Datasets:
Update NURC-SP_ENTOA_TTS.py
Browse files- NURC-SP_ENTOA_TTS.py +31 -61
NURC-SP_ENTOA_TTS.py
CHANGED
|
@@ -2,8 +2,6 @@ import csv
|
|
| 2 |
import datasets
|
| 3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
_PROMPTS_URLS = {
|
| 8 |
"dev": "automatic/validation.csv",
|
| 9 |
"train": "automatic/train.csv",
|
|
@@ -24,13 +22,11 @@ _PATH_TO_CLIPS = {
|
|
| 24 |
"train": "train",
|
| 25 |
}
|
| 26 |
|
| 27 |
-
|
| 28 |
class NurcSPConfig(BuilderConfig):
|
| 29 |
def __init__(self, prompts_type="original", **kwargs):
|
| 30 |
super().__init__(**kwargs)
|
| 31 |
self.prompts_type = prompts_type
|
| 32 |
|
| 33 |
-
|
| 34 |
class NurcSPDataset(GeneratorBasedBuilder):
|
| 35 |
BUILDER_CONFIGS = [
|
| 36 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
|
@@ -62,78 +58,52 @@ class NurcSPDataset(GeneratorBasedBuilder):
|
|
| 62 |
)
|
| 63 |
|
| 64 |
def _split_generators(self, dl_manager):
|
| 65 |
-
prompts_urls = _PROMPTS_URLS
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
prompts_path = dl_manager.download(prompts_urls)
|
| 71 |
-
archive = dl_manager.download(_ARCHIVES)
|
| 72 |
|
|
|
|
| 73 |
return [
|
| 74 |
SplitGenerator(
|
| 75 |
-
name=Split.
|
| 76 |
gen_kwargs={
|
| 77 |
-
"prompts_path": prompts_path["
|
| 78 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
| 79 |
-
"audio_files":
|
| 80 |
}
|
| 81 |
),
|
| 82 |
SplitGenerator(
|
| 83 |
-
name=Split.
|
| 84 |
gen_kwargs={
|
| 85 |
-
"prompts_path": prompts_path["
|
| 86 |
-
"path_to_clips": _PATH_TO_CLIPS["
|
| 87 |
-
"audio_files":
|
| 88 |
}
|
| 89 |
),
|
| 90 |
]
|
| 91 |
|
| 92 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
|
|
|
| 93 |
examples = {}
|
| 94 |
-
with open(prompts_path, "r") as f:
|
| 95 |
csv_reader = csv.DictReader(f)
|
| 96 |
for row in csv_reader:
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
start_time = row['start_time']
|
| 101 |
-
end_time = row['end_time']
|
| 102 |
-
duration = row['duration']
|
| 103 |
-
quality = row['quality']
|
| 104 |
-
speech_genre = row['speech_genre']
|
| 105 |
-
speech_style = row['speech_style']
|
| 106 |
-
variety = row['variety']
|
| 107 |
-
accent = row['accent']
|
| 108 |
-
sex = row['sex']
|
| 109 |
-
age_range = row['age_range']
|
| 110 |
-
num_speakers = row['num_speakers']
|
| 111 |
-
speaker_id = row['speaker_id']
|
| 112 |
-
examples[file_path] = {
|
| 113 |
-
"audio_name": audio_name,
|
| 114 |
-
"file_path": file_path,
|
| 115 |
-
"text": text,
|
| 116 |
-
"start_time": start_time,
|
| 117 |
-
"end_time": end_time,
|
| 118 |
-
"duration": duration,
|
| 119 |
-
"quality": quality,
|
| 120 |
-
"speech_genre": speech_genre,
|
| 121 |
-
"speech_style": speech_style,
|
| 122 |
-
"variety": variety,
|
| 123 |
-
"accent": accent,
|
| 124 |
-
"sex": sex,
|
| 125 |
-
"age_range": age_range,
|
| 126 |
-
"num_speakers": num_speakers,
|
| 127 |
-
"speaker_id": speaker_id,
|
| 128 |
}
|
| 129 |
-
|
|
|
|
| 130 |
id_ = 0
|
| 131 |
-
for
|
| 132 |
-
if
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
|
|
|
|
|
| 2 |
import datasets
|
| 3 |
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
|
| 4 |
|
|
|
|
|
|
|
| 5 |
_PROMPTS_URLS = {
|
| 6 |
"dev": "automatic/validation.csv",
|
| 7 |
"train": "automatic/train.csv",
|
|
|
|
| 22 |
"train": "train",
|
| 23 |
}
|
| 24 |
|
|
|
|
| 25 |
class NurcSPConfig(BuilderConfig):
|
| 26 |
def __init__(self, prompts_type="original", **kwargs):
|
| 27 |
super().__init__(**kwargs)
|
| 28 |
self.prompts_type = prompts_type
|
| 29 |
|
|
|
|
| 30 |
class NurcSPDataset(GeneratorBasedBuilder):
|
| 31 |
BUILDER_CONFIGS = [
|
| 32 |
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
|
|
|
|
| 58 |
)
|
| 59 |
|
| 60 |
def _split_generators(self, dl_manager):
|
| 61 |
+
prompts_urls = _PROMPTS_URLS if self.config.prompts_type == "original" else _PROMPTS_FILTERED_URLS
|
| 62 |
+
|
| 63 |
+
# Download the prompts CSV files and audio archive
|
| 64 |
+
prompts_path = dl_manager.download_and_extract(prompts_urls)
|
| 65 |
+
archive = dl_manager.download_and_extract(_ARCHIVES)
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
# Return split generators
|
| 68 |
return [
|
| 69 |
SplitGenerator(
|
| 70 |
+
name=Split.TRAIN,
|
| 71 |
gen_kwargs={
|
| 72 |
+
"prompts_path": prompts_path["train"],
|
| 73 |
+
"path_to_clips": _PATH_TO_CLIPS["train"],
|
| 74 |
+
"audio_files": archive["train"],
|
| 75 |
}
|
| 76 |
),
|
| 77 |
SplitGenerator(
|
| 78 |
+
name=Split.VALIDATION, # Changed from Split.VALIDATION to match error message
|
| 79 |
gen_kwargs={
|
| 80 |
+
"prompts_path": prompts_path["dev"],
|
| 81 |
+
"path_to_clips": _PATH_TO_CLIPS["dev"],
|
| 82 |
+
"audio_files": archive["dev"],
|
| 83 |
}
|
| 84 |
),
|
| 85 |
]
|
| 86 |
|
| 87 |
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
|
| 88 |
+
# Load CSV data
|
| 89 |
examples = {}
|
| 90 |
+
with open(prompts_path, "r", encoding='utf-8') as f:
|
| 91 |
csv_reader = csv.DictReader(f)
|
| 92 |
for row in csv_reader:
|
| 93 |
+
examples[row['file_path']] = {
|
| 94 |
+
key: row[key]
|
| 95 |
+
for key in row.keys()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
}
|
| 97 |
+
|
| 98 |
+
# Process audio files
|
| 99 |
id_ = 0
|
| 100 |
+
for root, _, files in datasets.utils.py_utils.walk(audio_files):
|
| 101 |
+
if path_to_clips in root:
|
| 102 |
+
for fname in files:
|
| 103 |
+
file_path = f"{path_to_clips}/{fname}"
|
| 104 |
+
if file_path in examples:
|
| 105 |
+
full_path = f"{root}/{fname}"
|
| 106 |
+
with open(full_path, "rb") as audio_file:
|
| 107 |
+
audio = {"path": file_path, "bytes": audio_file.read()}
|
| 108 |
+
yield id_, {**examples[file_path], "audio": audio}
|
| 109 |
+
id_ += 1
|