content
stringlengths
5
1.05M
import numpy as np from sklearn import ensemble, tree, neural_network, svm models = { # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html "rf": { "model": ensemble.RandomForestRegressor, "param": { "n_jobs": lambda: np.random.choice([-1]), "n_estimators": lambda: np.random.randint(100, 300+1), "max_features": lambda: np.random.randint(1, 100+1), "max_depth": lambda: np.random.randint(1, 100+1), "min_samples_leaf": lambda: np.random.randint(1, 3+1) } }, # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html "gb": { "model": ensemble.GradientBoostingRegressor, "param": { "loss": lambda: np.random.choice(["huber"]), "learning_rate": lambda: np.random.uniform(0.03, 0.3), "n_estimators": lambda: np.random.randint(100, 300+1), "max_depth": lambda: np.random.randint(1, 5+1), "max_features": lambda: np.random.randint(1, 100+1), "subsample": lambda: np.random.uniform(0.1, 1.0), } }, # https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html "ab": { "model": ensemble.AdaBoostRegressor, "param": { "base_estimator": lambda: np.random.choice([ tree.DecisionTreeRegressor(max_depth=1), tree.DecisionTreeRegressor(max_depth=2), tree.DecisionTreeRegressor(max_depth=3), tree.DecisionTreeRegressor(max_depth=4), tree.DecisionTreeRegressor(max_depth=5), ]), "n_estimators": lambda: np.random.randint(20, 300+1), "learning_rate": lambda: np.random.uniform(0.1, 2.0), } }, # https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html "svm": { "model": svm.SVR, "param": { 'max_iter': lambda: 250000, "gamma": lambda: 10**np.random.uniform(-6, -1), "C": lambda: 10**np.random.uniform(-2, 3), "epsilon": lambda: np.random.choice([0.05, 0.1, 0.2]) } }, } class ModelGenerator(): def __init__(self, model_name, num_iterations=20, random_seed=42): from itertools import product from copy import copy self.model = models[model_name]["model"] self.params = models[model_name]["param"] self.num_iterations = num_iterations self.iteration = 0 self.random_seed = random_seed def __len__(self): return self.num_iterations def __iter__(self): return self def __next__(self): if self.iteration < self.num_iterations: np.random.seed(self.random_seed + self.iteration) self.iteration += 1 self.param = { k:v() for (k,v) in self.params.items() } return self.model(**self.param) raise StopIteration
""" Functions for simplifying the creation of a local dask cluster. License ------- The code in this notebook is licensed under the Apache License, Version 2.0 (https://www.apache.org/licenses/LICENSE-2.0). Digital Earth Africa data is licensed under the Creative Commons by Attribution 4.0 license (https://creativecommons.org/licenses/by/4.0/). Contact ------- If you need assistance, please post a question on the Open Data Cube Slack channel (http://slack.opendatacube.org/) or on the GIS Stack Exchange (https://gis.stackexchange.com/questions/ask?tags=open-data-cube) using the `open-data-cube` tag (you can view previously asked questions here: https://gis.stackexchange.com/questions/tagged/open-data-cube). If you would like to report an issue with this script, you can file one on Github https://github.com/digitalearthafrica/deafrica-sandbox-notebooks/issues .. autosummary:: :nosignatures: :toctree: gen """ import os import dask from datacube.utils.dask import start_local_dask from datacube.utils.rio import configure_s3_access from aiohttp import ClientConnectionError def create_local_dask_cluster( spare_mem="3Gb", aws_unsigned=True, display_client=True, **kwargs ): """ Using the datacube utils function 'start_local_dask', generate a local dask cluster. Example use : from deafrica_tools.dask import create_local_dask_cluster create_local_dask_cluster(spare_mem='4Gb') Parameters ---------- spare_mem : String, optional The amount of memory, in Gb, to leave for the notebook to run. This memory will not be used by the cluster. e.g '3Gb' aws_unsigned : Bool, optional This parameter determines if credentials for S3 access are required and passes them on to processing threads, either local or on dask cluster. Set to True if working with publicly available datasets, and False if working with private data. i.e if loading Landsat C2 provisional data set this to aws_unsigned=False display_client : Bool, optional An optional boolean indicating whether to display a summary of the dask client, including a link to monitor progress of the analysis. Set to False to hide this display. **kwargs: Additional keyword arguments that will be passed to start_local_dask(). E.g. n_workers can be set to be greater than 1. """ # configure dashboard link to go over proxy dask.config.set( { "distributed.dashboard.link": os.environ.get( "JUPYTERHUB_SERVICE_PREFIX", "/" ) + "proxy/{port}/status" } ) # start up a local cluster client = start_local_dask(mem_safety_margin=spare_mem, **kwargs) ## Configure GDAL for s3 access configure_s3_access(aws_unsigned=aws_unsigned, client=client) # Show the dask cluster settings if display_client: display(client) try: from dask_gateway import Gateway def create_dask_gateway_cluster(profile='r5_XL', workers=2): """ Create a cluster in our internal dask cluster. Parameters ---------- profile : str Possible values are: XL (2 cores, 15GB memory), 2XL (4 cores, 31GB memory), 4XL (8 cores, 62GB memory) workers : int Number of workers in the cluster. """ try: gateway = Gateway() options = gateway.cluster_options() options['profile'] = profile ## This Configuration is used for dask-worker pod labels options['jupyterhub_user'] = os.getenv('JUPYTERHUB_USER') cluster = gateway.new_cluster(options) cluster.scale(workers) return cluster except ClientConnectionError: raise ConnectionError("access to dask gateway cluster unauthorized") except ImportError: def create_dask_gateway_cluster(*args, **kwargs): raise NotImplementedError
from dolfin import * import numpy as np from petsc4py import PETSc class DirichletBoundary(SubDomain): def inside(self, x, on_boundary): return on_boundary def build_nullspace(V, x): """Function to build null space for 3D elasticity""" # Create list of vectors for null space nullspace_basis = [x.copy() for i in range(6)] # Build translational null space basis V.sub(0).dofmap().set(nullspace_basis[0], 1.0); V.sub(1).dofmap().set(nullspace_basis[1], 1.0); V.sub(2).dofmap().set(nullspace_basis[2], 1.0); # Build rotational null space basis V.sub(0).set_x(nullspace_basis[3], -1.0, 1); V.sub(1).set_x(nullspace_basis[3], 1.0, 0); V.sub(0).set_x(nullspace_basis[4], 1.0, 2); V.sub(2).set_x(nullspace_basis[4], -1.0, 0); V.sub(2).set_x(nullspace_basis[5], 1.0, 1); V.sub(1).set_x(nullspace_basis[5], -1.0, 2); for x in nullspace_basis: x.apply("insert") # Create vector space basis and orthogonalize basis = VectorSpaceBasis(nullspace_basis) basis.orthonormalize() return basis # Class for equilibrium solution of polycrystal class elasGrains: """ Solve incompatibility problem for post-processing HEDM results using FEniCS """ tol = 1E-9 def __init__(self,mesh_file,rotations_file,strains_file): global dof_min, dof_max parameters["linear_algebra_backend"] = "PETSc" self.mesh = Mesh(mesh_file + '.xml') self.grains = MeshFunction('size_t',self.mesh, mesh_file + '_physical_region.xml') # Function spaces self.V = VectorFunctionSpace(self.mesh, 'P', 1) self.V0 = TensorFunctionSpace(self.mesh, 'DG', 0) self.TFS = TensorFunctionSpace(self.mesh, 'DG', 0) self.VFS = VectorFunctionSpace(self.mesh, 'DG', 0) self.I_TFS_1 = TensorFunctionSpace(self.mesh, 'CG', 1) # Used in grad z problem # mesh dimensions self.dim = self.V.dim() self.N = self.mesh.geometry().dim() dof_coordinates = self.V.tabulate_dof_coordinates() dof_coordinates.resize((self.dim, self.N)) self.dof_min = dof_coordinates.min(axis=0) self.dof_max = dof_coordinates.max(axis=0) print(self.dof_min) print(self.dof_max) # Set up grain orientation self.rots = np.loadtxt(rotations_file) self.orient = Function(self.V0) # Vectorized version, used for processing averages/differences self.cell_num = np.arange(len(self.grains.array())) self.subdomain_num = self.grains.array()[:] - 1 for n in range(9): cell_num_list = list((9*self.cell_num)+n) self.orient.vector()[cell_num_list] = self.rots[self.subdomain_num,n] # Strains from hexrd self.exp_strn = np.loadtxt(strains_file) self.sim_avg = np.zeros((self.grains.array().max(),9)) self.ref_strain = np.zeros( (len(self.grains.array()),9) ) self.dVol = np.fromiter( (c.volume() for c in cells(self.mesh)), float, count=self.mesh.num_cells() ) self.dVol = self.dVol / self.dVol.sum() # For difference between lattice strain and experimental average self.strain_diff_1 = Function(self.VFS) self.strain_diff_2 = Function(self.VFS) self.strain_diff_3 = Function(self.VFS) # To reconstruct tensor from (three) solutions to incompatibility problem self.x_id = Expression(("1.0", "0.0", "0.0"), degree=1) self.y_id = Expression(("0.0", "1.0", "0.0"), degree=1) self.z_id = Expression(("0.0", "0.0", "1.0"), degree=1) # Helper functions for rotations and symmetric tensors (Don Boyce) def to6vector(self,w3x3): # return 6-vector form of 3x3 matrix return as_vector([w3x3[0,0], w3x3[1,1], w3x3[2,2], w3x3[1,2], w3x3[2,0], w3x3[0,1]]) def totensor(self,w6): # reconstruct tensor from 6-vector return as_matrix([[w6[0], w6[5], w6[4]], [w6[5], w6[1], w6[3]], [w6[4], w6[3], w6[2]]]) def tocrystal(self,w3x3): return self.orient.T*w3x3*self.orient def tosample(self,w3x3): return self.orient*w3x3*self.orient.T def sigc6(self,w): # for w a 3d vector field return dot(self.estf, self.to6vector(self.tocrystal(sym(grad(w))))) def sigc3x3(self,w): # for w a 3d vector field (displacement) return self.totensor(self.sigc6(w)) def sigs3x3(self,w): # stress in sample frame from displacement return self.tosample(self.sigc3x3(w)) # Factor of 2, following Boyce; see elasticity3d.cpp (parameter VALFAC) def Chcp(self,c11, c33, c44, c12, c13): c = as_vector( [c11, c12, c13, c33, c44, (c11-c12)/2.0] ) return as_matrix( [[c[0], c[1], c[2], 0, 0, 0], [c[1], c[0], c[2], 0, 0, 0], [c[2], c[2], c[3], 0, 0, 0], [0, 0, 0, 2*c[4], 0, 0], [0, 0, 0, 0, 2*c[4], 0], [0, 0, 0, 0, 0, 2*c[5]]] ) def Ccubic(self,c11, c12, c44): c = as_vector( [c11, c12, c44] ) return as_matrix( [[c[0], c[1], c[1], 0, 0, 0], [c[1], c[0], c[1], 0, 0, 0], [c[1], c[1], c[0], 0, 0, 0], [0, 0, 0, 2*c[2], 0, 0], [0, 0, 0, 0, 2*c[2], 0], [0, 0, 0, 0, 0, 2*c[2]]] ) # To derive stress from strain tensor def sigc6_e(self,eps): # For a strain tensor return dot(self.estf, self.to6vector(self.tocrystal(eps)) ) def sigs_e(self,eps): return self.tosample(self.totensor(self.sigc6_e(eps))) def X_0(self,u,v,w): return outer(self.x_id,u) + outer(self.y_id,v) + outer(self.z_id,w) def sym_dev(self,U): E = sym(U) return E - ( (1./3)*tr(E)*Identity(3) ) def applyBC(self,bc_list=None): self.bc_elas = bc_list def elasticity_problem(self,reuse_PC=False, rtol=1e-8, atol=1e-12): """Setup the elasticity solver. The petsc_amg preconditioner is used, with code taken from the (undocumented) FEniCS example demo_elasticity.py Keyword Arguments: reuse_PC -- reuse the preconditioner (default False) """ self.u = TrialFunction(self.V) self.d = self.u.geometric_dimension() # space dimension self.v = TestFunction(self.V) self.L_elas = dot(Constant((0,0,0)),self.v)*ds # Create PETSC smoothed aggregation AMG preconditioner self.pc_Eq = PETScPreconditioner("petsc_amg") # Use Chebyshev smoothing for multigrid PETScOptions.set("mg_levels_ksp_type", "chebyshev") PETScOptions.set("mg_levels_pc_type", "jacobi") # Improve estimate of eigenvalues for Chebyshev smoothing PETScOptions.set("mg_levels_esteig_ksp_type", "cg") PETScOptions.set("mg_levels_ksp_chebyshev_esteig_steps", 50) # Create CG Krylov solver and turn convergence monitoring on self.elasticity_solver = PETScKrylovSolver("cg", self.pc_Eq) self.elasticity_solver.parameters["monitor_convergence"] = True self.elasticity_solver.parameters["relative_tolerance"] = rtol self.elasticity_solver.parameters["absolute_tolerance"] = atol if reuse_PC: self.elasticity_solver.set_reuse_preconditioner(True) # For the solution self.ue = Function(self.V) # self.Ue = self.ue.vector() # Create near null space basis (required for smoothed aggregation # AMG). The solution vector is passed so that it can be copied to # generate compatible vectors for the nullspace. self.null_space = build_nullspace(self.V, self.ue.vector()) print(self.null_space) def solve_elas(self,x,E_p=None): """Solve the elasticity equilibrium problem. Keyword Arguments: E_p -- plastic distortion to be included in RHS (default None) Returns: res -- the residual error between experimental and simulated grain averages """ if x['Crystal_Structure'] == "Cubic": self.estf = self.Ccubic( x['Stiffness'][0], x['Stiffness'][1], x['Stiffness'][2] ) elif x['Crystal_Structure'] == "HCP": self.estf = self.Chcp( x['Stiffness'][0], x['Stiffness'][1], x['Stiffness'][2], x['Stiffness'][3], x['Stiffness'][4] ) # Update orientation for n in range(9): cell_num_list = list((9*self.cell_num)+n) self.orient.vector()[cell_num_list] = self.rots[self.subdomain_num,n] self.a = inner(self.sigs3x3(self.u), sym(grad(self.v)))*dx if E_p: # Note use of sym(), assuming E_p to be the \chi field L_elas_rhs = self.L_elas + inner(self.sigs_e(sym(E_p)), sym(grad(self.v)))*dx else: L_elas_rhs = self.L_elas self.A_elas, self.b_elas = assemble_system(self.a, L_elas_rhs, self.bc_elas) # Attach near nullspace to matrix as_backend_type(self.A_elas).set_near_nullspace(self.null_space) # Set matrix operator self.elasticity_solver.set_operator(self.A_elas); # Compute solution self.elasticity_solver.solve(self.ue.vector(), self.b_elas); if E_p: self.Ue_sym = project( sym(grad(self.ue) - E_p), self.TFS, solver_type="cg", preconditioner_type="ilu") else: self.Ue_sym = project( sym(grad(self.ue)), self.TFS, solver_type="cg", preconditioner_type="ilu") self.sim_strn = np.reshape(self.Ue_sym.vector().get_local(),(len(self.grains.array()),9)) for grain_no in range(self.grains.array().max()): # Grain numbering is 1 index origin cell_subset = self.grains.array()==(grain_no+1) if np.any(cell_subset): self.sim_avg[grain_no,:] = np.average(self.sim_strn[cell_subset,:], axis=0,weights=self.dVol[cell_subset]) deps = self.exp_strn - self.sim_avg resid = np.linalg.norm(deps.ravel()) print(resid) #,self.its) return resid def incompatibility_problem(self,reuse_PC=False, rtol=1e-8, atol=1e-12): """Setup the incompatibility solver. Keyword Arguments: reuse_PC -- reuse the preconditioner (default False) """ P1 = VectorFunctionSpace(self.mesh, 'CG', 1) self.PN = FunctionSpace(self.mesh, "Nedelec 1st kind H(curl)", 1) # Define test and trial functions self.inc_v0 = TestFunction(self.PN) u0 = TrialFunction(self.PN) self.T1 = Function(self.PN) # Solution for the curl curl problem self.T2 = Function(self.PN) # Solution for the curl curl problem self.T3 = Function(self.PN) # Solution for the curl curl problem # Boundary condition zero = Expression(("0.0", "0.0", "0.0"), degree=1) self.bc_X = DirichletBC(self.PN, zero, DirichletBoundary()) # LHS self.a_X = inner(curl(u0), curl(self.inc_v0))*dx # Create PETSc Krylov solver (from petsc4py) self.ksp_X = PETSc.KSP() self.ksp_X.create(PETSc.COMM_WORLD) # Set the Krylov solver type and set tolerances self.ksp_X.setType("cg") # self.ksp_X.setTolerances(rtol=1.0e-6, atol=1.0e-10, divtol=1.0e10, max_it=50) self.ksp_X.setTolerances(rtol=rtol, atol=atol, divtol=1.0e10, max_it=50) # Get the preconditioner and set type (HYPRE AMS) self.pc_X = self.ksp_X.getPC() self.pc_X.setType("hypre") self.pc_X.setHYPREType("ams") # Build discrete gradient PL = FunctionSpace(self.mesh, "Lagrange", 1) G = DiscreteOperators.build_gradient(self.PN, PL) # Attach discrete gradient to preconditioner self.pc_X.setHYPREDiscreteGradient(as_backend_type(G).mat()) # Build constants basis for the Nedelec space constants = [Function(self.PN) for i in range(3)] for i, c in enumerate(constants): direction = [1.0 if i == j else 0.0 for j in range(3)] c.interpolate(Constant(direction)) # Inform preconditioner of constants in the Nedelec space cvecs = [as_backend_type(constant.vector()).vec() for constant in constants] self.pc_X.setHYPRESetEdgeConstantVectors(cvecs[0], cvecs[1], cvecs[2]) # no 'mass' term) self.pc_X.setHYPRESetBetaPoissonMatrix(None) # preconditioner does not change if reuse_PC: self.pc_X.setReusePreconditioner(True) # Set options prefix self.ksp_X.setOptionsPrefix("inc_") # Turn on monitoring of residual self.opts = PETSc.Options() self.opts.setValue("inc_ksp_monitor_true_residual", None) # Tolerances are set above, could be modified using inc_ prefix # self.opts.setValue("inc_ksp_rtol", 1e-10) # self.opts.setValue("inc_ksp_atol", 1e-16) self.pc_X.setOptionsPrefix("inc_") self.pc_X.setFromOptions() # Solve eddy currents equation (using potential T) self.ksp_X.setFromOptions() def incompatibility_solve_cg(self, useAMS=True): """Solve the incompatibility problem. Keyword Arguments: useAMS -- use the HYPRE AMS preconditioner (default True) [alternative is jacobi preconditioner """ zero = Expression(("0.0", "0.0", "0.0"), degree=1) bc = DirichletBC(self.PN, zero, DirichletBoundary()) T1 = Function(self.PN) # Solution for the curl curl problem T2 = Function(self.PN) # Solution for the curl curl problem T3 = Function(self.PN) # Solution for the curl curl problem if useAMS: # Set operator for the linear solver L_X = inner(self.strain_diff_1, curl(self.inc_v0))*dx A_X, b_X = assemble_system(self.a_X, L_X, bc) self.ksp_X.setOperators(as_backend_type(A_X).mat()) self.ksp_X.solve(as_backend_type(b_X).vec(), as_backend_type(T1.vector()).vec()) # Show linear solver details self.ksp_X.view() # Solve 2nd system L_X = inner(self.strain_diff_2, curl(self.inc_v0))*dx A_X, b_X = assemble_system(self.a_X, L_X, bc) self.ksp_X.setOperators(as_backend_type(A_X).mat()) self.ksp_X.solve(as_backend_type(b_X).vec(), as_backend_type(T2.vector()).vec()) # Solve 3nd system L_X = inner(self.strain_diff_3, curl(self.inc_v0))*dx A_X, b_X= assemble_system(self.a_X, L_X, bc) self.ksp_X.setOperators(as_backend_type(A_X).mat()) self.ksp_X.solve(as_backend_type(b_X).vec(), as_backend_type(T3.vector()).vec()) else: ### vanilla CG works with potential as RHS L_X = inner(self.strain_diff_1, curl(self.inc_v0))*dx solve(self.a_X == L_X, T1, bc, solver_parameters={'linear_solver': 'cg', 'preconditioner': 'jacobi'}) L_X = inner(self.strain_diff_2, curl(self.inc_v0))*dx solve(self.a_X == L_X, T2, bc, solver_parameters={'linear_solver': 'cg', 'preconditioner': 'jacobi'}) L_X = inner(self.strain_diff_3, curl(self.inc_v0))*dx solve(self.a_X == L_X, T3, bc, solver_parameters={'linear_solver': 'cg', 'preconditioner': 'jacobi'}) return project( self.X_0(curl(T1),curl(T2),curl(T3)), self.TFS, solver_type="cg", preconditioner_type="ilu")
output_formats = ('txt', 'bin', 'hex')
import os import torch import pickle import pysmiles import matplotlib import numpy as np import multiprocessing as mp import matplotlib.pyplot as plt from model import GNN from openbabel import pybel from featurizer import MolEFeaturizer from dgl.dataloading import GraphDataLoader from sklearn.manifold import TSNE from sklearn.decomposition import PCA from networkx.algorithms.similarity import graph_edit_distance from property_pred.pp_data_processing import PropertyPredDataset matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 plt.figure(figsize=(7, 4)) query_smiles = 'C3=C(C2=CC=C(N1CCC(O)CC1)N=N2)C(=CC(=C3)Cl)Cl' # num 1196 molecule in BBBP dataset query_no = 1196 query_graph = pysmiles.read_smiles(query_smiles, zero_order_bonds=False) upper_bound = 50 timeout = 300 def get_sssr(args): if os.path.exists('../data/' + args.dataset + '/sssr.pkl'): print('loading GED data from ../data/' + args.dataset + '/sssr.pkl') with open('../data/' + args.dataset + '/sssr.pkl', 'rb') as f: res = pickle.load(f) else: smiles_list = [] print('processing ' + '../data/' + args.dataset + '/' + args.dataset + '.csv') with open('../data/' + args.dataset + '/' + args.dataset + '.csv') as f: for idx, line in enumerate(f.readlines()): if idx == 0: continue items = line.strip().split(',') if args.dataset == 'BBBP': smiles = items[-1] pysmiles.read_smiles(smiles) else: raise ValueError('unknown dataset') smiles_list.append(smiles) res = [len(pybel.readstring('smi', s).OBMol.GetSSSR()) for s in smiles_list] print('saving SSSR data to ../data/' + args.dataset + '/sssr.pkl') with open('../data/' + args.dataset + '/sssr.pkl', 'wb') as f: pickle.dump(res, f) return res def get_ged(args): if os.path.exists('../data/' + args.dataset + '/ged_wrt_' + str(query_no) + '.pkl'): print('loading GED data from ../data/' + args.dataset + '/ged_wrt_' + str(query_no) + '.pkl') with open('../data/' + args.dataset + '/ged_wrt_' + str(query_no) + '.pkl', 'rb') as f: res = pickle.load(f) else: smiles_list = [] print('processing ' + '../data/' + args.dataset + '/' + args.dataset + '.csv') with open('../data/' + args.dataset + '/' + args.dataset + '.csv') as f: for idx, line in enumerate(f.readlines()): if idx == 0: continue items = line.strip().split(',') if args.dataset == 'BBBP': smiles = items[-1] pysmiles.read_smiles(smiles) else: raise ValueError('unknown dataset') smiles_list.append(smiles) smiles2ged = calculate_ged_with_mp(smiles_list) res = [smiles2ged[s] for s in smiles_list] print('saving GED data to ../data/' + args.dataset + '/ged_wrt_' + str(query_no) + '.pkl') with open('../data/' + args.dataset + '/ged_wrt_' + str(query_no) + '.pkl', 'wb') as f: pickle.dump(res, f) return res def calculate_ged_with_mp(smiles_list): print('calculating GED using multiprocessing') n_cores, pool, range_list = get_params_for_mp(len(smiles_list)) dict_list = pool.map(calculate_ged, zip([smiles_list[i[0]: i[1]] for i in range_list], range(n_cores))) print('gathering results') res = {} for d in dict_list: res.update(d) return res def get_params_for_mp(n_pairs): n_cores = mp.cpu_count() pool = mp.Pool(n_cores) avg = n_pairs // n_cores range_list = [] start = 0 for i in range(n_cores): num = avg + 1 if i < n_pairs - avg * n_cores else avg range_list.append([start, start + num]) start += num return n_cores, pool, range_list def calculate_ged(inputs): def node_match(n1, n2): return n1['element'] == n2['element'] and n1['charge'] == n2['charge'] def edge_match(e1, e2): return e1['order'] == e2['order'] res = {} smiles_list, pid = inputs for i, smiles in enumerate(smiles_list): graph = pysmiles.read_smiles(smiles, zero_order_bonds=False) ged = graph_edit_distance( graph, query_graph, node_match=node_match, edge_match=edge_match, upper_bound=upper_bound, timeout=timeout) res[smiles] = ged print('pid %d: %d / %d' % (pid, i, len(smiles_list))) print('pid %d done' % pid) return res def draw(args): if args.subtask == 'reaction': model = MolEFeaturizer('../saved/' + args.pretrained_model) emb, _ = model.transform(['CCO', 'CC=O', 'CC(=O)-O', 'CCCCCCCCO', 'CCCCCCCC=O', 'CCCCCCCC(=O)O', 'OCCO', 'O=CC=O', 'OC(=O)C(=O)O' ]) emb = PCA(n_components=2).fit_transform(emb) color = ['red', 'darkorange', 'blue'] plt.plot(emb[0, 0], emb[0, 1], marker='o', color='red', markerfacecolor='none', markersize=8) plt.plot(emb[1, 0], emb[1, 1], marker='^', color='red', markerfacecolor='none', markersize=8) plt.plot(emb[2, 0], emb[2, 1], marker='s', color='red', markerfacecolor='none', markersize=8) plt.plot(emb[3, 0], emb[3, 1], marker='o', color='darkorange', markerfacecolor='none', markersize=8) plt.plot(emb[4, 0], emb[4, 1], marker='^', color='darkorange', markerfacecolor='none', markersize=8) plt.plot(emb[5, 0], emb[5, 1], marker='s', color='darkorange', markerfacecolor='none', markersize=8) plt.plot(emb[6, 0], emb[6, 1], marker='o', color='blue', markerfacecolor='none', markersize=8) plt.plot(emb[7, 0], emb[7, 1], marker='^', color='blue', markerfacecolor='none', markersize=8) plt.plot(emb[8, 0], emb[8, 1], marker='s', color='blue', markerfacecolor='none', markersize=8) plt.show() # plt.savefig('visualization/' + args.subtask + '.pdf', bbox_inches='tight') else: data = PropertyPredDataset(args) path = '../saved/' + args.pretrained_model + '/' print('loading hyperparameters of pretrained model from ' + path + 'hparams.pkl') with open(path + 'hparams.pkl', 'rb') as f: hparams = pickle.load(f) print('loading pretrained model from ' + path + 'model.pt') mole = GNN(hparams['gnn'], hparams['layer'], hparams['feature_len'], hparams['dim']) if torch.cuda.is_available(): mole.load_state_dict(torch.load(path + 'model.pt')) mole = mole.cuda(args.gpu) else: mole.load_state_dict(torch.load(path + 'model.pt', map_location=torch.device('cpu'))) dataloader = GraphDataLoader(data, batch_size=args.batch_size) emb = [] properties = [] with torch.no_grad(): mole.eval() for graphs_batch, labels_batch in dataloader: embeddings_batch = mole(graphs_batch) emb.append(embeddings_batch) properties.append(labels_batch) emb = torch.cat(emb, dim=0).cpu().numpy() properties = torch.cat(properties, dim=0).cpu().numpy() if args.subtask == 'size': n_quantiles = 4 sizes = [g.num_nodes() for g in data.graphs] thresholds = [np.quantile(sizes, i / n_quantiles) for i in range(1, n_quantiles)] labels = np.zeros_like(sizes) for i, q in enumerate(thresholds): labels[sizes >= q] = i + 1 legend = [r'1 $\leq$ size $<$ 18', r'18 $\leq$ size $<$ 23', r'23 $\leq$ size $<$ 28', r'28 $\leq$ size'] colors = ['lightskyblue', 'gold', 'darkorange', 'maroon'] elif args.subtask == 'property': labels = properties thresholds = [0.5] legend = ['non-permeable', 'permeable'] colors = ['maroon', 'gold'] elif args.subtask == 'ged': ged = get_ged(args) ged = np.array([d if d is not None else upper_bound + 10 for d in ged]) thresholds = [30, 50] labels = np.zeros_like(ged) for i, q in enumerate(thresholds): labels[ged >= q] = i + 1 legend = [r'1 $\leq$ GED $<$ 30', r'30 $\leq$ GED $<$ 50', r'50 $\leq$ GED'] colors = ['darkorange', 'lightskyblue', 'maroon'] elif args.subtask == 'ring': ring_cnt = np.array(get_sssr(args)) thresholds = [1, 2, 3] labels = np.zeros_like(ring_cnt) for i, q in enumerate(thresholds): labels[ring_cnt >= q] = i + 1 legend = [r'# rings $=$ 0', r'# rings $=$ 1', r'# rings $=$ 2', r'# rings $\geq$ 3'] colors = ['lightskyblue', 'gold', 'darkorange', 'maroon'] else: raise ValueError('unknown subtask') print('calculating TSNE embeddings') tsne = TSNE(random_state=0).fit_transform(emb) for i in range(len(thresholds) + 1): plt.scatter(tsne[labels == i, 0], tsne[labels == i, 1], s=3, c=colors[i]) plt.legend(legend, loc='upper right', fontsize=9, ncol=1) plt.show() # plt.savefig('visualization/' + args.subtask + '.pdf', bbox_inches='tight')
# Implementation of Shell Sort algorithm in Python def shellSort(arr): interval = 1 # Initializes interval while (interval < (len(arr) // 3)): interval = (interval * 3) + 1 while (interval > 0): for i in range(interval, len(arr)): # Select val to be inserted val = arr[i] j = i # Shift element right while ((j > interval - 1) and (arr[j - interval] >= val)): arr[j] = arr[j - interval] j -= interval # Insert val at hole position arr[j] = val # Calculate interval interval = (interval - 1) / 3 l = [4, 1, 2, 5, 3] print("Initial list: " + str(l)) shellSort(l) print("Sorted list: " + str(l))
from pensieve import Pensieve from chronometry.progress import ProgressBar from silverware import Link def get_special_data(wikipedia, name, echo=1): """ :type wikipedia: .Wikipedia.Wikipedia :type name: str :rtype: list[Pensieve] """ if name == 'country_pages': page = wikipedia.get_page(url='https://en.wikipedia.org/wiki/List_of_national_capitals') countries = list(page['tables'][0]['country']) for one_or_more_links in countries: if isinstance(one_or_more_links, list): for link in one_or_more_links: if isinstance(link, Link): yield wikipedia.get_page(url=link.url) elif isinstance(one_or_more_links, Link): yield wikipedia.get_page(url=one_or_more_links.url) if name == 'country_capital_pages': page = wikipedia.get_page(url='https://en.wikipedia.org/wiki/List_of_national_capitals') capitals = list(page['tables'][0]['city']) for one_or_more_links in capitals: if isinstance(one_or_more_links, list): for link in one_or_more_links: if isinstance(link, Link): yield wikipedia.get_page(url=link.url) elif isinstance(one_or_more_links, Link): yield wikipedia.get_page(url=one_or_more_links.url) if name == 'countries': page = wikipedia.get_page(url='https://en.wikipedia.org/wiki/List_of_national_capitals') table = page['tables'][0] def row_to_pensieve(row): pensieve = Pensieve(safe=False, warn_unsafe=False) pensieve['capital'] = row['city'][0] if isinstance(row['city'], list) else row['city'] pensieve['country'] = row['country'][0] if isinstance(row['country'], list) else row['country'] pensieve.store(key='capital_name', precursors=['capital'], function=lambda x: x.text, evaluate=False) pensieve.store( key='capital_page', precursors=['capital'], function=lambda x: wikipedia.get_page(url=x.url), evaluate=False ) pensieve.store(key='country_name', precursors=['country'], function=lambda x: x.text, evaluate=False) pensieve.store( key='country_page', precursors=['country'], function=lambda x: wikipedia.get_page(url=x.url), evaluate=False ) return pensieve return list(ProgressBar.apply(function=row_to_pensieve, data=table, echo=echo))
# -*- coding: utf-8 -*- import sys, os import datetime, time, json, time, random import argparse import operator import boto.ec2 import boto.iam import boto3 import win32com.client as win import getpass from utils import get_local_refs from logsetup import logger, log_event TASK_FOLDER = "\\Drift" PYTHON_PATH = r"c:\python27\python.exe" ROOT_PATH = os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), "..\\")) def get_run_task_name(ref): name = "Run ref=%s,%s" % (ref[0], ref[1]) return name def get_run_tasks(scheduler): objTaskFolder = scheduler.GetFolder(TASK_FOLDER) colTasks = objTaskFolder.GetTasks(1) ret = [(t.Definition.Actions[0].Arguments.split("--ref=")[-1].split(" ")[0], t.Name.split("=")[-1].split(",")[-1]) for t in colTasks if t.Name.startswith('Run ref=')] return set(ret) def remove_ref_task(scheduler, ref): logger.warning("Removing task for ref '%s'" % str(ref)) try: rootFolder = scheduler.GetFolder(TASK_FOLDER) task_id = get_run_task_name(ref) task = rootFolder.GetTask(task_id) logger.info(" Stopping task '%s'" % str(task_id)) task.Stop(0) task.Enabled = False time.sleep(5.0) logger.info(" Deleting task '%s'" % str(task_id)) rootFolder.DeleteTask(task_id, 0) logger.info(" Killing running processes ") from daemon import kill_processes_by_ref kill_processes_by_ref(ref[0], ref[1]) logger.info("Done removing task for ref '%s'" % str(ref)) except Exception as e: logger.error("Exception occurred removing task: %s" % e) def add_ref_task(scheduler, ref): logger.warning("Adding task for ref '%s'" % str(ref)) rootFolder = scheduler.GetFolder(TASK_FOLDER) action_id = get_run_task_name(ref) action_path = PYTHON_PATH action_arguments = os.path.join(ROOT_PATH, "run.py run --ref=%s --tenant=%s" % (ref[0], ref[1])) action_workdir = ROOT_PATH author = getpass.getuser() description = "Automatically created task from Drift Config" task_id = action_id.replace('/', '_') TASK_CREATE_OR_UPDATE = 6 TASK_ACTION_EXEC = 0 TASK_RUN_NO_FLAGS = 0 taskDef = scheduler.NewTask(0) colTriggers = taskDef.Triggers taskDef.Principal.UserId="NT Authority\\SYSTEM" taskDef.Principal.RunLevel=1 trigger = colTriggers.Create(1) trigger.StartBoundary = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S") trigger.Repetition.Interval = "PT1M" trigger.Repetition.StopAtDurationEnd = False trigger.Enabled = True colActions = taskDef.Actions action = colActions.Create(TASK_ACTION_EXEC) action.ID = action_id action.Path = action_path action.WorkingDirectory = action_workdir action.Arguments = action_arguments info = taskDef.RegistrationInfo info.Author = 'System' info.Description = description settings = taskDef.Settings settings.Enabled = True settings.Hidden = False settings.ExecutionTimeLimit = 'PT0S' # PT0S means run forever result = rootFolder.RegisterTaskDefinition(task_id, taskDef, TASK_CREATE_OR_UPDATE, "", "", TASK_RUN_NO_FLAGS) # start the task immediately task = rootFolder.GetTask(task_id) runningTask = task.Run("") logger.info("Task for ref '%s' is now running" % str(ref)) def update_tasks(): scheduler = win.Dispatch("Schedule.Service") scheduler.Connect() actual_refs = get_run_tasks(scheduler) wanted_refs = get_local_refs() print "Currently installed refs: %s" % ", ".join(["%s:%s" % (r[0], r[1]) for r in actual_refs]) print "I want to run the following refs: %s" % ", ".join(["%s:%s" % (r[0], r[1]) for r in wanted_refs]) if actual_refs == wanted_refs: logger.info('Wanted refs match installed refs. Nothing to do.') sys.exit(0) refs_to_remove = actual_refs - wanted_refs refs_to_add = wanted_refs - actual_refs for ref in refs_to_remove: remove_ref_task(scheduler, ref) log_event("remove_ref_task", "Removed task for ref '%s'" % ref[0], ref=ref[0], tenant_name=ref[1]) for ref in refs_to_add: add_ref_task(scheduler, ref) log_event("add_ref_task", "Added task for ref '%s'" % ref[0], ref=ref[0], tenant_name=ref[1])
# --------------------------------------------------------- # IOU Tracker # Copyright (c) 2017 TU Berlin, Communication Systems Group # Licensed under The MIT License [see LICENSE for details] # Written by Erik Bochinski # --------------------------------------------------------- from time import time from util import load_mot, iou def track_iou(detections, sigma_l, sigma_h, sigma_iou, t_min): """ Simple IOU based tracker. See "High-Speed Tracking-by-Detection Without Using Image Information by E. Bochinski, V. Eiselein, T. Sikora" for more information. Args: detections (list): list of detections per frame, usually generated by util.load_mot sigma_l (float): low detection threshold. sigma_h (float): high detection threshold. sigma_iou (float): IOU threshold. t_min (float): minimum track length in frames. Returns: list: list of tracks. """ tracks_active = [] tracks_finished = [] for frame_num, detections_frame in enumerate(detections, start=1): # apply low threshold to detections dets = [det for det in detections_frame if det['score'] >= sigma_l] updated_tracks = [] for track in tracks_active: if len(dets) > 0: # get det with highest iou best_match = max(dets, key=lambda x: iou(track['bboxes'][-1], x['bbox'])) if iou(track['bboxes'][-1], best_match['bbox']) >= sigma_iou: track['bboxes'].append(best_match['bbox']) track['max_score'] = max(track['max_score'], best_match['score']) track['label'] = best_match['label'] updated_tracks.append(track) # remove from best matching detection from detections del dets[dets.index(best_match)] # if track was not updated if len(updated_tracks) == 0 or track is not updated_tracks[-1]: # finish track when the conditions are met if track['max_score'] >= sigma_h and len( track['bboxes']) >= t_min: tracks_finished.append(track) # create new tracks new_tracks = [{'bboxes': [det['bbox']], 'max_score': det['score'], 'start_frame': frame_num} for det in dets] tracks_active = updated_tracks + new_tracks # finish all remaining active tracks tracks_finished += [track for track in tracks_active if track['max_score'] >= sigma_h and len( track['bboxes']) >= t_min] return tracks_finished def track_iou_matlab_wrapper(detections, sigma_l, sigma_h, sigma_iou, t_min): """ Matlab wrapper of the iou tracker for the detrac evaluation toolkit. Args: detections (numpy.array): numpy array of detections, usually supplied by run_tracker.m sigma_l (float): low detection threshold. sigma_h (float): high detection threshold. sigma_iou (float): IOU threshold. t_min (float): minimum track length in frames. Returns: float: speed in frames per second. list: list of tracks. """ detections = detections.reshape((7, -1)).transpose() dets = load_mot(detections) start = time() tracks = track_iou(dets, sigma_l, sigma_h, sigma_iou, t_min) end = time() id_ = 1 out = [] for track in tracks: for i, bbox in enumerate(track['bboxes']): out += [float(bbox[0]), float(bbox[1]), float(bbox[2] - bbox[0]), float(bbox[3] - bbox[1]), float(track['start_frame'] + i), float(id_)] id_ += 1 num_frames = len(dets) speed = num_frames / (end - start) return speed, out
from typing import List class Solution: def getRow(self, rowIndex: int) -> List[int]: result = [0] * (rowIndex + 1) result[0] = 1 for i in range(1, rowIndex + 1): for j in range(i, 0, -1): result[j] += result[j - 1] return result
import i3 workspaces = i3.get_workspaces() for workspace in workspaces: if workspace['focused']: if workspace["name"] != "1": i3.command('move', 'container to workspace number ' + str(int(workspace["name"])-1)) else: i3.command('move', 'container to workspace number 10')
import Orange data = Orange.data.Table("lenses") print("Attributes:", ", ".join(x.name for x in data.domain.attributes)) print("Class:", data.domain.class_var.name) print("Data instances", len(data)) target = "soft" print("Data instances with %s prescriptions:" % target) atts = data.domain.attributes for d in data: if d.get_class() == target: print(" ".join(["%14s" % str(d[a]) for a in atts]))
import tempfile from pathlib import PosixPath import pytest from django.test import TestCase from mock import Mock from model_mommy import mommy from miseq_portal.miseq_viewer.models import * pytestmark = pytest.mark.django_db def test_validate_sample_id(): assert validate_sample_id('BMH-2017-000001') is True with pytest.raises(ValidationError): assert validate_sample_id('VALIDATION_ERROR') with pytest.raises(ValidationError): assert validate_sample_id('AAAA-2017-000001') with pytest.raises(ValidationError): assert validate_sample_id('BMH-TEST-000001') with pytest.raises(ValidationError): assert validate_sample_id('BMH-2017-AAAAAA') def test_upload_run_file(): run = Mock(spec=Run) run.id = 1 run.run_id = "MOCK_RUN_01" run.run_type = 'BMH' filename = 'test_file' assert upload_run_file(run, filename) == f'uploads/runs/{run.run_id}/{filename}' def test_upload_interop_file(): run = Mock(spec=Run) run.id = 1 run.run_id = "MOCK_RUN_01" run.run_type = "BMH" runinterop = Mock(spec=RunInterOpData) runinterop.id = 1 runinterop.run_id = run filename = 'test_file' assert upload_interop_file(runinterop, filename) == f'uploads/runs/{runinterop.run_id}/InterOp/{filename}' def test_upload_interop_dir(): run = Mock(spec=Run) run.id = 1 run.run_id = "MOCK_RUN_01" run.run_type = "BMH" assert upload_interop_dir(run) == f'uploads/runs/{run.run_id}/InterOp/' def test_upload_reads(): # Run mock run = Mock(spec=Run) run.id = 1 run.run_id = "MOCK_RUN_01" filename = "test_file" # BMH sample mock sample1 = Mock(spec=Sample) sample1.id = 1 sample1.run_id = run sample1.sample_type = 'BMH' sample1.sample_id = "BMH-2017-000001" # MER sample mock sample2 = Mock(spec=Sample) sample2.id = 2 sample2.sample_type = 'MER' sample2.sample_id = "MER-2017-000001" assert upload_reads(sample1, filename) == f'uploads/runs/{sample1.run_id}/{sample1.sample_id}/{filename}' assert upload_reads(sample2, filename) == f'merged_samples/{sample2.sample_id}/{filename}' def test_upload_assembly(): filename = "test_file" # Run mock run = Mock(spec=Run) run.id = 1 run.run_id = "MOCK_RUN_01" # BMH sample mock sample1 = Mock(spec=Sample) sample1.id = 1 sample1.run_id = run sample1.sample_type = 'BMH' sample1.sample_id = "BMH-2017-000001" # MER sample mock sample2 = Mock(spec=Sample) sample2.id = 2 sample2.sample_type = 'MER' sample2.sample_id = "MER-2017-000001" # Mock SampleAssemblyData assembly1 = Mock(spec=SampleAssemblyData) assembly1.sample_id = sample1 assembly2 = Mock(spec=SampleAssemblyData) assembly2.sample_id = sample2 assert upload_assembly(assembly1, filename) == f'uploads/runs/{assembly1.sample_id.run_id}/{assembly1.sample_id}/assembly/{filename}' assert upload_assembly(assembly2, filename) == f'merged_samples/{assembly2.sample_id}/assembly/{filename}' class ProjectTest(TestCase): @staticmethod def test_project_creation(): proj = mommy.make(Project) assert isinstance(proj, Project) assert proj.__str__() == proj.project_id class UserProjectRelationshipTest(TestCase): @staticmethod def test_user_project_relationship_creation(): rel = mommy.make(UserProjectRelationship) assert isinstance(rel, UserProjectRelationship) assert rel.__str__() == str(rel.project_id) + ':' + str(rel.user_id) class RunTest(TestCase): def setUp(self): self.run = mommy.make(Run) self.test_path = '/test/path' self.run.interop_directory_path = self.test_path def test_project_creation(self): assert isinstance(self.run, Run) assert self.run.__str__() == self.run.run_id def test_get_interop_directory(self): assert type(self.run.get_interop_directory()) is PosixPath assert str(self.run.get_interop_directory()) == self.test_path class RunInterOpDataTest(TestCase): @staticmethod def test_run_inter_op_data_creation(): data = mommy.make(RunInterOpData) assert isinstance(data, RunInterOpData) assert data.__str__() == str(data.run_id) + '_InterOp' class MergedSampleComponentGroupTest(TestCase): @staticmethod def test_merged_sample_component_group_creation(): component_group = mommy.make(MergedSampleComponentGroup) assert isinstance(component_group, MergedSampleComponentGroup) assert component_group.__str__() == f"MergedSampleComponentGroup ({str(component_group.pk)})" class SampleTest(TestCase): def setUp(self): self.bmh_sample = mommy.make(Sample) self.bmh_sample.sample_id = 'BMH-2017-000001' self.bmh_sample.sample_name = 'test_sample_name' self.bmh_sample.sample_type = 'BMH' self.mer_sample = mommy.make(Sample) self.mer_sample.sample_name = 'test_sample_name' self.mer_sample.sample_type = 'MER' self.mer_sample.sample_id = self.mer_sample.generate_sample_id() def test_sample_creation(self): assert isinstance(self.bmh_sample, Sample) assert self.bmh_sample.__str__() == self.bmh_sample.sample_id def test_sample_year(self): assert self.bmh_sample.sample_year == str(self.bmh_sample.created.year) def test_generate_sample_id(self): assert self.mer_sample.sample_id == \ f'{self.mer_sample.sample_type}-{self.mer_sample.sample_year}-{self.mer_sample.pk:06}' class MergedSampleComponentTest(TestCase): @staticmethod def test_merged_sample_component_creation(): component = mommy.make(MergedSampleComponent) assert isinstance(component, MergedSampleComponent) assert component.__str__() == f"{component.component_id} ({component.group_id})" class SampleLogDataTest(TestCase): def setUp(self): self.sample_log_data = mommy.make(SampleLogData) self.sample_log_data.sample_yield = 1000000 def test_sample_log_data_creation(self): assert isinstance(self.sample_log_data, SampleLogData) assert self.sample_log_data.__str__() == str(self.sample_log_data.sample_id) def test_sample_yield_mbp(self): assert self.sample_log_data.sample_yield_mbp == float(self.sample_log_data.sample_yield / 1000000) class SampleAssemblyDataTest(TestCase): def setUp(self): self.sample_assembly_data = mommy.make(SampleAssemblyData) def test_sample_assembly_data_creation(self): assert isinstance(self.sample_assembly_data, SampleAssemblyData) assert self.sample_assembly_data.__str__() == str(self.sample_assembly_data.sample_id) def test_get_assembly_path(self): assembly = tempfile.NamedTemporaryFile(mode='w+', encoding='utf-8') assembly.write(">TEST\nATCG") assembly.flush() self.sample_assembly_data.assembly = str(assembly.name) assert type(self.sample_assembly_data.get_assembly_path()) == PosixPath def test_assembly_exists(self): assert self.sample_assembly_data.assembly_exists() is False # Create assembly then check if fn returns True assembly = tempfile.NamedTemporaryFile(mode='w+', encoding='utf-8') assembly.write(">TEST\nATCG") assembly.flush() self.sample_assembly_data.assembly = str(assembly.name) assert self.sample_assembly_data.assembly_exists() is True
from bunny_storm import RabbitMQConnectionData def test_connection_data_creation() -> None: # Arrange expected_user = "user" expected_pass = "pass" expected_host = "8.8.8.8" default_port = 5672 default_vhost = "/" expected_uri = f"amqp://{expected_user}:{expected_pass}@{expected_host}:{default_port}/" # Act connection_data = RabbitMQConnectionData(username=expected_user, password=expected_pass, host=expected_host) # Assert assert connection_data.username == expected_user assert connection_data.password == expected_pass assert connection_data.host == expected_host assert connection_data.port == default_port assert connection_data.virtual_host == default_vhost assert connection_data.uri() == expected_uri
#!/usr/bin/env python3 """Convert person detections from the patched Darknet output to a pickle format. The patched Darknet output is like: Enter Image Path: /some/path1.jpg: Predicted in 0.035027 seconds. cell phone: 12.924% Box (LTWH): 1319,367,75,120 car: 86.035% truck: 13.739% Box (LTWH): 1799,345,79,47 Enter Image Path: /some/path2.jpg: Predicted in 0.035093 seconds. cell phone: 14.358% Box (LTWH): 1320,367,1333,382 So per image it outputs multiple boxes, and for each box multiple class labels, each with its own confidence. """ import argparse import logging import os.path import pickle import re import sys import numpy as np def main(): flags = initialize() logging.info(f'Opening {flags.in_path}') with open(flags.in_path, 'r') as f: darknet_output_text = f.read() detections_per_image = {} if flags.relpath_components != 'auto': flags.relpath_components = int(flags.relpath_components) elif not flags.root_dir: matches = re.finditer(IMAGE_REGEX, darknet_output_text, flags=re.MULTILINE | re.DOTALL) paths = [m['path'] for m in matches] flags.root_dir = os.path.commonprefix(paths) for m_image in re.finditer(IMAGE_REGEX, darknet_output_text, flags=re.MULTILINE | re.DOTALL): relative_image_path = get_relpath(m_image['path'], flags) detections_per_image.setdefault(relative_image_path, []) for m_object in re.finditer(OBJECT_REGEX, m_image['objects'], flags=re.MULTILINE): if m_object is None: continue bbox = m_object_to_bbox(m_object) if not is_shape_plausible(bbox): continue for m_class in re.finditer(CLASS_REGEX, m_object['classes'], flags=re.MULTILINE): if m_class['classname'] == 'person': confidence = float(m_class['conf']) / 100 bbox_with_confidence = [*bbox, confidence] detections_per_image[relative_image_path].append(bbox_with_confidence) if not detections_per_image[relative_image_path]: logging.warning(f'No detections for {relative_image_path}, {m_image["path"]}') for relative_image_path, detections in detections_per_image.items(): if not detections: logging.warning(f'No detections for {relative_image_path}') logging.info(f'Number of images: {len(detections_per_image)}') n_images_without_detections = len([1 for x in detections_per_image.values() if not x]) logging.info(f'Number of images without detections: {n_images_without_detections}') n_detections = sum(len(v) for v in detections_per_image.values()) logging.info(f'Total number of detections: {n_detections}') logging.info(f'Saving file to {flags.out_path}') with open(flags.out_path, 'wb') as f: pickle.dump(detections_per_image, f, protocol=pickle.HIGHEST_PROTOCOL) def get_relpath(p, flags): if flags.root_dir: return os.path.relpath(p, flags.root_dir) return last_path_components(p, flags.relpath_components) def m_object_to_bbox(m_object): x1, y1, w, h = [int(x) for x in re.findall(r'\d+', m_object['coords'])] return np.array([x1, y1, w, h]) def is_shape_plausible(bbox): x, y, w, h = bbox aspect_ratio = w / h return w > 30 and 1 / 15 < aspect_ratio < 15 def initialize(): parser = argparse.ArgumentParser() parser.add_argument('--in-path', type=str, required=True) parser.add_argument('--out-path', type=str, default=None) parser.add_argument('--loglevel', type=str, default='error') parser.add_argument('--relpath-components', default='auto') parser.add_argument('--root-dir') flags = parser.parse_args() if flags.out_path is None: flags.out_path = flags.in_path.replace('.txt', '.pickle') loglevel = dict(error=30, warning=20, info=10)[flags.loglevel] simple_formatter = logging.Formatter('{asctime}-{levelname:^1.1} -- {message}', style='{') print_handler = logging.StreamHandler(sys.stdout) print_handler.setLevel(loglevel) print_handler.setFormatter(simple_formatter) logging.basicConfig(level=loglevel, handlers=[print_handler]) return flags def split_path(path): return os.path.normpath(path).split(os.path.sep) def last_path_components(path, n_components): components = split_path(path) return os.path.sep.join(components[-n_components:]) IMAGE_REGEX = r"""(Enter Image Path: )*Enter Image Path: (?P<path>.+?): Predicted in .+? seconds\. (?P<objects>.*?)(?=Enter)""" OBJECT_REGEX = r"""(?P<classes>(?:.+?: .+?% )+)Box \(LTWH\): (?P<coords>.+?) """ CLASS_REGEX = r"""(?P<classname>.+?): (?P<conf>.+)%""" if __name__ == '__main__': main()
import numpy as np import histoptimizer name = 'enumerate' def partition_generator(num_items: int, num_buckets: int) -> list: """ Given a number of items `num_items` and a number of buckets `num_buckets`, enumerate lists of all the possible combinations of divider locations that partition `num_items` into `num_buckets`. The strategy is to start at the enumeration that has each divider in its left-most possible location, and then iterate all possible locations of the last (right-most) divider before incrementing the next-to-last and again iterating all possible locations of the last divider. When there are no more valid locations for the next-to-last divider, then the previous divider is incremented and the process repeated, and so on until the first divider and all subsequent dividers are in their largest (right-most) possible locations. """ num_dividers = num_buckets - 1 last_divider = num_dividers - 1 partition = [x for x in range(1, num_dividers+1)] # Start with the first valid partition. last_partition = [x for x in range(num_items - num_dividers, num_items)] # We know what the last partition is. current_divider = last_divider # Deal with single-divider/two-bucket case if num_dividers == 1: for last_location in range(1, num_items): partition[0] = last_location yield partition return while True: if current_divider == last_divider: for last_location in range(partition[current_divider-1] + 1, num_items): partition[last_divider] = last_location yield partition if partition == last_partition: return # partition[last_divider] = 0 current_divider -= 1 else: if partition[current_divider] == 0: partition[current_divider] = partition[current_divider-1] + 1 current_divider += 1 elif partition[current_divider] < (num_items - (last_divider - current_divider)): partition[current_divider] += 1 current_divider += 1 else: for divider in range(current_divider, num_dividers): partition[divider] = 0 current_divider -= 1 # if this is the last divider, then loop through all possible values yielding each # then decrease the current divider location and set an increment flag # if not last divider: # check the current location of the current divider # if it is zero, set to the minimum valid value (previous divider location + 1) # elif it is less than the max location value, increment it and move to the next divider location # elif it is at the max location value, then set it and all subsequent location values to 0 # and move to previous divider. # End loop when all dividers are set at their last possible locations. def partition(items, num_buckets, debug_info=None, mean=None): min_variance = np.inf best_partition = None n = len(items) if mean is None: mean = sum(items) / num_buckets prefix_sums = [0]*len(items) prefix_sums[0] = items[0] for i in range(1, len(items)): prefix_sums[i] = prefix_sums[i-1] + items[i] previous_dividers = [0] * (num_buckets - 1) variances = [0.0] * num_buckets # partitition_sums = [0.0] * num_buckets for dividers in partition_generator(n, num_buckets): divider_index = 0 variance = 0.0 # Most of the time, only one divider location has changed. # Retain the previous prefix sums and variances to save time. # If there are only two buckets, the single divider location has always changed. while num_buckets > 2 and (dividers[divider_index] == previous_dividers[divider_index]): divider_index += 1 for partition_index in range(0, num_buckets): if divider_index - 1 >= partition_index: pass # variances[partition_index] already contains the correct value from the previous iteration. elif partition_index == 0: variances[0] = (prefix_sums[dividers[0] - 1] - mean)**2 elif partition_index == (num_buckets - 1): variances[partition_index] = (prefix_sums[-1] - prefix_sums[dividers[-1] - 1] - mean) ** 2 else: variances[partition_index] = ( (prefix_sums[dividers[partition_index] - 1] - prefix_sums[dividers[partition_index - 1] - 1] - mean) ** 2) variance += variances[partition_index] if variance < min_variance: min_variance = variance best_partition = dividers[:] previous_dividers[:] = dividers[:] return np.array(best_partition), min_variance / num_buckets
#encoding=utf8 import os from wox import Wox,WoxAPI from datetime import date #Your class must inherit from Wox base class https://github.com/qianlifeng/Wox/blob/master/PythonHome/wox.py #The wox class here did some works to simplify the communication between Wox and python plugin. class Main(Wox): obsidian_vault =os.path.join("P:\\", "obsidian") journal_folder = "Journal" timing_format="%Y-%m-%d" journalfile = os.path.join(obsidian_vault, journal_folder, date.today().strftime(timing_format)+'.md') message="" # A function named query is necessary, we will automatically invoke this function when user query this plugin # query is default function to receive realtime keystrokes from wox launcher def query(self,query): # results has a confirmation where key was added results = [] results.append({ "Title": "Obsidian Journal", "SubTitle": "Append to Journal today: {}".format(query), "IcoPath":"Images/obsidian_logo.png", "ContextData": "ctxdata", "JsonRPCAction": { 'method': 'take_action', 'parameters': ["{}".format(query)], 'dontHideAfterAction': True } }) return results # context_menu is default function called for ContextData where `data = ctxData` def context_menu(self, data): results = [] results.append({ "Title": "Context menu entry", "SubTitle": "Data: {}".format(data), "IcoPath":"Images/obsidian_logo.png" }) return results def take_action(self, SomeArgument): if os.path.isfile(Main.journalfile): try: f = open(Main.journalfile, "a") f.write(SomeArgument + "\n") except IOError: print("File not accessible") finally: f.close() else: try: f = open(Main.journalfile, "w") f.write(SomeArgument + "\n") except IOError: print("File not accessible") finally: f.close() return None #Following statement is necessary if __name__ == "__main__": Main()
import xlrd import os import sys # rootdir = 'D:/工作/code/electric/' rootdir = sys.argv[1] xlrd.Book.encoding = "gbk" sumnum=0 filenum = 0 list = os.listdir(rootdir) #列出文件夹下所有的目录与文件 for i in range(0,len(list)): path = os.path.join(rootdir,list[i]) if os.path.isfile(path): print('正在处理:'+path) data = xlrd.open_workbook(path) table = data.sheet_by_index(0) # table = data.sheet_by_name(u'Sheet1') nrows = table.nrows data.release_resources() sumnum=sumnum+nrows filenum=filenum+1 print('-------------------------------------------------------------------------') print('共有%d个文件'%filenum) print('共有%d行记录'%sumnum)
#!/usr/bin/env python import sys import subprocess import dbus import string import os import fcntl import glib import gobject import dbus.service import dbus.mainloop.glib DBUS_NAME = 'org.openbmc.HostIpmi' OBJ_NAME = '/org/openbmc/HostIpmi/1' def header(seq, netfn, lun, cmd): return ( 'seq: 0x%02x\nnetfn: 0x%02x\n\nlun: 0x%02d\ncmd: 0x%02x\n') % ( seq, netfn, lun, cmd) def print_request(seq, netfn, lun, cmd, data): str = header(seq, netfn, lun, cmd) str += 'data: [%s]' % ', '.join(['0x%02x' % x for x in data]) print str def print_response(seq, netfn, lun, cmd, cc, data): str = header(seq, netfn, lun, cmd) str += 'cc: 0x%02x\ndata: [%s]' % ( cc, ', '.join(['0x%02x' % x for x in data]) ) print str class IpmiDebug(dbus.service.Object): def __init__(self, bus, name): dbus.service.Object.__init__(self, bus, name) @dbus.service.signal(DBUS_NAME, "yyyyay") def ReceivedMessage(self, seq, netfn, lun, cmd, data): print "IPMI packet from host:" print_request(seq, netfn, lun, cmd, data) @dbus.service.method(DBUS_NAME, "yyyyyay", "x") def sendMessage(self, seq, netfn, lun, cmd, ccode, data): print "IPMI packet sent to host:" print_response(seq, netfn, lun, cmd, ccode, data) return 0 @dbus.service.method(DBUS_NAME) def setAttention(self): print "IPMI SMS_ATN set" class ConsoleReader(object): def __init__(self, ipmi_obj): self.buffer = '' self.seq = 0 self.ipmi_obj = ipmi_obj flags = fcntl.fcntl(sys.stdin.fileno(), fcntl.F_GETFL) flags |= os.O_NONBLOCK fcntl.fcntl(sys.stdin.fileno(), fcntl.F_SETFL, flags) glib.io_add_watch(sys.stdin, glib.IO_IN, self.io_callback) def io_callback(self, fd, condition): chunk = fd.read() for char in chunk: self.buffer += char if char == '\n': self.line(self.buffer) self.buffer = '' return True def line(self, data): s = data.split(' ') if len(s) < 2: print "Not enough bytes to form a valid IPMI packet" return try: data = [int(c, 16) for c in s] except ValueError: return self.seq += 1 self.ipmi_obj.ReceivedMessage(self.seq, data[0], 0, data[1], data[2:]) def main(): dbus.mainloop.glib.DBusGMainLoop(set_as_default=True) bus = dbus.SystemBus() obj = IpmiDebug(bus, OBJ_NAME) mainloop = gobject.MainLoop() r = ConsoleReader(obj) obj.unmask_signals() name = dbus.service.BusName(DBUS_NAME, bus) print ("Enter IPMI packet as hex values. First three bytes will be used" "as netfn and cmd.\nlun will be zero.") mainloop.run() if __name__ == '__main__': sys.exit(main()) # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4
import os import pickle import numpy as np import torch import torch.nn.functional as F from torch.optim import Adam from torch.utils.data import DataLoader from molgrad.net import MPNNPredictor from molgrad.net_utils import GraphData, collate_pair from molgrad.utils import DATA_PATH, MODELS_PATH, LOG_PATH from molgrad.train import ( N_MESSPASS, BATCH_SIZE, INITIAL_LR, N_EPOCHS, DEVICE, NUM_WORKERS, TASK_GUIDE, rmse, train_loop, ) if __name__ == "__main__": for data in TASK_GUIDE.keys(): print(f'Now training production model for {data} dataset...') if TASK_GUIDE[data] == "regression": loss_fn = F.mse_loss elif TASK_GUIDE[data] == "binary": loss_fn = F.binary_cross_entropy_with_logits else: raise ValueError("Task not supported") # public training with open(os.path.join(DATA_PATH, f"{data}", f"data_{data}.pt"), "rb") as handle: inchis, values = pickle.load(handle) inchis = np.array(inchis) values = np.array(values)[:, np.newaxis] mask = np.array([True for l in range(values.shape[0])])[:, np.newaxis] data_train = GraphData(inchis, values, mask, add_hs=False) sample_item = data_train[0] a_dim = sample_item[0].ndata["feat"].shape[1] e_dim = sample_item[0].edata["feat"].shape[1] g_dim = len(sample_item[1]) loader_train = DataLoader( data_train, batch_size=BATCH_SIZE, shuffle=True, collate_fn=collate_pair, num_workers=NUM_WORKERS, ) model = MPNNPredictor( node_in_feats=a_dim, edge_in_feats=e_dim, global_feats=g_dim, n_tasks=values.shape[1], num_step_message_passing=N_MESSPASS, output_f=None, ).to(DEVICE) opt = Adam(model.parameters(), lr=INITIAL_LR) train_losses = [] for epoch_no in range(N_EPOCHS): print("Train epoch {}/{}...".format(epoch_no + 1, N_EPOCHS)) t_l = train_loop(loader_train, model, loss_fn, opt) train_losses.extend(t_l) os.makedirs(MODELS_PATH, exist_ok=True) torch.save(model.state_dict(), os.path.join(MODELS_PATH, f"{data}_noHs.pt")) os.makedirs(LOG_PATH, exist_ok=True) np.save(os.path.join(LOG_PATH, f'{data}_noHs.pt'), arr=train_losses)
import pytest from sqlalchemy import or_ from galaxy_crawler.models import v1 as models from .base import ModelTestBase, create_session, create_ns, \ create_provider, create_provider_ns, create_platform, \ create_tag, create_repository class TestRoleModel(ModelTestBase): def setup_method(self): super(TestRoleModel, self).setup_method() sess = create_session(self.engine) create_provider(sess) ns = create_ns(sess) provider_ns = create_provider_ns(sess, namespace_id=ns.namespace_id) create_repository(sess, provider_ns_id=provider_ns.provider_namespace_id) create_platform(sess) for i, name in enumerate(["development", "system", "web"]): create_tag(sess, i, name) sess.commit() @pytest.mark.parametrize( "role_json", [ { "id": 1, "summary_fields": { "dependencies": [], "namespace": { "id": 1, "name": "ns", "avatar_url": "https://example.com/avatar", "location": "Example Location", "company": "Example Company", "email": None, "html_url": "https://example.com/test", "is_vendor": False }, "platforms": [ { "name": "Ubuntu", "release": "bionic" } ], "provider_namespace": { "id": 1, "name": "test" }, "repository": { "id": 1, "name": "test", "original_name": "test", "stargazers_count": 10, "watchers_count": 10, "forks_count": 10, "open_issues_count": 10, "travis_status_url": "https://travis-ci.org/example", "travis_build_url": "https://travis-ci.org/example", "format": "role", "deprecated": False, "community_score": 3.5, "quality_score": 5.0, "community_survey_count": 5 }, "tags": [ "development", "system", "web" ], "versions": [ { "id": 1, "name": "1.0.0", "release_date": "2018-01-23T00:00:00Z" }, ] }, "created": "2014-01-23T00:00:00.000000Z", "modified": "2019-01-23T01:23:45.000000Z", "name": "test", "role_type": "ANS", "is_valid": True, "min_ansible_version": "2.4", "license": "license (BSD, MIT)", "company": "Example", "description": "Test", "travis_status_url": "https://travis-ci.org/example", "download_count": 100, "imported": "2019-01-23T00:00:00.000000-04:00", "active": True, "github_user": "test", "github_repo": "test-role", "github_branch": "master", "stargazers_count": 10, "forks_count": 0, "open_issues_count": 10, "commit": "b380413513177006b9641fd7ff960ea7d1051942", "commit_message": "Test", "commit_url": "https://example.com/commit", "issue_tracker_url": "https://example.com/issues" }, ] ) def test_insert(self, role_json): sess = create_session(self.engine) role = models.Role.from_json(role_json, sess) # type: models.Role sess.add(role) sess.commit() assert role.role_id == role_json.get("id") assert role.namespace.name == \ role_json['summary_fields']['namespace']['name'] assert role.repository.name == \ role_json['summary_fields']['repository']['name'] assert {l.name for l in role.licenses} == \ {"BSD", "MIT"} assert {p.name for p in role.platforms} == \ {"Ubuntu"} assert {v.name for v in role.versions} == \ {"1.0.0"}
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. """Top-level module for sagemaker_pyspark """ from .wrapper import SageMakerJavaWrapper, Option from .IAMRoleResource import IAMRole, IAMRoleFromConfig from .SageMakerClients import SageMakerClients from .S3Resources import S3DataPath, S3Resource, S3AutoCreatePath from .NamePolicy import RandomNamePolicy, RandomNamePolicyFactory, \ CustomNamePolicy, CustomNamePolicyFactory, \ CustomNamePolicyWithTimeStampSuffix, \ CustomNamePolicyWithTimeStampSuffixFactory from .SageMakerEstimator import EndpointCreationPolicy, SageMakerEstimator, SageMakerEstimatorBase from .SageMakerModel import SageMakerModel from .SageMakerResourceCleanup import SageMakerResourceCleanup, CreatedResources def classpath_jars(): """Returns a list with the paths to the required jar files. The sagemakerpyspark library is mostly a wrapper of the scala sagemakerspark sdk and it depends on a set of jar files to work correctly. This function retrieves the location of these jars in the local installation. Returns: List of absolute paths. """ import pkg_resources pkg_dir = __name__ jars_dir = "/jars/" bundled_jars = pkg_resources.resource_listdir(pkg_dir, jars_dir) jars = [pkg_resources.resource_filename(pkg_dir, jars_dir + jar) for jar in bundled_jars] return jars __all__ = ['SageMakerJavaWrapper', 'IAMRole', 'IAMRoleFromConfig', 'SageMakerClients', 'SageMakerModel', 'S3DataPath', 'S3AutoCreatePath', 'S3Resource', 'EndpointCreationPolicy', 'SageMakerEstimator', 'SageMakerEstimatorBase', 'Option', 'RandomNamePolicy', 'RandomNamePolicyFactory', 'CustomNamePolicy', 'CustomNamePolicyFactory', 'CustomNamePolicyWithTimeStampSuffix', 'CustomNamePolicyWithTimeStampSuffixFactory', 'classpath_jars', 'SageMakerResourceCleanup', 'CreatedResources', ]
from numpy.lib.function_base import disp from transformers import * import os import torch import json import numpy as np from parallel_model import MemeDialoGPT from dataset import MODDataset, get_data from utils import accuracy_compute, AverageMeter, meme_classify_accuracy import torch.distributed as dist # from apex import amp # from apex.parallel import convert_syncbn_model # from apex.parallel import DistributedDataParallel from argparse import ArgumentParser from torch.utils.data import DataLoader import random from utils import get_logger, try_create_dir import logging SPECIAL_TOKENS = [ '[BOS]', '[EOS]', '[speaker1]', '[speaker2]', '[IMG]', '[TAG]', '[PAD]' ] SPECIAL_TOKENS_DICT = { 'bos_token': '[BOS]', 'eos_token': '[EOS]', 'additional_special_tokens': ['[speaker1]', '[speaker2]', '[IMG]', '[TAG]'], 'pad_token': '[PAD]' } data_dir = '../../data' train_data_path = os.path.join(data_dir, 'dialog/train.json') # train_data_path = 'debug.json' val_data_path = os.path.join(data_dir, 'dialog/validation.json') # val_data_path = 'debug.json' feature_path = os.path.join(data_dir, 'meme/id2feature.json') # model parameters use_cuda = torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') model_path = 'ckpt/mod_gpt' # gpt_path = 'ckpt/origin_gpt' try_create_dir(model_path) gpt_path = 'ckpt/gpt2-chinese-cluecorpussmall' ckpt_usage = False ckpt_path = './ckpt/mod_gpt/epoch_0_loss_10.701' start_epoch = 0 lr = 6e-5 epochs = 35 gradient_accumulation_steps = 8 print_freq = 100 logger = get_logger(__name__) logger.info(f"device:{device}") logger.debug(f"torch version:{torch.__version__}") def main(): parser = ArgumentParser() parser.add_argument("--local_rank", type=int, default=0, help='-1 if not distributed') parser.add_argument("--fp16", type=int, default=0, help='O0, O1, O2, or O3') args = parser.parse_args() random.seed(0) torch.manual_seed(0) np.random.seed(0) if args.local_rank != -1: dist.init_process_group(backend='nccl', init_method='env://') torch.cuda.set_device(args.local_rank) map_location = "cuda:" + str(args.local_rank) # model initialize if ckpt_usage == True: tokenizer = BertTokenizer.from_pretrained('ckpt/mod_gpt', do_lower_case=True) tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT) model_config = GPT2Config.from_pretrained('ckpt/mod_gpt') model = MemeDialoGPT(model_config) # important!!! influence the length of model.named_parameters() and thus influence optimizer loading model.tie_weights() else: tokenizer = BertTokenizer.from_pretrained(gpt_path, do_lower_case=True) logger.info(f"vocab len:{len(tokenizer)}") model = MemeDialoGPT.from_pretrained(gpt_path) tokenizer.add_special_tokens(SPECIAL_TOKENS_DICT) model.resize_token_embeddings(len(tokenizer)) logger.info(f"vocab len:{len(tokenizer)}") if args.fp16: model = convert_syncbn_model(model) model = model.to(device) # model.eval() logger.debug('after creating optimizer') if args.fp16: model, optimizer = amp.initialize(model, optimizer, opt_level='O1') if args.fp16: model = DistributedDataParallel(model, delay_allreduce=True) else: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) # find_unused_parameters=False) optimizer = AdamW(model.parameters(), lr=lr) if ckpt_usage: ckpt = torch.load(ckpt_path, map_location=map_location) model.module.load_state_dict(ckpt['model']) # for name, v in model.named_parameters(): # print(f"{name}, {v.size()}") # print(len(list(model.named_parameters()))) optimizer.load_state_dict(ckpt['optimizer']) logger.debug('after creating parallel model') def display(d, level=0): for k, v in d.items(): if isinstance(v, dict): print('*'*level+f'{k}:') display(v, level+1) elif isinstance(v, torch.Tensor): print('*'*level+f'{k}:{v.size()}') else: print('*'*level+f'{k}:{v}') # if ckpt_usage: # ckpt = torch.load(ckpt_path, map_location=map_location) # # logger.debug(model.module) # model.module.load_state_dict(ckpt['model']) # display(optimizer.state_dict()) # display(ckpt['optimizer']) # # exit() # # for k, v in optimizer.state_dict().items(): # # logger.debug(f"{k}:{v}") # # logger.debug('===state_dict===') # # for k, v in ckpt['optimizer'].items(): # # logger.debug(f"{k}:{v}") # # optimizer.load_state_dict(ckpt['optimizer']) # logger.info('ckpt_usage True, load model and optimizer succ, start epoch:', start_epoch) # if ckpt_usage == True: # ckpt_path = 'ckpt/mod_gpt/model.bin' # ckpt = torch.load(ckpt_path, map_location=map_location) # model.module.load_state_dict(ckpt['model']) # data read logger.debug('before get_data') train_dialogs, id2feature = get_data(tokenizer, train_data_path, feature_path) # print(len(train_dialogs)) val_dialogs, _ = get_data(tokenizer, val_data_path, feature_path) logger.debug('after get_data') train_dataset = MODDataset(train_dialogs, id2feature, tokenizer) val_dataset = MODDataset(val_dialogs, id2feature, tokenizer) logger.debug('after dataset') train_sampler = torch.utils.data.distributed.DistributedSampler( train_dataset) val_sampler = torch.utils.data.sampler.SequentialSampler(val_dataset) # val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset) train_loader = DataLoader(train_dataset, batch_size=1, num_workers=8, sampler=train_sampler) val_loader = DataLoader(val_dataset, batch_size=1, num_workers=8, sampler=val_sampler) logger.info('finish load data') # for name, v in model.named_parameters(): # print(f"{name}, {v.size()}") # print(len(list(model.named_parameters()))) for epoch in range(start_epoch, epochs): # one epoch's training train_sampler.set_epoch(epoch) train_loss = train(args=args, model=model, tokenizer=tokenizer, optimizer=optimizer, dataset=train_loader, epoch=epoch) # one epoch's validation validate(model=model, tokenizer=tokenizer, dataset=val_loader, epoch=epoch) # break # torch.distributed.barrier() # save checkpoint logger.info(f"epoch:{epoch}, local rank: {args.local_rank}") if args.local_rank == 0: # for name, v in model.named_parameters(): # print(f"{name}, {v.size()}") # print(len(list(model.named_parameters()))) # print(len(list(model.module.named_parameters()))) logger.info(f"epoch:{epoch}, begin to save") torch.save({'model': model.module.state_dict(), 'optimizer': optimizer.state_dict()}, '%s/epoch_%d_loss_%.3f' % (model_path, epoch, train_loss)) model.module.config.to_json_file( os.path.join(model_path, 'config.json')) tokenizer.save_vocabulary(model_path) logger.info(f"epoch:{epoch}, finish save") # torch.distributed.barrier() def train(args, model, tokenizer, optimizer, dataset, epoch): model.train() avg_loss = AverageMeter() avg_img_loss = AverageMeter() avg_text_loss = AverageMeter() avg_acc_5 = AverageMeter() avg_acc_30 = AverageMeter() avg_acc_90 = AverageMeter() iteration = 0 # cat_img_features = img_feature_read(feature_path) meme_correct_num = 1 meme_total_num = 1 for instance in dataset: history_txt, history_img, token_type_ids, labels, meme_flag, id_labels = instance history_txt, history_img, token_type_ids, labels, meme_flag, id_labels = history_txt.to(device).squeeze(0), history_img.to(device).squeeze(0), \ token_type_ids.to(device).squeeze(0), labels.to(device).squeeze( 0), meme_flag.to(device).squeeze(0), id_labels.to(device).squeeze(0) history_txt_embs = model.module.transformer.wte(history_txt) # print(history_txt_embs.size()) history_img_embs = model.module.img_ff(history_img) # print(history_img_embs.size()) # print(token_type_ids) # print(history_txt) input_embs = input_construct(history_txt_embs, history_img_embs, token_type_ids, tokenizer) input_embs = input_embs.to(device) if input_embs.size(-2) > 450: input_embs = input_embs[-450:, :] token_type_ids = token_type_ids[-450:] labels = token_type_ids[-449:] # continue img_feature = history_img[-1, :].unsqueeze(0) # logger.debug(f"{input_embs.size()}, {token_type_ids.size()}, {labels.size()}, {img_feature.size()}, {meme_flag.size()}") # print(input_embs.size()) # print(img_feature.size()) loss, img_loss, text_loss = model(input_embs, token_type_ids, id_labels, labels, img_feature, meme_flag) logits = model.module.logits if args.fp16: with amp.scale_loss(loss, optimizer) as scale_loss: scale_loss.backward() else: loss.backward() if iteration % gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.0) else: torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() optimizer.zero_grad() # if img_feature[0][0] != 0.: # if meme_retrieval_compute(cur_img_feature, img_feature, cat_img_features): # meme_correct_num += 1 # meme_total_num += 1 #acc = accuracy_compute(lm_logits, labels, 5) # avg_acc.update(acc) if id_labels.numel() > 0: acc_5, acc_30, acc_90 = acc_compute(logits, id_labels) avg_acc_5.update(acc_5) avg_acc_30.update(acc_30) avg_acc_90.update(acc_90) avg_loss.update(loss.item()) if img_loss.item() > 0: assert id_labels.numel() > 0 avg_img_loss.update(img_loss.item()) avg_text_loss.update(text_loss.item()) # print status if iteration % print_freq == 0: print('Epoch:[{0}][{1}/{2}]\t' 'Loss {loss.avg:.4f} Image Loss {img_loss.avg:.4f} Text Loss {text_loss.avg:.4f}\t' 'Retrieval Acc {acc_5.avg:.3f} | {acc_30.avg:.3f} | {acc_90.avg:.3f}'.format(epoch, iteration, len(dataset), loss=avg_loss, img_loss=avg_img_loss, text_loss=avg_text_loss, acc_5=avg_acc_5, acc_30=avg_acc_30, acc_90=avg_acc_90)) iteration += 1 # logger.info(f"iteration:{iteration}, local rank: {args.local_rank}") # print(loss) # break return avg_loss.avg def acc_compute(logits, labels): _, idx = torch.sort(logits.squeeze(0)) idx = idx.tolist() labels = labels.item() return int(labels in idx[-5:]), int(labels in idx[-30:]), int(labels in idx[-90:]) # concatenate the input def input_construct(history_txt_embs, history_img_embs, token_type_ids, tokenizer): bos, eos, speaker1, speaker2, img, tag = tokenizer.convert_tokens_to_ids( SPECIAL_TOKENS[:-1]) emb_length = token_type_ids.size(-1) emb_dim = history_txt_embs.size(-1) img_num = history_img_embs.size(0) input_embs = torch.zeros((emb_length, emb_dim)) txt_idx = 0 img_idx = 0 left_idx = 0 right_idx = 0 while right_idx < emb_length: # if right_idx == emb_length-1 and token_type_ids[right_idx] == img: # break if right_idx < emb_length - 1 and token_type_ids[right_idx] == img: txt_length = right_idx - left_idx input_embs[left_idx:right_idx, :] = history_txt_embs[ txt_idx:txt_idx + txt_length, :] txt_idx += txt_length input_embs[right_idx, :] = history_img_embs[img_idx, :] img_idx += 1 left_idx = right_idx + 1 right_idx += 1 txt_length = right_idx - left_idx if txt_length > 0: input_embs[left_idx:right_idx, :] = history_txt_embs[txt_idx:, :] # img_feature = history_img_embs[img_idx,:] return input_embs def validate(model, tokenizer, dataset, epoch): model.eval() avg_loss = AverageMeter() avg_img_loss = AverageMeter() avg_text_loss = AverageMeter() avg_acc_5 = AverageMeter() avg_acc_30 = AverageMeter() avg_acc_90 = AverageMeter() avg_bleu = AverageMeter() iteration = 1 cat_img_features = img_feature_read(feature_path) meme_correct_num = 0 meme_total_num = 0 with torch.no_grad(): for instance in dataset: history_txt, history_img, token_type_ids, labels, meme_flag, id_labels = instance history_txt, history_img, token_type_ids, labels, meme_flag, id_labels = history_txt.to(device).squeeze(0), history_img.to(device).squeeze(0), \ token_type_ids.to(device).squeeze(0), labels.to(device).squeeze( 0), meme_flag.to(device).squeeze(0), id_labels.to(device).squeeze(0) history_txt_embs = model.module.transformer.wte(history_txt) history_img_embs = model.module.img_ff(history_img) input_embs = input_construct(history_txt_embs, history_img_embs, token_type_ids, tokenizer) input_embs = input_embs.to(device) if input_embs.size(-2) > 450: continue img_feature = history_img[-1, :].unsqueeze(0) loss, img_loss, text_loss = model(input_embs, token_type_ids, id_labels, labels, img_feature, meme_flag) logits = model.module.logits if id_labels.numel() > 0: acc_5, acc_30, acc_90 = acc_compute(logits, id_labels) avg_acc_5.update(acc_5) avg_acc_30.update(acc_30) avg_acc_90.update(acc_90) avg_loss.update(loss.item()) if img_loss.item() > 0: avg_img_loss.update(img_loss.item()) avg_text_loss.update(text_loss.item()) # print status if iteration % print_freq == 0: print('Epoch:[{0}][{1}/{2}]\t' 'Loss {loss.avg:.4f} Image Loss {img_loss.avg:.4f} Text Loss {text_loss.avg:.4f}\t' 'Retrieval Acc {acc_5.avg:.3f} | {acc_30.avg:.3f} | {acc_90.avg:.3f}'.format(epoch, iteration, len(dataset), loss=avg_loss, img_loss=avg_img_loss, text_loss=avg_text_loss, acc_5=avg_acc_5, acc_30=avg_acc_30, acc_90=avg_acc_90)) iteration += 1 # loss, mf_logits, lm_logits, cur_img_feature = model( # input_embs, token_type_ids, labels, img_feature, meme_flag, # 'val') # # compare cur_img_feature is among topk with img_feature # # print(cur_img_feature.size()) # if img_feature[0][0] != 0.: # if meme_retrieval_compute(cur_img_feature, img_feature, # cat_img_features): # meme_correct_num += 1 # meme_total_num += 1 # #acc = accuracy_compute(lm_logits, labels, k=5) # acc = meme_classify_accuracy(mf_logits, meme_flag).item() # avg_acc.update(acc) # avg_loss.update(loss.item()) # if iteration % print_freq == 0: # print('Epoch:[{0}][{1}/{2}]\t' # 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' # 'Meme Classification {acc.val:.3f} ({acc.avg:.3f})\t' # 'Meme Retrieval {mac:.3f}'.format( # epoch, # iteration, # len(dataset), # loss=avg_loss, # acc=avg_acc, # mac=float(meme_correct_num / meme_total_num))) # iteration += 1 # break logger.info( f"validate epoch {epoch} end, Loss {avg_loss.avg}, Meme Retrieval {avg_acc_5.avg} | {avg_acc_30.avg} | {avg_acc_90.avg}" ) def img_feature_read(feature_path): with open(feature_path, 'r', encoding='utf-8') as f: id2feature_dict = json.load(f) img_features = [] for id in id2feature_dict.keys(): img_features.append(id2feature_dict[id]) img_features = np.array(img_features) img_features = torch.from_numpy(img_features).float().to(device) return img_features def meme_retrieval_compute(cur_img_feature, target_img_feature, cat_img_features): # (1, 512) cur_dist = torch.dist(cur_img_feature, target_img_feature, p=2) # print(cat_img_features.size()) cur_img_list = cur_img_feature.repeat(307, 1) total_dist = torch.sqrt( torch.sum((cur_img_list - cat_img_features)**2, dim=1)) # print(total_dist) sorted_total, _ = torch.sort(total_dist) # print(sorted_total) return torch.gt(sorted_total[30], cur_dist) # print(cur_dist) if __name__ == '__main__': main()
from snakeoil.demandload import demand_compile_regexp from snakeoil.strings import pluralism as _pl from .. import results, sources from . import Check demand_compile_regexp('indent_regexp', '^\t* \t+') class _Whitespace(results.VersionResult, results.Warning): @property def lines_str(self): return f"line{_pl(self.lines)}: {', '.join(str(x) for x in self.lines)}" class WhitespaceFound(_Whitespace): """Leading or trailing whitespace found.""" def __init__(self, leadtrail, lines, **kwargs): super().__init__(**kwargs) self.lines = tuple(lines) self.leadtrail = leadtrail @property def desc(self): return f"ebuild has {self.leadtrail} whitespace on {self.lines_str}" class WrongIndentFound(_Whitespace): """Incorrect indentation whitespace found.""" def __init__(self, lines, **kwargs): super().__init__(**kwargs) self.lines = tuple(lines) @property def desc(self): return f"ebuild has whitespace in indentation on {self.lines_str}" class DoubleEmptyLine(_Whitespace): """Unneeded blank lines found.""" def __init__(self, lines, **kwargs): super().__init__(**kwargs) self.lines = tuple(lines) @property def desc(self): return f"ebuild has unneeded empty {self.lines_str}" class TrailingEmptyLine(results.VersionResult, results.Warning): """Unneeded trailing blank lines found.""" desc = "ebuild has trailing blank line(s)" class NoFinalNewline(results.VersionResult, results.Warning): """Ebuild's last line does not have a final newline.""" desc = "ebuild lacks an ending newline" class WhitespaceCheck(Check): """Scan ebuild for useless whitespace.""" _source = sources.EbuildFileRepoSource known_results = frozenset([ WhitespaceFound, WrongIndentFound, DoubleEmptyLine, TrailingEmptyLine, NoFinalNewline, ]) def feed(self, pkg): lastlineempty = False trailing = [] leading = [] indent = [] double_empty = [] for lineno, line in enumerate(pkg.lines, 1): if line != '\n': lastlineempty = False if line[-2:-1] == ' ' or line[-2:-1] == '\t': trailing.append(lineno) elif line[0] == ' ': leading.append(lineno) if indent_regexp.match(line): indent.append(lineno) elif lastlineempty: double_empty.append(lineno) else: lastlineempty = True if trailing: yield WhitespaceFound('trailing', trailing, pkg=pkg) if leading: yield WhitespaceFound('leading', leading, pkg=pkg) if indent: yield WrongIndentFound(indent, pkg=pkg) if double_empty: yield DoubleEmptyLine(double_empty, pkg=pkg) if lastlineempty: yield TrailingEmptyLine(pkg=pkg) # Dealing with empty ebuilds is just paranoia if pkg.lines and not pkg.lines[-1].endswith('\n'): yield NoFinalNewline(pkg=pkg)
import sentry_sdk from sentry_sdk.integrations.celery import CeleryIntegration from sentry_sdk.integrations.flask import FlaskIntegration from sentry_sdk.integrations.redis import RedisIntegration from sentry_sdk.integrations.sqlalchemy import SqlalchemyIntegration from extensions import celery from app import create_app import config as c app = create_app(for_celery=True) app.app_context().push() # add more external integrations below if c.CELERY_SENTRY_DSN: sentry_sdk.init( c.CELERY_SENTRY_DSN, integrations=[ CeleryIntegration(), FlaskIntegration(), RedisIntegration(), SqlalchemyIntegration(), ], )
# Copyright 2020 OpenRCA Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import time import cotyledon from orca import exceptions from orca.common import config, logger from orca.graph import graph from orca.topology import linker, upstream CONFIG = config.CONFIG LOG = logger.get_logger(__name__) class ProbeRunner(cotyledon.Service): """Runs entity probe from given probe bundle.""" def __init__(self, worker_id, probe_bundle, graph_lock): super().__init__(worker_id) self._worker_id = worker_id self._probe_bundle = probe_bundle self._graph_lock = graph_lock self.__graph = None @property def _graph(self): if not self.__graph: self.__graph = graph.Graph.get(self._graph_lock) return self.__graph def run(self): probe = self._initialize_probe() linkers = self._initialize_linkers() self._setup_event_dispatcher(linkers) probe.run() def _initialize_probe(self): probe_module = self._probe_bundle.probe return probe_module.get(self._graph) def _initialize_linkers(self): linkers = [] linker_modules = self._probe_bundle.linkers for linker_module in linker_modules: linkers.append(linker_module.get(self._graph)) return linkers def _setup_event_dispatcher(self, linkers): event_dispatcher = linker.EventDispatcher() for linker_instance in linkers: event_dispatcher.add_linker(linker_instance) self._graph.add_listener(event_dispatcher) class Probe(abc.ABC): """Base class for entity probes.""" def __init__(self, graph): super().__init__() self._graph = graph @abc.abstractmethod def run(self): """Starts entity probe.""" @classmethod def get(cls, graph): return cls(graph) class PullProbe(Probe): """Periodically pulls all entities from the upstream into the graph.""" def __init__(self, graph, upstream_proxy, extractor, synchronizer, resync_period=60): super().__init__(graph) self._upstream_proxy = upstream_proxy self._extractor = extractor self._synchronizer = synchronizer self._resync_period = resync_period def run(self): extended_kind = self._extractor.get_extended_kind() while True: LOG.info("Starting sync for entity: %s", extended_kind) start_time = time.time() self._synchronize() sync_time = time.time() - start_time LOG.info("Finished sync for entity: %s (%.2f seconds)", extended_kind, sync_time) time.sleep(self._resync_period) def _synchronize(self): nodes_in_graph = self._get_nodes_in_graph() upstream_nodes = self._get_upstream_nodes() self._synchronizer.synchronize(nodes_in_graph, upstream_nodes) def _get_nodes_in_graph(self): properties = {'origin': self._extractor.origin, 'kind': self._extractor.kind} return self._graph.get_nodes(properties=properties) def _get_upstream_nodes(self): entities = self._upstream_proxy.get_all() upstream_nodes = [] for entity in entities: try: node = self._extractor.extract(entity) upstream_nodes.append(node) except exceptions.OrcaError as ex: LOG.warning("Error while processing an entity: %s", ex) return upstream_nodes class PushProbe(Probe, upstream.EventHandler): """Consumes events pushed by the upstream.""" def __init__(self, graph, upstream_proxy, extractor): super().__init__(graph) self._upstream_proxy = upstream_proxy self._extractor = extractor def run(self): extended_kind = self._extractor.get_extended_kind() LOG.info("Consuming events for entity: %s", extended_kind) self._upstream_proxy.get_events(handler=self) def on_added(self, entity): node = self._extractor.extract(entity) self._graph.add_node(node) def on_updated(self, entity): node = self._extractor.extract(entity) self._graph.update_node(node) def on_deleted(self, entity): node = self._extractor.extract(entity) self._graph.delete_node(node.id)
from django.shortcuts import render, redirect from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.forms import UserCreationForm from django.contrib.auth import authenticate, login, logout from django.contrib import messages from django.contrib.auth.decorators import login_required # Create your views here. from .models import * from .forms import CreateUserForm from .forms import * def home_view(request): context={} return render(request, 'web/main.html', context) @login_required(login_url='sign_view') def profile_view(request): context={} return render(request, 'web/profile.html', context) def connections_view(request): context={} return render(request, 'web/connections.html', context) def events_view(request): context={} return render(request, 'web/events.html', context) def jobs_view(request): context={} return render(request, 'web/jobs.html', context) def contact_view(request): context={} return render(request, 'web/contact.html', context) def sign_view(request): if request.user.is_authenticated: return redirect('home_view') else: if request.method == 'POST': username = request.POST.get('username') password =request.POST.get('password') user = authenticate(request, username=username, password=password) if user is not None: login(request, user) return redirect('home_view') else: messages.info(request, 'Username OR password is incorrect') context = {} return render(request, 'web/signin.html', context) def register_view(request): if request.user.is_authenticated: return redirect('home_view') else: form = CreateUserForm() if request.method == 'POST': form = CreateUserForm(request.POST) if form.is_valid(): form.save() user = form.cleaned_data.get('username') messages.success(request, 'Account was created for ' + user) return redirect('sign_view') context = {'form':form} return render(request, 'web/register.html', context) def logoutUser(request): logout(request) return redirect('home_view') def team_view(request): context={} return render(request, 'web/team.html', context) def profile_form(request): form = ProfileForm(request.POST or None) if form.is_valid(): fs= form.save(commit=False) fs.user= request.user form.save() form=ProfileForm() context={ 'form':form } return render(request, 'web/profile_form.html', context)
import os import subprocess import pandas as pd from utils.combine import merge_by_subject from utils.save_data import write_csv def add_log_k(file_trial_input, file_subjects_to_merge, path): path_matlab_fit_k = os.path.join('data_prep', 'add_variables', 'fit_k') path_input = os.path.join(path, file_trial_input) path_to_merge = os.path.join(path, file_subjects_to_merge) # noinspection SpellCheckingInspection run_matlab = \ f"""matlab -wait -nojvm -nosplash -nodesktop -r "fit_discount_k('""" + \ path_input + """', '""" + path + """'); exit""" print(f"""Fitting discounting parameter log(k) in Matlab. \n""" f"""Run Matlab from console: \n""" f"""{run_matlab} \n""") os.chdir(path_matlab_fit_k) subprocess.run(run_matlab, shell=True, check=True) os.chdir(os.path.join('../..', '..')) root = "C:/Users/User/GitHub/WebET_Analysis" log_k = pd.read_csv(os.path.join(path, 'log_k.csv')) print('Imported data from ' + path_to_merge + ':') data_subject = pd.read_csv(path_to_merge) data_subject = merge_by_subject(data_subject, log_k, 'logK', 'noise') missing_values = data_subject.loc[ pd.isna(data_subject['logK']), ['run_id', 'prolificID', 'choice_rt', 'choseLL', 'choseTop', 'logK', 'noise']] if len(missing_values) > 0: print(f"""n={len(data_subject)} participants. """ f"""{len(missing_values)} missing logK values. \n""" f"""{missing_values}""") write_csv(data=missing_values, file_name='missing_log_k.csv', path=path) else: print('All participants could be fitted to hyperbolic discounting') print('Data saved to ' + path_to_merge + ':') data_subject.to_csv(os.path.join(path_to_merge), index=False, header=True) return data_subject
import pandas as pd import numpy as np def email (name,receiver,file,cc,password): import email, smtplib, ssl from email import encoders from email.mime.base import MIMEBase from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText subject = "Automated Test Mail - Python" body = 'Hi {}, \nThis is an automated mail'.format(name) sender_email = "[email protected]" #enter your email here receiver_email = receiver cc = cc password = password df = pd.read_csv(file) df_html =df.to_html(index=False) df_part = MIMEText(df_html,'html') # Create a multipart message and set headers message = MIMEMultipart() message["From"] = sender_email message["To"] = ','.join(receiver_email) message["Subject"] = subject message["Cc"] = ','.join(cc) # Recommended for mass emails # Add body to email message.attach(MIMEText(body, "plain")) message.attach(df_part) filename = file # In same directory as script # Open csv file in binary mode with open(filename, "rb") as attachment: # Add file as application/octet-stream # Email client can usually download this automatically as attachment part = MIMEBase("application", "octet-stream") part.set_payload(attachment.read()) # Encode file in ASCII characters to send by email encoders.encode_base64(part) # Add header as key/value pair to attachment part part.add_header( "Content-Disposition", f"attachment; filename= {filename}", ) # Add attachment to message and convert message to string message.attach(part) text = message.as_string() # Log in to server using secure context and send email context = ssl.create_default_context() with smtplib.SMTP_SSL("smtp.gmail.com", 465, context=context) as server: server.login(sender_email, password) server.sendmail(sender_email, receiver_email+cc, text) mailer_list = pd.read_csv('mailer_list.csv') password = input('Input password here') for i in range(len(mailer_list)): list1 = mailer_list.loc[i]['cc'].split() list2 = mailer_list.loc[i]['email'].split() email(name = mailer_list.loc[i]['name'],receiver = list2 ,file = mailer_list.loc[i]['file'],cc=list1,password = password) print('E-mail sent to {} with following {} as cc with attachment name {}'.format(list2,list1,mailer_list.loc[i]['file']))
import os import sys import numbers from ..cosmology import get_ccl_cosmology, RESERVED_CCL_PARAMS from ..loglike import compute_loglike from ..parser_constants import FIRECROWN_RESERVED_NAMES import numpy as np import cosmosis # these keys are ignored by cosmosis RESERVED_NAMES_COSMOSIS = FIRECROWN_RESERVED_NAMES + ['priors'] def run_cosmosis(config, data, output_dir): """Run CosmoSIS on the problem. This requires the following parameters 'cosmosis' section of the config: sampler - name of sampler to use, e.g. emcee, multinest, grid, ... output - name of file to save to a section with the same name as the sampler, selecting options for that sampler. Parameters ---------- config : dict Configuration info, usually read directly from the YAML file data : dict The result of calling `firecrown.config.parse` on an input YAML config. output_dir : pathlib.Path Directory in which to put output. """ # Extract the bits of the config file that # cosmosis wants ini = _make_cosmosis_params(config, output_dir) values = _make_cosmosis_values(config) pool = _make_parallel_pool(config) priors = _make_cosmosis_priors(config) pipeline = _make_cosmosis_pipeline(data, ini, values, priors, pool) # Actually run the thing cosmosis.main.run_cosmosis(None, pool=pool, ini=ini, pipeline=pipeline, values=values) if pool is not None: pool.close() def _make_parallel_pool(config): """Set up a parallel process pool. Will look for the 'mpi' key in the config cosmosis section. Parameters ---------- config: dict The data object parse'd from an input yaml file. This is passed as-is to the likelihood function Returns ------- pool : CosmoSIS MPIPool object parallel process pool """ cosmosis_config = config['cosmosis'] # There is a reason to make the user actively # request to use MPI rather than just checking - # on many systems, including, importantly, NERSC, # trying to import MPI when not running under the # MPI environment will cause a crash use_mpi = cosmosis_config.get('mpi', False) if use_mpi: pool = cosmosis.MPIPool() if pool.size == 1: print("Have mpi=True, but only running a single process.") print("I will ignore and run in serial mode.") pool = None else: pool = None print("Running in serial mode (one process).") return pool def _make_cosmosis_pipeline(data, ini, values, priors, pool): """ Build a CosmoSIS pipeline. Parameters ---------- data : dict The data object parse'd from an input yaml file. This is passed as-is to the likelihood function ini : Inifile Cosmosis object representing the main input parameter file values : Inifile Cosmosis object representing the input parameter values pool : MPIPool or None If using MPI parallelism, a CosmoSIS pool object. Returns ------- pipeline : CosmoSIS pipeline objects Instantiated pipeline ready to run. """ # Lie to CosmoSIS about where it is installed. os.environ['COSMOSIS_SRC_DIR'] = '.' # Build the pipeline that evaluates the likelihood. # We avoid printing various bits of output info by silencing stdout on # worker nodes. if (pool is None) or pool.is_master(): pipeline = cosmosis.LikelihoodPipeline(ini, load=False, values=values, priors=priors) else: with cosmosis.stdout_redirected(): pipeline = cosmosis.LikelihoodPipeline(ini, load=False, values=values, priors=priors) # Flush now to print out the master node's setup stdout # before printing the worker likelihoods sys.stdout.flush() # Set up a single cosmosis module, from the functions directly module = cosmosis.FunctionModule('firecrown', _setup, _execute) module.setup_functions((data, ini)) pipeline.modules = [module] return pipeline def _make_cosmosis_params(config, output_dir): """Extract a cosmosis configuration object from a config dict Parameters ---------- config : dict The data object parse'd from an input yaml file. This is passed as-is to the likelihood function output_dir : pathlib.Path Directory to put output into. Returns ------- cosmosis_params : Inifile object to use to build cosmosis pipeline """ cosmosis_config = config['cosmosis'] # Some general options sampler_names = cosmosis_config['sampler'] output_file = str(output_dir / 'chain.txt') debug = cosmosis_config.get('debug', False) quiet = cosmosis_config.get('quiet', False) root = "" # Dummy value to stop cosmosis complaining # Make into a pair dictionary with the right cosmosis sections cosmosis_options = { ("runtime", "root"): root, ("runtime", "sampler"): sampler_names, ("output", "filename"): output_file, ("pipeline", "debug"): str(debug), ("pipeline", "quiet"): str(quiet), } # Set all the sampler configuration options from the # appropriate section of the cosmosis_config (e.g., the "grid" # section if using the grid sampler, etc.) for sampler_name in sampler_names.split(): sampler_config = cosmosis_config.get(sampler_name, {}) for key, val in sampler_config.items(): cosmosis_options[sampler_name, key] = str(val) # Override options that involve the user-specified # output paths to put everything in the one directory overridden_options = [ ('maxlike', 'output_ini', 'output.ini'), ('maxlike', 'output_cov', 'covmat.txt'), ('multinest', 'multinest_outfile_root', 'multinest'), ('gridmax', 'output_ini', 'maxlike.ini'), ('minuit', 'output_ini', 'maxlike.ini'), ('minuit', 'save_cov', 'covmat.txt'), ('pmaxlike', 'output_ini', 'maxlike.ini'), ('pmaxlike', 'output_covmat', 'covmat.txt'), ('polychord', 'polychord_outfile_root', 'polychord'), ('polychord', 'base_dir', ''), ] # Apply these overrides for section, key, value in overridden_options: # To avoid too much noise in headers, only # copy over sections for samplers we're actually # using if section not in sampler_names: continue full_value = output_dir / value # Only warn user if they tried to set this already if (section, key) in cosmosis_options: sys.stderr.write(f"NOTE: Overriding option {section}/{key}" f" to {full_value}") cosmosis_options[section, key] = str(full_value) # These options are not enabled by default, because they can # produce large output files. So we only override them if # they are already set optional_overrides = [ ('aprior', 'save', 'save'), ('grid', 'save', 'save'), ('list', 'save', 'save'), ('minuit', 'save_dir', 'save'), ('star', 'save', 'save'), ] # Apply these overrides for section, key, value in optional_overrides: # To avoid too much noise in headers, only # copy over sections for samplers we're actually # using if section not in sampler_names: continue # Only override the option if it is already set if (section, key) in cosmosis_options: full_value = output_dir / value # Still warn the user sys.stderr.write(f"NOTE: Overriding option {section}/{key}" f" to {full_value}") cosmosis_options[section, key] = str(full_value) # The string parameters in the yaml file parameters # can't go into cosmosis values, because that is for parameters # that might vary during a run, which string params will not. # Instead we put these in the parameter file for p, v in config['parameters'].items(): if isinstance(v, str): cosmosis_options['firecrown', p] = v # Convert into cosmosis Inifile format. cosmosis_params = cosmosis.Inifile(None, override=cosmosis_options) return cosmosis_params def _make_cosmosis_values(config): """Extract a cosmosis values object from a config dict Parameters ---------- config : dict The data object parse'd from an input yaml file. This is passed as-is to the likelihood function Returns ------- cosmosis_values : Inifile Object to use to build cosmosis parameter ranges/values. """ params = config['parameters'] varied_params = config['cosmosis']['parameters'] # copy all the parameters into the cosmosis config structure values = {} # First set all the numeric parameters, fixed and varied. # We will override the varied ones in a moment for p, v in params.items(): if isinstance(v, numbers.Number): values['params', p] = str(v) # Now override the varied parameters for p, v in varied_params.items(): v = ' '.join(str(x) for x in v) values['params', p] = v return cosmosis.Inifile(None, override=values) def _make_cosmosis_priors(config): """Make a cosmosis priors ini file. Parameters ---------- config : dict The data object parse'd from an input yaml file. This is passed as-is to the likelihood function Returns ------- priors : cosmosis Inifile The cosmosis config object specifying priors. """ # Early return if no priors section is specified if 'priors' not in config: return cosmosis.Inifile(None) P = {} for name, p in config['priors'].items(): # FireCrown exposes any scipy distribtion as a prior. # CosmoSIS only exposes three of these right now (plus # a couple of others that scipy doesn't support), but # these are by far the most common. # This is a key used by other FireCrown tools if name == 'module': continue # The kind = p['kind'] loc = p['loc'] scale = p['scale'] # Flat if kind == 'uniform': upper = loc + scale pr = f'uniform {loc} {upper}' # Exponential, only with loc = 0 elif kind == 'expon': # This is not currently in CosmoSIS. It's not hard to add, # and if there is demand Joe can add it. if loc != 0: raise ValueError("CosmoSIS does not currently support exponential " "priors with non-zero 'loc'. If you need this please " "open an issue") pr = f'exp {scale}' # Gaussian. elif kind == 'norm': pr = f'norm {loc} {scale}' else: raise ValueError(f"CosmoSIS does not know how to use the prior kind {kind}") # Put these all in a dictionary P['params', name] = pr return cosmosis.Inifile(None, override=P) def _setup(data_ini): # Most CosmoSIS modules do proper setup here. # We don't need amything so just return. return data_ini def _execute(block, config): data, ini = config # Calculate the firecrown likelihood as a module # This function, which isn't designed for end users, # is the main connection between cosmosis and firecrown. # CosmoSIS builds the block, and passes it to us here. # The block contains all the sample parameters. # Create CCL cosmology ccl_values = {} for p in RESERVED_CCL_PARAMS: # First look in the block if block.has_value('params', p): ccl_values[p] = block['params', p] # Then in the ini file, for string params elif ini.has_option('firecrown', p): ccl_values[p] = ini.get('firecrown', p) cosmo = get_ccl_cosmology(ccl_values) # Put all the parameters in the data dictionary, # both CCL-related and others, like nuisance params. all_params = data['parameters'].keys() for p in all_params: # string parameters are excluded here, and potentially others if block.has_value('params', p): data['parameters'][p] = block['params', p] # Currently compute_loglike actually computes the posterior # if priors are included. Prevent that from happening since # CosmoSIS is already handling priors if 'priors' in data: data = data.copy() del data['priors'] # Call out to the log likelihood loglikes, obs, theory, covs, invs, stats = compute_loglike(cosmo=cosmo, data=data) loglike = np.sum([v for v in loglikes.values() if v is not None]) # For Fisher, etc., we save all the data vector info that we have for name in loglikes: # skip some stuff if name in RESERVED_NAMES_COSMOSIS: continue # Send result back to cosmosis block['likelihoods', f'{name}_like'] = loglikes[name] # Save whatever we have managed to collect. # The CosmoSIS Fisher sampler and others look in this # section to build up the Fisher data vectors. if theory[name] is not None: block['data_vector', f'{name}_theory'] = theory[name] if obs[name] is not None: block['data_vector', f'{name}_data'] = obs[name] if covs[name] is not None: block['data_vector', f'{name}_covariance'] = covs[name] if invs[name] is not None: block['data_vector', f'{name}_inverse_covariance'] = invs[name] # Unless in quiet mode, print out what we have done if not data['cosmosis'].get("quiet", True): print("params = {}".format(data['parameters'])) print(f"loglike = {loglike}\n", flush=True) # Signal success. An exception anywhere above will # be converted to a -inf likelihood by default. return 0
#XXX: for a clean exit we need to import KDT first because it initializes MPI # in any case import kdt import numpy import scipy import unittest from mpi4py import MPI from skylark import io import elem class IO_test(unittest.TestCase): def __init__(self, *args, **kwargs): super(IO_test, self).__init__(*args, **kwargs) self.ele_A = elem.DistMatrix_d() elem.Uniform(self.ele_A, 10, 30) self.rank = MPI.COMM_WORLD.Get_rank() self.size = MPI.COMM_WORLD.Get_size() if self.rank == 0: self.np_A = numpy.random.random((20, 65)) self.sp_A = scipy.sparse.rand(20, 65, density=0.2, format='csr') def compareMatrixNorm(self, A, B): # Gather at root A_CIRC_CIRC = elem.DistMatrix_d_CIRC_CIRC() elem.Copy(A, A_CIRC_CIRC) # Compare Frobenius norm #FIXME: some tests fail if we use higher accuracy -- why? if self.rank == 0: self.assertAlmostEqual( numpy.linalg.norm(A_CIRC_CIRC.Matrix[:], ord='fro'), numpy.linalg.norm(B, ord='fro'), 5) def test_mm(self): matrix_fpath = 'test_matrix.mtx' store = io.mtx(matrix_fpath) # root writes its scipy-sparse matrix... if self.rank == 0: store.write(self.sp_A) MPI.COMM_WORLD.barrier() # ... all processes read back what root has written B = store.read('combblas-sparse') C = store.read('scipy-sparse') D = store.read('numpy-dense') # convert CombBLAS matrix to (coo) sparse matrix col, row, data = B.toVec() sp_cb = scipy.sparse.coo_matrix((data, (row, col)), shape=(20, 65)) # all processes check if self.rank == 0: self.assertTrue(((self.sp_A - sp_cb).todense() < 1e-7).all()) self.assertTrue((sp_cb.todense() - D < 1e-7).all()) # only root checks; owns matrix generated and subsequently written if self.rank == 0: self.assertTrue(((self.sp_A - C).todense() < 1e-7).all()) #XXX: needs patched KDT. #FIXME: still crashes. Iterators are still interchanged. #SpParMat<long, doubleint, SpDCCols<long, doubleint> #>::SaveGathered<SpParMat<long, doubleint, SpDCCols<long, doubleint> #>>::ScalarReadSaveHandler> (this=this@entry=0x1cb6e70, filename=..., #handler=handler@entry=..., transpose=transpose@entry=false) # at kdt/pyCombBLAS/../../CombBLAS/SpParMat.cpp:1521 # 1521 csr[nzit.rowid()].push_back( make_pair(colit.colid(), # nzit.value()) ); ) #store.write(B) #B = store.read('combblas-sparse') #C = store.read('scipy-sparse') #D = store.read('numpy-dense') # convert CombBLAS matrix to (coo) sparse matrix #col, row, data = B.toVec() #sp_cb = scipy.sparse.coo_matrix((data, (row, col)), shape=(20, 65)) #self.assertTrue(((self.sp_A - sp_cb).todense() < 1e-7).all()) #self.assertTrue((self.sp_A.todense() - D < 1e-7).all()) #self.assertTrue(((self.sp_A - C).todense() < 1e-7).all()) def test_hdf5(self): fpath = 'test_matrix.h5' store = io.hdf5(fpath) # root writes its numpy-dense matrix... if self.rank == 0: store.write(self.np_A) MPI.COMM_WORLD.barrier() # ... all processes read back what root has written B = store.read('numpy-dense') C = store.read('elemental-dense') D = store.read('elemental-dense', distribution='VC_STAR') if self.rank == 0: self.assertTrue((self.np_A - B < 1e-7).all()) self.compareMatrixNorm(C, self.np_A) self.compareMatrixNorm(D, self.np_A) # ... all proccesses write their part of (distributed) elemental-dense matrix store.write(self.ele_A) # ... and read back in various representations: local(copies) or distributed(parts) B = store.read('numpy-dense') C = store.read('elemental-dense') D = store.read('elemental-dense', distribution='VC_STAR') self.compareMatrixNorm(self.ele_A, B) self.compareMatrixNorm(C, B) self.compareMatrixNorm(D, B) # all unsupported read formats should raise an exception with self.assertRaises(io.SkylarkIOTypeError): store.read('combblas-sparse') store.read('scipy-sparse') def test_txt(self): fpath = 'test_matrix.txt' store = io.txt(fpath) store.write(self.ele_A) B = store.read('numpy-dense') self.compareMatrixNorm(self.ele_A, B) # root writes its numpy-dense matrix... if self.rank == 0: store.write(self.np_A) MPI.COMM_WORLD.barrier() # ... all processes read back what root has written B = store.read('numpy-dense') if self.rank == 0: self.assertTrue((self.np_A - B < 1e-7).all()) # all unsupported read formats should raise an exception with self.assertRaises(io.SkylarkIOTypeError): store.read('elemental-dense') store.read('combblas-sparse') store.read('scipy-sparse') def test_libsvm(self): fpath = base_dir + '/python-skylark/skylark/datasets/usps.t' store = io.libsvm(fpath) features_matrix, labels_matrix = store.read() matrix_info = features_matrix.shape, features_matrix.nnz, labels_matrix.shape #FIXME: currently there is no way to test this in a sophisticated way. # For now just test matrix_info self.assertEqual(matrix_info, ((2007, 256), 513792, (2007,))) if __name__ == '__main__': import sys #XXX: hack to get argument to libsvm test global base_dir base_dir = sys.argv[1] del(sys.argv[1]) unittest.main(verbosity=2)
# This file is Copyright (c) 2015-2018 Florent Kermarrec <[email protected]> # License: BSD from migen import * from migen.genlib.io import CRG from litex.boards.platforms import arty from litex.build.generic_platform import Pins, IOStandard, Misc, Subsignal, Inverted from litex.soc.cores.uart import UARTWishboneBridge from litex.soc.integration.soc_core import SoCCore from litex.soc.integration.builder import * from litex.soc.interconnect.csr import * from litescope import LiteScopeIO, LiteScopeAnalyzer _serial2 = [ ("serial2", 0, Subsignal("rx", Pins("ck_io:ck_io8")), Subsignal("tx", Pins("ck_io:ck_io9"), Misc("PULLUP")), IOStandard("LVCMOS33") ), ] # SoCController ------------------------------------------------------------------------------------ class Scratch(Module, AutoCSR): def __init__(self): self._scratch0 = CSRStorage(32, reset=0x12345678) self._scratch1 = CSRStorage(32, reset=0x9abcdef0) self._scratch2 = CSRStorage(32, reset=0xdeadbeef) self._scratch3 = CSRStorage(32, reset=0x55aaaa55) class LiteScopeSoC(SoCCore): csr_map = { "io": 16, "analyzer": 17 } csr_map.update(SoCCore.csr_map) def __init__(self, platform): sys_clk_freq = int((1e9/platform.default_clk_period)) SoCCore.__init__(self, platform, sys_clk_freq, cpu_type=None, csr_data_width=32, with_uart=False, ident="Litescope example design", ident_version=True, with_timer=False ) # crg self.submodules.crg = CRG(platform.request(platform.default_clk_name)) # bridge platform.add_extension(_serial2) bridge = UARTWishboneBridge(platform.request("serial2"), sys_clk_freq, baudrate=115200) self.submodules.bridge = bridge self.add_wb_master(bridge.wishbone) # Litescope IO self.submodules.io = LiteScopeIO(8) for i in range(8): try: self.comb += platform.request("user_led", i).eq(self.io.output[i]) except: pass # Litescope Analyzer analyzer_groups = {} # counter group counter = Signal(16, name_override="counter") zero = Signal(name_override="zero") self.sync += counter.eq(counter + 1) self.comb += zero.eq(counter == 0) analyzer_groups[0] = [ zero, counter ] # communication group analyzer_groups[1] = [ platform.lookup_request("serial2").tx, platform.lookup_request("serial2").rx, bridge.wishbone ] # fsm group fsm = FSM(reset_state="STATE1") self.submodules += fsm fsm.act("STATE1", NextState("STATE2") ) fsm.act("STATE2", NextState("STATE1") ) analyzer_groups[2] = [ fsm ] # analyzer self.submodules.analyzer = LiteScopeAnalyzer(analyzer_groups, 512) # test regs self.submodules.scratch = Scratch() self.add_csr("scratch") def do_exit(self, vns): self.analyzer.export_csv(vns, "analyzer.csv") def main(): platform = arty.Platform() soc = LiteScopeSoC(platform) builder = Builder(soc, csr_csv="csr.csv") builder.build() if __name__ == "__main__": main()
''' Problem Description Given a positive integer A, return its corresponding column title as appear in an Excel sheet. Problem Constraints 1 <= A <= 1000000000 Input Format First and only argument is integer A. Output Format Return a string, the answer to the problem. Approach: base conversion''' class Solution: # @param A : integer # @return a strings def convertToTitle(self, A): # chr -> integer to character # ord -> character to integer # creating a list n[] that contains ASCII values of characters A - Z n=[chr(i) for i in range(ord("A"),ord("Z")+1)] # .insert(position, element) n.insert(0,0) # creating two empty lists a=[];p=[] # typical base conversion while A>26: k=A%26 A=A//26 if k==0: a.append(26) A-=1 else: a.append(k) a.append(int(A)) a.reverse() for i in a: p.append(n[i]) r="".join(p) return r
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """COWC datasets.""" import abc import csv import os from typing import Callable, Dict, List, Optional, cast import matplotlib.pyplot as plt import numpy as np import torch from PIL import Image from torch import Tensor from .geo import VisionDataset from .utils import check_integrity, download_and_extract_archive class COWC(VisionDataset, abc.ABC): """Abstract base class for the COWC dataset. The `Cars Overhead With Context (COWC) <https://gdo152.llnl.gov/cowc/>`_ data set is a large set of annotated cars from overhead. It is useful for training a device such as a deep neural network to learn to detect and/or count cars. The dataset has the following attributes: 1. Data from overhead at 15 cm per pixel resolution at ground (all data is EO). 2. Data from six distinct locations: Toronto, Canada; Selwyn, New Zealand; Potsdam and Vaihingen, Germany; Columbus, Ohio and Utah, United States. 3. 32,716 unique annotated cars. 58,247 unique negative examples. 4. Intentional selection of hard negative examples. 5. Established baseline for detection and counting tasks. 6. Extra testing scenes for use after validation. If you use this dataset in your research, please cite the following paper: * https://doi.org/10.1007/978-3-319-46487-9_48 """ @property @abc.abstractmethod def base_url(self) -> str: """Base URL to download dataset from.""" @property @abc.abstractmethod def filenames(self) -> List[str]: """List of files to download.""" @property @abc.abstractmethod def md5s(self) -> List[str]: """List of MD5 checksums of files to download.""" @property @abc.abstractmethod def filename(self) -> str: """Filename containing train/test split and target labels.""" def __init__( self, root: str = "data", split: str = "train", transforms: Optional[Callable[[Dict[str, Tensor]], Dict[str, Tensor]]] = None, download: bool = False, checksum: bool = False, ) -> None: """Initialize a new COWC dataset instance. Args: root: root directory where dataset can be found split: one of "train" or "test" transforms: a function/transform that takes input sample and its target as entry and returns a transformed version download: if True, download dataset and store it in the root directory checksum: if True, check the MD5 of the downloaded files (may be slow) Raises: AssertionError: if ``split`` argument is invalid RuntimeError: if ``download=False`` and data is not found, or checksums don't match """ assert split in ["train", "test"] self.root = root self.split = split self.transforms = transforms self.checksum = checksum if download: self._download() if not self._check_integrity(): raise RuntimeError( "Dataset not found or corrupted. " + "You can use download=True to download it" ) self.images = [] self.targets = [] with open( os.path.join(self.root, self.filename.format(split)), encoding="utf-8-sig", newline="", ) as f: reader = csv.reader(f, delimiter=" ") for row in reader: self.images.append(row[0]) self.targets.append(row[1]) def __getitem__(self, index: int) -> Dict[str, Tensor]: """Return an index within the dataset. Args: index: index to return Returns: data and label at that index """ sample = {"image": self._load_image(index), "label": self._load_target(index)} if self.transforms is not None: sample = self.transforms(sample) return sample def __len__(self) -> int: """Return the number of data points in the dataset. Returns: length of the dataset """ return len(self.targets) def _load_image(self, index: int) -> Tensor: """Load a single image. Args: index: index to return Returns: the image """ filename = os.path.join(self.root, self.images[index]) with Image.open(filename) as img: array: "np.typing.NDArray[np.int_]" = np.array(img) tensor = torch.from_numpy(array) # Convert from HxWxC to CxHxW tensor = tensor.permute((2, 0, 1)) return tensor def _load_target(self, index: int) -> Tensor: """Load a single target. Args: index: index to return Returns: the target """ target = int(self.targets[index]) tensor = torch.tensor(target) return tensor def _check_integrity(self) -> bool: """Check integrity of dataset. Returns: True if dataset files are found and/or MD5s match, else False """ for filename, md5 in zip(self.filenames, self.md5s): filepath = os.path.join(self.root, filename) if not check_integrity(filepath, md5 if self.checksum else None): return False return True def _download(self) -> None: """Download the dataset and extract it.""" if self._check_integrity(): print("Files already downloaded and verified") return for filename, md5 in zip(self.filenames, self.md5s): download_and_extract_archive( self.base_url + filename, self.root, filename=filename, md5=md5 if self.checksum else None, ) def plot( self, sample: Dict[str, Tensor], show_titles: bool = True, suptitle: Optional[str] = None, ) -> plt.Figure: """Plot a sample from the dataset. Args: sample: a sample returned by :meth:`__getitem__` show_titles: flag indicating whether to show titles above each panel suptitle: optional string to use as a suptitle Returns: a matplotlib Figure with the rendered sample .. versionadded:: 0.2 """ image = sample["image"] label = cast(str, sample["label"].item()) showing_predictions = "prediction" in sample if showing_predictions: prediction = cast(str, sample["prediction"].item()) else: prediction = None fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow(image.permute(1, 2, 0)) ax.axis("off") if show_titles: title = f"Label: {label}" if prediction is not None: title += f"\nPrediction: {prediction}" ax.set_title(title) if suptitle is not None: plt.suptitle(suptitle) return fig class COWCCounting(COWC): """COWC Dataset for car counting.""" base_url = ( "https://gdo152.llnl.gov/cowc/download/cowc/datasets/patch_sets/counting/" ) filenames = [ "COWC_train_list_64_class.txt.bz2", "COWC_test_list_64_class.txt.bz2", "COWC_Counting_Toronto_ISPRS.tbz", "COWC_Counting_Selwyn_LINZ.tbz", "COWC_Counting_Potsdam_ISPRS.tbz", "COWC_Counting_Vaihingen_ISPRS.tbz", "COWC_Counting_Columbus_CSUAV_AFRL.tbz", "COWC_Counting_Utah_AGRC.tbz", ] md5s = [ "187543d20fa6d591b8da51136e8ef8fb", "930cfd6e160a7b36db03146282178807", "bc2613196dfa93e66d324ae43e7c1fdb", "ea842ae055f5c74d0d933d2194764545", "19a77ab9932b722ef52b197d70e68ce7", "4009c1e420566390746f5b4db02afdb9", "daf8033c4e8ceebbf2c3cac3fabb8b10", "777ec107ed2a3d54597a739ce74f95ad", ] filename = "COWC_{}_list_64_class.txt" class COWCDetection(COWC): """COWC Dataset for car detection.""" base_url = ( "https://gdo152.llnl.gov/cowc/download/cowc/datasets/patch_sets/detection/" ) filenames = [ "COWC_train_list_detection.txt.bz2", "COWC_test_list_detection.txt.bz2", "COWC_Detection_Toronto_ISPRS.tbz", "COWC_Detection_Selwyn_LINZ.tbz", "COWC_Detection_Potsdam_ISPRS.tbz", "COWC_Detection_Vaihingen_ISPRS.tbz", "COWC_Detection_Columbus_CSUAV_AFRL.tbz", "COWC_Detection_Utah_AGRC.tbz", ] md5s = [ "c954a5a3dac08c220b10cfbeec83893c", "c6c2d0a78f12a2ad88b286b724a57c1a", "11af24f43b198b0f13c8e94814008a48", "22fd37a86961010f5d519a7da0e1fc72", "bf053545cc1915d8b6597415b746fe48", "23945d5b22455450a938382ccc2a8b27", "f40522dc97bea41b10117d4a5b946a6f", "195da7c9443a939a468c9f232fd86ee3", ] filename = "COWC_{}_list_detection.txt" # TODO: add COCW-M datasets: # # * https://gdo152.llnl.gov/cowc/download/cowc-m/datasets/ # * https://github.com/LLNL/cowc # # Same as COCW datasets, but instead of binary classification there are 4 car classes: # # 1. Sedan # 2. Pickup # 3. Other # 4. Unknown # # May need new abstract base class. Will need subclasses for different patch sizes.
import logging from unittest import TestCase from robot_math.types import Percent from robot_math.types.data_packet_type import DataPacket logging.basicConfig(format='%(asctime)s %(levelname)-8s %(module)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=logging.DEBUG) eq = { '8k': '1K', '1000K': '1M', '8g': '1G', '8000k': '1M', } summ_p = { '2K': ('8k', '1K'), '2M': ('1000K', '1M'), '2G': ('8g', '1G'), '2.1M': ('8000k', '1.1M') } summ_n = { '2.1M': ('800k', '1M') } ne = { '8k': '1.1K', '1002K': '1M', '8.1g': '1G', '8020k': '1M', } class TestBitrate(TestCase): @classmethod def setUpClass(cls): logging.info(f'{cls.__name__}: Start') @classmethod def tearDownClass(cls): logging.info(f'{cls.__name__}: End') def setUp(self): logging.info(f'Test {self._testMethodName} start') def tearDown(self): logging.info(f'Test {self._testMethodName} end') def test_bit_value(self): b0 = DataPacket(0) assert b0 == 0, "Wrong output: {}".format(b0) logging.info("Type: {}, Value: {}".format(type(b0).__name__, b0)) b00 = DataPacket(float(0)) assert str(b00) == '0.0b', "Wrong output: {}".format(b00) logging.info("Type: {}, Value: {}".format(type(b0).__name__, b0)) b1 = DataPacket('1K') assert str(b1) == '1.0K', "Wrong output: {}".format(b1) logging.info("Type: {}, Value: {}".format(type(b1).__name__, b1)) b2 = DataPacket('1M') assert str(b2) == '1.0M', "Wrong output: {}".format(b2) logging.info("Type: {}, Value: {}".format(type(b2).__name__, b2)) b3 = DataPacket(number=1, rate='K') assert str(b3) == '1.0K', "Wrong output: {}".format(b3) logging.info("Type: {}, Value: {}".format(type(b3).__name__, b3)) b4 = DataPacket('1G') assert str(b4) == '1.0G', "Wrong output: {}".format(b4) logging.info("Type: {}, Value: {}".format(type(b4).__name__, b4)) # b4 = PacketSize('1.1G') # assert str(b4) == '1.1G', "Wrong output: {}".format(b4) # logging.info("Type: {}, Value: {}".format(type(b4), b4)) b5 = DataPacket('1.1446564G') logging.info("Format: {0} vs. {0:.1M}".format(b5)) # logging.info("Format: {:.2f}".format(b5)) def test_eq(self): for _b1, _b2 in eq.items(): b1, b2 = DataPacket(_b1), DataPacket(_b2) assert b1 == b2, "Wrong output: {} == {}".format(b1, b2) logging.info("{} == {}".format(b1, b2)) def test_ne(self): for _b1, _b2 in ne.items(): b1, b2 = DataPacket(_b1), DataPacket(_b2) assert b1 != b2, "Wrong output: {} != {}".format(b1.bit_value, b2.bit_value) logging.info("{} != {}".format(b1, b2)) def test_iadd(self): p = DataPacket('1M') p_add = DataPacket('1K') logging.info(f"1M - {p:.1m}") p += p_add logging.info(f"8m - {p:.4m}") p += '1M' logging.info(f"12m - {p:.4m}") def test_isub(self): p = DataPacket('1M') p_sub = DataPacket('1K') logging.info(f"{p:.1m}") p -= p_sub logging.info(f"{p:.4m}") p -= '0.1M' logging.info(f"{p:.4m}") def test_sum_positive(self): errors = [] for _sum, (_b1, _b2) in summ_p.items(): try: s, b1, b2 = DataPacket(_sum), DataPacket(_b1), DataPacket(_b2) _b = [b1, b2] r_s = sum(_b) assert r_s == s, "Wrong output: {} + {} == {} (Actual: {})".format(b1, b2, s, r_s) logging.info("{} + {} == {}".format(b1, b2, s)) except AssertionError as e: errors.append(e) assert len(errors) == 0, "Following iterations failed:\n{}".format( '\n\t'.join([str(e) for e in errors]) ) def test_sum_negative(self): for _sum, (_b1, _b2) in summ_n.items(): s, b1, b2 = DataPacket(_sum), DataPacket(_b1), DataPacket(_b2) r_s = sum([b1, b2]) assert r_s != s, "Wrong output: {} + {} == {} (Actual: {})".format(b1, b2, s, r_s) logging.info("{} + {} != {} (Actual: {})".format(b1, b2, s, r_s)) def test_percent(self): packet = DataPacket('10M') percent = Percent('10%') packet += percent logging.info(f"{packet}") def test_format_conversion(self): v = 8000000.8 p = DataPacket(number=v) logging.info(f"{p}") logging.info(f"{p:.1b}") logging.info(f"{p:.1k}") logging.info(f"{p:.2m}") logging.info(f"{p:.1B}") logging.info(f"{p:.1K}") logging.info(f"{p:.1M}")
from setuptools import setup version = '2.5.0' setup( name='cbagent', version=version, description='Stats collectors package for Couchbase Server monitoring', author='Couchbase', license='Apache Software License', packages=[ 'cbagent', 'cbagent.collectors', 'cbagent.collectors.libstats' ], entry_points={ 'console_scripts': [ 'cbagent = cbagent.__main__:main', ] }, include_package_data=True, install_requires=[ 'couchbase==1.2.1', 'decorator', 'fabric==1.8.0', 'logger', 'requests==2.1.0', 'seriesly', 'spring' ], dependency_links=[ 'git+https://github.com/couchbaselabs/spring.git#egg=spring', ] )
"""UseCase for showing metrics.""" import logging from argparse import Namespace, ArgumentParser from typing import Final, cast import jupiter.command.command as command from jupiter.domain.adate import ADate from jupiter.domain.metrics.metric_key import MetricKey from jupiter.use_cases.metrics.find import MetricFindUseCase from jupiter.utils.global_properties import GlobalProperties LOGGER = logging.getLogger(__name__) class MetricShow(command.Command): """UseCase for showing metrics.""" _global_properties: Final[GlobalProperties] _command: Final[MetricFindUseCase] def __init__(self, global_properties: GlobalProperties, the_command: MetricFindUseCase) -> None: """Constructor.""" self._global_properties = global_properties self._command = the_command @staticmethod def name() -> str: """The name of the command.""" return "metric-show" @staticmethod def description() -> str: """The description of the command.""" return "Show the metrics" def build_parser(self, parser: ArgumentParser) -> None: """Construct a argparse parser for the command.""" parser.add_argument("--metric", dest="metric_keys", required=False, default=[], action="append", help="The key of the metric") def run(self, args: Namespace) -> None: """Callback to execute when the command is invoked.""" metric_keys = [MetricKey.from_raw(mk) for mk in args.metric_keys] \ if len(args.metric_keys) > 0 else None response = self._command.execute(MetricFindUseCase.Args(allow_archived=False, filter_keys=metric_keys)) for metric_response_entry in response.metrics: metric = metric_response_entry.metric collection_project = metric_response_entry.collection_project metric_entries = metric_response_entry.metric_entries print(f"{metric.key}: {metric.name}" + (f" @{metric.collection_params.period.for_notion()} in " + (f"{collection_project.name if collection_project else 'Default'}") + (f" eisen={','.join(e.for_notion() for e in metric.collection_params.eisen)}" if metric.collection_params.eisen else '')) + (f" difficulty={metric.collection_params.difficulty.for_notion()}" if metric.collection_params.difficulty else '') + (f" actionable-from-day={metric.collection_params.actionable_from_day}" if metric.collection_params.actionable_from_day else '') + (f" actionable-from-month={metric.collection_params.actionable_from_month}" if metric.collection_params.actionable_from_month else '') + (f" due-at-time={metric.collection_params.due_at_time}" if metric.collection_params.due_at_time else '') + (f" due-at-day={metric.collection_params.due_at_day}" if metric.collection_params.due_at_day else '') + (f" due-at-month={metric.collection_params.due_at_month}" if metric.collection_params.due_at_month else '') if metric.collection_params else '' + (f' #{metric.metric_unit.for_notion()}' if metric.metric_unit else '')) for metric_entry in sorted(metric_entries, key=lambda me: me.collection_time): print(f" - id={metric_entry.ref_id}" + (f" {ADate.to_user_str(self._global_properties.timezone, metric_entry.collection_time)}") + f" val={metric_entry.value}") if metric_response_entry.metric_collection_inbox_tasks: print(f" Collection Tasks:") for inbox_task in sorted( metric_response_entry.metric_collection_inbox_tasks, key=lambda it: cast(ADate, it.due_date)): print(f" -id={inbox_task.ref_id} {inbox_task.name} {inbox_task.status.for_notion()}")
# flake8: noqa: W403 from .base import * DEBUG = True
#!/usr/bin/env python import os import sys here = sys.path[0] sys.path.insert(0, os.path.join(here, '..', '..', '..')) # root/ sys.path.insert(0, os.path.join(here, '..')) # openLbr/ sys.path.insert(0, os.path.join(here, '..', '..','eventBus','PyDispatcher-2.0.3')) # PyDispatcher-2.0.3/ import logging import logging.handlers import json import pytest import openLbr import openvisualizer.openvisualizer_utils as u #============================ logging ========================================= LOGFILE_NAME = 'test_utils.log' import logging log = logging.getLogger('test_utils') log.setLevel(logging.ERROR) log.addHandler(logging.NullHandler()) logHandler = logging.handlers.RotatingFileHandler(LOGFILE_NAME, backupCount=5, mode='w') logHandler.setFormatter(logging.Formatter("%(asctime)s [%(name)s:%(levelname)s] %(message)s")) for loggerName in ['test_utils', 'openLbr',]: temp = logging.getLogger(loggerName) temp.setLevel(logging.DEBUG) temp.addHandler(logHandler) #============================ defines ========================================= #============================ fixtures ======================================== #===== expectedBuf2int EXPECTEDBUF2INT = [ # buf int json.dumps(([0x01,0x02], 0x0102)), json.dumps(([0xaa,0xbb], 0xaabb)), ] @pytest.fixture(params=EXPECTEDBUF2INT) def expectedBuf2int(request): return request.param #===== expectedhex2buf EXPECTEDHEX2BUF = [ # hex buf json.dumps(('abcd', [0xab,0xcd])), json.dumps(('', [])), json.dumps(('aa', [0xaa])), ] @pytest.fixture(params=EXPECTEDHEX2BUF) def expectedhex2buf(request): return request.param #===== expectedbyteinverse EXPECTEDBYTEINVERSE = [ # b b_inverse json.dumps((0x01,0x80)), json.dumps((0x02,0x40)), json.dumps((0x04,0x20)), json.dumps((0x81,0x81)), ] @pytest.fixture(params=EXPECTEDBYTEINVERSE) def expectedbyteinverse(request): return request.param #===== expectedformatipv6 EXPECTEDFORMATIPv6 = [ json.dumps( ( [ # list 0x01,0x23,0x45,0x67,0x89,0xab,0xcd,0xef, 0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 ], '123:4567:89ab:cdef:fedc:ba98:7654:3210' # string ) ), json.dumps( ( [ # list 0x01,0x23,0x45,0x67,0x00,0x00,0xcd,0xef, 0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 ], '123:4567:0:cdef:fedc:ba98:7654:3210' # string ) ), json.dumps( ( [ # list 0x01,0x23,0x45,0x67,0x00,0x00,0x00,0x00, 0xfe,0xdc,0xba,0x98,0x76,0x54,0x32,0x10 ], '123:4567:0:0:fedc:ba98:7654:3210' # string ) ), ] @pytest.fixture(params=EXPECTEDFORMATIPv6) def expectedformatipv6(request): return request.param #============================ helpers ========================================= #============================ tests =========================================== def test_buf2int(expectedBuf2int): (expBuf,expInt) = json.loads(expectedBuf2int) assert u.buf2int(expBuf)==expInt def test_hex2buf(expectedhex2buf): (expHex,expBuf) = json.loads(expectedhex2buf) expHex = str(expHex) assert u.hex2buf(expHex)==expBuf def test_byteinverse(expectedbyteinverse): (b,b_inverse) = json.loads(expectedbyteinverse) assert u.byteinverse(b)==b_inverse assert u.byteinverse(b_inverse)==b def test_formatIPv6Addr(expectedformatipv6): (ipv6_list,ipv6_string) = json.loads(expectedformatipv6) print ipv6_string assert u.formatIPv6Addr(ipv6_list)==ipv6_string
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' Cookie Module module for cookie management in webdriver Create by Artur Spirin https://github.com/ArturSpirin/YouTube-WebDriver-Tutorials/blob/master/Cookies.py ''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' import pickle import pprint import os PATH = os.getcwd() def get_file(filename): return PATH+'\\cookies\\'+filename+'.txt' def save_cookies(driver, filename): pickle.dump(driver.get_cookies(), open(get_file(filename), "wb")) def load_cookies(driver, filename, url=None): cookies = pickle.load(open(get_file(filename), "rb")) driver.delete_all_cookies() # have to be on a page before you can add any cookies, any page - does not matter which driver.get("https://google.com" if url is None else url) for cookie in cookies: if isinstance(cookie.get('expiry'), float):#Checks if the instance expiry a float cookie['expiry'] = int(cookie['expiry'])# it converts expiry cookie to a int driver.add_cookie(cookie) def delete_cookies(driver, domains=None): if domains is not None: cookies = driver.get_cookies() original_len = len(cookies) for cookie in cookies: if str(cookie["domain"]) in domains: cookies.remove(cookie) if len(cookies) < original_len: # if cookies changed, we will update them # deleting everything and adding the modified cookie object driver.delete_all_cookies() for cookie in cookies: driver.add_cookie(cookie) else: driver.delete_all_cookies()
#!/usr/bin/env python import rospy from geometry_msgs.msg import Twist import numpy as np from maze.msg import Maze import astar from scipy.spatial.transform import Rotation as R import sys from fixed_path_controller import Controller class DynamicController(Controller): """ This controller will be able to handle the changing maze, with the assuption that the total size of the maze is not changed. """ def update(self, maze): """ Input: - maze: the message received from vision + transformation + grid + map_shape + turtlebot_pos: in segmentation pixel + goal_pos: in segmentation pixel + image_shape: segmentation image Do - Update instance attributes + grid, path: only once + state: every message """ # only update the state when the message is valid if self.validate(maze, 100): # start = self.localize(maze.turtlebot_pos, maze.map_shape, maze.seg_img_shape) start = self.localize_turtlebot(maze.turtlebot_pos, maze.map_shape, maze.seg_img_shape) # else: # print("Invalid maze, state update is estimated") # self.estimate_state() # return self.state_pixel = np.asarray(maze.turtlebot_pos) # if maze is meaningful, update every attribute if maze.success: # update the state x, y = np.asarray(start) r = maze.transform.rotation rotation = R.from_quat([r.x,r.y,r.z,r.w]).as_euler('xyz', degrees=False) angle = rotation[2] self.state = (x, y, angle) self.goal_pixel = np.asarray(maze.goal_pos) goal = self.localize(maze.goal_pos, maze.map_shape, maze.seg_img_shape) self.grid = np.asarray(maze.occupancy_grid).reshape(maze.map_shape[0], maze.map_shape[1]) planner = astar.Planner(self.grid, start, goal) self.path = np.asarray(planner.findPath()) if len(self.path) >= 2: self.end = self.path[1] self.scale = np.asarray(maze.seg_img_shape) / maze.map_shape self.dist_tolerance = np.min(self.scale) / self.dist_factor if tuple(start) in self.path: self.is_turning = True else: self.is_turning = False # print('========================================') # print('End: ', self.end) # print('State: ', self.state) # print('State pixel: ', self.state_pixel) # print('End pixel: ', np.flip((self.end + [0.5, 0.5])* self.scale).astype(int)) # print('Goal pixel: ', self.goal_pixel) # print('Grid: ', self.grid) # print('Path: ', self.path) # print('current motion: from ', self.state, ' to ', self.end) # print('Scale: ', self.scale) def localize_turtlebot(self, pos, map_shape, img_shape): """ localize the position of turtlebot only use the grid position if the distance from the center of the turtlebot to the center of the rid is within the distance tolerance """ temp_pos = (np.flip(pos).astype(float) / img_shape) * map_shape if self.end is None or self.distance_to_end(pos) < self.dist_tolerance: return temp_pos.astype(int) else: return np.array([self.state[0], self.state[1]]) def distance_to_end(self, pos): """ compute the distance from the pos to self.end """ end_pixel = np.flip((self.end + [0.5, 0.5])* self.scale).astype(int) return np.linalg.norm(end_pixel - pos) def control(self): """ The main control function """ # self.message_rate = 10 self.Kz /= 2 self.Kl /= 2 # self.angle_tolerance = 0.1 self.dist_factor = 4 self.goal_tolerance = 70 rospy.init_node("controller", anonymous=True) r = rospy.Rate(self.message_rate) # self.linear_factor = 0.01 while not rospy.is_shutdown() and not self.is_goal(self.goal_tolerance): rospy.Subscriber('/maze/grid', Maze, self.update) desired = self.compute_desired_angle() self.linear_factor = 0.01 if desired is not None: current_path = self.path # desired angle is not changed until turtlebot reaches the next grid position and path changes while not rospy.is_shutdown() and not self.is_goal(self.goal_tolerance) and np.array_equal(current_path, self.path): angle_diff = desired - self.state[2] dist_diff = self.distance() # print('Path length', path_length) print("path: ", self.path) # keep the angle_diff in the range of -pi to pi if angle_diff > np.pi: angle_diff -= 2 * np.pi if angle_diff < -np.pi: angle_diff += 2 * np.pi print("Angle difference: ", angle_diff) print('current motion: from ', self.state, ' to ', self.end) cmd = Twist() # pure rotation at turning points # if abs(angle_diff) > self.angle_tolerance and hasattr(self, 'is_turning') and self.is_turning: if abs(angle_diff) > self.angle_tolerance: self.linear = 0.0 cmd.angular.z = self.angular = self.Kz * angle_diff # if hasattr(self, 'is_turning') and self.is_turning: # self.linear_factor = 0.01 # rotation and translation elif dist_diff > self.dist_tolerance: cmd.linear.x = self.linear = self.Kl * dist_diff * self.linear_factor cmd.angular.z = angle_diff self.angular = 0.0 if self.linear_factor < 1: self.linear_factor += 0.01 # elif len(self.path) < path_length: # print("should start turning now") # break self.pub.publish(cmd) # print(cmd) r.sleep() # keep moving turtlebot using the previous twist for certain times if self.is_goal(self.goal_tolerance): for _ in range(60): self.pub.publish(cmd) r.sleep() print('Goal is reached!') break r.sleep() if __name__ == '__main__': controller = DynamicController(sys.argv[1]) controller.control()
import logging import os import unittest from src.dasicon_api import DaisyconApi class TestDaisyconApi(unittest.TestCase): def setUp(self): # set up logging logging.root.handlers = [] logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) logging.info('Setiting up DaisyconApi') username = os.environ.get('DASIYCON_USERNAME') password = os.environ.get('DASIYCON_PASSWORD') publisher_id = os.environ.get('DASIYCON_PUBLISHER_ID') self.api = DaisyconApi(username, password, publisher_id) def test_get_publisher_programs(self): pages_data, value_count = self.api.get_publisher_programs(page=1, per_page=1) self.assertGreater(len(pages_data), 0) self.assertGreater(value_count, 1)
#!/usr/bin/env python3 # pip3 install pymupdf import fitz import sys import re import os def pdf2pic(pdf_path, output_path): # 使用正则表达式来查找图片 checkXO = r"/Type(?= */XObject)" checkIM = r"/Subtype(?= */Image)" # 打开pdf doc = fitz.open(pdf_path) # 图片计数 imgcount = 0 lenXREF = doc._getXrefLength() # 打印PDF的信息 print("文件名:{}, 页数: {}, 对象: {}".format(pdf_path, len(doc), lenXREF - 1)) # 遍历每一个对象 for i in range(1, lenXREF): # 定义对象字符串 text = doc._getXrefString(i) isXObject = re.search(checkXO, text) # 使用正则表达式查看是否是图片 isImage = re.search(checkIM, text) # 如果不是对象也不是图片,则continue if not isXObject: continue if not isImage: continue imgcount += 1 # 根据索引生成图像 pix = fitz.Pixmap(doc, i) # 根据pdf的路径生成图片的名称 new_name = "%02d.png" %imgcount # 如果pix.n<5,可以直接存为PNG if pix.n < 5: pix.writePNG(os.path.join(output_path, new_name)) # 否则先转换CMYK else: pix0 = fitz.Pixmap(fitz.csRGB, pix) pix0.writePNG(os.path.join(output_path, new_name)) pix0 = None # 释放资源 pix = None print("提取了{}张图片".format(imgcount)) def pdf2txt(pdf_path,output_path): ''' 从PDF中获取文本 ''' doc = fitz.open(pdf_path) output_file = output_path + os.sep + 'output.txt' print(output_file) out = open(output_file,'w') for d in doc: out.write(d.getText("text")) # 可选 html / xml /json 等 out.close() if __name__=='__main__': # pdf路径 if len(sys.argv) == 1: exit(-1) pdf_path = sys.argv[1] output_path = os.getcwd() + os.sep + os.path.basename(pdf_path)[:-4] # 不存在则创建 if not os.path.exists(output_path): os.mkdir(output_path) pdf2txt(pdf_path,output_path) pdf2pic(pdf_path,output_path)
""" Sequence distance metrics (:mod:`skbio.sequence.distance`) ========================================================== .. currentmodule:: skbio.sequence.distance This module contains functions for computing distances between scikit-bio ``Sequence`` objects. These functions can be used directly or supplied to other parts of the scikit-bio API that accept a sequence distance metric as input, such as :meth:`skbio.sequence.Sequence.distance` and :meth:`skbio.stats.distance.DistanceMatrix.from_iterable`. Functions --------- .. autosummary:: :toctree: hamming kmer_distance """ # ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import numpy as np import scipy.spatial.distance import skbio from skbio.util._decorator import experimental @experimental(as_of='0.4.2') def hamming(seq1, seq2): """Compute Hamming distance between two sequences. The Hamming distance between two equal-length sequences is the proportion of differing characters. Parameters ---------- seq1, seq2 : Sequence Sequences to compute Hamming distance between. Returns ------- float Hamming distance between `seq1` and `seq2`. Raises ------ TypeError If `seq1` and `seq2` are not ``Sequence`` instances. TypeError If `seq1` and `seq2` are not the same type. ValueError If `seq1` and `seq2` are not the same length. See Also -------- scipy.spatial.distance.hamming Notes ----- ``np.nan`` will be returned if the sequences do not contain any characters. This function does not make assumptions about the sequence alphabet in use. Each sequence object's underlying sequence of characters are used to compute Hamming distance. Characters that may be considered equivalent in certain contexts (e.g., `-` and `.` as gap characters) are treated as distinct characters when computing Hamming distance. Examples -------- >>> from skbio import Sequence >>> from skbio.sequence.distance import hamming >>> seq1 = Sequence('AGGGTA') >>> seq2 = Sequence('CGTTTA') >>> hamming(seq1, seq2) 0.5 """ _check_seqs(seq1, seq2) # Hamming requires equal length sequences. We are checking this here # because the error you would get otherwise is cryptic. if len(seq1) != len(seq2): raise ValueError( "Hamming distance can only be computed between sequences of equal " "length (%d != %d)" % (len(seq1), len(seq2))) # scipy throws a RuntimeWarning when computing Hamming distance on length 0 # input. if not seq1: distance = np.nan else: distance = scipy.spatial.distance.hamming(seq1.values, seq2.values) return float(distance) @experimental(as_of='0.5.0') def kmer_distance(seq1, seq2, k, overlap=True): """Compute the kmer distance between a pair of sequences The kmer distance between two sequences is the fraction of kmers that are unique to either sequence. Parameters ---------- seq1, seq2 : Sequence Sequences to compute kmer distance between. k : int The kmer length. overlap : bool, optional Defines whether the kmers should be overlapping or not. Returns ------- float kmer distance between `seq1` and `seq2`. Raises ------ ValueError If `k` is less than 1. TypeError If `seq1` and `seq2` are not ``Sequence`` instances. TypeError If `seq1` and `seq2` are not the same type. Notes ----- kmer counts are not incorporated in this distance metric. ``np.nan`` will be returned if there are no kmers defined for the sequences. Examples -------- >>> from skbio import Sequence >>> seq1 = Sequence('ATCGGCGAT') >>> seq2 = Sequence('GCAGATGTG') >>> kmer_distance(seq1, seq2, 3) # doctest: +ELLIPSIS 0.9230769230... """ _check_seqs(seq1, seq2) seq1_kmers = set(map(str, seq1.iter_kmers(k, overlap=overlap))) seq2_kmers = set(map(str, seq2.iter_kmers(k, overlap=overlap))) all_kmers = seq1_kmers | seq2_kmers if not all_kmers: return np.nan shared_kmers = seq1_kmers & seq2_kmers number_unique = len(all_kmers) - len(shared_kmers) fraction_unique = number_unique / len(all_kmers) return fraction_unique def _check_seqs(seq1, seq2): # Asserts both sequences are skbio.sequence objects for seq in seq1, seq2: if not isinstance(seq, skbio.Sequence): raise TypeError( "`seq1` and `seq2` must be Sequence instances, not %r" % type(seq).__name__) # Asserts sequences have the same type if type(seq1) is not type(seq2): raise TypeError( "Sequences must have matching type. Type %r does not match type %r" % (type(seq1).__name__, type(seq2).__name__))
# Generated by Django 2.2.13 on 2020-08-26 17:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('pipeline', '0061_regionaldistrict_oc_m_yr'), ] operations = [ migrations.RemoveField( model_name='censussubdivision', name='eng_fr_not_known', ), migrations.AddField( model_name='censussubdivision', name='fr_known', field=models.IntegerField(null=True), ), ]
import argparse import logging as log import os import time import shutil import sys import datetime import numpy as np from math import ceil, floor import torch import torch.nn as nn import torch.distributed as dist import torch.optim as optim from torch.multiprocessing import Process from torch.autograd import Variable from tensorboardX import SummaryWriter import models as models from dataloading.dataloaders import get_loader model_names = sorted(name for name in models.__dict__ if name.islower() and not name.startswith("__") and callable(models.__dict__[name])) parser = argparse.ArgumentParser() ## Parameters for NVVL loader (filepaths, augmentation settings) parser.add_argument('--root', type=str, default='/root/3DCNN/', help='input data root folder') parser.add_argument('--output', type=str, default='', help='output data root folder') parser.add_argument('--label_json', type=str, default='labels_2hourlaserbinary.json', help='JSON label filename') parser.add_argument('--frames', type=int, default = 16, help='num frames in input sequence (default: 16)') parser.add_argument('--is_cropped', action='store_true', help='crop input frames?') parser.add_argument('--crop_size', type=int, nargs='+', default=[112, 112], help='[height, width] for input crop (default: [112, 112])') parser.add_argument('--shuffle', action="store_true", help='Shuffle batches?') parser.add_argument('--normalized', action="store_true", help='Normalize images from [0;255] to [0;1]?') parser.add_argument('--random_flip', action="store_true", help='flip the image horizontally before cropping?') parser.add_argument('--color_space', type = str, default = "RGB", help='Color space to use. "RGB" and "YCbCr" are available. (default: "RGB")') parser.add_argument('--dimension_order', type = str, default = "cfhw", help='Axis order of the channels, frames, height and width. (default: "cfhw")') parser.add_argument('--stride', type = int, default = None, help='Frame stride when sampling from videos. (default: None)') parser.add_argument('--test', action='store_true', help='Whether to test a network, and not train it') parser.add_argument('--gpu', default=None, type=int, help='GPU id to use. If set, only 1 GPU is used') ## Hyperparameters parser.add_argument('--batchsize', type=int, default=10, help='Training batch size (default: 10)') parser.add_argument('--val_batchsize', type=int, default=4, help='validation/test batch size (default: 4)') parser.add_argument('--lr', default=0.1, type=float, metavar='LR', help='initial learning rate (default 0.1)') parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum (default: 0.9)') parser.add_argument('--nesterov', action="store_true", help='use Nesterov Accelerated Gradient') parser.add_argument('--weight-decay', default=1e-4, type=float, metavar='W', help='weight decay (default: 1e-4)') parser.add_argument('--step_size', default=5, type=int, help='Step size for lr schedueler (default: 5)') parser.add_argument('--gamma', default=0.1, type=float, help='Gamma for lr schedueler (default: 0.1)') parser.add_argument('--epochs', default=90, type=int, metavar='N', help='number of total epochs to run. (default: 90)') ## System settings parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed') parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)') parser.add_argument('--print-freq', default=10, type=int, metavar='N', help='print frequency (default: 10)') parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') ## Network parametes parser.add_argument('--arch', metavar='ARCH', default='c3d', choices=model_names, help='model architecture: ' + ' | '.join(model_names) + ' (default: c3d)') parser.add_argument("--num_classes", default=2, type=int, help="Number of neurons in output layer (if 1, sigmoid is last activation, otherwise softmax)") parser.add_argument("--FCN", action="store_true", help="Whether to use a dense validation/test approach. If not set center crop approach will be used") def main(args): systemInfo() dirs = os.listdir(args.root) if args.test: assert "tst" in dirs, "A 'tst' directory is not in {}".format(args.root) else: assert "train" in dirs, "A 'train' directory is not in {}".format(args.root) assert "val" in dirs, "A 'val' directory is not in {}".format(args.root) assert "labels" in dirs, "A 'labels' directory is not in {}".format(args.root) del dirs if args.is_cropped: assert args.crop_size[0] == args.crop_size[1], "Crop size is assumed to be square, but you supplied {}".format(args.crop_size) args.sample_size = args.crop_size[0] args.sample_duration = args.frames if args.output == "": now = datetime.datetime.now() args.output = os.path.join("./results", now.strftime("%Y-%m-%d_%H:%M:%S")) del now if not os.path.exists(args.output): os.mkdir(args.output) os.mkdir(os.path.join(args.output, "weights")) print("Output path: {}".format(args.output)) with open(os.path.join(args.output, "Settings.txt"), "w") as outfile: outfile.write(str(vars(args))) print("Setting up Tensorboard") writer = SummaryWriter() writer.add_text('config', str(vars(args))) print("Tensorboard set up") print("Setting Pytorch cuda settings") torch.cuda.set_device(0) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) torch.backends.cudnn.benchmark = True print("Set Pytorch cuda settings\n") print("Creating model '{}'".format(args.arch)) model = load_model(args) print("Model created\n") if args.gpu is not None: print("Using GPU {}\n".format(args.gpu)) model = model.cuda(args.gpu) elif torch.cuda.device_count() == 1: print("Using a single GPU\n") model = model.cuda() else: print("Using {} GPUs\n".format(torch.cuda.device_count())) model = nn.DataParallel(model).cuda() print("Setting up loss and optimizer") if args.num_classes == 1: criterion = nn.BCELoss().cuda(args.gpu) else: criterion = nn.NLLLoss().cuda(args.gpu) optimizer = optim.SGD(model.parameters(), args.lr, momentum=args.momentum, nesterov = args.nesterov, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.StepLR(optimizer, args.step_size, args.gamma) print("Optimizer and loss function setup\n") best_accV = -1 if args.resume: if os.path.isfile(args.resume): print("=> loading checkpoint '{}'".format(args.resume)) checkpoint = torch.load(args.resume) print("Loading checkpoint from epoch {} with val accuracy of {}".format(checkpoint['epoch'], checkpoint['best_accV'])) args.start_epoch = checkpoint['epoch'] best_accV = checkpoint['best_accV'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) print("=> loaded checkpoint '{}' (epoch {})\n" .format(args.resume, checkpoint['epoch'])) else: print("=> no checkpoint found at '{}'\n".format(args.resume)) if args.test: print("Initializing testing dataloaders") test_loader, test_batches, sampler = get_loader(args) tst_samples_per_epoch = test_batches * args.test_batchsize print("Test Batch size: {}\nTest batches: {}\nTest videos: {}".format(args.test_batchsize, test_batches, len(test_loader.files))) print('Dataloaders initialized\n') # evaluate on validation set timeT = test(test_loader, model, args) else: print("Initializing training dataloaders") train_loader, train_batches, val_loader, val_batches, sampler = get_loader(args) trn_samples_per_epoch = train_batches * args.batchsize val_samples_per_epoch = val_batches * args.val_batchsize print(args.root) print("Trn Batch size: {}\nTrn batches: {}\nTrn videos: {}\nVal Batch size: {}\nVal batches: {}\nVal videos: {}\nTrn samples per epoch: {}\nVals samples per epoch: {}".format(args.batchsize, train_batches, len(train_loader.files), args.val_batchsize, val_batches,len(val_loader.files), trn_samples_per_epoch, val_samples_per_epoch)) print('Dataloaders initialized\n') for epoch in range(args.start_epoch, args.epochs): _start = time.time() scheduler.step() writer.add_scalar('Learning Rate', optimizer.param_groups[0]["lr"], epoch) # train for one epoch lossT, accT, timeT = train(train_loader, model, criterion, optimizer, epoch, writer, args) writer.add_scalar('Loss/Training-Avg', lossT, epoch) writer.add_scalar('Accuracy/Training', accT, epoch) writer.add_scalar('Time/Training-Avg', timeT, epoch) print("Epoch {} training completed: {}".format(epoch, datetime.datetime.now().isoformat())) print("Train time {}".format(timeT)) time.sleep(1) # evaluate on validation set lossV, accV, timeV = validate(val_loader, model, criterion, args, epoch) writer.add_scalar('Loss/Validation-Avg', lossV, epoch) writer.add_scalar('Accuracy/Validation', accV, epoch) writer.add_scalar('Time/Validation-Avg', timeV, epoch) print("Epoch {} validation completed: {}".format(epoch, datetime.datetime.now().isoformat())) print("Val time {}".format(timeV)) # remember best acc@1 and save checkpoint is_best = accV > best_accV best_accV = max(accV, best_accV) save_checkpoint({ 'epoch': epoch + 1, 'arch': args.arch, 'state_dict': model.state_dict(), 'best_accV': best_accV, 'accV' : accV, 'accT' : accT, 'optimizer': optimizer.state_dict(), }, is_best, filename='checkpoint_{}.pth.tar'.format(epoch), dir=os.path.join(args.output, "weights")) _end = time.time() print("Epoch {}\n\tTime: {} seconds\n\tTrain Loss: {}\n\tTrain Accuracy: {}\n\tValidation Loss: {}\n\tValidation Accuracy: {}\n".format(epoch, _end-_start, lossT, accT, lossV, accV)) print("Train time {}\nVal time {}".format(timeT, timeV)) def train(train_loader, model, criterion, optimizer, epoch, writer, args): """ Takes the network and hyperparameters and trains the network through an iteration of the train data Input: train_loader: Dataloader for training data model: CNN model criterion: Loss function optimizer: Model optimizer function epoch: The current epoch writer: Tensorboard write args: General script arguments Output: losses.avg: Average loss value top1.avg: Average top-1 accuracy batch_time.avg: Average processign time per batch in seconds """ batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to train mode model.train() n_batches = len(train_loader) end = time.time() for i, inputs in enumerate(train_loader): target = [x[0] for x in inputs['labels']] input = inputs['input'] # Output shape [batchsize, channels, numFrames, height, width] if args.num_classes == 1: target = torch.FloatTensor(target).view(-1, 1) else: target = torch.LongTensor(target).view(-1,) # measure data loading time data_time.update(time.time() - end) # zero the parameter gradients optimizer.zero_grad() # compute output output = model(Variable(input)) loss = criterion(output, Variable(target).cuda()) # compute gradient and do optimizer step loss.backward() optimizer.step() # measure accuracy and record loss losses.update(loss.item(), input.size(0)) acc = accuracy(output, Variable(target).cuda()) top1.update(acc, input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() writer.add_scalar('Loss/Training', loss.item(), epoch*n_batches+i) writer.add_scalar('Time/Training', batch_time.val, epoch*n_batches+i) if i % args.print_freq == 0: print('Epoch: [{0}][{1}/{2}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Data {data_time.val:.3f} ({data_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format( epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1)) return losses.avg, top1.avg, batch_time.avg def validate(val_loader, model, criterion, args, epoch): """ Takes the network and hyperparameters and validates the network through an iteration of the validation data The predictions are saved in a csv file in a fodler 'val_predictions' Input: val_loader: Dataloader for validation data model: CNN model criterion: Loss function args: General script arguments epoch: The current epoch Output: losses.avg: Average loss value top1.avg: Average top-1 accuracy batch_time.avg: Average processign time per batch in seconds """ batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, inputs in enumerate(val_loader): target_full = inputs['labels'] input = inputs['input'] # Output shape [batchsize, channels, numFrames, height, width] batchsize, _, _, height, width = input.shape input = input[:,:,:,:,:width-2] input = Variable(input) target = [x[0] for x in target_full] if args.num_classes == 1: target = torch.FloatTensor(target).view(-1, 1) else: target = torch.LongTensor(target).view(-1,) # Compute Output if args.FCN: #Fully Convolutional approach output = model(input) else: #Center crop approach c_w = width//2 c_h = height//2 h_w = args.crop_size[0]//2 h_h = args.crop_size[1]//2 output = model(input[:,:,:,c_h-h_h:c_h+h_h,c_w-h_w:c_w+h_w]) loss = criterion(output, Variable(target).cuda()) # measure accuracy and record loss losses.update(loss.item(), batchsize) acc = accuracy(output, Variable(target).cuda()) top1.update(acc, batchsize) output = output.data pred = np.argmax(output,1) with open("./val_predictions/predictions_{}.csv".format(epoch), "a") as output_file: for j in range(len(target)): output_file.write("{};{};{};{}\n".format(pred[j],output[j][pred[j]], target_full[j][1], target_full[j][2])) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Validation: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})'.format( i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1)) return losses.avg, top1.avg, batch_time.avg def test(test_loader, model, args): """ Takes the network and hyperparameters and tests the network on the test data The predictions are saved in a csv file in a fodler 'test_predictions' Input: test_loader: Dataloader for testing data model: CNN model args: General script arguments Output: batch_time.avg: Average processign time per batch in seconds """ batch_time = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, inputs in enumerate(test_loader): target = inputs['labels'] input = inputs['input'] # Output shape [batchsize, channels, numFrames, height, width] batchsize, _, _, height, width = input.shape input = input[:,:,:,:,:width-2] input = Variable(input) # Compute Output if args.FCN: #Fully Convolutional approach output = model(input) else: #Center crop approach c_w = width//2 c_h = height//2 h_w = args.crop_size[0]//2 h_h = args.crop_size[1]//2 output = model(input[:,:,:,c_h-h_h:c_h+h_h,c_w-h_w:c_w+h_w]) output = output.data pred = np.argmax(output,1) with open("./test_predictions/predictions.csv", "a") as output_file: for j in range(len(target)): output_file.write("{};{};{};{}\n".format(pred[j],output[j][pred[j]], target[j][0], target[j][1])) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if i % args.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})'.format( i, len(test_loader), batch_time=batch_time)) return batch_time.avg def save_checkpoint(state, is_best, filename='checkpoint.pth.tar', dir="./weights"): """ Saves the current state of the network. Input: state: Dict of the model and other infromation which should be saved is_best: Boolean indicating if this is the best performance so far filename: Filename for the output pth.tar file dir: Path to the output directory """ filename = os.path.join(dir, filename) torch.save(state, filename) if is_best: shutil.copyfile(filename, os.path.join(dir, 'model_best.pth.tar')) class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target): """Computes the accuracy""" target = target.type(torch.cuda.LongTensor).view(-1,) with torch.no_grad(): _, predicted = torch.max(output, 1) total = target.size(0) correct = predicted.eq(target).sum().item() res = correct / total return res def load_model(args): if "c3d" in args.arch: model = models.__dict__[args.arch](num_classes=args.num_classes) else: raise ValueError("Supplied architecture {} is not supported".format(args.arch)) print(str(model) + "\n") print("Total parameter count: {}".format(sum(p.numel() for p in model.parameters()))) print("Trainable parameter count: {}".format(sum(p.numel() for p in model.parameters() if p.requires_grad))) return model def systemInfo(): from subprocess import call print('__Python VERSION: {}'.format(sys.version)) print('__pyTorch VERSION: {}'.format(torch.__version__)) print('__CUDA VERSION:') call(["nvcc", "--version"]) print('__CUDNN VERSION: {}'.format(torch.backends.cudnn.version())) print('__Number CUDA Devices: {}'.format(torch.cuda.device_count())) print('__Devices') call(["nvidia-smi", "--format=csv", "--query-gpu=index,name,driver_version,memory.total,memory.used,memory.free"]) print('Active CUDA Device: GPU {}'.format(torch.cuda.current_device())) print('Available devices: {}'.format(torch.cuda.device_count())) print('Current cuda device: {}'.format(torch.cuda.current_device())) print() if __name__ == "__main__": main(parser.parse_args())
import string from argparse import ArgumentParser from pathlib import Path import pytest from espnet2.bin.tts_inference import Text2Speech, get_parser, main from espnet2.tasks.tts import TTSTask def test_get_parser(): assert isinstance(get_parser(), ArgumentParser) def test_main(): with pytest.raises(SystemExit): main() @pytest.fixture() def token_list(tmp_path: Path): with (tmp_path / "tokens.txt").open("w") as f: f.write("<blank>\n") for c in string.ascii_letters: f.write(f"{c}\n") f.write("<unk>\n") f.write("<sos/eos>\n") return tmp_path / "tokens.txt" @pytest.fixture() def config_file(tmp_path: Path, token_list): # Write default configuration file TTSTask.main( cmd=[ "--dry_run", "true", "--output_dir", str(tmp_path), "--token_list", str(token_list), "--token_type", "char", "--cleaner", "none", "--g2p", "none", "--normalize", "none", ] ) return tmp_path / "config.yaml" @pytest.mark.execution_timeout(5) def test_Text2Speech(config_file): text2speech = Text2Speech(train_config=config_file) text = "aiueo" text2speech(text)
# coding=utf-8 try: from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_001 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_002 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_003 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_004 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_005 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_006 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_007 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_008 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_009 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_010 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_011 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_012 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_013 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_014 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_015 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_016 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_017 import * from src.testcase.GN_APP.case.GN_APP_REGISTER.GN_APP_REGISTER_018 import * except ImportError as e: print(e)
# -*- coding: utf-8 -*- from .context import ENDPOINT from .helpers import Request # api = OKExAPI(apikey, secret) # api.post('future_userinfo', params=None) # api.get('userinfo', params=None) class OKExAPI(object): """ 基础类 """ def __init__(self, apikey, secret): """ Constructor for class of OKExBase. :param apikey: String of API KEY :param secret: String of SECRET KEY :return: None """ self._request = Request(apikey=apikey, secret=secret) def post(self, endpoint=None, *args, **kwargs): try: endpoint = '/api/v1/{}.do'.format(endpoint) res = self._request.post(endpoint, kwargs) return res except Exception as e: raise e def get(self, endpoint=None, *args, **kwargs): try: endpoint = '/api/v1/{}.do'.format(endpoint) res = self._request.get(endpoint, kwargs) return res except Exception as e: raise e def call(self, endpoint=None, method='get', *args, **kwargs): try: endpoint = '/api/v1/{}.do'.format(endpoint) if method == 'post': res = self._request.post(endpoint, kwargs, True) else: res = self._request.get(endpoint, kwargs) return res except Exception as e: raise e
from .book_io import * from .character_loader import * from .constants import * from .parser import *
class Solution: def isSubsequence(self, s: str, t: str) -> bool: count=0 if s=="" : return True if t=="": return False for i in range (0,len(t)): if count<len(s) and s[count]==t[i]: count+=1 if count<len(s): return False return True
def solution(n, k, l): l = sorted(l) day = 0 capacity = 0 consume = 0 for a in l: if a > day: consume += 1 capacity += 1 if capacity >= k: capacity = 0 day += 1 return consume numOfTests = int(input()) for i in range(numOfTests): N, K = tuple(map(lambda x: int(x), input().split())) data = map(lambda x: int(x), input().split()) answer = solution(N, K, data) print(f'Case #{i+1}: {answer}\n')
"""Test suite for dataset loading code.""" from os import path import pytest import numpy as np import datasets LSP_PATH = "../datasets/lsp/lsp_dataset.zip" LSPET_PATH = "../datasets/lspet/lspet_dataset.zip" @pytest.mark.skipif(not path.exists(LSP_PATH), reason="Need LSP .zip") def test_lsp(): lsp = datasets.LSP(LSP_PATH) joints = lsp.joints.locations assert joints.shape == (2000, 14, 3) # Should load im0042.jpg (i.e. image 41 + 1) img_42 = lsp.load_image(41) # It's a 134 (width) * 201 (height) image, but the image is row-major assert img_42.shape == (201, 134, 3) # Just skip this because it's slow. It doesn't run into memory issues, # though. # all_images = lsp.load_all_images() # assert len(all_images) == len(joints) # assert all_images[41].shape == img_42.shape @pytest.mark.skipif(not path.exists(LSPET_PATH), reason="Need LSPET .zip") def test_lspet(): # As above, but for the larger LSPET dataset lsp = datasets.LSPET(LSPET_PATH) joints = lsp.joints.locations assert joints.shape == (10000, 14, 3) img_412 = lsp.load_image(411) # It's 245 (width) * 371 (height) but, again, the matrix is row-major assert img_412.shape == (371, 245, 3) # Commented out due to memory issues :P # all_images = lsp.load_all_images() # assert len(all_images) == len(joints) # assert all_images[411] == img_412 def test_split_lists(): splitted = datasets.split_items(range(113), 8) assert sum(map(len, splitted)) == 113 assert set(map(len, splitted)) == {14, 15} assert set(x for l in splitted for x in l) == set(range(113)) splitted = datasets.split_items(range(12), 3) assert sum(map(len, splitted)) == 12 assert set(map(len, splitted)) == {4} assert set(x for l in splitted for x in l) == set(range(12)) @pytest.mark.skipif(not path.exists(LSP_PATH), reason="Need LSP .zip") def test_split_dataset(): lsp = datasets.LSP(LSP_PATH) train, validate, test = lsp.split(3) assert np.any(train.joints.locations != validate.joints.locations) assert np.any(train.joints.locations != test.joints.locations) assert np.any(validate.joints.locations != test.joints.locations) for d in train, validate, test: num_ids = len(d.image_ids) assert len(d.joints.locations) == num_ids # 3 * 666.666... = 2000 assert num_ids == 666 or num_ids == 667
# /usr/bin/env python3.5 # -*- mode: python -*- # ============================================================================= # @@-COPYRIGHT-START-@@ # # Copyright (c) 2017-2021, Qualcomm Innovation Center, Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # SPDX-License-Identifier: BSD-3-Clause # # @@-COPYRIGHT-END-@@ # ============================================================================= """ Code examples for visualization APIs """ # Visualization imports from decimal import Decimal import torch from torchvision import models import aimet_common.defs import aimet_torch.defs import aimet_torch.utils from aimet_common.utils import start_bokeh_server_session from aimet_torch.compress import ModelCompressor from aimet_torch.visualize_serialized_data import VisualizeCompression # End of import statements def model_compression_with_visualization(eval_func): """ Code example for compressing a model with a visualization url provided. """ visualization_url, process = start_bokeh_server_session(8002) input_shape = (1, 3, 224, 224) model = models.resnet18(pretrained=True).to(torch.device('cuda')) modules_to_ignore = [model.conv1] greedy_params = aimet_common.defs.GreedySelectionParameters(target_comp_ratio=Decimal(0.65), num_comp_ratio_candidates=10, saved_eval_scores_dict= '../data/resnet18_eval_scores.pkl') auto_params = aimet_torch.defs.SpatialSvdParameters.AutoModeParams(greedy_params, modules_to_ignore=modules_to_ignore) params = aimet_torch.defs.SpatialSvdParameters(aimet_torch.defs.SpatialSvdParameters.Mode.auto, auto_params, multiplicity=8) # If no visualization URL is provided, during model compression execution no visualizations will be published. ModelCompressor.compress_model(model=model, eval_callback=eval_func, eval_iterations=5, input_shape=input_shape, compress_scheme=aimet_common.defs.CompressionScheme.spatial_svd, cost_metric=aimet_common.defs.CostMetric.mac, parameters=params, visualization_url=None) comp_ratios_file_path = './data/greedy_selection_comp_ratios_list.pkl' eval_scores_path = '../data/resnet18_eval_scores.pkl' # A user can visualize the eval scores dictionary and optimal compression ratios by executing the following code. compression_visualizations = VisualizeCompression(visualization_url) compression_visualizations.display_eval_scores(eval_scores_path) compression_visualizations.display_comp_ratio_plot(comp_ratios_file_path)
# encoding: utf-8 ''' The system_info table and SystemInfo mapped class store runtime-editable configuration options. For more details, check :doc:`maintaining/configuration`. ''' from sqlalchemy import types, Column, Table from six import text_type from ckan.model import meta from ckan.model import core from ckan.model import domain_object __all__ = ['system_info_table', 'SystemInfo', 'get_system_info', 'set_system_info'] system_info_table = Table( 'system_info', meta.metadata, Column('id', types.Integer(), primary_key=True, nullable=False), Column('key', types.Unicode(100), unique=True, nullable=False), Column('value', types.UnicodeText), Column('state', types.UnicodeText, default=core.State.ACTIVE), ) class SystemInfo(core.StatefulObjectMixin, domain_object.DomainObject): def __init__(self, key, value): super(SystemInfo, self).__init__() self.key = key self.value = text_type(value) meta.mapper(SystemInfo, system_info_table) def get_system_info(key, default=None): ''' get data from system_info table ''' from sqlalchemy.exc import ProgrammingError try: obj = meta.Session.query(SystemInfo).filter_by(key=key).first() if obj: return obj.value except ProgrammingError: meta.Session.rollback() return default def delete_system_info(key, default=None): ''' delete data from system_info table ''' obj = meta.Session.query(SystemInfo).filter_by(key=key).first() if obj: meta.Session.delete(obj) meta.Session.commit() def set_system_info(key, value): ''' save data in the system_info table ''' obj = None obj = meta.Session.query(SystemInfo).filter_by(key=key).first() if obj and obj.value == text_type(value): return if not obj: obj = SystemInfo(key, value) else: obj.value = text_type(value) meta.Session.add(obj) meta.Session.commit() return True
import pygame as pg import math # Screen Surface & Constants pg.init() WIDTH = 1024 HEIGHT = 850 WHITE = (255,255,255) BLACK = (0,0,0) PINK = (200,0,100) RED = (240,0,0) ORANGE = (255, 153, 0) BLUE = (0,0,255) GREEN = (0,255,0) LGREEN = (30,130,100) screen = pg.display.set_mode((WIDTH,HEIGHT)) # Sun class Star: def __init__(self, coords, size): self.coords = coords #(x,y) tuple of self coordinates self.size = size #size (radius) of this planet def draw(self): pg.draw.circle(screen, ORANGE, self.coords, self.size) # Planet class Planet: instances = [] def __init__(self, Ocoords, Oradius, velocity, size, col, distLine): self.__class__.instances.append(self) self.Ocoords = Ocoords #(x,y) tuple of the coordinates this planet orbits self.Oradius = Oradius #radius around which the planet orbits self.velocity = velocity #speed at which it orbits self.size = size #size (radius) of this planet self.col = col #color of planet self.distLine = distLine #bool, show distance lines to other planets self.x, self.y = (Ocoords[0]-Oradius, Ocoords[1]-Oradius) self.coords = (self.x, self.y) self.angle = 0 def motion(self): self.angle += 0.001*self.velocity self.x = int(math.cos(self.angle) * self.Oradius) + self.Ocoords[0] self.y = int(math.sin(self.angle) * self.Oradius) + self.Ocoords[1] self.coords = (self.x, self.y) def draw(self): pg.draw.circle(screen, self.col, self.coords, self.size, 0) def draw_orbit(self): pg.draw.circle(screen, WHITE, self.Ocoords, self.Oradius, 1) if self.distLine: otherPlanets = Planet.instances if self in otherPlanets: otherPlanets.remove(self) distlist = [math.sqrt(math.pow(instance.x - self.x, 2) + math.pow(instance.y - self.y, 2)) for instance in otherPlanets] ex, ey = Planet.instances[distlist.index(min(distlist))].coords pg.draw.line(screen, WHITE, (self.x, self.y), (ex, ey), 1) def rend(self): self.motion() self.draw_orbit() self.draw() SUN = Star((round(WIDTH/2), round(HEIGHT/2)), 20) EARTH = Planet(SUN.coords, 100, 3, 12, BLUE, True) MARS = Planet(SUN.coords, 200, 4, 10, RED, False) SATT = Planet(SUN.coords, 300, 5, 8, PINK, False) SATT2 = Planet(SUN.coords, 400, 6, 10, LGREEN, False) # Game Loop running = True while running: screen.fill(BLACK) SUN.draw() EARTH.rend() MARS.rend() SATT.rend() SATT2.rend() pg.display.update() # Quit Game: for event in pg.event.get(): if event.type == pg.QUIT: running = False if event.type == pg.KEYDOWN: if event.key == pg.K_ESCAPE: running = False
from psycopg2 import pool class Database: _connection_pool = None @staticmethod def initialise(**kwargs): Database._connection_pool = pool.SimpleConnectionPool(1, 10, **kwargs) @staticmethod def get_connection(): return Database._connection_pool.getconn() @staticmethod def return_connection(connection: psycopg2.Connection): Database._connection_pool.putconn(connection) @staticmethod def close_all_connections(): Database._connection_pool.closeall() class CursorFromConnectionPool: def __init__(self): self.conn = None self.cursor = None def __enter__(self): self.conn = Database.get_connection() self.cursor = self.conn.cursor() return self.cursor def __exit__(self, exception_type, exception_value, exception_traceback): if exception_value: self.conn.rollback() else: self.cursor.close() self.conn.commit() Database.return_connection(self.conn)
description_short = "Interact with google contacts" keywords = [ "google", "contacts", "python", ]
from __future__ import annotations import json from dbus_next import Variant from dbus_next.aio import MessageBus from dbus_next.introspection import Node from .service import StatusService notifications_xml = ''' <node> <interface name="org.freedesktop.Notifications"> <method name="GetCapabilities"> <arg type="as" name="capabilities" direction="out"> </arg> </method> <method name="Notify"> <arg type="s" name="app_name" direction="in"> </arg> <arg type="u" name="replaces_id" direction="in"> </arg> <arg type="s" name="app_icon" direction="in"> </arg> <arg type="s" name="summary" direction="in"> </arg> <arg type="s" name="body" direction="in"> </arg> <arg type="as" name="actions" direction="in"> </arg> <arg type="a{sv}" name="hints" direction="in"> </arg> <arg type="i" name="expire_timeout" direction="in"> </arg> <arg type="u" name="id" direction="out"> </arg> </method> <method name="CloseNotification"> <arg type="u" name="id" direction="in"> </arg> </method> <method name="GetServerInformation"> <arg type="s" name="name" direction="out"> </arg> <arg type="s" name="vendor" direction="out"> </arg> <arg type="s" name="version" direction="out"> </arg> <arg type="s" name="spec_version" direction="out"> </arg> </method> <signal name="NotificationClosed"> <arg type="u" name="id"> </arg> <arg type="u" name="reason"> </arg> </signal> <signal name="ActionInvoked"> <arg type="u" name="id"> </arg> <arg type="s" name="action_key"> </arg> </signal> </interface> </node> ''' class Block: def __init__(self, name): self.name = name self.notifications = None async def connect(self) -> Block: bus = await MessageBus().connect() obj = bus.get_proxy_object('org.freedesktop.Notifications', '/org/freedesktop/Notifications', notifications_xml) self.notifications = obj.get_interface('org.freedesktop.Notifications') obj = bus.get_proxy_object('com.dubstepdish.i3dstatus', '/com/dubstepdish/i3dstatus', Node(interfaces=[StatusService().introspect()])) self.i3dstatus = obj.get_interface('com.dubstepdish.i3dstatus') config_json = await self.i3dstatus.call_get_config(self.name) self.config = json.loads(config_json) return self @staticmethod def expand_template(text, context): if not context: return text for key in sorted(context.keys(), key=lambda k: len(k), reverse=True): text = text.replace('%' + key, str(context[key])) return text async def clear(self, instance=None): block = { 'name': Variant('s', self.name), 'full_text': Variant('s', ''), } if instance: block['instance'] = instance await self.i3dstatus.call_show_block(block) async def show(self, full_text, instance=None, markup=None, context=None): block = { 'name': Variant('s', self.name), 'full_text': Variant('s', Block.expand_template(full_text, context)), } if markup is True: markup = "pango" if markup: block['markup'] = Variant('s', markup) if instance: block['instance'] = Variant('s', instance) await self.i3dstatus.call_show_block(block) async def notify(self, message): if self.notifications: # https://developer.gnome.org/notification-spec/ message = 'i3-dstatus [{generator}]: {msg}'.format(generator=self.name, msg=message) await self.notifications.call_notify('i3dstatus', 0, '', '', message, [], {}, -1) async def error(self, message): # TODO error log await self.notify(message)
import dataclasses import itertools import math from typing import Dict, Callable, List, Optional from flwr.server.strategy import Strategy from tensorflow_addons.utils.types import Optimizer from sources.experiments.experiment_metadata import ExperimentMetadata from sources.experiments.experiment_metadata_provider_utils import ExperimentMetadataProvider @dataclasses.dataclass class ParameterGridResponse: strategy_provider_list: List[Callable[[ExperimentMetadata], Strategy]] experiment_metadata_list: List[ExperimentMetadata] optimizer_list: List[Optimizer] def default_suffix_provider(parameter_value_map: Dict[str, float], log10_representation=True): if log10_representation: parameter_value_map = {key: math.log10(val) for key, val in parameter_value_map.items()} return "_".join([f"{str(key)}{val:.2f}" for key, val in parameter_value_map.items()]) class ParameterGridMetadataGenerator: def __init__(self, parameter_value_map: Dict[str, List[float]], strategy_provider_function: Callable[[Dict[str, float]], Callable[[ExperimentMetadata], Strategy]], optimizer_provider_function: Callable[[Dict[str, float]], Optimizer], experiment_metadata_provider: ExperimentMetadataProvider, custom_suffix_provider: Optional[Callable[[Dict[str, List[float]]], str]] = None ): self.parameter_value_map = parameter_value_map self.strategy_provider_function = strategy_provider_function self.optimizer_provider_function = optimizer_provider_function self.experiment_metadata_provider = experiment_metadata_provider self.custom_suffix_provider = custom_suffix_provider def generate_grid_responses(self) -> ParameterGridResponse: order = self.parameter_value_map.keys() pools = [self.parameter_value_map[key] for key in order] products = itertools.product(*pools) response = ParameterGridResponse([], [], []) for product in products: current_parameter_dict = {key: val for key, val in zip(order, product)} strategy = self.strategy_provider_function(current_parameter_dict) experiment_metadata = self.experiment_metadata_provider(**current_parameter_dict) if self.custom_suffix_provider is not None: experiment_metadata.custom_suffix = self.custom_suffix_provider( current_parameter_dict ) optimizer = self.optimizer_provider_function(current_parameter_dict) response.strategy_provider_list.append(strategy) response.experiment_metadata_list.append(experiment_metadata) response.optimizer_list.append(optimizer) return response
from base64 import b64decode from malwareconfig import crypto from malwareconfig.common import Decoder from malwareconfig.common import string_printable class Arcom(Decoder): decoder_name = "Arcom" decoder__version = 1 decoder_author = "@kevthehermit" decoder_description = "Arcom RAT Decoder" def __init__(self): self.config = {} def get_config(self): ''' This is the main entry :return: ''' key = "CVu3388fnek3W(3ij3fkp0930di" file_data = self.file_info.file_data coded_config = file_data.split(b"\x18\x12\x00\x00")[1][:-8] decoded_config = b64decode(coded_config) clear_config = crypto.decrypt_blowfish(key, decoded_config).decode('utf-8') config_dict = {} parts = clear_config.split('|') if len(parts) > 3: config_dict["Domain"] = parts[0] config_dict["Port"] = parts[1] config_dict["Install Path"] = parts[2] config_dict["Install Name"] = parts[3] config_dict["Startup Key"] = parts[4] config_dict["Campaign ID"] = parts[5] config_dict["Mutex Main"] = parts[6] config_dict["Mutex Per"] = parts[7] config_dict["YPER"] = parts[8] config_dict["YGRB"] = parts[9] config_dict["Mutex Grabber"] = parts[10] config_dict["Screen Rec Link"] = parts[11] config_dict["Mutex 4"] = parts[12] config_dict["YVID"] = parts[13] config_dict["YIM"] = parts[14] config_dict["NO"] = parts[15] config_dict["Smart Broadcast"] = parts[16] config_dict["YES"] = parts[17] config_dict["Plugins"] = parts[18] config_dict["Flag1"] = parts[19] config_dict["Flag2"] = parts[20] config_dict["Flag3"] = parts[21] config_dict["Flag4"] = parts[22] config_dict["WebPanel"] = parts[23] config_dict["Remote Delay"] = parts[24] # Set the config to the class for use self.config = config_dict
import numpy as np class PenalizationGrid: def __init__(self, minCoef=1e-10, maxCoef=1, length=200): self.values = np.linspace(maxCoef, minCoef, length).tolist() def isEmpty(self) -> bool: return len(self.values) == 0 def getNextKCoeffs(self, k): penalizationCoeffsForBatch = self.values[:k] del self.values[:k] return penalizationCoeffsForBatch def size(self): return len(self.values)
from __future__ import print_function from models import LipRead import torch import toml from training import Trainer from validation import Validator print("Loading options...") with open('options.toml', 'r') as optionsFile: options = toml.loads(optionsFile.read()) if(options["general"]["usecudnnbenchmark"] and options["general"]["usecudnn"]): print("Running cudnn benchmark...") torch.backends.cudnn.benchmark = True #Create the model. model = LipRead(options) if(options["general"]["loadpretrainedmodel"]): model.load_state_dict(torch.load(options["general"]["pretrainedmodelpath"])) #Move the model to the GPU. if(options["general"]["usecudnn"]): model = model.cuda(options["general"]["gpuid"]) trainer = Trainer(options) validator = Validator(options) for epoch in range(options["training"]["startepoch"], options["training"]["epochs"]): if(options["training"]["train"]): trainer.epoch(model, epoch) if(options["validation"]["validate"]): validator.epoch(model)
import os import io import re import datetime import itertools import markdown as markdown_module import pygments.formatters import yaml import jinja2 import werkzeug from flask import Flask, render_template, send_from_directory, abort, url_for app = Flask(__name__) app.jinja_env.undefined = jinja2.StrictUndefined app.jinja_env.globals['today'] = datetime.date.today # The atom.xml template uses url_for(..., _external=True) app.config['FREEZER_BASE_URL'] = 'https://exyr.org/' PYGMENTS_CSS = (pygments.formatters.HtmlFormatter(style='tango') .get_style_defs('.codehilite')) markdown_module.Markdown(extensions=['fenced_code']) Fenced = markdown_module.extensions.fenced_code.FencedBlockPreprocessor Fenced.FENCED_BLOCK_RE = re.compile( Fenced.FENCED_BLOCK_RE.pattern.replace("and lang", "and lang\n(,\w+[ ]*)?"), Fenced.FENCED_BLOCK_RE.flags, ) @app.template_filter() def markdown(text): return markdown_module.markdown( text, ['codehilite', 'footnotes', 'fenced_code'] + 2 * ['downheader'], extension_configs={'codehilite': {'linenums': False}}, ) class Page(object): root = os.path.join(app.root_path, u'pages') suffix = '.markdown' _cache = {} @classmethod def load(cls, year, name): filename = os.path.join(cls.root, year, name) + cls.suffix if not os.path.isfile(filename): abort(404) mtime = os.path.getmtime(filename) page, old_mtime = cls._cache.get(filename, (None, None)) if not page or mtime != old_mtime: with io.open(filename, encoding='utf8') as fd: head = ''.join(itertools.takewhile(lambda x: x.strip(), fd)) body = fd.read() page = cls(year, name, head, body) cls._cache[filename] = (page, mtime) return page @classmethod def years(cls): for year in os.listdir(cls.root): if year.isdigit(): yield year @classmethod def articles_by_year(cls, year): directory = os.path.join(cls.root, year) if not os.path.isdir(directory): abort(404) for name in os.listdir(directory): if name.endswith(cls.suffix): page = cls.load(year, name[:-len(cls.suffix)]) if app.config.get('EXYR_SHOW_DRAFTS') or not page.meta.get('draft'): yield page @classmethod def all_articles(cls): for year in cls.years(): for article in cls.articles_by_year(year): yield article def __init__(self, year, name, head, body): self.year = year self.name = name self.head = head self.body = body @werkzeug.cached_property def meta(self): return yaml.safe_load(self.head) or {} def __getitem__(self, name): return self.meta[name] @werkzeug.cached_property def html(self): return markdown(self.body) def url(self, **kwargs): return url_for( 'article', year=int(self.year), name=self.name, **kwargs) def updated(self): return self.meta.get('modified', self['published']) @app.route('/.htaccess') def htaccess(): return ''' RedirectMatch /tags(/.*)? / RedirectMatch /(\d+)/?$ /#$1 RedirectMatch /2013/enumerated-types-python/slides.pdf /2013/algebraic-sum-types-python/slides.pdf RedirectMatch /2011/Poor-man-NTP/ /2011/low-tech-ntp/ RedirectMatch /about/ / Redirect gone /2011/hashing-passwords/ Redirect gone /2012/csswg-invited-expert/ Redirect gone /2011/git-mirrors/ Redirect gone /2011/virtualenv-HOWTO/ Redirect gone /2011/gedit-plugins-packaged/ Redirect gone /2012/weasyprint-is-bsd/ ErrorDocument 410 /gone.html ''', 200, {'Content-Type': 'application/octet-stream'} @app.route('/gone.html') def gone(): return ''' <title>410 Gone</title> <h1>Gone</h1> Some things are not meant to stay. ''' @app.route('/') def home(): return render_template( 'all_posts.html', posts_by_year=itertools.groupby( sorted( Page.all_articles(), reverse=True, key=lambda p: p['published'], ), key=lambda p: p['published'].year, ), about=Page.load('', 'about') ) @app.route('/<int:year>/<name>/') def article(year, name): return render_template('flatpage.html', page=Page.load(str(year), name)) @app.route('/<int:year>/<name>/<path:path>') def static_in_pages(year, name, path): return send_from_directory(Page.root, '%i/%s/%s' % (year, name, path)) @app.route('/feed.atom') def feed(): articles = sorted(Page.all_articles(), key=lambda a: a.updated()) feed_updated = articles[0].updated() xml = render_template('atom.xml', **locals()) return app.response_class(xml, mimetype='application/atom+xml') def minify_css(css): # Remove comments. *? is the non-greedy version of * css = re.sub(r'/\*.*?\*/', '', css) # Remove redundant whitespace css = re.sub(r'\s+', ' ', css) # Put back line breaks after block so that it's not just one huge line css = re.sub(r'} ?', '}\n', css) return css @app.route('/style.css') def stylesheet(): css = render_template('style.css', pygments_css=PYGMENTS_CSS) css = minify_css(css) # Add this after minification, would be removed otherwise. css = ( '/*\nNon-minified version is at\n' 'https://github.com/SimonSapin/exyr.org' '/blob/master/exyr/templates/style.css\n*/\n' + css ) return app.response_class(css, mimetype='text/css') @app.errorhandler(404) def not_found(e): return render_template('404.html')
import logging import salt.exceptions import salt_more from datetime import datetime log = logging.getLogger(__name__) def help(): """ Shows this help information. """ return __salt__["sys.doc"]("power") def status(): """ Get status and debug information regarding power management. """ ret = { "spm": {}, "stn": {}, "rpi": {}, } # SPM status res = __salt__["spm.query"]("status") ret["spm"].update({k: v for k, v in res.iteritems() if not k.startswith("_")}) # SPM sleep interval res = __salt__["spm.query"]("sleep_interval") ret["spm"]["sleep_interval"] = res["value"] # SPM version res = __salt__["spm.query"]("version") ret["spm"]["version"] = res["value"] # STN config res = __salt__["stn.power_config"]() ret["stn"]["trigger_config"] = { k: v.split(",")[1] for k, v in res.iteritems() \ if (k.endswith("_wake") or k.endswith("_sleep")) and v.startswith("ON") } # STN trigger res = __salt__["stn.power_trigger_status"]() ret["stn"]["last_trigger"] = { k: v for k, v in res.iteritems() if not k.startswith("_") } # STN battery res = __salt__["obd.battery"]() ret["stn"]["battery"] = { k: v for k, v in res.iteritems() if not k.startswith("_") } # RPI uptime res = __salt__["status.uptime"]() ret["rpi"]["uptime"] = res return ret def sleep(interval=60, delay=10, modem_off=False, acc_off=False, confirm=False, reason="unknown", allow_auto_update=True): """ Power down system and put device into sleep state. Optional arguments: - interval (int): Sleep interval in seconds. Default is '60'. - delay (str): Delay in seconds before powering down. Default is '10'. - modem_off (bool): Power off 3V3 supply to modem on mPCIe slot. Default is 'False'. - acc_off (bool): Put accelerometer into standby. Default is 'False'. - confirm (bool): Acknowledge the execution of this command. Default is 'False'. - reason (str): Reason code that tells why we decided to sleep. Default is 'unknown'. """ if __salt__["saltutil.is_running"]("power.sleep"): raise salt.exceptions.CommandExecutionError("Sleep is already running") if not confirm: raise salt.exceptions.CommandExecutionError( "This command will power down the system - add parameter 'confirm=true' to continue anyway") ret = {} log.info("Preparing to sleep {:} in {:} second(s)".format( "{:} second(s)".format(interval) if interval > 0 else "infinite", delay)) # First set SPM sleep interval try: __salt__["spm.query"]("sleep_interval", value=interval) except: log.exception("Failed to set sleep interval") interval = 0 # Assume interval is unset # Run shutdown SLS try: __salt__["minionutil.run_job"]("state.sls", "shutdown", pillar={"allow_auto_update": allow_auto_update}, _timeout=600) except: log.exception("Failed to run shutdown SLS") # Kill heartbeat worker thread to enforce RPi power off if something goes south/hangs try: res = __salt__["spm.manage"]("worker", "kill", "_heartbeat") if not "_heartbeat" in res.get("killed", []): log.warn("No heartbeat worker thread found to kill") except: log.exception("Failed to kill heartbeat worker") # TODO: Power off audio amp (if not done when shutting down RPi?) # Power off 3V3 for modem/mPCIe if requested #if modem_off: # __salt__["spm.query"]("stop_3v3") # Set accelerometer in standby mode if acc_off: try: __salt__["acc.query"]("active", value=False) except: log.exception("Failed to put accelerometer into standby mode") # Plan a system shutdown after 1 minute in case STN never sleeps # (it could get interrupted by another STN wake trigger) try: __salt__["system.shutdown"](1) except: log.exception("Failed to plan system shutdown") # Put STN to sleep (and thereby shutdown RPi when STN power pin goes low) __salt__["stn.sleep"](delay) if interval > 0: log.warn("Intentionally going to sleep for {:} second(s) because of reason '{:}'".format(interval, reason)) else: log.warn("Intentionally going to hibernate until next engine start because of reason '{:}'".format(reason)) # Fire a sleep or hibernate event __salt__["event.fire"]({ "delay": delay, "interval": interval, "reason": reason, "uptime": __salt__["status.uptime"]()["seconds"] }, "system/power/{:}".format("sleep" if interval > 0 else "hibernate") ) ret["comment"] = "Planned shutdown in {:d} second(s)".format(delay) ret["result"] = True return ret def hibernate(delay=10, confirm=False, reason="unknown", allow_auto_update=True): """ Power down system and put device into hibernate state. Optional arguments: - delay (str): Delay in seconds before powering down. Default is '10'. - confirm (bool): Acknowledge the execution of this command. Default is 'False'. - reason (str): Reason code that tells why we decided to hibernate. Default is 'unknown'. """ return sleep(interval=0, delay=delay, acc_off=True, confirm=confirm, reason=reason, allow_auto_update=allow_auto_update) def sleep_timer(enable=None, period=1800, **kwargs): """ Setup sleep timer to schedule power off upon inactivity. NOTE: Do not access pillar data in this function as they will not be available when called from engines (separate processes). Optional arguments: - enable (bool): Enable or disable timer. - period (int): Timer period in seconds before performing sleep. Default is '1800'. - reason (str): Reason code that tells why we decided to sleep. Default is 'unknown'. """ # Helper function to get all sleep timers def timers(): res = __salt__["schedule.list"](return_yaml=False) return {k: v for k, v in res.iteritems() if k.startswith("_sleep_timer")} if enable == True: name = "_sleep_timer/{:}".format(kwargs.get("reason", "unknown")) # Always try to delete existing timer res = __salt__["schedule.delete"](name) # Prepare keyword arguments kwargs = salt_more.clean_kwargs(kwargs) # Clean up unwanted entries kwargs["confirm"] = True # Ensure confirm is set now = datetime.utcnow() # Add fresh timer res = __salt__["schedule.add"](name, function="power.sleep", job_kwargs=kwargs, seconds=period, maxrunning=1, return_job=False, # Do not return info to master upon job completion persist=False, # Do not persist schedule (actually this is useless because all schedules might be persisted when modified later on) metadata={ "created": now.isoformat(), "transient": True # Enforce schedule is never persisted on disk and thereby not surviving minion restarts (see patch 'salt/utils/schedule.py.patch') }) elif enable == False: # Delete all existing timers for name in timers(): res = __salt__["schedule.delete"](name) # Return all existing timer(s) return timers() def reboot(reason="unknown"): """ Reboot system immediately. Optional arguments: - reason (str): Reason code that tells why we decided to reboot. Default is 'unknown'. """ return request_reboot(immediately=True, reason=reason) def request_reboot(pending=True, immediately=False, reason="unknown"): """ Request for a future system reboot. Optional arguments: - pending (bool): Default is 'True'. - immediately (bool): Default is 'False'. - reason (str): Reason code that tells why we decided to reboot. Default is 'unknown'. """ if pending or __context__.get("power.request_reboot", False): if immediately: log.warn("Performing system reboot immediately because of reason '{:}'".format(reason)) # Fire a reboot event __salt__["event.fire"]({ "reason": reason, "uptime": __salt__["status.uptime"]()["seconds"] }, "system/power/reboot" ) # TODO: Delay reboot 10 secs to allow cloud upload of above event # Ensure a heatbeat has just been sent to prevent heartbeat timeout during reboot __salt__["spm.query"]("noop") # Perform reboot return __salt__["system.reboot"]() else: log.info("Request for system reboot is pending because of reason '{:}'".format(reason)) else: log.debug("No pending system reboot request") # Set pending in context __context__["power.request_reboot"] = pending return { "pending": pending, } def restart_modem(): """ Restart modem the hard way by stopping and starting its power supply. """ # TODO: We also need to close all open serial conenctions to modem to prevent system freeze return __salt__["spm.query"]("restart_3v3")
from dataclasses import dataclass from omegaconf.omegaconf import MISSING import torch from torch.functional import Tensor import torch.nn as nn import torch.nn.functional as F from rnnms.networks.vocoder import ConfRNNMSVocoder, RNNMSVocoder @dataclass class ConfVocoder: """ Args: size_i_codebook: Size of input discrete codebook dim_i_embedding: Dimension of embedded input n_speakers: Number of speakers dim_speaker_embedding: Dimension of speaker embedding """ size_i_codebook: int = MISSING dim_i_embedding: int = MISSING n_speakers: int = MISSING dim_speaker_embedding: int = MISSING rnnms: ConfRNNMSVocoder = ConfRNNMSVocoder() class Vocoder(nn.Module): """Independently-trained vocoder conditioned on discrete VQ-CPC output. Network is bidirectional_PreNet + WaveRNN (=RNN_MS). """ def __init__(self, conf: ConfVocoder): """ """ super(Vocoder, self).__init__() # (discrete) latent_code/speaker_id => (continuous) embedding space self.code_embedding = nn.Embedding(conf.size_i_codebook, conf.dim_i_embedding) self.speaker_embedding = nn.Embedding(conf.n_speakers, conf.dim_speaker_embedding) self.rnnms = RNNMSVocoder(conf.rnnms) def forward(self, x: Tensor, z: Tensor, speaker: Tensor): """Forward a content representation sequence at once with teacher observation sequence for AR. Latent code and speaker ID are embedded, upsampled x2, then go to RNNMS. Args: x: μ-law encoded observation sequence for AR teacher signal z: Index series of discrete content representation for conditioning speaker: Speaker ID (discrete value) Returns: Energy distribution of `bits` bit μ-law value """ # Content embedding and upsampling z_embed = self.code_embedding(z) # (Batch, Time, Embed_z) => (Batch, Embed_z, 2*Time) => (Batch, 2*Time, Embed_z) z_embed_up: Tensor = F.interpolate(z_embed.transpose(1, 2), scale_factor=2).transpose(1, 2) # Speaker embedding and upsampling spk_embed: Tensor = self.speaker_embedding(speaker) # Time-directional copy (keep Batch/dim0 & Embed/dim2 by `-1` flag) # (Batch, Embed_spk) => (Batch, 1, Embed_spk) => (Batch, 2*Time, Embed_spk) spk_embed_up = spk_embed.unsqueeze(1).expand(-1, z_embed_up.size(1), -1) latent_series = torch.cat((z_embed_up, spk_embed_up), dim=-1) return self.rnnms(x, latent_series) def generate(self, z: Tensor, speaker: Tensor): """Generate utterances from a batch of (latent_code, speaker_index) """ z_embed = self.code_embedding(z) z_embed_up: Tensor = F.interpolate(z_embed.transpose(1, 2), scale_factor=2).transpose(1, 2) spk_embed = self.speaker_embedding(speaker) spk_embed_up = spk_embed.unsqueeze(1).expand(-1, z_embed_up.size(1), -1) z_spk_series = torch.cat((z_embed_up, spk_embed_up), dim=-1) return self.rnnms.generate(z_spk_series)
from os import environ class Config: """Set Flask configuration vars from .env file.""" # General Config SECRET_KEY = environ.get('SECRET_KEY') FLASK_APP = environ.get('FLASK_APP') FLASK_ENV = environ.get('FLASK_ENV') DEBUG = True # Specific Config MODEL_FILE = 'model.plk'
import numpy as np from artemis.experiments.decorators import experiment_function from matplotlib import pyplot as plt from six.moves import xrange __author__ = 'peter' """ This file demonstates Artemis's "Experiments" When you run an experiment, all figures and console output, as well as some metadata such as total run time, arguments, etc are saved to disk. This demo illustrates how you can create an experiment, create variations on that experiment, and view the results. """ class OnlineLinearRegressor: def __init__(self, n_in, n_out, learning_rate = 0.01): self.w = np.zeros((n_in, n_out)) self.learning_rate = learning_rate def train(self, x, targ): # x: (n_samples, n_in), targ: (n_samples, n_out) y = self.predict(x) self.w -= self.learning_rate * (x.T.dot(y-targ)) def predict(self, x): # x: (n_samples, n_in) return x.dot(self.w) @experiment_function def demo_linear_regression( n_in = 100, n_out = 4, n_training_samples = 500, n_test_samples = 500, noise = .1, n_epochs = 10, eta = 0.001, random_seed = 1234, score_report_period = 100, ): """ Generate a random linear regression problem and train an online predictor to solve it with Stochastic gradient descent. Log the scores and plot the resulting learning curves. :param n_in: Number of inputs :param n_out: Number of outputs :param n_training_samples: Number of training samples in generated dataset. :param n_test_samples: Number of test samples in generated dataset. :param noise: Noise to add to generated dataset :param n_epochs: Number of epochs to run for :param eta: Learning rate for SGD :param random_seed: Random seed (for generating data) :param score_report_period: Report score every X training iterations. """ # Setup data rng = np.random.RandomState(random_seed) w_true = rng.randn(n_in, n_out)*.1 # (n_in, n_out) training_data = rng.randn(n_training_samples, n_in) # (n_training_samples, n_in) training_target = training_data.dot(w_true) + noise*rng.randn(n_training_samples, n_out) # (n_training_samples, n_out) test_data = rng.randn(n_test_samples, n_in) # (n_test_samples, n_in) test_target = test_data.dot(w_true) + noise*rng.randn(n_test_samples, n_out) # (n_test_samples, n_out) predictor = OnlineLinearRegressor(n_in=n_in, n_out=n_out, learning_rate=eta) # Train and periodically record scores. epoch_scores = [] for i in xrange(n_training_samples*n_epochs+1): if i % score_report_period == 0: training_out = predictor.predict(training_data) training_cost = ((training_target-training_out)**2).sum(axis=1).mean(axis=0) test_out = predictor.predict(test_data) test_cost = ((test_target-test_out)**2).sum(axis=1).mean(axis=0) print('Epoch {epoch}: Test Cost: {test}, Training Cost: {train}'.format(epoch=float(i)/n_training_samples, test=test_cost, train=training_cost)) epoch = float(i) / n_training_samples epoch_scores.append((epoch, training_cost, test_cost)) predictor.train(training_data[[i % n_training_samples]], training_target[[i % n_training_samples]]) # Plot epochs, training_costs, test_costs = zip(*epoch_scores) plt.plot(epochs, np.array([training_costs, test_costs]).T) plt.xlabel('epoch') plt.ylabel('cost') plt.legend(['Training Cost', 'Test Cost']) plt.title("Learning Curve") plt.ion() plt.show() return {'training_cost': training_cost, 'test_cost': test_cost} demo_linear_regression.add_variant('fast-learn', eta=0.01) demo_linear_regression.add_variant('large_input_space', n_in=1000) if __name__ == "__main__": # Open a menu that allows you to run experiments and view old ones. demo_linear_regression.browse(display_format="flat")
#!/usr/bin/env python import matplotlib.pyplot as plt import numpy de = numpy.genfromtxt("total internal energy_EDRAHT.txt") dm = numpy.genfromtxt("forces fx,fy,fz_NROT.txt") plt.plot(de[:,0],de[:,1],'b',dm[:,0],dm[:,3],'r') plt.grid(True) plt.xlim([0,1]) plt.xlabel("t") plt.ylabel("y") plt.legend(["Energy","Moment"],loc=0) plt.savefig("Biegung-history")
# coding: utf-8 """ pollination-server Pollination Server OpenAPI Definition # noqa: E501 The version of the OpenAPI document: 0.16.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import re # noqa: F401 # python 2 and python 3 compatibility library import six from pollination_sdk.api_client import ApiClient from pollination_sdk.exceptions import ( # noqa: F401 ApiTypeError, ApiValueError ) class ProjectsApi(object): """NOTE: This class is auto generated by OpenAPI Generator Ref: https://openapi-generator.tech Do not edit the class manually. """ def __init__(self, api_client=None): if api_client is None: api_client = ApiClient() self.api_client = api_client def create_project(self, owner, project_create, **kwargs): # noqa: E501 """Create a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_project(owner, project_create, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param project_create: (required) :type project_create: ProjectCreate :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: CreatedContent """ kwargs['_return_http_data_only'] = True return self.create_project_with_http_info(owner, project_create, **kwargs) # noqa: E501 def create_project_with_http_info(self, owner, project_create, **kwargs): # noqa: E501 """Create a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_project_with_http_info(owner, project_create, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param project_create: (required) :type project_create: ProjectCreate :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(CreatedContent, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'project_create' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method create_project" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `create_project`") # noqa: E501 # verify the required parameter 'project_create' is set if self.api_client.client_side_validation and ('project_create' not in local_var_params or # noqa: E501 local_var_params['project_create'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_create` when calling `create_project`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_create' in local_var_params: body_params = local_var_params['project_create'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='CreatedContent', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def create_project_recipe_filter(self, owner, name, project_recipe_filter, **kwargs): # noqa: E501 """Upsert a recipe filter to a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_project_recipe_filter(owner, name, project_recipe_filter, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_recipe_filter: (required) :type project_recipe_filter: ProjectRecipeFilter :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: ProjectRecipeFilter """ kwargs['_return_http_data_only'] = True return self.create_project_recipe_filter_with_http_info(owner, name, project_recipe_filter, **kwargs) # noqa: E501 def create_project_recipe_filter_with_http_info(self, owner, name, project_recipe_filter, **kwargs): # noqa: E501 """Upsert a recipe filter to a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.create_project_recipe_filter_with_http_info(owner, name, project_recipe_filter, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_recipe_filter: (required) :type project_recipe_filter: ProjectRecipeFilter :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(ProjectRecipeFilter, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'project_recipe_filter' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method create_project_recipe_filter" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `create_project_recipe_filter`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `create_project_recipe_filter`") # noqa: E501 # verify the required parameter 'project_recipe_filter' is set if self.api_client.client_side_validation and ('project_recipe_filter' not in local_var_params or # noqa: E501 local_var_params['project_recipe_filter'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_recipe_filter` when calling `create_project_recipe_filter`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_recipe_filter' in local_var_params: body_params = local_var_params['project_recipe_filter'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/recipes/filters', 'POST', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProjectRecipeFilter', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def delete_project(self, owner, name, **kwargs): # noqa: E501 """Delete a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ kwargs['_return_http_data_only'] = True return self.delete_project_with_http_info(owner, name, **kwargs) # noqa: E501 def delete_project_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Delete a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ local_var_params = locals() all_params = [ 'owner', 'name' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method delete_project" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `delete_project`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `delete_project`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def delete_project_org_permission(self, owner, name, project_policy_subject, **kwargs): # noqa: E501 """Remove a Project permissions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project_org_permission(owner, name, project_policy_subject, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_policy_subject: (required) :type project_policy_subject: ProjectPolicySubject :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ kwargs['_return_http_data_only'] = True return self.delete_project_org_permission_with_http_info(owner, name, project_policy_subject, **kwargs) # noqa: E501 def delete_project_org_permission_with_http_info(self, owner, name, project_policy_subject, **kwargs): # noqa: E501 """Remove a Project permissions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project_org_permission_with_http_info(owner, name, project_policy_subject, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_policy_subject: (required) :type project_policy_subject: ProjectPolicySubject :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ local_var_params = locals() all_params = [ 'owner', 'name', 'project_policy_subject' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method delete_project_org_permission" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `delete_project_org_permission`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `delete_project_org_permission`") # noqa: E501 # verify the required parameter 'project_policy_subject' is set if self.api_client.client_side_validation and ('project_policy_subject' not in local_var_params or # noqa: E501 local_var_params['project_policy_subject'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_policy_subject` when calling `delete_project_org_permission`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_policy_subject' in local_var_params: body_params = local_var_params['project_policy_subject'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/permissions', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def delete_project_recipe_filter(self, owner, name, project_recipe_filter, **kwargs): # noqa: E501 """Remove a Project recipe filter # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project_recipe_filter(owner, name, project_recipe_filter, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_recipe_filter: (required) :type project_recipe_filter: ProjectRecipeFilter :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ kwargs['_return_http_data_only'] = True return self.delete_project_recipe_filter_with_http_info(owner, name, project_recipe_filter, **kwargs) # noqa: E501 def delete_project_recipe_filter_with_http_info(self, owner, name, project_recipe_filter, **kwargs): # noqa: E501 """Remove a Project recipe filter # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.delete_project_recipe_filter_with_http_info(owner, name, project_recipe_filter, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_recipe_filter: (required) :type project_recipe_filter: ProjectRecipeFilter :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: None """ local_var_params = locals() all_params = [ 'owner', 'name', 'project_recipe_filter' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method delete_project_recipe_filter" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `delete_project_recipe_filter`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `delete_project_recipe_filter`") # noqa: E501 # verify the required parameter 'project_recipe_filter' is set if self.api_client.client_side_validation and ('project_recipe_filter' not in local_var_params or # noqa: E501 local_var_params['project_recipe_filter'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_recipe_filter` when calling `delete_project_recipe_filter`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_recipe_filter' in local_var_params: body_params = local_var_params['project_recipe_filter'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/recipes/filters', 'DELETE', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type=None, # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def get_project(self, owner, name, **kwargs): # noqa: E501 """Get a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: Project """ kwargs['_return_http_data_only'] = True return self.get_project_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(Project, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `get_project`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `get_project`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='Project', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def get_project_access_permissions(self, owner, name, **kwargs): # noqa: E501 """Get project access permissions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_access_permissions(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param subject_type: The type of access policy subject :type subject_type: list[str] :param permission: An access policy permission string :type permission: list[str] :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: ProjectAccessPolicyList """ kwargs['_return_http_data_only'] = True return self.get_project_access_permissions_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_access_permissions_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get project access permissions # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_access_permissions_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param subject_type: The type of access policy subject :type subject_type: list[str] :param permission: An access policy permission string :type permission: list[str] :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(ProjectAccessPolicyList, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'page', 'per_page', 'subject_type', 'permission' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project_access_permissions" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `get_project_access_permissions`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `get_project_access_permissions`") # noqa: E501 if self.api_client.client_side_validation and 'page' in local_var_params and local_var_params['page'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_project_access_permissions`, must be a value greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'per_page' in local_var_params and local_var_params['per_page'] > 100: # noqa: E501 raise ApiValueError("Invalid value for parameter `per_page` when calling `get_project_access_permissions`, must be a value less than or equal to `100`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'per_page' in local_var_params and local_var_params['per_page'] is not None: # noqa: E501 query_params.append(('per-page', local_var_params['per_page'])) # noqa: E501 if 'subject_type' in local_var_params and local_var_params['subject_type'] is not None: # noqa: E501 query_params.append(('subject_type', local_var_params['subject_type'])) # noqa: E501 collection_formats['subject_type'] = 'multi' # noqa: E501 if 'permission' in local_var_params and local_var_params['permission'] is not None: # noqa: E501 query_params.append(('permission', local_var_params['permission'])) # noqa: E501 collection_formats['permission'] = 'multi' # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/permissions', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProjectAccessPolicyList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def get_project_recipe_filters(self, owner, name, **kwargs): # noqa: E501 """Get project recipe filters # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_recipe_filters(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: ProjectRecipeFilterList """ kwargs['_return_http_data_only'] = True return self.get_project_recipe_filters_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_recipe_filters_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get project recipe filters # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_recipe_filters_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(ProjectRecipeFilterList, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'page', 'per_page' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project_recipe_filters" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `get_project_recipe_filters`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `get_project_recipe_filters`") # noqa: E501 if self.api_client.client_side_validation and 'page' in local_var_params and local_var_params['page'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_project_recipe_filters`, must be a value greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'per_page' in local_var_params and local_var_params['per_page'] > 100: # noqa: E501 raise ApiValueError("Invalid value for parameter `per_page` when calling `get_project_recipe_filters`, must be a value less than or equal to `100`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'per_page' in local_var_params and local_var_params['per_page'] is not None: # noqa: E501 query_params.append(('per-page', local_var_params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/recipes/filters', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProjectRecipeFilterList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def get_project_recipes(self, owner, name, **kwargs): # noqa: E501 """Get project recipes # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_recipes(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param search: Search string to find recipes :type search: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: RecipeInterfaceList """ kwargs['_return_http_data_only'] = True return self.get_project_recipes_with_http_info(owner, name, **kwargs) # noqa: E501 def get_project_recipes_with_http_info(self, owner, name, **kwargs): # noqa: E501 """Get project recipes # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.get_project_recipes_with_http_info(owner, name, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param search: Search string to find recipes :type search: str :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(RecipeInterfaceList, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'search', 'page', 'per_page' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method get_project_recipes" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `get_project_recipes`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `get_project_recipes`") # noqa: E501 if self.api_client.client_side_validation and 'page' in local_var_params and local_var_params['page'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `get_project_recipes`, must be a value greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'per_page' in local_var_params and local_var_params['per_page'] > 100: # noqa: E501 raise ApiValueError("Invalid value for parameter `per_page` when calling `get_project_recipes`, must be a value less than or equal to `100`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] if 'search' in local_var_params and local_var_params['search'] is not None: # noqa: E501 query_params.append(('search', local_var_params['search'])) # noqa: E501 if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'per_page' in local_var_params and local_var_params['per_page'] is not None: # noqa: E501 query_params.append(('per-page', local_var_params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/recipes', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='RecipeInterfaceList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def list_projects(self, **kwargs): # noqa: E501 """List Projects # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_projects(async_req=True) >>> result = thread.get() :param search: Search string to find projects :type search: str :param ids: The ID of a project to search for :type ids: list[str] :param names: The name of the project :type names: list[str] :param owner: Owner of the project :type owner: list[str] :param public: Boolean check for public/private projects :type public: bool :param permissions: Filter by permission on given resource :type permissions: list[str] :param sort_by: Key to sort the list by :type sort_by: ProjectSortKey :param sort_order: The order to sort the list :type sort_order: SortEnum :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: ProjectList """ kwargs['_return_http_data_only'] = True return self.list_projects_with_http_info(**kwargs) # noqa: E501 def list_projects_with_http_info(self, **kwargs): # noqa: E501 """List Projects # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.list_projects_with_http_info(async_req=True) >>> result = thread.get() :param search: Search string to find projects :type search: str :param ids: The ID of a project to search for :type ids: list[str] :param names: The name of the project :type names: list[str] :param owner: Owner of the project :type owner: list[str] :param public: Boolean check for public/private projects :type public: bool :param permissions: Filter by permission on given resource :type permissions: list[str] :param sort_by: Key to sort the list by :type sort_by: ProjectSortKey :param sort_order: The order to sort the list :type sort_order: SortEnum :param page: Page number starting from 1 :type page: int :param per_page: Number of items per page :type per_page: int :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(ProjectList, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'search', 'ids', 'names', 'owner', 'public', 'permissions', 'sort_by', 'sort_order', 'page', 'per_page' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method list_projects" % key ) local_var_params[key] = val del local_var_params['kwargs'] if self.api_client.client_side_validation and 'page' in local_var_params and local_var_params['page'] < 1: # noqa: E501 raise ApiValueError("Invalid value for parameter `page` when calling `list_projects`, must be a value greater than or equal to `1`") # noqa: E501 if self.api_client.client_side_validation and 'per_page' in local_var_params and local_var_params['per_page'] > 100: # noqa: E501 raise ApiValueError("Invalid value for parameter `per_page` when calling `list_projects`, must be a value less than or equal to `100`") # noqa: E501 collection_formats = {} path_params = {} query_params = [] if 'search' in local_var_params and local_var_params['search'] is not None: # noqa: E501 query_params.append(('search', local_var_params['search'])) # noqa: E501 if 'ids' in local_var_params and local_var_params['ids'] is not None: # noqa: E501 query_params.append(('ids', local_var_params['ids'])) # noqa: E501 collection_formats['ids'] = 'multi' # noqa: E501 if 'names' in local_var_params and local_var_params['names'] is not None: # noqa: E501 query_params.append(('names', local_var_params['names'])) # noqa: E501 collection_formats['names'] = 'multi' # noqa: E501 if 'owner' in local_var_params and local_var_params['owner'] is not None: # noqa: E501 query_params.append(('owner', local_var_params['owner'])) # noqa: E501 collection_formats['owner'] = 'multi' # noqa: E501 if 'public' in local_var_params and local_var_params['public'] is not None: # noqa: E501 query_params.append(('public', local_var_params['public'])) # noqa: E501 if 'permissions' in local_var_params and local_var_params['permissions'] is not None: # noqa: E501 query_params.append(('permissions', local_var_params['permissions'])) # noqa: E501 collection_formats['permissions'] = 'multi' # noqa: E501 if 'sort_by' in local_var_params and local_var_params['sort_by'] is not None: # noqa: E501 query_params.append(('sort_by', local_var_params['sort_by'])) # noqa: E501 if 'sort_order' in local_var_params and local_var_params['sort_order'] is not None: # noqa: E501 query_params.append(('sort_order', local_var_params['sort_order'])) # noqa: E501 if 'page' in local_var_params and local_var_params['page'] is not None: # noqa: E501 query_params.append(('page', local_var_params['page'])) # noqa: E501 if 'per_page' in local_var_params and local_var_params['per_page'] is not None: # noqa: E501 query_params.append(('per-page', local_var_params['per_page'])) # noqa: E501 header_params = {} form_params = [] local_var_files = {} body_params = None # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects', 'GET', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='ProjectList', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def update(self, owner, name, project_update, **kwargs): # noqa: E501 """Update a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update(owner, name, project_update, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_update: (required) :type project_update: ProjectUpdate :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: UpdateAccepted """ kwargs['_return_http_data_only'] = True return self.update_with_http_info(owner, name, project_update, **kwargs) # noqa: E501 def update_with_http_info(self, owner, name, project_update, **kwargs): # noqa: E501 """Update a Project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.update_with_http_info(owner, name, project_update, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_update: (required) :type project_update: ProjectUpdate :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(UpdateAccepted, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'project_update' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method update" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `update`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `update`") # noqa: E501 # verify the required parameter 'project_update' is set if self.api_client.client_side_validation and ('project_update' not in local_var_params or # noqa: E501 local_var_params['project_update'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_update` when calling `update`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_update' in local_var_params: body_params = local_var_params['project_update'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}', 'PUT', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='UpdateAccepted', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth')) def upsert_project_permission(self, owner, name, project_access_policy, **kwargs): # noqa: E501 """Upsert a new permission to a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.upsert_project_permission(owner, name, project_access_policy, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_access_policy: (required) :type project_access_policy: ProjectAccessPolicy :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: UpdateAccepted """ kwargs['_return_http_data_only'] = True return self.upsert_project_permission_with_http_info(owner, name, project_access_policy, **kwargs) # noqa: E501 def upsert_project_permission_with_http_info(self, owner, name, project_access_policy, **kwargs): # noqa: E501 """Upsert a new permission to a project # noqa: E501 This method makes a synchronous HTTP request by default. To make an asynchronous HTTP request, please pass async_req=True >>> thread = api.upsert_project_permission_with_http_info(owner, name, project_access_policy, async_req=True) >>> result = thread.get() :param owner: (required) :type owner: str :param name: (required) :type name: str :param project_access_policy: (required) :type project_access_policy: ProjectAccessPolicy :param async_req: Whether to execute the request asynchronously. :type async_req: bool, optional :param _return_http_data_only: response data without head status code and headers :type _return_http_data_only: bool, optional :param _preload_content: if False, the urllib3.HTTPResponse object will be returned without reading/decoding response data. Default is True. :type _preload_content: bool, optional :param _request_timeout: timeout setting for this request. If one number provided, it will be total request timeout. It can also be a pair (tuple) of (connection, read) timeouts. :param _request_auth: set to override the auth_settings for an a single request; this effectively ignores the authentication in the spec for a single request. :type _request_auth: dict, optional :return: Returns the result object. If the method is called asynchronously, returns the request thread. :rtype: tuple(UpdateAccepted, status_code(int), headers(HTTPHeaderDict)) """ local_var_params = locals() all_params = [ 'owner', 'name', 'project_access_policy' ] all_params.extend( [ 'async_req', '_return_http_data_only', '_preload_content', '_request_timeout', '_request_auth' ] ) for key, val in six.iteritems(local_var_params['kwargs']): if key not in all_params: raise ApiTypeError( "Got an unexpected keyword argument '%s'" " to method upsert_project_permission" % key ) local_var_params[key] = val del local_var_params['kwargs'] # verify the required parameter 'owner' is set if self.api_client.client_side_validation and ('owner' not in local_var_params or # noqa: E501 local_var_params['owner'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `owner` when calling `upsert_project_permission`") # noqa: E501 # verify the required parameter 'name' is set if self.api_client.client_side_validation and ('name' not in local_var_params or # noqa: E501 local_var_params['name'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `name` when calling `upsert_project_permission`") # noqa: E501 # verify the required parameter 'project_access_policy' is set if self.api_client.client_side_validation and ('project_access_policy' not in local_var_params or # noqa: E501 local_var_params['project_access_policy'] is None): # noqa: E501 raise ApiValueError("Missing the required parameter `project_access_policy` when calling `upsert_project_permission`") # noqa: E501 collection_formats = {} path_params = {} if 'owner' in local_var_params: path_params['owner'] = local_var_params['owner'] # noqa: E501 if 'name' in local_var_params: path_params['name'] = local_var_params['name'] # noqa: E501 query_params = [] header_params = {} form_params = [] local_var_files = {} body_params = None if 'project_access_policy' in local_var_params: body_params = local_var_params['project_access_policy'] # HTTP header `Accept` header_params['Accept'] = self.api_client.select_header_accept( ['application/json']) # noqa: E501 # HTTP header `Content-Type` header_params['Content-Type'] = self.api_client.select_header_content_type( # noqa: E501 ['application/json']) # noqa: E501 # Authentication setting auth_settings = ['APIKeyAuth', 'JWTAuth'] # noqa: E501 return self.api_client.call_api( '/projects/{owner}/{name}/permissions', 'PATCH', path_params, query_params, header_params, body=body_params, post_params=form_params, files=local_var_files, response_type='UpdateAccepted', # noqa: E501 auth_settings=auth_settings, async_req=local_var_params.get('async_req'), _return_http_data_only=local_var_params.get('_return_http_data_only'), # noqa: E501 _preload_content=local_var_params.get('_preload_content', True), _request_timeout=local_var_params.get('_request_timeout'), collection_formats=collection_formats, _request_auth=local_var_params.get('_request_auth'))
class Constants(object): LOGGER_CONF = "conf/logger.yml" USERNAME = "mapr" PASSWORD = "mapr" GROUPNAME = "mapr" USERID = 5000 GROUPID = 5000 MYSQL_USER = "admin" MYSQL_PASS = "mapr" LDAPADMIN_USER = "admin" LDAPADMIN_PASS = "mapr" LDAPBIND_USER = "readonly" LDAPBIND_PASS = "mapr"
## for data import pandas as pd import numpy as np import requests import json import os from datetime import datetime, date from dotenv import load_dotenv from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression ## for plotting import matplotlib.pyplot as plt import matplotlib.patches as pltpatches ## for stationarity test import statsmodels.api as sm ## for outliers detection, models tuning, clustering from sklearn import preprocessing, svm, model_selection, metrics, cluster ## for autoregressive models import pmdarima import statsmodels.tsa.api as smt import arch import tensorflow as tf ## for deep learning from tensorflow.python.keras import models, layers, preprocessing as kprocessing ## for prophet from fbprophet import Prophet pd.plotting.register_matplotlib_converters() ## for parametric fit and resistence/support from scipy import optimize, stats, signal, cluster as sci_cluster ## for clustering from tslearn.metrics import dtw from tslearn.utils import to_time_series_dataset from tslearn.clustering import TimeSeriesKMeans ############################################################################### # TS ANALYSIS # ############################################################################### def get_data_api_toTs(ini,coin): coin_url = os.getenv(coin.upper()+"_HISTOHOUR") if ini == 0 : request = requests.get(coin_url) else: request = requests.get(coin_url+f"&toTs={ini}") todo = json.loads(request.content) return todo['Data']['Data'] def convertToDF(dfJSON): return(pd.json_normalize(dfJSON)) ''' get cryptocurrency dataSet :parameter     :param coin: coin name (BTC,ETH or XRP)     :param researches: number of observations * 2001 ''' def get_data_df(coin,researches): load_dotenv() data = get_data_api_toTs(0,coin) df_aux = convertToDF(data) for x in range(researches-1): ini = df_aux['time'][0] print("Buscando dados de : ",datetime.fromtimestamp(ini)) data1=get_data_api_toTs(ini,coin) df_aux1 = convertToDF(data1) df_aux = df_aux1.append(df_aux,ignore_index=True) return df_aux ''' get cryptocurrency dataSet :parameter     :param coin: coin name (BTC,ETH or XRP)     :param sample_data: get sample data from api? (true or false) ''' def get_data(coin, sample_data=True): if coin.upper() not in ('BTC', 'ETH', 'XRP'): err_msg = coin + ' is a invalid coin!' raise ValueError(err_msg) name_coin = "_SAMPLE_DATA" if sample_data else "_ALL_DATA" name_coin = coin.upper() + name_coin print("\nBuscando ", "amostra" if sample_data else "todas", " observações da moeda", coin.upper()) load_dotenv() coin_url = os.getenv(name_coin) request = requests.get(coin_url) data = json.loads(request.content) content = data.get("Data") content = content.get("Data") print("Dataset foi carregado! Formatando Dataset ...") df = pd.json_normalize(content[0]) for i in range(1, len(content)): observation = content[i] df_temp = pd.json_normalize(observation) df = pd.DataFrame.append(df, df_temp) return df ''' Plot ts with rolling mean and 95% confidence interval with rolling std. :parameter     :param ts: pandas Series     :param window: num for rolling stats :param plot_intervals: bool - if True plots the conf interval :param plot_ma: bool - if True plots the moving avg ''' def plot_ts(ts, plot_ma=True, plot_intervals=True, window=30, figsize=(15,5)): rolling_mean = ts.rolling(window=window).mean() rolling_std = ts.rolling(window=window).std() plt.figure(figsize=figsize) plt.title(ts.name) plt.plot(ts[window:], label='ts', color="black") if plot_ma: plt.plot(rolling_mean, 'g', label='MA'+str(window), color="red") if plot_intervals: lower_bound = rolling_mean - (1.96 * rolling_std) upper_bound = rolling_mean + (1.96 * rolling_std) plt.fill_between(x=ts.index, y1=lower_bound, y2=upper_bound, color='lightskyblue', alpha=0.4) plt.legend(loc='best') plt.grid(True) plt.show() ''' Fit a parametric trend line. :parameter     :param ts: pandas Series     :param degree: polynomial order, ex. if 1 --> trend line = constant + slope*x, if 2 --> trend line = constant + a*x + b*x^2 ''' def fit_trend(ts, degree=1, plot=True, figsize=(15,5)): ## fit trend dtf = ts.to_frame(name="ts") params = np.polyfit(ts.reset_index().index, ts.values, deg=degree) costant = params[-1] dtf["trend"] = costant X = np.array(range(1,len(ts)+1)) for i in range(1,degree+1): dtf["trend"] = dtf["trend"] + params[i-1]*(X**i) ## plot if plot is True: ax = dtf.plot(grid=True, title="Fitting Trend", figsize=figsize, color=["black","red"]) ax.set(xlabel=None) plt.show() return dtf, params ''' Fit a parametric trend poly. :parameter     :param ts: pandas Series     :param degree: polynomial order, ex. if 2 --> trend line = constant + a*x + b*x^2 ... ''' def fit_poly(ts_train, ts_test, degree=2, plot=True, figsize=(6,6)): ts = ts_train.append(ts_test) x = ts.reset_index().index y = ts.values params = np.polyfit(x, y,degree) poly1d_fn = np.poly1d(params) y_pred = poly1d_fn(x) ts_plot = ts.reset_index() poly = pd.DataFrame({'forecast': y_pred, 'x': ts.reset_index()['date'], 'ts': ts_plot['sales']}) ## plot if plot is True: plt.figure(figsize=figsize) es_ts = poly[["x","ts"]] es_fc = poly[["x","forecast"]] print(es_fc) plt.plot(es_ts['x'], es_ts['ts'],color="black", label = "Histórico") plt.plot(es_fc['x'], es_fc['forecast'],color="green", label = "Treinamento") plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() if degree > 1 : plt.savefig('regressao_polinomial_train.png', format='png', bbox_inches='tight') else: plt.savefig('regressao_linear_train.png', format='png', bbox_inches='tight') plt.show() print('Figura Salva!') plt.figure(figsize=figsize) first_idx = poly[pd.notnull(poly["forecast"])].index[0] first_loc = poly.index.tolist().index(first_idx) zoom_idx = poly.index[first_loc-len(ts_test)] es_ts = poly.loc[zoom_idx:][["x","ts"]] es_fc = poly.loc[zoom_idx:][["x","forecast"]] plt.plot(es_ts['x'], es_ts['ts'],color="black", label = "Histórico") plt.plot(es_fc['x'], es_fc['forecast'],color="green", label = "Teste") plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() if degree > 1 : plt.savefig('regressao_polinomial_test.png', format='png', bbox_inches='tight') else: plt.savefig('regressao_linear_test.png', format='png', bbox_inches='tight') plt.show() print('Figura Salva!') d = y - y_pred mape = np.mean(np.abs(d / y)) * 100 mse = np.mean(d**2) mae = np.mean(abs(d)) rmse = np.sqrt(mse) print("Results by manual calculation: Treinamento") print("MAPE:%.4f" %mape,"%") print("MAE:%.4f" %mae) print("MSE:%.4f" %mse) print("RMSE:%.4f" %rmse) es_ts = poly.loc[zoom_idx:][["x","ts"]] es_fc = poly.loc[zoom_idx:][["x","forecast"]] poly["error"] = es_ts["ts"] - es_fc["forecast"] poly["error_pct"] = poly["error"] / es_ts["ts"] ### kpi error_mean = poly["error"].mean() error_std = poly["error"].std() mae = poly["error"].apply(lambda x: np.abs(x)).mean() #mean absolute error mape = poly["error_pct"].apply(lambda x: np.abs(x)).mean() *100 #mean absolute error % mse = poly["error"].apply(lambda x: x**2).mean() #mean squared error rmse = np.sqrt(mse) #root mean squared error print("Results by manual calculation Teste:") print("MAPE:%.4f" %mape,"%") print("MAE:%.4f" %mae) print("MSE:%.4f" %mse) print("RMSE:%.4f" %rmse) ''' Defferenciate ts. :parameter     :param ts: pandas Series :param lag: num - diff[t] = y[t] - y[t-lag]     :param order: num - how many times it has to differenciate: diff[t]^order = diff[t] - diff[t-lag] :param drop_na: logic - if True Na are dropped, else are filled with last observation ''' def diff_ts(ts, lag=1, order=1, drop_na=True): for i in range(order): ts = ts - ts.shift(lag) ts = ts[(pd.notnull(ts))] if drop_na is True else ts.fillna(method="bfill") return ts ''' Find outliers using sklearn unsupervised support vetcor machine. :parameter     :param ts: pandas Series :param perc: float - percentage of outliers to look for :return dtf with raw ts, outlier 1/0 (yes/no), numeric index ''' def find_outliers(ts, perc=0.01, figsize=(6,6)): ## fit svm scaler = preprocessing.StandardScaler() ts_scaled = scaler.fit_transform(ts.values.reshape(-1,1)) model = svm.OneClassSVM(nu=perc, kernel="rbf", gamma=0.01) model.fit(ts_scaled) ## dtf output dtf_outliers = ts.to_frame(name="ts") dtf_outliers["outlier"] = model.predict(ts_scaled) dtf_outliers["outlier"] = dtf_outliers["outlier"].apply(lambda x: 1 if x == -1 else 0) ## plot fig, ax = plt.subplots(figsize=figsize) ax.set(title="Outliers detection: found "+str(sum(dtf_outliers["outlier"] == 1))) ax.plot(dtf_outliers.index, dtf_outliers["ts"], color="black") ax.scatter(x=dtf_outliers[dtf_outliers["outlier"]==1].index, y=dtf_outliers[dtf_outliers["outlier"]==1]['ts'], color='red') ax.grid(True) plt.show() return dtf_outliers ''' Interpolate outliers in a ts. ''' def remove_outliers(ts, outliers_idx, figsize=(6,6)): ts_clean = ts.copy() ts_clean.loc[outliers_idx] = np.nan ts_clean = ts_clean.interpolate(method="linear") ax = ts.plot(figsize=figsize, color="red", alpha=0.5, label="Histórico", legend=True) ts_clean.plot(ax=ax, grid=True, color="black", label="Interpolado", legend=True) ax.set(xlabel=None) plt.xlabel("Data") plt.ylabel("US$") plt.legend() plt.savefig('remocao_outliers.png', format='png', bbox_inches='tight') plt.show() return ts_clean ''' Finds Maxs, Mins, Resistence and Support levels. :parameter     :param ts: pandas Series :param window: int - rolling window :param trend: bool - False if ts is flat :return dtf with raw ts, max, min, resistence, support ''' def resistence_support(ts, window=30, trend=False, plot=True, figsize=(15,5)): dtf = ts.to_frame(name="ts") dtf["max"], dtf["min"] = [np.nan, np.nan] rolling = dtf['ts'].rolling(window=window).mean().dropna() ## maxs local_max = signal.argrelextrema(rolling.values, np.greater)[0] local_max_idx = [dtf.iloc[i-window:i+window]['ts'].idxmax() for i in local_max if (i > window) and (i < len(dtf)-window)] dtf["max"].loc[local_max_idx] = dtf["ts"].loc[local_max_idx] ## mins local_min = signal.argrelextrema(rolling.values, np.less)[0] local_min_idx = [dtf.iloc[i-window:i+window]['ts'].idxmin() for i in local_min if (i > window) and (i < len(dtf)-window)] dtf["min"].loc[local_min_idx] = dtf["ts"].loc[local_min_idx] ## resistence/support dtf["resistence"] = dtf["max"].interpolate(method="linear") if trend is True else dtf["max"].fillna(method="ffill") dtf["support"] = dtf["min"].interpolate(method="linear") if trend is True else dtf["min"].fillna(method="ffill") ## plot if plot is True: ax = dtf["ts"].plot(color="black", figsize=figsize, grid=True) dtf["resistence"].plot(ax=ax, color="darkviolet", label="resistence", grid=True, linestyle="--") dtf["support"].plot(ax=ax, color="green", label="support", grid=True, linestyle="--") ax.scatter(x=dtf["max"].index, y=dtf["max"].values, color="darkviolet", label="max") ax.scatter(x=dtf["min"].index, y=dtf["min"].values, color="green", label="min") ax.set(xlabel=None) ax.legend() plt.show() return dtf ############################################################################### # MODEL DESIGN & TESTING - FORECASTING # ############################################################################### ''' Split train/test from any given data point. :parameter     :param ts: pandas Series     :param exog: array len(ts) x n regressors :param test: num or str - test size (ex. 0.20) or index position (ex. "yyyy-mm-dd", 1000) :return     ts_train, ts_test, exog_train, exog_test ''' def split_train_test(ts, exog=None, test=0.20, plot=True, figsize=(6,6)): ## define splitting point if type(test) is float: split = int(len(ts)*(1-test)) perc = test elif type(test) is str: split = ts.reset_index()[ts.reset_index().iloc[:,0]==test].index[0] perc = round(len(ts[split:])/len(ts), 2) else: split = test perc = round(len(ts[split:])/len(ts), 2) print("--- splitting at index: ", split, "|", ts.index[split], "| test size:", perc, " ---") ## split ts ts_train = ts.head(split) ts_test = ts.tail(len(ts)-split) upper_bound = max(ts) * 1.05 lower_bound = min(ts) * 1.05 if plot is True: ts_train.plot(grid=True, title="", color="black") plt.xlabel('Data') plt.ylabel('US$') plt.savefig('dados_treino.png', format='png', bbox_inches='tight') plt.show() ts_test.plot(grid=True, title="", color="black") plt.xlabel('Data') plt.ylabel('US$') plt.savefig('dados_teste.png', format='png', bbox_inches='tight') plt.show() ## split exog if exog is not None: exog_train = exog[0:split] exog_test = exog[split:] return ts_train, ts_test, exog_train, exog_test else: return ts_train, ts_test ''' Compute the confidence interval for predictions: [y[t+h] +- (c*σ*√h)] :parameter :param lst_values: list or array :param error_std: σ (standard dev of residuals) :param conf: num - confidence level (90%, 95%, 99%) :return array with 2 columns (upper and lower bounds) ''' def utils_conf_int(lst_values, error_std, conf=0.95): lst_values = list(lst_values) if type(lst_values) != list else lst_values c = round( stats.norm.ppf(1-(1-conf)/2), 2) lst_ci = [] for x in lst_values: lst_x = lst_values[:lst_values.index(x)+1] h = len(lst_x) ci = [x - (c*error_std*np.sqrt(h)), x + (c*error_std*np.sqrt(h))] lst_ci.append(ci) return np.array(lst_ci) ''' Evaluation metrics for predictions. :parameter     :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper", "error" ''' def utils_evaluate_ts_model(dtf, conf=0.95, title=None, plot=True, figsize=(20,13)): try: ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_mean = dtf["residuals"].mean() residuals_std = dtf["residuals"].std() ## Model error ### add column dtf["model_error_pct"] = dtf["residuals"] / dtf["ts"] ### kpi model_error_mean = dtf["residuals"].mean() model_error_std = dtf["residuals"].std() model_mae = dtf["residuals"].apply(lambda x: np.abs(x)).mean() #mean absolute error model_mape = dtf["model_error_pct"].apply(lambda x: np.abs(x)).mean() #mean absolute error % model_mse = dtf["residuals"].apply(lambda x: x**2).mean() #mean squared error model_rmse = np.sqrt(model_mse) #root mean squared error ## forecasting error ### add column dtf["error"] = dtf["ts"] - dtf["forecast"] dtf["error_pct"] = dtf["error"] / dtf["ts"] ### kpi error_mean = dtf["error"].mean() error_std = dtf["error"].std() mae = dtf["error"].apply(lambda x: np.abs(x)).mean() #mean absolute error mape = dtf["error_pct"].apply(lambda x: np.abs(x)).mean() #mean absolute error % mse = dtf["error"].apply(lambda x: x**2).mean() #mean squared error rmse = np.sqrt(mse) #root mean squared error ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: plt.figure(figsize=figsize) ### training ts = dtf[pd.notnull(dtf["model"])][["ts"]] print(ts.reset_index().head()) model = dtf[pd.notnull(dtf["model"])][["model"]] print(model.reset_index().head()) plt.plot(ts, color='black', label='Histórico') plt.plot(model, color='green', label='Treinamento') plt.xlabel("Data") plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'treinamento.png', format='png', bbox_inches='tight') plt.show() print('\nFigura Salva!\n') ### testing plt.figure(figsize=figsize) ts = dtf[pd.isnull(dtf["model"])][["ts"]] forecast = dtf[pd.isnull(dtf["model"])][["forecast"]] plt.plot(ts, color='black', label='Histórico') plt.plot(forecast, color='green', label='Teste') plt.xlabel("Data") plt.fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'teste.png', format='png', bbox_inches='tight') plt.show() print('\nFigura Salva!\n') print("Training --> Residuals mean:", np.round(residuals_mean), " | std:", np.round(residuals_std), " | mae:",np.round(model_mae), " | mape:",np.round(model_mape*100), "% | mse:",np.round(model_mse), " | rmse:",np.round(model_rmse)) print("Test --> Error mean:", np.round(error_mean), " | std:", np.round(error_std), " | mae:",np.round(mae), " | mape:",np.round(mape*100), "% | mse:",np.round(mse), " | rmse:",np.round(rmse)) return dtf[["ts", "model", "residuals", "lower", "forecast", "upper", "error"]] except Exception as e: print("--- got error ---") print(e) ''' Generate dates to index predictions. :parameter :param start: str - "yyyy-mm-dd" :param end: str - "yyyy-mm-dd" :param n: num - length of index :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly ''' def utils_generate_indexdate(start, end=None, n=None, freq="D"): if end is not None: index = pd.date_range(start=start, end=end, freq=freq) else: index = pd.date_range(start=start, periods=n, freq=freq) index = index[1:] print("--- generating index date --> start:", index[0], "| end:", index[-1], "| len:", len(index), "---") return index ''' Plot unknown future forecast and produce conf_int with residual_std and pred_int if an error_std is given. :parameter :param dtf: DataFrame with columns "ts", "model", "forecast", and "lower"/"upper" (if available) :param conf: num - confidence level (90%, 95%, 99%) :param zoom: int - plots the focus on the last zoom days :return dtf with columns "ts", "model", "residuals", "lower", "forecast", "upper" (No error) ''' def utils_add_forecast_int(dtf, conf=0.95, plot=True, zoom=30, figsize=(6,6), title=None): ## residuals from fitting ### add column dtf["residuals"] = dtf["ts"] - dtf["model"] ### kpi residuals_std = dtf["residuals"].std() ## interval if "upper" not in dtf.columns: print("--- computing confidence interval ---") dtf["lower"], dtf["upper"] = [np.nan, np.nan] dtf.loc[dtf["forecast"].notnull(), ["lower","upper"]] = utils_conf_int( dtf[dtf["forecast"].notnull()]["forecast"], residuals_std, conf) ## plot if plot is True: plt.figure(figsize=figsize) ### entire series es_ts = dtf[["ts"]] es_fc = dtf[["forecast"]] plt.plot(es_ts,color="black", label = "Histórico") plt.plot(es_fc,color="red", label = "Projeção") plt.xlabel("Data") plt.fill_between(x=dtf.index, y1=dtf['lower'], y2=dtf['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'_entire_series.png', format='png', bbox_inches='tight') plt.show() ### focus on last plt.figure(figsize=figsize) first_idx = dtf[pd.notnull(dtf["forecast"])].index[0] first_loc = dtf.index.tolist().index(first_idx) zoom_idx = dtf.index[first_loc-zoom] es_ts = dtf.loc[zoom_idx:][["ts"]] es_fc = dtf.loc[zoom_idx:][["forecast"]] plt.plot(es_ts,color="black", label = "Histórico") plt.plot(es_fc,color="red", label = "Projeção") plt.xlabel("Data") plt.fill_between(x=dtf.loc[zoom_idx:].index, y1=dtf.loc[zoom_idx:]['lower'], y2=dtf.loc[zoom_idx:]['upper'], color='b', alpha=0.2) plt.xticks(rotation=45) plt.ylabel("US$") plt.grid(True) plt.legend() plt.savefig(title+'_zoom.png', format='png', bbox_inches='tight') plt.show() return dtf[["ts", "model", "residuals", "lower", "forecast", "upper"]] ############################################################################### # AUTOREGRESSIVE # ############################################################################### ''' Tune Holt-Winters Exponential Smoothing :parameter :param ts_train: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param val_size: num - size of validation fold :param scoring: function(y_true, y_pred) :param top: num - plot top models only :return dtf with results ''' def tune_expsmooth_model(ts_train, s=7, val_size=0.2, scoring=None, top=None, figsize=(15,5)): ## split dtf_fit, dtf_val = model_selection.train_test_split(ts_train, test_size=val_size, shuffle=False) dtf_fit, dtf_val = dtf_fit.to_frame(name="ts"), dtf_val.to_frame(name="ts") ## scoring scoring = metrics.mean_absolute_error if scoring is None else scoring ## hyperamater space trend = ['add', 'mul', None] damped = [True, False] seasonal = ['add', 'mult', None] ## grid search dtf_search = pd.DataFrame(columns=["combo","score","model"]) combinations = [] for t in trend: for d in damped: for ss in seasonal: combo = "trend="+str(t)+", damped="+str(d)+", seas="+str(ss) if combo not in combinations: combinations.append(combo) try: ### fit model = smt.ExponentialSmoothing(dtf_fit, trend=t, damped=d, seasonal=ss, seasonal_periods=s).fit() ### predict pred = model.forecast(len(dtf_val)) if pred.isna().sum() == 0: dtf_val[combo] = pred.values score = scoring(dtf_val["ts"].values, dtf_val[combo].values) dtf_search = dtf_search.append(pd.DataFrame({"combo":[combo],"score":[score],"model":[model]})) except: continue ## find best dtf_search = dtf_search.sort_values("score").reset_index(drop=True) best = dtf_search["combo"].iloc[0] dtf_val = dtf_val.rename(columns={best:best+" [BEST]"}) dtf_val = dtf_val[["ts",best+" [BEST]"] + list(dtf_search["combo"].unique())[1:]] ## plot fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle("Model Tuning", fontsize=15) combos = dtf_val.drop("ts", axis=1).columns[:top] if (len(combos) <= 7) or ((top is not None) and (top <= 7)): colors = ["red","blue","green","violet","sienna","orange","yellow"] else: colors = [tuple(np.random.rand(3,)) for i in range(len(combos))] ### main ts_train.plot(ax=ax[0], grid=True, color="black", legend=True, label="ts") ax[0].fill_between(x=dtf_fit.index, y1=ts_train.max(), color='grey', alpha=0.2) dtf_val[combos].plot(grid=True, ax=ax[0], color=colors, legend=True) ax[0].legend(loc="upper left") ax[0].set(xlabel=None) ### zoom dtf_val["ts"].plot(grid=True, ax=ax[1], color="black", legend=False) for i,col in enumerate(combos): linewidth = 2 if col == best+" [BEST]" else 1 dtf_val[col].plot(grid=True, ax=ax[1], color=colors[i], legend=False, linewidth=linewidth) ax[1].set(xlabel=None) plt.show() return dtf_search ''' Fits Exponential Smoothing: Simple (level) --> trend=None + seasonal=None y[t+i] = α*y[t] + α(1-α)^1*y[t-1] + α(1-α)^2*y[t-2] + ... = (α)*y[t] + (1-α)*yhat[t] Holt (level + trend) --> trend=["add","mul"] + seasonal=None y[t+i] = level_f(α) + i*trend_f(β) Holt-Winters (level + trend + seasonality) --> trend=["add","mul"] + seasonal=["add","mul"] y[t+i] = level_f(α) + i*trend_f(β) + seasonality_f(γ) :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param trend: str - "additive" (linear), "multiplicative" (non-linear) :param damped: bool - damp trend :param seasonal: str - "additive" (ex. +100 every 7 days), "multiplicative" (ex. x10 every 7 days) :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param factors: tuple - (α,β,γ) smoothing factor for the level (ex 0.94), trend, seasonal :return dtf with predictons and the model ''' def fit_expsmooth(ts_train, ts_test, trend="additive", damped=False, seasonal="multiplicative", s=None, factors=(None,None,None), conf=0.95, figsize=(15,10)): ## checks check_seasonality = "Seasonal parameters: No Seasonality" if (seasonal is None) & (s is None) else "Seasonal parameters: "+str(seasonal)+" Seasonality every "+str(s)+" observations" print(check_seasonality) ## train model = smt.ExponentialSmoothing(ts_train, trend=trend, damped=damped, seasonal=seasonal, seasonal_periods=s).fit(factors[0], factors[1], factors[2]) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1) ## evaluate dtf = dtf_train.append(dtf_test) alpha, beta, gamma = round(model.params["smoothing_level"],2), round(model.params["smoothing_slope"],2), round(model.params["smoothing_seasonal"],2) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="Holt-Winters "+str((alpha, beta, gamma))) return dtf, model ''' Tune ARIMA :parameter :param ts_train: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param val_size: num - size of validation fold :param max_order: tuple - max (p,d,q) values :param seasonal_order: tuple - max (P,D,Q) values :param scoring: function(y_true, y_pred) :param top: num - plot top models only :return dtf with results ''' def tune_arima_model(ts_train, s=7, val_size=0.2, max_order=(3,1,3), seasonal_order=(1,1,1), scoring=None, top=None, figsize=(15,5)): ## split dtf_fit, dtf_val = model_selection.train_test_split(ts_train, test_size=val_size, shuffle=False) dtf_fit, dtf_val = dtf_fit.to_frame(name="ts"), dtf_val.to_frame(name="ts") ## scoring scoring = metrics.mean_absolute_error if scoring is None else scoring ## hyperamater space ps = range(0,max_order[0]+1) ds = range(0,max_order[1]+1) qs = range(0,max_order[2]+1) Ps = range(0,seasonal_order[0]+1) Ds = range(0,seasonal_order[1]+1) Qs = range(0,seasonal_order[2]+1) ## grid search dtf_search = pd.DataFrame(columns=["combo","score","model"]) combinations = [] for p in ps: for d in ds: for q in qs: for P in Ps: for D in Ds: for Q in Qs: combo = "("+str(p)+","+str(d)+","+str(q)+")x("+str(P)+","+str(D)+","+str(Q)+")" if combo not in combinations: combinations.append(combo) try: ### fit model = smt.SARIMAX(ts_train, order=(p,d,q), seasonal_order=(P,D,Q,s)).fit() ### predict pred = model.forecast(len(dtf_val)) if pred.isna().sum() == 0: dtf_val[combo] = pred.values score = scoring(dtf_val["ts"].values, dtf_val[combo].values) dtf_search = dtf_search.append(pd.DataFrame({"combo":[combo],"score":[score],"model":[model]})) except: continue ## find best dtf_search = dtf_search.sort_values("score").reset_index(drop=True) best = dtf_search["combo"].iloc[0] dtf_val = dtf_val.rename(columns={best:best+" [BEST]"}) dtf_val = dtf_val[["ts",best+" [BEST]"] + list(dtf_search["combo"].unique())[1:]] ## plot fig, ax = plt.subplots(nrows=1, ncols=2, figsize=figsize) fig.suptitle("Model Tuning", fontsize=15) combos = dtf_val.drop("ts", axis=1).columns[:top] if (len(combos) <= 7) or ((top is not None) and (top <= 7)): colors = ["red","blue","green","violet","sienna","orange","yellow"] else: colors = [tuple(np.random.rand(3,)) for i in range(len(combos))] ### main ts_train.plot(ax=ax[0], grid=True, color="black", legend=True, label="ts") ax[0].fill_between(x=dtf_fit.index, y1=ts_train.max(), color='grey', alpha=0.2) dtf_val[combos].plot(grid=True, ax=ax[0], color=colors, legend=True) ax[0].legend(loc="upper left") ax[0].set(xlabel=None) ### zoom dtf_val["ts"].plot(grid=True, ax=ax[1], color="black", legend=False) for i,col in enumerate(combos): linewidth = 2 if col == best+" [BEST]" else 1 dtf_val[col].plot(grid=True, ax=ax[1], color=colors[i], legend=False, linewidth=linewidth) ax[1].set(xlabel=None) plt.show() return dtf_search ''' Find best Seasonal-ARIMAX parameters. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return best model ''' def find_best_sarimax(ts, seasonal=True, stationary=False, s=1, exog=None, max_p=10, max_d=3, max_q=10, max_P=10, max_D=3, max_Q=10): best_model = pmdarima.auto_arima(ts, exogenous=exog, seasonal=seasonal, stationary=stationary, m=s, information_criterion='aic', max_order=20, max_p=max_p, max_d=max_d, max_q=max_q, max_P=max_P, max_D=max_D, max_Q=max_Q, error_action='ignore') print("best model --> (p, d, q):", best_model.order, " and (P, D, Q, s):", best_model.seasonal_order) return best_model.summary() ''' Fits SARIMAX (Seasonal ARIMA with External Regressors) (p,d,q)x(P,D,Q,s): y[t+1] = (c + a0*y[t] + a1*y[t-1] +...+ ap*y[t-p]) + (e[t] + b1*e[t-1] + b2*e[t-2] +...+ bq*e[t-q]) + (B*X[t]) :parameter :param ts_train: pandas timeseries :param ts_test: pandas timeseries :param order: tuple - (p,d,q) --> p: lag order (AR), d: degree of differencing (to remove trend), q: order of moving average (MA) :param seasonal_order: tuple - (P,D,Q) --> seasonal lag orders (ex. lag from the last 2 seasons) :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param exog_train: pandas dataframe or numpy array :param exog_test: pandas dataframe or numpy array :return dtf with predictons and the model ''' def fit_sarimax(ts_train, ts_test, order=(1,0,1), seasonal_order=(1,0,1), s=7, exog_train=None, exog_test=None, conf=0.95, figsize=(15,10)): ## checks check_trend = "Trend parameters: No differencing" if order[1] == 0 else "Trend parameters: d="+str(order[1]) print(check_trend) check_seasonality = "Seasonal parameters: No Seasonality" if (s == 0) & (np.sum(seasonal_order[0:2]) == 0) else "Seasonal parameters: Seasonality every "+str(s)+" observations" print(check_seasonality) check_exog = "Exog parameters: Not given" if (exog_train is None) & (exog_test is None) else "Exog parameters: number of regressors="+str(exog_train.shape[1]) print(check_exog) ## train model = smt.SARIMAX(ts_train, order=order, seasonal_order=seasonal_order+(s,), exog=exog_train, enforce_stationarity=False, enforce_invertibility=False).fit() dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = model.fittedvalues ## test dtf_test = ts_test.to_frame(name="ts") dtf_test["forecast"] = model.predict(start=len(ts_train), end=len(ts_train)+len(ts_test)-1, exog=exog_test) ## add conf_int ci = model.get_forecast(len(ts_test)).conf_int(1-conf).values dtf_test["lower"], dtf_test["upper"] = ci[:,0], ci[:,1] ## evaluate dtf = dtf_train.append(dtf_test) title = "ARIMA "+str(order) if exog_train is None else "ARIMAX "+str(order) title = "S"+title+" x "+str(seasonal_order) if np.sum(seasonal_order) > 0 else title dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title=title) return dtf, model ''' Forecast unknown future with sarimax or expsmooth. :parameter :param ts: pandas series :param model: model object :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting ''' def forecast_autoregressive(ts, model=None, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(6,6)): ## model model = smt.SARIMAX(ts, order=(1,1,1), seasonal_order=(0,0,0,0)).fit() if model is None else model ## fit dtf = ts.to_frame(name="ts") dtf["model"] = model.fittedvalues dtf["residuals"] = dtf["ts"] - dtf["model"] ## index index = utils_generate_indexdate(start=ts.index[-1], end=end, n=pred_ahead, freq=freq) ## forecast if "holtwinters" in str(model): preds = model.forecast(len(index)) dtf_preds = preds.to_frame(name="forecast") else: preds = model.get_forecast(len(index)) dtf_preds = preds.predicted_mean.to_frame(name="forecast") ci = preds.conf_int(1-conf).values dtf_preds["lower"], dtf_preds["upper"] = ci[:,0], ci[:,1] #dtf_preds.index, dtf_preds.index.freq = index, 'D' #print(dtf_preds) ## add intervals and plot dtf = dtf.append(dtf_preds) dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom, title="SARIMAX", figsize=figsize) return dtf ############################################################################### # RNN # ############################################################################### ''' Plot loss and metrics of keras training. ''' def utils_plot_keras_training(training): metrics = [k for k in training.history.keys() if ("loss" not in k) and ("val" not in k)] fig, ax = plt.subplots(nrows=1, ncols=2, sharey=True, figsize=(15,3)) ## training ax[0].set(title="Training") ax11 = ax[0].twinx() ax[0].plot(training.history['loss'], color='black') ax[0].set_xlabel('Epochs') ax[0].set_ylabel('Loss', color='black') for metric in metrics: ax11.plot(training.history[metric], label=metric) ax11.set_ylabel("Score", color='steelblue') ax11.legend() ## validation ax[1].set(title="Validation") ax22 = ax[1].twinx() ax[1].plot(training.history['val_loss'], color='black') ax[1].set_xlabel('Epochs') ax[1].set_ylabel('Loss', color='black') for metric in metrics: ax22.plot(training.history['val_'+metric], label=metric) ax22.set_ylabel("Score", color="steelblue") plt.show() ''' Preprocess a ts for LSTM partitioning into X and y. :parameter :param ts: pandas timeseries :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :param scaler: sklearn scaler object - if None is fitted :param exog: pandas dataframe or numpy array :return X with shape: (len(ts)-s, s, features) y with shape: (len(ts)-s,) the fitted scaler ''' def utils_preprocess_lstm(ts, s, scaler=None, exog=None): ## scale if scaler is None: scaler = preprocessing.MinMaxScaler(feature_range=(0,1)) ts_preprocessed = scaler.fit_transform(ts.values.reshape(-1,1)).reshape(-1) ## create X (N,s,x) and y (N,) ts_preprocessed = kprocessing.sequence.TimeseriesGenerator(data=ts_preprocessed, targets=ts_preprocessed, length=s, batch_size=1) lst_X, lst_y = [], [] for i in range(len(ts_preprocessed)): xi, yi = ts_preprocessed[i] lst_X.append(xi[0]) lst_y.append(yi[0]) X = np.expand_dims(np.array(lst_X), axis=2) y = np.array(lst_y) return X, y, scaler ''' Get fitted values from LSTM. ''' def utils_fitted_lstm(ts, model, scaler, exog=None): ## scale s = model.input_shape[1] ts_preprocessed = scaler.transform(ts.values.reshape(-1,1)).reshape(-1) ## create Xy, predict = fitted lst_fitted = [np.nan]*s for i in range(len(ts_preprocessed)): end_ix = i + s if end_ix > len(ts_preprocessed)-1: break X = ts_preprocessed[i:end_ix] X = np.array(X) X = np.reshape(X, (1,s,1)) fit = model.predict(X) fit = scaler.inverse_transform(fit)[0][0] lst_fitted.append(fit) return np.array(lst_fitted) ''' Predict ts with LSTM using previous predictions. ''' def utils_predict_lstm(last_s_obs, model, scaler, pred_ahead, exog=None): ## scale s = model.input_shape[1] ts_preprocessed = list(scaler.transform(last_s_obs.values.reshape(-1,1))) ## predict, append, re-predict lst_preds = [] for i in range(pred_ahead): X = np.array(ts_preprocessed[len(ts_preprocessed)-s:]) X = np.reshape(X, (1,s,1)) pred = model.predict(X) ts_preprocessed.append(pred[0]) pred = scaler.inverse_transform(pred)[0][0] lst_preds.append(pred) return np.array(lst_preds) ''' Fit Long Short-Term Memory neural network. :parameter :param ts: pandas timeseries :param exog: pandas dataframe or numpy array :param s: num - number of observations per seasonal (ex. 7 for weekly seasonality with daily data, 12 for yearly seasonality with monthly data) :return dtf with predictons and the model ''' def fit_lstm(ts_train, ts_test, model, exog=None, s=20, epochs=100, conf=0.95, figsize=(15,5)): ## check print("Seasonality: using the last", s, "observations to predict the next 1") ## preprocess train X_train, y_train, scaler = utils_preprocess_lstm(ts_train, scaler=None, exog=exog, s=s) print("--- X:", X_train.shape, "| y:", y_train.shape, "---") ## lstm if model is None: model = models.Sequential() model.add( layers.LSTM(input_shape=X_train.shape[1:], units=50, activation='relu', return_sequences=False) ) model.add( layers.Dense(1) ) model.compile(optimizer='adam', loss='mean_absolute_error') print(model.summary()) ## train verbose = 0 if epochs > 1 else 1 training = model.fit(x=X_train, y=y_train, batch_size=1, epochs=epochs, shuffle=True, verbose=verbose, validation_split=0.3) dtf_train = ts_train.to_frame(name="ts") dtf_train["model"] = utils_fitted_lstm(ts_train, training.model, scaler, exog) dtf_train["model"] = dtf_train["model"].fillna(method='bfill') ## test last_s_obs = ts_train[-s:] preds = utils_predict_lstm(last_s_obs, training.model, scaler, pred_ahead=len(ts_test), exog=None) dtf_test = ts_test.to_frame(name="ts").merge(pd.DataFrame(data=preds, index=ts_test.index, columns=["forecast"]), how='left', left_index=True, right_index=True) ## evaluate dtf = dtf_train.append(dtf_test) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="LSTM (memory:"+str(s)+")") return dtf, training.model ''' Forecast unknown future. :parameter :param ts: pandas series :param model: model object :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting ''' def forecast_lstm(ts, model=None, epochs=100, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(6,6)): ## model if model is None: model = models.Sequential([ layers.LSTM(input_shape=(1,1), units=50, activation='relu', return_sequences=False), layers.Dense(1) ]) model.compile(optimizer='adam', loss='mean_absolute_error') ## fit s = model.input_shape[1] X, y, scaler = utils_preprocess_lstm(ts, scaler=None, exog=None, s=s) training = model.fit(x=X, y=y, batch_size=1, epochs=epochs, shuffle=True, verbose=0, validation_split=0.3) dtf = ts.to_frame(name="ts") dtf["model"] = utils_fitted_lstm(ts, training.model, scaler, None) dtf["model"] = dtf["model"].fillna(method='bfill') ## index index = utils_generate_indexdate(start=ts.index[-1], end=end, n=pred_ahead, freq=freq) ## forecast last_s_obs = ts[-s:] preds = utils_predict_lstm(last_s_obs, training.model, scaler, pred_ahead=len(index), exog=None) dtf = dtf.append(pd.DataFrame(data=preds, index=index, columns=["forecast"])) print(pd.DataFrame(data=preds, index=index, columns=["forecast"])) ## add intervals and plot dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom, title="LSTM", figsize=figsize) return dtf ############################################################################### # PROPHET # ############################################################################### ''' Fits prophet on Business Data: y = trend + seasonality + holidays :parameter :param dtf_train: pandas Dataframe with columns 'ds' (dates), 'y' (values), 'cap' (capacity if growth="logistic"), other additional regressor :param dtf_test: pandas Dataframe with columns 'ds' (dates), 'y' (values), 'cap' (capacity if growth="logistic"), other additional regressor :param lst_exog: list - names of variables :param freq: str - "D" daily, "M" monthly, "Y" annual, "MS" monthly start ... :return dtf with predictons and the model ''' def fit_prophet(dtf_train, dtf_test, lst_exog=None, model=None, freq="D", conf=0.95, figsize=(15,10)): ## setup prophet if model is None: model = Prophet(growth="linear", changepoints=None, n_changepoints=25, seasonality_mode="multiplicative", yearly_seasonality="auto", weekly_seasonality="auto", daily_seasonality="auto", holidays=None, interval_width=conf) if lst_exog != None: for regressor in lst_exog: model.add_regressor(regressor) ## train model.fit(dtf_train) ## test dtf_prophet = model.make_future_dataframe(periods=len(dtf_test), freq=freq, include_history=True) if model.growth == "logistic": dtf_prophet["cap"] = dtf_train["cap"].unique()[0] if lst_exog != None: dtf_prophet = dtf_prophet.merge(dtf_train[["ds"]+lst_exog], how="left") dtf_prophet.iloc[-len(dtf_test):][lst_exog] = dtf_test[lst_exog].values dtf_prophet = model.predict(dtf_prophet) dtf_train = dtf_train.merge(dtf_prophet[["ds","yhat"]], how="left").rename( columns={'yhat':'model', 'y':'ts'}).set_index("ds") dtf_test = dtf_test.merge(dtf_prophet[["ds","yhat","yhat_lower","yhat_upper"]], how="left").rename( columns={'yhat':'forecast', 'y':'ts', 'yhat_lower':'lower', 'yhat_upper':'upper'}).set_index("ds") ## evaluate dtf = dtf_train.append(dtf_test) dtf = utils_evaluate_ts_model(dtf, conf=conf, figsize=figsize, title="Prophet") return dtf, model ''' Forecast unknown future. :parameter :param ts: pandas series :param model: model object :param pred_ahead: number of observations to forecast (ex. pred_ahead=30) :param end: string - date to forecast (ex. end="2016-12-31") :param freq: None or str - 'B' business day, 'D' daily, 'W' weekly, 'M' monthly, 'A' annual, 'Q' quarterly :param zoom: for plotting ''' def forecast_prophet(dtf, model=None, pred_ahead=None, end=None, freq="D", conf=0.95, zoom=30, figsize=(6,6)): ## model model = Prophet() if model is None else model ## fit model.fit(dtf) ## index index = utils_generate_indexdate(start=dtf["ds"].values[-1], end=end, n=pred_ahead, freq=freq) ## forecast dtf_prophet = model.make_future_dataframe(periods=len(index), freq=freq, include_history=True) dtf_prophet = model.predict(dtf_prophet) dtf = dtf.merge(dtf_prophet[["ds","yhat"]], how="left").rename(columns={'yhat':'model', 'y':'ts'}).set_index("ds") preds = pd.DataFrame(data=index, columns=["ds"]) preds = preds.merge(dtf_prophet[["ds","yhat","yhat_lower","yhat_upper"]], how="left").rename( columns={'yhat':'forecast', 'yhat_lower':'lower', 'yhat_upper':'upper'}).set_index("ds") dtf = dtf.append(preds) print(preds) ## plot dtf = utils_add_forecast_int(dtf, conf=conf, zoom=zoom, title="Prophet", figsize=figsize) return dtf
# pylint: disable=missing-docstring,redefined-outer-name import pathlib import pytest from tox_constraints import git_filter @pytest.fixture def sample(): dirpath = pathlib.Path(__file__).with_suffix("") filepath = dirpath / "constraints.txt" return filepath.read_text() def test_roundtrip(sample): assert git_filter.clean_text(git_filter.smudge_text(sample)) == sample @pytest.mark.parametrize("func", [git_filter.clean_text, git_filter.smudge_text]) def test_filters_are_idempontent(sample, func): expected = func(sample) actual = func(sample) assert actual == expected def test_smudge_removed_marker(sample): evidence = "$" # the presence of this string is evidence that the marker is present if not evidence in sample: raise RuntimeError("Evidence not present before test") assert evidence not in git_filter.smudge_text(sample) def test_smudge_adds_url(sample): evidence = ( "file://" # the presence of this string is evidence that the url is present ) if evidence in sample: raise RuntimeError("Evidence present before test") assert evidence in git_filter.smudge_text(sample)
# Imports from os.path import join import matplotlib.pyplot as plt import nibabel as nib from nilearn import plotting from gclda.model import Model from gclda.decode import decode_continuous from gclda.utils import get_resource_path # Files to decode f_in = '/home/data/nbc/physics-learning/data/group-level/fci/fci-postOnly_diffmod_s123_difficulty_c123456_vtrhes_p001_cthres_p05.gfeat/cope1.feat/stats/zstat1.nii.gz' # Output filename f_out = 'fci-cntrl_diffmod_gcldaDecoded.csv' # Load model and initialize decoder model_file = join('/home/data/nbc/tools/gclda/data/models/', 'Neurosynth2015Filtered2', 'model_200topics_2015Filtered2_10000iters.pklz') model = Model.load(model_file) # Read in image to decode file_to_decode = f_in img_to_decode = nib.load(file_to_decode) #fig = plotting.plot_stat_map(img_to_decode, display_mode='z', # threshold=3.290527, # cut_coords=[-28, -4, 20, 50]) # Decode ROI df, topic_weights = decode_continuous(model, img_to_decode) # Get associated terms df = df.sort_values(by='Weight', ascending=False) print(df.head(10)) df.to_csv(f_out, index_label='Term') # Plot topic weights fig2, ax2 = plt.subplots() ax2.plot(topic_weights) ax2.set_xlabel('Topic #') ax2.set_ylabel('Weight') fig2.show()
from abc import ABC, abstractmethod from typing import List, Union import numpy as np import torch SOBEL_X = ( torch.tensor([[1, 0, -1], [2, 0, -2], [1, 0, -1]], dtype=torch.float).unsqueeze(0).unsqueeze(0) ) SOBEL_Y = ( torch.tensor([[1, 2, 1], [0, 0, 0], [-1, -2, -1]], dtype=torch.float).unsqueeze(0).unsqueeze(0) ) class CustomTransformNumpy(ABC): """Abstract method for custom numpy transformations. Every subclass should implement `__init__` for transformations parameters setting and `__call__` method for application to image. """ @abstractmethod def __init__(self): raise NotImplementedError @abstractmethod def __call__(self, *args, **kwargs): raise NotImplementedError class Normalization(CustomTransformNumpy): def __init__( self, sample: List[np.ndarray] = None, from_min: float = None, from_max: float = None, to_min: float = None, to_max: float = None, ): self.to_min, self.to_max = to_min, to_max self.to_span = self.to_max - self.to_min if sample: sample = np.concatenate(sample) self.from_min = np.min(sample) self.from_max = np.max(sample) else: assert (from_min is not None) and (from_max is not None) self.from_min = from_min self.from_max = from_max self.from_span = self.from_max - self.from_min def __call__(self, volume: np.ndarray) -> np.ndarray: """ min max normalization""" scaled = (volume - self.from_min) / self.from_span return scaled * self.to_span + self.to_min def denorm(self, volume: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]: """Denormalization with pre-saved stats""" scaled = (volume - self.to_min) / self.to_span return scaled * self.from_span + self.from_min class AugmentationNoduleDict(ABC): def __init__(self, autoupd=True): self.autoupd = autoupd def __call__(self, nodule: torch.Tensor) -> torch.Tensor: """Transform data Parameters ---------- nodule : torch.Tensor, [C D H W] input tensor Returns ------- torch.Tensor, [C D H W] """ tensor = self._augmentation(nodule) if self.autoupd: self._update() return tensor @abstractmethod def _augmentation(self, tensor: torch.Tensor) -> torch.Tensor: pass @abstractmethod def _update(self): pass class RotNodule3D(AugmentationNoduleDict): def __init__(self, dims_pair: list = None, autoupd=True): super().__init__(autoupd) self._dims_pair = dims_pair if dims_pair is None: self._dims_pair = [[1, 2], [1, 3], [2, 3]] else: self._dims_pair = [dims_pair] self._count_dims = len(self._dims_pair) self._count_rotate = [0] * self._count_dims def _augmentation(self, tensor: torch.Tensor) -> torch.Tensor: for i in range(self._count_dims): dims = self._dims_pair[i] count_rotate = self._count_rotate[i] if count_rotate == 0: continue tensor = torch.rot90(tensor, count_rotate, dims) return tensor def _update(self): self._count_rotate = np.random.randint(-3, 4, self._count_dims).tolist() class FlipNodule3D(AugmentationNoduleDict): def __init__(self, dims: list = None, autoupd=True): super().__init__(autoupd) if dims is None: self._dims = [1, 2, 3] else: self._dims = dims self._count_dims = len(self._dims) self._need_flip = [0] * self._count_dims def _augmentation(self, tensor: torch.Tensor) -> torch.Tensor: for i in range(self._count_dims): dim = self._dims[i] need_flip = self._need_flip[i] if need_flip == 0: continue tensor = torch.flip(tensor, [dim]) return tensor def _update(self): self._need_flip = np.random.randint(0, 2, self._count_dims).tolist() class TranslateNodule3D(AugmentationNoduleDict): def __init__(self, dims: list = None, shift_val: int = 10, autoupd=True): super().__init__(autoupd) if dims is None: self._dims = [1, 2, 3] else: self._dims = dims self._count_dims = len(self._dims) self._shifts = [0] * self._count_dims self._shift_val = shift_val def _augmentation(self, tensor: torch.Tensor) -> torch.Tensor: tensor = torch.roll(tensor, self._shifts, self._dims) if self._shifts[0] < 0: tensor[:, :, tensor.size()[1] + self._shifts[0] :] = 0 elif self._shifts[0] > 0: tensor[:, :, : self._shifts[0]] = 0 if self._shifts[1] < 0: tensor[:, :, :, tensor.size()[2] + self._shifts[1] :] = 0 elif self._shifts[1] > 0: tensor[:, :, :, : self._shifts[1]] = 0 if self._shifts[2] < 0: tensor[:, :, :, :, tensor.size()[3] + self._shifts[2] :] = 0 elif self._shifts[2] > 0: tensor[:, :, :, :, : self._shifts[2]] = 0 return tensor def _update(self): self._shifts = np.random.randint(-self._shift_val, self._shift_val, self._count_dims).tolist() self._shifts[2] = 0 class CropCenterNodule3D(AugmentationNoduleDict): def __init__(self, final_size: float): super().__init__() self.final_size = final_size def _augmentation(self, tensor: torch.Tensor) -> torch.Tensor: sizes_per_dim = np.array(tensor.size()[1:]) sizes_per_dim -= self.final_size sizes_per_dim //= 2 sizes_per_dim_shifted = sizes_per_dim + self.final_size return tensor[ :, sizes_per_dim[0] : sizes_per_dim_shifted[0], sizes_per_dim[1] : sizes_per_dim_shifted[1], sizes_per_dim[2] : sizes_per_dim_shifted[2], ] def _update(self): pass def heaviside(mask, eps=1e-5): return 1 / 2 * (1 + (2 / np.pi) * (torch.atan(mask / eps))) def img_derivative(input: torch.FloatTensor, sobel_kernel: torch.FloatTensor) -> torch.FloatTensor: assert input.dim() == 4 assert sobel_kernel.dim() == 4 conv = torch.nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False) conv.weight = torch.nn.Parameter(sobel_kernel.type_as(input), requires_grad=False) return conv(input) # [N, C, H, W]
print('---' * 10) print('Analisador de Triângulos') print('---' * 10) r1 = int(input('Primeiro valor: ')) r2 = int(input('Segundo valor: ')) r3 = int(input('Terceiro valor: ')) if r1 < r2 + 3 and r2 < r1 + r3 and r3 < r1 + r2: print('Os segmentos acima FORMAM um triângulo') else: print('Os segmentos acima NÃO PODEM FORMAR um triângulo')
""" Cookie Clicker Simulator """ import simpleplot # Used to increase the timeout, if necessary import codeskulptor codeskulptor.set_timeout(20) import poc_clicker_provided as provided import math # Constants SIM_TIME = 10000000000.0 class ClickerState: """ Simple class to keep track of the game state. """ def __init__(self): self._cookies = 0.0 self._cps = 1.0 self._time = 0.0 self._total = 0.0 self._history = [(0.0, None, 0.0, 0.0)] def __str__(self): """ Return human readable state """ status_repr = "total: " + str(self.get_total()) + "\n now: " status_repr += str(self.get_cookies()) + "\n time: " + str(self.get_time()) status_repr += "\n CPS: " + str(self.get_cps()) + "\n" return status_repr def get_cookies(self): """ Return current number of cookies (not total number of cookies) Should return a float """ return self._cookies def get_cps(self): """ Get current CPS Should return a float """ return self._cps def get_time(self): """ Get current time Should return a float """ return self._time def get_history(self): """ Return history list """ return self._history def get_total(self): """ Return total number of cookies """ return self._total def add_cookies(self, cookies): """ Add the number of current cookies and total number of cookies """ self._cookies += cookies self._total += cookies def operate_buy(self, cost, cps): """ Charge cookies and add CPS """ self._cps += cps self._cookies -= cost def add_time(self, time): """ Add current time """ self._time += time def append_history(self, history_item): """ Add history to history list """ self._history.append(history_item) def time_until(self, cookies): """ Return time until you have the given number of cookies (could be 0 if you already have enough cookies) Should return a float with no fractional part """ if (self.get_cookies() >= cookies): return 0.0 else: return math.ceil((cookies - self.get_cookies()) / self.get_cps()) def wait(self, time): """ Wait for given amount of time and update state Should do nothing if time <= 0 """ if (time >= 0): cookies_earned = time * self.get_cps() self.add_time(time) self.add_cookies(cookies_earned) def buy_item(self, item_name, cost, additional_cps): """ Buy an item and update state Should do nothing if you cannot afford the item """ if (self.get_cookies() >= cost): self.operate_buy(cost, additional_cps) self.append_history((self.get_time(), item_name, cost, self.get_total())) def simulate_clicker(build_info, duration, strategy): """ Function to run a Cookie Clicker game for the given duration with the given strategy. Returns a ClickerState object corresponding to game. """ ava_builds = build_info.clone() clicker = ClickerState() while (clicker.get_time() <= duration): item = strategy(clicker.get_cookies(), clicker.get_cps(), duration - clicker.get_time(), ava_builds) if (item): cost = ava_builds.get_cost(item) next_time = clicker.time_until(cost) if (next_time + clicker.get_time() > duration): break clicker.wait(next_time) ava_builds.update_item(item) clicker.buy_item(item, cost, ava_builds.get_cps(item)) else: break clicker.wait(duration - clicker.get_time()) return clicker def strategy_cursor(cookies, cps, time_left, build_info): """ Always pick Cursor! Note that this simplistic strategy does not properly check whether it can actually buy a Cursor in the time left. Your strategy functions must do this and return None rather than an item you can't buy in the time left. """ return "Cursor" def strategy_none(cookies, cps, time_left, build_info): """ Always return None This is a pointless strategy that you can use to help debug your simulate_clicker function. """ return None def strategy_cheap(cookies, cps, time_left, build_info): """ Returns the cheapest item in buildable list. """ cost = float("inf") choice = None for item in build_info.build_items(): if (build_info.get_cost(item) < cost): temp_cost = build_info.get_cost(item) if (time_left >= (temp_cost - cookies) / cps): cost = temp_cost choice = item return choice def strategy_expensive(cookies, cps, time_left, build_info): """ Returns the most expensive item in buildable list. """ cost = float("-inf") choice = None for item in build_info.build_items(): if (build_info.get_cost(item) > cost): temp_cost = build_info.get_cost(item) if (time_left >= (temp_cost - cookies) / cps): cost = temp_cost choice = item return choice def strategy_best(cookies, cps, time_left, build_info): """ Returns the best choice. """ ratio = 0 choice = None for item in build_info.build_items(): ratio_to_compare = build_info.get_cps(item) / build_info.get_cost(item) if (ratio_to_compare > ratio): temp_cost = build_info.get_cost(item) if (time_left >= (temp_cost - cookies) / cps): ratio = ratio_to_compare choice = item return choice def run_strategy(strategy_name, time, strategy): """ Run a simulation with one strategy """ state = simulate_clicker(provided.BuildInfo(), time, strategy) print strategy_name, ":\n", state # Plot total cookies over time # Uncomment out the lines below to see a plot of total cookies vs. time # Be sure to allow popups, if you do want to see it # history = state.get_history() # history = [(item[0], item[3]) for item in history] # simpleplot.plot_lines(strategy_name, 1000, 400, 'Time', 'Total Cookies', [history], True) def run(): """ Run the simulator. """ run_strategy("Cursor", SIM_TIME, strategy_cursor) run_strategy("Cheap", SIM_TIME, strategy_cheap) run_strategy("Expensive", SIM_TIME, strategy_expensive) run_strategy("Best", SIM_TIME, strategy_best) # Add calls to run_strategy to run additional strategies # run_strategy("Cheap", SIM_TIME, strategy_cheap) # run_strategy("Expensive", SIM_TIME, strategy_expensive) # run_strategy("Best", SIM_TIME, strategy_best) run()
""" Library of submission strings """ from submission import substr from submission import read_dat __all__ = [ 'substr', 'read_dat' ]
#!/usr/bin/env python import logging import sys import unittest import scipy as sp import numpy as np import mango.mpi as mpi import mango.image import mango.data import mango.io logger, rootLogger = mpi.getLoggers(__name__) class CropTest(unittest.TestCase): def setUp(self): np.random.seed((mango.mpi.rank+1)*975421) subdShape = sp.array((16,64,32)) mpiCartShape = mango.mpi.getCartShape(dimension=3) mpiCartShape = sp.array(mpiCartShape) self.imgShape = mpiCartShape*subdShape def getSteppedShape(self, shape, step): return sp.array([len(range(0, shape[i], step[i])) for i in range(len(shape))]) def doTestCropWithHalo(self, haloSz=0): rootLogger.info("*************************") rootLogger.info("haloSz=%s" % haloSz) if (isinstance(haloSz, int) or ((sys.version_info.major < 3) and isinstance(haloSz, long))): if (haloSz < 0): haloSz = 0 haloSz = sp.array((haloSz,)*3) imgDds = mango.data.gaussian_noise(shape=self.imgShape, mtype="tomo_float", halo=haloSz) imgDds.setBorderToValue(0) imgDds.updateOverlapRegions() imgDds.md.setVoxelSize((1,1,1)); imgDds.md.setVoxelSizeUnit("mm"); logger.info("imgDds.mtype=%s" % imgDds.mtype) logger.info("imgDds.md.getVoxelSize()=%s" % imgDds.md.getVoxelSize()) cropDds = \ mango.image.crop( imgDds, offset=(0,0,0), shape = imgDds.shape ) logger.info("imgDds.shape=%s" % imgDds.shape) logger.info("cropDds.shape=%s" % cropDds.shape) slc = [] for d in range(len(haloSz)): slc.append(slice(haloSz[d], cropDds.asarray().shape[d]-haloSz[d])) slc = tuple(slc) self.assertEqual(imgDds.dtype, cropDds.dtype) self.assertEqual(imgDds.mtype, cropDds.mtype) self.assertTrue(sp.all(imgDds.halo == cropDds.halo)) self.assertTrue(sp.all(imgDds.origin == cropDds.origin), "%s != %s" % (imgDds.origin, cropDds.origin)) self.assertTrue(sp.all(imgDds.mpi.shape == cropDds.mpi.shape)) self.assertTrue(sp.all(imgDds.md.getVoxelSize() == cropDds.md.getVoxelSize())) logger.info("imgDds min = %s, imgDds max = %s" % (np.min(imgDds.asarray()), np.max(imgDds.asarray()))) logger.info("cropDds min = %s, cropDds max = %s" % (np.min(cropDds.asarray()[slc]), np.max(cropDds.asarray()[slc]))) logger.info("num non-zero cropDds = %s" % sp.sum(sp.where(cropDds.asarray()[slc] != 0, 1, 0))) self.assertTrue(sp.all(imgDds.asarray()[slc] == cropDds.asarray()[slc])) imgDds = \ mango.data.gaussian_noise( mean=32000., stdd=2000., shape=self.imgShape, dtype="uint16", halo=haloSz, origin=(2,-8,4) ) imgDds.setBorderToValue(32000) imgDds.updateOverlapRegions() imgDds.md.setVoxelSize((1,1,1)); imgDds.md.setVoxelSizeUnit("mm"); cropDds = \ mango.image.crop( imgDds, offset = imgDds.shape//4, shape = imgDds.shape//2 ) slc = [] for d in range(len(haloSz)): slc.append(slice(haloSz[d], cropDds.asarray().shape[d]-haloSz[d])) slc = tuple(slc) logger.info("imgDds.md.getVoxelSize()=%s%s" % (imgDds.md.getVoxelSize(), imgDds.md.getVoxelSizeUnit())) logger.info("cropDds.md.getVoxelSize()=%s%s" % (cropDds.md.getVoxelSize(), cropDds.md.getVoxelSizeUnit())) self.assertEqual(imgDds.dtype, cropDds.dtype) self.assertEqual(imgDds.mtype, cropDds.mtype) self.assertTrue(sp.all(imgDds.halo == cropDds.halo)) self.assertTrue(sp.all(imgDds.shape//2 == cropDds.shape)) self.assertTrue(sp.all(imgDds.origin+imgDds.shape//4 == cropDds.origin), "%s != %s" % (imgDds.origin, cropDds.origin)) self.assertTrue(sp.all(imgDds.mpi.shape == cropDds.mpi.shape)) self.assertTrue(sp.all(imgDds.md.getVoxelSize() == cropDds.md.getVoxelSize())) logger.info("imgDds min = %s, imgDds max = %s" % (np.min(imgDds.asarray()), np.max(imgDds.asarray()))) logger.info("cropDds min = %s, cropDds max = %s" % (np.min(cropDds.asarray()[slc]), np.max(cropDds.asarray()[slc]))) logger.info("num non-zero cropDds = %s" % sp.sum(sp.where(cropDds.asarray()[slc] != 0, 1, 0))) cropDds = \ mango.image.crop( imgDds, offset=(3,5,7), shape=(imgDds.shape[0]-2, imgDds.shape[1]-8, imgDds.shape[2]-4) ) slc = [] for d in range(len(haloSz)): slc.append(slice(haloSz[d], cropDds.asarray().shape[d]-haloSz[d])) slc = tuple(slc) logger.info("imgDds min = %s, imgDds max = %s" % (np.min(imgDds.asarray()), np.max(imgDds.asarray()))) logger.info("cropDds min = %s, cropDds max = %s" % (np.min(cropDds.asarray()[slc]), np.max(cropDds.asarray()[slc]))) logger.info("num non-zero cropDds = %s" % sp.sum(sp.where(cropDds.asarray()[slc] != 0, 1, 0))) self.assertEqual(imgDds.dtype, cropDds.dtype) self.assertEqual(imgDds.mtype, cropDds.mtype) self.assertTrue(sp.all(imgDds.halo == cropDds.halo)) self.assertTrue(sp.all(imgDds.shape-(2,8,4) == cropDds.shape), "%s != %s" % (imgDds.shape//(3,5,7), cropDds.shape)) self.assertTrue(sp.all(imgDds.origin+(3,5,7) == cropDds.origin), "%s != %s" % (imgDds.origin, cropDds.origin)) self.assertTrue(sp.all(imgDds.mpi.shape == cropDds.mpi.shape)) self.assertTrue(sp.all(imgDds.md.getVoxelSize() == cropDds.md.getVoxelSize())) rootLogger.info("*************************") def testCropWithHalo0(self): self.doTestCropWithHalo(0) def testCropWithHalo2(self): self.doTestCropWithHalo(4) if __name__ == "__main__": mango.setLoggingVerbosityLevel("high") mpi.initialiseLoggers( [__name__, "mango.mpi", "mango.image", "mango.imageTest"], logLevel=logging.INFO ) unittest.main()
from django.db import models class Category(models.Model): """Model definition for Category.""" # TODO: Define fields here name = models.CharField(max_length=50) description = models.TextField() products = models.ManyToManyField( 'Product', through='ProductCategory') class Meta: """Meta definition for Category.""" verbose_name = 'Category' verbose_name_plural = 'Categorys' def __str__(self): """Unicode representation of Category.""" return self.name # def save(self): # """Save method for Category.""" # pass def get_absolute_url(self): """Return absolute url for Category.""" return ('') # TODO: Define custom methods here
import json, os from core.models.client import Client from discord_slash import SlashCommand main_path = os.path.dirname(__file__) config_path = os.path.join(main_path, "config.json") with open(config_path, "r") as jsonfile: config: dict = json.load(jsonfile) if __name__ == "__main__": Client(**config).run()
# -*- coding: utf-8 -*- '''Defines file types and implements commands on files ''' # module imports from . import cli, get_user_context_obj, logger from .common import *
## /!\ NE PAS TOUCHER NI SUPPRIMER CE FICHIER /!\ ## import discord from replit import db client = discord.Client() commands = {} @client.event async def on_message(message, *member: discord.User): if message.content.split(" ")[0] in commands.keys(): code = commands[message.content.split(" ")[0]] latency = client.latency * 1000 executecode = code.replace('$channelID', str(message.channel.id)) pingreplace = executecode.replace('$ping', str(round(latency))) serverreplace = pingreplace.replace('$serversCount', str(len(client.guilds))) authorreplace = serverreplace.replace('$authorID', str(message.author.id)) usernamereplace = authorreplace.replace('$username', str(message.author)) commandreplace = usernamereplace.replace('$commandCount', str(len(commands))) usersreplace = commandreplace.replace('$usersCount', str(len(client.users))) versionreplace = usersreplace.replace('$version', str(discord.__version__)) await message.channel.send(versionreplace) def command(name, code): commands[name] = code def setstatus(name): db['status'] = name @client.event async def on_ready(): status = db['status'] print(f"Connexion au bot {client.user.name}") print('----------') print(f'Changement du status pour : Joue a {status}') print('----------') await client.change_presence(activity=discord.Game(name=status)) def login(token): client.run(token)
import argparse import pickle as pkl import numpy as np import tensorflow as tf import params import model FLAGS = None def remove_eos(sentence, eos = '<EOS>', pad = '<PAD>'): if eos in sentence: return sentence[:sentence.index(eos)] + '\n' elif pad in sentence: return sentence[:sentence.index(pad)] + '\n' else: return sentence + '\n' def write_result(predict_results, dic_dir): print 'Load dic file...' with open(dic_dir) as dic: dic_file = pkl.load(dic) reversed_dic = dict((y,x) for x,y in dic_file.iteritems()) print 'Writing into file...' with open(FLAGS.pred_dir, 'w') as f: while True: try : output = predict_results.next() output = output['question'].tolist() if -1 in output: # beam search output = output[:output.index(-1)] indices = [reversed_dic[index] for index in output] sentence = ' '.join(indices) sentence = remove_eos(sentence) f.write(sentence.encode('utf-8')) except StopIteration: break def main(unused): # Enable logging for tf.estimator tf.logging.set_verbosity(tf.logging.INFO) # Config config = tf.contrib.learn.RunConfig( model_dir = FLAGS.model_dir, keep_checkpoint_max = 10, save_checkpoints_steps = 100) # Load parameters model_params = getattr(params, FLAGS.params)().values() # Define estimator q_generation = model.q_generation(model_params) nn = tf.estimator.Estimator(model_fn=q_generation.run, config = config, params=model_params) # Load training data train_sentence = np.load(FLAGS.train_sentence) # train_data train_question = np.load(FLAGS.train_question) # train_label # Data shuffling for training data permutation = np.random.permutation(len(train_sentence)) train_sentence = train_sentence[permutation] train_question = train_question[permutation] # Training input function for estimator train_input_fn = tf.estimator.inputs.numpy_input_fn( x={'enc_inputs': train_sentence, 'dec_inputs': train_question}, y=None, # useless value batch_size = model_params['batch_size'], num_epochs=FLAGS.num_epochs, shuffle=True) # Load evaluation data eval_sentence = np.load(FLAGS.eval_sentence) eval_question = np.load(FLAGS.eval_question) # Evaluation input function for estimator eval_input_fn = tf.estimator.inputs.numpy_input_fn( x = {'enc_inputs': eval_sentence, 'dec_inputs': eval_question}, y = None, batch_size = model_params['batch_size'], num_epochs=1, shuffle=False) # define experiment exp_nn = tf.contrib.learn.Experiment( estimator = nn, train_input_fn = train_input_fn, eval_input_fn = eval_input_fn, train_steps = None, min_eval_frequency = 100) # train and evaluate if FLAGS.mode == 'train': exp_nn.train_and_evaluate() elif FLAGS.mode == 'eval': exp_nn.evaluate(delay_secs = 0) else: # 'pred' # Load test data test_sentence = np.load(FLAGS.test_sentence) # prediction input function for estimator pred_input_fn = tf.estimator.inputs.numpy_input_fn( x = {'enc_inputs' : test_sentence}, y = None, batch_size = model_params['batch_size'], num_epochs = 1, shuffle = False) # prediction predict_results = nn.predict(input_fn = pred_input_fn) # write result(question) into file write_result(predict_results, FLAGS.dic_dir) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--mode', type = str, help = 'train, eval') parser.add_argument('--train_sentence', type = str, default= '', help = 'path to the training sentence.') parser.add_argument('--train_question', type = str, default = '', help = 'path to the training question.') parser.add_argument('--eval_sentence', type = str, default = '', help = 'path to the evaluation sentence. ') parser.add_argument('--eval_question', type = str, default = '', help = 'path to the evaluation question.') parser.add_argument('--test_sentence', type = str, default = '', help = 'path to the test sentence.') parser.add_argument('--dic_dir', type = str, help = 'path to the dictionary') parser.add_argument('--model_dir', type = str, help = 'path to save the model') parser.add_argument('--pred_dir', type = str, help = 'path to save the predictions') parser.add_argument('--params', type = str, help = 'parameter setting') parser.add_argument('--num_epochs', type = int, default = 10, help = 'training epoch size') FLAGS = parser.parse_args() tf.app.run(main)
import logging import blueforge.apis.telegram as tg import requests from blueforge.apis.facebook import Message, ImageAttachment, QuickReply, QuickReplyTextItem from chatbrick.util import get_items_from_xml, UNKNOWN_ERROR_MSG import time from blueforge.apis.facebook import TemplateAttachment, Element, GenericTemplate logger = logging.getLogger(__name__) BRICK_DEFAULT_IMAGE = 'https://www.chatbrick.io/api/static/brick/img_brick_10_001.png' class Emergency(object): def __init__(self, fb, brick_db): self.brick_db = brick_db self.fb = fb async def facebook(self, command): if command == 'get_started': # send_message = [ # Message( # attachment=ImageAttachment( # url=BRICK_DEFAULT_IMAGE # ) # ), # Message( # text='중앙응급의료센터에서 제공하는 "응급실검색 서비스"에요.' # ) # ] send_message = [ Message( attachment=TemplateAttachment( payload=GenericTemplate( elements=[ Element(image_url=BRICK_DEFAULT_IMAGE, title='응급실검색 서비스', subtitle='중앙응급의료센터에서 제공하는 "응급실검색 서비스"에요.') ] ) ) ) ] await self.fb.send_messages(send_message) await self.brick_db.save() elif command == 'final': input_data = await self.brick_db.get() state = input_data['store'][0]['value'] town = input_data['store'][1]['value'] res = requests.get( url='http://apis.data.go.kr/B552657/ErmctInfoInqireService/getEgytListInfoInqire?serviceKey=%s&Q0=%s&Q1=%s&ORD=NAME&pageNo=1&startPage=1&numOfRows=3&pageSize=3' % ( input_data['data']['api_key'], state, town)) items = get_items_from_xml(res) if type(items) is dict: if items.get('code', '00') == '99' or items.get('code', '00') == '30': send_message = [ Message( text='chatbrick 홈페이지에 올바르지 않은 API key를 입력했어요. 다시 한번 확인해주세요.', ) ] else: send_message = [ Message( text=UNKNOWN_ERROR_MSG ) ] else: if len(items) == 0: send_message = [ Message( text='조회된 결과가 없습니다.', quick_replies=QuickReply( quick_reply_items=[ QuickReplyTextItem( title='다른 지역검색', payload='brick|emergency|get_started' ) ] ) ) ] else: send_message = [ Message( text='조회된 결과에요' ), Message( text='{dutyName}\n{dutyEmclsName}\n{dutyAddr}\n{dutyTel1}\n{dutyTel3}'.format( **items[0]), quick_replies=QuickReply( quick_reply_items=[ QuickReplyTextItem( title='다른 지역검색', payload='brick|emergency|get_started' ) ] ) ) ] if len(items) > 1: for surplus_item in items[1:]: send_message.insert(1, Message( text='{dutyName}\n{dutyEmclsName}\n{dutyAddr}\n{dutyTel1}\n{dutyTel3}'.format( **surplus_item) ) ) await self.brick_db.delete() await self.fb.send_messages(send_message) return None async def telegram(self, command): if command == 'get_started': send_message = [ tg.SendPhoto( photo=BRICK_DEFAULT_IMAGE ), tg.SendMessage( text='중앙응급의료센터에서 제공하는 "응급실검색 서비스"에요.' ) ] await self.fb.send_messages(send_message) await self.brick_db.save() elif command == 'final': input_data = await self.brick_db.get() state = input_data['store'][0]['value'] town = input_data['store'][1]['value'] res = requests.get( url='http://apis.data.go.kr/B552657/ErmctInfoInqireService/getEgytListInfoInqire?serviceKey=%s&Q0=%s&Q1=%s&ORD=NAME&pageNo=1&startPage=1&numOfRows=3&pageSize=3' % ( input_data['data']['api_key'], state, town)) items = get_items_from_xml(res) if type(items) is dict: if items.get('code', '00') == '99' or items.get('code', '00') == '30': send_message = [ tg.SendMessage( text='chatbrick 홈페이지에 올바르지 않은 API key를 입력했어요. 다시 한번 확인해주세요.', ) ] else: send_message = [ tg.SendMessage( text=UNKNOWN_ERROR_MSG ) ] else: if len(items) == 0: send_message = [ tg.SendMessage( text='조회된 결과가 없습니다.' ) ] else: send_message = [ tg.SendMessage( text='조회된 결과에요.' ), tg.SendMessage( text='*{dutyName}*\n{dutyEmclsName}\n{dutyAddr}\n{dutyTel1}\n{dutyTel3}'.format( **items[0]), parse_mode='Markdown', reply_markup=tg.MarkUpContainer( inline_keyboard=[ [ tg.CallbackButton( text='다른 지역검색', callback_data='BRICK|emergency|get_started' ) ] ] ) ) ] if len(items) > 1: for surplus_item in items[1:]: send_message.insert(1, tg.SendMessage( text='*{dutyName}*\n{dutyEmclsName}\n{dutyAddr}\n{dutyTel1}\n{dutyTel3}'.format( **surplus_item), parse_mode='Markdown' ) ) await self.brick_db.delete() await self.fb.send_messages(send_message) return None
from .persistence_provider import IPersistenceProvider from .lock_provider import ILockProvider from .queue_provider import IQueueProvider, EVENT_QUEUE, WORKFLOW_QUEUE from .background_service import IBackgroundService from .execution_pointer_factory import IExecutionPointerFactory from .execution_result_processor import IExecutionResultProcessor from .workflow_host import IWorkflowHost from .workflow_registry import IWorkflowRegistry from .workflow_executor import IWorkflowExecutor
import textwrap import sys from datetime import datetime HEADER = """\ from zic.classes import * from datetime import * """ RAW_FILES = [ 'africa', 'antarctica', 'asia', 'australasia', 'europe', 'northamerica', 'southamerica' ] def lines(input): """Remove comments and empty lines""" for raw_line in input: line = raw_line.strip() if line and not line.startswith('#'): yield strip_comments(line) def strip_comments(line): quoted = False for i, c in enumerate(line): if c == '"': quoted = not quoted elif c == "#" and not quoted: return line[:i].strip() return line OBSERVANCE_TEMPLATE = """\ Observance(gmtoff={}, rules={}, format='{}', until={}), """ def compile(infile, outfile=None): with open(infile) as input: if outfile is None: compile_stream(input, sys.stdout) else: with open(outfile, 'w') as output: compile_stream(input, output) def compile_stream(input, output, header=HEADER): output.write(header) observances = state = None zones = {} rules = {} for line in lines(input): fields = line.split() if fields[0] == 'Zone': names = fields[1].split('/') z = zones for name in names: z = z.setdefault(name, {}) observances = z.setdefault('observances', []) state = 'Zone' del fields[:2] elif fields[0] == 'Rule': rules.setdefault(fields[1], []).append(fields[2:]) if state == 'Zone': gmtoff, zone_rules, format = fields[:3] until = format_until(fields[3:]) if until is None: state = None observances.append( format_observance(gmtoff, zone_rules, format, until)) print_rules(rules, file=output) print_zones(zones, file=output) RULE_TEMPLATE = ('Rule({}, {}, {}, {}, {},\n' ' at={},\n' ' save={}, letters={!r})') def format_rule(begin, end, type, in_month, on, at, save, letters): begin = int(begin) if end == 'only': end = begin + 1 elif end == 'max': end = 10000 else: end = int(end) + 1 if type == '-': type = None if letters == '-': letters = '' at = format_at(at) save = format_time(save) return RULE_TEMPLATE.format(begin, end, type, in_month, on, at, save, letters) TIME_FORMATS = ['%H', '%H:%M', "%H:%M:%S"] TIME_TYPES = { 'w': 'wall', 'u': 'utc', 'g': 'utc', 'z': 'utc', 's': 'std', } def format_time(t): if t == '-': return 'timedelta(0)' if t.startswith('24'): return 'timedelta(1)' n = t.count(':') fmt = TIME_FORMATS[n] t = datetime.strptime(t, fmt).time() args = ['hours={0.hour}', 'minutes={0.minute}', 'seconds={0.second)'] template = 'timedelta(%s)' % ', '.join(args[:n+1]) return template.format(t) def format_at(at): try: time_type = TIME_TYPES[at[-1]] except KeyError: time_type = 'wall' else: at = at[:-1] return '(%s, %r)' % (format_time(at), time_type) def print_rules(rules, file): prefix = ' ' * 8 for name, lines in rules.items(): file.write('class %s(Rules):\n' ' name ="%s"\n' ' rules = [\n' % (rules_name(name), name)) for args in lines: rule = format_rule(*args) file.write(textwrap.indent(rule, prefix) + ',\n') file.write(' ]\n\n') TIME_UNITS = 'hours', 'minutes', 'seconds' def format_until(until): n = len(until) if n == 0: return None if n == 1: return int(until[0]) return '(%s)' % ', '.join(repr(u) for u in until) def format_delta(delta): sign = '' if delta.startswith('-'): sign = '-' delta = delta[1:] args = ['%s=%s' % (unit, int(value)) for unit, value in zip(TIME_UNITS, delta.split(':'))] return '%stimedelta(%s)' % (sign, ', '.join(args)) def format_observance(gmtoff, rules, format, until): if rules == '-': rules = None elif ':' in rules: rules = "'%s'" % rules else: rules = rules_name(rules) return OBSERVANCE_TEMPLATE.format(format_delta(gmtoff), rules, format, until) def print_zones(zones, file, indent=0): for name, info in sorted(zones.items()): try: observances = info['observances'] except KeyError: file.write(indent * ' ' + 'class %s:\n' % name) print_zones(info, file, indent + 4) else: prefix = indent * ' ' file.write(prefix + 'class %s(Zone):\n' % zone_name(name)) file.write(prefix + ' name = %r\n' % name) file.write(prefix + ' observances = [\n') for observance in observances: file.write(textwrap.indent(observance, prefix + 8 * ' ')) file.write(prefix + '%s]\n' % (4 * ' ')) def rules_name(name): return name.replace('-', '_') zone_name = rules_name if __name__ == '__main__': if len(sys.argv) < 2: print("Usage: zic infile [outfile]") sys.exit(1) if sys.argv[1] == '--all': for f in RAW_FILES: compile('raw/' + f, f + '.py') else: compile(*sys.argv[1:])
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=g-wrong-blank-lines,global-variable-not-assigned,invalid-name,redefined-outer-name,unused-variable x = 123 def f1(): global x x = 'abc' f1() assert x == 'abc' x = 'foo' def f2(): global x class x(object): pass f2() assert isinstance(x, type) assert x.__name__ == 'x' x = 3.14 class C1(object): global x x = 'foo' assert x == 'foo' x = 42 def f3(): global x del x f3() try: print(x) raise AssertionError except NameError: pass x = 'foo' def f4(): x = 'bar' def g(): global x def h(): return x return h() return g() assert f4() == 'foo' x = 3.14 def f5(): x = 'foo' class C(object): global x y = x return C.y assert f5() == 3.14
import unittest import os import configparser from pathlib import Path from pyshex import ShExEvaluator from pyshex.utils.schema_loader import SchemaLoader from rdflib import Namespace from rdflib import Graph from rdflib.namespace import RDF class TestDdiemRDF(unittest.TestCase): RDF_FILE = "" BASE = Namespace("http://ddiem.phenomebrowser.net/schema#") DDIEM = Namespace("http://ddiem.phenomebrowser.net/") OBO = Namespace("http://purl.obolibrary.org/obo/") def test_rdf(self): config_dir = os.path.expanduser("~") + "/.config" config_file = config_dir + "/ddiem-pipeline.ini" config = configparser.RawConfigParser() config.read(config_file) data_dir = config["data"]["dir"] shex_file = data_dir + "/ddiem.shex" rdf = Graph() rdf.load(data_dir + "/" + self.RDF_FILE) shex = Path(shex_file).read_text() schema = SchemaLoader().loads(shex) total_failures = [] for combination_procedure in rdf.subjects(RDF.type, self.OBO.DDIEM_0000023): failures = self.evaluate(rdf, schema, combination_procedure, self.BASE.Combination_Procedure) if len(failures) > 0: total_failures = total_failures + failures for procedure in rdf.subjects(RDF.type, self.OBO.OGMS_0000112): if (procedure, RDF.type, self.OBO.DDIEM_0000023) in rdf: continue failures = self.evaluate(rdf, schema, procedure, self.BASE.Procedure) if len(failures) > 0: total_failures = total_failures + failures for protien in rdf.subjects(RDF.type, self.DDIEM.ProtienOrEnzyme): failures = self.evaluate(rdf, schema, protien, self.BASE.ProtienOrEnzyme) if len(failures) > 0: total_failures = total_failures + failures if len(total_failures) > 0: content = "" for reason in total_failures: content = content + reason + "\n" self.fail(f"FAIL: \n {content}") def evaluate(self, rdf, shex, resource, shex_type): results = ShExEvaluator().evaluate(rdf, shex, focus= resource, start=shex_type) failures = [] for item in results: if item.result: print("PASS:", str(item.focus), str(item.start)) else: failures.append(item.reason) return failures if __name__ == "__main__": TestDdiemRDF.RDF_FILE = "ddiem-data.2020-04-29.rdf" unittest.main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import json import pandas as pd import numpy as np from tqdm import tqdm from sklearn.decomposition import TruncatedSVD from sklearn.preprocessing import MinMaxScaler # Set train file names train_queries_file = "./dataset/train_queries.csv" train_plans_file = "./dataset/train_plans.csv" train_click_file= "./dataset/train_clicks.csv" profiles_file = "./dataset/profiles.csv" # Set test file names test_queries_file = "./dataset/test_queries.csv" test_plans_file = "./dataset/test_plans.csv" def load_prepare_data(): # Load training data train_queries = pd.read_csv(train_queries_file) train_plans = pd.read_csv(train_plans_file) train_click = pd.read_csv(train_click_file) # Load testing data test_queries = pd.read_csv(test_queries_file) test_plans = pd.read_csv(test_plans_file) # Prepare train data train_data = train_queries.merge(train_click, on='sid', how='left') train_data = train_data.merge(train_plans, on='sid', how='left') test_data = test_queries.merge(test_plans, on='sid', how='left') return train_data, test_data def preprocess_features(train_data, test_data): train_data = train_data.drop(['click_time'], axis=1) train_data['click_mode'] = train_data['click_mode'].fillna(0) test_data['click_mode'] = -1 # concat train and test sets all_data = pd.concat([train_data, test_data], axis=0, sort=True) all_data = all_data.drop(['plan_time'], axis=1) all_data = all_data.reset_index(drop=True) # Prepare OD features by spliting coordinates for each of them all_data['o_first'] = all_data['o'].apply(lambda od: float(od.split(',')[0])) all_data['o_second'] = all_data['o'].apply(lambda od: float(od.split(',')[1])) all_data['d_first'] = all_data['d'].apply(lambda od: float(od.split(',')[0])) all_data['d_second'] = all_data['d'].apply(lambda od: float(od.split(',')[1])) all_data = all_data.drop(['o', 'd'], axis=1) all_data['req_time'] = pd.to_datetime(all_data['req_time']) all_data['reqweekday'] = all_data['req_time'].dt.dayofweek all_data['reqhour'] = all_data['req_time'].dt.hour all_data = all_data.drop(['req_time'], axis=1) return all_data def generate_plan_features(all_data): n = all_data.shape[0] mode_list_feasible = np.zeros((n, 12)) max_distance, min_distance, mean_distance, std_distance = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_price, min_price, mean_price, std_price = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) max_eta, min_eta, mean_eta, std_eta = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) mode_min_distance, mode_max_distance, mode_min_price, mode_max_price, mode_min_eta, mode_max_eta, first_mode = np.zeros( (n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)), np.zeros((n,)) for i, plan in tqdm(enumerate(all_data['plans'].values)): try: plan_list = json.loads(plan) except: plan_list = [] if len(plan_list) == 0: mode_list_feasible[i, 0] = 1 first_mode[i] = 0 max_distance[i] = -1 min_distance[i] = -1 mean_distance[i] = -1 std_distance[i] = -1 max_price[i] = -1 min_price[i] = -1 mean_price[i] = -1 std_price[i] = -1 max_eta[i] = -1 min_eta[i] = -1 mean_eta[i] = -1 std_eta[i] = -1 mode_min_distance[i] = -1 mode_max_distance[i] = -1 mode_min_price[i] = -1 mode_max_price[i] = -1 mode_min_eta[i] = -1 mode_max_eta[i] = -1 else: distance_list = [] price_list = [] eta_list = [] mode_list = [] for tmp_dit in plan_list: distance_list.append(int(tmp_dit['distance'])) if tmp_dit['price'] == '': price_list.append(0) else: price_list.append(int(tmp_dit['price'])) eta_list.append(int(tmp_dit['eta'])) mode_list.append(int(tmp_dit['transport_mode'])) distance_list = np.array(distance_list) price_list = np.array(price_list) eta_list = np.array(eta_list) mode_list = np.array(mode_list, dtype='int') mode_list_feasible[i, mode_list] = 1 distance_sort_idx = np.argsort(distance_list) price_sort_idx = np.argsort(price_list) eta_sort_idx = np.argsort(eta_list) max_distance[i] = distance_list[distance_sort_idx[-1]] min_distance[i] = distance_list[distance_sort_idx[0]] mean_distance[i] = np.mean(distance_list) std_distance[i] = np.std(distance_list) max_price[i] = price_list[price_sort_idx[-1]] min_price[i] = price_list[price_sort_idx[0]] mean_price[i] = np.mean(price_list) std_price[i] = np.std(price_list) max_eta[i] = eta_list[eta_sort_idx[-1]] min_eta[i] = eta_list[eta_sort_idx[0]] mean_eta[i] = np.mean(eta_list) std_eta[i] = np.std(eta_list) first_mode[i] = mode_list[0] mode_max_distance[i] = mode_list[distance_sort_idx[-1]] mode_min_distance[i] = mode_list[distance_sort_idx[0]] mode_max_price[i] = mode_list[price_sort_idx[-1]] mode_min_price[i] = mode_list[price_sort_idx[0]] mode_max_eta[i] = mode_list[eta_sort_idx[-1]] mode_min_eta[i] = mode_list[eta_sort_idx[0]] feature_data = pd.DataFrame(mode_list_feasible) feature_data.columns = ['mode_feasible_{}'.format(i) for i in range(12)] feature_data['max_distance'] = max_distance feature_data['min_distance'] = min_distance feature_data['mean_distance'] = mean_distance feature_data['std_distance'] = std_distance feature_data['max_price'] = max_price feature_data['min_price'] = min_price feature_data['mean_price'] = mean_price feature_data['std_price'] = std_price feature_data['max_eta'] = max_eta feature_data['min_eta'] = min_eta feature_data['mean_eta'] = mean_eta feature_data['std_eta'] = std_eta feature_data['mode_max_distance'] = mode_max_distance feature_data['mode_min_distance'] = mode_min_distance feature_data['mode_max_price'] = mode_max_price feature_data['mode_min_price'] = mode_min_price feature_data['mode_max_eta'] = mode_max_eta feature_data['mode_min_eta'] = mode_min_eta feature_data['first_mode'] = first_mode all_data = pd.concat([all_data, feature_data], axis=1) all_data = all_data.drop(['plans'], axis=1) return all_data def read_profile_data(): profile_data = pd.read_csv(profiles_file) profile_na = np.zeros(67) profile_na[0] = -1 profile_na = pd.DataFrame(profile_na.reshape(1, -1)) profile_na.columns = profile_data.columns profile_data = profile_data.append(profile_na) return profile_data def generate_profile_features(data): profile_data = read_profile_data() x = profile_data.drop(['pid'], axis=1).values svd = TruncatedSVD(n_components=20, n_iter=20, random_state=42) svd_x = svd.fit_transform(x) svd_feas = pd.DataFrame(svd_x) svd_feas.columns = ['svd_attribute_{}'.format(i) for i in range(20)] svd_feas['pid'] = profile_data['pid'].values data['pid'] = data['pid'].fillna(-1) data = data.merge(svd_feas, on='pid', how='left') return data def split_train_test(data): train_data = data[data['click_mode'] != -1] test_data = data[data['click_mode'] == -1] submit = test_data[['sid']].copy() train_data = train_data.drop(['sid', 'pid'], axis=1) test_data = test_data.drop(['sid', 'pid'], axis=1) test_data = test_data.drop(['click_mode'], axis=1) train_y = train_data['click_mode'].values train_x = train_data.drop(['click_mode'], axis=1) return train_x, train_y, test_data, submit def save_data(trainX, y_train, testX, y_test): trainX.to_csv('preprocess_data/train.csv',index = False) testX.to_csv('preprocess_data/test.csv',index = False) y_train = pd.DataFrame({'click_mode': y_train}) y_train.to_csv('preprocess_data/train_label.csv',index = False) y_test.to_csv('preprocess_data/test_label.csv',index = False) def load_data(): trainX = pd.read_csv('preprocess_data/train.csv') testX = pd.read_csv('preprocess_data/test.csv') y_train = pd.read_csv('preprocess_data/train_label.csv') y_test = pd.read_csv('preprocess_data/test_label.csv') return trainX, y_train, testX, y_test def build_norm_context(trainX, testX): trainX = np.array(trainX) context_input = trainX[:,:37] user_input = trainX[:,37:] testX = np.array(testX) context_input_test = testX[:,:37] user_input_test = testX[:,37:] scaler = MinMaxScaler() scaler.fit(context_input) # apply transform normalized_train = scaler.transform(context_input) normalized_test = scaler.transform(context_input_test) normalized_train= pd.DataFrame(normalized_train) user_input= pd.DataFrame(user_input) merged_train = pd.concat([normalized_train, user_input], axis=1) normalized_test= pd.DataFrame(normalized_test) user_input_test= pd.DataFrame(user_input_test) merged_test = pd.concat([normalized_test, user_input_test], axis=1) return merged_train, merged_test def get_prepare_data(train_data, test_data): all_data = preprocess_features(train_data, test_data) all_data = generate_plan_features(all_data) all_data = generate_profile_features(all_data) train_x, train_y, test_x, submit = split_train_test(all_data) return train_x, train_y, test_x, submit if __name__ == '__main__': pass
from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import MaxPooling2D from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dropout from tensorflow.keras.layers import Dense class VGGNetSmall(): def __init__(self, input_shape, num_classes, final_activation): self.input_shape = input_shape self.num_classes = num_classes self.final_activation = final_activation def build(self): model = Sequential() model.add(Conv2D(filters=32, kernel_size=(3, 3), input_shape=self.input_shape, activation='relu')) model.add(Conv2D(filters=64, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu')) model.add(Conv2D(filters=128, kernel_size=(3, 3), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(units=1024, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(units=self.num_classes, activation=self.final_activation)) return model
def cigar_party(cigars, is_weekend): return (40<=cigars<=60 or (is_weekend and 40<=cigars)) def date_fashion(you, date): if you <= 2 or date <= 2: return 0 if you >= 8 or date >= 8: return 2 else: return 1 def squirrel_play(temp, is_summer): if 60<=temp<=90: return True if 60<=temp<=100 and is_summer: return True else: return False def alarm_clock(day, vacation): is_weekend = day == 0 or day == 6 if vacation: if is_weekend: return "off" else: return "10:00" else: if is_weekend: return "10:00" else: return "7:00" def love6(a, b): if a == 6 or b == 6: return True if abs(a-b)==6: return True if sum(a+b)==6: return True else: return False def in1to10(n, outside_mode): if not outside_mode: if 1<= n <= 10: return True else: return False if outside_mode and (n <= 1 or n>= 10): return True else: return False def near_ten(num): if 0 <= (num+2)%10 <= 4: return True else: return False
# coding=utf-8 from __future__ import unicode_literals from collections import OrderedDict from .. import Provider as AddressProvider class Provider(AddressProvider): street_suffixes = OrderedDict( (('utca', 0.75), ('út', 0.1), ('tér', 0.1), ('köz', 0.001), ('körút', 0.001), ('sétány', 0.001),)) street_name_formats = ( '{{frequent_street_name}} {{street_suffix}}', '{{real_city_name}}i {{street_suffix}}', '{{city_part}}{{city_suffix}}i {{street_suffix}}', '{{city_prefix}}{{city_part}}i {{street_suffix}}') # Currently deprecated. # secondary_address_formats = ("#.em #.", "##. em. #.") city_formats = ('{{city_prefix}}{{city_part}}{{city_suffix}}', '{{city_part}}{{city_suffix}}', '{{real_city_name}}') street_address_formats = ('{{street_name}} {{building_number}}',) address_formats = ("{{street_address}}\n{{postcode}} {{city}}",) frequent_street_names = ( 'Ady Endre', 'Dózsa György', 'Petőfi', 'Petőfi Sándor', 'Arany János', 'Béke', 'Szabadság', 'Kossuth', 'József Attila') # The 'real city name' generator includes a number of real cities of # Hungary that no generator could feasibly dispense. Please note that the # post code generator is, at this point, not capable of generating a # fitting post code. In Hungary, post codes are determined by the county of # the place (see the county generator), and for this reason, often there # will be a discrepancy. A patch is in the works - until then, use # Wikipedia to resolve postcode issues. # # This generator was created by collecting the 30 largest Hungarian places # by population, based on the Hungarian Gazetteer generated with effect as # of 01 January 2016 (http://www.ksh.hu/docs/hun/hnk/hnk_2016.pdf). real_city_names = ( 'Budapest', 'Debrecen', 'Szeged', 'Miskolc', 'Pécs', 'Győr', 'Nyíregyháza', 'Kecskemét', 'Székesfehérvár', 'Szombathely', 'Szolnok', 'Tatabánya', 'Érd', 'Kaposvár', 'Sopron', 'Veszprém', 'Békéscsaba', 'Zalaegerszeg', 'Eger', 'Nagykanizsa', 'Dunaújváros', 'Hódmezővásárhely', 'Dunakeszi', 'Szigetszentmiklós', 'Cegléd', 'Baja', 'Salgótarján', 'Ózd', 'Vác', 'Mosonmagyaróvár') city_prefs = ( 'kis', 'nagy', 'szent', 'duna', 'tisza', 'alsó', 'felső', 'belső', 'bakony', 'vác', 'mező', 'nyék', 'nyír', 'balaton', 'borsod', 'buda', 'hajdú', 'kun', 'moson', 'pilis', 'új', 'egyházas', 'dráva', 'magyar', 'mátra', 'somogy', 'lajos', 'bács', 'békés', 'puszta', 'orosz', 'rác', 'szerb', 'német', 'török') city_parts = ( 'híd', 'györgy', 'mindszent', 'kereszt', 'márton', 'hát', 'hetven', 'mellék', 'tamási', 'tapolca', 'fürdő', 'liget', 'szék', 'tót', '') city_suffixes = ( 'háza', 'németi', 'devecser', 'fa', 'nádasd', 'apáti', 'falu', 'falva', 'vég', 'vár', 'vára', 'várad', 'hida', 'kövesd', 'bánya', 'halas', 'berény', 'kőrös', 'haraszti', 'város') counties = ( 'Bács-Kiskun', 'Baranya', 'Békés', 'Borsod-Abaúj-Zemplén', 'Csongrád', 'Fejér', 'Győr-Moson-Sopron', 'Hajdú-Bihar', 'Heves', 'Jász-Nagykun-Szolnok', 'Komárom-Esztergom', 'Nógrád', 'Pest', 'Somogy', 'Szabolcs-Szatmár-Bereg', 'Tolna', 'Vas', 'Veszprém', 'Zala') countries = ( "Afganisztán", "Aland-szigetek", "Albánia", "Algéria", "Amerikai Szamoa", "Amerikai Virgin-szigetek", "Andorra", "Angola", "Anguilla", "Antarktisz", "Antigua és Barbuda", "Apostoli Szentszék", "Argentína", "Aruba", "Ausztrália", "Ausztria", "Amerikai Egyesült Államok Külső Szigetei", "Azerbajdzsán", "Bahama-szigetek", "Bahrein", "Banglades", "Barbados", "Fehéroroszország", "Belgium", "Belize", "Benin", "Bermuda", "Bhután", "Bissa -Guinea", "Bolívia", "Bosznia-Hercegovina", "Botswana", "Bouvet-sziget", "Brazília", "Brit Indiai-óceáni Terület", "Brit Virgin - szigetek", "Brunei", "Bulgária", "Burkina Faso", "Burundi", "Chile", "Ciprus", "Comore-szigetek", "Cook-szigetek", "Costa Rica", "Csád", "Csehország", "Dánia", "Dél-Afrika", "Dél-Korea", "Dominika", "Dominikai Köztársaság", "Dzsibuti", "Ecuador", "Egyenlítői-Guinea", "Egyesült Államok", "Egyesült Arab Emírségek", "Egyesült Királyság", "Egyiptom", "Elefántcsontpart", "Eritrea", "Északi Mariana-szigetek", "Észak-Korea", "Észtország", "Etiópia", "Falkland-szigetek", "Feröer szigetek", "Fidzsi-szigetek", "Finnország", "Francia Déli Területek", "Francia Guyana", "Francia Polinézia", "Franciaország", "Fülöp-szigetek", "Gabon", "Gambia", "Ghána", "Gibraltár", "Görögország", "Grenada", "Grönland", "Grúzia", "Guadeloupe", "Guam", "Guatemala", "Guinea", "Guyana", "Haiti", "Holland Antillák", "Hollandia", "Honduras", "Hongkong", "Horvátország", "India", "Indonézia", "Irak", "Irán", "Írország", "Izland", "Izrael", "Jamaica", "Japán", "Jemen", "Jordánia", "Kajmán-szigetek", "Kambodzsa", "Kamerun", "Kanada", "Karácsony-sziget", "Katar", "Kazahsztán", "Kelet-Timor", "Kenya", "Kína", "Kirgizisztán", "Kiribati", "Keeling-szigetek", "Kolumbia", "Kongó", "Kongói Demokratikus Köztársaság", "Közép-afrikai Köztársaság", "Kuba", "Kuvait", "Laosz", "Lengyelország", "Lesotho", "Lettország", "Libanon", "Libéria", "Líbia", "Liechtenstein", "Litvánia", "Luxemburg", "Macedónia", "Madagaszkár", "Magyarország", "Makaó", "Malajzia", "Malawi", "Maldív-szigetek", "Mali", "Málta", "Marokkó", "Marshall-szigetek", "Martinique", "Mauritánia", "Mauritius", "Mayotte", "Mexikó", "Mianmar", "Mikronézia", "Moldova", "Monaco", "Mongólia", "Montenegró", "Montserrat", "Mozambik", "Namíbia", "Nauru", "Németország", "Nepál", "Nicaragua", "Niger", "Nigéria", "Niue", "Norfolk-sziget", "Norvégia", "Nyugat-Szahara", "Olaszország", "Omán", "Oroszország", "Örményország", "Pakisztán", "Palau", "Panama", "Pápua", "Új-Guinea", "Paraguay", "Peru", "Pitcairn-szigetek", "Portugália", "Puerto Rico", "Réunion", "Románia", "Ruanda", "Saint Kitts és Nevis", "Saint Lucia", "Saint-Pierre és Miquelon", "Saint Vincent és Grenadine-szigetek", "Salamon-szigetek", "Salvador", "San Marino", "São Tomé és Príncipe", "Seychelle-szigetek", "Sierra Leone", "Spanyolország", "Srí Lanka", "Suriname", "Svájc", "Svalbard szigetek", "Svédország", "Szamoa", "Szaúdi-Arábia", "Szenegál", "Szent Ilona", "Szerbia", "Szingapúr", "Szíria", "Szlovákia", "Szlovénia", "Szomália", "Szudán", "Szváziföld", "Tádzsikisztán", "Tajvan", "Tanzánia", "Thaiföld", "Togo", "Tokelau-szigetek", "Tonga", "Törökország", "Trinidad és Tobago", "Tunézia", "Turks- és Caicos-szigetek", "Tuvalu", "Türkmenisztán", "Uganda", "Új-Kaledónia", "Új-Zéland", "Ukrajna", "Uruguay", "Üzbegisztán", "Vanuatu", "Venezuela", "Vietnam", "Wallis és Futuna", "Zambia", "Zimbabwe", "Zöld-foki szigetek",) def county(self): return self.random_element(self.counties) def street_address_with_county(self): return "{street_address}\n{county} megye\n{postcode} {city}".format( street_address=self.street_address(), county=self.county(), postcode=self.postcode(), city=self.city().capitalize()) def city_prefix(self): return self.random_element(self.city_prefs) def city_part(self): return self.random_element(self.city_parts) def real_city_name(self): return self.random_element(self.real_city_names) def frequent_street_name(self): return self.random_element(self.frequent_street_names) def postcode(self): return "H-{}{}{}{}".format( super( Provider, self).random_digit_not_null(), super( Provider, self).random_digit(), super( Provider, self).random_digit(), super( Provider, self).random_digit()) def street_name(self): return super(Provider, self).street_name().capitalize() def building_number(self): numeric_part = super(Provider, self).random_int(1, 250) return str(numeric_part) + "."
number = int(input("Enter number: ")) if (number >= 100 and number <= 200) or number == 0: pass else: print("invalid")
#!/usr/bin/env python3 """ File: isc_clause_acl.py Clause: acl Title: Clause statement for the Access Control List Description: Provides clause-specific aspect of ACL-related grammar in PyParsing engine for ISC-configuration style. Reason for separate file from isc_acl is to avoid the Python 'import' circular dependency of 'isc_aml'. """ from pyparsing import Group, ZeroOrMore, Literal, Word, alphanums, Keyword from bind9_parser.isc_utils import acl_name from bind9_parser.isc_aml import aml_nesting ############################################################# # ACL clause # The following ACL names are built-in: # # * any - Matches all hosts. # * none - Matches no hosts. # * localhost - Matches the IPv4 and IPv6 addresses of all # network interfaces on the system. When # addresses are added or removed, the # localhost ACL element is updated to reflect # the changes. # * localnets - Matches any host on an IPv4 or IPv6 network # for which the system has an interface. When # addresses are added or removed, the # localnets ACL element is updated to reflect # the changes. Some systems do not provide a # way to determine the prefix lengths of # local IPv6 addresses. In such a case, # localnets only matches the local IPv6 # addresses, just like localhost ############################################################# # acl acl-name { # [ address_match_nosemicolon | any | all ]; # }; clause_stmt_acl_standalone = ( Keyword('acl').suppress() - Group( # Best thing I've ever done. acl_name #(Word(alphanums + '_-'))('acl_name') - ( ZeroOrMore( Group( aml_nesting('') # peel away testing label here )('') # ('aml_series3') )('') )('aml_series') )('') )('acl') # Syntax: # acl a { b; }; acl c { d; e; f; }; acl g { ! h; ! { i; }; }; # clause_stmt_acl_series = ZeroOrMore( ( clause_stmt_acl_standalone ) )('acl')
from __future__ import division, print_function, absolute_import import numpy as np from ..math import gauss from .ideal import aideal, daideal_drho, d2aideal_drho from .association_aux import association_config from .polarGV import aij, bij, cij from .monomer_aux import I_lam, J_lam from .a1sB_monomer import x0lambda_eval from .ares import ares, dares_drho, d2ares_drho from .density_solver import density_topliss, density_newton from .psat_saft import psat from .tsat_saft import tsat from .critical_pure import get_critical from ..constants import kb, Na R = Na * kb def U_mie(r, c, eps, lambda_r, lambda_a): u = c * eps * (r**lambda_r - r**lambda_a) return u phi16 = np.array([[7.5365557, -37.60463, 71.745953, -46.83552, -2.467982, -0.50272, 8.0956883], [-359.44, 1825.6, -3168.0, 1884.2, -0.82376, -3.1935, 3.7090], [1550.9, -5070.1, 6534.6, -3288.7, -2.7171, 2.0883, 0], [-1.19932, 9.063632, -17.9482, 11.34027, 20.52142, -56.6377, 40.53683], [-1911.28, 21390.175, -51320.7, 37064.54, 1103.742, -3264.61, 2556.181], [9236.9, -129430., 357230., -315530., 1390.2, -4518.2, 4241.6]]) nfi = np.arange(0, 7) nfi_num = nfi[:4] nfi_den = nfi[4:] # Equation 20 def fi(alpha, i): phi = phi16[i-1] num = np.dot(phi[nfi_num], np.power(alpha, nfi_num)) den = 1 + np.dot(phi[nfi_den], np.power(alpha, nfi_den - 3)) return num/den class saftvrmie_pure(): ''' Pure component SAFT-VR-Mie EoS Object This object have implemeted methods for phase equilibrium as for interfacial properties calculations. Parameters ---------- pure : object pure component created with component class Attributes ---------- ms: number of chain segments sigma: size parameter of Mie potential [m] eps: well-depth of Mie potential [J] lambda_a: attractive exponent for Mie potential lambda_r: repulsive exponent for Mie potential ring: geometric parameter for ring molecules (see Langmuir 2017, 33, 11518-11529, Table I.) eABij: association energy [J] rcij: association range [m] rdij: association site position [m] sites: triplet of number of association sites [B, P, N] mupol: dipolar moment [Debye] npol: number of dipolar sites cii : influence factor for SGT [J m^5 / mol^2] Methods ------- cii_correlation : correlates the influence parameter of the fluid diameter : computes the diameter at given temperature temperature_aux : computes temperature dependent parameters of the fluid density : computes the density of the fluid psat : computes saturation pressure tsat : computes saturation temperature get_critical : attemps to compute the critical point of the fluid afcn: computes total Helmholtz energy dafcn_drho : computes total Helmholtz energy and its density derivative d2afcn_drho : computes total Helmholtz energy and it density derivatives pressure : computes the pressure dP_drho : computes pressure and its density derivative logfug : computes the fugacity coefficient a0ad : computes adimentional Helmholtz density energy muad : computes adimentional chemical potential dOm : computes adimentional Thermodynamic Grand Potential ci : computes influence parameters matrix for SGT sgt_adim : computes adimentional factors for SGT EntropyR : computes the residual entropy of the fluid EnthalpyR : computes the residual enthalpy of the fluid CvR : computes the residual isochoric heat capacity CpR : computes the residual heat capacity speed_sound : computes the speed of sound Auxiliar methods (computed using temperature_aux output list) ------------------------------------------------------------- density_aux : computes density afcn_aux : computes afcn dafcn_aux : computes dafcn_drho d2afcn_aux : computes d2afcn_drho pressure_aux : computes pressure dP_drho_aux : computes dP_drho logfug_aux : computes logfug a0ad_aux : compute a0ad muad_aux : computes muad dOm_aux : computes dOm ''' def __init__(self, pure): self.pure = pure self.Mw = pure.Mw self.ms = pure.ms self.sigma = pure.sigma self.eps = pure.eps self.ring = pure.ring self.lambda_a = pure.lambda_a self.lambda_r = pure.lambda_r self.lambda_ar = self.lambda_r + self.lambda_a dif_c = self.lambda_r - self.lambda_a expc = self.lambda_a/dif_c self.c = self.lambda_r/dif_c*(self.lambda_r/self.lambda_a)**expc self.c2 = self.c**2 alpha = self.c*(1/(self.lambda_a - 3) - 1/(self.lambda_r - 3)) self.alpha = alpha self.lambdas = self.lambda_a, self.lambda_r, self.lambda_ar self.sigma3 = pure.sigma**3 self.cte_a2m = 0.5*self.eps*self.c2 self.eps3 = self.eps**3 self.f1 = fi(alpha, 1) self.f2 = fi(alpha, 2) self.f3 = fi(alpha, 3) self.f4 = fi(alpha, 4) self.f5 = fi(alpha, 5) self.f6 = fi(alpha, 6) roots, weights = gauss(100) self.roots = roots self.weights = weights self.umie = U_mie(1./roots, self.c, self.eps, self.lambda_r, self.lambda_a) c_matrix = np.array([[0.81096, 1.7888, -37.578, 92.284], [1.0205, -19.341, 151.26, -463.5], [-1.9057, 22.845, -228.14, 973.92], [1.0885, -6.1962, 106.98, -677.64]]) lam_exp = np.array([0, -1, -2, -3]) self.cctes_lr = np.matmul(c_matrix, self.lambda_r**lam_exp) self.cctes_la = np.matmul(c_matrix, self.lambda_a**lam_exp) self.cctes_lar = np.matmul(c_matrix, self.lambda_ar**lam_exp) self.cctes_2lr = np.matmul(c_matrix, (2*self.lambda_r)**lam_exp) self.cctes_2la = np.matmul(c_matrix, (2*self.lambda_a)**lam_exp) self.cctes = (self.cctes_la, self.cctes_lr, self.cctes_2la, self.cctes_2lr, self.cctes_lar) # association configuration self.eABij = pure.eAB self.rcij = pure.rcAB self.rdij = pure.rdAB self.rcij2 = self.rcij**2 self.rcij3 = self.rcij**3 self.rdij2 = self.rdij**2 self.rdij3 = self.rdij**3 self.sites = pure.sites S, DIJ, indexabij, nsites, diagasso = association_config(self) assoc_bool = nsites != 0 self.assoc_bool = assoc_bool if assoc_bool: self.S = S self.DIJ = DIJ self.indexabij = indexabij self.nsites = nsites self.diagasso = diagasso # Polar Contribution self.mupol = pure.mupol self.npol = pure.npol polar_bool = self.npol != 0 self.polar_bool = polar_bool if polar_bool: mpol = self.ms * (self.ms < 2) + 2 * (self.ms >= 2) self.mpol = mpol aux1 = np.array([1, (mpol-1)/mpol, (mpol-1)/mpol*(mpol-2)/mpol]) self.anij = aij@aux1 self.bnij = bij@aux1 self.cnijk = cij@aux1 # 1 D = 3.33564e-30 C * m # 1 C^2 = 9e9 N m^2 cte = (3.33564e-30)**2 * (9e9) self.mupolad2 = self.mupol**2*cte/(self.ms*self.eps*self.sigma3) # For SGT Computations self.cii = np.array(pure.cii, ndmin=1) # computing critical point self.critical = False out = get_critical(self, None, None, method='hybr', full_output=True) if out.success: self.critical = True self.Tc = out.Tc self.Pc = out.Pc self.rhoc = out.rhoc def cii_correlation(self, overwrite=False): """ cii_corelation() Method that computes the influence parameter of coarsed-grained molecules AIChE Journal, 62, 5, 1781-1794 (2016) Eq. (23) Parameters ---------- overwrite : bool If true it will overwrite the actual influence parameter. Returns ------- cii : float correlated influence parameter [J m^5 / mol^2] """ cii = self.ms * (0.12008072630855947 + 2.2197907527439655 * self.alpha) cii *= np.sqrt(Na**2 * self.eps * self.sigma**5) cii **= 2 cii = np.array([cii], ndmin=1) if overwrite: self.cii = cii return cii def diameter(self, beta): """ d(beta) Method that computes the diameter of the fluid at given beta = 1 / kb T Journal of Chemical Physics, 139(15), 1–37 (2013) Eq. (7) Parameters ---------- beta : float Boltzmann's factor: beta = 1 / kb T [1/J] Returns ------- d : float computed diameter [m] """ integrer = np.exp(-beta * self.umie) d = self.sigma * (1. - np.dot(integrer, self.weights)) return d def eta_sigma(self, rho): """ eta_sigma(rho) Method that computes packing fraction of the fluid at diameter=sigma. Parameters ---------- rho : float molecular density [molecules/m^3] Returns ------- eta : float packing fraction [Adim] """ return self.ms * rho * np.pi * self.sigma3 / 6 def eta_bh(self, rho, dia3): """ eta_sigma(rho, d) Method that computes packing fraction of the fluid at given diameter. Parameters ---------- rho : float molecular density [molecules/m^3] d : float diameter [m] Returns ------- eta : float packing fraction [Adim] deta : float derivative of packing fraction respect to density [m^3] """ deta_drho = self.ms * np.pi * dia3 / 6 eta = deta_drho * rho return eta, deta_drho def temperature_aux(self, T): """ temperature_aux(T) Method that computes temperature dependent parameters. It returns the following list: temp_aux = [beta, dia, tetha, x0, x03, Fab, epsa] Journal of Chemical Physics, 139(15), 1–37 (2013) beta: Boltzmann's factor [1/J] dia: computed diameter [m] (Eq 7) tetha: exp(beta*eps)-1 [Adim] (Below Eq. 63) x0: sigma/dia [Adim] (Below Eq. 17) x03: x0^3 [Adim] Fab: association strength [Adim] (Below Eq. 77) epsa: eps / kb / T [Adim] Parameters ---------- T : float Absolute temperature [K] Returns ------- temp_aux : list list of computed parameters """ beta = 1 / (kb*T) beta2 = beta**2 beta3 = beta2*beta dia = self.diameter(beta) dia3 = dia**3 x0 = self.sigma/dia x03 = x0**3 # Parameters needed for evaluating the helmothlz contributions la, lr, lar = self.lambda_a, self.lambda_r, self.lambda_ar out = x0lambda_eval(x0, la, lr, lar) x0_a1, x0_a2, x0_a12, x0_a22 = out I_la = I_lam(x0, la) I_lr = I_lam(x0, lr) I_2la = I_lam(x0, 2*la) I_2lr = I_lam(x0, 2*lr) I_lar = I_lam(x0, lar) I_lambdas = (I_la, I_lr, I_2la, I_2lr, I_lar) J_la = J_lam(x0, la) J_lr = J_lam(x0, lr) J_2la = J_lam(x0, 2*la) J_2lr = J_lam(x0, 2*lr) J_lar = J_lam(x0, lar) J_lambdas = (J_la, J_lr, J_2la, J_2lr, J_lar) # for chain contribution beps = beta*self.eps beps2 = beps**2 tetha = np.exp(beps)-1 x0_vector = np.array([1, x0, x0**2, x0**3]) cte_g1s = 1/(2*np.pi*self.eps*self.ms*dia3) cte_g2s = cte_g1s / self.eps # For Association Fab = np.exp(beta * self.eABij) - 1 rc, rc2, rc3 = self.rcij, self.rcij2, self.rcij3 rd, rd2, rd3 = self.rdij, self.rdij2, self.rdij3 dia2 = dia**2 Kab = np.log((rc + 2*rd)/dia) Kab *= 6*rc3 + 18 * rc2*rd - 24 * rd3 aux1 = (rc + 2 * rd - dia) aux2 = (22*rd2 - 5*rc*rd - 7*rd*dia - 8*rc2 + rc*dia + dia2) Kab += aux1 * aux2 Kab /= (72*rd2 * self.sigma3) Kab *= 4 * np.pi * dia2 # For polar epsa = self.eps / T / kb temp_aux = [beta, beta2, beta3, dia, dia3, x0, x03, x0_a1, x0_a2, x0_a12, x0_a22, I_lambdas, J_lambdas, beps, beps2, tetha, x0_vector, cte_g1s, cte_g2s, Fab, Kab, epsa] return temp_aux def density_aux(self, temp_aux, P, state, rho0=None, Xass0=None): """ density_aux(T, temp_aux, state, rho0, Xass0) Method that computes the density of the fluid at T, P Parameters ---------- temp_aux : list temperature dependend parameters computed with temperature_aux(T) P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapor phase rho0 : float, optional initial guess to compute density root [mol/m^3] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- density: float density [mol/m^3] Xass : array computed fraction of nonbonded sites """ if rho0 is None: rho, Xass = density_topliss(state, temp_aux, P, Xass0, self) else: rho, Xass = density_newton(rho0, temp_aux, P, Xass0, self) return rho, Xass def density(self, T, P, state, rho0=None, Xass0=None): """ density(T, P, state) Method that computes the density of the fluid at T, P Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapor phase rho0 : float, optional initial guess to compute density root [mol/m^3] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- density: float density [mol/m^3] """ temp_aux = self.temperature_aux(T) rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) return rho def psat(self, T, P0=None, v0=[None, None], Xass0=[None, None], full_output=False): """ psat(T, P0) Method that computes saturation pressure at fixed T Parameters ---------- T : float absolute temperature [K] P0 : float, optional initial value to find saturation pressure [Pa] v0: list, optional initial guess for liquid and vapor phase, respectively [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites full_output: bool, optional whether to outputs or not all the calculation info. Returns ------- psat : float saturation pressure [Pa] vl : float liquid saturation volume [m3/mol] vv : float vapor saturation volume [m3/mol] """ out = psat(self, T, P0, v0, Xass0, full_output) return out def tsat(self, P, T0=None, Tbounds=None, v0=[None, None], Xass0=[None, None], full_output=False): """ tsat(P, Tbounds) Method that computes saturation temperature at given pressure. Parameters ---------- P : float absolute pressure [Pa] T0 : float, optional Temperature to start iterations [K] Tbounds : tuple, optional (Tmin, Tmax) Temperature interval to start iterations [K] v0: list, optional initial guess for liquid and vapor phase, respectively [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites full_output: bool, optional whether to outputs or not all the calculation info. Returns ------- tsat : float saturation temperature [K] vl : float liquid saturation volume [m^3/mol] vv : float vapor saturation volume [m^3/mol] """ out = tsat(self, P, T0, Tbounds, v0, Xass0, full_output) return out def get_critical(self, Tc0=None, rhoc0=None, method='hybr', full_output=False, overwrite=False): """ get_critical(Tc0, rhoc0, method) Method that solves the critical coordinate of the fluid. This metho requires good initial guesses for the critical temperature and density to converge. Second derivative of pressure against volume is estimated numerically. Parameters ---------- Tc0 : float, optional initial guess for critical temperature [K] rhoc : float, optional initial guess for critical density [mol/m^3] method : string, optional SciPy; root method to solve critical coordinate full_output: bool, optional whether to outputs or not all the calculation info overwrite: bool, optional wheter to overwrite already computed critical points Returns ------- Tc: float Critical temperature [K] Pc: float Critical pressure [Pa] rhoc: float Critical density [mol/m3] """ out = get_critical(self, Tc0, rhoc0, method, full_output) if overwrite: if full_output: if out.success: self.critical = True self.Tc = out.Tc self.Pc = out.Pc self.rhoc = out.rhoc else: Tc0 = out[0] rhoc0 = out[2] out2 = get_critical(self, Tc0, rhoc0, method, full_output=True) if out2.success: self.critical = True self.Tc = out2.Tc self.Pc = out2.Pc self.rhoc = out2.rhoc return out def ares(self, rho, T, Xass0=None): """ ares(x, rho, T, Xass0) Method that computes the residual Helmholtz free energy of the fluid. Parameters ---------- rho: float molecular density [molecules/m3] T: float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: float residual dimentionless Helmholtz free energy [Adim] """ temp_aux = self.temperature_aux(T) a, Xass = ares(self, rho, temp_aux, Xass0) return a, Xass def dares_drho(self, rho, T, Xass0=None): """ dares_drho(rho, T, Xass0) Method that computes the residual Helmholtz free energy of the fluid and its first density derivative. Parameters ---------- rho: float molecular density [molecules/m3] T: float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array_like residual dimentionless Helmholtz free energy [Adim, m^3] """ temp_aux = self.temperature_aux(T) a, Xass = dares_drho(self, rho, temp_aux, Xass0) return a, Xass def d2ares_drho(self, rho, T, Xass0=None): """ d2ares_drho(rho, T, Xass0) Method that computes the residual Helmholtz free energy of the fluid and its first and second density derivatives. Parameters ---------- rho: float molecular density [molecules/m3] T: float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array_like residual dimentionless Helmholtz free energy [Adim, m^3, m^6] """ temp_aux = self.temperature_aux(T) a, Xass = d2ares_drho(self, rho, temp_aux, Xass0) return a, Xass def afcn_aux(self, rho, temp_aux, Xass0=None): """ afcn_aux(rho, temp_aux, Xass0) Method that computes the total Helmholtz free energy of the fluid. Parameters ---------- rho: float molecular density [molecules/m3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: float Helmholtz free energy [J/mol] Xass : array computed fraction of nonbonded sites """ beta = temp_aux[0] a, Xass = ares(self, rho, temp_aux, Xass0) a += aideal(rho, beta) a *= (Na/beta) return a, Xass def dafcn_aux(self, rho, temp_aux, Xass0=None): """ dafcn_aux(rho, temp_aux, Xass0) Method that computes the total Helmholtz free energy of the fluid and its first density derivative. Parameters ---------- rho: float density [mol/m3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array Helmholtz free energy and its derivative [J/mol, J m^3/mol] Xass : array computed fraction of nonbonded sites """ beta = temp_aux[0] a, Xass = dares_drho(self, rho, temp_aux, Xass0) a += daideal_drho(rho, beta) a *= (Na/beta) return a, Xass def d2afcn_aux(self, rho, temp_aux, Xass0=None): """ d2afcn_aux(rho, temp_aux, Xass0) Method that computes the total Helmholtz free energy of the fluid and its first ans second density derivative. Parameters ---------- rho: float molecular density [molecules/m3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array Helmholtz free energy and its derivatives: a, da, d2a [J/mol, J m^3/mol^2, J m^6/mol^3] Xass : array computed fraction of nonbonded sites """ beta = temp_aux[0] a, Xass = d2ares_drho(self, rho, temp_aux, Xass0) a += d2aideal_drho(rho, beta) a *= (Na/beta) return a, Xass def afcn(self, rho, T, Xass0=None): """ afcn(rho, T, Xass0) Method that computes the total Helmholtz free energy of the fluid. Parameters ---------- rho: float molecular density [molecules/m3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: float Helmholtz free energy [J/mol] """ temp_aux = self.temperature_aux(T) a, Xass = self.afcn_aux(rho, temp_aux, Xass0) return a def dafcn_drho(self, rho, T, Xass0=None): """ dafcn_drho(rho, T, Xass0) Method that computes the total Helmholtz free energy of the fluid and its first density derivative. Parameters ---------- rho: float molecular density [molecules/m3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array Helmholtz free energy and its derivative [J/mol, J m^3/mol] """ temp_aux = self.temperature_aux(T) a, Xass = self.dafcn_aux(rho, temp_aux, Xass0) return a def d2afcn_drho(self, rho, T, Xass0=None): """ d2afcn_drho(rho, T, Xass0) Method that computes the total Helmholtz free energy of the fluid and its first ans second density derivative. Parameters ---------- rho: float molecular density [molecules/m3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a: array Helmholtz free energy and its derivatives: a, da, d2a [J/mol, J m^3/mol, J m^6/mol] """ temp_aux = self.temperature_aux(T) a, Xass = self.d2afcn_aux(rho, temp_aux, Xass0) return a def pressure_aux(self, rho, temp_aux, Xass0=None): """ pressure_aux(rho, temp_aux, Xass0) Method that computes the pressure at given density [mol/m3] and temperature [K] Parameters ---------- rho: float density [mol/m3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- P : float pressure [Pa] Xass : array computed fraction of nonbonded sites """ rhomolecular = Na * rho da, Xass = self.dafcn_aux(rhomolecular, temp_aux, Xass0) afcn, dafcn = da Psaft = rhomolecular**2 * dafcn / Na return Psaft, Xass def dP_drho_aux(self, rho, temp_aux, Xass0=None): """ dP_drho_aux(rho, temp_aux, Xass0) Method that computes the pressure and its density derivative at given density [mol/m3] and temperature [K] Parameters ---------- rho: float density [mol/m3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- P : float pressure [Pa] dP: float derivate of pressure respect density [Pa m^3 / mol] Xass : array computed fraction of nonbonded sites """ rhomolecular = Na * rho da, Xass = self.d2afcn_aux(rhomolecular, temp_aux, Xass0) afcn, dafcn, d2afcn = da Psaft = rhomolecular**2 * dafcn / Na dPsaft = 2 * rhomolecular * dafcn + rhomolecular**2 * d2afcn return Psaft, dPsaft, Xass def pressure(self, rho, T, Xass0=None): """ pressure(rho, T, Xass0) Method that computes the pressure at given density [mol/m3] and temperature [K] Parameters ---------- rho: float density [mol/m3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- P : float pressure [Pa] """ temp_aux = self.temperature_aux(T) Psaft, Xass = self.pressure_aux(rho, temp_aux, Xass0) return Psaft def dP_drho(self, rho, T, Xass0=None): """ dP_drho(rho, T, Xass0) Method that computes the pressure and its density derivative at given density [mol/m3] and temperature [K] Parameters ---------- rho: float density [mol/m3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- P : float pressure [Pa] dP: float derivate of pressure respect density [Pa m^3 / mol] """ temp_aux = self.temperature_aux(T) Psaft, dPsaft, Xass = self.dP_drho_aux(rho, temp_aux, Xass0) return Psaft, dPsaft def logfug_aux(self, temp_aux, P, state, v0=None, Xass0=None): """ logfug_aux(T, P, state, v0, Xass0) Method that computes the fugacity coefficient at given composition, temperature and pressure. Parameters ---------- temp_aux : list temperature dependend parameters computed with temperature_aux(T) P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- logfug : float fugacity coefficient v : float computed volume of the phase [m^3/mol] Xass : array computed fraction of nonbonded sites """ if v0 is None: rho, Xass = self.density_aux(temp_aux, P, state, None, Xass0) else: rho0 = 1./v0 rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) v = 1./rho rhomolecular = Na * rho ar, Xass = ares(self, rhomolecular, temp_aux, Xass) beta = temp_aux[0] RT = Na/beta Z = P * v / RT lnphi = ar + (Z - 1.) - np.log(Z) return lnphi, v, Xass def logfug(self, T, P, state, v0=None, Xass0=None): """ logfug(T, P, state, v0, Xass0) Method that computes the fugacity coefficient at given temperature and pressure. Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- logfug: float fugacity coefficient v: float computed volume of the phase [m^3/mol] """ temp_aux = self.temperature_aux(T) lnphi, v, Xass = self.logfug_aux(temp_aux, P, state, v0, Xass0) return lnphi, v def ci(self, T): ''' ci(T) Method that evaluates the polynomial for the influence parameters used in the SGT theory for surface tension calculations. Parameters ---------- T : float absolute temperature [K] Returns ------- ci: float influence parameters [J m5 mol-2] ''' return np.polyval(self.cii, T) def sgt_adim(self, T): ''' sgt_adim(T) Method that evaluates adimentional factor for temperature, pressure, density, tension and distance for interfacial properties computations with SGT. Parameters ---------- T : float absolute temperature [K] Returns ------- Tfactor : float factor to obtain dimentionless temperature (K -> K) Pfactor : float factor to obtain dimentionless pressure (Pa -> Pa/RT) rofactor : float factor to obtain dimentionless density (mol/m3 -> mol/m3) tenfactor : float factor to obtain dimentionless surface tension (mN/m) zfactor : float factor to obtain dimentionless distance (Amstrong -> m) ''' cii = self.ci(T) # computing temperature dependent cii Tfactor = 1. Pfactor = 1. rofactor = 1. tenfactor = np.sqrt(cii) * 1000 # To give tension in mN/m zfactor = 10**-10 return Tfactor, Pfactor, rofactor, tenfactor, zfactor def sgt_adim_fit(self, T): Tfactor = 1 Pfactor = 1 rofactor = 1 tenfactor = 1. * 1000 # To give tension in mN/m return Tfactor, Pfactor, rofactor, tenfactor def a0ad_aux(self, rho, temp_aux, Xass0=None): """ a0ad_aux(ro, temp_aux, Xass0) Method that computes the adimenstional Helmholtz density energy at given density and temperature. Parameters ---------- rho : float density [mol/m^3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a0ad: float Helmholtz density energy [J/m^3] Xass : array computed fraction of nonbonded sites """ rhomolecular = rho * Na a0, Xass = self.afcn_aux(rhomolecular, temp_aux, Xass0) a0 *= rho return a0, Xass def a0ad(self, rho, T, Xass0=None): """ a0ad(ro, T, Xass0) Method that computes the adimenstional Helmholtz density energy at given density and temperature. Parameters ---------- rho : float density [mol/m^3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- a0ad: float Helmholtz density energy [J/m^3] """ temp_aux = self.temperature_aux(T) a0, Xass = self.a0ad_aux(rho, temp_aux, Xass0) return a0 def muad_aux(self, rho, temp_aux, Xass0=None): """ muad_aux(rho, temp_aux, Xass0) Method that computes the adimenstional chemical potential at given density and temperature. Parameters ---------- rho : float density [mol/m^3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- muad: float chemical potential [J/mol] Xass : array computed fraction of nonbonded sites """ rhomolecular = rho * Na da, Xass = self.dafcn_aux(rhomolecular, temp_aux, Xass0) afcn, dafcn = da mu = afcn + rhomolecular * dafcn return mu, Xass def muad(self, rho, T, Xass0=None): """ muad(rho, T, Xass0) Method that computes the adimenstional chemical potential at given density and temperature. Parameters ---------- rho : float density [mol/m^3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- muad: float chemical potential [J/mol] """ temp_aux = self.temperature_aux(T) mu, Xass = self.muad_aux(rho, temp_aux, Xass0) return mu def dOm_aux(self, rho, temp_aux, mu, Psat, Xass0=None): """ dOm_aux(rho, temp_aux, mu, Psat, Xass0) Method that computes the adimenstional Thermodynamic Grand potential at given density and temperature. Parameters ---------- rho : float density [mol/m^3] temp_aux : list temperature dependend parameters computed with temperature_aux(T) mu : float adimentional chemical potential at equilibrium Psat : float adimentional pressure [Pa] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- GPT: float Thermodynamic Grand potential [Pa] Xass : array computed fraction of nonbonded sites """ a0, Xass = self.a0ad_aux(rho, temp_aux, Xass0) GPT = a0 - rho*mu + Psat return GPT, Xass def dOm(self, rho, T, mu, Psat, Xass0=None): """ dOm(rho, T, mu, Psat, Xass0) Method that computes the adimenstional Thermodynamic Grand potential at given density and temperature. Parameters ---------- rho : float density [mol/m^3] T : float absolute temperature [K] mu : float adimentional chemical potential at equilibrium Psat : float adimentional pressure [Pa] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites Returns ------- Out: float Thermodynamic Grand potential [Pa] """ temp_aux = self.temperature_aux(T) GPT, Xass = self.dOm_aux(rho, temp_aux, mu, Psat, Xass0) return GPT def EntropyR(self, T, P, state, v0=None, Xass0=None, T_step=0.1): """ EntropyR(T, P, state, v0, Xass0, T_step) Method that computes the residual entropy at given temperature and pressure. Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites T_step: float, optional Step to compute the numerical temperature derivates of Helmholtz free energy Returns ------- Sr : float residual entropy [J/mol K] """ temp_aux = self.temperature_aux(T) if v0 is None: rho, Xass = self.density_aux(temp_aux, P, state, None, Xass0) else: rho0 = 1./v0 rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) v = 1./rho rhomolecular = Na * rho a, Xass = ares(self, rhomolecular, temp_aux, Xass) beta = temp_aux[0] RT = Na/beta Z = P * v / RT h = T_step temp_aux1 = self.temperature_aux(T+h) temp_aux2 = self.temperature_aux(T+2*h) temp_aux_1 = self.temperature_aux(T-h) temp_aux_2 = self.temperature_aux(T-2*h) a1, Xass1 = ares(self, rhomolecular, temp_aux1, Xass) a2, Xass2 = ares(self, rhomolecular, temp_aux2, Xass) a_1, Xass_1 = ares(self, rhomolecular, temp_aux_1, Xass) a_2, Xass_2 = ares(self, rhomolecular, temp_aux_2, Xass) F = a dFdT = (a_2/12 - 2*a_1/3 + 2*a1/3 - a2/12)/h Sr_TVN = -T*dFdT - F # residual entropy (TVN) divided by R Sr_TPN = Sr_TVN + np.log(Z) # residual entropy (TPN) divided by R Sr_TPN *= R return Sr_TPN def EnthalpyR(self, T, P, state, v0=None, Xass0=None, T_step=0.1): """ EnthalpyR(T, P, state, v0, Xass0, T_step) Method that computes the residual enthalpy at given temperature and pressure. Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites T_step: float, optional Step to compute the numerical temperature derivates of Helmholtz free energy Returns ------- Hr : float residual enthalpy [J/mol] """ temp_aux = self.temperature_aux(T) if v0 is None: rho, Xass = self.density_aux(temp_aux, P, state, None, Xass0) else: rho0 = 1./v0 rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) v = 1./rho rhomolecular = Na * rho a, Xass = ares(self, rhomolecular, temp_aux, Xass) beta = temp_aux[0] RT = Na/beta Z = P * v / RT h = T_step temp_aux1 = self.temperature_aux(T+h) temp_aux2 = self.temperature_aux(T+2*h) temp_aux_1 = self.temperature_aux(T-h) temp_aux_2 = self.temperature_aux(T-2*h) a1, Xass1 = ares(self, rhomolecular, temp_aux1, Xass) a2, Xass2 = ares(self, rhomolecular, temp_aux2, Xass) a_1, Xass_1 = ares(self, rhomolecular, temp_aux_1, Xass) a_2, Xass_2 = ares(self, rhomolecular, temp_aux_2, Xass) F = a dFdT = (a_2/12 - 2*a_1/3 + 2*a1/3 - a2/12)/h Sr_TVN = -T*dFdT - F # residual entropy divided by R Hr_TPN = F + Sr_TVN + Z - 1. # residual entalphy divided by RT Hr_TPN *= RT return Hr_TPN def CvR(self, rho, T, Xass0=None, T_step=0.1): """ CvR(rho, T, Xass0, T_step) Method that computes the residual isochoric heat capacity at given density and temperature. Parameters ---------- rho : float density [mol/m^3] T : float absolute temperature [K] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites T_step: float, optional Step to compute temperature numerical derivates of Helmholtz free energy Returns ------- Cv: float isochoric heat capacity [J/mol K] """ temp_aux = self.temperature_aux(T) rhomolecular = Na * rho a, Xass = ares(self, rhomolecular, temp_aux, Xass0) h = T_step temp_aux1 = self.temperature_aux(T+h) temp_aux2 = self.temperature_aux(T+2*h) temp_aux_1 = self.temperature_aux(T-h) temp_aux_2 = self.temperature_aux(T-2*h) a1, Xass1 = ares(self, rhomolecular, temp_aux1, Xass) a2, Xass2 = ares(self, rhomolecular, temp_aux2, Xass) a_1, Xass_1 = ares(self, rhomolecular, temp_aux_1, Xass) a_2, Xass_2 = ares(self, rhomolecular, temp_aux_2, Xass) dFdT = (a_2/12 - 2*a_1/3 + 2*a1/3 - a2/12)/h d2FdT = (-a_2/12 + 4*a_1/3 - 5*a/2 + 4*a1/3 - a2/12)/h**2 Cvr_TVN = -T**2*d2FdT - 2*T*dFdT # residual isochoric heat capacity Cvr_TVN *= R return Cvr_TVN def CpR(self, T, P, state, v0=None, Xass0=None, T_step=0.1): """ Cpr(T, P, state, v0, Xass0, T_step) Method that computes the residual heat capacity at given temperature and pressure. Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites T_step: float, optional Step to compute the numerical temperature derivates of Helmholtz free energy Returns ------- Cp: float residual heat capacity [J/mol K] """ temp_aux = self.temperature_aux(T) if v0 is None: rho, Xass = self.density_aux(temp_aux, P, state, None, Xass0) else: rho0 = 1./v0 rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) rhomolecular = Na * rho d2a, Xass = d2ares_drho(self, rhomolecular, temp_aux, Xass) beta = temp_aux[0] RT = Na/beta h = T_step temp_aux1 = self.temperature_aux(T+h) temp_aux2 = self.temperature_aux(T+2*h) temp_aux_1 = self.temperature_aux(T-h) temp_aux_2 = self.temperature_aux(T-2*h) a1, Xass1 = dares_drho(self, rhomolecular, temp_aux1, Xass) a2, Xass2 = dares_drho(self, rhomolecular, temp_aux2, Xass) a_1, Xass_1 = dares_drho(self, rhomolecular, temp_aux_1, Xass) a_2, Xass_2 = dares_drho(self, rhomolecular, temp_aux_2, Xass) a = d2a[:2] da_drho = a[1] * Na d2a_drho = d2a[2] * Na**2 dFdT = (a_2/12 - 2*a_1/3 + 2*a1/3 - a2/12)/h dFdT[1] *= Na d2FdT = (-a_2/12 + 4*a_1/3 - 5*a/2 + 4*a1/3 - a2/12) / h**2 d2FdT[1] *= Na dP_dT = RT*(rho**2 * dFdT[1]) + P/T dP_drho = 2*rho*da_drho + 2. dP_drho += rho**2 * d2a_drho - 1. dP_drho *= RT dP_dV = -rho**2 * dP_drho # residual isochoric heat capacity Cvr_TVN = R * (-T**2*d2FdT[0] - 2*T*dFdT[0]) # residual heat capacity Cpr = Cvr_TVN - R - T*dP_dT**2/dP_dV return Cpr def speed_sound(self, T, P, state, v0=None, Xass0=None, T_step=0.1, CvId=3*R/2, CpId=5*R/2): """ speed_sound(T, P, state, v0, Xass0, T_step, CvId, CpId) Method that computes the speed of sound at given temperature and pressure. This calculation requires that the molar weight of the fluid has been set in the component function. By default the ideal gas Cv and Cp are set to 3R/2 and 5R/2, the user can supply better values if available. Parameters ---------- T : float absolute temperature [K] P : float pressure [Pa] state : string 'L' for liquid phase and 'V' for vapour phase v0: float, optional initial guess for volume root [m^3/mol] Xass0: array, optional Initial guess for the calculation of fraction of non-bonded sites T_step: float, optional Step to compute the numerical temperature derivates of Helmholtz free energy CvId: float, optional Ideal gas isochoric heat capacity, set to 3R/2 by default [J/mol K] CpId: float, optional Ideal gas heat capacity, set to 3R/2 by default [J/mol K] Returns ------- w: float speed of sound [m/s] """ temp_aux = self.temperature_aux(T) if v0 is None: rho, Xass = self.density_aux(temp_aux, P, state, None, Xass0) else: rho0 = 1./v0 rho, Xass = self.density_aux(temp_aux, P, state, rho0, Xass0) rhomolecular = Na * rho d2a, Xass = d2ares_drho(self, rhomolecular, temp_aux, Xass) beta = temp_aux[0] RT = Na/beta h = T_step temp_aux1 = self.temperature_aux(T+h) temp_aux2 = self.temperature_aux(T+2*h) temp_aux_1 = self.temperature_aux(T-h) temp_aux_2 = self.temperature_aux(T-2*h) a1, Xass1 = dares_drho(self, rhomolecular, temp_aux1, Xass) a2, Xass2 = dares_drho(self, rhomolecular, temp_aux2, Xass) a_1, Xass_1 = dares_drho(self, rhomolecular, temp_aux_1, Xass) a_2, Xass_2 = dares_drho(self, rhomolecular, temp_aux_2, Xass) a = d2a[:2] da_drho = a[1] * Na d2a_drho = d2a[2] * Na**2 dFdT = (a_2/12 - 2*a_1/3 + 2*a1/3 - a2/12)/h dFdT[1] *= Na d2FdT = (-a_2/12 + 4*a_1/3 - 5*a/2 + 4*a1/3 - a2/12) / h**2 d2FdT[1] *= Na dP_dT = RT*(rho**2 * dFdT[1]) + P/T dP_drho = 2*rho*da_drho + 2. dP_drho += rho**2 * d2a_drho - 1. dP_drho *= RT dP_dV = -rho**2 * dP_drho # residual isochoric heat capacity Cvr_TVN = R * (-T**2*d2FdT[0] - 2*T*dFdT[0]) # residual heat capacity Cpr = Cvr_TVN - R - T*dP_dT**2/dP_dV # speed of sound calculation Cp = CpId + Cpr Cv = CvId + Cvr_TVN betas = -rho * (Cv/Cp) / dP_dV w2 = 1000./(rho * betas * self.Mw) w = np.sqrt(w2) return w
# Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. class ActionRunner(object): def __init__(self, page, tab, page_test=None): self._page = page self._tab = tab self._page_test = page_test def RunAction(self, action): if not action.WillWaitAfterRun(): action.WillRunAction(self._page, self._tab) if self._page_test: self._page_test.WillRunAction(self._page, self._tab, action) try: action.RunActionAndMaybeWait(self._page, self._tab) finally: if self._page_test: self._page_test.DidRunAction(self._page, self._tab, action)
''' Highway layers and multitask modules Author: [email protected] ''' import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from allennlp.modules.elmo import Elmo, batch_to_ids import pickle test_outputs=False class PositionwiseNN(nn.Module): def __init__(self, idim, hdim, dropout=None): super(PositionwiseNN, self).__init__() self.w_0 = nn.Conv1d(idim, hdim, 1) self.w_1 = nn.Conv1d(hdim, hdim, 1) self.dropout = dropout def forward(self, x): output = F.relu(self.w_0(x.transpose(1, 2))) output = self.dropout(output) output = self.w_1(output) output = self.dropout(output).transpose(2, 1) return output class HighwayLayer(nn.Module): def __init__(self, dim, target_dim=None, dropout=None, father=None): super(HighwayLayer,self).__init__() if target_dim is None: target_dim = dim self.linear_transform=False else: self.target_dim=target_dim self.linear_transform=True self.transform = nn.Conv1d(dim,target_dim, 1) self.gate = nn.Conv1d(dim, target_dim, 1) if self.linear_transform: self.linear=nn.Conv1d(dim, target_dim, 1) self.dropout = dropout self.father = [father] def forward(self,x): tx=x.transpose(1,2) gate=F.sigmoid(self.gate(tx)) trans = F.relu(self.transform(tx)) if self.linear_transform: linear = self.linear(tx) else: linear = tx res=(gate * trans + linear).transpose(2,1) if self.dropout: res=self.dropout(res) if test_outputs: print('test_outputs=', test_outputs) gate_cpu=gate.cpu().detach().numpy() with open('output_gate_{}.pt'.format(self.father[0].name),'wb') as f: pickle.dump(gate_cpu,f) print('written:output_gate_{}.pt'.format(self.father[0].name)) return res class GateLayer(nn.Module): def __init__(self, dim, target_dim=None, dropout=None): super(GateLayer,self).__init__() if target_dim is None: target_dim = dim self.linear_transform=False else: self.target_dim=target_dim self.linear_transform=True self.gate = nn.Conv1d(dim, target_dim, 1) if self.linear_transform: self.linear=nn.Conv1d(dim, target_dim, 1) self.dropout=dropout def forward(self,x): tx=x.transpose(1,2) gate=F.sigmoid(self.gate(tx)) if self.linear_transform: linear = self.linear(tx) else: linear = tx res = (gate * linear).transpose(2,1) if self.dropout: res=self.dropout(res) return res class HighwayNetwork(nn.Module): def __init__(self, dim, target_dim=None, num_layers=1, size_format='shrink_first', dropout=None): super(HighwayNetwork, self).__init__() infered_dim = dim if target_dim is None else target_dim module_list=[] if size_format =='shrink_first': module_list.append(HighwayLayer(dim, target_dim, dropout=dropout, father=self)) for i in range(1, num_layers): module_list.append(HighwayLayer(infered_dim, None, dropout=dropout, father=self)) self.comp=nn.Sequential(*module_list) elif size_format=="keep_first": for i in range(0, num_layers-1): module_list.append(HighwayLayer(dim, None, dropout=dropout)) module_list.append(HighwayLayer(dim, target_dim, dropout=dropout)) self.comp=nn.Sequential(*module_list) self.dropout=dropout self.name=None def forward(self,x): return self.comp(x) class GateNetwork(nn.Module): def __init__(self, dim, target_dim=None, num_layers=1, size_format='shrink_first', dropout=None): super(GateNetwork, self).__init__() infered_dim = dim if target_dim is None else target_dim module_list=[] if size_format =='shrink_first': module_list.append(GateLayer(dim, target_dim, dropout=dropout)) for i in range(1, num_layers): module_list.append(GateLayer(infered_dim, None, dropout=dropout)) self.comp=nn.Sequential(*module_list) elif size_format=="keep_first": for i in range(0, num_layers-1): module_list.append(GateLayer(dim, None, dropout=dropout)) module_list.append(GateLayer(dim, target_dim, dropout=dropout)) self.comp=nn.Sequential(*module_list) def forward(self,x): return self.comp(x) class MultiDatasetWrapper(nn.Module): def __init__(self, opt): super(MultiDatasetWrapper, self).__init__() self.layer_set = {'-1' : None} self.opt = opt def add_layer(self, specific_name, layertype, *args, **kwargs): for dataset in self.opt['train_datasets']: id_layer = self.opt['dataset_configs'][dataset][specific_name] if id_layer not in self.layer_set: self.layer_set[id_layer] = layertype(*args, **kwargs) self.layer_set[id_layer].name=specific_name+'_'+dataset self.__setattr__(specific_name+'_'+dataset, self.layer_set[id_layer]) def forward(self, specific_name, dataset, *args): try: current_setup = self.__getattr__(specific_name+'_'+dataset) except: current_setup = self.__getattribute__(specific_name+'_'+dataset) if current_setup: return current_setup(*args) else: return args[0] class LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-4): super(LayerNorm, self).__init__() self.alpha = Parameter(torch.ones(1,1,hidden_size)) # gain g self.beta = Parameter(torch.zeros(1,1,hidden_size)) # bias b self.eps = eps def forward(self, x): mu = torch.mean(x, 2, keepdim=True).expand_as(x) sigma = torch.std(x, 2, keepdim=True).expand_as(x) return (x - mu) / (sigma + self.eps) * self.alpha.expand_as(x) + self.beta.expand_as(x) very_small_number=1e-40 class AttnSum(nn.Module): """Attention Sum Layer as in Kadlec et. al (2016): Optionally don't normalize output weights. """ def __init__(self, x_size, y_size, identity=False): super(AttnSum, self).__init__() if not identity: self.linear = nn.Linear(y_size, x_size) else: self.linear = None def forward(self, x, y, x_mask, candidate_aggre): """ x = batch * len * h1 y = batch * h2 x_ans_mask = batch * len candidate_aggre = batch * len * c """ x_ans_mask = candidate_aggre.sum(dim=2).ge(0).float() Wy = self.linear(y) if self.linear is not None else y # batch * h1 p = torch.bmm(x,Wy.unsqueeze(2)).squeeze(2) # batch * len p.data.masked_fill_(x_mask.data, -float('inf')) pm = F.softmax(p, dim=1) * x_ans_mask # batch * len unnormalized_probs=torch.bmm(pm.unsqueeze(1), candidate_aggre).squeeze(1) # batch * c normalized_probs=unnormalized_probs/unnormalized_probs.sum(dim=1, keepdim=True)+very_small_number if self.training: return torch.log(normalized_probs) else: return normalized_probs
""" Create a default folder and a file structure for a python package based on the name of the project. """ import os import sys import json import click def make_skeleton(project_name, template=False): """ Create a default structure for a python project. """ if template: # load the structure for the custom template loaded_template = load_template(template) else: # load the structure for the default template loaded_template = load_template() for folder in loaded_template.keys(): # make the folders makedir(folder, project_name) for files in loaded_template[folder]: # write the files makefile(files, project_name) def load_template(template=False): """ Load the default or custom template for the python package. """ if template: full_template = template + '.json' # template full name if os.path.exists(os.path.join(os.getcwd(), full_template)): # 1- search for a template in the same folder that do is excecuted path = os.path.join(os.getcwd(), full_template) else: # 2- search for the template in the default templates folder path = os.path.join( os.path.dirname(__file__), 'templates', full_template) else: path = os.path.join( os.path.dirname(__file__), 'templates', 'default_structure.json') try: with open(path, 'r') as template: return json.load(template) except FileNotFoundError: click.echo('Template file not found. Aborted!') sys.exit(1) def makedir(directory, project_name): """ Make the folder tree. """ # change the name of base and bin for the name of the project if (directory == 'base') or (directory == 'bin'): directory = project_name try: # write the folders os.makedirs(directory) os.chdir(directory) except FileExistsError: click.echo('Folder {} alredy exists. Aborted!'.format(directory)) sys.exit(1) def makefile(file, project_name): """ Write the files for the project_name """ # change the names of project_name.py and test_project.py if file == 'project.py': file = '{}'.format(project_name + '.py') elif file == 'test_project.py': file = '{}'.format('test_' + project_name + '.py') if file == '<--': # go back one directory os.chdir('..') else: try: with open(file, 'w') as f: f.write('') except Exception as e: click.echo('Error wrinting {}. Aborted!'.format(file)) sys.exit(1) if __name__ == '__main__': pass
from header_common import * from ID_animations import * from header_mission_templates import * from header_tableau_materials import * from header_items import * from module_constants import * #################################################################################################################### # Each tableau material contains the following fields: # 1) Tableau id (string): used for referencing tableaux in other files. The prefix tab_ is automatically added before each tableau-id. # 2) Tableau flags (int). See header_tableau_materials.py for a list of available flags # 3) Tableau sample material name (string). # 4) Tableau width (int). # 5) Tableau height (int). # 6) Tableau mesh min x (int): divided by 1000 and used when a mesh is auto-generated using the tableau material # 7) Tableau mesh min y (int): divided by 1000 and used when a mesh is auto-generated using the tableau material # 8) Tableau mesh max x (int): divided by 1000 and used when a mesh is auto-generated using the tableau material # 9) Tableau mesh max y (int): divided by 1000 and used when a mesh is auto-generated using the tableau material # 10) Operations block (list): A list of operations. See header_operations.py for reference. # The operations block is executed when the tableau is activated. # #################################################################################################################### #banner height = 200, width = 85 with wood, 75 without wood tableaus = [ ("game_character_sheet", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 266, 532, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_troop_character_color", ":script_param_1", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_troop_character_alpha_mask", ":script_param_1", 1, 0, 0), (position_set_z, 1, 300) ]), ("game_inventory_window", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 180, 270, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_troop_inventory_color", ":script_param_1", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_troop_inventory_alpha_mask", ":script_param_1", 1, 0, 0), (position_set_z, 1, 300) ]), ("game_profile_window", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 320, 480, [ (store_script_param, ":script_param_1", 1), (assign, ":var_2", ":script_param_1"), (val_mod, ":var_2", 2), (try_begin), (eq, ":var_2", 0), (assign, ":value", "trp_multiplayer_profile_troop_male"), (else_try), (assign, ":value", "trp_multiplayer_profile_troop_female"), (try_end), (troop_set_face_key_from_current_profile, ":value"), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_troop_profile_color", ":value", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_troop_profile_alpha_mask", ":value", 1, 0, 0) ]), ("game_party_window", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 300, 300, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_troop_party_color", ":script_param_1", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_troop_party_alpha_mask", ":script_param_1", 1, 0, 0), (position_set_z, 1, 300) ]), ("game_troop_label_banner", 0, "tableau_with_transparency", 256, 256, -128, 0, 128, 256, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 100, 100, 0, 100000), (init_position, 1), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 120, 0) ]), ("round_shield_1", 0, "sample_shield_round_1", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 125), (cur_tableau_add_mesh, ":script_param_1", 1, 120, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_round_1", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("round_shield_2", 0, "sample_shield_matte", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_round_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("round_shield_3", 0, "sample_shield_matte", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_round_3", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("round_shield_4", 0, "sample_shield_matte", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 125), (cur_tableau_add_mesh, ":script_param_1", 1, 123, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_round_4", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("round_shield_5", 0, "sample_shield_matte", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 125), (cur_tableau_add_mesh, ":script_param_1", 1, 122, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_round_5", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("small_round_shield_1", 0, "sample_shield_small_round_1", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 127, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_small_round_1", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("small_round_shield_2", 0, "sample_shield_small_round_2", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 127, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_small_round_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("small_round_shield_3", 0, "sample_shield_matte", 512, 256, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 127, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_small_round_3", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 100, 0, 100000) ]), ("kite_shield_1", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -60), (position_set_y, 1, 140), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_kite_1", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("kite_shield_2", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -57), (position_set_y, 1, 140), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_kite_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("kite_shield_3", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -57), (position_set_y, 1, 140), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_kite_3", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("kite_shield_4", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 160), (cur_tableau_add_mesh, ":script_param_1", 1, 120, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_kite_4", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heater_shield_1", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -60), (position_set_y, 1, 151), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_heater_1", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heater_shield_2", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 150), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_heater_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("pavise_shield_1", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -54), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 118, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_pavise_1", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("pavise_shield_2", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -54), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_shield_pavise_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heraldic_armor_a", 0, "sample_heraldic_armor_a", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (val_add, ":value", 1), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (try_begin), (eq, ":banner_background_color_array_value", 0), (assign, ":banner_background_color_array_value", 4285690482), (try_end), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_z, 1, 50), (position_set_x, 1, -25), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 103, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_heraldic_armor_a", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heraldic_armor_b", 0, "sample_heraldic_armor_b", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (val_add, ":value", 1), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (try_begin), (eq, ":banner_background_color_array_value", 0), (assign, ":banner_background_color_array_value", 4285690482), (try_end), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_z, 1, 10), (position_set_x, 1, -5), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 113, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_heraldic_armor_b", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heraldic_armor_c", 0, "sample_heraldic_armor_c", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (val_add, ":value", 1), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (try_begin), (eq, ":banner_background_color_array_value", 0), (assign, ":banner_background_color_array_value", 4285690482), (try_end), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_z, 1, 10), (position_set_x, 1, 0), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 115, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_heraldic_armor_c", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("heraldic_armor_d", 0, "sample_heraldic_armor_d", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (val_add, ":value", 1), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (try_begin), (eq, ":banner_background_color_array_value", 0), (assign, ":banner_background_color_array_value", 4285690482), (try_end), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_z, 1, 10), (position_set_x, 1, 0), (position_set_y, 1, 130), (cur_tableau_add_mesh, ":script_param_1", 1, 113, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_heraldic_armor_d", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("troop_note_alpha_mask", 0, "mat_troop_portrait_mask", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau", ":script_param_1") ]), ("troop_note_color", 0, "mat_troop_portrait_color", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4291214228), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau", ":script_param_1") ]), ("troop_character_alpha_mask", 0, "mat_troop_portrait_mask", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau_for_character", ":script_param_1") ]), ("troop_character_color", 0, "mat_troop_portrait_color", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4292923313), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_character", ":script_param_1") ]), ("troop_inventory_alpha_mask", 0, "mat_troop_portrait_mask", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau_for_inventory", ":script_param_1") ]), ("troop_inventory_color", 0, "mat_troop_portrait_color", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4285159482), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_inventory", ":script_param_1") ]), ("troop_profile_alpha_mask", 0, "mat_troop_portrait_mask", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau_for_profile", ":script_param_1") ]), ("troop_profile_color", 0, "mat_troop_portrait_color", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4294567848), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_profile", ":script_param_1") ]), ("troop_party_alpha_mask", 0, "mat_troop_portrait_mask", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau_for_party", ":script_param_1") ]), ("troop_party_color", 0, "mat_troop_portrait_color", 1024, 1024, 0, 0, 400, 400, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4290681970), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_party", ":script_param_1") ]), ("troop_note_mesh", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 350, 350, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_troop_note_color", ":script_param_1", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_troop_note_alpha_mask", ":script_param_1", 1, 0, 0), (position_set_z, 1, 300), (cur_tableau_add_mesh, "mesh_portrait_blend_out", 1, 0, 0) ]), ("center_note_mesh", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 200, 200, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (init_position, 8), (position_set_x, 8, -210), (position_set_y, 8, 200), (position_set_z, 8, 300), (cur_tableau_add_point_light, 8, 550, 500, 450), (cur_tableau_set_camera_parameters, 1, 10, 10, 10, 10000), (init_position, 1), (position_set_z, 1, 0), (position_set_z, 1, -500), (init_position, 1), (position_set_y, 1, -100), (position_set_x, 1, -100), (position_set_z, 1, 100), (position_rotate_z, 1, 200), (party_get_icon, ":icon_script_param_1", ":script_param_1"), (try_begin), (ge, ":icon_script_param_1", 0), (cur_tableau_add_map_icon, ":icon_script_param_1", 1, 0), (try_end), (init_position, 5), (position_set_x, 5, -90), (position_set_z, 5, 500), (position_set_y, 5, 480), (position_rotate_x, 5, -90), (position_rotate_z, 5, 180), (position_rotate_x, 5, -35), (cur_tableau_set_camera_position, 5) ]), ("faction_note_mesh_for_menu", 0, "pic_arms_swadian", 1024, 512, 0, 0, 450, 225, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4294967295), (set_fixed_point_multiplier, 100), (try_begin), (is_between, ":script_param_1", "fac_kingdom_1", "fac_kingdoms_end"), (store_add, ":value", "mesh_pic_arms_swadian", ":script_param_1"), (val_sub, ":value", "fac_kingdom_1"), (init_position, 1), (position_set_y, 1, -5), (position_set_x, 1, -45), (cur_tableau_add_mesh, ":value", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 160, 80, 0, 100000), (try_end) ]), ("faction_note_mesh", 0, "pic_arms_swadian", 1024, 512, 0, 0, 500, 250, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4294967295), (set_fixed_point_multiplier, 100), (try_begin), (is_between, ":script_param_1", "fac_kingdom_1", "fac_kingdoms_end"), (store_add, ":value", "mesh_pic_arms_swadian", ":script_param_1"), (val_sub, ":value", "fac_kingdom_1"), (init_position, 1), (position_set_y, 1, -5), (cur_tableau_add_mesh, ":value", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 100, 50, 0, 100000), (try_end) ]), ("faction_note_mesh_banner", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 200, 200, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (try_begin), (faction_get_slot, ":script_param_1_1", ":script_param_1", 1), (ge, ":script_param_1_1", 0), (neq, ":script_param_1_1", 1), (troop_get_slot, ":script_param_1_1_1", ":script_param_1_1", 1), (store_add, ":value", "spr_banner_k21", 1), (is_between, ":script_param_1_1_1", "spr_banner_a", ":value"), (val_sub, ":script_param_1_1_1", "spr_banner_a"), (store_add, ":value_2", ":script_param_1_1_1", "mesh_banner_a01"), (init_position, 1), (position_set_y, 1, 100), (cur_tableau_add_mesh, ":value_2", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 210, 210, 0, 100000), (try_end) ]), ("2_factions_mesh", 0, "tableau_with_transparency", 1024, 1024, 0, 0, 200, 200, [ (store_script_param, ":script_param_1", 1), (store_mod, ":value", ":script_param_1", 128), (val_div, ":script_param_1", 128), (val_add, ":script_param_1", "fac_kingdom_1"), (val_add, ":value", "fac_kingdom_1"), (set_fixed_point_multiplier, 100), (try_begin), (faction_get_slot, ":script_param_1_1", ":script_param_1", 1), (ge, ":script_param_1_1", 0), (neq, ":script_param_1_1", 1), (troop_get_slot, ":script_param_1_1_1", ":script_param_1_1", 1), (store_add, ":value_2", "spr_banner_k21", 1), (is_between, ":script_param_1_1_1", "spr_banner_a", ":value_2"), (val_sub, ":script_param_1_1_1", "spr_banner_a"), (store_add, ":value_3", ":script_param_1_1_1", "mesh_banner_a01"), (init_position, 1), (position_set_x, 1, -50), (position_set_y, 1, 100), (cur_tableau_add_mesh, ":value_3", 1, 0, 0), (try_end), (try_begin), (faction_get_slot, ":script_param_1_1", ":value", 1), (ge, ":script_param_1_1", 0), (neq, ":script_param_1_1", 1), (troop_get_slot, ":script_param_1_1_1", ":script_param_1_1", 1), (store_add, ":value_2", "spr_banner_k21", 1), (is_between, ":script_param_1_1_1", "spr_banner_a", ":value_2"), (val_sub, ":script_param_1_1_1", "spr_banner_a"), (store_add, ":value_3", ":script_param_1_1_1", "mesh_banner_a01"), (init_position, 1), (position_set_x, 1, 50), (position_set_y, 1, 100), (cur_tableau_add_mesh, ":value_3", 1, 0, 0), (try_end), (cur_tableau_set_camera_parameters, 0, 210, 210, 0, 100000) ]), ("color_picker", 0, "missiles", 32, 32, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (cur_tableau_add_mesh, "mesh_color_picker", 1, 0, 0), (position_move_z, 1, 1), (position_move_x, 1, -2), (position_move_y, 1, -2), (cur_tableau_add_mesh_with_vertex_color, "mesh_white_plane", 1, 200, 0, ":script_param_1"), (cur_tableau_set_camera_parameters, 0, 20, 20, 0, 100000) ]), ("custom_banner_square_no_mesh", 0, "missiles", 512, 512, 0, 0, 300, 300, []), ("custom_banner_default", 0, "missiles", 512, 256, 0, 0, 0, 0, []), ("custom_banner_tall", 0, "missiles", 512, 256, 0, 0, 0, 0, []), ("custom_banner_square", 0, "missiles", 256, 256, 0, 0, 0, 0, []), ("custom_banner_short", 0, "missiles", 256, 512, 0, 0, 0, 0, []), ("background_selection", 0, "missiles", 512, 512, 0, 0, 100, 100, []), ("positioning_selection", 0, "missiles", 512, 512, 0, 0, 100, 100, []), ("retired_troop_alpha_mask", 0, "mat_troop_portrait_mask", 2048, 2048, 0, 0, 600, 600, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 8947848), (cur_tableau_set_ambient_light, 10, 11, 15), (cur_tableau_render_as_alpha_mask), (call_script, "script_add_troop_to_cur_tableau_for_retirement", ":script_param_1") ]), ("retired_troop_color", 0, "mat_troop_portrait_color", 2048, 2048, 0, 0, 600, 600, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4293383065), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_retirement", ":script_param_1") ]), ("retirement_troop", 0, "tableau_with_transparency", 2048, 2048, 0, 0, 600, 600, [ (store_script_param, ":script_param_1", 1), (cur_tableau_set_background_color, 4287137928), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (init_position, 1), (position_set_z, 1, 100), (position_set_x, 1, -20), (position_set_y, 1, -20), (cur_tableau_add_tableau_mesh, "tableau_retired_troop_color", ":script_param_1", 1, 0, 0), (position_set_z, 1, 200), (cur_tableau_add_tableau_mesh, "tableau_retired_troop_alpha_mask", ":script_param_1", 1, 0, 0) ]), ("flag_itm", 0, "sample_shield_matte", 512, 512, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (init_position, 1), (position_set_x, 1, -54), (position_set_y, 1, 120), (cur_tableau_add_mesh, ":script_param_1", 1, 116, 0), (init_position, 1), (position_set_z, 1, 10), (cur_tableau_add_mesh, "mesh_tableau_mesh_flag", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("fuck_troop", 0, "tableau_with_transparency", 8192, 8192, 0, 0, 600, 600, [ (cur_tableau_set_background_color, 16777215), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (cur_tableau_set_background_color, 16777215), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_fuck") ]), ("early_transitional_heraldic", 0, "sample_early_transitional_heraldic_banner", 1024, 1024, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (val_add, ":value", 1), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (try_begin), (eq, ":banner_background_color_array_value", 0), (assign, ":banner_background_color_array_value", 4285690482), (try_end), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_x, 1, 17), (position_set_y, 1, 150), (cur_tableau_add_mesh, ":script_param_1", 1, 90, 0), (init_position, 1), (position_set_z, 1, 30), (cur_tableau_add_mesh, "mesh_tableau_mesh_early_transitional_heraldic_banner", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("samurai_heraldic_flag", 0, "sample_samurai_nobori_heraldic", 1024, 1024, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_x, 1, -85), (position_set_y, 1, -22), (cur_tableau_add_mesh, ":script_param_1", 1, 43, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_samurai_heraldic_flag", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("banner_spear", 0, "sample_samurai_weapons", 1024, 1024, 0, 0, 0, 0, [ (store_script_param, ":script_param_1", 1), (set_fixed_point_multiplier, 100), (store_sub, ":value", ":script_param_1", "mesh_arms_a01"), (troop_get_slot, ":banner_background_color_array_value", "trp_banner_background_color_array", ":value"), (cur_tableau_set_background_color, ":banner_background_color_array_value"), (init_position, 1), (cur_tableau_add_mesh_with_vertex_color, "mesh_heraldic_armor_bg", 1, 200, 100, ":banner_background_color_array_value"), (init_position, 1), (position_set_x, 1, -33), (position_set_y, 1, -20), (cur_tableau_add_mesh, ":script_param_1", 1, 43, 0), (init_position, 1), (position_set_z, 1, 100), (cur_tableau_add_mesh, "mesh_tableau_mesh_banner_spear", 1, 0, 0), (cur_tableau_set_camera_parameters, 0, 200, 200, 0, 100000) ]), ("blank_stack", 0, "tableau_with_transparency", 8192, 8192, 0, 0, 600, 600, [ (cur_tableau_set_background_color, 16777215), (cur_tableau_set_ambient_light, 10, 11, 15), (set_fixed_point_multiplier, 100), (cur_tableau_set_camera_parameters, 0, 40, 40, 0, 100000), (cur_tableau_set_background_color, 16777215), (cur_tableau_set_ambient_light, 10, 11, 15), (call_script, "script_add_troop_to_cur_tableau_for_fuck") ]), ]