content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- """ /dms/pool/views_show.py .. zeigt den Inhalt eines Materialpools an Django content Management System Hans Rauch [email protected] Die Programme des dms-Systems koennen frei genutzt und den spezifischen Beduerfnissen entsprechend angepasst werden. 0.01 28.03.2007 Beginn der Arbeit 0.02 18.03.2008 is_file_by_item_container """ import string from django.utils.encoding import smart_unicode from django.shortcuts import render_to_response from django.http import HttpResponseRedirect from django.utils.translation import ugettext as _ from dms.settings import MY_DOMAINS from dms.settings import DOWNLOAD_URL from dms.queries import get_site_url from dms.queries import is_file_by_item_container from dms.queries import get_parent_container from dms.queries import get_role_by_name from dms.utils_form import get_folderish_vars_show from dms.utils import get_footer_email from dms.text_icons import FOLDER_ICON from dms.text_icons import NEW_WINDOW_ICON from dms.text_icons import FILE_DETAIL from dms.text_icons import EXTERN_ICON from dms.pool.utils import get_user_support from dms.folder.utils import get_folder_content from dms.file.utils import get_file_size from dms.file.utils import get_file_url from dms_ext.extension import * # dms-Funktionen ueberschreiben # ----------------------------------------------------- def pool_show(request, item_container): """ zeigt den Inhalt eines Materialpools """ def get_section_view(items, sections): """ erzeugt die Section-Ansicht der im Ordner enthaltenen Objekte """ from django.template.loader import get_template from django.template import Context tSection = get_template('app/pool/section.html') content = '' unknown = _(u'Unbekannter Zwischentitel') section_exist = False section = '--START--' links = [] for i in items : if section != i.section : if section != unknown : if section != '--START--' and links != [] : cSection = Context ( { 'section': section, 'links': links } ) content += tSection.render ( cSection) if i.section in sections : section = i.section section_exist = True else : section = unknown links = [] d = {} d['title'] = i.item.title d['text'] = i.item.text d['text_more'] = i.item.text_more if i.item.app.name == 'dmsFile': d['size'] = '<br />' + i.item.name + ', ' + get_footer_email(i.item) + ', ' + \ smart_unicode(get_file_size(i, i.container.is_protected())) + ' Bytes' else: d['size'] = '' if i.item.app.is_folderish : d['folder_icon'] = FOLDER_ICON else : d['folder_icon'] = '' # --- handelt es sich um ein Datei- oder Ordner-Objekt? if string.find(i.item.name, '.html') > 0 or is_file_by_item_container(i): if i.item.app.name in ['dmsRedirect', 'dmsLinkItem', 'dmsEduLinkItem']: d['url'] = i.item.url_more if string.find(i.item.url_more, 'http://') >= 0: is_my_domain = False for domain in MY_DOMAINS: if string.find(i.item.url_more, domain) >= 0: is_my_domain = True break if is_my_domain: if i.item.url_more_extern: d['extern'] = '_extern' d['extern_icon'] = NEW_WINDOW_ICON else : d['extern'] = '_extern' d['extern_icon'] = EXTERN_ICON elif i.item.app.name in ['dmsFile', 'dmsImage', 'dmsEduFileItem']: if i.item.url_more_extern: d['extern'] = '_extern' d['extern_icon'] = NEW_WINDOW_ICON else: d['extern'] = '' d['extern_icon'] = '' d['url'] = get_file_url(i, i.container.is_protected()) else: d['url'] = get_site_url(i, i.item.name) else: d['url'] = get_site_url(i, 'index.html') #if i.item.app.name != 'dmsRedirect': # d['folder_icon'] = FILE_DETAIL % get_site_url(i, i.item.name + '/show/') links.append ( d ) if section != '--START--' and links != []: if section == unknown and not section_exist: section = '' cSection = Context ( { 'section': section, 'links': links } ) content += tSection.render ( cSection) return content app_name = 'pool' items, sections, d_sections = get_folder_content(item_container) vars = get_folderish_vars_show(request, item_container, app_name, get_section_view(items, sections), get_user_support(item_container, request.user)) parent = get_parent_container(item_container.container) vars['no_top_main_navigation'] = (parent.min_role_id < get_role_by_name('no_rights').id) or \ item_container.container.nav_name_left.find('webquest') >= 0 #l = item_container.container.nav_name_left #p = parent.nav_name_left #assert False return render_to_response ( 'app/base_folderish.html', vars )
from django.apps import AppConfig class InfraConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'infra'
import sys import unicodedata if len(sys.argv) < 2: print("USAGE: python3 emojify.py CHARACTER") print("Will output Markdown to render that character as an image.") sys.exit(1) if str is bytes: char = sys.argv[1].decode("UTF-8")[0] # Py2 else: char = sys.argv[1][0] # Py3 try: print("U+%X %s" % (ord(char), unicodedata.name(char))) print("") except ValueError: print("U+%X <unknown>" % ord(char)) print("*![%s](https://s.w.org/images/core/emoji/2.2.1/svg/%x.svg)*" % (char, ord(char)))
from .base import Unit from .prefix import ( Yotta, Zetta, Exa, Peta, Tera, Giga, Mega, Kilo, Hecto, Deca, Base, Centi, Mili, Micro, Nano, Pico, Femto, Atto, Zepto, Yocto ) class Metre( Unit ): name = 'metre' symbol = 'm' valid_prefix = ( Yotta, Zetta, Exa, Peta, Tera, Giga, Mega, Kilo, Hecto, Deca, Base, Centi, Mili, Micro, Nano, Pico, Femto, Atto, Zepto, Yocto ) class Gram( Unit ): name = 'gram' symbol = 'g' valid_prefix = ( Yotta, Zetta, Exa, Peta, Tera, Giga, Mega, Kilo, Hecto, Deca, Base, Centi, Mili, Micro, Nano, Pico, Femto, Atto, Zepto, Yocto )
from __future__ import print_function, division, absolute_import import sys import pytest from distributed.protocol import (loads, dumps, msgpack, maybe_compress, to_serialize) from distributed.protocol.serialize import Serialize, Serialized, deserialize from distributed.utils_test import slow def test_protocol(): for msg in [1, 'a', b'a', {'x': 1}, {b'x': 1}, {'x': b''}, {}]: assert loads(dumps(msg)) == msg def test_compression_1(): pytest.importorskip('lz4') np = pytest.importorskip('numpy') x = np.ones(1000000) frames = dumps({'x': Serialize(x.tobytes())}) assert sum(map(len, frames)) < x.nbytes y = loads(frames) assert {'x': x.tobytes()} == y def test_compression_2(): pytest.importorskip('lz4') np = pytest.importorskip('numpy') x = np.random.random(10000) header, payload = dumps(x.tobytes()) assert (not header or not msgpack.loads(header, encoding='utf8').get('compression')) def test_compression_without_deserialization(): pytest.importorskip('lz4') np = pytest.importorskip('numpy') x = np.ones(1000000) frames = dumps({'x': Serialize(x)}) assert all(len(frame) < 1000000 for frame in frames) msg = loads(frames, deserialize=False) assert all(len(frame) < 1000000 for frame in msg['x'].frames) def test_small(): assert sum(map(len, dumps(b''))) < 10 assert sum(map(len, dumps(1))) < 10 def test_small_and_big(): d = {'x': [1, 2, 3], 'y': b'0' * 10000000} L = dumps(d) assert loads(L) == d # assert loads([small_header, small]) == {'x': [1, 2, 3]} # assert loads([big_header, big]) == {'y': d['y']} def test_maybe_compress(): import zlib payload = b'123' assert maybe_compress(payload, None) == (None, payload) assert maybe_compress(payload, 'zlib') == (None, payload) assert maybe_compress(b'111', 'zlib') == (None, b'111') payload = b'0' * 10000 assert maybe_compress(payload, 'zlib') == ('zlib', zlib.compress(payload)) def test_maybe_compress_sample(): np = pytest.importorskip('numpy') lz4 = pytest.importorskip('lz4') payload = np.random.randint(0, 255, size=10000).astype('u1').tobytes() fmt, compressed = maybe_compress(payload, 'lz4') assert fmt == None assert compressed == payload def test_large_bytes(): msg = {'x': b'0' * 1000000, 'y': 1} frames = dumps(msg) assert loads(frames) == msg assert len(frames[0]) < 1000 assert len(frames[1]) < 1000 assert loads(frames, deserialize=False) == msg @slow def test_large_messages(): np = pytest.importorskip('numpy') psutil = pytest.importorskip('psutil') pytest.importorskip('lz4') if psutil.virtual_memory().total < 8e9: return if sys.version_info.major == 2: return 2 x = np.random.randint(0, 255, size=200000000, dtype='u1') msg = {'x': [Serialize(x), b'small_bytes'], 'y': {'a': Serialize(x), 'b': b'small_bytes'}} b = dumps(msg) msg2 = loads(b) assert msg['x'][1] == msg2['x'][1] assert msg['y']['b'] == msg2['y']['b'] assert (msg['x'][0].data == msg2['x'][0]).all() assert (msg['y']['a'].data == msg2['y']['a']).all() def test_loads_deserialize_False(): frames = dumps({'data': Serialize(123), 'status': 'OK'}) msg = loads(frames) assert msg == {'data': 123, 'status': 'OK'} msg = loads(frames, deserialize=False) assert msg['status'] == 'OK' assert isinstance(msg['data'], Serialized) result = deserialize(msg['data'].header, msg['data'].frames) assert result == 123 def test_loads_without_deserialization_avoids_compression(): pytest.importorskip('lz4') b = b'0' * 100000 msg = {'x': 1, 'data': to_serialize(b)} frames = dumps(msg) assert sum(map(len, frames)) < 10000 msg2 = loads(frames, deserialize=False) assert sum(map(len, msg2['data'].frames)) < 10000 msg3 = dumps(msg2) msg4 = loads(msg3) assert msg4 == {'x': 1, 'data': b'0' * 100000} def eq_frames(a, b): if b'headers' in a: return (msgpack.loads(a, use_list=False) == msgpack.loads(b, use_list=False)) else: return a == b def test_dumps_loads_Serialize(): msg = {'x': 1, 'data': Serialize(123)} frames = dumps(msg) assert len(frames) > 2 result = loads(frames) assert result == {'x': 1, 'data': 123} result2 = loads(frames, deserialize=False) assert result2['x'] == 1 assert isinstance(result2['data'], Serialized) assert any(a is b for a in result2['data'].frames for b in frames) frames2 = dumps(result2) assert all(map(eq_frames, frames, frames2)) result3 = loads(frames2) assert result == result3
import pytest import os from .. import Relic from ..metadata import Metadata from ..storage import FileStorage from unittest.mock import patch import datetime as dt import numpy as np raw_config = """ { "s3": { "storage": { "type": "S3", "args": { "s3_bucket": "Scratch-bucket", "prefix": "scratch" } } } }""" @pytest.fixture def test_storage(tmp_path): return FileStorage(str(tmp_path), "test-metadata") def test_metadata_when_adding_arrays(test_storage): rq = Relic( name="test", relic_type="test", storage_name="tests", storage=test_storage ) rq.add_array("test-array", np.zeros((100, 128, 128))) metadata = rq.describe() assert metadata["test"]["arrays"][0]["name"] == "test-array" assert metadata["test"]["arrays"][0]["data_type"] == "arrays" assert metadata["test"]["arrays"][0]["size"] > 0 assert metadata["test"]["arrays"][0]["shape"] == "(100, 128, 128)" def test_metadata_when_adding_text(test_storage): rq = Relic( name="test", relic_type="test", storage_name="tests", storage=test_storage ) test_text = "This is the test arena" rq.add_text("test-text", test_text) metadata = rq.describe() assert metadata["test"]["text"][0]["name"] == "test-text" assert metadata["test"]["text"][0]["data_type"] == "text" assert metadata["test"]["text"][0]["size"] > 0 assert metadata["test"]["text"][0]["shape"] == len(test_text) def test_metadata_when_adding_html(test_storage): rq = Relic( name="test", relic_type="test", storage_name="tests", storage=test_storage ) rq.add_html_from_path( "test-html.html", os.path.join(os.path.dirname(__file__), "test.html") ) metadata = rq.describe() assert metadata["test"]["html"][0]["name"] == "test-html.html" assert metadata["test"]["html"][0]["data_type"] == "html" @patch.dict(os.environ, {"RELIQUERY_CONFIG": raw_config}) @patch("reliquery.storage.S3Storage") def test_relic_s3_storage_syncs_on_init(storage): storage().put_text.return_value = "exists" storage().get_metadata.return_value = { "test": { "arrays": [ { "id": 1, "name": "test-array", "data_type": "arrays", "relic_type": "test", "size": 80.0, "shape": "(100,100,100)", "last_modified": dt.datetime.utcnow().strftime("%m/%d/%Y %H:%M:%S"), } ], "text": [], "html": [], } } storage().list_keys.return_value = ["test-array"] rq = Relic(name="test", relic_type="test", storage_name="s3") assert len(rq.describe()["test"]["arrays"]) == 1 @patch.dict(os.environ, {"RELIQUERY_CONFIG": raw_config}) @patch("reliquery.storage.S3Storage.put_text") @patch("reliquery.storage.S3Storage.list_keys") @patch("reliquery.storage.S3Storage.get_metadata") def test_db_connection(put_text, list_keys, get_metadata): put_text.return_value = "exists" list_keys.return_value = [] get_metadata.return_value = {} rq = Relic( name="test", relic_type="test", storage_name="s3", check_exists=False, ) db = rq.metadata_db assert len(list(iter(db.get_all_metadata()))) == 0 db.add_metadata( Metadata( "name", "data type", rq._relic_data(), last_modified=dt.datetime.utcnow().strftime("%m/%d/%Y %H:%M:%S"), ) ) meta = [i for i in db.get_all_metadata()] assert len(meta) == 1 meta = [i for i in db.get_all_metadata()] assert meta[0].name == "name" assert meta[0].data_type == "data type" assert meta[0].relic.storage_name == "s3" assert meta[0].last_modified is not None
import logging from rbtools.api.errors import APIError from rbtools.clients.errors import InvalidRevisionSpecError from rbtools.commands import CommandError from rbtools.utils.match_score import Score from rbtools.utils.repository import get_repository_id from rbtools.utils.users import get_user def get_draft_or_current_value(field_name, review_request): """Returns the draft or current field value from a review request. If a draft exists for the supplied review request, return the draft's field value for the supplied field name, otherwise return the review request's field value for the supplied field name. """ if review_request.draft: fields = review_request.draft[0] else: fields = review_request return fields[field_name] def get_possible_matches(review_requests, summary, description, limit=5): """Returns a sorted list of tuples of score and review request. Each review request is given a score based on the summary and description provided. The result is a sorted list of tuples containing the score and the corresponding review request, sorted by the highest scoring review request first. """ candidates = [] # Get all potential matches. for review_request in review_requests.all_items: summary_pair = (get_draft_or_current_value('summary', review_request), summary) description_pair = (get_draft_or_current_value('description', review_request), description) score = Score.get_match(summary_pair, description_pair) candidates.append((score, review_request)) # Sort by summary and description on descending rank. sorted_candidates = sorted( candidates, key=lambda m: (m[0].summary_score, m[0].description_score), reverse=True ) return sorted_candidates[:limit] def get_revisions(tool, cmd_args): """Returns the parsed revisions from the command line arguments. These revisions are used for diff generation and commit message extraction. They will be cached for future calls. """ # Parse the provided revisions from the command line and generate # a spec or set of specialized extra arguments that the SCMClient # can use for diffing and commit lookups. try: revisions = tool.parse_revision_spec(cmd_args) except InvalidRevisionSpecError: if not tool.supports_diff_extra_args: raise revisions = None return revisions def find_review_request_by_change_id(api_client, api_root, repository_info, repository_name, revisions): """Ask ReviewBoard for the review request ID for the tip revision. Note that this function calls the ReviewBoard API with the only_fields paramater, thus the returned review request will contain only the fields specified by the only_fields variable. If no review request is found, None will be returned instead. """ only_fields = 'id,commit_id,changenum,status,url,absolute_url' change_id = revisions['tip'] logging.debug('Attempting to find review request from tip revision ID: %s' % change_id) # Strip off any prefix that might have been added by the SCM. change_id = change_id.split(':', 1)[1] optional_args = {} if change_id.isdigit(): # Populate integer-only changenum field also for compatibility # with older API versions optional_args['changenum'] = int(change_id) user = get_user(api_client, api_root, auth_required=True) repository_id = get_repository_id( repository_info, api_root, repository_name) # Don't limit query to only pending requests because it's okay to stamp a # submitted review. review_requests = api_root.get_review_requests(repository=repository_id, from_user=user.username, commit_id=change_id, only_links='self', only_fields=only_fields, **optional_args) if review_requests: count = review_requests.total_results # Only one review can be associated with a specific commit ID. if count > 0: assert count == 1, '%d review requests were returned' % count review_request = review_requests[0] logging.debug('Found review request %s with status %s' % (review_request.id, review_request.status)) if review_request.status != 'discarded': return review_request return None def guess_existing_review_request(repository_info, repository_name, api_root, api_client, tool, revisions, guess_summary, guess_description, is_fuzzy_match_func=None, no_commit_error=None, submit_as=None): """Try to guess the existing review request ID if it is available. The existing review request is guessed by comparing the existing summary and description to the current post's summary and description, respectively. The current post's summary and description are guessed if they are not provided. If the summary and description exactly match those of an existing review request, that request is immediately returned. Otherwise, the user is prompted to select from a list of potential matches, sorted by the highest ranked match first. Note that this function calls the ReviewBoard API with the only_fields paramater, thus the returned review request will contain only the fields specified by the only_fields variable. """ only_fields = 'id,summary,description,draft,url,absolute_url' if submit_as: username = submit_as else: user = get_user(api_client, api_root, auth_required=True) username = user.username repository_id = get_repository_id( repository_info, api_root, repository_name) try: # Get only pending requests by the current user for this # repository. review_requests = api_root.get_review_requests( repository=repository_id, from_user=username, status='pending', expand='draft', only_fields=only_fields, only_links='draft', show_all_unpublished=True) if not review_requests: raise CommandError('No existing review requests to update for ' 'user %s.' % user.username) except APIError as e: raise CommandError('Error getting review requests for user ' '%s: %s' % (user.username, e)) summary = None description = None if not guess_summary or not guess_description: try: commit_message = tool.get_commit_message(revisions) if commit_message: if not guess_summary: summary = commit_message['summary'] if not guess_description: description = commit_message['description'] elif callable(no_commit_error): no_commit_error() except NotImplementedError: raise CommandError('--summary and --description are required.') if not summary and not description: return None possible_matches = get_possible_matches(review_requests, summary, description) exact_match_count = num_exact_matches(possible_matches) for score, review_request in possible_matches: # If the score is the only exact match, return the review request # ID without confirmation, otherwise prompt. if ((score.is_exact_match() and exact_match_count == 1) or (callable(is_fuzzy_match_func) and is_fuzzy_match_func(review_request))): return review_request return None def num_exact_matches(possible_matches): """Returns the number of exact matches in the possible match list.""" count = 0 for score, request in possible_matches: if score.is_exact_match(): count += 1 return count
#!/usr/bin/python import numpy as np import flask from flask_restful import reqparse from flask import request, make_response, current_app from . import valueFromRequest, make_json_response from ..database_support import APIDB, database_cursor from .utils import selection_to_where api_histogram_2d = flask.Blueprint("api_histogram_2d", __name__) @api_histogram_2d.route("/histogram_2d", methods=['GET']) def histogram2d(): ''' Parameters: x_attribute (string) : column name y_attribute (string) : column name x_range (float, float) : range of values y_range (float, float) : range of values x_n_bins (integer) [optional] : number of bins, x axis x_n_bins (integer) [optional] : number of bins, y axis ''' x_attribute = valueFromRequest(key="x_attribute", request=request) y_attribute = valueFromRequest(key="y_attribute", request=request) x_range = valueFromRequest(key="x_range", request=request, asList=True) y_range = valueFromRequest(key="y_range", request=request, asList=True) x_n_bins = valueFromRequest(key="x_n_bins", request=request) y_n_bins = valueFromRequest(key="y_n_bins", request=request) selection = valueFromRequest(key="selection", request=request, asList=False) where = selection_to_where(selection) apidb = APIDB() pool = apidb.pool() with database_cursor(pool) as cursor: query = "select * from pg_hist_2d('select {0},{1} from kic {2} LIMIT 1000000', ARRAY[{3},{4}], ARRAY[{5},{6}], ARRAY[{7},{8}]);".format(x_attribute, y_attribute, where, x_n_bins, y_n_bins, x_range[0], y_range[0], x_range[1], y_range[1]) cursor.execute(query) values = np.zeros((int(y_n_bins), int(x_n_bins))) # Only non-zero entries are returned for row in cursor.fetchall(): x_id, y_id, count = row values[y_id, x_id] = count return make_json_response(values.tolist())
import jnius_config import os import inspect from itertools import chain import numpy as np global nd4j nd4j = None global INDArray INDArray = None global transforms transforms = None indexing = None DataBuffer = None system = None Integer = None Float = None Double = None nd4j_index = None serde = None native_ops_holder = None native_ops = None shape = None serde = None DoublePointer = None FloatPointer = None IntPointer = None DataTypeUtil = None MemoryManager = None memory_manager = None methods = None global SameDiff SameDiff = None def _expand_directory(path): if not path.endswith('*'): return [path, ] else: # wild card expansions like /somedir/* (we do this because of jnius being unable to handle class path expansion clean_path = path.rstrip('*') return [os.path.join(clean_path, y) for y in os.listdir(clean_path)] def get_classpath(base_path): """ Get the classpath of based on the given folder. :param base_path: the directory to get the classpath for :return: """ return ':'.join(chain.from_iterable(map(lambda x: _expand_directory(x), base_path.split(':')))) def init(): jnius_config.add_options('-Dorg.bytedeco.javacpp.nopointergc=true') try: jnius_classpath = os.environ['JUMPY_CLASS_PATH'] except KeyError: raise Exception('Please specify a jar or directory for JUMPY_CLASS_PATH in the environment') jnius_config.set_classpath(get_classpath(jnius_classpath)) # after jnius is initialized with proper class path *then* we setup nd4j from jnius import autoclass global nd4j nd4j = autoclass('org.nd4j.linalg.factory.Nd4j') global INDArray INDArray = autoclass('org.nd4j.linalg.api.ndarray.INDArray') global transforms transforms = autoclass('org.nd4j.linalg.ops.transforms.Transforms') global indexing indexing = autoclass('org.nd4j.linalg.indexing.NDArrayIndex') global DataBuffer DataBuffer = autoclass('org.nd4j.linalg.api.buffer.DataBuffer') global system system = autoclass('java.lang.System') system.out.println(system.getProperty('org.bytedeco.javacpp.nopointergc')) global Integer Integer = autoclass('java.lang.Integer') global Float Float = autoclass('java.lang.Float') global Double Double = autoclass('java.lang.Double') global nd4j_index nd4j_index = autoclass('org.nd4j.linalg.indexing.NDArrayIndex') global shape shape = autoclass('org.nd4j.linalg.api.shape.Shape') global serde serde = autoclass('org.nd4j.serde.binary.BinarySerde') global native_ops_holder native_ops_holder = autoclass('org.nd4j.nativeblas.NativeOpsHolder') global native_ops native_ops = native_ops_holder.getInstance().getDeviceNativeOps() global DoublePointer DoublePointer = autoclass('org.bytedeco.javacpp.DoublePointer') global FloatPointer FloatPointer = autoclass('org.bytedeco.javacpp.FloatPointer') global IntPointer IntPointer = autoclass('org.bytedeco.javacpp.IntPointer') global DataTypeUtil DataTypeUtil = autoclass('org.nd4j.linalg.api.buffer.util.DataTypeUtil') global MemoryManager MemoryManager = autoclass('org.nd4j.linalg.memory.MemoryManager') global memory_manager memory_manager = nd4j.getMemoryManager() global methods methods = inspect.getmembers(INDArray, predicate=inspect.ismethod) for name, method in methods: Nd4jArray.name = method methods = inspect.getmembers(DataBuffer, predicate=inspect.ismethod) for name, method in methods: Nd4jBuffer.name = method global SameDiff SameDiff = autoclass('org.nd4j.autodiff.samediff.SameDiff') def disable_gc(): memory_manager.togglePeriodicGc(False) def set_gc_interval(interval=5000): memory_manager.setAutoGcWindow(interval) def same_diff_create(): ''' Create a samediff instance. :return: ''' global SameDiff return SameDiff.create() def data_type(): """ Returns the data type name :return: """ return DataTypeUtil.getDTypeForName(DataTypeUtil.getDtypeFromContext()) def set_data_type(data_type): """ Set the data type for nd4j :param data_type: the data type to set one of: float double :return: """ data_type_type = DataTypeUtil.getDtypeFromContext(data_type) DataTypeUtil.setDTypeForContext(data_type_type) def dot(array1, array2): """ The equivalent of numpy's "dot" :param array1: the first Nd4jArray :param array2: the second Nd4jArray :return: an nd4j array with the matrix multiplication result """ return Nd4jArray(array1.array.mmul(array2.array)) def _get_numpy_buffer_reference(np_arr): return np.asarray(np_arr, dtype=_numpy_datatype_from_nd4j_context()) def get_buffer_from_arr(np_arr): """ Create an nd4j data buffer from a numpy array's pointer :param np_arr: The input numpy array :return: and nd4j data buffer based on the numpy array's pointer """ pointer_address = get_array_address(np_arr) pointer = native_ops.pointerForAddress(pointer_address) size = np_arr.size if np_arr.dtype == 'float64': as_double = DoublePointer(pointer) return Nd4jBuffer(nd4j.createBuffer(as_double, size)) elif np_arr.dtype == 'float32': as_float = FloatPointer(pointer) return Nd4jBuffer(nd4j.createBuffer(as_float, size)) elif np_arr.dtype == 'int64': as_int = IntPointer(pointer) return Nd4jBuffer(data_buffer=nd4j.createBuffer(as_int, size), numpy_pointer=_get_numpy_buffer_reference(np_arr)) def _to_number(number): """ Convert a number to a scalar ndarray :param number: :return: """ return nd4j.scalar(number) def get_array_address(np_arr): """ :param np_arr: The numpy array to get the pointer address for :return: the pointer address as a long """ pointer, read_only_flag = np_arr.__array_interface__['data'] return pointer class Nd4jArray(object): """ A small wrapper around nd4j's ndarray in java. """ def __init__(self, nd4j_array=None, numpy_array=None): self.array = nd4j_array self.numpy_array = numpy_array def __add__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(self.array.add(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.add(_to_number(other)), numpy_array=self.numpy_array) def __sub__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.sub(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.sub(_to_number(other)), numpy_array=self.numpy_array) def __div__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.div(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.div(_to_number(other)), numpy_array=self.numpy_array) def __mul__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.mul(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.mul(_to_number(other)), numpy_array=self.numpy_array) def __gt__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.gt(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.gt(_to_number(other)), numpy_array=self.numpy_array) def __lt__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.lt(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.lt(_to_number(other)), numpy_array=self.numpy_array) def __deepcopy__(self, memodict={}): return Nd4jArray(nd4j_array=self.array.dup()) def __eq__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.add(other.array)) # scalar return Nd4jArray(nd4j_array=self.array.add(_to_number(other)), numpy_array=self.numpy_array) def __imul__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.muli(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.muli(_to_number(other)), numpy_array=self.numpy_array) def __isub__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.subi(other.array), numpy_array=self.numpy_array) # scalar return Nd4jArray(nd4j_array=self.array.subi(_to_number(other)), numpy_array=self.numpy_array) def __iadd__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.addi(other.array), numpy_array=self.numpy_array) # scalar def __idiv__(self, other): if isinstance(other, Nd4jArray): return Nd4jArray(nd4j_array=self.array.divi(other.array)) # scalar return Nd4jArray(nd4j_array=self.array.divi(_to_number(other)), numpy_array=self.numpy_array) def __getitem__(self, item): if isinstance(item, int): return self.array.getDouble(item) else: raise AssertionError("Only int types are supported for indexing right now") def __setitem__(self, key, value): if isinstance(key, int): self.array.putScalar(key, value) else: raise AssertionError("Only int types are supported for indexing right now") def rank(self): return self.array.rank() def length(self): return self.array.length() def shape(self): return self.array.shape() def stride(self): return self.array.stride() def data(self): return self.array.data() class Nd4jBuffer(object): def __init__(self, data_buffer=None, numpy_pointer=None): self.data_buffer = data_buffer self.numpy_pointer = numpy_pointer def __getitem__(self, item): if isinstance(item, int): return self.data_buffer.getDouble(item) else: raise AssertionError("Please ensure that item is of type int") def __setitem__(self, key, value): if isinstance(key, int): self.data_buffer.put(key, value) else: raise AssertionError("Please ensure that item is of type int") def length(self): return self.data_buffer.length() def element_size(self): return self.data_buffer.getElementSize() def _nd4j_datatype_from_np(np_datatype_name): """ :param np_datatype_name: a numpy data type name. 1 of: float64 float32 float16 :return: the equivalent nd4j data type name (double,float,half) """ if np_datatype_name == 'float64': return 'double' elif np_datatype_name == 'float32': return 'float' elif np_datatype_name == 'float16': return 'half' return None def _nd4j_datatype_from_np_array(array): """ Gets the equivalent nd4j datatype from the passed in numpy array :param array: :return: """ return _nd4j_datatype_from_np(array.dtype.name) def _numpy_datatype_from_nd4j_context(): """ Returns the appropriate numpy data type given the current nd4j context for data type :return: """ nd4j_datatype = data_type() if nd4j_datatype == 'double': return np.float64 elif nd4j_datatype == 'float': return np.float32 elif nd4j_datatype == 'half': return np.float16 def _align_np_datatype_for_array(array): """ Ensure the given numpy array matches the current nd4j data type :param array: :return: """ return np.asarray(array, _numpy_datatype_from_nd4j_context()) def _assert_data_type_length(data_buffer): data_type = _numpy_datatype_from_nd4j_context() element_size = data_buffer.getElementSize() if data_type == np.float32 and element_size != 4: raise AssertionError("Data Type from nd4j is float. Data buffer size is not 4") elif data_type == np.float64 and element_size != 8: raise AssertionError("Data Type from nd4j is double. Data buffer size is not 8") elif data_type == np.int and element_size != 4: raise AssertionError("Data Type from nd4j is int. Data buffer size is not 4") def from_np(np_arr): """ Create an nd4j ndarray from a numpy array (passing the numpy pointer buffer by reference) :param np_arr: a numpy array :return: """ np_arr = _align_np_datatype_for_array(np_arr) # nd4j doesn't have 1d arrays. Convert to a row vector if np_arr.ndim == 1: np_arr = np.reshape(np_arr, (1, np_arr.size)) data_buffer = get_buffer_from_arr(np_arr).data_buffer _assert_data_type_length(data_buffer) # note here we divide the strides by 8 for numpy # the reason we do this is because numpy's strides are based on bytes rather than words strides = map(lambda x: x / data_buffer.getElementSize(), np_arr.strides) arr_shape = np_arr.shape return Nd4jArray(nd4j_array=nd4j.create(data_buffer, arr_shape, strides, 0)) if __name__ == "__main__": init()
class Solution: # @return an integer def uniquePathsWithObstacles(self, obstacleGrid): y = len(obstacleGrid) x = len(obstacleGrid[0]) pathcount = [[0 for i in xrange(x)] for j in xrange(y)] obstacleFound = False for x_ in range(x): if (obstacleGrid[0][x_]): obstacleFound = True if (not obstacleFound): pathcount[0][x_] = 1 for x_ in xrange(x): for y_ in range(1, y): if y_ == 0: top = 0 elif obstacleGrid[y_ - 1][x_] == 1: top = 0 else: top = pathcount[y_ - 1][x_] if x_ == 0: left = 0 elif obstacleGrid[y_][x_ - 1] == 1: left = 0 else: left = pathcount[y_][x_ - 1] pathcount[y_][x_] = top + left if (obstacleGrid[y_][x_]): pathcount[y_][x_] = 0 return pathcount[y - 1][x - 1]
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2021 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Mark Koennecke <[email protected]> # # ***************************************************************************** import copy from nicos.nexus.elements import ConstDataset, DetectorDataset, \ DeviceAttribute, DeviceDataset, ImageDataset, NexusSampleEnv, \ NXAttribute, NXLink, NXScanLink, NXTime from nicos.nexus.nexussink import NexusTemplateProvider from nicos_sinq.nexus.specialelements import ArrayParam, CellArray, FixedArray class ZEBRATemplateProvider(NexusTemplateProvider): _zebra_default = {"NeXus_Version": "4.3.0", "instrument": "ZEBRA", "owner": DeviceAttribute('ZEBRA', 'responsible'), "entry1:NXentry": {"title": DeviceDataset('Exp', 'title'), "proposal_title": DeviceDataset('Exp', 'title'), "proposal_id": DeviceDataset('Exp', 'proposal'), "start_time": NXTime(), "zebra_mode": DeviceDataset('zebramode', dtype='string'), "end_time": NXTime(), "user:NXuser": { "name": DeviceDataset('Exp', 'users'), "email": DeviceDataset('Exp', 'localcontact'), }, "control:NXmonitor": { "mode": DetectorDataset('mode', "string"), "Monitor": DetectorDataset( 'monitorval', 'float32', units=NXAttribute('counts', 'string')), "preset": DetectorDataset('preset', 'float32'), "time": DetectorDataset( 'elapsedtime', 'float32', units=NXAttribute('seconds', 'string')), }, "proton_beam:NXmonitor": { "data": DetectorDataset( 'protoncurr', 'int32', units=NXAttribute( 'counts', 'string'))}, "beam_monitor:NXmonitor": { "data": DetectorDataset( 'monitorval', 'int32', units=NXAttribute('counts', 'string'))}, "area_detector2:NXdata": { "data": NXLink( '/entry1/ZEBRA/' 'area_detector2/data'), 'None': NXScanLink(), }, } } _zebra_instrument = { "SINQ:NXsource": { 'name': ConstDataset('SINQ @ PSI', 'string'), 'type': ConstDataset('Continuous flux spallation source', 'string') }, 'collimator:NXcollimator': { 'cex1': DeviceDataset('cex1', units=NXAttribute('degree', 'string')), 'cex2': DeviceDataset('cex2', units=NXAttribute('degree', 'string')), }, 'monochromator:NXmonochromator': { 'description': ConstDataset('PG monochromator', 'string'), 'wavelength': DeviceDataset('wavelength'), 'mexz': DeviceDataset('mexz'), 'mcvl': DeviceDataset('mcvl'), 'mgvl': DeviceDataset('mgvl'), 'mgvu': DeviceDataset('mgvu'), 'theta': DeviceDataset('moml'), 'two_theta': ConstDataset(40.2, 'float', unit=NXAttribute('degree', 'string')), }, 'detector:NXslit': { 'top': DeviceDataset('s2vt'), 'bottom': DeviceDataset('s2vb'), 'left': DeviceDataset('s2hl'), 'right': DeviceDataset('s2hr'), 'y_gap': DeviceDataset('slit2_opening'), 'x_gap': DeviceDataset('slit2_width'), }, 'pre_sample:NXslit': { 'top': DeviceDataset('s1vt'), 'bottom': DeviceDataset('s1vb'), 'left': DeviceDataset('s1hl'), 'right': DeviceDataset('s1hr'), 'y_gap': DeviceDataset('slit1_opening'), 'x_gap': DeviceDataset('slit1_width'), }, 'nose:NXattenuator': { 'horizontal_position': DeviceDataset('snhm'), 'vertical_position': DeviceDataset('snvm'), }, 'area_detector2:NXdetector': { 'name': ConstDataset('EMBL-PSD', 'string'), 'distance': DeviceDataset('detdist'), 'polar_angle': DeviceDataset('stt'), 'tilt_angle': DeviceDataset('nu'), 'x_pixel_offset': ConstDataset(128, 'float'), 'y_pixel_offset': ConstDataset(64, 'float'), 'x_pixel_size': ConstDataset(0.734, 'float', units=NXAttribute('mm', 'string')), 'y_pixel_size': ConstDataset(1.4809, 'float', units=NXAttribute('mm', 'string')), 'data': ImageDataset(0, 0, signal=NXAttribute(1, 'int32')), 'x': FixedArray(-95, 0.734, 256), 'y': FixedArray(-95, 1.4809, 128), }, } _zebra_sample = { 'UB': ArrayParam('Sample', 'ubmatrix', 'float32'), 'cell': CellArray(), 'chi': DeviceDataset('sch'), 'phi': DeviceDataset('sph'), 'rotation_angle': DeviceDataset('som'), 'h': DeviceDataset('h'), 'k': DeviceDataset('k'), 'l': DeviceDataset('l'), 'name': DeviceDataset('Sample', 'samplename'), "hugo": NexusSampleEnv(), } def getTemplate(self): zebra_template = copy.deepcopy(self._zebra_default) zebra_template['entry1:NXentry']['ZEBRA:NXinstrument'] = \ copy.deepcopy(self._zebra_instrument) zebra_template['entry1:NXentry']['sample:NXsample'] = \ copy.deepcopy(self._zebra_sample) return zebra_template
# -------------- # Importing header files import numpy as np # Path of the file has been stored in variable called 'path' #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Code starts here data = np.genfromtxt(path,delimiter=",",skip_header=1) print(data) census = np.concatenate((data, new_record)) print(census) # -------------- #Code starts here age = np.array(census[:,0]) print(age) max_age = age.max() print("The maximum age observed is:",max_age) min_age = age.min() print("The minimum age observed is:",min_age) age_mean = age.mean() print("The mean age observed is:",age_mean) age_std = np.std(age) print(age_std) # -------------- #Code starts here import numpy as np race = np.array(census[:,2]) race_0 = np.array(census[race==0]) race_1 = np.array(census[race==1]) race_2 = np.array(census[race==2]) race_3 = np.array(census[race==3]) race_4 = np.array(census[race==4]) len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) minlength = min(len_0,len_1,len_2,len_3,len_4) minority_race = 3 # -------------- #Code starts here import numpy as np age = np.array(census[:,0]) senior_citizens = np.array(census[age>60]) working_hours = senior_citizens[:,6] print(working_hours) working_hours_sum = working_hours.sum() print(working_hours_sum) senior_citizens_len = len(senior_citizens) avg_working_hours = working_hours_sum/senior_citizens_len print(avg_working_hours) # -------------- #Code starts here import numpy as np educationnum = np.array(census[:,1]) high = np.array(census[educationnum>10]) low = np.array(census[educationnum<=10]) income = np.array(census[:,7]) high_income = np.array(high[:,7]) low_income = np.array(low[:,7]) avg_pay_high = high_income.mean() print(avg_pay_high) avg_pay_low = low_income.mean() print(avg_pay_low)
# -*- coding: utf-8 -*- """ Created on Sun Jun 28 18:05:37 2020 @author: Karan """ import numpy as np import matplotlib.pyplot as pyplot import pandas as pd dataset=pd.read_csv('train.csv') #Filling null values null=dataset.isnull().sum(axis=0) null2={} for i in range(len(list(null.index))): if list(null)[i]>0: null2[str(list(null.index)[i])]=list(null)[i] keys=list(null2.keys()) dataset2=dataset[keys] dataset2.dtypes mode_fill = ['MasVnrArea','LotFrontage','GarageYrBlt','Electrical'] None_fill= ['MasVnrType','Alley','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','BsmtQual', 'FireplaceQu','Fence','GarageCond','GarageFinish','GarageQual','GarageType','PoolQC','MiscFeature'] for i in mode_fill: mode=dataset[i].mode()[0] dataset[i]=dataset[i].fillna(mode) for i in None_fill: dataset[i]=dataset[i].fillna('None') print(dataset.isnull().sum().sum()) X=dataset.iloc[:,:-1] X=X.iloc[:,1:] y=dataset.iloc[:,-1].values y=y.reshape(-1,1) #Creating Dummy variables for categorical variables obj=[] for i in X.columns: if str(X[i].dtype)=='object': obj.append(i) X=pd.get_dummies(X,columns=obj,drop_first=True) X=X.values #Scaling values from sklearn.preprocessing import StandardScaler sc_x=StandardScaler() sc_y=StandardScaler() X=sc_x.fit_transform(X) y=sc_y.fit_transform(y) #Train-test split from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2) #Linear Regression from sklearn.linear_model import LinearRegression regressor=LinearRegression() regressor.fit(X_train,y_train) y_pred=regressor.predict(X_test) n = len(y_pred) rmse_lr = np.linalg.norm(y_pred - y_test) / np.sqrt(n) #Random Forest Regression from sklearn.ensemble import RandomForestRegressor regressor2=RandomForestRegressor(n_estimators=500) regressor2.fit(X_train,y_train) y_pred2=regressor2.predict(X_test) n = len(y_pred) rmse_rf = np.linalg.norm(y_pred2 - y_test) / np.sqrt(n) #Decision Tree from sklearn.tree import DecisionTreeRegressor regressor3=DecisionTreeRegressor() regressor3.fit(X_train,y_train) y_pred3=regressor3.predict(X_test) n = len(y_pred) rmse_dt = np.linalg.norm(y_pred3 - y_test) / np.sqrt(n) #Ensemble Methods #1. AdaBoost Regressor from sklearn.ensemble import AdaBoostRegressor regressor4=AdaBoostRegressor(regressor3) regressor4.fit(X_train,y_train) y_pred4=regressor4.predict(X_test) n = len(y_pred) rmse_abr = np.linalg.norm(y_pred4 - y_test) / np.sqrt(n) #2. Gradient Boosting Regressor from sklearn.ensemble import GradientBoostingRegressor regressor5=GradientBoostingRegressor(learning_rate=0.001,n_estimators=400) regressor5.fit(X_train,y_train) y_pred5=regressor5.predict(X_test) n = len(y_pred5) rmse_gb = np.linalg.norm(y_pred5 - y_test) / np.sqrt(n) #Pricipal Component Analysis to reduce dimensionality in order to efficiently apply SVM from sklearn.decomposition import PCA #Calculating ratio of variance covered for 2 to 150 number of features explained_variance=dict() for i in range(2,150): pca=PCA(n_components=i) X_train_=pca.fit_transform(X_train) X_test_=pca.transform(X_test) explained_variance[i]=pca.explained_variance_ratio_.sum() pca=PCA(n_components=100) X_train_=pca.fit_transform(X_train) X_test_=pca.transform(X_test) #Support Vector Regressor from sklearn.svm import SVR regressor=SVR(kernel='rbf',C=0.5) regressor.fit(X_train_,y_train) y_pred6=regressor.predict(X_test_) n = len(y_pred5) rmse_svr = np.linalg.norm(y_pred6 - y_test) / np.sqrt(n) #Unscale the predictions to acquire actual predicted house prices y_actual=sc_y.inverse_transform(y_pred5)
# mailstat.analyze # Analysis module for the email analysis project # # Author: Benjamin Bengfort <[email protected]> # Created: Sun Dec 29 23:45:58 2013 -0600 # # Copyright (C) 2013 Bengfort.com # For license information, see LICENSE.txt # # ID: __init__.py [] [email protected] $ """ Analysis module for the email analysis project """ ########################################################################## ## Imports ########################################################################## from copy import deepcopy from mailstat.metric import * from mailstat.reader import * from mailstat.exceptions import * ########################################################################## ## Module Constants ########################################################################## METRICS = [DomainDistribution,] ########################################################################## ## Analysis Harness ########################################################################## class Analysis(object): """ The analysis and data processing harness """ def __init__(self, csvfile, **kwargs): self.csvfile = csvfile self.metrics = kwargs.get('metrics', METRICS) @property def metrics(self): return self._metrics @metrics.setter def metrics(self, metrics): self._metrics = [] for metric in metrics: self._metrics.append(metric()) @property def dataset(self): if not hasattr(self, '_dataset'): self._dataset = M3Reader(self.csvfile) return self._dataset def before_analysis(self): for metric in self.metrics: metric.preprocess() def after_analysis(self): for metric in self.metrics: metric.postprocess() def analyze(self): self.before_analysis() for row in self.dataset: for metric in self.metrics: metric.process(deepcopy(row)) self.after_analysis() def serialize(self): """ TODO: Check analysis state """ return dict((m.get_name(), m.get_value()) for m in self.metrics)
import numpy as np import os import xml.etree.ElementTree as ET import pickle import json import os from os.path import join, dirname def parse_voc_annotation(ann_dir, img_dir, cache_name, labels=[]): if os.path.exists(cache_name): with open(cache_name, 'rb') as handle: cache = pickle.load(handle) all_insts, seen_labels = cache['all_insts'], cache['seen_labels'] else: all_insts = [] seen_labels = {} for ann in sorted(os.listdir(ann_dir)): img = {'object':[]} if ann.endswith('.xml'): print('annotation in xml') try: tree = ET.parse(ann_dir + ann) except Exception as e: print(e) print('Ignore this bad annotation: ' + ann_dir + ann) continue for elem in tree.iter(): if 'filename' in elem.tag: img['filename'] = img_dir + elem.text if 'width' in elem.tag: img['width'] = int(elem.text) if 'height' in elem.tag: img['height'] = int(elem.text) if 'object' in elem.tag or 'part' in elem.tag: obj = {} for attr in list(elem): if 'name' in attr.tag: obj['name'] = attr.text if obj['name'] in seen_labels: seen_labels[obj['name']] += 1 else: seen_labels[obj['name']] = 1 if len(labels) > 0 and obj['name'] not in labels: break else: img['object'] += [obj] if 'bndbox' in attr.tag: for dim in list(attr): if 'xmin' in dim.tag: obj['xmin'] = int(round(float(dim.text))) if 'ymin' in dim.tag: obj['ymin'] = int(round(float(dim.text))) if 'xmax' in dim.tag: obj['xmax'] = int(round(float(dim.text))) if 'ymax' in dim.tag: obj['ymax'] = int(round(float(dim.text))) elif ann.endswith('.json'): print('annotation in json') annot_path = join(ann_dir, ann) with open(annot_path) as f: annot = json.load(f) img = {} #parent_dir = dirname(ann_dir) filename = join(img_dir, annot['filename']) print('filename', filename) #img['filename'] = annot['filename'] img['filename'] = filename img['width'] = annot['size']['width'] img['height'] = annot['size']['height'] img['object'] = [] for item in annot['object']: if item['name'] in seen_labels: seen_labels[item['name']] += 1 else: seen_labels[item['name']] = 1 if len(labels) > 0 and item['name'] not in labels: break obj = {} obj['name'] = item['name'] obj['xmin'] = item['bndbox']['xmin'] obj['xmax'] = item['bndbox']['xmax'] obj['ymin'] = item['bndbox']['ymin'] obj['ymax'] = item['bndbox']['ymax'] img['object'].append(obj) if len(img['object']) > 0: all_insts += [img] cache = {'all_insts': all_insts, 'seen_labels': seen_labels} with open(cache_name, 'wb') as handle: pickle.dump(cache, handle, protocol=pickle.HIGHEST_PROTOCOL) return all_insts, seen_labels
""" This is the Django template system. How it works: The Lexer.tokenize() method converts a template string (i.e., a string containing markup with custom template tags) to tokens, which can be either plain text (TokenType.TEXT), variables (TokenType.VAR), or block statements (TokenType.BLOCK). The Parser() class takes a list of tokens in its constructor, and its parse() method returns a compiled template -- which is, under the hood, a list of Node objects. Each Node is responsible for creating some sort of output -- e.g. simple text (TextNode), variable values in a given context (VariableNode), results of basic logic (IfNode), results of looping (ForNode), or anything else. The core Node types are TextNode, VariableNode, IfNode and ForNode, but plugin modules can define their own custom node types. Each Node has a render() method, which takes a Context and returns a string of the rendered node. For example, the render() method of a Variable Node returns the variable's value as a string. The render() method of a ForNode returns the rendered output of whatever was inside the loop, recursively. The Template class is a convenient wrapper that takes care of template compilation and rendering. """
""" AUTOR: Juanjo FECHA DE CREACIÓN: 17/01/2020 """
import datetime import numpy as np from typing import Union def snapshot_maker(param_dict, dir:str): # record <.pth> model infomation snapshot. with open(dir, 'w') as file: for key, value in param_dict.items(): file.write(key + ' : ' + str(value) + '\n') time_now = datetime.datetime.now() file.write('record time : ' + time_now.strftime('%Y-%m-%d %H:%M:%S')) def write_line(dict_in:dict, dir:str): # record loss in real time. import os import torch os.makedirs(os.path.dirname(dir), exist_ok=True) with open(dir, 'a') as file: for key, value in dict_in.items(): if isinstance(key, torch.Tensor): key = float(key) if isinstance(value, torch.Tensor): value = float(value) if isinstance(key, float): key = round(key, 4) if isinstance(value, float): value = round(value, 4) file.write(str(key) + ' : ' + str(value) + '\n') def cuda2np(tensor) -> np.ndarray: # cuda tensor -> cpu numpy arr = tensor.cpu() arr = arr.detach().numpy() return arr def tensorview(Intensor, batch_idx): # show target tensor arr = cuda2np(Intensor) print(arr[batch_idx]) def imgstore(Intensor, nums:int, save_dir:str, epoch:Union[int, str], filename='', cls='pred'): # function for saving prediction image. import os import cv2 img_np = cuda2np(Intensor) img_np = np.transpose(img_np, (0, 2, 3, 1)) os.makedirs(save_dir, exist_ok=True) img_list = [] for i, img in enumerate(img_np): if i == nums: break img_list.append(img) if isinstance(filename, str): # stores only one image, batch == 1 if isinstance(epoch, str): cv2.imwrite(os.path.join(save_dir, cls + '_' + epoch + '_[' + filename + '].png'), img_list[0]) else: cv2.imwrite(os.path.join(save_dir, cls+'_'+'epoch_'+str(epoch)+'_['+filename+'].png'), img_list[0]) elif isinstance(filename, list): # stores <nums:int> images, batch > 1 for idx, unit in enumerate(img_list): if isinstance(epoch, str): cv2.imwrite(os.path.join(save_dir, cls + '_' + epoch + '_[' + filename[idx] + '].png'), unit) print(f"{os.path.join(save_dir, cls+'_'+epoch+'_['+filename[idx]+'].png')} saved.") else: cv2.imwrite(os.path.join(save_dir, cls+'_'+'epoch_'+str(epoch)+'_['+filename[idx]+'].png'), unit)
import sys, os from os.path import abspath, join, isdir, isfile, exists, dirname import logging from .tree import AstProvider from .module import ModuleProvider, PackageResolver from .watcher import DummyMonitor from .calls import CallDB class Project(object): def __init__(self, root, config=None, monitor=None): self.root = root self.config = config or {} self._refresh_paths() self.monitor = monitor or DummyMonitor() self.ast_provider = AstProvider() self.module_providers = { 'default':ModuleProvider() } self.package_resolver = PackageResolver() self.docstring_processors = [] self.registered_hooks = set() for h in self.config.get('hooks', []): self.register_hook(h) self.calldb = CallDB(self) def _refresh_paths(self): self.sources = [] self.paths = [] if 'sources' in self.config: for p in self.config['sources']: p = join(abspath(self.root), p) self.paths.append(p) self.sources.append(p) else: self.paths.append(abspath(self.root)) self.sources.append(abspath(self.root)) for p in self.config.get('libs', []): self.paths.append(p) self.paths.extend(sys.path) def get_module(self, name, filename=None): assert name ctx, sep, name = name.partition(':') if not sep: ctx, name = 'default', ctx if filename: return self.module_providers[ctx].get(self, name, filename) else: return self.module_providers[ctx].get(self, name) def get_ast(self, module): return self.ast_provider.get(module) def get_possible_imports(self, start, filename=None): result = set() if not start: paths = self.paths result.update(r for r, m in sys.modules.items() if m) else: m = self.get_module(start, filename) sub_package_prefix = m.module.__name__ + '.' for name, module in sys.modules.iteritems(): if module and name.startswith(sub_package_prefix): result.add(name[len(sub_package_prefix):]) try: paths = m.module.__path__ except AttributeError: paths = [] for path in paths: if not exists(path) or not isdir(path): continue path = abspath(path) for name in os.listdir(path): if name == '__init__.py': continue filename = join(path, name) if isdir(filename): if isfile(join(filename, '__init__.py')): result.add(name) else: if any(map(name.endswith, ('.py', '.so'))): result.add(name.rpartition('.')[0]) return result def register_hook(self, name): if name not in self.registered_hooks: try: __import__(name) sys.modules[name].init(self) except: logging.getLogger(__name__).exception('[%s] hook register failed' % name) else: self.registered_hooks.add(name) def add_docstring_processor(self, processor): self.docstring_processors.append(processor) def add_module_provider(self, ctx, provider): self.module_providers[ctx] = provider def add_override_processor(self, override): self.module_providers['default'].add_override(override) def process_docstring(self, docstring, obj): for p in self.docstring_processors: result = p(docstring, obj) if result is not None: return result return obj def get_filename(self, name, rel=None): if name.startswith('/'): return join(self.root, name[1:]) return join(dirname(rel), name)
# This is a sample Python script. # Press Shift+F10 to execute it or replace it with your code. # Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings. import datetime import os import random import argparse import sys import numpy as np import math from os import listdir from os.path import isfile, join class Dataset: def __init__(self, **kwargs): self.dic = {} self.distance = [] self.pair={} if "text" in kwargs: for line in kwargs["text"].split("\n"): tokens=line.split( ) if len(tokens)>=2: if tokens[1] in self.dic: self.dic[tokens[1]].append(line) else: self.dic[tokens[1]] = [line] for d in self.dic: self.pair[d]=len(self.dic[d]) def output(data,address): for d in data.dic: index=d.split(":") save_address = address + "/" if not os.path.exists(save_address): os.makedirs(save_address) name=index[0]+index[1]+".txt" log = open(save_address+name, "w") print("write:"+save_address+name) for line in data.dic[d]: log.write(line) log.write("\n") log.close() save_address = address + "/" if not os.path.exists(save_address): os.makedirs(save_address) save_address = save_address + "info.txt" print("write:" + save_address ) log = open(save_address, "w") for d in data.pair: log.write(d+" "+str(data.pair[d])+"\n") log.close() save_address = address + "/" if not os.path.exists(save_address): os.makedirs(save_address) save_address = save_address + "info_sort.txt" print("write:" + save_address) log = open(save_address, "w") pair_sort=sorted(data.pair.items(), key=lambda kv: (kv[1], kv[0])) for d in pair_sort: print("----------------------") print(d) log.write(d[0] + " " + str(d[1]) + "\n") log.close() def readData(str): f = open(str, "r") instance = text = f.read() data=Dataset(text=instance) f.close() return data def operate(args): data=readData(args.read) output(data,args.save) # Press the green button in the gutter to run the script. if __name__ == '__main__': argparser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) argparser.add_argument('-read', default='Data/original_data.txt',type=str) argparser.add_argument('-save', help="save_result", default='Data',type=str) args = argparser.parse_args() operate(args) # See PyCharm help at https://www.jetbrains.com/help/pycharm/
from django.shortcuts import render from django.db import transaction, IntegrityError import pycountry from apiv1.tasks import fetch_mfi_client from haedrian.forms import NewUserForm, EmailUserForm from haedrian.models import Wallet, UserData def index(request): return render(request, 'index.html') @transaction.atomic def _create_account(user_data): """ API friendly INTERNAL USE ONLY account registration end point :param user_data - Dict that contains all the fields that are expected for the user to fill out. Required keys in the dict are ["username", "email", "password1", "password2", "phone", "country"] Optional fields are ['organization', 'org_id'] :returns True if the account creation was successful """ data_form = NewUserForm(user_data) user_form = EmailUserForm(user_data) if user_form.is_valid() and data_form.is_valid(): django_user = user_form.save(commit=False) django_user.first_name = user_data.get('first_name', data_form.first_name) django_user.last_name = user_data.get('last_name', data_form.last_name) django_user.save() haedrian_user = data_form.save(commit=False) haedrian_user.user = django_user haedrian_user.credit_score = 0 _country = pycountry.countries.get(alpha3=haedrian_user.country.alpha3) haedrian_user.default_currency = pycountry.currencies.get(numeric=_country.numeric).letter # TODO: fix what type of wallets get created rather than just all coins_ph wallet = Wallet(user=django_user, type=Wallet.COINS_PH) wallet.save() try: haedrian_user.save() except IntegrityError as e: return {'success': False, 'error': e.message} # TODO: send verification email or something return {'success': True, 'data_form': data_form, 'user_form': user_form} else: # user has an account created by an external app so update instead of create user = UserData.objects.filter(org_id=user_data['org_id']) if len(user) == 1: u = user[0] # only update the user account if the person has a placeholder name if u.user.username.startswith('placeholder') and len(u.user.username) == (len("placeholder") + 10): u.user.username = user_form.cleaned_data['username'] u.user.set_password(user_form.cleaned_data['password1']) u.user.email = user_form.cleaned_data['email'] u.user.save() u.phone = data_form.cleaned_data['phone'] u.country = data_form.cleaned_data['country'] u.save() return {'success': True, 'data_form': data_form, 'user_form': user_form} error = 'Signup: {} - {}'.format(user_form.errors, data_form.errors['__all__'].as_text()) return { 'error': error, 'success': False } from django.contrib.auth import views def login(request, *args, **kwargs): if request.method == 'POST': if not request.POST.get('remember_me', None): request.session.set_expiry(0) return views.login(request, *args, **kwargs)
# import osm2gmns as og # net = og.getNetFromOSMFile('map.osm', network_type=('railway', 'auto', 'bike', 'walk'), POIs=True, default_lanes=True,default_speed=True) # og.connectPOIWithNet(net) # og.generateNodeActivityInfo(net) # og.outputNetToCSV(net) import grid2demand_0525a as gd import os os.chdir('./Norfolk_VA') "Step 1: Read Input Network Data" gd.ReadNetworkFiles() # gd.ReadExternalPOI() # users can give external customized_poi.csv "Step 2: Partition Grid into cells" gd.PartitionGrid(number_of_x_blocks=None, number_of_y_blocks=None, cell_width=500, cell_height=500, external_poi=True) # users can customize number of grid cells or cell's width and height # Also partition grid for external poi "Step 3: Simplify the network for path4gmns" gd.SimplifyNet(link_type_set = {'primary', 'secondary'}, criteria=10) # users can customize 1) the link types in the simplified network # and 2) maximum number of poi nodes in each zone by area # we need to use the simplified network to define trip generation for boundary nodes gd.GeneratePOIConnector() # connect useful POI nodes to the network "Step 4: Get Trip Generation Rates of Each Land Use Type" gd.GetPoiTripRate() # users can customize poi_trip_rate.csv for each land use type "Step 5: Define Production/Attraction Value of Each Node According to POI Type and Activity Purpose" gd.GetNodeDemand(residential_generation=200, boundary_generation=5000) # users can customize the values of trip generation for residential nodes and boundary nodes "Step 6: Calculate Zone-to-zone Accessibility Matrix by Centroid-to-centroid Straight Distance" gd.ProduceAccessMatrix() "Step 7: Generate Time-dependent Demand and Agent by Purpose-mode" gd.GenerateDemand()
""" Scaling tools =================== """ import numpy def linearscaling(x, new_min, new_max, old_min=None, old_max=None, axis=None): """ Linearly rescale input from its original range to a new range. :param scalar-or-array x: scalar or arrays of scalars in ``[old_min, old_max]`` of shape ``(n, *shape)`` :param scalar-or-array new_min: scalar or array of shape ``(*shape,)`` :param scalar-or-array new_max: scalar or array of shape ``(*shape,)`` :param scalar-or-array? old_min: (``default=x.min()``) :param scalar-or-array? old_max: (``default=x.max()``) :param int? axis: (``default=None``) :return: scalar or array of scalars in ``[new_min, new_max]`` of shape ``(n, *shape)`` Example _______ >>> linearscaling(0, -10, 10, 0, 1) -10.0 When the original range is not passed on, it is considered to be the interval in which the input values are. >>> x = numpy.arange(0, 1, 0.1) >>> linearscaling(x, 0, 10) array([0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) >>> linearscaling(x, 0, 10, 0, 2) array([0. , 0.5, 1. , 1.5, 2. , 2.5, 3. , 3.5, 4. , 4.5]) Linear scaling can be performed on dfferent series of data having different ranges provided that the new minima/maxima are specfied for each serie. >>> new_min = numpy.array([0, 0]) >>> new_max = numpy.array([1, 100]) >>> old_min = numpy.array([0, 0]) >>> old_max = numpy.array([10, 10]) >>> x = numpy.arange(0, 1, 0.1).reshape(5, 2) >>> x array([[0. , 0.1], [0.2, 0.3], [0.4, 0.5], [0.6, 0.7], [0.8, 0.9]]) >>> linearscaling(x, new_min, new_max, old_min, old_max) array([[ 0.1, 10. ], [ 0.2, 20. ], [ 0.3, 30. ], [ 0.4, 40. ], [ 0.5, 50. ]]) """ if not isinstance(x, numpy.ndarray): # meant for scalars assert old_min is not None assert old_max is not None assert old_min <= x <= old_max else: if x.size == 0: return x # set default old to current if old_min is None: old_min = x.min(axis=axis) if old_max is None: old_max = x.max(axis=axis) if axis is not None: old_min = numpy.expand_dims(old_min, axis) if axis is not None: old_max = numpy.expand_dims(old_max, axis) tol = abs(x.max()) * 1e-06 # for float32 precision assert (old_min - tol <= x).all(axis=None) & (x <= old_max + tol).all(axis=None), ( x.min(), x.max(), old_max, old_min) # clipping because we allow a tolerance in the previous assert return numpy.clip( new_min + (x - old_min) * (new_max - new_min) / (old_max - old_min + 1e-32), a_min=numpy.minimum(new_min, new_max), # we support new_max < new_min, for inversions a_max=numpy.maximum(new_max, new_min) )
from Configs.app_config import app, db from flask import render_template, request, flash, redirect from Classes.Asset_Class import AssetsData from Classes.People_Class import People from Classes.Roles import Roles customer_name= AssetsData.query.filter_by(name='test').all() @app.route('/', methods=['GET', 'POST']) def welcome(): return render_template('welcome.html') @app.route('/All', methods=['GET', 'POST']) def all_assets(): All_Assets = AssetsData.query.all() return render_template('AllAsset.html', All_Assets=All_Assets) @app.route('/Add', methods=['GET', 'POST']) def add_assets(): if request.method == 'GET': return render_template('AddAsset.html') if request.form: print(request.form) if request.method == 'POST': if not request.form['id'] or not request.form['name'] or not request.form['location']: flash('Please enter all the fields', 'error') else: assets = AssetsData(request.form['id'], request.form['name'], request.form['location'], request.form['dimensions'], request.form['history_id'], request.form['status'],request.form['Actual_Value'], request.form['Selling_price'], request.form['Payment_mode'], request.form['Pay_duration'], request.form['Broker_charges']) db.session.add(assets) db.session.commit() flash('Record was successfully added') return redirect("All") return render_template('AddAsset.html') @app.route('/add_people', methods=['GET', 'POST']) def add_people(): if request.method == 'POST': if not request.form['id'] or not request.form['name']: flash('Please enter all the fields', 'error') else: people = People(request.form['id'], request.form['name'], request.form['role'], request.form['gender'], request.form['age'], request.form['mobile_num'], request.form['alternate_num'], request.form['address']) db.session.add(people) db.session.commit() flash('Record was successfully added') return render_template('AddPeople.html') @app.route('/update/<update_id>', methods=['GET', 'POST']) def update(update_id): update_asset = AssetsData.query.filter_by(id=update_id).first() if request.method == 'GET': return render_template('UpdateAsset.html', update_id=update_id, update_asset=update_asset) elif request.method == 'POST': if not request.form['id'] or not request.form['name']: flash('Name cannot be blank, please enter name', 'error') else: update_assets = AssetsData(request.form['id'], request.form['name'], request.form['location'], request.form['dimensions'], request.form['history_id'], request.form['status'],request.form['Actual_Value'], request.form['Selling_price'], request.form['Payment_mode'], request.form['Pay_duration'], request.form['Broker_charges']) update_asset.name = update_assets.name update_asset.location = update_assets.location update_asset.dimensions = update_assets.dimensions update_asset.status = update_assets.status update_asset.Actual_Value = update_assets.Actual_Value update_asset.Selling_price = update_assets.Selling_price update_asset.Payment_mode = update_assets.Payment_mode update_asset.Pay_duration = update_assets.Pay_duration update_asset.Broker_charges = update_assets.Broker_charges db.session.commit() flash('Record was successfully updated') return redirect("All") return render_template('UpdateAsset.html', update_id=update_id, update_asset=update_asset) @app.route('/delete/<delete_id>', methods=['GET', 'POST']) def delete(delete_id): delete_asset = AssetsData.query.filter_by(id=delete_id).first() db.session.delete(delete_asset) db.session.commit() flash('Record was successfully deleted') return redirect("All") if __name__ == '__main__': app.run(debug=True)
from django.conf.urls import patterns, url from website import views from website import feeds urlpatterns = patterns('', url(r'^$', views.index, name='index'), url(r'rss/$', feeds.UltimasPublicacoes()), url(r'^index/$', views.index, name='index'), url(r'^empresa/(?P<slug>\S+)$', views.empresa, name='empresa'), url(r'^depoimentos/$', views.depoimentos, name='depoimentos'), url(r'^depoimento/$', views.depoimento, name='depoimento'), url(r'^agradece-depoimento/$', views.agradece_depoimento, name='agradece-depoimento'), url(r'^matriculas/$', views.matriculas, name='matriculas'), url(r'^uniforme/$', views.uniforme, name='uniforme'), url(r'^determinacoes/$', views.determinacoes, name='determinacoes'), url(r'^material-escolar/$', views.material_escolar, name='material_escolar'), url(r'^cardapio/$', views.cardapio, name='cardapio'), url(r'^avisos-importantes/$', views.avisos_importantes, name='avisos_importantes'), url(r'^eventos/$', views.eventos, name='eventos'), url(r'^noticias/$', views.noticias, name='noticias'), url(r'^dicas/$', views.dicas, name='dicas'), url(r'^dica/(?P<slug>\S+)$', views.publicacao, name='dica'), url(r'^materiais-apoio/$', views.materiais_apoio, name='materiais_apoio'), url(r'^material_apoio/(?P<slug>\S+)$', views.material_apoio, name='material_apoio'), url(r'^responsabilidade-social/$', views.responsabilidade_social, name='responsabilidade_social'), url(r'^publicacao/(?P<slug>\S+)$', views.publicacao, name='publicacao'), url(r'^noticia/(?P<slug>\S+)$', views.publicacao, name='noticia'), url(r'^evento/(?P<slug>\S+)$', views.publicacao, name='evento'), url(r'^aviso/(?P<slug>\S+)$', views.publicacao, name='aviso'), url(r'^galeria-fotos/$', views.galerias_foto, name='galerias_foto'), url(r'^foto/(?P<slug>\S+)$', views.foto, name='foto'), url(r'^galeria-videos/$', views.galerias_video, name='galerias_video'), url(r'^video/(?P<slug>\S+)$', views.video, name='video'), url(r'^servicos/(?P<slug>\S+)$', views.servicos, name='servicos'), url(r'^downloads/(?P<slug>\S+)$', views.downloads, name='downloads'), url(r'^contato/(?P<slug>\S+)$', views.contato, name='contato'), )
import argparse import numpy as np import wandb import torch import csv from torch import nn from typing import List, Tuple from typing_extensions import Literal from perceptual_advex.utilities import add_dataset_model_arguments, \ get_dataset_model from perceptual_advex.distances import LPIPSDistance, LinfDistance, SSIM, \ L2Distance from perceptual_advex.models import FeatureModel from perceptual_advex.perceptual_attacks import get_lpips_model from perceptual_advex.perceptual_attacks import * from perceptual_advex.attacks import * from perceptual_advex.ci_attacks import * if __name__ == '__main__': parser = argparse.ArgumentParser( description='Distance measure analysis') add_dataset_model_arguments(parser, include_checkpoint=True) parser.add_argument('--batch_size', type=int, default=50) parser.add_argument('--num_batches', type=int, required=False, help='number of batches (default entire dataset)') parser.add_argument('--per_example', action='store_true', default=False, help='output per-example accuracy') parser.add_argument('--output', type=str, help='output CSV') parser.add_argument('attacks', metavar='attack', type=str, nargs='+', help='attack names') args = parser.parse_args() wandb.init(config=args) dist_models: List[Tuple[str, nn.Module]] = [ ('l2', L2Distance()), ('linf', LinfDistance()), ('ssim', SSIM()), ] dataset, model = get_dataset_model(args) if not isinstance(model, FeatureModel): raise TypeError('model must be a FeatureModel') dist_models.append(('lpips_self', LPIPSDistance(model))) alexnet_model_name: Literal['alexnet_cifar', 'alexnet'] if args.dataset.startswith('cifar'): alexnet_model_name = 'alexnet_cifar' else: alexnet_model_name = 'alexnet' dist_models.append(( 'lpips_alexnet', LPIPSDistance(get_lpips_model(alexnet_model_name, model)), )) for _, dist_model in dist_models: dist_model.eval() if torch.cuda.is_available(): dist_model.cuda() _, val_loader = dataset.make_loaders(1, args.batch_size, only_val=True) model.eval() if torch.cuda.is_available(): model.cuda() attack_names: List[str] = args.attacks with open(args.output, 'w') as out_file: out_csv = csv.writer(out_file) out_csv.writerow([ attack_name for attack_name in attack_names for _ in dist_models ]) out_csv.writerow([ dist_model_name for _ in attack_names for dist_model_name, _ in dist_models ]) for batch_index, (inputs, labels) in enumerate(val_loader): if ( args.num_batches is not None and batch_index >= args.num_batches ): break print(f'BATCH\t{batch_index:05d}') if torch.cuda.is_available(): inputs = inputs.cuda() labels = labels.cuda() batch_distances = np.zeros(( inputs.shape[0], len(attack_names) * len(dist_models), )) for attack_index, attack_name in enumerate(attack_names): print(f'ATTACK {attack_name}') attack = eval(attack_name) adv_inputs = attack(inputs, labels) with torch.no_grad(): for dist_model_index, (dist_name, dist_model) in \ enumerate(dist_models): batch_distances[ :, attack_index * len(dist_models) + dist_model_index ] = dist_model( inputs, adv_inputs, ).detach().cpu().numpy() wandb.log({f'val-{attack_name}-dist/{dist_name}': wandb.Histogram(dist_model( inputs, adv_inputs, ).detach().cpu().numpy())}) for row in batch_distances: out_csv.writerow(row.tolist())
#!/usr/bin/env python # coding: utf8 from __future__ import division import logging import numpy as np logger = logging.getLogger(__name__) def basic_test(ndvi, ndsi, swir2, tirs1): """Fundamental test to identify Potential Cloud Pixels (PCPs) Equation 1 (Zhu and Woodcock, 2012) Note: all input arrays must be the same shape Parameters ---------- ndvi: ndarray ndsi: ndarray swir2: ndarray Shortwave Infrared Band TOA reflectance Band 7 in Landsat 8, ~2.2 µm tirs1: ndarray Thermal band brightness temperature Band 10 in Landsat 8, ~11 µm units are degrees Celcius Output ------ ndarray: boolean """ # Thresholds th_ndsi = 0.8 # index th_ndvi = 0.8 # index th_tirs1 = 27.0 # degrees celcius th_swir2 = 0.03 # toa return ((swir2 > th_swir2) & (tirs1 < th_tirs1) & (ndsi < th_ndsi) & (ndvi < th_ndvi)) def whiteness_index(blue, green, red): """Index of "Whiteness" based on visible bands. Parameters ---------- blue: ndarray green: ndarray red: ndarray Output ------ ndarray: whiteness index """ mean_vis = (blue + green + red) / 3 blue_absdiff = np.absolute((blue - mean_vis) / mean_vis) green_absdiff = np.absolute((green - mean_vis) / mean_vis) red_absdiff = np.absolute((red - mean_vis) / mean_vis) return blue_absdiff + green_absdiff + red_absdiff def whiteness_test(blue, green, red): """Whiteness test Clouds appear white due to their "flat" reflectance in the visible bands Equation 2 (Zhu and Woodcock, 2012) Parameters ---------- blue: ndarray green: ndarray red: ndarray Output ------ ndarray: boolean """ whiteness_threshold = 0.7 return whiteness_index(blue, green, red) < whiteness_threshold def hot_test(blue, red): """Haze Optimized Transformation (HOT) test Equation 3 (Zhu and Woodcock, 2012) Based on the premise that the visible bands for most land surfaces are highly correlated, but the spectral response to haze and thin cloud is different between the blue and red wavelengths. Zhang et al. (2002) Parameters ---------- blue: ndarray red: ndarray Output ------ ndarray: boolean """ thres = 0.08 return blue - (0.5 * red) - thres > 0.0 def nirswir_test(nir, swir1): """Spectral test to exclude bright rock and desert see (Irish, 2000) Equation 4 (Zhu and Woodcock, 2012) Note that Zhu and Woodcock 2015 refer to this as the "B4B5" test due to the Landsat ETM+ band designations. In Landsat 8 OLI, these are bands 5 and 6. Parameters ---------- nir: ndarray swir1: ndarray Output ------ ndarray: boolean """ th_ratio = 0.75 return (nir / swir1) > th_ratio def cirrus_test(cirrus): """Cirrus TOA test, see (Zhu and Woodcock, 2015) The threshold is derived from (Wilson & Oreopoulos, 2013) Parameters ---------- cirrus: ndarray Output ------ ndarray: boolean """ th_cirrus = 0.01 return cirrus > th_cirrus def water_test(ndvi, nir): """Water or Land? Equation 5 (Zhu and Woodcock, 2012) Parameters ---------- ndvi: ndarray nir: ndarray Output ------ ndarray: boolean """ th_ndvi_A = 0.01 th_nir_A = 0.11 th_ndvi_B = 0.1 th_nir_B = 0.05 return (((ndvi < th_ndvi_A) & (nir < th_nir_A)) | ((ndvi < th_ndvi_B) & (nir < th_nir_B))) def potential_cloud_pixels(ndvi, ndsi, blue, green, red, nir, swir1, swir2, cirrus, tirs1): """Determine potential cloud pixels (PCPs) Combine basic spectral tests to get a premliminary cloud mask First pass, section 3.1.1 in Zhu and Woodcock 2012 Equation 6 (Zhu and Woodcock, 2012) Parameters ---------- ndvi: ndarray ndsi: ndarray blue: ndarray green: ndarray red: ndarray nir: ndarray swir1: ndarray swir2: ndarray cirrus: ndarray tirs1: ndarray Output ------ ndarray: potential cloud mask, boolean """ eq1 = basic_test(ndvi, ndsi, swir2, tirs1) eq2 = whiteness_test(blue, green, red) eq3 = hot_test(blue, red) eq4 = nirswir_test(nir, swir1) cir = cirrus_test(cirrus) return (eq1 & eq2 & eq3 & eq4) | cir def temp_water(is_water, swir2, tirs1): """Use water to mask tirs and find 82.5 pctile Equation 7 and 8 (Zhu and Woodcock, 2012) Parameters ---------- is_water: ndarray, boolean water mask, water is True, land is False swir2: ndarray tirs1: ndarray Output ------ float: 82.5th percentile temperature over water """ # eq7 th_swir2 = 0.03 clearsky_water = is_water & (swir2 < th_swir2) # eq8 clear_water_temp = tirs1.copy() clear_water_temp[~clearsky_water] = np.nan return np.nanpercentile(clear_water_temp, 82.5) def water_temp_prob(water_temp, tirs): """Temperature probability for water Equation 9 (Zhu and Woodcock, 2012) Parameters ---------- water_temp: float 82.5th percentile temperature over water swir2: ndarray tirs1: ndarray Output ------ ndarray: probability of cloud over water based on temperature """ temp_const = 4.0 # degrees C return (water_temp - tirs) / temp_const def brightness_prob(nir, clip=True): """The brightest water may have Band 5 reflectance as high as 0.11 Equation 10 (Zhu and Woodcock, 2012) Parameters ---------- nir: ndarray Output ------ ndarray: brightness probability, constrained 0..1 """ thresh = 0.11 bp = np.minimum(thresh, nir) / thresh if clip: bp[bp > 1] = 1 bp[bp < 0] = 0 return bp # Eq 11, water_cloud_prob # wCloud_Prob = wTemperature_Prob x Brightness_Prob def temp_land(pcps, water, tirs1): """Derive high/low percentiles of land temperature Equations 12 an 13 (Zhu and Woodcock, 2012) Parameters ---------- pcps: ndarray potential cloud pixels, boolean water: ndarray water mask, boolean tirs1: ndarray Output ------ tuple: 17.5 and 82.5 percentile temperature over clearsky land """ # eq 12 clearsky_land = ~(pcps | water) # use clearsky_land to mask tirs1 clear_land_temp = tirs1.copy() clear_land_temp[~clearsky_land] = np.nan # take 17.5 and 82.5 percentile, eq 13 return np.nanpercentile(clear_land_temp, (17.5, 82.5)) def land_temp_prob(tirs1, tlow, thigh): """Temperature-based probability of cloud over land Equation 14 (Zhu and Woodcock, 2012) Parameters ---------- tirs1: ndarray tlow: float Low (17.5 percentile) temperature of land thigh: float High (82.5 percentile) temperature of land Output ------ ndarray : probability of cloud over land based on temperature """ temp_diff = 4 # degrees return (thigh + temp_diff - tirs1) / (thigh + 4 - (tlow - 4)) def variability_prob(ndvi, ndsi, whiteness): """Use the probability of the spectral variability to identify clouds over land. Equation 15 (Zhu and Woodcock, 2012) Parameters ---------- ndvi: ndarray ndsi: ndarray whiteness: ndarray Output ------ ndarray : probability of cloud over land based on variability """ ndi_max = np.fmax(np.absolute(ndvi), np.absolute(ndsi)) f_max = 1.0 - np.fmax(ndi_max, whiteness) return f_max # Eq 16, land_cloud_prob # lCloud_Prob = lTemperature_Prob x Variability_Prob def land_threshold(land_cloud_prob, pcps, water): """Dynamic threshold for determining cloud cutoff Equation 17 (Zhu and Woodcock, 2012) Parameters ---------- land_cloud_prob: ndarray probability of cloud over land pcps: ndarray potential cloud pixels water: ndarray water mask Output ------ float: land cloud threshold """ # eq 12 clearsky_land = ~(pcps | water) # 82.5th percentile of lCloud_Prob(masked by clearsky_land) + 0.2 cloud_prob = land_cloud_prob.copy() cloud_prob[~clearsky_land] = np.nan # eq 17 th_const = 0.2 return np.nanpercentile(cloud_prob, 82.5) + th_const def potential_cloud_layer(pcp, water, tirs1, tlow, land_cloud_prob, land_threshold, water_cloud_prob, water_threshold=0.5): """Final step of determining potential cloud layer Equation 18 (Zhu and Woodcock, 2012) Parameters ---------- pcps: ndarray potential cloud pixels water: ndarray water mask tirs1: ndarray tlow: float low percentile of land temperature land_cloud_prob: ndarray probability of cloud over land land_threshold: float cutoff for cloud over land water_cloud_prob: ndarray probability of cloud over water water_threshold: float cutoff for cloud over water Output ------ ndarray: potential cloud layer, boolean """ # Using pcp and water as mask todo part1 = (pcp & water & (water_cloud_prob > water_threshold)) part2 = (pcp & ~water & (land_cloud_prob > land_threshold)) temptest = tirs1 < (tlow - 35) # 35degrees C colder return part1 | part2 | temptest def calc_ndsi(green, swir1): """NDSI calculation normalized difference snow index Parameters ---------- green: ndarray swir1: ndarray ~1.62 µm Band 6 in Landsat 8 Output ------ ndarray: unitless index """ return (green - swir1) / (green + swir1) def calc_ndvi(red, nir): """NDVI calculation normalized difference vegetation index Parameters ---------- red: ndarray nir: ndarray Output ------ ndarray: unitless index """ return (nir - red) / (nir + red) def potential_cloud_shadow_layer(nir, swir1, water): """Find low NIR/SWIR1 that is not classified as water This differs from the Zhu Woodcock algorithm but produces decent results without requiring a flood-fill Parameters ---------- nir: ndarray swir1: ndarray water: ndarray Output ------ ndarray boolean, potential cloud shadows """ return (nir < 0.10) & (swir1 < 0.10) & ~water def potential_snow_layer(ndsi, green, nir, tirs1): """Spectral test to determine potential snow Uses the 9.85C (283K) threshold defined in Zhu, Woodcock 2015 Parameters ---------- ndsi: ndarray green: ndarray nir: ndarray tirs1: ndarray Output ------ ndarray: boolean, True is potential snow """ return (ndsi > 0.15) & (tirs1 < 9.85) & (nir > 0.11) & (green > 0.1) def cloudmask(blue, green, red, nir, swir1, swir2, cirrus, tirs1, min_filter=(3, 3), max_filter=(21, 21)): """Calculate the potential cloud layer from source data *This is the high level function which ties together all the equations for generating potential clouds* Parameters ---------- blue: ndarray green: ndarray red: ndarray nir: ndarray swir1: ndarray swir2: ndarray cirrus: ndarray tirs1: ndarray min_filter: 2-element tuple, default=(3,3) Defines the window for the minimum_filter, for removing outliers max_filter: 2-element tuple, default=(21, 21) Defines the window for the maximum_filter, for "buffering" the edges Output ------ ndarray, boolean: potential cloud layer; True = cloud ndarray, boolean potential cloud shadow layer; True = cloud shadow """ logger.info("Running initial tests") ndvi = calc_ndvi(red, nir) ndsi = calc_ndsi(green, swir1) whiteness = whiteness_index(blue, green, red) water = water_test(ndvi, nir) # First pass, potential clouds pcps = potential_cloud_pixels( ndvi, ndsi, blue, green, red, nir, swir1, swir2, cirrus, tirs1) cirrus_prob = cirrus / 0.04 # Clouds over water tw = temp_water(water, swir2, tirs1) wtp = water_temp_prob(tw, tirs1) bp = brightness_prob(nir) water_cloud_prob = (wtp * bp) + cirrus_prob wthreshold = 0.5 # Clouds over land tlow, thigh = temp_land(pcps, water, tirs1) ltp = land_temp_prob(tirs1, tlow, thigh) vp = variability_prob(ndvi, ndsi, whiteness) land_cloud_prob = (ltp * vp) + cirrus_prob lthreshold = land_threshold(land_cloud_prob, pcps, water) logger.info("Calculate potential clouds") pcloud = potential_cloud_layer( pcps, water, tirs1, tlow, land_cloud_prob, lthreshold, water_cloud_prob, wthreshold) # Ignoring snow for now as it exhibits many false positives and negatives # when used as a binary mask # psnow = potential_snow_layer(ndsi, green, nir, tirs1) # pcloud = pcloud & ~psnow logger.info("Calculate potential cloud shadows") pshadow = potential_cloud_shadow_layer(nir, swir1, water) # The remainder of the algorithm differs significantly from Fmask # In an attempt to make a more visually appealling cloud mask # with fewer inclusions and more broad shapes if min_filter: # Remove outliers logger.info("Remove outliers with minimum filter") from scipy.ndimage.filters import minimum_filter from scipy.ndimage.morphology import distance_transform_edt # remove cloud outliers by nibbling the edges pcloud = minimum_filter(pcloud, size=min_filter) # crude, just look x pixels away for potential cloud pixels dist = distance_transform_edt(~pcloud) pixel_radius = 100.0 pshadow = (dist < pixel_radius) & pshadow # remove cloud shadow outliers pshadow = minimum_filter(pshadow, size=min_filter) if max_filter: # grow around the edges logger.info("Buffer edges with maximum filter") from scipy.ndimage.filters import maximum_filter pcloud = maximum_filter(pcloud, size=max_filter) pshadow = maximum_filter(pshadow, size=max_filter) return pcloud, pshadow def gdal_nodata_mask(pcl, pcsl, tirs_arr): """ Given a boolean potential cloud layer, a potential cloud shadow layer and a thermal band Calculate the GDAL-style uint8 mask """ tirs_mask = np.isnan(tirs_arr) | (tirs_arr == 0) return ((~(pcl | pcsl | tirs_mask)) * 255).astype('uint8')
from trex.emu.api import * import argparse class Prof1(): def __init__(self): self.def_ns_plugs = None self.def_c_plugs = None def get_template_261_fields(self): return [ { "name": "clientIPv4Address", "type": 45004, "length": 4, "enterprise_number": 9, "data": [16, 0, 0, 1] }, { "name": "serverIPv4Address", "type": 45005, "length": 4, "enterprise_number": 9, "data": [24, 0, 0, 1] }, { "name": "protocolIdentifier", "type": 4, "length": 1, "data": [17] }, { "name": "clientTransportPort", "type": 45008, "length": 2, "enterprise_number": 9, "data": [128, 232] }, { "name": "serverTransportProtocol", "type": 45009, "length": 2, "enterprise_number": 9, "data": [0, 53] }, { "name": "applicationId", "type": 95, "length": 4, "data": [3, 0, 0, 53] }, { "name": "nbar2HttpHost", "type": 45003, "length": 7, "enterprise_number": 9, "data": [115, 115, 115, 46, 101, 100, 117] }, { "name": "nbar2HttpHostBlackMagic1", "type": 45003, "length": 7, "enterprise_number": 9, "data": [3, 0, 0, 53, 52, 4, 0] }, { "name": "nbar2HttpHostBlackMagic2", "type": 45003, "length": 7, "enterprise_number": 9, "data": [3, 0, 0, 53, 52, 5, 133] }, { "name": "flowStartSysUpTime", "type": 22, "length": 4, "data": [0, 0, 0, 1] }, { "name": "flowEndSysUpTime", "type": 21, "length": 4, "data": [0, 0, 0, 10] }, { "name": "flowStartMilliseconds", "type": 152, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 0] }, { "name": "responderPackets", "type": 299, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 1] }, { "name": "initiatorPackets", "type": 298, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 1] }, { "name": "serverBytesL3", "type": 41105, "length": 8, "enterprise_number": 9, "data": [0, 0, 0, 0, 0, 0, 0, 127] }, { "name": "clientBytesL3", "type": 41106, "length": 8, "enterprise_number": 9, "data": [0, 0, 0, 0, 0, 0, 0, 127] } ] def get_init_json_examples(self, mac, ipv4, ipv6, example_number): example1 = { "netflow_version": 10, "dst_mac": mac.V(), "dst_ipv4": ipv4.V(), "dst_ipv6": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "dst_port": 6007, "src_port": 30334, "domain_id": 1000+example_number, "generators": [ { "name": "dns", "auto_start": True, "rate_pps": 2, "data_records_num": 7, "template_id": 260+example_number, "fields": self.get_template_261_fields(), "engines": [ { "engine_name": "clientIPv4Address", "engine_type": "uint", "params": { "size": 1, "offset": 3, "min": 1, "max": 255, "op": "inc", "step": 1, } }, { "engine_name": "protocolIdentifier", "engine_type": "histogram_uint", "params": { "size": 1, "offset": 0, "entries": [ { "v": 17, "prob": 5 }, { "v": 1, "prob": 1, }, { "v": 6, "prob": 3 } ] } }, { "engine_name": "applicationId", "engine_type": "histogram_uint_list", "params": { "size": 1, "offset": 3, "entries": [ { "list": [0, 2, 4, 6, 8], "prob": 1 }, { "list": [1, 3, 5, 7, 9], "prob": 1 } ] } }, { "engine_name": "initiatorPackets", "engine_type": "histogram_uint64_range", "params": { "size": 8, "offset": 0, "entries": [ { "min": 0, "max": 4294967295, "prob": 1 }, { "min": 4294967296, "max": 8589934591, "prob": 1 } ] } } ] } ] } example2 = { "netflow_version": 9, "dst_ipv4": ipv4.V(), "dst_ipv6": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "src_port": 30334, "domain_id": 2000+example_number, "generators": [ { "name": "dnsv9", "auto_start": True, "rate_pps": 0.5, "data_records_num": 1, "template_id": 260+example_number, "fields": [ { "name": "protocolIdentifier", "type": 4, "length": 1, "data": [17] }, { "name": "applicationId", "type": 95, "length": 4, "data": [3, 0, 0, 53] }, { "name": "flowStartSysUpTime", "type": 22, "length": 4, "data": [0, 0, 0, 1] }, { "name": "flowEndSysUpTime", "type": 21, "length": 4, "data": [0, 0, 0, 10] }, { "name": "flowStartMilliseconds", "type": 152, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 0] }, { "name": "responderPackets", "type": 299, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 1] }, { "name": "initiatorPackets", "type": 298, "length": 8, "data": [0, 0, 0, 0, 0, 0, 0, 1] } ], "engines": [ { "engine_name": "protocolIdentifier", "engine_type": "histogram_uint", "params": { "size": 1, "offset": 0, "entries": [ { "v": 17, "prob": 5 }, { "v": 1, "prob": 1, }, { "v": 6, "prob": 3 } ] }, }, { "engine_name": "ipVersion", "engine_type": "histogram_uint", "params": { "size": 1, "offset": 0, "entries": [ { "v": 4, "prob": 3, }, { "v": 6, "prob": 1 } ] } } ] } ] } example3 = { "netflow_version": 9, "dst_ipv4": [0, 0, 0, 0], "dst_mac": mac.V(), "dst_ipv6": ipv6.V(), "src_port": 30334, "domain_id": 3000+example_number, "generators": [ { "name": "protocolID", "auto_start": True, "rate_pps": 1, "data_records_num": 0, "template_id": 260+example_number, "fields": [ { "name": "protocolIdentifier", "type": 4, "length": 1, "data": [17] } ] }, { "name": "ipVersion", "auto_start": True, "rate_pps": 2, "data_records_num": 0, "template_id": 266, "fields": [ { "name": "ipVersion", "type": 60, "length": 1, "data": [4] } ] } ] } example4 = { "netflow_version": 10, "dst_ipv4": ipv4.V(), "dst_mac": mac.V(), "dst_ipv6": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "domain_id": 4000+example_number, "generators": [ { "name": "dns_with_app_id", "auto_start": True, "rate_pps": 1, "data_records_num": 0, "template_id": 260+example_number, "is_options_template": True, "scope_count": 7, "fields": self.get_template_261_fields(), "engines": [ { "engine_name": "applicationId", "engine_type": "uint", "params": { "size": 2, "offset": 2, "op": "rand", "min": 20, "max": 50000 } } ] }, { "name": "bes", "auto_start": True, "rate_pps": 0.2, "data_records_num": 7, "template_id": 256, "fields": [ { "name": "sumServerRespTime", "type": 42074, "length": 4, "enterprise_number": 9, "data": [0, 0, 0, 10] }, { "name": "serverTransportProtocol", "type": 45009, "length": 2, "enterprise_number": 9, "data": [0, 53] } ], "engines": [ { "engine_name": "serverTransportProtocol", "engine_type": "histogram_uint_list", "params": { "size": 1, "offset": 1, "entries": [ { "list": [53], "prob": 5 }, { "list": [67, 68], "prob": 4 }, { "list": [20, 21], "prob": 5 } ] } } ] } ] } examples = [example1, example2, example3, example4] return examples[example_number%len(examples)] def create_profile(self, ns_size, clients_size, mac, ipv4, dg, ipv6, dst_ipv4): ns_list = [] mac = Mac(mac) ipv4 = Ipv4(ipv4) ipv6 = Ipv6(ipv6) dg = Ipv4(dg) dst_ipv4 = Ipv4(dst_ipv4) dst_ipv6 = Ipv6('::1234') dst_mac = Mac('00:25:84:7c:d7:40') for i in range(ns_size): # create different namespace each time ns_key = EMUNamespaceKey(vport = i, tci = 0,tpid = 0) ns = EMUNamespaceObj(ns_key = ns_key, def_c_plugs = self.def_c_plugs) for j in range(clients_size): c = EMUClientObj( mac = mac[j].V(), ipv4 = ipv4[j].V(), ipv4_dg = dg.V(), ipv4_force_dg = True, ipv4_force_mac = Mac('00:00:00:00:05:01'), ipv6 = ipv6[j].V(), plugs = {'ipfix': self.get_init_json_examples(dst_mac, dst_ipv4, dst_ipv6, j)} ) ns.add_clients(c) ns_list.append(ns) return EMUProfile(ns = ns_list, def_ns_plugs = self.def_ns_plugs) def get_profile(self, tuneables): # Argparse for tunables parser = argparse.ArgumentParser(description='Argparser for simple emu profile.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--ns', type = int, default = 1, help='Number of namespaces to create') parser.add_argument('--clients', type = int, default = 15, help='Number of clients to create in each namespace') # client args parser.add_argument('--mac', type = str, default = '00:00:00:70:00:01', help='Mac address of the first client') parser.add_argument('--4', type = str, default = '1.1.1.3', dest = 'ipv4', help='IPv4 address of the first client') parser.add_argument('--dst-4', type = str, default = '10.56.97.19', dest = 'dst_4', help='Ipv4 address of collector') parser.add_argument('--dg', type = str, default = '1.1.1.1', help='Default Gateway address of the clients') parser.add_argument('--6', type = str, default = '2001:DB8:1::2', dest = 'ipv6', help='IPv6 address of the first client') args = parser.parse_args(tuneables) assert 0 < args.ns < 65535, 'Namespaces size must be positive! in range of ports: 0 < ns < 65535' assert 0 < args.clients, 'Clients size must be positive!' return self.create_profile(args.ns, args.clients, args.mac, args.ipv4, args.dg, args.ipv6, args.dst_4) def register(): return Prof1()
#!/usr/bin/env python import encoder import preamble import sys if len(sys.argv) != 3: print('Usage: main.py <shellcode file> <pointer to shellcode>') print("Pointer to shellcode should be an expression that is the address of the start of the shellcode in the victim's address space") print('Example: main.py shellcode.bin rcx') print('Example: main.py shellcode.bin [rsp+-8]') print('Example: main.py shellcode.bin 0x0123456789abcdef') print('Example: main.py shellcode.bin rbp+5') sys.exit(1) payload = open(sys.argv[1], 'rb').read() encoded_payload = encoder.encode(payload) shellcode_ptr = sys.argv[2] print() print('Encoding preamble for rdx <- %s' % (shellcode_ptr)) preamble = preamble.load_rdx(shellcode_ptr) print(preamble) print() print('Original length: %d' % (len(payload),)) print('Encoded length: %d' % (len(encoded_payload),)) print('Preamble length: %d' % (len(preamble))) print('Total length: %d' % (len(preamble) + len(encoded_payload))) print() print(preamble + encoded_payload)
from torchdistlog import logging import numpy as np import torch.distributed as dist import torch from torchdistlog import logging try: import faiss except ModuleNotFoundError: logging.warning("Faiss Package Not Found!") from ...launcher.misc.utils import distributed_gather_objects """ (Faiss) to multi gpu devices """ def index_cpu_to_gpu_multiple(index, resources=None, co=None, gpu_ids=None): assert isinstance(gpu_ids, list) if resources is None: resources = [faiss.StandardGpuResources() for i in gpu_ids] v_res = faiss.GpuResourcesVector() v_dev = faiss.IntVector() if gpu_ids is None: gpu_ids = list(range(len(resources))) for i, res in zip(gpu_ids, resources): v_dev.push_back(i) v_res.push_back(res) index = faiss.index_cpu_to_gpu_multiple(v_res, v_dev, index, co) index.referenced_objects = resources return index """ Some random number generator """ def multi_center_generator(sample_num_per_class, class_num, dim=2, scale=0.1): loc = np.random.rand(class_num, dim) scale = scale * np.ones((class_num, dim)) data = [] for i in range(class_num): data.append(np.random.normal(loc=loc[i, :], scale=scale[i, :], size=(sample_num_per_class, dim))) data = np.vstack(data).astype('float32') label = np.arange(class_num).reshape(-1, 1) label = np.tile(label, (1, sample_num_per_class)).reshape(-1).astype('float32') return data, label
#!/usr/bin/env python3 from github import Github import json # token needed for authentication at github token = "the_very_secret_token" g = Github(token) repo = g.get_repo('cookiejar/cookietemple') def fetch_ct_pr_issue_stats(gh_item: str) -> None: """ Fetch number of closed and open pull requests to the cookietemple repository per day :param gh_item Either Issue or PR indicating the sort of data to be collected """ stats = repo.get_pulls('all') if gh_item == 'pr' else repo.get_issues(state='all') open_stats_dict = dict() closed_stats_dict = dict() for stat in stats: if gh_item == 'issue' and stat.pull_request: continue stat_is_closed = stat.state == 'closed' stat_created_date = stat.created_at created_date = str(stat_created_date).split(' ')[0] # if issue/pr is already closed, add a closed date if stat_is_closed: stat_closed_date = stat.closed_at closed_date = str(stat_closed_date).split(' ')[0] try: closed_stats_dict[closed_date] += 1 except KeyError: closed_stats_dict[closed_date] = 1 # for each issue/pr, add its creation date, so it counts to open issues/prs try: open_stats_dict[created_date] += 1 except KeyError: open_stats_dict[created_date] = 1 open_stat_per_date = dict() for stat in stats: if gh_item == 'issue' and stat.pull_request: continue if stat.state == 'closed': stat_created_date = stat.created_at created_date = str(stat_created_date).split(' ')[0] stat_closed_date = stat.closed_at closed_date = str(stat_closed_date).split(' ')[0] for date in open_stats_dict.keys(): if created_date <= date < closed_date: try: open_stat_per_date[date] += 1 except KeyError: open_stat_per_date[date] = 1 # sort the open and closed issues/prs by date in ascending order open_stat_list = sorted(list(open_stat_per_date.items())) closed_stat_list = sorted(list(closed_stats_dict.items())) # convert to dict for easier JSON dumping open_stats_dict = dict(open_stat_list) closed_stats_dict = dict(closed_stat_list) # sum up all closed issues/prs made up to (including) a date sum_until_date(closed_stats_dict) # dump data to json file to plot at stats subpage write_to_json(open_stats_dict, f'open_{gh_item}s') write_to_json(closed_stats_dict, f'closed_{gh_item}s') def fetch_ct_commits() -> None: """ Fetch all commits to cookietemple repository. """ commits = repo.get_commits() commit_dict = dict() for commit in commits: if commit.commit is not None: commit_date = commit.commit.author.date date = str(commit_date).split(' ')[0] try: commit_dict[date] += 1 except KeyError: commit_dict[date] = 1 # sort the commit dict by date in ascending order commit_list = sorted(list(commit_dict.items())) # convert to dict for easier JSON dumping commit_dict = dict(commit_list) # sum up all commits made up to (including) a date sum_until_date(commit_dict) # dump data to json file to plot at stats subpage write_to_json(commit_dict, actions='commits') def sum_until_date(gh_data: dict) -> None: """ For each date, calculate total sum of actions up to (and including) this date :param gh_data: The fetched github data containing dates associated with number of actions (like prs or commits) """ key_list = list(gh_data.keys()) for i in range(1, len(key_list)): gh_data[key_list[i]] += gh_data[key_list[i - 1]] def write_to_json(actions_per_day: dict, actions: str) -> None: """ Write the actions date and number to a local .json file """ with open(f'{actions}_per_day.json', 'w', encoding='utf-8') as f: json.dump(actions_per_day, f, ensure_ascii=False, indent=4)
# -*- coding: utf-8 -*- # pylint: disable=C0111,C0301,R0904 import unittest import os import envitro class TestCore(unittest.TestCase): # test setter/getter def test_isset(self): os.environ['TEST_ISSET_TRUE'] = 'setvar' self.assertTrue(envitro.isset('TEST_ISSET_TRUE')) if 'TEST_ISSET_FALSE' in os.environ: del os.environ['TEST_ISSET_FALSE'] self.assertFalse(envitro.isset('TEST_ISSET_FALSE')) def test_write(self): envitro.write('TEST_SET', 'setvar') self.assertEqual(os.environ['TEST_SET'], 'setvar') envitro.write('TEST_SET_SPACES', ' spacesvar ') self.assertEqual(os.environ['TEST_SET_SPACES'], ' spacesvar ') envitro.write('TEST_SET_INT', 123) self.assertEqual(os.environ['TEST_SET_INT'], '123') envitro.write('TEST_SET_BOOL', True) self.assertEqual(os.environ['TEST_SET_BOOL'], 'True') def test_write_clear(self): os.environ['TEST_ALREADY_SET'] = 'myvar' envitro.write('TEST_ALREADY_SET', None) self.assertEqual(os.environ.get('TEST_ALREADY_SET'), None) if 'TEST_ALREADY_SET_MISSING' in os.environ: del os.environ['TEST_ALREADY_SET_MISSING'] envitro.write('TEST_ALREADY_SET_MISSING', None) self.assertEqual(os.environ.get('TEST_ALREADY_SET_MISSING'), None) def test_read_default(self): if 'TEST_DEFAULT_GET' in os.environ: del os.environ['TEST_DEFAULT_GET'] self.assertEqual(envitro.read('TEST_DEFAULT_GET', 'defaultval'), 'defaultval') def test_read_none(self): if 'TEST_DEFAULT_GET_NONE' in os.environ: del os.environ['TEST_DEFAULT_GET_NONE'] self.assertEqual(envitro.read('TEST_DEFAULT_GET_NONE', allow_none=True), None) if 'TEST_DEFAULT_GET_NONE_DEFAULT' in os.environ: del os.environ['TEST_DEFAULT_GET_NONE_DEFAULT'] self.assertEqual( envitro.read('TEST_DEFAULT_GET_NONE_DEFAULT', default='defaultval', allow_none=True), 'defaultval') def test_read_fallback(self): if 'TEST_PRIMARY' in os.environ: del os.environ['TEST_PRIMARY'] self.assertEqual(envitro.read('TEST_PRIMARY', allow_none=True), None) os.environ['TEST_FALLBACK'] = 'fallback' self.assertEqual(envitro.read('TEST_PRIMARY', fallback='TEST_FALLBACK'), 'fallback') def test_read_fallback_list(self): if 'TEST_PRIMARY' in os.environ: del os.environ['TEST_PRIMARY'] if 'TEST_FALLBACK_1' in os.environ: del os.environ['TEST_FALLBACK_1'] os.environ['TEST_FALLBACK_2'] = 'fallback2' self.assertEqual(envitro.read('TEST_PRIMARY', fallback=['TEST_FALLBACK_1', 'TEST_FALLBACK_2']), 'fallback2') def test_read_fallback_list_default(self): if 'TEST_PRIMARY' in os.environ: del os.environ['TEST_PRIMARY'] if 'TEST_FALLBACK_1' in os.environ: del os.environ['TEST_FALLBACK_1'] if 'TEST_FALLBACK_2' in os.environ: del os.environ['TEST_FALLBACK_2'] self.assertEqual(envitro.read('TEST_PRIMARY', default='def', fallback=['TEST_FALLBACK_1', 'TEST_FALLBACK_2']), 'def') def test_invalid_read(self): if 'TEST_INVALID_GET' in os.environ: del os.environ['TEST_INVALID_GET'] self.assertRaises(KeyError, lambda: envitro.read('TEST_INVALID_GET')) def test_read(self): os.environ['TEST_GET'] = 'getvar' self.assertEqual(envitro.read('TEST_GET'), 'getvar') def test_invalid(self): if 'DOES_NOT_EXIST' in os.environ: del os.environ['DOES_NOT_EXIST'] with self.assertRaises(KeyError): envitro.str('DOES_NOT_EXIST') def test_nested_default(self): self.assertEqual(envitro.int('TEST_NOPE_INT', envitro.str('TEST_NOPE_STR', '123')), 123) self.assertEqual(envitro.str('TEST_NOPE_STR', envitro.int('TEST_NOPE_INT', 123)), '123') self.assertEqual(envitro.bool('TEST_NOPE_BOOL', envitro.int('TEST_NOPE_INT', 123)), True) self.assertEqual(envitro.bool('TEST_NOPE_BOOL', envitro.int('TEST_NOPE_INT', 0)), False) self.assertEqual(envitro.bool('TEST_NOPE_BOOL', envitro.int('TEST_NOPE_INT', 123)), True) self.assertEqual(envitro.bool('TEST_NOPE_BOOL', envitro.str('TEST_NOPE_STR', 'false')), False) self.assertEqual(envitro.bool('TEST_NOPE_BOOL', envitro.str('TEST_NOPE_STR', '')), False) class TestCoreStr(unittest.TestCase): def assert_get_set_str(self, value, expected_value): os.environ['TEST_STR'] = value self.assertEqual(envitro.str('TEST_STR'), expected_value) def test_str(self): self.assert_get_set_str('Hello World', 'Hello World') def test_str_strip_whitespace(self): self.assert_get_set_str(' hello ', 'hello') def test_none_str(self): if 'DOES_NOT_EXIST_STR' in os.environ: del os.environ['DOES_NOT_EXIST_STR'] self.assertEqual(envitro.str('DOES_NOT_EXIST_STR', allow_none=True), None) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' fallback' self.assertEqual(envitro.str('PRIMARY', fallback='FALLBACK'), 'fallback') class TestCoreBool(unittest.TestCase): def assert_get_set_bool(self, value, expected_value): os.environ['TEST_BOOL'] = value self.assertEqual(envitro.bool('TEST_BOOL'), expected_value) def test_invalid_bool(self): envitro.write('INVALID_BOOL', 'nope') with self.assertRaises(ValueError): envitro.bool('INVALID_BOOL') def test_bool(self): self.assert_get_set_bool('yes', True) self.assert_get_set_bool('1', True) self.assert_get_set_bool('YeS', True) self.assert_get_set_bool('True', True) self.assert_get_set_bool('true', True) self.assert_get_set_bool(' 1 ', True) self.assert_get_set_bool('YES\t', True) self.assert_get_set_bool('\tYES\t', True) self.assert_get_set_bool('false', False) self.assert_get_set_bool('no', False) self.assert_get_set_bool('0', False) self.assert_get_set_bool(' NO ', False) self.assert_get_set_bool('', False) self.assert_get_set_bool(' ', False) def test_default_bool(self): if 'DOES_NOT_EXIST' in os.environ: del os.environ['DOES_NOT_EXIST'] self.assertTrue(envitro.bool('DOES_NOT_EXIST', True)) self.assertFalse(envitro.bool('DOES_NOT_EXIST', False)) def test_none_bool(self): if 'DOES_NOT_EXIST_BOOL' in os.environ: del os.environ['DOES_NOT_EXIST_BOOL'] self.assertEqual(envitro.bool('DOES_NOT_EXIST_BOOL', allow_none=True), None) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' true' self.assertEqual(envitro.bool('PRIMARY', fallback='FALLBACK'), True) class TestCoreInt(unittest.TestCase): def assert_get_set_int(self, value, expected_value): os.environ['TEST_INT'] = value self.assertEqual(envitro.int('TEST_INT'), expected_value) def test_int(self): self.assert_get_set_int('1234567', 1234567) self.assert_get_set_int(' 1234567 ', 1234567) def test_none_int(self): if 'DOES_NOT_EXIST_INT' in os.environ: del os.environ['DOES_NOT_EXIST_INT'] self.assertEqual(envitro.int('DOES_NOT_EXIST_INT', allow_none=True), None) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' 5' self.assertEqual(envitro.int('PRIMARY', fallback='FALLBACK'), 5) class TestCoreFloat(unittest.TestCase): def assert_get_set_float(self, value, expected_value): os.environ['TEST_FLOAT'] = value self.assertEqual(envitro.float('TEST_FLOAT'), expected_value) def test_float(self): self.assert_get_set_float('123.45670', 123.4567) self.assert_get_set_float(' 12345.67 ', 12345.67) self.assert_get_set_float(' 0012345.67 ', 12345.67) def test_none_float(self): if 'DOES_NOT_EXIST_FLOAT' in os.environ: del os.environ['DOES_NOT_EXIST_FLOAT'] self.assertEqual(envitro.float('DOES_NOT_EXIST_FLOAT', allow_none=True), None) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' 3.14' self.assertEqual(envitro.float('PRIMARY', fallback='FALLBACK'), 3.14) class TestCoreList(unittest.TestCase): def test_list(self): os.environ['TEST_LIST'] = 'item1,item2,item3' self.assertEqual(envitro.list('TEST_LIST'), ['item1', 'item2', 'item3']) os.environ['TEST_LIST'] = 'item1,item2' self.assertEqual(envitro.list('TEST_LIST'), ['item1', 'item2']) os.environ['TEST_LIST'] = 'item1' self.assertEqual(envitro.list('TEST_LIST'), ['item1']) os.environ['TEST_LIST'] = 'item1,' self.assertEqual(envitro.list('TEST_LIST'), ['item1']) os.environ['TEST_LIST'] = ',item1,' self.assertEqual(envitro.list('TEST_LIST'), ['item1']) def test_list_required(self): os.environ['TEST_LIST_REQUIRED'] = '' with self.assertRaises(ValueError): envitro.list('TEST_LIST_REQUIRED') def test_none_list(self): if 'DOES_NOT_EXIST_LIST' in os.environ: del os.environ['DOES_NOT_EXIST_LIST'] self.assertEqual(envitro.list('DOES_NOT_EXIST_LIST', allow_none=True), None) def test_list_spaces(self): os.environ['TEST_LIST_SPACES'] = ' item1 , item2 , item3 ' self.assertEqual(envitro.list('TEST_LIST_SPACES'), ['item1', 'item2', 'item3']) os.environ['TEST_LIST_SPACES'] = ' , item1 , item2 , item3 , , ,, ' self.assertEqual(envitro.list('TEST_LIST_SPACES'), ['item1', 'item2', 'item3']) def test_default_list(self): if 'DOES_NOT_EXIST' in os.environ: del os.environ['DOES_NOT_EXIST'] self.assertEqual(envitro.list('DOES_NOT_EXIST', ['item1']), ['item1']) self.assertEqual(envitro.list('DOES_NOT_EXIST', ['item1', 'item2']), ['item1', 'item2']) self.assertEqual(envitro.list('DOES_NOT_EXIST', 'item1,item2'), ['item1', 'item2']) def test_list_separator(self): os.environ['TEST_LIST_SEPARATOR'] = 'item1;item2;item3' self.assertEqual(envitro.list('TEST_LIST_SEPARATOR', separator=';'), ['item1', 'item2', 'item3']) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' a,b,c' self.assertEqual(envitro.list('PRIMARY', fallback='FALLBACK'), ['a', 'b', 'c']) class TestCoreTuple(unittest.TestCase): def test_tuple(self): os.environ['TEST_TUPLE'] = 'item1,item2,item3' self.assertEqual(envitro.tuple('TEST_TUPLE'), ('item1', 'item2', 'item3')) os.environ['TEST_TUPLE'] = 'item1,item2' self.assertEqual(envitro.tuple('TEST_TUPLE'), ('item1', 'item2')) os.environ['TEST_TUPLE'] = 'item1' self.assertEqual(envitro.tuple('TEST_TUPLE'), ('item1', )) os.environ['TEST_TUPLE'] = 'item1,' self.assertEqual(envitro.tuple('TEST_TUPLE'), ('item1', )) os.environ['TEST_TUPLE'] = ',item1,' self.assertEqual(envitro.tuple('TEST_TUPLE'), ('item1', )) def test_tuple_required(self): os.environ['TEST_TUPLE_REQUIRED'] = '' with self.assertRaises(ValueError): envitro.tuple('TEST_TUPLE_REQUIRED') def test_none_tuple(self): if 'DOES_NOT_EXIST_TUPLE' in os.environ: del os.environ['DOES_NOT_EXIST_TUPLE'] self.assertEqual(envitro.tuple('DOES_NOT_EXIST_TUPLE', allow_none=True), None) def test_tuple_spaces(self): os.environ['TEST_TUPLE_SPACES'] = ' item1 , item2 , item3 ' self.assertEqual(envitro.tuple('TEST_LIST_SPACES'), ('item1', 'item2', 'item3')) os.environ['TEST_TUPLE_SPACES'] = ' , item1 , item2 , item3 , , ,, ' self.assertEqual(envitro.tuple('TEST_TUPLE_SPACES'), ('item1', 'item2', 'item3')) def test_default_tuple(self): if 'DOES_NOT_EXIST' in os.environ: del os.environ['DOES_NOT_EXIST'] self.assertEqual(envitro.tuple('DOES_NOT_EXIST', ('item1', )), ('item1', )) self.assertEqual(envitro.tuple('DOES_NOT_EXIST', ('item1', 'item2')), ('item1', 'item2')) self.assertEqual(envitro.tuple('DOES_NOT_EXIST', 'item1,item2'), ('item1', 'item2')) def test_tuple_separator(self): os.environ['TEST_TUPLE_SEPARATOR'] = 'item1;item2;item3' self.assertEqual(envitro.tuple('TEST_TUPLE_SEPARATOR', separator=';'), ('item1', 'item2', 'item3')) def test_fallback(self): if 'PRIMARY' in os.environ: del os.environ['PRIMARY'] os.environ['FALLBACK'] = ' a,b,c' self.assertEqual(envitro.tuple('PRIMARY', fallback='FALLBACK'), ('a', 'b', 'c'))
from django import forms from .models import Employee class EmployeeModelForm(forms.ModelForm): class Meta: model = Employee fields = ['firstname', 'surname', 'birthdate', 'email'] widgets = { 'firstname': forms.TextInput(attrs={'class': 'form-control'}), 'surname': forms.TextInput(attrs={'class': 'form-control'}), 'birthdate': forms.DateInput(attrs={'class': 'form-control'}), 'email': forms.EmailInput(attrs={'class': 'form-control'}), }
''' https://leetcode.com/problems/reverse-string/description/ input: "hello" output: "olleh" ''' def reverse_string(s): return s[::-1]
import unittest import numpy as np import numpy.testing as npt import pytest from sklearn.base import clone from divik.sampler._core import BaseSampler, ParallelSampler class DummySampler(BaseSampler): def __init__(self, whatever): self.whatever = whatever def get_sample(self, seed): return np.array([[seed]]) class BaseSamplerTest(unittest.TestCase): def test_iterates_through_samples(self): sampler = DummySampler(1) samples = [v for _, v in zip(range(10000), sampler)] assert 10000 == len(samples) npt.assert_array_equal(np.ravel(samples), np.ravel(range(10000))) def test_fit_returns_self(self): sampler = DummySampler(1) assert sampler is sampler.fit(np.array([[1]])) def test_parallel_sampler_generates_same_values(self): sampler = DummySampler(1) expected = sampler.get_sample(34134123) with sampler.parallel() as sampler_: actual = sampler_.get_sample(34134123) npt.assert_array_equal(expected, actual) def test_context_creates_parallel_sampler(self): sampler = DummySampler(1) with sampler.parallel() as sampler_: assert isinstance(sampler_, ParallelSampler) def test_parallel_sampler_is_cloneable(self): sampler = DummySampler(1) with sampler.parallel() as sampler_: cloned = sampler_.clone() assert isinstance(cloned, DummySampler) assert sampler.whatever == cloned.whatever def test_parallel_sampler_is_not_iterable(self): sampler = DummySampler(1) with sampler.parallel() as sampler_, pytest.raises(TypeError): iter(sampler_) def test_parallel_sampler_is_not_fittable(self): sampler = DummySampler(1) with sampler.parallel() as sampler_, pytest.raises(AttributeError): sampler_.fit() def test_is_cloneable(self): original = DummySampler(1) cloned = clone(original) assert cloned.whatever == 1
class Util: def __init__(self, _): def qrng() : """ return random 0 or 1 via hadarmard gate param: location_strings: string, node where the q.h is happening, 'Alice' by default """ q=_.PREP() _.H(q) number = _.MEAS() print('Outcome of the measure:', number) return number self.qrng = qrng
"All view functions for contentstore, broken out into submodules" from .assets import * from .checklists import * from .component import * from .course import * # lint-amnesty, pylint: disable=redefined-builtin from .entrance_exam import * from .error import * from .export_git import * from .helpers import * from .import_export import * from .item import * from .library import * from .preview import * from .public import * from .tabs import * from .transcript_settings import * from .transcripts_ajax import * from .user import * from .videos import * try: from .dev import * except ImportError: pass
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. from scipy.sparse.linalg import spsolve import numpy as np import numba as nb import os import time from scipy.sparse import lil_matrix, diags import scipy.sparse as sp def dSf_dV(Yf, V, F, Cf): """ Derivatives of the branch power w.r.t the branch voltage modules and angles :param Yf: Admittances matrix of the branches with the "from" buses :param V: Array of voltages :param F: Array of branch "from" bus indices :param Cf: Connectivity matrix of the branches with the "from" buses :return: dSf_dVa, dSf_dVm """ Vc = np.conj(V) diagVc = diags(Vc) diagE = diags(V / np.abs(V)) diagV = diags(V) Yfc = np.conj(Yf) Ifc = Yfc * Vc # conjugate of "from" current diagIfc = diags(Ifc) Vf = V[F] diagVf = diags(Vf) CVf = Cf * diagV CVnf = Cf * diagE dSf_dVa = 1j * (diagIfc * CVf - diagVf * Yfc * diagVc) dSf_dVm = diagVf * np.conj(Yf * diagE) + diagIfc * CVnf return dSf_dVa.tocsc(), dSf_dVm.tocsc() def dSt_dV(Yt, V, T, Ct): """ Derivatives of the branch power w.r.t the branch voltage modules and angles :param Yt: Admittances matrix of the branches with the "to" buses :param V: Array of voltages :param T: Array of branch "to" bus indices :param Ct: Connectivity matrix of the branches with the "to" buses :return: dSf_dVa, dSf_dVm, dSt_dVa, dSt_dVm """ Vc = np.conj(V) diagVc = diags(Vc) diagE = diags(V / np.abs(V)) diagV = diags(V) Ytc = np.conj(Yt) Itc = Ytc * Vc # conjugate of "to" current diagItc = diags(Itc) Vt = V[T] diagVt = diags(Vt) CVt = Ct * diagV CVnt = Ct * diagE dSt_dVa = 1j * (diagItc * CVt - diagVt * Ytc * diagVc) dSt_dVm = diagVt * np.conj(Yt * diagE) + diagItc * CVnt return dSt_dVa.tocsc(), dSt_dVm.tocsc() def dSf_dV_fast_v1(Yf, V, F, Cf): Vc = np.conj(V) diagVc = diags(Vc) E = V / np.abs(V) diagE = diags(E) diagV = diags(V) Yfc = np.conj(Yf).tocsc() Ifc = Yfc * Vc # conjugate of "from" current diagIfc = diags(Ifc) Vf = V[F] diagVf = diags(Vf) CVf = Cf * diagV CVnf = Cf * diagE op1 = diagIfc * CVf # diagIfc * Cf * diagV op2 = diagVf * Yfc * diagVc op3 = diagVf * np.conj(Yf * diagE) op4 = diagIfc * CVnf # realizamos la operación [diagIfc * Cf * diagV] y [diagIfc * Cf * diagE] data1 = np.empty(len(Cf.data), dtype=complex) data4 = np.empty(len(Cf.data), dtype=complex) for j in range(Cf.shape[1]): # para cada columna j ... for k in range(Cf.indptr[j], Cf.indptr[j + 1]): # para cada entrada de la columna .... i = Cf.indices[k] # obtener el índice de la fila data1[k] = Cf.data[k] * Ifc[i] * V[j] data4[k] = Cf.data[k] * Ifc[i] * E[j] op1_b = sp.csc_matrix((data1, Cf.indices, Cf.indptr), shape=Cf.shape) op4_b = sp.csc_matrix((data4, Cf.indices, Cf.indptr), shape=Cf.shape) # realizamos la operación [diagVf * Yfc * diagVc] y [diagVf * np.conj(Yf * diagE)] data2 = np.empty(len(Yf.data), dtype=complex) data3 = np.empty(len(Yf.data), dtype=complex) for j in range(Yf.shape[1]): # para cada columna j ... for k in range(Yf.indptr[j], Yf.indptr[j + 1]): # para cada entrada de la columna .... i = Yf.indices[k] # obtener el índice de la fila data2[k] = np.conj(Yf.data[k]) * Vf[i] * Vc[j] data3[k] = Vf[i] * np.conj(Yf.data[k] * E[j]) op2_b = sp.csc_matrix((data2, Yf.indices, Yf.indptr), shape=Yf.shape) op3_b = sp.csc_matrix((data3, Yf.indices, Yf.indptr), shape=Yf.shape) c1 = op1 - op1_b c2 = op2 - op2_b c3 = op3 - op3_b c4 = op4 - op4_b dSf_dVa = 1j * (op1 - op2) dSf_dVm = op3 + op4 return dSf_dVa, dSf_dVm def dSf_dV_fast_v2(Yf, V, F, Cf): """ :param Yf: :param V: :param F: :param Cf: :return: """ Vc = np.conj(V) E = V / np.abs(V) Ifc = np.conj(Yf) * Vc # conjugate of "from" current # Perform the following operations # op1 = [diagIfc * Cf * diagV] # op4 = [diagIfc * Cf * diagE] data1 = np.empty(len(Cf.data), dtype=complex) data4 = np.empty(len(Cf.data), dtype=complex) for j in range(Cf.shape[1]): # column j ... for k in range(Cf.indptr[j], Cf.indptr[j + 1]): # for each column entry k ... i = Cf.indices[k] # row i data1[k] = Cf.data[k] * Ifc[i] * V[j] data4[k] = Cf.data[k] * Ifc[i] * E[j] op1 = sp.csc_matrix((data1, Cf.indices, Cf.indptr), shape=Cf.shape) op4 = sp.csc_matrix((data4, Cf.indices, Cf.indptr), shape=Cf.shape) # Perform the following operations # op2 = [diagVf * Yfc * diagVc] # op3 = [diagVf * np.conj(Yf * diagE)] data2 = np.empty(len(Yf.data), dtype=complex) data3 = np.empty(len(Yf.data), dtype=complex) for j in range(Yf.shape[1]): # column j ... for k in range(Yf.indptr[j], Yf.indptr[j + 1]): # for each column entry k ... i = Yf.indices[k] # row i data2[k] = np.conj(Yf.data[k]) * V[F[i]] * Vc[j] data3[k] = V[F[i]] * np.conj(Yf.data[k] * E[j]) op2 = sp.csc_matrix((data2, Yf.indices, Yf.indptr), shape=Yf.shape) op3 = sp.csc_matrix((data3, Yf.indices, Yf.indptr), shape=Yf.shape) dSf_dVa = 1j * (op1 - op2) dSf_dVm = op3 + op4 return dSf_dVa, dSf_dVm @nb.njit() def data_1_4(Cf_data, Cf_indptr, Cf_indices, Ifc, V, E, n_cols): data1 = np.empty(len(Cf_data), dtype=nb.complex128) data4 = np.empty(len(Cf_data), dtype=nb.complex128) for j in range(n_cols): # column j ... for k in range(Cf_indptr[j], Cf_indptr[j + 1]): # for each column entry k ... i = Cf_indices[k] # row i data1[k] = Cf_data[k] * Ifc[i] * V[j] data4[k] = Cf_data[k] * Ifc[i] * E[j] return data1, data4 @nb.njit() def data_2_3(Yf_data, Yf_indptr, Yf_indices, V, F, Vc, E, n_cols): data2 = np.empty(len(Yf_data), dtype=nb.complex128) data3 = np.empty(len(Yf_data), dtype=nb.complex128) for j in range(n_cols): # column j ... for k in range(Yf_indptr[j], Yf_indptr[j + 1]): # for each column entry k ... i = Yf_indices[k] # row i data2[k] = np.conj(Yf_data[k]) * V[F[i]] * Vc[j] data3[k] = V[F[i]] * np.conj(Yf_data[k] * E[j]) return data2, data3 def dSf_dV_fast(Yf, V, F, Cf): """ Derivatives of the branch power w.r.t the branch voltage modules and angles Works for dSf with Yf, F, Cf and for dSt with Yt, T, Ct :param Yf: Admittances matrix of the branches with the "from" buses :param V: Array of voltages :param F: Array of branch "from" bus indices :param Cf: Connectivity matrix of the branches with the "from" buses :return: dSf_dVa, dSf_dVm """ Vc = np.conj(V) E = V / np.abs(V) Ifc = np.conj(Yf) * Vc # conjugate of "from" current # Perform the following operations # op1 = [diagIfc * Cf * diagV] # op4 = [diagIfc * Cf * diagE] data1, data4 = data_1_4(Cf.data, Cf.indptr, Cf.indices, Ifc, V, E, Cf.shape[1]) op1 = sp.csc_matrix((data1, Cf.indices, Cf.indptr), shape=Cf.shape) op4 = sp.csc_matrix((data4, Cf.indices, Cf.indptr), shape=Cf.shape) # Perform the following operations # op2 = [diagVf * Yfc * diagVc] # op3 = [diagVf * np.conj(Yf * diagE)] data2, data3 = data_2_3(Yf.data, Yf.indptr, Yf.indices, V, F, Vc, E, Yf.shape[1]) op2 = sp.csc_matrix((data2, Yf.indices, Yf.indptr), shape=Yf.shape) op3 = sp.csc_matrix((data3, Yf.indices, Yf.indptr), shape=Yf.shape) dSf_dVa = 1j * (op1 - op2) dSf_dVm = op3 + op4 return dSf_dVa, dSf_dVm if __name__ == '__main__': from GridCal.Engine import FileOpen, compile_snapshot_circuit fname = '/home/santi/Documentos/GitHub/GridCal/Grids_and_profiles/grids/Lynn 5 Bus pv.gridcal' main_circuit = FileOpen(fname).open() nc = compile_snapshot_circuit(main_circuit) V = nc.Vbus + np.array([0.01, -0.05, 0.002, -0.007, 0.006]) # to not to be perfectly 1 dSf_dVa_1, dSf_dVm_1 = dSf_dV(Yf=nc.Yf, V=V, F=nc.F, Cf=nc.Cf) dSf_dVa_2, dSf_dVm_2 = dSf_dV_fast(Yf=nc.Yf.tocsc(), V=V, F=nc.F, Cf=nc.Cf.tocsc()) da = dSf_dVa_1 - dSf_dVa_2 dm = dSf_dVm_1 - dSf_dVm_2 assert len(da.data) == 0 assert len(dm.data) == 0 dSt_dVa_1, dSt_dVm_1 = dSt_dV(Yt=nc.Yt, V=V, T=nc.T, Ct=nc.Ct) dSt_dVa_2, dSt_dVm_2 = dSf_dV_fast(Yf=nc.Yt.tocsc(), V=V, F=nc.T, Cf=nc.Ct.tocsc()) da = dSt_dVa_1 - dSt_dVa_2 dm = dSt_dVm_1 - dSt_dVm_2 assert len(da.data) == 0 assert len(dm.data) == 0 print()
from io import StringIO from pytest_mock import MockerFixture from scrapy_feedexporter_azure.storage import BlobStorageFeedStorage def test_saves_item(mocker: MockerFixture): blob_service = mocker.MagicMock() mocker.patch('scrapy_feedexporter_azure.storage.BlobServiceClient').return_value = blob_service container_client = mocker.MagicMock() blob_service.get_container_client.return_value = container_client feed_storage = BlobStorageFeedStorage("azblob://storage_account/container/path", "connection_string") file = StringIO('some text') feed_storage._store_in_thread(file) container_client.upload_blob.assert_called_with(name="path", data=file)
import os from telethon.tl.types import * from KilluaRobot.utils.pluginhelper import runcmd async def convert_to_image(event, borg): lmao = await event.get_reply_message() if not ( lmao.gif or lmao.audio or lmao.voice or lmao.video or lmao.video_note or lmao.photo or lmao.sticker or lmao.media ): await borg.send_message(event.chat_id, "`Format Not Supported.`") return else: try: time.time() downloaded_file_name = await borg.download_media( lmao.media, sedpath, "`Downloading...`" ) except Exception as e: # pylint:disable=C0103,W0703 await borg.send_message(event.chat_id, str(e)) else: lel = await borg.send_message( event.chat_id, "Downloaded to `{}` successfully".format(downloaded_file_name), ) await lel.delete if not os.path.exists(downloaded_file_name): lel = await borg.send_message(event.chat_id, "Download Unsucessfull :(") await lel.delete return if lmao and lmao.photo: lmao_final = downloaded_file_name elif lmao.sticker and lmao.sticker.mime_type == "application/x-tgsticker": rpath = downloaded_file_name image_name20 = os.path.join(sedpath, "SED.png") cmd = f"lottie_convert.py --frame 0 -if lottie -of png {downloaded_file_name} {image_name20}" stdout, stderr = (await runcmd(cmd))[:2] os.remove(rpath) lmao_final = image_name20 elif lmao.sticker and lmao.sticker.mime_type == "image/webp": pathofsticker2 = downloaded_file_name image_new_path = sedpath + "image.png" im = Image.open(pathofsticker2) im.save(image_new_path, "PNG") if not os.path.exists(image_new_path): await event.reply("`Wasn't Able To Fetch Shot.`") return lmao_final = image_new_path elif lmao.audio: sed_p = downloaded_file_name hmmyes = sedpath + "stark.mp3" imgpath = sedpath + "starky.jpg" os.rename(sed_p, hmmyes) await runcmd(f"ffmpeg -i {hmmyes} -filter:v scale=500:500 -an {imgpath}") os.remove(sed_p) if not os.path.exists(imgpath): await event.reply("`Wasn't Able To Fetch Shot.`") return lmao_final = imgpath elif lmao.gif or lmao.video or lmao.video_note: sed_p2 = downloaded_file_name jpg_file = os.path.join(sedpath, "image.jpg") await take_screen_shot(sed_p2, 0, jpg_file) os.remove(sed_p2) if not os.path.exists(jpg_file): await event.reply("`Couldn't Fetch. SS`") return lmao_final = jpg_file return lmao_final async def take_screen_shot( video_file: str, duration: int, path: str = "" ) -> Optional[str]: """take a screenshot""" logger.info( "[[[Extracting a frame from %s ||| Video duration => %s]]]", video_file, duration, ) ttl = duration // 2 thumb_image_path = path or os.path.join(sedpath, f"{basename(video_file)}.jpg") command = f'''ffmpeg -ss {ttl} -i "{video_file}" -vframes 1 "{thumb_image_path}"''' err = (await runcmd(command))[1] if err: logger.error(err) return thumb_image_path if os.path.exists(thumb_image_path) else None async def get_all_admin_chats(event): lul_stark = [] all_chats = [ d.entity for d in await event.client.get_dialogs() if (d.is_group or d.is_channel) ] try: for i in all_chats: if i.creator or i.admin_rights: lul_stark.append(i.id) except: pass return lul_stark async def is_admin(event, user): try: sed = await event.client.get_permissions(event.chat_id, user) if sed.is_admin: is_mod = True else: is_mod = False except: is_mod = False return is_mod async def progress(current, total, event, start, type_of_ps, file_name=None): """Generic progress_callback for both upload.py and download.py""" now = time.time() diff = now - start if round(diff % 10.00) == 0 or current == total: percentage = current * 100 / total speed = current / diff elapsed_time = round(diff) * 1000 time_to_completion = round((total - current) / speed) * 1000 estimated_total_time = elapsed_time + time_to_completion progress_str = "[{0}{1}]\nProgress: {2}%\n".format( "".join(["🟠" for i in range(math.floor(percentage / 5))]), "".join(["🔘" for i in range(20 - math.floor(percentage / 5))]), round(percentage, 2), ) tmp = progress_str + "{0} of {1}\nETA: {2}".format( humanbytes(current), humanbytes(total), time_formatter(estimated_total_time) ) if file_name: await event.edit( "{}\nFile Name: `{}`\n{}".format(type_of_ps, file_name, tmp) ) else: await event.edit("{}\n{}".format(type_of_ps, tmp)) def humanbytes(size): """Input size in bytes, outputs in a human readable format""" # https://stackoverflow.com/a/49361727/4723940 if not size: return "" # 2 ** 10 = 1024 power = 2**10 raised_to_pow = 0 dict_power_n = {0: "", 1: "Ki", 2: "Mi", 3: "Gi", 4: "Ti"} while size > power: size /= power raised_to_pow += 1 return str(round(size, 2)) + " " + dict_power_n[raised_to_pow] + "B" def time_formatter(milliseconds: int) -> str: """Inputs time in milliseconds, to get beautified time, as string""" seconds, milliseconds = divmod(int(milliseconds), 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) days, hours = divmod(hours, 24) tmp = ( ((str(days) + " day(s), ") if days else "") + ((str(hours) + " hour(s), ") if hours else "") + ((str(minutes) + " minute(s), ") if minutes else "") + ((str(seconds) + " second(s), ") if seconds else "") + ((str(milliseconds) + " millisecond(s), ") if milliseconds else "") ) return tmp[:-2]
class ValueObject: pass
import numpy as np def get_dist_mr_to_stride(idx, stride, st_delta, stdir, maxidx): d = 0 if stdir == 'stay': return d elif stdir == 'left': d += st_delta if stride > idx: acts = maxidx - stride d += 2 * acts else: acts = (stride if stride >= idx else maxidx) - idx d += 2 * acts d += st_delta return d def get_dist_mr_at_edge(goal, start, rval, stdir, carry, maxclr): if stdir == 'stay': if rval == 0: g = goal d1 = g - start d2 = maxclr - g + start + 4 else: g = goal d1 = abs(g - start) + 3 d2 = maxclr - g + start + 1 elif stdir == 'left': if rval == 0: g = goal if not carry else (maxclr + 1 + goal) d1 = g - start d2 = abs(maxclr + 1 - g + start) + 3 else: g = goal if not carry else (maxclr + 1 + goal) d1 = abs(g - start) + 3 d2 = abs(maxclr - g + start + 1) else: if rval == 0: g = goal d1 = abs(g - start) + 2 d2 = maxclr - g + start + 2 else: g = goal if not carry else -1 d1 = abs(g - start) + 3 d2 = maxclr - g + start + 3 if d1 <= d2: return d1 else: return d2 def get_dist_mr_stride_dir(station, stride, st_delta, stdir, carry, maxidx, maxclr, done, best_d): doneidx, doneval = done tv = [0] ds = [0] for i, s in enumerate(station): n = len(tv) if n == 0: break for _ in range(n): v = tv.pop(0) d = ds.pop(0) #goup if v == 1: if i == doneidx and i < maxidx: egd = get_dist_mr_at_edge(s, v, doneval, stdir, carry, maxclr) std = get_dist_mr_to_stride(i + (1 if stdir == 'right' else 0), stride, st_delta, stdir, maxidx) total_d = d + egd + std if total_d < best_d: best_d = total_d elif s > 0: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + s - 1 + std if total_d < best_d: best_d = total_d else: new_d = d + s if new_d < best_d: tv.append(1) ds.append(new_d) elif n == 1 and (i < doneidx or doneidx == maxidx): if s > 0: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + s + std if total_d < best_d: best_d = total_d else: new_d = d + s + 1 if new_d < best_d: tv.append(1) ds.append(new_d) #godown if v == 0: if i == doneidx and i < maxidx: egd = get_dist_mr_at_edge(s, v, doneval, stdir, carry, maxclr) std = get_dist_mr_to_stride(i + (1 if stdir == 'right' else 0), stride, st_delta, stdir, maxidx) total_d = d + egd + std if total_d < best_d: best_d = total_d elif s > 0: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + maxclr - s + 1 + std if total_d < best_d: best_d = total_d else: new_d = d + maxclr - s + 2 if new_d < best_d: tv.append(0) ds.append(new_d) else: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + std if total_d < best_d: best_d = total_d else: new_d = d + 1 if new_d < best_d: tv.append(1) ds.append(new_d) elif n == 1 and (i < doneidx or doneidx == maxidx): if s > 1: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + maxclr - s + 2 + std if total_d < best_d: best_d = total_d else: new_d = d + maxclr - s + 3 if new_d < best_d: tv.append(0) ds.append(new_d) elif s == 0: if i == maxidx: std = get_dist_mr_to_stride(i, stride, st_delta, stdir, maxidx) total_d = d + 1 + std if total_d < best_d: best_d = total_d else: new_d = d + 2 if new_d < best_d: tv.append(1) ds.append(new_d) if len(ds) > 1: if ds[0] != ds[1]: deli = ds.index(max(ds)) del tv[deli] del ds[deli] return best_d def get_distance_moving_right(station, stride, colors, best_d, stdir='both'): stnlen = len(station) maxidx = stnlen - 1 maxclr = colors - 1 if all([s == 0 for s in station]): d1 = stride d2 = stnlen - stride if d1 <= d2: return d1 * 2 else: return d2 * 2 elif all([s == maxclr for s in station]): d1 = stride d2 = maxidx - stride if d1 <= d2: return d1 * 2 + 1 else: return d2 * 2 + 1 doneval = station[-1] if doneval in [0, maxclr]: doneidx = 0 for s in reversed(station): if s == doneval: doneidx += 1 else: break doneidx = maxidx - doneidx else: doneidx = maxidx if stride == doneidx: best_d = get_dist_mr_stride_dir(station, stride, 0, 'stay', 0, maxidx, maxclr, (doneidx, doneval), best_d) else: #stride_right if stdir in ['both', 'right']: if stride < doneidx: st_delta = stride + 1 adj_station = [] c = 0 carry = 0 for i, s in enumerate(station): rep = i <= stride if not rep and c == 0: adj_station.extend(station[i:]) break offset = 1 if rep else 0 adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 if i == doneidx: carry = c adj_station.append(adj_s) elif stride > doneidx: st_delta = 0 carry = 0 adj_station = station[:] best_d = get_dist_mr_stride_dir(adj_station, stride, st_delta, 'right', carry, maxidx, maxclr, (doneidx, doneval), best_d) #stride_left if stdir in ['both', 'left']: steq = stride if stride < doneidx else -1 st_delta = doneidx - steq adj_station = [] c = 0 carry = 0 for i, s in enumerate(station): rep = i > steq and i <= doneidx offset = 1 if rep else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 if i == doneidx: carry = c adj_station.append(adj_s) if i >= doneidx and c == 0: adj_station.extend(station[i + 1:]) break best_d = get_dist_mr_stride_dir(adj_station, stride, st_delta, 'left', carry, maxidx, maxclr, (doneidx, doneval), best_d) return best_d def get_dist_ml_to_stride(idx, stride, st_delta, stdir, extra=0): d = 0 if stdir == 'left': acts = idx - (stride + 1 if stride < idx else 1) d += 2 * acts d += st_delta else: d += st_delta acts = stride if stride > 0 and stride < idx else 0 if extra > 0: d += extra + 2 * (acts - 1) else: d += 2 * acts return d def get_dist_ml_stride_dir(station, stride, st_delta, stdir, initvdx, maxidx, maxclr, doneidx, best_d, extra=0): v0, d0 = initvdx done = maxidx - doneidx off = [0] ds = [d0] if v0 == 0: for i, s in enumerate(reversed(station[1:])): n = len(off) if n == 0: break o1 = o2 = off.pop(0) d1 = d2 = ds.pop(0) if n > 1: o2 = off.pop(0) d2 = ds.pop(0) if i == done: std = get_dist_ml_to_stride(doneidx, stride, st_delta, stdir, extra) up_d, down_d = d1 + s, d2 + maxclr - s + 1 + o2 total_d = min(up_d, down_d) + std if total_d < best_d: best_d = total_d break else: if s == maxclr: up_d = d2 + 1 + o2 down_d = up_d + 2 else: up_d = d1 + s + 2 down_d = d2 + maxclr - s + 1 + o2 if min(up_d, down_d) < best_d: if down_d - up_d > 1: off.append(1) ds.append(up_d) elif up_d >= down_d: off.append(-1) ds.append(down_d) else: off.append(1) ds.append(up_d) off.append(-1) ds.append(down_d) else: for i, s in enumerate(reversed(station[1:])): n = len(off) if n == 0: break o1 = o2 = off.pop(0) d1 = d2 = ds.pop(0) if n > 1: o2 = off.pop(0) d2 = ds.pop(0) if i == done: std = get_dist_ml_to_stride(doneidx, stride, st_delta, stdir, extra) up_d, down_d = d1 + s + 1 + o1, d2 + maxclr - s total_d = min(up_d, down_d) + std if total_d < best_d: best_d = total_d break else: if s == maxclr: up_d = down_d = d2 + 2 else: up_d = d1 + s + 3 + o1 down_d = d2 + maxclr - s if min(up_d, down_d) < best_d: if up_d - down_d > 1: off.append(1) ds.append(down_d) elif down_d >= up_d: off.append(-1) ds.append(up_d) else: off.append(-1) ds.append(up_d) off.append(1) ds.append(down_d) return best_d def get_distance_moving_left(station, stride, colors, best_d, stdir='both', doedge=True): stnlen = len(station) maxidx = stnlen - 1 maxclr = colors - 1 if all([s == 0 for s in station]): d1 = stride d2 = stnlen - stride if d1 <= d2: return d1 * 2 else: return d2 * 2 elif all([s == maxclr for s in station]): d1 = stride d2 = maxidx - stride if d1 <= d2: return d1 * 2 + 1 else: return d2 * 2 + 1 doneidx = 1 s0 = station[0] s1 = station[1] if s1 in [0, maxclr]: for s in station[1:]: if s == s1: doneidx += 1 else: break if doneidx > maxidx: best_d = get_distance_moving_right(station, stride, colors, best_d) else: if s1 == 0 and doedge: s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 4 s0_rep2 = 4 - s0_d2 elif s1 == maxclr and doedge: s0_d1 = s0 + 5 s0_rep1 = s0_d1 - 4 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 else: s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 rep_off = 0 if stride == doneidx: if s1 in [0, maxclr] and doedge: tv = [s1] if s0_d1 <= s0_d2: ds = [s0_d1] else: ds = [s0_d2] else: if abs(s0_d1 - s0_d2) > 0: if s0_d1 < s0_d2: tv = [0] ds = [s0_d1] else: tv = [maxclr] ds = [s0_d2] else: tv = [0, maxclr] ds = [s0_d1, s0_d2] for v, d in zip(tv, ds): best_d = get_dist_ml_stride_dir(station, stride, 0, 'right', (v, d), maxidx, maxclr, doneidx, best_d) else: #stride_left if stdir in ['both', 'left']: stpos = stride > doneidx steq = stride if stpos else (maxidx + 1) st_delta = maxidx - steq + 2 adj_station = [] rep_off = int(stpos) c = 0 for i, s in enumerate(station): if stpos: rep = i == doneidx or i == 0 or i > stride else: rep = i == doneidx if i > doneidx and c == 0: adj_station.extend(station[i:]) break offset = 1 if rep else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 if i > 0 else 0 else: c = 0 adj_station.append(adj_s) adj_rep1 = s0_rep1 + rep_off abs_rep1 = abs(adj_rep1) adj_d1 = s0_d1 + abs_rep1 - abs(s0_rep1) adj_rep2 = s0_rep2 + rep_off abs_rep2 = abs(adj_rep2) adj_d2 = s0_d2 + abs_rep2 - abs(s0_rep2) if s1 in [0, maxclr] and doedge: tv = [s1] if adj_d1 <= adj_d2: ds = [adj_d1] else: ds = [adj_d2] else: if abs(adj_d1 - adj_d2) > 0: if adj_d1 < adj_d2: tv = [0] ds = [adj_d1] else: tv = [maxclr] ds = [adj_d2] else: tv = [0, maxclr] ds = [adj_d1, adj_d2] for v, d in zip(tv, ds): best_d = get_dist_ml_stride_dir(adj_station, stride, st_delta, 'left', (v, d), maxidx, maxclr, doneidx, best_d) #stride_right if stdir in ['both', 'right']: if s1 == 0 and not (stride > 0 and stride < doneidx) and doedge: s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 4 s0_rep2 = 4 - s0_d2 elif s1 == maxclr and not (stride > 0 and stride < doneidx) and doedge: s0_d1 = s0 + 5 s0_rep1 = s0_d1 - 4 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 else: s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 stpos = stride > doneidx steq = stride if stpos else stnlen st_delta = steq - doneidx adj_station = [] c = 0 rep_off = 0 if not stpos: adj_s0 = s0 - 1 if adj_s0 < 0: adj_s0 += colors adj_station.append(adj_s0) rep_off = -1 else: adj_station.append(s0) for i, s in enumerate(station): if i == 0: continue rep = i > doneidx and i <= steq offset = 1 if rep else 0 adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 adj_station.append(adj_s) if i >= steq and c == 0: adj_station.extend(station[i + 1:]) break adj_rep1 = s0_rep1 + rep_off abs_rep1 = abs(adj_rep1) adj_d1 = s0_d1 + abs_rep1 - abs(s0_rep1) adj_rep2 = s0_rep2 + rep_off abs_rep2 = abs(adj_rep2) adj_d2 = s0_d2 + abs_rep2 - abs(s0_rep2) extras = [] if s1 in [0, maxclr] and not (stride > 0 and stride < doneidx) and doedge: extras.append(0) tv = [s1] if adj_d1 <= adj_d2: ds = [adj_d1] else: ds = [adj_d2] else: if s1 in [0, maxclr] and (stride > 0 and stride < doneidx): if abs(adj_d1 - adj_d2) > 0: tv = [s1] if adj_d1 < adj_d2: ds = [adj_d1] if s1 == maxclr: extras.append(3) else: extras.append(0) else: ds = [adj_d2] if s1 == 0: extras.append(1) else: extras.append(0) else: tv = [s1, s1] ds = [adj_d1, adj_d2] if s1 == 0: extras.extend([0, 1]) else: extras.extend([3, 0]) else: if abs(adj_d1 - adj_d2) > 0: extras.append(0) if adj_d1 < adj_d2: tv = [0] ds = [adj_d1] else: tv = [maxclr] ds = [adj_d2] else: tv = [0, maxclr] ds = [adj_d1, adj_d2] extras.extend([0, 0]) for v, d, xt in zip(tv, ds, extras): best_d = get_dist_ml_stride_dir(adj_station, stride, st_delta, 'right', (v, d), maxidx, maxclr, doneidx, best_d, xt) return best_d def get_windows(station, colors): max_idx = len(station) - 1 max_symbol = colors - 1 w = False windows = [] winval = 0 window_start = 0 for i, d in enumerate(station[1:]): if not w and (d == 0 or d == max_symbol): window_start = i winval = d w = True elif w and d != winval: windows.append([window_start, i + 1, winval]) if d in [0, max_symbol]: window_start = i winval = d w = True else: w = False if w: windows.append([window_start, max_idx + 1, winval]) return windows def action_distance(station, stride, colors): stnlen = len(station) maxidx = stnlen - 1 maxclr = colors - 1 if all([s == 0 for s in station]): d1 = stride d2 = stnlen - stride if d1 <= d2: return d1 * 2 else: return d2 * 2 elif all([s == maxclr for s in station]): d1 = stride d2 = maxidx - stride if d1 <= d2: return d1 * 2 + 1 else: return d2 * 2 + 1 else: #all right or left best_d = np.inf best_d = get_distance_moving_right(station, stride, colors, best_d) best_d = get_distance_moving_left(station, stride, colors, best_d) windows = get_windows(station, colors) #print(windows) for (lowedge, highedge, winval) in windows: if lowedge == 0 or highedge == stnlen: continue #first right then left #stride in place if stride == highedge: adj_station = [s if i <= lowedge else winval for i, s in enumerate(station)] dp = get_distance_moving_right(adj_station, maxidx, colors, best_d, stdir='left') if dp < best_d: best_d = get_dist_ml_stride_dir(station, stride, 0, 'right', (winval, dp), maxidx, maxclr, stride, best_d) else: #stride right if stride > highedge: adj_station = [s if i <= lowedge else winval for i, s in enumerate(station)] dp = get_distance_moving_right(adj_station, maxidx, colors, best_d, stdir='left') if dp < best_d: st_delta = stride - highedge adj_station = [] c = 0 for i, s in enumerate(station): if i <= highedge: adj_station.append(s) continue rep = i <= stride offset = 1 if rep else 0 adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 adj_station.append(adj_s) if not rep and c == 0: adj_station.extend(station[i + 1:]) break best_d = get_dist_ml_stride_dir(adj_station, stride, st_delta, 'right', (winval, dp), maxidx, maxclr, highedge, best_d) else: if stride < lowedge: steps_forward = stride + 1 steps_end = 0 adj_station = [] c = 0 for i, s in enumerate(station): if i <= stride: adj_station.append(s) continue rep = i <= lowedge offset = 1 if rep else 0 if i <= lowedge: adj_s = s + offset + c else: adj_s = winval + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) if not rep and c == 0: adj_station.extend([winval] * (maxidx - i)) break else: steps_forward = lowedge + 1 steps_end = stride - lowedge adj_station = [s if i <= lowedge else winval for i, s in enumerate(station)] dp = get_distance_moving_right(adj_station, lowedge, colors, best_d) if dp < best_d: steps_back = lowedge + 1 dp += steps_back st_delta = maxidx - highedge adj_station = [] c = 0 for i, s in enumerate(station): if i <= highedge: adj_station.append(s) continue adj_s = s - 1 - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 adj_station.append(adj_s) dp = get_dist_ml_stride_dir(adj_station, maxidx, st_delta, 'right', (winval, dp), maxidx, maxclr, highedge, best_d) if dp < best_d: dp += steps_forward dp += steps_end if dp < best_d: best_d = dp #stride left if stride >= lowedge and stride < highedge: adj_station = [s if i <= lowedge else winval for i, s in enumerate(station)] dp = get_distance_moving_right(adj_station, maxidx, colors, best_d, stdir='left') if dp < best_d: st_delta = 1 adj_station = [] c = 0 for i, s in enumerate(station): if i < highedge: adj_station.append(s) continue rep = i == highedge offset = 1 if rep else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) if not rep and c == 0: adj_station.extend(station[i + 1:]) break best_d = get_dist_ml_stride_dir(adj_station, stride, st_delta, 'left', (winval, dp), maxidx, maxclr, highedge, best_d) else: steq = stride if stride < lowedge else -1 adj_station = [] c = 0 for i, s in enumerate(station): if i > lowedge and c == 0: adj_station.extend([winval] * (maxidx - i + 1)) break offset = (1 if i <= steq else 2) if i <= lowedge else 0 if i <= lowedge: adj_s = s + offset + c else: adj_s = winval + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) dp = get_distance_moving_right(adj_station, lowedge, colors, best_d) if dp < best_d: steps_back = lowedge + 1 dp += steps_back adj_station = [] c = 0 for i, s in enumerate(station): if i < highedge: adj_station.append(s) continue rep = i == highedge offset = 1 if rep else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) if not rep and c == 0: adj_station.extend(station[i + 1:]) break steps_end = 0 if stride > highedge and stride < maxidx: steps_end = maxidx - stride prev_station = adj_station[:] adj_station = [] c = 0 for i, s in enumerate(prev_station): if i <= stride: adj_station.append(s) continue adj_s = s + 1 + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) dp = get_dist_ml_stride_dir(adj_station, highedge, 0, 'left', (winval, dp), maxidx, maxclr, highedge, best_d) if dp < best_d: dp += 1 steps_back = highedge - lowedge - 1 dp += 2 * steps_back steps_end += (lowedge - stride) if stride < lowedge else (lowedge + 1) dp += steps_end if dp < best_d: best_d = dp #first left then right if stride == lowedge: doneidx = highedge rep_off = -1 adj_station = [] c = 0 for i, s in enumerate([s if i == 0 or i >= highedge else 0 for i, s in enumerate(station)]): rep = i > doneidx or i == 0 offset = 1 if rep else 0 adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 adj_station.append(adj_s) s0 = adj_station[0] s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 st_delta = stnlen - doneidx if abs(s0_d1 - s0_d2) > 0: if s0_d1 < s0_d2: tv = [0] ds = [s0_d1] else: tv = [maxclr] ds = [s0_d2] else: tv = [0, maxclr] ds = [s0_d1, s0_d2] prev_station = adj_station[:] for v, d in zip(tv, ds): carryath = 0 if (v == 0 or (v == maxclr and s0 == maxclr)): if winval == maxclr: carryath = 1 else: if winval == 0: carryath = -1 adj_station = [] c = 0 for i, s in enumerate(prev_station): if i < highedge: adj_station.append(s) continue offset = carryath if i == highedge else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 elif adj_s < 0: adj_s += colors c = -1 else: c = 0 adj_station.append(adj_s) dp = get_dist_ml_stride_dir(adj_station, 0, st_delta, 'right', (v, d), maxidx, maxclr, doneidx, best_d) if dp < best_d: carryat1 = int(v == maxclr and not (v == maxclr and s0 == maxclr)) adj_station = [] c = 0 for i, s in enumerate(station): if i == 0: adj_station.append(0) continue offset = carryat1 if i == 1 else 0 adj_s = (s if i <= lowedge else winval) + offset + c if adj_s > maxclr: adj_s -= colors c = 1 else: c = 0 adj_station.append(adj_s) if i >= lowedge and c == 0: adj_station.extend([winval] * (maxidx - i)) break dp2 = get_distance_moving_right(adj_station, lowedge, colors, best_d, stdir='left') dp += dp2 if dp < best_d: best_d = dp else: #stride right doneidx = highedge rep_off = -1 adj_station = [] c = 0 for i, s in enumerate([s if i == 0 or i >= highedge else 0 for i, s in enumerate(station)]): if stride >= lowedge and stride < highedge: rep = i > doneidx or i == 0 offset = 1 if rep else 0 elif stride >= highedge: offset = 2 if i > highedge and i <= stride else (1 if i == 0 or i == highedge or i > stride else 0) else: offset = 2 if i > highedge or i == 0 else (1 if i == highedge else 0) adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 else: c = 0 adj_station.append(adj_s) s0 = adj_station[0] s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 st_delta = stnlen - doneidx if abs(s0_d1 - s0_d2) > 0: if s0_d1 < s0_d2: tv = [0] ds = [s0_d1] else: tv = [maxclr] ds = [s0_d2] else: tv = [0, maxclr] ds = [s0_d1, s0_d2] prev_station = adj_station[:] for v, d in zip(tv, ds): carryath = 0 if (v == 0 or (v == maxclr and s0 == maxclr)): if winval == maxclr: carryath = 1 else: if winval == 0: carryath = -1 adj_station = [] c = 0 for i, s in enumerate(prev_station): if i < highedge: adj_station.append(s) continue offset = carryath if i == highedge else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 elif adj_s < 0: adj_s += colors c = -1 else: c = 0 adj_station.append(adj_s) dp = get_dist_ml_stride_dir(adj_station, 0, st_delta, 'right', (v, d), maxidx, maxclr, doneidx, best_d) if dp < best_d: carryat1 = int(v == maxclr and not (v == maxclr and s0 == maxclr)) adj_station = [] c = 0 for i, s in enumerate(station): if i == 0: adj_station.append(0) continue if stride > 0 and stride <= lowedge: if i == 1: offset = (1 if i > 0 and i <= stride else 0) - carryat1 else: offset = 1 if i > 0 and i <= stride else 0 else: offset = -carryat1 if i == 1 else 0 adj_s = (s if i <= lowedge else winval) - offset - c if adj_s < 0: adj_s += colors c = 1 elif adj_s > maxclr: adj_s -= colors c = -1 else: c = 0 adj_station.append(adj_s) dp2 = get_distance_moving_right(adj_station, lowedge + 1, colors, best_d) dp += dp2 if dp < best_d: steps_forward = (stride if stride >= lowedge + 1 and stride < highedge else highedge) - lowedge - 1 dp += steps_forward * 2 steps_end = (stride - highedge + 1) if stride >= highedge else ((stride + 1) if stride <= lowedge else 0) dp += steps_end if dp < best_d: best_d = dp #stride left doneidx = highedge rep_off = -1 adj_station = [] c = 0 for i, s in enumerate([s if i == 0 or i >= highedge else 0 for i, s in enumerate(station)]): if stride < lowedge: rep = i > doneidx or i == 0 offset = 1 if rep else 0 elif stride >= highedge: offset = 1 if i > highedge and i <= stride else 0 else: offset = -1 if i == highedge else 0 adj_s = s - offset - c if adj_s < 0: adj_s += colors c = 1 elif adj_s > maxclr: adj_s -= colors c = -1 else: c = 0 adj_station.append(adj_s) s0 = adj_station[0] s0_d1 = s0 + 2 s0_rep1 = s0_d1 - 1 s0_d2 = maxclr - s0 + 1 s0_rep2 = 1 - s0_d2 st_delta = stnlen - doneidx if abs(s0_d1 - s0_d2) > 0: if s0_d1 < s0_d2: tv = [0] ds = [s0_d1] else: tv = [maxclr] ds = [s0_d2] else: tv = [0, maxclr] ds = [s0_d1, s0_d2] prev_station = adj_station[:] for v, d in zip(tv, ds): carryath = 0 if (v == 0 or (v == maxclr and s0 == maxclr and stride < lowedge)): if winval == maxclr: carryath = 1 else: if winval == 0: carryath = -1 adj_station = [] c = 0 for i, s in enumerate(prev_station): if i < highedge: adj_station.append(s) continue offset = carryath if i == highedge else 0 adj_s = s + offset + c if adj_s > maxclr: adj_s -= colors c = 1 elif adj_s < 0: adj_s += colors c = -1 else: c = 0 adj_station.append(adj_s) dp = get_dist_ml_stride_dir(adj_station, 0, st_delta, 'right', (v, d), maxidx, maxclr, doneidx, best_d) if dp < best_d: carryat1 = int(v == maxclr and not (v == maxclr and s0 == maxclr and stride < lowedge)) adj_station = [] c = 0 for i, s in enumerate(station): if i == 0: adj_station.append(0) continue if stride < lowedge: if i == 1: offset = (1 if i > stride and i <= lowedge else 0) + carryat1 else: offset = 1 if i > stride and i <= lowedge else 0 else: if i == 1: offset = (1 if i <= lowedge else 0) + carryat1 else: offset = 1 if i <= lowedge else 0 adj_s = (s if i <= lowedge else winval) + offset + c if adj_s > maxclr: adj_s -= colors c = 1 elif adj_s < 0: adj_s += colors c = -1 else: c = 0 adj_station.append(adj_s) dp2 = get_distance_moving_right(adj_station, lowedge, colors, best_d) dp += dp2 if dp < best_d: steps_back = (lowedge - stride) if stride < lowedge else lowedge if stride > lowedge: steps_back += (maxidx - stride + 1) if stride >= highedge - 1 else (maxidx - highedge + 2) dp += steps_back steps_end = (highedge - 1 - stride) if stride > lowedge and stride < highedge - 1 else 0 dp += steps_end if dp < best_d: best_d = dp return best_d
"""Parse the output of writelog.sh into info about git commits. """ import argparse import json import sys SEP="@@@@@" def parse_diff(st): """Parse a commit diff from the given string. Args: st: diff string """ D_BEGIN = 1 D_FILES = 2 D_HEADER = 3 D_BODY = 4 state = D_BEGIN def add_diff(): putf = fromfile if fromfile != tofile: if fromfile == "dev/null": putf = tofile else: putf = fromfile #print("WARNING: fromfile!=tofile") part["files"][putf]["text"] = curtxt part = {"files": dict()} fromfile = "" tofile = "" curtxt = "" for l in st.split("\n"): if state == D_BEGIN: if len(l) > 0: state = D_FILES if state == D_FILES: if len(l) == 0: state = D_HEADER else: (ins, rem, fname) = l.split() part["files"][fname] = { "ins": ins, "rem": rem } elif state == D_HEADER: #expect # index md5..md5 # new file # deleted file # new mode # old mode # Binary files if l.startswith("---"): (_, fromfile) = l.split() #XXX: don't assume a/ fromfile = fromfile[fromfile.find("/")+1:] elif l.startswith("+++"): (_, tofile) = l.split() tofile = tofile[tofile.find("/")+1:] state = D_BODY elif state == D_BODY: if l.startswith("diff --git"): #print "CURTXT", curtxt, "ff", fromfile, "tf", tofile add_diff() curtxt = "" state = D_HEADER elif not l.startswith("@@"): curtxt += l + "\n" #print "CURTXT", curtxt, "ff", fromfile, "tf", tofile if len(curtxt) > 0: add_diff() #/for return part def parse(fin): """Parse tuples from the given input Args: fin: file pointer """ last = None field = None for l in fin: if l.startswith(SEP+SEP): if last: last["diff"] = parse_diff(last["diff"]) yield last last = dict() elif l.startswith(SEP): #trim last newline if field and field in last: last[field] = last[field][:-1] field = l.strip()[len(SEP):] else: if not field in last: last[field] = "" last[field] += l def print_times(iput): for tup in parse(iput): print tup["time"] def print_files(iput): for tup in parse(iput): if "diff" in tup: for (fname, cont) in tup["diff"]["files"].items(): print fname def write_json(iput, fname): with open(fname, "w") as fp: json.dump(list(parse(iput)), fp, indent=2) def write_json(iput, fname, filter=lambda x: True): changes = [] for tup in parse(iput): if filter(tup): changes.append(tup) with open(fname, "w") as fp: json.dump(changes, fp, indent=2) def filter_has_file(name): """Filter restricted to only those files with a given name """ def fn(d): if "diff" in d: if "files" in d["diff"]: if name in d["diff"]["files"]: return True return False return fn if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("mode") args = parser.parse_args() if args.mode == "filtered": write_json(sys.stdin, "filtered-mysql.json", filter_has_file("manifests/mysql.pp")) elif args.mode == "unfiltered": write_json(sys.stdin, "all-changes.json") elif args.mode == "print_files": print_files(sys.stdin)
#!/usr/bin/env python import logging import sys import os import signal import conf import core from thrift.transport import TSocket from thrift.transport import TTransport from thrift.protocol.TBinaryProtocol import TBinaryProtocolAcceleratedFactory from thrift.server import TServer from rpc import RndNodeApi logger = logging.getLogger(__name__) class RndProcessHandler(object): def runTask(self, rtc): logger.debug("starting core.ProcessMgr.runProcess(rtc): %s", rtc.taskId) core.ProcessMgr.runProcess(rtc) logger.debug("finished core.ProcessMgr.runProcess(rtc): %s", rtc.taskId) def killRunningTask(self, procId, reason): core.ProcessMgr.killRunningTask(procId, reason) def getRunningTasks(self): logger.debug("starting core.ProcessMgr.getRunningTasks()") tasks = core.ProcessMgr.getRunningTasks() logger.debug("finished core.ProcessMgr.getRunningTasks()") return tasks def reboot(self, now=False): core.ProcessMgr.reboot(now) def pingPong(self, withTasks=False): ping = core.Profiler.getPing() ping.isReboot = core.ProcessMgr.isReboot if withTasks: ping.tasks = self.getRunningTasks() return ping def get_server(api, handler, port, **kwargs): processor = api.Processor(handler) socket = TSocket.TServerSocket(port=port) tfactory = kwargs.get('transport') or TTransport.TFramedTransportFactory() pfactory = kwargs.get('protocol') or TBinaryProtocolAcceleratedFactory() server = TServer.TThreadPoolServer(processor, socket, tfactory, pfactory) server.setNumThreads(8) return server def exit_handler(*args): logger.info("Caught SIGTERM. Shutting down Process Manager...") core.ProcessMgr.shutdown() logger.info("Process Manager finished shutting down") os._exit(0) signal.signal(signal.SIGTERM, exit_handler) def start(): logger.info("Staring Render Node Daemon on TCP port %d" % conf.NETWORK_PORT) server = get_server(RndNodeApi, RndProcessHandler(), conf.NETWORK_PORT) try: server.serve() except KeyboardInterrupt: exit_handler() sys.exit(0)
import asyncio import irc import time TWITCH_RATE_LIMITS = { "ALL": [15, 30], "AUTH": [10, 10], "JOIN": [15, 10], } class Client(irc.Client): def __init__(self, endpoint: irc.Endpoint) -> None: super().__init__(endpoint) self._status = { "ALL": [TWITCH_RATE_LIMITS["ALL"][0], time.time()], "AUTH": [TWITCH_RATE_LIMITS["AUTH"][0], time.time()], "JOIN": [TWITCH_RATE_LIMITS["JOIN"][0], time.time()], } def _is_rate_limited(self, rate_limit: str) -> bool: current_time = time.time() allowance, last_check = self._status[rate_limit] rate, per = TWITCH_RATE_LIMITS[rate_limit] time_passed = current_time - last_check allowance += time_passed * (rate / per) if allowance > rate: allowance = rate if allowance < 1.0: rate_limited = True else: rate_limited = False allowance -= 1.0; self._status |= {rate_limit: [allowance, current_time]} return rate_limited def send(self, command: irc.Command) -> None: can_send = False if not self._is_rate_limited("ALL"): can_send = True if isinstance(command, irc.Join): if not self._is_rate_limited("JOIN"): can_send = True elif isinstance(command, irc.Pass): if not self._is_rate_limited("AUTH"): can_send = True else: can_send = True if isinstance(command, irc.Pong): can_send = True if can_send: super().send(command)
import sublime, sublime_plugin class AngularjsToggleSettingsCommand(sublime_plugin.ApplicationCommand): """Enables/Disables settings""" def run(self, setting): s = sublime.load_settings('AngularJS-sublime-package.sublime-settings') s.set(setting, not s.get(setting, False)) sublime.save_settings('AngularJS-sublime-package.sublime-settings') def is_checked(self, setting): s = sublime.load_settings('AngularJS-sublime-package.sublime-settings') return s.get(setting, False)
#!/usr/bin/env python # -*- coding: utf-8 -*- # # normspace.py # shelly # """ Normalise spaces from the lines on stdin, stripping outer spaces and converting all sequences of spaces or tabs into single spaces. """ import sys import optparse import re def normspace(istream=sys.stdin, ostream=sys.stdout): for l in istream: l = l.strip() l = re.sub('[ \t]+', ' ', l) print >> ostream, l def _create_option_parser(): usage = \ """%prog normspace [options] Normalises whitespace in lines from stdin. Strips outer spaces and replaces any sequences of whitespace with a single space.""" parser = optparse.OptionParser(usage) return parser def main(argv): parser = _create_option_parser() (options, args) = parser.parse_args(argv) if args: parser.print_help() sys.exit(1) try: normspace(*args) except KeyboardInterrupt: pass if __name__ == '__main__': main(sys.argv[1:])
from focusnfe.core.base import BaseAPIWrapper class NFe(BaseAPIWrapper): pass
import discord import command_template class Disable(command_template.Command): def __init__(self, handler): super(Disable, self).__init__(handler) self.enabled = True # Should never change self.perm_level = self.permission_levels["owner"] self.cmd_name = "disable" self.arguments = "[command]" self.help_description = "Disables a command from the bot. This command can not be disabled." async def command(self, message: discord.Message): if not self.execute_cmd(message): return text_result = self.handler.disable_command(self.rm_cmd(message)) await self.send_message_check(message.channel, text_result)
"""Dedup related entities Revision ID: 0361dbb4d96f Revises: a5d97318b751 Create Date: 2016-12-18 22:00:05.397609 """ # revision identifiers, used by Alembic. revision = '0361dbb4d96f' down_revision = 'a5d97318b751' from alembic import op import sqlalchemy as sa def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('entity', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.Text(), nullable=False), sa.Column('type', sa.String(length=256), nullable=False), sa.PrimaryKeyConstraint('id') ) op.create_index('ix_entity', 'entity', ['name', 'type'], unique=True) op.create_table('session_entity', sa.Column('session_id', sa.Integer(), nullable=True), sa.Column('entity_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['entity_id'], ['entity.id'], ondelete='CASCADE'), sa.ForeignKeyConstraint(['session_id'], ['session.id'], ondelete='CASCADE') ) op.create_index('ix_session_entity_session_id_entity_id', 'session_entity', ['session_id', 'entity_id'], unique=False) op.create_table('test_entity', sa.Column('test_id', sa.Integer(), nullable=True), sa.Column('entity_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['entity_id'], ['entity.id'], ondelete='CASCADE'), sa.ForeignKeyConstraint(['test_id'], ['test.id'], ondelete='CASCADE') ) op.create_index('ix_test_entity_test_id_entity_id', 'test_entity', ['test_id', 'entity_id'], unique=False) op.execute('INSERT INTO entity (type, name) SELECT DISTINCT type, name FROM related_entity') op.execute('INSERT INTO session_entity (session_id, entity_id) SELECT session.id, entity.id FROM session JOIN related_entity ON related_entity.session_id = session.id JOIN entity ON related_entity.name = entity.name and related_entity.type = entity.type') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_index('ix_test_entity_test_id_entity_id', table_name='test_entity') op.drop_table('test_entity') op.drop_index('ix_session_entity_session_id_entity_id', table_name='session_entity') op.drop_table('session_entity') op.drop_index('ix_entity', table_name='entity') op.drop_table('entity') # ### end Alembic commands ###
""" 680 valid palindrome 2 easy Given a non-empty string s, you may delete at most one character. Judge whether you can make it a palindrome. """ class Solution: def validPalindrome(self, s: str) -> bool: def check_removed(m, n): return all([s[k] == s[m+n-k] for k in range(m, n)]) for i in range(0, int(len(s)/2)): j = len(s)-i-1 if s[i] != s[j]: return check_removed(i+1, j) or check_removed(i, j-1) return True sol = Solution() s = "vbh" print(sol.validPalindrome(s))
import pytest from fixtures import get_keys, get_children, get_title from craigslist_meta import Country selector = "country" key = "germany" def test_keys(get_keys): """Test `keys` method for country returns valid keys for instantiation.""" country_keys = Country.keys expected_keys = sorted(list(set(get_keys(selector)))) assert country_keys == expected_keys def test_key(): """Test `key` attribute of country instance.""" country_key = Country(key).key expected_key = key assert country_key == expected_key def test_children(get_children): """Test `children` attribute of country instance.""" country_children = Country(key).children expected_children = list(get_children(selector, key)) assert country_children == expected_children def test_title(get_title): """Test `title` attribute of country instance.""" country_title = Country(key).title expected_title = get_title(selector, key) assert country_title == expected_title def test_url_raises(): """`url` attribute should raise an exception for Country.""" with pytest.raises(AttributeError, match="'Country' object has no attribute 'url'"): Country(key).url def test_all(): """Test `all` method yields all country instances.""" country_instances = [country for country in Country.all()] assert all(isinstance(item, Country) for item in country_instances) def test_key_raises(): """Constructing Country with an invalid key should raise an exception.""" with pytest.raises(ValueError): Country("invalid_key")
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import six from toscaparser.common import exception from toscaparser import functions from toscaparser.tests.base import TestCase from toscaparser.tosca_template import ToscaTemplate from toscaparser.utils.gettextutils import _ class IntrinsicFunctionsTest(TestCase): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/tosca_single_instance_wordpress.yaml") params = {'db_name': 'my_wordpress', 'db_user': 'my_db_user', 'db_root_pwd': '12345678'} tosca = ToscaTemplate(tosca_tpl, parsed_params=params) def setUp(self): TestCase.setUp(self) exception.ExceptionCollector.stop() # Added as sometimes negative testcases fails. def _get_node(self, node_name, tosca=None): if tosca is None: tosca = self.tosca return [ node for node in tosca.nodetemplates if node.name == node_name][0] def _get_operation(self, interfaces, operation): return [ interface for interface in interfaces if interface.name == operation][0] def _get_property(self, node_template, property_name): return [prop.value for prop in node_template.get_properties_objects() if prop.name == property_name][0] def _get_inputs_dict(self): inputs = {} for input in self.tosca.inputs: inputs[input.name] = input.default return inputs def _get_input(self, name): self._get_inputs_dict()[name] def test_get_property(self): wordpress = self._get_node('wordpress') operation = self._get_operation(wordpress.interfaces, 'configure') wp_db_password = operation.inputs['wp_db_password'] self.assertIsInstance(wp_db_password, functions.GetProperty) result = wp_db_password.result() self.assertEqual('wp_pass', result) def test_get_property_with_input_param(self): wordpress = self._get_node('wordpress') operation = self._get_operation(wordpress.interfaces, 'configure') wp_db_user = operation.inputs['wp_db_user'] self.assertIsInstance(wp_db_user, functions.GetProperty) result = wp_db_user.result() self.assertEqual('my_db_user', result) def test_unknown_capability_property(self): self.assertRaises(exception.ValidationError, self._load_template, 'functions/test_unknown_capability_property.yaml') exception.ExceptionCollector.assertExceptionMessage( KeyError, _('\'Property "unknown" was not found in capability ' '"database_endpoint" of node template "database" referenced ' 'from node template "database".\'')) def test_get_input_in_properties(self): mysql_dbms = self._get_node('mysql_dbms') expected_inputs = ['db_root_pwd', 'db_port'] props = mysql_dbms.get_properties() for key in props.keys(): prop = props[key] self.assertIsInstance(prop.value, functions.GetInput) expected_inputs.remove(prop.value.input_name) self.assertListEqual(expected_inputs, []) def test_get_input_validation(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_unknown_input_in_property.yaml') exception.ExceptionCollector.assertExceptionMessage( exception.UnknownInputError, _('Unknown input "objectstore_name".')) self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_unknown_input_in_interface.yaml') exception.ExceptionCollector.assertExceptionMessage( exception.UnknownInputError, _('Unknown input "image_id".')) self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_invalid_function_signature.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Expected one argument for function "get_input" but received ' '"[\'cpus\', \'cpus\']".')) def test_get_input_default_value_result(self): mysql_dbms = self._get_node('mysql_dbms') dbms_port = self._get_property(mysql_dbms, 'port') self.assertEqual(3306, dbms_port.result()) dbms_root_password = self._get_property(mysql_dbms, 'root_password') self.assertEqual(dbms_root_password.result(), '12345678') def test_get_property_with_host(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_get_property_with_host.yaml") mysql_database = self._get_node('mysql_database', ToscaTemplate(tosca_tpl, parsed_params={ 'db_root_pwd': '123' })) operation = self._get_operation(mysql_database.interfaces, 'configure') db_port = operation.inputs['db_port'] self.assertIsInstance(db_port, functions.GetProperty) result = db_port.result() self.assertEqual(3306, result) test = operation.inputs['test'] self.assertIsInstance(test, functions.GetProperty) result = test.result() self.assertEqual(1, result) def test_get_property_with_nested_params(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/tosca_nested_property_names_indexes.yaml") webserver = self._get_node('wordpress', ToscaTemplate(tosca_tpl, parsed_params={ 'db_root_pwd': '1234'})) operation = self._get_operation(webserver.interfaces, 'configure') wp_endpoint_prot = operation.inputs['wp_endpoint_protocol'] self.assertIsInstance(wp_endpoint_prot, functions.GetProperty) self.assertEqual('tcp', wp_endpoint_prot.result()) wp_list_prop = operation.inputs['wp_list_prop'] self.assertIsInstance(wp_list_prop, functions.GetProperty) self.assertEqual(3, wp_list_prop.result()) def test_get_property_with_capabilties_inheritance(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_capabilties_inheritance.yaml") some_node = self._get_node('some_node', ToscaTemplate(tosca_tpl, parsed_params={ 'db_root_pwd': '1234'})) operation = self._get_operation(some_node.interfaces, 'configure') some_input = operation.inputs['some_input'] self.assertIsInstance(some_input, functions.GetProperty) self.assertEqual('someval', some_input.result()) def test_get_property_source_target_keywords(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_get_property_source_target_keywords.yaml") tosca = ToscaTemplate(tosca_tpl, parsed_params={'db_root_pwd': '1234'}) for node in tosca.nodetemplates: for relationship, trgt in node.relationships.items(): rel_template = trgt.get_relationship_template()[0] break operation = self._get_operation(rel_template.interfaces, 'pre_configure_source') target_test = operation.inputs['target_test'] self.assertIsInstance(target_test, functions.GetProperty) self.assertEqual(1, target_test.result()) source_port = operation.inputs['source_port'] self.assertIsInstance(source_port, functions.GetProperty) self.assertEqual(3306, source_port.result()) def test_get_prop_cap_host(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_get_prop_cap_host.yaml") some_node = self._get_node('some_node', ToscaTemplate(tosca_tpl)) some_prop = some_node.get_properties()['some_prop'] self.assertIsInstance(some_prop.value, functions.GetProperty) self.assertEqual('someval', some_prop.value.result()) def test_get_prop_cap_bool(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_get_prop_cap_bool.yaml") some_node = self._get_node('software', ToscaTemplate(tosca_tpl)) some_prop = some_node.get_properties()['some_prop'] self.assertIsInstance(some_prop.value, functions.GetProperty) self.assertEqual(False, some_prop.value.result()) class GetAttributeTest(TestCase): def _load_template(self, filename): return ToscaTemplate(os.path.join( os.path.dirname(os.path.abspath(__file__)), 'data', filename), parsed_params={'db_root_pwd': '1234'}) def _get_operation(self, interfaces, operation): return [ interface for interface in interfaces if interface.name == operation][0] def test_get_attribute_in_outputs(self): tpl = self._load_template('tosca_single_instance_wordpress.yaml') website_url_output = [ x for x in tpl.outputs if x.name == 'website_url'][0] self.assertIsInstance(website_url_output.value, functions.GetAttribute) self.assertEqual('server', website_url_output.value.node_template_name) self.assertEqual('private_address', website_url_output.value.attribute_name) def test_get_attribute_invalid_args(self): expected_msg = _('Illegal arguments for function "get_attribute".' ' Expected arguments: "node-template-name", ' '"req-or-cap"(optional), "property name"') err = self.assertRaises(ValueError, functions.get_function, None, None, {'get_attribute': []}) self.assertIn(expected_msg, six.text_type(err)) err = self.assertRaises(ValueError, functions.get_function, None, None, {'get_attribute': ['x']}) self.assertIn(expected_msg, six.text_type(err)) def test_get_attribute_unknown_node_template_name(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_get_attribute_unknown_node_template_name.yaml') exception.ExceptionCollector.assertExceptionMessage( KeyError, _('\'Node template "unknown_node_template" was not found.\'')) def test_get_attribute_unknown_attribute(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_get_attribute_unknown_attribute_name.yaml') exception.ExceptionCollector.assertExceptionMessage( KeyError, _('\'Attribute "unknown_attribute" was not found in node template ' '"server".\'')) def test_get_attribute_host_keyword(self): tpl = self._load_template( 'functions/test_get_attribute_host_keyword.yaml') def assert_get_attribute_host_functionality(node_template_name): node = [x for x in tpl.nodetemplates if x.name == node_template_name][0] configure_op = [ x for x in node.interfaces if x.name == 'configure'][0] ip_addr_input = configure_op.inputs['ip_address'] self.assertIsInstance(ip_addr_input, functions.GetAttribute) self.assertEqual('server', ip_addr_input.get_referenced_node_template().name) assert_get_attribute_host_functionality('dbms') assert_get_attribute_host_functionality('database') def test_get_attribute_host_not_found(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_get_attribute_host_not_found.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('"get_attribute: [ HOST, ... ]" was used in node template ' '"server" but "tosca.relationships.HostedOn" was not found in ' 'the relationship chain.')) def test_get_attribute_illegal_host_in_outputs(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_get_attribute_illegal_host_in_outputs.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('"get_attribute: [ HOST, ... ]" is not allowed in "outputs" ' 'section of the TOSCA template.')) def test_get_attribute_with_index(self): self._load_template( 'functions/test_get_attribute_with_index.yaml') def test_get_attribute_with_index_error(self): self.assertRaises( exception.ValidationError, self._load_template, 'functions/test_get_attribute_with_index_error.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Illegal arguments for function "get_attribute". ' 'Unexpected attribute/index value "0"')) def test_get_attribute_source_target_keywords(self): tosca_tpl = os.path.join( os.path.dirname(os.path.abspath(__file__)), "data/functions/test_get_attribute_source_target_keywords.yaml") tosca = ToscaTemplate(tosca_tpl, parsed_params={'db_root_pwd': '12345678'}) for node in tosca.nodetemplates: for relationship, trgt in node.relationships.items(): rel_template = trgt.get_relationship_template()[0] break operation = self._get_operation(rel_template.interfaces, 'pre_configure_source') target_test = operation.inputs['target_test'] self.assertIsInstance(target_test, functions.GetAttribute) source_port = operation.inputs['source_port'] self.assertIsInstance(source_port, functions.GetAttribute) def test_get_attribute_with_nested_params(self): self._load_template( 'functions/test_get_attribute_with_nested_params.yaml') def test_implicit_attribute(self): self.assertIsNotNone(self._load_template( 'functions/test_get_implicit_attribute.yaml')) def test_get_attribute_capability_inheritance(self): self.assertIsNotNone(self._load_template( 'functions/test_container_cap_child.yaml')) class ConcatTest(TestCase): def _load_template(self, filename): return ToscaTemplate(os.path.join( os.path.dirname(os.path.abspath(__file__)), filename)) def test_validate_concat(self): tosca = self._load_template("data/functions/test_concat.yaml") server_url_output = [ output for output in tosca.outputs if output.name == 'url'][0] func = functions.get_function(self, tosca.outputs, server_url_output.value) self.assertIsInstance(func, functions.Concat) self.assertRaises(exception.ValidationError, self._load_template, 'data/functions/test_concat_invalid.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Invalid arguments for function "concat". Expected at least ' 'one arguments.')) class TokenTest(TestCase): def _load_template(self, filename): return ToscaTemplate(os.path.join( os.path.dirname(os.path.abspath(__file__)), filename)) def test_validate_token(self): tosca = self._load_template("data/functions/test_token.yaml") server_url_output = [ output for output in tosca.outputs if output.name == 'url'][0] func = functions.get_function(self, tosca.outputs, server_url_output.value) self.assertIsInstance(func, functions.Token) self.assertRaises(exception.ValidationError, self._load_template, 'data/functions/test_token_invalid.yaml') exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Invalid arguments for function "token". Expected at least ' 'three arguments.')) exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Invalid arguments for function "token". Expected ' 'integer value as third argument.')) exception.ExceptionCollector.assertExceptionMessage( ValueError, _('Invalid arguments for function "token". Expected ' 'single char value as second argument.'))
#!/usr/bin/env python # -*- coding: utf-8 -*- # Part of the masterfile package: https://github.com/uwmadison-chm/masterfile # Copyright (c) 2020 Board of Regents of the University of Wisconsin System # Written by Nate Vack <[email protected]> at the Center for Healthy Minds # at the University of Wisconsin-Madison. # Released under MIT licence; see LICENSE at the package root. from __future__ import absolute_import import logging from collections import defaultdict from masterfile import errors logging.basicConfig(level=logging.DEBUG, format='%(message)s') logger = logging.getLogger() logger.setLevel(logging.INFO) def validate(mf): logger.debug('validators.duplicate_column:validate()') duplicates = _find_duplicate_columns(mf) errlist = [ errors.DuplicateColumnError( locations=locations, message='duplicate column {}'.format(col) ) for col, locations in duplicates.items() ] logger.debug('found {} errors'.format(len(errlist))) return errlist def _map_column_locations(mf): """ Find all the places where a column is used. Algorithm: * Start a column_locations dict. Keys will be column names, values will be lists of locations. * Iterate over all individual masterfiles * Iterate over all columns as column_name * For each column, append it location (filename, column number) to column_locations[column_name] * Return column_locations """ column_locations = defaultdict(list) for f, df in zip(mf._candidate_data_files, mf._unprocessed_dataframes): for col_index, col_name in enumerate(df.columns): column_locations[col_name].append(errors.Location.smart_create( filename=f, column_index=col_index)) return column_locations def _find_duplicate_columns(mf): """ Find every column that occurs more than once in the masterfile data, except for the index column. """ column_locations = _map_column_locations(mf) dupes = { column_name: locations for (column_name, locations) in column_locations.items() if (len(locations) > 1 and (not column_name == mf.index_column)) } return dupes
# Copyright (c) 2014 Catalyst IT Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.utils.translation import ugettext_lazy as _ from horizon import tables class CSVSummary(tables.LinkAction): name = "csv_summary" verbose_name = _("Download CSV Summary") icon = "download" def get_link_url(self): return self.table.kwargs['billing'].csv_link() class BillingTable(tables.DataTable): resource = tables.Column("resource", link=("#"), verbose_name=_("Resource")) count = tables.Column("count", verbose_name=_("Count")) cost = tables.Column("cost", verbose_name=_("Cost")) class Meta: name = "billing" verbose_name = _("Breakdown") columns = ("resource", "count", "cost") table_actions = (CSVSummary,) multi_select = False
line=input() if 'A' in line or 'B' in line or 'C' in line or 'D' in line or 'E' in line or 'F' in line or 'G' in line or 'J' in line or 'K' in line or 'L' in line or 'M' in line or 'P' in line or 'R' in line or 'Q' in line or 'T' in line or 'U' in line or 'V' in line or 'W' in line or 'Y' in line: print('NO') else: print('YES')
from sys import argv from argparse import ArgumentParser from csv import reader, writer from numpy import array from collections import deque import os import sys sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) from efficiency import migrations def create_parser(): """Parse command-line arguments and return parser.""" parser = ArgumentParser( description='Calculate the efficiency of using snapshots for the '\ 'selected algorithm and the number of active snapshots. '\ 'Efficiency is the amount of data migrating and '\ 'the ratio of occupied logical blocks to physical ones.' ) parser.add_argument('filename', type=str, help='name of csv file (without extension) '\ 'that represents the data distribution model') parser.add_argument('nactive', type=int, help='number of active snapshots') algorithm = parser.add_mutually_exclusive_group(required=True) algorithm.add_argument('--cow', action='store_true', help='choose copy-on-write algorithm') algorithm.add_argument('--row', action="store_true", help='choose redirect-on-write algorithm') algorithm.add_argument('--row_m', action="store_true", help='choose redirect-on-write algorithm '\ 'with forward refs') return parser def row_efficiency(file_name, nactive, modified=False): """Compute and return the number of migrating data for row. Arguments: file_name -- name of csv file (with extension) nactive -- number of active snapshots """ migrations_row = migrations.row_m if modified else migrations.row migrations_count = 0 source = dict() snapshots = dict() with open(file_name, newline='') as fin: block_reader = reader(fin) for line in block_reader: isnap, iblock = int(line[0]), int(line[1]) if not iblock: print(isnap) block = array(line[2:], dtype=int).astype(bool) try: migrations_count += migrations_row(snapshots[iblock]) source[iblock] += block snapshots[iblock].append(block) except KeyError: source[iblock] = block.copy() snapshots[iblock] = deque([block], maxlen=nactive) logical = 0 for _, block in source.items(): logical += bool(sum(block)) physical = 0 for _, snapshot in snapshots.items(): for block in snapshot: physical += bool(sum(block)) return migrations_count, logical / physical def cow_efficiency(file_name, nactive): """Compute and return the number of migrating data for cow. Arguments: file_name -- name of csv file (with extension) nactive -- number of active snapshots """ migrations_count = 0 source = dict() snapshots = dict() with open(file_name, newline='') as fin: block_reader = reader(fin) for line in block_reader: isnap, iblock = int(line[0]), int(line[1]) if not iblock: print(isnap) block = array(line[2:], dtype=int).astype(bool) try: migrations_count += migrations.cow(source[iblock], block) source[iblock] += block snapshots[iblock].append(block) except KeyError: source[iblock] = block.copy() snapshots[iblock] = deque([block], maxlen=nactive) logical = 0 for _, block in source.items(): logical += bool(sum(block)) physical = 0 for _, snapshot in snapshots.items(): for block in snapshot: physical += bool(sum(block)) return migrations_count, logical / physical if __name__ == '__main__': parser = create_parser() args = parser.parse_args(argv[1:]) result = (0, 0) algorithm = 'None' file_name = 'models/' + args.filename + '.csv' if args.cow: algorithm = 'cow' result = cow_efficiency(file_name, args.nactive) elif args.row: algorithm = 'row' result = row_efficiency(file_name, args.nactive) elif args.row_m: algorithm = 'row_m' result = row_efficiency(file_name, args.nactive, True) with open('models/results.csv', 'a', newline='') as fout: csv_writer = writer(fout) csv_writer.writerow([args.filename, args.nactive, algorithm, result[0], result[1]]) print(result)
import requests, json, cv2, glob, os from playsound import playsound addr = 'http://localhost:5000' test_url = addr + '/audify' content_type = 'image/jpeg' headers = {'content-type': content_type} img = cv2.imread('../assets/book1.jpg') _, img_encoded = cv2.imencode('.jpg', img) response = requests.post(test_url, data=img_encoded.tostring(), headers=headers) list_of_files = glob.glob('./all_recordings/*') latest_file = max(list_of_files, key=os.path.getctime) print (latest_file) playsound(latest_file)
from django.db import models # Create your models here. class Category(models.Model): title = models.CharField(max_length=50) slug = models.SlugField() class Meta: verbose_name_plural = "Categories" def __str__(self): return self.title class Post(models.Model): title = models.CharField(max_length=100) body = models.TextField() category = models.ForeignKey(Category, on_delete=models.PROTECT) date = models.DateTimeField(auto_now_add=True) def __str__(self): return self.title
#! /usr/bin/python ''' This part of the program is used to manipulate the local directory structure ''' __author__ = "xiaofeng" __date__ = "2019-12-8" import pickle import time from datetime import datetime from ServerLog import ServerLogger #导入服务器端日志库 import logging class OpeDir: def __init__(self): self.filename = "dir.data" self.loogger = ServerLogger() #服务器端要添加异常 try: with open(self.filename, "rb") as file: self.dir = pickle.load(file) print("Reading the local directory data...", end = " ") self.logger.writingLog(logging.INFO, "Reading the local directory data...") print("\t done.") self.logger.writingLog(logging.INFO, "\t done.") except: self.logger.writingLog(logging.WARNING, "No local directory records.") def updateDir(self): with open(self.filename, "rb") as file: self.dir = pickle.load(file) def insertRecord(self, _record): peer_md5 = self.getAllMd5() if _record[3] in peer_md5: print("The record already exists.") else: #构造新记录 new_record = {"peer_id": str(_record[1]), "file_name": _record[2], "Checksum": \ _record[3], "Date_added": str(datetime.now())} #插入新记录 self.dir.append(new_record) #写入存储 self.writeDirToFile() print("A new record has been registered. ", new_record["peer_id"], " ", new_record["file_name"]) def writeDirToFile(self): with open(self.filename, "wb") as file: pickle.dump(self.dir, file) return def getAllMd5(self): s = set() #声明为集合的目的为无重复值 for i in self.dir: s.add(i["Checksum"]) return s def searchRecord(self, file_name): print("Updating local data...") self.updateDir() #更新目录数据 results = list() for i in self.dir: if i["file_name"] == file_name: results.append(i) else: continue if len(results) > 0: print("Peer_Id | File_name | Checksum | Date_added :\n") for item in results: print(" ", item["peer_id"], " ", item["file_name"], " ", item["Checksum"], " ", item["Date_added"]) else: print("There is no file has this name or there is no file in server at all\n") return def listAll(self): print("Updating local data...") self.updateDir() #更新目录数据 print("Peer_Id | file_name | Checksum | Date_added:\n") for i in self.dir: print(" ", i["peer_id"], " ", i["file_name"], " ", i["Checksum"], " ", i["Date_added"]) return
from django.conf.urls import patterns, include, url from django.contrib import admin admin.autodiscover() import notifications from django_project.urls import router urlpatterns = patterns('', url(r'^', include(router.urls)), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), url(r'^api-token-auth/', 'rest_framework.authtoken.views.obtain_auth_token'), url(r'^admin/', include(admin.site.urls)), ) urlpatterns += patterns('', ('^inbox/notifications/', include(notifications.urls)), url(r'^toggle/(?P<app>[^\/]+)/(?P<model>[^\/]+)/(?P<id>\d+)/$', 'follow.views.toggle', name='toggle'), url(r'^toggle/(?P<app>[^\/]+)/(?P<model>[^\/]+)/(?P<id>\d+)/$', 'follow.views.toggle', name='follow'), url(r'^toggle/(?P<app>[^\/]+)/(?P<model>[^\/]+)/(?P<id>\d+)/$', 'follow.views.toggle', name='unfollow'), )
# Generated from rdsquery.g4 by ANTLR 4.9.2 from antlr4 import * from io import StringIO import sys if sys.version_info[1] > 5: from typing import TextIO else: from typing.io import TextIO def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2\34") buf.write("\u00df\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7") buf.write("\t\7\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r") buf.write("\4\16\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\4\23") buf.write("\t\23\4\24\t\24\4\25\t\25\4\26\t\26\4\27\t\27\4\30\t\30") buf.write("\4\31\t\31\4\32\t\32\4\33\t\33\4\34\t\34\4\35\t\35\4\36") buf.write("\t\36\4\37\t\37\4 \t \4!\t!\4\"\t\"\4#\t#\4$\t$\3\2\3") buf.write("\2\3\2\3\2\3\2\3\2\3\3\3\3\3\3\3\3\3\4\3\4\3\5\3\5\3\5") buf.write("\3\5\3\6\3\6\3\7\3\7\3\b\3\b\3\t\3\t\3\n\3\n\3\13\3\13") buf.write("\3\f\3\f\3\r\3\r\3\r\3\16\3\16\3\16\3\17\3\17\3\17\3\20") buf.write("\3\20\3\21\3\21\6\21u\n\21\r\21\16\21v\3\21\3\21\3\22") buf.write("\3\22\3\22\3\22\3\22\3\23\3\23\3\23\3\24\3\24\3\24\3\25") buf.write("\3\25\3\25\3\26\3\26\3\26\3\27\3\27\3\27\3\30\3\30\6\30") buf.write("\u0091\n\30\r\30\16\30\u0092\3\31\3\31\3\31\3\31\3\31") buf.write("\3\32\3\32\5\32\u009c\n\32\3\33\3\33\3\33\3\33\3\33\3") buf.write("\33\5\33\u00a4\n\33\3\34\3\34\3\34\3\34\3\34\3\34\3\35") buf.write("\3\35\3\35\3\36\3\36\3\37\3\37\3\37\5\37\u00b4\n\37\3") buf.write(" \6 \u00b7\n \r \16 \u00b8\3 \3 \6 \u00bd\n \r \16 \u00be") buf.write("\3!\6!\u00c2\n!\r!\16!\u00c3\3\"\3\"\3\"\3\"\3\"\3\"\3") buf.write("\"\3\"\3\"\5\"\u00cf\n\"\3#\6#\u00d2\n#\r#\16#\u00d3\3") buf.write("#\7#\u00d7\n#\f#\16#\u00da\13#\3$\3$\3$\3$\2\2%\3\3\5") buf.write("\4\7\5\t\6\13\7\r\b\17\t\21\n\23\13\25\f\27\r\31\16\33") buf.write("\17\35\20\37\21!\22#\2%\2\'\2)\2+\2-\2/\2\61\2\63\23\65") buf.write("\24\67\259\26;\2=\27?\30A\31C\32E\33G\34\3\2\6\3\2\62") buf.write(";\4\2--//\4\2C\\c|\5\2\13\f\16\17\"\"\2\u00e1\2\3\3\2") buf.write("\2\2\2\5\3\2\2\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2") buf.write("\2\r\3\2\2\2\2\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2\2\2") buf.write("\25\3\2\2\2\2\27\3\2\2\2\2\31\3\2\2\2\2\33\3\2\2\2\2\35") buf.write("\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2\63\3\2\2\2\2\65\3\2") buf.write("\2\2\2\67\3\2\2\2\29\3\2\2\2\2=\3\2\2\2\2?\3\2\2\2\2A") buf.write("\3\2\2\2\2C\3\2\2\2\2E\3\2\2\2\2G\3\2\2\2\3I\3\2\2\2\5") buf.write("O\3\2\2\2\7S\3\2\2\2\tU\3\2\2\2\13Y\3\2\2\2\r[\3\2\2\2") buf.write("\17]\3\2\2\2\21_\3\2\2\2\23a\3\2\2\2\25c\3\2\2\2\27e\3") buf.write("\2\2\2\31g\3\2\2\2\33j\3\2\2\2\35m\3\2\2\2\37p\3\2\2\2") buf.write("!r\3\2\2\2#z\3\2\2\2%\177\3\2\2\2\'\u0082\3\2\2\2)\u0085") buf.write("\3\2\2\2+\u0088\3\2\2\2-\u008b\3\2\2\2/\u008e\3\2\2\2") buf.write("\61\u0094\3\2\2\2\63\u009b\3\2\2\2\65\u009d\3\2\2\2\67") buf.write("\u00a5\3\2\2\29\u00ab\3\2\2\2;\u00ae\3\2\2\2=\u00b3\3") buf.write("\2\2\2?\u00b6\3\2\2\2A\u00c1\3\2\2\2C\u00ce\3\2\2\2E\u00d1") buf.write("\3\2\2\2G\u00db\3\2\2\2IJ\7h\2\2JK\7t\2\2KL\7q\2\2LM\7") buf.write("o\2\2MN\7\"\2\2N\4\3\2\2\2OP\7v\2\2PQ\7q\2\2QR\7\"\2\2") buf.write("R\6\3\2\2\2ST\7\61\2\2T\b\3\2\2\2UV\7\60\2\2VW\7\60\2") buf.write("\2WX\7\60\2\2X\n\3\2\2\2YZ\7?\2\2Z\f\3\2\2\2[\\\7/\2\2") buf.write("\\\16\3\2\2\2]^\7-\2\2^\20\3\2\2\2_`\7%\2\2`\22\3\2\2") buf.write("\2ab\7\"\2\2b\24\3\2\2\2cd\7@\2\2d\26\3\2\2\2ef\7>\2\2") buf.write("f\30\3\2\2\2gh\7@\2\2hi\7?\2\2i\32\3\2\2\2jk\7>\2\2kl") buf.write("\7?\2\2l\34\3\2\2\2mn\7#\2\2no\7?\2\2o\36\3\2\2\2pq\7") buf.write("\60\2\2q \3\2\2\2rt\7]\2\2su\t\2\2\2ts\3\2\2\2uv\3\2\2") buf.write("\2vt\3\2\2\2vw\3\2\2\2wx\3\2\2\2xy\7_\2\2y\"\3\2\2\2z") buf.write("{\5;\36\2{|\5;\36\2|}\5;\36\2}~\5;\36\2~$\3\2\2\2\177") buf.write("\u0080\5;\36\2\u0080\u0081\5;\36\2\u0081&\3\2\2\2\u0082") buf.write("\u0083\5;\36\2\u0083\u0084\5;\36\2\u0084(\3\2\2\2\u0085") buf.write("\u0086\5;\36\2\u0086\u0087\5;\36\2\u0087*\3\2\2\2\u0088") buf.write("\u0089\5;\36\2\u0089\u008a\5;\36\2\u008a,\3\2\2\2\u008b") buf.write("\u008c\5;\36\2\u008c\u008d\5;\36\2\u008d.\3\2\2\2\u008e") buf.write("\u0090\7\60\2\2\u008f\u0091\5;\36\2\u0090\u008f\3\2\2") buf.write("\2\u0091\u0092\3\2\2\2\u0092\u0090\3\2\2\2\u0092\u0093") buf.write("\3\2\2\2\u0093\60\3\2\2\2\u0094\u0095\t\3\2\2\u0095\u0096") buf.write("\5)\25\2\u0096\u0097\7<\2\2\u0097\u0098\5+\26\2\u0098") buf.write("\62\3\2\2\2\u0099\u009c\7\\\2\2\u009a\u009c\5\61\31\2") buf.write("\u009b\u0099\3\2\2\2\u009b\u009a\3\2\2\2\u009c\64\3\2") buf.write("\2\2\u009d\u009e\5)\25\2\u009e\u009f\7<\2\2\u009f\u00a0") buf.write("\5+\26\2\u00a0\u00a1\7<\2\2\u00a1\u00a3\5-\27\2\u00a2") buf.write("\u00a4\5/\30\2\u00a3\u00a2\3\2\2\2\u00a3\u00a4\3\2\2\2") buf.write("\u00a4\66\3\2\2\2\u00a5\u00a6\5#\22\2\u00a6\u00a7\7/\2") buf.write("\2\u00a7\u00a8\5%\23\2\u00a8\u00a9\7/\2\2\u00a9\u00aa") buf.write("\5\'\24\2\u00aa8\3\2\2\2\u00ab\u00ac\5\65\33\2\u00ac\u00ad") buf.write("\5\63\32\2\u00ad:\3\2\2\2\u00ae\u00af\t\2\2\2\u00af<\3") buf.write("\2\2\2\u00b0\u00b4\5? \2\u00b1\u00b4\5A!\2\u00b2\u00b4") buf.write("\5C\"\2\u00b3\u00b0\3\2\2\2\u00b3\u00b1\3\2\2\2\u00b3") buf.write("\u00b2\3\2\2\2\u00b4>\3\2\2\2\u00b5\u00b7\t\2\2\2\u00b6") buf.write("\u00b5\3\2\2\2\u00b7\u00b8\3\2\2\2\u00b8\u00b6\3\2\2\2") buf.write("\u00b8\u00b9\3\2\2\2\u00b9\u00ba\3\2\2\2\u00ba\u00bc\7") buf.write("\60\2\2\u00bb\u00bd\t\2\2\2\u00bc\u00bb\3\2\2\2\u00bd") buf.write("\u00be\3\2\2\2\u00be\u00bc\3\2\2\2\u00be\u00bf\3\2\2\2") buf.write("\u00bf@\3\2\2\2\u00c0\u00c2\5;\36\2\u00c1\u00c0\3\2\2") buf.write("\2\u00c2\u00c3\3\2\2\2\u00c3\u00c1\3\2\2\2\u00c3\u00c4") buf.write("\3\2\2\2\u00c4B\3\2\2\2\u00c5\u00c6\7v\2\2\u00c6\u00c7") buf.write("\7t\2\2\u00c7\u00c8\7w\2\2\u00c8\u00cf\7g\2\2\u00c9\u00ca") buf.write("\7h\2\2\u00ca\u00cb\7c\2\2\u00cb\u00cc\7n\2\2\u00cc\u00cd") buf.write("\7u\2\2\u00cd\u00cf\7g\2\2\u00ce\u00c5\3\2\2\2\u00ce\u00c9") buf.write("\3\2\2\2\u00cfD\3\2\2\2\u00d0\u00d2\t\4\2\2\u00d1\u00d0") buf.write("\3\2\2\2\u00d2\u00d3\3\2\2\2\u00d3\u00d1\3\2\2\2\u00d3") buf.write("\u00d4\3\2\2\2\u00d4\u00d8\3\2\2\2\u00d5\u00d7\t\2\2\2") buf.write("\u00d6\u00d5\3\2\2\2\u00d7\u00da\3\2\2\2\u00d8\u00d6\3") buf.write("\2\2\2\u00d8\u00d9\3\2\2\2\u00d9F\3\2\2\2\u00da\u00d8") buf.write("\3\2\2\2\u00db\u00dc\t\5\2\2\u00dc\u00dd\3\2\2\2\u00dd") buf.write("\u00de\b$\2\2\u00deH\3\2\2\2\16\2v\u0092\u009b\u00a3\u00b3") buf.write("\u00b8\u00be\u00c3\u00ce\u00d3\u00d8\3\b\2\2") return buf.getvalue() class rdsqueryLexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 T__1 = 2 T__2 = 3 T__3 = 4 T__4 = 5 T__5 = 6 T__6 = 7 T__7 = 8 T__8 = 9 T__9 = 10 T__10 = 11 T__11 = 12 T__12 = 13 T__13 = 14 T__14 = 15 GLUE = 16 TIME_OFFSET = 17 PARTIAL_TIME = 18 FULL_DATE = 19 FULL_TIME = 20 LITERAL = 21 REAL = 22 INTEGER = 23 BOOLEAN = 24 ID = 25 WS = 26 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "'from '", "'to '", "'/'", "'...'", "'='", "'-'", "'+'", "'#'", "' '", "'>'", "'<'", "'>='", "'<='", "'!='", "'.'" ] symbolicNames = [ "<INVALID>", "GLUE", "TIME_OFFSET", "PARTIAL_TIME", "FULL_DATE", "FULL_TIME", "LITERAL", "REAL", "INTEGER", "BOOLEAN", "ID", "WS" ] ruleNames = [ "T__0", "T__1", "T__2", "T__3", "T__4", "T__5", "T__6", "T__7", "T__8", "T__9", "T__10", "T__11", "T__12", "T__13", "T__14", "GLUE", "DATE_FULL_YEAR", "DATE_MONTH", "DATE_M_DAY", "TIME_HOUR", "TIME_MINUTE", "TIME_SECOND", "TIME_SEC_FRAC", "TIME_NUM_OFFSET", "TIME_OFFSET", "PARTIAL_TIME", "FULL_DATE", "FULL_TIME", "DIGIT", "LITERAL", "REAL", "INTEGER", "BOOLEAN", "ID", "WS" ] grammarFileName = "rdsquery.g4" def __init__(self, input=None, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.9.2") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
import random num = random.randrange(1000, 10000) n = int(input("Guess the 4 digit number:")) if (n == num): print("Great! You guessed the number in just 1 try! You're a Mastermind!") else: ctr = 0 while (n != num): ctr += 1 count = 0 n = str(n) num = str(num) correct = ['X']*4 for i in range(0, 4): if (n[i] == num[i]): count += 1 correct[i] = n[i] else: continue if (count < 4) and (count != 0): print("Not quite the number. But you did get ", count, " digit(s) correct!") print("Also these numbers in your input were correct.") for k in correct: print(k, end=' ') print('\n') print('\n') n = int(input("Enter your next choice of numbers: ")) elif (count == 0): print("None of the numbers in your input match.") n = int(input("Enter your next choice of numbers: ")) if n == num: print("You've become a Mastermind!") print("It took you only", ctr, "tries.") ####################################################### ################################################################
# -*- coding: utf-8 -*- """ File downloading functions. """ # Authors: Tan Tingyi <[email protected]> import os import shutil import time from urllib import parse, request from urllib.error import HTTPError, URLError from tqdm.auto import tqdm from ._logging import logger from .misc import sizeof_fmt def _get_http(url, temp_file_name, initial_size, timeout): """Safely (resume a) download to a file from http(s).""" # Actually do the reading response = None extra = '' if initial_size > 0: logger.debug(' Resuming at %s' % (initial_size, )) req = request.Request( url, headers={'Range': 'bytes=%s-' % (initial_size, )}) try: response = request.urlopen(req, timeout=timeout) content_range = response.info().get('Content-Range', None) if (content_range is None or not content_range.startswith('bytes %s-' % (initial_size, ))): raise IOError('Server does not support resuming') except (KeyError, HTTPError, URLError, IOError): initial_size = 0 response = None else: extra = ', resuming at %s' % (sizeof_fmt(initial_size), ) if response is None: response = request.urlopen(request.Request(url), timeout=timeout) file_size = int(response.headers.get('Content-Length', '0').strip()) file_size += initial_size url = response.geturl() logger.info('Downloading %s (%s%s)' % (url, sizeof_fmt(file_size), extra)) mode = 'ab' if initial_size > 0 else 'wb' chunk_size = 8192 # 2 ** 13 with tqdm(desc='Downloading dataset', total=file_size, unit='B', unit_scale=True, unit_divisor=1024) as progress: del file_size del url with open(temp_file_name, mode) as local_file: while True: t0 = time.time() chunk = response.read(chunk_size) dt = time.time() - t0 if dt < 0.01: chunk_size *= 2 elif dt > 0.1 and chunk_size > 8192: chunk_size = chunk_size // 2 if not chunk: break local_file.write(chunk) progress.update(len(chunk)) def _fetch_file(url, file_name, resume=True, timeout=30.): """Load requested file, downloading it if needed or requested. Parameters ---------- url: string The url of file to be downloaded. file_name: string Name, along with the path, of where downloaded file will be saved. resume: bool, optional If true, try to resume partially downloaded files. timeout : float The URL open timeout. """ temp_file_name = file_name + ".part" scheme = parse.urlparse(url).scheme if scheme not in ('http', 'https'): raise NotImplementedError('Cannot use scheme %r' % (scheme, )) try: # Triage resume if not os.path.exists(temp_file_name): resume = False if resume: with open(temp_file_name, 'rb', buffering=0) as local_file: local_file.seek(0, 2) initial_size = local_file.tell() del local_file else: initial_size = 0 _get_http(url, temp_file_name, initial_size, timeout) shutil.move(temp_file_name, file_name) except Exception: logger.error('Error while fetching file %s.' ' Dataset fetching aborted.' % url) raise def _url_to_local_path(url, path): """Mirror a url path in a local destination (keeping folder structure).""" destination = parse.urlparse(url).path # First char should be '/', and it needs to be discarded if len(destination) < 2 or destination[0] != '/': raise ValueError('Invalid URL') destination = os.path.join(path, request.url2pathname(destination)[1:]) return destination
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from ._markdown import \ markdown_autogen, \ markdown_code_block, \ markdown_comment, \ markdown_inline
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2019, WSO2 Inc. (http://wso2.org) All Rights Reserved. # # WSO2 Inc. licenses this file to you under the Apache License, # Version 2.0 (the "License"); you may not use this file except # in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # # ---------------------------------------------------------------------------- # Create summary of SAR reports # ---------------------------------------------------------------------------- import argparse import pandas as pd import json import re def main(): parser = argparse.ArgumentParser( description='Create SAR summary from CSV reports') parser.add_argument('--start-timestamp', required=True, help='Start timestamp in seconds.', type=int) parser.add_argument('--end-timestamp', required=True, help='End timestamp in seconds.', type=int) parser.add_argument('--sar-csv-reports', required=True, help='SAR CSV reports.', nargs='+', type=str) parser.add_argument('--output-file', default="sar-summary.json", required=False, help='Output JSON file') args = parser.parse_args() sar_averages = {} for sar_report in args.sar_csv_reports: try: print('Reading {filename}'.format(filename=sar_report)) df = pd.read_csv(sar_report, sep=';') except pd.errors.EmptyDataError: print('WARNING: {filename} was empty. Skipping.'.format( filename=sar_report)) continue df = df[(df['timestamp'] >= args.start_timestamp) & (df['timestamp'] <= args.end_timestamp)] df = df.drop(columns=['hostname', 'interval', 'timestamp']) df = df.rename(columns=lambda x: re.sub(r'[%/\-]', '', x)) sar_averages.update(df.mean().round(2).to_dict()) with open(args.output_file, 'w') as outfile: json.dump(sar_averages, outfile) if __name__ == "__main__": main()
from django.apps import AppConfig class LaudosConfig(AppConfig): name = 'laudos'
import numpy as np import pandas as pd def weighted_random_choice(df, p, target_units): """ Proposal selection using weighted random choice. Parameters ---------- df : DataFrame Proposals to select from p : Series Weights for each proposal target_units: int Number of units to build Returns ------- build_idx : ndarray Index of buildings selected for development """ # We don't know how many developments we will need, as they # differ in net_units. If all developments have net_units of 1 # than we need target_units of them. So we choose the smaller # of available developments and target_units. num_to_sample = int(min(len(df.index), target_units)) choices = np.random.choice(df.index.values, size=num_to_sample, replace=False, p=p) tot_units = df.net_units.loc[choices].values.cumsum() ind = int(np.searchsorted(tot_units, target_units, side="left")) + 1 return choices[:ind] def weighted_random_choice_multiparcel(df, p, target_units): """ Proposal selection using weighted random choice in the context of multiple proposals per parcel. Parameters ---------- df : DataFrame Proposals to select from p : Series Weights for each proposal target_units: int Number of units to build Returns ------- build_idx : ndarray Index of buildings selected for development """ choice_idx = weighted_random_choice(df, p, target_units) choices = df.loc[choice_idx] while True: # If multiple proposals sampled for a given parcel, keep only one choice_counts = choices.parcel_id.value_counts() chosen_multiple = choice_counts[choice_counts > 1].index.values single_choices = choices[~choices.parcel_id.isin(chosen_multiple)] duplicate_choices = choices[choices.parcel_id.isin(chosen_multiple)] keep_choice = duplicate_choices.parcel_id.drop_duplicates(keep='first') dup_choices_to_keep = duplicate_choices.loc[keep_choice.index] choices = pd.concat([single_choices, dup_choices_to_keep]) if choices.net_units.sum() >= target_units: break df = df[~df.parcel_id.isin(choices.parcel_id)] if len(df) == 0: break p = p.reindex(df.index) p = p / p.sum() new_target = target_units - choices.net_units.sum() next_choice_idx = weighted_random_choice(df, p, new_target) next_choices = df.loc[next_choice_idx] choices = pd.concat([choices, next_choices]) return choices.index.values
from abc import ABC from abc import abstractmethod from dataclasses import dataclass from dataclasses import field from enum import Enum from itertools import groupby from itertools import product from operator import itemgetter from typing import Any from typing import Iterable from typing import List from typing import Tuple from mip import BINARY from mip import Model from mip import OptimizationStatus from mip import maximize from mip import xsum from nltk import SnowballStemmer from nltk import word_tokenize class Language(str, Enum): german = "german" english = "english" @dataclass class Token: tid: int text: str stages: List[Any] = field(default_factory=list) class StageBase(ABC): """ Base class for matching stages. Matching stages produce representations for each token that can be used to find matching tokens in the other sentence. """ def __init__(self, weight: float, *args, **kwargs): self._weight = weight @property def weight(self) -> float: return self._weight @abstractmethod def process_tokens(self, tokens: List[Token]): """ Append a representation of each token to each token's stages list. """ def validate(self, tokens: List[Token]): if len(set(len(token.stages) for token in tokens)) > 1: raise AssertionError( "Unequal number of stage representations in tokens." ) class IdentityStage(StageBase): """ Exact matching of tokens """ def process_tokens(self, tokens: List[Token]): for token in tokens: token.stages.append(token.text) class StemmingStage(StageBase): """ Use stemming to find tokens with the same stem """ def __init__(self, weight: float, language: Language, *args, **kwargs): super().__init__(weight, *args, **kwargs) self._stemmer = SnowballStemmer( language=language.value, ignore_stopwords=True ) def process_tokens(self, tokens: List[Token]): for token in tokens: token.stages.append(self._stemmer.stem(token.text)) def tokenize(text: str, language: Language) -> List[Token]: return [ Token(tid=i, text=token) for i, token in enumerate(word_tokenize(text, language=language.value)) ] def preprocess( stages: List[StageBase], text: str, language: Language ) -> List[Token]: """ Tokenize the given text and apply all given matching stages to each token. """ tokens = tokenize(text, language) for stage in stages: stage.process_tokens(tokens) stage.validate(tokens) return tokens def align( hypothesis: List[Token], reference: List[Token], stages: List[StageBase] ) -> List[Tuple[int, int]]: """ Produce an alignment between matching tokens of each sentence. If there are multiple possible alignments, the one with the minimum number of crossings between matches is chosen. Matches are weighted by their stage weight. Uses the following binary integer linear program to find the optimal alignment: variables: M(i,j): set of possible matches, defined by the different stages C = M(i,j) x M(k,l): set of possible crossings of matches, for each i < k and j > l OR i > k and j < l W: weights for each stage constraints: each token is matched with not more than one other token m(i,0) + ... + m(i, j) <= 1 m(0,j) + ... + m(i, j) <= 1 there must be as many matches as there possible matches between connected nodes in the alignment graph m(0,0) ... m(i,j) == sum(possible matches per clique) if two matches cross each other, the corresponding crossing var is 1 m(i,j) + m(k,l) - c(i,j,k,l) <= 1 objective function: maximize match scores, minimize crossings MAX (SUM w(i,j) * m(i,j) - SUM c(i,j,k,l)) """ # compute all possible matches with their best weight over all stages match_weights = [ [float("-inf")] * len(reference) for _ in range(len(hypothesis)) ] for hyptoken, reftoken in product(hypothesis, reference): weights = [ stage.weight for i, stage in enumerate(stages) if hyptoken.stages[i] == reftoken.stages[i] ] if weights: match_weights[hyptoken.tid][reftoken.tid] = max(weights) # create BILP model = Model("alignment") model.verbose = 0 # set to n > 0 to see solver output # create matching variables for each possible match match_vars = { (h, r): model.add_var(var_type=BINARY) for h in range(len(hypothesis)) for r in range(len(reference)) if match_weights[h][r] > float("-inf") } # create crossing variables for each possible crossing of any two matches # add constraint that crossing var will be 1 if both matches are selected crossing_vars = [] for (i, j), (k, l) in product(match_vars.keys(), repeat=2): if (i < k and j > l) or (i > k and j < l): cvar = model.add_var(var_type=BINARY) model += ( xsum([-1.0 * cvar, match_vars[(i, j)], match_vars[(k, l)]]) <= 1 ) crossing_vars.append(cvar) # add uniqueness constraints: each word is matched to one other word # words that can't be matched are already excluded for h in range(len(hypothesis)): matches = [ match_vars[(h, r)] for r in range(len(reference)) if match_weights[h][r] > float("-inf") ] if matches: model += xsum(matches) <= 1 for r in range(len(reference)): matches = [ match_vars[(h, r)] for h in range(len(hypothesis)) if match_weights[h][r] > float("-inf") ] if matches: model += xsum(matches) <= 1 # require all possible matches to be part of the solution cliques = compute_cliques(match_vars.keys()) required_matches = sum( [ min(len(set(h for h, _ in clique)), len(set(r for _, r in clique))) for clique in cliques ] ) model += xsum(match_vars.values()) == required_matches # define objective: maximize match scores and minimize crossings model.objective = maximize( xsum( [match_weights[h][r] * match_vars[(h, r)] for h, r in match_vars] + [-1.0 * cvar for cvar in crossing_vars] ) ) status = model.optimize() assert ( status != OptimizationStatus.INFEASIBLE ), "The alignment problem was infeasible. Please open an issue on github." return [match for match, var in match_vars.items() if var.x >= 0.99] def compute_cliques( matches: Iterable[Tuple[int, int]] ) -> List[List[Tuple[int, int]]]: """ Group matches that are connected in the alignment graph into cliques """ matches = list(matches) # Simple union-find: group matches that connect the same node in the # hypothesis or reference sentence. sets = {index: index for index in range(len(matches))} for i, (h_i, r_i) in enumerate(matches): for j, (h_j, r_j) in enumerate(matches[i:]): if h_i == h_j or r_i == r_j: sets[i + j] = sets[i] cliques = [ [matches[index] for index, _ in group] for _, group in groupby( sorted(sets.items(), key=itemgetter(1)), key=itemgetter(1) ) ] return cliques def count_chunks(alignment: List[Tuple[int, int]]) -> int: """ Find the minimum number of chunks the alignment can be grouped into. """ alignment = sorted(alignment) num_chunks = 0 last_h, last_r = -2, -2 for (h, r) in alignment: if abs(last_h - h) != 1 or abs(last_r - r) != 1: num_chunks += 1 last_h, last_r = (h, r) return num_chunks def meteor( hypothesis: str, reference: str, stages: List[StageBase], language: Language, ) -> float: """ Compute meteor score for the given sentence pair with the given set of matching stages. """ hypo_tokens = preprocess(stages, hypothesis, language) ref_tokens = preprocess(stages, reference, language) if len(hypo_tokens) == 0 or len(ref_tokens) == 0: if len(hypo_tokens) != len(ref_tokens): return 0.0 return 1.0 alignment = align(hypo_tokens, ref_tokens, stages) num_matches = len(alignment) if num_matches == 0: return 0.0 precision = num_matches / float(len(hypo_tokens)) recall = num_matches / float(len(ref_tokens)) fscore = (10 * precision * recall) / (recall + 9 * precision) num_chunks = count_chunks(alignment) penalty = 0.5 * (num_chunks / num_matches) ** 3 if num_chunks > 1 else 0 score = fscore * (1 - penalty) return score def meteor_macro_avg( hypotheses: List[str], references: List[str], stages: List[StageBase], language: Language, ) -> float: """ Apply meteor score to multiple hypothesis-reference pairs and return the macro average. """ scores = [ meteor(hypothesis, reference, stages, language) for hypothesis, reference in zip(hypotheses, references) ] return sum(scores) / len(scores)
#!/usr/bin/env python3 ''' NowPlaying as run via python -m ''' #import faulthandler import logging import multiprocessing import os import pathlib import socket import sys from PySide2.QtCore import QCoreApplication, QStandardPaths, Qt # pylint: disable=no-name-in-module from PySide2.QtGui import QIcon # pylint: disable=no-name-in-module from PySide2.QtWidgets import QApplication # pylint: disable=no-name-in-module import nowplaying import nowplaying.bootstrap import nowplaying.config import nowplaying.db import nowplaying.systemtray # pragma: no cover # # as of now, there isn't really much here to test... basic bootstrap stuff # def run_bootstrap(bundledir=None): ''' bootstrap the app ''' logpath = os.path.join( QStandardPaths.standardLocations(QStandardPaths.DocumentsLocation)[0], QCoreApplication.applicationName(), 'logs') pathlib.Path(logpath).mkdir(parents=True, exist_ok=True) logpath = os.path.join(logpath, "debug.log") # we are in a hurry to get results. If it takes longer than # 5 seconds, consider it a failure and move on. At some # point this should be configurable but this is good enough for now socket.setdefaulttimeout(5.0) nowplaying.bootstrap.setuplogging(logpath=logpath) nowplaying.bootstrap.upgrade(bundledir=bundledir) # fail early if metadatadb can't be configured metadb = nowplaying.db.MetadataDB() metadb.setupsql() def main(): ''' main entrypoint ''' multiprocessing.freeze_support() #faulthandler.enable() # set paths for bundled files if getattr(sys, 'frozen', False) and hasattr(sys, '_MEIPASS'): bundledir = getattr(sys, '_MEIPASS', os.path.abspath(os.path.dirname(__file__))) else: bundledir = os.path.abspath(os.path.dirname(__file__)) QCoreApplication.setAttribute(Qt.AA_ShareOpenGLContexts) qapp = QApplication(sys.argv) qapp.setQuitOnLastWindowClosed(False) nowplaying.bootstrap.set_qt_names() run_bootstrap(bundledir=bundledir) config = nowplaying.config.ConfigFile(bundledir=bundledir) logging.getLogger().setLevel(config.loglevel) logging.captureWarnings(True) tray = nowplaying.systemtray.Tray() # pylint: disable=unused-variable icon = QIcon(config.iconfile) qapp.setWindowIcon(icon) exitval = qapp.exec_() logging.info('shutting down v%s', nowplaying.version.get_versions()['version']) sys.exit(exitval) if __name__ == '__main__': main()
#the main aim of this program is to retrive all ASIN's of product import bs4,requests,re print('enter the url of product') prod_url = input() res=requests.get(prod_url) #print(res.text) try: res.raise_for_status() regexobj=re.compile(r'.*?data-asin=("\w\w\w\w\w\w\w\w\w\w").*?') asinlists=regexobj.findall(res.text) playfile=open('asin.txt','w') for asin_code in asinlists: playfile.write(asin_code) playfile.close() except: #error 503:server is too busy so try agian later print('Error:503 Your request can\'t be processed ')
# lilypondpngvideogenerator -- processes lilypond file, scans postscript # file for page boundaries, analyzes tempo # track and generates MP4 video and # subtitle file # # author: Dr. Thomas Tensi, 2006 - 2017 #==================== # IMPORTS #==================== import re import basemodules.simpleassertion from basemodules.simplelogging import Logging from basemodules.simpletypes import Boolean, Map, Natural, Real, \ RealList, String from basemodules.operatingsystem import OperatingSystem from basemodules.ttbase import iif from basemodules.utf8file import UTF8File from basemodules.validitychecker import ValidityChecker simpleassertion = basemodules.simpleassertion #==================== _ffmpegCommand = None _lilypondCommand = None _infinity = 999999 # ==== configuration settings ==== # show measure number in subtitle only for 95% of the measure duration _displayTimePercentage = 0.95 # the log level for ffmpeg rendering _ffmpegLogLevel = "error" # encoding of Postscript file of lilypond _postscriptFileEncoding = "latin_1" # ==== end of configuration settings ==== #============================================================ class Assertion: """Provides all services for assertion checking.""" #-------------------- # EXPORTED FEATURES #-------------------- @classmethod def check (cls, condition : Boolean, message : String): """Checks for <condition> and if not satisfied, raises exception with <message>.""" simpleassertion.Assertion.check(condition, message) #-------------------- @classmethod def ensureFileExistence (cls, fileName : String, fileKind : String): """Checks whether file with <fileName> exists, otherwise gives error message about file kind mentioning file name.""" Logging.trace(">>: name = %r, kind = %s", fileName, fileKind) errorTemplate = "%s file does not exist - %r" errorMessage = errorTemplate % (fileKind, fileName) cls.check(OperatingSystem.hasFile(fileName), errorMessage) Logging.trace("<<") #-------------------- @classmethod def ensureProgramAvailability (cls, programName : String, programPath : String, option : String): """Checks whether program on <programPath> is available and otherwise gives error message and exits. <option> is the only command-line option for program.""" Logging.trace(">>: '%s %s'", programName, option) cls.check(OperatingSystem.programIsAvailable(programPath, option), ("cannot execute %s program - path %r'" % (programName, programPath))) Logging.trace("<<") #============================================================ class DurationManager: """Handles all duration related services like e.g. the calculation of the duration list from tempo map and page to measure map.""" #-------------------- @classmethod def measureToDurationMap (cls, measureToTempoMap : Map, countInMeasures : Natural, lastMeasureNumber : Natural): """Calculates mapping from measure number to duration based on tempo track in <measureToTempoMap> and the number of <countInMeasures>.""" Logging.trace(">>: measureToTempoMap = %r, countInMeasures = %d," + " lastMeasureNumber = %d", measureToTempoMap, countInMeasures, lastMeasureNumber) firstMeasureNumber = 1 Assertion.check(firstMeasureNumber in measureToTempoMap, "tempo track must contain setting for first measure") (tempo, measureLength) = measureToTempoMap[firstMeasureNumber] duration = cls.measureDuration(tempo, measureLength) firstMeasureOffset = duration * countInMeasures result = {} measureList = range(firstMeasureNumber, lastMeasureNumber + 1) for measureNumber in measureList: if measureNumber in measureToTempoMap: (tempo, measureLength) = measureToTempoMap[measureNumber] duration = cls.measureDuration(tempo, measureLength) isNormalMeasureNumber = (measureNumber > firstMeasureNumber) currentMeasureDuration = (duration + iif(isNormalMeasureNumber, 0, firstMeasureOffset)) result[measureNumber] = currentMeasureDuration Logging.trace("<<: %r", result) return result #-------------------- @classmethod def pageDurationList (cls, pageToMeasureMap : Map, measureToDurationMap : Map) -> RealList: """Calculates page duration list based on mapping of pages to measures <pageToMeasureMap> and the mapping of measures to durations <measureToDurationMap>""" Logging.trace(">>: pToM = %r, mToD = %r", pageToMeasureMap, measureToDurationMap) result = [] previousPageMeasureNumber = min(measureToDurationMap.keys()) pageList = list(pageToMeasureMap.keys()) pageList.sort() for page in pageList: if page > 1: currentPageMeasureNumber = pageToMeasureMap[page] # calculate duration of previous page from # <previousMeasure> to <currentMeasure> - 1 pageDuration = 0 for measureNumber in range(previousPageMeasureNumber, currentPageMeasureNumber): pageDuration += measureToDurationMap[measureNumber] result.append(pageDuration) previousPageMeasureNumber = currentPageMeasureNumber Logging.trace("<<: %r", result) return result #-------------------- @classmethod def measureDuration (cls, tempo : Real, measureLength : Real) -> Real: """Returns the duration of some measure with <measureLength> quarters and <tempo> given in quarters per minute.""" if tempo <= 1: result = _infinity else: result = (60.0 * measureLength) / tempo return result #-------------------- @classmethod def quantizeDurationList (cls, durationList : RealList, frameRate : Real): """Adjusts <durationList> such that it conforms to <frameRate>.""" Logging.trace(">>: durations = %r, frameRate = %f", durationList, frameRate) frameDuration = 1.0 / frameRate unallocatedDuration = 0 for (i, duration) in enumerate(durationList): duration += unallocatedDuration frameCount = int(duration / frameDuration) effectiveDuration = frameCount * frameDuration unallocatedDuration = duration - effectiveDuration durationList[i] = effectiveDuration Logging.trace("<<: %r", durationList) #============================================================ class PostscriptFile: """Represents the source for getting the transitions between the pages i.e. the mapping from page index to first measure on page.""" _fileName = None # relevant constants for analyzing the postscript file _barNumberColourSettingText = " 0.0010 0.0020 0.0030 setrgbcolor" _digitRegexp = re.compile(r".*/(zero|one|two|three|four" + r"|five|six|seven|eight|nine)") _endOfFileText = "%EOF" _fontDefinitionText = "selectfont" _pageRegexp = re.compile(r"%%Page: *(\w+)") _printGlyphsText = "print_glyphs" _digitMap = { "zero" : 0, "one" : 1, "two" : 2, "three" : 3, "four" : 4, "five" : 5, "six" : 6, "seven" : 7, "eight" : 8, "nine" : 9 } #-------------------- @classmethod def setName (cls, name : String): """Sets name of postscript file.""" Logging.trace(">>: %r", name) Assertion.ensureFileExistence(name, "postscript") cls._fileName = name Logging.trace("<<") #-------------------- @classmethod def pageToMeasureMap (cls) -> Map: """Scans postscript file for page numbers and measure numbers by some naive pattern matching and returns mapping from page to lowest measure number in page. Assumes that pages and page numbers are strictly ascending.""" Logging.trace(">>") # read postscript file into line list postscriptFile = UTF8File(cls._fileName, 'rb') lineList = [ line.decode(_postscriptFileEncoding).rstrip() for line in postscriptFile.readlines() ] postscriptFile.close() Logging.trace("--: lineListCount = %d", len(lineList)) # do the processing in a finite state machine ParseState_inLimbo = 1 ParseState_inPage = 2 ParseState_beforeMeasureText = 3 ParseState_inMeasureText = 4 result = {} parseState = ParseState_inLimbo maximumPageNumber = 0 maximumMeasureNumber = 0 pageNumber = 0 for line in lineList: lineIsPageStart = cls._pageRegexp.match(line) if lineIsPageStart or cls._endOfFileText in line: if pageNumber > 0: Logging.trace("--: firstMeasure = %d, measureCount = %d", pageMeasureNumber, measureCount) # wait for a page start when not within page if parseState == ParseState_inLimbo and not lineIsPageStart: continue if lineIsPageStart: parseState = ParseState_inPage matchList = cls._pageRegexp.match(line) pageNumber = int(matchList.group(1)) Logging.trace("--: entering page %d", pageNumber) maximumPageNumber = max(pageNumber, maximumPageNumber) pageMeasureNumber = _infinity measureCount = 0 elif parseState == ParseState_inPage: if cls._barNumberColourSettingText in line: parseState = ParseState_beforeMeasureText currentNumber = 0 currentFactor = 1 elif parseState == ParseState_beforeMeasureText: # skip over lines that are not a "selectfont" parseState = iif(cls._fontDefinitionText in line, ParseState_inMeasureText, parseState) elif parseState == ParseState_inMeasureText: if cls._digitRegexp.search(line): matchList = cls._digitRegexp.match(line) digit = matchList.group(1) currentNumber += cls._digitMap[digit] * currentFactor currentFactor *= 10 else: parseState = ParseState_inPage if (cls._printGlyphsText in line and currentNumber > maximumMeasureNumber): Logging.trace("--: measure number %d", currentNumber) pageMeasureNumber = min(currentNumber, pageMeasureNumber) result[pageNumber] = pageMeasureNumber maximumMeasureNumber = currentNumber # correct the first entry: first page always starts with # measure 1 result[1] = 1 # add an artificial last page to measure map maximumPageNumber += 1 lastMeasureNumber = maximumMeasureNumber + 8 result[maximumPageNumber] = lastMeasureNumber Logging.trace("<<: %r", result) return result #============================================================ class MP4Video: """Handles the generation of the target MP4 video file.""" #-------------------- # LOCAL FEATURES #-------------------- _tempFileName = "temp-noaudio.mp4" # command _ffmpegCommand = None # files and paths _concatSpecificationFileName = None _intermediateFileNameTemplate = None _pageFileNameTemplate = None # video parameters _ffmpegPresetName = None _frameRate = None _scaleFactor = None _generatorLogLevel = None _defaultMp4BaselineLevel = "3.0" _pageCount = None #-------------------- # EXPORTED FEATURES #-------------------- fileName = None #-------------------- @classmethod def checkParameters (cls): """Checks whether data given for this class is plausible for subsequent processing.""" Logging.trace(">>") # check the executables Assertion.ensureProgramAvailability("ffmpeg", cls._ffmpegCommand, "-version") # check the numeric parameters ValidityChecker.isNumberString(cls._scaleFactor, "scale factor", realIsAllowed=False, rangeKind=">0") ValidityChecker.isNumberString(cls._frameRate, "frame rate", realIsAllowed=True, rangeKind=">0"), cls._scaleFactor = int(cls._scaleFactor) cls._frameRate = float(cls._frameRate) Logging.trace("<<: parameters okay") #-------------------- @classmethod def cleanUpConditionally (cls, filesAreKept : Boolean): """Deletes all intermediate files when <filesAreKept> is unset""" Logging.trace(">>: %r", filesAreKept) for page in range(1, cls._pageCount + 1): Logging.trace("--: %d", page) fileName = cls._intermediateFileNameTemplate % page OperatingSystem.removeFile(fileName, filesAreKept) fileName = cls._pageFileNameTemplate % page OperatingSystem.removeFile(fileName, filesAreKept) OperatingSystem.removeFile(cls._concatSpecificationFileName, filesAreKept) if cls.fileName and cls.fileName == cls._tempFileName: OperatingSystem.removeFile(cls.fileName, filesAreKept) Logging.trace("<<") #-------------------- @classmethod def make (cls, pageDurationList : RealList): """Generate an MP4 video from durations in <pageDurationList> and generated PNG images.""" Logging.trace(">>: %r", pageDurationList) # for each page an MP4 fragment file is generated and finally # concatenated into the target file concatSpecificationFile = \ UTF8File(cls._concatSpecificationFileName, 'wt') for (i, pageDuration) in enumerate(pageDurationList): page = i + 1 requiredNumberOfFrames = int(cls._frameRate * pageDuration) + 1 pageFileName = cls._pageFileNameTemplate % page intermediateFileName = cls._intermediateFileNameTemplate % page # write file name to concatenation file normalizedFileName = \ OperatingSystem.basename(intermediateFileName, True) st = "file '%s'\n" % normalizedFileName concatSpecificationFile.write(st) # make silent video from single lilypond page command = ((cls._ffmpegCommand, "-loglevel", cls._generatorLogLevel, "-framerate", "1/" + str(requiredNumberOfFrames), "-i", str(pageFileName), "-vf", "scale=iw/%d:ih/%d" % (cls._scaleFactor, cls._scaleFactor), "-r", str(cls._frameRate), "-t", "%02.2f" % pageDuration) + iif(cls._ffmpegPresetName != "", ("-fpre", cls._ffmpegPresetName), ("-pix_fmt", "yuv420p", "-profile:v", "baseline", "-level", cls._defaultMp4BaselineLevel)) + ("-y", intermediateFileName)) OperatingSystem.executeCommand(command, True) concatSpecificationFile.close() # concatenate silent video fragments into single file cls._pageCount = page command = (cls._ffmpegCommand, "-safe", "0", "-y", "-loglevel", cls._generatorLogLevel, "-f", "concat", "-i", cls._concatSpecificationFileName, "-codec", "copy", cls.fileName) OperatingSystem.executeCommand(command, True) Logging.trace("<<") #-------------------- @classmethod def setName (cls, fileName : String): """Sets file name for MP4 generation to <fileName>; if empty, some temporary name will be used.""" Logging.trace(">>: %r", fileName) if fileName == "": fileName = cls._tempFileName cls.fileName = fileName Logging.trace("<<") #============================================================ class SubtitleFile: """Encapsulates generation of an SRT subtitle file.""" _tempFileName = "temp-subtitle.srt" #-------------------- # LOCAL FEATURES #-------------------- @classmethod def _formatTime (cls, timeInSeconds : Real) -> String: """Returns <timeInSeconds> in SRT format with HH:MM:SS,000.""" hours = int(timeInSeconds / 3600) timeInSeconds -= hours * 3600 minutes = int(timeInSeconds / 60) timeInSeconds -= minutes * 60 seconds = int(timeInSeconds) milliseconds = 1000 * (timeInSeconds - seconds) return "%02d:%02d:%02d,%03d" % (hours, minutes, seconds, milliseconds) #-------------------- # EXPORTED FEATURES #-------------------- fileName = None #-------------------- @classmethod def make (cls, measureToDurationMap : Map, countInMeasures : Natural): """Generates SRT subtitle file from <measureToDuration> and <countInMeasures>.""" Logging.trace(">>: mToDMap = %r, countIn = %d", measureToDurationMap, countInMeasures) measureNumberList = list(measureToDurationMap.keys()) measureNumberList.sort() startTime = 0 subtitleFile = UTF8File(cls.fileName, 'wt') for measureNumber in measureNumberList: duration = measureToDurationMap[measureNumber] endTime = startTime + _displayTimePercentage * duration st = (cls._formatTime(startTime) + " --> " + cls._formatTime(endTime)) startTime += duration if measureNumber>= 1: # write 4 lines of SRT data: number, time interval, # measure number and an empty separation line Logging.trace("--: measure %d: %s", measureNumber, st) st = ("%d\n%s\n%d\n\n" % (measureNumber, st, measureNumber)) subtitleFile.write(st) subtitleFile.close() Logging.trace("<<: subtitles done.") #-------------------- @classmethod def setName (cls, name : String): """Sets name of subtitle file.""" Logging.trace(">>: %r", name) if name == "": name = cls._tempFileName cls.fileName = name Logging.trace("<<") #-------------------- @classmethod def cleanUpConditionally (cls, filesAreKept : Boolean): """Cleans up subtitle file if <filesAreKept> is unset, otherwise moves it to directory given by <targetPath>""" Logging.trace(">>: %r", filesAreKept) if cls.fileName == cls._tempFileName: OperatingSystem.removeFile(cls.fileName, filesAreKept) Logging.trace("<<") #============================================================ class LilypondPngVideoGenerator: """Responsible for the main processing methods.""" #-------------------- # LOCAL FEATURES #-------------------- def _checkParameters (self): """Checks whether data given is plausible for subsequent processing.""" Logging.trace(">>: %r", self) # check the executables Assertion.ensureProgramAvailability("lilypond", self._lilypondCommand, "-v") # check the input files Assertion.ensureFileExistence(self._lilypondFileName, "lilypond") # check the numeric parameters ValidityChecker.isNumberString(self._countInMeasures, "count-in measures", realIsAllowed=True) ValidityChecker.isNumberString(self._frameRate, "frame rate", realIsAllowed=True, rangeKind=">0") Assertion.check(len(self._measureToTempoMap) > 0, "at least one tempo must be specified") self._countInMeasures = float(self._countInMeasures) self._frameRate = float(self._frameRate) MP4Video.checkParameters() Logging.trace("<<: parameters okay") #-------------------- def _initializeOtherModuleData (self): """Initializes other data in different classes from current object.""" Logging.trace(">>: %r", self) # set commands MP4Video._ffmpegCommand = self._ffmpegCommand # intermediate file names or paths MP4Video._concatSpecificationFileName = \ self._makePath("temp-concat.txt") MP4Video._intermediateFileNameTemplate = \ self._makePath("temp%d.mp4") MP4Video._pageFileNameTemplate = self._pictureFileStem + "-page%d.png" # technical parameters MP4Video._frameRate = self._frameRate MP4Video._scaleFactor = self._scaleFactor MP4Video._ffmpegPresetName = self._ffmpegPresetName MP4Video._generatorLogLevel = _ffmpegLogLevel # file parameters SubtitleFile.setName(self._targetSubtitleFileName) MP4Video.setName(self._targetMp4FileName) Logging.trace("<<") #-------------------- def _makePath (self, fileName : String): """makes path from <fileName> and _intermediateFilePath""" return (self._intermediateFileDirectoryPath + OperatingSystem.pathSeparator + fileName) #-------------------- def _processLilypondFile (self): """Generates postscript file and picture files from lilypond file.""" Logging.trace(">>: %r", self._lilypondFileName) command = (self._lilypondCommand, "-l", "WARNING", "-dno-point-and-click", "--ps", "--png", "--output=" + self._pictureFileStem, self._lilypondFileName) OperatingSystem.executeCommand(command, True) Logging.trace("<<") #-------------------- # EXPORTED FEATURES #-------------------- @classmethod def initialize (cls, ffmpegCommand : String, lilypondCommand : String): """Sets module-specific configuration variables""" Logging.trace(">>: ffmpeg = %r, lilypond = %r", ffmpegCommand, lilypondCommand) globals()['_ffmpegCommand'] = ffmpegCommand globals()['_lilypondCommand'] = lilypondCommand Logging.trace("<<") #-------------------- def __init__ (self, lilypondFileName : String, targetMp4FileName : String, targetSubtitleFileName : String, measureToTempoMap : Map, countInMeasures : Natural, frameRate : Real, scalingFactor : Real, ffmpegPresetName : String, intermediateFileDirectoryPath : String, intermediateFilesAreKept : Boolean = False): """Initializes generator""" Logging.trace(">>: lilypondFileName = %r, targetMp4FileName = %r," + " targetSubtitleFileName = %r," + " measureToTempoMap = %r, countInMeasures = %r," + " frameRate = %r, scalingFactor = %d," + " ffmpegPresetName = %r," + " intermediateFileDirectoryPath = %r," + " intermediateFilesAreKept = %r", lilypondFileName, targetMp4FileName, targetSubtitleFileName, measureToTempoMap, countInMeasures, frameRate, scalingFactor, ffmpegPresetName, intermediateFileDirectoryPath, intermediateFilesAreKept) self._ffmpegCommand = _ffmpegCommand self._lilypondCommand = _lilypondCommand # files self._intermediateFilesAreKept = intermediateFilesAreKept self._intermediateFileDirectoryPath = intermediateFileDirectoryPath self._lilypondFileName = lilypondFileName self._pictureFileStem = self._makePath("temp_frame") self._postscriptFileName = self._pictureFileStem + ".ps" self._targetMp4FileName = targetMp4FileName self._targetSubtitleFileName = targetSubtitleFileName self._measureToTempoMap = measureToTempoMap # video parameters self._countInMeasures = countInMeasures self._frameRate = frameRate self._scaleFactor = scalingFactor self._ffmpegPresetName = ffmpegPresetName # -- initialize other modules self._initializeOtherModuleData() # -- check consistency of data self._checkParameters() Logging.trace("<<: %r", self) #-------------------- def __repr__ (self) -> String: """Returns strings representation of <self>.""" className = self.__class__.__name__ result = (("%s(ffmpegCommand = %r, lilypondCommand = %r," + " lilypondFileName = %r, pictureFileStem = %r," + " postscriptFileName = %r, targetMp4FileName = %r," + " targetSubtitleFileName = %r," + " measureToTempoMap = %r, countInMeasures = %r," + " frameRate = %r, scaleFactor = %r," + " ffmpegPresetName = %r," + " intermediateFileDirectoryPath = %r," + " intermediateFilesAreKept = %r)") % (className, self._ffmpegCommand, self._lilypondCommand, self._lilypondFileName, self._pictureFileStem, self._postscriptFileName, self._targetMp4FileName, self._targetSubtitleFileName, self._measureToTempoMap, self._countInMeasures, self._frameRate, self._scaleFactor, self._ffmpegPresetName, self._intermediateFileDirectoryPath, self._intermediateFilesAreKept)) return result #-------------------- def cleanup (self): """Deletes all intermediate files.""" Logging.trace(">>") filesAreKept = self._intermediateFilesAreKept OperatingSystem.removeFile(self._postscriptFileName, filesAreKept) MP4Video.cleanUpConditionally(filesAreKept) SubtitleFile.cleanUpConditionally(filesAreKept) Logging.trace("<<") #-------------------- def process (self): """Coordinates the processing of all other modules.""" Logging.trace(">>: %r", self) try: self._processLilypondFile() # parse postscript file for mapping from page to first # measure PostscriptFile.setName(self._postscriptFileName) pageToMeasureMap = PostscriptFile.pageToMeasureMap() lastMeasureNumber = max(pageToMeasureMap.values()) Logging.trace("--: lastMeasureNumber = %d ", lastMeasureNumber) # generate ffmpeg command fragment from frame rate, page # to measure map and measure to tempo map measureToDurationMap = \ DurationManager.measureToDurationMap(self._measureToTempoMap, self._countInMeasures, lastMeasureNumber) pageDurationList = \ DurationManager.pageDurationList(pageToMeasureMap, measureToDurationMap) DurationManager.quantizeDurationList(pageDurationList, self._frameRate) MP4Video.make(pageDurationList) # generate subtitle file (if specified) if SubtitleFile.fileName: SubtitleFile.make(measureToDurationMap, self._countInMeasures) except RuntimeError as exception: Logging.trace("--: exception %s", exception.args[0]) Logging.trace("<<")
from lale.lib.sklearn import * from lale.lib.xgboost import * from lale.lib.lightgbm import * #from lale.lib.lale import KeepNumbers, KeepNonNumbers from lale.lib.lale import ConcatFeatures as Concat from lale.lib.lale import NoOp from lale.pretty_print import to_string from lale.lib.lale import Hyperopt from sklearn.datasets import load_iris from sklearn.metrics import accuracy_score import numpy as np import time as time from abstract_optimizer import APipelineOptimizer # Translates pipelines to LALE and uses hyperopt to train them and obtain feedback class PipelineOptimizer(APipelineOptimizer): REGRESSION = True EVALS = 20 def __init__(self, data=None, regression=True, evals=20): self.data = data if data is not None else load_iris(return_X_y=True) self.REGRESSION = regression self.EVALS = evals self.X, self.y = self.data def evaluate_pipeline(self, pipeline): if 'lale_pipeline' not in pipeline: return pipeline print("Starting to optimize " + pipeline['pipeline']) start_time = time.time() opt_scorer = 'r2' if self.REGRESSION else 'accuracy' opt = Hyperopt( estimator=pipeline['lale_pipeline'], max_evals=self.EVALS, scoring=opt_scorer ) trained_pipeline = None best_accuracy = 0 try: trained_pipeline = opt.fit(self.X, self.y) print('Fit completed.') predictions = trained_pipeline.predict(self.X) print('Predict completed.') # best_accuracy = -np.min(opt.get_trials().losses()) best_accuracy = accuracy_score(self.y, [round(pred) for pred in predictions]) print('Best accuracy: ' + str(best_accuracy)) except Exception as e: print("EXCEPTION OCCURRED: " + str(e)) end_time = time.time() print("Completed optimization for " + pipeline['pipeline']) tlp = pipeline.copy() tlp.update({ 'trained_pipeline': trained_pipeline, 'best_accuracy': best_accuracy, 'opt_duration': (end_time-start_time) }) return tlp
#From https://github.com/DerekGloudemans/video-write-utilities/blob/master/combine_frames.py import cv2 import numpy as np import time paths = [ "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_10/cam_0_capture_002.avi", "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_12/cam_2_capture_002.avi", "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_13/cam_3_capture_002.avi", "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_14/cam_4_capture_002.avi", "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_15/cam_5_capture_002.avi", "/media/worklab/data_HDD/cv_data/video/data - test pole 6 cameras july 22/Jul_22_2019_12-05-07/Axis_Camera_16/cam_1_capture_002.avi" ] paths = [ "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/detect0.avi", "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/detect3.avi", "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/detect1.avi", "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/track0.avi", "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/track3.avi", "/home/worklab/Documents/CV-detection/example_videos/110_foot_example_tracks/track1.avi" ] paths = [ "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_10/cam_0_capture_000.avi", "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_12/cam_2_capture_000.avi", "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_13/cam_3_capture_000.avi", "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_14/cam_4_capture_000.avi", "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_15/cam_5_capture_000.avi", "/media/worklab/data_HDD/cv_data/video/110_foot_pole_test/Axis_Camera_16/cam_1_capture_000.avi" ] paths = ['C:/Users/Nikki/Documents/work/inputs-outputs/vid_output/aot1.avi', 'C:/Users/Nikki/Documents/work/inputs-outputs/vid_output/aot2.avi'] file_out = "C:/Users/Nikki/Documents/work/inputs-outputs/vid_output/aot_combo.avi" # title_frame = "/home/worklab/Desktop/110 Traffic Camera Pole Test.jpg" title_frame = None show = False # open capture devices to read video files cap_list = [] for file_in in paths: cap = cv2.VideoCapture(file_in) assert cap.isOpened(), "Cannot open file \"{}\"".format(file_in) cap_list.append(cap) # determine size of combined frame (assumed that all frames are the same size) cam_num = len(cap_list) n_wide = 2 n_high = (cam_num-1) // 3 + 1 frame_width = int(cap_list[0].get(3)*n_wide /2.0) frame_height = int(cap_list[0].get(4)*n_high /2.0) # opens VideoWriter object for saving video file if necessary if file_out != None: out = cv2.VideoWriter(file_out,cv2.CAP_FFMPEG,7, (frame_width,frame_height)) # add title frame for 2.5 seconds if title_frame != None: title = cv2.imread(title_frame,1) for i in range(0,75): out.write(cv2.resize(title,(1920*3,1080*2))) # read first frame from all captures frames = [] #i = 0 for cap in cap_list: ret,frame = cap.read() #cv2.imwrite("align{}.jpg".format(i),frame) frame = cv2.resize(frame,(1920,1080)) frames.append(frame) #i = i + 1 start = time.time() frame_num = 0 while cap.isOpened(): if ret: # top_row = np.concatenate((frames[0],frames[1],frames[2]),axis = 1) # bottom_row = np.concatenate((frames[3],frames[4],frames[5]),axis = 1) # combined = np.concatenate((top_row,bottom_row),axis = 0) combined = np.concatenate((frames[0], frames[1])) # save frame to file if necessary if file_out != None: out.write(combined) #summary statistics frame_num += 1 print("FPS of the video is {:5.2f}".format( frame_num / (time.time() - start))) # get next frames frames = [] for cap in cap_list: ret,frame = cap.read() if ret == False: break frame = cv2.resize(frame,(1920,1080)) frames.append(frame) # output frame if show: combined = cv2.resize(combined, (2880, 1080)) cv2.imshow("frame", combined) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break continue else: break # close all resources used for cap in cap_list: cap.release() cv2.destroyAllWindows() try: out.release() except: pass print("Video combination finished.")
# Copyright (c) 2020, Oracle and/or its affiliates. # # Licensed under the Universal Permissive License v 1.0 as shown at https://oss.oracle.com/licenses/upl/ # # connecting from outside directly to server # connecting from outside via router # connecting from inside directly to server - same namespace # connecting from inside via router - same namespace # connecting from inside directly to server - different namespace # connecting from inside via router - different namespace
#! python3 # -*- coding: utf-8 -*- import numpy as np lis = np.array([4, 6]) #L0 Norm print('norm 0') print(np.linalg.norm(lis, ord=0)) #L1 Norm #単純にベクトルの各要素の絶対値を足し合わせる。 #X=4, Y=6の場合、 4+6 となる print('norm 1') print(np.linalg.norm(lis, ord=1)) #L2 Norm #原点からベクトルを終点とした直線距離を求める。←の実際の長さを計算する。 print('norm 2') print(np.linalg.norm(lis, ord=2))
"""Replace matched group https://stackoverflow.com/questions/6711567/how-to-use-python-regex-to-replace-using-captured-group/6711631 """ import re text = 'end, Wrong punctuation.' pattern = re.compile(r', ([A-Z])') text = pattern.sub(r'. \1', text) print(text) # end. Wrong punctuation. text = 'excellence, excellence,' pattern = re.compile(r',$') text = pattern.sub(r'.', text) print(text) # excellence, excellence.
#!/usr/bin/env python # -*- coding: utf-8 -*- from runner.koan import * class AboutStrings(Koan): def test_double_quoted_strings_are_strings(self): string = "Hello, world." self.assertEqual(True, isinstance(string, str)) def test_single_quoted_strings_are_also_strings(self): string = 'Goodbye, world.' self.assertEqual(True, isinstance(string, str)) def test_triple_quote_strings_are_also_strings(self): string = """Howdy, world!""" self.assertEqual(True, isinstance(string, str)) def test_triple_single_quotes_work_too(self): string = '''Bonjour tout le monde!''' self.assertEqual(True, isinstance(string, str)) def test_raw_strings_are_also_strings(self): string = r"Konnichi wa, world!" self.assertEqual(True, isinstance(string, str)) def test_use_single_quotes_to_create_string_with_double_quotes(self): string = 'He said, "Go Away."' self.assertEqual(string, string) def test_use_double_quotes_to_create_strings_with_single_quotes(self): string = "Don't" self.assertEqual(string, string) def test_use_backslash_for_escaping_quotes_in_strings(self): a = "He said, \"Don't\"" b = 'He said, "Don\'t"' # In Python strings, the backslash "\" is a special character, also called the "escape" character. # Prefixing a quote with "\" turns it into an ordinary character (rather than a closing quote). self.assertEqual(True, (a == b)) def test_use_backslash_at_the_end_of_a_line_to_continue_onto_the_next_line(self): string = "It was the best of times,\n\ It was the worst of times." # In Python, a backslash ( \ ) is a continuation character, and if it is placed at the end of a line, # it is considered that the line is continued, ignoring subsequent newlines. self.assertEqual(52, len(string)) def test_triple_quoted_strings_can_span_lines(self): string = """ Howdy, world! """ # String literals inside triple quotes, """ or ''', # can span multiple lines of text. Python strings are "immutable" # which means they cannot be changed after they are created self.assertEqual(15, len(string)) def test_triple_quoted_strings_need_less_escaping(self): a = "Hello \"world\"." b = """Hello "world".""" self.assertEqual(True, (a == b)) def test_escaping_quotes_at_the_end_of_triple_quoted_string(self): string = """Hello "world\"""" self.assertEqual(string, string) def test_plus_concatenates_strings(self): string = "Hello, " + "world" self.assertEqual(string, string) def test_adjacent_strings_are_concatenated_automatically(self): string = "Hello" ", " "world" self.assertEqual(string, string) def test_plus_will_not_modify_original_strings(self): hi = "Hello, " there = "world" string = hi + there # The + operator is used both for adding numbers and strings; # in programming we say that the operator is overloaded. self.assertEqual("Hello, ", hi) self.assertEqual("world", there) def test_plus_equals_will_append_to_end_of_string(self): hi = "Hello, " there = "world" hi += there # The easiest way of concatenating strings is to use the + or the += operator. self.assertEqual("Hello, world", hi) def test_plus_equals_also_leaves_original_string_unmodified(self): original = "Hello, " hi = original there = "world" hi += there self.assertEqual(__, original) def test_most_strings_interpret_escape_characters(self): string = "\n" self.assertEqual('\n', string) self.assertEqual("""\n""", string) self.assertEqual(__, len(string))
""" http://3dgep.com/?p=1356 http://3dgep.com/?p=1053 """ import os from collections import namedtuple import numpy from pyglet.gl import * from pyrr import vector from pyrr import quaternion from pyrr import matrix44 from pygly.shader import Shader, ShaderProgram from razorback.mesh import Mesh from razorback.md5.skeleton import BaseFrameSkeleton """ correcting x,y,z for opengl joint position pos_x, pos_y, pos_z = pos_x, pos_z, -pos_y joint quaternion quat_x, quat_y, quat_z, quat_w = quat_x, quat_z, -quat_y, quat_w weight position pos_x, pos_y, pos_z = pos_x, pos_z, -pos_y """ class Mesh( Mesh ): shader_source = { 'vert': open(os.path.dirname(__file__) + '/md5.vert','r').read(), 'frag': open(os.path.dirname(__file__) + '/md5.frag','r').read(), } def __init__( self, md5mesh ): super( Mesh, self ).__init__() self.mesh = MeshData( md5mesh ) self.vbo = (GLuint)() self.tbo = (GLuint)() self.shader = None glGenBuffers( 1, self.vbo ) glGenTextures( 1, self.tbo ) self.shader = ShaderProgram( Shader( GL_VERTEX_SHADER, Mesh.shader_source['vert'] ), Shader( GL_FRAGMENT_SHADER, Mesh.shader_source['frag'] ), link_now = False ) # set our shader data # we MUST do this before we link the shader self.shader.attributes.in_normal = 0 self.shader.attributes.in_texture_coord = 1 self.shader.attributes.in_bone_indices = 2 self.shader.attributes.in_bone_weights_1 = 3 self.shader.attributes.in_bone_weights_2 = 4 self.shader.attributes.in_bone_weights_3 = 5 self.shader.attributes.in_bone_weights_4 = 6 self.shader.frag_location( 'out_frag_colour' ) # link the shader now self.shader.link() # bind our uniform indices self.shader.bind() self.shader.uniforms.in_diffuse = 0 self.shader.uniforms.in_specular = 1 self.shader.uniforms.in_normal = 2 self.shader.uniforms.in_bone_matrices = 4 self.shader.unbind() def set_skeleton( self, skeleton ): # load the matrices into our texture buffer #matrices = skeleton.matrices matrices = numpy.zeros( (skeleton.num_joints, 2, 4), dtype = 'float32' ) matrices[ :, 0 ] = skeleton.orientations matrices[ :, 1, 0:3 ] = skeleton.positions glBindBuffer( GL_TEXTURE_BUFFER, self.vbo ) glBufferData( GL_TEXTURE_BUFFER, matrices.nbytes, (GLfloat * matrices.size)(*matrices.flat), GL_STATIC_DRAW ) # link to our BO glBindTexture( GL_TEXTURE_BUFFER, self.tbo ) glTexBuffer( GL_TEXTURE_BUFFER, GL_RGBA32F, self.vbo ) glBindTexture( GL_TEXTURE_BUFFER, 0 ) glBindBuffer( GL_TEXTURE_BUFFER, 0 ) def render( self, projection, model_view ): # bind our shader and pass in our model view self.shader.bind() self.shader.uniforms.in_model_view = model_view self.shader.uniforms.in_projection = projection # set our animation data glActiveTexture( GL_TEXTURE0 + 4 ) glBindTexture( GL_TEXTURE_BUFFER, self.tbo ) # render the mesh self.mesh.render() # restore state glActiveTexture( GL_TEXTURE0 + 3 ) glBindTexture( GL_TEXTURE_BUFFER, 0 ) glActiveTexture( GL_TEXTURE0 ) self.shader.unbind() class MeshData( object ): mesh_layout = namedtuple( 'MD5_MeshData', [ 'normals', 'tcs', 'bone_indices', 'weights', 'indices' ] ) def __init__( self, md5mesh ): super( MeshData, self ).__init__() self.md5mesh = md5mesh self.vaos = None self.vbos = None self.load() def load( self ): mesh = self._generate_mesh() # load into opengl self.vbos = self._generate_vbos( mesh ) self.vaos = self._generate_vaos( self.vbos ) def _generate_mesh( self ): def prepare_submesh( mesh ): tcs = mesh.tcs # store weights as [pos.x, pos,y, pos.z, bias] * 4 weights = numpy.zeros( (mesh.num_verts, 4, 4), dtype = 'float32' ) #bone_indices = numpy.zeros( (mesh.num_verts, 4), dtype = 'uint32' ) bone_indices = numpy.zeros( (mesh.num_verts, 4), dtype = 'float32' ) # iterate through each vertex and generate our # vertex position, texture coordinate, bone index and # bone weights for vert_index, (vertex, vertex_weight, bone_index) in enumerate( zip( mesh.vertices, weights, bone_indices ) ): for weight_index in range( vertex.weight_count ): # we only support 4 bones per vertex # this is so we can fit it into a vec4 if weight_index >= 4: print 'Too many weights for vertex! %i' % vertex.weight_count break weight = mesh.weight( vertex.start_weight + weight_index ) vertex_weight[ weight_index ][ 0:3 ] = weight.position vertex_weight[ weight_index ][ 3 ] = weight.bias bone_index[ weight_index ] = weight.joint return ( tcs, weights, bone_indices ) """ def prepare_normals( mesh, positions ): def generate_normals( positions, triangles ): normals = numpy.zeros( positions.shape, dtype = 'float32' ) # generate a normal for each triangle for triangle in triangles: v1, v2, v3 = positions[ triangle[ 0 ] ] v2 = positions[ triangle[ 1 ] ] v3 = positions[ triangle[ 2 ] ] normal = vector.generate_normals( v1, v2, v3, normalise_result = False ) normals[ triangle[ 0 ] ] += normal normals[ triangle[ 1 ] ] += normal normals[ triangle[ 2 ] ] += normal return normals def generate_bind_pose_normals( mesh, normals ): # convert the normals to bind-pose position for vert_index, vertex in enumerate( mesh.vertices ): # retrieve our calculated normal # normalise the normal normal = vector.normalise( normals[ vert_index ] ) # clear our stored normal # we want to store a bind pose normal normals[ vert_index ] = [ 0.0, 0.0, 0.0 ] # convert to bind-pose # this is very similar to prepare_mesh for weight_index in range( vertex.weight_count ): weight = mesh.weight( vertex.start_weight + weight_index ) joint = self.md5mesh.joint( weight.joint ) # rotate the normal by the joint rotated_position = quaternion.apply_to_vector( joint.orientation, normal ) normals[ vert_index ] += rotated_position * weight.bias return normals normals = generate_normals( positions, mesh.tris ) normals = generate_bind_pose_normals( mesh, normals ) return normals """ # prepare our mesh vertex data mesh_data = MeshData.mesh_layout( # normals numpy.empty( (self.md5mesh.num_verts, 3), dtype = 'float32' ), # tcs numpy.empty( (self.md5mesh.num_verts, 2), dtype = 'float32' ), # bone_indices #numpy.empty( (self.md5mesh.num_verts, 4), dtype = 'uint32' ), numpy.empty( (self.md5mesh.num_verts, 4), dtype = 'float32' ), # weights numpy.empty( (self.md5mesh.num_verts, 4, 4), dtype = 'float32' ), # indices numpy.empty( (self.md5mesh.num_tris, 3), dtype = 'uint32' ) ) current_vert_offset = 0 current_tri_offset = 0 for mesh in self.md5mesh.meshes: # generate the bind pose # and after that, use the bind pose to generate our normals tcs, weights, bone_indices = prepare_submesh( mesh ) #normals = prepare_normals( mesh, positions ) # write to our arrays start, end = current_vert_offset, current_vert_offset + mesh.num_verts #mesh_data.normals[ start : end ] = normals mesh_data.tcs[ start : end ] = tcs mesh_data.weights[ start : end ] = weights mesh_data.bone_indices[ start : end ] = bone_indices # increment our current offset by the number of vertices current_vert_offset += mesh.num_verts # store our indices start, end = current_tri_offset, current_tri_offset + mesh.num_tris mesh_data.indices[ start : end ] = mesh.tris # increment our current offset by the number of vertices current_tri_offset += mesh.num_tris return mesh_data def _generate_vbos( self, bindpose ): def fill_array_buffer( vbo, data, gltype ): glBindBuffer( GL_ARRAY_BUFFER, vbo ) glBufferData( GL_ARRAY_BUFFER, data.nbytes, (gltype * data.size)(*data.flat), GL_STATIC_DRAW ) def fill_index_buffer( bo, data, gltype ): glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, bo ) glBufferData( GL_ELEMENT_ARRAY_BUFFER, data.nbytes, (gltype * data.size)(*data.flat), GL_STATIC_DRAW ) # load our vertex buffers # these are per-vertex values vbos = (GLuint * 5)() glGenBuffers( len(vbos), vbos ) #fill_array_buffer( vbos[ 0 ], bindpose.normals, GLfloat ) fill_array_buffer( vbos[ 1 ], bindpose.tcs, GLfloat ) #fill_array_buffer( vbos[ 2 ], bindpose.bone_indices, GLuint ) fill_array_buffer( vbos[ 2 ], bindpose.bone_indices, GLfloat ) fill_array_buffer( vbos[ 3 ], bindpose.weights, GLfloat ) # triangle indices fill_index_buffer( vbos[ 4 ], bindpose.indices, GLuint ) # unbind glBindBuffer( GL_ARRAY_BUFFER, 0 ) glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 ) return MeshData.mesh_layout( vbos[ 0 ], vbos[ 1 ], vbos[ 2 ], vbos[ 3 ], vbos[ 4 ] ) def _generate_vaos( self, vbos ): def calculate_offset( offset, elements, bytes ): return offset * elements * bytes # create our VAOs vaos = (GLuint * self.md5mesh.num_meshes)() glGenVertexArrays( self.md5mesh.num_meshes, vaos ) # bind the arrays to our VAOs current_offset = 0 for vao, mesh in zip( vaos, self.md5mesh.meshes ): glBindVertexArray( vao ) """ # normals offset = calculate_offset( current_offset, 3, 4 ) glBindBuffer( GL_ARRAY_BUFFER, vbos.normals ) glEnableVertexAttribArray( 0 ) glVertexAttribPointer( 0, 3, GL_FLOAT, GL_FALSE, 0, offset ) """ # tcs offset = calculate_offset( current_offset, 2, 4 ) glBindBuffer( GL_ARRAY_BUFFER, vbos.tcs ) glEnableVertexAttribArray( 1 ) glVertexAttribPointer( 1, 2, GL_FLOAT, GL_FALSE, 0, offset) # bone_indices offset = calculate_offset( current_offset, 4, 4 ) glBindBuffer( GL_ARRAY_BUFFER, vbos.bone_indices ) glEnableVertexAttribArray( 2 ) #glVertexAttribIPointer( 2, 4, GL_UNSIGNED_INT, GL_FALSE, 0, offset ) glVertexAttribPointer( 2, 4, GL_FLOAT, GL_FALSE, 0, offset ) # weights offset = calculate_offset( current_offset, 16, 4 ) stride = 16 * 4 glBindBuffer( GL_ARRAY_BUFFER, vbos.weights ) glEnableVertexAttribArray( 3 ) glVertexAttribPointer( 3, 4, GL_FLOAT, GL_FALSE, stride, offset + (4 * 0) ) glEnableVertexAttribArray( 4 ) glVertexAttribPointer( 4, 4, GL_FLOAT, GL_FALSE, stride, offset + (4 * 4) ) glEnableVertexAttribArray( 5 ) glVertexAttribPointer( 5, 4, GL_FLOAT, GL_FALSE, stride, offset + (4 * 8) ) glEnableVertexAttribArray( 6 ) glVertexAttribPointer( 6, 4, GL_FLOAT, GL_FALSE, stride, offset + (4 * 12) ) # increment our buffer offset to the next mesh current_offset += mesh.num_verts #break # unbind glBindVertexArray( 0 ) glBindBuffer( GL_ARRAY_BUFFER, 0 ) return vaos def render( self ): # bind our vertex attributes current_offset = 0 for index, (vao, mesh) in enumerate( zip( self.vaos, self.md5mesh.meshes ) ): # num indices = num tris * 3 indices per tri # offset = offset * 3 indices per tri * 4 bytes per element # bind our indices glBindVertexArray( vao ) glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, self.vbos.indices ) glDrawElements( GL_TRIANGLES, mesh.num_tris * 3, GL_UNSIGNED_INT, current_offset * 3 * 4 ) current_offset += mesh.num_tris #break # reset our state glBindVertexArray( 0 ) glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, 0 )
# -*- coding: utf-8 -*- """ Exceptions module. """ from __future__ import unicode_literals class EventError(Exception): """Using to notify subscribed clients about event failure.""" pass
""" AIS playbox TV addon for kodi. This Kodi addon allows you to play the free TV channels provided by the AIS playbox device. """ import json import random import re import requests import sys import xbmcaddon import xbmcgui import xbmcplugin import zlib from base64 import b64encode from time import strftime from urlparse import parse_qsl AISWEB = "https://playbox.ais.co.th/AISWeb/" # Without SSL GET_DEVICE_OWNER = "http://stbbe.ais.co.th:8080/getDeviceOwner" GET_DEVICE_OWNER = "https://stbbe.ais.co.th:8443/getDeviceOwner" TV_CHANNELS = "https://sifsecretstore.s3.amazonaws.com/AIS/json/Page/NewTV.json.gz" GET_USER_ID = AISWEB + "ServiceGetUserIdFromPrivateId.aspx" GET_PACKAGES = AISWEB + "PageGetPackagesByUserID.aspx" CHECK_ENTITLEMENT = AISWEB + "ServiceCheckAssetEntitlementByUserId.aspx" PLAYBOX_APP_KEY = "UHgZAVpacCXP/spFoX+S7Pwt/sM=" HEADERS = { 'User-Agent': 'Dalvik/1.6.0 (Linux; U; Android 4.4.2; n200 Build/KOT49H)'} plugin_url = sys.argv[0] plugin_handle = int(sys.argv[1]) def get_tv_channels(): """Retrieve the current list of TV Channels""" response = requests.get(TV_CHANNELS, headers=HEADERS) data = json.loads(zlib.decompress(response.content, 16+zlib.MAX_WBITS)) flatten = [item for x in data['SubPage'] for item in x['Items']] unique = dict((i['ItemID'], i) for i in flatten).values() return sorted(unique, key=lambda item: item['ItemName']) def get_subscriber_packages(user_id): """Asks for the packages the current subscriber has""" parameters = { 'appId': 'AND', 'userId': user_id, # Not needed but just in case 'appKey': PLAYBOX_APP_KEY} data = {'JSONtext': json.dumps(parameters)} res = requests.post(GET_PACKAGES, headers=HEADERS, data=data, verify=False) return [p["ServiceID"] for p in res.json()["PackageInfo"]] def filter_channels(channels): user_id = xbmcplugin.getSetting(plugin_handle, 'userId') packages = set(get_subscriber_packages(user_id)) included = lambda cp: not packages.isdisjoint(cp.split('|')) return [c for c in channels if included(c['Packages'])] def map_channels(channels): """Creates a xbmc list of playable TV channels""" final_list = [] for channel in channels: list_item = xbmcgui.ListItem(label=channel['ItemName']) list_item.setArt({'thumb': channel['ItemIcon'], 'icon': channel['ItemIcon']}) list_item.setInfo('video', {'title': channel['ItemName']}) list_item.setProperty('IsPlayable', 'true') url = '{0}?action=play&channel={1}'.format( plugin_url, channel['ItemID']) final_list.append((url, list_item, False)) return final_list def get_channel_url(assetId): """Request the final playable URL This url contains a playlist with SQ and HQ streams. """ parameters = { 'appId': 'AND', 'assetId': assetId, 'assetType': 'CHANNEL', 'deviceType': 'STB', 'userId': xbmcplugin.getSetting(plugin_handle, 'userId'), 'lang': 'en', 'appKey': PLAYBOX_APP_KEY} data = {'JSONtext': json.dumps(parameters)} # Verify false due to problems in kodi v16 in macos with old python res = requests.post(CHECK_ENTITLEMENT, headers=HEADERS, data=data, verify=False) return res.json()["StreamingInfo"][0]["URLInfo"] def play_channel(channel): """Make kodi play a TV channel""" url = get_channel_url(channel) play_item = xbmcgui.ListItem("Channel") play_item.setPath(url) play_item.setInfo(type='Video', infoLabels={'Title': 'Channel'}) play_item.setProperty("IsPlayable", "true") xbmcplugin.setResolvedUrl(plugin_handle, True, listitem=play_item) def generate_command_id(serial): """AIS command ids""" timestamp = strftime('%m%d%Y%H%M%S') options = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ' rand_ending = "".join([random.choice(options) for _ in range(4)]) return "{0}-{1}{2}".format(serial, timestamp, rand_ending) def get_device_owner(mac, serial): """Gets the internal/private/email id of the device owner""" device_id = b64encode('n200|null|{0}|{1}'.format(mac, serial)) command_id = generate_command_id(serial) parameters = { 'commandId': command_id, 'deviceId': device_id} res = requests.get(GET_DEVICE_OWNER, params=parameters, headers=HEADERS, verify=False) return res.json()["ownerId"] def get_user_id_from_email(email): """Converts the email/private id to the user id used in channels""" parameters = { 'PrivateId': email, # Not needed but just in case 'appKey': PLAYBOX_APP_KEY} data = {'JSONtext': json.dumps(parameters)} res = requests.post(GET_USER_ID, headers=HEADERS, data=data, verify=False) return res.json()["UserId"] def get_user_id(): """Get and save AIS user id and email/private id.""" mac = xbmcplugin.getSetting(plugin_handle, 'playboxMAC').strip().upper() if re.match('^([0-9A-F]{2}[:]){5}([0-9A-F]{2})$', mac) is None: xbmcgui.Dialog().ok('AIS', 'Wrong MAC address') return serial = xbmcplugin.getSetting(plugin_handle, 'playboxSerial').strip() email = get_device_owner(mac, serial) user_id = get_user_id_from_email(email) myself = xbmcaddon.Addon() myself.setSetting('privateId', email) myself.setSetting('userId', user_id) def check_settings(): """Checks if there is a user id needed to play TV""" user_id = xbmcplugin.getSetting(plugin_handle, 'userId') if user_id: return get_user_id() def refresh_packages(): user_id = xbmcplugin.getSetting(plugin_handle, 'userId') packages = cache.cacheFunction(get_subscriber_packages, user_id) def router(paramstring): """Decides what to do based on script parameters""" check_settings() params = dict(parse_qsl(paramstring)) # Nothing to do yet with those if not params: # Demo channel list channels = map_channels(filter_channels(get_tv_channels())) xbmcplugin.addDirectoryItems(plugin_handle, channels, len(channels)) xbmcplugin.addSortMethod( plugin_handle, xbmcplugin.SORT_METHOD_LABEL_IGNORE_THE) xbmcplugin.endOfDirectory(plugin_handle) elif params['action'] == 'play': play_channel(params['channel']) elif params['action'] == 'get_user_id': get_user_id() if __name__ == '__main__': router(sys.argv[2][1:])
# Workshop: Integrate the AWS Cloud with Responsive Xilinx Machine Learning at the Edge # Copyright (C) 2018 Amazon.com, Inc. and Xilinx Inc. All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of # the Software, and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS # FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR # COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER # IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import json import greengrasssdk import platform from threading import Timer import signal import logging import os client = greengrasssdk.client('iot-data') my_platform = platform.platform() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) streamHandler = logging.StreamHandler() formatter = logging.Formatter( '%(asctime)s - %(name)s - %(levelname)s - %(message)s') streamHandler.setFormatter(formatter) logger.addHandler(streamHandler) def greengrass_hello_world_run(): if not my_platform: payload = {'message': 'Hello world! Sent from Greengrass Core'} client.publish(topic='hello/world', payload=json.dumps(payload)) else: payload = {'message': 'Hello world! Sent from Greengrass Core ' 'running on platform: {}'.format(my_platform)} client.publish(topic='hello/world', payload=json.dumps(payload)) Timer(5, greengrass_hello_world_run).start() SYSFS_LEDS = [ '/sys/class/leds/ds4', '/sys/class/leds/ds5', '/sys/class/leds/ds6' ] def trap_my_signal(signal, frame): logger.info('In trap_signal') logger.info('In trap with signal {0}'.format(str(signal))) for f in SYSFS_LEDS: with open(os.path.join(f, 'brightness'), 'w') as fh: fh.write('{0}'.format('0')) #signal.signal(signal.SIGINT, trap_my_signal) #signal.signal(signal.SIGHUP, trap_my_signal) signal.signal(signal.SIGTERM, trap_my_signal) #signal.signal(signal.SIGKILL, trap_my_signal) greengrass_hello_world_run() def lambda_handler(event, context): return
import cv2 src = cv2.imread("../res/3.jpg", cv2.IMREAD_COLOR) dst = cv2.bitwise_not(src) cv2.imshow("src", src) cv2.imshow("dst", dst) cv2.waitKey(0) cv2.destroyAllWindows()
from __future__ import print_function import os.path, pickle, time, yaml from googleapiclient.discovery import build from google_auth_oauthlib.flow import InstalledAppFlow from google.auth.transport.requests import Request # If modifying these scopes, delete the file token.pickle. SCOPES = ["https://www.googleapis.com/auth/directory.readonly"] def main(): """Shows basic usage of the People API. Prints the name of the first 10 connections. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists('token.pickle'): with open('token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( 'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open('token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('people', 'v1', credentials=creds) # Call the People API ## return service request = service.people().listDirectoryPeople( mergeSources="DIRECTORY_MERGE_SOURCE_TYPE_CONTACT", pageSize=1000, readMask="names,emailAddresses", sources="DIRECTORY_SOURCE_TYPE_DOMAIN_CONTACT") c = 0 with open("bot_stats.yaml") as f: data = yaml.load(f, Loader=yaml.FullLoader) while request != None: if c != 0: request = service.people().listDirectoryPeople( mergeSources="DIRECTORY_MERGE_SOURCE_TYPE_CONTACT", pageSize=1000, pageToken=req.get("nextPageToken"), readMask="names,emailAddresses", sources="DIRECTORY_SOURCE_TYPE_DOMAIN_CONTACT") req = request.execute() contacts = req.get("people", []) with open("loot.txt", 'a') as f: for person in contacts: names = person.get("names", []) emails = person.get("emailAddresses", []) if names and emails: name = names[0].get("displayName") email = emails[0].get("value") f.write(f"{name}\t{email}\n") c += 1 print(name, email) print(req.get("nextPageToken")) with open("bot_stats.yaml", 'w') as f: data["Database Status"] = f":yellow_circle: (Updating as of {time.ctime()})" data["Total Records Retrieved"] = c yaml.dump(data, f) if c > 50000: return 0 time.sleep(60) print("Escaped with", c, "records!") if __name__ == "__main__": t0 = time.process_time() service = main() t1 = time.process_time() total = t1 - t0 print(f"\nTimestamp 1: {t0} secs\nTimestamp 2: {t1} secs") print("Module Time Elapsed:", total, "seconds")
from django.shortcuts import render from .serializers import * from rest_framework.renderers import JSONRenderer from management.commands.updatecomponents import send_GET_request from django.http import JsonResponse, HttpResponseServerError from django.contrib.admin.views.decorators import staff_member_required from django.http import HttpResponse import urllib, json from django.core.management import call_command from django.core.serializers import serialize from django.views.decorators.clickjacking import xframe_options_exempt from django.core.paginator import Paginator, EmptyPage import numpy as np def index(request): top_downloaded_components = Component.objects.all().only('name', 'id', 'downloads', 'url_name').order_by('-downloads')[:3] top_starred_components = Component.objects.all().only('name', 'id', 'stars', 'url_name').order_by('-stars')[:3] recent_components = Component.objects.all().only('name', 'id', 'modified_time', 'url_name').order_by('-modified_time')[:3] downloaded = DownloadSerializer(top_downloaded_components, many=True) # serialized data containing number of downloads starred = StarSerializer(top_starred_components, many=True) # serialized data containing number of stars recent = RecentComponentSerializer(recent_components, many=True) return JsonResponse({ 'top_dl_components':downloaded.data, 'top_starred_components':starred.data, 'most_recent_components':recent.data, }) def all_components(request): # requested on_load() for querying all_components = BaseComponentSerializer(Component.objects.all().only('name', 'id', 'url_name'), many=True) return JsonResponse({ 'all_components':all_components.data, }) def top_components(request): # Download data is from Github and hence stars are used top_components = TopComponentSerializer(Component.objects.all().order_by('-stars')[:10], many=True) return JsonResponse({ 'top_components':top_components.data, }) def components(request): size = request.GET.get('size', 20) page = request.GET.get('page', 1) components_list = Component.objects.all().order_by('-modified_time') paginator = Paginator(components_list, size) try: currentPage = paginator.page(page) serialised = TopComponentSerializer(currentPage, many=True) components = serialised.data except EmptyPage: components = [] return JsonResponse({ 'components': components }) def component_details(request, url_name): component = Component.objects.get(url_name=url_name) details = DetailComponentSerializer(component, context={'request':request}) contributions = ContributionSerializer(component.contributions, many=True) js_dependencies = JSDependencySerializer(component.jsdependency_set.all(), many=True) css_dependencies = CSSDependencySerializer(component.cssdependency_set.all(), many=True) try: sniper_data = component.sniperdata sniper = SniperDataSerializer(sniper_data) snippets = SnippetSerializer(sniper_data.snippet_set.all(), many=True) return JsonResponse({ 'details' : details.data, 'contributors' : contributions.data, 'js_dependencies' : js_dependencies.data, 'css_dependencies' : css_dependencies.data, 'sniper_data' : sniper.data, 'snippets' : snippets.data, }) except: return JsonResponse({ 'details' : details.data, 'contributors' : contributions.data, 'js_dependencies' : js_dependencies.data, 'css_dependencies' : css_dependencies.data, }) @xframe_options_exempt def render_visualization(request, url_name, visualization_name): try: component = Component.objects.get(url_name=url_name) js_dependencies = component.jsdependency_set.all() css_dependencies = component.cssdependency_set.all() sniper_data = component.sniperdata snippet = Snippet.objects.get(sniperData=sniper_data, name=visualization_name) response = send_GET_request(snippet.url) script = response.read() serializer = DetailComponentSerializer(component).data component_data = JSONRenderer().render(serializer) js_deps_json = serialize('json', js_dependencies) css_deps_json = serialize('json', css_dependencies) context = { 'component' : component_data, 'js_dependencies' : js_deps_json, 'css_dependencies' : css_deps_json, 'snippet' : snippet, 'snippet_script' : script, 'sniper_data' : sniper_data, 'no_browserify': sniper_data.no_browserify } # return HttpResponse() return render(request, 'main/visualizations.html', context) except Exception as e: print('Error in visualisation!', e) return HttpResponseServerError(e) @staff_member_required def update_data(request): call_command('updatecomponents') return HttpResponse("Database Successfully Updated.") def generate_random_snippets(request): try: count = request.GET.get('q') if int(count) > Component.objects.filter(sniperdata__isnull=False).count(): return JsonResponse({'error':'Input number q must not exceed %s.'%str(Component.objects.filter(sniperdata__isnull=False).count())}) components = Component.objects.filter(sniperdata__isnull=False) required_components = np.random.choice(components, int(count), replace=False) return JsonResponse({'components':BaseComponentSerializer(required_components, many=True).data}) except: return JsonResponse({'error':'Input number as query q in the URL.'})
import urllib from behave import * from hamcrest import * from eats.pyhamcrest import array_equal_to_by_key, array_equal_to from eats.utils.sitemap import sitemap_parser, replace_env_url_to_prod, SiteMapGen, url_encode from eats.utils.robots import RobotFileEats from eats.utils.google_site_verification import GoogleSiteVerification from eats.utils.bing import bing_parser from eats.utils.mapping import table_mapping @then(u'{user_name:Username} should have the following google tracking keys information') def step_impl(context, user_name): user = context.users.get(user_name) application = user.current_application keys = context.table.headings ga = application.driver.get_google_tracking_keys() assert_that(table_mapping(ga, keys=keys), array_equal_to(table_mapping(context.table))) @then(u'{user_name:Username} should have the following information on sitemap.xml') def step_impl(context, user_name): user = context.users.get(user_name) application = user.current_application application.go_to_url('/sitemap.xml') contents = application.get_page_source() sitemap = sitemap_parser(contents) prod_netloc = context.application.prod_netloc keys = ["loc", "lastmod", "priority", "changefreq"] trans = lambda page: url_encode(replace_env_url_to_prod(application.get_page(page).url_without_fragment, prod_netloc)) expected = table_mapping(context.table, maps={"page": "loc"}, keys=keys, transform={"page": trans}) gen_sitemap = SiteMapGen(expected) gen_sitemap.write_xml(context.workspace.cwd() + "/sitemap.xml") print(expected) assert_that(sitemap, array_equal_to_by_key(expected, "loc")) @then(u'{user_name:Username} should have the following information on BingSiteAuth.xml') def step_impl(context, user_name): user = context.users.get(user_name) application = user.current_application application.go_to_url('/BingSiteAuth.xml') contents = application.get_page_source() bing = bing_parser(contents) assert_that(bing, array_equal_to_by_key(table_mapping(context.table), "user")) @then(u'{user_name:Username} should have the following information on robots.txt') def step_impl(context, user_name): user = context.users.get(user_name) application = user.current_application application.go_to_url('/robots.txt') f = urllib.urlopen(application.current_url()) contents = f.read() robots = RobotFileEats(contents) expected = [{"entry": x["ENTRY"], "value": x["VALUE"]} for x in context.table] assert_that(robots.entries, array_equal_to(expected)) @then(u'{user_name:Username} should have the following information on "{relative_path}" google site verification') def step_impl(context, user_name, relative_path): user = context.users.get(user_name) application = user.current_application application.go_to_url(relative_path) f = urllib.urlopen(application.current_url()) contents = f.read() gsv = GoogleSiteVerification(contents) expected = [{"entry": x["ENTRY"], "value": x["VALUE"]} for x in context.table] assert_that(gsv.entries, array_equal_to(expected))
"""Example/test script for (stress) testing multiple requests to the bridge.""" import argparse import asyncio import logging from os.path import abspath, dirname from sys import path import time path.insert(1, dirname(dirname(abspath(__file__)))) from aiohue import HueBridgeV2 parser = argparse.ArgumentParser(description="AIOHue Example") parser.add_argument("host", help="hostname of Hue bridge") parser.add_argument("appkey", help="appkey for Hue bridge") parser.add_argument("--debug", help="enable debug logging", action="store_true") args = parser.parse_args() async def main(): """Run Main execution.""" if args.debug: logging.basicConfig( level=logging.DEBUG, format="%(asctime)-15s %(levelname)-5s %(name)s -- %(message)s", ) asyncio.get_running_loop().set_debug(True) async with HueBridgeV2(args.host, args.appkey) as bridge: print("Connected to bridge: ", bridge.bridge_id) print(bridge.config.bridge_device) # pick a random light light = bridge.lights.items[0] print(f"Sending 100 requests to bridge for {light.name}...") async def toggle_light(): await bridge.lights.turn_on(light.id) await bridge.lights.turn_off(light.id) before = time.time() await asyncio.gather(*[toggle_light() for i in range(0, 50)]) after = time.time() print(f"Completed in {after-before} seconds...") try: asyncio.run(main()) except KeyboardInterrupt: pass
# Generated by Django 4.0.1 on 2022-01-07 23:11 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Livros', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('nome_do_livro', models.CharField(max_length=200)), ('editora_do_livro', models.CharField(max_length=200)), ('autor', models.CharField(max_length=200)), ('genero', models.CharField(max_length=200)), ('estrelas', models.IntegerField()), ('situacao', models.CharField(blank=True, max_length=100)), ('opiniao', models.TextField(blank=True, max_length=500)), ], ), ]
def string_to_int(list_a): new_list = [] for item in list_a: num = int(item) new_list.append(num) return new_list num_list = input().split() num_list = string_to_int(num_list) maximum = max(num_list) num_set = set(num_list) first_n_num_set = set(range(1, maximum+1)) missing_num_set = first_n_num_set.difference(num_set) missing_num_list = list(missing_num_set) missing_num_list.sort() print(missing_num_list)
from workerpool import WorkerPool """ WARNING: This sample class is obsolete since version 0.9.2. It will be removed or replaced soon. """ class BlockingWorkerPool(WorkerPool): """ Similar to WorkerPool but a result queue is passed in along with each job and the method will block until the queue is filled with one entry per job. Bulk job lists can be performed using the `contract` method. """ def put(self, job, result): "Perform a job by a member in the pool and return the result." self.job.put(job) r = result.get() return r def contract(self, jobs, result): """ Perform a contract on a number of jobs and block until a result is retrieved for each job. """ for j in jobs: WorkerPool.put(self, j) r = [] for i in xrange(len(jobs)): r.append(result.get()) return r
import pytest from jsondaora.exceptions import DeserializationError from jsondaora.schema import IntegerField, StringField def test_should_validate_minimum_integer(): class Integer(IntegerField, minimum=10): ... with pytest.raises(DeserializationError) as exc_info: Integer(9) assert exc_info.value.args == ('Invalid minimum integer value: 10 < 9',) def test_should_validate_maximum_integer(): class Integer(IntegerField, maximum=9): ... with pytest.raises(DeserializationError) as exc_info: Integer(10) assert exc_info.value.args == ('Invalid maximum integer value: 10 < 9',) def test_should_validate_min_length_string(): class String(StringField, min_length=2): ... with pytest.raises(DeserializationError) as exc_info: String('1') assert exc_info.value.args == ('Invalid min_length string value: 2 < 1',) def test_should_validate_max_length_string(): class String(StringField, max_length=2): ... with pytest.raises(DeserializationError) as exc_info: String('333') assert exc_info.value.args == ('Invalid max_length string value: 3 < 2',)
from django.apps import AppConfig from django.db.models.signals import post_save from django.utils.translation import ugettext_lazy as _ from sui_hei.signals import (add_twitter_on_puzzle_created, add_twitter_on_schedule_created) class SuiHeiConfig(AppConfig): name = 'sui_hei' verbose_name = _('Lateral Thinking') def ready(self): from sui_hei.models import Puzzle, Schedule post_save.connect(add_twitter_on_puzzle_created, sender=Puzzle) post_save.connect(add_twitter_on_schedule_created, sender=Schedule)
from typing import Dict, List, Union import numpy as np def boolean_mask_by_value(mask: np.ndarray, value: int) -> np.ndarray: return boolean_mask_by_values(mask=mask, values=[value]) def boolean_mask_by_values(mask: np.ndarray, values: List[int]) -> np.ndarray: return np.isin(mask, values) def replace_value(mask: np.ndarray, old_value: int, new_value: int) -> np.ndarray: return replace_values(mask=mask, value_map={old_value: new_value}) def replace_values( mask: np.ndarray, value_map: Dict[int, int], value_min: Union[int, None] = None, value_max: Union[int, None] = None ) -> np.ndarray: index_substitutes = np.array( [ value_map.get(item, item) for item in range( value_min if value_min is not None else np.iinfo(mask.dtype).min, (value_max if value_max is not None else np.iinfo(mask.dtype).max) + 1, ) ] ) return index_substitutes[mask] def encode_int32_as_rgb8(mask: np.ndarray) -> np.ndarray: return np.concatenate([mask & 0xFF, mask >> 8 & 0xFF, mask >> 16 & 0xFF], axis=-1).astype(np.uint8) def encode_rgb8_as_int32(mask: np.ndarray) -> np.ndarray: return (mask[..., 2:3] << 16) + (mask[..., 1:2] << 8) + mask[..., 0:1] def encode_2int16_as_rgba8(mask: np.ndarray) -> np.ndarray: return np.concatenate( [mask[..., [0]] >> 8, mask[..., [0]] & 0xFF, mask[..., [1]] >> 8, mask[..., [1]] & 0xFF], axis=-1 ).astype(np.uint8) def lookup_values( mask: np.ndarray, x: Union[np.ndarray, List], y: Union[np.ndarray, List], interpolate: bool = False ) -> np.ndarray: """Executes bilinear interpolation on a 2D plane. Args: mask: Array of shape (M x N [x L]). Note: If 3 dimensions are provided, bilinear interpolation is performed on each 2D plane in the first two dimensions. x: List of indices to interpolate on along the x-axis (columns). Indices < 0 and > (M-1, N-1) will be clipped to 0 or (M-1, N-1), respectively. y: List of indices to interpolate on along the y-axis (rows). Indices < 0 and > (M-1, N-1) will be clipped to 0 or (M-1, N-1), respectively. Returns: Returns interpolated values for input (x,y) as array with shape (len(x) [x L]). """ x = np.asarray(x) y = np.asarray(y) if x.ndim > 1 and x.shape[1] > 1: raise ValueError(f"Expecting shapes (N) or (N x 1) for `x`, received {x.shape}.") if y.ndim > 1 and y.shape[1] > 1: raise ValueError(f"Expecting shapes (N) or (N x 1) for `y`, received {y.shape}.") if x.shape != y.shape: raise ValueError(f"Both `x` and `y` must have same shapes, received x: {x.shape} and y: {y.shape}.") x = x.reshape(-1) y = y.reshape(-1) if interpolate: x0 = np.floor(x).astype(int) x1 = x0 + 1 y0 = np.floor(y).astype(int) y1 = y0 + 1 x0 = np.clip(x0, 0, mask.shape[1] - 1) x1 = np.clip(x1, 0, mask.shape[1] - 1) y0 = np.clip(y0, 0, mask.shape[0] - 1) y1 = np.clip(y1, 0, mask.shape[0] - 1) Ia = mask[y0, x0] Ib = mask[y1, x0] Ic = mask[y0, x1] Id = mask[y1, x1] wa = (x1 - x) * (y1 - y) wb = (x1 - x) * (y - y0) wc = (x - x0) * (y1 - y) wd = (x - x0) * (y - y0) interpolated_result = (Ia.T * wa).T + (Ib.T * wb).T + (Ic.T * wc).T + (Id.T * wd).T border_cases = np.logical_or(x0 == x1, y0 == y1) interpolated_result[border_cases] = mask[y0[border_cases], x0[border_cases]] return interpolated_result else: return mask[np.clip(y, 0, mask.shape[0] - 1).astype(int), np.clip(x, 0, mask.shape[1] - 1).astype(int)]
import unittest import numpy as np from random import choice from unittest import mock from aix360.algorithms.rbm import ( BooleanRuleCG, BRCGExplainer, GLRMExplainer, LinearRuleRegression, LogisticRuleRegression ) from pandas import DataFrame from depiction.core import DataType, Task from depiction.interpreters.aix360.rule_based_model import RuleAIX360 from depiction.models.base.base_model import BaseModel class DummyModel(BaseModel): def predict(self, sample): return np.array([choice([0, 1]) for _ in range(sample.shape[0])]) class RuleAIX360TestCase(unittest.TestCase): def setUp(self): self.X = np.random.randn(100, 10) self.y = (np.random.randn(100) > 0.).astype(int) def _build_posthoc_interpreter(self): model = DummyModel( choice(list(RuleAIX360.SUPPORTED_TASK)), choice(list(RuleAIX360.SUPPORTED_DATATYPE)) ) interpreter = RuleAIX360( choice(list(RuleAIX360.AVAILABLE_INTERPRETERS)), X=self.X, model=model ) return interpreter def _build_antehoc_interpreter(self): interpreter = RuleAIX360( choice(list(RuleAIX360.AVAILABLE_INTERPRETERS)), self.X, y=self.y ) return interpreter def testConstructor(self): # test error for wrong model NOT_SUPPORTED_TASKS = [ t for t in set(Task) for T in RuleAIX360.SUPPORTED_TASK if not (t <= T) ] NOT_SUPPORTED_TYPES = list( set(DataType).difference(RuleAIX360.SUPPORTED_DATATYPE) ) wrong_model = DummyModel( choice(NOT_SUPPORTED_TASKS), choice(NOT_SUPPORTED_TYPES) ) with self.assertRaises(ValueError): RuleAIX360( choice(list(RuleAIX360.AVAILABLE_INTERPRETERS)), X=self.X, model=wrong_model ) # test error for not supported interpreter with self.assertRaises(ValueError): RuleAIX360('', X=self.X, y=self.y) # test error for not supported GLRM regressor with self.assertRaises(ValueError): RuleAIX360('glrm_bubu', X=self.X, y=self.y) # test correctly chosen glrm and regressor valid_glrm = [ i for i in RuleAIX360.AVAILABLE_INTERPRETERS if 'glrm' in i ] interpreter = RuleAIX360(choice(valid_glrm), X=self.X, y=self.y) self.assertTrue(isinstance(interpreter.explainer, GLRMExplainer)) self.assertTrue( isinstance(interpreter.regressor, LogisticRuleRegression) or isinstance(interpreter.regressor, LinearRuleRegression) ) self.assertFalse(interpreter._fitted) # -- test correctness of ante-hoc model self.assertEqual(interpreter.usage_mode, RuleAIX360.UsageMode.ANTE_HOC) self.assertTrue( Task.check_support(interpreter.task, RuleAIX360.SUPPORTED_TASK) ) self.assertTrue(interpreter.data_type in RuleAIX360.SUPPORTED_DATATYPE) # test brcg model interpreter = RuleAIX360('brcg', X=self.X, y=self.y) self.assertTrue(isinstance(interpreter.explainer, BRCGExplainer)) self.assertTrue(isinstance(interpreter.regressor, BooleanRuleCG)) self.assertFalse(interpreter._fitted) # test with right model interpreter = self._build_posthoc_interpreter() self.assertEqual(interpreter.usage_mode, RuleAIX360.UsageMode.POST_HOC) self.assertFalse(interpreter._fitted) def testFit(self): # test fit antehoc called correctly interpreter = self._build_antehoc_interpreter() with mock.patch.object( interpreter, '_fit_antehoc' ) as mock_fit_antehoc: interpreter.fit(0, 0) mock_fit_antehoc.assert_called_once() # test fit posthoc called correctly interpreter = self._build_posthoc_interpreter() with mock.patch.object( interpreter, '_fit_posthoc' ) as mock_fit_posthoc: interpreter.fit(0, 0) mock_fit_posthoc.assert_called_once() def testFitAntehoc(self): interpreter = self._build_antehoc_interpreter() with mock.patch.object( interpreter.explainer, 'fit' ) as mock_explainer_fit: interpreter.fit(0, 0) mock_explainer_fit.assert_called_once() def testFitPosthoc(self): interpreter = self._build_posthoc_interpreter() with mock.patch.object( interpreter._to_interpret, 'predict' ) as mock_predict: with mock.patch.object( interpreter, '_fit_antehoc' ) as mock_fit_antehoc: interpreter.fit(0) mock_predict.assert_called_once() mock_fit_antehoc.assert_called_once() with mock.patch.object( interpreter._to_interpret, 'predict' ) as mock_predict: with mock.patch.object( interpreter, '_fit_antehoc' ) as mock_fit_antehoc: preprocess = mock.MagicMock() interpreter.fit(0, preprocess) preprocess.assert_called_once() preprocess.assert_called_with(0) with mock.patch.object( interpreter._to_interpret, 'predict', return_value=2 ) as mock_predict: with mock.patch.object( interpreter, '_fit_antehoc' ) as mock_fit_antehoc: postprocess = mock.MagicMock() interpreter.fit(0, postprocess_y=postprocess) postprocess.assert_called_once() postprocess.assert_called_with(2) def testInterpret(self): builder = choice( [self._build_posthoc_interpreter, self._build_antehoc_interpreter] ) interpreter = builder() with mock.patch.object( interpreter.explainer, 'explain' ) as mock_explain: with mock.patch.object( interpreter, '_visualize_explanation' ) as mock_visualize: e = interpreter.interpret() mock_explain.assert_called_once() mock_visualize.assert_called_once() self.assertTrue(e, interpreter.explanation) with mock.patch.object( interpreter.explainer, 'explain' ) as mock_explain: with mock.patch.object( interpreter, '_save_explanation' ) as mock_save: e = interpreter.interpret(path='') mock_explain.assert_called_once() mock_save.assert_called_once() self.assertTrue(e, interpreter.explanation) def testVisualize(self): """ TODO(phineasng): think if it's possible or make sense to test this """ pass def testSave(self): builder = choice( [self._build_posthoc_interpreter, self._build_antehoc_interpreter] ) interpreter = builder() # test DataFrame df = DataFrame() with mock.patch.object(df, 'to_pickle') as mock_to_pickle: interpreter._save_explanation(df, path='') mock_to_pickle.assert_called_with('') exp = object() module_name = 'depiction.interpreters.aix360.rule_based_model' with mock.patch('{}.open'.format(module_name)) as mock_open: with mock.patch('{}.pickle.dump'.format(module_name)) as mock_dump: interpreter._save_explanation(exp, path='') mock_open.assert_called_once() mock_open.assert_called_with('', 'wb') mock_dump.assert_called_once() def testPredict(self): builder = choice( [self._build_posthoc_interpreter, self._build_antehoc_interpreter] ) interpreter = builder() with mock.patch.object( interpreter.explainer, 'predict' ) as mock_predict: interpreter.predict(0) mock_predict.assert_called_once() mock_predict.assert_called_with(0) if __name__ == "__main__": unittest.main()
from django.conf.urls import patterns, include, url from django.conf import settings from django.contrib import admin admin.autodiscover() urlpatterns = patterns('', url(r'^admin/', include(admin.site.urls)), #url(r'^e/(?P<path>.*)$', 'django.views.static.serve', # { 'document_root': settings.STATIC_DOC_ROOT }), url(r'^', include('endpoint.urls')), )
### TILE SHOWING THE RESULTS from sepal_ui import sepalwidgets as sw from sepal_ui import mapping as sm import ipyvuetify as v from component.message import ms from component.scripts import * from component import parameter as pm # create an empty result tile that will be filled with displayable plot, map, links, text class SelectionTile(sw.Tile): def __init__(self, aoi_io, io, viz_tile, export_tile, **kwargs): # gather the io self.aoi_io = aoi_io self.io = io self.viz_tile = viz_tile self.export_tile = export_tile # create an output alert self.output = sw.Alert() # self.start = sw.Markdown(pm.end) self.start_picker = sw.DatePicker(label='Start date') self.end = sw.Markdown(pm.end) self.end_picker = sw.DatePicker(label='End date') self.select = sw.Markdown(pm.select) self.l8 = v.Switch( class_ = "ml-5", label = ms.selection.l8, v_model = False ) self.l7 = v.Switch( class_ = "ml-5", label = ms.selection.l7, v_model = False ) self.l5 = v.Switch( class_ = "ml-5", label = ms.selection.l5, v_model = False ) self.l4 = v.Switch( class_ = "ml-5", label = ms.selection.l4, v_model = False ) self.t2 = v.Switch( class_ = "ml-5", label = ms.selection.t2, v_model = False ) self.s2 = v.Switch( class_ = "ml-5", label = ms.selection.s2, v_model = False ) self.sr_mess = sw.Markdown(pm.sr) self.sr = v.Switch( class_ = "ml-5", label = ms.selection.sr, v_model = False ) self.stats = sw.Markdown(pm.stats) self.measure = v.Select( label = ms.selection.measure, v_model = None, items = pm.measures ) self.annual = v.Switch( class_ = "ml-5", label = ms.selection.annual, v_model = False ) # create the output alert # this component will be used to display information to the end user when you lanch the process # it's hidden by default # it also has the embeded `bind` method that link mutable variable to component v_model # bind return self so it can be chained to bind everything in one statement. # args are (widget, io, io_attribute_name) self.output = sw.Alert() \ .bind(self.start_picker, self.io, 'start') \ .bind(self.end_picker, self.io, 'end') \ .bind(self.l8, self.io, 'l8') \ .bind(self.l7, self.io, 'l7') \ .bind(self.l5, self.io, 'l5') \ .bind(self.l4, self.io, 'l4') \ .bind(self.t2, self.io, 't2') \ .bind(self.s2, self.io, 's2') \ .bind(self.sr, self.io, 'sr') \ .bind(self.measure, self.io, 'measure') \ .bind(self.annual, self.io, 'annual') # to launch the process you'll need a btn # here it is as a special sw widget (the message and the icon can also be customized see sepal_ui widget doc) self.btn = sw.Btn() # construct the Tile with the widget we have initialized super().__init__( id_ = "selection_widget", # the id will be used to make the Tile appear and disapear title = ms.selection.title, # the Title will be displayed on the top of the tile inputs = [self.start, self.start_picker, self.end, self.end_picker, self.select, self.l8, self.l7, self.l5, self.l4, self.t2, self.s2, self.sr_mess, self.sr, self.stats, self.measure, self.annual], btn = self.btn, output = self.output ) # now that the Tile is created we can link it to a specific function self.btn.on_event("click", self._on_run) # PROCESS AFTER ACTIVATING BUTTON def _on_run(self, widget, data, event): # toggle the loading button (ensure that the user doesn't launch the process multiple times) widget.toggle_loading() # check that the input that you're gonna use are set (Not mandatory) if not self.output.check_input(self.aoi_io.get_aoi_name(), ms.process.no_aoi): return widget.toggle_loading() # if not self.output.check_input(self.io.year, ms.process.no_slider): return widget.toggle_loading() # Wrap the process in a try/catch statement try: dataset = analysis( self.aoi_io.get_aoi_ee(), self.io.start, self.io.end, self.io.l8, self.io.l7, self.io.l5, self.io.l4, self.io.t2, self.io.s2, self.io.sr, #self.output ) # change the io values as its a mutable object # useful if the io is used as an input in another tile self.io.dataset = dataset # release the export btn self.export_tile.asset_btn.disabled = False self.export_tile.sepal_btn.disabled = False # launch vizualisation self.viz_tile._on_change(None) # conclude the computation with a message self.output.add_live_msg(ms.process.end_computation, 'success') except Exception as e: self.output.add_live_msg(str(e), 'error') # release the btn widget.toggle_loading() return
import torch X = torch.tensor( [[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]], requires_grad=True ) K = torch.tensor([[0.0, 1.0], [2.0, 3.0]]) def corr2d(X, K): """Compute 2D cross-correlation.""" h, w = K.shape Y = torch.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1)) for i in range(Y.shape[0]): for j in range(Y.shape[1]): Y[i, j] = (X[i : i + h, j : j + w] * K).sum() return Y if __name__ == "__main__": try: result = corr2d(X, K) result.backward( torch.ones(result.shape[0], result.shape[1], dtype=torch.float) ) print(X.grad) except Exception as e: print("Error Message:", e) print("我不知道Error是什麼QAQ")
from collections import deque class Solution: # # Deque (Accepted), O(n) time and space # def diStringMatch(self, s: str) -> List[int]: # queue = deque(range(len(s)+1)) # res = [] # for c in s: # if c == 'I': # res.append(queue.popleft()) # else: # res.append(queue.pop()) # if queue: # res.append(queue.pop()) # return res # Ad-Hoc (Solution), O(n) time and space def diStringMatch(self, S: str) -> List[int]: lo, hi = 0, len(S) ans = [] for x in S: if x == 'I': ans.append(lo) lo += 1 else: ans.append(hi) hi -= 1 return ans + [lo]
from typing import Optional, Any, Dict from fastapi import status from starlette.exceptions import HTTPException from conf.const import StatusCode from .schema import SchemaMixin class BaseHTTPException(HTTPException): MESSAGE = None STATUS_CODE = status.HTTP_400_BAD_REQUEST CODE = 40000 def __init__( self, message: Any = None, code: int = None, headers: Optional[Dict[str, Any]] = None ) -> None: self.message = message or self.MESSAGE self.status_code = self.STATUS_CODE self.code = code or self.CODE self.detail = self.message self.headers = headers def __repr__(self) -> str: class_name = self.__class__.__name__ return f"{class_name}(status_code={self.status_code!r}, code={self.code}, msg={self.message!r})" def response(self): return SchemaMixin(code=self.code, message=self.message, data=None).dict() class BadRequest(BaseHTTPException): STATUS_CODE = status.HTTP_400_BAD_REQUEST CODE = StatusCode.bad_request class Unauthorized(BaseHTTPException): STATUS_CODE = status.HTTP_401_UNAUTHORIZED CODE = StatusCode.unauthorized class Forbidden(BaseHTTPException): STATUS_CODE = status.HTTP_403_FORBIDDEN CODE = StatusCode.forbidden class NotFound(BaseHTTPException): STATUS_CODE = status.HTTP_404_NOT_FOUND CODE = StatusCode.not_found class MethodNotAllowed(BaseHTTPException): STATUS_CODE = status.HTTP_405_METHOD_NOT_ALLOWED CODE = StatusCode.method_not_allowed class Locked(BaseHTTPException): STATUS_CODE = status.HTTP_423_LOCKED CODE = StatusCode.locked
# -*- coding: utf-8 -*- __author__ = 'yijingping' import time import urllib2 ip_check_url = 'http://api.ipify.org' user_agent = 'Mozilla/5.0 (Windows NT 6.1; WOW64; rv:12.0) Gecko/20100101 Firefox/12.0' socket_timeout = 3 # Get real public IP address def get_real_pip(): req = urllib2.Request(ip_check_url) req.add_header('User-agent', user_agent) conn = urllib2.urlopen(req) page = conn.read() conn.close() return page # Set global variable containing "real" public IP address real_pip = get_real_pip() def check_proxy(host, port): try: # Build opener proxy_handler = urllib2.ProxyHandler({'http': '%s:%s' % (host, port)}) opener = urllib2.build_opener(proxy_handler) opener.addheaders = [('User-agent', user_agent)] urllib2.install_opener(opener) # Build, time, and execute request req = urllib2.Request(ip_check_url) time_start = time.time() conn = urllib2.urlopen(req, timeout=socket_timeout) time_end = time.time() detected_pip = conn.read() conn.close() # Calculate request time time_diff = time_end - time_start # Check if proxy is detected if detected_pip == real_pip: proxy_detected = False else: proxy_detected = True # Catch exceptions except urllib2.HTTPError, e: print "ERROR: Code ", e.code return (True, False, 999) except Exception, detail: print "ERROR: ", detail return (True, False, 999) # Return False if no exceptions, proxy_detected=True if proxy detected return (False, proxy_detected, time_diff)