Datasets:
Update NURC-SP_ENTOA_TTS.py
Browse files- NURC-SP_ENTOA_TTS.py +61 -31
NURC-SP_ENTOA_TTS.py
CHANGED
|
@@ -2,6 +2,8 @@ import csv
|
|
| 2 |
import datasets
|
| 3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
| 4 |
|
|
|
|
|
|
|
| 5 |
_PROMPTS_URLS = {
|
| 6 |
"dev": "automatic/validation.csv",
|
| 7 |
"train": "automatic/train.csv",
|
|
@@ -22,11 +24,13 @@ _PATH_TO_CLIPS = {
|
|
| 22 |
"train": "train",
|
| 23 |
}
|
| 24 |
|
|
|
|
| 25 |
class NurcSPConfig(BuilderConfig):
|
| 26 |
def __init__(self, prompts_type="original", **kwargs):
|
| 27 |
super().__init__(**kwargs)
|
| 28 |
self.prompts_type = prompts_type
|
| 29 |
|
|
|
|
| 30 |
class NurcSPDataset(GeneratorBasedBuilder):
|
| 31 |
BUILDER_CONFIGS = [
|
| 32 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
|
@@ -58,52 +62,78 @@ class NurcSPDataset(GeneratorBasedBuilder):
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def _split_generators(self, dl_manager):
|
| 61 |
-
prompts_urls = _PROMPTS_URLS
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
# Return split generators
|
| 68 |
return [
|
| 69 |
SplitGenerator(
|
| 70 |
-
name=Split.
|
| 71 |
gen_kwargs={
|
| 72 |
-
"prompts_path": prompts_path["
|
| 73 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
| 74 |
-
"audio_files": archive["
|
| 75 |
}
|
| 76 |
),
|
| 77 |
SplitGenerator(
|
| 78 |
-
name=Split.
|
| 79 |
gen_kwargs={
|
| 80 |
-
"prompts_path": prompts_path["
|
| 81 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
| 82 |
-
"audio_files": archive["
|
| 83 |
}
|
| 84 |
),
|
| 85 |
]
|
| 86 |
|
| 87 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
| 88 |
-
# Load CSV data
|
| 89 |
examples = {}
|
| 90 |
-
with open(prompts_path, "r"
|
| 91 |
csv_reader = csv.DictReader(f)
|
| 92 |
for row in csv_reader:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
}
|
| 97 |
-
|
| 98 |
-
# Process audio files
|
| 99 |
id_ = 0
|
| 100 |
-
for
|
| 101 |
-
if path_to_clips
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
id_ += 1
|
|
|
|
| 2 |
import datasets
|
| 3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
| 4 |
|
| 5 |
+
|
| 6 |
+
|
| 7 |
_PROMPTS_URLS = {
|
| 8 |
"dev": "automatic/validation.csv",
|
| 9 |
"train": "automatic/train.csv",
|
|
|
|
| 24 |
"train": "train",
|
| 25 |
}
|
| 26 |
|
| 27 |
+
|
| 28 |
class NurcSPConfig(BuilderConfig):
|
| 29 |
def __init__(self, prompts_type="original", **kwargs):
|
| 30 |
super().__init__(**kwargs)
|
| 31 |
self.prompts_type = prompts_type
|
| 32 |
|
| 33 |
+
|
| 34 |
class NurcSPDataset(GeneratorBasedBuilder):
|
| 35 |
BUILDER_CONFIGS = [
|
| 36 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
|
|
|
| 62 |
)
|
| 63 |
|
| 64 |
def _split_generators(self, dl_manager):
|
| 65 |
+
prompts_urls = _PROMPTS_URLS # Default to original prompts URLs
|
| 66 |
+
|
| 67 |
+
if self.config.prompts_type == "filtered":
|
| 68 |
+
prompts_urls = _PROMPTS_FILTERED_URLS
|
| 69 |
+
|
| 70 |
+
prompts_path = dl_manager.download(prompts_urls)
|
| 71 |
+
archive = dl_manager.download(_ARCHIVES)
|
| 72 |
|
|
|
|
| 73 |
return [
|
| 74 |
SplitGenerator(
|
| 75 |
+
name=Split.VALIDATION,
|
| 76 |
gen_kwargs={
|
| 77 |
+
"prompts_path": prompts_path["dev"],
|
| 78 |
+
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
| 79 |
+
"audio_files": dl_manager.iter_archive(archive["dev"]),
|
| 80 |
}
|
| 81 |
),
|
| 82 |
SplitGenerator(
|
| 83 |
+
name=Split.TRAIN,
|
| 84 |
gen_kwargs={
|
| 85 |
+
"prompts_path": prompts_path["train"],
|
| 86 |
+
"path_to_clips": _PATH_TO_CLIPS["train"],
|
| 87 |
+
"audio_files": dl_manager.iter_archive(archive["train"]),
|
| 88 |
}
|
| 89 |
),
|
| 90 |
]
|
| 91 |
|
| 92 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
|
|
|
| 93 |
examples = {}
|
| 94 |
+
with open(prompts_path, "r") as f:
|
| 95 |
csv_reader = csv.DictReader(f)
|
| 96 |
for row in csv_reader:
|
| 97 |
+
audio_name = row['audio_name']
|
| 98 |
+
file_path = row['file_path']
|
| 99 |
+
text = row['text']
|
| 100 |
+
start_time = row['start_time']
|
| 101 |
+
end_time = row['end_time']
|
| 102 |
+
duration = row['duration']
|
| 103 |
+
quality = row['quality']
|
| 104 |
+
speech_genre = row['speech_genre']
|
| 105 |
+
speech_style = row['speech_style']
|
| 106 |
+
variety = row['variety']
|
| 107 |
+
accent = row['accent']
|
| 108 |
+
sex = row['sex']
|
| 109 |
+
age_range = row['age_range']
|
| 110 |
+
num_speakers = row['num_speakers']
|
| 111 |
+
speaker_id = row['speaker_id']
|
| 112 |
+
examples[file_path] = {
|
| 113 |
+
"audio_name": audio_name,
|
| 114 |
+
"file_path": file_path,
|
| 115 |
+
"text": text,
|
| 116 |
+
"start_time": start_time,
|
| 117 |
+
"end_time": end_time,
|
| 118 |
+
"duration": duration,
|
| 119 |
+
"quality": quality,
|
| 120 |
+
"speech_genre": speech_genre,
|
| 121 |
+
"speech_style": speech_style,
|
| 122 |
+
"variety": variety,
|
| 123 |
+
"accent": accent,
|
| 124 |
+
"sex": sex,
|
| 125 |
+
"age_range": age_range,
|
| 126 |
+
"num_speakers": num_speakers,
|
| 127 |
+
"speaker_id": speaker_id,
|
| 128 |
}
|
| 129 |
+
inside_clips_dir = False
|
|
|
|
| 130 |
id_ = 0
|
| 131 |
+
for path, f in audio_files:
|
| 132 |
+
if path.startswith(path_to_clips):
|
| 133 |
+
inside_clips_dir = True
|
| 134 |
+
if path in examples:
|
| 135 |
+
audio = {"path": path, "bytes": f.read()}
|
| 136 |
+
yield id_, {**examples[path], "audio": audio}
|
| 137 |
+
id_ += 1
|
| 138 |
+
elif inside_clips_dir:
|
| 139 |
+
break
|
|
|