NURC-SP_ENTOA_TTS / NURC-SP_ENTOA_TTS.py
RodrigoLimaRFL's picture
Update NURC-SP_ENTOA_TTS.py
586bb9c verified
raw
history blame
4.1 kB
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
_PROMPTS_URLS = {
"dev": "automatic/validation.csv",
"train": "automatic/train.csv",
}
_PROMPTS_FILTERED_URLS = {
"dev": "automatic/validation.csv",
"train": "automatic/train.csv",
}
_ARCHIVES = {
"dev": "automatic.tar.gz",
"train": "automatic.tar.gz",
}
_PATH_TO_CLIPS = {
"dev": "validation",
"train": "train",
}
class NurcSPConfig(BuilderConfig):
def __init__(self, prompts_type="original", **kwargs):
super().__init__(**kwargs)
self.prompts_type = prompts_type
class NurcSPDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
NurcSPConfig(name="original", description="Original audio prompts", prompts_type="original"),
NurcSPConfig(name="filtered", description="Filtered audio prompts", prompts_type="filtered"),
]
def _info(self):
return DatasetInfo(
features=datasets.Features(
{
"audio_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"text": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"speech_genre": datasets.Value("string"),
"speech_style": datasets.Value("string"),
"variety": datasets.Value("string"),
"accent": datasets.Value("string"),
"sex": datasets.Value("string"),
"age_range": datasets.Value("string"),
"num_speakers": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000),
}
)
)
def _split_generators(self, dl_manager):
prompts_urls = _PROMPTS_URLS if self.config.prompts_type == "original" else _PROMPTS_FILTERED_URLS
# Download the prompts CSV files and audio archive
prompts_path = dl_manager.download_and_extract(prompts_urls)
archive = dl_manager.download_and_extract(_ARCHIVES)
# Return split generators
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"prompts_path": prompts_path["train"],
"path_to_clips": _PATH_TO_CLIPS["train"],
"audio_files": archive["train"],
}
),
SplitGenerator(
name=Split.VALIDATION, # Changed from Split.VALIDATION to match error message
gen_kwargs={
"prompts_path": prompts_path["dev"],
"path_to_clips": _PATH_TO_CLIPS["dev"],
"audio_files": archive["dev"],
}
),
]
def _generate_examples(self, prompts_path, path_to_clips, audio_files):
# Load CSV data
examples = {}
with open(prompts_path, "r", encoding='utf-8') as f:
csv_reader = csv.DictReader(f)
for row in csv_reader:
examples[row['file_path']] = {
key: row[key]
for key in row.keys()
}
# Process audio files
id_ = 0
for root, _, files in datasets.utils.py_utils.walk(audio_files):
if path_to_clips in root:
for fname in files:
file_path = f"{path_to_clips}/{fname}"
if file_path in examples:
full_path = f"{root}/{fname}"
with open(full_path, "rb") as audio_file:
audio = {"path": file_path, "bytes": audio_file.read()}
yield id_, {**examples[file_path], "audio": audio}
id_ += 1