solution
stringlengths
11
983k
difficulty
int64
0
21
language
stringclasses
2 values
#include <bits/stdc++.h> using namespace std; template <class T> inline bool read(T &x) { int c = getchar(); int sgn = 1; while (~c && c < '0' || c > '9') { if (c == '-') sgn = -1; c = getchar(); } for (x = 0; ~c && '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0'; x *= sgn; return ~c; } int X[] = {-1, -1, -1, 0, 1, 1, 1, 0}; int Y[] = {-1, 0, +1, 1, 1, 0, -1, -1}; long long pas[1005][1005]; int main() { pas[0][0] = 1; for (int i = 1; i <= 1000; i++) { pas[i][0] = pas[i][i] = 1; for (int j = 1; j < i; j++) { pas[i][j] = pas[i - 1][j] + pas[i - 1][j - 1]; pas[i][j] %= 1000000007; } } int n; int tot = 0; long long ans = 1; read(n); for (int i = 0; i < n; i++) { int a; read(a); a--; ans = (ans * pas[tot + a][a]) % 1000000007; a++; tot += a; } cout << ans << endl; return 0; }
9
CPP
import sys import math import collections from pprint import pprint mod = 1000000007 def vector(size, val=0): vec = [val for i in range(size)] return vec def matrix(rowNum, colNum, val=0): mat = [] for i in range(rowNum): collumn = [val for j in range(colNum)] mat.append(collumn) return mat def pascle(lim): p = matrix(lim, lim) for i in range(lim): p[i][i] = p[i][0] = 1 for i in range(1, lim): for j in range(1, lim): p[i][j] = (p[i - 1][j - 1] + p[i - 1][j]) % mod return p p = pascle(1005) n = int(input()) a = [0] + [int(input()) for i in range(n)] s = 0 ans = 1 for i in range(1, n + 1): ans = (ans * p[s + a[i] - 1][a[i] - 1]) % mod s += a[i] print(ans)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const long long MOD = 1e9 + 7, Base = 998244353; const long long N = 1e3 + 7; const long long INF = 1LL * 1000 * 1000 * 1000 * 1000 * 1000 * 1000 + 7LL; const double pie = acos(-1.0); long long Fact[N], k, a[N], n, Ans; void extended_euclid(long long a, long long b, long long *x, long long *y) { if (b == 0) { *x = 1; *y = 0; return; } long long x1, y1; extended_euclid(b, a % b, &x1, &y1); *x = y1; *y = x1 - ((a / b) * y1); } long long inverse_mod(long long C) { long long x, y; extended_euclid(MOD, C, &x, &y); return ((y % MOD) + MOD) % MOD; } long long mod_expo(long long A, long long B) { if (B == 0) return 1; long long x = mod_expo(A, B / 2); x %= MOD; x = (x * x) % MOD; if (B % 2 == 1) { x = (x * (A % MOD)) % MOD; } return x; } long long ncr(long long n, long long r) { r = ((Fact[r] % MOD) * (Fact[n - r] % MOD)) % MOD; return ((Fact[n] % MOD) * (inverse_mod(r) % MOD)) % MOD; } int32_t main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); Fact[0] = 1; for (long long i = 1; i < N; ++i) Fact[i] = (i * Fact[i - 1]) % MOD; cin >> k; Ans = 1; for (long long i = 1; i <= k; ++i) { cin >> a[i]; n += a[i]; Ans = Ans * ncr(n - 1, a[i] - 1) % MOD; } cout << Ans << '\n'; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int D = 1e9 + 7; long long k, A[1002], F[1002], c[1002][1002], d[1002][1002]; int main() { cin >> k; for (int i = 1; i <= k; ++i) scanf("%d", &A[i]); for (int i = 1; i <= 1000; ++i) d[0][i] = 1, c[0][i] = 1; for (int i = 1; i <= 1000; ++i) for (int j = 1; j <= 1000; ++j) { if (j == 1) c[i][j] = 1; else c[i][j] = d[i][j - 1]; d[i][j] = (d[i - 1][j] + c[i][j]) % D; } long long so = A[1]; F[1] = 1; for (int i = 2; i <= 1000; ++i) { F[i] = (F[i - 1] * c[A[i] - 1][so + 1]) % D; so += A[i]; } cout << F[k]; fclose(stdin); fclose(stdout); }
9
CPP
fac = [1] * 1001 for i in range(1, 1001): fac[i] = fac[i - 1] * i k = int(input()) tmp = 0 res = 1 for i in range(k): tmp2 = int(input()) res *= (fac[tmp2 + tmp - 1] // fac[tmp2 - 1] // fac[tmp]) % (10 ** 9 + 7) tmp += tmp2 print(res % (10 ** 9 + 7))
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long quick_mod(long long a, long long b) { long long ans = 1; a %= 1000000007; while (b) { if (b % 2 != 0) { ans = ans * a % 1000000007; b--; } b /= 2; a = a * a % 1000000007; } return ans; } long long judge(long long n, long long m) { if (m > n) return 0; long long ans = 1; for (long long i = 1; i <= m; i++) { long long a = (n + i - m) % 1000000007; long long b = i % 1000000007; ans = ans * (a * quick_mod(b, 1000000007 - 2) % 1000000007) % 1000000007; } return ans; } long long work(long long n, long long m) { if (m == 0) return 1; return judge(n % 1000000007, m % 1000000007) * work(n / 1000000007, m / 1000000007) % 1000000007; } int main() { long long m, n, i, j, k, ans = 1, a[10005], t = 0, count; while (cin >> m) { for (i = 1; i <= m; i++) cin >> a[i]; ans = 1; long long sum = a[1]; for (i = 2; i <= m; i++) { sum += a[i]; ans = (ans * work(sum - 1, a[i] - 1)) % 1000000007; } cout << ans % 1000000007 << endl; } }
9
CPP
#include <bits/stdc++.h> using namespace std; const int INF = 0x7FFFFFFF; const int MOD = 1000000000 + 7; const double EPS = 1e-10; const double PI = 2 * acos(0.0); const int maxn = 1000 + 66; int cnt[maxn]; bool prime[maxn]; long long primelist[maxn], prime_len; void GetPrime() { memset(prime, true, sizeof(prime)); prime_len = 0; long long i; for (i = 2; i <= maxn; i++) { if (prime[i]) primelist[prime_len++] = i; long long j; for (j = 0; j < prime_len; j++) { if (i * primelist[j] > maxn) break; prime[i * primelist[j]] = false; if (i % primelist[j] == 0) break; } } } long long mult_mod(long long a, long long b, long long mod) { a %= mod; b %= mod; long long ans = 0; long long temp = a; while (b) { if (b & 1) { ans += temp; if (ans > mod) ans -= mod; } temp <<= 1; if (temp > mod) temp -= mod; b >>= 1; } return ans; } long long pow_mod(long long a, long long n, long long mod) { long long ans = 1; long long temp = a % mod; while (n) { if (n & 1) ans = mult_mod(ans, temp, mod); temp = mult_mod(temp, temp, mod); n >>= 1; } return ans; } long long Work(long long n, long long p) { long long ans = 0; while (n) { ans += n / p; n /= p; } return ans; } long long GetComMod(long long n, long long m, long long p) { long long ans = 1; for (long long i = 0; i < prime_len && primelist[i] <= n; i++) { long long x = Work(n, primelist[i]); long long y = Work(n - m, primelist[i]); long long z = Work(m, primelist[i]); x -= (y + z); ans *= pow_mod(primelist[i], x, p); ans %= p; } return ans; } int main() { GetPrime(); int k; cin >> k; for (int i = 1; i <= k; i++) cin >> cnt[i]; long long res = 1, tempsum = cnt[1]; for (int i = 2; i <= k; i++) { res = (res % MOD * GetComMod(tempsum + cnt[i] - 1, cnt[i] - 1, MOD)) % MOD; tempsum += cnt[i]; } cout << res << endl; return 0; }
9
CPP
__author__ = 'taras-sereda' from pprint import pprint as pp n = int(input()) maxn = 1010 mod = 1000000007 coef = [[0 for i in range(maxn)]for i in range(maxn)] for i in range(maxn): coef[i][0] = 1 for j in range(1, maxn): coef[i][j] = (coef[i-1][j] + coef[i-1][j-1]) % mod colors = [int(input()) for i in range(n)] res = 1 total = 0 for i in range(n): res = (res*coef[total+colors[i]-1][colors[i]-1]) % mod total += colors[i] print(res)
9
PYTHON3
import sys input=sys.stdin.readline p=(10**9)+7 pri=p fac=[1 for i in range((10**6)+1)] for i in range(2,len(fac)): fac[i]=(fac[i-1]*(i%pri))%pri def modi(x): return (pow(x,p-2,p))%p; def ncr(n,r): x=(fac[n]*((modi(fac[r])%p)*(modi(fac[n-r])%p))%p)%p return x; a=int(input()) ans=[0 for i in range(a+1)] for i in range(a): s=int(input()) ans[i+1]=s pref=[0] for i in range(1,a+1): pref.append(pref[-1]+ans[i]) total=1 for i in range(2,len(ans)): spaces=pref[i-1]+1 items=ans[i]-1 x=ncr(spaces+items-1,spaces-1) x%=pri total=(total*x)%pri print(total)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int maxn = 1000 + 10; const int mod = 1000 * 1000 * 1000 + 7; const int inf = 1000 * 1000 * 1000 * 2; const int rad = 400; int c[maxn][maxn]; inline void pre() { for (int i = 0; i < maxn; ++i) c[0][i] = 1, c[1][i] = i, c[i][i] = 1; for (int j = 2; j < maxn; ++j) for (int i = 2; i < j; ++i) c[i][j] = (c[i - 1][j - 1] + c[i][j - 1]) % mod; } int main() { ios_base::sync_with_stdio(false); pre(); int k; cin >> k; int x; cin >> x; long long ans = 1; for (int i = 2; i <= k; ++i) { int y; cin >> y; ans *= c[x][x + y - 1]; ans %= mod; x += y; } cout << ans << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; long long C[1015][1015]; long long k; long long sum = 0; long long a[1015]; void init() { for (int i = 0; i <= 1010; ++i) { for (int j = 0; j <= i; ++j) { C[i][j] = (i && j) ? (C[i - 1][j] + C[i - 1][j - 1]) % mod : 1; } } } int main() { cin >> k; for (int i = 1; i <= k; i++) { cin >> a[i]; sum += a[i]; } init(); long long ans = 1; for (int i = k; i >= 1; i--) { ans = ans * C[sum - 1][a[i] - 1] % mod; sum -= a[i]; } cout << ans << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int main() { int k; cin >> k; if (k == 0) { cout << 1; } else { vector<long long> c(k, 0); for (int i = 0; i < k; i++) cin >> c[i]; long long tot = accumulate((c).begin(), (c).end(), 0); vector<vector<long long> > coeffs(tot, vector<long long>(tot, 0)); for (int i = 0; i < tot; i++) coeffs[i][0] = 1, coeffs[i][i] = 1; for (int i = 1; i < tot; i++) { for (int j = 1; j < i; j++) { coeffs[i][j] = (coeffs[i - 1][j] + coeffs[i - 1][j - 1]) % 1000000007; } } vector<long long> d(k, 0); d[0] = c[0]; for (int i = 1; i < k; i++) { d[i] = d[i - 1] + c[i]; } int soln = 1; for (int i = 0; i < (c).size(); i++) { soln = (soln * coeffs[d[i] - 1][c[i] - 1]) % 1000000007; } cout << soln; } }
9
CPP
#include <bits/stdc++.h> long long int *f; long long int pow(long long int a, long long int b) { long long int x = 1, y = a; while (b > 0) { if (b % 2 == 1) { x = (x * y); if (x > 1000000007) x %= 1000000007; } y = (y * y); if (y > 1000000007) y %= 1000000007; b /= 2; } return x; } long long int InverseEuler(long long int n) { return pow(n, 1000000007 - 2); } long long int SmallC(long long int n, long long int r) { return (f[n] * ((InverseEuler(f[r]) * InverseEuler(f[n - r])) % 1000000007)) % 1000000007; } long long int Lucas(long long int n, long long int m) { if (n == 0 && m == 0) return 1; long long int ni = n % 1000000007; long long int mi = m % 1000000007; if (mi > ni) return 0; return Lucas(n / 1000000007, m / 1000000007) * SmallC(ni, mi); } long long int C(long long int n, long long int r) { if (r == 0) return 1; else return Lucas(n, r); } int main() { long long int k, *a, i, n; long long int ans; scanf("%I64d", &k); f = (long long int *)malloc(sizeof(long long int) * (1000 + 1)); f[0] = f[1] = 1; for (i = 2; i < 1000 + 1; i++) f[i] = (f[i - 1] * i) % 1000000007; a = (long long int *)malloc(sizeof(long long int) * k); n = 0; for (i = 0; i < k; i++) { scanf("%I64d", &a[i]); n += a[i]; } ans = 1; for (i = k - 1; i >= 0; i--) { ans = (ans * C(n - 1, a[i] - 1)) % 1000000007; n -= a[i]; } printf("%I64d", ans); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long ncr[1001][1001]; int main() { ios_base::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int i, j, x, n, tot = 0, ans, k; cin >> k; long long int in[k + 1]; for (i = 1; i <= k; i++) { cin >> in[i]; } ncr[1][1] = 1; ncr[1][0] = 1; for (i = 0; i <= 1000; i++) { ncr[i][0] = 1; for (j = 1; j <= i; j++) ncr[i][j] = (ncr[i - 1][j - 1] + ncr[i - 1][j]) % 1000000007; } ans = 1; tot = in[1]; for (i = 2; i <= k; i++) { tot += in[i]; x = tot - 1; ans = (ans * ncr[x][in[i] - 1]) % 1000000007; } cout << ans; }
9
CPP
#include <bits/stdc++.h> using namespace std; vector<vector<long long>> memo(1001, vector<long long>(1001, -1)); long long cnk(long long n, long long k) { if (memo[n][k] == -1) { if (n < k) memo[n][k] = 0; else if (n == k) memo[n][k] = 1; else if (k == 0) memo[n][k] = 1; else { memo[n][k] = cnk(n - 1, k) + cnk(n - 1, k - 1); memo[n][k] %= 1000000007; } } return memo[n][k]; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); int k, sum = 0, a; cin >> k; long long ans = 1; for (int i = 0; i < k; ++i) { cin >> a; ans *= cnk(sum + a - 1, a - 1); ans %= 1000000007; sum += a; } cout << ans << '\n'; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; int mod_inv(long long base) { long long result = 1, exp = MOD - 2; while (exp) { if (exp & 1) result = (result * base) % MOD; exp >>= 1; base = (base * base) % MOD; } return result; } int fact(int a) { long long f = 1; for (int i = 2; i <= a; i++) f = (f * i) % MOD; return f; } int comb(int a, int b) { long long comb_res = 1; int x = max(a, b - a); for (int i = b; i > x; i--) comb_res = (comb_res * i) % MOD; return (comb_res * (mod_inv(fact(b - x)) % MOD)) % MOD; } int c[1001], t[1001]; int main() { int i, k; long long res = 1; cin >> k; for (i = 1; i <= k; i++) { cin >> c[i]; t[i] = t[i - 1] + c[i]; } for (i = 2; i <= k; i++) { res *= comb(c[i] - 1, t[i] - 1); res %= MOD; } cout << res << endl; }
9
CPP
from sys import stdin,stdout from collections import defaultdict import math #stdin = open('input.txt','r') mod = 10**9+7 I = stdin.readline P = stdout.write k = int(I()) tot = 0 ans = 1 for i in range(k): now = int(I()) ans*=math.factorial(tot+now-1)//math.factorial(tot)//math.factorial(now-1) tot+=now ans%=mod print(ans)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; using ll = long long; const int INF = 0x3f3f3f3f; const ll LINF = 0x3f3f3f3f3f3f3f3fLL; ll modpow(ll x, ll p, ll mod) { ll res = 1LL; for (; p; p >>= 1, (x *= x) %= mod) if (p & 1) (res *= x) %= mod; return res; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int k; cin >> k; constexpr ll mod = 1e9 + 7, maxsum = 1000; vector<ll> f(maxsum + 1, 1), inv(maxsum + 1, 1LL); for (int x = 1; x <= maxsum; ++x) { f[x] = x * f[x - 1] % mod; inv[x] = modpow(f[x], mod - 2, mod); } ll sum = 0LL, res = 1LL; for (int j = 0; j < k; ++j) { ll ct; cin >> ct; res = ((res * f[sum + ct - 1] % mod) * inv[sum] % mod) * inv[ct - 1] % mod; sum += ct; } cout << res << '\n'; exit(0); }
9
CPP
#include <bits/stdc++.h> using namespace std; long long int fact[1010], invfact[1010]; long long int powmod(long long int base, long long int expo) { if (expo == 0) return 1; else if (expo & 1) return base * powmod(base, expo - 1) % 1000000007; else { long long int root = powmod(base, expo >> 1); return (root * root) % 1000000007; } } long long int inverse(long long int x) { return powmod(x, 1000000007 - 2); } void init(long long int n) { long long int i; fact[0] = 1; for (i = 1; i <= n; i++) fact[i] = (i * fact[i - 1]) % 1000000007; invfact[n] = inverse(fact[n]); for (i = n; i > 0; i--) invfact[i - 1] = (i * invfact[i]) % 1000000007; } long long int nCr(long long int n, long long int r) { if (r > n || r < 0) return 0; return ((fact[n] * invfact[r] % 1000000007) * invfact[n - r]) % 1000000007; } int main() { long long int n, k, i, sum = 0; init(1005); cin >> k; long long int ans = 1; long long int p; long long int arr[1005]; for (i = 0; i < k; i++) { cin >> arr[i]; sum += arr[i]; } for (i = k - 1; i >= 0; i--) { p = arr[i] - 1; ans = (ans * nCr(sum - 1, p)) % 1000000007; sum -= arr[i]; } cout << ans; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int INF = 1e9 + 7; const int MAX = 1000; long long k; long long sum; long long buf[MAX + 1]; long long e[MAX + 1][MAX + 1]; long long res; int main(int argc, char const *argv[]) { cin >> k; for (int i = 0; i < MAX + 1; ++i) { e[i][0] = 1; } for (int i = 1; i < MAX + 1; ++i) { for (int j = 1; j < MAX + 1; ++j) { e[i][j] = (e[i - 1][j - 1] + e[i - 1][j]) % INF; } } res = 1; for (int i = 0; i < k; ++i) { int c; cin >> c; sum += c; res = (res * e[sum - 1][c - 1]) % INF; } cout << res << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int m = 1e9 + 7; int c[1012][1012]; long long int n, k, t, res = 1, all; int main() { for (int i = 0; i < 1012; i++) c[0][i] = 1; for (int i = 1; i < 1012; i++) { c[i][0] = 1, c[i][i] = 1; for (int j = 1; j < i; j++) c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % m; } cin >> k; while (k--) { cin >> t; all += t; res = ((long long int)c[all - 1][t - 1] * res) % m; } cout << res << endl; return 0; }
9
CPP
numeroColores=int(input()) listaNumColores=[] for i in range (0, numeroColores): listaNumColores.append(int(input())) conclusion= 1 anterior= listaNumColores[0] for i, numeroColores in enumerate(listaNumColores[1:]): #for i in range(0,numeroColores-1): anterior+= 1 #reset conteo1= 1 conteo2= 1 for j in range(numeroColores - 1): conclusion= conclusion* anterior anterior+= 1 conteo1= conteo1* conteo2 conteo2+= 1 conclusion= conclusion// conteo1 if conclusion> 1000000007: #Aplicar modulo conclusion = conclusion% 1000000007 print(conclusion)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int maxk = 1e3 + 7; const int p = 1000000007; int k; int c[maxk]; long long dp[maxk]; int cnt; long long n, m; long long quick_mod(long long a, long long b) { long long ans = 1; a %= p; while (b) { if (b & 1) { ans = ans * a % p; b--; } b >>= 1; a = a * a % p; } return ans; } long long C(long long n, long long m) { if (m > n) return 0; long long ans = 1; for (int i = 1; i <= m; i++) { long long a = (n + i - m) % p; long long b = i % p; ans = ans * (a * quick_mod(b, p - 2) % p) % p; } return ans; } long long Lucas(long long n, long long m) { if (m == 0) return 1; return C(n % p, m % p) * Lucas(n / p, m / p) % p; } long long fun(long long x) { long long ans = 0; for (int i = 0; i < x - 1; i++) { long long t = Lucas(x - 2, i); long long y = Lucas(cnt + 1, i + 1); ans = (ans % p + (t % p * y % p) % p) % p; } if (!ans) return 1ll; return ans; } void solve() { dp[0] = 1; cnt = c[0]; for (int i = 1; i < k; i++) { dp[i] = dp[i - 1] * fun(c[i]) % p; cnt += c[i]; } cout << dp[k - 1] << endl; } int main() { cin >> k; for (int i = 0; i < k; i++) { cin >> c[i]; } solve(); }
9
CPP
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long C[1001][1001]; void PreCalc() { C[0][0] = 1; for (int i = 1; i < 1001; ++i) { C[i][0] = 1; for (int j = 1; j <= i; ++j) { C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod; } } } int main() { PreCalc(); int k; scanf("%d", &k); int n = 0; vector<int> c(k); for (int i = 0; i < k; ++i) { scanf("%d", &c[i]); n += c[i]; } long long ans = 1; for (int i = k - 1; i >= 0; --i) { ans *= C[n - 1][c[i] - 1]; ans %= mod; n -= c[i]; } cout << ans; }
9
CPP
#include <bits/stdc++.h> using namespace std; int C[1010][1010]; int main() { std::ios::sync_with_stdio(false); for (int i = 0; i < 1005; i++) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; j++) { C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; if (C[i][j] >= 1000000007) C[i][j] %= 1000000007; } } long long int ans = 1, total = 0, n; cin >> n; long long int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { ans = (ans * C[total + a[i] - 1][a[i] - 1]) % 1000000007; total += a[i]; } cout << ans << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const long long mod = 1e9 + 7; long long n; long long f[1005]; long long sum; long long C[1005][1005]; void init() { for (int i = 0; i <= 1000; i++) { for (int j = 0; j <= i; j++) { if (i == 0 || i == j) C[i][j] = 1; else C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod; } } return; } int main() { cin >> n; for (long long i = 1; i <= n; i++) { cin >> f[i]; sum += f[i]; } init(); long long ans = 1; for (int i = n; i > 0; i--) { ans *= C[sum - 1][f[i] - 1]; sum -= f[i]; ans %= mod; } cout << ans << endl; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long C[1005][1005]; int sum[1005]; long long Sech(int n, int m) { if (n == 1) return 1; return C[m - 1][sum[n] - 1] * Sech(n - 1, m - sum[n]) % 1000000007; } int main(void) { int m, n, i, j; for (i = 0; i <= 1002; i++) C[i][0] = 1; for (i = 1; i <= 1002; i++) { for (j = 1; j <= i; j++) C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % 1000000007; } m = 0; scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &sum[i]); m += sum[i]; } printf("%lld\n", Sech(n, m)); return 0; }
9
CPP
from sys import stdin,stdout from collections import Counter nmbr = lambda: int(stdin.readline()) lst = lambda: list(map(int,stdin.readline().split())) M=10**9+7 fact=[1] for i in range(1,1005): fact+=[(fact[-1]*i)%M] def ncr(n,r): num=fact[n] den=(fact[r]*fact[n-r])%M ans=(num*pow(den,M-2,M))%M return ans for _ in range(1):#nmbr()): n=nmbr() a=[nmbr() for _ in range(n)] dp=[0]*(1+n) dp[1]=1 spaces=0 sm=a[0] for i in range(2,n+1): spaces=sm+a[i-1]-1 dp[i]=(dp[i-1]*(ncr(spaces,a[i-1]-1)))%M sm+=a[i-1] print(dp[n]%M)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; const int MAXN = 1003; int C[MAXN][MAXN]; void build() { C[0][0] = 1; for (int i = 1; i < MAXN; i++) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; j++) { C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; if (C[i][j] >= MOD) C[i][j] -= MOD; } } } int main() { build(); int n, ans = 1, cnt = 0; int a; cin >> n; while (n-- > 0) { scanf("%d", &a); ans = (long long)ans * C[cnt + a - 1][cnt] % MOD; cnt += a; } cout << ans << endl; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long int col[1000001], dp[1000001], fact[1000001], ifact[1000001], sum[1000001]; long long int bpow(long long int x, long long int n) { long long int ans = 1; while (n > 0) { if (n & 1) ans *= x; x *= x; ans %= 1000000007; x %= 1000000007; n /= 2; } return ans; } void pre_calc(long long int N) { fact[0] = ifact[0] = 1; for (long long int i = 1; i <= N; ++i) { fact[i] = (fact[i - 1] * i) % 1000000007; ifact[i] = bpow(fact[i], 1000000007 - 2); } } long long int ncr(int n, int r) { if (r < 0 or n < r) return 0; long long int ans = fact[n]; ans = (ans * ifact[r]) % 1000000007; ans = (ans * ifact[n - r]) % 1000000007; return ans; } int main() { ios::sync_with_stdio(false); ; cin.tie(0); ; pre_calc(1000000); long long int i, j, k; cin >> k; for (i = 1; i <= k; i++) { cin >> col[i]; sum[i] = sum[i - 1] + col[i]; } dp[1] = 1; for (i = 2; i <= k; i++) { dp[i] = dp[i - 1] * ncr(sum[i] - 1, sum[i - 1]); dp[i] %= 1000000007; } cout << dp[k]; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int k; int dp[1002][1002]; int f(int pos, int sisa) { if (sisa < 0) return 0; if (pos == 0) return (sisa == 0); if (dp[pos][sisa] != -1) return dp[pos][sisa]; return dp[pos][sisa] = (f(pos - 1, sisa) + f(pos, sisa - 1)) % 1000000007; } int main() { scanf("%d", &k); int c; long long ans = 1; int now = 1; memset(dp, -1, sizeof dp); for (int i = 0; i < k; i++) { scanf("%d", &c); ans *= f(now, c - 1); ans %= 1000000007; now += c; } printf("%I64d\n", ans); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int maxn = 1000100; const int INF = (1 << 29); const double EPS = 0.0000000001; const double Pi = acos(-1.0); const long long p = 1000000007; int k, a[maxn]; long long s[maxn]; long long qpow(long long n, long long k) { long long res = 1; while (k) { if (k & 1) res = (res % p * (n % p)) % p; n = (n % p) * (n % p) % p; k >>= 1; } return res; } long long C(long long n, long long k) { if (n < k) return 0; long long res = 1; for (int(i) = (1); (i) <= (k); (i)++) { long long a = (n - k + i) % p; long long b = i % p; res = (res * (a * qpow(b, p - 2) % p)) % p; } return res % p; } long long lucas(long long n, long long k) { if (k == 0) return 1; return (C(n % p, k % p) % p) * (lucas(n / p, k / p) % p) % p; } long long f(long long n, long long m) { return lucas(n + m, n); } int main() { while (cin >> k) { s[0] = 0; for (int(i) = (1); (i) <= (k); (i)++) scanf("%d", &(a[i])), s[i] = s[i - 1] + a[i]; long long ans = 1; for (int(i) = (1); (i) <= (k - 1); (i)++) { ans = ans * (f(a[i + 1] - 1, s[i]) % p) % p; } cout << ans % p << endl; } return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int k, n, c[1001]; long long gt[1001], igt[1001], kq = 1; long long moe(long long a, long long b) { if (b == 0) return 1; if (b % 2 == 0) return moe((a * a) % 1000000007, b / 2); return (a * moe((a * a) % 1000000007, b / 2)) % 1000000007; } void init() { gt[0] = 1; for (int i = 1; i <= 1000; ++i) gt[i] = (gt[i - 1] * i) % 1000000007; igt[1000] = moe(gt[1000], 1000000007 - 2); for (int i = 999; i >= 0; --i) { igt[i] = (igt[i + 1] * (i + 1)) % 1000000007; } } void nhap() { scanf("%d", &k); for (int i = 1; i <= k; ++i) { scanf("%d", &c[i]); } } long long nCk(int a, int b) { return ((gt[a] * igt[b]) % 1000000007 * igt[a - b]) % 1000000007; } void process() { n = c[1]; for (int i = 2; i <= k; ++i) { kq = (kq * nCk(n + c[i] - 1, c[i] - 1)) % 1000000007; n += c[i]; } cout << kq; } int main() { init(); nhap(); process(); return 0; }
9
CPP
from functools import reduce from operator import mul mod = 10 ** 9 + 7 k = int(input()) cs = [int(input()) for _ in range(k)] cumcs = cs[:] for i in range(1, len(cs)): cumcs[i] += cumcs[i - 1] def C(n, k): num = reduce(mul, range(n, n - k, -1), 1) denom = reduce(mul, range(k, 0, -1), 1) return (num // denom) % mod res = 1 for cum, c in zip(cumcs, cs): res = (res * C(cum - 1, c - 1)) % mod print(res)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long k, c[1000 + 7], ncr[2000 + 7][2000 + 7]; int main(void) { ncr[0][0] = 1; for (int i = 1; i <= 2000; i++) { ncr[i][0] = 1; for (int j = 1; j < i; j++) { ncr[i][j] = (ncr[i - 1][j - 1] + ncr[i - 1][j]) % 1000000007; } ncr[i][i] = 1; } cin >> k; for (int i = 0; i < k; i++) cin >> c[i]; long long res = 1; int cnt = c[0]; for (int i = 1; i < k; i++) { if (c[i] != 1) res *= ncr[cnt + c[i] - 1][c[i] - 1]; res %= 1000000007; cnt += c[i]; } cout << res << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long M = 1e9 + 7; long long triangle[2005][2005]; void makeTriangle() { long long i, j; triangle[0][0] = 1; for (i = 1; i < 2005; i++) { triangle[i][0] = 1; for (j = 1; j <= i; j++) { triangle[i][j] = (triangle[i - 1][j - 1] + triangle[i - 1][j]) % M; } } } long long CC(long long n, long long r) { return triangle[n][r]; } int main() { makeTriangle(); long long k, i, nw, t, ans = 1; cin >> k; vector<long long> c(k); for (i = 0; i < k; i++) { cin >> c[i]; } if (k == 1) { cout << 1; return 0; } t = c[0]; for (i = 1; i < k; i++) { nw = c[i] - 1; t += nw; if (nw) ans = (ans * CC(t, nw)) % M; t++; } cout << ans; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long m = 1002, n, r, s = 0, i, j, p = 1, a[1010][1010]; int main() { for (i = 1; i < m; i++) for (j = 2, a[i][1] = 1; j <= i; j++) (a[i][j] += a[i - 1][j] + a[i - 1][j - 1]) %= 1000000007; for (cin >> n, i = 0; i < n; i++) cin >> r, s += r, (p *= a[s][r]) %= 1000000007; cout << p << endl; return 0; }
9
CPP
def fact(n): r = 1 for i in range(1, n + 1): r *= i return r n = int(input()) c = [int(input()) for i in range(n)] r = 1 u = c[0] - 1 d = 0 for i in range(1, n): u += c[i] d += c[i-1] r *= fact(u) // fact(d) // fact(c[i] - 1) print(r % 1000000007)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long n, m, x, y, l, r; double a, b, c, d, q; vector<int> V; vector<vector<int> > D; string s, k, z; long long res = 0; double eps = 0.000000001; const int INF = 1000000007; const int MAXNUM = 1005; long long arr[MAXNUM][MAXNUM] = {0}; int main() { arr[0][0] = 1; for (int i = 1; i < MAXNUM; i++) { arr[i][0] = 1; for (int j = 1; j <= i; j++) { arr[i][j] = (arr[i - 1][j] + arr[i - 1][j - 1]) % INF; } } cin >> n; for (int i = 0; i < n; i++) { cin >> m; V.push_back(m); } m = 0; res = 1; for (int i = 0; i < n; i++) { res = (res * arr[m + V[i] - 1][V[i] - 1]) % INF; m += V[i]; } cout << res % INF << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long k; long long c[1010]; long long s[1010]; long long ncr[1000][1000]; void init() { ncr[0][0] = 1; for (long long i = 1; i < 1000; i++) for (long long j = 0; j <= i; j++) { ncr[i][j] = ncr[i - 1][j]; if (j > 0) ncr[i][j] = ((ncr[i][j] + ncr[i - 1][j - 1]) % 1000000007); } } int main() { ios_base::sync_with_stdio(false); init(); cin >> k; for (int i = 0; i < k; i++) cin >> c[i]; s[0] = c[0]; for (int i = 1; i < k; i++) s[i] = s[i - 1] + c[i]; long long q = 1; for (int i = 1; i < k; i++) { q = (q * ncr[s[i] - 1][c[i] - 1]) % 1000000007; } cout << q; return 0; }
9
CPP
#! /usr/bin/env python3 k = int(input()) c = [int(input()) for _ in range(k)] MOD = (10 ** 9 + 7) def fact(x): prod = 1 for i in range(1, x + 1): prod *= i return prod def C(n, k): prod = 1 for i in range(n - k + 1, n + 1): prod *= i return (prod // fact(k)) % MOD prod = 1 c_sum = -1 for c_i in c: c_sum += c_i prod *= C(c_sum, c_i - 1) prod %= MOD print(prod)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; int c[1009]; int k; long long fact[1009]; long long mpow(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = (1LL * res * a) % 1000000007; b = b / 2; a = (1LL * a * a) % 1000000007; } return res; } long long nCr(int a, int b) { return (((fact[a] * mpow(fact[b], 1000000007 - 2)) % 1000000007) * mpow(fact[a - b], 1000000007 - 2)) % 1000000007; } int main() { cin >> k; for (int i = 0; i < k; i++) cin >> c[i]; fact[0] = 1; for (int i = 1; i <= 1000; i++) { fact[i] = (1LL * fact[i - 1] * i) % 1000000007; } long long res = 1; long long sum = c[0]; for (int i = 1; i < k; i++) { sum += c[i]; long long temp = nCr(sum - 1, c[i] - 1); res = (1LL * res * temp) % 1000000007; } res = res % 1000000007; cout << res << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; template <class T> T min(T a, T b, T c) { return min(a, min(b, c)); } template <class T> T min(T a, T b, T c, T d) { return min(a, min(b, min(c, d))); } template <class T> T max(T a, T b, T c) { return max(a, max(b, c)); } template <class T> T max(T a, T b, T c, T d) { return max(a, max(b, max(c, d))); } bool cmp(const int& a, const int& b) { return a > b; } int a[5007]; long long f[5007]; inline long long power(long long n, long long k) { if (k == 0LL) return 1LL; long long tmp = power(n, k / 2LL) % 1000000007LL; if (k % 2) return (((tmp * tmp) % 1000000007LL) * n) % 1000000007LL; return (tmp * tmp) % 1000000007LL; } inline long long com(int n, int k) { return ( f[n] * (power(((long long)f[k] * f[n - k]) % 1000000007LL, 1000000007LL - 2) % 1000000007LL) % 1000000007LL); } int main() { int n; scanf("%d", &n); for (int i = (1); i <= (n); ++i) scanf("%d", &a[i]); f[0] = 1LL; for (int i = (1); i <= (2000); ++i) f[i] = (f[i - 1] * i) % 1000000007LL; int sum = 0; long long ans = 1LL; for (int i = (1); i <= (n); ++i) { sum += a[i]; ans *= com(sum - 1, a[i] - 1) % 1000000007LL; ans %= 1000000007LL; } printf("%lld\n", ans); return 0; }
9
CPP
#include <bits/stdc++.h> long long jc[1000010], c[1010]; long long poww(long long a, long long b) { long long ans = 1; while (b) { if (b % 2) ans = ans * a % 1000000007; b = b >> 1; a = a * a % 1000000007; } return ans; } int main(void) { int i; long long ans = 1, tot = 0, k; jc[0] = 1; for (i = 1; i < 1000010; i++) jc[i] = jc[i - 1] * i % 1000000007; scanf("%I64d", &k); for (i = 0; i < k; i++) { scanf("%I64d", &c[i]); tot += c[i]; } for (i = k - 1; i >= 0; i--) { ans = ans * (jc[tot - 1] * (poww(jc[c[i] - 1] * jc[tot - c[i]] % 1000000007, 1000000007 - 2) % 1000000007) % 1000000007) % 1000000007; tot -= c[i]; } printf("%I64d\n", ans); return 0; }
9
CPP
from math import factorial n,ans,s = int(input()),1,0 for i in range(n) : a = int(input()) ans=(ans*factorial(s+a-1)//factorial(s)//factorial(a-1))%1000000007 s+=a print(ans) #copied... # Made By Mostafa_Khaled
9
PYTHON3
pt = [] for i in range(1000): pt.append([0] * (i + 1)) pt[i][0] = pt[i][i] = 1 for j in range(1, i): pt[i][j] = pt[i - 1][j - 1] + pt[i - 1][j] k, s, v = int(input()), int(input()), 1 for i in range(1, k): c = int(input()) v = v * pt[s + c - 1][c - 1] % 1000000007 s += c print(v)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int mod = 1000000007; int c[1005]; long long int tri[2005][2005]; int main() { int k; for (int i = 0; i < 2001; ++i) { tri[i][i] = tri[i][0] = 1; for (int j = 1; j < i; ++j) { tri[i][j] = (tri[i - 1][j - 1] + tri[i - 1][j]) % mod; } } while (cin >> k) { for (int i = 0; i < k; ++i) { cin >> c[i]; } long long int sum = 1; int tot = c[0]; for (int i = 1; i < k; ++i) { tot += c[i]; sum = (sum * tri[tot - 1][c[i] - 1]) % mod; } cout << sum << "\n"; } return 0; }
9
CPP
k = int(input()) res, mod, last = 1, 10**9 + 7, int(input()) comb = [[0]*1001 for _ in range(1001)] comb[0][0] = 1 for i in range(1, 1001): comb[i][0] = 1 for j in range(1, i+1): comb[i][j] = (comb[i-1][j] + comb[i-1][j-1]) % mod for _ in range(k-1): to_place = int(input()) res = (res * comb[last+to_place-1][to_place-1]) % mod last += to_place print(res)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long C[1010][1010]; long long input[1010]; void build() { int i, j; for (i = 0; i <= 1000; i++) C[i][0] = 1; for (i = 0; i <= 1000; i++) C[i][i] = 1; for (i = 2; i <= 1000; i++) for (j = 1; j < i; j++) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % 1000000007L; } int main() { build(); int i, j, k; while (scanf("%d", &k) != EOF) { long long sum = 0; long long ans = 1; for (i = 0; i < k; i++) scanf("%I64d", &input[i]); for (i = 0; i < k; i++) { ans = (ans * C[sum + input[i] - 1][input[i] - 1]) % 1000000007L; sum += input[i]; } printf("%I64d\n", ans); } return 0; }
9
CPP
k = int(input()) h = [] for i in range(k): h.append(int(input())) ffs = [1] def f(n): if n < len(ffs): return ffs[n] v = n * f(n-1) ffs.append(v) return v def c(k, n): return f(n) // (f(k) * f(n-k)) def cc(k, n): return c(n-1, n + k-1) def solve(h): if len(h) == 1: return 1 hh = h[:-1] hh_len = sum(hh) return solve(hh) * cc(h[-1] -1, hh_len + 1) r = 1 for i in range(len(h)): r *= cc(h[i] -1, sum(h[:i]) + 1) print(r % 1000000007)
9
PYTHON3
def g(): return int(input()) def ncr(n,r): if 2*r > n: r = n-r a = 1 for i in range(r): a = a * (n-i) // (i+1) return a k = g() ans = 1 n2 = g() for i in range(k-1): n1 = n2 n2 += g() ans = ans * ncr(n2-1,n1) % 1000000007 print(ans)
9
PYTHON3
kk = 1 f = [0] * 1001 f[0] = 1 for i in range(1, 1001): kk *= i kk %= (10**9+7) f[i] = pow(kk, 10**9+5, 10**9+7) def c(n, k): prod = 1 for i in range(n-k+1, n+1): prod *= i prod %= (10**9+7) prod = (prod*f[k])%(10**9+7) return prod l = [] m = [] a = 1 s = 0 for i in range(int(input())): x = int(input()) s += x l.append(s-1) m.append(x-1) ans = 1 for i in range(len(l)): ans = (ans*c(l[i], m[i]))%(10**9+7) print(ans)
9
PYTHON3
s = int(input()) MOD = int(1e9 + 7) comb = [[1] + [0 for i in range(1000)] for j in range(1001)] for i in range(1,1001): for j in range(1,i+1): comb[i][j] = (comb[i-1][j] + comb[i-1][j-1]) % MOD res = 1 sums = 0 for i in range(s): x = int(input()) res = (res * comb[sums + x - 1][x - 1]) % MOD sums += x print(res)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; inline long long int fast_input(void) { char t; long long int x = 0; long long int neg = 0; t = getchar(); while ((t < 48 || t > 57) && t != '-') t = getchar(); if (t == '-') { neg = 1; t = getchar(); } while (t >= 48 && t <= 57) { x = (x << 3) + (x << 1) + t - 48; t = getchar(); } if (neg) x = -x; return x; } inline void fast_output(long long int x) { char a[20]; long long int i = 0, j; a[0] = '0'; if (x < 0) { putchar('-'); x = -x; } if (x == 0) putchar('0'); while (x) { a[i++] = x % 10 + 48; x /= 10; } for (j = i - 1; j >= 0; j--) { putchar(a[j]); } putchar('\n'); } long long int power(long long int a, long long int b) { long long int ans = 1; while (b) { if (b % 2) ans = ans * a; b /= 2; a *= a; if (a > 1000000007) a %= 1000000007; if (ans > 1000000007) ans %= 1000000007; } return ans; } long long int k, c[1001], i, ans, fac[1000005], invfac[1000005], sum, bot; int main() { k = fast_input(); fac[0] = 1, invfac[0] = 1; sum = 0; for (i = 0; i < k; i++) { c[i] = fast_input(); sum += c[i]; } for (i = 1; i <= sum; i++) { fac[i] = fac[i - 1] * i; if (fac[i] > 1000000007) fac[i] %= 1000000007; invfac[i] = invfac[i - 1] * power(i, 1000000007 - 2); if (invfac[i] > 1000000007) invfac[i] %= 1000000007; } ans = fac[sum]; ans *= invfac[c[0]]; ans %= 1000000007; bot = c[0]; for (i = 1; i < k; i++) { ans = ans * invfac[c[i]]; if (ans > 1000000007) ans %= 1000000007; bot += c[i]; ans *= c[i]; if (ans > 1000000007) ans %= 1000000007; ans = ans * invfac[bot]; if (ans > 1000000007) ans %= 1000000007; ans = ans * fac[bot - 1]; if (ans > 1000000007) ans %= 1000000007; } fast_output(ans); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; int k, A[1005], choose[1005][1005]; int solve(int pos, int cnt) { if (pos == 1) return 1; return ((long long)solve(pos - 1, cnt - A[pos]) * choose[cnt - 1][A[pos] - 1]) % mod; } int main() { scanf("%d", &k); int s = 0; for (int i = 1; i <= k; i++) { scanf("%d", &A[i]); s += A[i]; } for (int i = 0; i <= 1001; i++) { choose[i][0] = 1; } for (int i = 1; i <= 1001; i++) { for (int j = 1; j <= 1001; j++) { choose[i][j] = (choose[i - 1][j] + choose[i - 1][j - 1]) % mod; } } printf("%d\n", solve(k, s)); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long mod = 1000000007, pas[1005][1005]; class TaskC { public: void solve(istream& in, ostream& out) { for (int i = 0; i < 1005; i++) pas[i][0] = pas[i][i] = 1; for (int i = 2; i < 1005; i++) for (int j = 1; j < i; j++) { pas[i][j] = pas[i - 1][j - 1] + pas[i - 1][j]; pas[i][j] %= mod; } int k; in >> k; long long ans = 1; vector<long long> c(k), psum(k); for (int i = 0; i < k; ++i) in >> c[i]; partial_sum(c.begin(), c.end(), psum.begin()); for (int i = k - 1; i > 0; i--) { ans *= pas[psum[i] - 1][c[i] - 1]; ans %= mod; } out << ans; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); TaskC solver; std::istream& in(std::cin); std::ostream& out(std::cout); solver.solve(in, out); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const long long MO = 1e9 + 7; long long c[1010][1010], i, j, n, ans = 1, a[1010]; int main() { cin >> n; for (i = 0; i <= 1005; i++) { c[i][0] = 1; c[i][i] = 1; for (j = 1; j <= i; j++) c[i][j] = (c[i - 1][j] + c[i - 1][j - 1]) % MO; } long long sum = 0; for (i = 1; i <= n; i++) { scanf("%ld", &a[i]); ans = ans * c[sum + a[i] - 1][a[i] - 1] % MO; sum += a[i]; } cout << ans; return 0; }
9
CPP
# Python3 function to # calculate nCr % p def ncr(n, r, p): # initialize numerator # and denominator num = den = 1 for i in range(r): num = (num * (n - i)) % p den = (den * (i + 1)) % p return (num * pow(den, p - 2, p)) % p k=int(input()) p=10**9+7 ans=1 total=0 for i in range(k): c=int(input()) ans*=ncr(total+c-1,total,p) ans%=p total+=c print(ans)
9
PYTHON3
''' Auther: ghoshashis545 Ashis Ghosh College: jalpaiguri Govt Enggineering College ''' from os import path from io import BytesIO, IOBase import sys from heapq import heappush,heappop from functools import cmp_to_key as ctk from collections import deque,Counter,defaultdict as dd from bisect import bisect,bisect_left,bisect_right,insort,insort_left,insort_right from itertools import permutations from datetime import datetime from math import ceil,sqrt,log,gcd def ii():return int(input()) def si():return input().rstrip() def mi():return map(int,input().split()) def li():return list(mi()) abc='abcdefghijklmnopqrstuvwxyz' mod=1000000007 #mod=998244353 inf = float("inf") vow=['a','e','i','o','u'] dx,dy=[-1,1,0,0],[0,0,1,-1] def bo(i): return ord(i)-ord('0') file = 1 def ceil(a,b): return (a+b-1)//b def solve(): # for _ in range(ii()): N = 10001 invfact = [0]*N fact = [1]*N for i in range(1,N): fact[i] = (fact[i-1]*i)%mod invfact[-1] = pow(fact[-1],mod-2,mod) for i in range(N-2,-1,-1): invfact[i] = ((i+1)*invfact[i+1])%mod def nCr(x,y): if y > x: return 0 ans = (invfact[x-y]*invfact[y])%mod ans *= fact[x] ans %= mod return ans k = ii() ans = 1 cnt = ii() for i in range(1,k): x = ii() cnt += (x-1) ans *= nCr(cnt,x-1) ans %= mod cnt += 1 print(ans) if __name__ =="__main__": if(file): if path.exists('tmp/input.txt'): sys.stdin=open('tmp/input.txt', 'r') sys.stdout=open('tmp/output.txt','w') else: input=sys.stdin.readline solve()
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long dp[1005][1005]; int main() { ios::sync_with_stdio(false); for (long long i = 0; i < 1001; i++) dp[i][0] = 1; for (long long i = 1; i < 1001; i++) for (long long j = 1; j < i + 1; j++) dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1]) % 1000000007; long long n, ans = 1; cin >> n; long long a; cin >> a; for (long long i = 2; i < n + 1; i++) { long long x; cin >> x; ans = (ans * dp[a + x - 1][x - 1]) % 1000000007; a += x; } cout << ans; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long n, len; long long MOD = 1000000007ll; long long a[1111], d[1111], cache[1111][1111]; long long C(long long x, long long y) { if (x == y) return 1; if (y == 1) return x; if (y <= 0) return 1; long long &ret = cache[x][y]; if (~ret) return ret; return ret = (C(x - 1, y) + C(x - 1, y - 1)) % MOD; } int main() { memset(cache, -1, sizeof(cache)); ios::sync_with_stdio(0); cin >> n; for (int i = 1; i <= n; i++) { cin >> a[i]; } d[1] = 1; len = a[1]; for (int i = 2; i <= n; i++) { d[i] = (d[i - 1] * C(len + a[i] - 1ll, a[i] - 1ll)) % MOD; len += a[i]; } cout << d[n]; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long comb[1001][1001]; int col[1001]; int k; int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); comb[0][0] = 1; ; for (int i = 1; i <= 1000; i++) { for (int j = 0; j <= i; j++) { if (j == 0 or j == i) comb[i][j] = 1; else comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % 1000000007; } } cin >> k; for (int i = 1; i <= k; i++) { cin >> col[i]; } long long cnt = 0; long long ans = 1; for (int i = 1; i <= k; i++) { ans = (ans * comb[cnt + col[i] - 1][col[i] - 1]) % 1000000007; cnt += col[i]; } cout << ans << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int n; int c[1005]; int sum[1005]; long long dp[1005]; const int Mod = 1e9 + 7; int Pow(long long x, int y) { if (y == 0) { return 1; } else if (y == 1) { return x; } if (y % 2 == 0) { return Pow(x * x % Mod, y / 2) % Mod; } else { return Pow(x * x % Mod, y / 2) % Mod * x % Mod; } } int inv(int x) { return Pow(x, Mod - 2) % Mod; } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &c[i]); sum[i] = sum[i - 1] + c[i]; } dp[1] = 1; for (int i = 2; i <= n; i++) { int b = sum[i - 1] + c[i] - 1; int a = c[i] - 1; dp[i] = dp[i - 1]; for (int j = 1; j <= a; j++) { dp[i] = (dp[i] * (b - j + 1)) % Mod; dp[i] = (dp[i] * inv(j)) % Mod; } } printf("%I64d", dp[n]); return 0; }
9
CPP
from math import factorial as f n=int(input()) d=0 out=1 for i in range(n) : m=int(input()) out=out*f(d+m-1)//f(d)//f(m-1)%1000000007 d+=m print(out)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long fr[1005]; long long comb[1005][1005]; int main() { for (long long i = 0; i < 1005; i++) { comb[i][0] = 1; } for (long long i = 0; i < 1005; i++) { comb[i][1] = i; } for (long long i = 2; i < 1005; i++) { for (long long j = 2; j < 1005; j++) { comb[i][j] = (comb[i - 1][j - 1] + comb[i - 1][j]) % 1000000007; } } long long k; scanf("%lld", &k); long long n = 0; for (long long i = 0; i < k; i++) { long long in; scanf("%lld", &in); fr[i] = in; n += in; } long long ans = 1; long long curr; for (long long i = k - 1; i >= 0; i--) { n--; curr = comb[n][fr[i] - 1]; n -= (fr[i] - 1); ans = (ans * curr) % 1000000007; } printf("%lld\n", ans); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const long long int MOD = 1000000007; int k, cur_balls, balls; long long int pre_ans, ans; long long int table[1005][1005]; void C() { memset(table, 0, sizeof(table)); for (int i = 0; i <= 1000; i++) { table[i][0] = 1; table[i][1] = i; } for (int i = 2; i <= 1000; i++) { for (int j = 2; j <= i; j++) { table[i][j] = table[i - 1][j] + table[i - 1][j - 1]; table[i][j] %= MOD; } } } int main(void) { C(); while (1 == scanf("%d", &k)) { pre_ans = 1; scanf("%d", &balls); if (k == 1) ans = 1; for (int i = 1; i < k; i++) { scanf("%d", &cur_balls); ans = (pre_ans * table[balls + (cur_balls - 1)][balls]) % MOD; pre_ans = ans; balls += cur_balls; } printf("%lld\n", ans); } return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int MOD = 1e9 + 7; long long c[1005]; long long best[1005]; long long f_exp(long long n, long long exp) { n %= MOD; if (exp > 1) { if (exp & 1) { return (n * f_exp(n, exp - 1)) % MOD; } else { return f_exp(n * n, exp >> 1) % MOD; } } return !exp ? 1LL : n; } long long inv_mod(long long n) { return f_exp(n, MOD - 2); } long long mult(initializer_list<long long> l) { long long ans = 1; for (auto each : l) { ans = (ans * each) % MOD; } return ans; } int main() { ios_base::sync_with_stdio(false); long long fat[1005]; fat[0] = fat[1] = 1LL; for (long long i = 2; i <= 1000; i++) { fat[i] = (fat[i - 1] * i) % MOD; } int K; cin >> K; for (int i = 1; i <= K; i++) { cin >> c[i]; } best[1] = 1; long long total = c[1]; for (int i = 2; i <= K; i++) { total += c[i]; best[i] = mult({best[i - 1], fat[total - 1], inv_mod(fat[c[i] - 1]), inv_mod(fat[(total - 1) - (c[i] - 1)])}); } cout << best[K] << '\n'; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int main() { int k; cin >> k; int a[k + 1]; for (int i = 0; i < k; i++) cin >> a[i]; long long int comb[1005][1005]; comb[0][0] = 1; for (int i = 1; i < 1005; i++) { comb[i][0] = 1; for (int j = 1; j <= i; j++) { comb[i][j] = (comb[i - 1][j] + comb[i - 1][j - 1]) % 1000000007; } } long long sum = 0, ans = 1; for (int i = 0; i < k; i++) { ans = (ans * comb[sum + a[i] - 1][a[i] - 1]) % 1000000007; sum += a[i]; } cout << ans << endl; return 0; }
9
CPP
from sys import stdin from collections import deque mod = 10**9 + 7 import sys # sys.setrecursionlimit(10**6) from queue import PriorityQueue # def rl(): # return [int(w) for w in stdin.readline().split()] from bisect import bisect_right from bisect import bisect_left from collections import defaultdict from math import sqrt,factorial,gcd,log2,inf,ceil # map(int,input().split()) # # l = list(map(int,input().split())) # from itertools import permutations import heapq # input = lambda: sys.stdin.readline().rstrip() input = lambda : sys.stdin.readline().rstrip() from sys import stdin, stdout from heapq import heapify, heappush, heappop from itertools import permutations from math import factorial as f def ncr(x, y): return f(x) // (f(y) * f(x - y)) n = int(input()) ans = 1 sm = 0 for _ in range(n): x = int(input()) ans = (ans*ncr(sm+x-1,x-1))%mod sm+=x print(ans)
9
PYTHON3
s = int(input()) MOD = 1000000007 MAXN = 1000 dp = [[1] + [0 for i in range(MAXN)] for j in range(MAXN + 1)] for i in range(1, MAXN + 1): for j in range(1, i + 1): dp[i][j] = (dp[i-1][j] + dp[i-1][j-1]) % MOD ans = 1 acum = 0 for i in range(s): x = int(input()) ans = (ans * dp[acum + x - 1][x - 1]) % MOD acum += x print(ans)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int inf = 1 << 30, MOD = 1000000007; const long double eps = 1e-9; int c[2000]; long long f[1000002], fobr[1000002], inv[1000002]; long long cnk[2000][2000]; int s[1005]; long long ans[1005]; int main() { cnk[1][0] = cnk[1][1] = 1; for (int i = 0; i < (int)1005; i++) cnk[i][0] = 1; for (int n = 2; n < 1005; n++) { for (int k = 1; k <= n; k++) cnk[n][k] = (cnk[n - 1][k - 1] + cnk[n - 1][k]) % MOD; } int k; cin >> k; for (int i = 0; i < (int)k; i++) scanf("%d", &c[i]); s[0] = c[0]; for (int i = 0; i < (int)k - 1; i++) s[i + 1] = s[i] + c[i + 1]; ans[0] = 1; for (int i = 0; i < (int)k - 1; i++) ans[i + 1] = (ans[i] * cnk[s[i + 1] - 1][c[i + 1] - 1]) % MOD; cout << ans[k - 1]; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int inf = 0x7fffffff; const int MOD = 1E9 + 7; const int N = 1E3 + 5; int k; int c[N]; long long sum, dp[N], a[N][N]; void solve() { a[1][1] = 1; a[2][1] = 1; a[2][2] = 2; a[2][3] = 1; for (int i = 3; i < N - 3; i++) { for (int j = 1; j <= i + 1; j++) { a[i][j] = (a[i - 1][j] + a[i - 1][j - 1]) % MOD; } } } int main() { cin >> k; memset(a, 0, sizeof(a)); solve(); for (int i = 0; i < k; i++) scanf("%d", &c[i]); memset(dp, 0, sizeof(dp)); dp[0] = 1; sum = c[0] - 1; for (int i = 1; i < k; i++) { sum = (sum + c[i]); dp[i] = (dp[i - 1] * a[sum][c[i]]) % MOD; } cout << dp[k - 1] % MOD << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int MAXN = 1005; const long long MOD = 1000000007; long long C[MAXN][MAXN]; int a[MAXN]; void db() { C[0][0] = 1; C[1][0] = 1; C[1][1] = 1; for (int i = 2; i < MAXN; i++) { C[i][0] = C[i][i] = 1; for (int j = 1; j < i; j++) { C[i][j] = C[i - 1][j] + C[i - 1][j - 1]; C[i][j] %= MOD; } } } int main() { int k; db(); while (~scanf("%d", &k)) { long long sum = 0; for (int i = 1; i <= k; i++) { scanf("%d", a + i); sum += a[i]; } long long ans = 1; for (int i = k; i >= 1; i--) { ans *= C[sum - 1][a[i] - 1]; ans %= MOD; sum -= a[i]; } printf("%I64d\n", ans); } return 0; }
9
CPP
#include <bits/stdc++.h> long long mod = 1000000007; using namespace std; long long a[1005], b[1005], c[1005][1005]; long long k; void init() { c[0][0] = 1; for (int i = 1; i <= 1000; i++) { for (int j = 0; j <= 1000; j++) { if (!j) c[i][j] = 1; else c[i][j] = (c[i - 1][j - 1] + c[i - 1][j]) % mod; } } } int main() { init(); scanf("%I64d", &k); for (long long i = 1; i <= k; i++) { scanf("%I64d", &a[i]); b[i] = b[i - 1] + a[i]; } long long ans = 1; for (int i = k; i >= 1; i--) ans = (ans * c[b[i] - 1][a[i] - 1]) % mod; printf("%I64d", ans); return 0; }
9
CPP
k=int(input()) mod=10**9+7 f=[0]*(10**6+1) f[0]=f[1]=1 for i in range(2,10**6+1): f[i]=(f[i-1]*i)%mod def comb(n,r): return (f[n]*pow(f[r],mod-2,mod)*pow(f[n-r],mod-2,mod))%mod ans=1 cc=int(input()) for i in range(1,k): c=int(input()) cc+=c ans*=comb(cc-1,c-1) ans%=mod print(ans)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; const int MAXN = 1e3 + 5; const int MOD = 1e9 + 7; const int INF = 2e9; int arr[MAXN]; long long C[MAXN][MAXN]; void precalc() { C[1][1] = 1; for (int i = 2; i <= 1000; i++) for (int j = 1; j <= i; j++) C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % MOD; } long long bin_mult(long long A, long long B, long long md) { long long RES = 0; while (B) { if (B & 1) RES = (RES + A) % md; A = (A + A) % md; B >>= 1; } return RES; } int main() { precalc(); int N = 0; long long RES = 1; scanf("%i", &N); for (int i = 1; i <= N; i++) scanf("%i", &arr[i]); long long prevI = arr[1]; for (int i = 2; i <= N; i++) { RES = bin_mult(RES, C[arr[i] + prevI][arr[i]], MOD); prevI += arr[i]; } printf("%I64d", RES); return 0; }
9
CPP
mod = 10**9+7 k = int(input()) maxi = 1001 arr = [] for i in range(k): arr.append(int(input())) C = [[0 for i in range(maxi)] for i in range(maxi)] for i in range(maxi): for j in range(i+1): if i == j: C[i][j] = 1 else: C[i][j] = C[i-1][j-1] + C[i-1][j] ans = 1 tot = arr[0] for i in arr[1:]: tot += i ans = ans*(C[tot-1][i-1])%mod print(ans%mod)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long nck[1005][1005]; long long m(long long a) { return ((a % 1000000007) + 1000000007) % 1000000007; } long long ncr(long long n, long long r) { if (r > n) return 0ll; if (n == r || r == 0) return 1ll; if (nck[n][r] != 0) return nck[n][r]; return nck[n][r] = m(ncr(n - 1, r) + ncr(n - 1, r - 1)); } int main() { int k; scanf("%d", &k); vector<int> a(k); for (int &i : a) scanf("%d", &i); vector<long long> dp(1005); dp[1] = 1; long long sm = a[0]; for (int i = 2; i <= k; i++) { sm += a[i - 1]; dp[i] = m(dp[i - 1] * ncr(sm - 1, a[i - 1] - 1)); } printf("%lld\n", dp[k]); }
9
CPP
#include <bits/stdc++.h> using namespace std; const int Mod = 1e9 + 7; long long c[1100][1100]; int main() { int n, x; cin >> n; cin >> x; long long ans = 1, sum = x; c[1][1] = c[1][0] = 1; for (int i = 2; i <= 1000; i++) for (int j = 0; j <= i; j++) { if (j == 0) c[i][j] = 1; c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; c[i][j] %= Mod; } for (int i = 1; i < n; i++) { cin >> x; long long res = c[sum + x - 1][sum]; ans *= res; ans %= Mod; sum += x; } cout << ans << endl; return 0; }
9
CPP
n = int(input()) a = [0] s = [0] md = 1000000007 for i in range(n) : x = int(input()) a.append(x) s.append(s[len(s)-1]+x) def factor(x) : total = 1 for i in range(2,x+1) : total*=i return total ans = 1 for i in range(2,n+1) : ans*=factor(s[i-1]+a[i]-1)//factor(s[i-1])//factor(a[i]-1) ans%=md print(ans)
9
PYTHON3
MOD = 1000000007 MAX_BALLS = 1000 def initFactors(): factors = [1] for i in range(1, MAX_BALLS + 1): last_fact = factors[-1] factors.append(last_fact * i) return factors n_colors = int(input()) factors = initFactors() balls = [] for i in range(n_colors): balls.append(int(input())) res = 1 l = balls[0] for i in range(1, n_colors): res *= ((factors[l + balls[i] - 1] // (factors[l] * factors[balls[i] - 1])) % MOD) l += balls[i] print(res % MOD)
9
PYTHON3
n = int(input()) balls = [] for i in range (n): balls.append(int(input())) ans = 1 urns = balls[0] + 1 def theorem(n, k): # n urns k balls ret = 1 for i in range(1, k+1): ret = ret * (n+k-i) for i in range(1, k+1): ret = ret // i return ret for i in range (1, n): ans *= theorem(urns, balls[i]-1) % 1000000007 urns += balls[i] print (ans % 1000000007)
9
PYTHON3
MOD = int(1e9+7) def nCr(n, r): if 2 * r > n: r = n - r res = 1 for i in range(r): res = res * (n-i) // (i+1) return res k = int(input()) n2 = int(input()) res = 1 for i in range(k-1): n1 = n2 n2 += int(input()) res = res * nCr(n2 - 1, n1) % MOD print(res)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; using namespace std; long long int dp[2000][2000]; int arr[10010]; int main() { int i, j, k; cin >> k; for (i = 0; i < k; ++i) cin >> arr[i]; for (i = 0; i < 2000; ++i) { dp[i][0] = dp[i][i] = 1; for (j = 1; j < i; ++j) dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1]) % 1000000007; } int tot = 0; long long int ans = 1; for (i = 0; i < k; ++i) { ans = (ans * dp[tot + arr[i] - 1][arr[i] - 1]) % 1000000007; tot += arr[i]; } cout << ans << endl; return 0; }
9
CPP
# coding=utf-8 def com(lo, hi): loo = 1 for i in range(1, lo + 1): loo *= i hii = 1 for i in range(hi, hi - lo, -1): hii *= i return hii // loo n = int(input()) data = [int(input()) for i in range(n)] ans = 1 total = sum(data) for i in range(len(data) - 1, -1, -1): ans *= com(data[i] - 1, total - 1) total -= data[i] print(ans if ans < 1000000007 else ans % 1000000007)
9
PYTHON3
MOD = 1000000007 k = int(input()) c = [int(input()) for i in range(k)] total_c = sum(c) comb = [[0]*(max(c)+1) for i in range(total_c+1)] comb[0][0] = 1 for i in range(1,len(comb)): comb[i][0] = 1 for j in range(1,len(comb[0])): comb[i][j] = comb[i-1][j-1] + comb[i-1][j] comb[i][j] %= MOD w = [0]*(total_c+1) w[0] = 1 for color in range(k): new_w = [0]*len(w) for n in range(len(new_w)): new_w[n] = w[n] for i in range(c[color]): if n-i-1 < 0: break new_w[n] += comb[n-1][i]*w[n-i-1] new_w[n] %= MOD w = new_w print(w[total_c])
9
PYTHON3
#include <bits/stdc++.h> using namespace std; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); long long c[1001][1001]; for (long long i = 0; i < 1001; i++) { for (long long j = 0; j < i + 1; j++) { if (i == 0 || j == 0) c[i][j] = 1; else c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; c[i][j] %= 1000000007; } } long long k; cin >> k; long long r[k]; long long s = 0; for (long long i = 0; i < k; i++) { cin >> r[i]; s += r[i]; } long long ans = 1; for (long long i = k - 1; i >= 0; i--) { ans = ans * c[s - 1][r[i] - 1]; ans %= 1000000007; s -= r[i]; } cout << ans % 1000000007; }
9
CPP
n = 1000 mod = 10**9 + 7 pascal = [[1]] for r in range(1, n+1): previous_row = pascal[-1] row = [1] for c in range(1, r): row.append((previous_row[c-1] + previous_row[c]) % mod) row.append(1) pascal.append(row) k = int(input()) length = int(input()) product = 1 for i in range(1, k): curr = int(input()) product *= pascal[length + curr - 1][length] product %= mod length += curr print(product)
9
PYTHON3
from math import factorial n = int(input()) ans = 1 s = 0 for i in range(n) : a = int(input()) ans*=factorial(s+a-1)//factorial(s)//factorial(a-1) ans%=1000000007 s+=a print(ans)
9
PYTHON3
ans, col, mod = 1, 0, 1000000007 C = [[1 if i <= j else 0 for i in range(1001)] for j in range(1001)] for i in range(1, 1001): for j in range(1, i + 1): C[i][j] = (C[i - 1][j - 1] + C[i - 1][j]) % mod for _ in range(int(input())): a = int(input()) ans *= C[col + a - 1][col] ans %= mod col += a print(ans)
9
PYTHON3
from math import exp def pfold (arr): return arr[0] * pfold (arr[1:]) if arr else 1 def pscan (x, arr): arr = (pscan (x * arr[-1], arr[:-1]) if arr else []) arr.append(x) return arr def P(n, r): return pfold(range(n, n-r, -1)) def F(n): return P(n, n) #return reduce(op.mul, range(n, 0, -1), 1) def C(n, r): if (r > n): return 0 r = min(r, n-r) return P(n, r)//F(r) def AC(a, b): return C(a+b-1, b-1) def CCC(n, k): return AC(n, k)/F(k) def Cat(n): return C(2*n,n+1)/n def Cat2(n): return def dot(a,b): return sum(i*j for i, j in zip(a,b)) def Catray(n): arr = [1] for i in range(1,n): arr = arr + [dot(arr,arr[::-1])] return arr # binomial distribution: # with an event E which has probability p of occuring every try, # what is the chance of E occuring exactly k times from n tries def Bd (n, p, k): return C(n,k)*p**k*(1-p)**(n-k) # evaluate the sum of the binomial distribution in the range [0, k] def BdS (n, p, k): return sum(Bd(n, p, i) for i in range(k+1)) def Normal (mu, sigma, k): return 0 # exponential distribution def Ed (p, k): return (1-p)*p**(k-1) def EdS (p, k): return 1 - p**k def Pd (x, k): return x**k/F(k) * exp(-x) def PdS (x, k): return (sum(pscan (1, [x/i for i in range (k, 0, -1)]))) * exp(-x) #def PPP(n, k, m): def nTermsSumToXInRangeAToB(n, x, a, b): # a <= b x -= a*n b -= a if x < 0 or x > b*n: return 0 else: return nTermsUnderASumToX(n, x, b+1, 0) def nTermsUnderASumToX(n, x, a, b): if x < 0: return 0 else: return AC(x,n) - (n-b)*nTermsUnderASumToX(n, x-a, a, b+1) def f(n, x, a, b): return nTermsSumToXInRangeAToB(n, x, a, b) M = 10**9+7 k = int(input()) v = 1 n = 0 for _ in range(k): c = int(input()) v *= C(n+c-1,c-1) v %= M n+= c print(v)
9
PYTHON3
#include <bits/stdc++.h> using namespace std; long long gcd(long long a, long long b) { if ((a == 0) || (b == 0)) return a + b; return gcd(b, a % b); } long long pow_mod(long long a, long long b) { long long res = 1; while (b) { if (b & 1) res = (res * a) % 1000000007; a = (a * a) % 1000000007; b >>= 1; } return res; } long long dp[1010], arr[2010], way = 1, fact[1010], ifact[1010]; int main() { ios_base::sync_with_stdio(false); cin.tie(0); long long K, i, j, ans, opop; fact[0] = 1; for (i = 1; i <= 1002; i++) { fact[i] = ((fact[i - 1] * i) % 1000000007); } ifact[1002] = pow_mod(fact[1002], 1000000007 - 2); for (i = 1001; i >= 0; i--) { ifact[i] = ((ifact[i + 1] * (i + 1)) % 1000000007); } cin >> K; for (i = 1; i <= K; i++) { cin >> arr[i]; } ans = arr[1]; for (i = 2; i <= K; i++) { ans += arr[i]; ans--; opop = ((fact[ans] * ((ifact[arr[i] - 1] * ifact[ans - arr[i] + 1]) % 1000000007)) % 1000000007); way = ((way * opop) % 1000000007); ans++; } cout << way; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007; int k, c[1010]; long long dp[1010][1010]; long long calc(int id, int ball) { if (id == 1) return 1; else if (ball == 0) return 1; long long& ans = dp[id][ball]; if (ans == -1) ans = (calc(id - 1, ball) % MOD + calc(id, ball - 1) % MOD) % MOD; return ans; } int main(void) { cin >> k; for (int i = 0; i < k; i++) { cin >> c[i]; } memset(dp, -1, sizeof(dp)); long long ans = 1; int ball = 1; for (int i = 0; i < k; i++) { ans *= calc(ball, c[i] - 1); ans %= MOD; ball += c[i]; } cout << ans << "\n"; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; int MOD = 1000000007; int dp[1001][1001]; int main() { int k; cin >> k; int balls[1000]; int n = 0; for (int i = 0; i < k; i++) { cin >> balls[i]; n += balls[i]; } long long l = 1; for (int i = 0; i <= n; i++) { dp[i][0] = 1; dp[i][i] = 1; for (int j = 1; j <= i; j++) { dp[i][j] = (dp[i - 1][j] + dp[i - 1][j - 1]) % MOD; } } long long ans = 1; int cur = balls[0]; for (int i = 1; i < k; i++) { cur += balls[i]; ans = ((ans % MOD) * (dp[cur - 1][balls[i] - 1]) % MOD) % MOD; } cout << ans << endl; return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long mod = 1000000007, pas[1005][1005]; class TaskC { public: void solve(istream& in, ostream& out) { for (int i = 0; i < 1005; i++) for (int j = 0; j < 1005; j++) pas[0][j] = pas[i][j] = 1; for (int i = 2; i < 1005; i++) for (int j = 1; j < i; j++) { pas[i][j] = pas[i - 1][j - 1] + pas[i - 1][j]; pas[i][j] %= mod; } int k; in >> k; long long ans = 1; vector<long long> c(k), psum(k); for (int i = 0; i < k; ++i) in >> c[i]; partial_sum(c.begin(), c.end(), psum.begin()); for (int i = k - 1; i > 0; i--) { ans *= pas[psum[i] - 1][c[i] - 1]; ans %= mod; } out << ans; } }; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); TaskC solver; std::istream& in(std::cin); std::ostream& out(std::cout); solver.solve(in, out); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long k; vector<long long> c; vector<long long> tot; long long dp[1002][1002]; long long C[1002][1002]; int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> k; c.resize(k + 1); tot.resize(k + 1, 0); tot[0] = 0; c[0] = 0; for (int i = 1; i <= k; i++) { cin >> c[i]; tot[i] = tot[i - 1] + c[i]; } for (int i = 0; i < 1001; i++) C[0][i] = 0; C[0][0] = 1; for (int i = 1; i <= 1001; i++) { for (int j = 0; j <= i; j++) { if (j == 0) { C[i][j] = 1; continue; } C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % 1000000007; } } memset(dp, 0, sizeof dp); dp[0][0] = 1; for (int i = 1; i <= k; i++) { for (int j = tot[k] - (k - i); j >= tot[i]; j--) { int voids = j - tot[i - 1]; for (int l = j - 1; l >= tot[i - 1]; l--) { dp[i][j] = (dp[i][j] + dp[i - 1][l] * (C[voids - 1][c[i] - 1])) % 1000000007; } } } cout << dp[k][tot[k]] << endl; return 0; }
9
CPP
#include <bits/stdc++.h> #pragma comment(linker, "/STACK:102400000,102400000") using namespace std; const int INF = -10000000; const double pi = acos(-1.0); int a[1010]; int c[1010][1010]; void init() { for (int i = 0; i < 1010; i++) c[i][0] = 1; for (int i = 1; i < 1010; i++) { for (int j = 1; j <= i; j++) { c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; c[i][j] %= 1000000007; } } } int main() { init(); int k, s; while (scanf("%d", &k) != EOF) { s = 0; for (int i = 0; i < k; i++) { scanf("%d", a + i); s += a[i]; } long long ans = 1; for (int i = k - 1; i > 0; i--) { ans *= (long long)c[s - 1][a[i] - 1]; ans %= 1000000007; s -= a[i]; } printf("%d\n", ans); } return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; long long a[1005], num[1005]; long long poww(long long n, long long m) { long long b = 1; while (m > 0) { if (m & 1) b = (b * n) % 1000000007; m >>= 1; n = (n * n) % 1000000007; } return b; } long long solve(int n, int m) { return ((num[n] % 1000000007) * (poww((num[m] * num[n - m]) % 1000000007, 1000000007 - 2)) % 1000000007) % 1000000007; } int main() { num[0] = 1; num[1] = 1; for (int i = 2; i <= 1005 - 5; i++) { num[i] = (num[i - 1] * i) % 1000000007; } long long m, n = 0; scanf("%I64d", &m); for (int i = 1; i <= m; i++) { scanf("%I64d", &a[i]); n += a[i]; } long long answer = 1; for (int i = m; i >= 1; i--) { answer = (answer * solve(n - 1, a[i] - 1)) % 1000000007; n -= a[i]; } printf("%I64d\n", answer); }
9
CPP
#include <bits/stdc++.h> using namespace std; int n; int c[1005]; int sum[1005]; long long dp[1005]; int C[1005][1005]; const int Mod = 1e9 + 7; void pre_C() { C[1][0] = C[1][1] = 1; for (int i = 2; i <= 1000; i++) { for (int j = 0; j <= i; j++) { if (j == 0) { C[i][0] = 1; } else if (j == 1) { C[i][1] = i % Mod; } else { C[i][j] = C[i - 1][j - 1] + C[i - 1][j]; C[i][j] %= Mod; } } } } int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &c[i]); sum[i] = sum[i - 1] + c[i]; } pre_C(); dp[1] = 1ll; for (int i = 2; i <= n; i++) { dp[i] = dp[i - 1] * C[sum[i - 1] + c[i] - 1][c[i] - 1]; dp[i] %= Mod; } printf("%I64d", dp[n]); return 0; }
9
CPP
#include <bits/stdc++.h> using namespace std; bool isvowel(char c) { if (c == 'a' || c == 'e' || c == 'i' || c == 'o' || c == 'u' || c == 'A' || c == 'E' || c == 'I' || c == 'O' || c == 'U') return true; return false; } bool prime[5000001]; int spf[5000001]; vector<int> primes; void sieve() { memset(prime, true, sizeof(prime)); for (int p = 2; p * p <= 5000000; p++) { if (prime[p] == true) { for (int i = p * p; i <= 5000000; i += p) { prime[i] = false; if (spf[i] == 0) spf[i] = p; } } } for (int p = 2; p <= 5000000; p++) if (prime[p]) primes.push_back(p); } long long int gcd(long long int a, long long int b) { if (b == 0) return a; return gcd(b, a % b); } long long int fast_exp(long long int x, long long int n) { long long int ans = 1; while (n) { if (n & 1) ans *= x; n = n >> 1; x = x * x; } return ans; } long long int mod_exp(long long int x, long long int y, long long int p) { long long int res = 1; x = x % p; while (y > 0) { if (y & 1) res = (res * x) % p; y = y >> 1; x = (x * x) % p; } return res; } long long int pre_sum[2000005]; vector<int> adj[2000005]; long long int dp[2000005]; void solve() { dp[0] = 1; for (long long int i = 1; i <= 1000; i++) { dp[i] = (dp[i - 1] * i) % 1000000007; } long long int k, n; cin >> k; long long int ans = 1, sum = 0; while (k--) { cin >> n; sum += n; long long int x = dp[n - 1]; long long int y = dp[sum - 1]; long long int xinv = mod_exp(x, 1000000007 - 2, 1000000007); long long int res = (y * xinv) % 1000000007; x = dp[sum - 1 - (n - 1)]; xinv = mod_exp(x, 1000000007 - 2, 1000000007); res = (res * xinv) % 1000000007; ans = (ans * res) % 1000000007; } cout << ans; } int main() { ios_base::sync_with_stdio(0); cin.tie(NULL); cout.tie(NULL); ; int t = 1; while (t--) { solve(); cout << '\n'; } }
9
CPP