content
stringlengths
5
1.05M
#========================================================================== # # Copyright Insight Software Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0.txt # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # #==========================================================================*/ # # Test basic properties of modified times # import itk #image and transform are in the same module, but filters are in a different module. imType = itk.Image[itk.F, 2] imTypeB = itk.Image[itk.UC, 2] im = imType.New() transType = itk.Transform[itk.D, 3] trans = transType.New() filtType = itk.AndImageFilter[imTypeB, imTypeB, imTypeB] filt = filtType.New() metricType = itk.ImageToImageMetricv4[imType, imType] met = metricType.New() #We modify them in the order image, transform, filter for _ in range(3000): im.Modified() trans.Modified() met.Modified() filt.Modified() #and their Modified times should respect that order. assert im.GetMTime() < trans.GetMTime() assert trans.GetMTime() < met.GetMTime() assert met.GetMTime() < filt.GetMTime()
import h5py import numpy as np import json from collections import defaultdict import matplotlib as mpl import matplotlib.pyplot as plt from scipy import stats import matplotlib.pylab as pylab import seaborn as sns from scipy import stats import dill as pkl rel_cate_recall = pkl.load(open('./output/rel_cat_recall.npz','rb')) rel_cate_recall_vis = rel_cate_recall[100] del rel_cate_recall_vis['all_rel_cates'] rel_cate_dist = np.load(open('./output/rel_dis.npy','rb')) rel_cate_dist= rel_cate_dist[1:] rel_dict = json.load(open('/mnt/data1/guoyuyu/datasets/visual_genome/data/genome/VG-SGG-dicts.json','r')) ind_rel = rel_dict['idx_to_predicate'] rel_ind = rel_dict['predicate_to_idx'] def dict2list(dic:dict,rel_cate_dist): keys = dic.keys() vals = dic.values() lst = [(key, val, dist) for key, val, dist in zip(keys, vals, rel_cate_dist)] return lst def draw_hist_from_dic(dict, name='None',step=5): fig_length = len(dict) params = { 'axes.labelsize': '25', 'xtick.labelsize': '45', 'ytick.labelsize': '20', 'lines.linewidth': '8', 'legend.fontsize': '25', 'figure.figsize': str(fig_length)+', 50' # set figure size } pylab.rcParams.update(params) x = np.arange(len(dict)) x_labels = [] y_values = [] plt.title(name) for i in dict: y_values.append(i[2]) x_labels.append(i[0]) plt.bar(x, y_values) plt.xticks(x, x_labels, rotation='vertical', weight=200) plt.savefig('./misc/'+name+'.pdf', dpi=200) #plt.legend(loc='best') plt.close('all') return 0 rel_dis_dic = sorted(dict2list(rel_cate_recall_vis,rel_cate_dist), key=lambda x:x[2], reverse=True) draw_hist_from_dic(rel_dis_dic,'dist_of_labels')
from django.shortcuts import render from . models import * # Create your views here. def home(request): context = {} return render(request, "myprofile/home.html", context) def about(request): about = About.objects.all() context = { 'about': about } return render(request, "myprofile/about.html", context) def work(request): projects = Work.objects.all() context = { 'projects': projects } return render(request, "myprofile/work.html", context) def contact(request): email = request.POST.get('email', False) contact_us = Contact() contact_us.email = email contact_us.save() context = {} return render(request, "myprofile/contact.html", context)
import uuid import graphql import github class HTTPClient(graphql.client.HTTPClient): __slots__ = ("token", "user_agent", "uuid") def __init__(self, token, session, user_agent): super().__init__(session=session, url="https://api.github.com/graphql") self.uuid = str(uuid.uuid4()) self.token = f"bearer {token}" self.user_agent = user_agent or f"ShineyDev/github@{github.version}:{self.uuid}" async def request(self, document_, operation_, variables_, **kwargs): headers = kwargs.pop("headers", None) or dict() headers["Authorization"] = self.token headers["User-Agent"] = self.user_agent try: data = await super().request(document_, operation_, variables_, headers=headers, **kwargs) except github.ClientError: raise except graphql.client.ClientResponseHTTPError as e: try: exc_type = github.errors._response_error_map[e.response.status] except KeyError: exc_type = github.ClientResponseHTTPError raise exc_type(e.message, e.response, e.data) from e except graphql.client.ClientResponseGraphQLError as e: try: exc_type = github.errors._response_error_map[e.data["errors"][0]["type"]] except KeyError: exc_type = github.ClientResponseGraphQLError raise exc_type(e.message, e.response, e.data) from e except graphql.client.ClientResponseError as e: raise github.ClientResponseError(e.message) from e except graphql.client.ClientError as e: raise github.ClientError(e.message) from e else: return data async def _fetch(self, document_, *path, _data_validate=None, **kwargs): data = await self.request(document_, None, kwargs, _data_validate=_data_validate) return github.utils._follow(data, path) async def fetch_query_all_codes_of_conduct(self, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.CodeOfConduct, fields) query = "{codesOfConduct{%s}}" % ",".join(fields) path = ("codesOfConduct",) def validate(response, data): value = github.utils._follow(data["data"], path) if any([c.get("body", False) is None for c in value]): # NOTE: (body=null) 1240368 raise github.ClientResponseGraphQLInternalError("The GraphQL service failed to fetch a code of conduct body.", response, data) return await self._fetch(query, *path, _data_validate=validate) async def fetch_query_all_licenses(self, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.License, fields) query = "{licenses{%s}}" % ",".join(fields) path = ("licenses",) def validate(response, data): value = github.utils._follow(data["data"], path) if any([l.get("body", False) == "" for l in value]): # NOTE: (body="") 1240368 raise github.ClientResponseGraphQLInternalError("The GraphQL service failed to fetch a license body.", response, data) return await self._fetch(query, *path, _data_validate=validate) async def fetch_query_code_of_conduct(self, key, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.CodeOfConduct, fields) query = "query($key:String!){codeOfConduct(key:$key){%s}}" % ",".join(fields) path = ("codeOfConduct",) def validate(response, data): value = github.utils._follow(data["data"], path) if value is None or key == "other": # NOTE: (value=null) 1143102 # NOTE: (key="other") body=null raise github.ClientResponseGraphQLNotFoundError(f"Could not resolve to a code of conduct with the key '{key}'.", response, data) if value.get("body", False) is None: # NOTE: (body=null) 1240368 raise github.ClientResponseGraphQLInternalError("The GraphQL service failed to fetch the code of conduct body.", response, data) value = await self._fetch(query, *path, key=key, _data_validate=validate) if "key" not in value.keys(): value["key"] = key return value async def fetch_query_license(self, key, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.License, fields) query = "query($key:String!){license(key:$key){%s}}" % ",".join(fields) path = ("license",) def validate(response, data): value = github.utils._follow(data["data"], path) if value is None or key == "other": # NOTE: (value=null) 1143102 # NOTE: (key="other") body="" raise github.ClientResponseGraphQLNotFoundError(f"Could not resolve to a license with the key '{key}'.", response, data) if value.get("body", False) == "": # NOTE: (body="") 1240368 raise github.ClientResponseGraphQLInternalError("The GraphQL service failed to fetch the license body.", response, data) value = await self._fetch(query, *path, key=key, _data_validate=validate) if "key" not in value.keys(): value["key"] = key return value async def fetch_query_metadata(self, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.Metadata, fields) query = "{meta{%s}}" % ",".join(fields) path = ("meta",) return await self._fetch(query, *path) async def fetch_query_node(self, type, id, *, fields=None): fields = github.utils._get_merged_graphql_fields(type, fields) query = "query($id:ID!){node(id:$id){...on %s{%s}}}" % (github.utils._get_graphql_type(type), ",".join(fields)) path = ("node",) value = await self._fetch(query, *path, id=id) if "id" not in value.keys(): value["id"] = id return value async def fetch_query_rate_limit(self, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.RateLimit, fields) query = "{rateLimit(dryRun:true){%s}}" % ",".join(fields) path = ("rateLimit",) return await self._fetch(query, *path) async def fetch_query_resource(self, type, url, *, fields=None): fields = github.utils._get_merged_graphql_fields(type, fields) query = "query($url:URI!){resource(url:$url){...on %s{%s}}}" % (github.utils._get_graphql_type(type), ",".join(fields)) path = ("resource",) value = await self._fetch(query, *path, url=url) if "url" not in value.keys(): value["url"] = url return value async def fetch_query_topic(self, name, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.Topic, fields) query = "query($name:String!){topic(name:$name){%s}}" % ",".join(fields) path = ("topic",) def validate(response, data): value = github.utils._follow(data["data"], path) if value is None: # NOTE: (value=null) 1143102 raise github.ClientResponseGraphQLNotFoundError(f"Could not resolve to a topic with the name '{name}'.", response, data) value = await self._fetch(query, *path, name=name, _data_validate=validate) if "name" not in value.keys(): value["name"] = name return value async def fetch_topic_related_topics(self, topic_id, limit, *, fields=None): fields = github.utils._get_merged_graphql_fields(github.Topic, fields) query = "query($topic_id:ID!,$limit:Int){node(id:$topic_id){...on Topic{relatedTopics(first:$limit){%s}}}}" % ",".join(fields) path = ("node", "relatedTopics") return await self._fetch(query, *path, limit=limit, topic_id=topic_id) __all__ = [ "HTTPClient", ]
import torch from torch import nn from torch.nn import functional as F from torchvision.ops import nms from collections import OrderedDict from ...config import prepare_config class LocMaxNMSPostprocessor(nn.Module): """A score local maxima + nms postprocessor. Keeps predictions that correspond to local maxima of scores. Then applies standard nms. Config: kernel_size: max pooling kernel size for local maxima search. Default: 3 score_threshold: minimal score needed to keep prediction. Default: 0.5 nms_iou_threshold: parameter for nms. Default: 0.5 Shape: Input: { "scores_t": :math:`(B,H,W)`, "deltas_t": :math:`(B,2,H,W)`, "sizes_t": :math:`(B,2,H,W)`, "landmarks_t": :math:`(B,n_landmarks,2,H,W)`, (optional), "offsets": (int, int), "stride": int, } Output: [ { "scores": :math:`(N_{i},)`, "bboxes": :math:`(N_{i},4)`, "landmarks": :math:`(N_{i},n_landmarks,2)`}, (optional) }, for i in range(B), ] """ @staticmethod def get_default_config(): return OrderedDict([ ("kernel_size", 3), ("score_threshold", 0.5), ("nms_iou_threshold", 0.5), ]) def __init__(self, config=None): super().__init__() config = prepare_config(self, config) for k, v in config.items(): self.__dict__[k] = v def forward(self, x, score_threshold=None, nms_iou_threshold=None): offsets = x["offsets"] stride = x["stride"] score_threshold = self.score_threshold if score_threshold is None else score_threshold nms_iou_threshold = self.nms_iou_threshold if nms_iou_threshold is None else nms_iou_threshold scores = x["scores_t"] deltas = x["deltas_t"] sizes = x["sizes_t"] id_b, id_h, id_w = torch.where( torch.logical_and( scores > score_threshold, scores == F.max_pool2d(scores, self.kernel_size, 1, self.kernel_size//2) ) ) batch_idx, results_per_batch_idx = torch.unique(id_b.cpu(), sorted=True, return_counts=True) batch_size = scores.shape[0] splits = torch.zeros(batch_size).long() splits[batch_idx] = results_per_batch_idx splits = splits.tolist() scores = scores[id_b, id_h, id_w] deltas = deltas[id_b, :, id_h, id_w] sizes = sizes[id_b, :, id_h, id_w] y_coord = id_h*stride + offsets[0] x_coord = id_w*stride + offsets[1] pivots = torch.stack([x_coord, y_coord], dim=1) centers = pivots + deltas scores = scores.float().cpu() scores = torch.split(scores, splits) bboxes = torch.cat([centers - sizes/2, centers + sizes/2], dim=1).float().cpu() bboxes = torch.split(bboxes, splits) keep = [nms(_bboxes, _scores, nms_iou_threshold)\ for _bboxes, _scores in zip(bboxes, scores)] scores = [_scores[_keep] for _scores, _keep in zip(scores, keep)] bboxes = [_bboxes[_keep] for _bboxes, _keep in zip(bboxes, keep)] if not "landmarks_t" in x.keys(): result = [{"bboxes": _bboxes, "scores": _scores}\ for _bboxes, _scores in zip(bboxes, scores)] return result else: landmarks = x["landmarks"] landmarks = landmarks[id_b, ..., id_h, id_w] landmarks = landmarks + pivots[:,None,:] landmarks = landmarks.float().cpu() landmarks = torch.split(landmarks, splits) landmarks = [_landmarks[_keep] for _landmarks, _keep in zip(landmarks, keep)] result = [{"bboxes": _bboxes, "scores": _scores, "landmarks": _landmarks}\ for _bboxes, _scores, _landmarks in zip(bboxes, scores, landmarks)] return result
from spaceone.core.manager import BaseManager from spaceone.inventory.connector.identity_connector import IdentityConnector class IdentityManager(BaseManager): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.identity_conn: IdentityConnector = self.locator.get_connector('IdentityConnector') def get_user(self, user_id, domain_id): return self.identity_conn.get_user(user_id, domain_id) def list_users(self, query, domain_id): return self.identity_conn.list_users(query, domain_id) def get_project(self, project_id, domain_id): return self.identity_conn.get_project(project_id, domain_id) def list_projects(self, query, domain_id): return self.identity_conn.list_projects(query, domain_id)
from django.views.generic import TemplateView class SubmissionsView(TemplateView): template_name = 'management/submissions.html' class UserManagementView(TemplateView): template_name = 'management/user_management.html'
import struct import random import socket import time import io import re import collections HEADER_SIZE = 12 Header = collections.namedtuple('Header', ['msg', 'len', 'sync']) def unpack_header(buf): msg, len_, sync = struct.unpack('<III', buf[:HEADER_SIZE]) return Header(msg, len_, sync), buf[HEADER_SIZE:] def pack_header(header): return struct.pack('<III', header.msg, header.len, header.sync) def scanf(fmt, buf): """return <values: tuple>, <error: str>, <remain: bytes>""" vals = [] for f in fmt: if f == 'u': if len(buf) < 4: return tuple(vals), \ "decoding error (fmt:'u'): too small buffer", buf vals.append(struct.unpack_from('<I', buf)[0]) buf = buf[4:] elif f == 'w': val, err, new_buf = _berint_decode(buf) if err: return tuple(vals), f"decoding error (fmt:'w'): {err}", buf vals.append(val) buf = new_buf elif f == 'W': val, err, new_buf = _berstr_decode(buf) if err: return tuple(vals), f"decoding error (fmt:'W'): {err}", buf vals.append(val) buf = new_buf else: return tuple(vals), "not implemented", buf return tuple(vals), None, buf def printf(fmt, vals): """return <blob: bytes>, <error: str>""" return def _mp_fmt(key): key >>= 5 if key == 0: return 'w' elif key == 1: return 'W' return None def unpack_mp(buf): vals = {} while len(buf) > 0: key, err, buf = scanf('w', buf) if err: return None, err key = key[0] val, err, buf = scanf(_mp_fmt(key), buf) if err: return None, err vals[key] = val[0] return vals, None def _berint_decode(buf): val = 0 for i in range(5): if len(buf) < 1: return None, "too small buffer", buf val = (val << 7) | buf[0] & 0x7F next = buf[0] & 0x80 buf = buf[1:] if not next: break return val, None, buf def _berstr_decode(buf): len_, err, new_buf = _berint_decode(buf) if err: return None, err, buf if len_ > len(new_buf): return None, "too small buffer", buf return new_buf[:len_], None, new_buf[len_:]
# -*- coding: utf-8 -*- """chapter11.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1xiOWojlWDCiyw8Nt0-boNhmAo8tE_yFE """ #last chapter, chapter 11, virtual screening #A Virtual Screening Workflow Example #a set of # molecules known to bind to a particular protein, as well as a set of molecules assumed # to not bind, to train a convolutional neural network to identify new molecules with # the potential to bind to the target # ERK2 MAPK1 same protein, involved in signalling #We will train the model to distinguish a set of ERK2 active compounds from a set of #decoy compounds. The active and decoy compounds are derived from the DUD-E #database, which is designed for testing predictive models # Commented out IPython magic to ensure Python compatibility. ##setup tensorflow v1 # %tensorflow_version 1.x !wget -c https://repo.anaconda.com/archive/Anaconda3-2019.10-Linux-x86_64.sh !chmod +x Anaconda3-2019.10-Linux-x86_64.sh !bash ./Anaconda3-2019.10-Linux-x86_64.sh -b -f -p /usr/local !conda install -y -c deepchem -c rdkit -c conda-forge -c omnia deepchem-gpu=2.3.0 import sys sys.path.append('/usr/local/lib/python3.7/site-packages/') from rdkit import Chem from rdkit.Chem import Draw from rdkit.Chem.Draw import IPythonConsole import pandas as pd from rdkit.Chem import PandasTools from rdkit.Chem import Descriptors from rdkit.Chem import rdmolops import seaborn as sns active_df = pd.read_csv("actives_final.ism",header=None,sep=" ") active_rows,active_cols = active_df.shape active_df.columns = ["SMILES","ID","ChEMBL_ID"] active_df["label"] = ["Active"]*active_rows PandasTools.AddMoleculeColumnToFrame(active_df,"SMILES","Mol") def add_property_columns_to_df(df_in): df_in["mw"] = [Descriptors.MolWt(mol) for mol in df_in.Mol] df_in["logP"] = [Descriptors.MolLogP(mol) for mol in df_in.Mol] df_in["charge"] = [rdmolops.GetFormalCharge(mol) for mol in df_in.Mol] add_property_columns_to_df(active_df) active_df.head() decoy_df = pd.read_csv("decoys_final.ism",header=None,sep=" ") decoy_df.columns = ["SMILES","ID"] decoy_rows, decoy_cols = decoy_df.shape decoy_df["label"] = ["Decoy"]*decoy_rows PandasTools.AddMoleculeColumnToFrame(decoy_df,"SMILES","Mol") add_property_columns_to_df(decoy_df) decoy_df.head() tmp_df = active_df.append(decoy_df) sns.violinplot(tmp_df["label"],tmp_df["mw"]) sns.violinplot(tmp_df["label"],tmp_df["logP"]) sns.violinplot(tmp_df["label"],tmp_df["charge"]) charged = decoy_df[decoy_df["charge"] != 0] charged.shape[0]/decoy_df.shape[0] from neutralize import NeutraliseCharges revised_decoy_df = decoy_df[["SMILES","ID","label"]].copy() revised_decoy_df["SMILES"] = [NeutraliseCharges(x)[0] for x in revised_decoy_df["SMILES"]] PandasTools.AddMoleculeColumnToFrame(revised_decoy_df,"SMILES","Mol") add_property_columns_to_df(revised_decoy_df) new_tmp_df = active_df.append(revised_decoy_df) sns.violinplot(new_tmp_df["label"],new_tmp_df["charge"]) charged = revised_decoy_df[revised_decoy_df["charge"] != 0] charged.shape[0]/revised_decoy_df.shape[0] active_df["is_active"] = [1] * active_df.shape[0] revised_decoy_df["is_active"] = [0] * revised_decoy_df.shape[0] combined_df = active_df.append(revised_decoy_df)[["SMILES","ID","is_active"]] combined_df.head() combined_df.to_csv("dude_erk1_mk01.csv") #part1 over #part 2 training a predictive model import deepchem as dc from deepchem.models import GraphConvModel import numpy as np import sys import pandas as pd import seaborn as sns from rdkit.Chem import PandasTools def generate_graph_conv_model(): batch_size = 128 model = GraphConvModel(1, batch_size=batch_size, mode='classification',model_dir="./model_dir") return model dataset_file = "dude_erk2_mk01.csv" tasks = ["is_active"] featurizer = dc.feat.ConvMolFeaturizer() loader = dc.data.CSVLoader(tasks=tasks, smiles_field="SMILES", featurizer=featurizer) dataset = loader.featurize(dataset_file, shard_size=8192) splitter = dc.splits.RandomSplitter() metrics = [dc.metrics.Metric(dc.metrics.matthews_corrcoef, np.mean, mode="classification")] training_score_list = [] validation_score_list = [] transformers = [] cv_folds = 10 for i in range(0,cv_folds): model = generate_graph_conv_model() train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(dataset) model.fit(train_dataset) train_scores = model.evaluate(train_dataset, metrics, transformers) training_score_list.append(train_scores["mean-matthews_corrcoef"]) validation_scores = model.evaluate(valid_dataset, metrics, transformers) validation_score_list.append(validation_scores["mean-matthews_corrcoef"]) print(training_score_list) print(validation_score_list) sns.boxplot(["training"]*cv_folds+["validation"]*cv_folds,training_score_list+validation_score_list) pred = [x.flatten() for x in model.predict(valid_dataset)] pred_df = pd.DataFrame(pred,columns=["neg","pos"]) pred_df["active"] = [int(x) for x in valid_dataset.y] pred_df["SMILES"] = valid_dataset.ids pred_df.head() pred_df.sort_values("pos",ascending=False).head(25) sns.boxplot(pred_df.active,pred_df.pos) false_negative_df = pred_df.query("active == 1 & pos < 0.5").copy() PandasTools.AddMoleculeColumnToFrame(false_negative_df,"SMILES","Mol") false_negative_df false_positive_df = pred_df.query("active == 0 & pos > 0.5").copy() PandasTools.AddMoleculeColumnToFrame(false_positive_df,"SMILES","Mol") false_positive_df model.fit(dataset) #part 2 over part 3 begin #install rd_filters for the 3rd part !pip install git+https://github.com/PatWalters/rd_filters.git !rd_filters -h !rd_filters filter --in zinc_100k.smi --prefix zinc df = pd.read_csv("zinc.csv") df.head() from collections import Counter count_list = list(Counter(df.FILTER).items()) count_df = pd.DataFrame(count_list,columns=["Rule","Count"]) count_df.sort_values("Count",inplace=True,ascending=False) count_df.head() smiles_list = df[df.FILTER == "Filter41_12_dicarbonyl > 0"].SMILES[:10] from rdkit import Chem from rdkit.Chem import Draw mol_list = [Chem.MolFromSmiles(x) for x in smiles_list] dicarbonyl = Chem.MolFromSmarts('*C(=O)C(=O)*') match_list = [mol.GetSubstructMatch(dicarbonyl) for mol in mol_list] Draw.MolsToGridImage(mol_list,highlightAtomLists=match_list,molsPerRow=3) #part 3 over , starting part 4 import deepchem as dc import pandas as pd from rdkit.Chem import PandasTools, Draw from rdkit import DataStructs from rdkit.ML.Cluster import Butina from rdkit.Chem import rdMolDescriptors as rdmd import seaborn as sns model = dc.models.GraphConvModel(1, batch_size=128, mode='classification',model_dir="model_dir") model.restore() featurizer = dc.feat.ConvMolFeaturizer() df = pd.read_csv("zinc.smi",sep=" ",header=None) df.columns=["SMILES","Name"] rows,cols = df.shape df["Val"] = [0] * rows df.head() infile_name = "zinc_filtered.csv" df.to_csv(infile_name,index=False) loader = dc.data.CSVLoader(tasks=['Val'], smiles_field="SMILES", featurizer=featurizer) dataset = loader.featurize(infile_name, shard_size=8192) pred = model.predict(dataset) pred_df = pd.DataFrame([x.flatten() for x in pred],columns=["Neg","Pos"]) sns.distplot(pred_df.Pos,rug=True) combo_df = df.join(pred_df,how="outer") combo_df.sort_values("Pos",inplace=True,ascending=False) PandasTools.AddMoleculeColumnToFrame(combo_df,"SMILES","Mol") combo_df.head() Draw.MolsToGridImage(combo_df.Mol[:10],molsPerRow=5,legends=["%.2f" % x for x in combo_df.Pos[:10]]) def butina_cluster(mol_list,cutoff=0.35): fp_list = [rdmd.GetMorganFingerprintAsBitVect(m, 3, nBits=2048) for m in mol_list] dists = [] nfps = len(fp_list) for i in range(1,nfps): sims = DataStructs.BulkTanimotoSimilarity(fp_list[i],fp_list[:i]) dists.extend([1-x for x in sims]) mol_clusters = Butina.ClusterData(dists,nfps,cutoff,isDistData=True) cluster_id_list = [0]*nfps for idx,cluster in enumerate(mol_clusters,1): for member in cluster: cluster_id_list[member] = idx return cluster_id_list best_100_df = combo_df.head(100).copy() best_100_df["Cluster"] = butina_cluster(best_100_df.Mol) best_100_df.head() len(best_100_df.Cluster.unique()) best_cluster_rep_df = best_100_df.drop_duplicates("Cluster") best_cluster_rep_df.shape best_cluster_rep_df.to_csv("best_cluster_represenatives.csv") #mols = best_cluster_rep_df.iloc[:,5] #type(mols) #chapter over
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_policy import policy from mistral.policies import base EXECUTIONS = 'executions:%s' rules = [ policy.DocumentedRuleDefault( name=EXECUTIONS % 'create', check_str=base.RULE_ADMIN_OR_OWNER, description='Create a new execution.', operations=[ { 'path': '/v2/executions', 'method': 'POST' } ] ), policy.DocumentedRuleDefault( name=EXECUTIONS % 'delete', check_str=base.RULE_ADMIN_OR_OWNER, description='Delete the specified execution.', operations=[ { 'path': '/v2/executions/{execution_id}', 'method': 'DELETE' } ] ), policy.DocumentedRuleDefault( name=EXECUTIONS % 'get', check_str=base.RULE_ADMIN_OR_OWNER, description='Return the specified execution.', operations=[ { 'path': '/v2/executions/{execution_id}', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name=EXECUTIONS % 'list', check_str=base.RULE_ADMIN_OR_OWNER, description='Return all executions.', operations=[ { 'path': '/v2/executions', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name=EXECUTIONS % 'list:all_projects', check_str=base.RULE_ADMIN_ONLY, description='Return all executions from all projects.', operations=[ { 'path': '/v2/executions', 'method': 'GET' } ] ), policy.DocumentedRuleDefault( name=EXECUTIONS % 'update', check_str=base.RULE_ADMIN_OR_OWNER, description='Update an execution.', operations=[ { 'path': '/v2/executions', 'method': 'PUT' } ] ) ] def list_rules(): return rules
from __future__ import absolute_import from __future__ import division from __future__ import print_function import sys def main(argv): filename = argv[1] data = [] with open(filename, 'rb') as f: header1 = f.readline() header2 = f.readline() line = str(f.readline(), 'utf-8') while line: i = int('0x' + line[:-1], 16) data.append(i) line = str(f.readline(), 'utf-8') # sys.stdout.buffer.write(bytes(header1, encoding='utf-8')) # sys.stdout.buffer.write(bytes(header2, encoding='utf-8')) sys.stdout.buffer.write(header1) sys.stdout.buffer.write(header2) sys.stdout.buffer.write(bytes(data)) if __name__ == '__main__': main(sys.argv)
""" Tests for simple se commands that just output to stdout and don't require a book as input. """ import pytest import se from helpers import must_run SIMPLE_CMDS = [ ("dec2roman", "1 4 7 45 900", "I\nIV\nVII\nXLV\nCM"), ("dec2roman", "1867", "MDCCCLXVII"), ("roman2dec", "III XXV LXXVI CXLII DCCCLXIV", "3\n25\n76\n142\n864"), ("roman2dec", "MDCCLXXVI", "1776"), ("make-url-safe", "http://google.com", "http-google-com"), ("make-url-safe", "abc123.!-+d xyz ", "abc123-d\nxyz"), ("titlecase", "'the Mysterious Affair At styles'", "The Mysterious Affair at Styles"), ("titlecase", "heart of darkness", "Heart\nOf\nDarkness"), ] @pytest.mark.parametrize("cmd_name, cmd_args, cmd_out", SIMPLE_CMDS) def test_simple_cmds(cmd_name: str, cmd_args: str, cmd_out: str, capfd): """Execute command and check output""" must_run(f"se {cmd_name} {cmd_args}") out, _ = capfd.readouterr() assert cmd_out == out.rstrip() def test_version(capfd): """Verify that the version command returns the version""" must_run("se version") out, _ = capfd.readouterr() assert out.startswith(se.VERSION) def test_help(capfd): """Verify that the help command returns without an error""" must_run("se help") out, _ = capfd.readouterr() assert out.splitlines()[0] == "The following commands are available:"
import json from django.test import TestCase from django.urls import reverse from django.contrib.auth.models import AnonymousUser, User from unittest.mock import patch from .models import * class dotdict(dict): __getattr__ = dict.get __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ # Create your tests here. class APITestCase(TestCase): def setUp(self): self.user = User.objects.create_user( username='jacob', email='jacob@…', password='top_secret') @patch('yandex_checkout.Payment.create') def test_create_payment(self, mocked_payment_create): class PaymentMock: id=1 status = 'pending' description = 'test desciption' amount = dotdict({'value': 1, 'currency': 'RUB'}) confirmation = dotdict({'confirmation_url': 'http://confirmation_url'}) mocked_payment_create.return_value = PaymentMock() data = {'payment_total_sum': 100.0} self.client.login(username='jacob', password='top_secret') self.assertEqual(YandexKassaPayment.objects.count(), 0) resp = self.client.post(reverse('create_payment'), json.dumps(data), content_type="application/json") self.assertTrue(resp.status_code, 200) self.assertEqual(YandexKassaPayment.objects.count(), 1)
from collections import namedtuple import pytest from iroha import Iroha, ed25519_sha2 iroha = Iroha('ADMIN_ACCOUNT_ID') command = [Iroha.command('CreateDomain', domain_id='domain', default_role='user')] transaction = Iroha.transaction(iroha, command) Test_data = namedtuple('Test_data', ['message', 'private_key', 'public_key']) Test_data.__new__.__defaults__ = (transaction, None, None) data_scope = ([Test_data(private_key="f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70", public_key=b'313a07e6384776ed95447710d15e59148473ccfc052a681317a72a69f2a49910'), Test_data( private_key=b'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70', public_key=b'313a07e6384776ed95447710d15e59148473ccfc052a681317a72a69f2a49910'), Test_data( private_key=ed25519_sha2.SigningKey(b'\x99\xfe\x89i\xac\xda\xfb\t\xbf\xdd\x00F7\x0e/\xa2X\x0b\x0c%\x91\xa266%%\r\xa1Mw\x1bc'), public_key='ed0120ca0d372c15b712b46fa1c6e4afc4fd7e23e91dbf869da497db898d884f45ac40') ]) data_ids = ['priv_key, pub_key({},{})'.format(t.private_key, t.public_key) for t in data_scope] @pytest.fixture(scope='session', params=data_scope, ids=data_ids) def crypto_data(request): return request.param
"""Current version of package keras_mixed_sequence.""" __version__ = "1.0.27"
from numpy.core.fromnumeric import reshape import streamlit as st import pickle import numpy as np import pandas as pd st.title("Modeling Earthquake Damage") st.header("How much damage did the building incur?") st.markdown("----------------------------------------") # load model with open('saved-earthquake-model.pkl', 'rb') as file: model = pickle.load(file) # user input features # age st.markdown("Age of building:") age = st.slider('', min_value = 0, max_value = 995, step = 25) # count_families st.markdown("Number of Families that Live in the building:") count_families = st.slider('', min_value = 0, max_value = 6, step = 1) # foundation_ type st.markdown("Type of foundation used while building:") foundation_type_choice = st.radio('', ['H', 'I', 'R', 'U', 'W']) if foundation_type_choice == 'H': foundation_type = 0 elif foundation_type_choice == 'I': foundation_type = 1 elif foundation_type_choice == 'R': foundation_type = 2 elif foundation_type_choice == 'U': foundation_type = 3 else: foundation_type = 4 # roof_type st.markdown("Type of roof used while building:") roof_type_choice = st.radio('', ['N', 'Q', 'X']) if roof_type_choice == 'N': roof_type = 0 elif roof_type_choice == 'Q': roof_type = 1 else: roof_type = 2 # has_superstructure_mud_mortar_stone st.markdown("Is the building made out of Mud Mortar Stone?") has_superstructure_mud_mortar_stone_choice = st.radio('', ['Yes', 'No']) if has_superstructure_mud_mortar_stone_choice == 'Yes': has_superstructure_mud_mortar_stone = 1 else: has_superstructure_mud_mortar_stone = 0 # button click prediction st.markdown("### Make a prediction! 🔮") click = st.button("Click Here") if click: # model predictions all_features = np.array([age, count_families, foundation_type, roof_type, has_superstructure_mud_mortar_stone]) prediction = model.predict(all_features.reshape(1, -1)) if prediction == 1: st.header(f'The model predicts a damage grade of {prediction[0]} - low building damage 🏠 ✔️') elif prediction == 2: st.header(f'The model predicts a damage grade of {prediction[0]} - medium amount of building damage 🏠 🔨') else: st.header(f'The model predicts a damage grade of {prediction[0]} - almost complete building destruction 🏚 ❌') # data dictionary source st.write("##") st.markdown("<a href='https://www.drivendata.org/competitions/57/nepal-earthquake/page/136/'>Data Dictionary / Data Source</a>", unsafe_allow_html=True)
from wagtail.documents.models import Document as WagtailDocument, get_document_model from graphene_django.types import DjangoObjectType import graphene from ..registry import registry from ..utils import resolve_queryset from .structures import QuerySetList class DocumentObjectType(DjangoObjectType): """ Base document type used if one isn't generated for the current model. All other node types extend this. """ class Meta: model = WagtailDocument exclude_fields = ("tags",) id = graphene.ID() title = graphene.String() file = graphene.String() created_at = graphene.DateTime() file_size = graphene.Int() file_hash = graphene.String() def DocumentsQuery(): registry.documents[WagtailDocument] = DocumentObjectType mdl = get_document_model() model_type = registry.documents[mdl] class Mixin: documents = QuerySetList(model_type, enable_search=True) # Return all pages, ideally specific. def resolve_documents(self, info, **kwargs): return resolve_queryset(mdl.objects.all(), info, **kwargs) return Mixin def get_document_type(): registry.documents[WagtailDocument] = DocumentObjectType mdl = get_document_model() return registry.documents[mdl]
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2018-05-02 19:47 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('parcelhubPOS', '0008_auto_20180429_0142'), ] operations = [ migrations.AddField( model_name='invoiceitem', name='totalgst', field=models.DecimalField(decimal_places=2, default=0, max_digits=30, verbose_name='Total GST'), preserve_default=False, ), migrations.AddField( model_name='invoiceitem', name='totalprice', field=models.DecimalField(decimal_places=2, default=0, max_digits=30, verbose_name='Total price'), preserve_default=False, ), migrations.AddField( model_name='invoiceitem', name='unit', field=models.IntegerField(default=1), ), ]
import random import time import chainer.functions as F import gym import numpy as np def reseed(env, pool_rank): np.random.seed(pool_rank + get_time_seed()) random.seed(pool_rank + get_time_seed()) env.seed(pool_rank + get_time_seed()) def sym_mean(x): return F.sum(x) / x.size def gamma_expand(x, a): x, a = np.asarray(x), np.asarray(a) y = np.zeros_like(x) for t in reversed(range(len(x))): y[t] = x[t] + a[t] * (0 if t == len(x) - 1 else y[t + 1]) return y def get_dims(env): if isinstance(env.action_space, gym.spaces.Discrete): if isinstance(env.observation_space, gym.spaces.Discrete): env_dim = env.observation_space.n elif isinstance(env.observation_space, gym.spaces.MultiDiscrete): env_dim = env.observation_space.shape[0] * 3 else: env_dim = env.observation_space.shape * 3 act_dim = env.action_space.n n_output_params = 1 else: env_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] n_output_params = 2 return env_dim, act_dim, n_output_params def int_to_onehot(x, dim): y = np.zeros(dim) y[x] = 1 return y def onehot_to_int(x): x = x.astype(int) return np.where(x == 1)[0][0] def relative_ranks(x): def ranks(x): ranks = np.zeros(len(x), dtype=int) ranks[x.argsort()] = np.arange(len(x)) return ranks y = ranks(x.ravel()).reshape(x.shape).astype(np.float32) return y / (x.size - 1.) - 0.5 class Adam(object): def __init__(self, shape, stepsize, beta1=0.9, beta2=0.999, epsilon=1e-08, dtype=np.float32): self.stepsize, self.beta1, self.beta2, self.epsilon = stepsize, beta1, beta2, epsilon self.t = 0 self.m = np.zeros(shape, dtype=dtype) self.v = np.zeros(shape, dtype=dtype) def step(self, g): self.t += 1 a = self.stepsize * np.sqrt(1 - self.beta2 ** self.t) / (1 - self.beta1 ** self.t) self.m = self.beta1 * self.m + (1 - self.beta1) * g self.v = self.beta2 * self.v + (1 - self.beta2) * (g * g) return - a * self.m / (np.sqrt(self.v) + self.epsilon) class Normalizer(object): def __init__(self, shape, epsilon=1e-2): self.shape = shape self.sum = np.zeros(shape, dtype=np.float32) self.sum2 = np.full(shape, epsilon, dtype=np.float32) self.count = epsilon def _get_mean_and_std(self): mean = self.sum / self.count std = np.sqrt(np.maximum(self.sum2 / self.count - np.square(mean), 0.01)) return mean, std def update(self, x): self.sum += np.sum(x, axis=0) self.sum2 += np.sum(np.square(x), axis=0) self.count += x.shape[0] def norm(self, x): mean, std = self._get_mean_and_std() return (x - mean) / std def unnorm(self, x): mean, std = self._get_mean_and_std() return mean + x * std def gaussian_kl(params0, params1): (mean0, logstd0), (mean1, logstd1) = params0, params1 assert mean0.shape == logstd0.shape == mean1.shape == logstd1.shape return F.sum( logstd1 - logstd0 + (F.square(F.exp(logstd0)) + F.square(mean0 - mean1)) / ( 2.0 * F.square(F.exp(logstd1))) - 0.5, axis=1 ) def categorical_kl(params0, params1): params0 = params0[0] params1 = params1[0] assert params0.shape == params1.shape a0 = params0 - F.tile(F.max(params0, axis=1, keepdims=True), (1, 4)) a1 = params1 - F.tile(F.max(params1, axis=1, keepdims=True), (1, 4)) ea0 = F.exp(a0) ea1 = F.exp(a1) z0 = F.tile(F.sum(ea0, axis=1, keepdims=True), (1, 4)) z1 = F.tile(F.sum(ea1, axis=1, keepdims=True), (1, 4)) p0 = ea0 / z0 return F.sum(p0 * (a0 - F.log(z0) - a1 + F.log(z1)), axis=1) def log_misc_stats(key, logger, lst_value): lst_value = np.asarray(lst_value) logger.logkv(key + '~', np.mean(lst_value)) logger.logkv(key + 'Median', np.median(lst_value)) logger.logkv(key + 'Std', np.std(lst_value)) logger.logkv(key + '-', np.min(lst_value)) logger.logkv(key + '+', np.max(lst_value)) def get_time_seed(): return int(1000000 * time.time() % 100000) * 1000 def ret_to_obj(ret): """Objective function """ return np.mean(ret[-3:]) class Schedule(object): def value(self, t): raise NotImplementedError() def linear_interpolation(l, r, alpha): return l + alpha * (r - l) class PiecewiseSchedule(object): def __init__(self, endpoints, interpolation=linear_interpolation, outside_value=None): idxes = [e[0] for e in endpoints] assert idxes == sorted(idxes) self._interpolation = interpolation self._outside_value = outside_value self._endpoints = endpoints def value(self, t): for (l_t, l), (r_t, r) in zip(self._endpoints[:-1], self._endpoints[1:]): if l_t <= t < r_t: alpha = float(t - l_t) / (r_t - l_t) return self._interpolation(l, r, alpha) assert self._outside_value is not None return self._outside_value
# Network para AWS import ipaddress import json import os from libcloud.compute.drivers.ec2 import VPCInternetGateway, EC2Network from bastion.component import Component from bastion.libcloudbastion.ec2 import EC2VPNGateway from bastion.networking.network.base import Network from bastion.networking.private_dns.aws import AWSPrivateDns from bastion.networking.route_table.aws import AWSRouteTable from bastion.networking.security_group.aws import AWSSecurityGroup from bastion.networking.subnet.aws import AWSSubnet class AWSNetwork(Network, Component): vpn_gateway_private_ip = None def get_cloud_driver(self): return self.networking.get_cloud_driver() def list_route_tables(self): cloud_driver = self.get_cloud_driver() all_route_tables = cloud_driver.ex_list_route_tables() vpc_route_tables = [] for lib_route_table in all_route_tables: if lib_route_table.extra['vpc_id'] == self.id: route_table = AWSRouteTable(lib_route_table.id, lib_route_table.name, lib_route_table.routes, lib_route_table.subnet_associations, lib_route_table.propagating_gateway_ids, self, extra=lib_route_table.extra) vpc_route_tables.append(route_table) return vpc_route_tables def list_security_groups(self): cloud_driver = self.get_cloud_driver() all_security_groups = cloud_driver.ex_get_security_groups() vpc_security_groups = [] for lib_security_group in all_security_groups: if lib_security_group.extra['vpc_id'] == self.id: vpc_security_groups.append(AWSSecurityGroup(lib_security_group.id, lib_security_group.name, self)) return vpc_security_groups def create_private_dns(self, domain): # Create Private Zone dns_server = self.networking.driver.dns_driver.ex_create_private_zone(domain=domain, vpc_id=self.id, region=self.networking.driver.cred.region) self.private_dns = AWSPrivateDns(domain, dns_server, self) return self.private_dns def create_subnet(self, cidr, name=None): print "Creando Subred en Red Virtual EC2 {} ...".format(self.name) cloud_driver = self.get_cloud_driver() availability_zones = cloud_driver.ex_list_availability_zones() zone = [az for az in availability_zones][0] subnet = cloud_driver.ex_create_subnet(vpc_id=self.id, name=name, cidr_block=cidr, availability_zone=zone.name) print "Subred creada con nombre='{0}', cidr='{1}'.".format( subnet.name, cidr) return AWSSubnet(subnet.id, subnet.name, cidr, self) def create_vpn_subnet(self): network_mask_length = ipaddress.ip_network(self.cidr).prefixlen subnet_ip = ipaddress.ip_network(self.cidr).network_address + (2 ** (28 - network_mask_length) - 1) * 2 ** ( 32 - 28) subnet = ipaddress.ip_network((subnet_ip, 28)) vpn_subnet_name = "%s-vpn-subnet" % self.name self.vpn_subnet = self.create_subnet(str(subnet), vpn_subnet_name) def prepare_vpn_connection(self): # Create VPN Terminal VM self.vpn_gateway = self.networking.driver.baseCompute.create_vm(name=self.name + "-vpn", image_id=self.networking.driver.prop.vpn_image_id, subnet=self.vpn_subnet) self.vpn_gateway.set_source_dest_check(False) self.vpn_gateway_ip = self.vpn_gateway.public_ips[0] self.vpn_gateway_private_ip = self.vpn_gateway.private_ips[0] def get_vpn_connection_public_ip(self): return self.vpn_gateway_ip def connect_to_vpn_network(self, cidr, public_ip, shared_key): vpn_parameters =\ { 'local_ip': self.vpn_gateway_private_ip, 'local_public_ip': self.vpn_gateway_ip, 'local_subnet': self.cidr, 'remote_public_ip': public_ip, 'remote_subnet': cidr, 'psk': shared_key } route_table = self.list_route_tables()[0] route_table.create_route(cidr, internet_gateway=None, network_interface=self.vpn_gateway.primary_network_interface) cloud_driver = self.get_cloud_driver() default_security_group = self.list_security_groups()[0] cloud_driver.ex_authorize_security_group_by_id(default_security_group.id, 0, 65535, public_ip + '/32', protocol='-1') this_file_path = os.path.abspath(os.path.dirname(__file__)) strongswan_playbook_path = os.path.join(this_file_path, "../../playbooks/torian-strongswan.yml") self.vpn_gateway.provision(playbook_path=strongswan_playbook_path, parameters=json.dumps(vpn_parameters), user='ubuntu') def start_vpn_connection(self): this_file_path = os.path.abspath(os.path.dirname(__file__)) ipsec_restart_path = os.path.join(this_file_path, "../../playbooks/ipsec-restart.yml") self.vpn_gateway.provision(playbook_path=ipsec_restart_path, user='ubuntu') def create_dns_subnet(self): network_mask_length = ipaddress.ip_network(self.cidr).prefixlen subnet_ip = ipaddress.ip_network(self.cidr).network_address + (2 ** (28 - network_mask_length) - 2) * 2 ** ( 32 - 28) subnet = ipaddress.ip_network((subnet_ip, 28)) dns_subnet_name = "%s-dns-subnet" % self.name self.dns_subnet = self.create_subnet(str(subnet), dns_subnet_name) def list_subnets(self): cloud_driver = self.get_cloud_driver() all_subnets = cloud_driver.ex_list_subnets() vpc_subnets = [] for lib_subnet in all_subnets: if lib_subnet.extra['vpc_id'] == self.id: vpc_subnet = AWSSubnet(lib_subnet.id, lib_subnet.name, lib_subnet.extra['cidr_block'], self) vpc_subnets.append(vpc_subnet) return vpc_subnets def delete(self): cloud_driver = self.get_cloud_driver() networks = cloud_driver.ex_list_networks(network_ids=[self.id]) network = [n for n in networks][0] cloud_driver.ex_delete_network(network) def attach_gateway(self, gateway): cloud_driver = self.get_cloud_driver() cloud_gateway = VPCInternetGateway(id=gateway.id, name=None, vpc_id=None, state=None, driver=None) cloud_network = EC2Network(id=self.id, name=None, cidr_block=None) cloud_driver.ex_attach_internet_gateway(gateway=cloud_gateway, network=cloud_network) def attach_vpn_gateway(self, vpn_gateway): cloud_driver = self.get_cloud_driver() cloud_vpn_gateway = EC2VPNGateway(id=vpn_gateway.id, name=None, state=None) cloud_network = EC2Network(id=self.id, name=None, cidr_block=None) cloud_driver.ex_attach_vpn_gateway(vpn_gateway=cloud_vpn_gateway, network=cloud_network)
import RPi.GPIO as GPIO import os import subprocess import sys def startsystem(channel): print("Starting!") subprocess.Popen(["python3", "index.py"]) sys.exit(0) GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_DOWN) GPIO.add_event_detect(13,GPIO.RISING,callback=startsystem) message = input("") GPIO.cleanup()
#!/usr/bin/env python from math import floor class LaserSpeed: """ MIT License. This is the standard library for converting to and from speed code information for LHYMICRO-GL. The units in the speed code have acceleration/deceleration factors which slightly modifies the equations used to convert between values and speeds. The fundamental units within the speed code values are period-ticks. All values relate to a value in the counter to count off the number of oscillations within the (typically 22.1184) Mhz crystal. The max value here is 65535, with the addition of a diagonal delay. For the M2 board, the original Chinese Software gave a slope of 12120. However, experiments with the actual physical speed put this value at 11142, which properly reflects that all speeds tend to be at 91.98% of the requested speed. The board is ultimately controlling a stepper motor and the speed a stepper motor travels is the result of the time between the ticks. Since the crystal oscillator is the same, the delay is controlled by the counted oscillations subticks, which gives us the time between stepper motor pulses. Most of the devices we are dealing with are 1000 dpi stepper motors, so, for example, to travel at 1 inch a second requires that the device tick at 1 kHz. To do this it must delay 1 ms between ticks. This corresponds to a value of 48296 in the M2 board. Which has an equation of 65536 - (5120 + 12120T) where T is the period requested in ms. This is equal to 25.4 mm/s. If we want a 2 ms delay, which is half the speed (0.5kHz, 0.5 inches/second, 12.7 mm/s) we do 65536 - (5120 + 24240) which gives us a value of 36176. This would be encoded as a 16 bit number broken up into 2 ascii 3 digit strings between 0-255. 141 for the high bits and 80 for the low bits. So CV01410801 where the final character "1" is the acceleration factor since it's within that range. The speed in mm/s is also used for determining which acceleration to use and as a factor for some boards (B2, M2) the horizontal encoded value. Slowing down the device down while traveling diagonally makes the diagonal and orthogonal take the same amount of time (thereby cutting to the same depth). These are the same period-ticks units and is simply summed with the 65536 - (b + mT) value in cases that both stepper motors are used. """ def __init__(self, *args, **kwargs): self.board = "M2" self.speed = 30 self.d_ratio = None self.raster_step = 0 self.acceleration = None self.suffix_c = None self.raster_horizontal = True self.fix_speeds = False self.fix_lows = False self.fix_limit = False if "board" in kwargs: self.board = kwargs["board"] if "speed" in kwargs: self.speed = float(kwargs["speed"]) if "d_ratio" in kwargs: self.d_ratio = kwargs["d_ratio"] if "raster_step" in kwargs: self.raster_step = kwargs["raster_step"] if "suffix_c" in kwargs: self.suffix_c = kwargs["suffix_c"] if "acceleration" in kwargs: self.acceleration = kwargs["acceleration"] if "fix_speeds" in kwargs: self.fix_speeds = kwargs["fix_speeds"] if "fix_lows" in kwargs: self.fix_lows = kwargs["fix_lows"] if "fix_limit" in kwargs: self.fix_limit = kwargs["fix_limit"] if "raster_horizontal" in kwargs: self.raster_horizontal = kwargs["raster_horizontal"] if len(args) >= 1: self.board = args[0] if len(args) >= 2: if isinstance(args[1], (float, int)): self.speed = float(args[1]) elif isinstance(args[1], str): # this is a speedcode value. ( code_value, accel, step_value, diagonal, raster_step, suffix_c, ) = LaserSpeed.parse_speed_code(args[1]) b, m = LaserSpeed.get_equation( self.board, accel=accel, suffix_c=suffix_c, fix_speeds=self.fix_speeds, ) self.speed = LaserSpeed.get_speed_from_value(code_value, b, m) self.acceleration = accel self.raster_step = raster_step self.suffix_c = suffix_c if len(args) >= 3: self.raster_step = args[2] def __str__(self): return self.speedcode def __repr__(self): parts = list() if self.board != "M2": parts.append('board="%s"' % self.board) if self.speed is not None: parts.append("speed=%f" % self.speed) if self.d_ratio is not None: parts.append("d_ratio=%f" % self.d_ratio) if self.raster_step != 0: parts.append("raster_step=%d" % self.raster_step) if self.suffix_c is not None: parts.append("suffix_c=%s" % str(self.suffix_c)) if self.acceleration is not None: parts.append("acceleration=%d" % self.acceleration) if self.fix_speeds: parts.append("fix_speeds=%s" % str(self.fix_speeds)) if self.fix_lows: parts.append("fix_lows=%s" % str(self.fix_lows)) if self.fix_limit: parts.append("fix_limit=%s" % str(self.fix_limit)) if not self.raster_horizontal: parts.append("raster_horizontal=%s" % str(self.raster_horizontal)) return "LaserSpeed(%s)" % (", ".join(parts)) @property def speedcode(self): return LaserSpeed.get_code_from_speed( self.speed, self.raster_step, self.board, self.d_ratio, self.acceleration, self.suffix_c, fix_limit=self.fix_limit, fix_speeds=self.fix_speeds, fix_lows=self.fix_lows, raster_horizontal=self.raster_horizontal, ) @staticmethod def get_speed_from_code(speed_code, board="M2", fix_speeds=False): """ Gets the speed expected from a speedcode. Should calculate the expected speed from the data code given. :param speed_code: The speedcode to check. :param board: The board this speedcode was made for. :param fix_speeds: Is this speedcode in a fixed_speed code? :return: """ ( code_value, accel, step_value, diagonal, raster_step, suffix_c, ) = LaserSpeed.parse_speed_code(speed_code) b, m = LaserSpeed.get_equation( board, accel=accel, suffix_c=suffix_c, fix_speeds=fix_speeds ) return LaserSpeed.get_speed_from_value(code_value, b, m) @staticmethod def get_code_from_speed( mm_per_second, raster_step=0, board="M2", d_ratio=None, acceleration=None, suffix_c=None, fix_limit=False, fix_speeds=False, fix_lows=False, raster_horizontal=True, ): """ Get a speedcode from a given speed. The raster step appends the 'G' value and uses speed ranges. The d_ratio uses the default/auto ratio. The accel is optional and forces the speedcode to work for that particular acceleration. :param mm_per_second: speed to convert to code. :param raster_step: raster step mode to use. Use (g0,g1) tuple for unidirectional valuations. :param board: Nano Board Model :param d_ratio: M1, M2, B1, B2 have ratio of optional speed :param acceleration: Optional force acceleration code rather than default for that speed. :param suffix_c: Optional force suffix_c mode for the board. (True forces suffix_c on, False forces it off) :param fix_limit: Removes max speed limit. :param fix_speeds: Give corrected speed (faster by 8.9%) :param fix_lows: Force low speeds into correct bounds. :param raster_horizontal: is it rastering with the laser head, or the much heavier bar? :return: speed code produced. """ if d_ratio is None: d_ratio = 0.261199033289 if not fix_limit and mm_per_second > 240 and raster_step == 0: mm_per_second = 19.05 # Arbitrary default speed for out range value. if acceleration is None: acceleration = LaserSpeed.get_acceleration_for_speed( mm_per_second, raster_step != 0, raster_horizontal=raster_horizontal, fix_speeds=fix_speeds, ) if suffix_c is None: suffix_c = LaserSpeed.get_suffix_c(board, mm_per_second) b, m = LaserSpeed.get_equation( board, accel=acceleration, suffix_c=suffix_c, fix_speeds=fix_speeds ) speed_value = LaserSpeed.get_value_from_speed(mm_per_second, b, m) if fix_lows and speed_value < 0: # produced a negative speed value, go ahead and set that to 0 speed_value = 0 encoded_speed = LaserSpeed.encode_16bit(speed_value) if raster_step != 0: # There is no C suffix notation for raster step. if isinstance(raster_step, tuple): return "V%s%1dG%03dG%03d" % ( encoded_speed, acceleration, raster_step[0], raster_step[1], ) else: return "V%s%1dG%03d" % (encoded_speed, acceleration, raster_step) if d_ratio == 0 or board in ("A", "B", "M"): # We do not need the diagonal code. if raster_step == 0: if suffix_c: return "CV%s1C" % encoded_speed else: return "CV%s%1d" % (encoded_speed, acceleration) else: step_value = min(int(floor(mm_per_second) + 1), 128) frequency_kHz = float(mm_per_second) / 25.4 try: period_in_ms = 1 / frequency_kHz except ZeroDivisionError: period_in_ms = 0 d_value = d_ratio * m * period_in_ms / float(step_value) if fix_lows: if d_value > 0xFFFF: d_value = 0xFFFF if d_value < 0: d_value = 0 encoded_diagonal = LaserSpeed.encode_16bit(d_value) if suffix_c: return "CV%s1%03d%sC" % (encoded_speed, step_value, encoded_diagonal) else: return "CV%s%1d%03d%s" % ( encoded_speed, acceleration, step_value, encoded_diagonal, ) @staticmethod def parse_speed_code(speed_code): """ Parses a speedcode into the relevant parts these are: Prefixed codes CV or V, the code value which is a string of numbers that is either 7 or 16 characters long. With bugged versions being permitted to be 5 characters longer being either 12 or 21 characters long. Since the initial 3 character string becomes an 8 character string falling out of the 000-255 range and becoming (16777216-v). Codes with a suffix-c value are equal to 1/12th with different timings. Codes with G-values are raster stepped. Two of these codes implies unidirectional rasters but the those are a specific (x,0) step sequence. :param speed_code: Speedcode to parse :return: code_value, accel, step_value, diagonal, raster_step, suffix_c """ suffix_c = False prefix_c = False start = 0 end = len(speed_code) if speed_code[start] == "C": start += 1 prefix_c = True if speed_code[end - 1] == "C": end -= 1 suffix_c = True if speed_code[start : start + 4] == "V167" and speed_code[start + 4] not in ( "0", "1", "2", ): # The 4th character can only be 0,1,2 except for error speeds. code_value = LaserSpeed.decode_16bit(speed_code[start + 1 : start + 12]) start += 12 # The value for this speed is so low, it's negative # and bit-shifted in 24 bits of a negative number. # These are produced by chinese software but are not valid. else: code_value = LaserSpeed.decode_16bit(speed_code[start + 1 : start + 7]) start += 7 code_value = 65536 - code_value accel = int(speed_code[start]) start += 1 raster_step = 0 if speed_code[end - 4] == "G": raster_step = int(speed_code[end - 3 : end]) end -= 4 # Removes Gxxx if speed_code[end - 4] == "G": raster_step = (int(speed_code[end - 3 : end]), raster_step) end -= 4 # Removes Gxxx, means this is was GxxxGxxx. step_value = 0 diagonal = 0 if (end + 1) - start >= 9: step_value = int(speed_code[start : start + 3]) diagonal = LaserSpeed.decode_16bit(speed_code[start + 3 : end]) return code_value, accel, step_value, diagonal, raster_step, suffix_c @staticmethod def get_value_from_speed(mm_per_second, b, m): """ Calculates speed value from a given speed. """ try: frequency_kHz = float(mm_per_second) / 25.4 period_in_ms = 1.0 / frequency_kHz return 65536 - LaserSpeed.get_value_from_period(period_in_ms, b, m) except ZeroDivisionError: return 65536 - b @staticmethod def get_value_from_period(x, b, m): """ Takes in period in ms and converts it to value. This is a simple linear relationship. """ return m * x + b @staticmethod def get_speed_from_value(value, b, m): try: period_in_ms = LaserSpeed.get_period_from_value(value, b, m) frequency_kHz = 1 / period_in_ms return 25.4 * frequency_kHz except ZeroDivisionError: return 0 @staticmethod def get_period_from_value(y, b, m): try: return (y - b) / m except ZeroDivisionError: return float("inf") @staticmethod def decode_16bit(code): b1 = int(code[0:-3]) if b1 > 16000000: b1 -= 16777216 # decode error negative numbers if b1 > 0x7FFF: b1 = b1 - 0xFFFF b2 = int(code[-3:]) return (b1 << 8) + b2 @staticmethod def encode_16bit(value): value = int(value) b0 = value & 255 b1 = (value >> 8) & 0xFFFFFF # unsigned shift, to emulate bugged form. return "%03d%03d" % (b1, b0) @staticmethod def get_actual_speed(op_speed, fix_speeds=False): """Get the actual speed for a specified operation speed.""" return op_speed / 0.919493599053179 if fix_speeds else op_speed @staticmethod def get_acceleration_for_speed( mm_per_second, raster=False, raster_horizontal=True, fix_speeds=False ): """ Gets the acceleration factor for a particular speed. It is known that vertical rastering has different acceleration factors. This is not fully mapped out but appeared more in line with non-rastering values. :param mm_per_second: Speed to find acceleration value for. :param raster: Whether this speed is for a rastering. :param raster_horizontal: Whether this speed is for horizontal rastering (top-to-bottom, y-axis speed) :param fix_speeds: is fixed speed mode on? :return: 1-4: Value for the accel factor. """ mm_per_second = LaserSpeed.get_actual_speed(mm_per_second, fix_speeds) if mm_per_second <= 25.4: return 1 if 25.4 < mm_per_second <= 60: return 2 if raster and raster_horizontal: if 60 < mm_per_second < 127: return 2 if 127 <= mm_per_second <= 320: return 3 if 320 < mm_per_second: return 4 else: if 60 < mm_per_second < 127: return 3 if 127 <= mm_per_second: return 4 # With the m2 nano, raster acceleration is defined by the distance allowed and the speed # To determine how to optimally split rasters which are far apart into separate images # or to combine these separate images back into larger images where that makes sense # we need this information to estimate when one option is more optimal than another # # We have only measured horizontal acceleration distances, # but IMO from what we know about m2 nano simplicity, # it is likely that vertical accel distances are likely the same # # However because these values are only used to determine # raster groups and not for the burns themselves, # if these are incorrect we will just get sub-optimal grouping # and not quality issues ACCELERATION_DISTANCES = [ # In mm 3.2512, # acceleration 1 distance 128mil 3.2512, # acceleration 2 distance 128mil 4.8768, # acceleration 3 distance 192mil 6.5024, # acceleration 4 distance 256mil ] @staticmethod def get_acceleration_time(speed, accel): """Calculate 1/2 sweep distance for speed / accel as raster margin""" return ( 375.0 * (LaserSpeed.ACCELERATION_DISTANCES[accel - 1] ** 1.36) / (speed ** 0.75) ) @staticmethod def get_suffix_c(board, mm_per_second=None): """ Due to a bug in the Chinese software the cutoff for the B2 machine is the same as the M2 at 7, but because if the half-stepping the invalid range the minimum speed is 9.509. And this is below the threshold. Speeds between 7-9.509 will be invalid. Since the B2 board is intended to duplicate this it will error as well. """ if board == "B2": if mm_per_second < 7: return True if board == "M2" and mm_per_second < 7: return True return False @staticmethod def get_equation(board, accel=1, suffix_c=False, fix_speeds=False): """ The speed for the M2 was physically checked and found to be inaccurate. If strict is used it will seek to strictly emulate the Chinese software. The physical device scaled properly with a different slope. The correct value has been established for the M2 board. It's guessed at for the B2 board being twice the M2 board. It is not known for A or B, B1 or B2 """ b = 784.0 if accel == 3: b = 896.0 if accel == 4: b = 1024.0 if board in ("A", "B", "B1"): # A, B, B1 have no known suffix-C equations. return b, 2000.0 m = 12120.0 if fix_speeds: m = 11148.0 if board == "B2": m *= 2 if suffix_c: return b, m / 12.0 else: # Non-B2 b-values if accel == 3: b = 5632.0 elif accel == 4: b = 6144.0 else: b = 5120.0 if suffix_c: return 8.0, m / 12.0 return b, m
import json import os from typing import Any import spotipy from spotipy.oauth2 import SpotifyOAuth try: CLIENT_ID = os.environ["SPOTIPY_CLIENT_ID"] CLIENT_SECRET = os.environ["SPOTIPY_CLIENT_SECRET"] CLIENT_REDIRECT_URI = os.environ["SPOTIPY_REDIRECT_URI"] except Exception as e: print("An Environment Variable for Spotify is incorrrect. Please verify you have the follow correct:\n") print("CLIENT_ID\nCLIENT_SECRET\nREDIRECT_URI\n") redirect = "http://localhost:3000" class Spotify: def __init__(self, deviceName:str, nospotify): self._scope = "user-read-playback-state,user-modify-playback-state" if not nospotify: self._credentials = SpotifyOAuth(client_id=CLIENT_ID, client_secret=CLIENT_SECRET, redirect_uri=redirect, scope=self._scope, open_browser=True) self.spotify = spotipy.Spotify(client_credentials_manager=self._credentials) else: self._credentials = None self.spotify = None self._deviceName = deviceName self._deviceId = -1 if nospotify else self.establishConnection() self._recentQuery = {} self._queue = set() def _findDeviceId(self) -> Any: id = -1 devices = self.getDevices() for device in devices["devices"]: if device['name'] == self.getDeviceName(): id = device['id'] return id def _setDeviceId(self, id) -> None: self._deviceId = id return None def _addToLocalQueue(self, id) -> None: knownQuery = self.getRecentQuery() self._queue.add(knownQuery[id]) return None def checkAndRemoveFromQueue(self, uri) -> None: for item in self._queue: if item[2] == uri: self._queue.remove(item) break return None def getCurrentPlayback(self): return self.spotify.currently_playing() def establishConnection(self, maxAttempts=3) -> None: currentRetries = 1 deviceId = self._findDeviceId() while deviceId == -1 and currentRetries <= maxAttempts: print("Attempting to establish spotify device connection...") print(f"Retries remaining: {(maxAttempts - currentRetries)}") deviceId = self._findDeviceId if deviceId != -1: self._setDeviceId(deviceId) print(f"Established connection to device id: {self.getDeviceId()}") else: print(f"Error! Could not establish connection to device named: {self.getDeviceName()}") return None def getDevices(self) -> json: return self.spotify.devices() def getDeviceId(self) -> Any: return self._deviceId def getDeviceName(self) -> str: return self._deviceName def getRecentQuery(self) -> dict: return self._recentQuery def getQueue(self) -> set: return self._queue def setRecentQuery(self, results:dict) -> None: self._recentQuery = results return None def printSearchResults(self, results:dict) -> None: for key, value in results.items(): print(f" ID: {key}") print(f" TRACK: {value[0]}") print(f"ARTIST: {value[1]}") print(f" URI: {value[2]}") print() return None def search(self, query) -> None: formattedResults = {} results = self.spotify.search(q=query) id = 1 for item in results['tracks']['items']: for artist in item['artists']: formattedResults[id] = (item['name'], artist['name'], item['uri']) id += 1 self.setRecentQuery(formattedResults) return None def play(self) -> None: self.spotify.start_playback(device_id=self.getDeviceId()) return None def pause(self) -> None: self.spotify.pause_playback(device_id=self.getDeviceId()) return None def next(self) -> None: self.spotify.next_track(device_id=self.getDeviceId()) return None def previous(self) -> None: self.spotify.previous_track(device_id=self.getDeviceId()) return None def requestTrack(self, id) -> None: uri = self.getTrackUri(id, self.getRecentQuery()) if self.spotify.current_playback(): self.spotify.add_to_queue(uri=uri, device_id=self.getDeviceId()) else: self.spotify.start_playback(uris=[uri], device_id=self.getDeviceId()) self._addToLocalQueue(id) return None def getTrackUri(self, trackId, recentQuery:dict) -> Any: return recentQuery[trackId][2] #uri position in tuple
""" Escreva um programa que receba como entrada o valor do saque realizado pelo cliente de um banco e retorne quantas notas de cada valor serão necessárias para atender ao saque com a menor quantidade de notas possível. Serão utilizadas notas de 100, 50, 20, 10, 5, 2 e 1 real. """ n1 = int(input('Digite o valor do saque: ')) n2 = 0 lista = [100, 50, 20, 10, 5, 2, 1] while True: if n1 == 0: break else: quant = int(n1 / lista[n2]) n1 -= (quant * lista[n2]) if quant > 0: print(f'Será preciso de {quant} nota(s) de R$ {lista[n2]}') n2 += 1
#!/usr/bin/env python3 from collections import namedtuple, UserList Step = namedtuple('Step', ['actor', 'options']) class MultiStep(UserList): def __init__(self, iterable=None): # validation logic if iterable: [e.actor for e in iterable] super().__init__(iterable) def __setitem__(self, i, elem): elem.actor self.list[i] = elem def insert(self, i, elem): elem.actor super().insert(i, elem) def append(self, elem): elem.actor super().append(elem) def extend(self, iterable): [e.actor for e in iterable] super().extend(l) def __call__(self): # attempt to return lazy data lazy_data = None for step in self: if step.options: options = step.options else: options = dict() lazy_data = step.actor(lazy_data, **options) return lazy_data def compute(self, *args, **kwargs): self.computation = self() self.computation.compute() def persist(self, *args, **kwargs): self.computation = self() return self.computation.persist()
"""Description """ import sys, os, time, argparse from collections import OrderedDict, deque import tensorflow as tf import numpy as np from feeder import Feeder from model import SptAudioGen, SptAudioGenParams from pyutils.ambisonics.distance import ambix_emd import myutils from definitions import * def parse_arguments(): parser = argparse.ArgumentParser( description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('model_dir', help='Directory to store model.') parser.add_argument('--subset_fn', default='') parser.add_argument('--batch_size', default=16, type=int) parser.add_argument('--overwrite', action='store_true') parser.add_argument('--gpu', type=int, default=0, help="GPU id") args = parser.parse_args(sys.argv[1:]) if len(args.subset_fn) == 0: args.subset_fn = None return args def main(args): eval_fn = os.path.join(args.model_dir, 'eval-detailed.txt') assert os.path.exists(args.model_dir), 'Model dir does not exist.' assert args.overwrite or not os.path.exists(eval_fn), 'Evaluation file already exists.' os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % args.gpu print ('\n' + '='*30 + ' ARGUMENTS ' + '='*30) params = myutils.load_params(args.model_dir) for k, v in params.__dict__.iteritems(): print ('TRAIN | {}: {}'.format(k, v)) for k, v in args.__dict__.iteritems(): print ('EVAL | {}: {}'.format(k, v)) sys.stdout.flush() DURATION = 0.1 BATCH_SIZE = 16 with tf.device('/cpu:0'), tf.compat.v1.variable_scope('feeder'): feeder = Feeder(params.db_dir, subset_fn=args.subset_fn, ambi_order=params.ambi_order, audio_rate=params.audio_rate, video_rate=params.video_rate, context=params.context, duration=DURATION, return_video=VIDEO in params.encoders, img_prep=myutils.img_prep_fcn(), return_flow=FLOW in params.encoders, frame_size=(224, 448), queue_size=BATCH_SIZE*5, n_threads=4, for_eval=True) batches = feeder.dequeue(BATCH_SIZE) ambix_batch = batches['ambix'] video_batch = batches['video'] if VIDEO in params.encoders else None flow_batch = batches['flow'] if FLOW in params.encoders else None audio_mask_batch = batches['audio_mask'] ss = int(params.audio_rate * params.context) / 2 t = int(params.audio_rate * DURATION) audio_input = ambix_batch[:, :, :params.ambi_order**2] audio_target = ambix_batch[:, ss:ss+t, params.ambi_order**2:] print ('\n' + '=' * 20 + ' MODEL ' + '=' * 20) sys.stdout.flush() with tf.device('/gpu:0'): # Model num_sep = params.num_sep_tracks if params.separation != NO_SEPARATION else 1 net_params = SptAudioGenParams(sep_num_tracks=num_sep, ctx_feats_fc_units=params.context_units, loc_fc_units=params.loc_units, sep_freq_mask_fc_units=params.freq_mask_units, sep_fft_window=params.fft_window) model = SptAudioGen(ambi_order=params.ambi_order, audio_rate=params.audio_rate, video_rate=params.video_rate, context=params.context, sample_duration=DURATION, encoders=params.encoders, separation=params.separation, params=net_params) # Inference pred_t = model.inference_ops(audio=audio_input, video=video_batch, flow=flow_batch, is_training=False) # Losses and evaluation metrics with tf.compat.v1.variable_scope('metrics'): w_t = audio_input[:, ss:ss+t] _, stft_dist_ps, lsd_ps, mse_ps, snr_ps = model.evaluation_ops(pred_t, audio_target, w_t, mask_channels=audio_mask_batch[:, params.ambi_order**2:]) # Loader vars2save = [v for v in tf.global_variables() if not v.op.name.startswith('metrics')] saver = tf.train.Saver(vars2save) print ('\n' + '='*30 + ' VARIABLES ' + '='*30) model_vars = tf.global_variables() import numpy as np for v in model_vars: if 'Adam' in v.op.name.split('/')[-1]: continue print (' * {:50s} | {:20s} | {:7s} | {:10s}'.format(v.op.name, str(v.get_shape()), str(np.prod(v.get_shape())), str(v.dtype))) print ('\n' + '='*30 + ' EVALUATION ' + '='*30) sys.stdout.flush() config = tf.ConfigProto( allow_soft_placement=True, gpu_options=tf.GPUOptions(allow_growth=True) ) with tf.Session(config=config) as sess: print ('Loading model...') sess.run(model.init_ops) saver.restore(sess, tf.train.latest_checkpoint(args.model_dir)) print ('Initializing data feeders...') coord = tf.train.Coordinator() tf.train.start_queue_runners(sess, coord) feeder.start_threads(sess) all_metrics = ['amplitude/predicted', 'amplitude/gt', 'mse/avg', 'mse/X','mse/Y', 'mse/Z', 'stft/avg', 'stft/X','stft/Y', 'stft/Z', 'lsd/avg', 'lsd/X','lsd/Y', 'lsd/Z', 'mel_lsd/avg', 'mel_lsd/X','mel_lsd/Y', 'mel_lsd/Z', 'snr/avg', 'snr/X','snr/Y', 'snr/Z', 'env_mse/avg', 'env_mse/X','env_mse/Y', 'env_mse/Z', 'emd/dir', 'emd/dir2'] metrics = OrderedDict([(key, []) for key in all_metrics]) sample_ids = [] telapsed = deque(maxlen=20) print ('Start evaluation...') it = -1 # run_options = tf.RunOptions(timeout_in_ms=60*1000) while True: it += 1 if feeder.done(sess): break start_time = time.time() outs = sess.run([batches['id'], audio_mask_batch, w_t, audio_target, pred_t, stft_dist_ps, lsd_ps, mse_ps, snr_ps]) video_id, layout, mono, gt, pred = outs[:5] gt_m = np.concatenate((mono, gt), axis=2) * layout[:, np.newaxis, :] pred_m = np.concatenate((mono, pred), axis=2) * layout[:, np.newaxis, :] stft_dist, lsd, mse, snr = outs[5:] _env_time = 0. _emd_time = 0. _pow_time = 0. _lsd_time = 0. for smp in range(BATCH_SIZE): metrics['stft/avg'].append(np.mean(stft_dist[smp])) for i, ch in zip(range(3), 'YZX'): metrics['stft/'+ch].append(stft_dist[smp, i]) metrics['lsd/avg'].append(np.mean(lsd[smp])) for i, ch in zip(range(3), 'YZX'): metrics['lsd/'+ch].append(lsd[smp, i]) metrics['mse/avg'].append(np.mean(mse[smp])) for i, ch in zip(range(3), 'YZX'): metrics['mse/'+ch].append(mse[smp, i]) metrics['snr/avg'].append(np.nanmean(snr[smp])) for i, ch in zip(range(3), 'YZX'): metrics['snr/'+ch].append(snr[smp, i]) # Compute Mel LSD distance _t = time.time() mel_lsd = myutils.compute_lsd_dist(pred[smp], gt[smp], params.audio_rate) metrics['mel_lsd/avg'].append(np.mean(mel_lsd)) for i, ch in zip(range(3), 'YZX'): metrics['mel_lsd/'+ch].append(mel_lsd[i]) _lsd_time += (time.time() - _t) # Compute envelope distances _t = time.time() env_mse = myutils.compute_envelope_dist(pred[smp], gt[smp]) metrics['env_mse/avg'].append(np.mean(env_mse)) for i, ch in zip(range(3), 'YZX'): metrics['env_mse/'+ch].append(env_mse[i]) _env_time += (time.time() - _t) # Compute EMD (for speed, only compute emd over first 0.1s of every 1sec) _t = time.time() emd_dir, emd_dir2 = ambix_emd(pred_m[smp], gt_m[smp], model.snd_rate, ang_res=30) metrics['emd/dir'].append(emd_dir) metrics['emd/dir2'].append(emd_dir2) _emd_time += (time.time() - _t) # Compute chunk power _t = time.time() metrics['amplitude/gt'].append(np.abs(gt[smp]).max()) metrics['amplitude/predicted'].append(np.abs(pred[smp]).max()) _pow_time += (time.time() - _t) sample_ids.append(video_id[smp]) telapsed.append(time.time() - start_time) #print '\nTotal:', telapsed[-1] #print 'Env:', _env_time #print 'LSD:', _lsd_time #print 'EMD:', _emd_time #print 'POW:', _pow_time if it % 100 == 0: # Store evaluation metrics with open(eval_fn, 'w') as f: f.write('SampleID | {}\n'.format(' '.join(metrics.keys()))) for smp in range(len(sample_ids)): f.write('{} | {}\n'.format(sample_ids[smp], ' '.join([str(metrics[key][smp]) for key in metrics]))) if it % 5 == 0: stats = OrderedDict([(m, np.mean(metrics[m])) for m in all_metrics]) myutils.print_stats(stats.values(), stats.keys(), BATCH_SIZE, telapsed, it, tag='EVAL') sys.stdout.flush() # Print progress stats = OrderedDict([(m, np.mean(metrics[m])) for m in all_metrics]) myutils.print_stats(stats.values(), stats.keys(), BATCH_SIZE, telapsed, it, tag='EVAL') sys.stdout.flush() with open(eval_fn, 'w') as f: f.write('SampleID | {}\n'.format(' '.join(metrics.keys()))) for smp in range(len(sample_ids)): f.write('{} | {}\n'.format(sample_ids[smp], ' '.join([str(metrics[key][smp]) for key in metrics]))) print('\n'+'#'*60) print('End of evaluation.') if __name__ == '__main__': main(parse_arguments())
# encoding: utf-8 # Author: Bingxin Ke # Created: 2021/10/4 """ Homogeneous coordinate transformation """ from typing import Union import numpy as np import open3d as o3d import torch def points_to_transform(p1, p2): raise NotImplemented def extent_transform_to_points(extents, transform): # _p1 = np.array([0, 0, 0, 1]).reshape((4, 1)) _half_extents = extents / 2.0 _p1 = np.concatenate([_half_extents * -1, [1]]).reshape((4, 1)) * -1 _p2 = np.concatenate([_half_extents, [1]]).reshape((4, 1)) _p1 = np.matmul(np.array(transform), _p1).squeeze() _p2 = np.matmul(np.array(transform), _p2).squeeze() _p1 = _p1 / _p1[3] _p2 = _p2 / _p2[3] return _p1[:3], _p2[:3] def normalize_pc(points: Union[np.ndarray, o3d.geometry.PointCloud], scales, center_shift): """ Normalize a point cloud: x_norm = (x_ori - center_shift) / scale Args: points: input point cloud scales: scale of source data center_shift: shift of original center (in original crs) Returns: """ if isinstance(points, o3d.geometry.PointCloud): points = np.asarray(points.points) norm_pc = (points - center_shift) / scales return norm_pc def invert_normalize_pc(points: Union[np.ndarray, o3d.geometry.PointCloud], scales, center_shift): """ Invert normalization of a point cloud: x_ori = scales * x_norm + center_shift Args: points: scales: center_shift: Returns: """ if isinstance(points, o3d.geometry.PointCloud): points = np.asarray(points.points) ori_pc = points * scales + center_shift return ori_pc def apply_transform(p, M): if isinstance(p, np.ndarray): p = p.reshape((-1, 3)) p = np.concatenate([p, np.ones((p.shape[0], 1))], 1).transpose() p2 = np.matmul(M, p).squeeze() p2 = p2 / p2[3, :] return p2[0:3, :].transpose() elif isinstance(p, torch.Tensor): p = p.reshape((-1, 3)) p = torch.cat([p, torch.ones((p.shape[0], 1)).to(p.device)], 1).transpose(0, 1) p2 = torch.matmul(M.double(), p.double()).squeeze() p2 = p2 / p2[3, :] return p2[0:3, :].transpose(0, 1).to(p.dtype) else: raise TypeError def invert_transform(M): if isinstance(M, np.ndarray): return np.linalg.inv(M) elif isinstance(M, torch.Tensor): return torch.inverse(M.double()).to(M.dtype) else: raise TypeError def stack_transforms(M_ls): """ M_out = M_ls[0] * M_ls[1] * M_ls[2] * ... Args: M_ls: Returns: """ M_out = M_ls[0] if isinstance(M_out, np.ndarray): for M in M_ls[1:]: M_out = np.matmul(M_out, M) return M_out elif isinstance(M_out, torch.Tensor): for M in M_ls[1:]: M_out = torch.matmul(M_out, M) return M_out else: raise TypeError
def soma (x, y): return x + y def multiplica (x, y, z): return x * y * z def meu_nome(): return "Lucas Zarza"
# ipop-project # Copyright 2016, University of Florida # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os import sys import json import signal import argparse import threading import importlib import uuid import controller.framework.fxlib as fxlib from collections import OrderedDict from controller.framework.CFxHandle import CFxHandle from controller.framework.CFxSubscription import CFxSubscription class CFX(object): def __init__(self): self._config = OrderedDict() self.parse_config() """ CFxHandleDict is a dict containing the references to CFxHandles of all CMs with key as the module name and value as the CFxHandle reference """ self._cfx_handle_dict = {} self.model = self._config["CFx"]["Model"] self._event = None self._subscriptions = {} self._node_id = self.set_node_id() self._load_order = [] def submit_cbt(self, cbt): recipient = cbt.request.recipient if cbt.op_type == "Response": recipient = cbt.response.recipient self._cfx_handle_dict[recipient]._cm_queue.put(cbt) def initialize(self,): # check for circular dependencies in the configuration file dependency_graph = {} for key in self._config: if key != "CFx": try: dependency_graph[key] = self._config[key]["Dependencies"] except Exception as error: pass if self.detect_cyclic_dependency(dependency_graph): print("Circular dependency detected in config.json. Exiting") sys.exit() self.build_load_order() # iterate and load the modules specified in the configuration file for module_name in self._load_order: self.load_module(module_name) # intialize all the CFxHandles which in turn initialize the CMs for module_name in self._load_order: self._cfx_handle_dict[module_name].initialize() # start all the worker and timer threads for module_name in self._cfx_handle_dict: self._cfx_handle_dict[module_name]._cm_thread.start() if self._cfx_handle_dict[module_name]._timer_thread: self._cfx_handle_dict[module_name]._timer_thread.start() def load_module(self, module_name): """ Dynamically load the modules specified in the config file. Allow model specific module implementations to override the default by attempting to load them first. """ if len(self.model) > 0: if os.path.isfile("controller/modules/{0}/{1}.py" .format(self.model, module_name)): module = importlib.import_module("controller.modules.{0}.{1}" .format(self.model, module_name)) else: module = importlib.import_module("controller.modules.{0}" .format(module_name)) # get the class with name key from module module_class = getattr(module, module_name) # create a CFxHandle object for each module handle = CFxHandle(self) self._config[module_name]["NodeId"] = self._node_id instance = module_class(handle, self._config[module_name], module_name) handle._cm_instance = instance handle._cm_config = self._config[module_name] # store the CFxHandle object references in the # dict with module name as the key self._cfx_handle_dict[module_name] = handle def add_dependencies(self, module_name): dependencies = self._config[module_name].get("Dependencies", {}) for dep in dependencies: if dep not in self._load_order: self.add_dependencies(dep) if module_name not in self._load_order: self._load_order.append(module_name) def build_load_order(self,): # creates a module load order based on how they are listed in the # config file and their dependency list try: for module_name in self._config: module_enabled = self._config[module_name].get("Enabled", True) if module_enabled and module_name != "CFx": self.add_dependencies(module_name) except KeyError: pass def detect_cyclic_dependency(self, g): # test if the directed graph g has a cycle path = set() def visit(vertex): path.add(vertex) for neighbour in g.get(vertex, ()): if (neighbour in path) or visit(neighbour): return True path.remove(vertex) return False return any(visit(v) for v in g) def __handler(self, signum=None, frame=None): print("Signal handler called with signal ", signum) def parse_config(self): for k in fxlib.MODULE_ORDER: self._config[k] = fxlib.CONFIG.get(k) parser = argparse.ArgumentParser() parser.add_argument("-c", help="load configuration from a file", dest="config_file", metavar="config_file") parser.add_argument("-u", help="update configuration file if needed", dest="update_config", action="store_true") parser.add_argument("-p", help="load remote ip configuration file", dest="ip_config", metavar="ip_config") parser.add_argument("-s", help="configuration as json string" " (overrides configuration from file)", dest="config_string", metavar="config_string") parser.add_argument("--pwdstdout", help="use stdout as " "password stream", dest="pwdstdout", action="store_true") args = parser.parse_args() if args.config_file: # load the configuration file with open(args.config_file) as f: # load the configuration file into an OrderedDict with the # modules in the order in which they appear json_data = json.load(f, object_pairs_hook=OrderedDict) for key in json_data: if self._config.get(key, False): self._config[key].update(json_data[key]) else: self._config[key] = json_data[key] if args.config_string: loaded_config = json.loads(args.config_string) for key in loaded_config: if self._config.get(key, None): self._config[key].update(loaded_config[key]) def set_node_id(self,): config = self._config["CFx"] # if NodeId is not specified in Config file, generate NodeId nodeid = config.get("NodeId", None) if nodeid is None or len(nodeid) == 0: try: with open("nid", "r") as f: nodeid = f.read() except IOError: pass if nodeid is None or len(nodeid) == 0: nodeid = str(uuid.uuid4().hex) with open("nid", "w") as f: f.write(nodeid) return nodeid def wait_for_shutdown_event(self): self._event = threading.Event() # Since signal.pause() is not avaialble on windows, use event.wait() # with a timeout to catch KeyboardInterrupt. Without timeout, it"s # not possible to catch KeyboardInterrupt because event.wait() is # a blocking call without timeout. The if condition checks if the os # is windows. if os.name == "nt": while True: try: self._event.wait(1) except (KeyboardInterrupt, SystemExit) as e: print("Controller shutdown event: {0}".format(str(e))) break else: for sig in [signal.SIGINT]: signal.signal(sig, self.__handler) # signal.pause() sleeps until SIGINT is received signal.pause() def terminate(self): for module_name in self._cfx_handle_dict: if self._cfx_handle_dict[module_name]._timer_thread: self._cfx_handle_dict[module_name]._exit_event.set() self._cfx_handle_dict[module_name]._cm_queue.put(None) # wait for the threads to process their current CBTs and exit print("waiting for threads to exit ...") for module_name in self._cfx_handle_dict: self._cfx_handle_dict[module_name]._cm_thread.join() print("{0} exited".format(self._cfx_handle_dict[module_name]._cm_thread.name)) if self._cfx_handle_dict[module_name]._timer_thread: self._cfx_handle_dict[module_name]._timer_thread.join() print("{0} exited".format(self._cfx_handle_dict[module_name]._timer_thread.name)) sys.exit(0) def query_param(self, param_name=""): try: if param_name == "IpopVersion": return self._config["CFx"]["IpopVersion"] if param_name == "NodeId": return self._node_id if param_name == "Overlays": return self._config["CFx"]["Overlays"] if param_name == "Model": return self.model except Exception as error: print("Exception occurred while querying data." + str(error)) return None # Caller is the subscription source def publish_subscription(self, owner_name, subscription_name, owner): sub = CFxSubscription(owner_name, subscription_name) sub._owner = owner if sub._owner_name not in self._subscriptions: self._subscriptions[sub._owner_name] = [] self._subscriptions[sub._owner_name].append(sub) return sub def remove_subscription(self, sub): sub.post_update("SUBSCRIPTION_SOURCE_TERMINATED") if sub._owner_name not in self._subscriptions: raise NameError("Failed to remove subscription source \"{}\"." " No such provider name exists." .format(sub._owner_name)) self._subscriptions[sub._owner_name].remove(sub) def find_subscription(self, owner_name, subscription_name): sub = None if owner_name not in self._subscriptions: raise NameError("The specified subscription provider {} was not found.".format(owner_name)) for sub in self._subscriptions[owner_name]: if sub._subscription_name == subscription_name: return sub return None # Caller is the subscription sink def start_subscription(self, owner_name, subscription_name, Sink): sub = self.find_subscription(owner_name, subscription_name) if sub is not None: sub.add_subscriber(Sink) else: raise NameError("The specified subscription name was not found") def end_subscription(self, owner_name, subscription_name, Sink): sub = self.find_subscription(owner_name, subscription_name) if sub is not None: sub.remove_subscriber(Sink) if __name__ == "__main__": cf = CFX() cf.initialize()
import random from time import time import warnings warnings.filterwarnings('ignore') from tqdm import tqdm from tree_modules import kd_tree, quad_tree def test_random_insertions(val_range=100, num_elements=1000, reps=10): q_time = 0 k_time = 0 print("\nRandom element insertion") print(f"{num_elements} points, x,y:[0,{val_range}] - Avg. of {reps} runs") for _ in tqdm(range(reps)): k = kd_tree() q = quad_tree() rand_elements = [(random.randrange(val_range), random.randrange(val_range)) for _ in range(num_elements)] t_s = time() for item in tqdm(rand_elements, position=1, leave=False): x, y = item q.add_element(x, y) t_e = time() q_time += t_e - t_s t_s = time() for item in tqdm(rand_elements, position=1, leave=False): x, y = item k.add_element(x, y) t_e = time() k_time += t_e - t_s k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= def test_build(val_range=100, num_elements=1000, reps=10): q_time = 0 k_time = 0 print("\nBuilding from given list of points") print(f"{num_elements} points, x,y:[0,{val_range}] - Avg. of {reps} runs") for _ in tqdm(range(reps)): k = kd_tree() q = quad_tree() rand_elements = [(random.randrange(val_range), random.randrange(val_range)) for _ in range(num_elements)] t_s = time() q.build(point_list=rand_elements) t_e = time() q_time += t_e - t_s t_s = time() k.build(point_list=rand_elements) t_e = time() k_time += t_e - t_s k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= def build_trees(val_range=100, num_elements=1000): q = quad_tree() k = kd_tree() for _ in range(num_elements): x = random.randrange(val_range) y = random.randrange(val_range) q.add_element(x, y) k.add_element(x, y) return q, k def test_random_searches(num_searches=50, val_range=100, num_elements=1000, reps=10): q_time = 0 k_time = 0 print("\nRandom point search") print(f"{num_searches} points in popul. of {num_elements} - Avg. of {reps} runs") q, k = build_trees(val_range=val_range, num_elements=num_elements) for _ in tqdm(range(reps)): rand_search_points = [(random.randrange(val_range), random.randrange(val_range)) for _ in range(num_searches)] ts = time() for item in tqdm(rand_search_points, position=1, leave=False): x, y = item _ = q.search(x, y) te = time() q_time += te - ts ts = time() for item in tqdm(rand_search_points, position=1, leave=False): x, y = item _ = k.search(x, y) te = time() k_time += te - ts k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= def test_storage(val_range=100, num_elements=1000, reps=10): q_time = 0 k_time = 0 print("\nStorage testing") print(f"Trees of {num_elements} popul - Avg. of {reps} runs") for _ in tqdm(range(reps)): q, k = build_trees(val_range=val_range, num_elements=num_elements) ts = time() _ = q.storage() te = time() q_time += te - ts ts = time() _ = k.storage() te = time() k_time += te - ts k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= def test_knn_search(num_searches=50, max_k=7, val_range=100, num_elements=1000, reps=10): print("\nkNN-Search") print(f"{num_searches} points in popul. of {num_elements} - Avg. of {reps} runs") q, k = build_trees(val_range=val_range, num_elements=num_elements) for ck in range(1, max_k): q_time = 0 k_time = 0 txt = f"[k = {ck}]" for _ in tqdm(range(reps), desc=txt): rand_search_points = [(random.randrange(val_range), random.randrange(val_range)) for _ in range(num_searches)] ts = time() for item in tqdm(rand_search_points, position=1, leave=False): x, y = item _ = q.knn_search(x, y, ck) te = time() q_time += te - ts ts = time() for item in tqdm(rand_search_points, position=1, leave=False): x, y = item _ = k.knn_search(x, y, ck) te = time() k_time += te - ts k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= def test_delete(num_deletions, val_range=100, num_elements=1000, reps=10): q_time = 0 k_time = 0 print("\nDeletion testing") print(f"{num_searches} points in popul. of {num_elements} - Avg. of {reps} runs") for _ in tqdm(range(reps)): k = kd_tree() q = quad_tree() rand_elements = [(random.randrange(val_range), random.randrange(val_range)) for _ in range(num_elements)] for item in rand_elements: x, y = item q.add_element(x, y) k.add_element(x, y) deletion_points = [] for _ in range(num_deletions): key = random.randrange(len(rand_elements)) deletion_points.append(rand_elements[key]) del rand_elements[key] t_s = time() for item in tqdm(deletion_points, position=1, leave=False): x, y = item _ = k.delete_element(x, y) t_e = time() k_time += t_e - t_s t_s = time() for item in tqdm(deletion_points, position=1, leave=False): x, y = item _ = q.delete_element(x, y) t_e = time() q_time += t_e - t_s k_time /= reps q_time /= reps print(f"kD_Tree: {round(k_time, 4)}s \t\tQuadTree: {round(q_time, 4)}s") # ============================================================================= if __name__ == "__main__": print("Hi!") reps = 10 val_range = 250 num_elements = 20000 num_searches = 1000 max_k = 7 reduction = 5 test_random_insertions(val_range=val_range, num_elements=num_elements, reps=reps) test_build(val_range=int(val_range / reduction), num_elements=int(num_elements / (reduction ** 2)), reps=reps) test_storage(val_range=val_range, num_elements=num_elements, reps=reps) test_delete(num_deletions=num_searches, val_range=val_range, num_elements=num_elements, reps=reps) test_random_searches(num_searches=num_searches, val_range=val_range, num_elements=num_elements, reps=reps) test_knn_search(num_searches=num_searches, max_k=max_k, val_range=val_range, num_elements=num_elements, reps=reps)
import tensorflow as tf INPUT_HEIGHT = 200 INPUT_WIDTH = 200 class FineNet(tf.keras.Model): def __init__(self, alpha, lmbda, d_latent): super(FineNet, self).__init__() self.alpha = alpha self.lmbda = lmbda self.d_latent = d_latent self.embedder = tf.keras.Sequential( [ tf.keras.layers.Conv2D(16, 7, 2, "same"), # 100 tf.keras.layers.BatchNormalization(), tf.keras.layers.MaxPool2D((2, 2), 2, padding="same"), # 50 ResidualBlock([32, 32, 64], [1, 3, 1], 2), tf.keras.layers.MaxPool2D((2, 2), 2, padding="same"), # 25 ResidualBlock([64, 64, 128], [1, 3, 1], 3), tf.keras.layers.MaxPool2D( (2, 2), 2, padding="same", ), # 13 ResidualBlock([128, 128, 256], [1, 3, 1], 4), tf.keras.layers.MaxPool2D((2, 2), 2, padding="same"), # 7 ResidualBlock([256, 256, 512], [1, 3, 1], 3), tf.keras.layers.AvgPool2D((7, 7), 7), # 1 tf.keras.layers.Reshape((512,)), tf.keras.layers.Dense(d_latent), ] ) def call(self, x, training=False): z = self.embedder(x, training=training) return tf.math.l2_normalize(z, axis=1) def call_on_identities(self, identities_x, training=False): n_identities = identities_x.shape[0] n_prints_per_identity = identities_x.shape[1] prints_x = tf.reshape(identities_x, [-1, INPUT_HEIGHT, INPUT_WIDTH, 1]) prints_z = self.call(prints_x, training=training) identities_z = tf.reshape( prints_z, [n_identities, n_prints_per_identity, self.d_latent] ) return identities_z def triplet_loss(self, z_a, z_p, z_n): batch_sz = z_a.shape[0] positive_dist = tf.norm(z_a - z_p, axis=1) negative_dist = tf.norm(z_a - z_n, axis=1) J = positive_dist - negative_dist + self.alpha return tf.math.maximum(J, tf.zeros([batch_sz])) def softmax_loss(self, z_a, z_p): z_a_softmax = tf.nn.softmax(z_a, axis=1) z_p_softmax = tf.nn.softmax(z_p, axis=1) l = -tf.reduce_sum(z_a_softmax * tf.math.log(z_p_softmax), axis=1) return l def loss_function(self, z_a, z_p, z_n): l = self.triplet_loss(z_a, z_p, z_n) # + self.lmbda * \ # self.softmax_loss(z_a, z_p) s = tf.reduce_sum(l) return s class ResidualBlock(tf.keras.Model): def __init__(self, filters, kernel_sizes, repetitions): super(ResidualBlock, self).__init__() filters = filters * repetitions kernel_sizes = kernel_sizes * repetitions n_conv = len(filters) assert n_conv == len(kernel_sizes) self.convolutions = tf.keras.Sequential() for i in range(n_conv): c = tf.keras.layers.Conv2D(filters[i], kernel_sizes[i], padding="same") b = tf.keras.layers.BatchNormalization() a = tf.keras.layers.ReLU() self.convolutions.add(c) self.convolutions.add(b) self.convolutions.add(a) def call(self, x, training=False): out = self.convolutions(x, training=training) return tf.pad(x, [[0, 0], [0, 0], [0, 0], [0, out.shape[3] - x.shape[3]]]) + out
#!/usr/bin/env python """ Created on Wed Apr 8 15:19:52 2015 Author: Oren Freifeld Email: freifeld@csail.mit.edu """ import numpy as np from of.utils import * from pyvision.essentials import Img from pylab import plt def colored_squares(dimy,dimx,nPixels_in_square_side): """ """ M=nPixels_in_square_side seg = np.zeros((dimy,dimx),dtype=np.int32) yy,xx = np.mgrid[:dimy,:dimx] xx = xx.astype(np.float) yy = yy.astype(np.float) dimx = float(dimx) dimy=float(dimy) nTimesInX = np.floor(xx / M).max() + 1 seg = np.floor(yy / M) * nTimesInX + np.floor(xx / M) seg = seg.astype(np.int32) return seg def random_permute_labels(seg): p=np.random.permutation(seg.max()+1) seg2 = np.zeros_like(seg) for c in range(seg.max()+1): seg2[seg==c]=p[c] return seg2.astype(np.int32) if __name__ == "__main__": tic = time.clock() seg= colored_squares(512*2, 512*2,64*4) toc = time.clock() print toc-tic plt.figure(1) plt.clf() plt.imshow(seg,interpolation="Nearest") plt.axis('scaled')
# Copyright 2019 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). import os from abc import ABCMeta from dataclasses import dataclass from pants.base.build_root import BuildRoot from pants.core.util_rules.distdir import DistDir from pants.engine.console import Console from pants.engine.fs import Digest, DirectoriesToMerge, DirectoryToMaterialize, Workspace from pants.engine.goal import Goal, GoalSubsystem, LineOriented from pants.engine.rules import goal_rule from pants.engine.selectors import Get, MultiGet from pants.engine.target import ( Configuration, TargetsToValidConfigurations, TargetsToValidConfigurationsRequest, ) from pants.engine.unions import union class AWSLambdaError(Exception): pass @dataclass(frozen=True) class CreatedAWSLambda: digest: Digest name: str runtime: str handler: str @union class AWSLambdaConfiguration(Configuration, metaclass=ABCMeta): """The fields necessary to create an AWS Lambda from a target.""" class AWSLambdaOptions(LineOriented, GoalSubsystem): """Generate an AWS Lambda.""" name = "awslambda" class AWSLambdaGoal(Goal): subsystem_cls = AWSLambdaOptions @goal_rule async def create_awslambda( console: Console, options: AWSLambdaOptions, distdir: DistDir, buildroot: BuildRoot, workspace: Workspace, ) -> AWSLambdaGoal: targets_to_valid_configs = await Get[TargetsToValidConfigurations]( TargetsToValidConfigurationsRequest( AWSLambdaConfiguration, goal_description=f"the `{options.name}` goal", error_if_no_valid_targets=True, ) ) awslambdas = await MultiGet( Get[CreatedAWSLambda](AWSLambdaConfiguration, config) for config in targets_to_valid_configs.configurations ) merged_digest = await Get[Digest]( DirectoriesToMerge(tuple(awslambda.digest for awslambda in awslambdas)) ) result = workspace.materialize_directory( DirectoryToMaterialize(merged_digest, path_prefix=str(distdir.relpath)) ) with options.line_oriented(console) as print_stdout: for awslambda, path in zip(awslambdas, result.output_paths): print_stdout(f"Wrote code bundle to {os.path.relpath(path, buildroot.path)}") print_stdout(f" Runtime: {awslambda.runtime}") print_stdout(f" Handler: {awslambda.handler}") print_stdout("") return AWSLambdaGoal(exit_code=0) def rules(): return [create_awslambda]
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Everything needed to run classification and regression tasks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import tensorflow.compat.v1 as tf import sys from bam.bert import tokenization from bam.data import feature_spec from bam.data import task_weighting from bam.helpers import utils from bam.task_specific import task from bam.task_specific.classification import classification_metrics from bam.data.NERLoader import NERLoader from bam.helpers.CRF import CustomCRF,distillation_loss from bam.tf_crf.crf_helper import allowed_transitions #from bam.helpers.crf_static_contraint_helper import allowed_transitions import json class InputExample(task.Example): """A single training/test example for simple sequence classification.""" def __init__(self, eid, task_name, text_a, text_b=None, label=None, mask=None): super(InputExample, self).__init__(task_name) self.eid = eid self.text_a = text_a self.text_b = text_b self.label = label self.mask = mask class SingleOutputTask(task.Task): """A task with a single label per input (e.g., text classification).""" __metaclass__ = abc.ABCMeta def __init__(self, config, name, tokenizer): super(SingleOutputTask, self).__init__(config, name) self._tokenizer = tokenizer self._distill_inputs = None def featurize(self, example, is_training): """Turn an InputExample into a dict of features.""" if is_training and self.config.distill and self._distill_inputs is None: self._distill_inputs = utils.load_pickle( self.config.distill_inputs(self.name)) tokens_a = self._tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = self._tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, self.config.max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > self.config.max_seq_length - 2: tokens_a = tokens_a[0:(self.config.max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it # makes it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = self._tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < self.config.max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == self.config.max_seq_length assert len(input_mask) == self.config.max_seq_length assert len(segment_ids) == self.config.max_seq_length eid = example.eid features = { "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids, "task_id": self.config.task_names.index(self.name), self.name + "_eid": eid, } self._add_features(features, example, None if self._distill_inputs is None else self._distill_inputs[eid]) return features def _load_glue(self, lines, split, text_a_loc, text_b_loc, label_loc, skip_first_line=False, eid_offset=0, swap=False): examples = [] for (i, line) in enumerate(lines): if i == 0 and skip_first_line: continue eid = i - (1 if skip_first_line else 0) + eid_offset text_a = tokenization.convert_to_unicode(line[text_a_loc]) if text_b_loc is None: text_b = None else: text_b = tokenization.convert_to_unicode(line[text_b_loc]) if "test" in split or "diagnostic" in split: label = self._get_dummy_label() else: label = tokenization.convert_to_unicode(line[label_loc]) if swap: text_a, text_b = text_b, text_a examples.append(InputExample(eid=eid, task_name=self.name, text_a=text_a, text_b=text_b, label=label)) return examples @abc.abstractmethod def _get_dummy_label(self): pass @abc.abstractmethod def _add_features(self, features, example, distill_inputs): pass class NERTask(task.Task): """A task with a single label per token in input (e.g., NER).""" __metaclass__ = abc.ABCMeta def __init__(self, config, name, tokenizer,label_list): super(NERTask, self).__init__(config, name) self._tokenizer = tokenizer self._distill_inputs = None self.label_list = label_list def featurize(self, example, is_training): """Turn an InputExample into a dict of features.""" if is_training and self.config.distill and self._distill_inputs is None: self._distill_inputs = utils.load_pickle( self.config.distill_inputs(self.name)) input_ids = example.text_a input_mask = example.mask segment_ids = [] while len(segment_ids) < self.config.max_seq_length: segment_ids.append(0) assert len(input_ids) == self.config.max_seq_length assert len(input_mask) == self.config.max_seq_length assert len(segment_ids) == self.config.max_seq_length eid = example.eid features = { "input_ids": input_ids, "input_mask": input_mask, "segment_ids": segment_ids, "task_id": self.config.task_names.index(self.name), self.name + "_eid": eid, } self._add_features(features, example, None if self._distill_inputs is None else self._distill_inputs[eid]) return features def _load_processed(self, filename): examples = [] with open(filename) as file: data = json.load(file) temp_texts = data["Mixed"]["tweets"] temp_labels = data["Mixed"]["labels"] texts=[] labels=[] for text,label in zip(temp_texts,temp_labels): if not len(text.strip()) == 0: texts.append(text) labels.append(label) labels2idx = {v:k for k,v in enumerate(self.label_list)} idx2labels = {v: k for k, v in labels2idx.items()} loader = NERLoader() text_ids,labels,masks = loader.load(texts, labels, labels2idx, tokenizer=self._tokenizer,max_position_embeddings=self.config.max_seq_length) for (i,text_a) in enumerate(text_ids): eid = i text_b = None label = labels[i] mask = masks[i] examples.append(InputExample(eid=eid, task_name=self.name, text_a=text_a, text_b=text_b, label=label,mask=mask)) return examples @abc.abstractmethod def _get_dummy_label(self): pass @abc.abstractmethod def _add_features(self, features, example, distill_inputs): pass class RegressionTask(SingleOutputTask): """A regression task (e.g., STS).""" __metaclass__ = abc.ABCMeta def __init__(self, config, name, tokenizer, min_value, max_value): super(RegressionTask, self).__init__(config, name, tokenizer) self._tokenizer = tokenizer self._min_value = min_value self._max_value = max_value def _get_dummy_label(self): return 0.0 def get_feature_specs(self): feature_specs = [feature_spec.FeatureSpec(self.name + "_eid", []), feature_spec.FeatureSpec(self.name + "_targets", [], is_int_feature=False)] if self.config.distill: feature_specs.append(feature_spec.FeatureSpec( self.name + "_distill_targets", [], is_int_feature=False)) return feature_specs def _add_features(self, features, example, distill_inputs): label = float(example.label) assert self._min_value <= label <= self._max_value label = (label - self._min_value) / self._max_value features[example.task_name + "_targets"] = label if distill_inputs is not None: features[self.name + "_distill_targets"] = distill_inputs def get_prediction_module(self, bert_model, features, is_training, percent_done): reprs = bert_model.get_pooled_output() if is_training: reprs = tf.nn.dropout(reprs, keep_prob=0.9) predictions = tf.layers.dense(reprs, 1) predictions = tf.squeeze(predictions, -1) targets = features[self.name + "_targets"] if self.config.distill: distill_targets = features[self.name + "_distill_targets"] if self.config.teacher_annealing: targets = ((targets * percent_done) + (distill_targets * (1 - percent_done))) else: targets = ((targets * (1 - self.config.distill_weight)) + (distill_targets * self.config.distill_weight)) losses = tf.square(predictions - targets) outputs = dict( loss=losses, predictions=predictions, targets=features[self.name + "_targets"], eid=features[self.name + "_eid"] ) return losses, outputs def get_scorer(self): return classification_metrics.RegressionScorer() class TokenClassificationTask(NERTask): """A classification task (e.g., MNLI).""" __metaclass__ = abc.ABCMeta def __init__(self, config, name, tokenizer, label_list): super(TokenClassificationTask, self).__init__(config, name, tokenizer,label_list) self._tokenizer = tokenizer self._label_list = label_list self.crf=None self.T = config.T def _get_dummy_label(self): return self._label_list[0] def get_feature_specs(self): feature_specs = [feature_spec.FeatureSpec(self.name + "_eid", []), feature_spec.FeatureSpec(self.name + "_label_ids", [self.config.max_seq_length], is_int_feature=True)] #, #feature_spec.FeatureSpec(self.name + "_masks", [self.config.max_seq_length], is_int_feature=False)] if self.config.distill: feature_specs.append(feature_spec.FeatureSpec( self.name + "_distill_targets", [self.config.max_seq_length], is_int_feature=False)) return feature_specs def _add_features(self, features, example, distill_inputs): label_id = example.label features[example.task_name + "_label_ids"] = label_id #features[example.task_name + "_masks"] = example.mask if distill_inputs is not None: features[self.name + "_distill_targets"] = distill_inputs def get_prediction_module(self, bert_model, features, is_training, percent_done): num_labels = len(self._label_list) #if self.crf is None: constraints = allowed_transitions("BIO", dict(enumerate(self._label_list))) self.crf = CustomCRF(units=num_labels,START_TAG = num_labels-2, STOP_TAG = num_labels-1, transition_constraint=constraints) reprs = bert_model.get_sequence_output() if is_training: reprs = tf.nn.dropout(reprs, keep_prob=0.9) #mask = features[self.name + "_masks"] mask = features["input_mask"] #mask2len = tf.reduce_sum(mask, axis=1) #print_op = tf.print(mask, output_stream=sys.stderr) #with tf.control_dependencies([print_op]): decoded_sequence, best_score, forward_score, backward_score = self.crf(reprs,mask)#tf.layers.dense(reprs, num_labels) posterior_score = forward_score + backward_score #log_probs = tf.nn.log_softmax(posterior_score, axis=-1) label_ids = features[self.name + "_label_ids"] if self.config.distill: teacher_labels = tf.nn.softmax(features[self.name + "_distill_targets"] / self.T,axis=-1) true_labels = tf.one_hot(label_ids, depth=num_labels, dtype=tf.float32) if self.config.teacher_annealing: labels = ((true_labels * percent_done) + (teacher_labels * (1 - percent_done))) else: labels = ((true_labels * (1 - self.config.distill_weight)) + (teacher_labels * self.config.distill_weight)) else: labels = tf.one_hot(label_ids, depth=num_labels, dtype=tf.float32) #print(labels.shape,log_probs.shape) #print(posterior_score,labels,mask) losses = tf.repeat(tf.expand_dims(distillation_loss(posterior_score, labels, mask, self.T),axis=0),repeats=[label_ids.shape[0]]) #losses = -tf.reduce_sum(tf.reduce_sum(labels * log_probs, axis=-1),axis=-1) #losses, trans = self.crf_loss(logits,labels * log_probs,mask,num_labels,mask2len) #predict,viterbi_score = tf.contrib.crf.crf_decode(logits, trans, mask2len) outputs = dict( loss=losses, logits=posterior_score, predictions=decoded_sequence, label_ids=label_ids, eid=features[self.name + "_eid"], ) return losses, outputs def get_scorer(self): return classification_metrics.BIOF1Scorer(self.label_list) class ClassificationTask(SingleOutputTask): """A classification task (e.g., MNLI).""" __metaclass__ = abc.ABCMeta def __init__(self, config, name, tokenizer, label_list): super(ClassificationTask, self).__init__(config, name, tokenizer) self._tokenizer = tokenizer self._label_list = label_list def _get_dummy_label(self): return self._label_list[0] def get_feature_specs(self): feature_specs = [feature_spec.FeatureSpec(self.name + "_eid", []), feature_spec.FeatureSpec(self.name + "_label_ids", [])] if self.config.distill: feature_specs.append(feature_spec.FeatureSpec( self.name + "_logits", [len(self._label_list)], is_int_feature=False)) return feature_specs def _add_features(self, features, example, distill_inputs): label_map = {} for (i, label) in enumerate(self._label_list): label_map[label] = i label_id = label_map[example.label] features[example.task_name + "_label_ids"] = label_id if distill_inputs is not None: features[self.name + "_logits"] = distill_inputs def get_prediction_module(self, bert_model, features, is_training, percent_done): num_labels = len(self._label_list) reprs = bert_model.get_pooled_output() if is_training: reprs = tf.nn.dropout(reprs, keep_prob=0.9) logits = tf.layers.dense(reprs, num_labels) # probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = features[self.name + "_label_ids"] if self.config.distill: teacher_labels = tf.nn.softmax(features[self.name + "_logits"] / 1.0) true_labels = tf.one_hot(label_ids, depth=num_labels, dtype=tf.float32) if self.config.teacher_annealing: labels = ((true_labels * percent_done) + (teacher_labels * (1 - percent_done))) else: labels = ((true_labels * (1 - self.config.distill_weight)) + (teacher_labels * self.config.distill_weight)) else: labels = tf.one_hot(label_ids, depth=num_labels, dtype=tf.float32) losses = -tf.reduce_sum(labels * log_probs, axis=-1) outputs = dict( loss=losses, logits=logits, predictions=tf.argmax(logits, axis=-1), label_ids=label_ids, eid=features[self.name + "_eid"], ) return losses, outputs def get_scorer(self): return classification_metrics.AccuracyScorer() def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() class MNLI(ClassificationTask): """Multi-NLI.""" def __init__(self, config, tokenizer): super(MNLI, self).__init__(config, "mnli", tokenizer, ["contradiction", "entailment", "neutral"]) def get_examples(self, split): if split == "dev": split += "_matched" return self.load_data(split + ".tsv", split) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): if split == "diagnostic": examples += self._load_glue(lines, split, 1, 2, None, True) else: examples += self._load_glue(lines, split, 8, 9, -1, True) return examples def get_test_splits(self): return ["test_matched", "test_mismatched", "diagnostic"] class MRPC(ClassificationTask): """Microsoft Research Paraphrase Corpus.""" def __init__(self, config, tokenizer): super(MRPC, self).__init__(config, "mrpc", tokenizer, ["0", "1"]) def _create_examples(self, lines, split): examples = [] offset = 0 for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue(lines, split, 3, 4, 0, True) if not offset: offset = len(examples) if self.config.double_unordered and split == "train": examples += self._load_glue(lines, split, 3, 4, 0, True, offset, True) return examples class CoLA(ClassificationTask): """Corpus of Linguistic Acceptability.""" def __init__(self, config, tokenizer): super(CoLA, self).__init__(config, "cola", tokenizer, ["0", "1"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue( lines, split, 1 if split == "test" else 3, None, 1, split == "test") return examples def get_scorer(self): return classification_metrics.MCCScorer() class SST(ClassificationTask): """Stanford Sentiment Treebank.""" def __init__(self, config, tokenizer): super(SST, self).__init__(config, "sst", tokenizer, ["0", "1"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): if "test" in split: examples += self._load_glue(lines, split, 1, None, None, True) else: examples += self._load_glue(lines, split, 0, None, 1, True) return examples class QQP(ClassificationTask): """Quora Question Pair.""" def __init__(self, config, tokenizer): super(QQP, self).__init__(config, "qqp", tokenizer, ["0", "1"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue(lines, split, 1 if split == "test" else 3, 2 if split == "test" else 4, 5, True) return examples class RTE(ClassificationTask): """Recognizing Textual Entailment.""" def __init__(self, config, tokenizer): super(RTE, self).__init__(config, "rte", tokenizer, ["entailment", "not_entailment"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue(lines, split, 1, 2, 3, True) return examples class QNLI(ClassificationTask): """Question NLI.""" def __init__(self, config, tokenizer): super(QNLI, self).__init__(config, "qnli", tokenizer, ["entailment", "not_entailment"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue(lines, split, 1, 2, 3, True) return examples class TREC(ClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(TREC, self).__init__(config, "trec", tokenizer, ["num", "loc", "hum", "desc", "enty", "abbr"]) def _create_examples(self, lines, split): examples = [] for _ in range(task_weighting.get_task_multiple(self, split)): examples += self._load_glue(lines, split, 0, None, 1, False) return examples class STS(RegressionTask): """Semantic Textual Similarity.""" def __init__(self, config, tokenizer): super(STS, self).__init__(config, "sts", tokenizer, 0.0, 5.0) def _create_examples(self, lines, split): examples = [] offset = 0 for _ in range(task_weighting.get_task_multiple(self, split)): if split == "test": examples += self._load_glue(lines, split, -2, -1, None, True) else: examples += self._load_glue(lines, split, -3, -2, -1, True) if not offset: offset = len(examples) if self.config.double_unordered and split == "train": examples += self._load_glue( lines, split, -3, -2, -1, True, offset, True) return examples class Covid(TokenClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(Covid, self).__init__(config, "covid", tokenizer, ['[PAD]', 'B-STA', 'I-STA', 'B-CONTR', 'I-CONTR','B-NCT', 'I-NCT', 'B-LB', 'I-LB', 'B-REG', 'I-REG', 'B-OTH', 'I-OTH', 'O','[CLS]','[SEP]']) def get_examples(self, split): if split == "dev": split = "val" path = self.config.json_data_dir(self.name+"/"+split + ".json") return self._load_processed(path) def get_test_splits(self): return ["test"] class Mixed(TokenClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(Mixed, self).__init__(config, "mixed", tokenizer, ['[PAD]', 'B-STA', 'I-STA', 'B-CONTR', 'I-CONTR','B-NCT', 'I-NCT', 'B-LB', 'I-LB', 'B-REG', 'I-REG', 'B-OTH', 'I-OTH', 'O','[CLS]','[SEP]']) def get_examples(self, split): if split == "dev": split = "val" return self._load_processed(self.config.json_data_dir(self.name+"/"+split + ".json")) def get_test_splits(self): return ["test"] class LocExp(TokenClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(LocExp, self).__init__(config, "locexp", tokenizer, ['[PAD]', 'B-LOC', 'I-LOC','O','[CLS]','[SEP]']) def get_examples(self, split): if split == "dev": split = "val" return self._load_processed(self.config.json_data_dir(self.name+"/"+split + ".json")) def get_test_splits(self): return ["test"] class GeoNY(TokenClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(GeoNY, self).__init__(config, "geony", tokenizer, ['[PAD]', 'B-ADM', 'I-ADM', 'B-BUI', 'I-BUI','B-TRA', 'I-TRA', 'O','[CLS]','[SEP]']) def get_examples(self, split): if split == "dev": split = "val" return self._load_processed(self.config.json_data_dir(self.name + "/" + split + ".json")) def get_test_splits(self): return ["test"] class GeoNZ(TokenClassificationTask): """Question Type Classification.""" def __init__(self, config, tokenizer): super(GeoNZ, self).__init__(config, "geonz", tokenizer, ['[PAD]', 'B-ADM', 'I-ADM', 'B-BUI', 'I-BUI','B-TRA', 'I-TRA', 'O','[CLS]','[SEP]']) def get_examples(self, split): if split == "dev": split = "val" return self._load_processed(self.config.json_data_dir(self.name + "/" + split + ".json")) def get_test_splits(self): return ["test"]
# This file is part of QuTiP: Quantum Toolbox in Python. # # Copyright (c) 2011 and later, The QuTiP Project # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### import itertools import numpy as np import pytest import qutip from qutip.core import data as _data def expected(qobj, sel): if qobj.isbra or qobj.isket: qobj = qobj.proj() sel = sorted(sel) dims = [[x for i, x in enumerate(qobj.dims[0]) if i in sel]]*2 new_shape = (np.prod(dims[0]),) * 2 out = qobj.full() before, after = 1, qobj.shape[0] for i, dim in enumerate(qobj.dims[0]): after //= dim if i in sel: before = before * dim continue tmp_dims = (before, dim, after) * 2 out = np.einsum('aibcid->abcd', out.reshape(tmp_dims)) return qutip.Qobj(out.reshape(new_shape), dims=dims) @pytest.fixture(params=[_data.CSR, _data.Dense], ids=['CSR', 'Dense']) def dtype(request): return request.param @pytest.fixture(params=[True, False], ids=['dm', 'ket']) def dm(request): return request.param @pytest.fixture def state(dtype, dm): dims = [2, 3, 4] state = qutip.rand_ket(np.prod(dims), dims=[dims, [1]*len(dims)]) if dm: state = state.proj() return state.to(dtype) def test_ptrace_noncompound_rand(dtype, dm): """Test `A.ptrace(0) == A` when `A` is in a non-tensored Hilbert space.""" for _ in range(5): state = qutip.rand_ket(5) if dm: state = state.proj() state = state.to(dtype) assert state.ptrace(0) == (state if dm else state.proj()) @pytest.mark.parametrize('pair', list(itertools.combinations(range(3), 2))) def test_ptrace_unsorted_selection_subset(state, pair): """ Regression test for gh-1325. ptrace should work the same independently of the order of the input; no transposition in done in the trace operation. """ # pair is always sorted. state_ordered = state.ptrace(pair) state_reversed = state.ptrace(pair[::-1]) assert state_ordered.dims == state_reversed.dims assert state_ordered == state_reversed @pytest.mark.parametrize('permutation', list(itertools.permutations(range(3)))) def test_ptrace_unsorted_selection_all(state, permutation): state_ptraced = state.ptrace(permutation) if state.isket: state = state.proj() assert state.dims == state_ptraced.dims assert state == state_ptraced @pytest.mark.parametrize(['selection', 'exception'], [ pytest.param(4, IndexError, id='too big'), pytest.param(-1, IndexError, id='too small'), pytest.param([0, 0], ValueError, id='duplicate'), # 'too many' may throw either from duplication or invalid index. pytest.param([0, 1, 2, 3], Exception, id='too many'), ]) def test_ptrace_fails_on_invalid_input(state, selection, exception): with pytest.raises(exception): state.ptrace(selection) def test_ptrace_rand(dtype): 'ptrace : randomized tests' for _ in range(5): A = qutip.tensor( qutip.rand_ket(5), qutip.rand_ket(2), qutip.rand_ket(3), ).to(dtype) for sel in ([2, 1], [0, 2], [0, 1]): assert A.ptrace(sel) == expected(A, sel) A = qutip.tensor( qutip.rand_dm(2), qutip.thermal_dm(10, 1), qutip.rand_unitary(3), ).to(dtype) for sel in ([1, 2], [0, 2], [0, 1]): assert A.ptrace(sel) == expected(A, sel) A = qutip.tensor( qutip.rand_ket(2), qutip.rand_ket(2), qutip.rand_ket(2), qutip.rand_ket(2), qutip.rand_ket(2), qutip.rand_ket(2), ).to(dtype) for sel in ([3, 2], [0, 2], [0, 1]): assert A.ptrace(sel) == expected(A, sel) A = qutip.rand_dm(64, 0.5, dims=[[4, 4, 4], [4, 4, 4]]).to(dtype) for sel in ([0], [1], [0, 2]): assert A.ptrace(sel) == expected(A, sel)
#!/usr/bin/env python import argparse import re import sys def FixWhitespace(path): lines = file(path, "rb").readlines() should_rewrite = False for i, line in enumerate(lines): trailing_whitespace, = re.search("(\s*)$", line).groups() if trailing_whitespace == "\n": continue print "%s(%d): incorrect line ending: %r" % (path, i, trailing_whitespace) line = re.sub("(\s*)$", "\n", line) lines[i] = line should_rewrite = True file(path, "wb").write("".join(lines)) def Main(args=sys.argv[1:]): parser = argparse.ArgumentParser() parser.add_argument("path", nargs="+") options = parser.parse_args(args) for path in options.path: FixWhitespace(path) if __name__ == "__main__": Main()
#!/usr/bin/env python # This fact finds the paths of compiled ardupilot firmwares # otherwise compile attempts happen every run, which is unnecessary and very slow import os,re print "ardupilotfw_test=yes" if os.path.isfile("/srv/maverick/code/ardupilot/ArduCopter/ArduCopter.elf"): print "ardupilotfw_arducopter=yes" else: print "ardupilotfw_arducopter=no" if os.path.isfile("/srv/maverick/code/ardupilot/ArduPlane/ArduPlane.elf"): print "ardupilotfw_arduplane=yes" else: print "ardupilotfw_arduplane=no" if os.path.isfile("/srv/maverick/code/ardupilot/APMrover2/APMrover2.elf"): print "ardupilotfw_apmrover2=yes" else: print "ardupilotfw_apmrover2=no" if os.path.isfile("/srv/maverick/code/ardupilot/AntennaTracker/AntennaTracker.elf"): print "ardupilotfw_antennatracker=yes" else: print "ardupilotfw_antennatracker=no" # Define main data container waffiles = [] for root, dirs, files in os.walk("/srv/maverick/code/ardupilot/build"): for file in files: dirs = root.split("/") trpath = "/".join(dirs[-2::]) file = os.path.join(trpath, file) if re.search("bin/", file): waffiles.append(file) # Finally, print the data out in the format expected of a fact provider if waffiles: print "waffiles="+str(",".join(waffiles)) else: print "waffiles=false"
from django.shortcuts import render, get_object_or_404 from django.views import View from .models import Blog from projects.models import AboutPerson, PersonSocialMedia # View for all blog posts class BlogView(View): def get(self, request): about = AboutPerson.objects.get(pk=1) social_medias = PersonSocialMedia.objects.all() blogs = Blog.objects context = {'about': about, 'social_medias': social_medias, 'blogs': blogs} return render(request, template_name='blog/blog.html', context=context) # View for one blog post class BlogPostView(View): def get(self, request, blog_id, blog_slug): about = AboutPerson.objects.get(pk=1) social_medias = PersonSocialMedia.objects.all() blog_post = get_object_or_404(Blog, pk=blog_id) context = {'about': about, 'social_medias': social_medias, 'blog_post': blog_post} return render(request, template_name='blog/post.html', context=context)
""" A Simple CLI to parse text file with League Results""" __version__ = "0.0.2"
from .load_docx import load_docx from .load_chat import load_chat from .creat_relation import creat_relation, creat_relations
# Project Quex (http://quex.sourceforge.net); License: MIT; # (C) 2005-2020 Frank-Rene Schaefer; #_______________________________________________________________________________ import quex.input.regular_expression.core as regular_expression import quex.input.files.mode_option as mode_option import quex.input.files.code_fragment as code_fragment from quex.input.files.specifier.mode import ModeParsed from quex.input.code.core import CodeUser from quex.input.code.base import SourceRef import quex.engine.misc.error as error import quex.engine.misc.similarity as similarity from quex.engine.misc.file_in import EndOfStreamException, \ check, \ check_or_die, \ check_end_of_file, \ read_identifier, \ read_until_letter, \ read_until_whitespace, \ is_identifier, \ skip_whitespace, \ optional_flags from quex.output.token.id_generator import token_id_db_enter import quex.blackboard as blackboard from quex.blackboard import setup as Setup, \ Lng, \ standard_incidence_db from collections import namedtuple def parse(fh, mode_parsed_db): # NOTE: Catching of EOF happens in caller: parse_section(...) skip_whitespace(fh) position = fh.tell() mode_name = read_identifier(fh, OnMissingStr="Missing identifier at beginning of mode definition.") error.insight("Mode '%s'" % mode_name) # NOTE: constructor does register this mode in the mode_db new_mode = ModeParsed(mode_name, SourceRef.from_FileHandle(fh)) if new_mode.name in mode_parsed_db: error.log("Mode '%s' has been defined twice.\n" % new_mode.name, new_mode.sr, DontExitF=True) error.log("Earlier definition here.", mode_parsed_db[new_mode.name].sr) mode_parsed_db[new_mode.name] = new_mode # (*) inherited modes / option_db skip_whitespace(fh) dummy = fh.read(1) if dummy not in [":", "{"]: error.log("missing ':' or '{' after mode '%s'" % mode_name, fh) if dummy == ":": new_mode.direct_base_mode_name_list = _parse_base_mode_list(fh) _parse_option_list(fh, new_mode) # (*) read in pattern-action pairs and events while not check(fh, "}"): if check_end_of_file(fh): error.log("End of file reached while parsing mode '%s'." % mode_name, fh, position) _parse_pattern_action_pair(new_mode, fh) def _parse_base_mode_list(fh): """RETURNS: List of names of direct base modes. Deeper base modes need to be determined from reflecting a mode hierarchie. """ skip_whitespace(fh) result_list = [] trailing_comma_f = False while 1 + 1 == 2: pos = fh.tell() if check(fh, "{"): fh.seek(pos); break elif check(fh, "<"): fh.seek(pos); break skip_whitespace(fh) identifier = read_identifier(fh) if not identifier: break result_list.append(identifier) trailing_comma_f = False if not check(fh, ","): break trailing_comma_f = True if trailing_comma_f: error.warning("Trailing ',' after base mode '%s'." % result_list[-1], fh) _check_against_old_syntax_of_base_mode_definitions(fh, result_list) return result_list def _parse_option_list(fh, new_mode): while 1 + 1 == 2: sr = SourceRef.from_FileHandle(fh) identifier, setting = mode_option.parse(fh, new_mode) if identifier is None: break new_mode.option_db.enter(identifier, setting, sr, new_mode.name) def _parse_pattern_action_pair(new_mode, fh): skip_whitespace(fh) if __parse_keyword_list_and_action(new_mode, fh): return elif __parse_brief_and_action(new_mode, fh): return elif __parse_event_and_action(new_mode, fh): return else: __parse_pattern_and_action(new_mode, fh) def __parse_pattern_and_action(new_mode, fh): pattern_list = regular_expression.parse_multiple_result(fh) for pattern in pattern_list: sr = SourceRef.from_FileHandle(fh, new_mode.name) pattern.set_source_reference(sr) __parse_action(new_mode, fh, pattern_list) def __parse_action(new_mode, fh, pattern_list): position = fh.tell() try: skip_whitespace(fh) position = fh.tell() code = code_fragment.parse(fh, "regular expression", ErrorOnFailureF=False) if code is not None: assert isinstance(code, CodeUser), "Found: %s" % code.__class__ for pattern in pattern_list: new_mode.add_pattern_action_pair(pattern, code, fh) return fh.seek(position) word, dummy, position_before_marker = read_until_letter(fh, [";"], Verbose=True) if word == "PRIORITY-MARK": error.log("PRIORITY-MARK is has been renamed to 'DEMOTION'.", fh) elif word == "DEMOTION": # This mark 'lowers' the priority of a pattern to the priority of the current # pattern index (important for inherited patterns, that have higher precedence). # The parser already constructed a state machine for the pattern that is to # be assigned a new priority. Since, this machine is not used, let us just # use its id. fh.seek(position_before_marker) check_or_die(fh, ";") for pattern in pattern_list: new_mode.add_match_priority(pattern, fh) elif word == "DELETION": # This mark deletes any pattern that was inherited with the same 'name' fh.seek(position_before_marker) check_or_die(fh, ";", ". Since quex version 0.33.5 this is required.") for pattern in pattern_list: new_mode.add_match_deletion(pattern, fh) else: error.log("Missing token '=>', '{', 'DEMOTION', or 'DELETION' after '%s'.\n" % pattern_list[0].pattern_string() + \ "found: '%s'. Note, that since quex version 0.33.5 it is required to add a ';'\n" % word + \ "to the commands DEMOTION and DELETION.", fh) except EndOfStreamException: error.error_eof("pattern action", fh, position) def __parse_event_and_action(new_mode, fh): pos = fh.tell() word = read_until_whitespace(fh) # Allow '<<EOF>>' and '<<FAIL>>' out of respect for classical tools like 'lex' if word == "<<EOF>>": word = "on_end_of_stream" elif word == "<<FAIL>>": word = "on_failure" elif word in blackboard.all_section_title_list: error.log("Pattern '%s' is a quex section title. Has the closing '}' of mode %s \n" % (word, new_mode.name) \ + "been forgotten? Else use quotes, i.e. \"%s\"." % word, fh) elif len(word) < 3 or word[:3] != "on_": fh.seek(pos); return False if word == "on_indentation": fh.seek(pos) error.log("Definition of 'on_indentation' is no longer supported since version 0.51.1.\n" "Please, use 'on_indent' for the event of an opening indentation, 'on_dedent'\n" "for closing indentation, and 'on_nodent' for no change in indentation.\n" "If you want to match 'on_indentation' as a string, use quotes.", fh) comment = "Unknown event handler '%s'. \n" % word + \ "Note, that any pattern starting with 'on_' is considered an event handler.\n" + \ "use double quotes to bracket patterns that start with 'on_'." error.verify_word_in_list(word, list(standard_incidence_db.keys()) + ["keyword_list"], comment, fh) code = code_fragment.parse(fh, "%s::%s event handler" % (new_mode.name, word)) incidence_id = standard_incidence_db[word][0] if Lng.suspicious_RETURN_in_event_handler(incidence_id, code.get_text()): error.warning("Suspicious 'FLUSH' in event handler '%s'.\n" % incidence_id \ + "This statement will trigger 'on_after_match' handler.\n" \ + "May be, use plain return instead.", code.sr) new_mode.incidence_db[word] = code return True def __parse_brief_and_action(new_mode, fh): """ADAPTS: new_mode.pattern_action_list where new pattern action pairs are entered. RETURNS: True, in case of success. EXITS: in case of syntax errors. """ position = fh.tell() identifier = read_identifier(fh) if identifier != "brief": if similarity.get(identifier, ["brief", "briefing", "briefly"]) != -1: error.warning("'%s' is similar to keyword 'brief'.\n" "For clarity, use quotes." % identifier, fh) fh.seek(position) return False flags = optional_flags(fh, "brief pattern action pair list", "", {"N": "pass LexemeNull to token contructor.", "L": "pass Lexeme to token constructor.", "i": "implicit token identifier definition."}, BadCombinationList=["NL"]) skip_whitespace(fh) prefix = read_identifier(fh) skip_whitespace(fh) lexeme_null_f = "N" in flags lexeme_f = "L" in flags implicit_tid_f = "i" in flags check_or_die(fh, "{", "Opening bracket required after 'brief'.") while not check(fh, "}"): skip_whitespace(fh) pattern = regular_expression.parse(fh) skip_whitespace(fh) position = fh.tell() identifier = read_identifier(fh) if not identifier: error.log("Missing identifier after regular expression.", fh) identifier = "%s%s" % (prefix, identifier) check_or_die(fh, ";", "Semincolon required after brief token identifier '%s'." % identifier) if implicit_tid_f: token_id_db_enter(fh, identifier) code = code_fragment.get_CodeUser_for_token_sending(fh, identifier, position, LexemeNullF = lexeme_null_f, LexemeF = lexeme_f) new_mode.add_pattern_action_pair(pattern, code, fh) return True def __parse_keyword_list_and_action(new_mode, fh): """ADAPTS: new_mode.pattern_action_list where new pattern action pairs are entered. RETURNS: True, in case of success. EXITS: in case of syntax errors. """ position = fh.tell() identifier = read_identifier(fh) if identifier != "keyword_list": if similarity.get(identifier, ["keyword_list", "key words"]) != -1: error.warning("'%s' is similar to keyword 'keyword_list'.\n" "For clarity, use quotes." % identifier, fh) fh.seek(position) return False def to_identifier(PatternCarryingIdentifier, fh): """RETURNS: Path in 'PatternCarryingIdentifier' given as string if there is single path on single characters that comply the requirements to be part of an identifier. None, else. """ sm = PatternCarryingIdentifier.borrow_sm() if not sm: return None code_point_sequence = sm.get_sequence() if not code_point_sequence: return None candidate = "".join(eval("u'\\U%08X'" % x) for x in code_point_sequence) if not is_identifier(candidate): return None else: return candidate def error_exit(fh, position): current_position = fh.tell() fh.seek(position) text = fh.read(current_position - position) for suspicious in ";.:,|": if suspicious in text: error.log("keywords in 'keyword_list' are must be white space separated. Found '%s'." % suspicious, fh) else: error.log("Cannot convert regular expression into identifier.", fh) flags = optional_flags(fh, "keyword_list", "u", {"u": "(default) make correspondent token identifiers uppercase.", "l": "make correspondent token identifiers lowercase.", "N": "(default) pass LexemeNull to token contructor.", "L": "pass Lexeme to token constructor.", "i": "implicit token identifier definition."}, BadCombinationList=["ul", "NL"]) lexeme_null_f = "N" in flags lexeme_f = "L" in flags implicit_tid_f = "i" in flags lowercase_f = "l" in flags uppercase_f = "u" in flags skip_whitespace(fh) prefix = read_identifier(fh) skip_whitespace(fh) check_or_die(fh, "{", "Opening bracket required after 'keyword_list'.") while not check(fh, "}"): skip_whitespace(fh) position = fh.tell() pattern = regular_expression.parse(fh) identifier = to_identifier(pattern, fh) if identifier is None: error_exit(fh, position) elif uppercase_f: identifier = identifier.upper() elif lowercase_f: identifier = identifier.lower() identifier = "%s%s" % (prefix, identifier) if implicit_tid_f: token_id_db_enter(fh, identifier) code = code_fragment.get_CodeUser_for_token_sending(fh, identifier, position, LexemeNullF = lexeme_null_f, LexemeF = lexeme_f) new_mode.add_pattern_action_pair(pattern, code, fh) return True def _check_against_old_syntax_of_base_mode_definitions(fh, direct_base_mode_name_list): if not direct_base_mode_name_list: return pos = fh.tell() skip_whitespace(fh) dummy_identifier = read_identifier(fh) if dummy_identifier: error.log("Missing separating ',' between base modes '%s' and '%s'.\n" \ % (direct_base_mode_name_list[-1], dummy_identifier) + \ "(The comma separator is mandatory since quex 0.53.1)", fh) fh.seek(pos)
import RPi.GPIO as GPIO GPIO.setmode(GPIO.BOARD) GPIO.setup(7, GPIO.IN) print GPIO.input(7)
# Uma empresa possui 30 funcionários e resolveu oferecer um # auxílio família de R$ 150,00 por filho. O sistema deverá # perguntar a quantidade de filhos e informar o valor total do # bônus para cada funcionário. numFuncionarios = 30 contador = 1 while contador<=numFuncionarios: numFilhos = int(input('\nDigite quantidade de Filhos: ')) bonus = numFilhos*150 print(f'Para {numFilhos} filhos, um BONUS de: {bonus}') contador+=1
# The MIT License (MIT) # # Copyright (c) 2020 NVIDIA CORPORATION. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # base stuff import os import sys import gc # numpy import numpy as np # torch import torch import torch.cuda.amp as amp import torch.distributed as dist from torch.nn.parallel.distributed import DistributedDataParallel # custom stuff from utils import metric # import wandb try: import wandb except ImportError: pass class Trainer(object): def __init__(self, pargs, model, criterion, optimizer, grad_scaler, scheduler, device): self.model = model self.criterion = criterion self.optimizer = optimizer self.gscaler = grad_scaler self.scheduler = scheduler self.device = device self.enable_dali = (not pargs.data_format == "hdf5") # check for distributed lamb: have_distributed_lamb = True try: from apex.contrib.optimizers.distributed_fused_lamb import DistributedFusedLAMB except: have_distributed_lamb = False if have_distributed_lamb and isinstance(self.optimizer, DistributedFusedLAMB): self.enable_distributed_lamb = True self.optimizer.set_is_accumulation_step(False) else: self.enable_distributed_lamb = False # we need this for distlamb if self.enable_distributed_lamb: # we need that in order for it to work with async graph capture self.lr_cpu = torch.tensor([0.], dtype=torch.float32, device='cpu').pin_memory() # extract relevant parameters self.batch_size = pargs.local_batch_size self.enable_jit = pargs.enable_jit self.enable_amp = (pargs.precision_mode == "amp") self.force_fp16 = (pargs.precision_mode == "fp16") self.enable_nhwc = pargs.enable_nhwc self.enable_graph = pargs.enable_graph # set that to None self.graph = None # check if model is scriptable self.jit_scriptable = True for m in self.model.modules(): if hasattr(m, "jit_scriptable"): self.jit_scriptable = self.jit_scriptable and m.jit_scriptable if not self.jit_scriptable: break def _compile(self, input_shape): # exit if we do not compile if not self.enable_jit: return # set model to train just to be sure self.model.train() # input example input_example = torch.zeros((self.batch_size, *input_shape), dtype=torch.float32, device=self.device) input_example.normal_() # convert to half if requested if self.force_fp16: input_example = input_example.half() # we need to convert to NHWC if necessary if self.enable_nhwc: input_example = input_example.contiguous(memory_format = torch.channels_last) # compile the model with amp.autocast(enabled = self.enable_amp): # extract the right thing to jit model_handle = self.model if not isinstance(self.model, DistributedDataParallel) else self.model.module # GBN is not scriptable, we need to workaround here if self.jit_scriptable: model_handle = torch.jit.script(model_handle) else: model_handle = torch.jit.trace(model_handle, input_example, check_trace = False) # the criterion is always scriptable self.criterion = torch.jit.script(self.criterion) def _warmup(self, input_shape, label_shape, warmup_stream = None, num_warmup = 20): # set model to train just to be sure self.model.train() # extract or create stream stream = torch.cuda.Stream() if warmup_stream is None else warmup_stream # create input: input_example = torch.zeros((self.batch_size, *input_shape), dtype=torch.float32, device=self.device) input_example.normal_() label_example = torch.zeros((self.batch_size, *label_shape), dtype=torch.int64, device=self.device) # convert to half if requested if self.force_fp16: input_example = input_example.half() # we need to convert to NHWC if necessary if self.enable_nhwc: input_example = input_example.contiguous(memory_format = torch.channels_last) # wait for ambient stream before starting capture stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): # warmup: for _ in range(num_warmup): self.optimizer.zero_grad() with amp.autocast(enabled = self.enable_amp): output = self.model(input_example) loss = self.criterion(output, label_example) # distributed lamb init if self.enable_distributed_lamb: self.optimizer._lazy_init_stage1() self.gscaler.scale(loss).backward() # distributed lamb finalize if self.enable_distributed_lamb: self.optimizer._lazy_init_stage2() self.optimizer.complete_reductions() torch.cuda.current_stream().wait_stream(stream) def _capture(self, input_shape, label_shape, graph_stream = None, num_warmup = 20, graph_pool = None): # exit if we do not capture if not self.enable_graph: return # set model to train just to be sure self.model.train() # extract or create capture stream capture_stream = torch.cuda.Stream() if graph_stream is None else graph_stream # create input: self.static_input = torch.zeros((self.batch_size, *input_shape), dtype=torch.float32, device=self.device) self.static_input.normal_() self.static_label = torch.zeros((self.batch_size, *label_shape), dtype=torch.int64, device=self.device) # convert to half if requested if self.force_fp16: self.static_input = self.static_input.half() # we need to convert to NHWC if necessary if self.enable_nhwc: self.static_input = self.static_input.contiguous(memory_format = torch.channels_last) # wait for ambient stream before starting capture capture_stream.wait_stream(torch.cuda.current_stream()) # enter stream context with torch.cuda.stream(capture_stream): # warmup: for _ in range(num_warmup): self.optimizer.zero_grad() # FW pass with amp.autocast(enabled = self.enable_amp): output = self.model(self.static_input) loss = self.criterion(output, self.static_label) # distributed lamb work here if self.enable_distributed_lamb: self.optimizer._lazy_init_stage1() # BW pass self.gscaler.scale(loss).backward() # distributed lamb postprocessing if self.enable_distributed_lamb: self.optimizer._lazy_init_stage2() self.optimizer.set_global_scale(self.gscaler._get_scale_async()) self.optimizer.complete_reductions() self.gscaler.step(self.optimizer) self.gscaler.update() # sync streams capture_stream.synchronize() # clean up if num_warmup > 0: del output,loss gc.collect() torch.cuda.empty_cache() # create graph self.graph = torch.cuda._Graph() # zero grads before capture: self.model.zero_grad(set_to_none=True) # start capture if graph_pool is not None: self.graph.capture_begin(pool = graph_pool) else: self.graph.capture_begin() # preprocessing #self.optimizer.zero_grad() # not necessary according to Michael #self.static_scale = self.gscaler._scale # FW pass with amp.autocast(enabled = self.enable_amp): self.static_output = self.model(self.static_input) self.static_loss = self.criterion(self.static_output, self.static_label) # BW pass self.gscaler.scale(self.static_loss).backward() # should also be done # distributed lamb postprocessing if self.enable_distributed_lamb: self.optimizer.set_global_scale(self.gscaler._get_scale_async()) self.optimizer.complete_reductions() self.gscaler.step(self.optimizer) self.gscaler.update() # end capture self.graph.capture_end() torch.cuda.current_stream().wait_stream(capture_stream) def preprocess(self, input_shape, label_shape, scaffolding_stream = None, graph_pool = None): # compile self._compile(input_shape) # warmup self._warmup(input_shape, label_shape, warmup_stream = scaffolding_stream, num_warmup = 10) # capture self._capture(input_shape, label_shape, graph_stream = scaffolding_stream, num_warmup = 0, graph_pool = graph_pool) def step(self, inputs, label): # set model to train to be sure self.model.train() # convert input if requested if self.force_fp16: inputs = inputs.half() # to NHWC if self.enable_nhwc: N, H, W, C = (self.batch_size, 768, 1152, 16) inputs = torch.as_strided(inputs, size=[N, C, H, W], stride=[C*H*W, 1, W*C, C]) if self.graph is None: with amp.autocast(enabled = self.enable_amp): outputs = self.model.forward(inputs) loss = self.criterion(outputs, label) # prepare optimizer self.optimizer.zero_grad() # backward pass self.gscaler.scale(loss).backward() # postprocess if self.enable_distributed_lamb: self.optimizer.set_global_scale(self.gscaler._get_scale_async()) self.optimizer.complete_reductions() # update scaler self.gscaler.step(self.optimizer) self.gscaler.update() else: # run graph self.static_input.copy_(inputs) self.static_label.copy_(label) #self.static_scale.copy_(self.gscaler._scale) self.graph.replay() # DEBUG ## postprocess #if self.enable_distributed_lamb: # self.optimizer.complete_reductions() # self.optimizer.set_global_scale(self.gscaler._get_scale_async()) # DEBUG if not self.enable_distributed_lamb: self.gscaler.step(self.optimizer) self.gscaler.update() # copy variables loss = self.static_loss.clone() outputs = self.static_output.clone() # get current learning rate current_lr = self.optimizer.param_groups[0]['lr'] # scheduler step if requested: if self.scheduler is not None: self.scheduler.step() if self.enable_distributed_lamb: self.lr_cpu[0] = current_lr self.optimizer._lr.copy_(self.lr_cpu[0]) return loss, outputs, current_lr def train_step(pargs, comm_rank, comm_size, step, epoch, trainer, train_loader, logger, have_wandb, max_num_steps_per_epoch=None): # epoch loop for step_in_epoch, (inputs, label, filename) in enumerate(train_loader): if step_in_epoch==max_num_steps_per_epoch: break if not trainer.enable_dali: # send to device inputs = inputs.to(trainer.device) label = label.to(trainer.device) loss, outputs, current_lr = trainer.step(inputs, label) # step counter step += 1 #log if requested if (step % pargs.logging_frequency == 0): # allreduce for loss loss_avg = loss.detach() if dist.is_initialized(): dist.reduce(loss_avg, dst=0, op=dist.ReduceOp.SUM) loss_avg_train = loss_avg.item() / float(comm_size) # Compute score outputs = outputs.detach() if pargs.enable_nhwc: outputs = outputs.contiguous(memory_format = torch.contiguous_format) predictions = torch.argmax(torch.softmax(outputs, 1), 1) iou = metric.compute_score_new(predictions, label, num_classes=3) iou_avg = iou.detach() if dist.is_initialized(): dist.reduce(iou_avg, dst=0, op=dist.ReduceOp.SUM) iou_avg_train = iou_avg.item() / float(comm_size) # log values logger.log_event(key = "learning_rate", value = current_lr, metadata = {'epoch_num': epoch+1, 'step_num': step}) logger.log_event(key = "train_accuracy", value = iou_avg_train, metadata = {'epoch_num': epoch+1, 'step_num': step}) logger.log_event(key = "train_loss", value = loss_avg_train, metadata = {'epoch_num': epoch+1, 'step_num': step}) if have_wandb and (comm_rank == 0): wandb.log({"train_loss": loss_avg_train}, step = step) wandb.log({"train_accuracy": iou_avg_train}, step = step) wandb.log({"learning_rate": current_lr}, step = step) return step def train_step_profile(pargs, comm_rank, comm_size, step, epoch, trainer, train_loader, start_profiler, stop_profiler): # enable profiling with torch.autograd.profiler.emit_nvtx(enabled = True): # epoch loop train_iter = iter(train_loader) epoch_done = False while(True): if step == pargs.capture_range_start: start_profiler() # step region torch.cuda.synchronize() torch.cuda.nvtx.range_push(f"step_{step}") # IO region torch.cuda.nvtx.range_push(f"data_loading") try: inputs, label, filename = next(train_iter) except StopIteration: epoch_done = True torch.cuda.nvtx.range_pop() if epoch_done: break if pargs.data_format == "hdf5": # send to device inputs = inputs.to(trainer.device) label = label.to(trainer.device) if not pargs.io_only: loss, outputs, current_lr = trainer.step(inputs, label) # step counter step += 1 torch.cuda.synchronize() torch.cuda.nvtx.range_pop() if step >= pargs.capture_range_stop: stop_profiler() break return step
class LoginForm(forms.Form): username=forms.UsernameField(required=True,error_messages={'required':"用户名不能为空"}) password=forms.PasswordField(max_length=120,min_length=6,required=True,error_messages={'required':"密码不能为空"})
"""The core session used as default when no backend is connected.""" import logging from .session import Session from .sparql_backend import SparqlResult, SparqlBindingSet, SPARQLBackend logger = logging.getLogger(__name__) class CoreSession(Session, SPARQLBackend): """Core default session for all objects.""" _warned_sparql_slow = False def __str__(self): """Convert the core session object to string.""" return "<CoreSession object>" # OVERRIDE def _notify_update(self, cuds_object): pass # OVERRIDE def _notify_delete(self, cuds_object): pass # OVERRIDE def _notify_read(self, cuds_object): pass def _get_full_graph(self): """Get the triples in the core session.""" return self.graph def _sparql(self, query_string): """Execute the given SPARQL query on the graph of the core session. Args: query_string (str): The SPARQL query as a string. """ if not CoreSession._warned_sparql_slow: logger.warning('At the moment, SPARQL queries on the default ' 'session of OSP-core (the core session) are ' 'supported, but slow. For better performance, ' 'please perform the query on another session with ' 'SPARQL support (e.g. a triple store wrapper).') CoreSession._warned_sparql_slow = True result = self.graph.query(query_string) return CoreSession.CoreSessionSparqlResult(result, self) class CoreSessionSparqlResult(SparqlResult): """The result of a SPARQL query on the core session.""" def __init__(self, query_result, session): """Initialize the result.""" self.result = query_result super().__init__(session) def close(self): """Close the connection.""" pass def __iter__(self): """Iterate the result.""" for row in self.result: yield CoreSession.CoreSessionSparqlBindingSet(row, self.session) def __len__(self): """Compute the number of elements in the result.""" return len(self.result) class CoreSessionSparqlBindingSet(SparqlBindingSet): """A row in the result. Mapping from variable to value.""" def __init__(self, row, session): """Initialize the row.""" self.binding_set = row super().__init__(session) def _get(self, variable_name): return self.binding_set[variable_name] core_session = CoreSession()
from app.api import callback_api, operator_api, task_api, response_api, services_api, database_api, crypto_api from app.api import payloads_api, analytics_api, c2profiles_api, file_api, operation_api, payloadtype_api from app.api import command_api, reporting_api, credential_api, keylog_api, transform_api, mitre_api, artifacts_api from app.api import rabbitmq_api, apitokens_api, browserscript_api
import matplotlib.pyplot as plt import pandas as pd import numpy as np import os root_path = os.path.dirname(os.path.abspath('__file__')) # root_path = os.path.abspath(os.path.join(root_path,os.path.pardir)) graphs_path = root_path+'/results_analysis/graphs/' print("root path:{}".format(root_path)) # plt.rcParams['figure.figsize']=(10,8) plt.rcParams['font.size']=6 # plt.rcParams["figure.figsize"] = [7.48, 5.61] plt.rcParams['image.cmap']='plasma' # plt.rcParams['axes.linewidth']=0.8 vmd_train = pd.read_csv(root_path+"/Huaxian_vmd/data/VMD_TRAIN.csv") eemd_train = pd.read_csv(root_path+"/Huaxian_eemd/data/EEMD_TRAIN.csv") ssa_train = pd.read_csv(root_path+"/Huaxian_ssa/data/SSA_TRAIN.csv") dwt_train = pd.read_csv(root_path+"/Huaxian_dwt/data/db10-2/DWT_TRAIN.csv") vmd_train=vmd_train.drop("ORIG",axis=1) eemd_train=eemd_train.drop("ORIG",axis=1) ssa_train=ssa_train.drop("ORIG",axis=1) dwt_train=dwt_train.drop("ORIG",axis=1) vmd_corrs = vmd_train.corr(method="pearson") eemd_corrs = eemd_train.corr(method="pearson") ssa_corrs = ssa_train.corr(method="pearson") dwt_corrs = dwt_train.corr(method="pearson") print(vmd_corrs) plt.figure(figsize=(3.54,3.54)) plt.title("Pearson-Correlation for subsignals of VMD at Huaxian station",fontsize=6) ax=plt.imshow(vmd_corrs) plt.xlabel(r"${S}_i$") plt.ylabel(r"${S}_j$") plt.colorbar(ax.colorbar, fraction=0.045) ax.colorbar.set_label("$Corr_{i,j}$") plt.clim(0,1) plt.tight_layout() # plt.show() plt.figure(figsize=(3.54,3.54)) plt.title("Pearson-Correlation for subsignals of SSA at Huaxian station",fontsize=6) ax=plt.imshow(ssa_corrs) plt.xlabel(r"${S}_i$") plt.ylabel(r"${S}_j$") plt.colorbar(ax.colorbar, fraction=0.045) ax.colorbar.set_label("$Corr_{i,j}$") plt.clim(0,1) plt.tight_layout() # plt.show() plt.figure(figsize=(3.54,3.54)) plt.title("Pearson-Correlation for subsignals of EEMD at Huaxian station",fontsize=6) ax=plt.imshow(eemd_corrs) plt.xlabel(r"${S}_i$") plt.ylabel(r"${S}_j$") plt.colorbar(ax.colorbar, fraction=0.045) ax.colorbar.set_label("$Corr_{i,j}$") plt.clim(0,1) plt.tight_layout() # plt.show() plt.figure(figsize=(3.54,3.54)) plt.title("Pearson-Correlation for subsignals of DWT at Huaxian station",fontsize=6) ax=plt.imshow(dwt_corrs) plt.xlabel(r"${S}_i$") plt.ylabel(r"${S}_j$") plt.colorbar(ax.colorbar, fraction=0.045) ax.colorbar.set_label("$Corr_{i,j}$") plt.clim(0,1) plt.tight_layout() # plt.show() corrs=[eemd_corrs,ssa_corrs,vmd_corrs,dwt_corrs] titles=["EEMD","SSA","VMD","DWT",] plt.figure(figsize=(3.54,3.4)) for i in range(len(corrs)): plt.subplot(2,2,i+1) plt.title(titles[i],fontsize=6) ax1=plt.imshow(corrs[i]) plt.xlabel(r"${S}_i$") plt.ylabel(r"${S}_j$") plt.colorbar(ax1.colorbar, fraction=0.045) ax1.colorbar.set_label("$Corr_{i,j}$") plt.clim(0,1) plt.tight_layout() # plt.show() series_len=[9,12,8,3] fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(3.54,3.3)) for (ax,i) in zip(axes.flat,list(range(len(corrs)))): ax.set_title(titles[i],fontsize=6) ax.set_xlabel(r"${S}_i$") ax.set_ylabel(r"${S}_j$") im = ax.imshow(corrs[i], cmap='viridis',vmin=0, vmax=1) if i==1: ax.set_xticks(np.arange(0, series_len[i], 2)) ax.set_yticks(np.arange(0, series_len[i], 2)) ax.set_xticklabels(np.arange(1, series_len[i]+1, 2)) ax.set_yticklabels(np.arange(1, series_len[i]+1, 2)) else: ax.set_xticks(np.arange(0, series_len[i], 1)) ax.set_yticks(np.arange(0, series_len[i], 1)) ax.set_xticklabels(np.arange(1, series_len[i]+1, 1)) ax.set_yticklabels(np.arange(1, series_len[i]+1, 1)) fig.subplots_adjust(bottom=0.08, top=0.96, left=0.1, right=0.8,wspace=0.5, hspace=0.3) # add an axes, lower left corner in [0.83, 0.1] measured in figure coordinate with axes width 0.02 and height 0.8 cb_ax = fig.add_axes([0.83, 0.12, 0.04, 0.805]) cbar = fig.colorbar(im, cax=cb_ax) cbar.set_ticks(np.arange(0, 1.1, 0.5)) cbar.set_label(r"$Corr_{i,j}$") # cbar.set_ticklabels(['low', 'medium', 'high']) # plt.savefig(graphs_path+"Pearson_corr_huaxian.eps",format="EPS",dpi=2000) # plt.savefig(graphs_path+"Pearson_corr_huaxian.tif",format="TIFF",dpi=1200) plt.show()
# Script for sending the second mail # # Configuration # - config.yaml.example for the smtp connection # - text.dat.example for the e-mail's text # The tags inside < > are replaced with the values # of the corresponding attributes in the bibtex # file # # @author Open Data in Experimental Mechanics # Packages import csv import smtplib from email.MIMEMultipart import MIMEMultipart from email.MIMEText import MIMEText import yaml, codecs import sys import bibtexparser #### # Activate utf8 encoding reload(sys) sys.setdefaultencoding('utf8') # Open the template text of the e-mail file = open("text.dat.example",'r') plainText = file.read() # Configuraton of the smtp connection username= "" server= "" password= "" port = -1 address = "" subject = "" print "Starting e-mail sending script" # Loading the configuration from the yaml file with open("config.yaml.example",'r') as f: doc = yaml.load(f) username = doc["Mail"]["user"] server = doc["Mail"]["server"] password = doc["Mail"]["pw"] port = int(doc["Mail"]["port"]) address = doc["Mail"]["address"] subject = doc["Mail"]["subject"] print "Loading config data for", username, server, port # Start the connection to the server server = smtplib.SMTP(server, port) server.starttls() server.login(username, password) # Send mails with open('second.csv', 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') for row in spamreader: if len(row[3]) == 0 or len(row[4]) == 0: name = "" with open("../data/"+row[0]+".bib") as bibtex_file: bibtex_str = bibtex_file.read() bib_database = bibtexparser.loads(bibtex_str) for k, entry in enumerate(bib_database.entries): if entry['author-email'] == row[1]: name = entry['author-name'] customText = plainText.replace("<author>",name.encode("utf8")) customText = customText.replace("<title>",row[2].encode("utf8")) customText = customText.replace("<year>",row[0].encode("utf8")) customSubject = subject.replace("<year>",row[0].encode("utf8")) customSubject = customSubject.replace("<title>",row[2].encode("utf8")) print customText to = row[1] cc = "" bcc = "patrick.diehl@polymtl.ca" rcpt = cc.split(",") + bcc.split(",") + [to] msg = MIMEMultipart("alternative") msg['From'] = address msg['To'] = to msg['Subject'] = customSubject msg['Bcc'] = bcc msg.attach(MIMEText(customText.encode("utf-8"), 'plain', "utf8")) text = msg.as_string() server.sendmail(address, rcpt, text) print "E-mail sent to " , to # Close the connection server.quit()
#!/usr/bin/env python import os import sys import unittest from client import TestClient from server import TestServer from tracecontext import Traceparent, Tracestate client = None server = None def environ(name, default = None): if not name in os.environ: if default: os.environ[name] = default else: raise EnvironmentError('environment variable {} is not defined'.format(name)) return os.environ[name] STRICT_LEVEL = int(environ('STRICT_LEVEL', '2')) print('STRICT_LEVEL: {}'.format(STRICT_LEVEL)) def setUpModule(): global client global server environ('SERVICE_ENDPOINT') client = client or TestClient(host = '127.0.0.1', port = 7777, timeout = 5) server = server or TestServer(host = '127.0.0.1', port = 7777, timeout = 3) server.start() with client.scope() as scope: response = scope.send_request() def tearDownModule(): server.stop() class TestBase(unittest.TestCase): import re traceparent_name_re = re.compile(r'^traceparent$', re.IGNORECASE) traceparent_format = r'^([0-9a-f]{2})-([0-9a-f]{32})-([0-9a-f]{16})-([0-9a-f]{2})$' traceparent_format_re = re.compile(traceparent_format) tracestate_name_re = re.compile(r'^tracestate$', re.IGNORECASE) def make_request(self, headers, count = 1): import pprint with client.scope() as scope: arguments = { 'url': environ('SERVICE_ENDPOINT'), 'headers': headers, 'arguments': [], } for idx in range(count): arguments['arguments'].append({'url': scope.url(str(idx)), 'arguments': []}) response = scope.send_request(arguments = arguments) verbose = ['', ''] verbose.append('Harness trying to send the following request to your service {0}'.format(arguments['url'])) verbose.append('') verbose.append('POST {} HTTP/1.1'.format(arguments['url'])) for key, value in arguments['headers']: verbose.append('{}: {}'.format(key, value)) verbose.append('') verbose.append(pprint.pformat(arguments['arguments'])) verbose.append('') results = response['results'][0] if 'exception' in results: verbose.append('Harness got an exception {}'.format(results['exception'])) verbose.append('') verbose.append(results['msg']) else: verbose.append('Your service {} responded with HTTP status {}'.format(arguments['url'], results['status'])) verbose.append('') for key, value in results['headers']: verbose.append('{}: {}'.format(key, value)) verbose.append('') if isinstance(results['body'], str): verbose.append(results['body']) else: verbose.append(pprint.pformat(results['body'])) for idx in range(count): if str(idx) in response: verbose.append('Your service {} made the following callback to harness'.format(arguments['url'])) verbose.append('') for key, value in response[str(idx)]['headers']: verbose.append('{}: {}'.format(key, value)) verbose.append('') verbose.append('') verbose = os.linesep.join(verbose) if 'HARNESS_DEBUG' in os.environ: print(verbose) result = [] for idx in range(count): self.assertTrue(str(idx) in response, 'your test service failed to make a callback to the test harness {}'.format(verbose)) result.append(response[str(idx)]) return result def get_traceparent(self, headers): retval = [] for key, value in headers: if self.traceparent_name_re.match(key): retval.append((key, value)) self.assertEqual(len(retval), 1, 'expect one traceparent header, got {} {!r}'.format('more' if retval else 'zero', retval)) return Traceparent.from_string(retval[0][1]) def get_tracestate(self, headers): tracestate = Tracestate() for key, value in headers: if self.tracestate_name_re.match(key): tracestate.from_string(value) return tracestate def make_single_request_and_get_tracecontext(self, headers): headers = self.make_request(headers)[0]['headers'] return (self.get_traceparent(headers), self.get_tracestate(headers)) class TraceContextTest(TestBase): def test_both_traceparent_and_tracestate_missing(self): ''' harness sends a request without traceparent or tracestate expects a valid traceparent from the output header ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([]) def test_traceparent_included_tracestate_missing(self): ''' harness sends a request with traceparent but without tracestate expects a valid traceparent from the output header, with the same trace_id but different parent_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertNotEqual(traceparent.parent_id.hex(), '1234567890123456') def test_traceparent_duplicated(self): ''' harness sends a request with two traceparent headers expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789011-1234567890123456-01'], ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789011') self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_header_name(self): ''' harness sends an invalid traceparent using wrong names expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['trace-parent', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['trace.parent', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_header_name_valid_casing(self): ''' harness sends a valid traceparent using different combination of casing expects a valid traceparent from the output header ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['TraceParent', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['TrAcEpArEnT', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['TRACEPARENT', '00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_0x00(self): ''' harness sends an invalid traceparent with extra trailing characters expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01.'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01-what-the-future-will-be-like'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_0xcc(self): ''' harness sends an valid traceparent with future version 204 (0xcc) expects a valid traceparent from the output header with the same trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', 'cc-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', 'cc-12345678901234567890123456789012-1234567890123456-01-what-the-future-will-be-like'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', 'cc-12345678901234567890123456789012-1234567890123456-01.what-the-future-will-be-like'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_0xff(self): ''' harness sends an invalid traceparent with version 255 (0xff) expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', 'ff-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_illegal_characters(self): ''' harness sends an invalid traceparent with illegal characters in version expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '.0-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '0.-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_too_long(self): ''' harness sends an invalid traceparent with version more than 2 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '000-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '0000-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_version_too_short(self): ''' harness sends an invalid traceparent with version less than 2 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '0-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_trace_id_all_zero(self): ''' harness sends an invalid traceparent with trace_id = 00000000000000000000000000000000 expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-00000000000000000000000000000000-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '00000000000000000000000000000000') def test_traceparent_trace_id_illegal_characters(self): ''' harness sends an invalid traceparent with illegal characters in trace_id expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-.2345678901234567890123456789012-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '.2345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-1234567890123456789012345678901.-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '1234567890123456789012345678901.') def test_traceparent_trace_id_too_long(self): ''' harness sends an invalid traceparent with trace_id more than 32 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-123456789012345678901234567890123-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '123456789012345678901234567890123') self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertNotEqual(traceparent.trace_id.hex(), '23456789012345678901234567890123') def test_traceparent_trace_id_too_short(self): ''' harness sends an invalid traceparent with trace_id less than 32 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-1234567890123456789012345678901-1234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '1234567890123456789012345678901') def test_traceparent_parent_id_all_zero(self): ''' harness sends an invalid traceparent with parent_id = 0000000000000000 expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-0000000000000000-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_parent_id_illegal_characters(self): ''' harness sends an invalid traceparent with illegal characters in parent_id expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-.234567890123456-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-123456789012345.-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_parent_id_too_long(self): ''' harness sends an invalid traceparent with parent_id more than 16 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-12345678901234567-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_parent_id_too_short(self): ''' harness sends an invalid traceparent with parent_id less than 16 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-123456789012345-01'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_trace_flags_illegal_characters(self): ''' harness sends an invalid traceparent with illegal characters in trace_flags expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-.0'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-0.'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_trace_flags_too_long(self): ''' harness sends an invalid traceparent with trace_flags more than 2 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-001'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_trace_flags_too_short(self): ''' harness sends an invalid traceparent with trace_flags less than 2 HEXDIG expects a valid traceparent from the output header, with a newly generated trace_id ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-1'], ]) self.assertNotEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_traceparent_ows_handling(self): ''' harness sends an valid traceparent with heading and trailing OWS expects a valid traceparent from the output header ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', ' 00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '\t00-12345678901234567890123456789012-1234567890123456-01'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01 '], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01\t'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '\t 00-12345678901234567890123456789012-1234567890123456-01 \t'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') def test_tracestate_included_traceparent_missing(self): ''' harness sends a request with tracestate but without traceparent expects a valid traceparent from the output header expects the tracestate to be discarded ''' traceparent, tracestate1 = self.make_single_request_and_get_tracecontext([ ['tracestate', 'foo=1'], ]) traceparent, tracestate2 = self.make_single_request_and_get_tracecontext([ ['tracestate', 'foo=1,bar=2'], ]) self.assertEqual(len(tracestate1), len(tracestate2)) def test_tracestate_included_traceparent_included(self): ''' harness sends a request with both tracestate and traceparent expects a valid traceparent from the output header with the same trace_id expects the tracestate to be inherited ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1,bar=2'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn("foo", tracestate) self.assertIn("bar", tracestate) self.assertEqual(tracestate['foo'], '1') self.assertEqual(tracestate['bar'], '2') def test_tracestate_header_name(self): ''' harness sends an invalid tracestate using wrong names expects the tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['trace-state', 'foo=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['trace.state', 'foo=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) def test_tracestate_header_name_valid_casing(self): ''' harness sends a valid tracestate using different combination of casing expects the tracestate to be inherited ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['TraceState', 'foo=1'], ]) self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['TrAcEsTaTe', 'foo=1'], ]) self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['TRACESTATE', 'foo=1'], ]) self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') def test_tracestate_empty_header(self): ''' harness sends a request with empty tracestate header expects the empty tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', ''], ]) self.assertTrue(not tracestate or tracestate != '') self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', ''], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', ''], ['tracestate', 'foo=1'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') def test_tracestate_multiple_headers_different_keys(self): ''' harness sends a request with multiple tracestate headers, each contains different set of keys expects a combined tracestate ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1,bar=2'], ['tracestate', 'rojo=1,congo=2'], ['tracestate', 'baz=3'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertTrue('foo=1' in str(tracestate)) self.assertTrue('bar=2' in str(tracestate)) self.assertTrue('rojo=1' in str(tracestate)) self.assertTrue('congo=2' in str(tracestate)) self.assertTrue('baz=3' in str(tracestate)) self.assertTrue(str(tracestate).index('foo=1') < str(tracestate).index('bar=2')) self.assertTrue(str(tracestate).index('bar=2') < str(tracestate).index('rojo=1')) self.assertTrue(str(tracestate).index('rojo=1') < str(tracestate).index('congo=2')) self.assertTrue(str(tracestate).index('congo=2') < str(tracestate).index('baz=3')) @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_duplicated_keys(self): ''' harness sends a request with an invalid tracestate header with duplicated keys expects the tracestate to be inherited, and the duplicated keys to be either kept as-is or one of them to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1,foo=1'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertTrue('foo=1' in str(tracestate)) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1,foo=2'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertTrue('foo=1' in str(tracestate) or 'foo=2' in str(tracestate)) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 'foo=1'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertTrue('foo=1' in str(tracestate)) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 'foo=2'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertTrue('foo=1' in str(tracestate) or 'foo=2' in str(tracestate)) def test_tracestate_all_allowed_characters(self): ''' harness sends a request with a valid tracestate header with all legal characters expects the tracestate to be inherited ''' key_without_vendor = ''.join([ ''.join(map(chr, range(0x61, 0x7A + 1))), # lcalpha '0123456789', # DIGIT '_', '-', '*', '/', ]) key_with_vendor = key_without_vendor + '@a-z0-9_-*/' value = ''.join([ ''.join(map(chr, range(0x20, 0x2B + 1))), ''.join(map(chr, range(0x2D, 0x3C + 1))), ''.join(map(chr, range(0x3E, 0x7E + 1))), ]) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', key_without_vendor + '=' + value], ]) self.assertIn(key_without_vendor, tracestate) self.assertEqual(tracestate[key_without_vendor], value) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', key_with_vendor + '=' + value], ]) self.assertIn(key_with_vendor, tracestate) self.assertEqual(tracestate[key_with_vendor], value) def test_tracestate_ows_handling(self): ''' harness sends a request with a valid tracestate header with OWS expects the tracestate to be inherited ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1 \t , \t bar=2, \t baz=3'], ]) self.assertIn('foo', tracestate) self.assertIn('bar', tracestate) self.assertIn('baz', tracestate) self.assertEqual(tracestate['foo'], '1') self.assertEqual(tracestate['bar'], '2') self.assertEqual(tracestate['baz'], '3') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1\t \t,\t \tbar=2,\t \tbaz=3'], ]) self.assertIn('foo', tracestate) self.assertIn('bar', tracestate) self.assertIn('baz', tracestate) self.assertEqual(tracestate['foo'], '1') self.assertEqual(tracestate['bar'], '2') self.assertEqual(tracestate['baz'], '3') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', ' foo=1'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', '\tfoo=1'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1 '], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1\t'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', '\t foo=1 \t'], ]) self.assertEqual(traceparent.trace_id.hex(), '12345678901234567890123456789012') self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_key_illegal_characters(self): ''' harness sends a request with an invalid tracestate header with illegal key expects the tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo =1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo ']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'FOO=1'], ]) self.assertRaises(KeyError, lambda: tracestate['FOO']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo.bar=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo.bar']) @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_key_illegal_vendor_format(self): ''' harness sends a request with an invalid tracestate header with illegal vendor format expects the tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo@=1,bar=2'], ]) self.assertRaises(KeyError, lambda: tracestate['bar']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', '@foo=1,bar=2'], ]) self.assertRaises(KeyError, lambda: tracestate['bar']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo@@bar=1,bar=2'], ]) self.assertRaises(KeyError, lambda: tracestate['bar']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo@bar@baz=1,bar=2'], ]) self.assertRaises(KeyError, lambda: tracestate['bar']) @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_member_count_limit(self): ''' harness sends a request with a valid tracestate header with 32 list members expects the tracestate to be inherited harness sends a request with an invalid tracestate header with 33 list members expects the tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'bar01=01,bar02=02,bar03=03,bar04=04,bar05=05,bar06=06,bar07=07,bar08=08,bar09=09,bar10=10'], ['tracestate', 'bar11=11,bar12=12,bar13=13,bar14=14,bar15=15,bar16=16,bar17=17,bar18=18,bar19=19,bar20=20'], ['tracestate', 'bar21=21,bar22=22,bar23=23,bar24=24,bar25=25,bar26=26,bar27=27,bar28=28,bar29=29,bar30=30'], ['tracestate', 'bar31=31,bar32=32'], ]) self.assertIn('bar01', tracestate) self.assertEqual(tracestate['bar01'], '01') self.assertEqual(len(tracestate), 32) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'bar01=01,bar02=02,bar03=03,bar04=04,bar05=05,bar06=06,bar07=07,bar08=08,bar09=09,bar10=10'], ['tracestate', 'bar11=11,bar12=12,bar13=13,bar14=14,bar15=15,bar16=16,bar17=17,bar18=18,bar19=19,bar20=20'], ['tracestate', 'bar21=21,bar22=22,bar23=23,bar24=24,bar25=25,bar26=26,bar27=27,bar28=28,bar29=29,bar30=30'], ['tracestate', 'bar31=31,bar32=32,bar33=33'], ]) self.assertRaises(KeyError, lambda: tracestate['bar01']) @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_key_length_limit(self): ''' harness sends tracestate header with a key of 256 and 257 characters harness sends tracestate header with a key of 14 and 15 characters in the vendor section harness sends tracestate header with a key of 241 and 242 characters in the tenant section ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 'z' * 256 + '=1'], ]) self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 'z' * 257 + '=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 't' * 241 + '@' + 'v' * 14 + '=1'], ]) self.assertIn('foo', tracestate) self.assertEqual(tracestate['foo'], '1') traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 't' * 242 + '@v=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=1'], ['tracestate', 't@' + 'v' * 15 + '=1'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) @unittest.skipIf(STRICT_LEVEL < 2, "strict") def test_tracestate_value_illegal_characters(self): ''' harness sends a request with an invalid tracestate header with illegal value format expects the tracestate to be discarded ''' traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=bar=baz'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) traceparent, tracestate = self.make_single_request_and_get_tracecontext([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-00'], ['tracestate', 'foo=,bar=3'], ]) self.assertRaises(KeyError, lambda: tracestate['foo']) self.assertRaises(KeyError, lambda: tracestate['bar']) class AdvancedTest(TestBase): def test_multiple_requests_with_valid_traceparent(self): ''' harness sends a valid traceparent and asks vendor service to callback multiple times expects the trace_id to be inherited by all the callbacks ''' trace_ids = set() parent_ids = set() for response in self.make_request([ ['traceparent', '00-12345678901234567890123456789012-1234567890123456-01'], ], 3): traceparent = self.get_traceparent(response['headers']) trace_ids.add(traceparent.trace_id.hex()) parent_ids.add(traceparent.parent_id.hex()) self.assertEqual(len(trace_ids), 1) self.assertTrue('12345678901234567890123456789012' in trace_ids) self.assertEqual(len(parent_ids), 3) def test_multiple_requests_without_traceparent(self): ''' harness asks vendor service to callback multiple times expects a different parent_id each time ''' trace_ids = set() parent_ids = set() for response in self.make_request([], 3): traceparent = self.get_traceparent(response['headers']) trace_ids.add(traceparent.trace_id.hex()) parent_ids.add(traceparent.parent_id.hex()) self.assertEqual(len(parent_ids), 3) def test_multiple_requests_with_illegal_traceparent(self): ''' harness sends an invalid traceparent and asks vendor service to callback multiple times expects new trace_id(s) generated ''' trace_ids = set() parent_ids = set() for response in self.make_request([ ['traceparent', '00-00000000000000000000000000000000-1234567890123456-01'], ], 3): traceparent = self.get_traceparent(response['headers']) trace_ids.add(traceparent.trace_id.hex()) parent_ids.add(traceparent.parent_id.hex()) self.assertFalse('00000000000000000000000000000000' in trace_ids) self.assertEqual(len(parent_ids), 3) if __name__ == '__main__': if len(sys.argv) >= 2: os.environ['SERVICE_ENDPOINT'] = sys.argv[1] if not 'SERVICE_ENDPOINT' in os.environ: print(''' Usage: python {0} <service endpoint> [patterns] Environment Variables: HARNESS_DEBUG when set, debug mode will be enabled (default to disabled) HARNESS_HOST the public host/address of the test harness (default 127.0.0.1) HARNESS_PORT the public port of the test harness (default 7777) HARNESS_TIMEOUT the timeout (in seconds) used for each test case (default 5) HARNESS_BIND_HOST the host/address which the test harness binds to (default to HARNESS_HOST) HARNESS_BIND_PORT the port which the test harness binds to (default to HARNESS_PORT) SERVICE_ENDPOINT your test service endpoint (no default value) STRICT_LEVEL the level of test strictness (default 2) Example: python {0} http://127.0.0.1:5000/test python {0} http://127.0.0.1:5000/test TraceContextTest.test_both_traceparent_and_tracestate_missing python {0} http://127.0.0.1:5000/test AdvancedTest python {0} http://127.0.0.1:5000/test AdvancedTest TraceContextTest.test_both_traceparent_and_tracestate_missing '''.strip().format(sys.argv[0]), file = sys.stderr) exit(-1) host = environ('HARNESS_HOST', '127.0.0.1') port = environ('HARNESS_PORT', '7777') timeout = environ('HARNESS_TIMEOUT', '5') bind_host = environ('HARNESS_BIND_HOST', host) bind_port = environ('HARNESS_BIND_PORT', port) client = TestClient(host = host, port = int(port), timeout = int(timeout) + 1) server = TestServer(host = bind_host, port = int(bind_port), timeout = int(timeout)) suite = unittest.TestSuite() loader = unittest.TestLoader() if len(sys.argv) > 2: for name in sys.argv[2:]: suite.addTests(loader.loadTestsFromName(name, module = sys.modules[__name__])) else: suite.addTests(loader.loadTestsFromModule(sys.modules[__name__])) result = unittest.TextTestRunner(verbosity = 2).run(suite) sys.exit(len(result.errors) + len(result.failures))
# %% import torch from UnarySim.kernel.add import FSUAdd from UnarySim.stream.gen import RNG, SourceGen, BSGen from UnarySim.metric.metric import ProgError import matplotlib.pyplot as plt import time # %% device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # %% def add_test(rng="Sobol", row=128, col=10000, bitwidth=8, plot_en=False): modes = ["bipolar", "unipolar"] scaled = [True, False] result_pe = [] stype = torch.float btype = torch.float rtype = torch.float scale_mod = row for mode in modes: for scale in scaled: run_time = 0 acc_dim = 0 result_pe_cycle = [] uadd = FSUAdd(mode=mode, scaled=scale, scale=scale_mod, dim=acc_dim).to(device) if mode == "unipolar": iVec = torch.rand(row, col).mul(2**bitwidth).round().div(2**bitwidth).to(device) elif mode == "bipolar": iVec = torch.rand(row, col).mul(2).sub(1).mul(2**bitwidth).round().div(2**bitwidth).to(device) oVec = torch.sum(iVec, acc_dim).to(device) iVecSource = SourceGen(iVec, bitwidth=bitwidth, mode=mode, rtype=rtype)().to(device) iVecRNG = RNG(bitwidth, 1, rng, rtype)().to(device) iVecBS = BSGen(iVecSource, iVecRNG, stype).to(device) iVecPE = ProgError(iVec, scale=1, mode=mode).to(device) if scale is True: if acc_dim == 0: oVecPE = ProgError(oVec, scale=scale_mod, mode=mode).to(device) elif acc_dim ==1: oVecPE = ProgError(oVec, scale=scale_mod, mode=mode).to(device) else: oVecPE = ProgError(oVec, scale=1, mode=mode).to(device) with torch.no_grad(): idx = torch.zeros(iVecSource.size()).type(torch.long).to(device) for i in range(2**bitwidth): iBS = iVecBS(idx + i) iVecPE.Monitor(iBS) start_time = time.time() oVecU = uadd(iBS) run_time = time.time() - start_time + run_time oVecPE.Monitor(oVecU) rmse = torch.sqrt(torch.mean(torch.mul(oVecPE()[1], oVecPE()[1]))) result_pe_cycle.append(1-rmse.item()) print("--- %s seconds ---" % (time.time() - start_time)) print("RNG: "+rng+", data: "+mode+", scaled: "+str(scale)) print("input error: ", "min: ", torch.min(iVecPE()[1]).item(), "max: ", torch.max(iVecPE()[1]).item()) print("output error: ", "min: ", torch.min(oVecPE()[1]).item(), "max: ", torch.max(oVecPE()[1]).item(), "RMSE: ", rmse.item()) if plot_en is True: result_pe = oVecPE()[1].cpu().numpy() print("error distribution=========>") plt.figure(figsize=(3,1.5)) fig = plt.hist(result_pe.flatten(), bins='auto') # arguments are passed to np.histogram plt.show() print("progressive accuracy=========>") plt.figure(figsize=(3,1.5)) fig = plt.plot(result_pe_cycle) # arguments are passed to np.histogram plt.show() # %% rng = "Sobol" row = 128 col = 10000 bitwidth = 12 add_test(rng, row, col, bitwidth) # # %% # rng = "Race" # row = 128 # col = 10000 # add_test(rng, row, col) # # %% # rng = "LFSR" # row = 128 # col = 10000 # add_test(rng, row, col) # # %% # rng = "SYS" # row = 128 # col = 10000 # add_test(rng, row, col) # # %%
#!/usr/bin/env python3 # SPDX-License-Identifier: MIT rawdata = [] with open("input") as f: rawdata = f.read() data = rawdata.split("\n\n") any_count = 0 all_count = 0 for group in data: # probably a bit overkill lol any_yes = {c for c in group.replace("\n", "")} any_count += len(any_yes) all_yes = any_yes for line in group.split(): all_yes = all_yes.intersection({c for c in line}) all_count += len(all_yes) print(any_count) print(all_count)
# -*- coding: utf-8 -*- import scrapy from ..items import QuotesItem class QuotesSpiderCssSpider(scrapy.Spider): name = 'quotes_spider_css' allowed_domains = ['quotes.toscrape.com'] start_urls = ['https://quotes.toscrape.com/'] def parse(self, response): items = QuotesItem() all_quotes = response.css('.quote') for quote in all_quotes: items['text'] = quote.css('.text::text').extract_first() items['author'] = quote.css('.author::text').extract_first() items['tags'] = quote.css('div.tags > a.tag::text').extract() # tags = quote.css('.tag::text').extract() yield items next_page = response.css('.next > a::attr(href)').extract_first() if next_page: yield scrapy.Request(response.urljoin(next_page))
import time from cube2common.constants import mastermodes, disconnect_types, privileges from cipolla.game.server_message_formatter import error from cipolla.punitive_effects.punitive_effect_info import TimedExpiryInfo, EffectInfo from cipolla.game.client.exceptions import InsufficientPermissions from cipolla.game.gamemode.gamemodes import get_mode_name_from_num # type: ignore from cipolla.game.map.resolve_map_name import resolve_map_name from cipolla.game.client.exceptions import InsufficientPermissions, StateError, UnknownPlayer from cipolla.game.room.exceptions import UnknownEvent from cipolla.game.server_message_formatter import * from cipolla.game.client.exceptions import * from cube2common.vec import vec from cube2common.constants import * from cipolla.protocol import swh from cipolla.utils.filtertext import filtertext from cipolla.utils.dictionary_get import dictget from cipolla.game.edit.selection import Selection from cipolla.utils.tracing import * from cipolla.game.client.client import Client from cipolla.game.room.room import Room from typing import Any, Dict, List, Union class BaseRole(object): def __init__(self) -> None: self.privilege = privileges.PRIV_NONE self.actions = { 'set_bot_limit': self.on_disabled, 'check_maps': self.on_disabled, 'edit_remip': self.on_disabled, 'edit_new_map': self.on_disabled, 'edit_get_map': self.on_disabled, 'get_demo': self.on_disabled, 'list_demos': self.on_disabled, 'clear_demo': self.on_disabled, 'stop_demo_recording': self.on_disabled, 'set_demo_recording': self.on_disabled, 'add_bot': self.on_disabled, 'delete_bot': self.on_disabled, 'set_bot_balance': self.on_disabled, 'set_game_speed': self.on_disabled, 'give_master': self.on_not_allowed, 'set_master_mode': self.on_not_allowed, 'set_team': self.on_not_allowed, 'kick': self.on_not_allowed, 'clear_bans': self.on_not_allowed, 'map_vote': self.on_not_allowed, 'pause_game': self.on_not_allowed, 'set_master': self.on_set_master, 'set_spectator': self.on_set_spectator, 'item_list': self.on_item_list, 'flag_list': self.on_flag_list, 'base_list': self.on_base_list, 'map_crc': self.on_map_crc, 'command': self.on_command, 'N_SHOOT': self.on_shoot, 'N_ADDBOT': self.on_addbot, 'N_DELBOT': self.on_delbot, 'N_AUTHANS': self.on_nauthans, 'N_AUTHKICK': self.on_authkick, 'N_AUTHTRY': self.on_authtry, 'N_BASES': self.on_bases, 'N_BOTBALANCE': self.on_botbalance, 'N_BOTLIMIT': self.on_botlimit, 'N_CHECKMAPS': self.on_checkmaps, 'N_CLEARBANS': self.on_clearbans, 'N_CLEARDEMOS': self.on_disabled, 'N_CLIENTPING': self.on_clientping, 'N_CLIPBOARD': self.on_clipboard, 'N_CONNECT': self.on_connect, 'N_COPY': self.on_copy, 'N_DELCUBE': self.on_delcube, 'N_EDITENT': self.on_editent, 'N_EDITF': self.on_editf, 'N_EDITMODE': self.on_editmode, 'N_EDITM': self.on_editm, 'N_EDITT': self.on_editt, 'N_EDITVAR': self.on_editvar, 'N_EXPLODE': self.on_explode, 'N_FORCEINTERMISSION': self.on_forceintermission, 'N_GAMESPEED': self.on_gamespeed, 'N_GETDEMO': self.on_disabled, 'N_GETMAP': self.on_getmap, 'N_GUNSELECT': self.on_gunselect, 'N_INITFLAGS': self.on_initflags, 'N_ONFLIP': self.on_flip, 'N_ITEMLIST': self.on_itemlist, 'N_ITEMPICKUP': self.on_itempickup, 'N_JUMPPAD': self.on_jumppad, 'N_KICK': self.on_kick, 'N_LISTDEMOS': self.on_disabled, 'N_MAPCHANGE': self.on_mapchange, 'N_MAPCRC': self.on_mapcrc, 'N_MAPVOTE': self.on_mapvote, 'N_NEWMAP': self.on_newmap, 'N_MASTERMODE': self.on_not_allowed, 'N_PASTE': self.on_paste, 'N_PAUSEGAME': self.on_not_allowed, 'N_PING': self.on_ping, 'N_POS': self.on_pos, 'N_POS': self.on_pos, 'N_RECORDDEMO': self.on_disabled, 'N_REMIP': self.on_remip, 'N_REPAMMO': self.on_repammo, 'N_REPLACE': self.on_replace, 'N_SAYTEAM': self.on_sayteam, 'N_SERVCMD': self.on_servcmd, 'N_ROTATE': self.on_rotate, 'N_SOUND': self.on_sound, 'N_SPAWN': self.on_spawn, 'N_SETMASTER': self.on_setmaster, 'N_SPECTATOR': self.on_spectator, 'N_STOPDEMO': self.on_disabled, 'N_SETTEAM': self.on_setteam, 'N_SUICIDE': self.on_suicide, 'N_SWITCHMODEL': self.on_switchmodel, 'N_SWITCHNAME': self.on_switchname, 'N_SWITCHTEAM': self.on_switchteam, 'N_TAKEFLAG': self.on_takeflag, 'N_TAUNT': self.on_taunt, 'N_TELEPORT': self.on_teleport, 'N_TEXT': self.on_text, 'N_TRYDROPFLAG': self.on_trydropflag, 'N_TRYSPAWN': self.on_tryspawn, } def handle_event(self, event_name: str, room: Room, *args, **kwargs) -> None: action = self.actions.get(event_name, self.on_unknown_event) return action(room, *args, **kwargs) # type: ignore # TODO: mypy def handle_message(self, client: Client, room: Room, message_type: str, message: Dict[str, Any]) -> None: action = self.actions.get(message_type, self.on_unknown_message) return action(client, room, message) # type: ignore # TODO: mypy def on_unknown_message(self, client, room, message): print("===ERROR UnknownMessage:", message) raise UnknownMessage(message) # from game_event_handler def handle_text_event(self, text, room, player): def parse(text): text = text[1:].split(' ') return text[0], text[1:] cmd, args = parse(text) if not cmd in self.text_actions: player.client.send_server_message(error('Command does not exist. Type #commands for more info')) return self.text_actions[cmd](room, player, cmd, args) def on_unknown_event(self, ev_name, *args, **kwargs): print("===ERROR UnknownEvent:", *args, **kwargs) raise UnknownEvent('Event: '+ev_name+' Arguments: '+str(args) + str(kwargs)) def on_disabled(self, room, client, *a, **kw): client.send_server_message(red('Command disabled')) pass def on_set_master(self, room, client, target_pn, *args): client_target = room.get_player(target_pn).client if client == client_target: if not room.admins_present() and not room.masters_present(): room.change_privilege(client, privileges.PRIV_MASTER) else: client.send_server_message(info('master is already claimed')) def on_check_maps(self, room, client): pass def on_set_bot_limit(self, room, client, limit): pass def on_item_list(self, room, client, item_list): room.gamemode.on_client_item_list(client, item_list) def on_flag_list(self, room: Room, client: Client, flag_list: Union[List, List]) -> None: room.gamemode.on_client_flag_list(client, flag_list) # def on_give_master(self, room, client, client_target): # room._client_change_privilege(client, client_target, 1) def on_delete_bot(self, room, client): pass def on_edit_new_map(self, room, client, size): pass def on_add_bot(self, room, client, skill): pass def on_base_list(self, room, client, base_list): room.gamemode.on_client_base_list(client, base_list) def on_map_crc(self, room: Room, client: Client, crc: int) -> None: # TODO: Implement optional spectating of clients without valid map CRC's pass def on_map_vote(self, room, client, map_name, mode_num): mode_name = get_mode_name_from_num(mode_num) map_name = yield resolve_map_name(room, map_name) room.change_map_mode(map_name, mode_name) def on_clear_bans(self, room, client): # TODO: Permissions checks client._punitive_model.clear_effects('ban') def on_command(self, room, client, command): pass def on_set_bot_balance(self, room, client, balance): pass def on_set_game_speed(self, room, client, speed): pass def on_edit_get_map(self, room, client): pass def on_not_allowed(self, *args, **kwargs): from cipolla.game.player.player import Player from cipolla.game.client.client import Client message = 'you are unable to use this command' for cc in args: if isinstance(cc, Player): cc.client.send_server_message(red(message)) return elif isinstance(cc, Client): cc.send_server_message(red(message)) return def on_commands(self, room, player, *args, **kwargs): available_commands = self.text_actions.keys() formatted_command_list = list(map(lambda s: '#'+s, available_commands)) player.client.send_server_message("\f7Commands: " + " | ".join(formatted_command_list)) def on_info(self, *args, **kwargs): #TODO get info server # client.send_server_message(info(cipolla_server.server_info_model.value)) pass def on_stats(self, *args, **kwargs): #TODO statsss pass def on_list_mods(self, room, player, *args, **kw): mods = ModsManager().list_mods() player.client.send_server_message(info("Available mods: " + " | ".join(mods))) def on_shoot(self, client: Client, room: Room, message: Dict[str, int]) -> None: player = client.get_player(message['aiclientnum']) shot_id = message['shot_id'] gun = message['gun'] from_pos = vec(*dictget(message, 'fx', 'fy', 'fz')) # type: ignore to_pos = vec(*dictget(message, 'tx', 'ty', 'tz')) # type: ignore hits = message['hits'] room.handle_player_event('shoot', player, shot_id, gun, from_pos, to_pos, hits) def on_addbot(self, client, room, message): # room.handle_client_event('add_bot', client, message['skill']) # TODO: not implemented pass def on_nauthans(self, client, room, message): authdomain = message['authdomain'] authid = message['authid'] answer = message['answer'] client.answer_auth_challenge(authdomain, authid, answer) def on_authkick(self, client, room, message): # authdomain = message['authdomain'] # authname = message['authname'] # target_pn = message['target_cn'] # reason = message['reason'] # TODO: not implemented # deferred = client.auth(authdomain, authname) # callback = lambda r: room.handle_client_event('kick', client, target_pn, reason) # deferred.addCallbacks(callback, callback) pass def on_authtry(self, client, room, message): # authdomain = message['authdomain'] # authname = message['authname'] # deferred = client.auth(authdomain, authname) # TODO: not implemented pass def on_bases(self, client, room, message): # TODO: not implemented # room.handle_client_event('base_list', client, message['bases']) pass def on_botbalance(self, client, room, message): # TODO: not implemented # room.handle_client_event('set_bot_balance', client, message['balance']) pass def on_botlimit(self, client, room, message): # TODO: not implemented # room.handle_client_event('set_bot_limit', client, message['limit']) pass def on_checkmaps(self, client, room, message): # TODO: not implemented # room.handle_client_event('check_maps', client) pass def on_clearbans(self, client, room, message): # TODO: not implemented # room.handle_client_event('clear_bans', client) pass def on_clientping(self, client: Client, room: Room, message: Dict[str, int]) -> None: ping = message['ping'] client.ping_buffer.add(ping) player = client.get_player() swh.put_clientping(player.state.messages, ping) def on_clipboard(self, client, room, message): pass def on_connect(self, client: Client, room: Room, message: Dict[str, Union[str, int]]) -> None: if not client.is_connected: client.connect_received(message) def on_copy(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) room.handle_player_event('edit_copy', player, selection) def on_delbot(self, client, room, message): # room.handle_client_event('delete_bot', client) # TODO: not implemented pass def on_delcube(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) room.handle_player_event('edit_delete_cubes', player, selection) def on_editent(self, client, room, message): player = client.get_player() entity_id = message['entid'] entity_type = message['type'] x, y, z = dictget(message, 'x', 'y', 'z') attrs = message['attrs'] room.handle_player_event('edit_entity', player, entity_id, entity_type, x, y, z, attrs) def on_editf(self, client, room, message): del message['aiclientnum'] player = client.get_player() direction = message['direction'] mode = message['mode'] room.handle_player_event('edit_face', player, selection, direction, mode) def on_editmode(self, client, room, message): player = client.get_player() room.handle_player_event('edit_mode', player, message['value']) def on_editm(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) material = message['material'] material_filter = message['material_filter'] room.handle_player_event('edit_material', player, selection, material, material_filter) def on_editt(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) texture = message['texture'] all_faces = message['all_faces'] room.handle_player_event('edit_texture', player, selection, texture, all_faces) def on_editvar(self, client, room, message): pass def on_explode(self, client, room, message): player = client.get_player(message['aiclientnum']) cmillis = message['cmillis'] gun = message['gun'] explode_id = message['explode_id'] hits = message['hits'] room.handle_player_event('explode', player, cmillis, gun, explode_id, hits) def on_forceintermission(self, client, room, message): pass def on_gamespeed(self, client, room, message): # room.handle_client_event('set_game_speed', client, message['value']) # TODO: not implemented pass def on_gunselect(self, client: Client, room: Room, message: Dict[str, int]) -> None: player = client.get_player(message['aiclientnum']) room.handle_player_event('gunselect', player, message['gunselect']) def on_initflags(self, client: Client, room: Room, message: Dict[str, Union[List, int, List]]) -> None: # room.handle_client_event('flag_list', client, message['flags']) # TODO: not implemented pass def on_itemlist(self, client, room, message): # room.handle_client_event('item_list', client, message['items']) # TODO: not implemented pass def on_itempickup(self, client, room, message): # player = client.get_player(message['aiclientnum']) # room.handle_player_event('pickup_item', player, message['item_index']) # # TODO: not implemented pass def on_jumppad(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('jumppad', player, message['jumppad']) def on_kick(self, client, room, message): # room.handle_client_event('kick', client, message['target_cn'], message['reason']) # TODO: not implemented pass def on_mapchange(self, client, room, message): # TODO: never called? # room.handle_client_event('map_vote', client, message['map_name'], message['mode_num']) pass def on_mapcrc(self, client: Client, room: Room, message: Dict[str, Union[str, int]]) -> None: # room.handle_client_event('map_crc', client, message['mapcrc']) # TODO: not implemented pass def on_mapvote(self, client: Client, room: Room, message: Dict[str, Union[str, int]]) -> None: client.role.handle_event('map_vote', room, client, message['map_name'], message['mode_num']) def on_newmap(self, client, room, message): # room.handle_client_event('edit_new_map', client, message['size']) # TODO: not implemented pass def on_paste(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) room.handle_player_event('edit_paste', player, selection) def on_ping(self, client, room, message): with client.sendbuffer(1, False) as cds: swh.put_pong(cds, message['cmillis']) def on_pos(self, client: Client, room: Room, message: Dict[str, Union[int, List[int], bytes]]) -> None: assert isinstance(message['clientnum'], int) player = client.get_player(message['clientnum']) player.state.update_position(message['position'], message['raw_position']) def on_remip(self, client, room, message): # room.handle_client_event('edit_remip', client) # TODO: not implemented pass def on_repammo(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('replenish_ammo', player) def on_replace(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) texture = message['texture'] new_texture = message['new_texture'] in_selection = message['in_selection'] room.handle_player_event('edit_replace', player, selection, texture, new_texture, in_selection) def on_rotate(self, client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) axis = message['axis'] room.handle_player_event('edit_rotate', player, selection, axis) def on_sayteam(self, client: Client, room: Room, message: Dict[str, Union[str, int]]) -> None: player = client.get_player() room.handle_player_event('team_chat', player, message['text']) def on_servcmd(self, client, room, message): # room.handle_client_event('command', client, message['command']) # TODO: implement pass def on_setmaster(self, client, room, message): # room.handle_client_event('set_master', client, message['target_cn'], message['pwdhash'], message['value']) # TODO: not implemented pass def on_set_spectator(self, room, client, target_pn, spectate): player = room.get_player(target_pn) if player is None: raise UnknownPlayer(cn=target_pn) elif client == player.client: room._set_player_spectator(player, spectate) else: client.send_server_message(error("you can't spectate other players")) # TODO: make usage function def on_setteam(self, client, room, message): # team_name = filtertext(message['team'], False, MAXTEAMLEN) # room.handle_client_event('set_team', client, message['target_cn'], team_name) # TODO: not implemented pass def on_sound(self, client: Client, room: Room, message: Dict[str, int]) -> None: player = client.get_player(message['aiclientnum']) room.handle_player_event('sound', player, message['sound']) def on_spawn(self, client: Client, room: Room, message: Dict[str, int]) -> None: player = client.get_player(message['aiclientnum']) room.handle_player_event('spawn', player, message['lifesequence'], message['gunselect']) def on_spectator(self, client, room, message): # room.handle_client_event('set_spectator', client, message['target_cn'], bool(message['value'])) # TODO: is it implemented??? pass def on_suicide(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('suicide', player) def on_switchmodel(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('switch_model', player, message['playermodel']) def on_switchname(self, client, room, message): player = client.get_player(-1) name = filtertext(message['name'], False, MAXNAMELEN) if len(name) <= 0: name = "unnamed" room.handle_player_event('switch_name', player, name) def on_switchteam(self, client, room, message): player = client.get_player(-1) team_name = filtertext(message['team'], False, MAXTEAMLEN) room.handle_player_event('switch_team', player, team_name) def on_takeflag(self, client: Client, room: Room, message: Dict[str, int]) -> None: player = client.get_player(message['aiclientnum']) room.handle_player_event('take_flag', player, message['flag'], message['version']) def on_taunt(self, client, room, message): player = client.get_player() room.handle_player_event('taunt', player) def on_teleport(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('teleport', player, message['teleport'], message['teledest']) def on_text(self, client: Client, room: Room, message: Dict[str, Union[str, int]]) -> None: player = client.get_player() room.handle_player_event('game_chat', player, message['text']) def on_trydropflag(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('try_drop_flag', player) def on_tryspawn(self, client, room, message): player = client.get_player(message['aiclientnum']) room.handle_player_event('request_spawn', player) def on_getmap(client, room, message): # room.handle_client_event('edit_get_map', client) # TODO: not implemented pass def on_flip(client, room, message): del message['aiclientnum'] player = client.get_player() selection = Selection.from_message(message) room.handle_player_event('edit_flip', player, selection) class MasterRole(BaseRole): def __init__(self) -> None: super().__init__() self.privilege = privileges.PRIV_MASTER self.actions.update({ 'map_vote': self.on_map_vote, 'set_spectator': self.on_set_spectator, 'set_master': self.on_set_master, 'set_master_mode': self.on_set_master_mode, 'set_team': self.on_set_team, 'pause_game': self.on_pause_game, 'N_MASTERMODE': self.on_mastermode, 'N_PAUSEGAME': self.on_pause_game, }) def on_map_vote(self, room: Room, client: Client, map_name: str, mode_num: int) -> None: mode_name = get_mode_name_from_num(mode_num) map_name = resolve_map_name(room, map_name) room.change_map_mode(map_name, mode_name) def on_kick(self, room, player, args): target_client = room.get_target_client(args[0]) if target_client is None: player.client.send_server_message(usage_error('Invalid client number')) else: expiry_time = time.time() + (4 * SECONDS_PER_HOUR) client._punitive_model.add_effect('ban', target_client.host, EffectInfo(TimedExpiryInfo(expiry_time))) target_client.disconnect(disconnect_types.DISC_KICK, error("You were kicked by {name#kicker}", kicker=target_client)) def on_mastermode(self, client, room, message): self.handle_event('set_master_mode', room, client, message['mastermode']) client.send_server_message(info('Master mode changed')) def on_set_master(self, room, client, target_pn, *args): client_target = room.get_player(target_pn).client # if client_target is the same as client, the client is trying to relinquish his master if client_target == client: room.change_privilege(client, privileges.PRIV_NONE) else: room.change_privilege(client_target, privileges.PRIV_MASTER) def on_set_spectator(self, room, client, target_pn, spectate): print(target_pn) print(spectate) target_player = room.get_player(target_pn) if target_player is None: raise UnknownPlayer(cn=target_pn) elif isinstance(target_player.client.role, AdminRole): client.send_server_message(error('you can\'t spectate the masta admin!')) else: room._set_player_spectator(target_player, spectate) def on_set_master_mode(self, room, client, mastermode): if mastermode == mastermodes.MM_PRIVATE: raise GenericError("Mastermode private not allowed") if mastermode < mastermodes.MM_OPEN or mastermode > mastermodes.MM_PRIVATE: raise GenericError("Mastermode out of allowed range.") room.set_mastermode(mastermode) def on_set_team(self, room, client, target_pn, team_name): target_player = room.get_player(target_pn) if target_player is None: raise UnknownPlayer(cn=target_pn) elif isinstance(target_player.client.role, AdminRole): client.send_server_message(error('you can\'t change the team of the masta admin!')) else: room.gamemode.on_player_try_set_team(client.get_player(), target_player, target_player.teamname, team_name) def on_pause_game(self, room, client, pause): if pause: if room.is_paused and not room.is_resuming: raise StateError('The game is already paused.') room.pause() room._broadcaster.server_message(info(f"{client.get_player().name} has paused the game.")) elif not pause: if not room.is_paused: raise StateError('The game is already resumed.') room.resume() room._broadcaster.server_message(info(f"{client.get_player().name} has resumed the game.")) class AdminRole(MasterRole): def __init__(self) -> None: super().__init__() self.privilege = privileges.PRIV_ADMIN self.actions.update({ 'set_master': self.on_set_master, 'set_spectator': self.on_set_spectator, }) def on_set_master(self, room, client, target_pn, *args): client_target = room.get_player(target_pn).client if client_target != client: if isinstance(client_target.role, MasterRole): room.change_privilege(client_target, privileges.PRIV_NONE) else: room.change_privilege(client_target, privileges.PRIV_MASTER) def on_set_spectator(self, room, client, target_pn, spectate): target_player = room.get_player(target_pn) if target_player is None: raise UnknownPlayer(cn=target_pn) room._set_player_spectator(target_player, spectate)
# -------------------------------------------------------- # Tensorflow Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb from tqdm import tqdm import torch import pickle from model.utils.config import cfg, cfg_from_file, cfg_from_list from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms from model.rpn.bbox_transform import bbox_transform_inv from model.faster_rcnn.generic_extractor import generic_extractor from easydict import EasyDict as edict import glob from scipy.misc import imread import cv2 try: xrange # Python 2 except NameError: xrange = range # Python 3 from torch.utils.data import Dataset def prep_im_for_blob(im, pixel_means, target_size, max_size): """Mean subtract and scale an image for use in a blob.""" im = im.astype(np.float32, copy=False) im -= pixel_means im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) im = cv2.resize(im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR) return im, im_scale class roibatchLoader(Dataset): def __init__(self, image_path, image_urls, image_extension): self._image_urls = image_urls self._image_path = image_path self._image_extension = image_extension def __getitem__(self, index): im = imread(os.path.join(\ self._image_path, self._image_urls[index] + self._image_extension)) im = im[:, :, ::-1] # rgb -> bgr target_size = 600 im, im_scale = prep_im_for_blob(im, cfg.PIXEL_MEANS, target_size, cfg.TRAIN.MAX_SIZE) data = torch.from_numpy(im) data_height, data_width = data.size(0), data.size(1) data = data.permute(2, 0, 1) return (data, im_scale) def __len__(self): return len(self._image_urls) def formalize_bbox(_im_summary): """ Extract bboxes from all classes and return a list of bbox. Each element of the list is in the form: [x1, y1, x2, y2, class_id, score]. The returned list is sorted descendingly according to score. """ boxes = [] # each element: x, y, w, h, class_id, score probs = [] # prob distribution for each bounding box feats = [] # pooled features for class_id, items in enumerate(_im_summary.pred.boxes): for bbox in items: x1, y1, x2, y2, score = bbox boxes.append([x1, y1, x2, y2, class_id, score]) for class_id, items in enumerate(_im_summary.pred.cls_prob): for cls_prob in items: probs.append(cls_prob) assert len(boxes) == len(probs) for class_id, items in enumerate(_im_summary.pred.pooled_feat): for f in items: feats.append(f) assert len(boxes) == len(feats) bundles = list(zip(boxes, probs, feats)) bundles = sorted(bundles, key=lambda x: x[0][-1], reverse = True) # sort by confidence descendingly boxes, probs, feats = zip(*bundles) return (list(boxes), list(probs), list(feats)) def package_image_summary(im_summary, _feature_path): boxes, probs, feats = formalize_bbox(im_summary) im_summary_out = {} im_summary_out['boxes'] = boxes im_summary_out['scale'] = im_summary.info.dim_scale[2] curr_im_path = im_summary.info.image_idx + ".pkl" pickle.dump(im_summary_out, open(os.path.join(_feature_path, curr_im_path), 'wb')) def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='pascal_voc', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/vgg16.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--load_dir', dest='load_dir', help='directory to load models', default="models", type=str) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=1, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=10021, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') args = parser.parse_args() return args def filter_small_box(boxes, min_area): boxes_index = [] for i, box in enumerate(boxes): x1, y1, x2, y2, _ = box area = (x2-x1)*(y2-y1) if(area >= min_area): boxes_index.append(i) return boxes_index if __name__ == '__main__': device = torch.device('cuda:0') class_labels = ['__background__', 'bush', 'kite', 'laptop', 'bear', 'paper', 'shoe', 'chair', 'ground', 'flowers', 'tire', 'cup', 'sky', 'bench', 'window', 'bike', 'board', 'hat', 'plate', 'woman', 'handle', 'food', 'trees', 'wave', 'giraffe', 'background', 'foot', 'shadow', 'clouds', 'button', 'shelf', 'bag', 'sand', 'nose', 'rock', 'sidewalk', 'glasses', 'fence', 'people', 'house', 'sign', 'hair', 'street', 'zebra', 'mirror', 'logo', 'girl', 'arm', 'flower', 'leaf', 'clock', 'dirt', 'lights', 'boat', 'bird', 'pants', 'umbrella', 'bed', 'leg', 'reflection', 'water', 'tracks', 'sink', 'trunk', 'post', 'box', 'boy', 'cow', 'shoes', 'leaves', 'skateboard', 'pillow', 'road', 'letters', 'wall', 'jeans', 'number', 'pole', 'table', 'writing', 'cloud', 'sheep', 'horse', 'eye', 'top', 'seat', 'tail', 'vehicle', 'brick', 'legs', 'banana', 'head', 'door', 'shorts', 'bus', 'motorcycle', 'glass', 'flag', 'train', 'child', 'line', 'ear', 'neck', 'car', 'cap', 'tree', 'roof', 'cat', 'coat', 'grass', 'toilet', 'player', 'airplane', 'glove', 'helmet', 'shirt', 'floor', 'bowl', 'snow', 'field', 'lamp', 'elephant', 'tile', 'beach', 'pizza', 'wheel', 'picture', 'plant', 'ball', 'spot', 'hand', 'plane', 'mouth', 'stripe', 'letter', 'vase', 'man', 'building', 'surfboard', 'windows', 'light', 'counter', 'lines', 'dog', 'face', 'jacket', 'person', 'part', 'truck', 'bottle', 'wing'] assert len(class_labels) == 151 num_classes = len(class_labels) image_path = os.path.join('/home/alex/faster-rcnn.pytorch/data/flickr30k_alex/') image_extension = ".jpg" image_index = glob.glob(os.path.join(image_path, "*" + image_extension)) image_index = [os.path.basename(x)[:-len(image_extension)] for x in image_index] feature_path = os.path.join(image_path, 'features') if not os.path.exists(feature_path): os.makedirs(feature_path) dataset = roibatchLoader(image_path, image_index, image_extension) num_images = len(dataset) max_per_image = 100 metaInfo = edict() args = parse_args() print('Called with args:') print(args) np.random.seed(cfg.RNG_SEED) assert args.dataset == 'vg' assert args.net == 'vgg16' args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) cfg.TRAIN.USE_FLIPPED = False metaInfo.imdb_image_index = image_index meta_file = os.path.join(feature_path, "meta.pkl") with open(meta_file, 'wb') as f: pickle.dump(metaInfo, f, pickle.HIGHEST_PROTOCOL) input_dir = args.load_dir + "/" + args.net + "/" + args.dataset if not os.path.exists(input_dir): raise Exception('There is no input directory for loading network from ' + input_dir) load_name = os.path.join(input_dir, 'faster_rcnn_{}_{}_{}.pth'.format(args.checksession, args.checkepoch, args.checkpoint)) # initilize the network here. fasterRCNN = generic_extractor(class_labels, pretrained=False, class_agnostic=args.class_agnostic) fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # initilize the tensor holder here. im_data = torch.FloatTensor(1).to(device) gt_boxes = torch.FloatTensor([[ 1., 1., 1., 1., 1.]]).to(device) num_boxes = torch.LongTensor([0]).to(device) if args.cuda: cfg.CUDA = True with torch.no_grad(): fasterRCNN.to(device) fasterRCNN.eval() thresh = 0.0 # default value when vis=False dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True) data_iter = iter(dataloader) empty_array = np.transpose(np.array([[],[],[],[],[]]), (1,0)) for i in tqdm(range(num_images)): all_feat_class = [[] for _ in xrange(num_classes)] all_probs_class = [[] for _ in xrange(num_classes)] all_boxes_class = [[] for _ in xrange(num_classes)] data = next(data_iter) scale = data[1].item() im_data.data.resize_(data[0].size()).copy_(data[0]) im_info = torch.FloatTensor([[im_data.size(2), im_data.size(3), scale]]).to(device) rois, cls_prob, bbox_pred, \ rpn_loss_cls, rpn_loss_box, \ RCNN_loss_cls, RCNN_loss_bbox, \ rois_label, image_summary = fasterRCNN(im_data, im_info, gt_boxes, num_boxes) ###### assume: order does not change image_summary.info.image_idx = image_index[i] image_summary.info.data = generic_extractor._detach2numpy(im_data).squeeze() # phase 0 scores = cls_prob.data boxes = rois.data[:, :, 1:5] # (x1, y1, x2, y2) # Apply bounding-box regression deltas box_deltas = bbox_pred.data box_deltas = box_deltas.view(-1, 4) \ * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4 * len(class_labels)) # adjust boxes by deltas; output in (x1, y1, x2, y2) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) # avoid boxes go out of image pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) pred_boxes /= scale # (x1, y1, x2, y2) scores = scores.squeeze() # torch.Size([300, 151]) pooled_feat_backup = image_summary.pred.pooled_feat pred_boxes = pred_boxes.squeeze() # torch.Size([300, 604]), 604=4*151 for j in xrange(1, num_classes): inds = torch.nonzero(scores[:,j]>thresh).view(-1) # if there is det if inds.numel() > 0: curr_prob = scores # 300 x 151 curr_feat = pooled_feat_backup # 300 x 512 x 7 x 7 cls_scores = scores[:,j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) cls_dets = cls_dets[order] curr_prob = curr_prob[order] curr_feat = curr_feat[order] keep = nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] curr_prob = curr_prob[keep.view(-1).long()] curr_feat = curr_feat[keep.view(-1).long()] all_boxes_class[j] = cls_dets.cpu().numpy() all_probs_class[j] = curr_prob.cpu().numpy() all_feat_class[j] = curr_feat else: all_boxes_class[j] = empty_array all_probs_class[j] = empty_array all_feat_class[j] = empty_array min_area = 2000 for j in xrange(1, num_classes): filter_index = filter_small_box(all_boxes_class[j], min_area) all_boxes_class[j] = all_boxes_class[j][filter_index] all_probs_class[j] = all_probs_class[j][filter_index] all_feat_class[j] = all_feat_class[j][filter_index] # Limit to max_per_image detections *over all classes* # phase 3 curr_boxes = [] curr_scores = [] if max_per_image > 0: # flatten scores for all boxes of this image image_scores = np.hstack([all_boxes_class[j][:, -1] for j in xrange(1, num_classes)]) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in xrange(1, num_classes): keep = np.where(all_boxes_class[j][:, -1] >= image_thresh)[0] all_boxes_class[j] = all_boxes_class[j][keep, :] all_probs_class[j] = all_probs_class[j][keep, :] all_feat_class[j] = all_feat_class[j][keep, :] if(i % 1000 == 0): print("Cleaning CUDA cache") torch.cuda.empty_cache() image_summary.pred.cls_prob = [all_probs_class[j] for j in range(num_classes)] image_summary.pred.boxes= [all_boxes_class[j] for j in range(num_classes)] image_summary.pred.pooled_feat = [all_feat_class[j] for j in range(num_classes)] feature_file = os.path.join(feature_path, image_summary.info.image_idx+".pkl") package_image_summary(image_summary, feature_path)
#!/usr/bin/python3 import sys import rclpy import math import random from rclpy.node import Node from rclpy.time import CONVERSION_CONSTANT, Duration from geometry_msgs.msg import Vector3Stamped class PublishAsyncStddev(Node): def __init__(self): super().__init__('publish_async_stddev') self._pub_value = self.create_publisher(Vector3Stamped, 'value', 1) self._pub_stddev = self.create_publisher(Vector3Stamped, 'stddev', 1) self._timer = self.create_timer(0.1, self._on_timer) def _on_timer(self): msg = Vector3Stamped() t = self.get_clock().now() t += Duration(nanoseconds=random.randint(0, CONVERSION_CONSTANT / 1e3)) msg.header.stamp = t.to_msg() msg.vector.x = math.sin(t.nanoseconds / CONVERSION_CONSTANT) self._pub_value.publish(msg) msg.vector.x = 1.0 if bool(random.getrandbits(3)): print('publishing') self._pub_stddev.publish(msg) def main(args=sys.argv): rclpy.init(args=args) rclpy.spin(PublishAsyncStddev()) if __name__ == '__main__': main()
from django.conf.urls import patterns, include, url from .views import ReferralListView, ReferralUpdateView urlpatterns = patterns('', url(r'^$', ReferralListView.as_view(), name='referral_list'), url(r'(?P<referral_id>[\w-]+)/$', ReferralUpdateView.as_view(), name='referral_update'), )
from __future__ import print_function import logging as log import sys import os from argparse import ArgumentParser import cv2 from openvino.inference_engine import IENetwork, IEPlugin from lpr.trainer import decode_ie_output from utils.helpers import load_module def build_argparser(): parser = ArgumentParser() parser.add_argument("--model", help="Path to an .xml file with a trained model.", required=True, type=str) parser.add_argument("--cpu_extension", help="MKLDNN (CPU)-targeted custom layers. " "Absolute path to a shared library with the kernels implementation", type=str, default=None) parser.add_argument("--plugin_dir", help="Path to a plugin folder", type=str, default=None) parser.add_argument("--device", help="Specify the target device to infer on; CPU, GPU, FPGA or MYRIAD is acceptable. Sample " "will look for a suitable plugin for device specified (CPU by default)", default="CPU", type=str) parser.add_argument('path_to_config', help='Path to a config.py') parser.add_argument('input_image', help='Image with license plate') return parser def display_license_plate(number, license_plate_img): size = cv2.getTextSize(number, cv2.FONT_HERSHEY_SIMPLEX, 0.55, 2) text_width = size[0][0] text_height = size[0][1] height, width, _ = license_plate_img.shape license_plate_img = cv2.copyMakeBorder(license_plate_img, 0, text_height + 10, 0, 0 if text_width < width else text_width - width, cv2.BORDER_CONSTANT, value=(255, 255, 255)) cv2.putText(license_plate_img, number, (0, height + text_height + 5), cv2.FONT_HERSHEY_SIMPLEX, 0.55, (0, 0, 0), 2) return license_plate_img def load_ir_model(model_xml, device, plugin_dir, cpu_extension): model_bin = os.path.splitext(model_xml)[0] + ".bin" # initialize plugin log.info("Initializing plugin for %s device...", device) plugin = IEPlugin(device=device, plugin_dirs=plugin_dir) if cpu_extension and 'CPU' in device: plugin.add_cpu_extension(cpu_extension) # read IR log.info("Reading IR...") net = IENetwork.from_ir(model=model_xml, weights=model_bin) if "CPU" in plugin.device: supported_layers = plugin.get_supported_layers(net) not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if not_supported_layers: log.error("Following layers are not supported by the plugin for specified device %s:\n %s", plugin.device, ', '.join(not_supported_layers)) log.error("Please try to specify cpu extensions library path in sample's command line parameters using " "--cpu_extension command line argument") sys.exit(1) # input / output check assert len(net.inputs.keys()) == 1, "LPRNet must have only single input" assert len(net.outputs) == 1, "LPRNet must have only single output topologies" input_blob = next(iter(net.inputs)) out_blob = next(iter(net.outputs)) log.info("Loading IR to the plugin...") exec_net = plugin.load(network=net, num_requests=2) shape = net.inputs[input_blob].shape del net return exec_net, plugin, input_blob, out_blob, shape # pylint: disable=too-many-locals def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() cfg = load_module(args.path_to_config) exec_net, plugin, input_blob, out_blob, shape = load_ir_model(args.model, args.device, args.plugin_dir, args.cpu_extension) n_batch, channels, height, width = shape cur_request_id = 0 while 1: frame = cv2.imread(args.input_image) img_to_display = frame.copy() in_frame = cv2.resize(frame, (width, height)) in_frame = in_frame.transpose((2, 0, 1)) # Change data layout from HWC to CHW in_frame = in_frame.reshape((n_batch, channels, height, width)) exec_net.start_async(request_id=cur_request_id, inputs={input_blob: in_frame}) if exec_net.requests[cur_request_id].wait(-1) == 0: # Parse detection results of the current request lp_code = exec_net.requests[cur_request_id].outputs[out_blob] lp_number = decode_ie_output(lp_code, cfg.r_vocab) img_to_display = display_license_plate(lp_number, img_to_display) cv2.imshow('License Plate', img_to_display) key = cv2.waitKey(0) if key == 27: break del exec_net del plugin if __name__ == '__main__': sys.exit(main() or 0)
import logging import os import time from datetime import datetime, timedelta from airflow import DAG from airflow.operators.python import PythonOperator from astronomer.providers.microsoft.azure.operators.data_factory import ( AzureDataFactoryRunPipelineOperatorAsync, ) from astronomer.providers.microsoft.azure.sensors.data_factory import ( AzureDataFactoryPipelineRunStatusSensorAsync, ) EXECUTION_TIMEOUT = int(os.getenv("EXECUTION_TIMEOUT", 6)) default_args = { "execution_timeout": timedelta(hours=EXECUTION_TIMEOUT), "azure_data_factory_conn_id": "azure_data_factory_default", "factory_name": "ADFProvidersTeamDataFactoryTest", # This can also be specified in the ADF connection. "resource_group_name": "team_provider_resource_group_test_1", # This can also be specified in the ADF connection. "retries": int(os.getenv("DEFAULT_TASK_RETRIES", 2)), "retry_delay": timedelta(seconds=int(os.getenv("DEFAULT_RETRY_DELAY_SECONDS", 60))), } CLIENT_ID = os.getenv("CLIENT_ID", "") CLIENT_SECRET = os.getenv("CLIENT_SECRET", "") TENANT_ID = os.getenv("TENANT_ID", "") SUBSCRIPTION_ID = os.getenv("SUBSCRIPTION_ID", "") RESOURCE_GROUP_NAME = os.getenv("RESOURCE_GROUP_NAME", "") DATAFACTORY_NAME = os.getenv("DATAFACTORY_NAME", "") LOCATION = os.getenv("LOCATION", "eastus") CONNECTION_STRING = os.getenv("CONNECTION_STRING", "") PIPELINE_NAME = os.getenv("PIPELINE_NAME", "pipeline1") ACTIVITY_NAME = os.getenv("ACTIVITY_NAME", "copyBlobtoBlob") DATASET_INPUT_NAME = os.getenv("DATASET_INPUT_NAME", "ds_in") DATASET_OUTPUT_NAME = os.getenv("DATASET_OUTPUT_NAME", "ds_out") BLOB_FILE_NAME = os.getenv("BLOB_FILE_NAME", "test.txt") OUTPUT_BLOB_PATH = os.getenv("OUTPUT_BLOB_PATH", "container1/output") BLOB_PATH = os.getenv("BLOB_PATH", "container1/input") STORAGE_LINKED_SERVICE_NAME = os.getenv("STORAGE_LINKED_SERVICE_NAME", "storageLinkedService001") rg_params = {"location": LOCATION} df_params = {"location": LOCATION} def create_adf_storage_pipeline() -> None: """ Creates Azure resource if not present, Azure Data factory, Azure Storage linked service, Azure blob dataset both input and output and Data factory pipeline """ from azure.core.exceptions import HttpResponseError from azure.identity import ClientSecretCredential from azure.mgmt.datafactory import DataFactoryManagementClient from azure.mgmt.datafactory.models import ( AzureBlobDataset, AzureStorageLinkedService, BlobSink, BlobSource, CopyActivity, DatasetReference, DatasetResource, Factory, LinkedServiceReference, LinkedServiceResource, PipelineResource, SecureString, ) from azure.mgmt.resource import ResourceManagementClient credentials = ClientSecretCredential( client_id=CLIENT_ID, client_secret=CLIENT_SECRET, tenant_id=TENANT_ID ) resource_client = ResourceManagementClient(credentials, SUBSCRIPTION_ID) resource_group_exist = None try: resource_group_exist = resource_client.resource_groups.get(RESOURCE_GROUP_NAME) except HttpResponseError as e: logging.exception("Resource group not found, so creating one %s", e.__str__()) if not resource_group_exist: resource_client.resource_groups.create_or_update(RESOURCE_GROUP_NAME, rg_params) # Create a data factory adf_client = DataFactoryManagementClient(credentials, SUBSCRIPTION_ID) df_resource = Factory(location=LOCATION) df = adf_client.factories.create_or_update(RESOURCE_GROUP_NAME, DATAFACTORY_NAME, df_resource) while df.provisioning_state != "Succeeded": df = adf_client.factories.get(RESOURCE_GROUP_NAME, DATAFACTORY_NAME) time.sleep(1) # Create an Azure Storage linked service # IMPORTANT: specify the name and key of your Azure Storage account. storage_string = SecureString(value=CONNECTION_STRING) ls_azure_storage = LinkedServiceResource( properties=AzureStorageLinkedService(connection_string=storage_string) ) adf_client.linked_services.create_or_update( RESOURCE_GROUP_NAME, DATAFACTORY_NAME, STORAGE_LINKED_SERVICE_NAME, ls_azure_storage ) # Create an Azure blob dataset (input) ds_ls = LinkedServiceReference(reference_name=STORAGE_LINKED_SERVICE_NAME) ds_azure_blob = DatasetResource( properties=AzureBlobDataset( linked_service_name=ds_ls, folder_path=BLOB_PATH, file_name=BLOB_FILE_NAME ) ) adf_client.datasets.create_or_update( RESOURCE_GROUP_NAME, DATAFACTORY_NAME, DATASET_INPUT_NAME, ds_azure_blob ) # Create an Azure blob dataset (output) ds_out_azure_blob = DatasetResource( properties=AzureBlobDataset(linked_service_name=ds_ls, folder_path=OUTPUT_BLOB_PATH) ) adf_client.datasets.create_or_update( RESOURCE_GROUP_NAME, DATAFACTORY_NAME, DATASET_OUTPUT_NAME, ds_out_azure_blob ) # Create a copy activity blob_source = BlobSource() blob_sink = BlobSink() ds_in_ref = DatasetReference(reference_name=DATASET_INPUT_NAME) ds_out_ref = DatasetReference(reference_name=DATASET_OUTPUT_NAME) copy_activity = CopyActivity( name=ACTIVITY_NAME, inputs=[ds_in_ref], outputs=[ds_out_ref], source=blob_source, sink=blob_sink ) # Create a pipeline with the copy activity p_obj = PipelineResource(activities=[copy_activity], parameters={}) adf_client.pipelines.create_or_update(RESOURCE_GROUP_NAME, DATAFACTORY_NAME, PIPELINE_NAME, p_obj) def delete_azure_data_factory_storage_pipeline() -> None: """Delete data factory, storage linked service pipeline, dataset""" from azure.identity import ClientSecretCredential from azure.mgmt.datafactory import DataFactoryManagementClient from azure.mgmt.resource import ResourceManagementClient credentials = ClientSecretCredential( client_id=CLIENT_ID, client_secret=CLIENT_SECRET, tenant_id=TENANT_ID ) # create resource client resource_client = ResourceManagementClient(credentials, SUBSCRIPTION_ID) # create Data factory client adf_client = DataFactoryManagementClient(credentials, SUBSCRIPTION_ID) # Delete pipeline adf_client.pipelines.delete(RESOURCE_GROUP_NAME, DATAFACTORY_NAME, PIPELINE_NAME) # Delete input dataset adf_client.datasets.delete(RESOURCE_GROUP_NAME, DATAFACTORY_NAME, DATASET_INPUT_NAME) # Delete output dataset adf_client.datasets.delete(RESOURCE_GROUP_NAME, DATAFACTORY_NAME, DATASET_OUTPUT_NAME) # Delete Linked services adf_client.linked_services.delete( RESOURCE_GROUP_NAME, DATAFACTORY_NAME, linked_service_name=STORAGE_LINKED_SERVICE_NAME ) # Delete Data factory adf_client.factories.delete(RESOURCE_GROUP_NAME, DATAFACTORY_NAME) # Delete Resource Group resource_client.resource_groups.begin_delete(RESOURCE_GROUP_NAME) with DAG( dag_id="example_async_adf_run_pipeline", start_date=datetime(2021, 8, 13), schedule_interval=None, catchup=False, default_args=default_args, tags=["example", "async", "Azure Pipeline"], ) as dag: # [START howto_create_resource_group] create_azure_data_factory_storage_pipeline = PythonOperator( task_id="create_azure_data_factory_storage_pipeline", python_callable=create_adf_storage_pipeline, ) # [END howto_create_resource_group] # [START howto_operator_adf_run_pipeline] run_pipeline_wait = AzureDataFactoryRunPipelineOperatorAsync( task_id="run_pipeline_wait", pipeline_name=PIPELINE_NAME, ) # [END howto_operator_adf_run_pipeline] # [START howto_operator_adf_run_pipeline] run_pipeline_no_wait = AzureDataFactoryRunPipelineOperatorAsync( task_id="run_pipeline_no_wait", pipeline_name=PIPELINE_NAME, wait_for_termination=False, ) # [END howto_operator_adf_run_pipeline] # [START howto_sensor_pipeline_run_sensor_async] pipeline_run_sensor_async = AzureDataFactoryPipelineRunStatusSensorAsync( task_id="pipeline_run_sensor_async", run_id=run_pipeline_wait.output["run_id"], ) # [END howto_sensor_pipeline_run_sensor_async] remove_azure_data_factory_storage_pipeline = PythonOperator( task_id="remove_azure_data_factory_storage_pipeline", python_callable=delete_azure_data_factory_storage_pipeline, trigger_rule="all_done", ) ( create_azure_data_factory_storage_pipeline >> run_pipeline_wait >> run_pipeline_no_wait >> pipeline_run_sensor_async >> remove_azure_data_factory_storage_pipeline )
from flask import request from flask_restful import Resource from sqlalchemy import exc from api import db from api.models import User class Users(Resource): def get(self): return ( { "status": "success", "data": { "users": [user.to_json() for user in User.query.all()] }, }, 200, ) def post(self): post_data = request.get_json() if ( not post_data or "username" not in post_data or "email" not in post_data or "password" not in post_data ): return {"message": "Invalid payload", "status": "fail"}, 400 username = post_data.get("username") email = post_data.get("email") password = post_data.get("password") try: user_with_username = User.query.filter_by( username=username ).first() user_with_mail = User.query.filter_by(email=email).first() if not (user_with_username or user_with_mail): db.session.add( User(username=username, email=email, password=password) ) db.session.commit() return ( {"status": "success", "message": f"{email} was added!"}, 201, ) else: what = 'Username' if user_with_username else 'Email' return ( { "status": "fail", "message": f"{what} already exists.", }, 400, ) except exc.IntegrityError: db.session.rollback() return {"message": "Database error", "status": "fail"}, 400 class UsersId(Resource): def get(self, user_id): error = {"status": "fail", "message": "User does not exist."} if not str(user_id).isdigit(): return error, 404 try: user = User.query.filter_by(id=user_id).first() if not user: return error, 404 else: return ({"status": "success", "data": user.to_json()}, 200) except ValueError: return error, 404
from typing import Union import jax.numpy as np import numpy as onp import pandas as pd ArrayLikes = [pd.DataFrame, pd.Series, np.ndarray, np.DeviceArray, onp.ndarray] ArrayLikeType = Union[pd.DataFrame, pd.Series, np.ndarray, np.DeviceArray, onp.ndarray]
__version__ = '1.0.0' from .corrlib import *
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'D:\My_Codes\easylearn-fmri\eslearn\GUI\easylearn_main_gui.ui' # # Created by: PyQt5 UI code generator 5.11.3 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(439, 703) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) MainWindow.setMinimumSize(QtCore.QSize(300, 400)) MainWindow.setMaximumSize(QtCore.QSize(100000, 100000)) MainWindow.setMouseTracking(False) self.centralwidget = QtWidgets.QWidget(MainWindow) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(100) sizePolicy.setHeightForWidth(self.centralwidget.sizePolicy().hasHeightForWidth()) self.centralwidget.setSizePolicy(sizePolicy) self.centralwidget.setAcceptDrops(False) self.centralwidget.setAutoFillBackground(False) self.centralwidget.setObjectName("centralwidget") self.gridLayout = QtWidgets.QGridLayout(self.centralwidget) self.gridLayout.setObjectName("gridLayout") self.logo = QtWidgets.QLabel(self.centralwidget) self.logo.setMinimumSize(QtCore.QSize(0, 100)) self.logo.setText("") self.logo.setObjectName("logo") self.gridLayout.addWidget(self.logo, 0, 0, 1, 1) self.data_loading = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.data_loading.sizePolicy().hasHeightForWidth()) self.data_loading.setSizePolicy(sizePolicy) self.data_loading.setStyleSheet("") self.data_loading.setIconSize(QtCore.QSize(30, 30)) self.data_loading.setObjectName("data_loading") self.gridLayout.addWidget(self.data_loading, 1, 0, 1, 1) self.feature_engineering = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.feature_engineering.sizePolicy().hasHeightForWidth()) self.feature_engineering.setSizePolicy(sizePolicy) self.feature_engineering.setIconSize(QtCore.QSize(30, 30)) self.feature_engineering.setObjectName("feature_engineering") self.gridLayout.addWidget(self.feature_engineering, 2, 0, 1, 1) self.machine_learning = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.machine_learning.sizePolicy().hasHeightForWidth()) self.machine_learning.setSizePolicy(sizePolicy) self.machine_learning.setIconSize(QtCore.QSize(30, 30)) self.machine_learning.setObjectName("machine_learning") self.gridLayout.addWidget(self.machine_learning, 3, 0, 1, 1) self.model_evaluation = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.model_evaluation.sizePolicy().hasHeightForWidth()) self.model_evaluation.setSizePolicy(sizePolicy) self.model_evaluation.setObjectName("model_evaluation") self.gridLayout.addWidget(self.model_evaluation, 4, 0, 1, 1) self.statistical_analysis = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.statistical_analysis.sizePolicy().hasHeightForWidth()) self.statistical_analysis.setSizePolicy(sizePolicy) self.statistical_analysis.setIconSize(QtCore.QSize(30, 30)) self.statistical_analysis.setObjectName("statistical_analysis") self.gridLayout.addWidget(self.statistical_analysis, 5, 0, 1, 1) self.textBrowser = QtWidgets.QTextBrowser(self.centralwidget) self.textBrowser.setMinimumSize(QtCore.QSize(0, 20)) self.textBrowser.setMaximumSize(QtCore.QSize(10000000, 100)) self.textBrowser.setMidLineWidth(30) self.textBrowser.setObjectName("textBrowser") self.gridLayout.addWidget(self.textBrowser, 6, 0, 1, 1) self.save_load = QtWidgets.QHBoxLayout() self.save_load.setObjectName("save_load") self.quit = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.quit.sizePolicy().hasHeightForWidth()) self.quit.setSizePolicy(sizePolicy) self.quit.setObjectName("quit") self.save_load.addWidget(self.quit) spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.save_load.addItem(spacerItem) self.run = QtWidgets.QPushButton(self.centralwidget) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.run.sizePolicy().hasHeightForWidth()) self.run.setSizePolicy(sizePolicy) self.run.setIconSize(QtCore.QSize(30, 30)) self.run.setObjectName("run") self.save_load.addWidget(self.run) self.gridLayout.addLayout(self.save_load, 7, 0, 1, 1) self.progressBar = QtWidgets.QProgressBar(self.centralwidget) self.progressBar.setProperty("value", 0) self.progressBar.setObjectName("progressBar") self.gridLayout.addWidget(self.progressBar, 8, 0, 1, 1) MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 439, 26)) self.menubar.setObjectName("menubar") self.menueasylearn = QtWidgets.QMenu(self.menubar) self.menueasylearn.setObjectName("menueasylearn") self.menuHelp_H = QtWidgets.QMenu(self.menubar) self.menuHelp_H.setObjectName("menuHelp_H") self.menuSkin = QtWidgets.QMenu(self.menubar) self.menuSkin.setObjectName("menuSkin") MainWindow.setMenuBar(self.menubar) self.current_working_directory = QtWidgets.QAction(MainWindow) self.current_working_directory.setObjectName("current_working_directory") self.select_working_directory = QtWidgets.QAction(MainWindow) self.select_working_directory.setObjectName("select_working_directory") self.create_configuration_file = QtWidgets.QAction(MainWindow) self.create_configuration_file.setObjectName("create_configuration_file") self.choose_configuration_file = QtWidgets.QAction(MainWindow) self.choose_configuration_file.setObjectName("choose_configuration_file") self.actionDark = QtWidgets.QAction(MainWindow) self.actionDark.setObjectName("actionDark") self.actionBlack = QtWidgets.QAction(MainWindow) self.actionBlack.setObjectName("actionBlack") self.actionDarkOrange = QtWidgets.QAction(MainWindow) self.actionDarkOrange.setObjectName("actionDarkOrange") self.actionGray = QtWidgets.QAction(MainWindow) self.actionGray.setObjectName("actionGray") self.actionBlue = QtWidgets.QAction(MainWindow) self.actionBlue.setObjectName("actionBlue") self.actionNavy = QtWidgets.QAction(MainWindow) self.actionNavy.setObjectName("actionNavy") self.actionClassic = QtWidgets.QAction(MainWindow) self.actionClassic.setObjectName("actionClassic") self.actionLight = QtWidgets.QAction(MainWindow) self.actionLight.setObjectName("actionLight") self.menueasylearn.addSeparator() self.menueasylearn.addAction(self.select_working_directory) self.menueasylearn.addAction(self.create_configuration_file) self.menueasylearn.addAction(self.choose_configuration_file) self.menuSkin.addAction(self.actionDark) self.menuSkin.addAction(self.actionBlack) self.menuSkin.addAction(self.actionDarkOrange) self.menuSkin.addAction(self.actionGray) self.menuSkin.addAction(self.actionBlue) self.menuSkin.addAction(self.actionNavy) self.menuSkin.addAction(self.actionClassic) self.menuSkin.addAction(self.actionLight) self.menubar.addAction(self.menueasylearn.menuAction()) self.menubar.addAction(self.menuHelp_H.menuAction()) self.menubar.addAction(self.menuSkin.menuAction()) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.data_loading.setText(_translate("MainWindow", "Data Loading")) self.feature_engineering.setText(_translate("MainWindow", "Feature Engineering")) self.machine_learning.setText(_translate("MainWindow", "Machine Learning")) self.model_evaluation.setText(_translate("MainWindow", "Model Evaluation")) self.statistical_analysis.setText(_translate("MainWindow", "Statistical Analysis")) self.quit.setText(_translate("MainWindow", "Quit")) self.run.setText(_translate("MainWindow", "Run")) self.menueasylearn.setTitle(_translate("MainWindow", "Project initialization(&I)")) self.menuHelp_H.setTitle(_translate("MainWindow", "Help(&H)")) self.menuSkin.setTitle(_translate("MainWindow", "Skin")) self.current_working_directory.setText(_translate("MainWindow", "Current working directory")) self.select_working_directory.setText(_translate("MainWindow", "Select working directory")) self.create_configuration_file.setText(_translate("MainWindow", "Create configuration file")) self.choose_configuration_file.setText(_translate("MainWindow", "Load configuration file")) self.actionDark.setText(_translate("MainWindow", "Dark")) self.actionBlack.setText(_translate("MainWindow", "Black")) self.actionDarkOrange.setText(_translate("MainWindow", "DarkOrange")) self.actionGray.setText(_translate("MainWindow", "Gray")) self.actionBlue.setText(_translate("MainWindow", "Blue")) self.actionNavy.setText(_translate("MainWindow", "Navy")) self.actionClassic.setText(_translate("MainWindow", "Classic")) self.actionLight.setText(_translate("MainWindow", "Light"))
#!/usr/bin/env python import rospy from std_msgs.msg import Int32 from geometry_msgs.msg import PoseStamped, Pose from styx_msgs.msg import TrafficLightArray, TrafficLight from styx_msgs.msg import Lane from sensor_msgs.msg import Image from cv_bridge import CvBridge from light_classification.tl_classifier import TLClassifier import tf import cv2 import yaml from scipy.spatial import KDTree STATE_COUNT_THRESHOLD = 3 class TLDetector(object): def __init__(self): rospy.init_node('tl_detector') self.pose = None self.waypoints = None self.waypoints_2d = None self.waypoint_tree = None self.camera_image = None self.lights = [] #self.count = 0 # record freq enter detection sub1 = rospy.Subscriber('/current_pose', PoseStamped, self.pose_cb) sub2 = rospy.Subscriber('/base_waypoints', Lane, self.waypoints_cb) ''' /vehicle/traffic_lights provides you with the location of the traffic light in 3D map space and helps you acquire an accurate ground truth data source for the traffic light classifier by sending the current color state of all traffic lights in the simulator. When testing on the vehicle, the color state will not be available. You'll need to rely on the position of the light and the camera image to predict it. ''' sub3 = rospy.Subscriber('/vehicle/traffic_lights', TrafficLightArray, self.traffic_cb) sub6 = rospy.Subscriber('/image_color', Image, self.image_cb) config_string = rospy.get_param("/traffic_light_config") self.config = yaml.load(config_string) self.upcoming_red_light_pub = rospy.Publisher('/traffic_waypoint', Int32, queue_size=1) self.bridge = CvBridge() self.light_classifier = TLClassifier() self.listener = tf.TransformListener() self.state = TrafficLight.UNKNOWN self.last_state = TrafficLight.UNKNOWN self.last_wp = -1 self.state_count = 0 rospy.spin() def pose_cb(self, msg): self.pose = msg def waypoints_cb(self, waypoints): # TODO: Implement # base_waypoints will be called only once since the base way point # would not change ,so it will be stroed in the class self.waypoints = waypoints if not self.waypoints_2d: # just to get the coordinates of the waypoints (x,y) self.waypoints_2d = [[waypoint.pose.pose.position.x, waypoint.pose.pose.position.y] \ for waypoint in waypoints.waypoints] self.waypoint_tree = KDTree(self.waypoints_2d) # constructa KDTree using the 2d waypoints def traffic_cb(self, msg): self.lights = msg.lights def image_cb(self, msg): """Identifies red lights in the incoming camera image and publishes the index of the waypoint closest to the red light's stop line to /traffic_waypoint Args: msg (Image): image from car-mounted camera """ self.has_image = True self.camera_image = msg light_wp, state = self.process_traffic_lights() ''' Publish upcoming red lights at camera frequency. Each predicted state has to occur `STATE_COUNT_THRESHOLD` number of times till we start using it. Otherwise the previous stable state is used. ''' if self.state != state: # if state change we start the counter self.state_count = 0 self.state = state # since the classifier could be unstable and keep changing all the time # we will only take action of the classifier stays unchanged for a certain # threshold of classification loops elif self.state_count >= STATE_COUNT_THRESHOLD: self.last_state = self.state # record the last state light_wp = light_wp if state == TrafficLight.RED else -1 # we only interested in the red light self.last_wp = light_wp # record the previous traffic light state self.upcoming_red_light_pub.publish(Int32(light_wp)) # publish the confident traffic light state else: # if we are not confident just publish the previous traffic light state self.upcoming_red_light_pub.publish(Int32(self.last_wp)) self.state_count += 1 def get_closest_waypoint(self, x,y): """Identifies the closest path waypoint to the given position https://en.wikipedia.org/wiki/Closest_pair_of_points_problem Args: pose (Pose): position to match a waypoint to Returns: int: index of the closest waypoint in self.waypoints """ #TODO implement closest_idx = self.waypoint_tree.query([x,y],1)[1] return closest_idx def get_light_state(self, light): """Determines the current color of the traffic light Args: light (TrafficLight): light to classify Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ #return light.state # get the light state provided by the simulator if(not self.has_image): self.prev_light_loc = None return False # change from ros image message to cv rgb image cv_image = self.bridge.imgmsg_to_cv2(self.camera_image, "rgb8") status = self.light_classifier.get_classification(cv_image) #rospy.loginfo("[traffic] ",tl_color," traffic light detected") #Get classification return status def process_traffic_lights(self): """Finds closest visible traffic light, if one exists, and determines its location and color Returns: int: index of waypoint closes to the upcoming stop line for a traffic light (-1 if none exists) int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ closest_light = None line_wp_idx = None light = None # List of positions that correspond to the line to stop in front of for a given intersection stop_line_positions = self.config['stop_line_positions'] if(self.pose): car_wp_idx = self.get_closest_waypoint(self.pose.pose.position.x, self.pose.pose.position.y) #TODO find the closest visible traffic light (if one exists) diff = len(self.waypoints.waypoints) # number of visible points ahead of the car # loop through all possible stop line and find the one closest visible stopline for i , light in enumerate(self.lights): line = stop_line_positions[i] # get the stop line waypoint index # get the closest waypoint index of this traffic light coordinates temp_wp_idx = self.get_closest_waypoint(line[0],line[1]) d = temp_wp_idx - car_wp_idx if d >= 0 and d < diff: # check to see if stop line is ahead and visible infront of the car #rospy.loginfo("[debug] light: {}, car_wp_indx: {}, wp_indx: {}, d: {}".format( # i, car_wp_idx, temp_wp_idx, d)) diff = d closest_light = light line_wp_idx = temp_wp_idx break # only detect and classify when 50 way poits ahead the traffic light # with half the hz of this node for detection and classification #rospy.loginfo('[outside] state count is {}'.format(self.state_count)) if closest_light and diff <80: #rospy.loginfo('[inside] count is {}'.format(self.state_count)) state = self.get_light_state(closest_light) return line_wp_idx, state # return the stop line index is there is visible and the state of the light return -1, TrafficLight.UNKNOWN # return -1 if there is no visible traffice light if __name__ == '__main__': try: TLDetector() except rospy.ROSInterruptException: rospy.logerr('Could not start traffic node.')
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: tensorflow/contrib/mpi_collectives/mpi_message.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from tensorflow.core.framework import tensor_shape_pb2 as tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2 from tensorflow.core.framework import types_pb2 as tensorflow_dot_core_dot_framework_dot_types__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='tensorflow/contrib/mpi_collectives/mpi_message.proto', package='tensorflow.contrib.mpi', syntax='proto3', serialized_pb=_b('\n4tensorflow/contrib/mpi_collectives/mpi_message.proto\x12\x16tensorflow.contrib.mpi\x1a,tensorflow/core/framework/tensor_shape.proto\x1a%tensorflow/core/framework/types.proto\"\x89\x02\n\nMPIRequest\x12\x14\n\x0crequest_rank\x18\x01 \x01(\x05\x12\x44\n\x0crequest_type\x18\x02 \x01(\x0e\x32..tensorflow.contrib.mpi.MPIRequest.RequestType\x12)\n\x0btensor_type\x18\x03 \x01(\x0e\x32\x14.tensorflow.DataType\x12\x13\n\x0btensor_name\x18\x04 \x01(\t\x12\x32\n\x0ctensor_shape\x18\x05 \x01(\x0b\x32\x1c.tensorflow.TensorShapeProto\"+\n\x0bRequestType\x12\r\n\tALLREDUCE\x10\x00\x12\r\n\tALLGATHER\x10\x01\"\xd3\x01\n\x0bMPIResponse\x12G\n\rresponse_type\x18\x01 \x01(\x0e\x32\x30.tensorflow.contrib.mpi.MPIResponse.ResponseType\x12\x13\n\x0btensor_name\x18\x02 \x01(\t\x12\x15\n\rerror_message\x18\x03 \x01(\t\"O\n\x0cResponseType\x12\r\n\tALLREDUCE\x10\x00\x12\r\n\tALLGATHER\x10\x01\x12\t\n\x05\x45RROR\x10\x02\x12\x08\n\x04\x44ONE\x10\x03\x12\x0c\n\x08SHUTDOWN\x10\x04\x62\x06proto3') , dependencies=[tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2.DESCRIPTOR,tensorflow_dot_core_dot_framework_dot_types__pb2.DESCRIPTOR,]) _MPIREQUEST_REQUESTTYPE = _descriptor.EnumDescriptor( name='RequestType', full_name='tensorflow.contrib.mpi.MPIRequest.RequestType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ALLREDUCE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ALLGATHER', index=1, number=1, options=None, type=None), ], containing_type=None, options=None, serialized_start=388, serialized_end=431, ) _sym_db.RegisterEnumDescriptor(_MPIREQUEST_REQUESTTYPE) _MPIRESPONSE_RESPONSETYPE = _descriptor.EnumDescriptor( name='ResponseType', full_name='tensorflow.contrib.mpi.MPIResponse.ResponseType', filename=None, file=DESCRIPTOR, values=[ _descriptor.EnumValueDescriptor( name='ALLREDUCE', index=0, number=0, options=None, type=None), _descriptor.EnumValueDescriptor( name='ALLGATHER', index=1, number=1, options=None, type=None), _descriptor.EnumValueDescriptor( name='ERROR', index=2, number=2, options=None, type=None), _descriptor.EnumValueDescriptor( name='DONE', index=3, number=3, options=None, type=None), _descriptor.EnumValueDescriptor( name='SHUTDOWN', index=4, number=4, options=None, type=None), ], containing_type=None, options=None, serialized_start=566, serialized_end=645, ) _sym_db.RegisterEnumDescriptor(_MPIRESPONSE_RESPONSETYPE) _MPIREQUEST = _descriptor.Descriptor( name='MPIRequest', full_name='tensorflow.contrib.mpi.MPIRequest', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='request_rank', full_name='tensorflow.contrib.mpi.MPIRequest.request_rank', index=0, number=1, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='request_type', full_name='tensorflow.contrib.mpi.MPIRequest.request_type', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_type', full_name='tensorflow.contrib.mpi.MPIRequest.tensor_type', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_name', full_name='tensorflow.contrib.mpi.MPIRequest.tensor_name', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_shape', full_name='tensorflow.contrib.mpi.MPIRequest.tensor_shape', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _MPIREQUEST_REQUESTTYPE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=166, serialized_end=431, ) _MPIRESPONSE = _descriptor.Descriptor( name='MPIResponse', full_name='tensorflow.contrib.mpi.MPIResponse', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='response_type', full_name='tensorflow.contrib.mpi.MPIResponse.response_type', index=0, number=1, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='tensor_name', full_name='tensorflow.contrib.mpi.MPIResponse.tensor_name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), _descriptor.FieldDescriptor( name='error_message', full_name='tensorflow.contrib.mpi.MPIResponse.error_message', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=_b("").decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None), ], extensions=[ ], nested_types=[], enum_types=[ _MPIRESPONSE_RESPONSETYPE, ], options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=434, serialized_end=645, ) _MPIREQUEST.fields_by_name['request_type'].enum_type = _MPIREQUEST_REQUESTTYPE _MPIREQUEST.fields_by_name['tensor_type'].enum_type = tensorflow_dot_core_dot_framework_dot_types__pb2._DATATYPE _MPIREQUEST.fields_by_name['tensor_shape'].message_type = tensorflow_dot_core_dot_framework_dot_tensor__shape__pb2._TENSORSHAPEPROTO _MPIREQUEST_REQUESTTYPE.containing_type = _MPIREQUEST _MPIRESPONSE.fields_by_name['response_type'].enum_type = _MPIRESPONSE_RESPONSETYPE _MPIRESPONSE_RESPONSETYPE.containing_type = _MPIRESPONSE DESCRIPTOR.message_types_by_name['MPIRequest'] = _MPIREQUEST DESCRIPTOR.message_types_by_name['MPIResponse'] = _MPIRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) MPIRequest = _reflection.GeneratedProtocolMessageType('MPIRequest', (_message.Message,), dict( DESCRIPTOR = _MPIREQUEST, __module__ = 'tensorflow.contrib.mpi_collectives.mpi_message_pb2' # @@protoc_insertion_point(class_scope:tensorflow.contrib.mpi.MPIRequest) )) _sym_db.RegisterMessage(MPIRequest) MPIResponse = _reflection.GeneratedProtocolMessageType('MPIResponse', (_message.Message,), dict( DESCRIPTOR = _MPIRESPONSE, __module__ = 'tensorflow.contrib.mpi_collectives.mpi_message_pb2' # @@protoc_insertion_point(class_scope:tensorflow.contrib.mpi.MPIResponse) )) _sym_db.RegisterMessage(MPIResponse) # @@protoc_insertion_point(module_scope)
""" Plot functions. """ # pylint: disable=too-many-statements from numbers import Number from copy import copy import colorsys import cv2 import numpy as np import matplotlib.pyplot as plt from matplotlib import patheffects from matplotlib.cm import get_cmap, register_cmap from matplotlib.patches import Patch from matplotlib.colors import ColorConverter, ListedColormap, LinearSegmentedColormap, is_color_like from mpl_toolkits import axes_grid1 import plotly.figure_factory as ff import plotly.graph_objects as go from plotly.subplots import make_subplots from .utils import to_list from ..batchflow import deprecated def plot_image(data=None, mode='imshow', backend='matplotlib', **kwargs): """ Overall plotter function, converting kwarg-names to match chosen backend and redirecting plotting task to one of the methods of backend-classes. """ if backend in ('matplotlib', 'plt'): return MatplotlibPlotter.plot(data=data, mode=mode, **kwargs) if backend in ('plotly', 'go'): return getattr(PlotlyPlotter, mode)(data, **kwargs) raise ValueError(f'{backend} backend is not supported!') def plot_loss(data, title=None, **kwargs): """ Shorthand for loss plotting. """ kwargs = { 'xlabel': 'Iterations', 'ylabel': 'Loss', 'label': title or 'Loss graph', 'xlim': (0, None), 'rolling_mean': 10, 'final_mean': 100, **kwargs } return plot_image(data, mode='curve', backend='matplotlib', **kwargs) def filter_parameters(params, keys=None, prefix='', index=None, index_condition=None): """ Make a subdictionary of parameters with required keys. Parameter are retrieved if: a. It is explicitly requested (via `keys` arg). b. Its name starts with given prefix (defined by `prefix` arg). Parameters ---------- params : dict Arguments to filter. keys : sequence Keys to retrieve. prefix : str, optional Arguments with keys starting with given prefix will also be retrieved. Defaults to `''`, i.e. no prefix used. index : int Index of argument value to retrieve. If none provided, get whole argument value. If value is non-indexable, get it without indexing. index_condition : callable Function that takes indexed argument value and returns a bool specifying whether should it be really indexed. """ result = {} keys = keys or list(params.keys()) if prefix: keys += [key.split(prefix)[1] for key in params if key.startswith(prefix)] for key in keys: value = params.get(prefix + key, params.get(key)) if value is None: continue # check if parameter value indexing is requested and possible if index is not None and isinstance(value, list): # check if there is no index condition or there is one and it is satisfied if index_condition is None or index_condition(value[index]): value = value[index] result[key] = value return result class MatplotlibPlotter: """ Plotting backend for matplotlib. Basic class logic ----------------- Simply provide data, plot mode and parameters to the `plot_image` call. `MatplotlibPlotter` takes care of redirecting params to methods they are meant for. The logic behind the process is the following: 1. Convert some provided parameters from 'plotly' to 'matplotlib' naming convention. 2. Obtain default params for chosen mode and merge them with provided params. 3. Put data into a double-nested list (via `make_nested_data`). Nestedness levels define subplot and layer data order correspondingly. 4. Parse axes or create them if none provided via `make_or_parse_axes`. 5. For every axis-data pair: a. Filter params relevant for ax (via `filter_parameters`). b. Call chosen plot method (one of `imshow`, `wiggle`, `hist` or `curve`) with ax params. c. Apply all annotations with ax params (via `annotate_axis`). 6. Show and save figure (via `show_and_save`). Data display scenarios ---------------------- 1. The simplest one if when one provide a single data array. 2. A more advanced use case is when one provide a list of arrays: a. Images are put on same axis and overlaid: data=[image_1, image_2]; b. Images are put on separate axes: data=[image_1, image_2], separate=True; 3. The most complex scenario is when one wish to display images in a 'mixed' manner. For example, to overlay first two images but to display the third one separately, one must use: data = [[image_1, image_2], image_3]; The order of arrrays inside the double-nested structure basically declares, which of them belong to the same axis and therefore should be rendered one over another, and which must be displayed separately. Note that in general parameters should resemble data nestedness level. That allows binding axes and parameters that correspond each other. However, it's possible for parameter to be a single item — in that case it's shared across all subplots and layers. Advanced parameters managing ---------------------------- The list of parameters expected by specific plot method is rather short. But there is a way to provide parameter to a plot method, even if it's not hard-coded. One must use specific prefix for that. Address docs of `imshow`, `wiggle`, `hist`, `curve` and `annotate_axis` for details. This also allows one to pass arguments of the same name for different plotting steps. E.g. `plt.set_title` and `plt.set_xlabel` both require `fontsize` argument. Providing `{'fontsize': 30}` in kwargs will affect both title and x-axis labels. To change parameter for title only, one can provide {'title_fontsize': 30}` instead. """ @classmethod def plot(cls, data, mode='imshow', separate=False, **kwargs): """ Plot manager. Parses axes from kwargs if provided, else creates them. Filters parameters and calls chosen plot method for every axis-data pair. Parameters ---------- data : np.ndarray or a list of np.ndarray objects (possibly nested) If list has level 1 nestedness, 'overlaid/separate' logic is handled via `separate` parameter. If list has level 2 nestedness, outer level defines subplots order while inner one defines layers order. Shape of data items depends on chosen mode (see below). mode : 'imshow', 'wiggle', 'hist', 'curve' If 'imshow' plot given arrays as images. If 'wiggle' plot 1d subarrays of given array as signals. Subarrays are extracted from given data with fixed step along vertical axis. If 'hist' plot histogram of flattened array. If 'curve' plot given arrays as curves. separate : bool Whether plot images on separate axes instead of putting them all together on a single one. Incompatible with 'wiggle' mode. kwargs : - For one of `imshow`, 'wiggle`, `hist` or `curve` (depending on chosen mode). Parameters and data nestedness levels must match. Every param with 'imshow_', 'wiggle_', 'hist_' or 'curve_' prefix is redirected to corresponding method. - For `annotate_axis`. Every param with 'title_', 'suptitle_', 'xlabel_', 'ylabel_', 'xticks_', 'yticks_', 'ticks_', 'xlim_', 'ylim_', colorbar_', 'legend_' or 'grid_' prefix is redirected to corresponding matplotlib method. Also 'facecolor', 'set_axisbelow', 'disable_axes' arguments are accepted. """ if mode == 'wiggle' and separate: raise ValueError("Can't use `separate` option with `wiggle` mode.") PLOTLY_TO_PYPLOT = {'zmin': 'vmin', 'zmax': 'vmax', 'xaxis': 'xlabel', 'yaxis': 'ylabel'} # pylint: disable=expression-not-assigned [kwargs.update({new: kwargs[old]}) for old, new in PLOTLY_TO_PYPLOT.items() if old in kwargs] mode_defaults = getattr(cls, f"{mode.upper()}_DEFAULTS") all_params = {**mode_defaults, **kwargs} data = cls.make_nested_data(data=data, separate=separate) axes = cls.make_or_parse_axes(mode=mode, n_subplots=len(data), all_params=all_params) for ax_num, (ax_data, ax) in enumerate(zip(data, axes)): index_condition = None if separate else lambda x: isinstance(x, list) ax_params = filter_parameters(all_params, index=ax_num, index_condition=index_condition) ax_params = getattr(cls, mode)(ax=ax, data=ax_data, **ax_params) cls.annotate_axis(ax=ax, ax_num=ax_num, ax_params=ax_params, all_params=all_params, mode=mode) [ax.set_axis_off() for ax in axes[len(data):]] # pylint: disable=expression-not-assigned return cls.save_and_show(fig=axes[0].figure, **kwargs) # Action methods @staticmethod def make_nested_data(data, separate): """ Construct nested list of data arrays for plotting. """ if data is None: return [] if isinstance(data, np.ndarray): return [[data]] if isinstance(data[0], Number): return [[np.array(data)]] if all(isinstance(item, np.ndarray) for item in data): return [[item] for item in data] if separate else [data] if separate: raise ValueError("Arrays list must be flat, when `separate` option is True.") return [[item] if isinstance(item, np.ndarray) else item for item in data] @classmethod def make_or_parse_axes(cls, mode, n_subplots, all_params): """ Create figure and axes if needed, else use provided. """ MODE_TO_FIGSIZE = {'imshow' : (12, 12), 'hist' : (8, 5), 'wiggle' : (12, 7), 'curve': (15, 5)} axes = all_params.pop('axis', None) axes = all_params.pop('axes', axes) axes = all_params.pop('ax', axes) if axes is None: FIGURE_KEYS = ['figsize', 'facecolor', 'dpi', 'ncols', 'nrows', 'constrained_layout'] params = filter_parameters(all_params, FIGURE_KEYS, prefix='figure_') params['figsize'] = params.get('figsize', MODE_TO_FIGSIZE[mode]) if ('ncols' not in params) and ('nrows' not in params): params['ncols'] = n_subplots _, axes = plt.subplots(**params) axes = to_list(axes) n_axes = len(axes) if n_axes < n_subplots: raise ValueError(f"Not enough axes provided ({n_axes}) for {n_subplots} subplots.") return axes @classmethod def annotate_axis(cls, ax, ax_num, ax_params, all_params, mode): """ Apply requested annotation functions to given axis with chosen parameters. """ # pylint: disable=too-many-branches TEXT_KEYS = ['fontsize', 'family', 'color'] # title keys = ['title', 'label', 'y'] + TEXT_KEYS params = filter_parameters(ax_params, keys, prefix='title_', index=ax_num) params['label'] = params.pop('title', None) or params.get('label') if params: ax.set_title(**params) # suptitle keys = ['t', 'y'] + TEXT_KEYS params = filter_parameters(ax_params, keys, prefix='suptitle_') params['t'] = params.get('t') or params.get('suptitle') or params.get('label') if params: ax.figure.suptitle(**params) # xlabel keys = ['xlabel'] + TEXT_KEYS params = filter_parameters(ax_params, keys, prefix='xlabel_', index=ax_num) if params: ax.set_xlabel(**params) # ylabel keys = ['ylabel'] + TEXT_KEYS params = filter_parameters(ax_params, keys, prefix='ylabel_', index=ax_num) if params: ax.set_ylabel(**params) # aspect params = filter_parameters(ax_params, ['aspect'], prefix='aspect_', index=ax_num) if params: ax.set_aspect(**params) # xticks params = filter_parameters(ax_params, ['xticks'], prefix='xticks_', index=ax_num) if 'xticks' in params: params['ticks'] = params.get('ticks', params.pop('xticks')) if params: ax.set_xticks(**params) # yticks params = filter_parameters(ax_params, ['yticks'], prefix='yticks_', index=ax_num) if 'yticks' in params: params['ticks'] = params.get('ticks', params.pop('yticks')) if params: ax.set_yticks(**params) # ticks keys = ['labeltop', 'labelright', 'labelcolor', 'direction'] params = filter_parameters(ax_params, keys, prefix='tick_', index=ax_num) if params: ax.tick_params(**params) # xlim params = filter_parameters(ax_params, ['xlim'], prefix='xlim_', index=ax_num) if 'xlim' in params: params['left'] = params.get('left', params.pop('xlim')) if params: ax.set_xlim(**params) # ylim params = filter_parameters(ax_params, ['ylim'], prefix='ylim_', index=ax_num) if 'ylim' in params: params['bottom'] = params.get('bottom', params.pop('ylim')) if params: ax.set_ylim(**params) # colorbar if all_params.get('colorbar', False) and mode == 'imshow': keys = ['colorbar', 'fraction', 'aspect', 'fake', 'ax_image'] params = filter_parameters(ax_params, keys, prefix='colorbar_', index=ax_num) # if colorbar is disabled for subplot, add param to plot fake axis instead to keep proportions params['fake'] = not params.pop('colorbar', True) cls.add_colorbar(**params) # legend keys = ['label', 'size', 'cmap', 'color', 'loc'] params = filter_parameters(ax_params, keys, prefix='legend_') params['color'] = params.pop('cmap', None) or params.get('color') if params.get('label') is not None: cls.add_legend(ax, **params) # grid keys = ['grid', 'b', 'which', 'axis'] params = filter_parameters(ax_params, keys, prefix='grid_', index=ax_num) params['b'] = params.pop('grid', params.pop('b', 'False')) if params: ax.grid(**params) if ax_params.get('facecolor'): ax.set_facecolor(ax_params['facecolor']) ax.set_axisbelow(ax_params.get('set_axisbelow', False)) if ax_params.get('disable_axes'): ax.set_axis_off() elif not ax.axison: ax.set_axis_on() @staticmethod def save_and_show(fig, show=True, savepath=None, return_figure=False, pyqt=False, **kwargs): """ Save and show plot if needed. """ if pyqt: return None save_kwargs = dict(bbox_inches='tight', pad_inches=0, dpi=100) save_kwargs.update(kwargs.get('save') or {}) # save if necessary and render if savepath is not None: fig.savefig(savepath, **save_kwargs) if show: fig.show() else: plt.close() plot_image.last_figure = fig if return_figure: return fig return None # Rendering methods IMSHOW_DEFAULTS = { # image 'cmap': ['Greys_r', 'firebrick', 'mediumseagreen', 'thistle', 'darkorange', 'navy', 'gold', 'red', 'turquoise', 'darkorchid', 'darkkhaki', 'royalblue', 'yellow', 'chocolate', 'forestgreen', 'lightpink', 'darkslategray', 'deepskyblue', 'wheat'], 'facecolor': 'white', # axis labels 'xlabel': '', 'ylabel': '', # colorbar 'colorbar_fraction': 3.0, 'colorbar_aspect': 30, # ticks 'labeltop': True, 'labelright': True, 'direction': 'inout', # legend 'legend_loc': 0, 'legend_size': 10, 'legend_label': None, # common 'fontsize': 20, # grid 'grid': False, # other 'order_axes': (1, 0, 2), 'bad_color': (.0,.0,.0,.0), 'transparize_masks': None, } @classmethod def imshow(cls, ax, data, **kwargs): """ Plot arrays as images one over another on given axis. Parameters ---------- ax : matplotlib axis Axis to plot images on. data : list of np.ndarray Every item must be a valid matplotlib image. kwargs : order_axes : tuple of ints Order of image axes. bad_values : list of numbers Data values that should be displayed with 'bad_color'. transparize_masks : bool, optional Whether treat zeros in binary masks as bad values or not. If True, make zero values in all binary masks transparent on display. If False, do not make zero values in any binary masks transparent on display. If not provided, make zero values transparent in all masks that overlay an image. params for images drawn by `plt.imshow`: - 'cmap', 'vmin', 'vmax', 'interpolation', 'alpha', 'extent' - params with 'imshow_' prefix Notes ----- See class docs for details on prefixes usage. See class and method defaults for arguments examples. """ for image_num, image in enumerate(data): image = np.transpose(image, axes=kwargs['order_axes'][:image.ndim]).astype(np.float32) keys = ['cmap', 'vmin', 'vmax', 'interpolation', 'alpha', 'extent'] params = filter_parameters(kwargs, keys, prefix='imshow_', index=image_num) params['cmap'] = cls.make_cmap(params.pop('cmap'), kwargs['bad_color']) params['extent'] = params.get('extent') or [0, image.shape[1], image.shape[0], 0] # fill some values with nans to display them with `bad_color` bad_values = filter_parameters(kwargs, ['bad_values'], index=image_num).get('bad_values', []) transparize_masks = kwargs.get('transparize_masks') transparize_masks = transparize_masks if transparize_masks is not None else image_num > 0 if transparize_masks: unique_values = tuple(np.unique(image)) if unique_values == (0,) or unique_values == (0, 1): # pylint: disable=consider-using-in params['vmin'] = params.get('vmin', 0) bad_values = [0] for bad_value in bad_values: image[image == bad_value] = np.nan ax_image = ax.imshow(image, **params) if image_num == 0: kwargs['ax_image'] = ax_image return kwargs WIGGLE_DEFAULTS = { # main 'step': 15, 'width_multiplier': 1, 'curve_width': 1, # wiggle 'wiggle_color': 'k', 'wiggle_linestyle': '-', # curve 'color': 'r', 'marker': 'o', 'linestyle': '', # suptitle 'suptitle_color': 'k', # title 'title_color': 'k', # axis labels 'xlabel': '', 'ylabel': '', 'xlabel_color': 'k', 'ylabel_color': 'k', # ticks 'labeltop': True, 'labelright': True, 'direction': 'inout', # legend 'legend_loc': 1, 'legend_size': 15, # grid 'grid_axis': 'y', # common 'set_axisbelow': True, 'fontsize': 20, 'label': '' } @classmethod def wiggle(cls, ax, data, **kwargs): """ Make wiggle plot of signals array. Optionally overlap it with a curve. Parameters ---------- ax : matplotlib axis Axis to plot images on. data : np.ndarray or list of np.ndarray If array, must be 2d. If list, must contain image and curve arrays. Curve, in turn must be either 1d array of heights or 2d array mask. If 1d heights, its shape must match correposnding image dimension. If 2d mask, its shape must match image shape. In both cases it is expected, that there must be `np.nan` where curve is not defined. kwargs : step : int, optional Step to take signals from the array with. width_multiplier : float, optional Scale factor for signals amplitudes. color : matplotlib color Wiggle lines color. fill_color : matplotlib color Wiggle fill color. xlim, ylims : tuples of int Define displayed data limits. params for overlaid curves drawn by `plt.plot`: - 'color', 'linestyle', 'marker', 'markersize' - params with 'curve_' prefix Notes ----- See class docs for details on prefixes usage. See class and method defaults for arguments examples. """ image, *curves = data offsets = np.arange(0, image.shape[0], kwargs['step']) y_range = np.arange(0, image.shape[1]) x_range = [] # accumulate traces to draw curve above them if needed for offset in offsets: x = offset + kwargs['width_multiplier'] * image[offset] / np.std(image) params = filter_parameters(kwargs, ['color'], prefix='wiggle_') ax.plot(x, y_range, **params) fill_color = kwargs.get('fill_color') or params['color'] ax.fill_betweenx(y_range, offset, x, where=(x > offset), color=fill_color) x_range.append(x) x_range = np.r_[x_range] if 'xlim' not in kwargs: kwargs['xlim'] = (x_range[0].min(), x_range[-1].max()) if 'ylim' not in kwargs: kwargs['ylim'] = (y_range.max(), y_range.min()) for curve_num, curve in enumerate(curves): keys = ['color', 'linestyle', 'marker', 'markersize'] params = filter_parameters(kwargs, keys, prefix='curve_', index=curve_num) width = params.pop('width', 1) curve = curve[offsets] if curve.ndim == 1: curve_x = (~np.isnan(curve)).nonzero()[0] curve_y = curve[curve_x] # transform height-mask to heights if needed elif curve.ndim == 2: curve = (~np.isnan(curve)).nonzero() curve_x = curve[0][(width // 2)::width] curve_y = curve[1][(width // 2)::width] ax.plot(x_range[curve_x, curve_y], curve_y, **params) return kwargs HIST_DEFAULTS = { # hist 'bins': 50, 'color': ['firebrick', 'mediumseagreen', 'thistle', 'darkorange', 'navy', 'gold', 'red', 'turquoise', 'darkorchid', 'darkkhaki', 'royalblue', 'yellow', 'chocolate', 'forestgreen', 'lightpink', 'darkslategray', 'deepskyblue', 'wheat'], 'alpha': 0.8, 'facecolor': 'white', # suptitle 'suptitle_color': 'k', 'suptitle_y': 1.01, # title 'title_color' : 'k', # axis labels 'xlabel': '', 'ylabel': '', 'xlabel_color' : 'k', 'ylabel_color' : 'k', # legend 'legend_size': 10, 'legend_label': None, 'legend_loc': 0, # grid 'grid': True, # common 'set_axisbelow': True, 'fontsize': 20 } @classmethod def hist(cls, ax, data, **kwargs): """ Plot histograms on given axis. Parameters ---------- ax : matplotlib axis Axis to plot images on. data : np.ndarray or list of np.ndarray Arrays to build histograms. Can be of any shape since they are flattened. kwargs : params for overlaid histograms drawn by `plt.hist`: - 'bins', 'color', 'alpha' - params with 'hist_' prefix Notes ----- See class docs for details on prefixes usage. See class and method defaults for arguments examples. """ for image_num, array in enumerate(data): array = array.flatten() params = filter_parameters(kwargs, ['bins', 'color', 'alpha'], prefix='hist_', index=image_num) ax.hist(array, **params) return kwargs CURVE_DEFAULTS = { # main 'rolling_mean': None, 'rolling_final': None, # curve 'color': ['skyblue', 'sandybrown', 'lightpink', 'mediumseagreen', 'thistle', 'firebrick', 'forestgreen', 'navy', 'gold', 'red', 'turquoise', 'darkorchid', 'darkkhaki', 'royalblue', 'yellow', 'chocolate', 'darkslategray', 'wheat'], 'facecolor': 'white', # suptitle 'suptitle_color': 'k', # title 'title_color': 'k', # axis labels 'xlabel': 'x', 'ylabel': 'y', 'xlabel_color': 'k', 'ylabel_color': 'k', # legend 'legend_loc': 0, 'legend_size': 10, 'legend_label': None, # common 'fontsize': 20, 'grid': True } @classmethod def curve(cls, ax, data, **kwargs): """ Plot curves on given axis. Parameters ---------- ax : matplotlib axis Axis to plot images on. data : np.ndarray or list of np.ndarray Arrays to plot. Must be 1d. kwargs : rolling_mean : int or None If int, calculate and display rolling mean with window `rolling_mean` size. rolling_final : int or None If int, calculate an display mean over last `rolling_final` array elements. params for overlaid curves drawn by `plt.plot`: - 'color', 'linestyle', 'alpha' - params with 'curve_' prefix Notes ----- See class docs for details on prefixes usage. See class and method defaults for arguments examples. """ for image_num, array in enumerate(data): keys = ['color', 'linestyle', 'alpha'] params = filter_parameters(kwargs, keys, prefix='curve_', index=image_num) ax.plot(array, **params) mean_color = cls.scale_lightness(params['color'], scale=.5) rolling_mean = kwargs.get('rolling_mean') if rolling_mean: averaged = array.copy() window = min(10 if rolling_mean is True else rolling_mean, len(array)) if window > len(averaged * 2): break averaged[(window // 2):(-window // 2 + 1)] = np.convolve(array, np.ones(window) / window, mode='valid') ax.plot(averaged, color=mean_color, linestyle='--') final_mean = kwargs.get('final_mean') if final_mean: window = 100 if final_mean is True else final_mean mean = np.mean(array[-window:]) line_len = len(array) // 20 curve_len = len(array) line_x = np.arange(line_len) + curve_len line_y = [mean] * line_len ax.plot(line_x, line_y, linestyle='--', linewidth=1.2, color=mean_color) fontsize = 10 text_x = curve_len + line_len text_y = mean - fontsize / 300 text = ax.text(text_x, text_y, f"{mean:.3f}", fontsize=fontsize) text.set_path_effects([patheffects.Stroke(linewidth=3, foreground='white'), patheffects.Normal()]) kwargs['xlim'] = (0, text_x) return kwargs # Predefined colormaps METRIC_CDICT = { 'red': [[0.0, None, 1.0], [0.33, 1.0, 1.0], [0.66, 1.0, 1.0], [1.0, 0.0, None]], 'green': [[0.0, None, 0.0], [0.33, 0.0, 0.0], [0.66, 1.0, 1.0], [1.0, 0.5, None]], 'blue': [[0.0, None, 0.0], [0.33, 0.0, 0.0], [0.66, 0.0, 0.0], [1.0, 0.0, None]] } METRIC_CMAP = LinearSegmentedColormap('Metric', METRIC_CDICT) METRIC_CMAP.set_bad(color='black') register_cmap(name='Metric', cmap=METRIC_CMAP) DEPTHS_CMAP = ListedColormap(get_cmap('viridis_r')(np.linspace(0.0, 0.5, 100))) register_cmap(name='Depths', cmap=DEPTHS_CMAP) SAMPLER_CMAP = ListedColormap([ColorConverter().to_rgb('blue'), ColorConverter().to_rgb('red'), ColorConverter().to_rgb('purple')]) register_cmap(name='Sampler', cmap=SAMPLER_CMAP) # Supplementary methods @staticmethod def make_cmap(color, bad_color=None): """ Make listed colormap from 'white' and provided color. """ try: cmap = copy(plt.get_cmap(color)) except ValueError: # if not a valid cmap name, expect it to be a matplotlib color if isinstance(color, str): color = ColorConverter().to_rgb(color) cmap = ListedColormap([(1, 1, 1, 1), color]) if bad_color is not None: cmap.set_bad(color=bad_color) return cmap @staticmethod def scale_lightness(color, scale): """ Make new color with modified lightness from existing. """ if isinstance(color, str): color = ColorConverter.to_rgb(color) h, l, s = colorsys.rgb_to_hls(*color) return colorsys.hls_to_rgb(h, min(1, l * scale), s = s) @staticmethod def add_colorbar(ax_image, aspect=30, fraction=0.5, color='black', fake=False): """ Append colorbar to the image on the right. """ divider = axes_grid1.make_axes_locatable(ax_image.axes) width = axes_grid1.axes_size.AxesY(ax_image.axes, aspect=1./aspect) pad = axes_grid1.axes_size.Fraction(fraction, width) cax = divider.append_axes("right", size=width, pad=pad) if fake: cax.set_axis_off() else: colorbar = ax_image.axes.figure.colorbar(ax_image, cax=cax) colorbar.ax.yaxis.set_tick_params(color=color) ax_image.axes.created_colorbar = colorbar @staticmethod def add_legend(ax, color, label, size, loc): """ Add patches to legend. All invalid colors are filtered. """ handles = getattr(ax.get_legend(), 'legendHandles', []) colors = [color for color in to_list(color) if is_color_like(color)] labels = to_list(label) new_patches = [Patch(color=color, label=label) for color, label in zip(colors, labels) if label] handles += new_patches if handles: ax.legend(handles=handles, loc=loc, prop={'size': size}) class PlotlyPlotter: """ Plotting backend for plotly. """ DEPRECATION_MESSAGE = "Plotly backend is deprecated." @staticmethod def convert_kwargs(mode, kwargs): """ Update kwargs-dict to match plotly-conventions: update keys of the dict and values in some cases. """ # make conversion-dict for kwargs-keys keys_converter = { 'label': 'title', 't': 'title', 'xlabel': 'xaxis', 'ylabel': 'yaxis', 'vmin': 'zmin', 'vmax': 'zmax', } # make new dict updating keys and values converted = {} for key, value in kwargs.items(): if key in keys_converter: new_key = keys_converter[key] if key == 'xlabel': converted[new_key] = {'title_text': value, 'automargin': True, 'titlefont': {'size': kwargs.get('fontsize', 30)}} if key == 'ylabel': converted[new_key] = {'title_text': value, 'titlefont': {'size': kwargs.get('fontsize', 30)}, 'automargin': True, 'autorange': 'reversed'} else: converted[new_key] = value else: converted[key] = value return converted @staticmethod def channelize_image(image, total_channels, color=None, greyscale=False, opacity=None): """ Channelize an image. Can be used to make an opaque rgb or grayscale image. """ # case of a partially channelized image if image.ndim == 3: if image.shape[-1] == total_channels: return image background = np.zeros((*image.shape[:-1], total_channels)) background[:, :, :image.shape[-1]] = image if opacity is not None: background[:, :, -1] = opacity return background # case of non-channelized image if isinstance(color, str): color = ColorConverter().to_rgb(color) background = np.zeros((*image.shape, total_channels)) for i, value in enumerate(color): background[:, :, i] = image * value # in case of greyscale make all 3 channels equal to supplied image if greyscale: for i in range(3): background[:, :, i] = image # add opacity if needed if opacity is not None: background[:, :, -1] = opacity * (image != 0).astype(int) return background @staticmethod def save_and_show(fig, show=True, savepath=None, **kwargs): """ Save and show plot if needed. """ save_kwargs = kwargs.get('save', {}) # save if necessary and render if savepath is not None: fig.write_image(savepath, **save_kwargs) if show: fig.show() else: fig.close() @classmethod @deprecated(DEPRECATION_MESSAGE) def single(cls, image, **kwargs): """ Plot single image/heatmap using plotly. Parameters ---------- image : np.ndarray 2d-array for plotting. kwargs : dict max_size : int maximum size of a rendered image. title : str title of rendered image. zmin : float the lowest brightness-level to be rendered. zmax : float the highest brightness-level to be rendered. opacity : float transparency-level of the rendered image xaxis : dict controls the properties of xaxis-labels; uses plotly-format. yaxis : dict controls the properties of yaxis-labels; uses plotly-format. slice : tuple sequence of slice-objects for slicing the image to a lesser one. order_axes : tuple tuple of ints; defines the order of axes for transposition operation applied to the image. other """ kwargs = cls.convert_kwargs('single', kwargs) # update defaults to make total dict of kwargs defaults = {'reversescale': True, 'colorscale': 'viridis', 'opacity' : 1.0, 'max_size' : 600, 'order_axes': (1, 0), 'slice': (slice(None, None), slice(None, None))} ax_params = {**defaults, **kwargs} # form different groups of kwargs render_kwargs = filter_parameters(ax_params, ['reversescale', 'colorscale', 'opacity', 'showscale']) label_kwargs = filter_parameters(ax_params, ['xaxis', 'yaxis', 'coloraxis_colorbar', 'title']) slc = ax_params['slice'] # calculate canvas sizes width, height = image.shape[1], image.shape[0] coeff = ax_params['max_size'] / max(width, height) width = coeff * width height = coeff * height # plot the image and set titles plot_data = go.Heatmap(z=np.transpose(image, axes=ax_params['order_axes'])[slc], **render_kwargs) fig = go.Figure(data=plot_data) fig.update_layout(width=width, height=height, **label_kwargs) cls.save_and_show(fig, **ax_params) @classmethod @deprecated(DEPRECATION_MESSAGE) def overlap(cls, images, **kwargs): """ Plot several images on one canvas using plotly: render the first one in greyscale and the rest ones in opaque 'rgb' channels, one channel for each image. Supports up to four images in total. Parameters ---------- images : list/tuple sequence of 2d-arrays for plotting. Can store up to four images. kwargs : dict max_size : int maximum size of a rendered image. title : str title of rendered image. opacity : float opacity of 'rgb' channels. xaxis : dict controls the properties of xaxis-labels; uses plotly-format. yaxis : dict controls the properties of yaxis-labels; uses plotly-format. slice : tuple sequence of slice-objects for slicing the image to a lesser one. order_axes : tuple tuple of ints; defines the order of axes for transposition operation applied to the image. other """ kwargs = cls.convert_kwargs('overlap', kwargs) # update defaults to make total dict of kwargs defaults = {'coloraxis_colorbar': {'title': 'amplitude'}, 'colors': ('red', 'green', 'blue'), 'opacity' : 1.0, 'title': 'Seismic inline', 'max_size' : 600, 'order_axes': (1, 0), 'slice': (slice(None, None), slice(None, None))} ax_params = {**defaults, **kwargs} # form different groups of kwargs render_kwargs = filter_parameters(ax_params, ['zmin', 'zmax']) label_kwargs = filter_parameters(ax_params, ['xaxis', 'yaxis', 'coloraxis_colorbar', 'title']) slc = ax_params['slice'] # calculate canvas sizes width, height = images[0].shape[1], images[0].shape[0] coeff = ax_params['max_size'] / max(width, height) width = coeff * width height = coeff * height # manually combine first image in greyscale and the rest ones colored differently combined = cls.channelize_image(255 * np.transpose(images[0], axes=ax_params['order_axes']), total_channels=4, greyscale=True) for i, img in enumerate(images[1:]): color = ax_params['colors'][i] combined += cls.channelize_image(255 * np.transpose(img, axes=ax_params['order_axes']), total_channels=4, color=color, opacity=ax_params['opacity']) plot_data = go.Image(z=combined[slc], **render_kwargs) # plot manually combined image # plot the figure fig = go.Figure(data=plot_data) fig.update_layout(width=width, height=height, **label_kwargs) cls.save_and_show(fig, **ax_params) @classmethod @deprecated(DEPRECATION_MESSAGE) def rgb(cls, image, **kwargs): """ Plot one image in 'rgb' using plotly. Parameters ---------- image : np.ndarray 3d-array containing channeled rgb-image. kwargs : dict max_size : int maximum size of a rendered image. title : str title of the rendered image. xaxis : dict controls the properties of xaxis-labels; uses plotly-format. yaxis : dict controls the properties of yaxis-labels; uses plotly-format. slice : tuple sequence of slice-objects for slicing the image to a lesser one. order_axes : tuple tuple of ints; defines the order of axes for transposition operation applied to the image. other """ kwargs = cls.convert_kwargs('rgb', kwargs) # update defaults to make total dict of kwargs defaults = {'coloraxis_colorbar': {'title': 'depth'}, 'max_size' : 600, 'order_axes': (1, 0, 2), 'slice': (slice(None, None), slice(None, None))} ax_params = {**defaults, **kwargs} # form different groups of kwargs render_kwargs = filter_parameters(ax_params, []) label_kwargs = filter_parameters(ax_params, ['xaxis', 'yaxis', 'coloraxis_colorbar', 'title']) slc = ax_params['slice'] # calculate canvas sizes width, height = image.shape[1], image.shape[0] coeff = ax_params['max_size'] / max(width, height) width = coeff * width height = coeff * height # plot the image and set titles plot_data = go.Image(z=np.transpose(image, axes=ax_params['order_axes'])[slc], **render_kwargs) fig = go.Figure(data=plot_data) fig.update_layout(width=width, height=height, **label_kwargs) cls.save_and_show(fig, **ax_params) @classmethod @deprecated(DEPRECATION_MESSAGE) def separate(cls, images, **kwargs): """ Plot several images on a row of canvases using plotly. TODO: add grid support. Parameters ---------- images : list/tuple sequence of 2d-arrays for plotting. kwargs : dict max_size : int maximum size of a rendered image. title : str title of rendered image. xaxis : dict controls the properties of xaxis-labels; uses plotly-format. yaxis : dict controls the properties of yaxis-labels; uses plotly-format. slice : tuple sequence of slice-objects for slicing the image to a lesser one. order_axes : tuple tuple of ints; defines the order of axes for transposition operation applied to the image. other """ kwargs = cls.convert_kwargs('separate', kwargs) # defaults defaults = {'max_size' : 600, 'order_axes': (1, 0), 'slice': (slice(None, None), slice(None, None))} grid = (1, len(images)) ax_params = {**defaults, **kwargs} # form different groups of kwargs render_kwargs = filter_parameters(ax_params, []) label_kwargs = filter_parameters(ax_params, ['title']) xaxis_kwargs = filter_parameters(ax_params, ['xaxis']) yaxis_kwargs = filter_parameters(ax_params, ['yaxis']) slc = ax_params['slice'] # make sure that the images are greyscale and put them each on separate canvas fig = make_subplots(rows=grid[0], cols=grid[1]) for i in range(grid[1]): img = cls.channelize_image(255 * np.transpose(images[i], axes=ax_params['order_axes']), total_channels=4, greyscale=True, opacity=1) fig.add_trace(go.Image(z=img[slc], **render_kwargs), row=1, col=i + 1) fig.update_xaxes(row=1, col=i + 1, **xaxis_kwargs['xaxis']) fig.update_yaxes(row=1, col=i + 1, **yaxis_kwargs['yaxis']) fig.update_layout(**label_kwargs) cls.save_and_show(fig, **ax_params) def show_3d(x, y, z, simplices, title, zoom_slice, colors=None, show_axes=True, aspect_ratio=(1, 1, 1), axis_labels=None, width=1200, height=1200, margin=(0, 0, 20), savepath=None, images=None, resize_factor=2, colorscale='Greys', **kwargs): """ Interactive 3D plot for some elements of cube. Parameters ---------- x, y, z : numpy.ndarrays Triangle vertices. simplices : numpy.ndarray (N, 3) array where each row represent triangle. Elements of row are indices of points that are vertices of triangle. title : str Title of plot. zoom_slice : tuple of slices Crop from cube to show. colors : list or None List of colors for each simplex. show_axes : bool Whether to show axes and their labels. aspect_ratio : tuple of floats. Aspect ratio for each axis. axis_labels : tuple Titel for each axis. width, height : number Size of the image. margin : tuple of ints Added margin for each axis, by default, (0, 0, 20). savepath : str Path to save interactive html to. images : list of tuples Each tuple is triplet of image, location and axis to load slide from seismic cube. resize_factor : float Resize factor for seismic slides. Is needed to spedify loading and ploting of seismic slices. colorscale : str Colormap for seismic slides. kwargs : dict Other arguments of plot creation. """ #pylint: disable=too-many-arguments # Arguments of graph creation kwargs = { 'title': title, 'colormap': [plt.get_cmap('Depths')(x) for x in np.linspace(0, 1, 10)], 'edges_color': 'rgb(70, 40, 50)', 'show_colorbar': False, 'width': width, 'height': height, 'aspectratio': {'x': aspect_ratio[0], 'y': aspect_ratio[1], 'z': aspect_ratio[2]}, **kwargs } if colors is not None: fig = ff.create_trisurf(x=x, y=y, z=z, color_func=colors, simplices=simplices, **kwargs) else: fig = ff.create_trisurf(x=x, y=y, z=z, simplices=simplices, **kwargs) if images is not None: for image, loc, axis in images: shape = image.shape image = cv2.resize(image, tuple(np.array(shape) // resize_factor))[::-1] grid = np.meshgrid( np.linspace(0, shape[0], image.shape[0]), np.linspace(0, shape[1], image.shape[1]) ) if axis == 0: x, y, z = loc * np.ones_like(image), grid[0].T + zoom_slice[1].start, grid[1].T + zoom_slice[2].start elif axis == 1: y, x, z = loc * np.ones_like(image), grid[0].T + zoom_slice[0].start, grid[1].T + zoom_slice[2].start else: z, x, y = loc * np.ones_like(image), grid[0].T + zoom_slice[0].start, grid[1].T + zoom_slice[1].start fig.add_surface(x=x, y=y, z=z, surfacecolor=np.flipud(image), showscale=False, colorscale='Greys') # Update scene with title, labels and axes fig.update_layout( { 'scene': { 'xaxis': { 'title': axis_labels[0] if show_axes else '', 'showticklabels': show_axes, 'range': [zoom_slice[0].stop + margin[0], zoom_slice[0].start - margin[0]] }, 'yaxis': { 'title': axis_labels[1] if show_axes else '', 'showticklabels': show_axes, 'range': [zoom_slice[1].start + margin[1], zoom_slice[1].stop - margin[1]] }, 'zaxis': { 'title': axis_labels[2] if show_axes else '', 'showticklabels': show_axes, 'range': [zoom_slice[2].stop + margin[2], zoom_slice[2].start - margin[2]] }, 'camera_eye': { "x": 1.25, "y": 1.5, "z": 1.5 }, } } ) fig.show() if savepath: fig.write_html(savepath)
# -*- coding: utf-8 -*- host_reduction_timer = 0 host_quantize_timer = 0 host_unquantize_timer = 0 host_average_timer = 0 host_c_timer = 0 alloc_dealloc_timer = 0 def reset_timers(): global host_reduction_timer, host_quantize_timer, host_unquantize_timer, host_average_timer, host_c_timer, alloc_dealloc_timer, host_reduction_timer host_quantize_timer = 0 host_unquantize_timer = 0 host_average_timer = 0 host_c_timer = 0 alloc_dealloc_timer = 0
# alexnet.py COPYRIGHT Fujitsu Limited 2021 #!/usr/bin/env python # coding: utf-8 ##### Reference ##### # https://github.com/sh-tatsuno/pytorch/blob/master/tutorials/Pytorch_Tutorials.ipynb # https://github.com/sh-tatsuno/pytorch/blob/master/tutorials/Learning_PyTorch_with_Examples.ipynb # https://pytorch.org/tutorials/beginner/examples_autograd/two_layer_net_custom_function.html # how to chekc intermediate gradient # https://tutorialmore.com/questions-1905405.htm # https://discuss.pytorch.org/t/why-cant-i-see-grad-of-an-intermediate-variable/94/5 # AlexNet for cifar10 # http://cedro3.com/ai/pytorch-alexnet/ # ==================================== # how to run DNN training with pytorch # 1. import library # 2. load dataset # 3. define network model # - network structure # - loss function # - optimizer # 4. run training # 5. run test # ==================================== # import library import torch import torch.nn as nn import torch.nn.functional as F # ==================================== ## To change "channels for conv layer" & "nodes for fc layer" by pruning, custum model is defined. # for CIFAR-10 class AlexNet(nn.Module): def __init__( self, num_classes=10, out_ch_conv1=64, out_ch_conv2=256, out_ch_conv3=384, out_ch_conv4=256, out_ch_conv5=256, out_ch_fc1=4096, out_ch_fc2=4096 ): super(AlexNet, self).__init__() self.conv1 = nn.Conv2d(3, out_ch_conv1, kernel_size=3, stride=1, padding=1) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(out_ch_conv1, out_ch_conv2, kernel_size=5, padding=2) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv3 = nn.Conv2d(out_ch_conv2, out_ch_conv3, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(out_ch_conv3, out_ch_conv4, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(out_ch_conv4, out_ch_conv5, kernel_size=3, padding=1) self.pool5 = nn.MaxPool2d(kernel_size=2, stride=2) self.avgpool = nn.AdaptiveAvgPool2d((4, 4)) self.drop1 = nn.Dropout() self.fc1 = nn.Linear(out_ch_conv5 * 4 * 4, out_ch_fc1) self.drop2 = nn.Dropout() self.fc2 = nn.Linear(out_ch_fc1, out_ch_fc2) self.fc3 = nn.Linear(out_ch_fc2, num_classes) def forward(self, x): x = self.conv1(x) x = F.relu(x) x = self.pool1(x) x = self.conv2(x) x = F.relu(x) x = self.pool2(x) x = self.conv3(x) x = F.relu(x) x = self.conv4(x) x = F.relu(x) x = self.conv5(x) x = F.relu(x) x = self.pool5(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.drop1(x) x = self.fc1(x) x = F.relu(x) x = self.drop2(x) x = self.fc2(x) x = F.relu(x) x = self.fc3(x) return x
from subprocess import call from datetime import datetime import os import pandas as pd from sty import fg, rs import time import csv import json import re import sys import requests import shutil start_time = time.time() headers_Get = { 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:49.0) Gecko/20100101 Firefox/49.0', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'DNT': '1', 'Connection': 'keep-alive', 'Upgrade-Insecure-Requests': '1' } html_tags = { 'knowledge_panel': 'kp-blk knowledge-panel', 'claimed': "Own this business?", 'name': "kno-ecr-pt PZPZlf gsmt", 'summary': "kc:/local:one line summary", 'stars': "kc:/collection/knowledge_panels/local_reviewable:star_score", 'comments': "t-h6pVaOIWfNg", 'web_review': "kc:/location/location:third_party_aggregator_ratings", 'phone': 'LrzXr zdqRlf kno-fv', # 'days': "kc:/location/location:hours", 'address': "kc:/location/location:address", 'website': "IzNS7c duf-h", 'gmap': "rhsl4 rhsmap3col", 'visiting': "kc:/local:plan your visit" } html_regexes = { 'name': '<span>(.*)</span>', 'summary': '<span class="YhemCb">(.*?)</span>', 'stars': 'aria-label="(.*?)"', 'comments': '<span>(.*)</span>', # 'web_review': 'aria-label="(.*?)"', # 'web_review': 'href="(.*?)"', 'web_review': '(.*)', 'phone': '<span>(.*?)</span>', 'hours': '<td>(.*)</td>', 'address': '<span class="LrzXr">(.*)</span>', 'website': 'href="(.*?)"', 'gmap': 'data-url="(.*?)"', 'visiting': '<b>(.*)</b>' } # days = ["Sunday", "Monday", "Tuesday", # "Wednesday", "Thursday", "Friday", "Saturday"] csv_data = 'results.csv' csv_data_true = 'results_true.csv' csv_data_false = 'results_false.csv' good_res = 0 bad_res = 0 EDITOR = os.environ.get('EDITOR') if os.environ.get('EDITOR') else 'vim' def current_time(): return datetime.now().strftime('%Y-%m-%d-%H-%M') def google(q): s = requests.Session() q = '+'.join(q.casefold().replace( '&', ' and ').replace("'", ' ').replace('!', '').replace('é', 'e').split()) url = 'https://www.google.com/search?q=' + q + '&ie=utf-8&oe=utf-8' r = s.get(url, headers=headers_Get) return r.text def get_string_after_tag(string, tag, regex, distance): if(tag not in string): return None index = string.find(tag) substr = string[index: index+distance] if re.search(regex, substr): return re.search(regex, substr).group(1) else: return None def get_details(query): html_results = google(query) results = {'query': query} has_knowledge_panel = html_tags['knowledge_panel'] in html_results # print(html_results) if(has_knowledge_panel): results['query'] = query.replace( '&', ' and ').replace("'", ' ').replace('!', '') results['exists'] = True results['name'] = get_string_after_tag( html_results, html_tags['name'], html_regexes['name'], 500) results['claimed'] = html_tags['claimed'] not in html_results summary = get_string_after_tag( html_results, html_tags['summary'], html_regexes['summary'], 600) if(summary): results['summary'] = summary stars = get_string_after_tag( html_results, html_tags['stars'], html_regexes['stars'], 500) if(stars): results['stars'] = stars.split(":")[1].split(" sur")[0] comments = get_string_after_tag( html_results, html_tags['comments'], html_regexes['comments'], 500) if(comments): results['comments'] = comments.split("\xa0avis")[0] web_review = get_string_after_tag( html_results, html_tags['web_review'], html_regexes['web_review'], 2500) if(web_review): web_review_all = re.findall( '(?:href=[\'"])([:/.A-z?<_&\s=>0-9;-]+)', web_review) web_review_1 = web_review_all[0] results['web_review_1'] = web_review_1 if len(web_review_all) > 1: web_review_2 = web_review_all[1] results['web_review_2'] = web_review_2 phone_number = get_string_after_tag( html_results, html_tags['phone'], html_regexes['phone'], 200) if(phone_number): results['phone_number'] = phone_number address = get_string_after_tag( html_results, html_tags['address'], html_regexes['address'], 1000) if(address): results['address'] = address website = get_string_after_tag( html_results, html_tags['website'], html_regexes['website'], 200) if(website): results['website'] = website.split("/?")[0] gmap = get_string_after_tag( html_results, html_tags['gmap'], html_regexes['gmap'], 1000) if(gmap): # results['gmap'] = gmap gmap_lat = re.findall("\/@(-?[\d\.]*)", gmap) gmap_lng = re.findall("\/@[-?\d\.]*\,([-?\d\.]*)", gmap) results['gmap_lat'] = gmap_lat[0] results['gmap_lng'] = gmap_lng[0] visiting = get_string_after_tag( html_results, html_tags['visiting'], html_regexes['visiting'], 500) if(visiting): results['visiting'] = visiting # if html_tags['days'] in html_results: # hours_index = html_results.find(html_tags['days']) # hours_substr = html_results[hours_index: hours_index+2000] # for day in days: # results['{}_hours'.format(day)] = get_string_after_tag( # hours_substr, day, html_regexes['hours'], 50) else: results['exists'] = False return results if __name__ == "__main__": with open(sys.argv[1], newline='') as csvfile: with open(csv_data, 'w', newline='') as results: reader = csv.reader(csvfile) fieldnames = [ 'query', 'exists', 'name', 'summary', 'phone_number', 'address', 'website', 'web_review_1', 'web_review_2', 'claimed', 'stars', 'comments', 'visiting', 'gmap_lat', 'gmap_lng', # "Friday_hours", "Saturday_hours", "Sunday_hours", "Monday_hours", "Tuesday_hours", "Wednesday_hours", "Thursday_hours" ] writer = csv.DictWriter(results, fieldnames=fieldnames) writer.writeheader() for row in reader: fetch = get_details(u" ".join(row)) if(fetch['exists'] == True): writer.writerow(fetch) print(fg.green, reader.line_num, row[0], fetch['exists'], fg.rs) else: fetch = get_details(u" ".join(row)) writer.writerow(fetch) print(fg.li_cyan, "AGAIN!", reader.line_num, row[0], fetch['exists'], fg.rs) if(fetch['exists'] == False): print(fg.red, "... NOPE!!!", fg.rs) # CLEAN FILES! with open(csv_data, 'r') as inp, open(csv_data_false, 'w') as out: writer = csv.writer(out) for row in csv.reader(inp): if row[1] != "True": writer.writerow(row) with open(csv_data, 'r') as inp, open(csv_data_true, 'w') as out: writer = csv.writer(out) for row in csv.reader(inp): if row[1] != "False": writer.writerow(row) df = pd.read_csv(csv_data_false) # df = df.drop(df.loc[:, 'exists':'gmap_lng'].columns, axis=1) df = df.drop(df.iloc[:, 1:14].columns, axis=1) df.to_csv(csv_data_false, header=False, index=False) # GET THE COUNT! print('') print(" 🌈 🦄 💨") print('') with open(csv_data_true) as f: total = sum(1 for line in f) good_res = total-1 print(fg.li_green, "😎 total good data: ", total-1, fg.rs) with open(csv_data_false) as f: total = sum(1 for line in f) bad_res = total print(fg.li_red, "😭 total bad data: ", total, fg.rs) print('') # COPY FILES INTO TIMESTAMPS FOLDER IF NEEDED if(good_res > 0): os.mkdir(os.path.join('./', str(current_time()))) shutil.copy(csv_data, str(current_time())) shutil.copy(csv_data_false, str(current_time())) shutil.copy(csv_data_true, str(current_time())) # REPORT mybad = (bad_res * 100)/(good_res + bad_res) elapsed_time = time.time() - start_time print(fg.li_yellow, "🤖 BTW! Done in: ", time.strftime( "%H:%M:%S", time.gmtime(elapsed_time)), " with ", "{0:.2f}".format(round(mybad, 2)), "% ", "errors", fg.rs) try: input_ = raw_input except NameError: input_ = input def query_yes_no(question, default=False): yes_list = ["yes", "y"] no_list = ["no", "n"] default_dict = { None: "[y/n]", True: "[Y/n]", False: "[y/N]", } default_str = default_dict[default] prompt_str = "%s %s " % (question, default_str) while True: choice = input_(prompt_str).lower() if not choice and default is not None: return default if choice in yes_list: return True if choice in no_list: return False notification_str = "Please respond with 'y' or 'n'" print(notification_str) q1 = fg.li_yellow + " 🤖 Do you want to open " + \ csv_data_false + " inside " + EDITOR + " ?" + fg.rs qq = fg.li_yellow + " 🤖 Bye..." + fg.rs print('') edit_false_data = query_yes_no(q1) if edit_false_data == True: call([EDITOR, csv_data_false]) elif edit_false_data == False: print(qq) quit
"""Test FOLIO Operators and functions.""" import pytest import requests from pytest_mock import MockerFixture from ils_middleware.tasks.folio.login import FolioLogin @pytest.fixture def mock_request(monkeypatch, mocker: MockerFixture): def mock_post(*args, **kwargs): post_response = mocker.stub(name="post_result") post_response.status_code = 201 post_response.headers = {"x-okapi-token": "some_jwt_token"} return post_response def mock_raise_for_status(*args, **kwargs): error_response = mocker.stub(name="post_error") error_response.status_code = 500 error_response.text = "Internal server error" monkeypatch.setattr(requests, "post", mock_post) monkeypatch.setattr(requests.Response, "raise_for_status", mock_raise_for_status) # <Response [201]> def test_valid_login(mock_request): assert ( FolioLogin( url="https://okapi-folio.dev.sul.stanford.edu/authn/login", username="DEVSYS", password="APASSWord", tenant="sul", ) == "some_jwt_token" ) def test_missing_url(): with pytest.raises(KeyError, match="url"): FolioLogin() def test_missing_username(): with pytest.raises(KeyError, match="username"): FolioLogin(url="https://test-login.com") def test_missing_password(): with pytest.raises(KeyError, match="password"): FolioLogin(url="https://test-login.com", username="DEVSYS") def test_missing_tenant(): with pytest.raises(KeyError, match="tenant"): FolioLogin(url="https://test-login.com", username="DEVSYS", password="PASS")
import numpy as np import pandas as pd import threading from sklearn.externals import joblib from sklearn.ensemble import RandomForestRegressor from pprint import pprint df = pd.read_csv('https://drive.google.com/uc?export=download&id=1XoV8SfvHmzaxRuDRe81OWSQu10dYTbO5',sep=',') print("Number of data points: %d \n" % df.shape[0]) print(df.columns.values); # Drop string field and id field # print("The", df.shape[1], "features (and their data types) are: \n ", df.dtypes, "\n") # Partition the features from the class to predict df_X = df.iloc[:, 2:12].copy() df_X = pd.get_dummies(df_X) print(df_X.head()) df_y = df[df.columns[16]].copy() print(df_y.head()) from sklearn.model_selection import train_test_split # (random_state): we use a fixed random seed so we get the same results every time. X_train, X_test, y_train, y_test = train_test_split(df_X, df_y, test_size=0.2, random_state=0) print ("\nNumber of training instances: ", len(X_train), "\nNumber of test instances: ", len(X_test)) from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import GridSearchCV #Number of trees in random forest n_estimators = [int(x) for x in np.linspace(start = 1300, stop = 1700, num = 50)] #Number of features to consider at every split max_features = ['auto', 'sqrt'] # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(30, 80, num = 10)] max_depth.append(None) # Method of selecting samples for training each tree bootstrap = [True, False] min_samples_split = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] # Create the random grid random_grid = { 'min_samples_split': min_samples_split, 'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'bootstrap': bootstrap } # print("\nDataset description: \n", X_train.describe()) print("Creating model") model = RandomForestRegressor(n_jobs = -1) #pprint(model.get_params()) model = RandomizedSearchCV(estimator = model, param_distributions = random_grid, cv = 4, verbose=2, n_jobs = -1, n_iter = 150) print("Fitting model") model.fit(X_train, y_train) pprint(model.best_params_) model = model.best_estimator_ print("Saving model") joblib.dump(model, "../pklfiles/RandomForestRegressorRandomizedSearchCV2Repayment.pkl") #print("Loading model") #model = joblib.load("RandomForestRegressor(1000)forcolnofortuning.pkl") print("Predicting model") predictions = model.predict(X_test) print("Scoring model (R^2)") print(model.score(X_test, y_test)) errors = abs(predictions - y_test) print('Mean Absolute Error:', round(np.mean(errors), 2), 'degrees.') mape = 100 * (errors / y_test) # Calculate and display accuracy accuracy = 100 - np.mean(mape) print('Accuracy:', round(accuracy, 2), '%.') #print(str(X_train[0:1])) #print(str(y_train[0:1])) #print(model.predict(X_train[0:1])) #print(str(X_test[0:1])) #print(str(y_test[0:1])) #print(model.predict(X_test[0:1]))
from django.contrib import admin from .models import SearchQuery # Register your models here. admin.site.register(SearchQuery)
#!/usr/bin/python # -*- coding: utf-8 -*- __title__ = '' __author__ = 'xuzhao' __email__ = 'xuzhao@zhique.design' from rest_framework.routers import DefaultRouter from .viewsets import CarouselViewSet, SocialAccountViewSet router = DefaultRouter(trailing_slash=False) router.register(r'carousels', CarouselViewSet) router.register(r'social-accounts', SocialAccountViewSet) app_name = 'customize' urlpatterns = [ ] + router.urls
#!/usr/bin/env python3 # @author: marcelf ''' Utility class to connect to ldap and generate secure passwords ''' ciphers256 = "TWOFISH CAMELLIA256 AES256" ciphers192 = "CAMELLIA192 AES192" ciphers128 = "CAMELLIA128 AES" ciphersBad = "BLOWFISH IDEA CAST5 3DES" digests = "SHA512 SHA384 SHA256 SHA224 RIPEMD160 SHA1" compress = "ZLIB BZIP2 ZIP Uncompressed" gpgconf = """# gpg.conf settings for key generation: expert allow-freeform-uid allow-secret-key-import trust-model tofu+pgp tofu-default-policy unknown enable-large-rsa enable-dsa2 cert-digest-algo SHA512 default-preference-list {0} {1} {2} {3} {4} {5} personal-cipher-preferences {0} {1} {2} {3} personal-digest-preferences {4} personal-compress-preferences {5} """.format(ciphers256, ciphers192, ciphers128, ciphersBad, digests, compress) agentconf = """# gpg-agent.conf settings for key generation: default-cache-ttl 300 """ import os import sys import string from random import SystemRandom from subprocess import check_output, CalledProcessError # ================================================================ # public: flatten # ================================================================ def flatten(list_of_lists): ''' Makes a list of lists flatten @param l list @return l flattened list [[1,2,3][4,5,6]] gets [1,2,3,4,5,6] ''' return [item for sublist in list_of_lists for item in sublist] # ================================================================ # public: password_generator # ================================================================ def password_generator(size=20, chars=string.ascii_letters + string.digits): ''' generates random password with digits lower- and uppercase ascii @param size length of password @param chars chars to be select by random @return password contains the generated password ''' secrets = SystemRandom() # Use secrets instead of random, cause random is very predictable return ''.join(secrets.choice(chars) for _ in range(size)) def create_gnupghome(path): ''' creates a gnupg home with the configurations above the home is only created if the path does not exist @param path specifies the path of the GPG_HOME directory ''' if not os.path.exists(path) is True: print("Creating GPG_HOME under {0}.".format(path)) os.mkdir(path) os.chmod(path, 0o700) with open("{0}/{1}".format(path, "gpg.conf"), "w") as conf: conf.write(gpgconf) os.chmod("{0}/{1}".format(path, "gpg.conf"), 0o600) with open("{0}/{1}".format(path, "gpg-agent.conf"), "w") as conf: conf.write(agentconf) os.chmod("{0}/{1}".format(path, "gpg-agent.conf"), 0o600)
def test_distinct(man): errors = [] G = man.setGraph("swapi") count = 0 for i in G.query().V().distinct(): count += 1 if count != 39: errors.append("Distinct %s != %s" % (count, 39)) count = 0 for i in G.query().V().distinct("_gid"): count += 1 if count != 39: errors.append("Distinct %s != %s" % (count, 39)) count = 0 for i in G.query().V().distinct("eye_color"): count += 1 if count != 8: errors.append("Distinct %s != %s" % (count, 8)) count = 0 for i in G.query().V().distinct("gender"): count += 1 if count != 4: errors.append("Distinct %s != %s" % (count, 4)) count = 0 for i in G.query().V().distinct("non-existent-field"): count += 1 if count != 0: errors.append("Distinct %s != %s" % (count, 0)) count = 0 for i in G.query().V().hasLabel("Character").as_("person").out().distinct("$person.name"): count += 1 if count != 18: errors.append("Distinct G.query().V().hasLabel(\"Person\").as_(\"person\").out().distinct(\"$person.name\") %s != %s" % (count, 18)) count = 0 for i in G.query().V().hasLabel("Character").as_("person").out().distinct("$person.eye_color"): count += 1 if count != 8: errors.append("Distinct G.query().V().hasLabel(\"Person\").as_(\"person\").out().distinct(\"$person.eye_color\") %s != %s" % (count, 8)) return errors def test_distinct_multi(man): errors = [] G = man.setGraph("swapi") count = 0 o = {} for i in G.query().V().as_("a").out().distinct(["$a.eye_color", "_gid"]).render(["$a.eye_color", "_gid"]): if i[0] in o and o[i[0]] != i[1]: errors.append("Non-unique pair returned: %s" % (i)) count += 1 if count != 29: errors.append("Distinct multi %s != %s" % (count, 29)) return errors
#!/usr/bin/env python3 import sys import os from bioblend import galaxy gi = galaxy.GalaxyInstance(url='https://usegalaxy.eu') wfs = gi.workflows.get_workflows() owners = ['wolfgang-maier', 'bgruening'] output_dir = 'workflows' if not os.path.isdir(output_dir): os.mkdir( output_dir ) for wf in wfs: # if 'covid' in ",".join(wf['tags']).lower(): if 'covid' in wf['name'].lower(): if wf['deleted'] or not wf['published']: continue if wf['owner'] not in owners: continue # print( f"{wf['name']} {wf['tags']} {wf['owner']} {wf['update_time']}" print( f"{wf['name']}" ) gi.workflows.export_workflow_to_local_path(wf['id'], output_dir)
## @file # Hardware feature class definition. # # Copyright (c) 2018, Intel Corporation. All rights reserved.<BR> # This program and the accompanying materials # are licensed and made available under the terms and conditions of the BSD License # which accompanies this distribution. The full text of the license may be found at # http://opensource.org/licenses/bsd-license.php # # THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, # WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. # from ucollections import OrderedDict as SETTINGS from register import REG from cpuid import CPUID from msr import MSR PROCESSOR_FEATURES = { "VMX" : { "Description" : "Virtual-Machine Extentions", "{Support}" : SETTINGS(( ("CPUID[01].ECX.VMX", 1), )), "{Enable}" : SETTINGS(( ("REG.CR4.VMXE", 1), )), "{Disable}" : SETTINGS(( ("REG.CR4.VMXE", 0), )), "(Capabilities)" : [], "[RelatedSettings]" : ["MSR[0x3A].Lock_bit", "MSR[0x3A].Enable_VMX_inside_SMX_operation", "MSR[0x3A].Enable_VMX_outside_SMX_operation"], }, "SMX" : { "Description" : "Safer Mode Extentions", "{Support}" : SETTINGS(( ("CPUID[01].ECX.SMX", 1), )), "{Enable}" : SETTINGS(( ("REG.CR4.SMXE", 1), )), "{Disable}" : SETTINGS(( ("REG.CR4.SMXE", 0), )), "(Capabilities)" : [], "[RelatedSettings]" : ["MSR[0x3A].Lock_bit", "MSR[0x3A].Enable_VMX_inside_SMX_operation", "MSR[0x3A].Enable_VMX_outside_SMX_operation", "MSR[0x3A].SENTER_Local_Function_Enables", "MSR[0x3A].SENTER_Global_Enable"], }, "SGX" : { "Description" : "Software Guard Extentions", "{Support}" : SETTINGS(( ("CPUID[07].EBX.SGX", 1), )), "{Enable}" : SETTINGS(( ("REG.CR4.SMXE", 1), )), "{Disable}" : SETTINGS(( ("REG.CR4.SMXE", 0), )), "(Capabilities)" : ["CPUID[0x12,0].EAX", "CPUID[0x12,0].EBX", "CPUID[0x12,0].EDX", "CPUID[0x12,1].EAX", "CPUID[0x12,1].EBX", "CPUID[0x12,1].ECX", "CPUID[0x12,1].EDX", "CPUID[0x12,2].EAX", "CPUID[0x12,2].EBX", "CPUID[0x12,2].ECX", "CPUID[0x12,2].EDX", ], "[RelatedSettings]" : ["MSR[0x3A].Lock_bit", "MSR[0x3A].SGX_Launch_Control_Enable", "MSR[0x3A].SGX_Global_Enable"], }, "APIC" : { "Description" : "Local APIC", "{Support}" : SETTINGS(( ("CPUID[01].EDX.APIC", 1), )), "{Enable}" : SETTINGS(( ("MSR[0x1B].APIC_Global_Enable", 1), )), "{Disable}" : SETTINGS(( ("MSR[0x1B].APIC_Global_Enable", 0), ("MSR[0x80F].APIC_Software_Enable", 0), )), "(Capabilities)" : [], "[RelatedSettings]" : ["MSR[0x3A].Lock_bit", "MSR[0x3A].SGX_Launch_Control_Enable", "MSR[0x3A].SGX_Global_Enable"], }, "X2APIC" : { "Description" : "Extended XAPIC", "{Support}" : SETTINGS(( ("CPUID[01].ECX.x2APIC", 1), )), "{Enable}" : SETTINGS(( ("MSR[0x1B].APIC_Global_Enable", 1), ("MSR[0x1B].Enable_x2APIC_mode", 1), )), "{Disable}" : SETTINGS(( ("MSR[0x1B].Enable_x2APIC_mode", 0), )), "(Capabilities)" : [], "[RelatedSettings]" : ["MSR[0x802]", "MSR[0x803]", "MSR[0x808]", "MSR[0x80A]", "MSR[0x80B]", "MSR[0x80D]", "MSR[0x80F]", "MSR[0x810]", "MSR[0x811]", "MSR[0x812]", "MSR[0x813]", "MSR[0x814]", "MSR[0x815]", "MSR[0x816]", "MSR[0x817]", "MSR[0x818]", "MSR[0x819]", "MSR[0x81A]", "MSR[0x81B]", "MSR[0x81C]", "MSR[0x81D]", "MSR[0x81E]", "MSR[0x81F]", "MSR[0x820]", "MSR[0x821]", "MSR[0x822]", "MSR[0x823]", "MSR[0x824]", "MSR[0x825]", "MSR[0x826]", "MSR[0x827]", "MSR[0x828]", "MSR[0x82F]", "MSR[0x830]", "MSR[0x832]", "MSR[0x833]", "MSR[0x834]", "MSR[0x835]", "MSR[0x836]", "MSR[0x837]", "MSR[0x838]", "MSR[0x839]", "MSR[0x83E]", "MSR[0x83F]", ], }, } class FeatureClass(object): DESC = {} def __new__(Class, FeatureDesc): for Obj in Class.DESC: if Class.DESC[Obj] == FeatureDesc: return Obj return super(Class, FeatureClass).__new__(Class) def __init__(self, FeatureDesc): FeatureClass.DESC[self] = FeatureDesc def __getattr__(self, Name): Desc = FeatureClass.DESC[self] if Name in Desc: return Desc[Name] ActName = "{%s}" % Name if ActName in Desc: for Cond in Desc[ActName]: if eval("%s != %s" % (Cond, Desc[ActName][Cond])): return False return True ActName = "[%s]" % Name if ActName in Desc: Result = {} for Cond in Desc[ActName]: try: Result[Cond] = eval(Cond) except: Result[Cond] = None return Result return None def __setattr__(self, Name, Settings): Desc = FeatureClass.DESC[self] ActName = "{%s}" % Name if ActName in Desc: for Reg in Desc[ActName]: if Reg in Settings: Data = Settings[Reg] else: Data = Desc[ActName][Reg] eval("%s = %s" % (Reg, Data)) class FeatureHelperClass(object): def __getattr__(self, Name): if Name in PROCESSOR_FEATURES: return FeatureClass(PROCESSOR_FEATURES[Name]) return None FEATURE = FeatureHelperClass() if __name__ == "__main__": import sys feature = getattr(FEATURE, sys.argv[0]) print (feature.Description) for item in ["Support", "Enable", "RelatedSettings"]: result = getattr(feature, item) if isinstance(result, dict) or isinstance(result, SETTINGS): print(" %s:" % item) for n in result: print(" %s:" % n, result[n]) else: print(" %s:" % item, result)
from selenium.webdriver.common.by import By class HomeLocators(object): FIRST_ENTRY_TITLE = (By.CSS_SELECTOR, ".entries > li > h2 ") LOGIN = (By.CSS_SELECTOR, '.metanav > a') class LoginLocators(object): TITLE = (By.CSS_SELECTOR, "h2") SUBMIT = (By.CSS_SELECTOR, "#login") ERROR = (By.CSS_SELECTOR, ".error")
from requirement import db, bcrypt, login_manager from flask_login import UserMixin @login_manager.user_loader def load_user(user_id): return User.query.get(int(user_id)) class User(db.Model, UserMixin): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(length=30), nullable=False, unique=False) username = db.Column(db.String(length=30), nullable=False, unique=True) password_hash = db.Column(db.String(length=60), nullable=False, unique=True) email = db.Column(db.String(length=50), nullable=False, unique=True) projects = db.relationship('Project', backref='owned_user', lazy=True) @property def password(self): return self.password @password.setter def password(self, plain_text_password): self.password_hash = bcrypt.generate_password_hash(plain_text_password).decode('utf-8') def check_password_correction(self, attempted_password): return bcrypt.check_password_hash(self.password_hash, attempted_password) class Project(db.Model): id = db.Column(db.Integer(), primary_key=True) name = db.Column(db.String(length=100), nullable=False) description = db.Column(db.String(length=1024)) owner = db.Column(db.Integer, db.ForeignKey('user.id')) project = db.relationship('Requirement', backref='requirement_owner', cascade="all,delete", lazy=True) class Requirement(db.Model): id = db.Column(db.Integer(), primary_key=True) title = db.Column(db.String(length=400), nullable=False) level = db.Column(db.Integer()) priority = db.Column(db.Integer()) req_type = db.Column(db.Integer()) changes = db.Column(db.Integer()) review = db.Column(db.Integer()) evaluation = db.Column(db.Integer()) evaluation_method = db.Column(db.Integer()) quality_factor = db.Column(db.Integer()) description = db.Column(db.String(length=1024)) project = db.Column(db.Integer(), db.ForeignKey('project.id')) parent_id = db.Column(db.Integer, db.ForeignKey('requirement.id')) parent = db.relationship('Requirement', remote_side='Requirement.id', back_populates='children', lazy=True) children = db.relationship('Requirement', back_populates='parent', lazy=True)
from django.urls import path from chatchannels import consumers app_name = 'chatchannels' websocket_urlpatterns = [ path('connect/<chat_channel_id>', consumers.ChatChannelConsumer, name="connect") ]
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2022, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import re import shutil import sys import pathlib from qiime2.core import transform from .base import FormatBase, ValidationError, _check_validation_level class PathMakerDescriptor: def __init__(self, file): self.file = file def __get__(self, obj, cls=None): if obj is None: raise Exception() return getattr(obj, self.file.name).path_maker class File: def __init__(self, pathspec, *, format=None): if format is None: raise TypeError("Must provide a format.") self.pathspec = pathspec self.format = format def __get__(self, obj, cls=None): if obj is None: return self return BoundFile(self.name, self.pathspec, self.format, obj) class FileCollection(File): def __init__(self, pathspec, *, format=None): super().__init__(pathspec, format=format) self._path_maker = None def set_path_maker(self, function): self._path_maker = function return PathMakerDescriptor(self) def __get__(self, obj, cls=None): if obj is None: return self if self._path_maker is None: raise NotImplementedError() return BoundFileCollection(self.name, self.pathspec, self.format, obj, path_maker=self._path_maker) class BoundFile: @property def mode(self): return self._directory_format._mode def __init__(self, name, pathspec, format, directory_format): self.name = name self.pathspec = pathspec self.format = format self._directory_format = directory_format self._path_maker = lambda s: pathspec def view(self, view_type): from_type = transform.ModelType.from_view_type(self.format) to_type = transform.ModelType.from_view_type(view_type) transformation = from_type.make_transformation(to_type) return transformation(self.path_maker()) def write_data(self, view, view_type, **kwargs): # TODO: make `view_type` optional like in `Artifact.import_data` if self.mode != 'w': raise TypeError("Cannot use `set`/`add` when mode=%r" % self.mode) from_type = transform.ModelType.from_view_type(view_type) to_type = transform.ModelType.from_view_type(self.format) transformation = from_type.make_transformation(to_type) result = transformation(view) result.path._move_or_copy(self.path_maker(**kwargs)) def _validate_members(self, collected_paths, level): found_members = False root = pathlib.Path(self._directory_format.path) for path in collected_paths: if re.fullmatch(self.pathspec, str(path.relative_to(root))): if collected_paths[path]: # Not a ValidationError, this just shouldn't happen. raise ValueError("%r was already validated by another" " field, the pathspecs (regexes) must" " overlap." % path) collected_paths[path] = True found_members = True self.format(path, mode='r').validate(level) if not found_members: raise ValidationError( "Missing one or more files for %s: %r" % (self._directory_format.__class__.__name__, self.pathspec)) @property def path_maker(self): def bound_path_maker(**kwargs): # Must wrap in a naive Path, otherwise an OutPath would be summoned # into this world, and would destroy everything in its path. path = (pathlib.Path(self._directory_format.path) / self._path_maker(self._directory_format, **kwargs)) # NOTE: path makers are bound to the directory format, so must be # provided as the first argument which will look like `self` to # the plugin-dev. path.parent.mkdir(parents=True, exist_ok=True) return path return bound_path_maker class BoundFileCollection(BoundFile): def __init__(self, name, pathspec, format, directory_format, path_maker): super().__init__(name, pathspec, format, directory_format) self._path_maker = path_maker def view(self, view_type): raise NotImplementedError("Use `iter_views` instead.") def iter_views(self, view_type): # Don't want an OutPath, just a Path root = pathlib.Path(self._directory_format.path) paths = [fp for fp in sorted(root.glob('**/*')) if re.match(self.pathspec, str(fp.relative_to(root)))] from_type = transform.ModelType.from_view_type(self.format) to_type = transform.ModelType.from_view_type(view_type) transformation = from_type.make_transformation(to_type) for fp in paths: # TODO: include capture? yield fp.relative_to(root), transformation(fp) class _DirectoryMeta(type): def __init__(self, name, bases, dct): super().__init__(name, bases, dct) if hasattr(self, '_fields'): fields = self._fields.copy() else: fields = [] for key, value in dct.items(): if isinstance(value, File): # TODO: validate that the paths described by `value` are unique # within a DirectoryFormat value.name = key fields.append(key) self._fields = fields class DirectoryFormat(FormatBase, metaclass=_DirectoryMeta): def validate(self, level='max'): _check_validation_level(level) if not self.path.is_dir(): raise ValidationError("%s is not a directory." % self.path) collected_paths = {p: None for p in self.path.glob('**/*') if not p.name.startswith('.') and p.is_file()} for field in self._fields: getattr(self, field)._validate_members(collected_paths, level) for path, value in collected_paths.items(): if value: continue if value is None: raise ValidationError("Unrecognized file (%s) for %s." % (path, self.__class__.__name__)) if hasattr(self, '_validate_'): try: self._validate_(level) except ValidationError as e: raise ValidationError( "%s is not a(n) %s:\n\n%s" % (self.path, self.__class__.__name__, str(e)) ) from e def save(self, path, ext=None): path = str(path) # in case of pathlib.Path path = path.rstrip('.') # ignore the extension when saving a directory shutil.copytree(self.path, path) return path class SingleFileDirectoryFormatBase(DirectoryFormat): pass def SingleFileDirectoryFormat(name, pathspec, format): # TODO: do the same hack namedtuple does so we don't mangle globals # (arguably the code is going to be broken if defined dynamically anyways, # but better to find that out later than writing in the module namespace # even if it isn't called module-level [which is must be!]) df = type(name, (SingleFileDirectoryFormatBase,), {'file': File(pathspec, format=format)}) df.__module__ = sys._getframe(1).f_globals.get('__name__', '__main__') return df
import sys import os import platform from PySide2 import QtCore, QtGui, QtWidgets from PySide2.QtCore import (QCoreApplication, QPropertyAnimation, QDate, QDateTime, QMetaObject, QPoint, QRect, QSize, QTime, QUrl, QEvent) from PySide2.QtGui import (QBrush, QColor, QConicalGradient, QCursor, QFont, QFontDatabase, QIcon, QKeySequence, QLinearGradient, QPainter, QPixmap, QRadialGradient) from PySide2.QtWidgets import * from PySide2.QtCore import QFileInfo from PySide2.QtPrintSupport import QPrinter, QPrintPreviewDialog from ui_interface import Ui_MainWindow class HYSTON(QMainWindow): def __init__(self): QMainWindow.__init__(self) self.ui = Ui_MainWindow() self.ui.setupUi(self) self.setWindowTitle("Mthandizi") self.setIcon() self.create_menu() self.ui.start_btn.clicked.connect(lambda: self.ui.textEdit.setText("Hello am hyston kayange from blantyre " "i know am not weathly but Lord i have you , " "you make awesome life for me and my family " "you " "you receive all the glory Lord i need you " "more everyday every hour you deseverve " "everything oh God " "be there for me as am doing this project " "amen father God ")) self.ui.printbutton.clicked.connect(self.clear) self.show() def create_menu(self): mainMenu = self.menuBar() fileMenu = mainMenu.addMenu('File') viewMenu = mainMenu.addMenu('View') editMenu = mainMenu.addMenu('Edit') fontMenu = mainMenu.addMenu('Font') helpMenu = mainMenu.addMenu('Help') openAction = QAction(QIcon('open.png'), "Open", self) openAction.setShortcut('Ctrl+O') saveAction = QAction(QIcon('save.png'), "Save", self) saveAction.setShortcut('Ctrl+S') exitAction = QAction(QIcon('exit.png'), "Exit", self) exitAction.setShortcut('Ctrl+X') previewAction = QAction(QIcon('printpreview.png'), "Print Preview", self) exitAction.triggered.connect(self.exit_app) previewAction.triggered.connect(self.print_preview_dialog) fileMenu.addAction(openAction) fileMenu.addAction(saveAction) fileMenu.addAction(exitAction) viewMenu.addAction(previewAction) def setIcon(self): appIcon = QIcon("icon.png") self.setWindowIcon(appIcon) def exit_app(self): self.close() def print_preview_dialog(self): printer = QPrinter(QPrinter.HighResolution) previewDialog = QPrintPreviewDialog(printer, self) previewDialog.paintRequested.connect(self.print_preview) previewDialog.exec_() def print_preview(self, printer): self.ui.textEdit.print_(printer) def clear(self): self.ui.textEdit.clear() if __name__ == '__main__': app = QApplication(sys.argv) window = HYSTON() sys.exit(app.exec_())
import sys def A(): n = sys.stdin.readline().rstrip() if "3" in n: print("YES") elif int(n) % 3 == 0: print("YES") else: print("NO") def B(): mod = 10007 t = [0, 0, 1] for _ in range(1001001): t.append(t[-1] + t[-2] + t[-3]) t[-1] %= mod n = int(sys.stdin.readline().rstrip()) print(t[n - 1]) def C(): pass def D(): pass if __name__ == "__main__": # A() B() C() D()
""" This module have all the web elements in the home page """ class HomePageLocators: """ Home Page Class """ """Xpaths for Home Page """ select_location_text_box = "//input[@placeholder='Select Location']" select_location_list = "//label[@class = 'localityName']" select_date_and_time_button = "//button[contains(@id, 'laterButton')]" select_time_button = "//input[text()='Select Time']" calender_table = "ui-datepicker-calendar" dates_list = "//tbody/tr/td/a" hours_list = "//tbody/tr/td/button[contains(@id, 'h') and contains(@class, 'validhour')]" minutes_list = "//tbody/tr/td/button[contains(@id, 'm') and contains(@class, 'validminute')]" start_ordering_button = "//button[text() = 'Start Ordering']" place_order_dialog_box_button = "//button[text()='Ok! Place Order']"
#since 1939 , T12 no longer manufactured since T8 propagated import bpy bpy.context.object.data.type = 'AREA' lampdata = bpy.context.object.data lampdata.size = 0.038 lampdata.size_y = 1.2192 lampdata.shadow_ray_samples_x = 1 lampdata.shadow_ray_samples_y = 2 lampdata.color = (0.901, 1.0, 0.979) lampdata.energy = 2.14492#2300lm/21.446(=lux)*0.004*2.5(distance) *2 for distance is the point of half strength lampdata.distance = 1.0 #dist values multiplied by 10 for area lights for same power as bulb/spot/... #lampdata.falloff_type = 'INVERSE_SQUARE'
# @Author: chunyang.xu # @Email: 398745129@qq.com # @Date: 2020-06-08 14:02:33 # @Last Modified time: 2021-03-08 15:09:19 # @github: https://github.com/longfengpili #!/usr/bin/env python3 # -*- coding:utf-8 -*- from .redshift import RedshiftDB from .sqlite import SqliteDB from .mysql import MysqlDB # from .snowflake import SnowflakeDB __doc__ = "数据库接口" __all__ = ['RedshiftDB', 'SqliteDB', 'MysqlDB']
#!/bin/bash # -------------------------------------------------- # Filename: Calculate_BBs.py # Revision: 1.0 # Data: 2018/9/13 # Author: Yue Cao # Email: ycao009@cs.ucr.edu # Description: Merge new flipping branches (Basic block form) with target value to the branch set, and print out all new ones. # Purpose: Check if there are new flipping targets. If there are no new flipping targets, no need to run Dynamic Taint Analysis. # -------------------------------------------------- #Version 1.0 #Distint variables are considered new import sys #file0 = "../Branches_BB_set.log" #file2 = "../Branches_BB_set_bak.log" file1 = sys.argv[1] if len(sys.argv) == 6: file0 = sys.argv[2] file2 = sys.argv[3] Model1_offset = int(sys.argv[4]) Model0_end = int(sys.argv[5]) f0 = file(file0, "r") f = file(file1, "r") f2 = file(file2, "w") new = 0 Branches_set = set() for line in f0: #Branches_BB_set line = line.strip() keys = line.split("#") Branches_set.add(keys[0]) # currently only has one distinct BBOffset; which may miss cases if its min/max value is different f2.write(line+'\n') #keys = line.split(",") #Edge_dict[(keys[0], keys[1])] = int(keys[2]) for line in f: line = line.strip() # compare the whole # or compare the variable only keys = line.split("#") if keys[0] not in Branches_set: #sys.stderr.write("New added: " + keys[0]+"\n") f2.write(line+'\n') # If branch is flipped on Model0 or Model1, we don't flip the branch from the other model p0 = keys[0].find(",") p1 = keys[0].find(":") Model_index = keys[0][0:p0-1] #Model 0,b BB_index = keys[0][p0+2:p1] #bb_index Rest = keys[0][p1:] Branches_set.add(keys[0]) #sys.stderr.write("Branches added: " + keys[0]+"\n") index = int(BB_index) if index <= Model0_end: index = index+Model1_offset new_BB_index = str(index) new_str = Model_index+"1,b"+new_BB_index+Rest+"#"+keys[1]+"#"+keys[2]+"#"+keys[3] f2.write(new_str+'\n') Branches_set.add(Model_index+"1,b"+new_BB_index+Rest) #sys.stderr.write("Branches added: " + Model_index+"1,b"+new_BB_index+Rest+"\n") else: index = index-Model1_offset new_BB_index = str(index) new_str = Model_index+"0,b"+new_BB_index+Rest+"#"+keys[1]+"#"+keys[2]+"#"+keys[3] f2.write(new_str+'\n') Branches_set.add(Model_index+"0,b"+new_BB_index+Rest) #sys.stderr.write("Branches added: " + Model_index+"0,b"+new_BB_index+Rest+"\n") new = new+1 # remove operands that have huge values if len(keys[1]) > 10 or len(keys[2]) > 10: continue print line
# -*- coding: utf-8 -*- import urllib.request import json import requests import os path = 'result\\' #id = '2093492691' id = '2089576957' proxy_addr = "122.241.72.191:808" pic_num = 0 weibo_name = "-樱群-" def use_proxy(url, proxy_addr): req = urllib.request.Request(url) req.add_header("User-Agent", "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0") proxy = urllib.request.ProxyHandler({'http': proxy_addr}) opener = urllib.request.build_opener(proxy, urllib.request.HTTPHandler) urllib.request.install_opener(opener) data = urllib.request.urlopen(req).read().decode('utf-8', 'ignore') return data def get_containerid(url): data = use_proxy(url, proxy_addr) content = json.loads(data).get('data') for data in content.get('tabsInfo').get('tabs'): if (data.get('tab_type') == 'weibo'): containerid = data.get('containerid') return containerid def get_userInfo(id): url = 'https://m.weibo.cn/api/container/getIndex?type=uid&value=' + id data = use_proxy(url, proxy_addr) content = json.loads(data).get('data') profile_image_url = content.get('userInfo').get('profile_image_url') description = content.get('userInfo').get('description') profile_url = content.get('userInfo').get('profile_url') verified = content.get('userInfo').get('verified') guanzhu = content.get('userInfo').get('follow_count') name = content.get('userInfo').get('screen_name') fensi = content.get('userInfo').get('followers_count') gender = content.get('userInfo').get('gender') urank = content.get('userInfo').get('urank') print("微博昵称:" + name + "\n" + "微博主页地址:" + profile_url + "\n" + "微博头像地址:" + profile_image_url + "\n" + "是否认证:" + str( verified) + "\n" + "微博说明:" + description + "\n" + "关注人数:" + str(guanzhu) + "\n" + "粉丝数:" + str( fensi) + "\n" + "性别:" + gender + "\n" + "微博等级:" + str(urank) + "\n") def get_weibo(id, file): global pic_num i = 1 while True: url = 'https://m.weibo.cn/api/container/getIndex?type=uid&value=' + id weibo_url = 'https://m.weibo.cn/api/container/getIndex?type=uid&value=' + id + '&containerid=' + get_containerid( url) + '&page=' + str(i) try: data = use_proxy(weibo_url, proxy_addr) content = json.loads(data).get('data') cards = content.get('cards') if (len(cards) > 0): for j in range(len(cards)): print("-----正在爬取第" + str(i) + "页,第" + str(j) + "条微博------") card_type = cards[j].get('card_type') if (card_type == 9): mblog = cards[j].get('mblog') attitudes_count = mblog.get('attitudes_count') comments_count = mblog.get('comments_count') created_at = mblog.get('created_at') reposts_count = mblog.get('reposts_count') scheme = cards[j].get('scheme') text = mblog.get('text') if mblog.get('pics') != None: # print(mblog.get('original_pic')) # print(mblog.get('pics')) pic_archive = mblog.get('pics') for _ in range(len(pic_archive)): pic_num += 1 print(pic_archive[_]['large']['url']) imgurl = pic_archive[_]['large']['url'] img = requests.get(imgurl) f = open(path + weibo_name + '\\' + str(pic_num) + str(imgurl[-4:]), 'ab') # 存储图片,多媒体文件需要参数b(二进制文件) f.write(img.content) # 多媒体存储content f.close() with open(file, 'a', encoding='utf-8') as fh: fh.write("----第" + str(i) + "页,第" + str(j) + "条微博----" + "\n") fh.write("微博地址:" + str(scheme) + "\n" + "发布时间:" + str( created_at) + "\n" + "微博内容:" + text + "\n" + "点赞数:" + str( attitudes_count) + "\n" + "评论数:" + str(comments_count) + "\n" + "转发数:" + str( reposts_count) + "\n") i += 1 else: break except Exception as e: print(e) pass if __name__ == "__main__": if os.path.isdir(path + weibo_name): pass else: os.mkdir(path + weibo_name) file = path + weibo_name + '\\' + weibo_name + ".txt" get_userInfo(id) get_weibo(id, file)
# Copyright (C) 2020 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions # and limitations under the License. # pylint: disable=C0301,W0622,R0914 import argparse import hashlib import json import os import subprocess import tempfile import yaml from mmcv.utils import Config MMDETECTION_TOOLS = f'{os.path.dirname(__file__)}/../../../../external/mmdetection/tools' FACE_DETECTION_TOOLS = os.path.dirname(__file__) def parse_args(): """ Parses input args. """ args = argparse.ArgumentParser() args.add_argument('config', help='A path to model training configuration file (.py).') args.add_argument('snapshot', help='A path to pre-trained snapshot (.pth).') args.add_argument('out', help='A path to output file where models metrics will be saved (.yml).') args.add_argument('--wider_dir', help='Specify this path if you would like to test your model on WiderFace dataset.') return args.parse_args() def replace_text_in_file(path, replace_what, replace_by): """ Replaces text in file. """ with open(path) as read_file: content = '\n'.join([line.rstrip() for line in read_file.readlines()]) if content.find(replace_what) == -1: return False content = content.replace(replace_what, replace_by) with open(path, 'w') as write_file: write_file.write(content) return True def collect_ap(path): """ Collects average precision values in log file. """ average_precisions = [] beginning = 'Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = ' with open(path) as read_file: content = [line.strip() for line in read_file.readlines()] for line in content: if line.startswith(beginning): average_precisions.append(float(line.replace(beginning, ''))) return average_precisions def sha256sum(filename): """ Computes sha256sum. """ h = hashlib.sha256() b = bytearray(128*1024) mv = memoryview(b) with open(filename, 'rb', buffering=0) as f: for n in iter(lambda: f.readinto(mv), 0): h.update(mv[:n]) return h.hexdigest() def compute_wider_metrics(config_path, snapshot, work_dir, wider_dir, outputs): """ Computes WiderFace metrics on easy, medium, hard subsets. """ wider_data_folder = wider_dir os.makedirs(wider_data_folder, exist_ok=True) wider_data_zip = os.path.join(wider_data_folder, 'WIDER_val.zip') assert os.path.exists(wider_data_zip), f'failed to find WIDER_val.zip here: {wider_data_zip}' subprocess.run(f'unzip -q -o {wider_data_zip} -d {wider_data_folder}'.split(' '), check=True) eval_tools_zip = os.path.join(wider_data_folder, 'eval_tools.zip') if not os.path.exists(eval_tools_zip): subprocess.run( f'wget http://shuoyang1213.me/WIDERFACE/support/eval_script/eval_tools.zip' f' -O {eval_tools_zip}'.split(' '), check=True) subprocess.run(f'unzip -q -o {eval_tools_zip} -d {wider_data_folder}'.split(' '), check=True) wider_annotation_zip = os.path.join(wider_data_folder, 'ider_face_split.zip') if not os.path.exists(wider_annotation_zip): subprocess.run( f'wget http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/support/bbx_annotation/wider_face_split.zip' f' -O {wider_annotation_zip}'.split(' '), check=True) subprocess.run(f'unzip -q -o {wider_annotation_zip} -d {wider_data_folder}'.split(' '), check=True) wider_annotation = os.path.join(wider_dir, 'wider_face_split', 'wider_face_val_bbx_gt.txt') wider_images = os.path.join(wider_dir, 'WIDER_val', 'images') wider_coco_annotation = os.path.join(wider_dir, 'instances_val.json') subprocess.run( f'python {FACE_DETECTION_TOOLS}/wider_to_coco.py' f' {wider_annotation} {wider_images} {wider_coco_annotation}'.split(' '), check=True) res_pkl = os.path.join(work_dir, 'wider_face_res.pkl') with open(os.path.join(work_dir, 'test_py_on_wider_stdout_'), 'w') as test_py_stdout: subprocess.run( f'python {MMDETECTION_TOOLS}/test.py' f' {config_path} {snapshot}' f' --out {res_pkl}' f' --update_config data.test.ann_file={wider_coco_annotation} data.test.img_prefix={wider_dir}'.split(' '), stdout=test_py_stdout, check=True) wider_face_predictions = tempfile.mkdtemp() subprocess.run( f'python {FACE_DETECTION_TOOLS}/test_out_to_wider_predictions.py' f' {config_path} {res_pkl} {wider_face_predictions}'.split(' '), check=True) print(wider_face_predictions) res_wider_metrics = os.path.join(work_dir, "wider_metrics.json") subprocess.run( f'python {FACE_DETECTION_TOOLS}/wider_face_eval.py' f' -g {wider_data_folder}/eval_tools/ground_truth/' f' -p {wider_face_predictions}' f' --out {res_wider_metrics}'.split(' '), check=True) with open(res_wider_metrics) as read_file: content = json.load(read_file) outputs.extend(content) return outputs def coco_ap_eval(config_path, work_dir, snapshot, res_pkl, outputs): """ Computes COCO AP. """ with open(os.path.join(work_dir, 'test_py_stdout'), 'w') as test_py_stdout: subprocess.run( f'python {MMDETECTION_TOOLS}/test.py' f' {config_path} {snapshot}' f' --out {res_pkl} --eval bbox'.split(' '), stdout=test_py_stdout, check=True) average_precision = collect_ap(os.path.join(work_dir, 'test_py_stdout'))[0] outputs.append({'key': 'ap', 'value': average_precision * 100, 'unit': '%', 'display_name': 'AP @ [IoU=0.50:0.95]'}) return outputs def custom_ap_eval(config_path, work_dir, res_pkl, outputs): """ Computes AP on faces that are greater than 64x64. """ res_custom_metrics = os.path.join(work_dir, "custom_metrics.json") subprocess.run( f'python {FACE_DETECTION_TOOLS}/wider_custom_eval.py' f' {config_path} {res_pkl} --out {res_custom_metrics}'.split(' '), check=True) with open(res_custom_metrics) as read_file: ap_64x64 = [x['average_precision'] for x in json.load(read_file) if x['object_size'][0] == 64][0] outputs.append({'key': 'ap_64x64', 'value': ap_64x64, 'display_name': 'AP for faces > 64x64', 'unit': '%'}) return outputs def get_complexity_and_size(cfg, config_path, work_dir, outputs): """ Gets complexity and size of a model. """ image_shape = [x['img_scale'] for x in cfg.test_pipeline if 'img_scale' in x][0][::-1] image_shape = " ".join([str(x) for x in image_shape]) res_complexity = os.path.join(work_dir, "complexity.json") subprocess.run( f'python {MMDETECTION_TOOLS}/get_flops.py' f' {config_path}' f' --shape {image_shape}' f' --out {res_complexity}'.split(' '), check=True) with open(res_complexity) as read_file: content = json.load(read_file) outputs.extend(content) return outputs def get_file_size_and_sha256(snapshot): """ Gets size and sha256 of a file. """ return { 'sha256': sha256sum(snapshot), 'size': os.path.getsize(snapshot), 'name': os.path.basename(snapshot), 'source': snapshot } def eval(config_path, snapshot, wider_dir, out): """ Main evaluation procedure. """ cfg = Config.fromfile(config_path) work_dir = tempfile.mkdtemp() print('results are stored in:', work_dir) if os.path.islink(snapshot): snapshot = os.path.join(os.path.dirname(snapshot), os.readlink(snapshot)) files = get_file_size_and_sha256(snapshot) metrics = [] res_pkl = os.path.join(work_dir, "res.pkl") metrics = coco_ap_eval(config_path, work_dir, snapshot, res_pkl, metrics) metrics = custom_ap_eval(config_path, work_dir, res_pkl, metrics) if wider_dir: metrics = compute_wider_metrics(config_path, snapshot, work_dir, wider_dir, metrics) metrics = get_complexity_and_size(cfg, config_path, work_dir, metrics) for metric in metrics: metric['value'] = round(metric['value'], 3) outputs = { 'files': [files], 'metrics': metrics } if os.path.exists(out): with open(out) as read_file: content = yaml.load(read_file) content.update(outputs) outputs = content with open(out, 'w') as write_file: yaml.dump(outputs, write_file) def main(): """ Main function. """ args = parse_args() eval(args.config, args.snapshot, args.wider_dir, args.out) if __name__ == '__main__': main()
# Prirejeno po datotekah iz predavanj in vaj. import csv import json import os import requests default_headers = {'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36'} # Prenos spletne strani def url_v_html(url, mapa, ime_datoteke, headers=default_headers): '''Sprejme url in v dano destinacijo shrani HTML datoteko.''' try: page_content = requests.get(url, headers=headers) except requests.exceptions.ConnectionError: print(f"Napaka pri povezovanju na {url}") return None if page_content.status_code == requests.codes.ok: os.makedirs(mapa, exist_ok=True) path = os.path.join(mapa, ime_datoteke) with open(path, 'w', encoding='utf-8') as file_out: file_out.write(page_content.text) else: print(f"Napaka pri prenosu strani {url}") return None # Pisanje in odpiranje def odpri_html(mapa, ime_datoteke): '''Vrne niz z vsebino dane datoteke.''' with open(os.path.join(mapa, ime_datoteke), encoding='utf-8') as datoteka: return datoteka.read() def zapisi_csv(slovarji, imena_polj, ime_datoteke): '''Iz seznama slovarjev ustvari CSV datoteko z glavo.''' with open(ime_datoteke, 'w', encoding='utf-8') as csv_datoteka: writer = csv.DictWriter(csv_datoteka, fieldnames=imena_polj) writer.writeheader() for slovar in slovarji: writer.writerow(slovar) def zapisi_json(objekt, ime_datoteke): '''Iz danega objekta ustvari JSON datoteko.''' with open(ime_datoteke, 'w', encoding='utf-8') as json_datoteka: json.dump(objekt, json_datoteka, indent=4, ensure_ascii=False) def odpri_json(ime_datoteke): '''Odpre dano JSON datoteko.''' with open(ime_datoteke, 'r', encoding='utf-8') as json_datoteka: return json.load(json_datoteka)
from .StupidArtnet import StupidArtnet from stupidArtnet.StupidArtnetServer import StupidArtnetServer from stupidArtnet.ArtnetUtils import shift_this, put_in_range, make_address_mask
import tkinter as tk def convert(): input_value = float(var_input.get()) grams_value = input_value * 1000 var_grams.set('{}g'.format(grams_value)) pounds_value = input_value * 2.20462 var_pounds.set('{}lbs'.format(pounds_value)) ounces_value = input_value * 35.274 var_ounces.set('{}oz'.format(ounces_value)) window = tk.Tk() window.rowconfigure([0, 1], minsize=30, weight=1) window.columnconfigure([0, 1, 2], minsize=30, weight=1) var_input = tk.StringVar() var_grams = tk.StringVar() var_pounds = tk.StringVar() var_ounces = tk.StringVar() lbl_kg = tk.Label(window, text="kg") txt_input = tk.Entry(window, textvariable=var_input) btn_convert = tk.Button(window, text="Convert", command=convert) lbl_grams = tk.Label(window, textvariable=var_grams) lbl_pounds = tk.Label(window, textvariable=var_pounds) lbl_ounces = tk.Label(window, textvariable=var_ounces) lbl_kg.grid(row=0, column=0) txt_input.grid(row=0, column=1) btn_convert.grid(row=0, column=2) lbl_grams.grid(row=1, column=0) lbl_pounds.grid(row=1, column=1) lbl_ounces.grid(row=1, column=2) window.mainloop()
import logging import multiprocessing import time from c4.messaging import (Envelope, PeerRouter, RouterClient) log = logging.getLogger(__name__) class TestRouterClient(object): MESSAGES = 100 def test_sendMessage(self, clusterInfo): counter = multiprocessing.Value("i", 0) peer1 = PeerRouter("peer1", clusterInfo) def peer1Handler(message, envelope): with counter.get_lock(): counter.value += 1 peer1.addHandler(peer1Handler) peer1.start(timeout=1) client = RouterClient("peer1") for _ in range(self.MESSAGES): testEnvelope = Envelope("client", "peer1", Action="test", isRequest=False, includeTime=True) client.sendMessage(testEnvelope) # wait with timeout for messages end = time.clock() + 10 while counter.value < self.MESSAGES and time.clock() < end: time.sleep(0.01) peer1.stop(timeout=1) assert counter.value == self.MESSAGES def test_sendRequest(self, clusterInfo): counter = multiprocessing.Value("i", 0) peer1 = PeerRouter("peer1", clusterInfo) def peer1Handler(message, envelope): with counter.get_lock(): counter.value += 1 return message peer1.addHandler(peer1Handler) peer1.start(timeout=1) client = RouterClient("peer1") for _ in range(self.MESSAGES): testEnvelope = Envelope("client", "peer1", Action="test", includeTime=True) message = client.sendRequest(testEnvelope) assert message is not None peer1.stop(timeout=1) assert counter.value == self.MESSAGES
import numpy as np import cv2 import tensorflow as tf class Evaluator(object): def __init__(self, config): self.mutual_check = False self.err_thld = config['err_thld'] self.matches = self.bf_matcher_graph() self.stats = { 'i_avg_recall': 0, 'v_avg_recall': 0, 'all_avg_recall': 0, } def homo_trans(self, coord, H): kpt_num = coord.shape[0] homo_coord = np.concatenate((coord, np.ones((kpt_num, 1))), axis=-1) proj_coord = np.matmul(H, homo_coord.T).T proj_coord = proj_coord / proj_coord[:, 2][..., None] proj_coord = proj_coord[:, 0:2] return proj_coord def bf_matcher_graph(self): descriptors_a = tf.compat.v1.placeholder(tf.float32, (None, None), 'descriptor_a') descriptors_b = tf.compat.v1.placeholder(tf.float32, (None, None), 'descriptor_b') sim = tf.linalg.matmul(descriptors_a, descriptors_b, transpose_b=True) ids1 = tf.range(0, tf.shape(sim)[0]) nn12 = tf.math.argmax(sim, axis=1, output_type=tf.int32) if self.mutual_check: nn21 = tf.math.argmax(sim, axis=0, output_type=tf.int32) mask = tf.equal(ids1, tf.gather(nn21, nn12)) matches = tf.stack([tf.boolean_mask(ids1, mask), tf.boolean_mask(nn12, mask)]) else: matches = tf.stack([ids1, nn12]) return matches def bf_matcher(self, sess, descriptors_a, descriptors_b): input_dict = { "descriptor_a:0": descriptors_a, "descriptor_b:0": descriptors_b } matches = sess.run(self.matches, input_dict) return matches.T def feature_matcher(self, sess, ref_feat, test_feat): matches = self.bf_matcher(sess, ref_feat, test_feat) matches = [cv2.DMatch(matches[i][0], matches[i][1], 0) for i in range(matches.shape[0])] return matches def get_inlier_matches(self, ref_coord, test_coord, putative_matches, gt_homo, scaling=1.): p_ref_coord = np.float32([ref_coord[m.queryIdx] for m in putative_matches]) / scaling p_test_coord = np.float32([test_coord[m.trainIdx] for m in putative_matches]) / scaling proj_p_ref_coord = self.homo_trans(p_ref_coord, gt_homo) dist = np.sqrt(np.sum(np.square(proj_p_ref_coord - p_test_coord[:, 0:2]), axis=-1)) inlier_mask = dist <= self.err_thld inlier_matches = [putative_matches[z] for z in np.nonzero(inlier_mask)[0]] return inlier_matches def get_gt_matches(self, ref_coord, test_coord, gt_homo, scaling=1.): ref_coord = ref_coord / scaling test_coord = test_coord / scaling proj_ref_coord = self.homo_trans(ref_coord, gt_homo) pt0 = np.expand_dims(proj_ref_coord, axis=1) pt1 = np.expand_dims(test_coord, axis=0) norm = np.linalg.norm(pt0 - pt1, ord=None, axis=2) min_dist = np.min(norm, axis=1) gt_num = np.sum(min_dist <= self.err_thld) return gt_num
class ObservableProperty: def __init__(self, signal_name: str): self.attr_name = '' self.signal_name = signal_name def __set_name__(self, owner, name): self.attr_name = '_' + name def __get__(self, instance, owner): return getattr(instance, self.attr_name) def __set__(self, instance, value): setattr(instance, self.attr_name, value) getattr(instance, self.signal_name).emit(value)
# LICENSE: PSF. import asyncio import concurrent.futures import re import sys import threading import unittest import uvloop from asyncio import test_utils from uvloop import _testbase as tb from unittest import mock from test import support # Most of the tests are copied from asyncio def _fakefunc(f): return f def first_cb(): pass def last_cb(): pass class _TestFutures: def create_future(self): raise NotImplementedError def test_future_initial_state(self): f = self.create_future() self.assertFalse(f.cancelled()) self.assertFalse(f.done()) f.cancel() self.assertTrue(f.cancelled()) def test_future_cancel(self): f = self.create_future() self.assertTrue(f.cancel()) self.assertTrue(f.cancelled()) self.assertTrue(f.done()) self.assertRaises(asyncio.CancelledError, f.result) self.assertRaises(asyncio.CancelledError, f.exception) self.assertRaises(asyncio.InvalidStateError, f.set_result, None) self.assertRaises(asyncio.InvalidStateError, f.set_exception, None) self.assertFalse(f.cancel()) def test_future_result(self): f = self.create_future() self.assertRaises(asyncio.InvalidStateError, f.result) f.set_result(42) self.assertFalse(f.cancelled()) self.assertTrue(f.done()) self.assertEqual(f.result(), 42) self.assertEqual(f.exception(), None) self.assertRaises(asyncio.InvalidStateError, f.set_result, None) self.assertRaises(asyncio.InvalidStateError, f.set_exception, None) self.assertFalse(f.cancel()) def test_future_exception(self): exc = RuntimeError() f = self.create_future() self.assertRaises(asyncio.InvalidStateError, f.exception) if sys.version_info[:3] > (3, 5, 1): # StopIteration cannot be raised into a Future - CPython issue26221 self.assertRaisesRegex(TypeError, "StopIteration .* cannot be raised", f.set_exception, StopIteration) f.set_exception(exc) self.assertFalse(f.cancelled()) self.assertTrue(f.done()) self.assertRaises(RuntimeError, f.result) self.assertEqual(f.exception(), exc) self.assertRaises(asyncio.InvalidStateError, f.set_result, None) self.assertRaises(asyncio.InvalidStateError, f.set_exception, None) self.assertFalse(f.cancel()) def test_future_exception_class(self): f = self.create_future() f.set_exception(RuntimeError) self.assertIsInstance(f.exception(), RuntimeError) def test_future_yield_from_twice(self): f = self.create_future() def fixture(): yield 'A' x = yield from f yield 'B', x y = yield from f yield 'C', y g = fixture() self.assertEqual(next(g), 'A') # yield 'A'. self.assertEqual(next(g), f) # First yield from f. f.set_result(42) self.assertEqual(next(g), ('B', 42)) # yield 'B', x. # The second "yield from f" does not yield f. self.assertEqual(next(g), ('C', 42)) # yield 'C', y. def test_future_repr(self): self.loop.set_debug(True) f_pending_debug = self.create_future() frame = f_pending_debug._source_traceback[-1] self.assertEqual(repr(f_pending_debug), '<Future pending created at %s:%s>' % (frame[0], frame[1])) f_pending_debug.cancel() self.loop.set_debug(False) f_pending = self.create_future() self.assertEqual(repr(f_pending), '<Future pending>') f_pending.cancel() f_cancelled = self.create_future() f_cancelled.cancel() self.assertEqual(repr(f_cancelled), '<Future cancelled>') f_result = self.create_future() f_result.set_result(4) self.assertEqual(repr(f_result), '<Future finished result=4>') self.assertEqual(f_result.result(), 4) exc = RuntimeError() f_exception = self.create_future() f_exception.set_exception(exc) self.assertEqual(repr(f_exception), '<Future finished exception=RuntimeError()>') self.assertIs(f_exception.exception(), exc) def func_repr(func): filename, lineno = test_utils.get_function_source(func) text = '%s() at %s:%s' % (func.__qualname__, filename, lineno) return re.escape(text) f_one_callbacks = self.create_future() f_one_callbacks.add_done_callback(_fakefunc) fake_repr = func_repr(_fakefunc) self.assertRegex(repr(f_one_callbacks), r'<Future pending cb=\[%s\]>' % fake_repr) f_one_callbacks.cancel() self.assertEqual(repr(f_one_callbacks), '<Future cancelled>') f_two_callbacks = self.create_future() f_two_callbacks.add_done_callback(first_cb) f_two_callbacks.add_done_callback(last_cb) first_repr = func_repr(first_cb) last_repr = func_repr(last_cb) self.assertRegex(repr(f_two_callbacks), r'<Future pending cb=\[%s, %s\]>' % (first_repr, last_repr)) f_many_callbacks = self.create_future() f_many_callbacks.add_done_callback(first_cb) for i in range(8): f_many_callbacks.add_done_callback(_fakefunc) f_many_callbacks.add_done_callback(last_cb) cb_regex = r'%s, <8 more>, %s' % (first_repr, last_repr) self.assertRegex(repr(f_many_callbacks), r'<Future pending cb=\[%s\]>' % cb_regex) f_many_callbacks.cancel() self.assertEqual(repr(f_many_callbacks), '<Future cancelled>') def test_future_copy_state(self): if sys.version_info[:3] < (3, 5, 1): raise unittest.SkipTest() from asyncio.futures import _copy_future_state f = self.create_future() f.set_result(10) newf = self.create_future() _copy_future_state(f, newf) self.assertTrue(newf.done()) self.assertEqual(newf.result(), 10) f_exception = self.create_future() f_exception.set_exception(RuntimeError()) newf_exception = self.create_future() _copy_future_state(f_exception, newf_exception) self.assertTrue(newf_exception.done()) self.assertRaises(RuntimeError, newf_exception.result) f_cancelled = self.create_future() f_cancelled.cancel() newf_cancelled = self.create_future() _copy_future_state(f_cancelled, newf_cancelled) self.assertTrue(newf_cancelled.cancelled()) @mock.patch('asyncio.base_events.logger') def test_future_tb_logger_abandoned(self, m_log): fut = self.create_future() del fut self.assertFalse(m_log.error.called) @mock.patch('asyncio.base_events.logger') def test_future_tb_logger_result_unretrieved(self, m_log): fut = self.create_future() fut.set_result(42) del fut self.assertFalse(m_log.error.called) @mock.patch('asyncio.base_events.logger') def test_future_tb_logger_result_retrieved(self, m_log): fut = self.create_future() fut.set_result(42) fut.result() del fut self.assertFalse(m_log.error.called) def test_future_wrap_future(self): def run(arg): return (arg, threading.get_ident()) ex = concurrent.futures.ThreadPoolExecutor(1) f1 = ex.submit(run, 'oi') f2 = asyncio.wrap_future(f1, loop=self.loop) res, ident = self.loop.run_until_complete(f2) self.assertIsInstance(f2, asyncio.Future) self.assertEqual(res, 'oi') self.assertNotEqual(ident, threading.get_ident()) def test_future_wrap_future_future(self): f1 = self.create_future() f2 = asyncio.wrap_future(f1) self.assertIs(f1, f2) def test_future_wrap_future_use_global_loop(self): with mock.patch('asyncio.futures.events') as events: events.get_event_loop = lambda: self.loop def run(arg): return (arg, threading.get_ident()) ex = concurrent.futures.ThreadPoolExecutor(1) f1 = ex.submit(run, 'oi') f2 = asyncio.wrap_future(f1) self.assertIs(self.loop, f2._loop) def test_future_wrap_future_cancel(self): f1 = concurrent.futures.Future() f2 = asyncio.wrap_future(f1, loop=self.loop) f2.cancel() test_utils.run_briefly(self.loop) self.assertTrue(f1.cancelled()) self.assertTrue(f2.cancelled()) def test_future_wrap_future_cancel2(self): f1 = concurrent.futures.Future() f2 = asyncio.wrap_future(f1, loop=self.loop) f1.set_result(42) f2.cancel() test_utils.run_briefly(self.loop) self.assertFalse(f1.cancelled()) self.assertEqual(f1.result(), 42) self.assertTrue(f2.cancelled()) def test_future_source_traceback(self): self.loop.set_debug(True) future = self.create_future() lineno = sys._getframe().f_lineno - 1 self.assertIsInstance(future._source_traceback, list) self.assertEqual(future._source_traceback[-2][:3], (__file__, lineno, 'test_future_source_traceback')) def check_future_exception_never_retrieved(self, debug): last_ctx = None def handler(loop, context): nonlocal last_ctx last_ctx = context self.loop.set_debug(debug) self.loop.set_exception_handler(handler) def memory_error(): try: raise MemoryError() except BaseException as exc: return exc exc = memory_error() future = self.create_future() if debug: source_traceback = future._source_traceback future.set_exception(exc) future = None support.gc_collect() test_utils.run_briefly(self.loop) self.assertIsNotNone(last_ctx) self.assertIs(last_ctx['exception'], exc) self.assertEqual(last_ctx['message'], 'Future exception was never retrieved') if debug: tb = last_ctx['source_traceback'] self.assertEqual(tb[-2].name, 'check_future_exception_never_retrieved') def test_future_exception_never_retrieved(self): self.check_future_exception_never_retrieved(False) def test_future_exception_never_retrieved_debug(self): self.check_future_exception_never_retrieved(True) def test_future_wrap_future(self): from uvloop.loop import _wrap_future def run(arg): return (arg, threading.get_ident()) ex = concurrent.futures.ThreadPoolExecutor(1) f1 = ex.submit(run, 'oi') f2 = _wrap_future(f1, loop=self.loop) res, ident = self.loop.run_until_complete(f2) self.assertIsInstance(f2, asyncio.Future) self.assertEqual(res, 'oi') self.assertNotEqual(ident, threading.get_ident()) def test_future_wrap_future_future(self): from uvloop.loop import _wrap_future f1 = self.create_future() f2 = _wrap_future(f1) self.assertIs(f1, f2) def test_future_wrap_future_cancel(self): from uvloop.loop import _wrap_future f1 = concurrent.futures.Future() f2 = _wrap_future(f1, loop=self.loop) f2.cancel() test_utils.run_briefly(self.loop) self.assertTrue(f1.cancelled()) self.assertTrue(f2.cancelled()) def test_future_wrap_future_cancel2(self): from uvloop.loop import _wrap_future f1 = concurrent.futures.Future() f2 = _wrap_future(f1, loop=self.loop) f1.set_result(42) f2.cancel() test_utils.run_briefly(self.loop) self.assertFalse(f1.cancelled()) self.assertEqual(f1.result(), 42) self.assertTrue(f2.cancelled()) class _TestFuturesDoneCallbacks: def run_briefly(self): test_utils.run_briefly(self.loop) def _make_callback(self, bag, thing): # Create a callback function that appends thing to bag. def bag_appender(future): bag.append(thing) return bag_appender def _new_future(self): raise NotImplementedError def test_future_callbacks_invoked_on_set_result(self): bag = [] f = self._new_future() f.add_done_callback(self._make_callback(bag, 42)) f.add_done_callback(self._make_callback(bag, 17)) self.assertEqual(bag, []) f.set_result('foo') self.run_briefly() self.assertEqual(bag, [42, 17]) self.assertEqual(f.result(), 'foo') def test_future_callbacks_invoked_on_set_exception(self): bag = [] f = self._new_future() f.add_done_callback(self._make_callback(bag, 100)) self.assertEqual(bag, []) exc = RuntimeError() f.set_exception(exc) self.run_briefly() self.assertEqual(bag, [100]) self.assertEqual(f.exception(), exc) def test_future_remove_done_callback(self): bag = [] f = self._new_future() cb1 = self._make_callback(bag, 1) cb2 = self._make_callback(bag, 2) cb3 = self._make_callback(bag, 3) # Add one cb1 and one cb2. f.add_done_callback(cb1) f.add_done_callback(cb2) # One instance of cb2 removed. Now there's only one cb1. self.assertEqual(f.remove_done_callback(cb2), 1) # Never had any cb3 in there. self.assertEqual(f.remove_done_callback(cb3), 0) # After this there will be 6 instances of cb1 and one of cb2. f.add_done_callback(cb2) for i in range(5): f.add_done_callback(cb1) # Remove all instances of cb1. One cb2 remains. self.assertEqual(f.remove_done_callback(cb1), 6) self.assertEqual(bag, []) f.set_result('foo') self.run_briefly() self.assertEqual(bag, [2]) self.assertEqual(f.result(), 'foo') ############################################################################### # Tests Matrix ############################################################################### class Test_UV_UV_create_future(_TestFutures, tb.UVTestCase): # Test uvloop.Loop.create_future def create_future(self): return self.loop.create_future() class Test_UV_UV_Future(_TestFutures, tb.UVTestCase): # Test that uvloop.Future can be instantiated directly def create_future(self): return uvloop.Future(loop=self.loop) class Test_UV_AIO_Futures(_TestFutures, tb.UVTestCase): def create_future(self): return asyncio.Future(loop=self.loop) class Test_AIO_Futures(_TestFutures, tb.AIOTestCase): def create_future(self): return asyncio.Future(loop=self.loop) class Test_UV_UV_FuturesCallbacks(_TestFuturesDoneCallbacks, tb.UVTestCase): def _new_future(self): return self.loop.create_future() class Test_UV_AIO_FuturesCallbacks(_TestFuturesDoneCallbacks, tb.UVTestCase): def _new_future(self): return asyncio.Future(loop=self.loop) class Test_AIO_FuturesCallbacks(_TestFuturesDoneCallbacks, tb.AIOTestCase): def _new_future(self): return asyncio.Future(loop=self.loop)
import cv2 import numpy as np from matplotlib import pyplot as plt img = cv2.imread('lowContrast.png',0) plt.hist(img.ravel(),256,[0,256]) plt.show() plt.savefig('hist.png') equ = cv2.equalizeHist(img) res = np.hstack((img,equ)) cv2.imshow('Equalized Image',res) cv2.imwrite('Equalized Image.png',res) plt.hist(res.ravel(),256,[0,256]) plt.show() plt.savefig('equal-hist.png')
import asyncio import platform from dask.distributed import Client def square(x): return x ** 2 async def f(): client = await Client("localhost:8786", processes=False, asynchronous=True) A = client.map(square, range(10000)) result = await client.submit(sum, A) print(result) await client.close() return result if __name__ == '__main__': asyncio.get_event_loop().run_until_complete(f())
from tests.GreetingExtension import GreetingExtension class AfternoonColorExtension(GreetingExtension): _name = 'afternoon' def greet(self, person: str) -> None: print(f'{self._name} {person}')
# Generated by Django 3.0.11 on 2020-12-25 16:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('styles', '0004_auto_20201225_1051'), ('users', '0007_auto_20201222_0922'), ] operations = [ migrations.AddField( model_name='user', name='favorite_style', field=models.ForeignKey(blank=True, help_text='Select your default TaiChi Style.', null=True, on_delete=django.db.models.deletion.SET_NULL, to='styles.Style'), ), ]