File size: 9,800 Bytes
96fd80c 44482b3 96fd80c 2dd6126 4323869 96fd80c 5d059c4 2dd6126 5d059c4 96fd80c 2dd6126 49fb33a 96fd80c 5d059c4 2dd6126 5d059c4 2dd6126 96fd80c 4323869 96fd80c 5d059c4 09857e0 2dd6126 96fd80c 5d059c4 09857e0 96fd80c 5d059c4 2dd6126 5d059c4 96fd80c 2dd6126 f082111 2dd6126 5d059c4 2dd6126 f082111 2dd6126 96fd80c 5d059c4 96fd80c 2dd6126 5d059c4 2dd6126 5e3b83b 560a88d 2dd6126 bbea063 5d059c4 96fd80c e525c10 96fd80c 778b351 5e3b83b a530080 96fd80c 2dd6126 5d059c4 2dd6126 6488229 2dd6126 bdfc317 5d059c4 5e3b83b 09857e0 560a88d 44482b3 5e3b83b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
import csv
import datasets
from datasets import BuilderConfig, GeneratorBasedBuilder, DatasetInfo, SplitGenerator, Split
from pathlib import Path
_PROMPTS_PROSODIC_URLS = {
"dev": "prosodic/validation.csv",
"train": "prosodic/train.csv",
}
_PROMPTS_AUDIO_CORPUS_URLS = {
"dev": "audioCorpus/validation.csv",
"train": "audioCorpus/train.csv",
}
_PROMPTS_AUTOMATIC_URLS = {
"train": "automatic/nurc_cm_automatic_all_segments.csv",
}
_ARCHIVES_PROSODIC = {
"dev": "prosodic/audios.tar.gz",
"train": "prosodic/audios.tar.gz",
}
_ARCHIVES_AUDIO_CORPUS = {
"dev": "audioCorpus/audios.tar.gz",
"train": "audioCorpus/audios.tar.gz",
}
_ARCHIVES_AUTOMATIC = {
"train": "automatic/nurc_cm_automatic_segmented_audios.zip",
}
_PATH_TO_CLIPS = {
"dev": "",
"train": "",
}
class NurcSPConfig(BuilderConfig):
def __init__(self, prompts_type, **kwargs):
super().__init__(**kwargs)
self.prompts_type = prompts_type
class NurcSPDataset(GeneratorBasedBuilder):
BUILDER_CONFIGS = [
NurcSPConfig(name="audioCorpus", description="Audio Corpus audio prompts", prompts_type="audioCorpus"),
NurcSPConfig(name="prosodic", description="Prosodic audio prompts", prompts_type="prosodic"),
NurcSPConfig(name="automatic", description="Automatic audio prompts", prompts_type="automatic"),
]
def _info(self):
if self.config.name == "prosodic":
return DatasetInfo(
features=datasets.Features(
{
"path": datasets.Value("string"),
"name": datasets.Value("string"),
"speaker": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"normalized_text": datasets.Value("string"),
"text": datasets.Value("string"),
"duration": datasets.Value("string"),
"type": datasets.Value("string"),
"year": datasets.Value("string"),
"gender": datasets.Value("string"),
"age_range": datasets.Value("string"),
"total_duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"theme": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
}
)
)
elif self.config.name == "audioCorpus":
return DatasetInfo(
features=datasets.Features(
{
"audio_name": datasets.Value("string"),
"file_path": datasets.Value("string"),
"text": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"duration": datasets.Value("string"),
"quality": datasets.Value("string"),
"speech_genre": datasets.Value("string"),
"speech_style": datasets.Value("string"),
"variety": datasets.Value("string"),
"accent": datasets.Value("string"),
"sex": datasets.Value("string"),
"age_range": datasets.Value("string"),
"num_speakers": datasets.Value("string"),
"speaker_id": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
}
)
)
elif self.config.name == "automatic":
return DatasetInfo(
features=datasets.Features(
{
"path": datasets.Value("string"),
"name": datasets.Value("string"),
"speaker": datasets.Value("string"),
"start_time": datasets.Value("string"),
"end_time": datasets.Value("string"),
"text": datasets.Value("string"),
"duration": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=16_000, mono=True),
}
)
)
def _split_generators(self, dl_manager):
if self.config.prompts_type == "prosodic":
prompts_urls = _PROMPTS_PROSODIC_URLS
archive_link = _ARCHIVES_PROSODIC
elif self.config.prompts_type == "audioCorpus":
prompts_urls = _PROMPTS_AUDIO_CORPUS_URLS
archive_link = _ARCHIVES_AUDIO_CORPUS
elif self.config.prompts_type == "automatic":
prompts_urls = _PROMPTS_AUTOMATIC_URLS
archive_link = _ARCHIVES_AUTOMATIC
else:
return
prompts_path = dl_manager.download(prompts_urls)
archive = dl_manager.download(archive_link)
if self.config.prompts_type != "automatic":
return [
SplitGenerator(
name=Split.VALIDATION,
gen_kwargs={
"prompts_path": prompts_path["dev"],
"path_to_clips": _PATH_TO_CLIPS["dev"],
"audio_files": dl_manager.iter_archive(archive["dev"]),
"split_name": "validation"
}
),
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"prompts_path": prompts_path["train"],
"path_to_clips": _PATH_TO_CLIPS["train"],
"audio_files": dl_manager.iter_archive(archive["train"]),
"split_name": "train"
}
),
]
else:
return [
SplitGenerator(
name=Split.TRAIN,
gen_kwargs={
"prompts_path": prompts_path["train"],
"path_to_clips": _PATH_TO_CLIPS["train"],
"audio_files": dl_manager.iter_archive(archive["train"]),
"split_name": "train"
}
),
]
def _generate_examples(self, prompts_path, path_to_clips, audio_files, split_name):
examples = {}
csv_paths = []
with open(prompts_path, "r", encoding="utf-8") as f:
csv_reader = csv.DictReader(f)
if self.config.prompts_type == "prosodic":
for row in csv_reader:
file_path = Path(row['path']).as_posix()
examples[file_path] = {
"path": row['path'],
"name": row['name'],
"speaker": row['speaker'],
"start_time": row['start_time'],
"end_time": row['end_time'],
"normalized_text": row['normalized_text'],
"text": row['text'],
"duration": row['duration'],
"type": row['type'],
"year": row['year'],
"gender": row['gender'],
"age_range": row['age_range'],
"total_duration": row['total_duration'],
"quality": row['quality'],
"theme": row['theme'],
}
csv_paths.append(file_path)
elif self.config.prompts_type == "audioCorpus":
for row in csv_reader:
file_path = Path(row['file_path']).as_posix()
examples[file_path] = {
"audio_name": row['audio_name'],
"file_path": row['file_path'],
"text": row['text'],
"start_time": row['start_time'],
"end_time": row['end_time'],
"duration": row['duration'],
"quality": row['quality'],
"speech_genre": row['speech_genre'],
"speech_style": row['speech_style'],
"variety": row['variety'],
"accent": row['accent'],
"sex": row['sex'],
"age_range": row['age_range'],
"num_speakers": row['num_speakers'],
"speaker_id": row['speaker_id'],
}
csv_paths.append(file_path)
elif self.config.prompts_type == "automatic":
for row in csv_reader:
file_path = Path(row['path']).as_posix()
examples[file_path] = {
"path": row['path'],
"name": row['name'],
"speaker": row['speaker'],
"start_time": row['start_time'],
"end_time": row['end_time'],
"text": row['text'],
"duration": row['duration'],
}
csv_paths.append(file_path)
id_ = 0
for path, f in audio_files:
path = Path(path).as_posix()
if path.startswith(path_to_clips) and path in examples:
audio = {"path": path, "bytes": f.read()}
yield id_, {**examples[path], "audio": audio}
id_ += 1
|