content
stringlengths
5
1.05M
""" Management command to change many user enrollments in many courses using csv file. """ import logging from os import path import unicodecsv from django.core.exceptions import ObjectDoesNotExist from django.core.management.base import BaseCommand, CommandError from django.db import transaction from opaque_keys import InvalidKeyError from opaque_keys.edx.keys import CourseKey from common.djangoapps.student.models import CourseEnrollment, CourseEnrollmentAttribute, User from common.djangoapps.student.models import BulkChangeEnrollmentConfiguration logger = logging.getLogger('common.djangoapps.student.management.commands.bulk_change_enrollment_csv') class Command(BaseCommand): """ Management command to change many user enrollments in many courses using the csv file """ help = """ Change the enrollment status of all the users specified in the csv file in the specified course to specified course mode. Could be used to update effected users by order placement issues. If large number of students are effected in different courses. Similar to bulk_change_enrollment but uses the csv file input format and can enroll students in multiple courses. Example: $ ... bulk_change_enrollment_csv csv_file_path """ def add_arguments(self, parser): """ Add argument to the command parser. """ parser.add_argument( '--csv_file_path', required=False, help='Csv file path' ) parser.add_argument( '--file_from_database', action='store_true', help='Use file from the BulkChangeEnrollmentConfiguration model instead of the command line.', ) def get_file_from_database(self): """ Returns an options dictionary from the current SSPVerificationRetryConfig model. """ enrollment_config = BulkChangeEnrollmentConfiguration.current() if not enrollment_config.enabled: raise CommandError('BulkChangeEnrollmentConfiguration is disabled or empty, ' 'but --file_from_database from was requested.') return enrollment_config.csv_file def handle(self, *args, **options): """ Main handler for the command.""" file_path = options.get('csv_file_path', None) file_from_database = options['file_from_database'] if file_from_database: csv_file = self.get_file_from_database() self.change_enrollments(csv_file) elif file_path: if not path.isfile(file_path): raise CommandError("File not found.") with open(file_path, 'rb') as csv_file: self.change_enrollments(csv_file) else: CommandError('No file is provided. File is required') def change_enrollments(self, csv_file): """ change the enrollments of the learners. """ course_key = None user = None file_reader = unicodecsv.DictReader(csv_file) headers = file_reader.fieldnames if not ('course_id' in headers and 'mode' in headers and 'user' in headers): raise CommandError('Invalid input CSV file.') for row in list(file_reader): try: course_key = CourseKey.from_string(row['course_id']) except InvalidKeyError: logger.warning('Invalid or non-existent course id [{}]'.format(row['course_id'])) try: user = User.objects.get(username=row['user']) except ObjectDoesNotExist: logger.warning('Invalid or non-existent user [{}]'.format(row['user'])) if course_key and user: try: course_enrollment = self.get_course_enrollment(course_key, user) if course_enrollment: mode = row['mode'] self.update_enrollment_mode(course_key, user, mode, course_enrollment) else: # if student enrollment do not exists directly enroll in new mode. CourseEnrollment.enroll(user=user, course_key=course_key, mode=row['mode']) except Exception as e: # pylint: disable=broad-except logger.info("Unable to update student [%s] course [%s] enrollment to mode [%s] " "because of Exception [%s]", row['user'], row['course_id'], row['mode'], repr(e)) def get_course_enrollment(self, course_key, user): """ If student is not enrolled in course enroll the student in free mode """ course_enrollment = CourseEnrollment.get_enrollment(user, course_key) # If student is not enrolled in course enroll the student in free mode if not course_enrollment: # try to create a enroll user in default course enrollment mode in case of # professional it will break because of no default course mode. try: course_enrollment = CourseEnrollment.get_or_create_enrollment(user=user, course_key=course_key) except Exception: # pylint: disable=broad-except # In case if no free mode is available. course_enrollment = None return course_enrollment def update_enrollment_mode(self, course_key, user, mode, course_enrollment): """ update the enrollment mode based on the learner existing state. """ # if student already had a enrollment and its mode is same as the provided one if course_enrollment.mode == mode: logger.info("Student [%s] is already enrolled in Course [%s] in mode [%s].", user.username, course_key, course_enrollment.mode) # set the enrollment to active if its not already active. if not course_enrollment.is_active: course_enrollment.update_enrollment(is_active=True) else: # if student enrollment exists update it to new mode. with transaction.atomic(): course_enrollment.update_enrollment( mode=mode, is_active=True, skip_refund=True ) course_enrollment.save() if mode == 'credit': enrollment_attrs = [{'namespace': 'credit', 'name': 'provider_id', 'value': course_key.org }] CourseEnrollmentAttribute.add_enrollment_attr(enrollment=course_enrollment, data_list=enrollment_attrs)
# -*- coding: utf-8 -*- import re class Cave(object): _regex_spaces = r'[ ]{21}' def __init__(self, price=0, meters=0, description='', url='', service_url=''): self.price = price self.meters = meters # 'description' is the only possible attribute with 'special' chars self.description = description.encode('unicode_escape') self.url = url self.service_url = service_url def __str__(self): message = '''Founded a new cave! Price: {0} euros Meters: {1} m2 Description: {2} <a href="{3}">Link</a> <a href="{4}">Search link</a> Good luck!''' message = message.format(self.price, self.meters, self.description, self.url, self.service_url) message = re.sub(self._regex_spaces, '', message) return message def __unicode__(self): return self.__str__().decode('unicode-escape') def __repr__(self): return self.__str__()
# To add a new cell, type '# %%' # To add a new markdown cell, type '# %% [markdown]' # %% from IPython import get_ipython # %% import os import sys sys.path.insert(0, os.path.abspath('..')) # %% # get_ipython().run_line_magic('load_ext', 'autoreload') # get_ipython().run_line_magic('autoreload', '2') # get_ipython().run_line_magic('matplotlib', 'inline') import pandas as pd import numpy as np import matplotlib.pyplot as plt import cvxportfolio as cp plotdir = '../portfolio/plots/' datadir='../data/' sigmas=pd.read_csv(datadir+'sigmas.csv.gz',index_col=0,parse_dates=[0]).iloc[:,:-1] returns=pd.read_csv(datadir+'returns.csv.gz',index_col=0,parse_dates=[0]) volumes=pd.read_csv(datadir+'volumes.csv.gz',index_col=0,parse_dates=[0]).iloc[:,:-1] w_b = pd.Series(index=returns.columns, data=1) w_b.USDOLLAR = 0. w_b/=sum(w_b) start_t="2012-01-01" end_t="2016-12-29" simulated_tcost = cp.TcostModel(half_spread=0.0005/2., nonlin_coeff=1., sigma=sigmas, volume=volumes) simulated_hcost = cp.HcostModel(borrow_costs=0.0001) simulator = cp.MarketSimulator(returns, costs=[simulated_tcost, simulated_hcost], market_volumes=volumes, cash_key='USDOLLAR') return_estimate=pd.read_csv(datadir+'return_estimate.csv.gz',index_col=0,parse_dates=[0]).dropna() volume_estimate=pd.read_csv(datadir+'volume_estimate.csv.gz',index_col=0,parse_dates=[0]).dropna() sigma_estimate=pd.read_csv(datadir+'sigma_estimate.csv.gz',index_col=0,parse_dates=[0]).dropna() optimization_tcost = cp.TcostModel(half_spread=0.0005/2., nonlin_coeff=1., sigma=sigma_estimate, volume=volume_estimate) optimization_hcost=cp.HcostModel(borrow_costs=0.0001) risk_data = pd.HDFStore(datadir+'risk_model.h5') risk_model = cp.FactorModelSigma(risk_data.exposures, risk_data.factor_sigma, risk_data.idyos) # %% all_return_estimates={} n_p1=returns.shape[1] T=returns.shape[0] for i,t in enumerate(returns.index[:-1]): all_return_estimates[(t,t)]= return_estimate.loc[t] tp1=returns.index[i+1] all_return_estimates[(t,tp1)]=return_estimate.loc[tp1] returns_forecast = cp.MPOReturnsForecast(all_return_estimates) results_MPO={} # %% [markdown] # ## MPO Coarse search # %% import cvxpy as cvx policies={} gamma_risks_coarse=[.1,.3,1,3,10,30,100,300,1000] gamma_tcosts_coarse=[1,2,5,10,20] for gamma_risk in gamma_risks_coarse: for gamma_tcost in gamma_tcosts_coarse: policies[(gamma_risk, gamma_tcost)] = cp.MultiPeriodOpt(return_forecast=returns_forecast, costs=[gamma_risk*risk_model, gamma_tcost*optimization_tcost, optimization_hcost], constraints=[cp.LeverageLimit(3)], trading_times=list(returns.index[(returns.index>=start_t)&(returns.index<=end_t)]), lookahead_periods=2, terminal_weights=None) results_MPO.update({k:v for k,v in zip(policies.keys(), simulator.run_multiple_backtest(w_b*1e8, start_time = start_t, end_time=end_t, policies=policies.values(),parallel=True))}) # %% result_df_coarse=pd.DataFrame() for k in results_MPO: if k[0] in gamma_risks_coarse and k[1] in gamma_tcosts_coarse: result_df_coarse.loc[k[0], k[1]] = results_MPO[k] result_df = result_df_coarse.loc[sorted(result_df_coarse.index), sorted(result_df_coarse.columns)] # %% plt.figure(figsize=(8,5)) for gamma_tcost in result_df.columns: x=[el.excess_returns.std()*100*np.sqrt(250) for el in result_df[gamma_tcost]] y=[el.excess_returns.mean()*100*250 for el in result_df[gamma_tcost]] plt.plot(np.array(x),np.array(y), '.-', label='$\gamma^\mathrm{trade} = %g$'%gamma_tcost) plt.legend(loc='lower right') plt.xlabel('Risk') plt.ylabel('Return') plt.xlim([0,20]) plt.ylim([0,30]) import matplotlib.ticker as mtick ax = plt.gca() ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) plt.savefig(plotdir+'mpo_riskrewardfrontier.png') # %% [markdown] # # MPO Pareto search # %% results_pareto={} # %% policies={} #gamma_risks_pareto=[int(round(el)) for el in np.logspace(0,3,13)] gamma_risks_pareto=[1, 2, 3, 6, 10, 18, 32, 56, 100, 178, 316, 562, 1000] gamma_tcosts_pareto=[7,8,9,10,11,12] gamma_holdings=[.1,1.,10., 100.,1000.] for gamma_risk in gamma_risks_pareto: for gamma_tcost in gamma_tcosts_pareto : for gamma_holding in gamma_holdings: policies[(gamma_risk, gamma_tcost, gamma_holding)] = cp.MultiPeriodOpt(alpha_model=returns_forecast, costs=[gamma_risk*risk_model, gamma_tcost*optimization_tcost, gamma_holding*optimization_hcost], constraints=[cp.LeverageLimit(3)], trading_times=list(returns.index[(returns.index>=start_t)&(returns.index<=end_t)]), lookahead_periods=2, terminal_weights=None) import warnings warnings.filterwarnings('ignore') results_pareto.update(dict(zip(policies.keys(), simulator.run_multiple_backtest(1E8*w_b, start_time=start_t, end_time=end_t, policies=policies.values(), parallel=True)))) # %% table=pd.DataFrame() table[r'$\gamma^\mathrm{risk}$']=[el[0] for el in results_pareto.keys()] table[r'$\gamma^\mathrm{trade}$']=[el[1] for el in results_pareto.keys()] table[r'$\gamma^\mathrm{hold}$']=['%g'%el[2] for el in results_pareto.keys()] table['Return']=[(results_pareto[k].excess_returns.mean()*100*250) for k in results_pareto.keys()] table['Risk']=[(results_pareto[k].excess_returns.std()*100*np.sqrt(250)) for k in results_pareto.keys()] table = table.sort_values('Risk', ascending=False).reset_index() del table['index'] is_pareto = lambda i: table.loc[i,'Return']>=max(table.ix[i:].Return) table['is_pareto'] = [is_pareto(i) for i in range(len(table))] table.to_csv(datadir+'mpo_pareto_results.csv', float_format='%g') # %% plt.figure(figsize=(8,5)) plt.scatter(table.Risk.values,table.Return.values) plt.plot(table[table.is_pareto].Risk,table[table.is_pareto].Return, 'C1.-', label='Pareto optimal frontier') plt.legend( loc='lower right') plt.xlabel('Risk') plt.ylabel('Return') plt.xlim([0,20]) plt.ylim([0,30]) import matplotlib.ticker as mtick ax = plt.gca() ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) plt.savefig(plotdir+'mpo_pareto.png') # %% xlim=20 ylim=30 tableprint=table[table.is_pareto] tableprint=tableprint[tableprint.Risk <= xlim] tableprint=tableprint[tableprint.Return <= ylim] del tableprint['is_pareto'] tableprint.Risk=tableprint.Risk.apply(lambda x: '%.2f%%'%x) tableprint.Return=tableprint.Return.apply(lambda x: '%.2f%%'%x) print(tableprint.iloc[::-1].to_latex(float_format='%.2f', escape=False, index=False).replace('%',r'\%')) # %% [markdown] # # SPO vs MPO # %% table_spo = pd.read_csv('spo_pareto_results.csv', index_col=0) plt.figure(figsize=(8,5)) plt.plot(table[table.is_pareto].Risk,table[table.is_pareto].Return, 'C3.-', label='MPO pareto frontier') plt.plot(table_spo[table_spo.is_pareto].Risk, table_spo[table_spo.is_pareto].Return, 'C2.-', label='SPO pareto frontier') plt.legend(loc='lower right') plt.xlabel('Risk') plt.ylabel('Return') plt.xlim([0,20]) plt.ylim([0,30]) import matplotlib.ticker as mtick ax = plt.gca() ax.xaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) ax.yaxis.set_major_formatter(mtick.FormatStrFormatter('%.0f%%')) plt.savefig(plotdir+'spo_vs_mpo_pareto.png')
# Copyright 2015 Open Platform for NFV Project, Inc. and its contributors # This software is distributed under the terms and conditions of the 'Apache-2.0' # license which can be found in the file 'LICENSE' in this package distribution # or at 'http://www.apache.org/licenses/LICENSE-2.0'. from flask import request from flask_restful import Resource from moon_utilities.security_functions import check_auth import logging LOG = logging.getLogger("moon.orchestrator.api.containers") class Pods(Resource): """ Endpoint for pdp requests """ __urls__ = ( "/pods", "/pods/", "/pods/<string:uuid>", "/pods/<string:uuid>/", ) def __init__(self, **kwargs): self.driver = kwargs.get("driver") @check_auth def get(self, uuid=None, user_id=None): """Retrieve all pods :param uuid: uuid of the pod :param user_id: user ID who do the request :return: { "pod_id1": { "name": "...", "replicas": "...", "description": "...", } } :internal_api: get_pdp """ pods = {} LOG.info("pods={}".format(self.driver.get_pods())) for _pod_key, _pod_values in self.driver.get_pods().items(): for _pod_value in _pod_values: if _pod_value['namespace'] != "moon": continue pods[_pod_key] = _pod_value return {"pods": pods} @check_auth def post(self, uuid=None, user_id=None): """Create a new pod. :param uuid: uuid of the pod (not used here) :param user_id: user ID who do the request :request body: { "name": "...", "description": "...", "type": "plugin_name" } :return: { "pdp_id1": { "name": "...", "replicas": "...", "description": "...", } } """ return {"pods": None} @check_auth def delete(self, uuid=None, user_id=None): """Delete a pod :param uuid: uuid of the pod to delete :param user_id: user ID who do the request :return: { "result": "True or False", "message": "optional message" } """ return {"result": True} @check_auth def patch(self, uuid=None, user_id=None): """Update a pod :param uuid: uuid of the pdp to update :param user_id: user ID who do the request :request body: { "name": "...", "replicas": "...", "description": "...", } :return: { "pod_id1": { "name": "...", "replicas": "...", "description": "...", } } :internal_api: update_pdp """ return {"pods": None}
""" This script evaluates query interpretations based on the strict evaluation metrics; macro averaging of precision, recall and F-measure. For detailed information see: F. Hasibi, K. Balog, and S. E. Bratsberg. "Entity Linking in Queries: Tasks and Evaluation", In Proceedings of ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR '15), Sep 2015. DOI: http://dx.doi.org/10.1145/2808194.2809473 Usage: python evaluation_erd.py <qrel_file> <result_file> e.g. python evaluation_erd.py qrels_sets_ERD-dev.txt ERD-dev_MLMcg-GIF.txt @author: Faegheh Hasibi ([email protected]) """ from __future__ import division import sys from collections import defaultdict class Evaluator(object): def __init__(self, qrels, results): self.qrels_dict = self.__group_by_queries(qrels) self.results_dict = self.__group_by_queries(results) qid_overlap = set(self.qrels_dict.keys()) & set(self.results_dict.keys()) if len(qid_overlap) == 0: print "ERR: Query mismatch between qrel and result file!" exit(0) @staticmethod def __group_by_queries(file_lines): """ Groups the lines by query id. :param file_lines: list of lines [[qid, label, en_id, ...], ...] :return: {qid: [iset0, iset1, ..], ..}; isets are sets of entity ids """ grouped_inters = defaultdict(list) for cols in file_lines: if len(cols) > 2: grouped_inters[cols[0]].append(set(cols[2:])) elif cols[0] not in grouped_inters: grouped_inters[cols[0]] = [] # check that identical interpretations are not assigned to a query for qid, interprets in grouped_inters.iteritems(): q_interprets = set() for inter in interprets: if tuple(sorted(inter)) in q_interprets: print "Err: Identical interpretations for query [" + qid + "]!" exit(0) else: q_interprets.add(tuple(sorted(inter))) return grouped_inters def eval(self, eval_query_func): """ Evaluates all queries and calculates total precision, recall and F1 (macro averaging). :param eval_query_func: A function that takes qrel and results for a query and returns evaluation metrics :return Total precision, recall, and F1 for all queries """ queries_eval = {} total_prec, total_rec, total_f = 0, 0, 0 for qid in sorted(self.qrels_dict): queries_eval[qid] = eval_query_func(self.qrels_dict[qid], self.results_dict.get(qid, [])) total_prec += queries_eval[qid]['prec'] total_rec += queries_eval[qid]['rec'] n = len(self.qrels_dict) # number of queries total_prec /= n total_rec /= n total_f = (2 * total_rec * total_prec) / (total_rec + total_prec) if total_prec + total_rec != 0 else 0 log = "\n----------------" + "\nEvaluation results:\n" + \ "Prec: " + str(round(total_prec, 4)) + "\n" +\ "Rec: " + str(round(total_rec, 4)) + "\n" + \ "F1: " + str(round(total_f, 4)) + "\n" + \ "all: " + str(round(total_prec, 4)) + ", " + str(round(total_rec, 4)) + ", " + str(round(total_f, 4)) print log metrics = {'prec': total_prec, 'rec': total_rec, 'f': total_f} return metrics def erd_eval_query(query_qrels, query_results): """ Evaluates a single query. :param query_qrels: Query interpretations from Qrel [{en1, en2, ..}, ..] :param query_results: Query interpretations from result file [{en1, en2, ..}, ..] :return: precision, recall, and F1 for a query """ tp = 0 # correct fn = 0 # missed fp = 0 # incorrectly returned # ----- Query has no interpretation set. ------ if len(query_qrels) == 0: if len(query_results) == 0: return {'prec': 1, 'rec': 1, 'f': 1} return {'prec': 0, 'rec': 0, 'f': 0} # ----- Query has at least an interpretation set. ----- # Iterate over qrels to calculate TP and FN for qrel_item in query_qrels: if find_item(qrel_item, query_results): tp += 1 else: fn += 1 # Iterate over results to calculate FP for res_item in query_results: if not find_item(res_item, query_qrels): # Finds the result in the qrels fp += 1 prec = tp / (tp+fp) if tp+fp != 0 else 0 rec = tp / (tp+fn) if tp+fn != 0 else 0 metrics = {'prec': prec, 'rec': rec} return metrics def find_item(item_to_find, items_list): """ Returns True if an item is found in the item list. :param item_to_find: item to be found :param items_list: list of items to search in :return boolean """ is_found = False item_to_find = set([en.lower() for en in item_to_find]) for item in items_list: item = set([en.lower() for en in item]) if item == item_to_find: is_found = True return is_found def parse_file(file_name): """ Parses file and returns the positive instances for each query. :param file_name: Name of file to be parsed :return list of lines [[qid, label, en_id, ...], ...] """ file_lines = [] efile = open(file_name, "r") for line in efile.readlines(): if line.strip() == "": continue cols = line.strip().split("\t") file_lines.append(cols) return file_lines def main(args): if len(args) < 2: print "\tUsage: [qrel_file] [result_file]" exit(0) qrels = parse_file(args[0]) results = parse_file(args[1]) evaluator = Evaluator(qrels, results) evaluator.eval(erd_eval_query) if __name__ == '__main__': main(sys.argv[1:])
from django.conf import settings CONNECTIONS = getattr(settings, 'NEXUS_REDIS_CONNECTIONS', [ # {'host': '127.0.0.1', 'port': 8930}, # {'host': '127.0.0.1', 'port': 8932, 'password': 'secret', 'db': 2}, ]) DEFAULT_HOST = 'localhost' DEFAULT_PORT = 6379
from ..parsing import * # Module under test def test_extract_single_deep_nested(): sigil = "[ENV=[USR=[CURRENT].DEFAULT_ENV].APP=[APP=[ACTIVE]]]" text = f"-- {sigil} --" assert set(extract(text)) == {sigil} def test_ignore_whitespace(): sigil = "[ ENV . HELP ]" text = f"-- {sigil} --" assert set(extract(text)) == {sigil} def test_extract_file_stream(): with open("tests/data/sample.txt", "r") as fp: assert set(extract(fp)) == {"[ENV.HOST]"}
from django.conf import settings from django.test import TestCase from django.core import mail from ecommerce import mailer from ecommerce.models import Order class TestMailer(TestCase): """Test cases for mailer module.""" @classmethod def setUpClass(cls): """Set up testing Order instance.""" super(TestMailer, cls).setUpClass() cls.order = Order( name='John Doe', email='[email protected]', phone='222222222222' ) def test_mail_send_works(self): """If we send email, Django will put it in mail.outbox collection.""" for i in range(10): mailer.send_order( subject='Testing email', order=self.order, ) self.assertEqual(len(mail.outbox), i + 1) def test_mailer_construct_valid_email(self): """Saved email contains valid subject and valid body.""" mailer.send_order( subject='Testing email 1', order=self.order, ) sent_mail = mail.outbox[0] self.assertEqual(sent_mail.subject, 'Testing email 1') self.assertIn('Thank you, {}'.format(self.order.name), sent_mail.body) def test_mailer_will_send_order_to_specified_recipients(self): """Saved email contains valid set of recipients.""" mailer.send_order( subject='Testing email 1', order=self.order, ) sent_mail = mail.outbox[0] recipients = [self.order.email, *settings.EMAIL_RECIPIENTS] self.assertListEqual(recipients, sent_mail.recipients()) mailer.send_order( subject='Testing email 1', order=self.order, to_customer=False ) sent_mail = mail.outbox[1] recipients = settings.EMAIL_RECIPIENTS self.assertListEqual(recipients, sent_mail.recipients()) def test_order_call(self): """Mailer module should be able to send mails about ordered calls.""" subject = 'Testing backcall' mailer.send_backcall( subject=subject, phone='22222222', url='fidals.ru' ) sent_mail = mail.outbox[0] recipients = settings.EMAIL_RECIPIENTS self.assertListEqual(recipients, sent_mail.recipients()) self.assertEqual(sent_mail.subject, subject)
import pytest import matplotlib from dython.data_utils import split_hist def test_split_hist_check(iris_df): result = split_hist(iris_df, 'sepal length (cm)', 'target') assert isinstance(result, matplotlib.axes.Axes)
from __future__ import absolute_import, unicode_literals from django.contrib import admin from django.db.models import F from django.utils.translation import ugettext_lazy as _ from .models import Discipline, TrainingSet class DisciplineListFilter(admin.SimpleListFilter): """ Generic Filter for models that have a direct relationship to disciplines. Inherits from `admin.SimpleListFilter`. """ title = _("disciplines") # Parameter for the filter that will be used in the URL query. parameter_name = "disciplines" def lookups(self, request, model_admin): """ Defining look up values that can be seen in the admin interface. Returns tuples: the first element is a coded value, whereas the second one is human-readable. :param request: current user request :type request: django.http.request :param model_admin: admin of current model :type model_admin: ModelAdmin :return: list of tuples containing id and title of each discipline :rtype: list """ list_of_disciplines = [] # Verify that only disciplines are displayed that actually can contain training sets queryset = Discipline.objects.filter(lft=F("rght") - 1) if request.user.is_superuser: queryset = queryset.filter(creator_is_admin=True) else: queryset = queryset.filter(created_by__in=request.user.groups.all()) for discipline in queryset: list_of_disciplines.append( ( str(discipline.id), " \u2794 ".join( map(str, discipline.get_ancestors(include_self=True)) ), ) ) return sorted(list_of_disciplines, key=lambda tp: tp[1]) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. :param request: current user request :type request: django.http.request :param queryset: current queryset :type queryset: QuerySet :return: filtered queryset based on the value provided in the query string :rtype: QuerySet """ if self.value(): return queryset.filter(discipline__id=self.value()).distinct() return queryset class DocumentDisciplineListFilter(DisciplineListFilter): """ Filter for disciplines within document list display. Inherits from `admin.SimpleListFilter`. """ def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. :param request: current user request :type request: django.http.request :param queryset: current queryset :type queryset: QuerySet :return: filtered queryset based on the value provided in the query string :rtype: QuerySet """ if self.value(): return queryset.filter( training_sets__discipline__id=self.value() ).distinct() return queryset class DocumentTrainingSetListFilter(admin.SimpleListFilter): """ Filter for training sets within document list display. Inherits from `admin.SimpleListFilter`. """ title = _("training sets") # Parameter for the filter that will be used in the URL query. parameter_name = "training set" def lookups(self, request, model_admin): """ Defining look up values that can be seen in the admin interface. Returns tuples: the first element is a coded value, whereas the second one is human-readable. :param request: current user request :type request: django.http.request :param model_admin: admin of current model :type model_admin: ModelAdmin :return: list of tuples containing id and title of each training set :rtype: list """ list_of_trainingsets = [] if request.user.is_superuser: queryset = TrainingSet.objects.all().filter(creator_is_admin=True) else: queryset = TrainingSet.objects.all().filter( created_by__in=request.user.groups.all() ) for trainingset in queryset: list_of_trainingsets.append((str(trainingset.id), trainingset.title)) return sorted(list_of_trainingsets, key=lambda tp: tp[1]) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. :param request: current user request :type request: django.http.request :param queryset: current queryset :type queryset: QuerySet :return: filtered queryset based on the value provided in the query string :rtype: QuerySet """ if self.value(): return queryset.filter(training_sets__id=self.value()).distinct() return queryset class ApprovedImageListFilter(admin.SimpleListFilter): """ Filter for approved images within document list display. Inherits from `admin.SimpleListFilter`. """ title = _("approved images") # Parameter for the filter that will be used in the URL query. parameter_name = "approvedimages" default_value = None def lookups(self, request, model_admin): """ Defining look up values that can be seen in the admin interface. Returns tuples: the first element is a coded value, whereas the second one is human-readable :param request: current user request :type request: django.http.request :param model_admin: admin of current model :type model_admin: ModelAdmin :return: list of tuples containing id and title of each discipline :rtype: list """ return ( (1, _("at least one approved image")), (2, _("at least one pending image")), (3, _("no images")), ) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. :param request: current user request :type request: django.http.request :param queryset: current queryset :type queryset: QuerySet :return: filtered queryset based on the value provided in the query string :rtype: QuerySet """ if self.value(): if int(self.value()) == 1: return queryset.filter(document_image__confirmed=True).distinct() if int(self.value()) == 2: return queryset.filter(document_image__confirmed=False).distinct() if int(self.value()) == 3: return queryset.filter(document_image__isnull=True).distinct() return queryset class AssignedListFilter(admin.SimpleListFilter): """ Filter for documents that are either assigned or unassigned to at least one training set. Inherits from `admin.SimpleListFilter`. """ title = _("assigned & unassigned") # Parameter for the filter that will be used in the URL query. parameter_name = "assigned" default_value = None def lookups(self, request, model_admin): """ Defining look up values that can be seen in the admin interface. Returns tuples: the first element is a coded value, whereas the second one is human-readable :param request: current user request :type request: django.http.request :param model_admin: admin of current model :type model_admin: ModelAdmin :return: list of tuples containing id and title of each discipline :rtype: list """ return ( (0, _("unassigned only")), (1, _("assigned only")), ) def queryset(self, request, queryset): """ Returns the filtered queryset based on the value provided in the query string and retrievable via `self.value()`. :param request: current user request :type request: django.http.request :param queryset: current queryset :type queryset: QuerySet :return: filtered queryset based on the value provided in the query string :rtype: QuerySet """ if self.value(): if int(self.value()) == 0: return queryset.filter(training_sets__isnull=True).distinct() if int(self.value()) == 1: return queryset.filter(training_sets__isnull=False).distinct() return queryset
#!/usr/bin/env python # # Copyright (c) 2016 In-Q-Tel, Inc, All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on 17 August 2016 @author: aganeshLab41, tlanham Test module for machine learning plugin for classifying ports from tcp packets. """ import pytest import sys import os from port_classifier import rabbit_init from port_classifier import get_path from port_classifier import get_host from port_classifier import save_model def test_get_path(): get_path() sys.argv = [] get_path() def test_get_host(): get_host() os.environ['POSEIDON_HOST'] = '1.1.1.1' assert get_host() == '1.1.1.1' class Test: def __init__(self): self.s = 'hello world' def test_save_model(): model = Test() save_model(model) assert os.path.isfile('port_class_log_reg_model.pickle') os.environ['POSEIDON_HOST'] = 'httpbin.org/post' save_model(model) @pytest.mark.skip(reason='requires rabbitmq broker, integration test') def test_rabbit_init(): channel, connection = rabbit_init(host='poseidon-rabbit', exchange='topic-poseidon-internal', queue_name='features_flowparser', rabbit_rec=False)
import enum import logging class DeepLib(enum.Enum): Null = -1 Pytorch = 0 Tensorflow = 1 SkLearn = 2 def log_device_setup(deepLib: DeepLib = DeepLib.Null, level=logging.INFO): import sys import psutil import multiprocessing logging.info(f'__Python VERSION: {sys.version}') logging.info(f"Number of available cores: {psutil.cpu_count(logical=False)}.") logging.info(f"Number of available logical processors: {multiprocessing.cpu_count()}.") setup_func = { DeepLib.Null: lambda *args: None, DeepLib.Pytorch: log_pytorch_device_setup, DeepLib.Tensorflow: log_tensorflow_device_setup, DeepLib.SkLearn: log_sklearn_device_setup, } setup_func[deepLib](level) def log_pytorch_device_setup(level=logging.INFO): from subprocess import check_output import torch logging.info(f'__pyTorch VERSION:{torch.__version__}') try: logging.info(f'__CUDA VERSION:\n{check_output(["nvcc", "--version"]).decode("utf-8")}') except FileNotFoundError: logging.info('__CUDA VERSION:Not Found') try: logging.info(f'__nvidia-smi:\n{check_output(["nvidia - smi",]).decode("utf-8")}') except FileNotFoundError: logging.info('__nvidia-smi: Not Found') logging.info(f'__CUDNN VERSION:{torch.backends.cudnn.version()}') logging.info(f'__Number CUDA Devices:{torch.cuda.device_count()}') device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logging.info(f"\n{'-' * 25}\nDEVICE: {device}\n{'-' * 25}\n") # Additional Info when using cuda if device.type == 'cuda': logging.info(torch.cuda.get_device_name(0)) logging.info('Memory Usage:') logging.info(f'Allocated: {round(torch.cuda.memory_allocated(0) / 1024 ** 3, 1)} GB') logging.info(f'Cached: {round(torch.cuda.memory_reserved(0) / 1024 ** 3, 1)} GB') logging.info(f"Memory summary: \n{torch.cuda.memory_summary()}") def log_tensorflow_device_setup(level=logging.INFO): import tensorflow as tf from subprocess import check_output logging.info(f'__tensorflow VERSION:{tf.__version__}') try: logging.info(f'__CUDA VERSION:\n{check_output(["nvcc", "--version"]).decode("utf-8")}') except FileNotFoundError: logging.info('__CUDA VERSION:Not Found') try: logging.info(f'__nvidia-smi:\n{check_output(["nvidia - smi",]).decode("utf-8")}') except FileNotFoundError: logging.info('__nvidia-smi: Not Found') physical_devices = tf.config.list_physical_devices('GPU') logging.info(f"physical_devices: {physical_devices}") logical_devices = tf.config.list_logical_devices('GPU') logging.info(f"logical_devices: {logical_devices}") set_tf_loglevel(level) def set_tf_loglevel(level=logging.INFO): import os if level >= logging.FATAL: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' if level >= logging.ERROR: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' if level >= logging.WARNING: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' else: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' logging.getLogger('tensorflow').setLevel(level) def log_sklearn_device_setup(level=logging.INFO): import sklearn logging.info(f'__sklearn VERSION:{sklearn.__version__}')
import argparse import datetime import json import logging import pickle import time import shutil from kite.graph_data.data_feeder import EndpointDataFeeder from kite.graph_data.session import RequestInit from kite.graph_data.graph_feed import GraphFeedConfig from kite.infer_expr.config import MetaInfo, Config from kite.infer_call.request import Request as CallRequest, KwargRequest, ArgTypeRequest, ArgPlaceholderRequest from kite.infer_expr.request import Request as ExprRequest from kite.infer_expr.attr_base import Request as AttrBaseRequest from kite.infer_attr.request import Request as AttrRequest logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)-8s %(message)s') def get_filename(cur_sample: int, total: int, timestamp: int) -> str: n_digits = len(str(total)) format_str = "{{:0{}d}}".format(n_digits) + "-of-{}-{}.pickle" return format_str.format(cur_sample, total, timestamp) def main(): parser = argparse.ArgumentParser() parser.add_argument('--endpoint', type=str, default='http://localhost:3039') parser.add_argument('--random_seed', type=int) parser.add_argument('--batch', type=int, default=10) parser.add_argument('--samples', type=int, default=1000, help='number of samples to generate') parser.add_argument('--meta_info', type=str) parser.add_argument('--out_dir', type=str, default='data') parser.add_argument('--samples_per_file', type=int, default=500) parser.add_argument('--max_samples', type=int) parser.add_argument('--attr_base_proportion', type=float) parser.add_argument('--attr_proportion', type=float) parser.add_argument('--call_proportion', type=float) parser.add_argument('--arg_type_proportion', type=float) parser.add_argument('--kwarg_name_proportion', type=float) parser.add_argument('--arg_placeholder_proportion', type=float) args = parser.parse_args() meta_info = MetaInfo.from_json(json.load(open(args.meta_info, 'r'))) config = Config() req = RequestInit( config=GraphFeedConfig(edge_set=config.ggnn.edge_set), random_seed=args.random_seed, num_batches=args.batch, max_hops=config.max_hops, name_subtoken_index=meta_info.name_subtoken_index, type_subtoken_index=meta_info.type_subtoken_index, production_index=meta_info.production, expr=ExprRequest( max_samples=args.max_samples, call=CallRequest( symbols=meta_info.call.dist, batch_proportion=args.call_proportion, ), attr=AttrRequest( symbols=meta_info.attr.dist, batch_proportion=args.attr_proportion, parents=meta_info.attr.parents, ), attr_base=AttrBaseRequest( symbols=meta_info.attr_base.dist, batch_proportion=args.attr_base_proportion, ), arg_type=ArgTypeRequest( symbols=meta_info.call.dist, batch_proportion=args.arg_type_proportion, ), kwarg_name=KwargRequest( symbols=meta_info.call.dist, keywords=meta_info.call.keywords, batch_proportion=args.kwarg_name_proportion, ), arg_placeholder=ArgPlaceholderRequest( symbols=meta_info.call.dist, batch_proportion=args.arg_placeholder_proportion, ) ), ) logging.info("will write {} samples to {}, random seed = {}".format( args.samples, args.out_dir, args.random_seed)) feeder = EndpointDataFeeder(args.endpoint, req) try: tmp_filename = None filename = None file = None file_samples = 0 start = None n_names = 0 n_production = 0 def finish_file(): file.close() shutil.move(tmp_filename, filename) end = datetime.datetime.now() logging.info( "sample {}: saved {} with {} samples ({} name, {} production), took {}".format( i, filename, args.samples_per_file, n_names, n_production, end - start )) for i in range(args.samples): if not file or file_samples >= args.samples_per_file: if file: finish_file() file_samples = 0 ts = int(time.time() * 1000) filename = "{}/{}".format(args.out_dir, get_filename(i, args.samples, ts)) tmp_filename = "{}.part".format(filename) file = open(tmp_filename, 'wb') start = datetime.datetime.now() logging.info("writing to {}".format(tmp_filename)) sample = feeder.next() pickle.dump(sample, file) n_names += len(sample.data.expr.infer_name.prediction_nodes) n_production += len(sample.data.expr.infer_production.prediction_nodes) file_samples += 1 if file_samples > 0: finish_file() finally: feeder.stop() if __name__ == "__main__": main()
import torch from torch import nn import torch.optim as optim import torch.nn.functional as F import math import numpy as np from config import parameters as conf from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence if conf.pretrained_model == "bert": from transformers import BertModel elif conf.pretrained_model == "roberta": from transformers import RobertaModel elif conf.pretrained_model == "finbert": from transformers import BertModel elif conf.pretrained_model == "longformer": from transformers import LongformerModel class Bert_model(nn.Module): def __init__(self, num_decoder_layers, hidden_size, dropout_rate, input_length, program_length, op_list, const_list, num_char_length, num_emb_dim): super(Bert_model, self).__init__() self.op_list_size = len(op_list) self.const_list_size = len(const_list) self.reserved_token_size = self.op_list_size + self.const_list_size self.program_length = program_length self.hidden_size = hidden_size self.const_list = const_list self.op_list = op_list self.input_length = input_length self.num_char_length = num_char_length self.num_emb_dim = num_emb_dim self.reserved_ind = nn.Parameter(torch.arange( 0, self.reserved_token_size), requires_grad=False) self.reserved_go = nn.Parameter(torch.arange(op_list.index( 'GO'), op_list.index('GO') + 1), requires_grad=False) self.reserved_para = nn.Parameter(torch.arange(op_list.index( ')'), op_list.index(')') + 1), requires_grad=False) # masking for decoidng for test time op_ones = nn.Parameter(torch.ones( self.op_list_size), requires_grad=False) op_zeros = nn.Parameter(torch.zeros( self.op_list_size), requires_grad=False) other_ones = nn.Parameter(torch.ones( input_length + self.const_list_size), requires_grad=False) other_zeros = nn.Parameter(torch.zeros( input_length + self.const_list_size), requires_grad=False) self.op_only_mask = nn.Parameter( torch.cat((op_ones, other_zeros), 0), requires_grad=False) self.seq_only_mask = nn.Parameter( torch.cat((op_zeros, other_ones), 0), requires_grad=False) # for ")" para_before_ones = nn.Parameter(torch.ones( op_list.index(')')), requires_grad=False) para_after_ones = nn.Parameter(torch.ones( input_length + self.reserved_token_size - op_list.index(')') - 1), requires_grad=False) para_zero = nn.Parameter(torch.zeros(1), requires_grad=False) self.para_mask = nn.Parameter(torch.cat( (para_before_ones, para_zero, para_after_ones), 0), requires_grad=False) # for step embedding # self.step_masks = [] all_tmp_list = self.op_list + self.const_list self.step_masks = nn.Parameter(torch.zeros( conf.max_step_ind, input_length + self.reserved_token_size), requires_grad=False) for i in range(conf.max_step_ind): this_step_mask_ind = all_tmp_list.index("#" + str(i)) self.step_masks[i, this_step_mask_ind] = 1.0 # self.step_mask_eye = torch.eye(conf.max_step_ind) if conf.pretrained_model == "bert": self.bert = BertModel.from_pretrained( conf.model_size, cache_dir=conf.cache_dir) elif conf.pretrained_model == "roberta": self.bert = RobertaModel.from_pretrained( conf.model_size, cache_dir=conf.cache_dir) elif conf.pretrained_model == "finbert": self.bert = BertModel.from_pretrained( conf.model_size, cache_dir=conf.cache_dir) elif conf.pretrained_model == "longformer": self.bert = LongformerModel.from_pretrained( conf.model_size, cache_dir=conf.cache_dir) self.cls_prj = nn.Linear(hidden_size, hidden_size, bias=True) self.cls_dropout = nn.Dropout(dropout_rate) self.seq_prj = nn.Linear(hidden_size, hidden_size, bias=True) self.seq_dropout = nn.Dropout(dropout_rate) self.reserved_token_embedding = nn.Embedding( self.reserved_token_size, hidden_size) self.num_char_embedding = nn.Embedding(self.num_char_length, num_emb_dim) # attentions self.decoder_history_attn_prj = nn.Linear( hidden_size, hidden_size, bias=True) self.decoder_history_attn_dropout = nn.Dropout(dropout_rate) self.question_attn_prj = nn.Linear(hidden_size, hidden_size, bias=True) self.question_attn_dropout = nn.Dropout(dropout_rate) self.question_summary_attn_prj = nn.Linear( hidden_size, hidden_size, bias=True) self.question_summary_attn_dropout = nn.Dropout(dropout_rate) if conf.sep_attention: self.input_embeddings_prj = nn.Linear( hidden_size*3, hidden_size, bias=True) else: self.input_embeddings_prj = nn.Linear( hidden_size*2, hidden_size, bias=True) self.input_embeddings_layernorm = nn.LayerNorm([1, hidden_size]) self.option_embeddings_prj = nn.Linear( hidden_size*2, hidden_size, bias=True) # decoder lstm self.rnn = torch.nn.LSTM(input_size=hidden_size, hidden_size=hidden_size, num_layers=conf.num_decoder_layers, batch_first=True) # num char encoder self.num_bilstm = torch.nn.LSTM(input_size=num_emb_dim, hidden_size=hidden_size // 2, num_layers=conf.num_encoder_layers, bidirectional=True) self.num_char_prj = nn.Linear(hidden_size, hidden_size, bias=True) self.num_char_dropout = nn.Dropout(dropout_rate) # num attention self.num_attn_prj = nn.Linear(hidden_size, hidden_size, bias=True) self.num_attn_dropout = nn.Dropout(dropout_rate) # seq_out_prj self.seqout_prj = nn.Linear(hidden_size * 2, hidden_size, bias=True) self.seqout_dropout = nn.Dropout(dropout_rate) # step vector self.decoder_step_proj = nn.Linear( 3*hidden_size, hidden_size, bias=True) self.decoder_step_proj_dropout = nn.Dropout(dropout_rate) self.step_mix_proj = nn.Linear( hidden_size*2, hidden_size, bias=True) def forward(self, is_training, input_ids, input_mask, segment_ids, option_mask, program_ids, program_mask, num_char_ids, number_mask, num_char_mask, device): bert_outputs = self.bert( input_ids=input_ids, attention_mask=input_mask, token_type_ids=segment_ids) # print("="*30) # print("input_ids.size(), ", input_ids.size()) # [batch, seq_length], [16, 512] # print("number_mask: ", number_mask.size()) # print("input_mask.size(), ", input_mask.size()) # [batch, seq_length], [16, 512] # print("segment_ids.size(), ", segment_ids.size()) # [batch, seq_length], [16, 512] # print("option_mask.size()", option_mask.size()) # [batch, option_length], [16, 556] # print("program_ids.size()", program_ids.size()) # [batch, program_length], [16, 30] # print("program_mask.size()", program_mask.size()) # [batch, program_length], [16, 30] ###### # Step 1: get the sequence, including questions and retrieved text: {h_i^e} ###### bert_sequence_output = bert_outputs.last_hidden_state # [batch, seq_length, hidden], [16, 512, 768] bert_pooled_output = bert_sequence_output[:, 0, :] # [batch, hidden], [16, 768] batch_size, seq_length, bert_dim = list(bert_sequence_output.size()) pooled_output = self.cls_prj(bert_pooled_output) # if conf.sep_attention is True, the pooled_output will not be used pooled_output = self.cls_dropout(pooled_output) option_size = self.reserved_token_size + seq_length # 556 sequence_output = self.seq_prj(bert_sequence_output) sequence_output = self.seq_dropout(sequence_output) # [batch_size, seq_length, hidden], [16, 512, 768] if conf.num_char: ###### # Step new1: get number embeddings and number_hidden_state # the number char_hidden_avg will be concated with the input sequence # therefore, for the word (not number), we copy the output of the encoder here ###### num_char_embeddings = self.num_char_embedding(num_char_ids) size_a, size_b, size_c, size_d = num_char_embeddings.size() num_char_embeddings = num_char_embeddings.reshape(-1, size_c, size_d) # [16 * 512, 10, 300] # add pad, get bilstm output num_char_length = num_char_mask.sum(-1).reshape(-1) # [16 * 512] num_char_length += (num_char_length == 0).long() # add 1 to those has 0 number, we can multiply 0 again to avoid the calculation num_char_length = num_char_length.tolist() num_char_embeddings_pad = torch.nn.utils.rnn.pack_padded_sequence(input=num_char_embeddings, lengths=num_char_length, batch_first=True, enforce_sorted=False) num_char_hidden, _ = self.num_bilstm(num_char_embeddings_pad) num_char_hidden, out_len = pad_packed_sequence(num_char_hidden, batch_first=True) num_char_hidden = num_char_hidden.reshape(size_a, size_b, size_c, -1) # because bilstm num_char_mask_repeat = num_char_mask.unsqueeze(-1).repeat(1,1,1,self.hidden_size) # batch, seq_length, max_num_length, hidden num_char_hidden = num_char_hidden * num_char_mask_repeat # same as above num_char_hidden_sum = num_char_hidden.sum(-2) num_char_mask = num_char_mask.sum(-1).unsqueeze(-1).repeat(1,1,self.hidden_size) + 1e-7 num_char_hidden_avg = num_char_hidden_sum / num_char_mask # batch, seq_length, hidden num_char_output = self.num_char_prj(num_char_hidden_avg) num_char_output = self.num_char_dropout(num_char_output) # batch, seq_length, hidden mask = number_mask.unsqueeze(-1).repeat(1,1,self.hidden_size) # batch, seq_length, hidden concat_num_word_output = num_char_output * mask + sequence_output * (mask - 1) # batch, seq_length, hidden # copy the output of the encoder here # number_mask: [batch, seq_length] num_attn_vec = self.num_attn_prj(concat_num_word_output) num_attn_vec = self.num_attn_dropout(num_attn_vec) # batch, seq_length, hidden # print("num_attn_vec: ", num_attn_vec.size()) num_attn_w = torch.matmul(concat_num_word_output, torch.transpose(num_attn_vec, 1, 2)) # batch, seq_length, seq_length (len_generated) # print("num_attn_w: ", num_attn_w.size()) # print("mask: ", mask.size()) attn_mask = number_mask.unsqueeze(-1).repeat(1, 1, num_attn_w.size()[-1]) # batch, num_attn_w -= 1e6 * (1 - attn_mask) num_attn_w = F.softmax(num_attn_w, dim=1) # print("after softmax, num_attn_w.size(): ", num_attn_w.size()) # num_ctx_out = torch.matmul( torch.transpose(num_attn_w, 1, 2), concat_num_word_output) # batch, seq_length, hidden # print("num_ctx_out: ", num_ctx_out.size()) # batch, seq_length, hidden sequence_output = torch.cat([sequence_output, num_ctx_out], dim=-1) sequence_output = self.seqout_prj(sequence_output) sequence_output = self.seqout_dropout(sequence_output) print("run this???") # print(sequence_output) ###### # Step 2: get option embeddings: {h_i^s, h_i^m} # and concat it with sequence_output: H ###### op_embeddings = self.reserved_token_embedding(self.reserved_ind) op_embeddings = op_embeddings.repeat(batch_size, 1, 1) # [batch_size, reserved_ind_length, hidden], [16, 44, 768], the length of reserved_ind = len(op_list) + len(const_list) # [batch, op + seq len, hidden] initial_option_embeddings = torch.cat([op_embeddings, sequence_output], dim=1) ###### # Step 3: init something used for LSTM decoder ###### # for init, only one symbol "GO", so the size of decoder_output is [batch_size, 1, hidden] init_decoder_output = self.reserved_token_embedding(self.reserved_go) # [1, 768] decoder_output = init_decoder_output.repeat(batch_size, 1, 1) # [16, 1, 768] if conf.sep_attention: decoder_history = decoder_output else: decoder_history = torch.unsqueeze(pooled_output, dim=-1) # initialize the hidden state for the LSTM decoder decoder_state_h = torch.zeros(1, batch_size, self.hidden_size, device=device) decoder_state_c = torch.zeros(1, batch_size, self.hidden_size, device=device) ###### # Step 4: prepare something for future use ###### split_program_ids = torch.split(program_ids, 1, dim=1) # len(split_program_ids) = 30, split_program_ids[0].size() = [16, 1] # What's the float_input_mask for? float_input_mask = input_mask.float() float_input_mask = torch.unsqueeze(float_input_mask, dim=-1) # used for updating option embeddings, adding step embedding this_step_new_op_emb = initial_option_embeddings # [batch, option_length, hidden] logits = [] ###### # Step 5: generate program ###### for cur_step in range(self.program_length): ###### # Step 5.1: get decoder history attention: att_h ###### decoder_history_attn_vec = self.decoder_history_attn_prj(decoder_output) # [batch, 1, hidden], [16, 1, 768] decoder_history_attn_vec = self.decoder_history_attn_dropout(decoder_history_attn_vec) decoder_history_attn_w = torch.matmul( decoder_history, torch.transpose(decoder_history_attn_vec, 1, 2)) # [batch, cur_step + 1, 1] decoder_history_attn_w = F.softmax(decoder_history_attn_w, dim=1) # [batch, cur_step + 1, 1] decoder_history_ctx_embeddings = torch.matmul( torch.transpose(decoder_history_attn_w, 1, 2), decoder_history) # [batch, 1, hidden],[16, 1, 768] ###### # Step 5.2: get attention for input sequence: att_p ###### if conf.sep_attention: # input seq att question_attn_vec = self.question_attn_prj(decoder_output) question_attn_vec = self.question_attn_dropout(question_attn_vec) #[batch, 1, hidden],[16, 1, 768] question_attn_w = torch.matmul( sequence_output, torch.transpose(question_attn_vec, 1, 2))#[batch, seq_length, 1],[16, 512, 1] question_attn_w -= 1e6 * (1 - float_input_mask) question_attn_w = F.softmax(question_attn_w, dim=1) # [batch, seq_length, 1], [16, 512, 1] question_ctx_embeddings = torch.matmul( torch.transpose(question_attn_w, 1, 2), sequence_output) # [batch, 1, hidden], [16, 1, 768] ###### # Step 5.3: get another input sequence attention: att_p' ###### question_summary_vec = self.question_summary_attn_prj(decoder_output) question_summary_vec = self.question_summary_attn_dropout(question_summary_vec) # [batch, 1, hidden] question_summary_w = torch.matmul( sequence_output, torch.transpose(question_summary_vec, 1, 2)) #[batch, seq_length, 1],[16, 512, 1] question_summary_w -= 1e6 * (1 - float_input_mask) question_summary_w = F.softmax(question_summary_w, dim=1) # [batch, seq_length, 1], [16, 512, 1] question_summary_embeddings = torch.matmul( torch.transpose(question_summary_w, 1, 2), sequence_output) ###### # Step 5.4: get contextual information C_T ###### if conf.sep_attention: # [batch, 1, hidden * 3], [16, 1, 2304] concat_input_embeddings = torch.cat([decoder_history_ctx_embeddings, question_ctx_embeddings, decoder_output], dim=-1) else: concat_input_embeddings = torch.cat([decoder_history_ctx_embeddings, decoder_output], dim=-1) input_embeddings = self.input_embeddings_prj(concat_input_embeddings) #[batch, 1, hidden],[16, 1, 768] if conf.layer_norm: input_embeddings = self.input_embeddings_layernorm( input_embeddings) ###### # Step 5.5: get all token embeddings: H_T' ###### question_option_vec = this_step_new_op_emb * question_summary_embeddings # [batch, option_size, hidden], [16 556, 768] option_embeddings = torch.cat( [this_step_new_op_emb, question_option_vec], dim=-1) # [batch, option_size, hidden*2], [16, 556, 1536] option_embeddings = self.option_embeddings_prj(option_embeddings) # [batch, option_size, hidden], [16, 556, 768] ###### # Step 5.6: get logits ###### option_logits = torch.matmul( option_embeddings, torch.transpose(input_embeddings, 1, 2)) # batch, option_size, 1],[16, 556, 1] option_logits = torch.squeeze(option_logits, dim=2) # [batch, op + seq_len],op + seq_len = option_size option_logits -= 1e6 * (1 - option_mask) logits.append(option_logits) ###### # Step 6: update state ###### if is_training: program_index = torch.unsqueeze(split_program_ids[cur_step], dim=1) # [batch, 1, 1], [16, 1, 1] else: # constrain decoding if cur_step % 4 == 0 or (cur_step + 1) % 4 == 0: # op round option_logits -= 1e6 * self.seq_only_mask else: # number round option_logits -= 1e6 * self.op_only_mask if (cur_step + 1) % 4 == 0: # ")" round option_logits -= 1e6 * self.para_mask # print(program_index) program_index = torch.argmax(option_logits, axis=-1, keepdim=True) program_index = torch.unsqueeze(program_index, dim=1) if (cur_step + 1) % 4 == 0: # update op embeddings this_step_index = cur_step // 4 this_step_list_index = ( self.op_list + self.const_list).index("#" + str(this_step_index)) # ??? integer this_step_mask = self.step_masks[this_step_index, :] # [option_size], [556] decoder_step_vec = self.decoder_step_proj(concat_input_embeddings) decoder_step_vec = self.decoder_step_proj_dropout(decoder_step_vec)#[batch,1,hidden], [16, 1, 768] decoder_step_vec = torch.squeeze(decoder_step_vec) # [batch, hidden], [16, 768] this_step_new_emb = decoder_step_vec # [batch, hidden] this_step_new_emb = torch.unsqueeze(this_step_new_emb, 1) this_step_new_emb = this_step_new_emb.repeat( 1, self.reserved_token_size+self.input_length, 1) # [batch, op seq, hidden] this_step_mask = torch.unsqueeze(this_step_mask, 0) # [1, op seq] this_step_mask = torch.unsqueeze(this_step_mask, 2) # [1, op seq, 1] this_step_mask = this_step_mask.repeat(batch_size, 1, self.hidden_size) # [batch, op seq, hidden] this_step_new_op_emb = torch.where( this_step_mask > 0, this_step_new_emb, initial_option_embeddings) program_index = torch.repeat_interleave(program_index, self.hidden_size, dim=2) # [batch, 1, hidden] input_program_embeddings = torch.gather(option_embeddings, dim=1, index=program_index) decoder_output, (decoder_state_h, decoder_state_c) = self.rnn( input_program_embeddings, (decoder_state_h, decoder_state_c)) decoder_history = torch.cat( [decoder_history, input_program_embeddings], dim=1) # [batch, cur_step + 1, hidden] logits = torch.stack(logits, dim=1) return logits
import logging from datawinners.main.database import get_db_manager from datawinners.project.view_models import ReporterEntity from datawinners.tasks import app from mangrove.datastore.entity import get_by_short_code from mangrove.form_model.form_model import REPORTER from mangrove.transport.contract.survey_response import SurveyResponse @app.task(max_retries=3, throw=False) def update_datasender_on_open_submissions(database_name, reporter_id): logger = logging.getLogger('datawinners.tasks') try: dbm = get_db_manager(database_name) logger.error(reporter_id) reporter_entity = ReporterEntity(get_by_short_code(dbm, reporter_id, [REPORTER])) rows = dbm.load_all_rows_in_view("anonymous_submissions", key=reporter_entity.mobile_number) for row in rows: _update_survey_response(dbm, row, reporter_entity.entity.id) except Exception as e: logger.exception('Failed for db: %s ,reporter_id: %s' % (database_name, reporter_id)) logger.exception(e) def _update_survey_response(dbm, row, reporter_id): survey_response_doc = SurveyResponse.__document_class__.wrap(row['value']) survey_response = SurveyResponse.new_from_doc(dbm=dbm, doc=survey_response_doc) survey_response.is_anonymous_submission = False survey_response.owner_uid = reporter_id survey_response.save() @app.task(max_retries=3, throw=False) def convert_open_submissions_to_registered_submissions(database_name, reporter_ids): for reporter_id in reporter_ids: update_datasender_on_open_submissions(database_name, reporter_id)
class Solution: def longestLine(self, M): hor, ver, dig, aDig, mx, m, n = {}, {}, {}, {}, 0, len(M), len(M and M[0]) for i in range(m): for j in range(n): if M[i][j]: ver[(i, j)] = j > 0 and M[i][j - 1] and ver[(i, j - 1)] + 1 or 1 hor[(i, j)] = i > 0 and M[i - 1][j] and hor[(i - 1, j)] + 1 or 1 dig[(i, j)] = i > 0 and j > 0 and M[i - 1][j - 1] and dig[(i - 1, j - 1)] + 1 or 1 aDig[(i, j)] = i > 0 and j + 1 < n and M[i - 1][j + 1] and aDig[(i - 1, j + 1)] + 1 or 1 mx = max(mx, ver[(i, j)], hor[(i, j)], dig[(i, j)], aDig[(i, j)]) return mx
from django.db import models class PoliceOfficer(models.Model): """ An officer of the NYPD. E.g. "Jake Peralta" """ badge_number = models.IntegerField(primary_key=True) first_name = models.CharField(max_length=200) surname = models.CharField(max_length=200) rank = models.CharField(max_length=200) arrests = models.ManyToManyField( "Arrest", related_name="arresting_officers", help_text='All arrests made by the officer' ) class PoliceStation(models.Model): officers = models.ForeignKey("PoliceOfficer", on_delete=models.CASCADE) class Precinct(PoliceStation): """ A precinct of officers E.g. "Brookyln 99" """ number = models.IntegerField(primary_key=True) burrough = models.CharField(max_length=20) captain = models.OneToOneField(PoliceOfficer, on_delete=models.CASCADE) class Meta: unique_together = ("burrough", "number") def natural_key(self): return (self.burrough, self.number) class Division(PoliceStation): """ A division of officers, not in the field. E.g. Major Crimes Unit """ name = models.CharField(max_length=200) class Arrest(models.Model): alleged_crime = models.CharField(max_length=20) perp = models.ForeignKey("Perpetrator", on_delete=models.CASCADE) arrest_date = models.DateField() processing_date = models.DateField() class Perpetrator(models.Model): """ A person who is accused of a crime. E.g. Doug Judy, aka. "The Pontiac Bandit" """ first_name = models.CharField(max_length=200) surname = models.CharField(max_length=200) alias = models.CharField(max_length=200)
# CPAC/network_centrality/utils.py # # Network centrality utilities # Method to return recommended block size based on memory restrictions def calc_blocksize(timeseries, memory_allocated=None, include_full_matrix=False, sparsity_thresh=0.0): ''' Method to calculate blocksize to calculate correlation matrix as per the memory allocated by the user. By default, the block size is 1000 when no memory limit is specified. If memory allocated is specified, then block size is calculated as memory allocated subtracted by the memory of the timeseries and centrality output, then divided by the size of one correlation map. That is how many correlation maps can we calculate simultaneously in memory? Parameters ---------- timeseries : numpy array timeseries data: `nvoxs` x `ntpts` memory_allocated : float memory allocated in GB for degree centrality include_full_matrix : boolean Boolean indicating if we're using the entire correlation matrix in RAM (needed during eigenvector centrality). Default is False sparsity_thresh : float a number between 0 and 1 that represents the number of connections to keep during sparsity thresholding. Default is 0.0. Returns ------- block_size : an integer size of block for matrix calculation ''' # Import packages import numpy as np # Init variables block_size = 1000 # default nvoxs = timeseries.shape[0] ntpts = timeseries.shape[1] nbytes = timeseries.dtype.itemsize # If we need the full matrix for centrality calculation if include_full_matrix: memory_for_full_matrix = nvoxs * nvoxs * nbytes # Otherwise, we're doing it in blocks else: memory_for_full_matrix = 0 # Memory variables memory_for_timeseries = nvoxs * ntpts * nbytes memory_for_output = 2 * nvoxs * nbytes # bin and wght outputs needed_memory = memory_for_timeseries + \ memory_for_output + \ memory_for_full_matrix if memory_allocated: available_memory = memory_allocated * 1024.0**3 # assume it is in GB ## memory_for_block = # of seed voxels * nvoxs * nbytes block_size = int( (available_memory - needed_memory)/(nvoxs*nbytes) ) # If we're doing degree/sparisty thresholding, calculate block_size if sparsity_thresh: # k - block_size, v - nvoxs, d - nbytes, m - memory_allocated # Solve for k: (-d/2 - 20.5)*k^2 + (41*v + d*v -d/2 - 20.5)*k - m = 0 coeffs = np.zeros(3) coeffs[0] = -nbytes/2 - 20.5 coeffs[1] = 41*nvoxs + nbytes*nvoxs - nbytes/2 - 20.5 coeffs[2] = -(available_memory - needed_memory) roots = np.roots(coeffs) # If roots are complex, then the block_size needed to occupy all of # the available memory is bigger than the number of voxels. # So set block_size = nvoxs if np.iscomplex(roots[0]): block_size = nvoxs # If the roots are real, test the roots for condition else: root = roots[np.where(roots <= nvoxs)] root = root[np.where(root > 0)] if len(root) == 1: block_size = np.floor(root[0]) else: block_size = 1000 # Test if calculated block size is beyond max/min limits if block_size > nvoxs: block_size = nvoxs elif block_size < 1: memory_usage = (needed_memory + 2.0*nvoxs*nbytes)/1024.0**3 raise MemoryError('Not enough memory available to perform degree '\ 'centrality. Need a minimum of %.2fGB' % memory_usage) # Convert block_size to an integer before returning block_size = int(block_size) # Return memory usage and block size if sparsity_thresh: # Calculate RAM usage by blocking algorithm m = (-nbytes/2 - 20.5)*block_size**2 + \ (41*nvoxs + nbytes*nvoxs - nbytes/2 - 20.5)*block_size # Calculate RAM usage by sparse matrix at end max_conns = nvoxs**2-nvoxs # Max number of connections * i + j (32-bit ints) + w m2 = np.round(max_conns*sparsity_thresh)*(4 + 4 + nbytes) if m2 > m: m = m2 memory_usage = (needed_memory + m)/1024.0**3 else: memory_usage = (needed_memory + block_size*nvoxs*nbytes)/1024.0**3 # Print information print 'block_size -> %i voxels' % block_size print '# of blocks -> %i' % np.ceil(float(nvoxs)/block_size) print 'expected usage -> %.2fGB' % memory_usage return block_size # Method to calculate correlation coefficient from (one or two) datasets def calc_corrcoef(X, Y=None): ''' Method to calculate correlation Each of the columns in X will be correlated with each of the columns in Y. Each column represents a variable, with the rows containing the observations. Parameters ---------- X : numpy array array of shape x1, x2 Y : numpy array array of shape y1, y2 Returns ------- r : numpy array array containing correlation values of shape x2, y2 ''' # Import packages import numpy as np if Y is None: Y = X if X.shape[0] != Y.shape[0]: raise Exception("X and Y must have the same number of rows.") X = X.astype(float) Y = Y.astype(float) X -= X.mean(axis=0)[np.newaxis,...] Y -= Y.mean(axis=0) xx = np.sum(X**2, axis=0) yy = np.sum(Y**2, axis=0) r = np.dot(X.T, Y)/np.sqrt(np.multiply.outer(xx,yy)) return r # Method to cluster the data (used in lFCD) def cluster_data(img, thr, xyz_a, k=26): '''docstring for cluster_data''' # Import packages from scipy.sparse import coo_matrix, cs_graph_components import numpy as np # Threshold the entire correlation map and find connected components, store this in sparse matrix val_idx = img > thr # store valid indices xyz_th = xyz_a[val_idx] # find the 3D indices corresponding to the above threshold voxels i,j,d = graph_3d_grid(xyz_th, k=k) # find the connected components for the above threshold voxels nvoxs = xyz_th.shape[0] # store the number of correlated voxels in entire network adj = coo_matrix((d, (i,j)), shape=(nvoxs,nvoxs)) # and store the connected nodes and weights in sparse matrix # Identify the connected components (clusters) within the graph nc, labels = cs_graph_components(adj) # Copy the node labels to their voxel equivalents lbl_img = np.zeros(img.shape) # init lbl_img - map to store label data # add 2 so that labels corresponding to unconnected voxels (-2) # will be zero in lbl_img, and label==0 will now equal 2 lbl_img[val_idx] = labels + 2 return lbl_img # Convert probability threshold value to correlation threshold def convert_pvalue_to_r(scans, threshold): ''' Method to calculate correlation threshold from p_value Parameters ---------- scans : int Total number of scans in the data threshold : float input p_value Returns ------- rvalue : float correlation threshold value ''' # Import packages import scipy.stats as s import math print "p_value ->", threshold x = 1-threshold/2 dof = scans-2 #Inverse Survival Function (Inverse of SF) tvalue = s.t.isf(x, dof) rvalue = math.sqrt(math.pow(tvalue, 2)/(dof+ math.pow(tvalue,2))) return rvalue # Borrowed from nipy.graph.graph # https://github.com/nipy/nipy/blob/master/nipy/algorithms/graph/graph.py def graph_3d_grid(xyz, k=18): ''' Utility that computes the six neighbors on a 3d grid Parameters ---------- xyz: array of shape (n_samples, 3); grid coordinates of the points k: neighboring system, equal to 6, 18, or 26 Returns ------- i, j, d 3 arrays of shape (E), where E is the number of edges in the resulting graph (i, j) represent the edges, d their weights ''' # Import packages import numpy as np if np.size(xyz) == 0: return None lxyz = xyz - xyz.min(0) m = 3 * lxyz.max(0).sum() + 2 # six neighbours n6 = [np.array([1, m, m ** 2]), np.array([m ** 2, 1, m]), np.array([m, m ** 2, 1])] # eighteen neighbours n18 = [np.array([1 + m, 1 - m, m ** 2]), np.array([1 + m, m - 1, m ** 2]), np.array([m ** 2, 1 + m, 1 - m]), np.array([m ** 2, 1 + m, m - 1]), np.array([1 - m, m ** 2, 1 + m]), np.array([m - 1, m ** 2, 1 + m])] # twenty-six neighbours n26 = [np.array([1 + m + m ** 2, 1 - m, 1 - m ** 2]), np.array([1 + m + m ** 2, m - 1, 1 - m ** 2]), np.array([1 + m + m ** 2, 1 - m, m ** 2 - 1]), np.array([1 + m + m ** 2, m - 1, m ** 2 - 1])] # compute the edges in each possible direction def create_edges(lxyz, nn, l1dist=1, left=np.array([]), right=np.array([]), weights=np.array([])): q = 0 for nn_row in nn: v1 = np.dot(lxyz, nn_row) o1 = np.argsort(v1) sv1 = v1[o1] nz = np.squeeze(np.nonzero(sv1[: - 1] - sv1[1:] == - l1dist)) o1z, o1z1 = o1[nz], o1[nz + 1] left = np.hstack((left, o1z, o1z1)) right = np.hstack((right, o1z1, o1z)) q += 2 * np.size(nz) weights = np.hstack((weights, np.sqrt(l1dist) * np.ones(q))) return left, right, weights i, j, d = create_edges(lxyz, n6, 1.) if k >= 18: i, j, d = create_edges(lxyz, n18, 2, i, j, d) if k == 26: i, j, d = create_edges(lxyz, n26, 3, i, j, d) i, j = i.astype(np.int), j.astype(np.int) # reorder the edges to have a more standard order order = np.argsort(i + j * (len(i) + 1)) i, j, d = i[order], j[order], d[order] return i, j, d # Function to map a centrality matrix to a nifti image def map_centrality_matrix(centrality_matrix, aff, mask, template_type): ''' Method to map centrality matrix to a nifti image Parameters ---------- centrality_matrix : tuple (string, array_like) tuple containing matrix name and degree/eigenvector centrality matrix aff : ndarray Affine matrix of the input data mask : ndarray Mask or roi data matrix template_type : int type of template: 0 for mask, 1 for roi Returns ------- out_file : string (nifti image) nifti image mapped from the centrality matrix Raises ------ Exception ''' import nibabel as nib import os import numpy as np try: out_file, matrix = centrality_matrix out_file = os.path.join(os.getcwd(), out_file + '.nii.gz') sparse_m = np.zeros((mask.shape), dtype=float) print 'mapping centrality matrix to nifti image...', out_file if int(template_type) == 0: cords = np.argwhere(mask) index=0 for val in cords: x,y,z=val sparse_m[x,y,z]= matrix[index] index+=1 elif int(template_type) == 1: nodes = np.unique(mask).tolist() nodes.sort() index = 0 for n in nodes: if n> 0: cords = np.argwhere(mask==n) for val in cords: x,y,z = val if isinstance(matrix[index], list): sparse_m[x,y,z] = matrix[index][0] else: sparse_m[x,y,z]=matrix[index] index+=1 nifti_img = nib.Nifti1Image(sparse_m, aff) nifti_img.to_filename(out_file) return out_file except: print 'Error in mapping centrality matrix to nifti image' raise # Function to actually do the list merging def merge_lists(deg_list=[],eig_list=[],lfcd_list=[]): merged_list = [] merged_list.extend(deg_list) merged_list.extend(eig_list) merged_list.extend(lfcd_list) return merged_list
from django.conf import settings from django.db import connections from django.test.testcases import LiveServerTestCase, LiveServerThread from daphne.endpoints import build_endpoint_description_strings from daphne.server import Server from ..routing import get_default_application from ..staticfiles import StaticFilesWrapper class DaphneServerThread(LiveServerThread): """ LiveServerThread subclass that runs Daphne """ def __init__(self, host, application, *args, **kwargs): self.application = application super().__init__(host, None, *args, **kwargs) def run(self): """ Sets up the live server and databases, and then loops over handling http requests. """ if self.connections_override: # Override this thread's database connections with the ones # provided by the main thread. for alias, conn in self.connections_override.items(): connections[alias] = conn try: self.daphne = self._create_server() self.daphne.run() except Exception as e: self.error = e self.is_ready.set() finally: connections.close_all() @property def port(self): # Dynamically fetch real listen port if we were given 0 if self._port == 0: return self.daphne.listening_addresses[0][1] return self._port @port.setter def port(self, value): self._port = value def _create_server(self): endpoints = build_endpoint_description_strings(host=self.host, port=self._port) return Server( application=self.application, endpoints=endpoints, signal_handlers=False, ws_protocols=getattr(settings, "CHANNELS_WS_PROTOCOLS", None), root_path=getattr(settings, "FORCE_SCRIPT_NAME", "") or "", ready_callable=lambda: self.is_ready.set(), ) def terminate(self): if hasattr(self, "daphne"): # Stop the WSGI server self.daphne.stop() self.join() class ChannelsLiveServerTestCase(LiveServerTestCase): """ Drop-in replacement for Django's LiveServerTestCase. In order to serve static files create a subclass with serve_static = True. """ server_thread_class = DaphneServerThread static_wrapper = StaticFilesWrapper serve_static = False @classmethod def _create_server_thread(cls, connections_override): if cls.serve_static: application = cls.static_wrapper(get_default_application()) else: application = get_default_application() return cls.server_thread_class( cls.host, application, connections_override=connections_override, port=cls.port, )
def check_status(status): #2xx Success if status == 200: return ("OK") elif status == 201: return ("Created") elif status == 202: return ("Accepted") elif status == 203: return ("Non-Authoritative Information") elif status == 204: return ("No Content") elif status == 205: return ("Reset Content") elif status == 206: return ("Partial Content") elif status == 207: return ("Multi-Status") elif status == 208: return ("Already Reported") elif status == 226: return ("IM Used") #3xx Redirection elif status == 300: return ("Multiple Choices") elif status == 301: return ("Moved Permanently") elif status == 302: return ("Found") elif status == 303: return ("See Other") elif status == 304: return ("Not Modified") elif status == 305: return ("Use Proxy") elif status == 306: return ("Switch Proxy") elif status == 307: return ("Temporary Redirect") elif status == 308: return ("Permanent Redirect") #4xx Client Error elif status == 400: return ("Bad Request") elif status == 401: return ("Unauthorized") elif status == 402: return ("Payment Required") elif status == 403: return ("Forbidden") elif status == 404: return ("Not Found") elif status == 405: return ("Method Not Allowed") elif status == 406: return ("Not Acceptable") elif status == 407: return ("Proxy Authentication Required") elif status == 408: return ("Request Timeout") elif status == 409: return ("Conflict") elif status == 410: return ("Gone") elif status == 411: return ("Length Required") elif status == 412: return ("Precondition Failed") elif status == 413: return ("Payload Too Large") elif status == 414: return ("URI Too Long") elif status == 415: return ("Unsupported Media Type") elif status == 416: return ("Range Not Satisfiable") elif status == 417: return ("Expectation Failed") elif status == 418: return ("I'm a teapot") elif status == 421: return ("Misdirected Request") elif status == 422: return ("Unprocessable Entity") elif status == 423: return ("Locked") elif status == 424: return ("Failed Dependency") elif status == 426: return ("Upgrade Required") elif status == 428: return ("Precondition Required") elif status == 429: return ("Too Many Requests") elif status == 431: return ("Request Header Fields Too Large") elif status == 451: return ("Unavailable For Legal Reasons") elif status == 440: return ("Login Timeout") elif status == 449: return ("Retry With") #5xx Server Error elif status == 500: return ("Internal Server Error") elif status == 501: return ("Not Implemented") elif status == 502: return ("Bad Gateway") elif status == 503: return ("Service Unavailable") elif status == 504: return ("Gateway Timeout") elif status == 505: return ("HTTP Version Not Supported") elif status == 506: return ("Variant Also Negotiates") elif status == 507: return ("Insufficient Storage") elif status == 508: return ("Loop Detected") elif status == 510: return ("Not Extended") elif status == 511: return ("Network Authentication Required") #Unofficial codes elif status == 103: return ("Checkpoint") elif status == 450: return ("Blocked by Windows Parental Controls") elif status == 509: return ("Bandwidth Limit Exceeded") #nginx elif status == 444: return ("No Response (nginx)") elif status == 495: return ("SSL Certificate Error (nginx)") elif status == 496: return ("SSL Certificate Required (nginx)") elif status == 497: return ("HTTP Request Sent to HTTPS Port (nginx)") elif status == 499: return ("Client Closed Request (nginx)") #CloudFlare elif status == 520: return ("Unknown Error (CloudFlare)") elif status == 521: return ("Web Server Is Down (CloudFlare)") elif status == 522: return ("Connection Timed Out (CloudFlare)") elif status == 523: return ("Origin Is Unreachable (CloudFlare)") elif status == 524: return ("A Timeout Occurred (CloudFlare)") elif status == 525: return ("SSL Handshake Failed (CloudFlare)") elif status == 526: return ("Invalid SSL Certificate (CloudFlare)")
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ Topic: 函数默认参数 Desc : """ def spam(a, b=42): print(a, b) spam(1) # Ok. a=1, b=42 spam(1, 2) # Ok. a=1, b=2 _no_value = object() def spam(a, b=_no_value): if b is _no_value: print('No b value supplied')
import sys import os import json from enum import Enum from pathlib import Path from .channel import Channel from io_fetch_channel import ChannelPerformanceFetcher from io_channel import IOSharedResourceMap from regla import channel_factory, ChannelEntity, RuleSerializer from datetime import datetime from typing import Dict class Command(Enum): campaigns = 'campaigns' adgroups = 'adgroups' orgs = 'orgs' execute_rule = 'execute_rule' impact_report = 'impact_report' channel_report = 'channel_report' enity_report = 'entity_report' rule_report = 'rule_report' report = 'report' entity_process = 'entity_process' def prepare_credentials(args: Dict[str, any]) -> Dict[str, any]: shared_credentials_map = IOSharedResourceMap(url_key='shared_credentials_url') credentials = shared_credentials_map.run(args['credentials']) return credentials def run(): args = json.loads(sys.argv[1]) from moda import log log.set_message_logger(lambda message, end: print(json.dumps({'log': message + end}))) with open(Path(__file__).parent.parent / 'configure.json') as f: configure = json.load(f) command = Command(args['command']) if command is Command.orgs: channel = channel_factory(channel_identifier=args['channel']) with channel.connected(credentials=prepare_credentials(args)): orgs = channel.get_entities(entity_type=ChannelEntity.org) print(json.dumps({ 'data': [ { **d, 'id': d['id'], } for d in orgs ] })) elif command is Command.campaigns: channel = channel_factory(channel_identifier=args['channel']) with channel.connected(credentials=prepare_credentials(args)): campaigns = [ campaign for org in args['orgs'] for campaign in channel.get_entities( entity_type=ChannelEntity.campaign, parent_ids={ChannelEntity.org: str(org['id'])} ) ] print(json.dumps({ 'data': [ { **d, 'org_id': d['org_id'], 'id': d['id'], } for d in campaigns ] })) elif command is Command.adgroups: channel = channel_factory(channel_identifier=args['channel']) with channel.connected(credentials=prepare_credentials(args)): ad_groups = channel.get_entities( entity_type=ChannelEntity.ad_group, parent_ids={ChannelEntity.org: str(args['orgID']), ChannelEntity.campaign: str(args['campaignID'])} ) print(json.dumps({ 'data': [ { **d, 'org_id': d['org_id'], 'campaign_id': d['campaign_id'], 'id': d['id'], } for d in ad_groups ] })) elif command is Command.execute_rule: from io_map import IOMap IOMap.map_auto_register = True from .rule_executor import RuleExecutor date_format = '%Y-%m-%d' rule_executor = RuleExecutor(options=args['dbConfig']) rule = rule_executor.get_rule(rule_id=args['ruleID']) if configure['dry_run_only'] is not False or ('dryRunOnly' in args and args['dryRunOnly']): if rule._id in configure['non_dry_run_rule_ids']: log.log(f'Allowing non dry run for rule {rule._id} despite dry_run_only configuration because rule is listed in the non_dry_run_rule_ids configuration.') elif 'nonDryRunRuleIDs' in args and rule._id in args['nonDryRunRuleIDs']: log.log(f'Allowing non dry run for rule {rule._id} despite dry_run_only configuration because rule is listed in the nonDryRunRuleIDs argument.') else: if not rule.dryRun: log.log(f'Forcing dry run for rule {rule._id} due to dry_run_only configuration.') rule.dryRun = True result = rule_executor.execute( credentials=prepare_credentials(args), rule=rule, granularity=args['granularity'], start_date=datetime.strptime(args['startDate'], date_format), end_date=datetime.strptime(args['endDate'], date_format) ) print(json.dumps({ "result" : result, }, cls=RuleSerializer)) elif command is Command.impact_report: from io_map import IOMap IOMap.map_auto_register = True from .rule_executor import RuleExecutor date_format = '%Y-%m-%d' credentials = prepare_credentials(args) rule_id = args['ruleID'] report_id = args['reportID'] rule_executor = RuleExecutor(options=args['dbConfig']) rule = rule_executor.get_rule(rule_id=rule_id) report_metadata = rule_executor.get_impact_report_metadata( credentials=credentials, rule=rule ) print(json.dumps({'result': {'reportId': report_id, 'granularity': report_metadata.granularity.value}})) if report_metadata.is_valid: report = rule_executor.get_impact_report( credentials=credentials, rule=rule ) print(f'{{"result":{{"reportId": "{report_id}", "rows": {report.to_json(orient="records")}}}}}') input() elif command is Command.channel_report: fetcher = ChannelPerformanceFetcher( raw_channel=args['channel'], raw_time_granularity=args['time_granularity'], raw_entity_granularity=args['entity_granularity'], raw_performance_columns=[] ) start = datetime.fromtimestamp(args['start']) end = datetime.fromtimestamp(args['end']) report = fetcher.run( credentials=prepare_credentials(args), start=start, end=end ) print(json.dumps({ 'data': report.to_csv(index=False), })) elif command is Command.report: from .report import get_metadata_report result = get_metadata_report( columns=args['columns'], filters=args['filters'], options=args['options'], credentials=prepare_credentials(args) ) print(json.dumps({ 'result': { 'metadata': result['metadata'], 'report': result['report'].to_csv(index=False), }, })) elif command is Command.entity_process: from .entity import process_entities result = process_entities( operations=args['operations'], context=args['context'], credentials=prepare_credentials(args) ) print(json.dumps({ 'result': result, })) else: raise ValueError('Unsupported command', command) if __name__ == '__main__': run()
# # Copyright 2020-2021 Picovoice Inc. # # You may not use this file except in compliance with the license. A copy of the license is located in the "LICENSE" # file accompanying this source. # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # import sys from gpiozero import LED from apa102 import APA102 COLORS_RGB = dict( off=(0, 0, 0), blue=(0, 0, 255), green=(0, 255, 0), orange=(255, 128, 0), pink=(255, 51, 153), purple=(128, 0, 128), red=(255, 0, 0), white=(255, 255, 255), yellow=(255, 255, 51), ) driver = APA102(num_led=12) power = LED(5) power.on() def set_color(color): for i in range(12): driver.set_pixel(i, color[0], color[1], color[2]) driver.show() def main(): set_color(COLORS_RGB[sys.argv[1]]) if __name__ == '__main__': main()
#Copyright (c) 2014, Benjamin Bässler <[email protected]> #All rights reserved. # #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are met: # #* Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # #* Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE #DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE #FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL #DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR #SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER #CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, #OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from PIL import Image import numpy as np ## Reads a image from a file converts it to black and white and creates a numpy array # # @param filename File to read image from # @param threshold Threshold to convert greyscale image to black and white. Range 0.0 ... 1.0 # @param max_x is the image size to crop/extend the image in width # @param max_y is the image size to crop/extend the image in high # @return Returns the black and white numpy array def import_img (filename, threshold, max_x, max_y): #convert image to grey scale img = Image.open(filename) img_grey = img.convert('L') img_array = np.array(img_grey) img_out = np.zeros((max_y, max_x), dtype=np.int) #convert to black/white max_val = 255 #np.iinfo(type(img_array[0][0])).max min_val = 0 #np.iinfo(type(img_array[0][0])).min threshold = threshold * (max_val-min_val) - min_val for y in range(0, img_out.shape[0]): for x in range(0, img_out.shape[1]): if y < img_array.shape[0] and x < img_array.shape[1] and img_array[y][x] < threshold: img_out[y][x] = min_val else: img_out[y][x] = max_val del img del img_grey del img_array return img_out
from rest_framework.reverse import reverse from rest_framework.test import APITestCase from rest_framework import status from faker import Faker f = Faker() # class ServiceAPITestCase(APITestCase): # def setUp(self): # pass # # def test_get_device_info(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_add_device(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_remove_device(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_get_device_tag(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_update_device_tag(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_delete_device_tag(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_push_message(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_push_message_to_all_device(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK) # # def test_push_message_to_special_device_by_tag(self): # data = { # # } # path = reverse("api") # res = self.client.post( # data=data, # path=path, # ) # self.assertEqual(res.status_code, status.HTTP_200_OK)
_g_repo = None def set(repo): global _g_repo _g_repo = repo def get(): return _g_repo
# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. See accompanying LICENSE file. # import os import re import sys import errno import shlex import logging import subprocess import platform import fileinput import getpass import shutil from xml.etree import ElementTree as ET from os.path import basename from subprocess import Popen,PIPE from datetime import date from datetime import datetime from operator import contains try: input = raw_input except NameError: pass os_name = platform.system() os_name = os_name.upper() msgPrompt = "Enter the below options" msgCommand = "Usage : python rolebasedusersearchutil.py -u <userName> -p <password> -r <role>" msgRoleList = " <role> can be ROLE_USER/ROLE_SYS_ADMIN/ROLE_KEY_ADMIN/ROLE_ADMIN_AUDITOR/ROLE_KEY_ADMIN_AUDITOR" if os_name == "LINUX": RANGER_ADMIN_HOME = os.getenv("RANGER_ADMIN_HOME") if RANGER_ADMIN_HOME is None: RANGER_ADMIN_HOME = os.getcwd() elif os_name == "WINDOWS": RANGER_ADMIN_HOME = os.getenv("RANGER_ADMIN_HOME") def log(msg,type): if type == 'info': logging.info(" %s",msg) if type == 'debug': logging.debug(" %s",msg) if type == 'warning': logging.warning(" %s",msg) if type == 'exception': logging.exception(" %s",msg) if type == 'error': logging.error(" %s",msg) def main(argv): FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(format=FORMAT, level=logging.DEBUG) ews_lib = os.path.join(RANGER_ADMIN_HOME,"ews","lib") app_home = os.path.join(RANGER_ADMIN_HOME,"ews","webapp") ranger_log = os.path.join(RANGER_ADMIN_HOME,"ews","logs") if os.environ['JAVA_HOME'] == "": log("[E] ---------- JAVA_HOME environment property not defined, aborting installation. ----------", "error") sys.exit(1) JAVA_BIN=os.path.join(os.environ['JAVA_HOME'],'bin','java') if os_name == "WINDOWS" : JAVA_BIN = JAVA_BIN+'.exe' if os.path.isfile(JAVA_BIN): pass else: while os.path.isfile(JAVA_BIN) == False: log("Enter java executable path: :","info") JAVA_BIN=input() log("[I] Using Java:" + str(JAVA_BIN),"info") userName = "" password = "" userRole = "" userNameMsgFlag = False passwordMsgFlag = False userRoleMsgFlag = False userroleFlag = False if len(argv) == 1: log("[I] " +msgPrompt + " or \n" + msgCommand + "\n " +msgRoleList, "info") userName = input('Enter a user name: ') password = getpass.getpass('Enter a user password:') userRole = input('Enter a role: ') elif len(argv) > 1 and len(argv) < 8 : for i in range(1, len(sys.argv)) : if sys.argv[i] == "-u" : if len(argv)-1 > i+1 or len(argv)-1 == i+1: userName = sys.argv[i+1] continue if sys.argv[i] == "-p" : if len(argv)-1 > i+1 or len(argv)-1 == i+1: password = sys.argv[i+1] continue if sys.argv[i] == "-r" : if len(argv)-1 > i+1 or len(argv)-1 == i+1: userRole = sys.argv[i+1] userroleFlag = True continue else: log("[E] Invalid argument list.", "error") log("[I] " + msgCommand + "\n " + msgRoleList, "info") sys.exit(1) if userName == "" : userNameMsgFlag = True elif userName != "" : if userName.lower() == "-p" or userName.lower() == "-r" or userName.lower() == "-u" : userNameMsgFlag = True if password == "" : passwordMsgFlag = True elif password.lower() == "-p" or password.lower() == "-r" or password.lower() == "-u" : passwordMsgFlag = True if userroleFlag == True : if userRole == "": userRoleMsgFlag = True elif userRole != "": if userRole.lower() == "-p" or userRole.lower() == "-r" or userRole.lower() == "-u": userRoleMsgFlag = True if userNameMsgFlag == True or passwordMsgFlag == True or userRoleMsgFlag == True : log("[I] "+msgPrompt + " or \n" + msgCommand + "\n " +msgRoleList, "info") if userNameMsgFlag == True : userName = input('Enter a user name: ') if passwordMsgFlag == True : password = getpass.getpass("Enter user password:") if userRoleMsgFlag == True : userRole = input('Enter a role: ') if userName != "" and password != "" : if os_name == "LINUX": path = os.path.join("%s","WEB-INF","classes","conf:%s","WEB-INF","classes","lib","*:%s","WEB-INF",":%s","META-INF",":%s","WEB-INF","lib","*:%s","WEB-INF","classes",":%s","WEB-INF","classes","META-INF:%s/*")%(app_home ,app_home ,app_home, app_home, app_home, app_home ,app_home,ews_lib) elif os_name == "WINDOWS": path = os.path.join("%s","WEB-INF","classes","conf;%s","WEB-INF","classes","lib","*;%s","WEB-INF",";%s","META-INF",";%s","WEB-INF","lib","*;%s","WEB-INF","classes",";%s","WEB-INF","classes","META-INF" )%(app_home ,app_home ,app_home, app_home, app_home, app_home ,app_home) if userRole != "" : get_java_cmd = "%s -Dlogdir=%s -Dlogback.configurationFile=db_patch.log4j.xml -cp %s org.apache.ranger.patch.cliutil.%s %s %s %s"%(JAVA_BIN,ranger_log,path,'RoleBasedUserSearchUtil',userName,password,userRole) if userRole == "" : get_java_cmd = "%s -Dlogdir=%s -Dlogback.configurationFile=db_patch.log4j.xml -cp %s org.apache.ranger.patch.cliutil.%s %s %s "%(JAVA_BIN,ranger_log,path,'RoleBasedUserSearchUtil',userName,password) if os_name == "LINUX": ret = subprocess.call(shlex.split(get_java_cmd)) elif os_name == "WINDOWS": ret = subprocess.call(get_java_cmd) if ret == 0: log("[I] List fetched successfully","info") else: log("[E] Unable to fetch user list of given role ","error") sys.exit(1) else: log("[E] Input Error","error") main(sys.argv)
from spiceypy import spiceypy as spice import numpy as np from scipy.linalg import norm import lincov.horizon as horizon def sun_spacecraft_angle(body, time, object_id): if body == 'earth': frame = 'ITRF93' elif body == 'moon': frame = 'MOON_ME' sun,t1,t2 = spice.subslr('INTERCEPT/ELLIPSOID', body, time, frame, 'NONE', str(object_id)) sc, t1,t2 = spice.subpnt('INTERCEPT/ELLIPSOID', body, time, frame, 'NONE', str(object_id)) sun /= norm(sun) sc /= norm(sc) return np.arccos(np.dot(sun, sc)) class State(object): """State information for the linear covariance analysis""" ground_stations = { 'DSS-24': 399024, 'DSS-34': 399034, 'DSS-54': 399054 } r_station_ecef = {} def __init__(self, time, loader = None, params = None): self.loader = loader self.params = params self.mu_earth = loader.mu_earth * 1e9 self.mu_moon = loader.mu_moon * 1e9 # Ensure that ground station locations are loaded if len(State.r_station_ecef) == 0: for station in State.ground_stations: gid = self.ground_stations[station] State.r_station_ecef[station] = spice.spkezr(station, self.loader.start, 'ITRF93', 'NONE', 'earth')[0][0:3] * 1000.0 self.eci = spice.spkez(loader.object_id, time, 'J2000', 'NONE', 399)[0] * 1000.0 self.lci = spice.spkez(loader.object_id, time, 'J2000', 'NONE', 301)[0] * 1000.0 self.T_inrtl_to_body = np.identity(3) # FIXME: Add attitude, eventually # FIXME: Need measurements here self.a_meas_inrtl = np.zeros(3) self.w_meas_inrtl = np.zeros(3) # Get distance to earth and moon self.d_earth = norm(self.eci[0:3]) self.d_moon = norm(self.lci[0:3]) # Get angular size of each self.earth_angle = 2 * np.arctan(self.loader.r_earth[2] * 1000.0 / self.d_earth) self.moon_angle = 2 * np.arctan(self.loader.r_moon[2] * 1000.0 / self.d_moon) self.earth_phase_angle = sun_spacecraft_angle('earth', time, loader.object_id) self.moon_phase_angle = sun_spacecraft_angle('moon', time, loader.object_id) # We need to be able to clearly see the planet in order to do # horizon detection. planet_occult_code = spice.occult('earth', 'ellipsoid', 'ITRF93', 'moon', 'ellipsoid', 'MOON_ME', 'NONE', str(loader.object_id), time) self.horizon_moon_enabled = False self.horizon_earth_enabled = False if planet_occult_code == 0: if self.earth_angle < self.params.horizon_fov and self.earth_phase_angle < self.params.horizon_max_phase_angle: self.horizon_earth_enabled = True if self.moon_angle < self.params.horizon_fov and self.moon_phase_angle < self.params.horizon_max_phase_angle: self.horizon_moon_enabled = True else: self.earth_angle = 0.0 self.moon_angle = 0.0 self.elevation_from = {} self.visible_from = [] self.r_station_inrtl = {} for ground_name in self.ground_stations: obj_str = str(self.loader.object_id) moon_occult_code = spice.occult(obj_str, 'point', ' ', 'moon', 'ellipsoid', 'MOON_ME', 'NONE', str(self.ground_stations[ground_name]), time) elevation = float('nan') if moon_occult_code >= 0: # get spacecraft elevation x, lt = spice.spkcpo(obj_str, time, ground_name + '_TOPO', 'OBSERVER', 'NONE', self.r_station_ecef[ground_name] / 1000.0, 'earth', 'ITRF93') r, lon, lat = spice.reclat(x[0:3]) if lat >= self.params.radiometric_min_elevation: elevation = lat self.visible_from.append(ground_name) # store elevation of spacecraft for logging purposes self.elevation_from[ground_name] = elevation self.range_earth = norm(self.eci[0:3]) self.range_moon = norm(self.lci[0:3]) self.time = time @property def object_id(self): return self.loader.object_id @property def T_body_to_att(self): return self.loader.T_body_to_att @property def T_body_to_cam(self): return self.loader.T_body_to_cam def range(self, rel): if rel == 'earth': return self.range_earth elif rel == 'moon': return self.range_moon def radii(self, rel): if rel == 'earth': return self.loader.r_earth * 1000.0 elif rel == 'moon': return self.loader.self.r_moon * 1000.0 def T_pa_to_cam(self, rel): """Transformation from cone principal axis frame to opnav camera frame, where rel tells which planet cone is oriented towards. """ if rel in ('earth', 399): body_id = 399 elif rel in ('moon', 301): body_id = 301 else: raise NotImplemented("expected 'moon' or 'earth' based opnav, got '{}'".format(rel)) return horizon.compute_T_pa_to_cam(self.eci, self.time, body_id) @property def T_epa_to_cam(self): return self.T_pa_to_cam('earth') @property def T_mpa_to_cam(self): return self.T_pa_to_cam('moon')
#!/usr/bin/python import os import sys import time import glob import shutil import json import xml.etree.ElementTree as ET import string import re import platform import time os_commands = { 'debian': { '9': [ 'echo "deb https://repo.gluu.org/debian/ stretch-stable main" > /etc/apt/sources.list.d/gluu-repo.list', ], '8': [ 'echo "deb https://repo.gluu.org/debian/ stable main" > /etc/apt/sources.list.d/gluu-repo.list', ], }, 'ubuntu': { '16': [ 'echo "deb https://repo.gluu.org/ubuntu/ xenial-devel main" > /etc/apt/sources.list.d/gluu-repo.list', ], '14': [ 'echo "deb https://repo.gluu.org/ubuntu/ trusty-devel main" > /etc/apt/sources.list.d/gluu-repo-devel.list' ], }, 'centos': { '6': [ 'wget https://repo.gluu.org/centos/Gluu-centos-testing.repo -O /etc/yum.repos.d/Gluu.repo' #change this ], '7': [ 'wget https://repo.gluu.org/centos/Gluu-centos-7-testing.repo -O /etc/yum.repos.d/Gluu.repo' #testing #'wget https://repo.gluu.org/centos/Gluu-centos7.repo -O /etc/yum.repos.d/Gluu.repo' ], }, 'red': { '6': [ 'wget https://repo.gluu.org/rhel/Gluu-rhel6.repo -O /etc/yum.repos.d/Gluu.repo' ], '7': [ 'wget https://repo.gluu.org/rhel/Gluu-rhel7.repo -O /etc/yum.repos.d/Gluu.repo' ], }, } def detect_os_type(): try: p = platform.linux_distribution() os_type = p[0].split()[0].lower() os_version = p[1].split('.')[0] return os_type, os_version except: sys.exit('OS type could not be determined, exiting.') os_type = detect_os_type() print "Detected OS Type", " ".join(os_type) try: commands = os_commands[os_type[0]][os_type[1]] except: sys.exit('Unsupported Operating System, exiting.') if os_type[0] in ('ubuntu', 'debian'): package_type = 'deb' install_command = 'apt-get install -y {0}' elif os_type[0] in ('centos', 'red'): package_type = 'rpm' install_command = 'yum install -y {0}' detected_oxd = 'oxd-server' stop_gluu_command = { 'ubuntu16': 'service {0} stop', 'ubuntu14': 'service {0} stop', 'centos6': 'service {0} stop', 'centos7': 'service {0} stop', } os_type_str = ''.join(os_type) commands.insert(0, stop_gluu_command[os_type_str].format(detected_oxd)) if package_type == 'deb': commands += [ 'curl https://repo.gluu.org/debian/gluu-apt.key | apt-key add -', 'apt-get update', 'apt-get install -y oxd-server', ] if not os.path.exists('/usr/lib/apt/methods/https'): commands.insert(0, 'apt-get install -y apt-transport-https') elif package_type == 'rpm': commands += [ 'yum install -y epel-release', 'wget https://repo.gluu.org/rhel/RPM-GPG-KEY-GLUU -O /etc/pki/rpm-gpg/RPM-GPG-KEY-GLUU', 'rpm --import /etc/pki/rpm-gpg/RPM-GPG-KEY-GLUU', 'yum clean all', 'yum install -y oxd-server', ] add_commands = [] try: import pip except: add_commands.append(install_command.format('python-pip')) try: import yaml except: add_commands.append(install_command.format('python-yaml')) if add_commands: commands += add_commands def get_by_attrib(elements, attrib, value=True): for element in elements: if element.get('name') == attrib: if value: return element.get('value') return element if value: return '' def json_load_byteified(file_handle): return _byteify( json.load(open(file_handle), object_hook=_byteify), ignore_dicts=True ) def _byteify(data, ignore_dicts = False): # if this is a unicode string, return its string representation if isinstance(data, unicode): return data.encode('utf-8') # if this is a list of values, return list of byteified values if isinstance(data, list): return [ _byteify(item, ignore_dicts=True) for item in data ] # if this is a dictionary, return dictionary of byteified keys and values # but only if we haven't already byteified it if isinstance(data, dict) and not ignore_dicts: tmp_ = {} for key, value in data.iteritems(): tmp_[_byteify(key, ignore_dicts=True)] = _byteify(value, ignore_dicts=True) return tmp_ # if it's anything else, return it in its original form return data current_version = '4.0' oxd_base_dir = '/opt/oxd-server' oxd_data_dir = os.path.join(oxd_base_dir, 'conf') oxd_conf_dir = '/etc/oxd/oxd-server' if os.path.exists('/etc/oxd/oxd-server') else '/opt/oxd-server/conf' oxd_backup_dir = os.path.join('/var/oxd-backup') oxd_data_backup_dir = os.path.join(oxd_backup_dir, 'json_data_backup') if not os.path.exists(oxd_backup_dir): os.mkdir(oxd_backup_dir) if not os.path.exists(oxd_data_backup_dir): os.mkdir(oxd_data_backup_dir) oxd_conf_json_fn = os.path.join(oxd_conf_dir, 'oxd-conf.json') oxd_default_site_config_json_fn = os.path.join(oxd_conf_dir, 'oxd-default-site-config.json') log4j_xml_fn = os.path.join(oxd_conf_dir, 'log4j.xml') conf_yaml_template = 'oxd-server.yml.temp' oxd4_server_yaml_fn = os.path.join(oxd_conf_dir, 'oxd-server.yml') update_required = False if os.path.exists(oxd_conf_json_fn): update_required = True if os.path.exists(oxd_default_site_config_json_fn): update_required = True if update_required: print """A previous version of oxd-server detected. If you continue, the current version will be replaced by the latest version available, and your config/data will be migrated to the new version. """ ask = "Do you want to migrate data to oxd-server-{0}? [y|N]: ".format(current_version) answer = raw_input(ask) if not answer or answer.lower()[0] != 'y': sys.exit("Migration cancelled, exiting.") if os_type[0] in ('ubuntu','debian'): commands.insert(1,'apt-get purge -y oxd-server') elif os_type[0] in ('centos','red'): commands.insert(1,'yum remove -y oxd-server') if update_required: oxd_conf_json = json_load_byteified(oxd_conf_json_fn) current_dbFileLocation = '/opt/oxd-server/data/oxd_db' if oxd_conf_json.get('storage_configuration') and oxd_conf_json['storage_configuration'].get('dbFileLocation'): current_dbFileLocation = oxd_conf_json['storage_configuration']['dbFileLocation'] current_dbFile = current_dbFileLocation+'.mv.db' commands.append('wget https://raw.githubusercontent.com/GluuFederation/oxd/version_4.0/upgrade/oxd-server.yml.temp -O oxd-server.yml.temp') for b_file in ( oxd_conf_json_fn, oxd_default_site_config_json_fn, log4j_xml_fn, oxd4_server_yaml_fn, current_dbFile, ): if os.path.exists(b_file): shutil.copy2(b_file, oxd_backup_dir) json_files = glob.glob(os.path.join(oxd_conf_dir,'*.json')) json_files.remove(os.path.join(oxd_conf_dir,'oxd-conf.json')) json_files.remove(os.path.join(oxd_conf_dir,'oxd-default-site-config.json')) for json_file in json_files: shutil.move(json_file, oxd_data_backup_dir) print "About to execute following commands:" print '\n'.join(commands) ask = "Do you want to continue [y|N]: " answer = raw_input(ask) if not answer or answer.lower()[0] != 'y': sys.exit("Migration cancelled, exiting.") for cmd in commands: print "Executing", cmd os.system(cmd) import yaml if update_required: oxd_conf_json_back_fn = os.path.join(oxd_backup_dir, 'oxd-conf.json') oxd_default_site_config_json_back_fn = os.path.join(oxd_backup_dir, 'oxd-default-site-config.json') log4j_xml_back_fn = os.path.join(oxd_backup_dir, 'log4j.xml') oxd_default_site_config_json = json_load_byteified(oxd_default_site_config_json_back_fn) if not oxd_default_site_config_json['contacts']: oxd_default_site_config_json['contacts'] = [] else: if not type(oxd_default_site_config_json['contacts']) == type([]): oxd_default_site_config_json['contacts'] = [oxd_default_site_config_json['contacts']] log4j_xml_tree = tree = ET.parse(log4j_xml_back_fn) log4j_xml_root = log4j_xml_tree.getroot() oxd4_server_yaml_fn = '/opt/oxd-server/conf/oxd-server.yml' oxd4_server_yaml = yaml.safe_load(open(oxd4_server_yaml_fn).read()) for key in oxd_default_site_config_json: if key in oxd4_server_yaml['defaultSiteConfig']: oxd4_server_yaml['defaultSiteConfig'][key] = oxd_default_site_config_json[key] for key in oxd_conf_json: if key in oxd4_server_yaml: oxd4_server_yaml[key] = oxd_conf_json[key] xml_appenders = log4j_xml_root.findall('appender') file_attrib = get_by_attrib(xml_appenders, 'FILE', False) params = file_attrib.findall('param') currentLogFilename = get_by_attrib(params, 'File') log_fp, log_e = os.path.splitext(currentLogFilename) oxd4_server_yaml['logging']['appenders'][1]['currentLogFilename'] = currentLogFilename DatePattern = log_file_attrib = get_by_attrib(params, 'DatePattern') archivedLogFilenamePattern = log_fp +'-%d{'+ DatePattern.replace("'.'",'') + '}-%i.log.gz' oxd4_server_yaml['logging']['appenders'][1]['archivedLogFilenamePattern'] = archivedLogFilenamePattern categories = log4j_xml_root.findall('category') org_xdi_attrib = get_by_attrib(categories, 'org.gluu', False) if not org_xdi_attrib: org_xdi_attrib = get_by_attrib(categories, 'org.xdi', False) org_xdi = org_xdi_attrib.find('priority').get('value') oxd4_server_yaml['logging']['loggers']['org.gluu'] = org_xdi root = log4j_xml_root.find('root') priority = root.find('priority').get('value') oxd4_server_yaml['logging']['level'] = priority oxd4_server_yaml['migration_source_folder_path'] = oxd_data_backup_dir yaml_temp = open(conf_yaml_template).read() sub_vars = re.findall('\{\{(.*?)\}\}', yaml_temp) for sv in sub_vars: sv_pattern = sv.split(':') m = oxd4_server_yaml for p in sv_pattern: if '|' in p: p,n=p.split('|') m = m[p][int(n)] else: m = m[p] if type(True) == type(m): m = str(m).lower() if (type(m) != type([]) and not m): m="''" k = '{{'+sv+'}}' #print sv, m yaml_temp = yaml_temp.replace(k,str(m)) with open(oxd4_server_yaml_fn,'w') as W: W.write(yaml_temp) db_fn_backup = os.path.join(oxd_backup_dir,'oxd_db.mv.db') if os.path.exists(db_fn_backup): shutil.copy2(db_fn_backup, '/opt/oxd-server/data/') os.system('chown jetty:jetty ' + oxd_backup_dir) print "Migration is finished. Please restart oxd-server"
# __main__.py import subprocess import sys def Playdemo(): # Creating new project folder try: if sys.argv[1] == "Play-demo": subprocess.call(["..TBG_Example/main.py", "-c"]) else: print("Invalid keyword: format>> python -m Play-demo") except IndexError: print("Invalid argument input: format>> python -m Play-demo") if __name__ == "__main__": Playdemo()
from playhouse.migrate import * my_db = SqliteDatabase('../data.db') migrator = SqliteMigrator(my_db) multiplier_up = DecimalField(null=True) avg_price_minutes = DecimalField(null=True) migrate( migrator.add_column('marketparams', 'multiplier_up', multiplier_up), migrator.add_column('marketparams', 'avg_price_minutes', avg_price_minutes), )
from collections import Counter from io import BytesIO import requests from PIL import Image, ImageDraw, ImageSequence header = {'Authorization': 'Basic YnV0dGVyOmZseQ==', } # 'YnV0dGVyOmZseQ==' is base64.encode('butter:fly') response = requests.get('http://www.pythonchallenge.com/pc/hex/white.gif', headers=header) imgs = Image.open(BytesIO(response.content)) brighter_points = [] for img in ImageSequence.Iterator(imgs): pos = list(img.getdata()).index(img.getextrema()[1]) brighter_points.append((pos % img.width, pos // img.width)) print(brighter_points) # seems like random walk c = Counter() for p in brighter_points: c[p] += 1 num = c[(100, 100)] img_new = Image.new('RGB', (50 * num, 50)) draw = ImageDraw.Draw(img_new) n = 0 points = [] for p in brighter_points: if p == (100, 100): if n > 0: draw.line(points, 'red', 3) points = [(50 * n + 25, 25)] n += 1 else: d = [x - 100 for x in p] points.append((points[-1][0] + d[0], points[-1][1] + d[1])) draw.line(points, 'red', 3) img_new.show() # bonus
"""Detect file changes through the windows api """ import os import win32event import win32file import win32con import asyncio import pywintypes import threading ACTIONS = { 1 : "Created", 2 : "Deleted", 3 : "Updated", 4 : "old name", 5 : "new name" } # Thanks to Claudio Grondi for the correct set of numbers FILE_LIST_DIRECTORY = 0x0001 async def main(): p = 'C:/' await start(p) # log = print def log(*a, **kw): print(" > ", *a, **kw) def log_callback(e, **kw): print("log_callback", e, **kw) l = asyncio.Lock() check_lock = asyncio.Lock() keep = {} _ignore = ['F:\\clients\\strangemother\\backblaze\\.git'] _ignore_dirs = ['F:\\clients\\strangemother\\backblaze\\.git'] top_content = {'step': 0} async def start(watch_dir=None, config=None, callback=None): log('start') global late_task config = config or {} if watch_dir is None and isinstance(config, tuple): watch_dir = config[0] config = config[1] # scan = config.get('scan', -1) or 0 #late_task = asyncio.get_running_loop().create_task(late_call()) #watch_dir = watch_dir hDir = await get_hdir(watch_dir) await loop(hDir, watch_dir, callback or log_callback, config=config) log('monitor.start Done') async def get_hdir(watch_dir): try: hDir = win32file.CreateFile( watch_dir, FILE_LIST_DIRECTORY, win32con.FILE_SHARE_READ | win32con.FILE_SHARE_WRITE | win32con.FILE_SHARE_DELETE, None, win32con.OPEN_EXISTING, win32con.FILE_FLAG_BACKUP_SEMANTICS, None ) except pywintypes.error as e: # (2, 'CreateFile', 'The system cannot find the file specified.') log('monitor.start - FileError', e) hDir = None return hDir async def loop(hDir, root_path, callback, config=None): log('loop', os.getpid(), hDir) log('config', config) run = 1 fails = 0 while run: log('Back into step', root_path) try: should_continue = await step(hDir, root_path, callback, config=config) fails = 0 except Exception as e: log('monitor.loop caught step exception:', str(e)) fails += 1 should_continue = False if (fails >= 3) else True if should_continue is False: log(f'\nToo many failures: {fails}. Killing with last failure\n') log(e) top_content['step'] += 1 if should_continue is False: log('Result is false; stopping monitor.loop for', root_path) run = False continue log('Loop complete') def loger(tick): log('Timer tick', tick, top_content) top_content['step'] += 1 return True def ignore(action, file, full_filename): if file in _ignore: return True if full_filename in _ignore: return True if file in _ignore: return True for _dir in _ignore_dirs: if file.startswith(_dir): return True if full_filename.startswith(_dir): return True async def step(hDir, root_path, callback, config=None): # # ReadDirectoryChangesW takes a previously-created # handle to a directory, a buffer size for results, # a flag to indicate whether to watch subtrees and # a filter of what changes to notify. # # NB Tim Juchcinski reports that he needed to up # the buffer size to be sure of picking up all # events when a large number of files were # deleted at once. # results = wait(hDir) # async for item in results: # log(item) # for action, file in item: # full_filename = os.path.join(path_to_watch, file) # log(full_filename, ACTIONS.get(action, "Unknown")) log('>..', end='') last = keep.get('last', None) try: results = await wait(hDir) except KeyboardInterrupt: log('Keyboard cancelled') return False await asyncio.sleep(.01) if results is None: log('- Result is None, This may occur if the file is deleted before analysis') log(root_path, hDir) return False if results is l: log('Received lock, will wait again') return True log('Iterating', len(results), 'results') clean_actions = () for action, file in results: full_filename = os.path.join(root_path, file) if ignore(action, file, full_filename): log('x ', full_filename) continue _action = (full_filename, ACTIONS.get(action, "Unknown")) clean_actions += (_action, ) if _action == last: log('Drop Duplicate') continue try: keep['last'] = await execute(_action, callback, config) except Exception as e: log('monitor.step caught exception.', _action, file) raise e if config.get('callback_many'): config['callback_many'](clean_actions) log('monitor.step fall to end.') async def lock_wait(hDir): async with check_lock: log('locked' if l.locked() else 'unlocked') await asyncio.ensure_future(l.acquire()) log('now', 'locked' if l.locked() else 'unlocked') await wait(hDir) # await asyncio.sleep(1) l.release() return l async def wait(hDir): overlapped = pywintypes.OVERLAPPED() overlapped.hEvent = win32event.CreateEvent(None, 0, 0, None) try: rc = win32event.WaitForSingleObject(overlapped.hEvent, 5000) results = win32file.ReadDirectoryChangesW( hDir, 8192, #1024, True, win32con.FILE_NOTIFY_CHANGE_FILE_NAME | win32con.FILE_NOTIFY_CHANGE_DIR_NAME | win32con.FILE_NOTIFY_CHANGE_ATTRIBUTES | win32con.FILE_NOTIFY_CHANGE_SIZE | win32con.FILE_NOTIFY_CHANGE_LAST_WRITE | win32con.FILE_NOTIFY_CHANGE_SECURITY | win32con.FILE_NOTIFY_CHANGE_FILE_NAME, # ~ win32con.FILE_NOTIFY_CHANGE_CREATION | # ~ win32con.FILE_NOTIFY_CHANGE_LAST_ACCESS | None, None ) #log('watch', results, rc) if rc == win32event.WAIT_OBJECT_0: # got some data! Must use GetOverlappedResult to find out # how much is valid! 0 generally means the handle has # been closed. Blocking is OK here, as the event has # already been set. nbytes = win32file.GetOverlappedResult(hDir, overlapped, True) if nbytes: bits = win32file.FILE_NOTIFY_INFORMATION(buf, nbytes) log('nbytes', nbytes, bits) else: # This is "normal" exit - our 'tearDown' closes the # handle. # log "looks like dir handle was closed!" log('teardown') return else: log('Timeout', hDir, rc) #log('return', results) return results except pywintypes.error as e: log('monitor.start - FileError', e) return None async def execute(result, callback, settings): try: return callback(result) except Exception as e: log(f'An exception has occured during callback execution: {e}') raise e # await asyncio.sleep(.3) # return result async def late_call(): log('late') if __name__ == '__main__': asyncio.run(main())
#!/usr/bin/env python # # Copyright 2009, Ubixum, Inc # # This file copied and modified for fx2lib from the GnuRadio project # # Copyright 2004,2006 Free Software Foundation, Inc. # # This file is part of GNU Radio # # GNU Radio is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3, or (at your option) # any later version. # # GNU Radio is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GNU Radio; see the file COPYING. If not, write to # the Free Software Foundation, Inc., 51 Franklin Street, # Boston, MA 02110-1301, USA. # import re import sys, struct import os, os.path from optparse import OptionParser def hex_to_bytes (s): if len (s) & 0x1: raise ValueError, "Length must be even" r = [] for i in range (0, len(s), 2): r.append (int (s[i:i+2], 16)) return r def msb (x): return (x >> 8) & 0xff def lsb (x): return x & 0xff class ihx_rec (object): def __init__ (self, addr, type, data): self.addr = addr self.type = type self.data = data class ihx_file (object): def __init__ (self): self.pat = re.compile (r':[0-9A-F]{10,}') def read (self, file): r = [] for line in file: line = line.strip().upper () if not self.pat.match (line): raise ValueError, "Invalid hex record format" bytes = hex_to_bytes (line[1:]) sum = reduce (lambda x, y: x + y, bytes, 0) % 256 if sum != 0: raise ValueError, "Bad hex checksum" lenx = bytes[0] addr = (bytes[1] << 8) + bytes[2] type = bytes[3] data = bytes[4:-1] if lenx != len (data): raise ValueError, "Invalid hex record (bad length)" if type != 0: break; r.append (ihx_rec (addr, type, data)) return r def build_eeprom_image (filename, outfile,vid,pid,devid,cb): """Build a ``C0 Load'' EEPROM image. For details on this format, see section 3.4.3 of the EZ-USB FX2 Technical Reference Manual """ image = [ 0xC0, # boot from EEPROM lsb (vid), msb (vid), lsb (pid), msb (pid), lsb (devid), msb (devid), cb # configuration byte ] # you could just append all the records.. # but that would most likely cause a lot of # extra headers/addrs to be written ihx = ihx_file(); records = ihx.read(open(filename)) # create image map of all values we're writing data too image_map={} for r in records: addr=r.addr c=0 l=len(r.data) while c<l: image_map[addr] = r.data[c] addr += 1 c += 1 # now create new records based on contiguous image data max_addr = max(image_map.keys()) records = [] start_addr = 0 while start_addr <= max_addr: if not image_map.has_key(start_addr): start_addr += 1 continue end_addr = start_addr # add continguous data up to 10 bits long (0x3ff) # is max size, trm 3.4.3 size=0 while image_map.has_key(end_addr) and size < 0x3ff: end_addr += 1 size += 1 l = end_addr - start_addr data = [] for d in range(l): data.append(image_map [ start_addr + d ]) records.append ( ihx_rec ( start_addr, 0, data ) ) start_addr = end_addr # 4 byte header that indicates where to load # the immediately follow code bytes. for r in records: image.extend( [ msb (len (r.data)), lsb (len (r.data)), msb (r.addr), lsb (r.addr) ]) image.extend(r.data) # writes 0 to CPUCS reg (brings FX2 out of reset) image.extend ( [ 0x80, 0x01, 0xe6, 0x00, 0x00 ] ) buf=struct.pack ( "B"*len(image), *image ) print "iic Image Size" , len(buf) out=open( outfile, 'w') out.write(buf) out.close(); if __name__ == '__main__': usage = "usage: %prog [options] firmware.ihx outfile" parser = OptionParser (usage=usage) parser.add_option ( "-v", "--vid", type="int", default=0x04b4, help="Vendor ID for iic c2 image." ) parser.add_option ( "-p", "--pid", type="int", default=0x0082, help="Product ID for iic c2 image." ) parser.add_option ( "-d", "--devid", type="int", default=0, help="Device ID for iic c2 image." ) parser.add_option ( "-c", "--configbyte", type="int", default=0x04, help="Configuration Byte (i2c & disconnect polarity, default 0x04)" ) (options, args) = parser.parse_args () if len (args) != 2: parser.print_help () sys.exit (1) ihx_filename = args[0] iic_filename = args[1] build_eeprom_image ( ihx_filename, iic_filename, options.vid, options.pid, options.devid, options.configbyte )
from unicodedata import name import jmespath from util.logger import get_logger from util.decoder import decode class TransactionTransformer: def __init__(self) -> None: self.logger = get_logger(__name__) @staticmethod def transform(raw_transactions): payloads = jmespath.search('[*].payload', raw_transactions) if not payloads: return [] else: return [TransactionTransformer.transform_payload(raw_payload) for raw_payload in payloads] @staticmethod def transform_payload(raw_payload): transaction = {} raw_actions = jmespath.search("data.actions", raw_payload) if not raw_actions: return None raw_header = jmespath.search("header", raw_payload) transaction["header"] = TransactionTransformer.transform_header( raw_header) transaction["data"] = [ TransactionTransformer.transform_actions(a) for a in raw_actions] return transaction @staticmethod def transform_header(raw_header): channel_header = raw_header["channel_header"] return { "channel_id": channel_header["channel_id"], "smart_contract": jmespath.search("extension.chaincode_id", raw_header), "transaction_id": channel_header["tx_id"], "timestamp": channel_header["timestamp"], "creator": jmespath.search("signature_header.creator.mspid", raw_header) } @staticmethod def transform_actions(raw_action): # endosments_no = len(jmespath.search( # "payload.action.endorsements", raw_action)) # chaincode_id = jmespath.search( # "payload.action.proposal_response_payload.extension.chaincode_id", raw_action) return { "input": TransactionTransformer.transform_input(raw_action), "result": TransactionTransformer.transform_response(raw_action) } @staticmethod def transform_input(raw_action): creator = jmespath.search("header.creator.mspid", raw_action) action_input = jmespath.search( "payload.chaincode_proposal_payload.input.chaincode_spec", raw_action) if "is_init" in action_input["input"]: action_input["is_init"] = action_input["input"]["is_init"] if "args" not in action_input: action_input["args"] = action_input["input"]["args"] action_input["args"] = [decode(a) for a in action_input["args"]] return { "method": action_input["args"][0], "args": action_input["args"][1:], "creator": creator } @staticmethod def transform_response(raw_action): response = jmespath.search( "payload.action.proposal_response_payload.extension.response", raw_action) response["payload"] = decode(response["payload"]) rwset = jmespath.search( "payload.action.proposal_response_payload.extension.results.ns_rwset", raw_action) rwset = TransactionTransformer._decode_rwset_values(rwset) return { "status": response["status"], "response": response["payload"], **rwset } @staticmethod def _decode_rwset_values(rwset): ret = {"reads": [], "writes": []} for rws in rwset: namespace = rws["namespace"] for rs in rws["rwset"]["reads"]: value = decode(rs["value"]) if "value" in rs else None ret["reads"].append({ "key": rs["key"], "value": value, "version": rs["version"], "namespace": namespace }) for ws in rws["rwset"]["writes"]: value = decode(ws["value"]) if "value" in ws else None ret["writes"].append({ "key": ws["key"], "value": value, "is_delete": ws["is_delete"] if "is_delete" in ws else False, "namespace": namespace }) return ret
# Band service skeleton # (c) Dmitry Rodin 2018 # --------------------- # this file is a reqular python module requirement # обязательный для python файл модуля. from . import main
"""DID Document and resource builders.""" from typing import Iterator, List, Optional, Type, Union from ..did import DID from ..did_url import DIDUrl from ..service import DIDCommService, Service from ..verification_method import VerificationMethod from .doc import DIDDocument def _default_id_generator(base: str, start: int = 0) -> Iterator[str]: """Generate ID fragments.""" index = start while True: yield "{}-{}".format(base, index) index += 1 class VerificationMethodBuilder: """VerificationMethod scoped builder.""" def __init__( self, did: DID, *, id_base: str = None, methods: Optional[List[VerificationMethod]] = None ): self._did = did self.methods = methods or [] self._id_base = id_base or "key" self._id_generator = self._default_id_generator() def _default_id_generator(self): """Default ID generator.""" yield from _default_id_generator(self._id_base, start=len(self.methods)) def add( self, type_: Type[VerificationMethod], ident: Optional[str] = None, controller: DID = None, **kwargs ): """Add verification method from parts and context.""" ident = ident or next(self._id_generator) controller = controller or self._did vmethod = type_.make(id=self._did.ref(ident), controller=controller, **kwargs) self.methods.append(vmethod) return vmethod def remove(self, vmethod: VerificationMethod): """Remove method from builder.""" self.methods.remove(vmethod) class RelationshipBuilder(VerificationMethodBuilder): """Builder for relationships.""" def __init__( self, did: DID, id_base: str, *, methods: Optional[List[Union[VerificationMethod, DIDUrl]]] = None ): super().__init__(did, id_base=id_base) self.methods = methods or [] def _default_id_generator(self): """Default ID generator.""" start = len( [ vmethod for vmethod in self.methods if isinstance(vmethod, VerificationMethod) ] ) yield from _default_id_generator(self._id_base, start=start) def reference(self, ref: DIDUrl): """Add reference to relationship.""" if not isinstance(ref, DIDUrl): raise ValueError( "Reference must be DIDUrl, not {}".format(type(ref).__name__) ) self.methods.append(ref) def embed(self, *args, **kwargs): """Embed verification method in relationship.""" return super().add(*args, **kwargs) def remove(self, vmethod: Union[DIDUrl, VerificationMethod]): """Remove reference or method from builder.""" self.methods.remove(vmethod) class ServiceBuilder: """Builder for services.""" def __init__(self, did: DID, *, services: Optional[List[Service]] = None): self._did = did self.services = services or [] self._id_generator = _default_id_generator("service", start=len(self.services)) def _determine_next_priority(self): """Return the next priority after the highest priority currently in services.""" return ( max( [ service.priority for service in self.services if isinstance(service, DIDCommService) ] ) + 1 if self.services else 0 ) def add( self, type_: str, service_endpoint: str, ident: Optional[str] = None, **extra ): """Add service.""" ident = ident or next(self._id_generator) service = Service.make( id=self._did.ref(ident), type=type_, service_endpoint=service_endpoint, **extra ) self.services.append(service) return service def add_didcomm( self, service_endpoint: str, recipient_keys: List[VerificationMethod], routing_keys: List[VerificationMethod] = None, *, priority: int = None, type_: str = None, ident: Optional[str] = None ): """Add DIDComm Service.""" ident = ident or next(self._id_generator) routing_keys = routing_keys or [] priority = priority or self._determine_next_priority() service = DIDCommService.make( id=self._did.ref(ident), service_endpoint=service_endpoint, recipient_keys=[vmethod.id for vmethod in recipient_keys], routing_keys=[vmethod.id for vmethod in routing_keys], type=type_, priority=priority, ) self.services.append(service) return service def remove(self, service: Service): """Remove service from builder.""" self.services.remove(service) class DIDDocumentBuilder: """Builder for constructing DID Documents programmatically.""" DEFAULT_CONTEXT = ["https://www.w3.org/ns/did/v1"] def __init__( self, id: Union[str, DID], context: List[str] = None, *, also_known_as: List[str] = None, controller: Union[List[str], List[DID]] = None ): """Initliaze builder.""" self.id: DID = DID(id) self.context = context or self.DEFAULT_CONTEXT self.also_known_as = also_known_as self.controller = controller self.verification_method = VerificationMethodBuilder(self.id) self.authentication = RelationshipBuilder(self.id, "auth") self.assertion_method = RelationshipBuilder(self.id, "assert") self.key_agreement = RelationshipBuilder(self.id, "key-agreement") self.capability_invocation = RelationshipBuilder( self.id, "capability-invocation" ) self.capability_delegation = RelationshipBuilder( self.id, "capability-delegation" ) self.service = ServiceBuilder(self.id) self.extra = {} @classmethod def from_doc(cls, doc: DIDDocument) -> "DIDDocumentBuilder": """Create a Builder from an existing DIDDocument.""" builder = cls( id=doc.id, context=doc.context, also_known_as=doc.also_known_as, controller=doc.controller, ) builder.verification_method = VerificationMethodBuilder( doc.id, methods=doc.verification_method ) builder.authentication = RelationshipBuilder( doc.id, "auth", methods=doc.authentication ) builder.assertion_method = RelationshipBuilder( doc.id, "assert", methods=doc.assertion_method ) builder.key_agreement = RelationshipBuilder( doc.id, "key-agreement", methods=doc.key_agreement ) builder.capability_invocation = RelationshipBuilder( doc.id, "capability-invocation", methods=doc.capability_invocation ) builder.capability_delegation = RelationshipBuilder( doc.id, "capability-delegation", methods=doc.capability_delegation ) builder.service = ServiceBuilder(doc.id, services=doc.service) return builder def build(self) -> DIDDocument: """Build document.""" return DIDDocument.construct( id=self.id, context=self.context, also_known_as=self.also_known_as, controller=self.controller, verification_method=self.verification_method.methods or None, authentication=self.authentication.methods or None, assertion_method=self.assertion_method.methods or None, key_agreement=self.key_agreement.methods or None, capability_invocation=self.capability_invocation.methods or None, capability_delegation=self.capability_delegation.methods or None, service=self.service.services or None, **self.extra )
class Solution(object): def poorPigs(self, buckets, minutesToDie, minutesToTest): """ :type buckets: int :type minutesToDie: int :type minutesToTest: int :rtype: int """ # 一只猪鉴定5桶,2两只猪一只喝行一只喝列能喝25桶,三只猪一只行一只列一只面 # 真无聊什么鬼题 # 什么有毒猪种还从0开始没有猪哪里能鉴定 pigNum = 0 while (minutesToTest // minutesToDie + 1) ** pigNum < buckets: pigNum += 1 return pigNum
from ToastNotifier import ToastNotifier import time import poplib from email.parser import Parser from email.header import decode_header import webbrowser import os import base64 _uidl = '' #留空就行 email = '[email protected]' #邮箱地址 password = '' #密码 host = 'pop.163.com' #邮箱服务器地址 sleep = 15 * 60 # 读取间隔 单位 s,官方要求最低15分钟请求一次 ### 读取最新邮件 def ReadEmail(server): global _uidl print(server.getwelcome().decode('utf-8')) index = server.stat()[0] uidl = server.uidl(index) if _uidl == uidl.split()[2]: #邮件相同,跳过 return False else: _uidl = uidl.split()[2] resp, lines, octets = server.retr(index) msg_content = b'\r\n'.join(lines).decode('utf-8') msg = Parser().parsestr(msg_content) From = decode_str(msg.get("From")) Subject = decode_str(msg.get("Subject")) CacheEmail(msg) ShowToast("新邮件提醒","来自%s\n%s"%(From,Subject),"temp.html") return True ### 新邮件缓存 def CacheEmail(msg): data = None charset = "utf-8" for message in msg.walk(): if message.get_content_type() == "text/html": charset = message.get_content_charset() data = message.get_payload(decode=True) f = open("temp.html", "w", encoding=charset) if charset == 'utf-8': f.write(str(data,charset).encode('utf-8').decode('unicode_escape')) else: f.write(str(data,charset)) f.close() # 解码头 def decode_str(s): value, charset = decode_header(s)[0] if charset: value = value.decode(charset) return value # 连接邮箱 def ConnectEmail(): global email global password global host server = poplib.POP3(host) server.set_debuglevel(0) server.user(email) server.pass_(password) server.utf8() return server ### 提示 def ShowToast(title, content, url): toaster = ToastNotifier() toaster.show_toast(title, content, duration=2, callback_on_click=lambda: open_ticket(url)) ## 打开在浏览器 def open_ticket(url): webbrowser.open_new_tab("%s\\%s"%(os.getcwd(),url)) if __name__ == "__main__": while True: server = ConnectEmail() ReadEmail(server) server.quit() time.sleep(sleep)
import unittest import subprocess import re def trycredentials(user, pwd): proc = subprocess.Popen( ['python', '01.py'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) outs, errs = proc.communicate('%s\n%s\n' % (user, pwd)) return outs + errs class TestEx1(unittest.TestCase): def test_correct_credentials(self): res = trycredentials('apple', 'red') self.assertIn('welcome master', res.lower(), 'No welcome banner in: [%s]' % res) def test_incorrect_credentials(self): res = trycredentials('foo', 'bar') self.assertIn('intruder alert', res.lower(), 'No error banner in: [%s]' % res) def test_correct_username_wrong_password(self): res = trycredentials('apple', 'blue') self.assertIn('intruder alert', res.lower(), 'No error banner in: [%s]' % res) class TestEx2(unittest.TestCase): def test_above_avg(self): res = subprocess.check_output(['python', '02.py', '99', '90', '15', '28', '38', '44', '50', '81', '79', '60', '99', '90', '15', '28', '38', '44', '50', '81', '79', '60']) self.assertEqual(res, '99 90 81 79 60 99 90 81 79 60\n') class TestEx3(unittest.TestCase): def test_3(self): proc = subprocess.Popen( ['python', '03.py', 'mycar', 'home', 'none'], stdin=subprocess.PIPE, stdout=subprocess.PIPE) outs, errs = proc.communicate() lines = outs.split('\n') self.assertIn('10.0.0.5', lines[0], 'mycar should have IP 10.0.0.5') self.assertIn('194.90.2.1', lines[1], 'home should have IP 194.90.2.1') self.assertEqual(re.search(r'\d', lines[2]), None, 'none should not have IP') if __name__ == '__main__': unittest.main()
from guy import Guy,http class T(Guy): __doc__="""<script> async function storage(mode) { switch(mode) { case "get": return localStorage["var"]==42; case "set": localStorage["var"]=42; return true default: alert("mode='"+mode+"' ?!?") } } </script>""" size=(100,100) def __init__(self,mode): self.mode=mode super().__init__() async def init(self): ok =await self.js.storage(self.mode) self.exit(ok) def test_no_lockPort(runner): t=T("get") ok=runner(t) assert not ok,"localStorage is already present ?!" t=T("set") ok=runner(t) assert ok,"setting localstorage not possible ?!" t=T("get") ok=runner(t) assert not ok,"win has memory ;-(" # CAN't WORK IN pytest, as is # def test_lockPort(): # app mode only (broken with cef ... coz ioloop/pytests) # t=T("set") # ok=t.runCef(one=True) # assert ok==True # t=T("get") # ok=t.runCef(one=True) # assert ok==True # localStorage is persistent !
class SinglyLinkedList: def __init__(self): self.head = None self.len = 0 def add(self, item): if not self.head: self.head = ListNode(item) else: p = ListNode(item) p.next = self.head self.head = p self.len += 1 def remove(self, item): if not self.head: return ValueError('Can\'t remove from a list with no items.') curr = self.head while curr: if curr.next.val == item: curr.next = curr.next.next curr = curr.next self.size -= 1 def __iter__(self): self.top = self.head return self def __next__(self): if self.top: curr = self.top else: raise StopIteration() self.top = self.top.next return curr.val def __len__(self): return self.len def __str__(self): if not self.head: return '[]' s = '[' curr = self.head for item in self: s += str(item) if curr.next: s += ',' curr = curr.next s += ']' return s class ListNode: def __init__(self, val): self.val = val self.next = None if __name__ == '__main__': slist = SinglyLinkedList() slist.add(12) slist.add(13) slist.add(14) print(slist)
# Copyright (c) 2017, 2018, Oracle and/or its affiliates. # This software is made available to you under the terms of the GPL 3.0 license or the Apache 2.0 license. # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # Apache License v2.0 # See LICENSE.TXT for details. import pytest from nose.plugins.skip import SkipTest import logging from ansible.modules.cloud.oracle import oci_load_balancer_backend from ansible.module_utils.oracle import oci_utils, oci_lb_utils try: import oci from oci.util import to_dict from oci.load_balancer.models import Backend, WorkRequest from oci.exceptions import ServiceError, ClientError except ImportError: raise SkipTest("test_oci_load_balancer_backend.py requires `oci` module") class FakeModule(object): def __init__(self, **kwargs): self.params = kwargs def fail_json(self, *args, **kwargs): self.exit_args = args self.exit_kwargs = kwargs raise Exception(kwargs["msg"]) def exit_json(self, *args, **kwargs): self.exit_args = args self.exit_kwargs = kwargs @pytest.fixture() def lb_client(mocker): mock_lb_client = mocker.patch( "oci.load_balancer.load_balancer_client.LoadBalancerClient" ) return mock_lb_client.return_value @pytest.fixture() def create_backend_patch(mocker): return mocker.patch.object(oci_load_balancer_backend, "create_backend") @pytest.fixture() def update_backend_patch(mocker): return mocker.patch.object(oci_load_balancer_backend, "update_backend") @pytest.fixture() def create_or_update_lb_resources_and_wait_patch(mocker): return mocker.patch.object(oci_lb_utils, "create_or_update_lb_resources_and_wait") @pytest.fixture() def delete_lb_resources_and_wait_patch(mocker): return mocker.patch.object(oci_lb_utils, "delete_lb_resources_and_wait") @pytest.fixture() def check_and_create_resource_patch(mocker): return mocker.patch.object(oci_utils, "check_and_create_resource") @pytest.fixture() def get_existing_resource_patch(mocker): return mocker.patch.object(oci_utils, "get_existing_resource") def setUpModule(): logging.basicConfig( filename="/tmp/oci_ansible_module.log", filemode="a", level=logging.INFO ) oci_load_balancer_backend.set_logger(logging) def test_create_or_update_backend_create( lb_client, check_and_create_resource_patch, get_existing_resource_patch ): module = get_module() backend = get_backend() get_existing_resource_patch.return_value = None check_and_create_resource_patch.return_value = { "backend": to_dict(backend), "changed": True, } result = oci_load_balancer_backend.create_or_update_backend(lb_client, module) assert result["backend"]["ip_address"] is backend.ip_address def test_create_or_update_backend_update( lb_client, update_backend_patch, get_existing_resource_patch ): module = get_module() backend = get_backend() get_existing_resource_patch.return_value = backend update_backend_patch.return_value = {"backend": to_dict(backend), "changed": True} result = oci_load_balancer_backend.create_or_update_backend(lb_client, module) assert result["backend"]["ip_address"] is backend.ip_address def test_create_or_update_backend_service_error( lb_client, check_and_create_resource_patch, get_existing_resource_patch ): module = get_module() error_message = "Internal Server Error" check_and_create_resource_patch.side_effect = ServiceError( 500, "InternalServerError", dict(), error_message ) get_existing_resource_patch.return_value = None try: oci_load_balancer_backend.create_or_update_backend(lb_client, module) except Exception as ex: assert error_message in ex.args[0] def test_create_or_update_backend_client_error( lb_client, check_and_create_resource_patch, get_existing_resource_patch ): module = get_module() error_message = "Work Request Failed" check_and_create_resource_patch.side_effect = ClientError( Exception("Work Request Failed") ) get_existing_resource_patch.return_value = None try: oci_load_balancer_backend.create_or_update_backend(lb_client, module) except Exception as ex: assert error_message in ex.args[0] def test_create_backend(lb_client, create_or_update_lb_resources_and_wait_patch): module = get_module() backend = get_backend() create_or_update_lb_resources_and_wait_patch.return_value = { "backend": to_dict(backend), "changed": True, } result = oci_load_balancer_backend.create_backend( lb_client, module, "ocid1.loadbalancer.oc1.iad.aaaaa", "10.159.34.21:8181" ) assert result["backend"]["name"] == backend.name def test_update_backend(lb_client, create_or_update_lb_resources_and_wait_patch): module = get_module() backend = get_backend() create_or_update_lb_resources_and_wait_patch.return_value = { "backend": to_dict(backend), "changed": True, } result = oci_load_balancer_backend.update_backend( lb_client, module, backend, "ocid1.loadbalancer.oc1.iad.aaaaa", "10.159.34.21:8181", ) assert result["changed"] is True def test_update_backend_no_update(lb_client): module = get_module() backend = get_backend() backend.offline = False result = oci_load_balancer_backend.update_backend( lb_client, module, backend, "ocid1.loadbalancer.oc1.iad.aaaaa", "10.159.34.21:8181", ) assert result["changed"] is False def test_delete_backend(lb_client, delete_lb_resources_and_wait_patch): module = get_module() backend = get_backend() delete_lb_resources_and_wait_patch.return_value = get_response( 204, None, backend, None ) delete_lb_resources_and_wait_patch.return_value = { "backend": to_dict(backend), "changed": True, } result = oci_load_balancer_backend.delete_backend(lb_client, module) assert result["changed"] is True def get_backend(): backend = Backend() backend.name = "10.159.34.21:8181" backend.backup = True backend.drain = True backend.offline = True backend.weight = 5 backend.ip_address = "10.159.34.21" backend.port = "8181" return backend def get_response(status, header, data, request): return oci.Response(status, header, data, request) def get_module(): params = { "load_balancer_id": "ocid1.loadbalancer.oc1.iad.aaaaa", "backend_set_name": "backend1", "ip_address": "10.159.34.21", "port": "8181", "backup": True, "offline": False, "drain": True, "weight": 5, } module = FakeModule(**params) return module
class Solution: def snakesAndLadders(self, board: List[List[int]]) -> int: # this is a bfs def num_to_rc(num): N = len(board) num -= 1 r, c = divmod(num, N) if r % 2: c = N - 1 - c r = N - 1 - r return r, c frontier = collections.deque([1]) seen = {1} target = len(board) * len(board) step = 0 while frontier: sz = len(frontier) for _ in range(sz): x = frontier.popleft() if x == target: return step for dx in range(1, 7): nx = x + dx if nx <= target: r, c = num_to_rc(nx) if board[r][c] != -1: nx = board[r][c] if nx not in seen: seen.add(nx) frontier.append(nx) step += 1 return -1
import sys __author__ = 'South Mountain' def p2(n): """ Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... By considering the terms in the Fibonacci sequence whose values do not exceed four million, find the sum of the even-valued terms. """ fibonacci(n, 1, 2, 2) def fibonacci(n, first, second, result): """fibonacci""" if second >= n: print("Answer of the Problem 2nd is %d" % result) return nx = first + second if nx % 2 == 0: result += nx fibonacci(n, second, nx, result) if __name__ == '__main__': p2(89) p2(4*1000000) sys.exit(0)
import os import df2img import disnake import pandas as pd from PIL import Image import discordbot.config_discordbot as cfg from discordbot.config_discordbot import logger from discordbot.helpers import autocrop_image from gamestonk_terminal.economy import wsj_model async def currencies_command(ctx): """Currencies overview [Wall St. Journal]""" try: # Debug user input if cfg.DEBUG: logger.debug("econ-currencies") # Retrieve data df = wsj_model.global_currencies() df = pd.DataFrame.from_dict(df) # Check for argument if df.empty: raise Exception("No available data found") df["Last"] = pd.to_numeric(df["Last"].astype(float)) df["Chng"] = pd.to_numeric(df["Chng"].astype(float)) df["%Chng"] = pd.to_numeric(df["%Chng"].astype(float)) formats = {"Last": "{:.2f}", "Chng": "{:.2f}", "%Chng": "{:.2f}%"} for col, value in formats.items(): df[col] = df[col].map(lambda x: value.format(x)) # pylint: disable=W0640 df = df.fillna("") df.set_index(" ", inplace=True) # Debug user output if cfg.DEBUG: logger.debug(df.to_string()) df = df[ [ "Last", "Chng", "%Chng", ] ] dindex = len(df.index) fig = df2img.plot_dataframe( df, fig_size=(800, (40 + (40 * dindex))), col_width=[8, 3, 3], tbl_cells=dict( align="left", height=35, ), template="plotly_dark", font=dict( family="Consolas", size=20, ), paper_bgcolor="rgba(0, 0, 0, 0)", ) imagefile = "econ-currencies.png" df2img.save_dataframe(fig=fig, filename=imagefile) image = Image.open(imagefile) image = autocrop_image(image, 0) image.save(imagefile, "PNG", quality=100) image = disnake.File(imagefile) title = "Economy: [WSJ] Currencies" embed = disnake.Embed(title=title, colour=cfg.COLOR) embed.set_image(url=f"attachment://{imagefile}") embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) os.remove(imagefile) await ctx.send(embed=embed, file=image) except Exception as e: embed = disnake.Embed( title="ERROR Economy: [WSJ] Currencies", colour=cfg.COLOR, description=e, ) embed.set_author( name=cfg.AUTHOR_NAME, icon_url=cfg.AUTHOR_ICON_URL, ) await ctx.send(embed=embed, delete_after=30.0)
# Generated by Django 3.1.8 on 2021-04-26 16:02 from django.db import migrations, models import django.db.models.deletion def set_primary_groups(apps, schema_editor): Organization = apps.get_model("organizations", "Organization") ResponsibleGroup = apps.get_model("permissions", "ResponsibleGroup") for organization in Organization.objects.all(): created = False if organization.primary_group is None: primary_group = ResponsibleGroup.objects.create( name=organization.name, description=f"Medlemmer av {organization.name}" ) organization.primary_group = primary_group created = True if organization.hr_group is None: hr_group = ResponsibleGroup.objects.create( name="HR", description=f"HR-gruppen til {organization.name}. Tillatelser for å se og behandle søknader." ) organization.hr_group = hr_group created = True if created: organization.save() class Migration(migrations.Migration): dependencies = [ ("permissions", "0002_auto_20210422_2020"), ("organizations", "0025_auto_20210426_1735"), ] operations = [ migrations.RemoveField( model_name="organization", name="groups", ), migrations.AddField( model_name="organization", name="hr_group", field=models.OneToOneField( null=True, on_delete=django.db.models.deletion.CASCADE, related_name="hr_organization", to="permissions.responsiblegroup", ), ), migrations.AlterField( model_name="organization", name="primary_group", field=models.OneToOneField( on_delete=django.db.models.deletion.CASCADE, related_name="organization", to="permissions.responsiblegroup", ), ), migrations.RunPython(set_primary_groups, lambda apps, schema_editor: None), ]
from .accuracy import accuracy from .compose import compose from .fftconv2d import fft_conv2d, FFTConv2d
from cStringIO import StringIO import collections import logging import time from urlparse import urljoin from xml.etree import ElementTree import recurly from recurly import Account, AddOn, Adjustment, BillingInfo, Coupon, Plan, Redemption, Subscription, SubscriptionAddOn, Transaction from recurly import Money, NotFoundError, ValidationError, BadRequestError, PageError from recurlytests import RecurlyTest, xml recurly.SUBDOMAIN = 'api' class TestResources(RecurlyTest): def test_authentication(self): recurly.API_KEY = None account_code = 'test%s' % self.test_id try: Account.get(account_code) except recurly.UnauthorizedError, exc: pass else: self.fail("Updating account with invalid email address did not raise a ValidationError") def test_account(self): account_code = 'test%s' % self.test_id with self.mock_request('account/does-not-exist.xml'): self.assertRaises(NotFoundError, Account.get, account_code) account = Account(account_code=account_code) with self.mock_request('account/created.xml'): account.save() self.assertEqual(account._url, urljoin(recurly.base_uri(), 'accounts/%s' % account_code)) with self.mock_request('account/list-active.xml'): active = Account.all_active() self.assertTrue(len(active) >= 1) self.assertEqual(active[0].account_code, account_code) with self.mock_request('account/exists.xml'): same_account = Account.get(account_code) self.assertTrue(isinstance(same_account, Account)) self.assertTrue(same_account is not account) self.assertEqual(same_account.account_code, account_code) self.assertTrue(same_account.first_name is None) self.assertEqual(same_account._url, urljoin(recurly.base_uri(), 'accounts/%s' % account_code)) account.username = 'shmohawk58' account.email = 'larry.david' account.first_name = u'L\xe4rry' account.last_name = 'David' account.company_name = 'Home Box Office' account.accept_language = 'en-US' with self.mock_request('account/update-bad-email.xml'): try: account.save() except ValidationError, exc: self.assertTrue(isinstance(exc.errors, collections.Mapping)) self.assertTrue('account.email' in exc.errors) suberror = exc.errors['account.email'] self.assertEqual(suberror.symbol, 'invalid_email') self.assertTrue(suberror.message) self.assertEqual(suberror.message, str(suberror)) else: self.fail("Updating account with invalid email address did not raise a ValidationError") account.email = '[email protected]' with self.mock_request('account/updated.xml'): account.save() with self.mock_request('account/deleted.xml'): account.delete() with self.mock_request('account/list-closed.xml'): closed = Account.all_closed() self.assertTrue(len(closed) >= 1) self.assertEqual(closed[0].account_code, account_code) with self.mock_request('account/list-active-when-closed.xml'): active = Account.all_active() self.assertTrue(len(active) < 1 or active[0].account_code != account_code) # Make sure we can reopen a closed account. with self.mock_request('account/reopened.xml'): account.reopen() try: with self.mock_request('account/list-active.xml'): active = Account.all_active() self.assertTrue(len(active) >= 1) self.assertEqual(active[0].account_code, account_code) finally: with self.mock_request('account/deleted.xml'): account.delete() # Make sure numeric account codes work. if self.test_id == 'mock': numeric_test_id = 58 else: numeric_test_id = int(self.test_id) account = Account(account_code=numeric_test_id) with self.mock_request('account/numeric-created.xml'): account.save() try: self.assertEqual(account._url, urljoin(recurly.base_uri(), 'accounts/%d' % numeric_test_id)) finally: with self.mock_request('account/numeric-deleted.xml'): account.delete() def test_add_on(self): plan_code = 'plan%s' % self.test_id add_on_code = 'addon%s' % self.test_id plan = Plan( plan_code=plan_code, name='Mock Plan', setup_fee_in_cents=Money(0), unit_amount_in_cents=Money(1000), ) with self.mock_request('add-on/plan-created.xml'): plan.save() try: add_on = AddOn(add_on_code=add_on_code, name='Mock Add-On') with self.mock_request('add-on/need-amount.xml'): try: plan.create_add_on(add_on) except ValidationError, exc: pass else: self.fail("Creating a plan add-on without an amount did not raise a ValidationError") error = exc.errors['add_on.unit_amount_in_cents'] self.assertEqual(error.symbol, 'blank') add_on = AddOn(add_on_code=add_on_code, name='Mock Add-On', unit_amount_in_cents=Money(40)) with self.mock_request('add-on/created.xml'): plan.create_add_on(add_on) self.assertEqual(add_on.add_on_code, add_on_code) self.assertEqual(add_on.name, 'Mock Add-On') try: with self.mock_request('add-on/exists.xml'): same_add_on = plan.get_add_on(add_on_code) self.assertEqual(same_add_on.add_on_code, add_on_code) self.assertEqual(same_add_on.name, 'Mock Add-On') self.assertEqual(same_add_on.unit_amount_in_cents['USD'], 40) finally: with self.mock_request('add-on/deleted.xml'): add_on.delete() finally: with self.mock_request('add-on/plan-deleted.xml'): plan.delete() def test_billing_info(self): logging.basicConfig(level=logging.DEBUG) # make sure it's init'ed logger = logging.getLogger('recurly.http.request') logger.setLevel(logging.DEBUG) log_content = StringIO() log_handler = logging.StreamHandler(log_content) logger.addHandler(log_handler) account = Account(account_code='binfo%s' % self.test_id) with self.mock_request('billing-info/account-created.xml'): account.save() logger.removeHandler(log_handler) self.assertTrue('<account' in log_content.getvalue()) try: # Billing info link won't be present at all yet. self.assertRaises(AttributeError, getattr, account, 'billing_info') log_content = StringIO() log_handler = logging.StreamHandler(log_content) logger.addHandler(log_handler) binfo = BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ) with self.mock_request('billing-info/created.xml'): account.update_billing_info(binfo) logger.removeHandler(log_handler) log_content = log_content.getvalue() self.assertTrue('<billing_info' in log_content) # See if we redacted our sensitive fields properly. self.assertTrue('4111' not in log_content) self.assertTrue('7777' not in log_content) with self.mock_request('billing-info/account-exists.xml'): same_account = Account.get('binfo%s' % self.test_id) with self.mock_request('billing-info/exists.xml'): same_binfo = same_account.billing_info self.assertEqual(same_binfo.first_name, 'Verena') self.assertEqual(same_binfo.city, u'San Jos\xe9') with self.mock_request('billing-info/deleted.xml'): binfo.delete() finally: with self.mock_request('billing-info/account-deleted.xml'): account.delete() log_content = StringIO() log_handler = logging.StreamHandler(log_content) logger.addHandler(log_handler) account = Account(account_code='binfo-%s-2' % self.test_id) account.billing_info = BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ) with self.mock_request('billing-info/account-embed-created.xml'): account.save() try: logger.removeHandler(log_handler) log_content = log_content.getvalue() self.assertTrue('<account' in log_content) self.assertTrue('<billing_info' in log_content) self.assertTrue('4111' not in log_content) self.assertTrue('7777' not in log_content) with self.mock_request('billing-info/account-embed-exists.xml'): same_account = Account.get('binfo-%s-2' % self.test_id) with self.mock_request('billing-info/embedded-exists.xml'): binfo = same_account.billing_info self.assertEqual(binfo.first_name, 'Verena') finally: with self.mock_request('billing-info/account-embed-deleted.xml'): account.delete() def test_charge(self): account = Account(account_code='charge%s' % self.test_id) with self.mock_request('adjustment/account-created.xml'): account.save() try: with self.mock_request('adjustment/account-has-no-charges.xml'): charges = account.adjustments() self.assertEqual(charges, []) charge = Adjustment(unit_amount_in_cents=1000, currency='USD', description='test charge', type='charge') with self.mock_request('adjustment/charged.xml'): account.charge(charge) with self.mock_request('adjustment/account-has-adjustments.xml'): charges = account.adjustments() self.assertEqual(len(charges), 1) same_charge = charges[0] self.assertEqual(same_charge.unit_amount_in_cents, 1000) self.assertEqual(same_charge.currency, 'USD') self.assertEqual(same_charge.description, 'test charge') self.assertEqual(same_charge.type, 'charge') with self.mock_request('adjustment/account-has-charges.xml'): charges = account.adjustments(type='charge') self.assertEqual(len(charges), 1) with self.mock_request('adjustment/account-has-no-credits.xml'): credits = account.adjustments(type='credit') self.assertEqual(len(credits), 0) finally: with self.mock_request('adjustment/account-deleted.xml'): account.delete() def test_coupon(self): # Check that a coupon may not exist. coupon_code = 'coupon%s' % self.test_id with self.mock_request('coupon/does-not-exist.xml'): self.assertRaises(NotFoundError, Coupon.get, coupon_code) # Create a coupon? coupon = Coupon( coupon_code=coupon_code, name='Nice Coupon', discount_in_cents=Money(1000), ) with self.mock_request('coupon/created.xml'): coupon.save() self.assertTrue(coupon._url) try: with self.mock_request('coupon/exists.xml'): same_coupon = Coupon.get(coupon_code) self.assertEqual(same_coupon.coupon_code, coupon_code) self.assertEqual(same_coupon.name, 'Nice Coupon') discount = same_coupon.discount_in_cents self.assertEqual(discount['USD'], 1000) self.assertTrue('USD' in discount) account_code = 'coupon%s' % self.test_id account = Account(account_code=account_code) with self.mock_request('coupon/account-created.xml'): account.save() try: redemption = Redemption( account_code=account_code, currency='USD', ) with self.mock_request('coupon/redeemed.xml'): real_redemption = coupon.redeem(redemption) self.assertTrue(isinstance(real_redemption, Redemption)) self.assertEqual(real_redemption.currency, 'USD') with self.mock_request('coupon/account-with-redemption.xml'): account = Account.get(account_code) with self.mock_request('coupon/redemption-exists.xml'): same_redemption = account.redemption() self.assertEqual(same_redemption._url, real_redemption._url) with self.mock_request('coupon/unredeemed.xml'): real_redemption.delete() finally: with self.mock_request('coupon/account-deleted.xml'): account.delete() plan = Plan( plan_code='basicplan', name='Basic Plan', setup_fee_in_cents=Money(0), unit_amount_in_cents=Money(1000), ) with self.mock_request('coupon/plan-created.xml'): plan.save() try: account_code_2 = 'coupon-%s-2' % self.test_id sub = Subscription( plan_code='basicplan', coupon_code='coupon%s' % self.test_id, currency='USD', account=Account( account_code=account_code_2, billing_info=BillingInfo( first_name='Verena', last_name='Example', number='4111 1111 1111 1111', address1='123 Main St', city='San Francisco', state='CA', zip='94105', country='US', verification_value='7777', year='2015', month='12', ), ), ) with self.mock_request('coupon/subscribed.xml'): sub.save() with self.mock_request('coupon/second-account-exists.xml'): account_2 = Account.get(account_code_2) try: with self.mock_request('coupon/second-account-redemption.xml'): redemption_2 = account_2.redemption() self.assertTrue(isinstance(redemption_2, Redemption)) self.assertEqual(redemption_2.currency, 'USD') with self.mock_request('coupon/exists.xml'): same_coupon = redemption_2.coupon() self.assertEqual(same_coupon.coupon_code, coupon_code) finally: with self.mock_request('coupon/second-account-deleted.xml'): account_2.delete() plan_coupon = Coupon( coupon_code='plancoupon%s' % self.test_id, name='Plan Coupon', discount_in_cents=Money(1000), applies_to_all_plans=False, plan_codes=('basicplan',), ) with self.mock_request('coupon/plan-coupon-created.xml'): plan_coupon.save() try: self.assertTrue(plan_coupon._url) coupon_plans = list(plan_coupon.plan_codes) self.assertEqual(len(coupon_plans), 1) self.assertEqual(coupon_plans[0], 'basicplan') finally: with self.mock_request('coupon/plan-coupon-deleted.xml'): plan_coupon.delete() finally: with self.mock_request('coupon/plan-deleted.xml'): plan.delete() finally: with self.mock_request('coupon/deleted.xml'): coupon.delete() def test_invoice(self): account = Account(account_code='invoice%s' % self.test_id) with self.mock_request('invoice/account-created.xml'): account.save() try: with self.mock_request('invoice/account-has-no-invoices.xml'): invoices = account.invoices() self.assertEqual(invoices, []) with self.mock_request('invoice/error-no-charges.xml'): try: account.invoice() except ValidationError, exc: error = exc else: self.fail("Invoicing an account with no charges did not raise a ValidationError") self.assertEqual(error.symbol, 'will_not_invoice') charge = Adjustment(unit_amount_in_cents=1000, currency='USD', description='test charge', type='charge') with self.mock_request('invoice/charged.xml'): account.charge(charge) with self.mock_request('invoice/invoiced.xml'): account.invoice() with self.mock_request('invoice/account-has-invoices.xml'): invoices = account.invoices() self.assertEqual(len(invoices), 1) finally: with self.mock_request('invoice/account-deleted.xml'): account.delete() def test_pages(self): account_code = 'pages-%s-%%d' % self.test_id all_test_accounts = list() try: for i in range(1, 8): account = Account(account_code=account_code % i) all_test_accounts.append(account) with self.mock_request('pages/account-%d-created.xml' % i): account.save() self.mock_sleep(1) with self.mock_request('pages/list.xml'): accounts = Account.all(per_page=4) self.assertTrue(isinstance(accounts[0], Account)) self.assertRaises(IndexError, lambda: accounts[4]) # Test errors, since the first page has no first page. self.assertRaises(PageError, lambda: accounts.first_page()) # Make sure PageError is a ValueError. self.assertRaises(ValueError, lambda: accounts.first_page()) with self.mock_request('pages/next-list.xml'): next_accounts = accounts.next_page() # We asked for all the accounts, which may include closed accounts # from previous tests or data, not just the three we created. self.assertTrue(isinstance(next_accounts[0], Account)) self.assertRaises(IndexError, lambda: next_accounts[4]) with self.mock_request('pages/list.xml'): # should be just like the first first_accounts = next_accounts.first_page() self.assertTrue(isinstance(first_accounts[0], Account)) finally: for i, account in enumerate(all_test_accounts, 1): with self.mock_request('pages/account-%d-deleted.xml' % i): account.delete() def test_plan(self): plan_code = 'plan%s' % self.test_id with self.mock_request('plan/does-not-exist.xml'): self.assertRaises(NotFoundError, Plan.get, plan_code) plan = Plan( plan_code=plan_code, name='Mock Plan', setup_fee_in_cents=Money(0), unit_amount_in_cents=Money(1000), ) with self.mock_request('plan/created.xml'): plan.save() try: self.assertEqual(plan.plan_code, plan_code) with self.mock_request('plan/exists.xml'): same_plan = Plan.get(plan_code) self.assertEqual(same_plan.plan_code, plan_code) self.assertEqual(same_plan.name, 'Mock Plan') plan.plan_interval_length = 2 plan.plan_interval_unit = 'months' plan.unit_amount_in_cents = Money(USD=2000) plan.setup_fee_in_cents = Money(USD=0) with self.mock_request('plan/updated.xml'): plan.save() finally: with self.mock_request('plan/deleted.xml'): plan.delete() def test_subscribe(self): logging.basicConfig(level=logging.DEBUG) # make sure it's init'ed logger = logging.getLogger('recurly.http.request') logger.setLevel(logging.DEBUG) plan = Plan( plan_code='basicplan', name='Basic Plan', setup_fee_in_cents=Money(0), unit_amount_in_cents=Money(1000), ) with self.mock_request('subscription/plan-created.xml'): plan.save() try: account = Account(account_code='subscribe%s' % self.test_id) with self.mock_request('subscription/account-created.xml'): account.save() try: sub = Subscription( plan_code='basicplan', currency='USD', unit_amount_in_cents=1000, ) with self.mock_request('subscription/error-no-billing-info.xml'): try: account.subscribe(sub) except BadRequestError, exc: error = exc else: self.fail("Subscribing with no billing info did not raise a BadRequestError") self.assertEqual(error.symbol, 'billing_info_required') binfo = BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ) with self.mock_request('subscription/update-billing-info.xml'): account.update_billing_info(binfo) with self.mock_request('subscription/subscribed.xml'): account.subscribe(sub) self.assertTrue(sub._url) with self.mock_request('subscription/account-subscriptions.xml'): subs = account.subscriptions() self.assertTrue(len(subs) > 0) self.assertEqual(subs[0].uuid, sub.uuid) with self.mock_request('subscription/all-subscriptions.xml'): subs = Subscription.all() self.assertTrue(len(subs) > 0) self.assertEqual(subs[0].uuid, sub.uuid) with self.mock_request('subscription/cancelled.xml'): sub.cancel() with self.mock_request('subscription/reactivated.xml'): sub.reactivate() # Try modifying the subscription. sub.timeframe = 'renewal' sub.unit_amount_in_cents = 800 with self.mock_request('subscription/updated-at-renewal.xml'): sub.save() pending_sub = sub.pending_subscription self.assertTrue(isinstance(pending_sub, Subscription)) self.assertEqual(pending_sub.unit_amount_in_cents, 800) self.assertEqual(sub.unit_amount_in_cents, 1000) with self.mock_request('subscription/terminated.xml'): sub.terminate(refund='none') log_content = StringIO() log_handler = logging.StreamHandler(log_content) logger.addHandler(log_handler) sub = Subscription( plan_code='basicplan', currency='USD', account=Account( account_code='subscribe%s' % self.test_id, billing_info=BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ), ), ) with self.mock_request('subscription/subscribed-billing-info.xml'): account.subscribe(sub) logger.removeHandler(log_handler) log_content = log_content.getvalue() self.assertTrue('<subscription' in log_content) self.assertTrue('<billing_info' in log_content) # See if we redacted our sensitive fields properly. self.assertTrue('4111' not in log_content) self.assertTrue('7777' not in log_content) finally: with self.mock_request('subscription/account-deleted.xml'): account.delete() account_code_2 = 'subscribe-%s-2' % self.test_id sub = Subscription( plan_code='basicplan', currency='USD', account=Account( account_code=account_code_2, billing_info=BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ), ), ) with self.mock_request('subscription/subscribe-embedded-account.xml'): sub.save() with self.mock_request('subscription/embedded-account-exists.xml'): acc = Account.get(account_code_2) self.assertEqual(acc.account_code, account_code_2) with self.mock_request('subscription/embedded-account-deleted.xml'): acc.delete() finally: with self.mock_request('subscription/plan-deleted.xml'): plan.delete() def test_subscribe_add_on(self): plan = Plan( plan_code='basicplan', name='Basic Plan', setup_fee_in_cents=Money(0), unit_amount_in_cents=Money(1000), ) with self.mock_request('subscribe-add-on/plan-created.xml'): plan.save() try: add_on = AddOn( add_on_code='mock_add_on', name='Mock Add-On', unit_amount_in_cents=Money(100), ) with self.mock_request('subscribe-add-on/add-on-created.xml'): plan.create_add_on(add_on) second_add_on = AddOn( add_on_code='second_add_on', name='Second Add-On', unit_amount_in_cents=Money(50), ) with self.mock_request('subscribe-add-on/second-add-on-created.xml'): plan.create_add_on(second_add_on) account_code='sad-on-%s' % self.test_id sub = Subscription( plan_code='basicplan', subscription_add_ons=[ SubscriptionAddOn( add_on_code='mock_add_on', ), SubscriptionAddOn( add_on_code='second_add_on', ), ], currency='USD', account=Account( account_code=account_code, billing_info=BillingInfo( first_name='Verena', last_name='Example', number='4111 1111 1111 1111', address1='123 Main St', city='San Francisco', state='CA', zip='94105', country='US', verification_value='7777', year='2015', month='12', ), ), ) with self.mock_request('subscribe-add-on/subscribed.xml'): sub.save() # Subscription amounts are in one real currency, so they aren't Money instances. sub_amount = sub.unit_amount_in_cents self.assertTrue(not isinstance(sub_amount, Money)) self.assertEqual(sub_amount, 1000) # Test that the add-ons' amounts aren't real Money instances either. add_on_1, add_on_2 = sub.subscription_add_ons self.assertIsInstance(add_on_1, SubscriptionAddOn) amount_1 = add_on_1.unit_amount_in_cents self.assertTrue(not isinstance(amount_1, Money)) self.assertEqual(amount_1, 100) with self.mock_request('subscribe-add-on/account-exists.xml'): account = Account.get(account_code) with self.mock_request('subscribe-add-on/account-deleted.xml'): account.delete() finally: with self.mock_request('subscribe-add-on/plan-deleted.xml'): plan.delete() def test_transaction(self): logging.basicConfig(level=logging.DEBUG) # make sure it's init'ed logger = logging.getLogger('recurly.http.request') logger.setLevel(logging.DEBUG) account_code = 'transaction%s' % self.test_id log_content = StringIO() log_handler = logging.StreamHandler(log_content) logger.addHandler(log_handler) transaction = Transaction( amount_in_cents=1000, currency='USD', account=Account( account_code=account_code, billing_info=BillingInfo( first_name='Verena', last_name='Example', number='4111-1111-1111-1111', year='2014', address1='123 Main St', city='San Francisco', state='CA', zip='94105', country='US', month='7', verification_value='7777', ), ) ) with self.mock_request('transaction/created.xml'): transaction.save() logger.removeHandler(log_handler) try: transaction.get_refund_transaction() except ValueError: pass else: self.fail("Transaction with no refund transaction did not raise a ValueError from get_refund_transaction()") with self.mock_request('transaction/account-exists.xml'): account = Account.get(account_code) try: log_content = log_content.getvalue() self.assertTrue('<transaction' in log_content) self.assertTrue('<billing_info' in log_content) # See if we redacted our sensitive fields properly. self.assertTrue('4111' not in log_content) self.assertTrue('7777' not in log_content) with self.mock_request('transaction/refunded.xml'): refunded_transaction = transaction.refund() transaction_2 = Transaction( amount_in_cents=1000, currency='USD', account=Account(account_code=account_code), ) with self.mock_request('transaction/created-again.xml'): transaction_2.save() self.assertNotEqual(transaction_2.uuid, transaction.uuid) self.assertTrue(transaction_2.refundable) with self.mock_request('transaction/partial-refunded.xml'): refunded_transaction = transaction_2.refund(amount_in_cents=700) self.assertTrue(refunded_transaction is transaction_2) self.assertTrue(hasattr(transaction_2, 'get_refund_transaction')) with self.mock_request('transaction/partial-refunded-transaction.xml'): refund_transaction = transaction_2.get_refund_transaction() self.assertTrue(isinstance(refund_transaction, Transaction)) self.assertTrue(not refund_transaction.refundable) self.assertNotEqual(refund_transaction.uuid, transaction_2.uuid) finally: with self.mock_request('transaction/account-deleted.xml'): account.delete() def test_transaction_with_balance(self): transaction = Transaction( amount_in_cents=1000, currency='USD', account=Account(), ) with self.mock_request('transaction-balance/transaction-no-account.xml'): try: transaction.save() except ValidationError, error: pass else: self.fail("Posting a transaction without an account code did not raise a ValidationError") # Make sure there really were errors. self.assertTrue(len(error.errors) > 0) account_code = 'transbalance%s' % self.test_id account = Account(account_code=account_code) with self.mock_request('transaction-balance/account-created.xml'): account.save() try: # Try to charge without billing info, should break. transaction = Transaction( amount_in_cents=1000, currency='USD', account=account, ) with self.mock_request('transaction-balance/transaction-no-billing-fails.xml'): try: transaction.save() except ValidationError, error: pass else: self.fail("Posting a transaction without billing info did not raise a ValidationError") # Make sure there really were errors. self.assertTrue(len(error.errors) > 0) binfo = BillingInfo( first_name='Verena', last_name='Example', address1='123 Main St', city=u'San Jos\xe9', state='CA', zip='94105', country='US', type='credit_card', number='4111 1111 1111 1111', verification_value='7777', year='2015', month='12', ) with self.mock_request('transaction-balance/set-billing-info.xml'): account.update_billing_info(binfo) # Try to charge now, should be okay. transaction = Transaction( amount_in_cents=1000, currency='USD', account=account, ) with self.mock_request('transaction-balance/transacted.xml'): transaction.save() # Give the account a credit. credit = Adjustment(unit_amount_in_cents=-2000, currency='USD', description='transaction test credit') with self.mock_request('transaction-balance/credited.xml'): # TODO: maybe this should be adjust()? account.charge(credit) # Try to charge less than the account balance, which should fail (not a CC transaction). transaction = Transaction( amount_in_cents=500, currency='USD', account=account, ) with self.mock_request('transaction-balance/transacted-2.xml'): transaction.save() # The transaction doesn't actually save. self.assertTrue(transaction._url is None) # Try to charge more than the account balance, which should work. transaction = Transaction( amount_in_cents=3000, currency='USD', account=account, ) with self.mock_request('transaction-balance/transacted-3.xml'): transaction.save() # This transaction should be recorded. self.assertTrue(transaction._url is not None) finally: with self.mock_request('transaction-balance/account-deleted.xml'): account.delete() if __name__ == '__main__': import unittest unittest.main()
from os import walk from os.path import join from knot_a_rumor.story import Story, Scene class Knot: def __init__(self, path): self.path = path def stories(self): return next(walk(self.path))[1] def get_story(self, name): story = Story(self.build_story_path(name)) story.load() return story def build_story_path(self, name): return join(self.path, name) def init_story(self, name): story = self.get_story(name) player_state = { "current_scene": story.scene, "story": name, "location" : { "x":0, "y":0}, "turn": 0 , "seen": [] } return player_state def play(self, player_state): scene = self.load_scene(player_state) player_state["location"] = scene.start return player_state def move(self, player_state, direction, times=1): scene = self.load_scene(player_state) if not scene.valid_move(player_state["location"], direction, times): return player_state if direction == "n": player_state["location"]["y"] += times elif direction == "s": player_state["location"]["y"] -= times elif direction == "e": player_state["location"]["x"] += times elif direction == "w": player_state["location"]["x"] -= times player_state["turn"] += 1 return player_state def load_scene(self, player_state): story_name = player_state["story"] return Scene(self.build_story_path(story_name), player_state) def scene_map(self, player_state): scene = self.load_scene(player_state) return scene.build_map(player_state) def narrate(self, player_state): scene = self.load_scene(player_state) narration = scene.view(player_state["location"]) if narration == None: return scene.narration return narration def look(self, player_state): scene = self.load_scene(player_state) player_state, seen = scene.look(player_state) return (player_state, seen) def describe(self, player_state, char): scene = self.load_scene(player_state) return scene.describe(player_state, char)
import os import json import unittest from unittest import mock from unittest.mock import ANY import logging from logging import handlers, LogRecord from typing import Tuple, Optional, Dict from tests.util.config_mixin import ConfigMixin from backee.model.web_handler import WebHandler from backee.model.max_level_filter import MaxLevelFilter from backee.parser.config_parser import parse_config class LoggersParserTestCase(ConfigMixin, unittest.TestCase): """ Tests for `backee/parser/logger_parser.py`. """ @unittest.mock.patch("os.mkdir") def test_file_logger_all_values_parsed(self, mkdir): """ All possible values for file logger are set and parsed correctly. """ expected_file_logger = self.__create_file_logger( filename="/folder/log_file1", format="('%(asctime)s [%(threadName)18s][%(levelname)8s] %(message)s')", max_bytes=1024, backup_count=1, min_level=logging.INFO, max_level=logging.ERROR, ) # parse config and get first logger parsed_config = self._get_parsed_config("file_loggers_config.yml") parsed_file_logger = parsed_config.loggers[0] # make sure file was opened mkdir.assert_called_with("/folder") result, msg = self.__compare_file_loggers( expected_file_logger, parsed_file_logger ) self.assertTrue( result, msg=f"Full config is not as expected, following comparison failed: {msg}", ) @unittest.mock.patch("os.mkdir") def test_file_logger_default_values(self, mkdir): """ Only required values are set and others are default. """ expected_file_logger = self.__create_file_logger( filename="/folder/log_file2", format="('%(asctime)s %(levelname)s %(message)s')", max_bytes=1 * 1024 * 1024, backup_count=0, min_level=logging.DEBUG, max_level=logging.CRITICAL, ) # parse config and get logger parsed_config = self._get_parsed_config("file_loggers_config.yml") parsed_file_logger = parsed_config.loggers[1] # make sure file was opened mkdir.assert_called_with("/folder") result, msg = self.__compare_file_loggers( expected_file_logger, parsed_file_logger ) self.assertTrue( result, msg=f"Default config is not as expected, following comparison failed: {msg}", ) def test_web_logger_all_values_parsed(self): """ All possible values for web logger are set and parsed correctly. """ expected_web_logger = self.__create_web_handler( method="POST", url="https://some/url1", headers={"Content-Type": "application/json", "TestHeader1": "Value1"}, body='{"message":"message 1"}', auth={ "type": "basic", "username": "admin", "password": "${WEB_LOGGER_PASSWORD}", }, min_level=logging.INFO, max_level=logging.ERROR, ) # parse config and get logger parsed_config = self._get_parsed_config("full_config.yml") parsed_web_logger = parsed_config.loggers[0] self.assertEqual( expected_web_logger, parsed_web_logger, msg="full web logger is parsed incorrectly", ) def test_web_logger_default_values(self): """ Only required values are set and others are default. """ expected_web_logger = self.__create_web_handler( method="POST", url="https://some/url2", body='{"message":"message 2"}' ) # parse config and get logger parsed_config = self._get_parsed_config("default_config.yml") parsed_web_logger = parsed_config.loggers[0] self.assertEqual( expected_web_logger, parsed_web_logger, msg="default web logger is parsed incorrectly", ) @unittest.mock.patch("requests.post") def test_web_logger_wildcard_replacements_in_post(self, mock_post): """ Test that {{ message }} and {{ name }} are replaced in url, headers and body for POST. """ parsed_config = self._get_parsed_config("full_config.yml") parsed_web_logger = parsed_config.loggers[1] message = "test" name = parsed_config.name parsed_web_logger.emit( LogRecord( name=None, level=logging.ERROR, pathname=None, lineno=None, msg=message, args=None, exc_info=None, ) ) # headers, data and URL are updated data = json.dumps(json.loads(f'{{"message":"{message}","name":"{name}"}}')) mock_post.assert_called_once_with( auth=ANY, data=data, headers={ "Content-Type": "application/json", "TestHeader2": f"{name} {message}", }, url=f"https://some/url2?name={name}&message={message}", ) @unittest.mock.patch("requests.get") def test_web_logger_wildcard_replacements_in_get(self, mock_get): """ Test that {{ message }} and {{ name }} are replaced in url, headers and body for GET. """ parsed_config = self._get_parsed_config("full_config.yml") parsed_web_logger = parsed_config.loggers[2] message = "test" name = parsed_config.name parsed_web_logger.emit( LogRecord( name=None, level=logging.ERROR, pathname=None, lineno=None, msg=message, args=None, exc_info=None, ) ) # headers, data and URL are updated mock_get.assert_called_once_with( auth=ANY, headers={ "Content-Type": "application/json", "TestHeader3": f"{name} {message}", }, url=f"https://some/url3?name={name}&message={message}", ) @unittest.mock.patch("os.mkdir") def test_file_sizes_parser(self, mkdir): """ Test file sizes parser. """ id_file_size = { 2: 1, 3: 1 * 1024, 4: 1 * 1024 * 1024, 5: 1 * 1024 * 1024 * 1024, } # parse config and get first logger parsed_config = self._get_parsed_config("file_loggers_config.yml") # make sure file was opened mkdir.assert_called_with("/folder") [ self.assertEqual(v, parsed_config.loggers[k].maxBytes) for k, v in id_file_size.items() ] def __compare_file_loggers( self, first: handlers.RotatingFileHandler, second: handlers.RotatingFileHandler ) -> Tuple[bool, str]: """ Helper function to compare two handlers.RotatingFileHandler instances. """ if not isinstance(first, handlers.RotatingFileHandler) or not ( second, handlers.RotatingFileHandler, ): return False, "class instance" if first.baseFilename != second.baseFilename: return False, "filename" if first.maxBytes != second.maxBytes: return False, "maxBytes" if first.backupCount != second.backupCount: return False, "backupCount" if first.formatter._fmt != second.formatter._fmt: return False, "formatter" if first.level != second.level: return False, "level" if len(first.filters) != len(second.filters): return False, "filters" for x, y in zip(first.filters, second.filters): if x != y: return False, "filters items" return True, None def __create_file_logger( self, filename: str, format: str, max_bytes: int = 1048576, backup_count: int = 0, min_level: int = logging.DEBUG, max_level: int = logging.CRITICAL, ) -> handlers.RotatingFileHandler: with mock.patch("builtins.open", create=True): handler = handlers.RotatingFileHandler( filename=filename, maxBytes=max_bytes, backupCount=backup_count ) handler.setFormatter(logging.Formatter(fmt=format)) handler.setLevel(min_level) handler.addFilter(MaxLevelFilter(max_level)) return handler def __create_web_handler( self, method: str, url: str, headers: Optional[Dict[str, str]] = None, body: Optional[str] = None, auth: Optional[Dict[str, str]] = None, min_level: int = logging.DEBUG, max_level: int = logging.CRITICAL, name: str = "", ) -> WebHandler: web = WebHandler(method, url, headers, body, auth, name) web.setLevel(min_level) web.addFilter(MaxLevelFilter(max_level)) return web if __name__ == "__main__": unittest.main()
#!/usr/bin/env python3 # # Copyright 2013 The Flutter Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import argparse import json import sys import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages as pdfp class BenchmarkResult: def __init__(self, name, backend, timeUnit, drawCallCount): self.name = name self.series = {} self.seriesLabels = {} self.backend = backend self.largeYValues = False self.yLimit = 200 self.timeUnit = timeUnit self.drawCallCount = drawCallCount def __repr__(self): return 'Name: % s\nBackend: % s\nSeries: % s\nSeriesLabels: % s\n' % (self.name, self.backend, self.series, self.seriesLabels) def addDataPoint(self, family, x, y): if family not in self.series: self.series[family] = { 'x': [], 'y': [] } self.series[family]['x'].append(x) self.series[family]['y'].append(y) if y > self.yLimit: self.largeYValues = True def setFamilyLabel(self, family, label): # I'm not keying the main series dict off the family label # just in case we get data where the two aren't a 1:1 mapping if family in self.seriesLabels: assert self.seriesLabels[family] == label return self.seriesLabels[family] = label def plot(self): figures = [] figures.append(plt.figure(dpi=1200, frameon=False, figsize=(11, 8.5))) for family in self.series: plt.plot(self.series[family]['x'], self.series[family]['y'], label = self.seriesLabels[family]) plt.xlabel('Benchmark Seed') plt.ylabel('Time (' + self.timeUnit + ')') title = '' # Crop the Y axis so that we can see what's going on at the lower end if self.largeYValues: plt.ylim((0, self.yLimit)) title = self.name + ' ' + self.backend + ' (Cropped)' else: title = self.name + ' ' + self.backend if self.drawCallCount != -1: title += '\nDraw Call Count: ' + str(int(self.drawCallCount)) plt.title(title) plt.grid(which='both', axis='both') plt.legend(fontsize='xx-small') plt.plot() if self.largeYValues: # Plot again but with the full Y axis visible figures.append(plt.figure(dpi=1200, frameon=False, figsize=(11, 8.5))) for family in self.series: plt.plot(self.series[family]['x'], self.series[family]['y'], label = self.seriesLabels[family]) plt.xlabel('Benchmark Seed') plt.ylabel('Time (' + self.timeUnit + ')') title = self.name + ' ' + self.backend + ' (Complete)' if self.drawCallCount != -1: title += '\nDraw Call Count: ' + str(int(self.drawCallCount)) plt.title(title) plt.grid(which='both', axis='both') plt.legend(fontsize='xx-small') plt.plot() return figures def main(): parser = argparse.ArgumentParser() parser.add_argument('filename', action='store', help='Path to the JSON output from Google Benchmark') parser.add_argument('-o', '--output-pdf', dest='outputPDF', action='store', default='output.pdf', help='Filename to output the PDF of graphs to.') args = parser.parse_args() jsonData = parseJSON(args.filename) return processBenchmarkData(jsonData, args.outputPDF) def error(message): print(message) exit(1) def extractAttributesLabel(benchmarkResult): # Possible attribute keys are: # AntiAliasing # HairlineStroke # StrokedStyle # FilledStyle attributes = ['AntiAliasing', 'HairlineStroke', 'StrokedStyle', 'FilledStyle'] label = '' for attr in attributes: try: if benchmarkResult[attr] != 0: label += attr + ', ' except KeyError: pass return label[:-2] def processBenchmarkData(benchmarkJSON, outputPDF): benchmarkResultsData = {} for benchmarkResult in benchmarkJSON: # Skip aggregate results if 'aggregate_name' in benchmarkResult: continue benchmarkVariant = benchmarkResult['name'].split('/') # The final split is always `real_time` and can be discarded benchmarkVariant.remove('real_time') splits = len(benchmarkVariant) # First split is always the benchmark function name benchmarkName = benchmarkVariant[0] # The last split is always the seeded value into the benchmark benchmarkSeededValue = benchmarkVariant[splits-1] # The second last split is always the backend benchmarkBackend = benchmarkVariant[splits-2] # Time taken (wall clock time) for benchmark to run benchmarkRealTime = benchmarkResult['real_time'] benchmarkUnit = benchmarkResult['time_unit'] benchmarkFamilyIndex = benchmarkResult['family_index'] benchmarkFamilyLabel = '' if splits > 3: for i in range(1, splits-2): benchmarkFamilyLabel += benchmarkVariant[i] + ', ' benchmarkFamilyAttributes = extractAttributesLabel(benchmarkResult) if benchmarkFamilyAttributes == '': benchmarkFamilyLabel = benchmarkFamilyLabel[:-2] else: benchmarkFamilyLabel = benchmarkFamilyLabel + benchmarkFamilyAttributes if 'DrawCallCount' in benchmarkResult: benchmarkDrawCallCount = benchmarkResult['DrawCallCount'] else: benchmarkDrawCallCount = -1 if benchmarkName not in benchmarkResultsData: benchmarkResultsData[benchmarkName] = BenchmarkResult(benchmarkName, benchmarkBackend, benchmarkUnit, benchmarkDrawCallCount) benchmarkResultsData[benchmarkName].addDataPoint(benchmarkFamilyIndex, benchmarkSeededValue, benchmarkRealTime) benchmarkResultsData[benchmarkName].setFamilyLabel(benchmarkFamilyIndex, benchmarkFamilyLabel) pp = pdfp(outputPDF) for benchmark in benchmarkResultsData: figures = benchmarkResultsData[benchmark].plot() for fig in figures: pp.savefig(fig) pp.close() def parseJSON(filename): try: jsonFile = open(filename, 'r') except: error('Unable to load file.') try: jsonData = json.load(jsonFile) except JSONDecodeError: error('Invalid JSON. Unable to parse.') return jsonData['benchmarks'] if __name__ == '__main__': sys.exit(main())
"""endpoint""" BROKER_URL = 'amqp://user:[email protected]:15672/'
""" Calculator module main entry-point. """ from calculator.controller import MainController controller = MainController() controller.main()
# BSD 3-Clause License; see https://github.com/scikit-hep/uproot4/blob/main/LICENSE from __future__ import absolute_import import numpy import pytest import skhep_testdata import uproot def test(): with uproot.open(skhep_testdata.data_path("uproot-Zmumu.root")) as f: for arrays in f["events"].iterate( "px1", step_size=1000, cut="px1 > 0", library="np" ): assert numpy.all(arrays["px1"] > 0)
""" Common tools that are useful for neo.io object tests """ import os import shutil from neo.core import Block, Segment from neo.test.generate_datasets import generate_from_supported_objects def close_object_safe(obj): """ Close an object safely, ignoring errors For some io types the file should be closed before being opened again in a test. Call this after the test is done to make sure the file is closed. """ try: obj.close() except: pass def cleanup_test_file(mode, path, directory=None): """ Remove test files or directories safely. mode is the mode of the io class, either 'file' or 'directory'. It can also be an io class object, or any other object with a 'mode' attribute. If that is the case, use the 'mode' attribute from the object. If directory is not None and path is not an absolute path already, use the file from the given directory. """ if directory is not None and not os.path.isabs(path): path = os.path.join(directory, path) if hasattr(mode, 'mode'): mode = mode.mode if mode == 'file': if os.path.exists(path): os.remove(path) elif mode == 'dir': if os.path.exists(path): shutil.rmtree(path) def get_test_file_full_path(ioclass, filename=None, directory=None, clean=False): """ Get the full path for a file of the given filename. If filename is None, create a filename. If filename is a list, get the full path for each item in the list. If return_path is True, also return the full path to the file. If directory is not None and path is not an absolute path already, use the file from the given directory. If return_path is True, return the full path of the file along with the io object. return reader, path. Default is False. If clean is True, try to delete existing versions of the file before creating the io object. Default is False. """ # create a filename if none is provided if filename is None: filename = 'Generated0_%s' % ioclass.__name__ if (ioclass.mode == 'file' and len(ioclass.extensions) >= 1): filename += '.' + ioclass.extensions[0] elif not hasattr(filename, 'lower'): return [get_test_file_full_path(ioclass, filename=fname, directory=directory, clean=clean) for fname in filename] # if a directory is provided add it if directory is not None and not os.path.isabs(filename): filename = os.path.join(directory, filename) if clean: cleanup_test_file(ioclass, filename) return filename # prevent this being treated as a test if imported into a test file get_test_file_full_path.__test__ = False def create_generic_io_object(ioclass, filename=None, directory=None, return_path=False, clean=False): """ Create an io object in a generic way that can work with both file-based and directory-based io objects If filename is None, create a filename. If return_path is True, also return the full path to the file. If directory is not None and path is not an absolute path already, use the file from the given directory. If return_path is True, return the full path of the file along with the io object. return reader, path. Default is False. If clean is True, try to delete existing versions of the file before creating the io object. Default is False. """ filename = get_test_file_full_path(ioclass, filename=filename, directory=directory, clean=clean) try: # actually create the object if ioclass.mode == 'file': ioobj = ioclass(filename=filename) elif ioclass.mode == 'dir': ioobj = ioclass(dirname=filename) else: ioobj = None except: print(filename) raise # return the full path if requested, otherwise don't if return_path: return ioobj, filename return ioobj def iter_generic_io_objects(ioclass, filenames, directory=None, return_path=False, clean=False): """ Return an iterable over the io objects created from a list of filenames. The objects are automatically cleaned up afterwards. If directory is not None and path is not an absolute path already, use the file from the given directory. If return_path is True, yield the full path of the file along with the io object. yield reader, path. Default is False. If clean is True, try to delete existing versions of the file before creating the io object. Default is False. """ for filename in filenames: ioobj, path = create_generic_io_object(ioclass, filename=filename, directory=directory, return_path=True, clean=clean) if ioobj is None: continue if return_path: yield ioobj, path else: yield ioobj close_object_safe(ioobj) def create_generic_reader(ioobj, target=None, readall=False): """ Create a function that can read the target object from a file. If target is None, use the first supported_objects from ioobj If target is False, use the 'read' method. If target is the Block or Segment class, use read_block or read_segment, respectively. If target is a string, use 'read_'+target. If readall is True, use the read_all_ method instead of the read_ method. Default is False. """ if target is None: target = ioobj.supported_objects[0].__name__ if target == Block: if readall: return ioobj.read_all_blocks return ioobj.read_block elif target == Segment: if readall: return ioobj.read_all_segments return ioobj.read_segment elif not target: if readall: raise ValueError('readall cannot be True if target is False') return ioobj.read elif hasattr(target, 'lower'): if readall: return getattr(ioobj, 'read_all_%ss' % target.lower()) return getattr(ioobj, 'read_%s' % target.lower()) def iter_generic_readers(ioclass, filenames, directory=None, target=None, return_path=False, return_ioobj=False, clean=False, readall=False): """ Iterate over functions that can read the target object from a list of filenames. If target is None, use the first supported_objects from ioobj If target is False, use the 'read' method. If target is the Block or Segment class, use read_block or read_segment, respectively. If target is a string, use 'read_'+target. If directory is not None and path is not an absolute path already, use the file from the given directory. If return_path is True, return the full path of the file along with the reader object. return reader, path. If return_ioobj is True, return the io object as well as the reader. return reader, ioobj. Default is False. If both return_path and return_ioobj is True, return reader, path, ioobj. Default is False. If clean is True, try to delete existing versions of the file before creating the io object. Default is False. If readall is True, use the read_all_ method instead of the read_ method. Default is False. """ for ioobj, path in iter_generic_io_objects(ioclass=ioclass, filenames=filenames, directory=directory, return_path=True, clean=clean): res = create_generic_reader(ioobj, target=target, readall=readall) if not return_path and not return_ioobj: yield res else: res = (res,) if return_path: res = res + (path,) if return_ioobj: res = res + (ioobj,) yield res def create_generic_writer(ioobj, target=None): """ Create a function that can write the target object to a file using the neo io object ioobj. If target is None, use the first supported_objects from ioobj If target is False, use the 'write' method. If target is the Block or Segment class, use write_block or write_segment, respectively. If target is a string, use 'write_'+target. """ if target is None: target = ioobj.supported_objects[0].__name__ if target == Block: return ioobj.write_block elif target == Segment: return ioobj.write_segment elif not target: return ioobj.write elif hasattr(target, 'lower'): return getattr(ioobj, 'write_' + target.lower()) def read_generic(ioobj, target=None, lazy=False, readall=False, return_reader=False): """ Read the target object from a file using the given neo io object ioobj. If target is None, use the first supported_objects from ioobj If target is False, use the 'write' method. If target is the Block or Segment class, use write_block or write_segment, respectively. If target is a string, use 'write_'+target. The lazy parameters is passed to the reader. Defaults is True. If readall is True, use the read_all_ method instead of the read_ method. Default is False. If return_reader is True, yield the io reader function as well as the object. yield obj, reader. Default is False. """ obj_reader = create_generic_reader(ioobj, target=target, readall=readall) obj = obj_reader(lazy=lazy) if return_reader: return obj, obj_reader return obj def iter_read_objects(ioclass, filenames, directory=None, target=None, return_path=False, return_ioobj=False, return_reader=False, clean=False, readall=False, lazy=False): """ Iterate over objects read from a list of filenames. If target is None, use the first supported_objects from ioobj If target is False, use the 'read' method. If target is the Block or Segment class, use read_block or read_segment, respectively. If target is a string, use 'read_'+target. If directory is not None and path is not an absolute path already, use the file from the given directory. If return_path is True, yield the full path of the file along with the object. yield obj, path. If return_ioobj is True, yield the io object as well as the object. yield obj, ioobj. Default is False. If return_reader is True, yield the io reader function as well as the object. yield obj, reader. Default is False. If some combination of return_path, return_ioobj, and return_reader is True, they are yielded in the order: obj, path, ioobj, reader. If clean is True, try to delete existing versions of the file before creating the io object. Default is False. The lazy parameter is passed to the reader. Defaults is True. If readall is True, use the read_all_ method instead of the read_ method. Default is False. """ for obj_reader, path, ioobj in iter_generic_readers(ioclass, filenames, directory=directory, target=target, return_path=True, return_ioobj=True, clean=clean, readall=readall): obj = obj_reader(lazy=lazy) if not return_path and not return_ioobj and not return_reader: yield obj else: obj = (obj,) if return_path: obj = obj + (path,) if return_ioobj: obj = obj + (ioobj,) if return_reader: obj = obj + (obj_reader,) yield obj def write_generic(ioobj, target=None, obj=None, return_writer=False): """ Write the target object to a file using the given neo io object ioobj. If target is None, use the first supported_objects from ioobj If target is False, use the 'write' method. If target is the Block or Segment class, use write_block or write_segment, respectively. If target is a string, use 'write_'+target. obj is the object to write. If obj is None, an object is created automatically for the io class. If return_writer is True, yield the io writer function as well as the object. yield obj, writer. Default is False. """ if obj is None: supported_objects = ioobj.supported_objects obj = generate_from_supported_objects(supported_objects) obj_writer = create_generic_writer(ioobj, target=target) obj_writer(obj) if return_writer: return obj, obj_writer return obj
from base64 import b64decode from cryptography.hazmat.backends import default_backend from cryptography.x509 import load_der_x509_certificate from django.conf import settings import jwt from lxml import etree import requests from urllib import urlencode AUTHORITY = getattr(settings, 'AAD_AUTHORITY', 'https://login.microsoftonline.com') SCOPE = getattr(settings, 'AAD_SCOPE', 'openid') RESPONSE_TYPE = getattr(settings, 'AAD_RESPONSE_TYPE', 'id_token') RESPONSE_MODE = getattr(settings, 'AAD_RESPONSE_MODE', 'form_post') TENANT_ID = getattr(settings, 'AAD_TENANT_ID') CLIENT_ID = getattr(settings, 'AAD_CLIENT_ID') def get_login_url(authority=AUTHORITY, response_type=RESPONSE_TYPE, response_mode=RESPONSE_MODE, scope=SCOPE, client_id=CLIENT_ID, redirect_uri=None, nonce=None, state=None): param_dict = { 'response_type': response_type, 'response_mode': response_mode, 'scope': scope, 'client_id': client_id, } if redirect_uri is not None: param_dict['redirect_uri'] = redirect_uri if nonce is not None: param_dict['nonce'] = nonce if state is None: param_dict['state'] = state params = urlencode(param_dict) return '{authoriy}/common/oauth2/authorize?{params}'.format( authoriy=authoriy, params=params, ) def get_logout_url(redirect_uri, authoriy=AUTHORITY): params = urlencode({ 'post_logout_redirect_uri': redirect_uri, }) return '{authoriy}/common/oauth2/logout?{params}'.format( authoriy=authoriy, params=params, ) def get_federation_metadata_document_url(authoriy=AUTHORITY, tenant_id=TENANT_ID): return '{authoriy}/{tenant_id}/federationmetadata/2007-06/federationmetadata.xml'.format( authoriy=authoriy, tenant_id=tenant_id, ) def parse_x509_DER_list(federation_metadata_document): document = etree.fromstring(federation_metadata_document) certificate_elems = document.findall('.//{http://www.w3.org/2000/09/xmldsig#}X509Certificate') b64encoded_DERs = {certificate_elem.text for certificate_elem in certificate_elems} return [b64decode(b64encoded_DER) for b64encoded_DER in b64encoded_DERs] def get_public_keys(): try: federation_metadata_document_url = get_federation_metadata_document_url() response = requests.get(federation_metadata_document_url) if not response.ok: raise response.encoding = response.apparent_encoding x509_DER_list = parse_x509_DER_list(response.text.encode('utf-8')) keys = [load_der_x509_certificate(x509_DER, default_backend()).public_key() for x509_DER in x509_DER_list] except: keys = [] return keys def get_email_from_token(token=None, audience=CLIENT_ID, nonce=None): for key in get_public_keys(): try: payload = jwt.decode(token, key=key, audience=audience) if payload['nonce'] != nonce: continue return payload['upn'] except (jwt.InvalidTokenError, IndexError) as e: pass return None
from Data.Utils.custom_dataset import CustomDataset as CD import matplotlib.pyplot as plt # prova della classe custom_dataset dataset = CD('Data/Datasets','training') #__GetItem__(index) sample = dataset[4] print(type(sample['image']),type(sample['label']))
import sys import json import os import errno import subprocess import platform import pathlib def getNeedsUpdate(scriptFile, libraryFile, sourceFile, directory, pattern): referenceChangeTime = os.path.getmtime(scriptFile) libraryChangeTime = os.path.getmtime(libraryFile) if libraryChangeTime > referenceChangeTime: referenceChangeTime = libraryChangeTime sourceChangeTime = os.path.getmtime(sourceFile) if sourceChangeTime > referenceChangeTime: referenceChangeTime = sourceChangeTime pathlist = pathlib.Path(directory).glob(pattern) counter = 0 for path in pathlist: counter += 1 path_in_str = str(path) fileChangeTime = os.path.getmtime(path_in_str) if referenceChangeTime > fileChangeTime: return True return counter == 0 def removePermutations(directory, pattern): pathlist = pathlib.Path(directory).glob(pattern) for path in pathlist: path.unlink() def main(): if len(sys.argv) < 4: print('Specify shader json file followed by requested formats as comma separated list with no spaces (dxil,cso,spirv,metal), output directory path [and optional resource folder relative path] as parameters') return with open(sys.argv[1], 'r') as sourceJsonData: sourceJson = json.load(sourceJsonData) if not sourceJson: print('No data found.') return pythonExecutable = sys.executable enableDebugSymbols = True outDirName = sys.argv[3] if not os.path.exists(outDirName): try: os.makedirs(outDirName) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise resourceRelativePath = None if len(sys.argv) >= 5: resourceRelativePath = sys.argv[4] if not resourceRelativePath: resourceRelativePath = '' jsonDirectory, jsonFileName = os.path.split(sys.argv[1]) destinationJson = list() shaderConductorCmdPath = os.path.dirname(sys.argv[0]) supportedFormats = ['dxil', 'cso', 'spirv', 'metal'] shaderConductorExectutableName = 'ShaderConductorCmd' if platform.system() == 'Darwin': supportedFormats = ['spirv', 'metal'] elif platform.system() == 'Windows': preprocessHLSLPath = os.path.join(shaderConductorCmdPath, 'preprocessForHLSL.py') shaderConductorExectutableName = 'ShaderConductorCmd.exe' fxcCmdPath = 'C:/Program Files (x86)/Windows Kits/10/bin/x64/fxc.exe' elif platform.system() == 'Linux': supportedFormats = ['spirv', 'metal'] else: print('Script needs to be updated with ShaderConductor path for platform: ' + platform.system()) return shaderConductorSearchPath = pathlib.Path(os.path.join(shaderConductorCmdPath, 'Vendor/ShaderConductor/Build')) for path in shaderConductorSearchPath.glob('**/' + shaderConductorExectutableName): print(path) shaderConductorCmdPath = path break requestedFormats = sys.argv[2].split(',') outFormats = list() for request in requestedFormats: if request in supportedFormats: outFormats.append(request) hlslFile = False for shaderFile in sourceJson: if not 'file' in shaderFile or not 'shaders' in shaderFile: continue sourceFile = shaderFile['file'] shaders = shaderFile['shaders'] filePath, extension = os.path.splitext(sourceFile) filePath, fileName = os.path.split(filePath) sourceFile = os.path.join(jsonDirectory, sourceFile) if 'cso' in outFormats: hlslFile = os.path.join(outDirName, fileName + '.hlsl') subprocess.call([pythonExecutable, preprocessHLSLPath, sourceFile, hlslFile]) for shader in shaders: if not 'name' in shader or not 'type' in shader: continue if shader['type'] == 'vertex': shaderType = 'vs' elif shader['type'] == 'fragment': shaderType = 'ps' elif shader['type'] == 'compute': shaderType = 'cs' shaderSignature = None shaderOptionsList = None shaderOptionsExcludesList = None shaderOptionsDependenciesList = None shaderOptionsDict = None if 'signature' in shader: shaderSignature = shader['signature'] if 'options' in shaderSignature: shaderOptions = shaderSignature['options'] if type(shaderOptions) is list: shaderOptionsList = shaderOptions elif type(shaderOptions) is dict: shaderOptionsDict = shaderOptions if "defines" in shaderOptionsDict: shaderOptionsList = shaderOptionsDict["defines"] if "excludes" in shaderOptionsDict: shaderOptionsExcludesList = shaderOptionsDict["excludes"] if "dependencies" in shaderOptionsDict: shaderOptionsDependenciesList = shaderOptionsDict["dependencies"] entryName = shader['name'] destinationShaderList = list() destinationShader = dict() destinationShader['type'] = shader['type'] destinationShader['name'] = entryName if shaderSignature: destinationShader['signature'] = shaderSignature; destinationShaderList.append(destinationShader) destinationShaderFile = dict() destinationShaderFile['shaders'] = destinationShaderList permutations = list() if shaderOptionsList: permutationCount = 2**len(shaderOptionsList) for i in range(0, permutationCount): permutation = dict() permutation["parameters"] = list() permutation["identifier"] = i permutationOptions = list() for n, option in enumerate(shaderOptionsList): permutation["parameters"].append('-D') permutationValue = '0' if(i & (1 << n)) != 0: permutationValue = '1' permutationOptions.append(option) permutation["parameters"].append(option + '=' + permutationValue) isValidPermutation = True if shaderOptionsExcludesList: for exclude in shaderOptionsExcludesList: isValidPermutation = False for check in exclude: if not check in permutationOptions: isValidPermutation = True break if not isValidPermutation: print("excluding permutation " + str(i) + ": " + str(permutationOptions)) break if isValidPermutation and shaderOptionsDependenciesList: for option in permutationOptions: if option not in shaderOptionsDependenciesList: continue optionHasDependencies = False while True: option = shaderOptionsDependenciesList[option] if option not in permutationOptions: isValidPermutation = False break if option not in shaderOptionsDependenciesList: break if not isValidPermutation: print("excluding permutation " + str(i) + " because of missing dependencies: " + str(permutationOptions)) break if isValidPermutation: permutations.append(permutation) else: permutation = dict() permutation["parameters"] = list() permutation["identifier"] = 0 permutations.append(permutation) skipShaderCompiling = False if not getNeedsUpdate(sys.argv[0], sys.argv[1], sourceFile, outDirName, fileName + "." + shaderType + ".*.*"): print("Shaders for file " + sourceFile + " are already up to date. Skipping.") skipShaderCompiling = True for outFormat in outFormats: if outFormat == 'dxil': compilerOutFormat = 'dxil' destinationShaderFile['file~d3d12'] = resourceRelativePath + '/' + fileName + '.' + shaderType + '.' + outFormat elif outFormat == 'cso': compilerOutFormat = 'cso' destinationShaderFile['file~d3d12'] = resourceRelativePath + '/' + fileName + '.' + shaderType + '.' + outFormat elif outFormat == 'spirv': compilerOutFormat = 'spirv' destinationShaderFile['file~vulkan'] = resourceRelativePath + '/' + fileName + '.' + shaderType + '.' + outFormat elif outFormat == 'metal': compilerOutFormat = 'msl_macos' if platform.system() == 'Darwin': destinationShaderFile['file~metal'] = resourceRelativePath + '/' + fileName + '.' + shaderType + '.metallib' else: destinationShaderFile['file~metal'] = resourceRelativePath + '/' + fileName + '.' + shaderType + '.metal' if not skipShaderCompiling: if outFormat == 'metal': removePermutations(outDirName, fileName + "." + shaderType + ".*.metal") removePermutations(outDirName, fileName + "." + shaderType + ".*.metallib") else: removePermutations(outDirName, fileName + "." + shaderType + ".*."+outFormat) for permutationDict in permutations: permutation = permutationDict["parameters"] permutationOutFile = os.path.join(outDirName, fileName + '.' + shaderType + '.' + str(permutationDict["identifier"]) + '.' + outFormat) if outFormat == 'cso': parameterList = [fxcCmdPath, '-I', '.', '-Fo', permutationOutFile, '-E', entryName, '-T', shaderType + '_5_1', hlslFile] else: parameterList = [shaderConductorCmdPath, '-I', sourceFile, '-O', permutationOutFile, '--minorshadermodel', '1', '-E', entryName, '-S', shaderType, '-T', compilerOutFormat] if outFormat == 'dxil' or outFormat == 'cso': parameterList.append("-DRN_RENDERER_D3D12=1") permutation = [p.replace('RN_USE_MULTIVIEW', '__RN_USE_MULTIVIEW__') for p in permutation] #exclude multiview stuff for d3d12 without effecting the permutation index for now elif outFormat == 'spirv': parameterList.append("-DRN_RENDERER_VULKAN=1") elif outFormat == 'metal': parameterList.append("-DRN_RENDERER_METAL=1") if len(permutation) > 0: parameterList.extend(permutation) if not skipShaderCompiling: print(parameterList) subprocess.call(parameterList) if outFormat == 'metal' and platform.system() == 'Darwin': bitcodeOutFile = permutationOutFile + '.air' libOutFile = os.path.join(outDirName, fileName + '.' + shaderType + '.' + str(permutationDict["identifier"]) + '.metallib') if enableDebugSymbols: subprocess.call(['xcrun', '-sdk', 'macosx', 'metal', '-gline-tables-only', '-MO', '-c', permutationOutFile, '-o', bitcodeOutFile]) else: subprocess.call(['xcrun', '-sdk', 'macosx', 'metal', '-c', permutationOutFile, '-o', bitcodeOutFile]) subprocess.call(['xcrun', '-sdk', 'macosx', 'metallib', bitcodeOutFile, '-o', libOutFile]) os.remove(permutationOutFile) os.remove(bitcodeOutFile) destinationJson.append(destinationShaderFile) if hlslFile: os.remove(hlslFile) with open(os.path.join(outDirName, 'Shaders.json'), 'w') as destinationJsonData: json.dump(destinationJson, destinationJsonData, indent=4, sort_keys=True) if __name__ == '__main__': main()
from .cord_19_data import CORD19Data
from django.contrib.admin.views.main import ( ChangeList, IGNORED_PARAMS as BASE_IGNORED_PARAMS ) from django.core.paginator import InvalidPage from django.contrib.admin.options import IncorrectLookupParameters from django.db.models import Count, F, Q from django.db.models import Exists from django.db.models import OuterRef, Subquery from django.contrib.admin.views.main import ( ALL_VAR, ORDER_VAR, PAGE_VAR, SEARCH_VAR, IS_POPUP_VAR, TO_FIELD_VAR ) # Additional changelist settings LAYOUT_VAR = 'sty' IGNORED_PARAMS = BASE_IGNORED_PARAMS + (LAYOUT_VAR, ) TREE_LAYOUT = 'tree' LIST_LAYOUT = 'list' ORDERED_DAG_SEQUENCE_FIELD_NAME = '_sequence' class DagChangeList(ChangeList): def allow_node_drag(self, request): draggable = True for k, v in self.params.items(): if k in [ALL_VAR, IS_POPUP_VAR, TO_FIELD_VAR, PAGE_VAR]: continue elif ORDER_VAR == k: if v != '' and self.model.sequence_manager: # Sorted nodes thefore disable is sort enabled draggable = False elif SEARCH_VAR == k: if v != '': draggable = False # disbaled moving nodes if filters are active elif LAYOUT_VAR == k: if v != TREE_LAYOUT: draggable = False # disable is not in tree view return draggable # Copied from Django "version": "==2.2.19" # Changed: IGNORED_PARAMS is updated to include LAYOUT_VAR def get_filters_params(self, params=None): """ Return all params except IGNORED_PARAMS. """ params = params or self.params lookup_params = params.copy() # a dictionary of the query string # Remove all the parameters that are globally and systematically # ignored. for ignored in IGNORED_PARAMS: if ignored in lookup_params: del lookup_params[ignored] return lookup_params def _convert_order_node_to_edge(self, ordering): for part in ordering: if isinstance(part, str): order_type = part[:part.startswith('-')] base = part.lstrip('-') elif isinstance(part, F): base = part.name order_type = '' if base == ORDERED_DAG_SEQUENCE_FIELD_NAME: yield part else: yield "{}child__{}".format(order_type, base) def get_results_tree(self, request): qs = self.queryset \ .annotate( children_count=Count('children', distinct=True), usage_count=Subquery( self.model.get_node_model().objects .filter(pk=OuterRef('id')) .annotate(usage_count=Count('parents__pk')) .values('usage_count') ) ) qs = self.apply_select_related(qs) ordering = self.get_ordering(request, qs) if self.model.sequence_manager: ordering = ['dag_sequence_path', ] else: ordering = ['dag_pk_path', ] qs = qs.order_by(*ordering) return qs def get_results_edgetree(self, request): qs = ( self.model.get_edge_model() .objects .filter(Q(child_id__in=self.queryset.values('pk'))) .annotate( siblings_count=Count('parent__children', distinct=True), is_child=Count('parent__parents'), children_count=Count('child__children', distinct=True), parent_used=Exists(self.queryset.filter(pk=OuterRef('parent_id'))) )) if not qs.query.select_related: qs = self.apply_select_related(qs, for_edge=True) if self.model.sequence_manager: order_component = self.model.sequence_manager \ .get_edge_rel_sort_query_component(self.model, 'child', 'parent') qs = qs.annotate(**{ORDERED_DAG_SEQUENCE_FIELD_NAME: order_component}) # Set ordering. ordering = list(self._convert_order_node_to_edge(self.get_ordering(request, qs,))) qs = qs.order_by(*ordering) return qs def get_results_list(self, request): qs = self.queryset.annotate( children_count=Count('children', distinct=True), usage_count=Subquery( self.model.get_node_model() .objects .filter(pk=OuterRef('id')) .annotate(usage_count=Count('parents__pk')) .values('usage_count') ) ) qs = self.apply_select_related(qs) ordering = self.get_ordering(request, qs) qs = qs.order_by(*ordering) return qs def get_results(self, request): self.result_list_extra = [] # Add annotation to show detached nodes here # to self.queryset look for no parent matching path / parents if self.get_layout_style(request) == LIST_LAYOUT: qs = self.get_results_list(request) else: qs = self.get_results_tree(request) paginator = self.model_admin.get_paginator(request, qs, self.list_per_page) # Get the number of objects, with admin filters applied. result_count = paginator.count # Get the total number of objects, with no admin filters applied. if self.model_admin.show_full_result_count: full_result_count = self.root_queryset.count() else: full_result_count = None can_show_all = result_count <= self.list_max_show_all multi_page = result_count > self.list_per_page # Get the list of objects to display on this page. if (self.show_all and can_show_all) or not multi_page: result_list = qs._clone() else: try: result_list = paginator.page(self.page_num + 1).object_list except InvalidPage: raise IncorrectLookupParameters self.result_count = result_count self.show_full_result_count = self.model_admin.show_full_result_count # Admin actions are shown if there is at least one entry # or if entries are not counted because show_full_result_count is disabled self.show_admin_actions = not self.show_full_result_count or bool(full_result_count) self.full_result_count = full_result_count self.result_list = result_list self.can_show_all = can_show_all self.multi_page = multi_page self.paginator = paginator def _get_default_layout_style(self): layout_style = 'tree' if hasattr(self.model_admin, 'layout_style'): layout_style = self.model_admin.layout_style return layout_style def get_layout_style(self, request): params = self.params return params.get(LAYOUT_VAR, None) or self._get_default_layout_style() def _get_default_ordering(self): ordering = [] if self.model_admin.ordering: ordering = self.model_admin.ordering elif self.lookup_opts.ordering: ordering = self.lookup_opts.ordering return ordering def apply_select_related(self, qs, for_edge=False): if self.list_select_related is True: if for_edge: return qs.select_related() return qs.select_related() if self.list_select_related is False: if self.has_related_field_in_list_display(): return qs.select_related() if for_edge: return qs.select_related() return qs if self.list_select_related: if for_edge: related = ["child__{}".format(relation) for relation in self.list_select_related] return qs.select_related(*related) return qs.select_related(*self.list_select_related) return qs
# A class in Python is template # to define class class Name: pass # A class must be instantiated. In other words, we must create an instance of the class, in order to breathe life into the schematic. # Instantiating a class looks a lot like calling a function. We would be able to create an instance of our defined Name as follows: # A class instance is also called as object name1 = Name() # when we want to share data or make data available to different instances of class we can create a class variable or attribute # define a class class Name: name = 'anay' # class variable or attribute # instance of the class name1 = Name() print(name1.name) # Methods are nothing but a Python function but are defined under class. # The first argument in a method is always the object that is calling the method. Convention recommends that we name this first argument self. # Methods always have at least this one argument. class Name: name = 'anay' # class variable or attribute def print_message(self): print(Name.name+ 'Good Day' ) # instance of the class name1 = Name() print(name1.print_message) # Python constructors or dunder methods
from PIL import Image import numpy as np from OpenGL.GL import * from os import path def MTL(filename, withtextures=True): contents = {} mtl = None fpath = "" if filename.rfind("/") != -1: fpath = filename[:filename.rfind("/")+1] for line in open(filename, "r"): if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'newmtl': mtl = contents[values[1]] = {} elif mtl is None: raise ValueError("mtl file doesn't start with newmtl stmt") elif values[0] == 'map_Kd': # load the texture referred to by this declaration mtl[values[0]] = values[1] if not path.isfile(mtl['map_Kd']): if path.isfile(fpath + mtl['map_Kd']): mtl['map_Kd'] = fpath + mtl['map_Kd'] if withtextures: surf = Image.open(mtl['map_Kd']).convert("RGBA") img = np.fromstring(surf.tobytes(), np.uint8) ix, iy = surf.size texid = mtl['texture_Kd'] = glGenTextures(1) glBindTexture(GL_TEXTURE_2D, texid) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR) glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR) glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, ix, iy, 0, GL_RGBA, GL_UNSIGNED_BYTE, img) else: mtl[values[0]] = tuple([float(i) for i in values[1:]]) return contents class OBJ: def __init__(self, filename, swapyz=False, withtextures=True): """Loads a Wavefront OBJ file. """ self.vertices = [] self.normals = [] self.texcoords = [] self.faces = [] material = None path = "" if filename.rfind("/") != -1: path = filename[:filename.rfind("/")+1] for line in open(filename, "r"): if line.startswith('#'): continue values = line.split() if not values: continue if values[0] == 'v': v = [float(i) for i in values[1:4]] # print(v) if swapyz: v[1], v[2] = v[2], v[1] # print("Verticies", len(tuple(v)), tuple(v)) self.vertices.append(tuple(v)) elif values[0] == 'vn': v = [float(i) for i in values[1:4]] if swapyz: v[1], v[2] = v[2], v[1] # print("Normals", len(tuple(v)), tuple(v)) self.normals.append(tuple(v)) elif values[0] == 'vt': v = [float(i) for i in values[1:3]] # print("Textures", len(tuple(v)), tuple(v)) self.texcoords.append(tuple(v)) elif values[0] in ('usemtl', 'usemat'): material = values[1] elif values[0] == 'mtllib': self.mtl = MTL(path+values[1], withtextures) elif values[0] == 'f': face = [] texcoords = [] norms = [] for v in values[1:]: w = v.split('/') face.append(int(w[0])) if len(w) >= 2 and len(w[1]) > 0: texcoords.append(int(w[1])) else: texcoords.append(0) if len(w) >= 3 and len(w[2]) > 0: norms.append(int(w[2])) else: norms.append(0) self.faces.append((face, norms, texcoords, material)) self.gl_list = glGenLists(1) glNewList(self.gl_list, GL_COMPILE) glEnable(GL_TEXTURE_2D) glFrontFace(GL_CCW) self.generateList() glDisable(GL_TEXTURE_2D) glEndList() def generateList(self): for face in self.faces: vertices, normals, texture_coords, material = face mtl = self.mtl[material] if 'texture_Kd' in mtl: # use diffuse texmap glBindTexture(GL_TEXTURE_2D, mtl['texture_Kd']) else: # just use diffuse colour glColor(*mtl['Kd']) glBegin(GL_POLYGON) for i in range(len(vertices)): if normals[i] > 0: glNormal3fv(self.normals[normals[i] - 1]) if texture_coords[i] > 0: glTexCoord2fv(self.texcoords[texture_coords[i] - 1]) glVertex3fv(self.vertices[vertices[i] - 1]) glEnd() def draw(self): glCallList(self.gl_list)
#!/usr/bin/env python3 # SPDX-FileCopyrightText: 2009 Fermi Research Alliance, LLC # SPDX-License-Identifier: Apache-2.0 """ Project: glideinWMS Description: unit test for glideinwms/creation/lib/cvWCreate.py Author: Dennis Box <[email protected]> """ import os import unittest from unittest import mock import xmlrunner from glideinwms.creation.lib.cvWCreate import ( create_client_condor_config, create_client_mapfile, filter_unwanted_config_attrs, get_template, ) class Test_cvWCreate(unittest.TestCase): def test_create_client_mapfile(self): mapfile_fname = "condor_mapfile" my_DN = ( "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud001.fnal.gov" ) factory_DNs = [ "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud010.fnal.gov", "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud011.fnal.gov", ] schedd_DNs = [ "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud020.fnal.gov", "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud021.fnal.gov", ] collector_DNs = [ "/DC=org/DC=incommon/C=US/ST=IL/L=Batavia/O=Fermi Research Alliance/OU=Fermilab/CN=fermicloud030.fnal.gov" ] pilot_DNs = [] create_client_mapfile(mapfile_fname, my_DN, factory_DNs, schedd_DNs, collector_DNs, pilot_DNs) self.assertTrue(os.path.exists(mapfile_fname)) # the first 6 entries of the mapfile should have # these names, everything after that should be # named anonymous m_dat = ["me", "factory0", "factory1", "schedd0", "schedd1", "collector0", "anonymous"] idx = 0 for line in open(mapfile_fname): parts = line.split() self.assertEqual(parts[-1], m_dat[idx]) if idx + 1 < len(m_dat): idx += 1 os.remove(mapfile_fname) def test_get_template(self): # test that we can fetch an existing template glideinWMS_dir = ".." template_name = "gwms-factory.service" tmp = get_template(template_name, glideinWMS_dir) self.assertNotEqual(tmp, "") # test that fetching a nonexistent template throws # the correct Exception try: bad = get_template("I-dont-exist", glideinWMS_dir) assert False except OSError as ior: pass def test_create_client_condor_config(self): # use mock output from condor_config_val -dump # to create a condor_mapfile config_fname = "condor_config" mapfile_fname = "condor_mapfile" collector_nodes = ["fermicloud001.fnal.gov", "fermicloud002.fnal.gov"] classad_proxy = "/tmp/classad_proxy" with mock.patch("glideinwms.lib.condorExe.exe_cmd") as m_exe_cmd: with open("fixtures/frontend/ccvd.fixture") as fil: m_exe_cmd.return_value = fil.readlines() create_client_condor_config(config_fname, mapfile_fname, collector_nodes, classad_proxy) self.assertTrue(os.path.exists(config_fname)) os.remove(config_fname) if __name__ == "__main__": unittest.main(testRunner=xmlrunner.XMLTestRunner(output="unittests-reports"))
"""WSGI script for the marsha project.""" from configurations.wsgi import get_wsgi_application application = get_wsgi_application() # pylint: disable=invalid-name
import http.client import json server_key = '<server key>'; client_token = '<token received by client>'; notification = { 'title': 'Hello world', 'body': 'This is a very long message', 'icon': 'firebase-logo.png', 'click_action': 'http://localhost:8081' } headers = { 'Authorization': 'key=' + server_key, 'Content-Type': 'application/json' } body = { 'notification': notification, 'to': client_token } conn = http.client.HTTPSConnection('fcm.googleapis.com') conn.request('POST', '/fcm/send', json.dumps(body), headers) response = conn.getresponse() print(response.status, response.reason) print(response.read().decode())
from hypothesis import given from hypothesis import example from hypothesis import assume from hypothesis import strategies as st from hypothesis.extra.numpy import arrays import pytest import numpy as np
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import os.path import time import tempfile import tensorflow as tf import StringIO import random import string import mmap from tensorflow.python.platform import gfile from tensorflow.python.platform import tf_logging as logging from google.protobuf import text_format from syntaxnet import sentence_pb2 from syntaxnet import graph_builder from syntaxnet import structured_graph_builder from syntaxnet.ops import gen_parser_ops from syntaxnet import task_spec_pb2 import time import BaseHTTPServer import cgi from BaseHTTPServer import BaseHTTPRequestHandler from BaseHTTPServer import HTTPServer flags = tf.app.flags FLAGS = flags.FLAGS flags.DEFINE_string('task_context', '', 'Path to a task context with inputs and parameters for ' 'feature extractors.') flags.DEFINE_string('resource_dir', '', 'Optional base directory for task context resources.') flags.DEFINE_string('model_path', '', 'Path to model parameters.') flags.DEFINE_string('arg_prefix', None, 'Prefix for context parameters.') flags.DEFINE_string('graph_builder', 'greedy', 'Which graph builder to use, either greedy or structured.') flags.DEFINE_string('input', 'stdin', 'Name of the context input to read data from.') flags.DEFINE_string('output', 'stdout', 'Name of the context input to write data to.') flags.DEFINE_string('hidden_layer_sizes', '200,200', 'Comma separated list of hidden layer sizes.') flags.DEFINE_integer('batch_size', 32, 'Number of sentences to process in parallel.') flags.DEFINE_integer('beam_size', 8, 'Number of slots for beam parsing.') flags.DEFINE_integer('max_steps', 1000, 'Max number of steps to take.') flags.DEFINE_bool('slim_model', False, 'Whether to expect only averaged variables.') MODEL_DIR = '/home/ubuntu/models/syntaxnet/models/Chinese' USE_SLIM_MODEL = True BATCH_SIZE = 1024 BEAM_SIZE = 8 MAX_STEPS = 1000 TOKENIZER_TASK_CONTEXT = '/home/ubuntu/models/syntaxnet/syntaxnet/models/parsey_universal/context-tokenize-zh.pbtxt' TOKENIZER_INPUT = 'stdin-untoken' TOKENIZER_ARG_PREFIX = 'brain_tokenizer_zh' TOKENIZER_HIDDEN_LAYER = '256,256' TOKENIZER_OUTPUT = 'stdout-conll' TOKENIZER_MODEL_PATH = 'tokenizer-params' TASK_CONTEXT = '/home/ubuntu/models/syntaxnet/syntaxnet/models/parsey_universal/context.pbtxt' TASK_INPUT = 'stdin-conll' TASK_OUTPUT = 'stdout-conll' MORPHER_HIDDEN_LAYER = '64' MORPHER_ARG_PREFIX = 'brain_morpher' MORPHER_MODEL_PATH = 'morpher-params' TAGGER_HIDDEN_LAYER = '64' TAGGER_ARG_PREFIX = 'brain_tagger' TAGGER_MODEL_PATH = 'tagger-params' PARSER_HIDDEN_LAYER = '512,512' PARSER_ARG_PREFIX = 'brain_parser' PARSER_MODEL_PATH = 'parser-params' PORT_NUMBER = 3080 PAGE = u''' <!DOCTYPE html> <html> <body> <form action="/parse" method="POST"> 请输入一个完整句子:<br> <textarea rows="12" cols="100" type="text" name="sentence" > </textarea> <br/> <input type="submit"> </form> <br/> 转换结果: <br/> <pre> {0} </pre> </body> </html> ''' def RewriteContext(task_context, in_corpus_name): context = task_spec_pb2.TaskSpec() with gfile.FastGFile(task_context, 'rb') as fin: text_format.Merge(fin.read(), context) tf_in = tempfile.NamedTemporaryFile(delete=False) for resource in context.input: for part in resource.part: if part.file_pattern != '-': part.file_pattern = os.path.join(MODEL_DIR, part.file_pattern) if resource.name == in_corpus_name: for part in resource.part: if part.file_pattern == '-': part.file_pattern = tf_in.name fout = tempfile.NamedTemporaryFile(delete=False) fout.write(str(context)) return fout.name, tf_in.name def UnderscoreIfEmpty(part): if not part: return unicode('_') return unicode(part) def GetMorphAttributes(token): extension = (sentence_pb2.TokenMorphology.morphology) if not token.HasExtension(extension): return unicode('_') morph = token.Extensions[extension] if not morph: return unicode('_') if len(morph.attribute) == 0: return unicode('_') attrs = [] for attribute in morph.attribute: value = attribute.name if attribute.value != 'on': value += unicode('=') value += attribute.value attrs.append(value) return unicode('|').join(attrs); def ConvertTokenToString(index, token): fields = [] fields.append(unicode(index + 1)) fields.append(UnderscoreIfEmpty(token.word)) fields.append(unicode('_')) fields.append(UnderscoreIfEmpty(token.category)) fields.append(UnderscoreIfEmpty(token.tag)) fields.append(GetMorphAttributes(token)) fields.append(unicode(token.head + 1)) fields.append(UnderscoreIfEmpty(token.label)) fields.append(unicode('_')) fields.append(unicode('_')) return unicode('\t').join(fields) def ConvertToString(sentence): value = unicode('') lines = [] for index in range(len(sentence.token)): lines.append(ConvertTokenToString(index, sentence.token[index])) return unicode('\n').join(lines) + unicode('\n\n') class ParserEval: def __init__(self, sess, task_context, arg_prefix, hidden_layer_sizes, model_path, in_corpus_name, out_corpus_name): self.task_context, self.in_name = RewriteContext(task_context, in_corpus_name) self.arg_prefix = arg_prefix self.sess = sess self.in_corpus_name = in_corpus_name self.out_corpus_name = out_corpus_name feature_sizes, domain_sizes, embedding_dims, num_actions = sess.run( gen_parser_ops.feature_size(task_context=self.task_context, arg_prefix=self.arg_prefix)) self.feature_sizes = feature_sizes self.domain_sizes = domain_sizes self.embedding_dims = embedding_dims self.num_actions = num_actions self.hidden_layer_sizes = map(int, hidden_layer_sizes.split(',')) self.parser = structured_graph_builder.StructuredGraphBuilder( self.num_actions, self.feature_sizes, self.domain_sizes, self.embedding_dims, self.hidden_layer_sizes, gate_gradients=True, arg_prefix=self.arg_prefix, beam_size=BEAM_SIZE, max_steps=MAX_STEPS) self.parser.AddEvaluation(self.task_context, BATCH_SIZE, evaluation_max_steps=MAX_STEPS) self.parser.AddSaver(USE_SLIM_MODEL) self.sess.run(self.parser.inits.values()) self.parser.saver.restore(self.sess, os.path.join(MODEL_DIR, model_path)) def __del__(self): os.remove(self.task_context) # os.remove(self.in_name) # os.remove(self.out_name) def Parse(self, sentence): with open(self.in_name, "w") as f: f.write(sentence) self.parser.AddEvaluation(self.task_context, BATCH_SIZE, corpus_name=self.in_corpus_name, evaluation_max_steps=MAX_STEPS) # tf_documents = self.sess.run([self.parser.evaluation['documents'],]) _, _, tf_documents = self.sess.run([ self.parser.evaluation['epochs'], self.parser.evaluation['eval_metrics'], self.parser.evaluation['documents'], ]) assert len(tf_documents) == 1 #print type(tf_documents[len(tf_documents)-1]) doc = sentence_pb2.Sentence() doc.ParseFromString(tf_documents[len(tf_documents)-1]) #print unicode(doc) return ConvertToString(doc) class MyHandler(BaseHTTPServer.BaseHTTPRequestHandler): def do_HEAD(s): s.send_response(200) s.send_header("Content-type", "text/html") s.end_headers() def do_GET(s): """Respond to a GET request.""" s.send_response(200) s.send_header("Content-type", "text/html") s.end_headers() s.wfile.write(PAGE.format(' ').encode("utf-8")) def do_POST(s): form = cgi.FieldStorage(fp=s.rfile, headers=s.headers, environ={"REQUEST_METHOD": "POST"}) target_text = '' for item in form.list: #print "begin: %s = %s" % (item.name, item.value) if item.name == 'sentence': target_text = item.value if target_text: target_text = s.parser.Parse(target_text) s.send_response(200) s.send_header("Content-type", "text/html") s.end_headers() #print target_text s.wfile.write(target_text.encode("utf-8")) def main(unused_argv): sess = tf.Session() # parser = ParserEval(sess, # TOKENIZER_TASK_CONTEXT, # TOKENIZER_ARG_PREFIX, # TOKENIZER_HIDDEN_LAYER, # TOKENIZER_MODEL_PATH, # TOKENIZER_INPUT, # TOKENIZER_OUTPUT) # with tf.Session() as morpher_sess: # parser = ParserEval(sess, # TASK_CONTEXT, # MORPHER_ARG_PREFIX, # MORPHER_HIDDEN_LAYER, # MORPHER_MODEL_PATH, # TASK_INPUT, # TASK_OUTPUT) # with tf.Session() as tagger_sess: parser = ParserEval(sess, TASK_CONTEXT, TAGGER_ARG_PREFIX, TAGGER_HIDDEN_LAYER, TAGGER_MODEL_PATH, TASK_INPUT, TASK_OUTPUT) # with tf.Session() as parser_sess: # parser = ParserEval(parser_sess, # TASK_CONTEXT, # PARSER_ARG_PREFIX, # PARSER_HIDDEN_LAYER, # PARSER_MODEL_PATH, # TASK_INPUT, # TASK_OUTPUT) # result = tokenizer.Parse("俄罗斯最新一艘亚森级核动力潜艇喀山号31日在北德文斯克举行下水礼.") # result = morpher.Parse(result) # result = tagger.Parse(result) # result = parser.Parse(result) # print result server_class = BaseHTTPServer.HTTPServer MyHandler.parser = parser httpd = server_class(('', PORT_NUMBER), MyHandler) try: httpd.serve_forever() except KeyboardInterrupt: pass httpd.server_close() if __name__ == '__main__': tf.app.run()
# automation package __version__ = "0.00.02"
from django.http import HttpResponseRedirect def responsive_switch(request,action): if action=="go": request.session['desktop_mode']=True elif action=="leave": request.session['desktop_mode']=False return HttpResponseRedirect(request.META.get("HTTP_REFERER", ""))
import itertools import numpy as np from matplotlib.cm import get_cmap from bridge_sim.model import Config, Point from bridge_sim.sim import without from bridge_sim.sim.build import get_bridge_nodes, get_bridge_shells from bridge_sim.sim.model import BuildContext, Node, Shell, SimParams from lib.plot import default_cmap, legend_marker_size, parula_cmap, plt from lib.plot.geometry import top_view_bridge from lib.plot.geometry.shell import shell_properties_3d, shell_properties_top_view from lib.plot.geometry.node import node_scatter_3d from lib.plot.responses import plot_deck_sensors from bridge_sim.util import flatten, safe_str def make_shell_properties_3d(original_c: Config): """Make plots of the shells in 3D, coloured by material property.""" # For each scenarios scenario build the model and extract the shells. for damage_scenario in healthy_and_cracked_scenarios: c, sim_params = damage_scenario.use(original_c, SimParams([])) for ctx, ctx_name in [ (BuildContext(add_loads=[Point(x=85, y=0, z=0)]), "refined"), (None, "unrefined"), ]: bridge_shells = get_bridge_shells(bridge=c.bridge, ctx=ctx) deck_shells = flatten(bridge_shells[0], Shell) pier_shells = flatten(bridge_shells[1], Shell) all_shells = flatten(bridge_shells, Shell) # For each combination of parameters plot the shells. for shells_name, shells in [ ("pier", pier_shells), ("all", all_shells), ("deck", deck_shells), ]: for outline, label in itertools.product([True, False], [True, False]): for prop_name, prop_units, prop_f in [ ("Thickness", "m", lambda s: s.thickness), ("Density", "kg/m", lambda s: s.density), ("Poisson's ratio", "m/m", lambda s: s.poissons), ("Young's modulus", "MPa", lambda s: s.youngs), ]: for cmap in [default_cmap, get_cmap("tab10")]: shell_properties_3d( shells=shells, prop_units=prop_units, prop_f=prop_f, cmap=cmap, outline=outline, label=label, colorbar=not label, ) plt.title(f"{prop_name} of {c.bridge.name}") plt.savefig( c.get_image_path( f"geometry/shells-{ctx_name}-3d", safe_str( f"{shells_name}-{prop_name}-outline-{outline}-{cmap.name}" ) + ".pdf", ) ) plt.close() def make_shell_properties_top_view( c: Config, shells_name_: str, prop_name_: str, refined_: bool, outline: bool, lanes: bool, ): """Make plots of the shells in top view, coloured by material property.""" original_c = c # For each scenarios scenario build the model and extract the shells. for damage_scenario, damage_name in zip( healthy_and_cracked_scenarios, [None, "cracked"] ): c, sim_params = damage_scenario.use(original_c) for ctx, ctx_name, refined, in [ ( BuildContext( add_loads=[Point(x=85, y=0, z=0)], refinement_radii=[2, 1, 0.5], ), "refined", True, ), (None, "unrefined", False), ]: if refined != refined_: continue bridge_shells = get_bridge_shells(bridge=c.bridge, ctx=ctx) deck_shells = flatten(bridge_shells[0], Shell) pier_shells = flatten(bridge_shells[1], Shell) all_shells = pier_shells + deck_shells for shells_name, shells in [ ("piers", pier_shells), ("deck", deck_shells), ]: if shells_name != shells_name_: continue for prop_name, prop_units, prop_f in [ ("Mesh", "", None), ("Thickness", "m", lambda s: np.around(s.thickness, 3)), ("Density", "kg/m", lambda s: np.around(s.density, 3)), ("Poisson's ratio", "m/m", lambda s: s.poissons), ("Young's modulus", "MPa", lambda s: np.around(s.youngs, 1)), ]: if prop_name_ not in prop_name.lower(): continue for cmap in [parula_cmap, default_cmap]: def top_view(): top_view_bridge( bridge=c.bridge, abutments=True, piers=True, lanes=lanes, compass=prop_f is not None, ) top_view() shell_properties_top_view( shells=shells, prop_f=prop_f, prop_units=prop_units, cmap=cmap, colorbar=prop_f is not None, # label=prop_f is not None, outline=outline, ) top_view() damage_str = "" if damage_name is None else f" ({damage_name})" plt.title( f"{prop_name} of bridge 705's {shells_name}{damage_str}" ) plt.savefig( c.get_image_path( f"geometry/{shells_name}-shells-{ctx_name}-top-view", safe_str( f"{prop_name}-{cmap.name}-outline-{outline}-lanes-{lanes}" ) + ".pdf", ) ) plt.close() if prop_f is None: break def make_node_plots(original_c: Config): """Make all variations of 3d scatter plots of nodes.""" for damage_scenario in healthy_and_cracked_scenarios: c, sim_params = damage_scenario.use(original_c, SimParams([])) for ctx, ctx_name in [ (BuildContext(add_loads=[Point(x=85, y=0, z=0)]), "refined"), (None, "unrefined"), ]: bridge_nodes = get_bridge_nodes(bridge=c.bridge, ctx=ctx) deck_nodes = set(flatten(bridge_nodes[0], Node)) pier_nodes = set(flatten(bridge_nodes[1], Node)) all_nodes = set(flatten(bridge_nodes, Node)) # For each combination of parameters plot the nodes. for nodes_name, nodes in [ ("all", all_nodes), ("deck", deck_nodes), ("pier", pier_nodes), ]: node_scatter_3d(nodes=nodes) plt.title(f"Nodes of {c.bridge.name}") plt.savefig( c.get_image_path( f"geometry/nodes-{ctx_name}", safe_str(f"{nodes_name}") + ".pdf", ) ) plt.close() def make_available_sensors_plot( c: Config, pier_radius: float, track_radius: float, edge_radius: float ): """Scatter plot of sensors used for classification.""" top_view_bridge(c.bridge, abutments=True, piers=True, compass=False) plot_deck_sensors( c=c, without=without.points( c=c, pier_radius=pier_radius, track_radius=track_radius, edge_radius=edge_radius, ), label=True, ) for l_i, load in enumerate([Point(x=21, z=-8.4), Point(x=33, z=-4)]): plt.scatter( [load.x], [load.z], color="red", marker="o", s=50, label="Sensor of interest" if l_i == 0 else None, ) legend_marker_size(plt.legend(), 50) plt.title(f"Sensors available for classification on Bridge 705") plt.tight_layout() plt.savefig(c.get_image_path("sensors", "unavailable-sensors.pdf")) plt.close() def make_boundary_plot(c: Config): """Top view of bridge with boundary conditions.""" plt.landscape() top_view_bridge(c.bridge, abutments=True, piers=True, compass=False) plt.vlines( [0, c.bridge.length], c.bridge.z_min, c.bridge.z_max, lw=5, color="orange", label=" Y = 1, Z = 1", ) for p_i, pier in enumerate(c.bridge.supports): z_min_top, z_max_top = pier.z_min_max_bottom() x_min, x_max = pier.x_min_max_top() x_center = x_min + ((x_max - x_min) / 2) plt.vlines( [x_center], z_min_top, z_max_top, lw=5, color="red" if (8 <= p_i <= 15) else "orange", label="X = 1, Y = 1, Z = 1" if p_i == 8 else None, ) legend_marker_size(plt.legend(), 50) plt.title("Bridge 705 boundary conditions of nodal supports") plt.tight_layout() plt.savefig(c.get_image_path("sensors", "boundary.pdf")) plt.close()
import json def getGrch38(): with open("grch38_utr3.json") as infile: grch38_utr3 = json.load(infile) return grch38_utr3 def getIdconverter(): with open("/home/fux/fux/miRNASNP3/test_let_7a_3p/ID_convert.jaon") as infile: id_convert = json.load(infile) return id_convert def outNmseq(outch): with open("nm_grch38_utr3.fa","a") as out: out.write(outch+'\n') def outNnmseq(outch): with open("nnm_grch38_utr3.fa","a") as out: out.write(outch+'\n') def outNbiomart(outch): with open("nbiomart_grch38_utr3.fa","a") as out: out.write(outch+'\n') def outStatutr(outch): with open("stat_grch38_utr3","a") as out: out.write(outch+'\n') def fixId(): with open("re_grch38_utr3.fa") as infile: line = infile.readline() while line: grchid = line.strip()[1:] utrid = grch38_utr3[grchid] enst = utrid.split('.')[0] # print(enst) if enst in id_convert.keys(): symbol = id_convert[enst] seq = infile.readline().strip() seq_len = len(seq) if len(symbol) == 2: newid = grchid+'#'+enst+'#'+symbol[0]+'#'+symbol[1]+'#'+str(seq_len) newid_stat = grchid+'\t'+enst+'\t'+symbol[0]+'\t'+symbol[1]+'\t'+str(seq_len) outNmseq('>'+newid) outNmseq(seq) outStatutr(newid_stat) else: newid = grchid+'#'+enst+'#'+symbol[0]+'#'+str(seq_len) newid_stat = grchid+'\t'+enst+'\t'+symbol[0]+'\t0\t'+str(seq_len) outStatutr(newid_stat) outNnmseq('>'+newid) outNnmseq(seq) else: seq = infile.readline().strip() seq_len = len(seq) newid = grchid+'#'+enst+'#'+str(seq_len) newid_stat = grchid+'\t'+enst+'\tno_biomart\t0\t'+str(seq_len) outStatutr(newid_stat) outNbiomart('>'+newid) outNbiomart(seq) line = infile.readline() if __name__ == '__main__': grch38_utr3 = getGrch38() id_convert = getIdconverter() fixId()
#ex077: Crie um programa que tenha uma tupla com várias palavras (não usar acentos). Depois disso, você deve mostrar, para cada palavra, quais são as suas vogais. #NÃO CONSEGUI FAZER a = '\033[1;33m' v = '\033[1;32m' l = '\033[m' palavras = ('abacaxi', 'tomate', 'uva', 'morango', 'melancia', 'coco', 'cenoura', 'mirtilo') for p in palavras: print(f'\nNa palavra {a}{p}{l} temos: ', end='') for letra in p: if letra.lower() in 'aeiou': print(f'{v}{letra}{l}', end=' ') #PASSO A PASSO PARA ENTENDER A RESOLUÇÃO #1º Criei uma tupla com várias palavras. #2º A tupla 'palavras' possui 8 termos: 'abacaxi' = 1º termo/posição 0 na memória e assim em diante. #3º Fiz um laço de repetição. 'p' vai girar cada termo da dupla 'palavras', até acabar, ex: abacaxi, tomate etc. #4º Vamos traduzir o 1º comando: 'Na palavra abacaxi (1º termo/posição 0 na memória) temos:' #5º Delimitei para a repetição continuar em cada termo (p). #6º Temos outro laço. Enquanto 'letra' (cada palavra) in 'p' (termo = 'abacaxi', 'tomate', etc.) #7º Se 'letra' (cada palavra) tiver 'a e i o u', escreva essas vogais.
from metaphor.common.cli import cli_main from .extractor import LookerExtractor if __name__ == "__main__": cli_main("Looker metadata extractor", LookerExtractor)
import os.path import tensorflow as tf from datetime import datetime import models import data FLAGS = tf.flags.FLAGS tf.flags.DEFINE_string("summaries_dir", "/home/uai/tf_logs/ic_fcn", "Path to the tensorboard logs directory.") #tf.flags.DEFINE_string("summaries_dir", "C://Temp/tf_logs/ic_fcn", "Path to the tensorboard logs directory.") tf.flags.DEFINE_string("checkpoint_dir", "/home/uai/tf_chkp/ic_fcn", "Path to the tensorboard logs directory.") tf.flags.DEFINE_string("dataset_train_dir", 'ic_fcn/data', "Path to the tensorboard logs directory.") tf.flags.DEFINE_string("dataset_eval_dir", 'ic_fcn/data', "Path to the tensorboard logs directory.") tf.flags.DEFINE_string("dataset_test_dir", 'ic_fcn/data', "Path to the tensorboard logs directory.") tf.flags.DEFINE_float("alpha", 0.0004, "Hyperparameter alpha.") #tf.flags.DEFINE_integer("T_C", 90000, "Hyperparameter T_C which defines how many iteration the MSE pretraining is run.") tf.flags.DEFINE_integer("T_C", 2160000, "Hyperparameter T_C which defines how many iteration the MSE pretraining is run.") tf.flags.DEFINE_integer("T_D", 10000, "Hyperparameter T_D which defines how many iteration the discrimitar is run.") tf.flags.DEFINE_integer("T_Train", 500000, "Hyperparameter T_Train which defines how many iteration the discrimitar and MSE is run together.") #tf.flags.DEFINE_integer("batch_size", 96, "Size of the input batching.") tf.flags.DEFINE_integer("batch_size", 4, "Size of the input batching.") tf.flags.DEFINE_integer("sum_hook_everysec", 10*60, "How often is the tensorboard summary updated (in seconds).") tf.flags.DEFINE_float("learning_rate", 0.001, "Learning rate for training.") TIMESTAMP_STRING = datetime.now().isoformat(sep='_').replace('-', '').replace(':', '')[0:15] # example: '20171206_205345' SUMHOOK_TIME = 100 CNN_NAME = 'ic_fcn' def train_data_fn(): dataset = data.MaskedImageDataset(FLAGS.dataset_train_dir, random=True).get_tf_dataset() dataset = dataset.repeat(FLAGS.T_C) #dataset = dataset.repeat(FLAGS.steps * FLAGS.batch_size + 500) #dataset = dataset.batch(128) dataset = dataset.batch(FLAGS.batch_size) #dataset = dataset.prefetch(20) # A one-shot iterator automatically initializes itself on first use. iterator = dataset.make_one_shot_iterator() # The return value of get_next() matches the dataset element type. feature, mask, orginal = iterator.get_next() label = {'mask': mask, 'orginal': orginal} return feature, label def mse_estimator(features, labels, mode, params): # unpack labels mask = labels['mask'] orginal = labels['orginal'] # Logic to do the following: # 1. Configure the model via TensorFlow operations completion_cnn = models.build_completion_fcn(input_features=features) # 2. Define the loss function for training/evaluation mse_loss = tf.square(tf.norm(mask * (completion_cnn - orginal)), name="loss_mse") # 3. Define the training operation/optimizer optimizer = tf.train.AdadeltaOptimizer(learning_rate=params["learning_rate"]) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # import for batch norm! with tf.control_dependencies(update_ops): # import for batch norm! train_op = optimizer.minimize(loss=mse_loss, global_step=tf.train.get_global_step()) # 4. Generate predictions predictions = completion_cnn # dict with all predictions # 5. Return predictions/loss/train_op/eval_metric_ops in EstimatorSpec object eval_metric_ops = None eval_metric_ops = {"mean_absolute_error": tf.metrics.mean_absolute_error(orginal, completion_cnn) } # 6. Tensorboard tf.summary.scalar("loss_mse", mse_loss) #tf.summary.image('mask', mask, max_outputs=3, collections=None, family='predi') tf.summary.image('input', features[:,:,:,0:3], max_outputs=3, collections=None, family='predi') #masked_orginal = tf.multiply(orginal, mask) #tf.summary.image('masked_orginal', masked_orginal, max_outputs=3, collections=None, family='predi') predict = mask * completion_cnn tf.summary.image('predict', predict, max_outputs=3, collections=None, family='predi') inverted_mask = mask * -1.0 + 1.0 predict_full = predict + inverted_mask * orginal tf.summary.image('predict_ful', predict_full, max_outputs=3, collections=None, family='predi') # tf.summary.image('orginal_masked', orginal, max_outputs=3, collections=None, family='predi') all_summaries = tf.summary.merge_all() summary_trainhook = tf.train.SummarySaverHook( save_secs=FLAGS.sum_hook_everysec, output_dir=os.path.join(FLAGS.summaries_dir, '{}_{}_{}'.format(CNN_NAME, TIMESTAMP_STRING, mode)), summary_op=tf.summary.merge_all()) #profiler_hook = tf.train.ProfilerHook() return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions, loss=mse_loss, train_op=train_op, eval_metric_ops=eval_metric_ops, training_hooks=[summary_trainhook], evaluation_hooks=[]) def main(unused_argv): # Settings for the trainings runconfig = tf.estimator.RunConfig(model_dir=FLAGS.checkpoint_dir) # Set model params model_params = {"learning_rate": FLAGS.learning_rate, "summary_trainhook_rate": SUMHOOK_RATE} # Instantiate Estimator estimator = tf.estimator.Estimator(model_fn=mse_estimator, params=model_params, config=runconfig) estimator.train(input_fn=train_data_fn, steps=FLAGS.T_C) #estimator.evaluate(input_fn=train_data_fn, steps=500) if __name__ == "__main__": #tf.logging.set_verbosity(tf.logging.INFO) tf.app.run()
import numpy as np import scipy.sparse as sp import warnings import properties from . import Utils from . import Maps from . import Mesh from . import ObjectiveFunction from . import Props from .Utils import mkvc, speye, sdiag, kron3 __all__ = [ "SimpleSmall", "SimpleSmoothDeriv", "Simple", "Small", "SmoothDeriv", "SmoothDeriv2", "Tikhonov", "SparseSmall", "SparseDeriv", "Sparse", ] ############################################################################### # # # Regularization Mesh # # # ############################################################################### class RegularizationMesh(Props.BaseSimPEG): """ **Regularization Mesh** This contains the operators used in the regularization. Note that these are not necessarily true differential operators, but are constructed from a SimPEG Mesh. :param BaseMesh mesh: problem mesh :param numpy.array indActive: bool array, size nC, that is True where we have active cells. Used to reduce the operators so we regularize only on active cells """ regularization_type = None # or 'Simple', 'Sparse' or 'Tikhonov' def __init__(self, mesh, **kwargs): self.mesh = mesh Utils.setKwargs(self, **kwargs) indActive = properties.Array("active indices in mesh", dtype=[bool, int]) @properties.validator("indActive") def _cast_to_bool(self, change): value = change["value"] if value is not None: if value.dtype != "bool": # cast it to a bool otherwise tmp = value value = np.zeros(self.mesh.nC, dtype=bool) value[tmp] = True change["value"] = value @property def vol(self): """ reduced volume vector :rtype: numpy.array :return: reduced cell volume """ if getattr(self, "_vol", None) is None: self._vol = self.Pac.T * self.mesh.vol return self._vol @property def nC(self): """ reduced number of cells :rtype: int :return: number of cells being regularized """ if self.indActive is not None: return int(self.indActive.sum()) return self.mesh.nC @property def dim(self): """ dimension of regularization mesh (1D, 2D, 3D) :rtype: int :return: dimension """ if getattr(self, "_dim", None) is None: self._dim = self.mesh.dim return self._dim @property def Pac(self): """ projection matrix that takes from the reduced space of active cells to full modelling space (ie. nC x nindActive) :rtype: scipy.sparse.csr_matrix :return: active cell projection matrix """ if getattr(self, "_Pac", None) is None: if self.indActive is None: self._Pac = Utils.speye(self.mesh.nC) else: self._Pac = Utils.speye(self.mesh.nC)[:, self.indActive] return self._Pac @property def Pafx(self): """ projection matrix that takes from the reduced space of active x-faces to full modelling space (ie. nFx x nindActive_Fx ) :rtype: scipy.sparse.csr_matrix :return: active face-x projection matrix """ if getattr(self, "_Pafx", None) is None: if self.indActive is None: self._Pafx = Utils.speye(self.mesh.nFx) else: # if getattr(self.mesh, 'aveCC2Fx', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": indActive_Fx = (self.mesh.aveFx2CC.T * self.indActive) >= 1 self._Pafx = Utils.speye(self.mesh.nFx)[:, indActive_Fx] else: indActive_Fx = ( self.mesh._aveCC2FxStencil() * self.indActive ) >= 1 self._Pafx = Utils.speye(self.mesh.ntFx)[:, indActive_Fx] else: indActive_Fx = self.mesh.aveFx2CC.T * self.indActive >= 1 self._Pafx = Utils.speye(self.mesh.nFx)[:, indActive_Fx] return self._Pafx @property def Pafy(self): """ projection matrix that takes from the reduced space of active y-faces to full modelling space (ie. nFy x nindActive_Fy ) :rtype: scipy.sparse.csr_matrix :return: active face-y projection matrix """ if getattr(self, "_Pafy", None) is None: if self.indActive is None: self._Pafy = Utils.speye(self.mesh.nFy) else: # if getattr(self.mesh, 'aveCC2Fy', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": print("Use Tikhonov") indActive_Fy = (self.mesh.aveFy2CC.T * self.indActive) >= 1 self._Pafy = Utils.speye(self.mesh.nFy)[:, indActive_Fy] else: indActive_Fy = ( self.mesh._aveCC2FyStencil() * self.indActive ) >= 1 self._Pafy = Utils.speye(self.mesh.ntFy)[:, indActive_Fy] else: indActive_Fy = (self.mesh.aveFy2CC.T * self.indActive) >= 1 self._Pafy = Utils.speye(self.mesh.nFy)[:, indActive_Fy] return self._Pafy @property def Pafz(self): """ projection matrix that takes from the reduced space of active z-faces to full modelling space (ie. nFz x nindActive_Fz ) :rtype: scipy.sparse.csr_matrix :return: active face-z projection matrix """ if getattr(self, "_Pafz", None) is None: if self.indActive is None: self._Pafz = Utils.speye(self.mesh.nFz) else: # if getattr(self.mesh, 'aveCC2Fz', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": indActive_Fz = (self.mesh.aveFz2CC.T * self.indActive) >= 1 self._Pafz = Utils.speye(self.mesh.nFz)[:, indActive_Fz] else: indActive_Fz = ( self.mesh._aveCC2FzStencil() * self.indActive ) >= 1 self._Pafz = Utils.speye(self.mesh.ntFz)[:, indActive_Fz] else: indActive_Fz = (self.mesh.aveFz2CC.T * self.indActive) >= 1 self._Pafz = Utils.speye(self.mesh.nFz)[:, indActive_Fz] return self._Pafz @property def aveFx2CC(self): """ averaging from active cell centers to active x-faces :rtype: scipy.sparse.csr_matrix :return: averaging from active cell centers to active x-faces """ if getattr(self, "_aveFx2CC", None) is None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveFx2CC = self.Pac.T * self.mesh.aveFx2CC * self.Pafx else: nCinRow = mkvc((self.aveCC2Fx.T).sum(1)) nCinRow[nCinRow > 0] = 1.0 / nCinRow[nCinRow > 0] self._aveFx2CC = Utils.sdiag(nCinRow) * self.aveCC2Fx.T else: self._aveFx2CC = self.Pac.T * self.mesh.aveFx2CC * self.Pafx return self._aveFx2CC @property def aveCC2Fx(self): """ averaging from active x-faces to active cell centers :rtype: scipy.sparse.csr_matrix :return: averaging matrix from active x-faces to active cell centers """ if getattr(self, "_aveCC2Fx", None) is None: # if getattr(self.mesh, 'aveCC2Fx', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveCC2Fx = ( Utils.sdiag(1.0 / (self.aveFx2CC.T).sum(1)) * self.aveFx2CC.T ) else: self._aveCC2Fx = ( self.Pafx.T * self.mesh._aveCC2FxStencil() * self.Pac ) else: self._aveCC2Fx = ( Utils.sdiag(1.0 / (self.aveFx2CC.T).sum(1)) * self.aveFx2CC.T ) return self._aveCC2Fx @property def aveFy2CC(self): """ averaging from active cell centers to active y-faces :rtype: scipy.sparse.csr_matrix :return: averaging from active cell centers to active y-faces """ if getattr(self, "_aveFy2CC", None) is None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveFy2CC = self.Pac.T * self.mesh.aveFy2CC * self.Pafy else: nCinRow = mkvc((self.aveCC2Fy.T).sum(1)) nCinRow[nCinRow > 0] = 1.0 / nCinRow[nCinRow > 0] self._aveFy2CC = Utils.sdiag(nCinRow) * self.aveCC2Fy.T else: self._aveFy2CC = self.Pac.T * self.mesh.aveFy2CC * self.Pafy return self._aveFy2CC @property def aveCC2Fy(self): """ averaging from active y-faces to active cell centers :rtype: scipy.sparse.csr_matrix :return: averaging matrix from active y-faces to active cell centers """ if getattr(self, "_aveCC2Fy", None) is None: # if getattr(self.mesh, 'aveCC2Fy', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveCC2Fy = ( Utils.sdiag(1.0 / (self.aveFy2CC.T).sum(1)) * self.aveFy2CC.T ) else: self._aveCC2Fy = ( self.Pafy.T * self.mesh._aveCC2FyStencil() * self.Pac ) else: self._aveCC2Fy = ( Utils.sdiag(1.0 / (self.aveFy2CC.T).sum(1)) * self.aveFy2CC.T ) return self._aveCC2Fy @property def aveFz2CC(self): """ averaging from active cell centers to active z-faces :rtype: scipy.sparse.csr_matrix :return: averaging from active cell centers to active z-faces """ if getattr(self, "_aveFz2CC", None) is None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveFz2CC = self.Pac.T * self.mesh.aveFz2CC * self.Pafz else: nCinRow = mkvc((self.aveCC2Fz.T).sum(1)) nCinRow[nCinRow > 0] = 1.0 / nCinRow[nCinRow > 0] self._aveFz2CC = Utils.sdiag(nCinRow) * self.aveCC2Fz.T else: self._aveFz2CC = self.Pac.T * self.mesh.aveFz2CC * self.Pafz return self._aveFz2CC @property def aveCC2Fz(self): """ averaging from active z-faces to active cell centers :rtype: scipy.sparse.csr_matrix :return: averaging matrix from active z-faces to active cell centers """ if getattr(self, "_aveCC2Fz", None) is None: # if getattr(self.mesh, 'aveCC2Fz', None) is not None: if self.mesh._meshType == "TREE": if self.regularization_type == "Tikhonov": self._aveCC2Fz = ( Utils.sdiag(1.0 / (self.aveFz2CC.T).sum(1)) * self.aveFz2CC.T ) else: self._aveCC2Fz = ( self.Pafz.T * self.mesh._aveCC2FzStencil() * self.Pac ) else: self._aveCC2Fz = ( Utils.sdiag(1.0 / (self.aveFz2CC.T).sum(1)) * self.aveFz2CC.T ) return self._aveCC2Fz @property def cellDiffx(self): """ cell centered difference in the x-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the x-direction """ if getattr(self, "_cellDiffx", None) is None: self._cellDiffx = self.Pafx.T * self.mesh.cellGradx * self.Pac return self._cellDiffx @property def cellDiffy(self): """ cell centered difference in the y-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the y-direction """ if getattr(self, "_cellDiffy", None) is None: self._cellDiffy = self.Pafy.T * self.mesh.cellGrady * self.Pac return self._cellDiffy @property def cellDiffz(self): """ cell centered difference in the z-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the z-direction """ if getattr(self, "_cellDiffz", None) is None: self._cellDiffz = self.Pafz.T * self.mesh.cellGradz * self.Pac return self._cellDiffz @property def faceDiffx(self): """ x-face differences :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active faces in the x-direction """ if getattr(self, "_faceDiffx", None) is None: self._faceDiffx = self.Pac.T * self.mesh.faceDivx * self.Pafx return self._faceDiffx @property def faceDiffy(self): """ y-face differences :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active faces in the y-direction """ if getattr(self, "_faceDiffy", None) is None: self._faceDiffy = self.Pac.T * self.mesh.faceDivy * self.Pafy return self._faceDiffy @property def faceDiffz(self): """ z-face differences :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active faces in the z-direction """ if getattr(self, "_faceDiffz", None) is None: self._faceDiffz = self.Pac.T * self.mesh.faceDivz * self.Pafz return self._faceDiffz @property def cellDiffxStencil(self): """ cell centered difference stencil (no cell lengths include) in the x-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the x-direction """ if getattr(self, "_cellDiffxStencil", None) is None: self._cellDiffxStencil = ( self.Pafx.T * self.mesh._cellGradxStencil * self.Pac ) return self._cellDiffxStencil @property def cellDiffyStencil(self): """ cell centered difference stencil (no cell lengths include) in the y-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the y-direction """ if self.dim < 2: return None if getattr(self, "_cellDiffyStencil", None) is None: self._cellDiffyStencil = ( self.Pafy.T * self.mesh._cellGradyStencil * self.Pac ) return self._cellDiffyStencil @property def cellDiffzStencil(self): """ cell centered difference stencil (no cell lengths include) in the y-direction :rtype: scipy.sparse.csr_matrix :return: differencing matrix for active cells in the y-direction """ if self.dim < 3: return None if getattr(self, "_cellDiffzStencil", None) is None: self._cellDiffzStencil = ( self.Pafz.T * self.mesh._cellGradzStencil * self.Pac ) return self._cellDiffzStencil ############################################################################### # # # Base Regularization # # # ############################################################################### class BaseRegularization(ObjectiveFunction.BaseObjectiveFunction): """ Base class for regularization. Inherit this for building your own regularization. The base regularization assumes a weighted l2 style of regularization. However, if you wish to employ a different norm, the methods :meth:`__call__`, :meth:`deriv` and :meth:`deriv2` can be over-written :param BaseMesh mesh: SimPEG mesh """ def __init__(self, mesh=None, **kwargs): super().__init__() self.regmesh = RegularizationMesh(mesh) Utils.setKwargs(self, **kwargs) counter = None mrefInSmooth = properties.Bool( "include mref in the smoothness calculation?", default=None ) # Properties mref = Props.Array("reference model") indActive = properties.Array( "indices of active cells in the mesh", dtype=(bool, int) ) cell_weights = properties.Array( "regularization weights applied at cell centers", dtype=float ) regmesh = properties.Instance( "regularization mesh", RegularizationMesh, required=True ) mapping = properties.Instance( "mapping which is applied to model in the regularization", Maps.IdentityMap, default=Maps.IdentityMap(), ) # Observers and Validators @properties.validator("indActive") def _cast_to_bool(self, change): value = change["value"] if value is not None: if value.dtype != "bool": # cast it to a bool otherwise tmp = value value = np.zeros(self.regmesh.nC, dtype=bool) value[tmp] = True change["value"] = value # update regmesh indActive if getattr(self, "regmesh", None) is not None: self.regmesh.indActive = Utils.mkvc(value) @properties.observer("indActive") def _update_regmesh_indActive(self, change): # update regmesh indActive if getattr(self, "regmesh", None) is not None: self.regmesh.indActive = change["value"] @properties.validator("cell_weights") def _validate_cell_weights(self, change): if change["value"] is not None: # todo: residual size? we need to know the expected end shape if self._nC_residual != "*": assert ( len(change["value"]) == self._nC_residual ), "cell_weights must be length {} not {}".format( self._nC_residual, len(change["value"]) ) # Other properties and methods @property def nP(self): """ number of model parameters """ if getattr(self.mapping, "nP") != "*": return self.mapping.nP elif getattr(self.regmesh, "nC") != "*": return self.regmesh.nC else: return "*" @property def _nC_residual(self): """ Shape of the residual """ if getattr(self, "mapping", None) != "*": return self.mapping.shape[0] elif getattr(self.regmesh, "nC", None) != "*": return self.regmesh.nC else: return self.nP def _delta_m(self, m): if self.mref is None: return m return -self.mref + m # in case self.mref is Zero, returns type m @Utils.timeIt def __call__(self, m): """ We use a weighted 2-norm objective function .. math:: r(m) = \\frac{1}{2} """ r = self.W * (self.mapping * (self._delta_m(m))) return 0.5 * r.dot(r) @Utils.timeIt def deriv(self, m): """ The regularization is: .. math:: R(m) = \\frac{1}{2}\\mathbf{(m-m_\\text{ref})^\\top W^\\top W(m-m_\\text{ref})} So the derivative is straight forward: .. math:: R(m) = \\mathbf{W^\\top W (m-m_\\text{ref})} """ mD = self.mapping.deriv(self._delta_m(m)) r = self.W * (self.mapping * (self._delta_m(m))) return mD.T * (self.W.T * r) @Utils.timeIt def deriv2(self, m, v=None): """ Second derivative :param numpy.array m: geophysical model :param numpy.array v: vector to multiply :rtype: scipy.sparse.csr_matrix :return: WtW, or if v is supplied WtW*v (numpy.ndarray) The regularization is: .. math:: R(m) = \\frac{1}{2}\\mathbf{(m-m_\\text{ref})^\\top W^\\top W(m-m_\\text{ref})} So the second derivative is straight forward: .. math:: R(m) = \\mathbf{W^\\top W} """ mD = self.mapping.deriv(self._delta_m(m)) if v is None: return mD.T * self.W.T * self.W * mD return mD.T * (self.W.T * (self.W * (mD * v))) class Small(BaseRegularization): """ Small regularization - L2 regularization on the difference between a model and a reference model. Cell weights may be included. .. math:: r(m) = \\frac{1}{2}(\\mathbf{m} - \\mathbf{m_ref})^\top \\mathbf{W}^T \\mathbf{W} (\\mathbf{m} - \\mathbf{m_{ref}}) where :math:`\\mathbf{m}` is the model, :math:`\\mathbf{m_{ref}}` is a reference model (default Zero) and :math:`\\mathbf{W}` is a weighting matrix (default Identity. If cell weights are provided, then it is :code:`diag(cell_weights)`) **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights """ _multiplier_pair = "alpha_s" def __init__(self, mesh=None, **kwargs): super().__init__(mesh=mesh, **kwargs) @property def W(self): """ Weighting matrix """ if self.cell_weights is not None: return Utils.sdiag((self.regmesh.vol * self.cell_weights) ** 0.5) # elif self._nC_residual != '*': # return sp.eye(self._nC_residual) else: return Utils.sdiag(self.regmesh.vol ** 0.5) ############################################################################### # # # Base Combo Regularization # # # ############################################################################### class BaseComboRegularization(ObjectiveFunction.ComboObjectiveFunction): def __init__(self, mesh, objfcts=[], **kwargs): super().__init__(objfcts=objfcts, multipliers=None) self.regmesh = RegularizationMesh(mesh) Utils.setKwargs(self, **kwargs) # link these attributes linkattrs = ["regmesh", "indActive", "cell_weights", "mapping"] for attr in linkattrs: val = getattr(self, attr) if val is not None: [setattr(fct, attr, val) for fct in self.objfcts] # Properties alpha_s = Props.Float("smallness weight") alpha_x = Props.Float("weight for the first x-derivative") alpha_y = Props.Float("weight for the first y-derivative") alpha_z = Props.Float("weight for the first z-derivative") alpha_xx = Props.Float("weight for the second x-derivative") alpha_yy = Props.Float("weight for the second y-derivative") alpha_zz = Props.Float("weight for the second z-derivative") counter = None mref = Props.Array("reference model") mrefInSmooth = properties.Bool( "include mref in the smoothness calculation?", default=False ) indActive = properties.Array( "indices of active cells in the mesh", dtype=(bool, int) ) cell_weights = properties.Array( "regularization weights applied at cell centers", dtype=float ) scale = properties.Float("General nob for scaling", default=1.0) regmesh = properties.Instance( "regularization mesh", RegularizationMesh, required=True ) mapping = properties.Instance( "mapping which is applied to model in the regularization", Maps.IdentityMap, default=Maps.IdentityMap(), ) # Other properties and methods @property def nP(self): """ number of model parameters """ if getattr(self.mapping, "nP") != "*": return self.mapping.nP elif getattr(self.regmesh, "nC") != "*": return self.regmesh.nC else: return "*" @property def _nC_residual(self): """ Shape of the residual """ if getattr(self.regmesh, "nC", None) != "*": return self.regmesh.nC elif getattr(self, "mapping", None) != "*": return self.mapping.shape[0] else: return self.nP def _delta_m(self, m): if self.mref is None: return m return -self.mref + m # in case self.mref is Zero, returns type m @property def multipliers(self): """ Factors that multiply the objective functions that are summed together to build to composite regularization """ return [getattr(self, f"{objfct._multiplier_pair}") for objfct in self.objfcts] # Observers and Validators @properties.validator("indActive") def _cast_to_bool(self, change): value = change["value"] if value is not None: if value.dtype != "bool": # cast it to a bool otherwise tmp = value value = np.zeros(self.regmesh.nC, dtype=bool) value[tmp] = True change["value"] = value # update regmesh indActive if getattr(self, "regmesh", None) is not None: self.regmesh.indActive = Utils.mkvc(value) @properties.observer("indActive") def _update_regmesh_indActive(self, change): # update regmesh indActive if getattr(self, "regmesh", None) is not None: self.regmesh.indActive = change["value"] @properties.validator("cell_weights") def _validate_cell_weights(self, change): if change["value"] is not None: # todo: residual size? we need to know the expected end shape if self._nC_residual != "*": assert ( len(change["value"]) == self._nC_residual ), "cell_weights must be length {} not {}".format( self._nC_residual, len(change["value"]) ) @properties.observer("mref") def _mirror_mref_to_objfctlist(self, change): for fct in self.objfcts: if getattr(fct, "mrefInSmooth", None) is not None: if self.mrefInSmooth is False: fct.mref = Utils.Zero() else: fct.mref = change["value"] else: fct.mref = change["value"] @properties.observer("mrefInSmooth") def _mirror_mrefInSmooth_to_objfctlist(self, change): for fct in self.objfcts: if getattr(fct, "mrefInSmooth", None) is not None: fct.mrefInSmooth = change["value"] @properties.observer("indActive") def _mirror_indActive_to_objfctlist(self, change): value = change["value"] if value is not None: if value.dtype != "bool": tmp = value value = np.zeros(self.mesh.nC, dtype=bool) value[tmp] = True change["value"] = value if getattr(self, "regmesh", None) is not None: self.regmesh.indActive = value for fct in self.objfcts: fct.indActive = value @properties.observer("cell_weights") def _mirror_cell_weights_to_objfctlist(self, change): for fct in self.objfcts: fct.cell_weights = change["value"] @properties.observer("mapping") def _mirror_mapping_to_objfctlist(self, change): for fct in self.objfcts: fct.mapping = change["value"] ############################################################################### # # # Simple Regularization (no volume contribution) # # # ############################################################################### class SimpleSmall(BaseRegularization): """ Simple Small regularization - L2 regularization on the difference between a model and a reference model. Cell weights may be included. This does not include a volume contribution. .. math:: r(m) = \\frac{1}{2}(\\mathbf{m} - \\mathbf{m_ref})^\top \\mathbf{W}^T \\mathbf{W} (\\mathbf{m} - \\mathbf{m_{ref}}) where :math:`\\mathbf{m}` is the model, :math:`\\mathbf{m_{ref}}` is a reference model and :math:`\\mathbf{W}` is a weighting matrix (default Identity). If cell weights are provided, then it is :code:`diag(np.sqrt(cell_weights))`) **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights """ _multiplier_pair = "alpha_s" def __init__(self, mesh=None, **kwargs): super().__init__(mesh=mesh, **kwargs) @property def W(self): """ Weighting matrix """ if self.cell_weights is not None: return Utils.sdiag(np.sqrt(self.cell_weights)) elif self._nC_residual != "*": return sp.eye(self._nC_residual) else: return Utils.Identity() class SimpleSmall(BaseRegularization): """ Small regularization - L2 regularization on the difference between a model and a reference model. Cell weights may be included. .. math:: r(m) = \\frac{1}{2}(\\mathbf{m} - \\mathbf{m_ref})^\top \\mathbf{W}^T \\mathbf{W} (\\mathbf{m} - \\mathbf{m_{ref}}) where :math:`\\mathbf{m}` is the model, :math:`\\mathbf{m_{ref}}` is a reference model (default Zero) and :math:`\\mathbf{W}` is a weighting matrix (default Identity. If cell weights are provided, then it is :code:`diag(cell_weights)`) **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights """ _multiplier_pair = "alpha_s" def __init__(self, mesh=None, **kwargs): super().__init__(mesh=mesh, **kwargs) @property def W(self): """ Weighting matrix """ if self.cell_weights is not None: return Utils.sdiag(self.cell_weights ** 0.5) elif self._nC_residual != "*": return sp.eye(self._nC_residual) else: return Utils.Identity() class SimpleSmoothDeriv(BaseRegularization): """ Base Simple Smooth Regularization. This base class regularizes on the first spatial derivative, not considering length scales, in the provided orientation **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights :param bool mrefInSmooth: include the reference model in the smoothness computation? (eg. look at Deriv of m (False) or Deriv of (m-mref) (True)) :param numpy.ndarray cell_weights: vector of cell weights (applied in all terms) """ def __init__(self, mesh, orientation="x", **kwargs): self.length_scales = None self.orientation = orientation assert self.orientation in [ "x", "y", "z", ], "Orientation must be 'x', 'y' or 'z'" self.gradientType = gradientType assert self.gradientType in [ "orthogonal", "total", ], "gradientType must be 'orthogonal' or 'total'" if self.orientation == "y": assert mesh.dim > 1, ( "Mesh must have at least 2 dimensions to regularize along the " "y-direction" ) elif self.orientation == "z": assert mesh.dim > 2, ( "Mesh must have at least 3 dimensions to regularize along the " "z-direction" ) super().__init__(mesh=mesh, **kwargs) mrefInSmooth = properties.Bool( "include mref in the smoothness calculation?", default=False ) @property def _multiplier_pair(self): return f"alpha_{self.orientation}" @property def W(self): """ Weighting matrix that takes the first spatial difference (no length scales considered) in the specified orientation """ Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") W = getattr(self.regmesh, f"cellDiff{self.orientation}Stencil",) if self.cell_weights is not None: W = Utils.sdiag((Ave * (self.cell_weights)) ** 0.5) * W else: W = Utils.sdiag((Ave * (self.regmesh.vol)) ** 0.5) * W return W @property def length_scales(self): if getattr(self, "_length_scales", None) is None: index = "xyz".index(self.orientation) length_scales = ( self.regmesh.Pac.T * self.regmesh.mesh.h_gridded[:, index] ) ** 2.0 self._length_scales = length_scales / length_scales.min() return self._length_scales @length_scales.setter def length_scales(self, value): self._length_scales = value class Simple(BaseComboRegularization): """ Simple regularization that does not include length scales in the derivatives. .. math:: r(\\mathbf{m}) = \\alpha_s \\phi_s + \\alpha_x \\phi_x + \\alpha_y \\phi_y + \\alpha_z \\phi_z where: - :math:`\\phi_s` is a :class:`SimPEG.Regularization.Small` instance - :math:`\\phi_x` is a :class:`SimPEG.Regularization.SimpleSmoothDeriv` instance, with :code:`orientation='x'` - :math:`\\phi_y` is a :class:`SimPEG.Regularization.SimpleSmoothDeriv` instance, with :code:`orientation='y'` - :math:`\\phi_z` is a :class:`SimPEG.Regularization.SimpleSmoothDeriv` instance, with :code:`orientation='z'` **Required Inputs** :param BaseMesh mesh: a SimPEG mesh **Optional Inputs** :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights :param bool mrefInSmooth: include the reference model in the smoothness computation? (eg. look at Deriv of m (False) or Deriv of (m-mref) (True)) :param numpy.ndarray cell_weights: vector of cell weights (applied in all terms) **Weighting Parameters** :param float alpha_s: weighting on the smallness (default 1.) :param float alpha_x: weighting on the x-smoothness (default 1.) :param float alpha_y: weighting on the y-smoothness (default 1.) :param float alpha_z: weighting on the z-smoothness(default 1.) """ def __init__( self, mesh, alpha_s=1.0, alpha_x=1.0, alpha_y=1.0, alpha_z=1.0, **kwargs ): objfcts = [ SimpleSmall(mesh=mesh, **kwargs), SimpleSmoothDeriv(mesh=mesh, orientation="x", **kwargs), ] if mesh.dim > 1: objfcts.append(SimpleSmoothDeriv(mesh=mesh, orientation="y", **kwargs)) if mesh.dim > 2: objfcts.append(SimpleSmoothDeriv(mesh=mesh, orientation="z", **kwargs)) super().__init__( mesh=mesh, objfcts=objfcts, alpha_s=alpha_s, alpha_x=alpha_x, alpha_y=alpha_y, alpha_z=alpha_z, **kwargs, ) ############################################################################### # # # Tikhonov-Style Regularization (includes volume contribution) # # # ############################################################################### class Small(BaseRegularization): """ Small regularization - L2 regularization on the difference between a model and a reference model. Cell weights may be included. A volume contribution is included .. math:: r(m) = \\frac{1}{2}(\\mathbf{m} - \\mathbf{m_ref})^\top \\mathbf{W}^T \\mathbf{W} (\\mathbf{m} - \\mathbf{m_{ref}}) where :math:`\\mathbf{m}` is the model, :math:`\\mathbf{m_{ref}}` is a reference model and :math:`\\mathbf{W}` is a weighting matrix (default :code:`diag(np.sqrt(vol))`. If cell weights are provided, then it is :code:`diag(np.sqrt(vol * cell_weights))`) **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights """ _multiplier_pair = "alpha_s" def __init__(self, mesh=None, **kwargs): super().__init__(mesh=mesh, **kwargs) @property def W(self): """ Weighting matrix """ if self.cell_weights is not None: return Utils.sdiag(np.sqrt(self.regmesh.vol * self.cell_weights)) return Utils.sdiag(np.sqrt(self.regmesh.vol)) class SmoothDeriv(BaseRegularization): """ Base Smooth Regularization. This base class regularizes on the first spatial derivative in the provided orientation **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights :param bool mrefInSmooth: include the reference model in the smoothness computation? (eg. look at Deriv of m (False) or Deriv of (m-mref) (True)) :param numpy.ndarray cell_weights: vector of cell weights (applied in all terms) """ mrefInSmooth = properties.Bool( "include mref in the smoothness calculation?", default=False ) def __init__(self, mesh, orientation="x", **kwargs): self.orientation = orientation assert orientation in ["x", "y", "z"], "Orientation must be 'x', 'y' or 'z'" if self.orientation == "y": assert mesh.dim > 1, ( "Mesh must have at least 2 dimensions to regularize along the " "y-direction" ) elif self.orientation == "z": assert mesh.dim > 2, ( "Mesh must have at least 3 dimensions to regularize along the " "z-direction" ) super().__init__(mesh=mesh, **kwargs) if self.mrefInSmooth is False: self.mref = Utils.Zero() @property def _multiplier_pair(self): return f"alpha_{self.orientation}" @property def W(self): """ Weighting matrix that constructs the first spatial derivative stencil in the specified orientation """ vol = self.regmesh.vol.copy() if self.cell_weights is not None: vol *= self.cell_weights D = getattr(self.regmesh, f"cellDiff{self.orientation}") Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") return Utils.sdiag(np.sqrt(Ave * vol)) * D class SmoothDeriv2(BaseRegularization): """ Base Smooth Regularization. This base class regularizes on the second spatial derivative in the provided orientation **Optional Inputs** :param BaseMesh mesh: SimPEG mesh :param int nP: number of parameters :param IdentityMap mapping: regularization mapping, takes the model from model space to the space you want to regularize in :param numpy.ndarray mref: reference model :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param numpy.ndarray cell_weights: cell weights :param bool mrefInSmooth: include the reference model in the smoothness computation? (eg. look at Deriv of m (False) or Deriv of (m-mref) (True)) :param numpy.ndarray cell_weights: vector of cell weights (applied in all terms) """ def __init__(self, mesh, orientation="x", **kwargs): self.orientation = orientation if self.orientation == "y": assert mesh.dim > 1, ( "Mesh must have at least 2 dimensions to regularize along the " "y-direction" ) elif self.orientation == "z": assert mesh.dim > 2, ( "Mesh must have at least 3 dimensions to regularize along the " "z-direction" ) super().__init__(mesh=mesh, **kwargs) @property def _multiplier_pair(self): return "alpha_{orientation}{orientation}".format(orientation=self.orientation) @property def W(self): """ Weighting matrix that takes the second spatial derivative in the specified orientation """ vol = self.regmesh.vol.copy() if self.cell_weights is not None: vol *= self.cell_weights W = ( Utils.sdiag(vol ** 0.5) * getattr(self.regmesh, f"faceDiff{self.orientation}",) * getattr(self.regmesh, f"cellDiff{self.orientation}",) ) return W class Tikhonov(BaseComboRegularization): """ L2 Tikhonov regularization with both smallness and smoothness (first order derivative) contributions. .. math:: \\phi_m(\\mathbf{m}) = \\alpha_s \\| W_s (\\mathbf{m} - \\mathbf{m_{ref}} ) \\|^2 + \\alpha_x \\| W_x \\frac{\\partial}{\\partial x} (\\mathbf{m} - \\mathbf{m_{ref}} ) \\|^2 + \\alpha_y \\| W_y \\frac{\\partial}{\\partial y} (\\mathbf{m} - \\mathbf{m_{ref}} ) \\|^2 + \\alpha_z \\| W_z \\frac{\\partial}{\\partial z} (\\mathbf{m} - \\mathbf{m_{ref}} ) \\|^2 Note if the key word argument `mrefInSmooth` is False, then mref is not included in the smoothness contribution. :param BaseMesh mesh: SimPEG mesh :param IdentityMap mapping: regularization mapping, takes the model from model space to the thing you want to regularize :param numpy.ndarray indActive: active cell indices for reducing the size of differential operators in the definition of a regularization mesh :param bool mrefInSmooth: (default = False) put mref in the smoothness component? :param float alpha_s: (default 1e-6) smallness weight :param float alpha_x: (default 1) smoothness weight for first derivative in the x-direction :param float alpha_y: (default 1) smoothness weight for first derivative in the y-direction :param float alpha_z: (default 1) smoothness weight for first derivative in the z-direction :param float alpha_xx: (default 1) smoothness weight for second derivative in the x-direction :param float alpha_yy: (default 1) smoothness weight for second derivative in the y-direction :param float alpha_zz: (default 1) smoothness weight for second derivative in the z-direction """ def __init__( self, mesh, alpha_s=1e-6, alpha_x=1.0, alpha_y=1.0, alpha_z=1.0, alpha_xx=0.0, alpha_yy=0.0, alpha_zz=0.0, **kwargs, ): objfcts = [ Small(mesh=mesh, **kwargs), SmoothDeriv(mesh=mesh, orientation="x", **kwargs), # SmoothDeriv2(mesh=mesh, orientation='x', **kwargs) ] if mesh.dim > 1: objfcts += [ SmoothDeriv(mesh=mesh, orientation="y", **kwargs), SmoothDeriv2(mesh=mesh, orientation="y", **kwargs), ] if mesh.dim > 2: objfcts += [ SmoothDeriv(mesh=mesh, orientation="z", **kwargs), SmoothDeriv2(mesh=mesh, orientation="z", **kwargs), ] super().__init__( mesh, alpha_s=alpha_s, alpha_x=alpha_x, alpha_y=alpha_y, alpha_z=alpha_z, alpha_xx=alpha_xx, alpha_yy=alpha_yy, alpha_zz=alpha_zz, objfcts=objfcts, **kwargs, ) self.regmesh.regularization_type = "Tikhonov" class BaseSparse(BaseRegularization): """ Base class for building up the components of the Sparse Regularization """ def __init__(self, mesh, **kwargs): self._stashedR = None super().__init__(mesh=mesh, **kwargs) model = properties.Array("current model", dtype=float) gamma = properties.Float( "Model norm scaling to smooth out convergence", default=1.0 ) epsilon = properties.Float( "Threshold value for the model norm", default=1e-3, required=True ) norm = properties.Array("norm used", dtype=float) space = properties.String("By default inherit the objctive", default="linear") gradientType = properties.String("type of gradient", default="total") scale = properties.Array("General nob for scaling", dtype=float) # Give the option to scale or not scaledIRLS = properties.Bool("Scale the gradients of the IRLS norms", default=True) @properties.validator("scale") def _validate_scale(self, change): if change["value"] is not None: # todo: residual size? we need to know the expected end shape if self._nC_residual != "*": assert ( len(change["value"]) == self._nC_residual ), "scale must be length {} not {}".format( self._nC_residual, len(change["value"]) ) @property def stashedR(self): return self._stashedR @stashedR.setter def stashedR(self, value): self._stashedR = value class SparseSmall(BaseSparse): """ Sparse smallness regularization **Inputs** :param int norm: norm on the smallness """ _multiplier_pair = "alpha_s" def __init__(self, mesh, **kwargs): super().__init__(mesh=mesh, **kwargs) # Give the option to scale or not scaledIRLS = properties.Bool("Scale the gradients of the IRLS norms", default=True) @property def f_m(self): return self.mapping * self._delta_m(self.model) @property def W(self): if getattr(self, "model", None) is None: R = Utils.speye(self.mapping.shape[0]) else: r = self.R(self.f_m) R = Utils.sdiag(r) if self.scale is None: self.scale = np.ones(self.mapping.shape[0]) if self.cell_weights is not None: return Utils.sdiag((self.scale * self.cell_weights) ** 0.5) * R return Utils.sdiag((self.scale * self.regmesh.vol) ** 0.5) * R def R(self, f_m): # if R is stashed, return that instead if getattr(self, "stashedR") is not None: return self.stashedR # Default to 1 for zero gradients eta = np.ones_like(f_m) if self.scaledIRLS: # Eta scaling is important for mix-norms...do not mess with it maxVal = np.ones_like(f_m) * np.abs(f_m).max() maxVal[self.norm < 1] = self.epsilon / np.sqrt( 1.0 - self.norm[self.norm < 1] ) maxGrad = maxVal / (maxVal ** 2.0 + self.epsilon ** 2.0) ** ( 1.0 - self.norm / 2.0 ) eta[maxGrad != 0] = np.abs(f_m).max() / maxGrad[maxGrad != 0] r = (eta / (f_m ** 2.0 + self.epsilon ** 2.0) ** (1.0 - self.norm / 2.0)) ** 0.5 # Theoritical full deriv for testing # r = ( # eta * ( # 1. / (f_m**2. + self.epsilon**2.)**(1.-self.norm/2.) + # (self.norm/2. - 1.) * f_m**2. / (f_m**2. + self.epsilon**2.)**(2.-self.norm/2.) # ) # )**0.5 self.stashedR = r # stash on the first calculation return r @Utils.timeIt def deriv(self, m): """ The regularization is: .. math:: R(m) = \\frac{1}{2}\\mathbf{(m-m_\\text{ref})^\\top W^\\top W(m-m_\\text{ref})} So the derivative is straight forward: .. math:: R(m) = \\mathbf{W^\\top W (m-m_\\text{ref})} """ mD = self.mapping.deriv(self._delta_m(m)) r = self.gamma * self.W * (self.mapping * (self._delta_m(m))) return mD.T * (self.W.T * r) class SparseDeriv(BaseSparse): """ Base Class for sparse regularization on first spatial derivatives """ def __init__(self, mesh, orientation="x", **kwargs): self.length_scales = None self.ratio = 1.0 self.orientation = orientation super().__init__(mesh=mesh, **kwargs) mrefInSmooth = properties.Bool( "include mref in the smoothness calculation?", default=False ) # Give the option to scale or not scaledIRLS = properties.Bool("Scale the gradients of the IRLS norms", default=True) @Utils.timeIt def __call__(self, m): """ We use a weighted 2-norm objective function .. math:: r(m) = \\frac{1}{2} """ if self.mrefInSmooth: f_m = self._delta_m(m) else: f_m = m if self.scale is None: self.scale = np.ones(self.mapping.shape[0]) if self.space == "spherical": Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") if getattr(self, "model", None) is None: R = Utils.speye(self.cellDiffStencil.shape[0]) else: r = self.R(self.f_m) R = Utils.sdiag(r) if self.cell_weights is not None: W = Utils.sdiag((Ave * (self.scale * self.cell_weights)) ** 0.5) * R else: W = Utils.sdiag((Ave * (self.scale * self.regmesh.vol)) ** 0.5) * R dmdx = self.cellDiffStencil * (self.mapping * f_m) dmdx = Utils.sdiag(self.length_scales) * coterminal(dmdx) r = W * dmdx else: r = self.W * (self.mapping * f_m) return 0.5 * r.dot(r) def R(self, f_m): # if R is stashed, return that instead if getattr(self, "stashedR") is not None: return self.stashedR # Ave = getattr(self.regmesh, 'aveCC2F{}'.format(self.orientation)) eta = np.ones_like(f_m) if self.scaledIRLS: # Eta scaling is important for mix-norms...do not mess with it maxVal = np.ones_like(f_m) * np.abs(f_m).max() maxVal[self.norm < 1] = self.epsilon / np.sqrt( 1.0 - self.norm[self.norm < 1] ) maxGrad = maxVal / (maxVal ** 2.0 + (self.epsilon) ** 2.0) ** ( 1.0 - self.norm / 2.0 ) eta[maxGrad != 0] = np.abs(f_m).max() / maxGrad[maxGrad != 0] r = ( eta / (f_m ** 2.0 + (self.epsilon) ** 2.0) ** (1.0 - self.norm / 2.0) ) ** 0.5 # Theoritical full deriv for testing # r = ( # eta * ( # 1. / (f_m**2. + self.epsilon**2.)**(1.-self.norm/2.) + # (self.norm/2. - 1.) * f_m**2. / (f_m**2. + self.epsilon**2.)**(2.-self.norm/2.) # ) # )**0.5 # print(eta) self.stashedR = r # stash on the first calculation return r @Utils.timeIt def deriv(self, m): """ The regularization is: .. math:: R(m) = \\frac{1}{2}\\mathbf{(m-m_\\text{ref})^\\top W^\\top W(m-m_\\text{ref})} So the derivative is straight forward: .. math:: R(m) = \\mathbf{W^\\top W (m-m_\\text{ref})} """ if self.mrefInSmooth: f_m = self._delta_m(m) else: f_m = m if self.scale is None: self.scale = np.ones(self.mapping.shape[0]) if self.space == "spherical": Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") if getattr(self, "model", None) is None: R = Utils.speye(self.cellDiffStencil.shape[0]) else: r = self.R(self.f_m) R = Utils.sdiag(r) if self.cell_weights is not None: W = Utils.sdiag((Ave * (self.scale * self.cell_weights)) ** 0.5) * R else: W = Utils.sdiag((Ave * (self.scale * self.regmesh.vol)) ** 0.5) * R dmdx = self.cellDiffStencil * (self.mapping * f_m) dmdx = Utils.sdiag(self.length_scales) * coterminal(dmdx) r = self.gamma * W * dmdx else: r = self.gamma * self.W * (self.mapping * f_m) mD = self.mapping.deriv(f_m) return mD.T * (self.W.T * r) @property def _multiplier_pair(self): return f"alpha_{self.orientation}" @property def f_m(self): if self.mrefInSmooth: f_m = self._delta_m(self.model) else: f_m = self.model if self.scale is None: self.scale = np.ones(self.mapping.shape[0]) if self.gradientType == "total": Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") dmdx = self.regmesh.cellDiffxStencil * (self.mapping * f_m) if self.space == "spherical": dmdx = coterminal(dmdx) dmdx = self.regmesh.aveFx2CC * (Utils.sdiag(self.length_x) * dmdx) if self.regmesh.dim > 1: dmdy = self.regmesh.cellDiffyStencil * (self.mapping * f_m) if self.space == "spherical": dmdy = coterminal(dmdy) dmdy = self.regmesh.aveFy2CC * (Utils.sdiag(self.length_y) * dmdy) if self.regmesh.dim > 2: dmdz = self.regmesh.cellDiffzStencil * (self.mapping * f_m) if self.space == "spherical": dmdz = coterminal(dmdz) dmdz = self.regmesh.aveFz2CC * (Utils.sdiag(self.length_z) * dmdz) if self.regmesh.dim == 2: dmdx = (dmdx ** 2.0 + dmdy ** 2.0) ** 0.5 elif self.regmesh.dim == 3: dmdx = (dmdx ** 2.0 + dmdy ** 2.0 + dmdz ** 2.0) ** 0.5 dmdx = Ave * dmdx else: dmdx = self.cellDiffStencil * (self.mapping * f_m) if self.space == "spherical": dmdx = Utils.sdiag(self.length_scales) * coterminal(dmdx) return dmdx @property def cellDiffStencil(self): return getattr(self.regmesh, f"cellDiff{self.orientation}Stencil") @property def W(self): Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") if getattr(self, "model", None) is None: R = Utils.speye(self.cellDiffStencil.shape[0]) else: r = self.R(self.f_m) R = Utils.sdiag(r) if self.scale is None: self.scale = np.ones(self.mapping.shape[0]) if self.cell_weights is not None: return ( Utils.sdiag((Ave * (self.scale * self.cell_weights)) ** 0.5) * R * Utils.sdiag(self.length_scales) * self.cellDiffStencil ) return ( Utils.sdiag((Ave * (self.scale * self.regmesh.vol)) ** 0.5) * R * Utils.sdiag(self.length_scales) * self.cellDiffStencil ) @property def length_scales(self): if getattr(self, "_length_scales", None) is None: Ave = getattr(self.regmesh, f"aveCC2F{self.orientation}") index = "xyz".index(self.orientation) length_scales = Ave * ( self.regmesh.Pac.T * self.regmesh.mesh.h_gridded[:, index] ) # print(self.orientation, self.ratio) self._length_scales = self.ratio * length_scales.min() / length_scales return self._length_scales @length_scales.setter def length_scales(self, value): self._length_scales = value @property def length_x(self): if getattr(self, "_length_x", None) is None: Ave = getattr(self.regmesh, "aveCC2Fx") length_scales = Ave * ( self.regmesh.Pac.T * self.regmesh.mesh.h_gridded[:, 0] ) self._length_x = self.ratio * length_scales.min() / length_scales return self._length_x @property def length_y(self): if getattr(self, "_length_y", None) is None: Ave = getattr(self.regmesh, "aveCC2Fy") length_scales = Ave * ( self.regmesh.Pac.T * self.regmesh.mesh.h_gridded[:, 1] ) self._length_y = self.ratio * length_scales.min() / length_scales return self._length_y @property def length_z(self): if getattr(self, "_length_z", None) is None: Ave = getattr(self.regmesh, "aveCC2Fz") length_scales = Ave * ( self.regmesh.Pac.T * self.regmesh.mesh.h_gridded[:, 2] ) self._length_z = self.ratio * length_scales.min() / length_scales return self._length_z class Sparse(BaseComboRegularization): """ The regularization is: .. math:: R(m) = \\frac{1}{2}\\mathbf{(m-m_\\text{ref})^\\top W^\\top R^\\top R W(m-m_\\text{ref})} where the IRLS weight .. math:: R = \\eta TO FINISH LATER!!! So the derivative is straight forward: .. math:: R(m) = \\mathbf{W^\\top R^\\top R W (m-m_\\text{ref})} The IRLS weights are recomputed after each beta solves. It is strongly recommended to do a few Gauss-Newton iterations before updating. """ def __init__( self, mesh, alpha_s=1.0, alpha_x=1.0, alpha_y=1.0, alpha_z=1.0, **kwargs ): objfcts = [ SparseSmall(mesh=mesh, **kwargs), SparseDeriv(mesh=mesh, orientation="x", **kwargs), ] max_h = np.max(np.hstack(mesh.h)) if mesh.dim > 1: objfcts.append(SparseDeriv(mesh=mesh, orientation="y", **kwargs)) objfcts[1].ratio = max_h / mesh.hx.min() objfcts[2].ratio = max_h / mesh.hy.min() if mesh.dim > 2: objfcts.append(SparseDeriv(mesh=mesh, orientation="z", **kwargs)) objfcts[3].ratio = max_h / mesh.hz.min() super().__init__( mesh=mesh, objfcts=objfcts, alpha_s=alpha_s, alpha_x=alpha_x, alpha_y=alpha_y, alpha_z=alpha_z, **kwargs, ) self.mesh = mesh # Utils.setKwargs(self, **kwargs) # Properties norms = properties.Array( "Norms used to create the sparse regularization", default=np.c_[2.0, 2.0, 2.0, 2.0], shape={("*", "*")}, ) eps_p = properties.Float("Threshold value for the model norm", required=True) eps_q = properties.Float( "Threshold value for the model gradient norm", required=True ) model = properties.Array("current model", dtype=float) gamma = properties.Float( "Model norm scaling to smooth out convergence", default=1.0 ) space = properties.String("type of model", default="linear") gradientType = properties.String("type of gradient", default="components") scales = properties.Array( "General nob for scaling", default=np.c_[1.0, 1.0, 1.0, 1.0], shape={("*", "*")} ) # Give the option to scale or not scaledIRLS = properties.Bool("Scale the gradients of the IRLS norms", default=True) # Save the l2 result during the IRLS l2model = None @properties.validator("norms") def _validate_norms(self, change): if change["value"].shape[0] == 1: change["value"] = np.kron( np.ones((self.regmesh.Pac.shape[1], 1)), change["value"] ) elif change["value"].shape[0] > 1: assert change["value"].shape[0] == self.regmesh.Pac.shape[1], ( "Vector of norms must be the size of active model parameters ({})" "The provided vector has length " "{}".format(self.regmesh.Pac.shape[0], len(change["value"])) ) # Observers @properties.observer("norms") def _mirror_norms_to_objfcts(self, change): self.objfcts[0].norm = change["value"][:, 0] for i, objfct in enumerate(self.objfcts[1:]): Ave = getattr(objfct.regmesh, f"aveCC2F{objfct.orientation}") objfct.norm = Ave * change["value"][:, i + 1] @properties.observer("model") def _mirror_model_to_objfcts(self, change): for objfct in self.objfcts: objfct.model = change["value"] @properties.observer("gamma") def _mirror_gamma_to_objfcts(self, change): for objfct in self.objfcts: objfct.gamma = change["value"] @properties.observer("eps_p") def _mirror_eps_p_to_smallness(self, change): for objfct in self.objfcts: if isinstance(objfct, SparseSmall): objfct.epsilon = change["value"] @properties.observer("eps_q") def _mirror_eps_q_to_derivs(self, change): for objfct in self.objfcts: if isinstance(objfct, SparseDeriv): objfct.epsilon = change["value"] @properties.observer("space") def _mirror_space_to_objfcts(self, change): for objfct in self.objfcts: objfct.space = change["value"] @properties.observer("scaledIRLS") def _mirror_scaledIRLS_to_objfcts(self, change): for objfct in self.objfcts: objfct.scaledIRLS = change["value"] @properties.observer("gradientType") def _mirror_gradientType_to_objfcts(self, change): for objfct in self.objfcts: objfct.gradientType = change["value"] @properties.validator("scales") def _validate_scales(self, change): if change["value"].shape[0] == 1: change["value"] = np.kron( np.ones((self.regmesh.Pac.shape[1], 1)), change["value"] ) elif change["value"].shape[0] > 1: assert change["value"].shape[0] == self.regmesh.Pac.shape[1], ( "Vector of scales must be the size of active model parameters ({})" "The provided vector has length " "{}".format(self.regmesh.Pac.shape[0], len(change["value"])) ) # Observers @properties.observer("scales") def _mirror_scale_to_objfcts(self, change): for i, objfct in enumerate(self.objfcts): objfct.scale = change["value"][:, i] def coterminal(theta): """ Compute coterminal angle so that [-pi < theta < pi]""" sub = theta[np.abs(theta) >= np.pi] sub = -np.sign(sub) * (2 * np.pi - np.abs(sub)) theta[np.abs(theta) >= np.pi] = sub return theta def ddx(n, vals): """Define 1D averaging operator from cell-centers to nodes.""" ddx = sp.spdiags((np.ones((n, 1)) * vals).T, [-1, 0, 1], n, n, format="csr") return ddx def getDiffOpRot(mesh, psi, theta, phi, vec, forward=True): import scipy as sp assert mesh.dim > 1, "Only for mesh 2D and 3D" def getCellNeighbors(mesh): Dx = mesh._cellGradxStencil Dy = mesh._cellGradyStencil # Get the current IJ of the stencil derive Ix, Jx, _ = sp.sparse.find(Dx) Iy, Jy, _ = sp.sparse.find(Dy) jx = np.sort(Jx[np.argsort(Ix)].reshape((int(Ix.shape[0] / 2), 2)), axis=1) jy = np.sort(Jy[np.argsort(Iy)].reshape((int(Iy.shape[0] / 2), 2)), axis=1) jx_bck = np.c_[jx[:, 1], jx[:, 0]] jy_bck = np.c_[jy[:, 1], jy[:, 0]] maxInd = np.max([jx.max(), jy.max()]) if mesh.dim == 3: Dz = mesh._cellGradzStencil Iz, Jz, _ = sp.sparse.find(Dz) jz = np.sort(Jz[np.argsort(Iz)].reshape((int(Iz.shape[0] / 2), 2)), axis=1) jz_bck = np.c_[jz[:, 1], jz[:, 0]] maxInd = np.max([jz.max(), maxInd]) # Cycle through the gradients forward and backward to deal with multiple # levels on Tree mesh # Pre-allocate index arrays jAll = [] # Store div_xy = np.ones(maxInd + 1, dtype="int") * -1 div_yx = np.ones(maxInd + 1, dtype="int") * -1 div_xyb = np.ones(maxInd + 1, dtype="int") * -1 div_yxb = np.ones(maxInd + 1, dtype="int") * -1 div_xy[jy[:, 0]] = jy[:, 1] # Find y neigbour of x adjacent div_yx[jx[:, 1]] = jx[:, 0] # Find x neigbour of y adjacent div_xyb[jy_bck[:, 0]] = jy_bck[:, 1] # Find y neigbour of x adjacent backward div_yxb[jx_bck[:, 1]] = jx_bck[:, 0] # Find x neigbour of y adjacent backward jAll += [jx] jAll += [jy] jAll += [np.c_[jx[:, 0], div_xy[jx[:, 1]]]] jAll += [np.c_[jx[:, 1], div_xy[jx[:, 0]]]] jAll += [np.c_[div_yx[jy[:, 0]], jy[:, 1]]] jAll += [np.c_[div_yx[jy[:, 1]], jy[:, 0]]] # Repeat backward for Treemesh jAll += [jx_bck] jAll += [jy_bck] jAll += [np.c_[jx_bck[:, 0], div_xyb[jx_bck[:, 1]]]] jAll += [np.c_[jx_bck[:, 1], div_xyb[jx_bck[:, 0]]]] # Stack all and keep only unique pairs jAll = np.vstack(jAll) jAll = np.unique(jAll, axis=0) # Remove all the -1 for TreeMesh jAll = jAll[(jAll[:, 0] != -1) & (jAll[:, 1] != -1), :] # Use all the neighbours on the xy plane to find neighbours in z if mesh.dim == 3: jAllz = [] div_z = np.ones(maxInd + 1, dtype="int") * -1 div_zb = np.ones(maxInd + 1, dtype="int") * -1 div_z[jz[:, 0]] = jz[:, 1] div_zb[jz_bck[:, 0]] = jz_bck[:, 1] jAllz += [jz] jAllz += [jz_bck] jAllz += [np.c_[jAll[:, 0], div_z[jAll[:, 1]]]] jAllz += [np.c_[jAll[:, 1], div_z[jAll[:, 0]]]] jAllz += [np.c_[jAll[:, 0], div_zb[jAll[:, 1]]]] jAllz += [np.c_[jAll[:, 1], div_zb[jAll[:, 0]]]] # Stack all and keep only unique pairs jAll = np.vstack([jAll, np.vstack(jAllz)]) jAll = np.unique(jAll, axis=0) # Remove all the -1 for TreeMesh jAll = jAll[(jAll[:, 0] != -1) & (jAll[:, 1] != -1), :] return jAll hx = mesh.h_gridded[:, 0] hy = mesh.h_gridded[:, 1] if isinstance(phi, float): phi = np.ones(mesh.nC) * phi phi = np.arctan2((np.sin(phi) / hy), (np.cos(phi) / hx)) if mesh.dim == 3: hz = mesh.h_gridded[:, 2] if isinstance(theta, float): theta = np.ones(mesh.nC) * theta theta = np.arctan2((np.sin(theta) / hz), (np.cos(theta) / hx)) if isinstance(psi, float): psi = np.ones(mesh.nC) * psi psi = np.arctan2((np.sin(psi) / hz), (np.cos(psi) / hy)) if forward: ind = 1 else: ind = -1 if mesh.dim == 2: if vec == "X": px = np.kron(np.ones(mesh.nC), np.c_[ind, 0]) elif vec == "Y": px = np.kron(np.ones(mesh.nC), np.c_[0, ind]) if mesh.dim == 3: if vec == "X": px = np.kron(np.ones(mesh.nC), np.c_[ind, 0, 0]) elif vec == "Y": px = np.kron(np.ones(mesh.nC), np.c_[0, ind, 0]) else: px = np.kron(np.ones(mesh.nC), np.c_[0, 0, ind]) if mesh.dim == 2: rza = mkvc(np.c_[np.cos(phi), np.cos(phi)].T) rzb = mkvc(np.c_[np.sin(phi), np.zeros(mesh.nC)].T) rzc = mkvc(np.c_[-np.sin(phi), np.zeros(mesh.nC)].T) Rz = sp.sparse.diags([rzb[:-1], rza, rzc[:-1]], [-1, 0, 1]) rx = (Rz * px.T).reshape((mesh.nC, 2)) else: # Create sparse rotation operators rxa = mkvc(np.c_[np.ones(mesh.nC), np.cos(psi), np.cos(psi)].T) rxb = mkvc(np.c_[np.zeros(mesh.nC), np.sin(psi), np.zeros(mesh.nC)].T) rxc = mkvc(np.c_[np.zeros(mesh.nC), -np.sin(psi), np.zeros(mesh.nC)].T) Rx = sp.sparse.diags([rxb[:-1], rxa, rxc[:-1]], [-1, 0, 1]) rya = mkvc(np.c_[np.cos(theta), np.ones(mesh.nC), np.cos(theta)].T) ryb = mkvc(np.c_[np.sin(theta), np.zeros(mesh.nC), np.zeros(mesh.nC)].T) ryc = mkvc(np.c_[-np.sin(theta), np.zeros(mesh.nC), np.zeros(mesh.nC)].T) Ry = sp.sparse.diags([ryb[:-2], rya, ryc[:-2]], [-2, 0, 2]) rza = mkvc(np.c_[np.cos(phi), np.cos(phi), np.ones(mesh.nC)].T) rzb = mkvc(np.c_[np.sin(phi), np.zeros(mesh.nC), np.zeros(mesh.nC)].T) rzc = mkvc(np.c_[-np.sin(phi), np.zeros(mesh.nC), np.zeros(mesh.nC)].T) Rz = sp.sparse.diags([rzb[:-1], rza, rzc[:-1]], [-1, 0, 1]) # Rotate all cell vectors rx = (Rz * (Ry * (Rx * px.T))).reshape((mesh.nC, 3)) jd = getCellNeighbors(mesh) # Move the bottom-SW and top-NE nodes of stencil cell nBSW = ( mesh.gridCC[jd[:, 0], :] - mesh.h_gridded[jd[:, 0], :] / 2 + rx[jd[:, 0], :] * mesh.h_gridded[jd[:, 0], :] ) nTNE = ( mesh.gridCC[jd[:, 0], :] + mesh.h_gridded[jd[:, 0], :] / 2 + rx[jd[:, 0], :] * mesh.h_gridded[jd[:, 0], :] ) # Get corners for neighbours sBSW = mesh.gridCC[jd[:, 1], :] - mesh.h_gridded[jd[:, 1], :] / 2 sTNE = mesh.gridCC[jd[:, 1], :] + mesh.h_gridded[jd[:, 1], :] / 2 # Compute fractional volumes with base stencil V = np.max( [ np.min([sTNE[:, 0], nTNE[:, 0]], axis=0) - np.max([sBSW[:, 0], nBSW[:, 0]], axis=0), np.zeros(jd.shape[0]), ], axis=0, ) * np.max( [ np.min([sTNE[:, 1], nTNE[:, 1]], axis=0) - np.max([sBSW[:, 1], nBSW[:, 1]], axis=0), np.zeros(jd.shape[0]), ], axis=0, ) if mesh.dim == 3: V *= np.max( [ np.min([sTNE[:, 2], nTNE[:, 2]], axis=0) - np.max([sBSW[:, 2], nBSW[:, 2]], axis=0), np.zeros(jd.shape[0]), ], axis=0, ) # Remove all rows of zero ind = (V > 0) * (jd[:, 0] != jd[:, 1]) jd = jd[ind, :] V = V[ind] Dx2 = sp.sparse.csr_matrix((V, (jd[:, 0], jd[:, 1])), shape=(mesh.nC, mesh.nC)) # Normalize rows V = mkvc(sp.sum(Dx2, axis=1)) V[V > 0] = 1.0 / V[V > 0] Dx2 = -sdiag(V) * Dx2 diag = np.ones(mesh.nC) diag[V == 0] = 0 Dx = sdiag(diag) + Dx2 return Dx
from flask import Flask, jsonify, request from flask_restful import Api, Resource from pymongo import MongoClient import bcrypt import logging logging.basicConfig(level=logging.DEBUG,format='%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] [%(thread)d] - %(message)s',datefmt='%d/%m/%Y %H:%M:%S',filename='flask.log') from logging.handlers import TimedRotatingFileHandler app = Flask(__name__) api = Api(app) client = MongoClient("mongodb://my_db:27017") db = client.projectDB users = db["Users"] """ HELPER FUNCTIONS """ def userExist(username): if users.find({"Username": username}).count() == 0: return False else: return True def verifyUser(username, password): if not userExist(username): return False user_hashed_pw = users.find({ "Username": username })[0]["Password"] if bcrypt.checkpw(password.encode('utf8'), user_hashed_pw): return True else: return False def getUserMessages(username): # get the messages return users.find({ "Username": username, })[0]["Messages"] """ RESOURCES """ class Hello(Resource): def get(self): app.logger.info("Info message") app.logger.warning("Warning msg") app.logger.error("Error msg!!!") return "Hello World!" class Register(Resource): def post(self): # Get posted data from request data = request.get_json() # get data username = data["username"] password = data["password"] # check if user exists if userExist(username): retJson = { "status": 301, "msg": "Invalid Username" } return jsonify(retJson) # encrypt password hashed_pw = bcrypt.hashpw(password.encode('utf8'), bcrypt.gensalt()) # Insert record users.insert({ "Username": username, "Password": hashed_pw, "Messages": [] }) # Return successful result retJosn = { "status": 200, "msg": "Registration successful" } return jsonify(retJosn) class Retrieve(Resource): def post(self): # Get posted data from request data = request.get_json() # get data username = data["username"] password = data["password"] # check if user exists if not userExist(username): retJson = { "status": 301, "msg": "Invalid Username" } return jsonify(retJson) # check password correct_pw = verifyUser(username, password) if not correct_pw: retJson = { "status": 302, "msg": "Invalid password" } return jsonify(retJson) # get the messages messages = getUserMessages(username) # Build successful response retJson = { "status": 200, "obj": messages } return jsonify(retJson) class Save(Resource): def post(self): # Get posted data from request data = request.get_json() # get data username = data["username"] password = data["password"] message = data["message"] # check if user exists if not userExist(username): retJson = { "status": 301, "msg": "Invalid Username" } return jsonify(retJson) # check password correct_pw = verifyUser(username, password) if not correct_pw: retJson = { "status": 302, "msg": "Invalid password" } return jsonify(retJson) if not message: retJson = { "status": 303, "msg": "Please supply a valid message" } return jsonify(retJson) # get the messages messages = getUserMessages(username) # add new message messages.append(message) # save the new user message users.update({ "Username": username }, { "$set": { "Messages": messages } }) retJson = { "status": 200, "msg": "Message has been saved successfully" } return jsonify(retJson) api.add_resource(Hello, '/hello') api.add_resource(Register, '/register') api.add_resource(Retrieve, '/retrieve') api.add_resource(Save, '/save') if __name__ == "__main__": app.run(host='0.0.0.0', debug=False)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """ Implements the Generalized R-CNN framework """ import torch from torch import nn from maskrcnn_benchmark.structures.image_list import to_image_list from ..backbone import build_backbone from ..rpn.rpn import build_rpn from ..roi_heads.roi_heads import build_roi_heads class GeneralizedRCNN(nn.Module): """ Main class for Generalized R-CNN. Currently supports boxes and masks. It consists of three main parts: - backbone - rpn - heads: takes the features + the proposals from the RPN and computes detections / masks from it. """ def __init__(self, cfg): super(GeneralizedRCNN, self).__init__() self.backbone = build_backbone(cfg) self.rpn = build_rpn(cfg, self.backbone.out_channels) self.roi_heads = build_roi_heads(cfg, self.backbone.out_channels) def forward(self, template_images, template_targets, search_images, search_targets=None): """ Arguments: images (list[Tensor] or ImageList): images to be processed targets (list[BoxList]): ground-truth boxes present in the image (optional) Returns: result (list[BoxList] or dict[Tensor]): the output from the model. During training, it returns a dict[Tensor] which contains the losses. During testing, it returns list[BoxList] contains additional fields like `scores`, `labels` and `mask` (for Mask R-CNN models). """ if self.training and search_targets is None: raise ValueError("In training mode, targets should be passed") template_images = to_image_list(template_images) template_features = self.backbone(template_images.tensors) template_feature = template_features[-1] # 7*7 search_images = to_image_list(search_images) search_features = self.backbone(search_images.tensors) # list of tensors proposals, proposal_losses = self.rpn(template_images, template_feature, template_targets, search_images, search_features, search_targets) if self.roi_heads: x, result, detector_losses = self.roi_heads(template_feature, search_features, proposals, search_targets) else: # RPN-only models don't have roi_heads x = features result = proposals detector_losses = {} if self.training: losses = {} losses.update(detector_losses) losses.update(proposal_losses) return losses return result
from selenium.webdriver.common.by import By class LoginPageLocators: USER_NAME_INPUT = (By.NAME, "email") PASSWORD_INPUT = (By.NAME, "password") H1 = (By.TAG_NAME, "H1") LOGIN_BUTTON = (By.NAME, "login") class NavigationLocators: LOG_OUT_LINK = (By.XPATH, "//button[text()='Sign out']") class HeaderLocators: SEARCH_INPUT = (By.ID, "site-search-text") SEARCH_SUBMIT = (By.CSS_SELECTOR, ".eff-search__input--submit") class FooterLinkLocators: CMS_LINK = (By.LINK_TEXT, "CMS") class PageLinkLocators: HOME_BREADCRUMB = (By.LINK_TEXT, "Home") NEW_MEASURE = (By.LINK_TEXT, "Add a measure") @staticmethod def page_link(link_text): return By.LINK_TEXT, link_text @staticmethod def breadcrumb_link(page): return By.LINK_TEXT, page.title class MeasureActionLocators: @staticmethod def view_link(measure): print("measure_action__view-%s" % measure.guid) return By.ID, "measure_action__view-%s" % measure.guid @staticmethod def delete_link(measure): return By.ID, "measure_action__delete-%s" % measure.guid @staticmethod def title_link(measure): return By.LINK_TEXT, measure.title class CreateMeasureLocators: TITLE_INPUT = (By.NAME, "title") SAVE_BUTTON = (By.NAME, "save") class EditMeasureLocators: @staticmethod def lowest_level_of_geography_radio_button(index_value): # index_value should be in the range 0 to 8 - (as per `lowest_level_of_geography` table per 2018-11-19) return (By.ID, "lowest_level_of_geography_id-%s" % str(index_value)) STATUS_LABEL = (By.ID, "status") LOWEST_LEVEL_OF_GEOGRAPHY_RADIO = (By.XPATH, "//*[@type='radio']") SAVE_BUTTON = (By.NAME, "save") SAVE_AND_REVIEW_BUTTON = (By.NAME, "save-and-review") SEND_TO_DEPARTMENT_REVIEW_BUTTON = (By.ID, "send-to-department-review") REJECT_BUTTON = (By.ID, "reject-measure") SEND_TO_DRAFT_BUTTON = (By.ID, "send-back-to-draft") CREATE_PRIMARY_DATA_SOURCE = (By.XPATH, "//a[normalize-space(.)='Add primary data source information']") CREATE_SECONDARY_DATA_SOURCE = (By.XPATH, "//a[normalize-space(.)='Add secondary data source information']") REMOVE_PRIMARY_DATA_SOURCE = (By.XPATH, "//button[normalize-space(.)='Remove primary data source']") REMOVE_SECONDARY_DATA_SOURCE = (By.XPATH, "//button[normalize-space(.)='Remove secondary data source']") SEND_TO_APPROVED = (By.ID, "send-to-approved") UPDATE_MEASURE = (By.LINK_TEXT, "Update") DEPARTMENT_REVIEW_LINK = (By.ID, "review-link-url") PREVIEW_LINK = (By.NAME, "preview") ADD_DIMENSION_LINK = (By.LINK_TEXT, "Add dimension") ADD_SOURCE_DATA_LINK = (By.LINK_TEXT, "Add data file (CSV)") PUBLISHED_AT_DATE_PICKER = (By.NAME, "published_at") PUBLISHED_LABEL = (By.NAME, "published") TITLE_INPUT = (By.NAME, "title") DESCRIPTION_TEXTAREA = (By.NAME, "description") MEASURE_SUMMARY_TEXTAREA = (By.NAME, "measure_summary") SUMMARY_TEXTAREA = (By.NAME, "summary") GEOGRAPHIC_COVERAGE_TEXTAREA = (By.NAME, "geographic_coverage") LOWEST_LEVEL_OF_GEOGRAPHY_TEXTAREA = (By.NAME, "lowest_level_of_geography") TIME_COVERED_TEXTAREA = (By.NAME, "time_covered") NEED_TO_KNOW_TEXTAREA = (By.NAME, "need_to_know") ETHNICITY_DEFINITION_DETAIL_TEXTAREA = (By.NAME, "ethnicity_definition_detail") ETHNICITY_SUMMARY_DETAIL_TEXTAREA = (By.NAME, "ethnicity_definition_summary") RELATED_PUBLICATIONS_TEXTAREA = (By.NAME, "related_publications") METHODOLOGY_TEXTAREA = (By.NAME, "methodology") DATA_TYPE_INPUT = (By.NAME, "data_type") SUPPRESSION_RULES_TEXTAREA = (By.NAME, "suppression_rules") DISCLOSURE_CONTROLS_TEXTAREA = (By.NAME, "disclosure_controls") ESTIMATION_TEXTAREA = (By.NAME, "estimation") TYPE_OF_STATISTIC_INPUT = (By.NAME, "type_of_statistic") QMI_URL_INPUT = (By.NAME, "qmi_url") FURTHER_TECHNICAL_INFORMATION_INPUT = (By.NAME, "further_technical_information") UPDATE_CORRECTS_DATA_MISTAKE = (By.NAME, "update_corrects_data_mistake") UPDATE_CORRECTS_DATA_MISTAKE = (By.NAME, "update_corrects_measure_version") EXTERNAL_EDIT_SUMMARY = (By.ID, "external_edit_summary") class DimensionPageLocators: TITLE_INPUT = (By.NAME, "title") TIME_PERIOD_INPUT = (By.NAME, "time_period") SUMMARY_TEXTAREA = (By.NAME, "summary") SUPPRESSION_RULES_TEXTAREA = (By.NAME, "suppression_rules") DISCLOSURE_CONTROL_TEXTAREA = (By.NAME, "disclosure_control") TYPE_OF_STATISTIC_INPUT = (By.NAME, "type_of_statistic") LOCATION_INPUT = (By.NAME, "location") SOURCE_INPUT = (By.NAME, "source") SAVE_BUTTON = (By.NAME, "save") UPDATE_BUTTON = (By.NAME, "update") CREATE_CHART = (By.ID, "create_chart") CREATE_TABLE = (By.ID, "create_table") class DataSourceSearchPageLocations: SEARCH_BUTTON = (By.XPATH, "//button[normalize-space(.)='Search']") SELECT_BUTTON = (By.XPATH, "//button[normalize-space(.)='Select']") class CreateDataSourcePageLocators: SAVE_BUTTON = (By.XPATH, "//button[normalize-space(.)='Save']") TITLE_TEXTAREA = (By.NAME, "title") SOURCE_URL_INPUT = (By.NAME, "source_url") PUBLISHER_ID_INPUT = (By.ID, "publisher_id") PUBLICATION_DATE_INPUT = (By.NAME, "publication_date") FREQUENCY_INPUT = (By.NAME, "frequency_of_release_id") PURPOSE_TEXTAREA = (By.NAME, "purpose") @staticmethod def frequency_radio_button(index_value): # index_value should be in the range 0 to 11 - (as per `frequency_of_release` table per 2018-11-19) return By.ID, f"frequency_of_release_id-{index_value}" @staticmethod def type_of_data_checkbox(index_value): # index_value should be in the range 0 to 1 - (as per application.cms.models.TypeOfData per 2018-11-19) return By.ID, f"type_of_data-{index_value}" @staticmethod def type_of_statistic_radio_button(index_value): # index_value should be in the range 0 to 4 - (as per `type_of_statistic` table per 2018-11-19) return By.ID, f"type_of_statistic_id-{index_value}" class SourceDataPageLocators: FILE_UPLOAD_INPUT = (By.NAME, "upload") TITLE_INPUT = (By.NAME, "title") DESCRIPTION_TEXTAREA = (By.NAME, "description") SAVE_BUTTON = (By.NAME, "save") class ChartBuilderPageLocators: DATA_TEXT_AREA = (By.ID, "data_text_area") CHART_TYPE_SELECTOR = (By.ID, "chart_type_selector") BAR_CHART_PRIMARY = (By.ID, "primary_column") BAR_CHART_SECONDARY = (By.ID, "secondary_column") BAR_CHART_ORDER = (By.ID, "order_column") OPTIONS_CHART_TITLE = (By.ID, "chart_title") OPTIONS_X_AXIS = (By.ID, "x_axis_label") OPTIONS_Y_AXIS = (By.ID, "y_axis_label") OPTIONS_NUMBER_FORMAT = (By.ID, "number_format") CHART_PREVIEW = (By.ID, "preview") CHART_SAVE = (By.ID, "save") CHART_BACK = (By.ID, "exit") CHART_DATA_OK = (By.ID, "confirm-data") CHART_DATA_CANCEL = (By.ID, "cancel-edit-data") CHART_EDIT_DATA = (By.ID, "edit-data") PANEL_BAR_CHART_PRIMARY = (By.ID, "panel_primary_column") PANEL_BAR_CHART_SECONDARY = (By.ID, "panel_grouping_column") CHART_ETHNICITY_SETTINGS = (By.ID, "ethnicity_settings") CUSTOM_CLASSIFICATION_PANEL = (By.ID, "custom_classification__panel") CHART_LINE_X_AXIS = (By.ID, "line__x-axis_column") CHART_GROUPED_BAR_DATA_STYLE = (By.ID, "grouped-bar__data_style") CHART_GROUPED_BAR_COLUMN = (By.ID, "grouped-bar__bar_column") CHART_GROUPED_GROUPS_COLUMN = (By.ID, "grouped-bar__groups_column") CHART_COMPONENT_DATA_STYLE = (By.ID, "component__data_style") CHART_COMPONENT_SECTION_COLUMN = (By.ID, "component__section_column") CHART_COMPONENT_BAR_COLUMN = (By.ID, "component__bar_column") CHART_PANEL_DATA_STYLE = (By.ID, "panel-bar__data_style") CHART_PANEL_BAR_COLUMN = (By.ID, "panel-bar__bar_column") CHART_PANEL_PANEL_COLUMN = (By.ID, "panel-bar__panel_column") CHART_PANEL_X_AXIS_COLUMN = (By.ID, "panel-line__x-axis_column") class TableBuilderPageLocators: DATA_TEXT_AREA = (By.ID, "data_text_area") TABLE_TITLE_BOX = (By.ID, "table_title") ROWS_SELECTOR = (By.ID, "table_category_column") GROUPING_SELECTOR = (By.ID, "table_group_column") TABLE_PREVIEW = (By.ID, "preview") TABLE_SAVE = (By.ID, "save") TABLE = (By.ID, "container") TABLE_ERROR_CONTAINER = (By.ID, "error_container") COLUMN_SELECTOR_1 = (By.ID, "table_column_1") COLUMN_SELECTOR_2 = (By.ID, "table_column_2") COLUMN_SELECTOR_3 = (By.ID, "table_column_3") COLUMN_SELECTOR_4 = (By.ID, "table_column_4") COLUMN_SELECTOR_5 = (By.ID, "table_column_5") INDEX_COLUMN_NAME = (By.ID, "index_column_name") TABLE_DATA_OK = (By.ID, "confirm-data") TABLE_DATA_CANCEL = (By.ID, "cancel-edit-data") TABLE_DATA_EDIT = (By.ID, "edit-data") TABLE_ETHNICITY_SETTINGS = (By.ID, "ethnicity_settings") CUSTOM_CLASSIFICATION_PANEL = (By.ID, "custom_classification__panel") COMPLEX_TABLE_DATA_STYLE = (By.ID, "complex-table__data-style") COMPLEX_TABLE_COLUMNS = (By.ID, "ethnicity-as-row__columns") COMPLEX_TABLE_ROWS = (By.ID, "ethnicity-as-column__rows") class TopicPageLocators: @staticmethod def get_accordion(data_event_text): return By.XPATH, "//h2[contains(., '%s')]" % data_event_text @staticmethod def get_add_measure_link(link_text): return By.XPATH, "//a[contains(., 'Create a new page')]" @staticmethod def get_measure_link(measure): return By.LINK_TEXT, measure.title @staticmethod def get_measure_edit_link(measure): return By.ID, "measure-action-section__edit_button-%s" % measure.id @staticmethod def get_measure_view_form_link(measure): return By.ID, "measure-action-section__view_form_link-%s" % measure.id @staticmethod def get_measure_create_new_link(measure): return By.ID, "measure-action-section__create_new_link-%s" % measure.id @staticmethod def get_measure_delete_link(measure): return By.ID, "measure-action-section__delete_button-%s" % measure.id @staticmethod def get_measure_confirm_yes_radio(measure): return By.ID, "delete-radio-yes-%s" % measure.id @staticmethod def get_measure_confirm_no_radio(measure): return By.ID, "delete-radio-yes-%s" % measure.id @staticmethod def get_measure_confirm_delete_button(measure): return By.ID, "delete-confirm-button-%s" % measure.id
from .alexnet import AlexNet from .lenet import LeNet5 from .mobilenet_v2 import MobileNetV2 from .mobilenet_v3 import MobileNetv3 from .regnet import RegNet from .resnest import ResNeSt from .resnet import ResNet, ResNetV1d from .resnet_cifar import ResNet_CIFAR from .resnext import ResNeXt from .seresnet import SEResNet from .seresnext import SEResNeXt from .shufflenet_v1 import ShuffleNetV1 from .shufflenet_v2 import ShuffleNetV2 from .res2net import Res2Net from .sk2net import SK2Net from .vgg import VGG from .sk2net_cifar import SK2Net_CIFAR from .resnext_cifar import * from .res2next_cifar import Res2NeXt29 from .sk2next_cifar import SK2NeXt29 from .seres2next_cifar import SERes2NeXt29 from .sk2resnest import SK2ResNeSt from .cyclenet import CycLeNet from .repvggnet import RepVGGNet from .skresnest import SKResNeSt from .sk2resnet import SK2ResNet from .sacresnet import SACResNet from .skresnet import SKResNet __all__ = [ 'LeNet5', 'AlexNet', 'VGG', 'RegNet', 'ResNet', 'ResNeXt', 'ResNetV1d', 'ResNeSt', 'ResNet_CIFAR', 'SEResNet', 'SEResNeXt', 'ShuffleNetV1', 'ShuffleNetV2', 'MobileNetV2', 'MobileNetv3', 'SK2Net', 'Res2Net', 'SK2Net_CIFAR' ]
""" Service-related Mongoengine document definitions """ import mongoengine from mongoengine import ( EmbeddedDocumentField, EmbeddedDocumentListField, ListField, ReferenceField, StringField, UUIDField, ) from gatekeeper.models.base import TimestampsDocument, UserIdMixin, UuidDocument from gatekeeper.models.descriptors import DescriptorSnapshot from gatekeeper.util.mongoengine_custom_json import CustomJsonRules class ServiceInstance(UuidDocument, TimestampsDocument, UserIdMixin): status = StringField(required=True) message = StringField() correlationId = UUIDField(required=True, custom_json=CustomJsonRules.HIDDEN) internalId = UUIDField(custom_json=CustomJsonRules.HIDDEN) class Service(UuidDocument, TimestampsDocument, UserIdMixin): """ Document class for services. A `Service` contains snapshots of all descriptors required to instantiate it, as well as information on its service instances. """ descriptor = EmbeddedDocumentField(DescriptorSnapshot, required=True) functionDescriptors = EmbeddedDocumentListField(DescriptorSnapshot, required=True) vendor = StringField(required=True) name = StringField(required=True) version = StringField(required=True) instances = ListField( ReferenceField(ServiceInstance, reverse_delete_rule=mongoengine.PULL), custom_json=CustomJsonRules.HIDDEN, )
import os from os import path from zipfile import ZipFile import cv2 from glob import glob from tqdm import tqdm import numpy as np import shutil FOLDER_NAME = "DATA/" def __is_picture(file): """ It returns whether the processed file is a jpg picture or not. All arguments must be of equal length. :param file: longitude of first place :return: A boolean indicating whether the file is a jpg image or not """ if file.lower().endswith("jpg") or file.lower().endswith("jpeg"): return True else: return False def __unzip_folders(path): """ It unzips all the the compressed files inside a directory and removes the zipped folders :param zip_name: a folder :return: None """ print("Unzipping folders...") # Unzip folders all_zip_files = os.listdir(path) for zip_file in all_zip_files: if zip_file != ".DS_Store": shutil.unpack_archive(zip_file) break print("Removing ZIP folders...") # Remove Zipped folders all_files = os.listdir(".") for file_name in all_files: if file_name.endswith("zip"): os.remove(path + file_name) def load_datasets(path="./", im_size=(128, 128)): """ High-level function for creating Numpy Arrays from Zip Files :param path: path where the zip files are stored :param im_size: Image size of the loaded picures. Width and height must be positive. :return: Numpy arrays for both the images (X) and the labels (y) ========= Example: ========= X, y = load_datasets(".", (256, 256)) """ if im_size[0] <= 0 or im_size[1] <= 0: return -1 __unzip_folders(path) print("Loading Datasets...") # Create index for transform labels into class numbers tag2idx = {tag.split("/")[1]: i for i, tag in enumerate(glob(path + "*"))} im_path = path + "*/*" print("Loading data...") # Create X array from images with OpenCV X = np.array( [ cv2.resize(cv2.imread(file_path), im_size) for file_path in tqdm(glob(im_path)) if __is_picture(file_path) ] ) # Create y array from index y = [ tag2idx[file_path.split("/")[1]] for file_path in glob(im_path) if __is_picture(file_path) ] # Transform y array into a categorical array y = np.eye(len(np.unique(y)))[y].astype(np.uint8) return X, y
import unittest class TestImport(unittest.TestCase): def test_import_general(self): import jellylamp def test_import_version(self): from jellylamp import __version__ print(__version__) if __name__ == '__main__': unittest.main()
import numpy as np n = tuple(map(int, input().strip().split())) print(np.zeros(n, int)) print(np.ones(n, int))
def update_dict(params, keys, value): if len(keys) == 1: params[keys[0]] = value else: update_dict(params[keys[0]], keys[1:], value) def flatten(list): return [item for sublist in list for item in sublist]
"""Test hook for verifying the consistency and integrity of collection and index data.""" import os.path from buildscripts.resmokelib.testing.hooks import jsfile class ValidateCollections(jsfile.PerClusterDataConsistencyHook): """Run full validation. This will run on all collections in all databases on every stand-alone node, primary replica-set node, or primary shard node. """ IS_BACKGROUND = False def __init__( # pylint: disable=super-init-not-called self, hook_logger, fixture, shell_options=None): """Initialize ValidateCollections.""" description = "Full collection validation" js_filename = os.path.join("jstests", "hooks", "run_validate_collections.js") jsfile.JSHook.__init__( # pylint: disable=non-parent-init-called self, hook_logger, fixture, js_filename, description, shell_options=shell_options)
from __future__ import annotations from typing import Dict, Union, Any, Sequence import collections import boto3 from .enums import BILLING_MODE, RETURN_VALUES, DATATYPE, STREAM_VIEW, SSE_TYPE dynamodb = boto3.resource("dynamodb") class KeyDefinition: DATATYPE = DATATYPE name: str datatype: DATATYPE def __init__(self, name: str, datatype: DATATYPE = DATATYPE.STRING): self.name = name self.datatype = datatype def __eq__(self, other): if not isinstance(other, KeyDefinition): return False return self.name == other.name and self.datatype == other.datatype def __hash__(self): return hash(self.name + self.datatype) def export(self) -> dict: return {"AttributeName": self.name, "AttributeType": self.datatype} @classmethod def schema(cls, hash_key: KeyDefinition, range_key: KeyDefinition = None) -> list: schema = [{"AttributeName": hash_key.name, "KeyType": "HASH"}] if range_key: schema.append({"AttributeName": range_key.name, "KeyType": "RANGE"}) return schema class Stream: VIEW = STREAM_VIEW def __init__(self, view_type: VIEW): self.view_type = view_type def export(self) -> dict: return {"StreamEnabled": True, "StreamViewType": self.view_type} class SSESpecification: SSE_TYPE = SSE_TYPE def __init__(self, sse_type: SSE_TYPE, kms_master_key: str = None): self.sse_type = sse_type self.kms_master_key = kms_master_key def export(self) -> dict: spec = {"Enabled": True, "SSEType": self.sse_type} if self.sse_type == SSE_TYPE.KMS: spec["KMSMasterKeyId"] = self.kms_master_key return spec class ProvisionedThroughput: def __init__(self, read_capacity: int, write_capacity: int): self.read_capacity = read_capacity self.write_capacity = write_capacity def export(self) -> dict: return { "ReadCapacityUnits": self.read_capacity, "WriteCapacityUnits": self.write_capacity, } class BaseTable: BILLING_MODE = BILLING_MODE RETURN_VALUES = RETURN_VALUES resource = dynamodb name: str partition_key: KeyDefinition = KeyDefinition("pk") sort_key: KeyDefinition = None billing_mode: BILLING_MODE = BILLING_MODE.PROVISIONED throughput: ProvisionedThroughput = ProvisionedThroughput(5, 5) stream: Stream = None sse: SSESpecification = None tags: Dict = {} def __init__(self, **kwargs): self._local_secondary_indexes = [] self._global_secondary_indexes = [] self.name = kwargs.get("name") or self.name self.billing_mode = kwargs.get("billing_mode") or self.billing_mode self.throughput = kwargs.get("throughput") or self.throughput self.stream = kwargs.get("stream") or self.stream self.sse = kwargs.get("sse") or self.sse self.resource = kwargs.get("resource") or self.resource if kwargs.get("tags"): self.tags.update(kwargs["tags"]) def get_table(self): return self.resource.Table(self.name) def convert_key(self, key: Union[Any, Sequence[Any, Any]]) -> dict: if isinstance(key, str) or not isinstance(key, collections.abc.Sequence): key = (key,) converted = {self.partition_key.name: key[0]} if self.sort_key and len(key) > 1: converted[self.sort_key.name] = key[1] return converted def serialize_attributes(self, attributes: Sequence[str]) -> dict: attribute_names = {} attribute_tokens = [] counter = 0 for attribute in attributes: token = f"#ref{counter}" attribute_names[token] = attribute attribute_tokens.append(token) counter += 1 return { "ProjectionExpression": ", ".join(attribute_tokens), "ExpressionAttributeNames": attribute_names, }
import argparse import json def main(): parser = argparse.ArgumentParser() parser.add_argument('-dev', type=str, default='../data/dev_toy.tsv') parser.add_argument('-res', type=str, default='../results/cknrm_ca.trec') parser.add_argument('-k', type=int, default=2) args = parser.parse_args() score_dic = {} for i in range(args.k): with open('f' + str(i+1) + '.score', 'r') as r: for line in r: line = line.strip('\n').split('\t') score_dic[line[0] + '$' + line[1]] = line[2] outs = {} with open(args.dev, 'r') as r: qid = '' cnt = 0 for line in r: line = line.strip().split('\t') if line[3] != qid: qid = line[3] cnt = 0 outs[line[3]] = {} outs[line[3]][line[4]] = float(score_dic[line[3]+'$'+str(cnt)]) cnt += 1 f = open(args.res, 'w') for qid in outs: ps = {} out_idx = sorted(outs[qid].items(), key=lambda x:x[1], reverse=True) for i, out in enumerate(out_idx): if out[0] not in ps: ps[out[0]] = 1 f.write(' '.join([qid, 'Q0', out[0], str(len(ps)), str(out[1]), 'default']) + '\n') f.close() if __name__ == "__main__": main()
from onegov.agency import AgencyApp from onegov.agency.layout import PageLayout from onegov.core.security import Public from onegov.org.models import Topic from onegov.org.views.page import view_topic as view_topic_base @AgencyApp.html(model=Topic, template='topic.pt', permission=Public) def view_topic(self, request): layout = PageLayout(self, request) return view_topic_base(self, request, layout)
################################################################################ from relative_to_absolute_path import get_absolute_path from squares_ids import get_id_to_square_dict from os.path import exists import numpy as np import tkinter as tk from PIL import Image, ImageTk ################################################################################ ################################################################################ # Set paths: dataset_squares: str = "../datasets/squares.csv" ################################################################################ ################################################################################ def get_square_name_from_id(identifier: int) -> str: return get_id_to_square_dict()[identifier] ################################################################################ ################################################################################ def load_data() -> np.ndarray: absolute_path = get_absolute_path(dataset_squares, __file__) assert exists(absolute_path), "'%s' must be a valid directory path" % absolute_path return np.genfromtxt(absolute_path, delimiter=",", dtype=np.uint8) ################################################################################ ################################################################################ class Application(tk.Frame): def __init__(self, root, *args, **kwargs): tk.Frame.__init__(self, root, *args, **kwargs) self.parent = root squares_data = load_data() self.X = squares_data[:, 1:].reshape((-1, 32, 32)) self.Y = squares_data[:, 0] self.root = root self.root.title("Squares") self.root.geometry("300x200") # entry self.entry_widget = tk.Entry(root) self.entry_widget.place(x=140, y=70, width=100) # button self.show_image_button = tk.Button( self.root, text="Show Image", command=lambda: self.show_image(self.entry_widget.get()) ) self.show_image_button.place(x=140, y=100, width=100) # image self.canvas = tk.Canvas(self.root, width=32, height=32) self.canvas.place(x=10, y=10) self.image = ImageTk.PhotoImage( image=Image.fromarray(self.X[0, :], "L") ) self.image_on_canvas = self.canvas.create_image( 0, 0, anchor="nw", image=self.image ) # label self.label = tk.Label( self.root, text="Square id:\n" + get_square_name_from_id(self.Y[0]) ) self.label.place(x=70, y=10) def show_image(self, index_str: str): m: int = self.X.shape[0] if not (str.isdecimal(index_str) and 0 <= int(index_str) < m): print("'%s' must be a decimal string between 0 and %d" % (index_str, m-1)) return index_int = int(index_str) self.image = ImageTk.PhotoImage( image=Image.fromarray( self.X[index_int, :], "L" ) ) self.canvas.itemconfig(self.image_on_canvas, image=self.image) self.label["text"] = "Square id:\n" + get_square_name_from_id(self.Y[index_int]) ################################################################################ ################################################################################ def main(): root = tk.Tk() Application(root) root.mainloop() ################################################################################ ################################################################################ main()
## These are the mask bits in ANYMASK / ALLMASK. # # From: http://www.noao.edu/noao/staff/fvaldes/CPDocPrelim/PL201_3.html # 1 -- detector bad pixel InstCal # 1 -- detector bad pixel/no data Resampled # 1 -- No data Stacked # 2 -- saturated InstCal/Resampled # 4 -- interpolated InstCal/Resampled # 16 -- single exposure cosmic ray InstCal/Resampled # 64 -- bleed trail InstCal/Resampled # 128 -- multi-exposure transient InstCal/Resampled DQ_BITS = dict(badpix = 1, satur = 2, interp = 4, cr = 16, # 0x 10 bleed = 64, # 0x 40 trans = 128, # 0x 80 edge = 256, # 0x100 edge2 = 512, # 0x200 # Added by our stage_outliers rejection outlier = 2048, # 0x800 ) # Bit codes for why a CCD got cut (survey-ccds file, ccd_cuts column) CCD_CUTS = dict( err_legacyzpts = 0x1, not_grz = 0x2, not_third_pix = 0x4, # Mosaic3 one-third-pixel interpolation problem exptime = 0x8, ccdnmatch = 0x10, zpt_diff_avg = 0x20, zpt_small = 0x40, zpt_large = 0x80, sky_is_bright = 0x100, badexp_file = 0x200, phrms = 0x400, radecrms = 0x800, seeing_bad = 0x1000, early_decam = 0x2000, depth_cut = 0x4000, too_many_bad_ccds = 0x8000, flagged_in_des = 0x10000, phrms_s7 = 0x20000, ) FITBITS = dict( FORCED_POINTSOURCE = 0x1, FIT_BACKGROUND = 0x2, HIT_RADIUS_LIMIT = 0x4, HIT_SERSIC_LIMIT = 0x8, FROZEN = 0x10, # all source parameters were frozen at ref-cat values BRIGHT = 0x20, MEDIUM = 0x40, GAIA = 0x80, TYCHO2 = 0x100, LARGEGALAXY = 0x200, WALKER = 0x400, RUNNER = 0x800, GAIA_POINTSOURCE = 0x1000, ITERATIVE = 0x2000, ) # Outlier mask bit values OUTLIER_POS = 1 OUTLIER_NEG = 2 # Bits in the "maskbits" data product MASKBITS = dict( NPRIMARY = 0x1, # not PRIMARY BRIGHT = 0x2, SATUR_G = 0x4, SATUR_R = 0x8, SATUR_Z = 0x10, ALLMASK_G = 0x20, ALLMASK_R = 0x40, ALLMASK_Z = 0x80, WISEM1 = 0x100, # WISE masked WISEM2 = 0x200, BAILOUT = 0x400, # bailed out of processing MEDIUM = 0x800, # medium-bright star GALAXY = 0x1000, # SGA large galaxy CLUSTER = 0x2000, # Cluster catalog source SATUR_I = 0x4000, ALLMASK_I = 0x8000, ) # Bits in the "brightblob" bitmask IN_BLOB = dict( BRIGHT = 0x1, # "bright" star MEDIUM = 0x2, # "medium-bright" star CLUSTER = 0x4, # Globular cluster GALAXY = 0x8, # large SGA galaxy )
import math import numpy as np import calculator class ball: ''' class used to define the balls involved in the simulation. This class is used by all of the other classes: - calculator.py uses the update functions (euler_update, cromer_update, and runge_kutta2) to update the positions and velocities of the balls based on the accelerations it calculated - calculator.py requires the position, velocity, mass, and anchor points of the balls to calculate the change in acceleration - calculator.py uses the overlap function to determine when a collision between balls has taken place - plotter.py uses the position attribute of the ball object to plot the balls position over time - plotter.py uses the energy functions - kinetic and potential - to plot the energy of the system over time ''' def __init__(self, position = np.array([0,-1], dtype = float), velocity = np.array([0,0], dtype = float), radius = 1, mass = 1, anchor = np.array([0,0])): ''' Initialisation function of the class: position, radius, mass and velocity attributes all describe the ball itself anchor attribute describe where the 'string' is attached, from which the length of the string is calculated radius, mass, and anchor should not be changed at any point all of the inputs that can be entered as lists are turned into numpy arrays for easier manipulation ''' self.anchor = np.array(anchor) self.position = np.array(position) self.radius = radius self.mass = mass self.velocity = np.array(velocity) self.length = np.linalg.norm(self.anchor - self.position) def euler_update(self, dv, dt): ''' updates the position of the ball after a time dt, using the euler approximation dt = the timestep between iterations used by the calculator dv = the change in velocity that has been calculated using the calculator ''' self.position += self.velocity * dt self.velocity += dv def cromer_update(self, dv, dt): ''' updates the position of the ball after a time dt, using the euler-cromer approximation dt = the timestep between iterations used by the calculator dv = the change in velocity that has been calculated using the calculator ''' self.velocity += dv self.position += self.velocity * dt def runge_kutta2_prep(self, acceleration_start, dt): ''' in order to complete the runge kutta approximation of motion, midpoints of position, velocity and acceleration must be used this function is used to update the ball to the midpoint position and velocity, so that the midpoint acceleration can be calculated ''' start_position = self.position start_velocity = self.velocity position_midpoint = self.position + 0.5 * dt * self.velocity velocity_midpoint = self.velocity + 0.5 * dt * acceleration_start self.position = position_midpoint self.velocity = velocity_midpoint return [start_position, start_velocity] def runge_kutta2(self, start_position, start_velocity, acceleration_start, acceleration_mid, dt): ''' updates the position of the ball after a time dt, using the Runge-Kutta, second order approximation dt = the timestep between iterations used by the calculator acceleration = the acceleration at a given moment that has been calculated using the calculator ''' velocity_midpoint = self.velocity + 0.5 * dt * acceleration_start self.position = start_position + velocity_midpoint * dt self.velocity = start_velocity + dt * acceleration_mid def overlap(self, incident): ''' input incident must also be a ball object returns true if an incident ball overlaps with the current ball. ''' return np.hypot(*(self.position - incident.position)) <= self.radius + incident.radius def kinetic(self): ''' returns kinetic energy of the ball at a given moment ''' ke = 0.5*self.mass*np.linalg.norm(self.velocity**2) return ke def potential(self): ''' returns potential energy of the ball at a given moment Assumes constant acceleration due to gravity, and that the simulation is taking place on Earth's surface. ''' lowest_point = self.anchor[1] - self.length h = self.position[1] - lowest_point mgh = self.mass * 9.81 * h return mgh
class Deque: def __init__(self): self.items = [] def empty(self): return len(self.items) == 0 def append(self, item): self.items.append(item) def pop(self): if self.empty(): raise Exception return self.items.pop() def append_left(self, item): self.items.insert(0, item) def pop_left(self): if self.empty(): raise Exception return self.items.pop(0) def __len__(self): return len(self.items) # ---------------------------------------------------- class Node: def __init__(self, item): self.item = item self.next = None self.prev = None class Deque: def __init__(self): self.front = None self.back = None def empty(self): return self.front is None and self.back is None def append(self, item): new_node = Node(item) new_node.prev = self.back if not self.empty(): self.back.next = new_node else: self.front = new_node self.back = new_node def pop(self): if self.empty(): raise Exception current_node = self.back item = current_node.item self.back = current_node.prev if self.back is None: self.front = None else: self.back.next = None del current_node return item def append_left(self, item): new_node = Node(item) new_node.next = self.front if not self.empty: self.front.prev = new_node else: self.back = new_node self.front = new_node def pop_left(self): if self.empty(): raise Exception current_node = self.front item = current_node.item self.front = current_node.next if self.front is None: self.back = None else: self.front.prev = None del current_node return item def __del__(self): while self.front is not None: current_node = self.front self.front = self.front.next del current_node self.back = None
#!/usr/bin/env python # coding: utf-8 import gzip import json import logging import os import tarfile import time from datetime import datetime from functools import partial, reduce from glob import glob from typing import Callable, Dict, List, Type import numpy as np import pandas as pd import seaborn as sns import torch import tqdm from elasticsearch import Elasticsearch, helpers from es_pandas import es_pandas from sentence_transformers import (InputExample, LoggingHandler, SentenceTransformer, util) from sentence_transformers.cross_encoder import CrossEncoder from sentence_transformers.cross_encoder.evaluation import CERerankingEvaluator from sklearn.metrics import balanced_accuracy_score from torch.utils.data import DataLoader pd.set_option("display.max_rows", 200) es_host = 'localhost:9200' bi_model_path = os.path.join(os.path.dirname("__file__"), os.path.pardir, "bi_encoder_save/") bi_model = SentenceTransformer(bi_model_path, device = "cpu") cross_model_path = "output/training_ms-marco_cross-encoder-xlm-roberta-base-2021-01-17_14-43-23_map-train-eval" cross_model = CrossEncoder(cross_model_path, num_labels=1, max_length=512, device = "cpu") class es_pandas_edit(es_pandas): @staticmethod def serialize(row, columns, use_pandas_json, iso_dates): if use_pandas_json: return json.dumps(dict(zip(columns, row)), iso_dates=iso_dates) return dict(zip(columns, [None if (all(pd.isna(r)) if (hasattr(r, "__len__") and type(r) != type("")) else pd.isna(r)) else r for r in row])) def to_pandas_iter(self, index, query_rule=None, heads=[], dtype={}, infer_dtype=False, show_progress=True, chunk_size = None, **kwargs): if query_rule is None: query_rule = {'query': {'match_all': {}}} count = self.es.count(index=index, body=query_rule)['count'] if count < 1: raise Exception('Empty for %s' % index) query_rule['_source'] = heads anl = helpers.scan(self.es, query=query_rule, index=index, **kwargs) source_iter = self.get_source(anl, show_progress = show_progress, count = count) print(source_iter) if chunk_size is None: df = pd.DataFrame(list(source_iter)).set_index('_id') if infer_dtype: dtype = self.infer_dtype(index, df.columns.values) if len(dtype): df = df.astype(dtype) yield df return assert type(chunk_size) == type(0) def map_list_of_dicts_into_df(list_of_dicts, set_index = "_id"): from collections import defaultdict req = defaultdict(list) for dict_ in list_of_dicts: for k, v in dict_.items(): req[k].append(v) req = pd.DataFrame.from_dict(req) if set_index: assert set_index in req.columns.tolist() t_df = req.set_index(set_index) if infer_dtype: dtype = self.infer_dtype(index, t_df.columns.values) if len(dtype): t_df = t_df.astype(dtype) return t_df list_of_dicts = [] for dict_ in source_iter: list_of_dicts.append(dict_) if len(list_of_dicts) >= chunk_size: yield map_list_of_dicts_into_df(list_of_dicts) list_of_dicts = [] if list_of_dicts: yield map_list_of_dicts_into_df(list_of_dicts) ep = es_pandas_edit(es_host) ep.ic.get_alias("*") chunk_size = 1000 valid_part_from_es_iter = ep.to_pandas_iter(index = "valid_part", chunk_size = chunk_size) valid_part_tiny = None for ele in valid_part_from_es_iter: valid_part_tiny = ele break del valid_part_from_es_iter if ep.ic.exists("valid_part_tiny"): ep.ic.delete(index = "valid_part_tiny") ep.init_es_tmpl(valid_part_tiny, "valid_part_tiny_doc_type", delete=True) valid_part_tmp = ep.es.indices.get_template("valid_part_tiny_doc_type") es_index = valid_part_tmp["valid_part_tiny_doc_type"] es_index["mappings"]["properties"]["question_emb"] = { "type": "dense_vector", "dims": 768 } es_index["mappings"]["properties"]["answer_emb"] = { "type": "dense_vector", "dims": 768 } es_index["mappings"]["properties"]["question"] = { "type": "text", } es_index["mappings"]["properties"]["answer"] = { "type": "text", } es_index = {"mappings": es_index["mappings"]} ep.es.indices.create(index='valid_part_tiny', body=es_index, ignore=[400]) question_embeddings = bi_model.encode(valid_part_tiny["question"].tolist(), convert_to_tensor=True, show_progress_bar=True) answer_embeddings = bi_model.encode(valid_part_tiny["answer"].tolist(), convert_to_tensor=True, show_progress_bar=True) valid_part_tiny["question_emb"] = question_embeddings.cpu().numpy().tolist() valid_part_tiny["answer_emb"] = answer_embeddings.cpu().numpy().tolist() ep.to_es(valid_part_tiny, "valid_part_tiny") chunk_size = 1000 valid_part_tiny = list(ep.to_pandas_iter(index = "valid_part_tiny", chunk_size = None))[0] def search_by_embedding_in_es(index = "valid_part" ,embedding = np.asarray(valid_part_tiny["question_emb"].iloc[0]), on_column = "answer_emb"): vector_search_one = ep.es.search(index=index, body={ "query": { "script_score": { "query": { "match_all": {} }, "script": { "source": "cosineSimilarity(params.queryVector, doc['{}']) + 1.0".format(on_column), "params": { "queryVector": embedding } } } } }, ignore = [400]) req = list(map(lambda x: (x["_source"]["question"], x["_source"]["answer"], x["_score"]) ,vector_search_one["hits"]["hits"])) req_df = pd.DataFrame(req, columns = ["question", "answer", "score"]) return req_df def search_by_text_in_es(index = "valid_part" ,text = valid_part_tiny["question"].iloc[0], on_column = "answer", analyzer = "smartcn"): if analyzer is not None: bm25 = es.search(index = index, body={"query": { "match": {on_column:{"query" :text, "analyzer": analyzer} }, } }, ) else: bm25 = ep.es.search(index=index, body={"query": {"match": {on_column: text}}}) req = list(map(lambda x: (x["_source"]["question"], x["_source"]["answer"], x["_score"]) ,bm25["hits"]["hits"])) req_df = pd.DataFrame(req, columns = ["question", "answer", "score"]) return req_df def valid_two_model(cross_model, ep, index, question, question_embedding, on_column = "answer_emb", size = 10): def search_by_embedding(ep ,index = "valid_part" ,embedding = np.asarray(valid_part_tiny["question_emb"].iloc[0]), on_column = "answer_emb"): vector_search_one = ep.es.search(index=index, body={ "size": size, "query": { "script_score": { "query": { "match_all": {} }, "script": { "source": "cosineSimilarity(params.queryVector, doc['{}']) + 1.0".format(on_column), "params": { "queryVector": embedding } } } } }, ignore = [400]) req = list(map(lambda x: (x["_source"]["question"], x["_source"]["answer"], x["_score"]) ,vector_search_one["hits"]["hits"])) req_df = pd.DataFrame(req, columns = ["question", "answer", "score"]) return req_df search_by_emb = search_by_embedding(ep ,index = index, embedding = question_embedding, on_column = on_column) print("question : {}".format(question)) preds = cross_model.predict(search_by_emb.apply(lambda r: [question, r["answer"]], axis = 1).tolist()) search_by_emb["cross_score"] = preds.tolist() return search_by_emb def produce_df(question, size = 10): question, question_embedding = valid_part_tiny[valid_part_tiny["question"] == question].iloc[0][["question", "question_emb"]] valid_df = valid_two_model(cross_model, ep, index = "valid_part_tiny", question = question, question_embedding = question_embedding, size = size) return valid_df class ScoreCalculator(object): def __init__(self, queries_ids, relevant_docs, mrr_at_k: List[int] = [10], ndcg_at_k: List[int] = [10], accuracy_at_k: List[int] = [1, 3, 5, 10], precision_recall_at_k: List[int] = [1, 3, 5, 10], map_at_k: List[int] = [100], ): "queries_ids list of query, relevant_docs key query value set or list of relevant_docs" self.queries_ids = queries_ids self.relevant_docs = relevant_docs self.mrr_at_k = mrr_at_k self.ndcg_at_k = ndcg_at_k self.accuracy_at_k = accuracy_at_k self.precision_recall_at_k = precision_recall_at_k self.map_at_k = map_at_k def compute_metrics(self, queries_result_list: List[object]): # Init score computation values num_hits_at_k = {k: 0 for k in self.accuracy_at_k} precisions_at_k = {k: [] for k in self.precision_recall_at_k} recall_at_k = {k: [] for k in self.precision_recall_at_k} MRR = {k: 0 for k in self.mrr_at_k} ndcg = {k: [] for k in self.ndcg_at_k} AveP_at_k = {k: [] for k in self.map_at_k} # Compute scores on results #### elements with hits one hit is a dict : {"corpus_id": corpus_text, "score": score} #### corpus_id replace by corpus text for query_itr in range(len(queries_result_list)): query_id = self.queries_ids[query_itr] # Sort scores top_hits = sorted(queries_result_list[query_itr], key=lambda x: x['score'], reverse=True) query_relevant_docs = self.relevant_docs[query_id] # Accuracy@k - We count the result correct, if at least one relevant doc is accross the top-k documents for k_val in self.accuracy_at_k: for hit in top_hits[0:k_val]: if hit['corpus_id'] in query_relevant_docs: num_hits_at_k[k_val] += 1 break # Precision and Recall@k for k_val in self.precision_recall_at_k: num_correct = 0 for hit in top_hits[0:k_val]: if hit['corpus_id'] in query_relevant_docs: num_correct += 1 precisions_at_k[k_val].append(num_correct / k_val) recall_at_k[k_val].append(num_correct / len(query_relevant_docs)) # MRR@k for k_val in self.mrr_at_k: for rank, hit in enumerate(top_hits[0:k_val]): if hit['corpus_id'] in query_relevant_docs: MRR[k_val] += 1.0 / (rank + 1) #break # NDCG@k for k_val in self.ndcg_at_k: predicted_relevance = [1 if top_hit['corpus_id'] in query_relevant_docs else 0 for top_hit in top_hits[0:k_val]] true_relevances = [1] * len(query_relevant_docs) ndcg_value = self.compute_dcg_at_k(predicted_relevance, k_val) / self.compute_dcg_at_k(true_relevances, k_val) ndcg[k_val].append(ndcg_value) # MAP@k for k_val in self.map_at_k: num_correct = 0 sum_precisions = 0 for rank, hit in enumerate(top_hits[0:k_val]): if hit['corpus_id'] in query_relevant_docs: num_correct += 1 sum_precisions += num_correct / (rank + 1) avg_precision = sum_precisions / min(k_val, len(query_relevant_docs)) AveP_at_k[k_val].append(avg_precision) # Compute averages for k in num_hits_at_k: #num_hits_at_k[k] /= len(self.queries) num_hits_at_k[k] /= len(queries_result_list) for k in precisions_at_k: precisions_at_k[k] = np.mean(precisions_at_k[k]) for k in recall_at_k: recall_at_k[k] = np.mean(recall_at_k[k]) for k in ndcg: ndcg[k] = np.mean(ndcg[k]) for k in MRR: #MRR[k] /= len(self.queries) MRR[k] /= len(queries_result_list) for k in AveP_at_k: AveP_at_k[k] = np.mean(AveP_at_k[k]) return {'accuracy@k': num_hits_at_k, 'precision@k': precisions_at_k, 'recall@k': recall_at_k, 'ndcg@k': ndcg, 'mrr@k': MRR, 'map@k': AveP_at_k} @staticmethod def compute_dcg_at_k(relevances, k): dcg = 0 for i in range(min(len(relevances), k)): dcg += relevances[i] / np.log2(i + 2) #+2 as we start our idx at 0 return dcg def map_dev_samples_to_score_calculator_format(dev_samples): if isinstance(dev_samples, dict): dev_samples = list(dev_samples.values()) queries_ids = list(map(lambda x: x["query"] ,dev_samples)) relevant_docs = dict(map(lambda idx: (dev_samples[idx]["query"], dev_samples[idx]["positive"]), range(len(dev_samples)))) return ScoreCalculator(queries_ids, relevant_docs) def map_valid_df_to_score_calculator_format(query ,valid_df): queries_ids = [query] relevant_docs = {query: valid_df[valid_df["question"] == query]["answer"].tolist()} return ScoreCalculator(queries_ids, relevant_docs) def df_to_mrr_score(df, query, score_col, mrr_at_k = 10): #model_input = [[query, doc] for doc in docs] #pred_scores = model.predict(model_input, convert_to_numpy=True, show_progress_bar=False) is_relevant = list(map(lambda t2: True if t2[1]["question"] == query else False, df.iterrows())) pred_scores = df[score_col].values pred_scores_argsort = np.argsort(-pred_scores) #Sort in decreasing order mrr_score = 0 for rank, index in enumerate(pred_scores_argsort[0:mrr_at_k]): if is_relevant[index]: mrr_score = 1 / (rank+1) #mrr_score += 1 / (rank+1) break return mrr_score question_list = valid_part_tiny["question"].value_counts().index.tolist() valid_df = produce_df(question_list[10], size = 100) def produce_score_dict(query ,valid_df, column = "score"): queries_result_list = valid_df[["answer", column]].apply(lambda x: {"corpus_id": x["answer"], "score": x[column]}, axis = 1).tolist() score_dict = map_valid_df_to_score_calculator_format(query, valid_df).compute_metrics([queries_result_list]) return score_dict produce_score_dict(question_list[10] ,valid_df, "score") produce_score_dict(question_list[10] ,valid_df, "cross_score") produce_score_dict(question_list[10] ,valid_df.head(20), "score") produce_score_dict(question_list[10] ,valid_df.head(20), "cross_score") valid_df.head(20) valid_df.head(20).sort_values(by = "cross_score", ascending = False) valid_df.sort_values(by = "cross_score", ascending = False).head(10) sns.distplot(valid_df["cross_score"])
# coding: utf-8 # Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class NodePoolOptions(object): """ Options for creating or updating node pools. """ def __init__(self, **kwargs): """ Initializes a new NodePoolOptions object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param kubernetes_versions: The value to assign to the kubernetes_versions property of this NodePoolOptions. :type kubernetes_versions: list[str] :param shapes: The value to assign to the shapes property of this NodePoolOptions. :type shapes: list[str] :param images: The value to assign to the images property of this NodePoolOptions. :type images: list[str] :param sources: The value to assign to the sources property of this NodePoolOptions. :type sources: list[oci.container_engine.models.NodeSourceOption] """ self.swagger_types = { 'kubernetes_versions': 'list[str]', 'shapes': 'list[str]', 'images': 'list[str]', 'sources': 'list[NodeSourceOption]' } self.attribute_map = { 'kubernetes_versions': 'kubernetesVersions', 'shapes': 'shapes', 'images': 'images', 'sources': 'sources' } self._kubernetes_versions = None self._shapes = None self._images = None self._sources = None @property def kubernetes_versions(self): """ Gets the kubernetes_versions of this NodePoolOptions. Available Kubernetes versions. :return: The kubernetes_versions of this NodePoolOptions. :rtype: list[str] """ return self._kubernetes_versions @kubernetes_versions.setter def kubernetes_versions(self, kubernetes_versions): """ Sets the kubernetes_versions of this NodePoolOptions. Available Kubernetes versions. :param kubernetes_versions: The kubernetes_versions of this NodePoolOptions. :type: list[str] """ self._kubernetes_versions = kubernetes_versions @property def shapes(self): """ Gets the shapes of this NodePoolOptions. Available shapes for nodes. :return: The shapes of this NodePoolOptions. :rtype: list[str] """ return self._shapes @shapes.setter def shapes(self, shapes): """ Sets the shapes of this NodePoolOptions. Available shapes for nodes. :param shapes: The shapes of this NodePoolOptions. :type: list[str] """ self._shapes = shapes @property def images(self): """ Gets the images of this NodePoolOptions. Deprecated. See sources. When creating a node pool using the `CreateNodePoolDetails` object, only image names contained in this property can be passed to the `nodeImageName` property. :return: The images of this NodePoolOptions. :rtype: list[str] """ return self._images @images.setter def images(self, images): """ Sets the images of this NodePoolOptions. Deprecated. See sources. When creating a node pool using the `CreateNodePoolDetails` object, only image names contained in this property can be passed to the `nodeImageName` property. :param images: The images of this NodePoolOptions. :type: list[str] """ self._images = images @property def sources(self): """ Gets the sources of this NodePoolOptions. Available source of the node. :return: The sources of this NodePoolOptions. :rtype: list[oci.container_engine.models.NodeSourceOption] """ return self._sources @sources.setter def sources(self, sources): """ Sets the sources of this NodePoolOptions. Available source of the node. :param sources: The sources of this NodePoolOptions. :type: list[oci.container_engine.models.NodeSourceOption] """ self._sources = sources def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
""" Functions for performing numerical differentiation. """ import numpy as np from scipy import signal def differentiate( X, t, diff_method="forward difference", smoother=None, window_length=35 ): """ Approximate the derivative of set of 1D data points using finite difference methods Parameters ---------- X : Numpy 1d or 2d array Array of data from which to approximate the derivative. Rows correspond to different variables and columns correspond to measurements at different times. t : scalar or 1d array Times when measurements in X were taken. If scalar, we assume a uniform time step. method (optional) : str Which finite difference method to use. Options include 'forward difference' 'centered difference' smoother (optional) : str Which smoothing method to use. Options include 'savgol' for a Savitzky-Golay filter 'median' for a median filter 'wiener' for a wiener filter window_length (optional) : int The length of the window the smoother should use. """ # Require an odd window length if np.mod(window_length, 2) == 0: window_length -= 1 # Apply smoothing if smoother: X = smooth_data(X, smoother, window_length=window_length) if diff_method == "forward difference": return forward_difference(X, t) else: return centered_difference(X, t) # # Helper functions # def smooth_data(X, smoother="savgol", window_length=35): """Apply smoothing to data.""" # Axis along which to smooth axis = np.ndim(X) - 1 # Check that window_length was appropriately set if window_length > X.shape[axis]: print( "Window length {} larger than size of array {}.".format( window_length, X.shape[axis] ) ) window_length = X.shape[axis] if np.mod(window_length, 2) == 0: window_length -= 1 print("Shrinking window to size {}.".format(window_length)) if smoother == "savgol": if window_length <= 3: raise ValueError( "window_length must be larger than 3, currently set to {}".format( window_length ) ) return signal.savgol_filter(X, window_length, polyorder=3, axis=axis) if smoother == "median": if axis == 0: return signal.medfilt(X, kernel_size=window_length) else: return np.vstack([signal.medfilt(x, kernel_size=window_length) for x in X]) if smoother == "wiener": if axis == 0: return signal.wiener(X, mysize=window_length) else: return np.vstack([signal.wiener(x, mysize=window_length) for x in X]) def forward_difference(X, t=1): """ First order forward difference (and 2nd order backward difference for final point) """ # Check whether data is 1D if np.ndim(X) == 1: # Uniform timestep if np.isscalar(t): X_diff = (X[1:] - X[:-1]) / t backward_diff = np.array([(3 * X[-1] / 2 - 2 * X[-2] + X[-3] / 2) / t]) return np.concatenate((X_diff, backward_diff)) # Variable timestep else: t_diff = t[1:] - t[:-1] X_diff = (X[1:] - X[:-1]) / t_diff backward_diff = np.array( [(3 * X[-1] / 2 - 2 * X[-2] + X[-3] / 2) / t_diff[-1]] ) return np.concatenate((X_diff, backward_diff)) # Otherwise assume data is 2D else: # Uniform timestep if np.isscalar(t): X_diff = (X[:, 1:] - X[:, :-1]) / t backward_diff = ( (3 * X[:, -1] / 2 - 2 * X[:, -2] + X[:, -3] / 2) / t ).reshape(X.shape[0], 1) return np.concatenate((X_diff, backward_diff), axis=1) # Variable timestep else: t_diff = t[1:] - t[:-1] X_diff = (X[:, 1:] - X[:, :-1]) / t_diff backward_diff = ( (3 * X[:, -1] / 2 - 2 * X[:, -2] + X[:, -3] / 2) / t_diff[-1] ).reshape(X.shape[0], 1) return np.concatenate((X_diff, backward_diff), axis=1) def centered_difference(X, t): """ Second order centered difference with third order forward/backward difference at endpoints. Warning: Sometimes has trouble with nonuniform grid spacing near boundaries """ # Check whether data is 1D if np.ndim(X) == 1: # Uniform timestep if np.isscalar(t): X_diff = (X[2:] - X[:-2]) / (2 * t) forward_diff = np.array( [(-11 / 6 * X[0] + 3 * X[1] - 3 / 2 * X[2] + X[3] / 3) / t] ) backward_diff = np.array( [(11 / 6 * X[-1] - 3 * X[-2] + 3 / 2 * X[-3] - X[-4] / 3) / t] ) return np.concatenate((forward_diff, X_diff, backward_diff)) # Variable timestep else: t_diff = t[2:] - t[:-2] X_diff = (X[2:] - X[:-2]) / (t_diff) forward_diff = np.array( [(-11 / 6 * X[0] + 3 * X[1] - 3 / 2 * X[2] + X[3] / 3) / (t[1] - t[0])] ) backward_diff = np.array( [ (11 / 6 * X[-1] - 3 * X[-2] + 3 / 2 * X[-3] - X[-4] / 3) / (t[-1] - t[-2]) ] ) return np.concatenate((forward_diff, X_diff, backward_diff)) # Otherwise assume data is 2D else: # Uniform timestep if np.isscalar(t): X_diff = (X[:, 2:] - X[:, :-2]) / (2 * t) forward_diff = ( (-11 / 6 * X[:, 0] + 3 * X[:, 1] - 3 / 2 * X[:, 2] + X[:, 3] / 3) / t ).reshape(X.shape[0], 1) backward_diff = ( (11 / 6 * X[:, -1] - 3 * X[:, -2] + 3 / 2 * X[:, -3] - X[:, -4] / 3) / t ).reshape(X.shape[0], 1) return np.concatenate((forward_diff, X_diff, backward_diff), axis=1) # Variable timestep else: t_diff = t[2:] - t[:-2] X_diff = (X[:, 2:] - X[:, :-2]) / t_diff forward_diff = ( (-11 / 6 * X[:, 0] + 3 * X[:, 1] - 3 / 2 * X[:, 2] + X[:, 3] / 3) / (t_diff[0] / 2) ).reshape(X.shape[0], 1) backward_diff = ( (11 / 6 * X[:, -1] - 3 * X[:, -2] + 3 / 2 * X[:, -3] - X[:, -4] / 3) / (t_diff[-1] / 2) ).reshape(X.shape[0], 1) return np.concatenate((forward_diff, X_diff, backward_diff), axis=1)
""" Censor 3 ----> CENSOR 2 Designed to be run by the evaluator. TCP Censor that synchronizes on first SYN only, works 100% of the time, sends 5 RSTs to server AND client. """ import logging import netifaces import layers.packet # Disable scapy ::1 warnings logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import IP, TCP, wrpcap from censors.censor import Censor class Censor3(Censor): """ TCP Censor that synchronizes on first SYN only, works 100% of the time, sends 5 RSTs to server AND client. """ def __init__(self, environment_id, forbidden, log_dir, log_level, port, queue_num): Censor.__init__(self, environment_id, log_dir, log_level, port, queue_num) self.forbidden = forbidden self.enabled = True self.tcb = 0 self.drop_all_from = None self.num = 0 self.censor_interfaces = netifaces.interfaces() if(len(self.censor_interfaces) > 1) and 'eth0' in self.censor_interfaces: self.censor_ip = netifaces.ifaddresses('eth0')[netifaces.AF_INET][0]['addr'] def check_censor(self, packet): """ Check if the censor should run against this packet. Returns true or false. """ try: self.num += 1 # Only censor TCP packets for now self.logger.debug("Inbound packet to censor: " + layers.packet.Packet._str_packet(packet)) if "TCP" not in packet: return False if packet["TCP"].sprintf('%TCP.flags%') == "S": self.tcb = packet["TCP"].seq + 1 self.logger.debug("Synchronizing TCB on packet " + layers.packet.Packet._str_packet(packet)) return False if packet["TCP"].seq == self.tcb: self.tcb += len(self.get_payload(packet)) else: self.logger.debug("Ignoring packet: " + layers.packet.Packet._str_packet(packet)) return False for keyword in self.forbidden: if keyword in self.get_payload(packet): self.logger.debug("Packet triggered censor: " + layers.packet.Packet._str_packet(packet)) return True return False except Exception: self.logger.exception("Censor 3 Error caught.") return False def censor(self, scapy_packet): """ Send 5 resets to the client and the server. """ client_ip_rst = IP(src=scapy_packet[IP].dst, dst=scapy_packet[IP].src) client_tcp_rst = TCP( dport=scapy_packet[TCP].sport, sport=scapy_packet[TCP].dport, ack=scapy_packet[TCP].seq+len(str(scapy_packet[TCP].payload)), seq=scapy_packet[TCP].ack, flags="R" ) client_rst = client_ip_rst / client_tcp_rst server_ip_rst = IP(src=self.censor_ip, dst=scapy_packet[IP].dst) server_tcp_rst = TCP( dport=scapy_packet[TCP].dport, sport=scapy_packet[TCP].sport, ack=scapy_packet[TCP].ack, seq=scapy_packet[TCP].seq, flags="R" ) server_tcp_rst.show() server_rst = server_ip_rst / server_tcp_rst for _ in range(0, 5): self.mysend(client_rst) self.mysend(server_rst)
import pandas as pd import numpy as np from python_nw import newey from scipy.stats import f from scipy.stats import chi2 def ap_FMB(mr,mf): # Initialize dT, dN = mr.shape dT, dK = mf.shape valpha = np.empty((dN,1)) mbeta = np.empty((dN,dK)) mresid =np.empty((dT,dN)) mlambda_t = np.empty((dT,dK)) malpha_t = np.empty((dT,dN)) # Pass 1: Time-series regressions vones = np.ones((dT,1)) for i in range(0,dN): vres = newey(mr[:,i],np.hstack((vones, mf)).reshape(dT,dK+1),0) valpha[i] = vres.beta[0] mbeta[i,:] = vres.beta[1:].transpose() mresid[:,i] = vres.resid # Pass 2: Time-series regressions for t in range(0,dT): vres = newey(mr[t,:].transpose(),mbeta,0) mlambda_t[t,:] = vres.beta.transpose() malpha_t[t,:] = vres.resid.transpose() valpha = np.mean(malpha_t,0).transpose() vlambda = np.mean(mlambda_t,0).transpose() # Compute standard errors mcov_alpha =1/dT*np.cov(malpha_t,rowvar=0) mcov_lambda = 1/dT*np.cov(mlambda_t,rowvar=0) valpha_t = valpha / np.sqrt(np.diag(mcov_alpha)) vlambda_t = vlambda / np.sqrt(np.diag(mcov_lambda)) # Asset pricing test dmodel_test_stat = valpha.transpose()@np.linalg.pinv(mcov_alpha)@valpha dmodel_p = 1-chi2.cdf(dmodel_test_stat,dN-dK) return vlambda, vlambda_t, valpha, valpha_t, dmodel_test_stat, dmodel_p
""" zeep.xsd -------- """ from zeep.xsd.const import SkipValue # noqa from zeep.xsd.elements import * # noqa from zeep.xsd.schema import Schema # noqa from zeep.xsd.types import * # noqa from zeep.xsd.types.builtins import * # noqa from zeep.xsd.valueobjects import * # noqa
""" Main script for training and evaluating a TCN on a multi-step forecasting task. You can chose bewteen: - Running a simple experiment - Running multiple experiments trying out diffrent combinations of hyperparamters (grid-search) """ import warnings warnings.filterwarnings(action='ignore') from keras.callbacks import EarlyStopping from keras.optimizers import Adam from dts import config from dts.datasets import uci_single_households from dts.datasets import gefcom2014 from dts import logger from dts.utils.plot import plot from dts.utils import metrics from dts.utils import run_grid_search, run_single_experiment from dts.utils import DTSExperiment, log_metrics, get_args from dts.utils.decorators import f_main from dts.utils.split import * from dts.models.TCN import * import time import os args = get_args() @f_main(args=args) def main(_run): ################################ # Load Experiment's paramaters # ################################ params = vars(args) logger.info(params) ################################ # Load Dataset # ################################ dataset_name = params['dataset'] if dataset_name == 'gefcom': dataset = gefcom2014 else: dataset = uci_single_households data = dataset.load_data(fill_nan='median', preprocessing=True, split_type='simple', is_train=params['train'], detrend=params['detrend'], exogenous_vars=params['exogenous'], use_prebuilt=True) scaler, train, test, trend = data['scaler'], data['train'], data['test'], data['trend'] if not params['detrend']: trend = None X_train, y_train = get_rnn_inputs(train, window_size=params['input_sequence_length'], horizon=params['output_sequence_length'], shuffle=True, multivariate_output=params['exogenous']) ################################ # Build & Train Model # ################################ tcn = TCNModel(layers=params['layers'], filters=params['out_channels'], kernel_size=params['kernel_size'], kernel_initializer='glorot_normal', kernel_regularizer=l2(params['l2_reg']), bias_regularizer=l2(params['l2_reg']), dilation_rate=params['dilation'], use_bias=False, return_sequence=True, tcn_type=params['tcn_type']) if params['exogenous']: exog_var_train = y_train[:, :, 1:] # [n_samples, horizon, n_features] y_train = y_train[:, :, 0] # [n_samples, horizon] conditions_shape = (exog_var_train.shape[1], exog_var_train.shape[-1]) X_test, y_test = get_rnn_inputs(test, window_size=params['input_sequence_length'], horizon=params['output_sequence_length'], shuffle=False, multivariate_output=True) exog_var_test = y_test[:, :, 1:] # [n_samples, horizon, n_features] y_test = y_test[:, :, 0] # [n_samples, horizon] else: X_test, y_test = get_rnn_inputs(test, window_size=params['input_sequence_length'], horizon=params['output_sequence_length'], shuffle=False) exog_var_train = None exog_var_test = None conditions_shape = None # IMPORTANT: Remember to pass the trend values through the same ops as the inputs values if params['detrend']: X_trend_test, y_trend_test = get_rnn_inputs(trend[1], window_size=params['input_sequence_length'], horizon=params['output_sequence_length'], shuffle=False) trend = y_trend_test model = tcn.build_model(input_shape=(X_train.shape[1], X_train.shape[-1]), horizon=params['output_sequence_length'], conditions_shape=conditions_shape, use_final_dense=True) if params['load'] is not None: logger.info("Loading model's weights from disk using {}".format(params['load'])) model.load_weights(params['load']) optimizer = Adam(params['learning_rate']) model.compile(optimizer=optimizer, loss=['mse'], metrics=metrics) callbacks = [EarlyStopping(patience=50, monitor='val_loss')] if params['exogenous'] and params['tcn_type'] == 'conditional_tcn': history = model.fit([X_train, exog_var_train], y_train, validation_split=0.1, batch_size=params['batch_size'], epochs=params['epochs'], callbacks=callbacks, verbose=2) else: history = model.fit(X_train, y_train, validation_split=0.1, batch_size=params['batch_size'], epochs=params['epochs'], callbacks=callbacks, verbose=2) ################################ # Save weights # ################################ model_filepath = os.path.join( config['weights'],'{}_{}_{}' .format(params['tcn_type'], params['dataset'], time.time())) model.save_weights(model_filepath) logger.info("Model's weights saved at {}".format(model_filepath)) ################################# # Evaluate on Validation & Test # ################################# fn_inverse_val = lambda x: dataset.inverse_transform(x, scaler=scaler, trend=None) fn_inverse_test = lambda x: dataset.inverse_transform(x, scaler=scaler, trend=trend) fn_plot = lambda x: plot(x, dataset.SAMPLES_PER_DAY, save_at=None) if params['exogenous'] and params['tcn_type'] == 'conditional_tcn': val_scores = tcn.evaluate(history.validation_data[:-1], fn_inverse=fn_inverse_val) test_scores = tcn.evaluate([[X_test, exog_var_test], y_test], fn_inverse=fn_inverse_test, fn_plot=fn_plot) else: val_scores = tcn.evaluate(history.validation_data[:-1], fn_inverse=fn_inverse_val) test_scores = tcn.evaluate([X_test, y_test], fn_inverse=fn_inverse_test, fn_plot=fn_plot) metrics_names = [m.__name__ if not isinstance(m, str) else m for m in model.metrics] return dict(zip(metrics_names, val_scores)), \ dict(zip(metrics_names, test_scores)), \ model_filepath if __name__ == '__main__': grid_search = args.grid_search if grid_search: run_grid_search( experimentclass=DTSExperiment, f_config=args.add_config, db_name=config['db'], ex_name='tcn_grid_search', f_main=main, f_metrics=log_metrics, observer_type=args.observer) else: run_single_experiment( experimentclass=DTSExperiment, db_name=config['db'], ex_name='tcn', f_main=main, f_config=args.add_config, f_metrics=log_metrics, observer_type=args.observer)