while (num_side_channels >= 2) { i += assign_pair(e2c_vec, layout_map, i, tags, UINT64_MAX, UINT64_MAX, AAC_CHANNEL_SIDE); num_side_channels -= 2; } while (num_back_channels >= 4) { i += assign_pair(e2c_vec, layout_map, i, tags, UINT64_MAX, UINT64_MAX, AAC_CHANNEL_BACK); num_back_channels -= 2; } if (num_back_channels >= 2) { i += assign_pair(e2c_vec, layout_map, i, tags, AV_CH_BACK_LEFT, AV_CH_BACK_RIGHT, AAC_CHANNEL_BACK); num_back_channels -= 2; } if (num_back_channels) { e2c_vec[i] = (struct elem_to_channel) { .av_position = AV_CH_BACK_CENTER, .syn_ele = TYPE_SCE, .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_BACK }; i++; num_back_channels--; } if (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { e2c_vec[i] = (struct elem_to_channel) { .av_position = AV_CH_LOW_FREQUENCY, .syn_ele = TYPE_LFE, .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE }; i++; } while (i < tags && layout_map[i][2] == AAC_CHANNEL_LFE) { e2c_vec[i] = (struct elem_to_channel) { .av_position = UINT64_MAX, .syn_ele = TYPE_LFE, .elem_id = layout_map[i][1], .aac_position = AAC_CHANNEL_LFE }; i++; } // Must choose a stable sort total_non_cc_elements = n = i; do { int next_n = 0; for (i = 1; i < n; i++) { if (e2c_vec[i-1].av_position > e2c_vec[i].av_position) { FFSWAP(struct elem_to_channel, e2c_vec[i-1], e2c_vec[i]); next_n = i; } } n = next_n; } while (n > 0); layout = 0; for (i = 0; i < total_non_cc_elements; i++) { layout_map[i][0] = e2c_vec[i].syn_ele; layout_map[i][1] = e2c_vec[i].elem_id; layout_map[i][2] = e2c_vec[i].aac_position; if (e2c_vec[i].av_position != UINT64_MAX) { layout |= e2c_vec[i].av_position; } } return layout; }
19,249
0
static int film_read_header(AVFormatContext *s) { FilmDemuxContext *film = s->priv_data; AVIOContext *pb = s->pb; AVStream *st; unsigned char scratch[256]; int i, ret; unsigned int data_offset; unsigned int audio_frame_counter; film->sample_table = NULL; film->stereo_buffer = NULL; film->stereo_buffer_size = 0; /* load the main FILM header */ if (avio_read(pb, scratch, 16) != 16) return AVERROR(EIO); data_offset = AV_RB32(&scratch[4]); film->version = AV_RB32(&scratch[8]); /* load the FDSC chunk */ if (film->version == 0) { /* special case for Lemmings .film files; 20-byte header */ if (avio_read(pb, scratch, 20) != 20) return AVERROR(EIO); /* make some assumptions about the audio parameters */ film->audio_type = AV_CODEC_ID_PCM_S8; film->audio_samplerate = 22050; film->audio_channels = 1; film->audio_bits = 8; } else { /* normal Saturn .cpk files; 32-byte header */ if (avio_read(pb, scratch, 32) != 32) return AVERROR(EIO); film->audio_samplerate = AV_RB16(&scratch[24]); film->audio_channels = scratch[21]; if (!film->audio_channels || film->audio_channels > 2) { av_log(s, AV_LOG_ERROR, "Invalid number of channels: %d\n", film->audio_channels); return AVERROR_INVALIDDATA; } film->audio_bits = scratch[22]; if (scratch[23] == 2) film->audio_type = AV_CODEC_ID_ADPCM_ADX; else if (film->audio_channels > 0) { if (film->audio_bits == 8) film->audio_type = AV_CODEC_ID_PCM_S8; else if (film->audio_bits == 16) film->audio_type = AV_CODEC_ID_PCM_S16BE; else film->audio_type = AV_CODEC_ID_NONE; } else film->audio_type = AV_CODEC_ID_NONE; } if (AV_RB32(&scratch[0]) != FDSC_TAG) return AVERROR_INVALIDDATA; if (AV_RB32(&scratch[8]) == CVID_TAG) { film->video_type = AV_CODEC_ID_CINEPAK; } else if (AV_RB32(&scratch[8]) == RAW_TAG) { film->video_type = AV_CODEC_ID_RAWVIDEO; } else { film->video_type = AV_CODEC_ID_NONE; } /* initialize the decoder streams */ if (film->video_type) { st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); film->video_stream_index = st->index; st->codec->codec_type = AVMEDIA_TYPE_VIDEO; st->codec->codec_id = film->video_type; st->codec->codec_tag = 0; /* no fourcc */ st->codec->width = AV_RB32(&scratch[16]); st->codec->height = AV_RB32(&scratch[12]); if (film->video_type == AV_CODEC_ID_RAWVIDEO) { if (scratch[20] == 24) { st->codec->pix_fmt = AV_PIX_FMT_RGB24; } else { av_log(s, AV_LOG_ERROR, "raw video is using unhandled %dbpp\n", scratch[20]); return -1; } } } if (film->audio_type) { st = avformat_new_stream(s, NULL); if (!st) return AVERROR(ENOMEM); film->audio_stream_index = st->index; st->codec->codec_type = AVMEDIA_TYPE_AUDIO; st->codec->codec_id = film->audio_type; st->codec->codec_tag = 1; st->codec->channels = film->audio_channels; st->codec->sample_rate = film->audio_samplerate; if (film->audio_type == AV_CODEC_ID_ADPCM_ADX) { st->codec->bits_per_coded_sample = 18 * 8 / 32; st->codec->block_align = st->codec->channels * 18; st->need_parsing = AVSTREAM_PARSE_FULL; } else { st->codec->bits_per_coded_sample = film->audio_bits; st->codec->block_align = st->codec->channels * st->codec->bits_per_coded_sample / 8; } st->codec->bit_rate = st->codec->channels * st->codec->sample_rate * st->codec->bits_per_coded_sample; } /* load the sample table */ if (avio_read(pb, scratch, 16) != 16) return AVERROR(EIO); if (AV_RB32(&scratch[0]) != STAB_TAG) return AVERROR_INVALIDDATA; film->base_clock = AV_RB32(&scratch[8]); film->sample_count = AV_RB32(&scratch[12]); if(film->sample_count >= UINT_MAX / sizeof(film_sample)) return -1; film->sample_table = av_malloc(film->sample_count * sizeof(film_sample)); if (!film->sample_table) return AVERROR(ENOMEM); for (i = 0; i < s->nb_streams; i++) { st = s->streams[i]; if (st->codec->codec_type == AVMEDIA_TYPE_VIDEO) avpriv_set_pts_info(st, 33, 1, film->base_clock); else avpriv_set_pts_info(st, 64, 1, film->audio_samplerate); } audio_frame_counter = 0; for (i = 0; i < film->sample_count; i++) { /* load the next sample record and transfer it to an internal struct */ if (avio_read(pb, scratch, 16) != 16) { ret = AVERROR(EIO); goto fail; } film->sample_table[i].sample_offset = data_offset + AV_RB32(&scratch[0]); film->sample_table[i].sample_size = AV_RB32(&scratch[4]); if (film->sample_table[i].sample_size > INT_MAX / 4) { ret = AVERROR_INVALIDDATA; goto fail; } if (AV_RB32(&scratch[8]) == 0xFFFFFFFF) { film->sample_table[i].stream = film->audio_stream_index; film->sample_table[i].pts = audio_frame_counter; if (film->audio_type == AV_CODEC_ID_ADPCM_ADX) audio_frame_counter += (film->sample_table[i].sample_size * 32 / (18 * film->audio_channels)); else if (film->audio_type != AV_CODEC_ID_NONE) audio_frame_counter += (film->sample_table[i].sample_size / (film->audio_channels * film->audio_bits / 8)); } else { film->sample_table[i].stream = film->video_stream_index; film->sample_table[i].pts = AV_RB32(&scratch[8]) & 0x7FFFFFFF; film->sample_table[i].keyframe = (scratch[8] & 0x80) ? 0 : 1; } } film->current_sample = 0; return 0; fail: film_read_close(s); return ret; }
19,251