label
int64
0
1
func1
stringlengths
23
97k
id
int64
0
27.3k
0
static void test_qemu_strtoull_correct(void) { const char *str = "12345 foo"; char f = 'X'; const char *endptr = &f; uint64_t res = 999; int err; err = qemu_strtoull(str, &endptr, 0, &res); g_assert_cmpint(err, ==, 0); g_assert_cmpint(res, ==, 12345); g_assert(endptr == str + 5); }
16,317
0
static void test_visitor_in_enum(TestInputVisitorData *data, const void *unused) { Error *err = NULL; Visitor *v; EnumOne i; for (i = 0; EnumOne_lookup[i]; i++) { EnumOne res = -1; v = visitor_input_test_init(data, "%s", EnumOne_lookup[i]); visit_type_EnumOne(v, &res, NULL, &err); g_assert(!err); g_assert_cmpint(i, ==, res); } }
16,320
0
static void v9fs_lock(void *opaque) { int8_t status; V9fsFlock *flock; size_t offset = 7; struct stat stbuf; V9fsFidState *fidp; int32_t fid, err = 0; V9fsPDU *pdu = opaque; V9fsState *s = pdu->s; flock = g_malloc(sizeof(*flock)); pdu_unmarshal(pdu, offset, "dbdqqds", &fid, &flock->type, &flock->flags, &flock->start, &flock->length, &flock->proc_id, &flock->client_id); trace_v9fs_lock(pdu->tag, pdu->id, fid, flock->type, flock->start, flock->length); status = P9_LOCK_ERROR; /* We support only block flag now (that too ignored currently) */ if (flock->flags & ~P9_LOCK_FLAGS_BLOCK) { err = -EINVAL; goto out_nofid; } fidp = get_fid(pdu, fid); if (fidp == NULL) { err = -ENOENT; goto out_nofid; } err = v9fs_co_fstat(pdu, fidp, &stbuf); if (err < 0) { goto out; } status = P9_LOCK_SUCCESS; out: put_fid(pdu, fidp); out_nofid: err = offset; err += pdu_marshal(pdu, offset, "b", status); trace_v9fs_lock_return(pdu->tag, pdu->id, status); complete_pdu(s, pdu, err); v9fs_string_free(&flock->client_id); g_free(flock); }
16,321
0
int ff_intrax8_decode_picture(IntraX8Context *const w, int dquant, int quant_offset) { MpegEncContext *const s = w->s; int mb_xy; assert(s); w->use_quant_matrix = get_bits1(&s->gb); w->dquant = dquant; w->quant = dquant >> 1; w->qsum = quant_offset; w->divide_quant_dc_luma = ((1 << 16) + (w->quant >> 1)) / w->quant; if (w->quant < 5) { w->quant_dc_chroma = w->quant; w->divide_quant_dc_chroma = w->divide_quant_dc_luma; } else { w->quant_dc_chroma = w->quant + ((w->quant + 3) >> 3); w->divide_quant_dc_chroma = ((1 << 16) + (w->quant_dc_chroma >> 1)) / w->quant_dc_chroma; } x8_reset_vlc_tables(w); for (s->mb_y = 0; s->mb_y < s->mb_height * 2; s->mb_y++) { x8_init_block_index(w, s->current_picture.f, s->mb_y); mb_xy = (s->mb_y >> 1) * s->mb_stride; for (s->mb_x = 0; s->mb_x < s->mb_width * 2; s->mb_x++) { x8_get_prediction(w); if (x8_setup_spatial_predictor(w, 0)) goto error; if (x8_decode_intra_mb(w, 0)) goto error; if (s->mb_x & s->mb_y & 1) { x8_get_prediction_chroma(w); /* when setting up chroma, no vlc is read, * so no error condition can be reached */ x8_setup_spatial_predictor(w, 1); if (x8_decode_intra_mb(w, 1)) goto error; x8_setup_spatial_predictor(w, 2); if (x8_decode_intra_mb(w, 2)) goto error; w->dest[1] += 8; w->dest[2] += 8; /* emulate MB info in the relevant tables */ s->mbskip_table[mb_xy] = 0; s->mbintra_table[mb_xy] = 1; s->current_picture.qscale_table[mb_xy] = w->quant; mb_xy++; } w->dest[0] += 8; } if (s->mb_y & 1) ff_mpeg_draw_horiz_band(s, (s->mb_y - 1) * 8, 16); } error: return 0; }
16,322
0
void commit_start(BlockDriverState *bs, BlockDriverState *base, BlockDriverState *top, int64_t speed, BlockdevOnError on_error, BlockDriverCompletionFunc *cb, void *opaque, Error **errp) { CommitBlockJob *s; BlockReopenQueue *reopen_queue = NULL; int orig_overlay_flags; int orig_base_flags; BlockDriverState *overlay_bs; Error *local_err = NULL; if ((on_error == BLOCKDEV_ON_ERROR_STOP || on_error == BLOCKDEV_ON_ERROR_ENOSPC) && !bdrv_iostatus_is_enabled(bs)) { error_set(errp, QERR_INVALID_PARAMETER_COMBINATION); return; } /* Once we support top == active layer, remove this check */ if (top == bs) { error_setg(errp, "Top image as the active layer is currently unsupported"); return; } if (top == base) { error_setg(errp, "Invalid files for merge: top and base are the same"); return; } overlay_bs = bdrv_find_overlay(bs, top); if (overlay_bs == NULL) { error_setg(errp, "Could not find overlay image for %s:", top->filename); return; } orig_base_flags = bdrv_get_flags(base); orig_overlay_flags = bdrv_get_flags(overlay_bs); /* convert base & overlay_bs to r/w, if necessary */ if (!(orig_base_flags & BDRV_O_RDWR)) { reopen_queue = bdrv_reopen_queue(reopen_queue, base, orig_base_flags | BDRV_O_RDWR); } if (!(orig_overlay_flags & BDRV_O_RDWR)) { reopen_queue = bdrv_reopen_queue(reopen_queue, overlay_bs, orig_overlay_flags | BDRV_O_RDWR); } if (reopen_queue) { bdrv_reopen_multiple(reopen_queue, &local_err); if (local_err != NULL) { error_propagate(errp, local_err); return; } } s = block_job_create(&commit_job_driver, bs, speed, cb, opaque, errp); if (!s) { return; } s->base = base; s->top = top; s->active = bs; s->base_flags = orig_base_flags; s->orig_overlay_flags = orig_overlay_flags; s->on_error = on_error; s->common.co = qemu_coroutine_create(commit_run); trace_commit_start(bs, base, top, s, s->common.co, opaque); qemu_coroutine_enter(s->common.co, s); }
16,323
0
static void blizzard_screen_dump(void *opaque, const char *filename, bool cswitch, Error **errp) { BlizzardState *s = (BlizzardState *) opaque; DisplaySurface *surface = qemu_console_surface(s->con); blizzard_update_display(opaque); if (s && surface_data(surface)) { ppm_save(filename, surface, errp); } }
16,324
0
static void lan9118_writew(void *opaque, target_phys_addr_t offset, uint32_t val) { lan9118_state *s = (lan9118_state *)opaque; offset &= 0xff; if (s->write_word_prev_offset != (offset & ~0x3)) { /* New offset, reset word counter */ s->write_word_n = 0; s->write_word_prev_offset = offset & ~0x3; } if (offset & 0x2) { s->write_word_h = val; } else { s->write_word_l = val; } //DPRINTF("Writew reg 0x%02x = 0x%08x\n", (int)offset, val); s->write_word_n++; if (s->write_word_n == 2) { s->write_word_n = 0; lan9118_writel(s, offset & ~3, s->write_word_l + (s->write_word_h << 16), 4); } }
16,325
0
int float32_eq( float32 a, float32 b STATUS_PARAM ) { if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) ) { if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { float_raise( float_flag_invalid STATUS_VAR); } return 0; } return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); }
16,326
0
int chsc_sei_nt2_get_event(void *res) { ChscSeiNt2Res *nt2_res = (ChscSeiNt2Res *)res; PciCcdfAvail *accdf; PciCcdfErr *eccdf; int rc = 1; SeiContainer *sei_cont; S390pciState *s = S390_PCI_HOST_BRIDGE( object_resolve_path(TYPE_S390_PCI_HOST_BRIDGE, NULL)); if (!s) { return rc; } sei_cont = QTAILQ_FIRST(&s->pending_sei); if (sei_cont) { QTAILQ_REMOVE(&s->pending_sei, sei_cont, link); nt2_res->nt = 2; nt2_res->cc = sei_cont->cc; nt2_res->length = cpu_to_be16(sizeof(ChscSeiNt2Res)); switch (sei_cont->cc) { case 1: /* error event */ eccdf = (PciCcdfErr *)nt2_res->ccdf; eccdf->fid = cpu_to_be32(sei_cont->fid); eccdf->fh = cpu_to_be32(sei_cont->fh); eccdf->e = cpu_to_be32(sei_cont->e); eccdf->faddr = cpu_to_be64(sei_cont->faddr); eccdf->pec = cpu_to_be16(sei_cont->pec); break; case 2: /* availability event */ accdf = (PciCcdfAvail *)nt2_res->ccdf; accdf->fid = cpu_to_be32(sei_cont->fid); accdf->fh = cpu_to_be32(sei_cont->fh); accdf->pec = cpu_to_be16(sei_cont->pec); break; default: abort(); } g_free(sei_cont); rc = 0; } return rc; }
16,327
0
static void icount_adjust_rt(void *opaque) { timer_mod(icount_rt_timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000); icount_adjust(); }
16,328
0
static inline int tcg_target_const_match(tcg_target_long val, const TCGArgConstraint *arg_ct) { int ct; ct = arg_ct->ct; if (ct & TCG_CT_CONST) return 1; else if ((ct & TCG_CT_CONST_S11) && ABS(val) == (ABS(val) & 0x3ff)) return 1; else if ((ct & TCG_CT_CONST_S13) && ABS(val) == (ABS(val) & 0xfff)) return 1; else return 0; }
16,329
0
static void iscsi_close(BlockDriverState *bs) { IscsiLun *iscsilun = bs->opaque; struct iscsi_context *iscsi = iscsilun->iscsi; iscsi_detach_aio_context(bs); if (iscsi_is_logged_in(iscsi)) { iscsi_logout_sync(iscsi); } iscsi_destroy_context(iscsi); g_free(iscsilun->zeroblock); g_free(iscsilun->allocationmap); memset(iscsilun, 0, sizeof(IscsiLun)); }
16,330
0
void i2c_register_slave(I2CSlaveInfo *info) { assert(info->qdev.size >= sizeof(i2c_slave)); info->qdev.init = i2c_slave_qdev_init; info->qdev.bus_type = BUS_TYPE_I2C; qdev_register(&info->qdev); }
16,331
0
static int img_compare(int argc, char **argv) { const char *fmt1 = NULL, *fmt2 = NULL, *cache, *filename1, *filename2; BlockBackend *blk1, *blk2; BlockDriverState *bs1, *bs2; int64_t total_sectors1, total_sectors2; uint8_t *buf1 = NULL, *buf2 = NULL; int pnum1, pnum2; int allocated1, allocated2; int ret = 0; /* return value - 0 Ident, 1 Different, >1 Error */ bool progress = false, quiet = false, strict = false; int flags; int64_t total_sectors; int64_t sector_num = 0; int64_t nb_sectors; int c, pnum; uint64_t progress_base; cache = BDRV_DEFAULT_CACHE; for (;;) { c = getopt(argc, argv, "hf:F:T:pqs"); if (c == -1) { break; } switch (c) { case '?': case 'h': help(); break; case 'f': fmt1 = optarg; break; case 'F': fmt2 = optarg; break; case 'T': cache = optarg; break; case 'p': progress = true; break; case 'q': quiet = true; break; case 's': strict = true; break; } } /* Progress is not shown in Quiet mode */ if (quiet) { progress = false; } if (optind != argc - 2) { error_exit("Expecting two image file names"); } filename1 = argv[optind++]; filename2 = argv[optind++]; /* Initialize before goto out */ qemu_progress_init(progress, 2.0); flags = BDRV_O_FLAGS; ret = bdrv_parse_cache_flags(cache, &flags); if (ret < 0) { error_report("Invalid source cache option: %s", cache); ret = 2; goto out3; } blk1 = img_open("image_1", filename1, fmt1, flags, true, quiet); if (!blk1) { ret = 2; goto out3; } bs1 = blk_bs(blk1); blk2 = img_open("image_2", filename2, fmt2, flags, true, quiet); if (!blk2) { ret = 2; goto out2; } bs2 = blk_bs(blk2); buf1 = blk_blockalign(blk1, IO_BUF_SIZE); buf2 = blk_blockalign(blk2, IO_BUF_SIZE); total_sectors1 = blk_nb_sectors(blk1); if (total_sectors1 < 0) { error_report("Can't get size of %s: %s", filename1, strerror(-total_sectors1)); ret = 4; goto out; } total_sectors2 = blk_nb_sectors(blk2); if (total_sectors2 < 0) { error_report("Can't get size of %s: %s", filename2, strerror(-total_sectors2)); ret = 4; goto out; } total_sectors = MIN(total_sectors1, total_sectors2); progress_base = MAX(total_sectors1, total_sectors2); qemu_progress_print(0, 100); if (strict && total_sectors1 != total_sectors2) { ret = 1; qprintf(quiet, "Strict mode: Image size mismatch!\n"); goto out; } for (;;) { int64_t status1, status2; nb_sectors = sectors_to_process(total_sectors, sector_num); if (nb_sectors <= 0) { break; } status1 = bdrv_get_block_status_above(bs1, NULL, sector_num, total_sectors1 - sector_num, &pnum1); if (status1 < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename1); goto out; } allocated1 = status1 & BDRV_BLOCK_ALLOCATED; status2 = bdrv_get_block_status_above(bs2, NULL, sector_num, total_sectors2 - sector_num, &pnum2); if (status2 < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename2); goto out; } allocated2 = status2 & BDRV_BLOCK_ALLOCATED; if (pnum1) { nb_sectors = MIN(nb_sectors, pnum1); } if (pnum2) { nb_sectors = MIN(nb_sectors, pnum2); } if (strict) { if ((status1 & ~BDRV_BLOCK_OFFSET_MASK) != (status2 & ~BDRV_BLOCK_OFFSET_MASK)) { ret = 1; qprintf(quiet, "Strict mode: Offset %" PRId64 " block status mismatch!\n", sectors_to_bytes(sector_num)); goto out; } } if ((status1 & BDRV_BLOCK_ZERO) && (status2 & BDRV_BLOCK_ZERO)) { nb_sectors = MIN(pnum1, pnum2); } else if (allocated1 == allocated2) { if (allocated1) { ret = blk_read(blk1, sector_num, buf1, nb_sectors); if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s:" " %s", sectors_to_bytes(sector_num), filename1, strerror(-ret)); ret = 4; goto out; } ret = blk_read(blk2, sector_num, buf2, nb_sectors); if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s: %s", sectors_to_bytes(sector_num), filename2, strerror(-ret)); ret = 4; goto out; } ret = compare_sectors(buf1, buf2, nb_sectors, &pnum); if (ret || pnum != nb_sectors) { qprintf(quiet, "Content mismatch at offset %" PRId64 "!\n", sectors_to_bytes( ret ? sector_num : sector_num + pnum)); ret = 1; goto out; } } } else { if (allocated1) { ret = check_empty_sectors(blk1, sector_num, nb_sectors, filename1, buf1, quiet); } else { ret = check_empty_sectors(blk2, sector_num, nb_sectors, filename2, buf1, quiet); } if (ret) { if (ret < 0) { error_report("Error while reading offset %" PRId64 ": %s", sectors_to_bytes(sector_num), strerror(-ret)); ret = 4; } goto out; } } sector_num += nb_sectors; qemu_progress_print(((float) nb_sectors / progress_base)*100, 100); } if (total_sectors1 != total_sectors2) { BlockBackend *blk_over; int64_t total_sectors_over; const char *filename_over; qprintf(quiet, "Warning: Image size mismatch!\n"); if (total_sectors1 > total_sectors2) { total_sectors_over = total_sectors1; blk_over = blk1; filename_over = filename1; } else { total_sectors_over = total_sectors2; blk_over = blk2; filename_over = filename2; } for (;;) { nb_sectors = sectors_to_process(total_sectors_over, sector_num); if (nb_sectors <= 0) { break; } ret = bdrv_is_allocated_above(blk_bs(blk_over), NULL, sector_num, nb_sectors, &pnum); if (ret < 0) { ret = 3; error_report("Sector allocation test failed for %s", filename_over); goto out; } nb_sectors = pnum; if (ret) { ret = check_empty_sectors(blk_over, sector_num, nb_sectors, filename_over, buf1, quiet); if (ret) { if (ret < 0) { error_report("Error while reading offset %" PRId64 " of %s: %s", sectors_to_bytes(sector_num), filename_over, strerror(-ret)); ret = 4; } goto out; } } sector_num += nb_sectors; qemu_progress_print(((float) nb_sectors / progress_base)*100, 100); } } qprintf(quiet, "Images are identical.\n"); ret = 0; out: qemu_vfree(buf1); qemu_vfree(buf2); blk_unref(blk2); out2: blk_unref(blk1); out3: qemu_progress_end(); return ret; }
16,332
0
static int v4l2_read_header(AVFormatContext *s1, AVFormatParameters *ap) { struct video_data *s = s1->priv_data; AVStream *st; int width, height; int res, frame_rate, frame_rate_base; uint32_t desired_format, capabilities; const char *video_device; if (!ap || ap->width <= 0 || ap->height <= 0 || ap->time_base.den <= 0) { av_log(s1, AV_LOG_ERROR, "Missing/Wrong parameters\n"); return -1; } width = ap->width; height = ap->height; frame_rate = ap->time_base.den; frame_rate_base = ap->time_base.num; if((unsigned)width > 32767 || (unsigned)height > 32767) { av_log(s1, AV_LOG_ERROR, "Wrong size %dx%d\n", width, height); return -1; } st = av_new_stream(s1, 0); if (!st) { return -ENOMEM; } av_set_pts_info(st, 64, 1, 1000000); /* 64 bits pts in us */ s->width = width; s->height = height; s->frame_rate = frame_rate; s->frame_rate_base = frame_rate_base; video_device = ap->device; if (!video_device) { video_device = "/dev/video"; } capabilities = 0; s->fd = device_open(video_device, &capabilities); if (s->fd < 0) { av_free(st); return AVERROR_IO; } av_log(s1, AV_LOG_ERROR, "[%d]Capabilities: %x\n", s->fd, capabilities); desired_format = fmt_ff2v4l(ap->pix_fmt); if (desired_format == 0 || (device_init(s->fd, &width, &height, desired_format) < 0)) { int i, done; done = 0; i = 0; while (!done) { desired_format = fmt_conversion_table[i].v4l2_fmt; if (device_init(s->fd, &width, &height, desired_format) < 0) { desired_format = 0; i++; } else { done = 1; } if (i == sizeof(fmt_conversion_table) / sizeof(struct fmt_map)) { done = 1; } } } if (desired_format == 0) { av_log(s1, AV_LOG_ERROR, "Cannot find a proper format.\n"); close(s->fd); av_free(st); return AVERROR_IO; } s->frame_format = desired_format; st->codec->pix_fmt = fmt_v4l2ff(desired_format); s->frame_size = avpicture_get_size(st->codec->pix_fmt, width, height); if (capabilities & V4L2_CAP_STREAMING) { s->io_method = io_mmap; res = mmap_init(s); res = mmap_start(s); } else { s->io_method = io_read; res = read_init(s); } if (res < 0) { close(s->fd); av_free(st); return AVERROR_IO; } s->top_field_first = first_field(s->fd); st->codec->codec_type = CODEC_TYPE_VIDEO; st->codec->codec_id = CODEC_ID_RAWVIDEO; st->codec->width = width; st->codec->height = height; st->codec->time_base.den = frame_rate; st->codec->time_base.num = frame_rate_base; st->codec->bit_rate = s->frame_size * 1/av_q2d(st->codec->time_base) * 8; return 0; }
16,333
0
static void handle_keyup(DisplayState *ds, SDL_Event *ev) { int mod_state; if (!alt_grab) { mod_state = (ev->key.keysym.mod & gui_grab_code); } else { mod_state = (ev->key.keysym.mod & (gui_grab_code | KMOD_LSHIFT)); } if (!mod_state && gui_key_modifier_pressed) { gui_key_modifier_pressed = 0; if (gui_keysym == 0) { /* exit/enter grab if pressing Ctrl-Alt */ if (!gui_grab) { /* If the application is not active, do not try to enter grab * state. It prevents 'SDL_WM_GrabInput(SDL_GRAB_ON)' from * blocking all the application (SDL bug). */ if (is_graphic_console() && SDL_GetAppState() & SDL_APPACTIVE) { sdl_grab_start(); } } else if (!gui_fullscreen) { sdl_grab_end(); } /* SDL does not send back all the modifiers key, so we must * correct it. */ reset_keys(); return; } gui_keysym = 0; } if (is_graphic_console() && !gui_keysym) { sdl_process_key(&ev->key); } }
16,334
0
static int mpegts_resync(ByteIOContext *pb) { int c, i; for(i = 0;i < MAX_RESYNC_SIZE; i++) { c = url_fgetc(pb); if (c < 0) return -1; if (c == 0x47) { url_fseek(pb, -1, SEEK_CUR); return 0; } } /* no sync found */ return -1; }
16,336
1
static int write_header(FlashSV2Context * s, uint8_t * buf, int buf_size) { PutBitContext pb; int buf_pos, len; if (buf_size < 5) return -1; init_put_bits(&pb, buf, buf_size * 8); put_bits(&pb, 4, (s->block_width >> 4) - 1); put_bits(&pb, 12, s->image_width); put_bits(&pb, 4, (s->block_height >> 4) - 1); put_bits(&pb, 12, s->image_height); flush_put_bits(&pb); buf_pos = 4; buf[buf_pos++] = s->flags; if (s->flags & HAS_PALLET_INFO) { len = write_palette(s, buf + buf_pos, buf_size - buf_pos); if (len < 0) return -1; buf_pos += len; } return buf_pos; }
16,337
1
void usb_ohci_init_pxa(target_phys_addr_t base, int num_ports, int devfn, qemu_irq irq) { OHCIState *ohci = (OHCIState *)qemu_mallocz(sizeof(OHCIState)); usb_ohci_init(ohci, num_ports, devfn, irq, OHCI_TYPE_PXA, "OHCI USB"); ohci->mem_base = base; cpu_register_physical_memory(ohci->mem_base, 0xfff, ohci->mem); }
16,338
1
static void RENAME(yuv2rgb32_1)(SwsContext *c, const int16_t *buf0, const int16_t *ubuf[2], const int16_t *bguf[2], const int16_t *abuf0, uint8_t *dest, int dstW, int uvalpha, int y) { const int16_t *ubuf0 = ubuf[0], *ubuf1 = ubuf[1]; const int16_t *buf1= buf0; //FIXME needed for RGB1/BGR1 if (uvalpha < 2048) { // note this is not correct (shifts chrominance by 0.5 pixels) but it is a bit faster if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1(%%REGBP, %5) YSCALEYUV2RGB1_ALPHA(%%REGBP) WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (abuf0), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } else { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1(%%REGBP, %5) "pcmpeqd %%mm7, %%mm7 \n\t" WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (buf1), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } } else { if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1b(%%REGBP, %5) YSCALEYUV2RGB1_ALPHA(%%REGBP) WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (abuf0), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } else { __asm__ volatile( "mov %%"REG_b", "ESP_OFFSET"(%5) \n\t" "mov %4, %%"REG_b" \n\t" "push %%"REG_BP" \n\t" YSCALEYUV2RGB1b(%%REGBP, %5) "pcmpeqd %%mm7, %%mm7 \n\t" WRITEBGR32(%%REGb, 8280(%5), %%REGBP, %%mm2, %%mm4, %%mm5, %%mm7, %%mm0, %%mm1, %%mm3, %%mm6) "pop %%"REG_BP" \n\t" "mov "ESP_OFFSET"(%5), %%"REG_b" \n\t" :: "c" (buf0), "d" (buf1), "S" (ubuf0), "D" (ubuf1), "m" (dest), "a" (&c->redDither) ); } } }
16,340
1
VirtIODevice *virtio_9p_init(DeviceState *dev, V9fsConf *conf) { V9fsState *s; int i, len; struct stat stat; FsTypeEntry *fse; s = (V9fsState *)virtio_common_init("virtio-9p", VIRTIO_ID_9P, sizeof(struct virtio_9p_config)+ MAX_TAG_LEN, sizeof(V9fsState)); /* initialize pdu allocator */ QLIST_INIT(&s->free_list); for (i = 0; i < (MAX_REQ - 1); i++) { QLIST_INSERT_HEAD(&s->free_list, &s->pdus[i], next); } s->vq = virtio_add_queue(&s->vdev, MAX_REQ, handle_9p_output); fse = get_fsdev_fsentry(conf->fsdev_id); if (!fse) { /* We don't have a fsdev identified by fsdev_id */ fprintf(stderr, "Virtio-9p device couldn't find fsdev " "with the id %s\n", conf->fsdev_id); exit(1); } if (!fse->path || !conf->tag) { /* we haven't specified a mount_tag or the path */ fprintf(stderr, "fsdev with id %s needs path " "and Virtio-9p device needs mount_tag arguments\n", conf->fsdev_id); exit(1); } if (!strcmp(fse->security_model, "passthrough")) { /* Files on the Fileserver set to client user credentials */ s->ctx.fs_sm = SM_PASSTHROUGH; } else if (!strcmp(fse->security_model, "mapped")) { /* Files on the fileserver are set to QEMU credentials. * Client user credentials are saved in extended attributes. */ s->ctx.fs_sm = SM_MAPPED; } else { /* user haven't specified a correct security option */ fprintf(stderr, "one of the following must be specified as the" "security option:\n\t security_model=passthrough \n\t " "security_model=mapped\n"); return NULL; } if (lstat(fse->path, &stat)) { fprintf(stderr, "share path %s does not exist\n", fse->path); exit(1); } else if (!S_ISDIR(stat.st_mode)) { fprintf(stderr, "share path %s is not a directory \n", fse->path); exit(1); } s->ctx.fs_root = qemu_strdup(fse->path); len = strlen(conf->tag); if (len > MAX_TAG_LEN) { len = MAX_TAG_LEN; } /* s->tag is non-NULL terminated string */ s->tag = qemu_malloc(len); memcpy(s->tag, conf->tag, len); s->tag_len = len; s->ctx.uid = -1; s->ops = fse->ops; s->vdev.get_features = virtio_9p_get_features; s->config_size = sizeof(struct virtio_9p_config) + s->tag_len; s->vdev.get_config = virtio_9p_get_config; return &s->vdev; }
16,341
1
int pcilg_service_call(S390CPU *cpu, uint8_t r1, uint8_t r2) { CPUS390XState *env = &cpu->env; S390PCIBusDevice *pbdev; uint64_t offset; uint64_t data; MemoryRegion *mr; uint8_t len; uint32_t fh; uint8_t pcias; cpu_synchronize_state(CPU(cpu)); if (env->psw.mask & PSW_MASK_PSTATE) { program_interrupt(env, PGM_PRIVILEGED, 4); return 0; } if (r2 & 0x1) { program_interrupt(env, PGM_SPECIFICATION, 4); return 0; } fh = env->regs[r2] >> 32; pcias = (env->regs[r2] >> 16) & 0xf; len = env->regs[r2] & 0xf; offset = env->regs[r2 + 1]; pbdev = s390_pci_find_dev_by_fh(fh); if (!pbdev) { DPRINTF("pcilg no pci dev\n"); setcc(cpu, ZPCI_PCI_LS_INVAL_HANDLE); return 0; } switch (pbdev->state) { case ZPCI_FS_RESERVED: case ZPCI_FS_STANDBY: case ZPCI_FS_DISABLED: case ZPCI_FS_PERMANENT_ERROR: setcc(cpu, ZPCI_PCI_LS_INVAL_HANDLE); return 0; case ZPCI_FS_ERROR: setcc(cpu, ZPCI_PCI_LS_ERR); s390_set_status_code(env, r2, ZPCI_PCI_ST_BLOCKED); return 0; default: break; } if (pcias < 6) { if ((8 - (offset & 0x7)) < len) { program_interrupt(env, PGM_OPERAND, 4); return 0; } mr = pbdev->pdev->io_regions[pcias].memory; memory_region_dispatch_read(mr, offset, &data, len, MEMTXATTRS_UNSPECIFIED); } else if (pcias == 15) { if ((4 - (offset & 0x3)) < len) { program_interrupt(env, PGM_OPERAND, 4); return 0; } data = pci_host_config_read_common( pbdev->pdev, offset, pci_config_size(pbdev->pdev), len); switch (len) { case 1: break; case 2: data = bswap16(data); break; case 4: data = bswap32(data); break; case 8: data = bswap64(data); break; default: program_interrupt(env, PGM_OPERAND, 4); return 0; } } else { DPRINTF("invalid space\n"); setcc(cpu, ZPCI_PCI_LS_ERR); s390_set_status_code(env, r2, ZPCI_PCI_ST_INVAL_AS); return 0; } env->regs[r1] = data; setcc(cpu, ZPCI_PCI_LS_OK); return 0; }
16,342
1
static void vnc_client_cache_auth(VncState *client) { if (!client->info) { return; } #ifdef CONFIG_VNC_TLS if (client->tls.session && client->tls.dname) { client->info->has_x509_dname = true; client->info->x509_dname = g_strdup(client->tls.dname); } #endif #ifdef CONFIG_VNC_SASL if (client->sasl.conn && client->sasl.username) { client->info->has_sasl_username = true; client->info->sasl_username = g_strdup(client->sasl.username); } #endif }
16,343
1
static void add_wav(int16_t *dest, int n, int skip_first, int *m, const int16_t *s1, const int8_t *s2, const int8_t *s3) { int i; int v[3]; v[0] = 0; for (i=!skip_first; i<3; i++) v[i] = (gain_val_tab[n][i] * m[i]) >> gain_exp_tab[n]; dest[i] = (s1[i]*v[0] + s2[i]*v[1] + s3[i]*v[2]) >> 12;
16,344
1
void qtest_qmp(QTestState *s, const char *fmt, ...) { va_list ap; bool has_reply = false; int nesting = 0; /* Send QMP request */ va_start(ap, fmt); socket_sendf(s->qmp_fd, fmt, ap); va_end(ap); /* Receive reply */ while (!has_reply || nesting > 0) { ssize_t len; char c; len = read(s->qmp_fd, &c, 1); if (len == -1 && errno == EINTR) { continue; switch (c) { case '{': nesting++; has_reply = true; break; case '}': nesting--; break;
16,345
1
static void vmxnet3_reset(VMXNET3State *s) { VMW_CBPRN("Resetting vmxnet3..."); vmxnet3_deactivate_device(s); vmxnet3_reset_interrupt_states(s); vmxnet_tx_pkt_reset(s->tx_pkt); s->drv_shmem = 0; s->tx_sop = true; s->skip_current_tx_pkt = false; }
16,346
1
static av_cold int X264_close(AVCodecContext *avctx) { X264Context *x4 = avctx->priv_data; av_freep(&avctx->extradata); av_free(x4->sei); if (x4->enc) x264_encoder_close(x4->enc); av_frame_free(&avctx->coded_frame); return 0; }
16,347
1
static always_inline void gen_op_subfo_64 (void) { gen_op_move_T2_T0(); gen_op_subf(); gen_op_check_subfo_64(); }
16,349
1
int slirp_can_output(void) { return 1; }
16,350
1
int main(int argc, char **argv, char **envp) { struct target_pt_regs regs1, *regs = &regs1; struct image_info info1, *info = &info1; struct linux_binprm bprm; TaskState *ts; CPUArchState *env; CPUState *cpu; int optind; char **target_environ, **wrk; char **target_argv; int target_argc; int i; int ret; int execfd; module_call_init(MODULE_INIT_TRACE); qemu_init_cpu_list(); module_call_init(MODULE_INIT_QOM); if ((envlist = envlist_create()) == NULL) { (void) fprintf(stderr, "Unable to allocate envlist\n"); exit(EXIT_FAILURE); } /* add current environment into the list */ for (wrk = environ; *wrk != NULL; wrk++) { (void) envlist_setenv(envlist, *wrk); } /* Read the stack limit from the kernel. If it's "unlimited", then we can do little else besides use the default. */ { struct rlimit lim; if (getrlimit(RLIMIT_STACK, &lim) == 0 && lim.rlim_cur != RLIM_INFINITY && lim.rlim_cur == (target_long)lim.rlim_cur) { guest_stack_size = lim.rlim_cur; } } cpu_model = NULL; srand(time(NULL)); qemu_add_opts(&qemu_trace_opts); optind = parse_args(argc, argv); if (!trace_init_backends()) { exit(1); } trace_init_file(trace_file); /* Zero out regs */ memset(regs, 0, sizeof(struct target_pt_regs)); /* Zero out image_info */ memset(info, 0, sizeof(struct image_info)); memset(&bprm, 0, sizeof (bprm)); /* Scan interp_prefix dir for replacement files. */ init_paths(interp_prefix); init_qemu_uname_release(); if (cpu_model == NULL) { #if defined(TARGET_I386) #ifdef TARGET_X86_64 cpu_model = "qemu64"; #else cpu_model = "qemu32"; #endif #elif defined(TARGET_ARM) cpu_model = "any"; #elif defined(TARGET_UNICORE32) cpu_model = "any"; #elif defined(TARGET_M68K) cpu_model = "any"; #elif defined(TARGET_SPARC) #ifdef TARGET_SPARC64 cpu_model = "TI UltraSparc II"; #else cpu_model = "Fujitsu MB86904"; #endif #elif defined(TARGET_MIPS) #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) cpu_model = "5KEf"; #else cpu_model = "24Kf"; #endif #elif defined TARGET_OPENRISC cpu_model = "or1200"; #elif defined(TARGET_PPC) # ifdef TARGET_PPC64 cpu_model = "POWER8"; # else cpu_model = "750"; # endif #elif defined TARGET_SH4 cpu_model = TYPE_SH7785_CPU; #elif defined TARGET_S390X cpu_model = "qemu"; #else cpu_model = "any"; #endif } tcg_exec_init(0); /* NOTE: we need to init the CPU at this stage to get qemu_host_page_size */ cpu = cpu_init(cpu_model); if (!cpu) { fprintf(stderr, "Unable to find CPU definition\n"); exit(EXIT_FAILURE); } env = cpu->env_ptr; cpu_reset(cpu); thread_cpu = cpu; if (getenv("QEMU_STRACE")) { do_strace = 1; } if (getenv("QEMU_RAND_SEED")) { handle_arg_randseed(getenv("QEMU_RAND_SEED")); } target_environ = envlist_to_environ(envlist, NULL); envlist_free(envlist); /* * Now that page sizes are configured in cpu_init() we can do * proper page alignment for guest_base. */ guest_base = HOST_PAGE_ALIGN(guest_base); if (reserved_va || have_guest_base) { guest_base = init_guest_space(guest_base, reserved_va, 0, have_guest_base); if (guest_base == (unsigned long)-1) { fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " "space for use as guest address space (check your virtual " "memory ulimit setting or reserve less using -R option)\n", reserved_va); exit(EXIT_FAILURE); } if (reserved_va) { mmap_next_start = reserved_va; } } /* * Read in mmap_min_addr kernel parameter. This value is used * When loading the ELF image to determine whether guest_base * is needed. It is also used in mmap_find_vma. */ { FILE *fp; if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { unsigned long tmp; if (fscanf(fp, "%lu", &tmp) == 1) { mmap_min_addr = tmp; qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); } fclose(fp); } } /* * Prepare copy of argv vector for target. */ target_argc = argc - optind; target_argv = calloc(target_argc + 1, sizeof (char *)); if (target_argv == NULL) { (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); exit(EXIT_FAILURE); } /* * If argv0 is specified (using '-0' switch) we replace * argv[0] pointer with the given one. */ i = 0; if (argv0 != NULL) { target_argv[i++] = strdup(argv0); } for (; i < target_argc; i++) { target_argv[i] = strdup(argv[optind + i]); } target_argv[target_argc] = NULL; ts = g_new0(TaskState, 1); init_task_state(ts); /* build Task State */ ts->info = info; ts->bprm = &bprm; cpu->opaque = ts; task_settid(ts); execfd = qemu_getauxval(AT_EXECFD); if (execfd == 0) { execfd = open(filename, O_RDONLY); if (execfd < 0) { printf("Error while loading %s: %s\n", filename, strerror(errno)); _exit(EXIT_FAILURE); } } ret = loader_exec(execfd, filename, target_argv, target_environ, regs, info, &bprm); if (ret != 0) { printf("Error while loading %s: %s\n", filename, strerror(-ret)); _exit(EXIT_FAILURE); } for (wrk = target_environ; *wrk; wrk++) { free(*wrk); } free(target_environ); if (qemu_loglevel_mask(CPU_LOG_PAGE)) { qemu_log("guest_base 0x%lx\n", guest_base); log_page_dump(); qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start); qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_end + (abi_ulong)sizeof(abi_ulong)); qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv); } target_set_brk(info->brk); syscall_init(); signal_init(); /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay generating the prologue until now so that the prologue can take the real value of GUEST_BASE into account. */ tcg_prologue_init(&tcg_ctx); #if defined(TARGET_I386) env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; env->hflags |= HF_PE_MASK | HF_CPL_MASK; if (env->features[FEAT_1_EDX] & CPUID_SSE) { env->cr[4] |= CR4_OSFXSR_MASK; env->hflags |= HF_OSFXSR_MASK; } #ifndef TARGET_ABI32 /* enable 64 bit mode if possible */ if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); exit(EXIT_FAILURE); } env->cr[4] |= CR4_PAE_MASK; env->efer |= MSR_EFER_LMA | MSR_EFER_LME; env->hflags |= HF_LMA_MASK; #endif /* flags setup : we activate the IRQs by default as in user mode */ env->eflags |= IF_MASK; /* linux register setup */ #ifndef TARGET_ABI32 env->regs[R_EAX] = regs->rax; env->regs[R_EBX] = regs->rbx; env->regs[R_ECX] = regs->rcx; env->regs[R_EDX] = regs->rdx; env->regs[R_ESI] = regs->rsi; env->regs[R_EDI] = regs->rdi; env->regs[R_EBP] = regs->rbp; env->regs[R_ESP] = regs->rsp; env->eip = regs->rip; #else env->regs[R_EAX] = regs->eax; env->regs[R_EBX] = regs->ebx; env->regs[R_ECX] = regs->ecx; env->regs[R_EDX] = regs->edx; env->regs[R_ESI] = regs->esi; env->regs[R_EDI] = regs->edi; env->regs[R_EBP] = regs->ebp; env->regs[R_ESP] = regs->esp; env->eip = regs->eip; #endif /* linux interrupt setup */ #ifndef TARGET_ABI32 env->idt.limit = 511; #else env->idt.limit = 255; #endif env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); idt_table = g2h(env->idt.base); set_idt(0, 0); set_idt(1, 0); set_idt(2, 0); set_idt(3, 3); set_idt(4, 3); set_idt(5, 0); set_idt(6, 0); set_idt(7, 0); set_idt(8, 0); set_idt(9, 0); set_idt(10, 0); set_idt(11, 0); set_idt(12, 0); set_idt(13, 0); set_idt(14, 0); set_idt(15, 0); set_idt(16, 0); set_idt(17, 0); set_idt(18, 0); set_idt(19, 0); set_idt(0x80, 3); /* linux segment setup */ { uint64_t *gdt_table; env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, PROT_READ|PROT_WRITE, MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; gdt_table = g2h(env->gdt.base); #ifdef TARGET_ABI32 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #else /* 64 bit code segment */ write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK | (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); #endif write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); } cpu_x86_load_seg(env, R_CS, __USER_CS); cpu_x86_load_seg(env, R_SS, __USER_DS); #ifdef TARGET_ABI32 cpu_x86_load_seg(env, R_DS, __USER_DS); cpu_x86_load_seg(env, R_ES, __USER_DS); cpu_x86_load_seg(env, R_FS, __USER_DS); cpu_x86_load_seg(env, R_GS, __USER_DS); /* This hack makes Wine work... */ env->segs[R_FS].selector = 0; #else cpu_x86_load_seg(env, R_DS, 0); cpu_x86_load_seg(env, R_ES, 0); cpu_x86_load_seg(env, R_FS, 0); cpu_x86_load_seg(env, R_GS, 0); #endif #elif defined(TARGET_AARCH64) { int i; if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { fprintf(stderr, "The selected ARM CPU does not support 64 bit mode\n"); exit(EXIT_FAILURE); } for (i = 0; i < 31; i++) { env->xregs[i] = regs->regs[i]; } env->pc = regs->pc; env->xregs[31] = regs->sp; } #elif defined(TARGET_ARM) { int i; cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, CPSRWriteByInstr); for(i = 0; i < 16; i++) { env->regs[i] = regs->uregs[i]; } #ifdef TARGET_WORDS_BIGENDIAN /* Enable BE8. */ if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 && (info->elf_flags & EF_ARM_BE8)) { env->uncached_cpsr |= CPSR_E; env->cp15.sctlr_el[1] |= SCTLR_E0E; } else { env->cp15.sctlr_el[1] |= SCTLR_B; } #endif } #elif defined(TARGET_UNICORE32) { int i; cpu_asr_write(env, regs->uregs[32], 0xffffffff); for (i = 0; i < 32; i++) { env->regs[i] = regs->uregs[i]; } } #elif defined(TARGET_SPARC) { int i; env->pc = regs->pc; env->npc = regs->npc; env->y = regs->y; for(i = 0; i < 8; i++) env->gregs[i] = regs->u_regs[i]; for(i = 0; i < 8; i++) env->regwptr[i] = regs->u_regs[i + 8]; } #elif defined(TARGET_PPC) { int i; #if defined(TARGET_PPC64) int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; #if defined(TARGET_ABI32) env->msr &= ~((target_ulong)1 << flag); #else env->msr |= (target_ulong)1 << flag; #endif #endif env->nip = regs->nip; for(i = 0; i < 32; i++) { env->gpr[i] = regs->gpr[i]; } } #elif defined(TARGET_M68K) { env->pc = regs->pc; env->dregs[0] = regs->d0; env->dregs[1] = regs->d1; env->dregs[2] = regs->d2; env->dregs[3] = regs->d3; env->dregs[4] = regs->d4; env->dregs[5] = regs->d5; env->dregs[6] = regs->d6; env->dregs[7] = regs->d7; env->aregs[0] = regs->a0; env->aregs[1] = regs->a1; env->aregs[2] = regs->a2; env->aregs[3] = regs->a3; env->aregs[4] = regs->a4; env->aregs[5] = regs->a5; env->aregs[6] = regs->a6; env->aregs[7] = regs->usp; env->sr = regs->sr; ts->sim_syscalls = 1; } #elif defined(TARGET_MICROBLAZE) { env->regs[0] = regs->r0; env->regs[1] = regs->r1; env->regs[2] = regs->r2; env->regs[3] = regs->r3; env->regs[4] = regs->r4; env->regs[5] = regs->r5; env->regs[6] = regs->r6; env->regs[7] = regs->r7; env->regs[8] = regs->r8; env->regs[9] = regs->r9; env->regs[10] = regs->r10; env->regs[11] = regs->r11; env->regs[12] = regs->r12; env->regs[13] = regs->r13; env->regs[14] = regs->r14; env->regs[15] = regs->r15; env->regs[16] = regs->r16; env->regs[17] = regs->r17; env->regs[18] = regs->r18; env->regs[19] = regs->r19; env->regs[20] = regs->r20; env->regs[21] = regs->r21; env->regs[22] = regs->r22; env->regs[23] = regs->r23; env->regs[24] = regs->r24; env->regs[25] = regs->r25; env->regs[26] = regs->r26; env->regs[27] = regs->r27; env->regs[28] = regs->r28; env->regs[29] = regs->r29; env->regs[30] = regs->r30; env->regs[31] = regs->r31; env->sregs[SR_PC] = regs->pc; } #elif defined(TARGET_MIPS) { int i; for(i = 0; i < 32; i++) { env->active_tc.gpr[i] = regs->regs[i]; } env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; if (regs->cp0_epc & 1) { env->hflags |= MIPS_HFLAG_M16; } if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { if ((env->active_fpu.fcr31_rw_bitmask & (1 << FCR31_NAN2008)) == 0) { fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); exit(1); } if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); } else { env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); } restore_snan_bit_mode(env); } } #elif defined(TARGET_NIOS2) { env->regs[0] = 0; env->regs[1] = regs->r1; env->regs[2] = regs->r2; env->regs[3] = regs->r3; env->regs[4] = regs->r4; env->regs[5] = regs->r5; env->regs[6] = regs->r6; env->regs[7] = regs->r7; env->regs[8] = regs->r8; env->regs[9] = regs->r9; env->regs[10] = regs->r10; env->regs[11] = regs->r11; env->regs[12] = regs->r12; env->regs[13] = regs->r13; env->regs[14] = regs->r14; env->regs[15] = regs->r15; /* TODO: unsigned long orig_r2; */ env->regs[R_RA] = regs->ra; env->regs[R_FP] = regs->fp; env->regs[R_SP] = regs->sp; env->regs[R_GP] = regs->gp; env->regs[CR_ESTATUS] = regs->estatus; env->regs[R_EA] = regs->ea; /* TODO: unsigned long orig_r7; */ /* Emulate eret when starting thread. */ env->regs[R_PC] = regs->ea; } #elif defined(TARGET_OPENRISC) { int i; for (i = 0; i < 32; i++) { env->gpr[i] = regs->gpr[i]; } env->pc = regs->pc; cpu_set_sr(env, regs->sr); } #elif defined(TARGET_SH4) { int i; for(i = 0; i < 16; i++) { env->gregs[i] = regs->regs[i]; } env->pc = regs->pc; } #elif defined(TARGET_ALPHA) { int i; for(i = 0; i < 28; i++) { env->ir[i] = ((abi_ulong *)regs)[i]; } env->ir[IR_SP] = regs->usp; env->pc = regs->pc; } #elif defined(TARGET_CRIS) { env->regs[0] = regs->r0; env->regs[1] = regs->r1; env->regs[2] = regs->r2; env->regs[3] = regs->r3; env->regs[4] = regs->r4; env->regs[5] = regs->r5; env->regs[6] = regs->r6; env->regs[7] = regs->r7; env->regs[8] = regs->r8; env->regs[9] = regs->r9; env->regs[10] = regs->r10; env->regs[11] = regs->r11; env->regs[12] = regs->r12; env->regs[13] = regs->r13; env->regs[14] = info->start_stack; env->regs[15] = regs->acr; env->pc = regs->erp; } #elif defined(TARGET_S390X) { int i; for (i = 0; i < 16; i++) { env->regs[i] = regs->gprs[i]; } env->psw.mask = regs->psw.mask; env->psw.addr = regs->psw.addr; } #elif defined(TARGET_TILEGX) { int i; for (i = 0; i < TILEGX_R_COUNT; i++) { env->regs[i] = regs->regs[i]; } for (i = 0; i < TILEGX_SPR_COUNT; i++) { env->spregs[i] = 0; } env->pc = regs->pc; } #elif defined(TARGET_HPPA) { int i; for (i = 1; i < 32; i++) { env->gr[i] = regs->gr[i]; } env->iaoq_f = regs->iaoq[0]; env->iaoq_b = regs->iaoq[1]; } #else #error unsupported target CPU #endif #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) ts->stack_base = info->start_stack; ts->heap_base = info->brk; /* This will be filled in on the first SYS_HEAPINFO call. */ ts->heap_limit = 0; #endif if (gdbstub_port) { if (gdbserver_start(gdbstub_port) < 0) { fprintf(stderr, "qemu: could not open gdbserver on port %d\n", gdbstub_port); exit(EXIT_FAILURE); } gdb_handlesig(cpu, 0); } cpu_loop(env); /* never exits */ return 0; }
16,351
1
static int aiff_read_header(AVFormatContext *s, AVFormatParameters *ap) { int size, filesize; offset_t offset = 0; uint32_t tag; unsigned version = AIFF_C_VERSION1; ByteIOContext *pb = s->pb; AVStream * st = s->streams[0]; /* check FORM header */ filesize = get_tag(pb, &tag); if (filesize < 0 || tag != MKTAG('F', 'O', 'R', 'M')) return AVERROR_INVALIDDATA; /* AIFF data type */ tag = get_le32(pb); if (tag == MKTAG('A', 'I', 'F', 'F')) /* Got an AIFF file */ version = AIFF; else if (tag != MKTAG('A', 'I', 'F', 'C')) /* An AIFF-C file then */ return AVERROR_INVALIDDATA; filesize -= 4; st = av_new_stream(s, 0); if (!st) return AVERROR(ENOMEM); while (filesize > 0) { /* parse different chunks */ size = get_tag(pb, &tag); if (size < 0) return size; filesize -= size + 8; switch (tag) { case MKTAG('C', 'O', 'M', 'M'): /* Common chunk */ /* Then for the complete header info */ st->nb_frames = get_aiff_header (pb, st->codec, size, version); if (st->nb_frames < 0) return st->nb_frames; if (offset > 0) // COMM is after SSND goto got_sound; break; case MKTAG('F', 'V', 'E', 'R'): /* Version chunk */ version = get_be32(pb); break; case MKTAG('N', 'A', 'M', 'E'): /* Sample name chunk */ get_meta (pb, s->title, sizeof(s->title), size); break; case MKTAG('A', 'U', 'T', 'H'): /* Author chunk */ get_meta (pb, s->author, sizeof(s->author), size); break; case MKTAG('(', 'c', ')', ' '): /* Copyright chunk */ get_meta (pb, s->copyright, sizeof(s->copyright), size); break; case MKTAG('A', 'N', 'N', 'O'): /* Annotation chunk */ get_meta (pb, s->comment, sizeof(s->comment), size); break; case MKTAG('S', 'S', 'N', 'D'): /* Sampled sound chunk */ offset = get_be32(pb); /* Offset of sound data */ get_be32(pb); /* BlockSize... don't care */ offset += url_ftell(pb); /* Compute absolute data offset */ if (st->codec->codec_id) /* Assume COMM already parsed */ goto got_sound; if (url_is_streamed(pb)) { av_log(s, AV_LOG_ERROR, "file is not seekable\n"); } url_fskip(pb, size - 8); break; case MKTAG('w', 'a', 'v', 'e'): st->codec->extradata = av_mallocz(size + FF_INPUT_BUFFER_PADDING_SIZE); if (!st->codec->extradata) return AVERROR(ENOMEM); st->codec->extradata_size = size; get_buffer(pb, st->codec->extradata, size); break; default: /* Jump */ if (size & 1) /* Always even aligned */ size++; url_fskip (pb, size); } } /* End of loop and didn't get sound */ return AVERROR_INVALIDDATA; got_sound: /* Now positioned, get the sound data start and end */ if (st->nb_frames) s->file_size = st->nb_frames * st->codec->block_align; av_set_pts_info(st, 64, 1, st->codec->sample_rate); st->start_time = 0; st->duration = st->codec->frame_size ? st->nb_frames * st->codec->frame_size : st->nb_frames; /* Position the stream at the first block */ url_fseek(pb, offset, SEEK_SET); return 0; }
16,353
1
static int start_frame_overlay(AVFilterLink *inlink, AVFilterBufferRef *inpicref) { AVFilterContext *ctx = inlink->dst; OverlayContext *over = ctx->priv; inlink->cur_buf = NULL; over->overpicref = inpicref; over->overpicref->pts = av_rescale_q(inpicref->pts, ctx->inputs[OVERLAY]->time_base, ctx->outputs[0]->time_base); return 0; }
16,354
1
int bdrv_file_open(BlockDriverState **pbs, const char *filename, QDict *options, int flags, Error **errp) { BlockDriverState *bs; BlockDriver *drv; const char *drvname; bool allow_protocol_prefix = false; Error *local_err = NULL; int ret; /* NULL means an empty set of options */ if (options == NULL) { options = qdict_new(); } bs = bdrv_new(""); bs->options = options; options = qdict_clone_shallow(options); /* Fetch the file name from the options QDict if necessary */ if (!filename) { filename = qdict_get_try_str(options, "filename"); } else if (filename && !qdict_haskey(options, "filename")) { qdict_put(options, "filename", qstring_from_str(filename)); allow_protocol_prefix = true; } else { error_setg(errp, "Can't specify 'file' and 'filename' options at the " "same time"); ret = -EINVAL; goto fail; } /* Find the right block driver */ drvname = qdict_get_try_str(options, "driver"); if (drvname) { drv = bdrv_find_whitelisted_format(drvname, !(flags & BDRV_O_RDWR)); if (!drv) { error_setg(errp, "Unknown driver '%s'", drvname); } qdict_del(options, "driver"); } else if (filename) { drv = bdrv_find_protocol(filename, allow_protocol_prefix); if (!drv) { error_setg(errp, "Unknown protocol"); } } else { error_setg(errp, "Must specify either driver or file"); drv = NULL; } if (!drv) { /* errp has been set already */ ret = -ENOENT; goto fail; } /* Parse the filename and open it */ if (drv->bdrv_parse_filename && filename) { drv->bdrv_parse_filename(filename, options, &local_err); if (error_is_set(&local_err)) { error_propagate(errp, local_err); ret = -EINVAL; goto fail; } qdict_del(options, "filename"); } else if (drv->bdrv_needs_filename && !filename) { error_setg(errp, "The '%s' block driver requires a file name", drv->format_name); ret = -EINVAL; goto fail; } ret = bdrv_open_common(bs, NULL, options, flags, drv, &local_err); if (ret < 0) { error_propagate(errp, local_err); goto fail; } /* Check if any unknown options were used */ if (qdict_size(options) != 0) { const QDictEntry *entry = qdict_first(options); error_setg(errp, "Block protocol '%s' doesn't support the option '%s'", drv->format_name, entry->key); ret = -EINVAL; goto fail; } QDECREF(options); bs->growable = 1; *pbs = bs; return 0; fail: QDECREF(options); if (!bs->drv) { QDECREF(bs->options); } bdrv_unref(bs); return ret; }
16,355
1
ser_write(void *opaque, hwaddr addr, uint64_t val64, unsigned int size) { ETRAXSerial *s = opaque; uint32_t value = val64; unsigned char ch = val64; D(qemu_log("%s " TARGET_FMT_plx "=%x\n", __func__, addr, value)); addr >>= 2; switch (addr) { case RW_DOUT: qemu_chr_fe_write(s->chr, &ch, 1); s->regs[R_INTR] |= 3; s->pending_tx = 1; s->regs[addr] = value; break; case RW_ACK_INTR: if (s->pending_tx) { value &= ~1; s->pending_tx = 0; D(qemu_log("fixedup value=%x r_intr=%x\n", value, s->regs[R_INTR])); } s->regs[addr] = value; s->regs[R_INTR] &= ~value; D(printf("r_intr=%x\n", s->regs[R_INTR])); break; default: s->regs[addr] = value; break; } ser_update_irq(s); }
16,356
1
static av_cold int X264_init(AVCodecContext *avctx) { X264Context *x4 = avctx->priv_data; int sw,sh; if (avctx->global_quality > 0) av_log(avctx, AV_LOG_WARNING, "-qscale is ignored, -crf is recommended.\n"); x264_param_default(&x4->params); x4->params.b_deblocking_filter = avctx->flags & CODEC_FLAG_LOOP_FILTER; if (x4->preset || x4->tune) if (x264_param_default_preset(&x4->params, x4->preset, x4->tune) < 0) { int i; av_log(avctx, AV_LOG_ERROR, "Error setting preset/tune %s/%s.\n", x4->preset, x4->tune); av_log(avctx, AV_LOG_INFO, "Possible presets:"); for (i = 0; x264_preset_names[i]; i++) av_log(avctx, AV_LOG_INFO, " %s", x264_preset_names[i]); av_log(avctx, AV_LOG_INFO, "\n"); av_log(avctx, AV_LOG_INFO, "Possible tunes:"); for (i = 0; x264_tune_names[i]; i++) av_log(avctx, AV_LOG_INFO, " %s", x264_tune_names[i]); av_log(avctx, AV_LOG_INFO, "\n"); return AVERROR(EINVAL); } if (avctx->level > 0) x4->params.i_level_idc = avctx->level; x4->params.pf_log = X264_log; x4->params.p_log_private = avctx; x4->params.i_log_level = X264_LOG_DEBUG; x4->params.i_csp = convert_pix_fmt(avctx->pix_fmt); OPT_STR("weightp", x4->wpredp); if (avctx->bit_rate) { x4->params.rc.i_bitrate = avctx->bit_rate / 1000; x4->params.rc.i_rc_method = X264_RC_ABR; } x4->params.rc.i_vbv_buffer_size = avctx->rc_buffer_size / 1000; x4->params.rc.i_vbv_max_bitrate = avctx->rc_max_rate / 1000; x4->params.rc.b_stat_write = avctx->flags & CODEC_FLAG_PASS1; if (avctx->flags & CODEC_FLAG_PASS2) { x4->params.rc.b_stat_read = 1; } else { if (x4->crf >= 0) { x4->params.rc.i_rc_method = X264_RC_CRF; x4->params.rc.f_rf_constant = x4->crf; } else if (x4->cqp >= 0) { x4->params.rc.i_rc_method = X264_RC_CQP; x4->params.rc.i_qp_constant = x4->cqp; } if (x4->crf_max >= 0) x4->params.rc.f_rf_constant_max = x4->crf_max; } if (avctx->rc_buffer_size && avctx->rc_initial_buffer_occupancy > 0 && (avctx->rc_initial_buffer_occupancy <= avctx->rc_buffer_size)) { x4->params.rc.f_vbv_buffer_init = (float)avctx->rc_initial_buffer_occupancy / avctx->rc_buffer_size; } OPT_STR("level", x4->level); if (avctx->i_quant_factor > 0) x4->params.rc.f_ip_factor = 1 / fabs(avctx->i_quant_factor); if (avctx->b_quant_factor > 0) x4->params.rc.f_pb_factor = avctx->b_quant_factor; if (avctx->chromaoffset) x4->params.analyse.i_chroma_qp_offset = avctx->chromaoffset; if (avctx->me_method == ME_EPZS) x4->params.analyse.i_me_method = X264_ME_DIA; else if (avctx->me_method == ME_HEX) x4->params.analyse.i_me_method = X264_ME_HEX; else if (avctx->me_method == ME_UMH) x4->params.analyse.i_me_method = X264_ME_UMH; else if (avctx->me_method == ME_FULL) x4->params.analyse.i_me_method = X264_ME_ESA; else if (avctx->me_method == ME_TESA) x4->params.analyse.i_me_method = X264_ME_TESA; if (avctx->gop_size >= 0) x4->params.i_keyint_max = avctx->gop_size; if (avctx->max_b_frames >= 0) x4->params.i_bframe = avctx->max_b_frames; if (avctx->scenechange_threshold >= 0) x4->params.i_scenecut_threshold = avctx->scenechange_threshold; if (avctx->qmin >= 0) x4->params.rc.i_qp_min = avctx->qmin; if (avctx->qmax >= 0) x4->params.rc.i_qp_max = avctx->qmax; if (avctx->max_qdiff >= 0) x4->params.rc.i_qp_step = avctx->max_qdiff; if (avctx->qblur >= 0) x4->params.rc.f_qblur = avctx->qblur; /* temporally blur quants */ if (avctx->qcompress >= 0) x4->params.rc.f_qcompress = avctx->qcompress; /* 0.0 => cbr, 1.0 => constant qp */ if (avctx->refs >= 0) x4->params.i_frame_reference = avctx->refs; else if (x4->level) { int i; int mbn = FF_CEIL_RSHIFT(avctx->width, 4) * FF_CEIL_RSHIFT(avctx->height, 4); int level_id = -1; char *tail; int scale = X264_BUILD < 129 ? 384 : 1; if (!strcmp(x4->level, "1b")) { level_id = 9; } else if (strlen(x4->level) <= 3){ level_id = av_strtod(x4->level, &tail) * 10 + 0.5; if (*tail) level_id = -1; } if (level_id <= 0) av_log(avctx, AV_LOG_WARNING, "Failed to parse level\n"); for (i = 0; i<x264_levels[i].level_idc; i++) if (x264_levels[i].level_idc == level_id) x4->params.i_frame_reference = av_clip(x264_levels[i].dpb / mbn / scale, 1, x4->params.i_frame_reference); } if (avctx->trellis >= 0) x4->params.analyse.i_trellis = avctx->trellis; if (avctx->me_range >= 0) x4->params.analyse.i_me_range = avctx->me_range; if (avctx->noise_reduction >= 0) x4->params.analyse.i_noise_reduction = avctx->noise_reduction; if (avctx->me_subpel_quality >= 0) x4->params.analyse.i_subpel_refine = avctx->me_subpel_quality; if (avctx->b_frame_strategy >= 0) x4->params.i_bframe_adaptive = avctx->b_frame_strategy; if (avctx->keyint_min >= 0) x4->params.i_keyint_min = avctx->keyint_min; if (avctx->coder_type >= 0) x4->params.b_cabac = avctx->coder_type == FF_CODER_TYPE_AC; if (avctx->me_cmp >= 0) x4->params.analyse.b_chroma_me = avctx->me_cmp & FF_CMP_CHROMA; if (x4->aq_mode >= 0) x4->params.rc.i_aq_mode = x4->aq_mode; if (x4->aq_strength >= 0) x4->params.rc.f_aq_strength = x4->aq_strength; PARSE_X264_OPT("psy-rd", psy_rd); PARSE_X264_OPT("deblock", deblock); PARSE_X264_OPT("partitions", partitions); PARSE_X264_OPT("stats", stats); if (x4->psy >= 0) x4->params.analyse.b_psy = x4->psy; if (x4->rc_lookahead >= 0) x4->params.rc.i_lookahead = x4->rc_lookahead; if (x4->weightp >= 0) x4->params.analyse.i_weighted_pred = x4->weightp; if (x4->weightb >= 0) x4->params.analyse.b_weighted_bipred = x4->weightb; if (x4->cplxblur >= 0) x4->params.rc.f_complexity_blur = x4->cplxblur; if (x4->ssim >= 0) x4->params.analyse.b_ssim = x4->ssim; if (x4->intra_refresh >= 0) x4->params.b_intra_refresh = x4->intra_refresh; if (x4->bluray_compat >= 0) { x4->params.b_bluray_compat = x4->bluray_compat; x4->params.b_vfr_input = 0; } if (x4->avcintra_class >= 0) #if X264_BUILD >= 142 x4->params.i_avcintra_class = x4->avcintra_class; #else av_log(avctx, AV_LOG_ERROR, "x264 too old for AVC Intra, at least version 142 needed\n"); #endif if (x4->b_bias != INT_MIN) x4->params.i_bframe_bias = x4->b_bias; if (x4->b_pyramid >= 0) x4->params.i_bframe_pyramid = x4->b_pyramid; if (x4->mixed_refs >= 0) x4->params.analyse.b_mixed_references = x4->mixed_refs; if (x4->dct8x8 >= 0) x4->params.analyse.b_transform_8x8 = x4->dct8x8; if (x4->fast_pskip >= 0) x4->params.analyse.b_fast_pskip = x4->fast_pskip; if (x4->aud >= 0) x4->params.b_aud = x4->aud; if (x4->mbtree >= 0) x4->params.rc.b_mb_tree = x4->mbtree; if (x4->direct_pred >= 0) x4->params.analyse.i_direct_mv_pred = x4->direct_pred; if (x4->slice_max_size >= 0) x4->params.i_slice_max_size = x4->slice_max_size; else { /* * Allow x264 to be instructed through AVCodecContext about the maximum * size of the RTP payload. For example, this enables the production of * payload suitable for the H.264 RTP packetization-mode 0 i.e. single * NAL unit per RTP packet. */ if (avctx->rtp_payload_size) x4->params.i_slice_max_size = avctx->rtp_payload_size; } if (x4->fastfirstpass) x264_param_apply_fastfirstpass(&x4->params); /* Allow specifying the x264 profile through AVCodecContext. */ if (!x4->profile) switch (avctx->profile) { case FF_PROFILE_H264_BASELINE: x4->profile = av_strdup("baseline"); break; case FF_PROFILE_H264_HIGH: x4->profile = av_strdup("high"); break; case FF_PROFILE_H264_HIGH_10: x4->profile = av_strdup("high10"); break; case FF_PROFILE_H264_HIGH_422: x4->profile = av_strdup("high422"); break; case FF_PROFILE_H264_HIGH_444: x4->profile = av_strdup("high444"); break; case FF_PROFILE_H264_MAIN: x4->profile = av_strdup("main"); break; default: break; } if (x4->nal_hrd >= 0) x4->params.i_nal_hrd = x4->nal_hrd; if (x4->profile) if (x264_param_apply_profile(&x4->params, x4->profile) < 0) { int i; av_log(avctx, AV_LOG_ERROR, "Error setting profile %s.\n", x4->profile); av_log(avctx, AV_LOG_INFO, "Possible profiles:"); for (i = 0; x264_profile_names[i]; i++) av_log(avctx, AV_LOG_INFO, " %s", x264_profile_names[i]); av_log(avctx, AV_LOG_INFO, "\n"); return AVERROR(EINVAL); } x4->params.i_width = avctx->width; x4->params.i_height = avctx->height; av_reduce(&sw, &sh, avctx->sample_aspect_ratio.num, avctx->sample_aspect_ratio.den, 4096); x4->params.vui.i_sar_width = sw; x4->params.vui.i_sar_height = sh; x4->params.i_timebase_den = avctx->time_base.den; x4->params.i_timebase_num = avctx->time_base.num; x4->params.i_fps_num = avctx->time_base.den; x4->params.i_fps_den = avctx->time_base.num * avctx->ticks_per_frame; x4->params.analyse.b_psnr = avctx->flags & CODEC_FLAG_PSNR; x4->params.i_threads = avctx->thread_count; if (avctx->thread_type) x4->params.b_sliced_threads = avctx->thread_type == FF_THREAD_SLICE; x4->params.b_interlaced = avctx->flags & CODEC_FLAG_INTERLACED_DCT; x4->params.b_open_gop = !(avctx->flags & CODEC_FLAG_CLOSED_GOP); x4->params.i_slice_count = avctx->slices; x4->params.vui.b_fullrange = avctx->pix_fmt == AV_PIX_FMT_YUVJ420P || avctx->pix_fmt == AV_PIX_FMT_YUVJ422P || avctx->pix_fmt == AV_PIX_FMT_YUVJ444P || avctx->color_range == AVCOL_RANGE_JPEG; if (avctx->colorspace != AVCOL_SPC_UNSPECIFIED) x4->params.vui.i_colmatrix = avctx->colorspace; if (avctx->color_primaries != AVCOL_PRI_UNSPECIFIED) x4->params.vui.i_colorprim = avctx->color_primaries; if (avctx->color_trc != AVCOL_TRC_UNSPECIFIED) x4->params.vui.i_transfer = avctx->color_trc; if (avctx->flags & CODEC_FLAG_GLOBAL_HEADER) x4->params.b_repeat_headers = 0; if(x4->x264opts){ const char *p= x4->x264opts; while(p){ char param[256]={0}, val[256]={0}; if(sscanf(p, "%255[^:=]=%255[^:]", param, val) == 1){ OPT_STR(param, "1"); }else OPT_STR(param, val); p= strchr(p, ':'); p+=!!p; } } if (x4->x264_params) { AVDictionary *dict = NULL; AVDictionaryEntry *en = NULL; if (!av_dict_parse_string(&dict, x4->x264_params, "=", ":", 0)) { while ((en = av_dict_get(dict, "", en, AV_DICT_IGNORE_SUFFIX))) { if (x264_param_parse(&x4->params, en->key, en->value) < 0) av_log(avctx, AV_LOG_WARNING, "Error parsing option '%s = %s'.\n", en->key, en->value); } av_dict_free(&dict); } } // update AVCodecContext with x264 parameters avctx->has_b_frames = x4->params.i_bframe ? x4->params.i_bframe_pyramid ? 2 : 1 : 0; if (avctx->max_b_frames < 0) avctx->max_b_frames = 0; avctx->bit_rate = x4->params.rc.i_bitrate*1000; x4->enc = x264_encoder_open(&x4->params); if (!x4->enc) return -1; avctx->coded_frame = av_frame_alloc(); if (!avctx->coded_frame) return AVERROR(ENOMEM); if (avctx->flags & CODEC_FLAG_GLOBAL_HEADER) { x264_nal_t *nal; uint8_t *p; int nnal, s, i; s = x264_encoder_headers(x4->enc, &nal, &nnal); avctx->extradata = p = av_malloc(s); for (i = 0; i < nnal; i++) { /* Don't put the SEI in extradata. */ if (nal[i].i_type == NAL_SEI) { av_log(avctx, AV_LOG_INFO, "%s\n", nal[i].p_payload+25); x4->sei_size = nal[i].i_payload; x4->sei = av_malloc(x4->sei_size); if (!x4->sei) memcpy(x4->sei, nal[i].p_payload, nal[i].i_payload); continue; } memcpy(p, nal[i].p_payload, nal[i].i_payload); p += nal[i].i_payload; } avctx->extradata_size = p - avctx->extradata; } return 0; nomem: X264_close(avctx); return AVERROR(ENOMEM); }
16,357
1
int vhost_dev_init(struct vhost_dev *hdev, void *opaque, VhostBackendType backend_type) { uint64_t features; int i, r; if (vhost_set_backend_type(hdev, backend_type) < 0) { if (hdev->vhost_ops->vhost_backend_init(hdev, opaque) < 0) { return -errno; QLIST_INSERT_HEAD(&vhost_devices, hdev, entry); r = hdev->vhost_ops->vhost_call(hdev, VHOST_SET_OWNER, NULL); if (r < 0) { goto fail; r = hdev->vhost_ops->vhost_call(hdev, VHOST_GET_FEATURES, &features); if (r < 0) { goto fail; for (i = 0; i < hdev->nvqs; ++i) { r = vhost_virtqueue_init(hdev, hdev->vqs + i, hdev->vq_index + i); if (r < 0) { goto fail_vq; hdev->features = features; hdev->memory_listener = (MemoryListener) { .begin = vhost_begin, .commit = vhost_commit, .region_add = vhost_region_add, .region_del = vhost_region_del, .region_nop = vhost_region_nop, .log_start = vhost_log_start, .log_stop = vhost_log_stop, .log_sync = vhost_log_sync, .log_global_start = vhost_log_global_start, .log_global_stop = vhost_log_global_stop, .eventfd_add = vhost_eventfd_add, .eventfd_del = vhost_eventfd_del, .priority = 10 }; hdev->migration_blocker = NULL; if (!(hdev->features & (0x1ULL << VHOST_F_LOG_ALL))) { error_setg(&hdev->migration_blocker, "Migration disabled: vhost lacks VHOST_F_LOG_ALL feature."); migrate_add_blocker(hdev->migration_blocker); hdev->mem = g_malloc0(offsetof(struct vhost_memory, regions)); hdev->n_mem_sections = 0; hdev->mem_sections = NULL; hdev->log = NULL; hdev->log_size = 0; hdev->log_enabled = false; hdev->started = false; hdev->memory_changed = false; memory_listener_register(&hdev->memory_listener, &address_space_memory); return 0; fail_vq: while (--i >= 0) { vhost_virtqueue_cleanup(hdev->vqs + i); fail: r = -errno; hdev->vhost_ops->vhost_backend_cleanup(hdev); QLIST_REMOVE(hdev, entry); return r;
16,359
1
static int vnc_display_disable_login(DisplayState *ds) { VncDisplay *vs = ds ? (VncDisplay *)ds->opaque : vnc_display; if (!vs) { return -1; } if (vs->password) { g_free(vs->password); } vs->password = NULL; if (vs->auth == VNC_AUTH_NONE) { vs->auth = VNC_AUTH_VNC; } return 0; }
16,362
1
static int vfio_connect_container(VFIOGroup *group) { VFIOContainer *container; int ret, fd; if (group->container) { return 0; } QLIST_FOREACH(container, &container_list, next) { if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; } } fd = qemu_open("/dev/vfio/vfio", O_RDWR); if (fd < 0) { error_report("vfio: failed to open /dev/vfio/vfio: %m"); return -errno; } ret = ioctl(fd, VFIO_GET_API_VERSION); if (ret != VFIO_API_VERSION) { error_report("vfio: supported vfio version: %d, " "reported version: %d", VFIO_API_VERSION, ret); ret = -EINVAL; goto close_fd_exit; } container = g_malloc0(sizeof(*container)); container->fd = fd; if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU)) { ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); if (ret) { error_report("vfio: failed to set group container: %m"); ret = -errno; goto free_container_exit; } ret = ioctl(fd, VFIO_SET_IOMMU, VFIO_TYPE1_IOMMU); if (ret) { error_report("vfio: failed to set iommu for container: %m"); ret = -errno; goto free_container_exit; } container->iommu_data.type1.listener = vfio_memory_listener; container->iommu_data.release = vfio_listener_release; memory_listener_register(&container->iommu_data.type1.listener, &address_space_memory); if (container->iommu_data.type1.error) { ret = container->iommu_data.type1.error; error_report("vfio: memory listener initialization failed for container"); goto listener_release_exit; } container->iommu_data.type1.initialized = true; } else { error_report("vfio: No available IOMMU models"); ret = -EINVAL; goto free_container_exit; } QLIST_INIT(&container->group_list); QLIST_INSERT_HEAD(&container_list, container, next); group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; listener_release_exit: vfio_listener_release(container); free_container_exit: g_free(container); close_fd_exit: close(fd); return ret; }
16,363
1
static void v9fs_fsync(void *opaque) { int err; int32_t fid; int datasync; size_t offset = 7; V9fsFidState *fidp; V9fsPDU *pdu = opaque; V9fsState *s = pdu->s; pdu_unmarshal(pdu, offset, "dd", &fid, &datasync); fidp = get_fid(pdu, fid); if (fidp == NULL) { err = -ENOENT; goto out_nofid; } err = v9fs_co_fsync(pdu, fidp, datasync); if (!err) { err = offset; } put_fid(pdu, fidp); out_nofid: complete_pdu(s, pdu, err); }
16,364
1
static float quantize_and_encode_band_cost(struct AACEncContext *s, PutBitContext *pb, const float *in, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits) { const float IQ = ff_aac_pow2sf_tab[200 + scale_idx - SCALE_ONE_POS + SCALE_DIV_512]; const float Q = ff_aac_pow2sf_tab[200 - scale_idx + SCALE_ONE_POS - SCALE_DIV_512]; const float CLIPPED_ESCAPE = 165140.0f*IQ; int i, j, k; float cost = 0; const int dim = cb < FIRST_PAIR_BT ? 4 : 2; int resbits = 0; #ifndef USE_REALLY_FULL_SEARCH const float Q34 = sqrtf(Q * sqrtf(Q)); const int range = aac_cb_range[cb]; const int maxval = aac_cb_maxval[cb]; int offs[4]; #endif /* USE_REALLY_FULL_SEARCH */ if (!cb) { for (i = 0; i < size; i++) cost += in[i]*in[i]; if (bits) *bits = 0; return cost * lambda; } #ifndef USE_REALLY_FULL_SEARCH offs[0] = 1; for (i = 1; i < dim; i++) offs[i] = offs[i-1]*range; if (!scaled) { abs_pow34_v(s->scoefs, in, size); scaled = s->scoefs; } quantize_bands(s->qcoefs, in, scaled, size, Q34, !IS_CODEBOOK_UNSIGNED(cb), maxval); #endif /* USE_REALLY_FULL_SEARCH */ for (i = 0; i < size; i += dim) { float mincost; int minidx = 0; int minbits = 0; const float *vec; #ifndef USE_REALLY_FULL_SEARCH int (*quants)[2] = &s->qcoefs[i]; mincost = 0.0f; for (j = 0; j < dim; j++) mincost += in[i+j]*in[i+j]; minidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; minbits = ff_aac_spectral_bits[cb-1][minidx]; mincost = mincost * lambda + minbits; for (j = 0; j < (1<<dim); j++) { float rd = 0.0f; int curbits; int curidx = IS_CODEBOOK_UNSIGNED(cb) ? 0 : 40; int same = 0; for (k = 0; k < dim; k++) { if ((j & (1 << k)) && quants[k][0] == quants[k][1]) { same = 1; break; } } if (same) continue; for (k = 0; k < dim; k++) curidx += quants[k][!!(j & (1 << k))] * offs[dim - 1 - k]; curbits = ff_aac_spectral_bits[cb-1][curidx]; vec = &ff_aac_codebook_vectors[cb-1][curidx*dim]; #else mincost = INFINITY; vec = ff_aac_codebook_vectors[cb-1]; for (j = 0; j < ff_aac_spectral_sizes[cb-1]; j++, vec += dim) { float rd = 0.0f; int curbits = ff_aac_spectral_bits[cb-1][j]; int curidx = j; #endif /* USE_REALLY_FULL_SEARCH */ if (IS_CODEBOOK_UNSIGNED(cb)) { for (k = 0; k < dim; k++) { float t = fabsf(in[i+k]); float di; if (vec[k] == 64.0f) { //FIXME: slow //do not code with escape sequence small values if (t < 39.0f*IQ) { rd = INFINITY; break; } if (t >= CLIPPED_ESCAPE) { di = t - CLIPPED_ESCAPE; curbits += 21; } else { int c = av_clip(quant(t, Q), 0, 8191); di = t - c*cbrtf(c)*IQ; curbits += av_log2(c)*2 - 4 + 1; } } else { di = t - vec[k]*IQ; } if (vec[k] != 0.0f) curbits++; rd += di*di; } } else { for (k = 0; k < dim; k++) { float di = in[i+k] - vec[k]*IQ; rd += di*di; } } rd = rd * lambda + curbits; if (rd < mincost) { mincost = rd; minidx = curidx; minbits = curbits; } } cost += mincost; resbits += minbits; if (cost >= uplim) return uplim; if (pb) { put_bits(pb, ff_aac_spectral_bits[cb-1][minidx], ff_aac_spectral_codes[cb-1][minidx]); if (IS_CODEBOOK_UNSIGNED(cb)) for (j = 0; j < dim; j++) if (ff_aac_codebook_vectors[cb-1][minidx*dim+j] != 0.0f) put_bits(pb, 1, in[i+j] < 0.0f); if (cb == ESC_BT) { for (j = 0; j < 2; j++) { if (ff_aac_codebook_vectors[cb-1][minidx*2+j] == 64.0f) { int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191); int len = av_log2(coef); put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2); put_bits(pb, len, coef & ((1 << len) - 1)); } } } } } if (bits) *bits = resbits; return cost; }
16,366
1
static SocketAddress *nbd_config(BDRVNBDState *s, QDict *options, char **export, Error **errp) { SocketAddress *saddr; if (qdict_haskey(options, "path") == qdict_haskey(options, "host")) { if (qdict_haskey(options, "path")) { error_setg(errp, "path and host may not be used at the same time."); } else { error_setg(errp, "one of path and host must be specified."); } return NULL; } saddr = g_new0(SocketAddress, 1); if (qdict_haskey(options, "path")) { UnixSocketAddress *q_unix; saddr->type = SOCKET_ADDRESS_KIND_UNIX; q_unix = saddr->u.q_unix.data = g_new0(UnixSocketAddress, 1); q_unix->path = g_strdup(qdict_get_str(options, "path")); qdict_del(options, "path"); } else { InetSocketAddress *inet; saddr->type = SOCKET_ADDRESS_KIND_INET; inet = saddr->u.inet.data = g_new0(InetSocketAddress, 1); inet->host = g_strdup(qdict_get_str(options, "host")); if (!qdict_get_try_str(options, "port")) { inet->port = g_strdup_printf("%d", NBD_DEFAULT_PORT); } else { inet->port = g_strdup(qdict_get_str(options, "port")); } qdict_del(options, "host"); qdict_del(options, "port"); } s->client.is_unix = saddr->type == SOCKET_ADDRESS_KIND_UNIX; *export = g_strdup(qdict_get_try_str(options, "export")); if (*export) { qdict_del(options, "export"); } return saddr; }
16,367
1
static void init_excp_602 (CPUPPCState *env) { #if !defined(CONFIG_USER_ONLY) env->excp_vectors[POWERPC_EXCP_RESET] = 0x00000100; env->excp_vectors[POWERPC_EXCP_MCHECK] = 0x00000200; env->excp_vectors[POWERPC_EXCP_DSI] = 0x00000300; env->excp_vectors[POWERPC_EXCP_ISI] = 0x00000400; env->excp_vectors[POWERPC_EXCP_EXTERNAL] = 0x00000500; env->excp_vectors[POWERPC_EXCP_ALIGN] = 0x00000600; env->excp_vectors[POWERPC_EXCP_PROGRAM] = 0x00000700; env->excp_vectors[POWERPC_EXCP_FPU] = 0x00000800; env->excp_vectors[POWERPC_EXCP_DECR] = 0x00000900; env->excp_vectors[POWERPC_EXCP_SYSCALL] = 0x00000C00; env->excp_vectors[POWERPC_EXCP_TRACE] = 0x00000D00; env->excp_vectors[POWERPC_EXCP_FPA] = 0x00000E00; env->excp_vectors[POWERPC_EXCP_IFTLB] = 0x00001000; env->excp_vectors[POWERPC_EXCP_DLTLB] = 0x00001100; env->excp_vectors[POWERPC_EXCP_DSTLB] = 0x00001200; env->excp_vectors[POWERPC_EXCP_IABR] = 0x00001300; env->excp_vectors[POWERPC_EXCP_SMI] = 0x00001400; env->excp_vectors[POWERPC_EXCP_WDT] = 0x00001500; env->excp_vectors[POWERPC_EXCP_EMUL] = 0x00001600; env->excp_prefix = 0xFFF00000; /* Hardware reset vector */ env->hreset_vector = 0xFFFFFFFCUL; #endif }
16,368
1
int qcow2_check_refcounts(BlockDriverState *bs, BdrvCheckResult *res, BdrvCheckMode fix) { BDRVQcowState *s = bs->opaque; int64_t size, i, highest_cluster, nb_clusters; int refcount1, refcount2; QCowSnapshot *sn; uint16_t *refcount_table; int ret; size = bdrv_getlength(bs->file); if (size < 0) { res->check_errors++; return size; } nb_clusters = size_to_clusters(s, size); if (nb_clusters > INT_MAX) { res->check_errors++; return -EFBIG; } refcount_table = g_malloc0(nb_clusters * sizeof(uint16_t)); res->bfi.total_clusters = size_to_clusters(s, bs->total_sectors * BDRV_SECTOR_SIZE); /* header */ inc_refcounts(bs, res, refcount_table, nb_clusters, 0, s->cluster_size); /* current L1 table */ ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, s->l1_table_offset, s->l1_size, CHECK_FRAG_INFO); if (ret < 0) { goto fail; } /* snapshots */ for(i = 0; i < s->nb_snapshots; i++) { sn = s->snapshots + i; ret = check_refcounts_l1(bs, res, refcount_table, nb_clusters, sn->l1_table_offset, sn->l1_size, 0); if (ret < 0) { goto fail; } } inc_refcounts(bs, res, refcount_table, nb_clusters, s->snapshots_offset, s->snapshots_size); /* refcount data */ inc_refcounts(bs, res, refcount_table, nb_clusters, s->refcount_table_offset, s->refcount_table_size * sizeof(uint64_t)); for(i = 0; i < s->refcount_table_size; i++) { uint64_t offset, cluster; offset = s->refcount_table[i]; cluster = offset >> s->cluster_bits; /* Refcount blocks are cluster aligned */ if (offset_into_cluster(s, offset)) { fprintf(stderr, "ERROR refcount block %" PRId64 " is not " "cluster aligned; refcount table entry corrupted\n", i); res->corruptions++; continue; } if (cluster >= nb_clusters) { fprintf(stderr, "ERROR refcount block %" PRId64 " is outside image\n", i); res->corruptions++; continue; } if (offset != 0) { inc_refcounts(bs, res, refcount_table, nb_clusters, offset, s->cluster_size); if (refcount_table[cluster] != 1) { fprintf(stderr, "%s refcount block %" PRId64 " refcount=%d\n", fix & BDRV_FIX_ERRORS ? "Repairing" : "ERROR", i, refcount_table[cluster]); if (fix & BDRV_FIX_ERRORS) { int64_t new_offset; new_offset = realloc_refcount_block(bs, i, offset); if (new_offset < 0) { res->corruptions++; continue; } /* update refcounts */ if ((new_offset >> s->cluster_bits) >= nb_clusters) { /* increase refcount_table size if necessary */ int old_nb_clusters = nb_clusters; nb_clusters = (new_offset >> s->cluster_bits) + 1; refcount_table = g_realloc(refcount_table, nb_clusters * sizeof(uint16_t)); memset(&refcount_table[old_nb_clusters], 0, (nb_clusters - old_nb_clusters) * sizeof(uint16_t)); } refcount_table[cluster]--; inc_refcounts(bs, res, refcount_table, nb_clusters, new_offset, s->cluster_size); res->corruptions_fixed++; } else { res->corruptions++; } } } } /* compare ref counts */ for (i = 0, highest_cluster = 0; i < nb_clusters; i++) { refcount1 = get_refcount(bs, i); if (refcount1 < 0) { fprintf(stderr, "Can't get refcount for cluster %" PRId64 ": %s\n", i, strerror(-refcount1)); res->check_errors++; continue; } refcount2 = refcount_table[i]; if (refcount1 > 0 || refcount2 > 0) { highest_cluster = i; } if (refcount1 != refcount2) { /* Check if we're allowed to fix the mismatch */ int *num_fixed = NULL; if (refcount1 > refcount2 && (fix & BDRV_FIX_LEAKS)) { num_fixed = &res->leaks_fixed; } else if (refcount1 < refcount2 && (fix & BDRV_FIX_ERRORS)) { num_fixed = &res->corruptions_fixed; } fprintf(stderr, "%s cluster %" PRId64 " refcount=%d reference=%d\n", num_fixed != NULL ? "Repairing" : refcount1 < refcount2 ? "ERROR" : "Leaked", i, refcount1, refcount2); if (num_fixed) { ret = update_refcount(bs, i << s->cluster_bits, 1, refcount2 - refcount1, QCOW2_DISCARD_ALWAYS); if (ret >= 0) { (*num_fixed)++; continue; } } /* And if we couldn't, print an error */ if (refcount1 < refcount2) { res->corruptions++; } else { res->leaks++; } } } /* check OFLAG_COPIED */ ret = check_oflag_copied(bs, res, fix); if (ret < 0) { goto fail; } res->image_end_offset = (highest_cluster + 1) * s->cluster_size; ret = 0; fail: g_free(refcount_table); return ret; }
16,369
1
BlockDriverState *bdrv_find_backing_image(BlockDriverState *bs, const char *backing_file) { char *filename_full = NULL; char *backing_file_full = NULL; char *filename_tmp = NULL; int is_protocol = 0; BlockDriverState *curr_bs = NULL; BlockDriverState *retval = NULL; if (!bs || !bs->drv || !backing_file) { return NULL; } filename_full = g_malloc(PATH_MAX); backing_file_full = g_malloc(PATH_MAX); filename_tmp = g_malloc(PATH_MAX); is_protocol = path_has_protocol(backing_file); for (curr_bs = bs; curr_bs->backing; curr_bs = curr_bs->backing->bs) { /* If either of the filename paths is actually a protocol, then * compare unmodified paths; otherwise make paths relative */ if (is_protocol || path_has_protocol(curr_bs->backing_file)) { if (strcmp(backing_file, curr_bs->backing_file) == 0) { retval = curr_bs->backing->bs; break; } /* Also check against the full backing filename for the image */ bdrv_get_full_backing_filename(curr_bs, backing_file_full, PATH_MAX, &local_error); if (local_error == NULL) { if (strcmp(backing_file, backing_file_full) == 0) { retval = curr_bs->backing->bs; break; } } else { error_free(local_error); local_error = NULL; } } else { /* If not an absolute filename path, make it relative to the current * image's filename path */ path_combine(filename_tmp, PATH_MAX, curr_bs->filename, backing_file); /* We are going to compare absolute pathnames */ if (!realpath(filename_tmp, filename_full)) { continue; } /* We need to make sure the backing filename we are comparing against * is relative to the current image filename (or absolute) */ path_combine(filename_tmp, PATH_MAX, curr_bs->filename, curr_bs->backing_file); if (!realpath(filename_tmp, backing_file_full)) { continue; } if (strcmp(backing_file_full, filename_full) == 0) { retval = curr_bs->backing->bs; break; } } } g_free(filename_full); g_free(backing_file_full); g_free(filename_tmp); return retval; }
16,371
1
static void test_ivshmem_pair(void) { IVState state1, state2, *s1, *s2; char *data; int i; setup_vm(&state1); s1 = &state1; setup_vm(&state2); s2 = &state2; data = g_malloc0(TMPSHMSIZE); /* host write, guest 1 & 2 read */ memset(tmpshmem, 0x42, TMPSHMSIZE); qtest_memread(s1->qtest, (uintptr_t)s1->mem_base, data, TMPSHMSIZE); for (i = 0; i < TMPSHMSIZE; i++) { g_assert_cmpuint(data[i], ==, 0x42); } qtest_memread(s2->qtest, (uintptr_t)s2->mem_base, data, TMPSHMSIZE); for (i = 0; i < TMPSHMSIZE; i++) { g_assert_cmpuint(data[i], ==, 0x42); } /* guest 1 write, guest 2 read */ memset(data, 0x43, TMPSHMSIZE); qtest_memwrite(s1->qtest, (uintptr_t)s1->mem_base, data, TMPSHMSIZE); memset(data, 0, TMPSHMSIZE); qtest_memread(s2->qtest, (uintptr_t)s2->mem_base, data, TMPSHMSIZE); for (i = 0; i < TMPSHMSIZE; i++) { g_assert_cmpuint(data[i], ==, 0x43); } /* guest 2 write, guest 1 read */ memset(data, 0x44, TMPSHMSIZE); qtest_memwrite(s2->qtest, (uintptr_t)s2->mem_base, data, TMPSHMSIZE); memset(data, 0, TMPSHMSIZE); qtest_memread(s1->qtest, (uintptr_t)s2->mem_base, data, TMPSHMSIZE); for (i = 0; i < TMPSHMSIZE; i++) { g_assert_cmpuint(data[i], ==, 0x44); } qtest_quit(s1->qtest); qtest_quit(s2->qtest); g_free(data); }
16,372
1
int ff_h264_execute_decode_slices(H264Context *h, unsigned context_count) { AVCodecContext *const avctx = h->avctx; H264SliceContext *sl; int i; av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height); if (h->avctx->hwaccel || h->avctx->codec->capabilities & CODEC_CAP_HWACCEL_VDPAU) return 0; if (context_count == 1) { int ret = decode_slice(avctx, &h->slice_ctx[0]); h->mb_y = h->slice_ctx[0].mb_y; return ret; } else { av_assert0(context_count > 0); for (i = 1; i < context_count; i++) { sl = &h->slice_ctx[i]; if (CONFIG_ERROR_RESILIENCE) { sl->er.error_count = 0; } } avctx->execute(avctx, decode_slice, h->slice_ctx, NULL, context_count, sizeof(h->slice_ctx[0])); /* pull back stuff from slices to master context */ sl = &h->slice_ctx[context_count - 1]; h->mb_y = sl->mb_y; if (CONFIG_ERROR_RESILIENCE) { for (i = 1; i < context_count; i++) h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count; } } return 0; }
16,373
1
static void qdev_prop_set_globals_for_type(DeviceState *dev, const char *typename) { GList *l; for (l = global_props; l; l = l->next) { GlobalProperty *prop = l->data; Error *err = NULL; if (strcmp(typename, prop->driver) != 0) { continue; } prop->used = true; object_property_parse(OBJECT(dev), prop->value, prop->property, &err); if (err != NULL) { error_prepend(&err, "can't apply global %s.%s=%s: ", prop->driver, prop->property, prop->value); if (!dev->hotplugged && prop->errp) { error_propagate(prop->errp, err); } else { assert(prop->user_provided); warn_report_err(err); } } } }
16,374
1
static int lag_decode_frame(AVCodecContext *avctx, void *data, int *data_size, AVPacket *avpkt) { const uint8_t *buf = avpkt->data; int buf_size = avpkt->size; LagarithContext *l = avctx->priv_data; AVFrame *const p = &l->picture; uint8_t frametype = 0; uint32_t offset_gu = 0, offset_bv = 0, offset_ry = 9; uint32_t offs[4]; uint8_t *srcs[4], *dst; int i, j, planes = 3; AVFrame *picture = data; if (p->data[0]) avctx->release_buffer(avctx, p); p->reference = 0; p->key_frame = 1; frametype = buf[0]; offset_gu = AV_RL32(buf + 1); offset_bv = AV_RL32(buf + 5); switch (frametype) { case FRAME_SOLID_RGBA: avctx->pix_fmt = PIX_FMT_RGB32; if (avctx->get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } dst = p->data[0]; for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) AV_WN32(dst + i * 4, offset_gu); dst += p->linesize[0]; } break; case FRAME_ARITH_RGBA: avctx->pix_fmt = PIX_FMT_RGB32; planes = 4; offset_ry += 4; offs[3] = AV_RL32(buf + 9); case FRAME_ARITH_RGB24: case FRAME_U_RGB24: if (frametype == FRAME_ARITH_RGB24 || frametype == FRAME_U_RGB24) avctx->pix_fmt = PIX_FMT_RGB24; if (avctx->get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } offs[0] = offset_bv; offs[1] = offset_gu; offs[2] = offset_ry; if (!l->rgb_planes) { l->rgb_stride = FFALIGN(avctx->width, 16); l->rgb_planes = av_malloc(l->rgb_stride * avctx->height * planes); if (!l->rgb_planes) { av_log(avctx, AV_LOG_ERROR, "cannot allocate temporary buffer\n"); return AVERROR(ENOMEM); } } for (i = 0; i < planes; i++) srcs[i] = l->rgb_planes + (i + 1) * l->rgb_stride * avctx->height - l->rgb_stride; if (offset_ry >= buf_size || offset_gu >= buf_size || offset_bv >= buf_size || (planes == 4 && offs[3] >= buf_size)) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } for (i = 0; i < planes; i++) lag_decode_arith_plane(l, srcs[i], avctx->width, avctx->height, -l->rgb_stride, buf + offs[i], buf_size - offs[i]); dst = p->data[0]; for (i = 0; i < planes; i++) srcs[i] = l->rgb_planes + i * l->rgb_stride * avctx->height; for (j = 0; j < avctx->height; j++) { for (i = 0; i < avctx->width; i++) { uint8_t r, g, b, a; r = srcs[0][i]; g = srcs[1][i]; b = srcs[2][i]; r += g; b += g; if (frametype == FRAME_ARITH_RGBA) { a = srcs[3][i]; AV_WN32(dst + i * 4, MKBETAG(a, r, g, b)); } else { dst[i * 3 + 0] = r; dst[i * 3 + 1] = g; dst[i * 3 + 2] = b; } } dst += p->linesize[0]; for (i = 0; i < planes; i++) srcs[i] += l->rgb_stride; } break; case FRAME_ARITH_YUY2: avctx->pix_fmt = PIX_FMT_YUV422P; if (avctx->get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if (offset_ry >= buf_size || offset_gu >= buf_size || offset_bv >= buf_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, p->linesize[0], buf + offset_ry, buf_size - offset_ry); lag_decode_arith_plane(l, p->data[2], avctx->width / 2, avctx->height, p->linesize[2], buf + offset_gu, buf_size - offset_gu); lag_decode_arith_plane(l, p->data[1], avctx->width / 2, avctx->height, p->linesize[1], buf + offset_bv, buf_size - offset_bv); break; case FRAME_ARITH_YV12: avctx->pix_fmt = PIX_FMT_YUV420P; if (avctx->get_buffer(avctx, p) < 0) { av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n"); return -1; } if (offset_ry >= buf_size || offset_gu >= buf_size || offset_bv >= buf_size) { av_log(avctx, AV_LOG_ERROR, "Invalid frame offsets\n"); return AVERROR_INVALIDDATA; } lag_decode_arith_plane(l, p->data[0], avctx->width, avctx->height, p->linesize[0], buf + offset_ry, buf_size - offset_ry); lag_decode_arith_plane(l, p->data[2], avctx->width / 2, avctx->height / 2, p->linesize[2], buf + offset_gu, buf_size - offset_gu); lag_decode_arith_plane(l, p->data[1], avctx->width / 2, avctx->height / 2, p->linesize[1], buf + offset_bv, buf_size - offset_bv); break; default: av_log(avctx, AV_LOG_ERROR, "Unsupported Lagarith frame type: %#x\n", frametype); return -1; } *picture = *p; *data_size = sizeof(AVFrame); return buf_size; }
16,375
1
static int sd_parse_uri(BDRVSheepdogState *s, const char *filename, char *vdi, uint32_t *snapid, char *tag) { URI *uri; QueryParams *qp = NULL; int ret = 0; uri = uri_parse(filename); if (!uri) { return -EINVAL; } /* transport */ if (!strcmp(uri->scheme, "sheepdog")) { s->is_unix = false; } else if (!strcmp(uri->scheme, "sheepdog+tcp")) { s->is_unix = false; } else if (!strcmp(uri->scheme, "sheepdog+unix")) { s->is_unix = true; } else { ret = -EINVAL; goto out; } if (uri->path == NULL || !strcmp(uri->path, "/")) { ret = -EINVAL; goto out; } if (g_strlcpy(vdi, uri->path + 1, SD_MAX_VDI_LEN) >= SD_MAX_VDI_LEN) { ret = -EINVAL; goto out; } qp = query_params_parse(uri->query); if (qp->n > 1 || (s->is_unix && !qp->n) || (!s->is_unix && qp->n)) { ret = -EINVAL; goto out; } if (s->is_unix) { /* sheepdog+unix:///vdiname?socket=path */ if (uri->server || uri->port || strcmp(qp->p[0].name, "socket")) { ret = -EINVAL; goto out; } s->host_spec = g_strdup(qp->p[0].value); } else { /* sheepdog[+tcp]://[host:port]/vdiname */ s->host_spec = g_strdup_printf("%s:%d", uri->server ?: SD_DEFAULT_ADDR, uri->port ?: SD_DEFAULT_PORT); } /* snapshot tag */ if (uri->fragment) { if (!sd_parse_snapid_or_tag(uri->fragment, snapid, tag)) { ret = -EINVAL; goto out; } } else { *snapid = CURRENT_VDI_ID; /* search current vdi */ } out: if (qp) { query_params_free(qp); } uri_free(uri); return ret; }
16,376
1
static void test_visitor_in_errors(TestInputVisitorData *data, const void *unused) { TestStruct *p = NULL; Error *err = NULL; Visitor *v; strList *q = NULL; UserDefTwo *r = NULL; WrapAlternate *s = NULL; v = visitor_input_test_init(data, "{ 'integer': false, 'boolean': 'foo', " "'string': -42 }"); visit_type_TestStruct(v, NULL, &p, &err); g_assert(!p); v = visitor_input_test_init(data, "[ '1', '2', false, '3' ]"); visit_type_strList(v, NULL, &q, &err); assert(!q); }
16,377
1
BlockAIOCB *bdrv_aio_flush(BlockDriverState *bs, BlockCompletionFunc *cb, void *opaque) { trace_bdrv_aio_flush(bs, opaque); Coroutine *co; BlockAIOCBCoroutine *acb; /* Matched by bdrv_co_complete's bdrv_dec_in_flight. */ bdrv_inc_in_flight(bs); acb = qemu_aio_get(&bdrv_em_co_aiocb_info, bs, cb, opaque); acb->need_bh = true; acb->req.error = -EINPROGRESS; co = qemu_coroutine_create(bdrv_aio_flush_co_entry, acb); qemu_coroutine_enter(co); bdrv_co_maybe_schedule_bh(acb); return &acb->common; }
16,378
1
static int filter_packet(void *log_ctx, AVPacket *pkt, AVFormatContext *fmt_ctx, AVBitStreamFilterContext *bsf_ctx) { AVCodecContext *enc_ctx = fmt_ctx->streams[pkt->stream_index]->codec; int ret; while (bsf_ctx) { AVPacket new_pkt = *pkt; ret = av_bitstream_filter_filter(bsf_ctx, enc_ctx, NULL, &new_pkt.data, &new_pkt.size, pkt->data, pkt->size, pkt->flags & AV_PKT_FLAG_KEY); if (ret == 0 && new_pkt.data != pkt->data && new_pkt.destruct) { if ((ret = av_copy_packet(&new_pkt, pkt)) < 0) break; ret = 1; } if (ret > 0) { av_free_packet(pkt); new_pkt.buf = av_buffer_create(new_pkt.data, new_pkt.size, av_buffer_default_free, NULL, 0); if (!new_pkt.buf) break; } *pkt = new_pkt; bsf_ctx = bsf_ctx->next; } if (ret < 0) { av_log(log_ctx, AV_LOG_ERROR, "Failed to filter bitstream with filter %s for stream %d in file '%s' with codec %s\n", bsf_ctx->filter->name, pkt->stream_index, fmt_ctx->filename, avcodec_get_name(enc_ctx->codec_id)); } return ret; }
16,379
1
VirtIODevice *virtio_net_init(DeviceState *dev, NICConf *conf, virtio_net_conf *net) { VirtIONet *n; n = (VirtIONet *)virtio_common_init("virtio-net", VIRTIO_ID_NET, sizeof(struct virtio_net_config), sizeof(VirtIONet)); n->vdev.get_config = virtio_net_get_config; n->vdev.set_config = virtio_net_set_config; n->vdev.get_features = virtio_net_get_features; n->vdev.set_features = virtio_net_set_features; n->vdev.bad_features = virtio_net_bad_features; n->vdev.reset = virtio_net_reset; n->vdev.set_status = virtio_net_set_status; n->rx_vq = virtio_add_queue(&n->vdev, 256, virtio_net_handle_rx); n->tx_vq = virtio_add_queue(&n->vdev, 256, virtio_net_handle_tx); n->ctrl_vq = virtio_add_queue(&n->vdev, 64, virtio_net_handle_ctrl); qemu_macaddr_default_if_unset(&conf->macaddr); memcpy(&n->mac[0], &conf->macaddr, sizeof(n->mac)); n->status = VIRTIO_NET_S_LINK_UP; n->nic = qemu_new_nic(&net_virtio_info, conf, dev->info->name, dev->id, n); qemu_format_nic_info_str(&n->nic->nc, conf->macaddr.a); n->tx_timer = qemu_new_timer(vm_clock, virtio_net_tx_timer, n); n->tx_waiting = 0; n->tx_timeout = net->txtimer; n->tx_burst = net->txburst; n->mergeable_rx_bufs = 0; n->promisc = 1; /* for compatibility */ n->mac_table.macs = qemu_mallocz(MAC_TABLE_ENTRIES * ETH_ALEN); n->vlans = qemu_mallocz(MAX_VLAN >> 3); n->qdev = dev; register_savevm(dev, "virtio-net", -1, VIRTIO_NET_VM_VERSION, virtio_net_save, virtio_net_load, n); n->vmstate = qemu_add_vm_change_state_handler(virtio_net_vmstate_change, n); return &n->vdev; }
16,380
1
int cpu_x86_register(X86CPU *cpu, const char *cpu_model) { CPUX86State *env = &cpu->env; x86_def_t def1, *def = &def1; Error *error = NULL; char *name, *features; gchar **model_pieces; memset(def, 0, sizeof(*def)); model_pieces = g_strsplit(cpu_model, ",", 2); if (!model_pieces[0]) { error_setg(&error, "Invalid/empty CPU model name"); goto out; } name = model_pieces[0]; features = model_pieces[1]; if (cpu_x86_find_by_name(def, name) < 0) { error_setg(&error, "Unable to find CPU definition: %s", name); goto out; } if (kvm_enabled()) { def->kvm_features |= kvm_default_features; } def->ext_features |= CPUID_EXT_HYPERVISOR; object_property_set_str(OBJECT(cpu), def->vendor, "vendor", &error); object_property_set_int(OBJECT(cpu), def->level, "level", &error); object_property_set_int(OBJECT(cpu), def->family, "family", &error); object_property_set_int(OBJECT(cpu), def->model, "model", &error); object_property_set_int(OBJECT(cpu), def->stepping, "stepping", &error); env->cpuid_features = def->features; env->cpuid_ext_features = def->ext_features; env->cpuid_ext2_features = def->ext2_features; env->cpuid_ext3_features = def->ext3_features; object_property_set_int(OBJECT(cpu), def->xlevel, "xlevel", &error); env->cpuid_kvm_features = def->kvm_features; env->cpuid_svm_features = def->svm_features; env->cpuid_ext4_features = def->ext4_features; env->cpuid_7_0_ebx_features = def->cpuid_7_0_ebx_features; env->cpuid_xlevel2 = def->xlevel2; object_property_set_int(OBJECT(cpu), (int64_t)def->tsc_khz * 1000, "tsc-frequency", &error); object_property_set_str(OBJECT(cpu), def->model_id, "model-id", &error); if (error) { goto out; } cpu_x86_parse_featurestr(cpu, features, &error); out: g_strfreev(model_pieces); if (error) { fprintf(stderr, "%s\n", error_get_pretty(error)); error_free(error); return -1; } return 0; }
16,381
1
static int srt_encode_frame(AVCodecContext *avctx, unsigned char *buf, int bufsize, const AVSubtitle *sub) { SRTContext *s = avctx->priv_data; ASSDialog *dialog; int i, len, num; s->ptr = s->buffer; s->end = s->ptr + sizeof(s->buffer); for (i=0; i<sub->num_rects; i++) { if (sub->rects[i]->type != SUBTITLE_ASS) { av_log(avctx, AV_LOG_ERROR, "Only SUBTITLE_ASS type supported.\n"); return AVERROR(ENOSYS); } dialog = ff_ass_split_dialog(s->ass_ctx, sub->rects[i]->ass, 0, &num); for (; dialog && num--; dialog++) { if (avctx->codec->id == CODEC_ID_SRT) { int sh, sm, ss, sc = 10 * dialog->start; int eh, em, es, ec = 10 * dialog->end; sh = sc/3600000; sc -= 3600000*sh; sm = sc/ 60000; sc -= 60000*sm; ss = sc/ 1000; sc -= 1000*ss; eh = ec/3600000; ec -= 3600000*eh; em = ec/ 60000; ec -= 60000*em; es = ec/ 1000; ec -= 1000*es; srt_print(s,"%d\r\n%02d:%02d:%02d,%03d --> %02d:%02d:%02d,%03d\r\n", ++s->count, sh, sm, ss, sc, eh, em, es, ec); } s->alignment_applied = 0; s->dialog_start = s->ptr - 2; srt_style_apply(s, dialog->style); ff_ass_split_override_codes(&srt_callbacks, s, dialog->text); } } if (s->ptr == s->buffer) return 0; len = av_strlcpy(buf, s->buffer, bufsize); if (len > bufsize-1) { av_log(avctx, AV_LOG_ERROR, "Buffer too small for ASS event.\n"); return -1; } return len; }
16,382
1
static int img_info(int argc, char **argv) { int c; OutputFormat output_format = OFORMAT_HUMAN; bool chain = false; const char *filename, *fmt, *output; ImageInfoList *list; bool image_opts = false; fmt = NULL; output = NULL; for(;;) { int option_index = 0; static const struct option long_options[] = { {"help", no_argument, 0, 'h'}, {"format", required_argument, 0, 'f'}, {"output", required_argument, 0, OPTION_OUTPUT}, {"backing-chain", no_argument, 0, OPTION_BACKING_CHAIN}, {"object", required_argument, 0, OPTION_OBJECT}, {"image-opts", no_argument, 0, OPTION_IMAGE_OPTS}, {0, 0, 0, 0} }; c = getopt_long(argc, argv, "f:h", long_options, &option_index); if (c == -1) { break; } switch(c) { case '?': case 'h': help(); break; case 'f': fmt = optarg; break; case OPTION_OUTPUT: output = optarg; break; case OPTION_BACKING_CHAIN: chain = true; break; case OPTION_OBJECT: { QemuOpts *opts; opts = qemu_opts_parse_noisily(&qemu_object_opts, optarg, true); if (!opts) { return 1; } } break; case OPTION_IMAGE_OPTS: image_opts = true; break; } } if (optind != argc - 1) { error_exit("Expecting one image file name"); } filename = argv[optind++]; if (output && !strcmp(output, "json")) { output_format = OFORMAT_JSON; } else if (output && !strcmp(output, "human")) { output_format = OFORMAT_HUMAN; } else if (output) { error_report("--output must be used with human or json as argument."); return 1; } if (qemu_opts_foreach(&qemu_object_opts, user_creatable_add_opts_foreach, NULL, NULL)) { return 1; } list = collect_image_info_list(image_opts, filename, fmt, chain); if (!list) { return 1; } switch (output_format) { case OFORMAT_HUMAN: dump_human_image_info_list(list); break; case OFORMAT_JSON: if (chain) { dump_json_image_info_list(list); } else { dump_json_image_info(list->value); } break; } qapi_free_ImageInfoList(list); return 0; }
16,383
1
void pp_postprocess(const uint8_t * src[3], const int srcStride[3], uint8_t * dst[3], const int dstStride[3], int width, int height, const QP_STORE_T *QP_store, int QPStride, pp_mode *vm, void *vc, int pict_type) { int mbWidth = (width+15)>>4; int mbHeight= (height+15)>>4; PPMode *mode = vm; PPContext *c = vc; int minStride= FFMAX(FFABS(srcStride[0]), FFABS(dstStride[0])); int absQPStride = FFABS(QPStride); // c->stride and c->QPStride are always positive if(c->stride < minStride || c->qpStride < absQPStride) reallocBuffers(c, width, height, FFMAX(minStride, c->stride), FFMAX(c->qpStride, absQPStride)); if(!QP_store || (mode->lumMode & FORCE_QUANT)){ int i; QP_store= c->forcedQPTable; absQPStride = QPStride = 0; if(mode->lumMode & FORCE_QUANT) for(i=0; i<mbWidth; i++) c->forcedQPTable[i]= mode->forcedQuant; else for(i=0; i<mbWidth; i++) c->forcedQPTable[i]= 1; } if(pict_type & PP_PICT_TYPE_QP2){ int i; const int count= FFMAX(mbHeight * absQPStride, mbWidth); for(i=0; i<(count>>2); i++){ ((uint32_t*)c->stdQPTable)[i] = (((const uint32_t*)QP_store)[i]>>1) & 0x7F7F7F7F; } for(i<<=2; i<count; i++){ c->stdQPTable[i] = QP_store[i]>>1; } QP_store= c->stdQPTable; QPStride= absQPStride; } if(0){ int x,y; for(y=0; y<mbHeight; y++){ for(x=0; x<mbWidth; x++){ av_log(c, AV_LOG_INFO, "%2d ", QP_store[x + y*QPStride]); } av_log(c, AV_LOG_INFO, "\n"); } av_log(c, AV_LOG_INFO, "\n"); } if((pict_type&7)!=3){ if (QPStride >= 0){ int i; const int count= FFMAX(mbHeight * QPStride, mbWidth); for(i=0; i<(count>>2); i++){ ((uint32_t*)c->nonBQPTable)[i] = ((const uint32_t*)QP_store)[i] & 0x3F3F3F3F; } for(i<<=2; i<count; i++){ c->nonBQPTable[i] = QP_store[i] & 0x3F; } } else { int i,j; for(i=0; i<mbHeight; i++) { for(j=0; j<absQPStride; j++) { c->nonBQPTable[i*absQPStride+j] = QP_store[i*QPStride+j] & 0x3F; } } } } av_log(c, AV_LOG_DEBUG, "using npp filters 0x%X/0x%X\n", mode->lumMode, mode->chromMode); postProcess(src[0], srcStride[0], dst[0], dstStride[0], width, height, QP_store, QPStride, 0, mode, c); if (!(src[1] && src[2] && dst[1] && dst[2])) return; width = (width )>>c->hChromaSubSample; height = (height)>>c->vChromaSubSample; if(mode->chromMode){ postProcess(src[1], srcStride[1], dst[1], dstStride[1], width, height, QP_store, QPStride, 1, mode, c); postProcess(src[2], srcStride[2], dst[2], dstStride[2], width, height, QP_store, QPStride, 2, mode, c); } else if(srcStride[1] == dstStride[1] && srcStride[2] == dstStride[2]){ linecpy(dst[1], src[1], height, srcStride[1]); linecpy(dst[2], src[2], height, srcStride[2]); }else{ int y; for(y=0; y<height; y++){ memcpy(&(dst[1][y*dstStride[1]]), &(src[1][y*srcStride[1]]), width); memcpy(&(dst[2][y*dstStride[2]]), &(src[2][y*srcStride[2]]), width); } } }
16,384
0
static int handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) { CPUS390XState *env = &cpu->env; const uint8_t r1 = ipa1 >> 4; const uint8_t r3 = ipa1 & 0x0f; int ret; uint8_t order; uint64_t *status_reg; uint64_t param; S390CPU *dst_cpu = NULL; cpu_synchronize_state(CPU(cpu)); /* get order code */ order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; status_reg = &env->regs[r1]; param = (r1 % 2) ? env->regs[r1] : env->regs[r1 + 1]; if (qemu_mutex_trylock(&qemu_sigp_mutex)) { ret = SIGP_CC_BUSY; goto out; } switch (order) { case SIGP_SET_ARCH: ret = sigp_set_architecture(cpu, param, status_reg); break; default: /* all other sigp orders target a single vcpu */ dst_cpu = s390_cpu_addr2state(env->regs[r3]); ret = handle_sigp_single_dst(dst_cpu, order, param, status_reg); } qemu_mutex_unlock(&qemu_sigp_mutex); out: trace_kvm_sigp_finished(order, CPU(cpu)->cpu_index, dst_cpu ? CPU(dst_cpu)->cpu_index : -1, ret); if (ret >= 0) { setcc(cpu, ret); return 0; } return ret; }
16,386
0
static void bt_hci_done(struct HCIInfo *info) { struct bt_hci_s *hci = hci_from_info(info); int handle; bt_device_done(&hci->device); if (hci->device.lmp_name) g_free((void *) hci->device.lmp_name); /* Be gentle and send DISCONNECT to all connected peers and those * currently waiting for us to accept or reject a connection request. * This frees the links. */ if (hci->conn_req_host) { bt_hci_connection_reject(hci, hci->conn_req_host, HCI_OE_POWER_OFF); return; } for (handle = HCI_HANDLE_OFFSET; handle < (HCI_HANDLE_OFFSET | HCI_HANDLES_MAX); handle ++) if (!bt_hci_handle_bad(hci, handle)) bt_hci_disconnect(hci, handle, HCI_OE_POWER_OFF); /* TODO: this is not enough actually, there may be slaves from whom * we have requested a connection who will soon (or not) respond with * an accept or a reject, so we should also check if hci->lm.connecting * is non-zero and if so, avoid freeing the hci but otherwise disappear * from all qemu social life (e.g. stop scanning and request to be * removed from s->device.net) and arrange for * s->device.lmp_connection_complete to free the remaining bits once * hci->lm.awaiting_bdaddr[] is empty. */ timer_free(hci->lm.inquiry_done); timer_free(hci->lm.inquiry_next); timer_free(hci->conn_accept_timer); g_free(hci); }
16,387
0
static int get_port(const struct sockaddr_storage *ss) { sockaddr_union ssu = (sockaddr_union){.storage = *ss}; if (ss->ss_family == AF_INET) return ntohs(ssu.in.sin_port); #if HAVE_STRUCT_SOCKADDR_IN6 if (ss->ss_family == AF_INET6) return ntohs(ssu.in6.sin6_port); #endif return 0; }
16,388
0
int avformat_network_deinit(void) { #if CONFIG_NETWORK ff_network_close(); ff_tls_deinit(); ff_network_inited_globally = 0; #endif return 0; }
16,389
0
void ff_avg_h264_qpel8_mc02_msa(uint8_t *dst, const uint8_t *src, ptrdiff_t stride) { avc_luma_vt_and_aver_dst_8x8_msa(src - (stride * 2), stride, dst, stride); }
16,390
0
static void gen_spr_vtb(CPUPPCState *env) { spr_register(env, SPR_VTB, "VTB", SPR_NOACCESS, SPR_NOACCESS, &spr_read_tbl, SPR_NOACCESS, 0x00000000); }
16,391
0
static void bswap_note(struct elf_note *en) { bswap32s(&en->n_namesz); bswap32s(&en->n_descsz); bswap32s(&en->n_type); }
16,392
0
void ide_init_drive(IDEState *s, DriveInfo *dinfo, const char *version, const char *serial) { int cylinders, heads, secs; uint64_t nb_sectors; s->bs = dinfo->bdrv; bdrv_get_geometry(s->bs, &nb_sectors); bdrv_guess_geometry(s->bs, &cylinders, &heads, &secs); s->cylinders = cylinders; s->heads = heads; s->sectors = secs; s->nb_sectors = nb_sectors; /* The SMART values should be preserved across power cycles but they aren't. */ s->smart_enabled = 1; s->smart_autosave = 1; s->smart_errors = 0; s->smart_selftest_count = 0; if (bdrv_get_type_hint(s->bs) == BDRV_TYPE_CDROM) { s->is_cdrom = 1; bdrv_set_change_cb(s->bs, cdrom_change_cb, s); } if (serial && *serial) { strncpy(s->drive_serial_str, serial, sizeof(s->drive_serial_str)); } else { snprintf(s->drive_serial_str, sizeof(s->drive_serial_str), "QM%05d", s->drive_serial); } if (version) { pstrcpy(s->version, sizeof(s->version), version); } else { pstrcpy(s->version, sizeof(s->version), QEMU_VERSION); } ide_reset(s); }
16,393
0
static inline int dmg_read_chunk(BlockDriverState *bs, uint64_t sector_num) { BDRVDMGState *s = bs->opaque; if (!is_sector_in_chunk(s, s->current_chunk, sector_num)) { int ret; uint32_t chunk = search_chunk(s, sector_num); #ifdef CONFIG_BZIP2 uint64_t total_out; #endif if (chunk >= s->n_chunks) { return -1; } s->current_chunk = s->n_chunks; switch (s->types[chunk]) { /* block entry type */ case 0x80000005: { /* zlib compressed */ /* we need to buffer, because only the chunk as whole can be * inflated. */ ret = bdrv_pread(bs->file, s->offsets[chunk], s->compressed_chunk, s->lengths[chunk]); if (ret != s->lengths[chunk]) { return -1; } s->zstream.next_in = s->compressed_chunk; s->zstream.avail_in = s->lengths[chunk]; s->zstream.next_out = s->uncompressed_chunk; s->zstream.avail_out = 512 * s->sectorcounts[chunk]; ret = inflateReset(&s->zstream); if (ret != Z_OK) { return -1; } ret = inflate(&s->zstream, Z_FINISH); if (ret != Z_STREAM_END || s->zstream.total_out != 512 * s->sectorcounts[chunk]) { return -1; } break; } #ifdef CONFIG_BZIP2 case 0x80000006: /* bzip2 compressed */ /* we need to buffer, because only the chunk as whole can be * inflated. */ ret = bdrv_pread(bs->file, s->offsets[chunk], s->compressed_chunk, s->lengths[chunk]); if (ret != s->lengths[chunk]) { return -1; } ret = BZ2_bzDecompressInit(&s->bzstream, 0, 0); if (ret != BZ_OK) { return -1; } s->bzstream.next_in = (char *)s->compressed_chunk; s->bzstream.avail_in = (unsigned int) s->lengths[chunk]; s->bzstream.next_out = (char *)s->uncompressed_chunk; s->bzstream.avail_out = (unsigned int) 512 * s->sectorcounts[chunk]; ret = BZ2_bzDecompress(&s->bzstream); total_out = ((uint64_t)s->bzstream.total_out_hi32 << 32) + s->bzstream.total_out_lo32; BZ2_bzDecompressEnd(&s->bzstream); if (ret != BZ_STREAM_END || total_out != 512 * s->sectorcounts[chunk]) { return -1; } break; #endif /* CONFIG_BZIP2 */ case 1: /* copy */ ret = bdrv_pread(bs->file, s->offsets[chunk], s->uncompressed_chunk, s->lengths[chunk]); if (ret != s->lengths[chunk]) { return -1; } break; case 2: /* zero */ memset(s->uncompressed_chunk, 0, 512 * s->sectorcounts[chunk]); break; } s->current_chunk = chunk; } return 0; }
16,394
0
static void qmp_output_add_obj(QmpOutputVisitor *qov, const char *name, QObject *value) { QStackEntry *e = QTAILQ_FIRST(&qov->stack); QObject *cur = e ? e->value : NULL; if (!cur) { /* FIXME we should require the user to reset the visitor, rather * than throwing away the previous root */ qobject_decref(qov->root); qov->root = value; } else { switch (qobject_type(cur)) { case QTYPE_QDICT: assert(name); qdict_put_obj(qobject_to_qdict(cur), name, value); break; case QTYPE_QLIST: qlist_append_obj(qobject_to_qlist(cur), value); break; default: g_assert_not_reached(); } } }
16,395
0
static GenericList *qapi_dealloc_next_list(Visitor *v, GenericList **list, Error **errp) { GenericList *retval = *list; g_free(retval->value); *list = retval->next; return retval; }
16,397
0
static int nbd_co_discard(BlockDriverState *bs, int64_t sector_num, int nb_sectors) { BDRVNBDState *s = bs->opaque; struct nbd_request request; struct nbd_reply reply; if (!(s->nbdflags & NBD_FLAG_SEND_TRIM)) { return 0; } request.type = NBD_CMD_TRIM; request.from = sector_num * 512;; request.len = nb_sectors * 512; nbd_coroutine_start(s, &request); if (nbd_co_send_request(s, &request, NULL, 0) == -1) { reply.error = errno; } else { nbd_co_receive_reply(s, &request, &reply, NULL, 0); } nbd_coroutine_end(s, &request); return -reply.error; }
16,398
0
static bool memory_region_access_valid(MemoryRegion *mr, target_phys_addr_t addr, unsigned size) { if (!mr->ops->valid.unaligned && (addr & (size - 1))) { return false; } /* Treat zero as compatibility all valid */ if (!mr->ops->valid.max_access_size) { return true; } if (size > mr->ops->valid.max_access_size || size < mr->ops->valid.min_access_size) { return false; } return true; }
16,399
0
static int pci_pcnet_init(PCIDevice *pci_dev) { PCIPCNetState *d = DO_UPCAST(PCIPCNetState, pci_dev, pci_dev); PCNetState *s = &d->state; uint8_t *pci_conf; #if 0 printf("sizeof(RMD)=%d, sizeof(TMD)=%d\n", sizeof(struct pcnet_RMD), sizeof(struct pcnet_TMD)); #endif pci_conf = pci_dev->config; pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_AMD); pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_AMD_LANCE); pci_set_word(pci_conf + PCI_STATUS, PCI_STATUS_FAST_BACK | PCI_STATUS_DEVSEL_MEDIUM); pci_conf[PCI_REVISION_ID] = 0x10; pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET); pci_set_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID, 0x0); pci_set_word(pci_conf + PCI_SUBSYSTEM_ID, 0x0); pci_conf[PCI_INTERRUPT_PIN] = 1; // interrupt pin 0 pci_conf[PCI_MIN_GNT] = 0x06; pci_conf[PCI_MAX_LAT] = 0xff; /* Handler for memory-mapped I/O */ s->mmio_index = cpu_register_io_memory(pcnet_mmio_read, pcnet_mmio_write, &d->state, DEVICE_NATIVE_ENDIAN); pci_register_bar(pci_dev, 0, PCNET_IOPORT_SIZE, PCI_BASE_ADDRESS_SPACE_IO, pcnet_ioport_map); pci_register_bar_simple(pci_dev, 1, PCNET_PNPMMIO_SIZE, 0, s->mmio_index); s->irq = pci_dev->irq[0]; s->phys_mem_read = pci_physical_memory_read; s->phys_mem_write = pci_physical_memory_write; if (!pci_dev->qdev.hotplugged) { static int loaded = 0; if (!loaded) { rom_add_option("pxe-pcnet.rom", -1); loaded = 1; } } return pcnet_common_init(&pci_dev->qdev, s, &net_pci_pcnet_info); }
16,400
0
static int dvvideo_encode_close(AVCodecContext *avctx) { av_frame_free(&avctx->coded_frame); return 0; }
16,401
0
void ich9_pm_init(PCIDevice *lpc_pci, ICH9LPCPMRegs *pm, bool smm_enabled, qemu_irq sci_irq) { memory_region_init(&pm->io, OBJECT(lpc_pci), "ich9-pm", ICH9_PMIO_SIZE); memory_region_set_enabled(&pm->io, false); memory_region_add_subregion(pci_address_space_io(lpc_pci), 0, &pm->io); acpi_pm_tmr_init(&pm->acpi_regs, ich9_pm_update_sci_fn, &pm->io); acpi_pm1_evt_init(&pm->acpi_regs, ich9_pm_update_sci_fn, &pm->io); acpi_pm1_cnt_init(&pm->acpi_regs, &pm->io, pm->disable_s3, pm->disable_s4, pm->s4_val); acpi_gpe_init(&pm->acpi_regs, ICH9_PMIO_GPE0_LEN); memory_region_init_io(&pm->io_gpe, OBJECT(lpc_pci), &ich9_gpe_ops, pm, "acpi-gpe0", ICH9_PMIO_GPE0_LEN); memory_region_add_subregion(&pm->io, ICH9_PMIO_GPE0_STS, &pm->io_gpe); memory_region_init_io(&pm->io_smi, OBJECT(lpc_pci), &ich9_smi_ops, pm, "acpi-smi", 8); memory_region_add_subregion(&pm->io, ICH9_PMIO_SMI_EN, &pm->io_smi); pm->smm_enabled = smm_enabled; pm->irq = sci_irq; qemu_register_reset(pm_reset, pm); pm->powerdown_notifier.notify = pm_powerdown_req; qemu_register_powerdown_notifier(&pm->powerdown_notifier); acpi_cpu_hotplug_init(pci_address_space_io(lpc_pci), OBJECT(lpc_pci), &pm->gpe_cpu, ICH9_CPU_HOTPLUG_IO_BASE); if (pm->acpi_memory_hotplug.is_enabled) { acpi_memory_hotplug_init(pci_address_space_io(lpc_pci), OBJECT(lpc_pci), &pm->acpi_memory_hotplug); } }
16,402
0
static inline int gen_intermediate_code_internal(CPUState *env, TranslationBlock *tb, int search_pc) { DisasContext dc1, *dc = &dc1; uint8_t *pc_ptr; uint16_t *gen_opc_end; int flags, j, lj; uint8_t *pc_start; uint8_t *cs_base; /* generate intermediate code */ pc_start = (uint8_t *)tb->pc; cs_base = (uint8_t *)tb->cs_base; flags = tb->flags; dc->pe = env->cr[0] & CR0_PE_MASK; dc->code32 = (flags >> HF_CS32_SHIFT) & 1; dc->ss32 = (flags >> HF_SS32_SHIFT) & 1; dc->addseg = (flags >> HF_ADDSEG_SHIFT) & 1; dc->f_st = 0; dc->vm86 = (flags >> VM_SHIFT) & 1; dc->cpl = (flags >> HF_CPL_SHIFT) & 3; dc->iopl = (flags >> IOPL_SHIFT) & 3; dc->tf = (flags >> TF_SHIFT) & 1; dc->singlestep_enabled = env->singlestep_enabled; dc->cc_op = CC_OP_DYNAMIC; dc->cs_base = cs_base; dc->tb = tb; dc->popl_esp_hack = 0; /* select memory access functions */ dc->mem_index = 0; if (flags & HF_SOFTMMU_MASK) { if (dc->cpl == 3) dc->mem_index = 6; else dc->mem_index = 3; } dc->jmp_opt = !(dc->tf || env->singlestep_enabled #ifndef CONFIG_SOFT_MMU || (flags & HF_SOFTMMU_MASK) #endif ); gen_opc_ptr = gen_opc_buf; gen_opc_end = gen_opc_buf + OPC_MAX_SIZE; gen_opparam_ptr = gen_opparam_buf; dc->is_jmp = DISAS_NEXT; pc_ptr = pc_start; lj = -1; /* if irq were inhibited for the next instruction, we can disable them here as it is simpler (otherwise jumps would have to handled as special case) */ if (flags & HF_INHIBIT_IRQ_MASK) { gen_op_reset_inhibit_irq(); } for(;;) { if (env->nb_breakpoints > 0) { for(j = 0; j < env->nb_breakpoints; j++) { if (env->breakpoints[j] == (unsigned long)pc_ptr) { gen_debug(dc, pc_ptr - dc->cs_base); break; } } } if (search_pc) { j = gen_opc_ptr - gen_opc_buf; if (lj < j) { lj++; while (lj < j) gen_opc_instr_start[lj++] = 0; } gen_opc_pc[lj] = (uint32_t)pc_ptr; gen_opc_cc_op[lj] = dc->cc_op; gen_opc_instr_start[lj] = 1; } pc_ptr = disas_insn(dc, pc_ptr); /* stop translation if indicated */ if (dc->is_jmp) break; /* if single step mode, we generate only one instruction and generate an exception */ if (dc->tf || dc->singlestep_enabled) { gen_op_jmp_im(pc_ptr - dc->cs_base); gen_eob(dc); break; } /* if too long translation, stop generation too */ if (gen_opc_ptr >= gen_opc_end || (pc_ptr - pc_start) >= (TARGET_PAGE_SIZE - 32)) { gen_op_jmp_im(pc_ptr - dc->cs_base); gen_eob(dc); break; } } *gen_opc_ptr = INDEX_op_end; /* we don't forget to fill the last values */ if (search_pc) { j = gen_opc_ptr - gen_opc_buf; lj++; while (lj <= j) gen_opc_instr_start[lj++] = 0; } #ifdef DEBUG_DISAS if (loglevel) { fprintf(logfile, "----------------\n"); fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start)); disas(logfile, pc_start, pc_ptr - pc_start, 0, !dc->code32); fprintf(logfile, "\n"); fprintf(logfile, "OP:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif /* optimize flag computations */ optimize_flags(gen_opc_buf, gen_opc_ptr - gen_opc_buf); #ifdef DEBUG_DISAS if (loglevel) { fprintf(logfile, "AFTER FLAGS OPT:\n"); dump_ops(gen_opc_buf, gen_opparam_buf); fprintf(logfile, "\n"); } #endif if (!search_pc) tb->size = pc_ptr - pc_start; return 0; }
16,403
0
static void nbd_detach_aio_context(BlockDriverState *bs) { BDRVNBDState *s = bs->opaque; nbd_client_session_detach_aio_context(&s->client); }
16,404
0
void *g_malloc0_n(size_t nmemb, size_t size) { size_t sz; void *ptr; __coverity_negative_sink__(nmemb); __coverity_negative_sink__(size); sz = nmemb * size; ptr = __coverity_alloc__(size); __coverity_writeall0__(ptr); __coverity_mark_as_afm_allocated__(ptr, AFM_free); return ptr; }
16,405
0
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr) { M48t59State *NVRAM = opaque; uint32_t retval; retval = m48t59_read(NVRAM, addr); return retval; }
16,407
0
static void coroutine_fn commit_run(void *opaque) { CommitBlockJob *s = opaque; BlockDriverState *active = s->active; BlockDriverState *top = s->top; BlockDriverState *base = s->base; BlockDriverState *overlay_bs; int64_t sector_num, end; int ret = 0; int n = 0; void *buf; int bytes_written = 0; int64_t base_len; ret = s->common.len = bdrv_getlength(top); if (s->common.len < 0) { goto exit_restore_reopen; } ret = base_len = bdrv_getlength(base); if (base_len < 0) { goto exit_restore_reopen; } if (base_len < s->common.len) { ret = bdrv_truncate(base, s->common.len); if (ret) { goto exit_restore_reopen; } } end = s->common.len >> BDRV_SECTOR_BITS; buf = qemu_blockalign(top, COMMIT_BUFFER_SIZE); for (sector_num = 0; sector_num < end; sector_num += n) { uint64_t delay_ns = 0; bool copy; wait: /* Note that even when no rate limit is applied we need to yield * with no pending I/O here so that bdrv_drain_all() returns. */ block_job_sleep_ns(&s->common, QEMU_CLOCK_REALTIME, delay_ns); if (block_job_is_cancelled(&s->common)) { break; } /* Copy if allocated above the base */ ret = bdrv_is_allocated_above(top, base, sector_num, COMMIT_BUFFER_SIZE / BDRV_SECTOR_SIZE, &n); copy = (ret == 1); trace_commit_one_iteration(s, sector_num, n, ret); if (copy) { if (s->common.speed) { delay_ns = ratelimit_calculate_delay(&s->limit, n); if (delay_ns > 0) { goto wait; } } ret = commit_populate(top, base, sector_num, n, buf); bytes_written += n * BDRV_SECTOR_SIZE; } if (ret < 0) { if (s->on_error == BLOCKDEV_ON_ERROR_STOP || s->on_error == BLOCKDEV_ON_ERROR_REPORT|| (s->on_error == BLOCKDEV_ON_ERROR_ENOSPC && ret == -ENOSPC)) { goto exit_free_buf; } else { n = 0; continue; } } /* Publish progress */ s->common.offset += n * BDRV_SECTOR_SIZE; } ret = 0; if (!block_job_is_cancelled(&s->common) && sector_num == end) { /* success */ ret = bdrv_drop_intermediate(active, top, base, s->backing_file_str); } exit_free_buf: qemu_vfree(buf); exit_restore_reopen: /* restore base open flags here if appropriate (e.g., change the base back * to r/o). These reopens do not need to be atomic, since we won't abort * even on failure here */ if (s->base_flags != bdrv_get_flags(base)) { bdrv_reopen(base, s->base_flags, NULL); } overlay_bs = bdrv_find_overlay(active, top); if (overlay_bs && s->orig_overlay_flags != bdrv_get_flags(overlay_bs)) { bdrv_reopen(overlay_bs, s->orig_overlay_flags, NULL); } g_free(s->backing_file_str); block_job_completed(&s->common, ret); }
16,413
0
static int nvme_start_ctrl(NvmeCtrl *n) { uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; uint32_t page_size = 1 << page_bits; if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq || n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) || NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) || NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) || NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) || NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) || NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) || NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) || !NVME_AQA_ASQS(n->bar.aqa) || NVME_AQA_ASQS(n->bar.aqa) > 4095 || !NVME_AQA_ACQS(n->bar.aqa) || NVME_AQA_ACQS(n->bar.aqa) > 4095) { return -1; } n->page_bits = page_bits; n->page_size = page_size; n->max_prp_ents = n->page_size / sizeof(uint64_t); n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, NVME_AQA_ACQS(n->bar.aqa) + 1, 1); nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, NVME_AQA_ASQS(n->bar.aqa) + 1); return 0; }
16,416
0
static void netmap_send(void *opaque) { NetmapState *s = opaque; struct netmap_ring *ring = s->me.rx; /* Keep sending while there are available packets into the netmap RX ring and the forwarding path towards the peer is open. */ while (!nm_ring_empty(ring) && qemu_can_send_packet(&s->nc)) { uint32_t i; uint32_t idx; bool morefrag; int iovcnt = 0; int iovsize; do { i = ring->cur; idx = ring->slot[i].buf_idx; morefrag = (ring->slot[i].flags & NS_MOREFRAG); s->iov[iovcnt].iov_base = (u_char *)NETMAP_BUF(ring, idx); s->iov[iovcnt].iov_len = ring->slot[i].len; iovcnt++; ring->cur = ring->head = nm_ring_next(ring, i); } while (!nm_ring_empty(ring) && morefrag); if (unlikely(nm_ring_empty(ring) && morefrag)) { RD(5, "[netmap_send] ran out of slots, with a pending" "incomplete packet\n"); } iovsize = qemu_sendv_packet_async(&s->nc, s->iov, iovcnt, netmap_send_completed); if (iovsize == 0) { /* The peer does not receive anymore. Packet is queued, stop * reading from the backend until netmap_send_completed() */ netmap_read_poll(s, false); break; } } }
16,417
0
static uint64_t gpio_read(void *opaque, target_phys_addr_t addr, unsigned size) { struct gpio_state_t *s = opaque; uint32_t r = 0; addr >>= 2; switch (addr) { case R_PA_DIN: r = s->regs[RW_PA_DOUT] & s->regs[RW_PA_OE]; /* Encode pins from the nand. */ r |= s->nand->rdy << 7; break; case R_PD_DIN: r = s->regs[RW_PD_DOUT] & s->regs[RW_PD_OE]; /* Encode temp sensor pins. */ r |= (!!(s->tempsensor.shiftreg & 0x10000)) << 4; break; default: r = s->regs[addr]; break; } return r; D(printf("%s %x=%x\n", __func__, addr, r)); }
16,418
0
static void vfio_probe_igd_bar4_quirk(VFIOPCIDevice *vdev, int nr) { struct vfio_region_info *rom = NULL, *opregion = NULL, *host = NULL, *lpc = NULL; VFIOQuirk *quirk; VFIOIGDQuirk *igd; PCIDevice *lpc_bridge; int i, ret, ggms_mb, gms_mb = 0, gen; uint64_t *bdsm_size; uint32_t gmch; uint16_t cmd_orig, cmd; Error *err = NULL; /* This must be an Intel VGA device. */ if (!vfio_pci_is(vdev, PCI_VENDOR_ID_INTEL, PCI_ANY_ID) || !vfio_is_vga(vdev) || nr != 4) { return; } /* * IGD is not a standard, they like to change their specs often. We * only attempt to support back to SandBridge and we hope that newer * devices maintain compatibility with generation 8. */ gen = igd_gen(vdev); if (gen != 6 && gen != 8) { error_report("IGD device %s is unsupported by IGD quirks, " "try SandyBridge or newer", vdev->vbasedev.name); return; } /* * Regardless of running in UPT or legacy mode, the guest graphics * driver may attempt to use stolen memory, however only legacy mode * has BIOS support for reserving stolen memory in the guest VM. * Emulate the GMCH register in all cases and zero out the stolen * memory size here. Legacy mode may request allocation and re-write * this below. */ gmch = vfio_pci_read_config(&vdev->pdev, IGD_GMCH, 4); gmch &= ~((gen < 8 ? 0x1f : 0xff) << (gen < 8 ? 3 : 8)); /* GMCH is read-only, emulated */ pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); pci_set_long(vdev->pdev.wmask + IGD_GMCH, 0); pci_set_long(vdev->emulated_config_bits + IGD_GMCH, ~0); /* * This must be at address 00:02.0 for us to even onsider enabling * legacy mode. The vBIOS has dependencies on the PCI bus address. */ if (&vdev->pdev != pci_find_device(pci_device_root_bus(&vdev->pdev), 0, PCI_DEVFN(0x2, 0))) { return; } /* * We need to create an LPC/ISA bridge at PCI bus address 00:1f.0 that we * can stuff host values into, so if there's already one there and it's not * one we can hack on, legacy mode is no-go. Sorry Q35. */ lpc_bridge = pci_find_device(pci_device_root_bus(&vdev->pdev), 0, PCI_DEVFN(0x1f, 0)); if (lpc_bridge && !object_dynamic_cast(OBJECT(lpc_bridge), "vfio-pci-igd-lpc-bridge")) { error_report("IGD device %s cannot support legacy mode due to existing " "devices at address 1f.0", vdev->vbasedev.name); return; } /* * Most of what we're doing here is to enable the ROM to run, so if * there's no ROM, there's no point in setting up this quirk. * NB. We only seem to get BIOS ROMs, so a UEFI VM would need CSM support. */ ret = vfio_get_region_info(&vdev->vbasedev, VFIO_PCI_ROM_REGION_INDEX, &rom); if ((ret || !rom->size) && !vdev->pdev.romfile) { error_report("IGD device %s has no ROM, legacy mode disabled", vdev->vbasedev.name); goto out; } /* * Ignore the hotplug corner case, mark the ROM failed, we can't * create the devices we need for legacy mode in the hotplug scenario. */ if (vdev->pdev.qdev.hotplugged) { error_report("IGD device %s hotplugged, ROM disabled, " "legacy mode disabled", vdev->vbasedev.name); vdev->rom_read_failed = true; goto out; } /* * Check whether we have all the vfio device specific regions to * support legacy mode (added in Linux v4.6). If not, bail. */ ret = vfio_get_dev_region_info(&vdev->vbasedev, VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, VFIO_REGION_SUBTYPE_INTEL_IGD_OPREGION, &opregion); if (ret) { error_report("IGD device %s does not support OpRegion access," "legacy mode disabled", vdev->vbasedev.name); goto out; } ret = vfio_get_dev_region_info(&vdev->vbasedev, VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, VFIO_REGION_SUBTYPE_INTEL_IGD_HOST_CFG, &host); if (ret) { error_report("IGD device %s does not support host bridge access," "legacy mode disabled", vdev->vbasedev.name); goto out; } ret = vfio_get_dev_region_info(&vdev->vbasedev, VFIO_REGION_TYPE_PCI_VENDOR_TYPE | PCI_VENDOR_ID_INTEL, VFIO_REGION_SUBTYPE_INTEL_IGD_LPC_CFG, &lpc); if (ret) { error_report("IGD device %s does not support LPC bridge access," "legacy mode disabled", vdev->vbasedev.name); goto out; } /* * If IGD VGA Disable is clear (expected) and VGA is not already enabled, * try to enable it. Probably shouldn't be using legacy mode without VGA, * but also no point in us enabling VGA if disabled in hardware. */ if (!(gmch & 0x2) && !vdev->vga && vfio_populate_vga(vdev, &err)) { error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); error_report("IGD device %s failed to enable VGA access, " "legacy mode disabled", vdev->vbasedev.name); goto out; } /* Create our LPC/ISA bridge */ ret = vfio_pci_igd_lpc_init(vdev, lpc); if (ret) { error_report("IGD device %s failed to create LPC bridge, " "legacy mode disabled", vdev->vbasedev.name); goto out; } /* Stuff some host values into the VM PCI host bridge */ ret = vfio_pci_igd_host_init(vdev, host); if (ret) { error_report("IGD device %s failed to modify host bridge, " "legacy mode disabled", vdev->vbasedev.name); goto out; } /* Setup OpRegion access */ ret = vfio_pci_igd_opregion_init(vdev, opregion, &err); if (ret) { error_append_hint(&err, "IGD legacy mode disabled\n"); error_reportf_err(err, ERR_PREFIX, vdev->vbasedev.name); goto out; } /* Setup our quirk to munge GTT addresses to the VM allocated buffer */ quirk = g_malloc0(sizeof(*quirk)); quirk->mem = g_new0(MemoryRegion, 2); quirk->nr_mem = 2; igd = quirk->data = g_malloc0(sizeof(*igd)); igd->vdev = vdev; igd->index = ~0; igd->bdsm = vfio_pci_read_config(&vdev->pdev, IGD_BDSM, 4); igd->bdsm &= ~((1 << 20) - 1); /* 1MB aligned */ memory_region_init_io(&quirk->mem[0], OBJECT(vdev), &vfio_igd_index_quirk, igd, "vfio-igd-index-quirk", 4); memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 0, &quirk->mem[0], 1); memory_region_init_io(&quirk->mem[1], OBJECT(vdev), &vfio_igd_data_quirk, igd, "vfio-igd-data-quirk", 4); memory_region_add_subregion_overlap(vdev->bars[nr].region.mem, 4, &quirk->mem[1], 1); QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next); /* Determine the size of stolen memory needed for GTT */ ggms_mb = (gmch >> (gen < 8 ? 8 : 6)) & 0x3; if (gen > 6) { ggms_mb = 1 << ggms_mb; } /* * Assume we have no GMS memory, but allow it to be overrided by device * option (experimental). The spec doesn't actually allow zero GMS when * when IVD (IGD VGA Disable) is clear, but the claim is that it's unused, * so let's not waste VM memory for it. */ if (vdev->igd_gms) { if (vdev->igd_gms <= 0x10) { gms_mb = vdev->igd_gms * 32; gmch |= vdev->igd_gms << (gen < 8 ? 3 : 8); pci_set_long(vdev->pdev.config + IGD_GMCH, gmch); } else { error_report("Unsupported IGD GMS value 0x%x", vdev->igd_gms); vdev->igd_gms = 0; } } /* * Request reserved memory for stolen memory via fw_cfg. VM firmware * must allocate a 1MB aligned reserved memory region below 4GB with * the requested size (in bytes) for use by the Intel PCI class VGA * device at VM address 00:02.0. The base address of this reserved * memory region must be written to the device BDSM regsiter at PCI * config offset 0x5C. */ bdsm_size = g_malloc(sizeof(*bdsm_size)); *bdsm_size = cpu_to_le64((ggms_mb + gms_mb) * 1024 * 1024); fw_cfg_add_file(fw_cfg_find(), "etc/igd-bdsm-size", bdsm_size, sizeof(*bdsm_size)); /* BDSM is read-write, emulated. The BIOS needs to be able to write it */ pci_set_long(vdev->pdev.config + IGD_BDSM, 0); pci_set_long(vdev->pdev.wmask + IGD_BDSM, ~0); pci_set_long(vdev->emulated_config_bits + IGD_BDSM, ~0); /* * This IOBAR gives us access to GTTADR, which allows us to write to * the GTT itself. So let's go ahead and write zero to all the GTT * entries to avoid spurious DMA faults. Be sure I/O access is enabled * before talking to the device. */ if (pread(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { error_report("IGD device %s - failed to read PCI command register", vdev->vbasedev.name); } cmd = cmd_orig | PCI_COMMAND_IO; if (pwrite(vdev->vbasedev.fd, &cmd, sizeof(cmd), vdev->config_offset + PCI_COMMAND) != sizeof(cmd)) { error_report("IGD device %s - failed to write PCI command register", vdev->vbasedev.name); } for (i = 1; i < vfio_igd_gtt_max(vdev); i += 4) { vfio_region_write(&vdev->bars[4].region, 0, i, 4); vfio_region_write(&vdev->bars[4].region, 4, 0, 4); } if (pwrite(vdev->vbasedev.fd, &cmd_orig, sizeof(cmd_orig), vdev->config_offset + PCI_COMMAND) != sizeof(cmd_orig)) { error_report("IGD device %s - failed to restore PCI command register", vdev->vbasedev.name); } trace_vfio_pci_igd_bdsm_enabled(vdev->vbasedev.name, ggms_mb + gms_mb); out: g_free(rom); g_free(opregion); g_free(host); g_free(lpc); }
16,420
0
int cpu_x86_handle_mmu_fault(CPUX86State *env, target_ulong addr, int is_write1, int mmu_idx) { uint64_t ptep, pte; target_ulong pde_addr, pte_addr; int error_code, is_dirty, prot, page_size, is_write, is_user; target_phys_addr_t paddr; uint32_t page_offset; target_ulong vaddr, virt_addr; is_user = mmu_idx == MMU_USER_IDX; #if defined(DEBUG_MMU) printf("MMU fault: addr=" TARGET_FMT_lx " w=%d u=%d eip=" TARGET_FMT_lx "\n", addr, is_write1, is_user, env->eip); #endif is_write = is_write1 & 1; if (!(env->cr[0] & CR0_PG_MASK)) { pte = addr; virt_addr = addr & TARGET_PAGE_MASK; prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; page_size = 4096; goto do_mapping; } if (env->cr[4] & CR4_PAE_MASK) { uint64_t pde, pdpe; target_ulong pdpe_addr; #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { uint64_t pml4e_addr, pml4e; int32_t sext; /* test virtual address sign extension */ sext = (int64_t)addr >> 47; if (sext != 0 && sext != -1) { env->error_code = 0; env->exception_index = EXCP0D_GPF; return 1; } pml4e_addr = ((env->cr[3] & ~0xfff) + (((addr >> 39) & 0x1ff) << 3)) & env->a20_mask; pml4e = ldq_phys(pml4e_addr); if (!(pml4e & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pml4e & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } if (!(pml4e & PG_ACCESSED_MASK)) { pml4e |= PG_ACCESSED_MASK; stl_phys_notdirty(pml4e_addr, pml4e); } ptep = pml4e ^ PG_NX_MASK; pdpe_addr = ((pml4e & PHYS_ADDR_MASK) + (((addr >> 30) & 0x1ff) << 3)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pdpe & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pdpe ^ PG_NX_MASK; if (!(pdpe & PG_ACCESSED_MASK)) { pdpe |= PG_ACCESSED_MASK; stl_phys_notdirty(pdpe_addr, pdpe); } } else #endif { /* XXX: load them when cr3 is loaded ? */ pdpe_addr = ((env->cr[3] & ~0x1f) + ((addr >> 27) & 0x18)) & env->a20_mask; pdpe = ldq_phys(pdpe_addr); if (!(pdpe & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } ptep = PG_NX_MASK | PG_USER_MASK | PG_RW_MASK; } pde_addr = ((pdpe & PHYS_ADDR_MASK) + (((addr >> 21) & 0x1ff) << 3)) & env->a20_mask; pde = ldq_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pde & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } ptep &= pde ^ PG_NX_MASK; if (pde & PG_PSE_MASK) { /* 2 MB page */ page_size = 2048 * 1024; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) goto do_fault_protect; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(pde_addr, pde); } /* align to page_size */ pte = pde & ((PHYS_ADDR_MASK & ~(page_size - 1)) | 0xfff); virt_addr = addr & ~(page_size - 1); } else { /* 4 KB page */ if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(pde_addr, pde); } pte_addr = ((pde & PHYS_ADDR_MASK) + (((addr >> 12) & 0x1ff) << 3)) & env->a20_mask; pte = ldq_phys(pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } if (!(env->efer & MSR_EFER_NXE) && (pte & PG_NX_MASK)) { error_code = PG_ERROR_RSVD_MASK; goto do_fault; } /* combine pde and pte nx, user and rw protections */ ptep &= pte ^ PG_NX_MASK; ptep ^= PG_NX_MASK; if ((ptep & PG_NX_MASK) && is_write1 == 2) goto do_fault_protect; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; pte = pte & (PHYS_ADDR_MASK | 0xfff); } } else { uint32_t pde; /* page directory entry */ pde_addr = ((env->cr[3] & ~0xfff) + ((addr >> 20) & 0xffc)) & env->a20_mask; pde = ldl_phys(pde_addr); if (!(pde & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* if PSE bit is set, then we use a 4MB page */ if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { page_size = 4096 * 1024; if (is_user) { if (!(pde & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(pde & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(pde & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pde & PG_DIRTY_MASK); if (!(pde & PG_ACCESSED_MASK) || is_dirty) { pde |= PG_ACCESSED_MASK; if (is_dirty) pde |= PG_DIRTY_MASK; stl_phys_notdirty(pde_addr, pde); } pte = pde & ~( (page_size - 1) & ~0xfff); /* align to page_size */ ptep = pte; virt_addr = addr & ~(page_size - 1); } else { if (!(pde & PG_ACCESSED_MASK)) { pde |= PG_ACCESSED_MASK; stl_phys_notdirty(pde_addr, pde); } /* page directory entry */ pte_addr = ((pde & ~0xfff) + ((addr >> 10) & 0xffc)) & env->a20_mask; pte = ldl_phys(pte_addr); if (!(pte & PG_PRESENT_MASK)) { error_code = 0; goto do_fault; } /* combine pde and pte user and rw protections */ ptep = pte & pde; if (is_user) { if (!(ptep & PG_USER_MASK)) goto do_fault_protect; if (is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } else { if ((env->cr[0] & CR0_WP_MASK) && is_write && !(ptep & PG_RW_MASK)) goto do_fault_protect; } is_dirty = is_write && !(pte & PG_DIRTY_MASK); if (!(pte & PG_ACCESSED_MASK) || is_dirty) { pte |= PG_ACCESSED_MASK; if (is_dirty) pte |= PG_DIRTY_MASK; stl_phys_notdirty(pte_addr, pte); } page_size = 4096; virt_addr = addr & ~0xfff; } } /* the page can be put in the TLB */ prot = PAGE_READ; if (!(ptep & PG_NX_MASK)) prot |= PAGE_EXEC; if (pte & PG_DIRTY_MASK) { /* only set write access if already dirty... otherwise wait for dirty access */ if (is_user) { if (ptep & PG_RW_MASK) prot |= PAGE_WRITE; } else { if (!(env->cr[0] & CR0_WP_MASK) || (ptep & PG_RW_MASK)) prot |= PAGE_WRITE; } } do_mapping: pte = pte & env->a20_mask; /* Even if 4MB pages, we map only one 4KB page in the cache to avoid filling it too fast */ page_offset = (addr & TARGET_PAGE_MASK) & (page_size - 1); paddr = (pte & TARGET_PAGE_MASK) + page_offset; vaddr = virt_addr + page_offset; tlb_set_page(env, vaddr, paddr, prot, mmu_idx, page_size); return 0; do_fault_protect: error_code = PG_ERROR_P_MASK; do_fault: error_code |= (is_write << PG_ERROR_W_BIT); if (is_user) error_code |= PG_ERROR_U_MASK; if (is_write1 == 2 && (env->efer & MSR_EFER_NXE) && (env->cr[4] & CR4_PAE_MASK)) error_code |= PG_ERROR_I_D_MASK; if (env->intercept_exceptions & (1 << EXCP0E_PAGE)) { /* cr2 is not modified in case of exceptions */ stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), addr); } else { env->cr[2] = addr; } env->error_code = error_code; env->exception_index = EXCP0E_PAGE; return 1; }
16,421
1
static void test_qga_invalid_args(gconstpointer fix) { const TestFixture *fixture = fix; QDict *ret, *error; const gchar *class, *desc; ret = qmp_fd(fixture->fd, "{'execute': 'guest-ping', " "'arguments': {'foo': 42 }}"); g_assert_nonnull(ret); error = qdict_get_qdict(ret, "error"); class = qdict_get_try_str(error, "class"); desc = qdict_get_try_str(error, "desc"); g_assert_cmpstr(class, ==, "GenericError"); g_assert_cmpstr(desc, ==, "QMP input object member 'foo' is unexpected"); QDECREF(ret); }
16,423
1
int ff_mlz_decompression(MLZ* mlz, GetBitContext* gb, int size, unsigned char *buff) { MLZDict *dict = mlz->dict; unsigned long output_chars; int string_code, last_string_code, char_code; string_code = 0; char_code = -1; last_string_code = -1; output_chars = 0; while (output_chars < size) { string_code = input_code(gb, mlz->dic_code_bit); switch (string_code) { case FLUSH_CODE: case MAX_CODE: ff_mlz_flush_dict(mlz); char_code = -1; last_string_code = -1; break; case FREEZE_CODE: mlz->freeze_flag = 1; break; default: if (string_code > mlz->current_dic_index_max) { av_log(mlz->context, AV_LOG_ERROR, "String code %d exceeds maximum value of %d.\n", string_code, mlz->current_dic_index_max); if (string_code == (int) mlz->bump_code) { ++mlz->dic_code_bit; mlz->current_dic_index_max *= 2; mlz->bump_code = mlz->current_dic_index_max - 1; } else { if (string_code >= mlz->next_code) { int ret = decode_string(mlz, &buff[output_chars], last_string_code, &char_code, size - output_chars); if (ret < 0 || ret > size - output_chars) { av_log(mlz->context, AV_LOG_ERROR, "output chars overflow\n"); output_chars += ret; ret = decode_string(mlz, &buff[output_chars], char_code, &char_code, size - output_chars); if (ret < 0 || ret > size - output_chars) { av_log(mlz->context, AV_LOG_ERROR, "output chars overflow\n"); output_chars += ret; set_new_entry_dict(dict, mlz->next_code, last_string_code, char_code); mlz->next_code++; } else { int ret = decode_string(mlz, &buff[output_chars], string_code, &char_code, size - output_chars); if (ret < 0 || ret > size - output_chars) { av_log(mlz->context, AV_LOG_ERROR, "output chars overflow\n"); output_chars += ret; if (output_chars <= size && !mlz->freeze_flag) { if (last_string_code != -1) { set_new_entry_dict(dict, mlz->next_code, last_string_code, char_code); mlz->next_code++; } else { break; last_string_code = string_code; break;
16,424
1
static void kvm_client_set_memory(struct CPUPhysMemoryClient *client, target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset, bool log_dirty) { kvm_set_phys_mem(start_addr, size, phys_offset, log_dirty); }
16,426
1
static void balloon_stats_set_poll_interval(Object *obj, struct Visitor *v, void *opaque, const char *name, Error **errp) { VirtIOBalloon *s = opaque; Error *local_err = NULL; int64_t value; visit_type_int(v, &value, name, &local_err); if (local_err) { error_propagate(errp, local_err); return; } if (value < 0) { error_setg(errp, "timer value must be greater than zero"); return; } if (value > UINT_MAX) { error_setg(errp, "timer value is too big"); return; } if (value == s->stats_poll_interval) { return; } if (value == 0) { /* timer=0 disables the timer */ balloon_stats_destroy_timer(s); return; } if (balloon_stats_enabled(s)) { /* timer interval change */ s->stats_poll_interval = value; balloon_stats_change_timer(s, value); return; } /* create a new timer */ g_assert(s->stats_timer == NULL); s->stats_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL, balloon_stats_poll_cb, s); s->stats_poll_interval = value; balloon_stats_change_timer(s, 0); }
16,428
1
static OutputStream *choose_output(void) { int i; int64_t opts_min = INT64_MAX; OutputStream *ost_min = NULL; for (i = 0; i < nb_output_streams; i++) { OutputStream *ost = output_streams[i]; int64_t opts = av_rescale_q(ost->st->cur_dts, ost->st->time_base, AV_TIME_BASE_Q); if (!ost->finished && opts < opts_min) { opts_min = opts; ost_min = ost->unavailable ? NULL : ost; } } return ost_min; }
16,429
1
static int vfio_msi_setup(VFIOPCIDevice *vdev, int pos) { uint16_t ctrl; bool msi_64bit, msi_maskbit; int ret, entries; if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl), vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) { return -errno; } ctrl = le16_to_cpu(ctrl); msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT); msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT); entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1); trace_vfio_msi_setup(vdev->vbasedev.name, pos); ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit); if (ret < 0) { if (ret == -ENOTSUP) { return 0; } error_report("vfio: msi_init failed"); return ret; } vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0); return 0; }
16,430
1
static void gen_advance_ccount(DisasContext *dc) { gen_advance_ccount_cond(dc); dc->ccount_delta = 0; }
16,432
1
void init_paths(const char *prefix) { char pref_buf[PATH_MAX]; if (prefix[0] == '\0' || !strcmp(prefix, "/")) return; if (prefix[0] != '/') { char *cwd = getcwd(NULL, 0); size_t pref_buf_len = sizeof(pref_buf); if (!cwd) abort(); pstrcpy(pref_buf, sizeof(pref_buf), cwd); pstrcat(pref_buf, pref_buf_len, "/"); pstrcat(pref_buf, pref_buf_len, prefix); free(cwd); } else pstrcpy(pref_buf, sizeof(pref_buf), prefix + 1); base = new_entry("", NULL, pref_buf); base = add_dir_maybe(base); if (base->num_entries == 0) { g_free(base->pathname); free(base->name); free(base); base = NULL; } else { set_parents(base, base); } }
16,433
1
int bdrv_all_create_snapshot(QEMUSnapshotInfo *sn, BlockDriverState *vm_state_bs, uint64_t vm_state_size, BlockDriverState **first_bad_bs) { int err = 0; BlockDriverState *bs; BdrvNextIterator it; for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) { AioContext *ctx = bdrv_get_aio_context(bs); aio_context_acquire(ctx); if (bs == vm_state_bs) { sn->vm_state_size = vm_state_size; err = bdrv_snapshot_create(bs, sn); } else if (bdrv_can_snapshot(bs)) { sn->vm_state_size = 0; err = bdrv_snapshot_create(bs, sn); } aio_context_release(ctx); if (err < 0) { goto fail; } } fail: *first_bad_bs = bs; return err; }
16,434
1
void tb_target_set_jmp_target(uintptr_t tc_ptr, uintptr_t jmp_addr, uintptr_t addr) { if (TCG_TARGET_REG_BITS == 64) { tcg_insn_unit i1, i2; intptr_t tb_diff = addr - tc_ptr; intptr_t br_diff = addr - (jmp_addr + 4); uint64_t pair; /* This does not exercise the range of the branch, but we do still need to be able to load the new value of TCG_REG_TB. But this does still happen quite often. */ if (tb_diff == (int16_t)tb_diff) { i1 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, tb_diff); i2 = B | (br_diff & 0x3fffffc); } else { intptr_t lo = (int16_t)tb_diff; intptr_t hi = (int32_t)(tb_diff - lo); assert(tb_diff == hi + lo); i1 = ADDIS | TAI(TCG_REG_TB, TCG_REG_TB, hi >> 16); i2 = ADDI | TAI(TCG_REG_TB, TCG_REG_TB, lo); } #ifdef HOST_WORDS_BIGENDIAN pair = (uint64_t)i1 << 32 | i2; #else pair = (uint64_t)i2 << 32 | i1; #endif atomic_set((uint64_t *)jmp_addr, pair); flush_icache_range(jmp_addr, jmp_addr + 8); } else { intptr_t diff = addr - jmp_addr; tcg_debug_assert(in_range_b(diff)); atomic_set((uint32_t *)jmp_addr, B | (diff & 0x3fffffc)); flush_icache_range(jmp_addr, jmp_addr + 4); } }
16,436
1
static av_always_inline int setup_classifs(vorbis_context *vc, vorbis_residue *vr, uint8_t *do_not_decode, unsigned ch_used, int partition_count) { int p, j, i; unsigned c_p_c = vc->codebooks[vr->classbook].dimensions; unsigned inverse_class = ff_inverse[vr->classifications]; unsigned temp, temp2; for (p = 0, j = 0; j < ch_used; ++j) { if (!do_not_decode[j]) { temp = get_vlc2(&vc->gb, vc->codebooks[vr->classbook].vlc.table, vc->codebooks[vr->classbook].nb_bits, 3); av_dlog(NULL, "Classword: %u\n", temp); if ((int)temp < 0) return temp; av_assert0(vr->classifications > 1); //needed for inverse[] if (temp <= 65536) { for (i = partition_count + c_p_c - 1; i >= partition_count; i--) { temp2 = (((uint64_t)temp) * inverse_class) >> 32; if (i < vr->ptns_to_read) vr->classifs[p + i] = temp - temp2 * vr->classifications; temp = temp2; } } else { for (i = partition_count + c_p_c - 1; i >= partition_count; i--) { temp2 = temp / vr->classifications; if (i < vr->ptns_to_read) vr->classifs[p + i] = temp - temp2 * vr->classifications; temp = temp2; } } } p += vr->ptns_to_read; } return 0; }
16,438
1
static int xan_unpack(uint8_t *dest, const int dest_len, const uint8_t *src, const int src_len) { uint8_t opcode; int size; uint8_t *orig_dest = dest; const uint8_t *src_end = src + src_len; const uint8_t *dest_end = dest + dest_len; while (dest < dest_end) { opcode = *src++; if (opcode < 0xe0) { int size2, back; if ((opcode & 0x80) == 0) { size = opcode & 3; back = ((opcode & 0x60) << 3) + *src++ + 1; size2 = ((opcode & 0x1c) >> 2) + 3; } else if ((opcode & 0x40) == 0) { size = *src >> 6; back = (bytestream_get_be16(&src) & 0x3fff) + 1; size2 = (opcode & 0x3f) + 4; } else { size = opcode & 3; back = ((opcode & 0x10) << 12) + bytestream_get_be16(&src) + 1; size2 = ((opcode & 0x0c) << 6) + *src++ + 5; if (size + size2 > dest_end - dest) break; } if (src + size > src_end || dest + size + size2 > dest_end || dest - orig_dest + size < back) return -1; bytestream_get_buffer(&src, dest, size); dest += size; av_memcpy_backptr(dest, back, size2); dest += size2; } else { int finish = opcode >= 0xfc; size = finish ? opcode & 3 : ((opcode & 0x1f) << 2) + 4; if (src + size > src_end || dest + size > dest_end) return -1; bytestream_get_buffer(&src, dest, size); dest += size; if (finish) break; } } return dest - orig_dest; }
16,439
1
static void qht_do_test(unsigned int mode, size_t init_entries) { qht_init(&ht, 0, mode); insert(0, N); check(0, N, true); check_n(N); check(-N, -1, false); iter_check(N); rm(101, 102); check_n(N - 1); insert(N, N * 2); check_n(N + N - 1); rm(N, N * 2); check_n(N - 1); insert(101, 102); check_n(N); rm(10, 200); check_n(N - 190); insert(150, 200); check_n(N - 190 + 50); insert(10, 150); check_n(N); rm(1, 2); check_n(N - 1); qht_reset_size(&ht, 0); check(0, N, false); qht_destroy(&ht); }
16,440
0
static int mov_write_tkhd_tag(ByteIOContext *pb, MOVTrack* track) { int64_t maxTrackLenTemp; put_be32(pb, 0x5c); /* size (always 0x5c) */ put_tag(pb, "tkhd"); put_be32(pb, 0xf); /* version & flags (track enabled) */ put_be32(pb, track->time); /* creation time */ put_be32(pb, track->time); /* modification time */ put_be32(pb, track->trackID); /* track-id */ put_be32(pb, 0); /* reserved */ maxTrackLenTemp = ((int64_t)globalTimescale*(int64_t)track->trackDuration)/(int64_t)track->timescale; put_be32(pb, (long)maxTrackLenTemp); /* duration */ put_be32(pb, 0); /* reserved */ put_be32(pb, 0); /* reserved */ put_be32(pb, 0x0); /* reserved (Layer & Alternate group) */ /* Volume, only for audio */ if(track->enc->codec_type == CODEC_TYPE_AUDIO) put_be16(pb, 0x0100); else put_be16(pb, 0); put_be16(pb, 0); /* reserved */ /* Matrix structure */ put_be32(pb, 0x00010000); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x00010000); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x0); /* reserved */ put_be32(pb, 0x40000000); /* reserved */ /* Track width and height, for visual only */ if(track->enc->codec_type == CODEC_TYPE_VIDEO) { put_be32(pb, track->enc->width*0x10000); put_be32(pb, track->enc->height*0x10000); } else { put_be32(pb, 0); put_be32(pb, 0); } return 0x5c; }
16,441
1
static void quantize_and_encode_band_cost_NONE_mips(struct AACEncContext *s, PutBitContext *pb, const float *in, float *out, const float *scaled, int size, int scale_idx, int cb, const float lambda, const float uplim, int *bits, const float ROUNDING) { av_assert0(0); }
16,442
1
int qcrypto_cipher_setiv(QCryptoCipher *cipher, const uint8_t *iv, size_t niv, Error **errp) { QCryptoCipherNettle *ctx = cipher->opaque; if (niv != ctx->niv) { error_setg(errp, "Expected IV size %zu not %zu", ctx->niv, niv); return -1; } memcpy(ctx->iv, iv, niv); return 0; }
16,443
1
static int uhci_handle_td(UHCIState *s, uint32_t addr, UHCI_TD *td, uint32_t *int_mask, bool queuing) { UHCIAsync *async; int len = 0, max_len; uint8_t pid; USBDevice *dev; USBEndpoint *ep; /* Is active ? */ if (!(td->ctrl & TD_CTRL_ACTIVE)) return TD_RESULT_NEXT_QH; async = uhci_async_find_td(s, addr, td); if (async) { /* Already submitted */ async->queue->valid = 32; if (!async->done) return TD_RESULT_ASYNC_CONT; if (queuing) { /* we are busy filling the queue, we are not prepared to consume completed packages then, just leave them in async state */ return TD_RESULT_ASYNC_CONT; } uhci_async_unlink(async); goto done; } /* Allocate new packet */ async = uhci_async_alloc(uhci_queue_get(s, td), addr); /* valid needs to be large enough to handle 10 frame delay * for initial isochronous requests */ async->queue->valid = 32; async->isoc = td->ctrl & TD_CTRL_IOS; max_len = ((td->token >> 21) + 1) & 0x7ff; pid = td->token & 0xff; dev = uhci_find_device(s, (td->token >> 8) & 0x7f); ep = usb_ep_get(dev, pid, (td->token >> 15) & 0xf); usb_packet_setup(&async->packet, pid, ep); qemu_sglist_add(&async->sgl, td->buffer, max_len); usb_packet_map(&async->packet, &async->sgl); switch(pid) { case USB_TOKEN_OUT: case USB_TOKEN_SETUP: len = usb_handle_packet(dev, &async->packet); if (len >= 0) len = max_len; break; case USB_TOKEN_IN: len = usb_handle_packet(dev, &async->packet); break; default: /* invalid pid : frame interrupted */ uhci_async_free(async); s->status |= UHCI_STS_HCPERR; uhci_update_irq(s); return TD_RESULT_STOP_FRAME; } if (len == USB_RET_ASYNC) { uhci_async_link(async); return TD_RESULT_ASYNC_START; } async->packet.result = len; done: len = uhci_complete_td(s, td, async, int_mask); usb_packet_unmap(&async->packet); uhci_async_free(async); return len; }
16,444