solution
stringlengths 11
983k
| difficulty
int64 0
21
| language
stringclasses 2
values |
---|---|---|
#include<bits/stdc++.h>
using namespace std;
#define ll long long
#define ld long double
#define int long long
#define double long double
#define fr(n) for(int i=0;i<n;i++)
#define sortv(a) sort(a.begin(),a.end())
#define pb push_back
#define endl "\n"
#define pii pair<int,int>
const int N = 1e6+5;
const int mod = 998244353;
vector<int> adj[100005];
vector<bool> vis(100005,false);
// int mod = 1e9+7;
int modexpo(int x,int p){
int res = 1;
x = x%mod;
while(p){
if(p%2)
res = res * x;
p >>= 1;
x = x*x % mod;
res %= mod;
}
return res;
}
int isprime(int n){
if(n < 2)
return 0;
if(n < 4)
return 1;
if(n % 2 == 0 or n % 3 == 0)
return 0;
for(int i = 5; i*i <= n; i += 6)
if(n % i == 0 or n % (i+2) == 0)
return 0;
return 1;
}
void pairsort(int a[], int b[], int n){
pair<int, int> pairt[n];
for (int i = 0; i < n; i++)
{
pairt[i].first = a[i];
pairt[i].second = b[i];
}
sort(pairt, pairt + n);
for (int i = 0; i < n; i++)
{
a[i] = pairt[i].first;
b[i] = pairt[i].second;
}
}
void solve()
{
int n,k;
cin >> n >> k;
int x[n], y[n];
fr(n)
cin >> x[i] >> y[i];
for(int i=0;i<n;i++)
{
int maxx = 0;
for(int j=0;j<n;j++)
{
maxx = max(maxx, abs(x[i]-x[j])+abs(y[i]-y[j]));
}
if(maxx <= k)
{
cout << 1;
return;
}
}
cout << -1;
}
int32_t main()
{
int q = 1;
cin >> q;
while(q--)
solve(),cout << endl;
return 0;
}
| 8 | CPP |
#include<bits/stdc++.h>
using namespace :: std;
#define ll long long
#define pb push_back
#define mp make_pair
#define ld long double
#define F first
#define S second
const int maxn=200;
const ll inf=1e16+900;
int x[maxn];
int y[maxn];
bool ger[maxn][maxn];
int main(){
int t;
cin>>t;
while(t--){
int n,k;
cin>>n>>k;
for(int i=0;i<n;i++){
cin>>x[i]>>y[i];
}
bool findd=0;
for(int i=0;i<n;i++){
int d=0;
for(int j=0;j<n;j++){
ger[i][j]=(abs(x[i]-x[j])+abs(y[i]-y[j])<=k);
d+=ger[i][j];
}
if(d==n){
cout<<1<<endl;
findd=1;
break;
}
}
if(!findd){
cout<<-1<<endl;
}
}
}
| 8 | CPP |
'''
Name : Jaymeet Mehta
codeforces id :mj_13
Problem :
'''
from sys import stdin,stdout
def doit():
global points,n,k
for i in range(n):
x1,y1=points[i]
ok=True
for j in range(n):
x2,y2=points[j]
distance=abs(x1-x2)+abs(y1-y2)
if distance>k:
ok=False
break
if ok:
return 1
return -1
test=int(stdin.readline())
for _ in range(test):
n,k = map(int,stdin.readline().split())
points=[]
for i in range(n):
x,y = map(int,stdin.readline().split())
points.append([x,y])
print(doit())
| 8 | PYTHON3 |
import os
import sys
from io import BytesIO, IOBase
# region fastio
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline()
# --------------------------------------------------------------------
def RL(): return map(int, sys.stdin.readline().split())
def RLL(): return list(map(int, sys.stdin.readline().split()))
def N(): return int(input())
def print_list(l):
print(' '.join(map(str,l)))
# sys.setrecursionlimit(100000)
# import random
# from functools import reduce
# from functools import lru_cache
# from heapq import *
# from collections import deque as dq
# import math
# import bisect as bs
# from collections import Counter
# from collections import defaultdict as dc
for _ in range(N()):
n, k = RL()
dic = [[] for _ in range(n)]
p = []
for _ in range(n):
x, y = RL()
p.append((x, y))
for i in range(n - 1):
for j in range(i + 1, n):
if abs(p[i][0] - p[j][0]) + abs(p[i][1] - p[j][1]) <= k:
dic[i].append(j)
dic[j].append(i)
res = -1
for i in range(n):
if len(dic[i]) == n - 1:
res = 1
break
print(res) | 8 | PYTHON3 |
/**-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-* *-*
*-* Bismillahir Rahmanir Rahim *-*
*-* *-*
*-* Author: Ahsan Habib (comrade) *-*
*-* Metropolitan University *-*
*-* Language: C++ *-*
*-* *-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*
*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**/
#include<bits/stdc++.h>
#include<cstdio>
#define pii pair<ll,ll >
#include<string>
#define In freopen("ahsan.txt","r",stdin);
#define ll long long
#define ff first
#define ss second
#define pb push_back
#define sortv(v) sort(v.begin(),v.end())
#define bug(a) cerr << #a << " : " << a << endl
#define sz(x) x.size()
#define MOD 1000000007
#define inf 999999999999
/**
I don'n know anything like you
But one thing I know vary obviously That is I am "Ahsan"
**/
const int mx = 1e6+5;
const int MAX = 1e6;
using namespace std;
ll a[MAX],m,i,t,k,ev=0,od=0,tt=0,n,cas = 1, cum[300050];
vector<pii>G[MAX];
const int N = 1e6 + 100;
int main()
{
/***********************************/
ios::sync_with_stdio(true);
cin.tie(0);
///In;
/**********************************/
int t;
cin>>t;
while(t--)
{
vector<pii>v,v2;
int n,k ;
cin>>n>>k;
for(int i = 0; i<n; i++)
{
int x,y;
cin>>x>>y;
v.push_back(pii(x,y));
}
int f = 1;
for(int i = 0; i<n; i++)
{
f = 1;
for(int j = 0; j<n; j++)
{
int tm = abs(v[i].ff - v[j].ff)+abs(v[i].second- v[j].second);
if(tm>k)
{
f = 0;
break;
}
}
if(f==1)
{
break;
}
}
if(f==0)
{
cout<<"-1"<<endl;
}
else cout<<"1"<<endl;
}
return 0;
}
| 8 | CPP |
from collections import defaultdict
for t in range(int(input())):
ball_idx=defaultdict(list)
rang=defaultdict(list)
n,k=map(int,input().split())
listi=[]
for i in range(n):
x,y=map(int,input().split())
p=[]
p.append(x)
p.append(y)
listi.append(p)
kam=False
# for i in listi:
# print(i[0],i[1],end=" ")
for i in listi:
count=0
for j in listi:
p=abs(i[0]-j[0])
l=abs(i[1]-j[1])
if (0<p+l<=k):
count+=1
if count==n-1:
kam=True
print(1)
break
if kam==False:
print(-1) | 8 | PYTHON3 |
for _ in range(int(input())):
n,k=map(int,input().split())
l=[]
for i in range(n):
l.append(list(map(int,input().split())))
l.sort(key=lambda x:x[0]+x[1])
#print(l)
f=0
for i in range(n):
for j in range(n):
x1=l[i][0]
y1=l[i][1]
x2=l[j][0]
y2=l[j][1]
d=abs(x1-x2)+abs(y1-y2)
if d>k:
f+=1
break
if f==n:
print(-1)
else:
print(1)
| 8 | PYTHON3 |
/*
Author : Dinesh Verra
College : ABV-IIITM
Date : 11/12/2020
*/
// #pragma GCC optimize("Ofast")
#include <bits/stdc++.h>
// #include <boost/multiprecision/cpp_int.hpp>
// using namespace boost::multiprecision;
using namespace std;
typedef long long ll;
// #define ll int
typedef unsigned long long ull;
#define cu continue
#define br break
#define pb push_back
#define eb emplace_back
#define mod 1000000007
#define inf 1000000000
#define pll pair <ll,ll>
#define min_pq priority_queue<pll,vector <pll>, greater <pll> >
#define ar array
#define F first
#define S second
#define var(n) vector<ar<ll,n>>
#define vll vector <ll>
#define vpll vector <pll>
#define dbg(n) cout<<#n<<' '<<n<<endl;
#define all(v) v.begin(),v.end()
#define nl cout<<'\n'
template <typename A1>
void prn(A1&& arg)
{
cout<<arg<<'\n';
}
template <typename A1, typename... A>
void prn(A1&& arg, A&&... args)
{
cout<<arg<<' ';
prn(args...);
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cout.tie(NULL);
#ifndef ONLINE_JUDGE
freopen("/home/dinesh_verra/cpp/input.txt","r",stdin);
// freopen("/home/dinesh_verra/cpp/A.txt","w",stdout);
#endif
ll t;
cin>>t;
while(t--) {
ll n,k;
cin>>n>>k;
var(2) a(n);
ll cnt;
for(ll i=0;i<n;i++) cin>>a[i][0]>>a[i][1];
for(ll i=0;i<n;i++) {
cnt=0;
for(ll j=0;j<n;j++) {
if(i==j) cu;
if(abs(a[i][0]-a[j][0])+abs(a[i][1]-a[j][1]) <= k) cnt++;
}
if(cnt==(n-1)) {
prn(1);
goto end;
}
}
prn(-1);
end:
cu;
}
}
| 8 | CPP |
#include<bits/stdc++.h>
using namespace std;const int N=1e2+7;int T_T,n,m,i,j,x[N],y[N],flag;
int main(){
for(cin>>T_T;T_T--;){
for(cin>>n>>m,flag=0,i=1;i<=n;++i)cin>>x[i]>>y[i];
for(i=1;i<=n;++i){
for(j=1;j<=n;++j)if(j!=i&&abs(x[i]-x[j])+abs(y[i]-y[j])>m)break;
if(j==n+1)flag=1;
}
cout<<(flag?1:-1)<<endl;
}
} | 8 | CPP |
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int n,m;ll l,r;
const int maxn=1e6+1;
pair<int,int>p[105];
int w[50];
void run(){
cin>>n>>m;int ans=-1;
for(int i=1;i<=n;i++)cin>>p[i].first>>p[i].second;
for(int i=1;i<=n;i++){
int f=0;
for(int j=1;j<=n;j++){
if(abs(p[i].first-p[j].first)+abs(p[i].second-p[j].second)>m){f=1;break;}
}
if(!f){ans=1;break;}
}
cout<<ans<<endl;
}
int main(){
int T;
cin>>T; for(int i=1;i<=T;i++)run();
// run();
}
| 8 | CPP |
import sys
input = sys.stdin.readline
import math
for _ in range(int(input())):
n, k = list(map(int,input().split()))
points = []
for i in range(n):
points.append(tuple(map(int,input().split())))
adj = dict()
for i in range(n):
for j in range(i+1,n):
temp1 = points[i]
temp2 = points[j]
if abs(temp1[0]-temp2[0])+abs(temp1[1]-temp2[1])<=k:
if temp1 not in adj:
adj[temp1]=0
if temp2 not in adj:
adj[temp2]=0
adj[temp1]+=1
adj[temp2]+=1
ans = False
for key in adj:
if adj[key]==n-1:
ans = True
if ans:
print(1)
else:
print(-1)
| 8 | PYTHON3 |
t = int(input())
for _ in range(t):
n,k = map(int, input().split())
a = [0] * n
for i in range(n):
a[i] = tuple(map(int, input().split()))
d = [0] * n
for i in range(n-1):
for j in range(i+1, n):
dist = abs(a[i][0] - a[j][0]) + abs(a[i][1] - a[j][1])
if dist <= k:
d[i] += 1
d[j] += 1
if (n-1) in d:
print(1)
else:
print(-1)
| 8 | PYTHON3 |
#include <iostream>
#include <math.h>
#include <vector>
#include <algorithm>
#include <set>
#define ll long long int
#define pb push_back
#define F(i,n) for(ll i=0;i<n;i++)
using namespace std;
int main() {
ll t=1;
cin>>t;
while(t--){
ll n,k;
cin>>n>>k;
vector <pair<ll,ll> > v;
ll x,y;
F(i,n)
{
cin>>x>>y;
v.pb({x,y});
}
ll flag=0;
F(i,n)
{
ll f=0;
F(j,n)
{
if(abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second)>k) f=1;
}
if(f==0) {flag=1;}
}
if(flag==1) cout<<1;
else cout<<-1;
cout<<endl;
}
} | 8 | CPP |
import sys
import os
from io import BytesIO, IOBase
#Fast IO Region
BUFSIZE = 8192
class FastIO(IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
T = int(input())
for _ in range(T):
n, k = map(int, input().split())
arr = []
for i in range(n):
x, y = map(int, input().split())
arr.append((x,y))
ok = False
for i in range(n):
cx, cy = arr[i]
for j in range(n):
if abs(cx - arr[j][0]) + abs(cy - arr[j][1]) > k:
break
else:
ok = True
break
if ok:
print(1)
continue
print(-1)
| 8 | PYTHON3 |
#include<bits/stdc++.h>
//#pragma GCC optimize(2)
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
using namespace std;
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0)
#define ll long long
#define ull unsigned long long
#define PII pair<int,int>
#define pb push_back
#define fi first
#define se second
#define all(a) a+1,a+n+1
#define ALL(a) a.begin(),a.end()
#define debug(a) cout <<#a << "=" << a << endl;
const int INF = 0x3f3f3f3f;
const ll LINF = 1ll<<60;
const int mod=1e9+7;
#define TT int T;cin>>T;while(T--)
inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;}
inline void write(int x){if(x<0) putchar('-'),x=-x;if(x>9) write(x/10);putchar(x%10+'0');}
void solve(){
int n,k;
cin>>n>>k;
PII a[110];
rep(i,1,n) cin>>a[i].fi>>a[i].se;
rep(i,1,n){
int f=1;
rep(j,1,n){
if(abs(a[i].fi-a[j].fi)+abs(a[i].se-a[j].se)>k){
f=0;
break;
}
}
if(f==1){
cout<<1<<endl;
return;
}
}
cout<<-1<<endl;
return;
}
int main(){
TT{
solve();
}
return 0;
}
| 8 | CPP |
test = int(input())
def dist(a, b):
return abs(a[0] - b[0]) + abs(a[1] - b[1])
for t in range(test):
n, k = map(int, input().split())
P = [list(map(int, input().split())) for i in range(n)]
found = None
for i in range(n):
found = True
for j in range(n):
if i == j:
continue
elif dist(P[i], P[j]) > k:
found = False
break
if found: break
if found: print(1)
else: print(-1) | 8 | PYTHON3 |
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
xy = [tuple(map(int, input().split())) for i in range(n)]
ans = -1
for x, y in xy:
flag = True
for x2, y2 in xy:
dx = abs(x2-x)
dy = abs(y2-y)
if dx + dy <= k:
continue
else:
flag = False
break
if flag:
ans = 1
break
print(ans)
| 8 | PYTHON3 |
t = int(input())
for _ in range(t):
n,k = [int(x) for x in input().split()]
points = []
for i in range(n):
points.append(([int(x) for x in input().split()]))
for i in range(len(points)):
y=0
for j in range(len(points)):
a,b = points[i][0],points[i][1]
c,d = points[j][0],points[j][1]
if abs(a-c)+abs(b-d)<=k:
y+=1
else:
break
if y==len(points):
print(1)
break
else:
print(-1) | 8 | PYTHON3 |
def f(n,k):
pts = [list(map(int, input().split())) for _ in range(n)]
deg = [0 for _ in range(n)]
for i in range(n):
for j in range(i+1, n):
a,b = pts[i]
x,y = pts[j]
man = abs(x-a)+abs(y-b)
if man <= k:
deg[i] += 1
deg[j] += 1
if max(deg) == n-1:
return 1
else:
return -1
t = int(input())
for i in range(t):
n,k = list(map(int, input().split()))
print(f(n,k))
| 8 | PYTHON3 |
t=int(input())
for _ in range(t):
n,k=list(map(int,input().split()))
c=[]
for i in range(n):
c.append(list(map(int,input().split())))
f=1
for i in range(n):
f=1
for j in range(n):
if abs(c[i][0]-c[j][0])+abs(c[i][1]-c[j][1])>k:
f=-1
break
if f==1:
break
print(f) | 8 | PYTHON3 |
t=int(input())
for i in range(t):
n,k=map(int,input().split())
li=[]
for j in range(n):
li.append(list(map(int,input().split())))
for j in range(n):
c=0
x1=li[j][0]
y1=li[j][1]
for k1 in range(n):
x2=li[k1][0]
y2=li[k1][1]
dist=abs(x1-x2)+abs(y1-y2)
if dist>k:
c=1
break
if c==0:
print(1)
break
if c==1:
print(-1) | 8 | PYTHON3 |
for i in range(int(input())):
n,k=map(int,input().split());l=[];t=-1
for i in range(n):x,y=map(int,input().split());l.append([x,y])
for i in l:
q=0
for j in l:
if abs(i[1]-j[1])+abs(i[0]-j[0])<=k:q+=1
else:break
if q==n:t=1
print(t) | 8 | PYTHON3 |
# region fastio # from https://codeforces.com/contest/1333/submission/75948789
import sys, io, os
BUFSIZE = 8192
class FastIO(io.IOBase):
newlines = 0
def __init__(self, file):
self._fd = file.fileno()
self.buffer = io.BytesIO()
self.writable = "x" in file.mode or "r" not in file.mode
self.write = self.buffer.write if self.writable else None
def read(self):
while True:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
if not b:
break
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines = 0
return self.buffer.read()
def readline(self):
while self.newlines == 0:
b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE))
self.newlines = b.count(b"\n") + (not b)
ptr = self.buffer.tell()
self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr)
self.newlines -= 1
return self.buffer.readline()
def flush(self):
if self.writable:
os.write(self._fd, self.buffer.getvalue())
self.buffer.truncate(0), self.buffer.seek(0)
class IOWrapper(io.IOBase):
def __init__(self, file):
self.buffer = FastIO(file)
self.flush = self.buffer.flush
self.writable = self.buffer.writable
self.write = lambda s: self.buffer.write(s.encode("ascii"))
self.read = lambda: self.buffer.read().decode("ascii")
self.readline = lambda: self.buffer.readline().decode("ascii")
def print(*args, **kwargs):
"""Prints the values to a stream, or to sys.stdout by default."""
sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout)
at_start = True
for x in args:
if not at_start:
file.write(sep)
file.write(str(x))
at_start = False
file.write(kwargs.pop("end", "\n"))
if kwargs.pop("flush", False):
file.flush()
sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout)
input = lambda: sys.stdin.readline().rstrip("\r\n")
#endregion
T = int(input())
for _ in range(T):
N, K = map(int, input().split())
XY = [list(map(int, input().split())) for _ in range(N)]
for cx, cy in XY:
f = True
for x, y in XY:
d = abs(cx-x) + abs(cy-y)
if d > K:
f = False
break
if f:
print(1)
break
else:
print(-1)
| 8 | PYTHON3 |
from math import *
from collections import deque
from copy import deepcopy
import sys
def inp(): return sys.stdin.readline().rstrip("\r\n") #for fast input
def multi(): return map(int,input().split())
def strmulti(): return map(str, inp().split())
def lis(): return list(map(int, inp().split()))
def lcm(a,b): return (a*b)//gcd(a,b)
def ncr(n,r): return factorial(n) // (factorial(r) * factorial(max(n - r, 1)))
def stringlis(): return list(map(str, inp().split()))
def out(var): sys.stdout.write(str(var)) #for fast output, always take string
def printlist(a) :
print(' '.join(str(a[i]) for i in range(len(a))))
def isPrime(n) :
if (n <= 1) : return False
if (n <= 3) : return True
if (n % 2 == 0 or n % 3 == 0) : return False
i = 5
while(i * i <= n) :
if (n % i == 0 or n % (i + 2) == 0) :
return False
i = i + 6
return True
#copied functions end
#start coding
t=int(inp())
for _ in range(t):
n,k=multi()
a=[]
for i in range(n):
a.append(lis())
ans=-1
num=0
for i in range(n):
already=True
for j in range(n):
if(i==j):
continue
if(abs(a[i][0]-a[j][0])+abs(a[i][1]-a[j][1])>k ):
already=False
break
if(already):
ans=1
break
print(ans)
| 8 | PYTHON3 |
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
inline int read()
{
int n=0,f=1,ch=getchar();
while(ch<'0'||ch>'9')
{
if(ch=='-')f=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9')
{
n=n*10+ch-'0';
ch=getchar();
}
return n*f;
}
int x[501],y[501];
int main()
{
int t,n,k,ans=0;
bool flag;
t=read();
for(int greg=1;greg<=t;greg++)
{
n=read();
k=read();
for(int i=1;i<=n;i++)
{
x[i]=read();
y[i]=read();
}
flag=false;
for(int i=1;i<=n;i++)
{
flag=false;
for(int j=1;j<=n;j++)
{
if(abs(x[i]-x[j])+abs(y[i]-y[j])>k)
{
flag=true;
break;
}
}
if(flag==false)
{
printf("1\n");
break;
}
}
if(flag==true)printf("-1\n");
}
return 0;
}
| 8 | CPP |
#include <bits/stdc++.h>
#define ll long
#define lll long long
#define mp make_pair
#define pb push_back
#define inf 1000000001
lll p = 1000000007;
using namespace std;
lll sq(lll i){
return i*i;
}
lll fact(ll n){
ll ans=1;
for(ll i=1; i<=n;i++)ans=(ans*i)%p;
return ans;
}
//***********************GRAPH ALGORITHMS*************************************************************
void dfs(vector <ll> v[], vector<ll> &df, ll cov[], ll i){ //Also outputed resultant dfs
df.pb(i);
for(ll j=0; j<v[i].size(); j++){if(cov[v[i][j]]==0){cov[v[i][j]]=cov[i]; dfs(v, df, cov, v[i][j]);}}
}
void djikstra (vector <pair<ll, ll>> v[], ll d[], ll par[], ll s, ll n){ //n^2
for(ll i=0; i<n;i++){d[i]=inf; par[i]=-1;}
par[s]=s; d[s]=0;
bool cov[n]; for(ll i=0; i<n;i++)cov[i]=0;
ll u=-1;
for(int j=0; j<n;j++)
{
u=-1;
for(ll i=0; i<n;i++){
if(!cov[i] && (d[i]<d[u] || u==-1))u=i;
}
cov[u]=1;
for(ll i=0; i<v[u].size(); i++){
if(d[v[u][i].first] > d[u]+v[u][i].second){d[v[u][i].first]=d[u]+v[u][i].second; /*cout << d[u] << " " <<v[u][i].second <<"\n"; */par[v[u][i].first]=u;}
}
}
}
ll findConnComp(vector <ll> v[], ll cov[], ll n){
ll j=0;
vector <ll> df;
for(ll i=0; i<n;i++)cov[i]=0;
for(ll i=0; i<n; i++){
if(!cov[i]){cov[i]=++j; dfs(v, df, cov, i);}
}
return j;
}
//*****************CODE STARTS **************************************
int main(){
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
ll t; cin >> t;
while(t--){
ll n, k; cin >> n >> k;
pair<ll, ll> pos[n];
for(int i=0; i<n;i++){
cin >> pos[i].first >> pos[i].second;
}
vector <ll> v[n];
for(ll i=0; i<n;i++){
for(ll j=i+1; j<n;j++){
if(abs(pos[i].first-pos[j].first) + abs(pos[i].second-pos[j].second)<=k){v[i].pb(j); v[j].pb(i);}
}
}
bool done=0;
for(ll i=0; i<n;i++)if(v[i].size()==n-1)done=1;
if(done)cout << "1\n";
else cout <<"-1\n";
}
}
| 8 | CPP |
from collections import Counter
class Point:
def __init__(self, x, y):
self.x = x
self.y = y
def __eq__(self, other):
return self.x == other.x and self.y == other.y
def manhattan_dist(x1, y1, x2, y2):
return abs(x1-x2) + abs(y1-y2)
def solve(points, k):
for p1 in points:
found = True
for p2 in points:
if p1 == p2:
continue
if manhattan_dist(p1.x, p1.y, p2.x, p2.y) > k:
found = False
break
if found:
return 1
return -1
if __name__ == "__main__":
for t in range(int(input())):
n, k = list(map(int, input().split()))
points = []
for i in range(n):
x, y = list(map(int, input().split()))
points.append(Point(x, y))
print(solve(points, k))
| 8 | PYTHON3 |
'''
3
3 2
0 0
3 3
1 1
3 3
6 7
8 8
6 9
4 1
0 0
0 1
0 2
0 3
'''
from collections import defaultdict
tcs = int(input())
for tc in range(tcs):
n, k = list(map(int, input().split()))
li = list()
for i in range(n):
x, y = list(map(int, input().split()))
li.append([x, y])
ans = -1
for i in range(n):
flag = True
for j in range(n):
if i!=j and k<abs(li[i][0]-li[j][0])+abs(li[i][1]-li[j][1]):
flag = False
break
if flag:
ans = 1
break
print(ans)
| 8 | PYTHON3 |
#include<bits/stdc++.h>
#define FOR(i,s,t) for(int i=s;i<=t;++i)
#define REP(i,t,s) for(int i=t;i>=s;--i)
#define mem(a,x) memset(a,x,sizeof a)
using namespace std;
typedef long long ll;
int x[222],y[222];
int t,n;
int dis(int i,int j) {
return abs(x[i]-x[j])+abs(y[i]-y[j]);
}
int k;
int main() {
cin>>t;
while(t--) {
cin>>n>>k;
FOR(i,1,n) cin>>x[i]>>y[i];
FOR(i,1,n) {
int j;
for(j=1;j<=n;++j) if(dis(i,j)>k) break;
if(j==n+1) {
cout<<1<<endl;
goto xx;
}
}
cout<<-1<<endl;
xx:;
}
} | 8 | CPP |
from sys import stdin, gettrace
if gettrace():
inputi = input
else:
def input():
return next(stdin)[:-1]
def inputi():
return stdin.buffer.readline()
def solve():
n, k = map(int, inputi().split())
points = []
for _ in range(n):
points.append(tuple(map(int, inputi().split())))
dist = []
for px, py in points:
for qx, qy in points:
if abs(px-qx) + abs(py-qy) > k:
break
else:
print(1)
return
else:
print(-1)
def main():
t = int(inputi())
for _ in range(t):
solve()
if __name__ == "__main__":
main()
| 8 | PYTHON3 |
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
#define mp make_pair
#define pb push_back
#define ip pair<ll,ll>
#define iip pair<pair<ll,ll>,int>
#define ff first
#define ss second
#define MAX 2000005
#define f(j,i,k) for(ll j=i;j<k;j++)
#define fe(j,i,k) for(ll j=i;j<=k;j++)
#define fr(j,i,k) for(ll j=i;j>=k;j--)
const ll MOD = 1000000007;
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
ll t;
cin>>t;
while(t--){
ll n,k;
cin>>n>>k;
ll x[n];
ll y[n];
f(i,0,n)
cin>>x[i]>>y[i];
ll A[n][n];
f(i,0,n)
f(j,0,n){
if(i==j){
A[i][j]=0;
continue;
}
A[i][j]=LLONG_MAX;
if(abs(x[i]-x[j])+abs(y[i]-y[j])<=k)
A[i][j]=1;
}
ll found=0;
f(i,0,n){
ll here=1;
f(j,0,n){
if(A[i][j]==LLONG_MAX){
here=0;
break;
}
}
if(here){
found=1;
break;
}
}
if(found)
cout<<1<<endl;
else
{
cout<<-1<<endl;
}
// f(i,0,n){
// f(j,0,n){
// cout<<A[i][j]<<" ";
// }
// cout<<endl;
// }
// cout<<endl;
// ll dist[n][n];
// f(i,0,n)
// f(j,0,n)
// dist[i][j]=A[i][j];
// f(k,0,n)
// f(i,0,n)
// f(j,0,n){
// if (dist[i][k]!=LLONG_MAX && dist[k][j]!=LLONG_MAX && dist[i][k] + dist[k][j] < dist[i][j])
// dist[i][j] = dist[i][k] + dist[k][j];
// }
// f(i,0,n){
// f(j,0,n){
// cout<<dist[i][j]<<" ";
// }
// cout<<endl;
// }
// ll mymax=LLONG_MIN;
// f(i,0,n)
// f(j,0,n)
// if(dist[i][j]>mymax)
// mymax=dist[i][j];
// if(mymax==LLONG_MAX){
// cout<<-1<<endl;
// }
// else
// {
// if(mymax&1)
// {
// }
// cout<<max(1ll,mymax-2)<<endl;
// }
}
} | 8 | CPP |
#include "bits/stdc++.h"
#define ll long long
using namespace std;
void solve() {
int n, k;
cin >> n >> k;
vector<vector<int>> a(n, vector<int>(2));
bool sw = 1;
for (int i = 0; i < n; i++)
cin >> a[i][0] >> a[i][1];
for(int i = 0; i < n; i++) {
bool flag = 0;
for (int j = 0; j < n; j++){
if (i != j && abs(a[i][0] - a[j][0]) + abs(a[i][1] - a[j][1]) > k) {
flag = 1;
break;
}
}
if(!flag){
sw = 0;
break;
}
}
if(!sw)
cout << 1 << endl;
else
cout << -1 << endl;
}
signed main() {
ios_base::sync_with_stdio(false);
int t;
cin >> t;
while (t--)
solve();
} | 8 | CPP |
import sys
def main(balls, k):
n = len(balls)
x, y = balls[0]
for x, y in balls:
good = True
for _x, _y in balls:
if abs(x-_x)+abs(y-_y) > k:
good = False
continue
if good:
return 1
return -1
if __name__ == '__main__':
n, k = -1, -1
n_tests = -1
balls = []
for line in sys.stdin:
if n_tests == -1:
n_tests = int(line.strip())
n, k = -1, -1
elif n == k == -1:
n, k = [int(c) for c in line.strip().split()]
else:
balls.append([int(c) for c in line.strip().split()])
if len(balls) == n:
print(main(balls, k))
balls = []
n, k = -1, -1
| 8 | PYTHON3 |
t = int(input())
def dist(x1, x2, y1, y2):
return abs(x1 - x2) + abs(y1 - y2)
for _ in range(t):
n, k = map(int, input().split())
nums = []
for i in range(n):
x, y = map(int, input().split())
nums.append([x, y])
ans = -1
for i in range(n):
mx = 0
for j in range(n):
mx = max(mx, dist(nums[i][0], nums[j][0], nums[i][1], nums[j][1]))
if mx <= k:
ans = 1
print(ans)
| 8 | PYTHON3 |
#include <bits/stdc++.h>
using namespace std;
//---------------------------------------------------------
//#define _FILE_IO_ // Testing with I/O
#define WLIB_DEF // WLIB - Utility functions
#define WIO_DEF // WIO - Generic I/O functions
//---------------------------------------------------------
#ifdef WLIB_DEF
/* Utility functions collection
* Math Functions: _gcd_, _lcm_, _fact_, _pow_, _inv_, _C_, _A_
* String Functions: _zfunc_, _pfunc_, _isPalindrome_
* Vector Functions: _pSum_
*/
namespace WLIB{
#define MYDEFS
#ifdef MYDEFS
// DFS
#define __graph_(t,name,siz) std::vector< std::vector<t> > name(siz)
#define __add_edge_(g,a,b) g[a].push_back(b); g[b].push_back(a)
// loops
// #define __FOR_(it,st,nd)_ ___aux_FOR_ ## #(st<=nd)_(it,st,nd)
// #define __aux_FOR_true_(it,st,nd) for(int it = st; it <= nd; it++)
// #define __aux_FOR_false_(it,st,nd) for(int it = st; it >= nd; it--)
#endif
namespace LIB_TYPES {
typedef long long lint;
}
// >>> Math Functions <<<
// Greatest common divisor | Time: log(N) | Memory: 1
LIB_TYPES::lint _gcd_(LIB_TYPES::lint a, LIB_TYPES::lint b) {
if(b == 0) return a;
return _gcd_(b, a%b);
}
// Least common multiple | Time: log(N) | Memory: 1
LIB_TYPES::lint _lcm_(LIB_TYPES::lint a, LIB_TYPES::lint b) {
return (a * b) / _gcd_(a,b);
}
// Factorial of n by modulo mod | Time: N | Memory: 1
LIB_TYPES::lint _fact_(LIB_TYPES::lint n, LIB_TYPES::lint mod) {
LIB_TYPES::lint fct = 1;
for(LIB_TYPES::lint i = 1; i <= n; i++)
fct = (fct * i) % mod;
return fct % mod;
}
// pw-th power of x by modulo mod| Time: log(pw) | Memory: 1
LIB_TYPES::lint _pow_(LIB_TYPES::lint base, LIB_TYPES::lint pw, LIB_TYPES::lint mod) {
LIB_TYPES::lint ans = 1ll;
while(pw > 0ll) {
if(pw & 1ll)
ans = (ans * base) % mod;
pw = pw >> 1ll;
base = (base * base) % mod;
}
return ans % mod;
}
// Inverse of x by modulo mod | Time: log(mod) | Memory: 1
LIB_TYPES::lint _inv_(LIB_TYPES::lint x, LIB_TYPES::lint mod) {
return _pow_(x, mod-2, mod) % mod;
}
// C by modulo mod | Time: N + log(mod) | Memory: 1
LIB_TYPES::lint _C_(LIB_TYPES::lint n, LIB_TYPES::lint m, LIB_TYPES::lint mod) {
return (_fact_(n, mod) * _inv_( ((_fact_(m, mod) * _fact_(n-m, mod)) % mod), mod)) % mod;
}
// A by module mod | Time: N + log(mod) | Memory: 1
LIB_TYPES::lint _A_(LIB_TYPES::lint n, LIB_TYPES::lint m, LIB_TYPES::lint mod) {
return (_fact_(n, mod) * _inv_( _fact_(n-m, mod), mod)) % mod;
}
// List of prime numbers less or equal to N
std::vector<LIB_TYPES::lint> _primes_until_(LIB_TYPES::lint N) {
std::vector<bool> isPrime(N+1,true);
std::vector<LIB_TYPES::lint> primes;
for(LIB_TYPES::lint i = 2; i <= N; i++) {
if(!isPrime[i]) continue;
primes.push_back(i);
for(LIB_TYPES::lint j = i*i; j <= N; j+=i)
isPrime[j] = false;
}
return primes;
}
// >>> String Functions <<<
// P function | Time: N | Memory: N
vector<int> _pfunc_(string str) {
vector<int> p(str.length(),0);
for(int i = 1, j = 0; i < str.length(); i++) {
while(j > 0 && str[j] != str[i]) {
j = p[j-1];
}
if(str[i] == str[j]) j++;
p[i] = j;
}
return p;
}
// Z function | Time: N | Memory: N
vector<int> _zfunc_(string str) {
vector<int> z(str.size(),0);
for(int i = 1, l = 0, r = 0; i < str.size(); i++) {
if(i <= r)
z[i] = min(z[i-l],r-i+1);
while(i+z[i]<str.size() && str[i+z[i]] == str[z[i]])
z[i]++;
if(z[i]-1 > r && z[i] != 0) {
l = i;
r = z[i] - 1;
}
}
return z;
}
// Is the string Palindrome or Not | Time: N | Memory: N
bool _isPalindrome_(string str, int L=0, int R=-1) {
if(R == -1) R = str.length()-1;
while(L < R) {
if(str[L] != str[R])
return false;
L++; R--;
}
return true;
}
// >>> Vector Functions <<<
// Prefix sum | Time: N | Memory: N
template <class T>
vector<T> _pSum_(vector<T> v) {
for(int i = 1; i < v.size(); i++)
v[i] += v[i-1];
return v;
}
}
#endif
#ifdef WIO_DEF
/* Generic I/O functions
* Functions: _readV_, _printV_
* Defines: __endl_
*/
namespace WIO{
#define __endl_ cout<<endl;
// Read vector | Time: N | Memory: 1
template <class T>
void _readV_(vector<T> &v, int offset = 0, int n = -1) {
if(n == -1) n = v.size()-1;
for(int i = offset; i <= n; i++)
cin >> v[i];
}
// Print vector | Time: N | Memory: N
template <class T>
void _printV_(vector<T> v, int offset = 0, int n = -1) {
if(n == -1) n = v.size()-1;
for(int i = offset; i <= n; i++)
cout << v[i] << " ";
}
bool WIO_DEBUG_LOGS_FLAG = false;
void _log_(string s) {
if(WIO_DEBUG_LOGS_FLAG)
cout << "LOG:: " << s << endl;
}
void _elog_(string s) {
if(WIO_DEBUG_LOGS_FLAG)
cout << "ERROR:: " << s << endl;
}
void _celog_(string s) {
if(WIO_DEBUG_LOGS_FLAG)
cout << "CRITICAL_ERROR::" << s << endl;
assert(0);
}
}
#endif
//---------------------------------------------------------
#define for_in_range(i,s,f) for(int i = s; i <= f; i++)
typedef long long lint;
typedef vector<lint> vlint;
typedef vector<vector<int>> matrix_int;
typedef vector<vector<lint>> matrix_lint;
#define fi first
#define se second
const lint MOD = 1e9+7;
const lint PRIME = 31;
const lint LOG = 30;
const lint INF = INT64_MAX;
const lint MAXN= 1e6;
void solve();
int main() {
//---------------------Local flags-------------------------
//---------------------------------------------------------
//#define _FILE_IO_
//WIO::WIO_DEBUG_LOGS_FLAG = true;
//---------------------------------------------------------
ios_base::sync_with_stdio(false);
#ifdef _FILE_IO_
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
#endif
int tst = 1;
cin >> tst;
while(tst--)
solve();
}
void solve() {
lint n, k;
cin >> n >> k;
vector<pair<lint,lint>> v;
for(int i = 0; i < n; i++) {
int x, y;
cin >> x >> y;
v.push_back({x,y});
}
for(int i = 0; i < n; i++) {
lint flag = true;
for(int j = 0; j < n; j++) {
// cout <<v[i].first << " "<<v[i].second<<" "<< abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second) << endl;
if(abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second) > k) {
flag = false;
break;
}
}
if(flag) {
cout << 1 << endl;
return;
}
}
cout << -1 << endl;
return;
}
| 8 | CPP |
/*
/> フ
| _ _|
/`ミ _x 彡 * MEOW *
/ |
/ ヽ ノ
/ ̄| | | |
| ( ̄ヽ__ヽ_)_)
\二つ
*/
#include <bits/stdc++.h>
#define ll long long
#define db(x) cout << (#x) << " = " << x << "\n" ;
#define pb push_back
#define mt make_tuple
#define F first
#define S second
using namespace std;
bool comp(pair <ll , ll> &a , pair <ll , ll> &b){
ll s1 = a.F + a.S , s2 = b.F + b.S;
if(s1==s2){
return a.F < b.F;
} else return s1 < s2;
}
int main(){
ios_base::sync_with_stdio(false);
cin.tie(NULL);
#ifndef ONLINE_JUDGE
freopen("input.txt", "r", stdin);
freopen("output.txt", "w", stdout);
#endif
/* uWu */
ll t;
cin >> t;
while(t--){
ll n , k;
cin >> n >> k;
vector < pair < ll , ll > > arr;
for(ll i = 0;i<n;i++){
ll a , b;
cin >> a >> b;
arr.pb({a,b});
}
ll extreme_d = 0 , found = 0;
for(ll i=0;i<n;i++){
ll a = arr[i].F , b = arr[i].S;
found = 1;
for(ll j=0;j<n;j++){
ll c = arr[j].F , d = arr[j].S;
if(abs(a-c) + abs(b-d)>k) found = 0;
}
if(found) break;
}
if(found){
cout << 1 << "\n";
} else {
cout << -1 << "\n";
}
}
return 0;
} | 8 | CPP |
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef string ss ;
typedef pair<int, int> pi;
typedef pair<ll,ll> pl;
typedef vector<int> vi;
typedef vector<ll> vl;
#define mp make_pair
#define pb push_back
void solve(){
ll n,k=0,q=0;
string s;
cin >> n >> k ;
ll x[n],y[n];
for(int i=0 ; i<n ; i++){
cin >> x[i] >> y[i];
}
bool ok=false;
for(int i=0 ; i<n ; i++){
for(int j=0 ; j<n ; j++){
if(abs(x[i]-x[j]) + abs(y[i]-y[j]) <= k){
q++;
}
if(q==n) ok=true;
} q=0;
}
cout << (ok ? "1\n" : "-1\n") ;
}
int main() {
ios_base::sync_with_stdio(0); cin.tie(0);
int t=1;
cin >> t;
while(t--)
solve();
return 0;
}
| 8 | CPP |
#include<iostream>
#include<cstring>
#include<cassert>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<time.h>
#include<bitset>
#include<cstdio>
#include<algorithm>
using namespace std;
#define REP(i,x,y) for(int i=x;i<=y;i++)
#define rep(i,n) REP(i,1,n)
#define rep0(i,n) REP(i,0,n-1)
#define repG(i,x) for(int i=pos[x];~i;i=e[i].next)
#define ll long long
#define db double
const int N=1e5+7;
const int INF=1e9+7;
int T,n,k;
int X[N],Y[N];
int main(){
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&k);
rep(i,n)scanf("%d%d",&X[i],&Y[i]);
bool ans=0;
rep(i,n){
bool fl=1;
rep(j,n)if(abs(X[i]-X[j])+abs(Y[i]-Y[j])>k)fl=0;
if(fl){
ans=1;
break;
}
}
if(ans)puts("1");
else puts("-1");
}
return 0;
}
| 8 | CPP |
#include <bits/stdc++.h>
#define f first
#define s second
using namespace std;
using li = long long;
using ld = long double;
using pii = pair<int, int>;
const int INF = 1e9 + 13;
const int N = 112;
vector<int> g[N];
int d[N];
pii a[N];
void solve() {
int n, k;
cin >> n >> k;
// for(int i = 0; i < n; i++) {
// g[i].erase(g[i].begin(), g[i].end());
//// for(int j = 0; j < n; j++) {
//// d[i][j] = INF;
//// }
// }
for(int i = 0; i < n; i++) {
cin >> a[i].f >> a[i].s;
}
for(int i = 0; i < n; i++) {
int cnt = 0;
for(int j = 0; j < n; j++) {
if(abs(a[i].f - a[j].f) + abs(a[i].s - a[j].s) <= k) {
cnt++;
}
}
if(cnt == n) {
cout << 1 << endl;
return;
}
}
cout << -1 << endl;
}
int main() {
int t = 1;
cin >> t;
while(t--)
solve();
}
| 8 | CPP |
def canCollapse(balls, k):
if len(balls) <= 1:
return True
for a in balls:
found = 0
for b in balls:
if abs(a[0] - b[0]) + abs(a[1] - b[1]) <= k:
found += 1
if found <= 1:
return False
if found == len(balls):
return True
return False
t = int(input())
for i in range(t):
n, k = map(int, input().split(" "))
balls = []
for j in range(n):
balls.append(list(map(int, input().split(" "))))
print(1 if canCollapse(balls, k) else -1) | 8 | PYTHON3 |
t=int(input())
for i in range(t):
n1,k=map(int,input().strip().split())
l=[]
for i in range(n1):
x,y=map(int,input().strip().split())
l.append([x,y])
flag=0
y=0
for j in l:
flag=0
for m in l:
s=abs(j[0]-m[0])
s+=abs(j[1]-m[1])
if s>k:
flag=1
break
if flag==0:
y=1
break
if y==1:
print("1")
else:
print("-1")
| 8 | PYTHON3 |
#include<bits/stdc++.h>
const int maxn=105;
using namespace std;
int t,n,k,sum[maxn],x[maxn],y[maxn];
int calc(int i,int j){
return abs(x[i]-x[j])+abs(y[i]-y[j]);
}
int main(){
scanf("%d",&t);
for(;t;t--){
memset(sum,0,sizeof(sum));
scanf("%d %d",&n,&k);
for(int i=1;i<=n;i++)scanf("%d %d",&x[i],&y[i]);
for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)if(calc(i,j)<=k)sum[i]++,sum[j]++;
for(int i=1;i<=n;i++){
if(sum[i]==n-1){puts("1");break;}
if(i==n)puts("-1");
}
}
return 0;
}
| 8 | CPP |
from collections import defaultdict,deque
import sys
import bisect
input=sys.stdin.readline
t=int(input())
for ii in range(t):
n,k=map(int,input().split())
store=[]
for i in range(n):
x,y=map(int,input().split())
store.append((x,y))
check=[0]*(n)
for i in range(n):
for j in range(n):
if i!=j:
manhat=abs(store[i][0]-store[j][0])+abs(store[i][1]-store[j][1])
if manhat<=k:
check[i]+=1
if (n-1) in check:
print(1)
else:
print(-1)
| 8 | PYTHON3 |
import sys
input = lambda: sys.stdin.readline().rstrip()
T = int(input())
for _ in range(T):
N, K = map(int, input().split())
X = []
for _ in range(N):
x, y = map(int, input().split())
X.append((x, y))
for i, (x, y) in enumerate(X):
for j, (x2, y2) in enumerate(X):
# print("x, x2, y, y2 =", x, x2, y, y2)
if abs(x - x2) + abs(y - y2) > K:
break
else:
print(1)
break
else:
print(-1)
| 8 | PYTHON3 |
for test in range(int(input())):
n, k = list(map(int, input().split()))
balls = []
for i in range(n):
balls.append(tuple(map(int, input().split())))
balls.sort()
found = False
for c_ball in balls:
ok = True
for ball in balls:
ok &= abs(c_ball[0] - ball[0]) + abs(c_ball[1] - ball[1]) <= k
if ok:
found = True
if found:
print(1)
else:
print(-1)
| 8 | PYTHON3 |
/**Bismillahir Rahmanir Rarim**/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include<bits/stdc++.h>
#define ll long long
#define ld long double
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define all(c) c.begin(), c.end()
#define CC(x) cout << (x) << endl
#define rep(i,n) for(int i=0;i<n;i++)
#define FastRead ios_base::sync_with_stdio(false);cin.tie(NULL);
#define EPS 1e-9
#define sz(v) int((v).size())
const unsigned long long inf=1e18;
const int range=1e6;
const long long inff=1e-12;
const int dx[] = { 0, 1, -1, 0 };
const int dy[] = { -1, 0, 0, 1 };
typedef unsigned long long ull;
ll gcd(ll a, ll b) {if (b == 0)return a;return gcd(b, a % b);}
using namespace std;
bool cmp(const pair<ll,ll>&a, const pair<ll,ll>&b){return (a.se>b.se);}
void vecp(vector<ll>v){for(int i=0;i<sz(v);i++){cout <<v[i]<<" ";}cout <<endl;}
int main()
{
FastRead
ll x,y,l,r,n,c,z,a=0,b=0,cas=1,d,x1,x2,y1,y2,t,N,mx=0,k;
cin >> t;
while(t--){
cin >>x>>k;
vector<pair<int,int>>p(x);
for(int i=0;i<x;i++){
cin >>p[i].fi >>p[i].se;
}
sort(all(p));
int f=0,ff=0;
for(int i=0;i<x;i++){
f=0;
for(int j=0;j<x;j++){
if(i!=j){
ll a=abs(p[i].fi-p[j].fi);
ll b=abs(p[i].se-p[j].se);
if(a+b<=k){
continue;
}
else{
f=1;
break;
}
}
}
if(f==0){
ff=1;
break;
}
}
if(ff==0){
cout <<-1 <<endl;
}
else{
cout <<1 <<endl;
}
}
}
| 8 | CPP |
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,fma")
#pragma GCC optimize("unroll-loops")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<int,int> p32;
typedef pair<ll,ll> p64;
typedef pair<double,double> pdd;
typedef vector<ll> v64;
typedef vector<int> v32;
typedef vector<vector<int> > vv32;
typedef vector<vector<ll> > vv64;
typedef vector<vector<p64> > vvp64;
typedef vector<p64> vp64;
typedef vector<p32> vp32;
ll MOD = 1791791791;
double eps = 1e-12;
#define forn(i,e) for(ll i = 0; i < e; i++)
#define forsn(i,s,e) for(ll i = s; i < e; i++)
#define rforn(i,s) for(ll i = s; i >= 0; i--)
#define rforsn(i,s,e) for(ll i = s; i >= e; i--)
#define ln "\n"
#define dbg(x) cout<<#x<<" = "<<x<<ln
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define INF 2e18
#define fast_cin() ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL)
#define all(x) (x).begin(), (x).end()
#define sz(x) ((ll)(x).size())
struct Point{
ll x;
ll y;
};
int main()
{
fast_cin();
ll t,n,k;
cin >> t;
forn(d,t){
cin >> n >> k;
vector<Point> v(n);
forn(i,n){
cin >> v[i].x >> v[i].y;
}
bool isCan = false;
forn(i,n){
bool f = true;
forn(j,n){
if((abs(v[i].x - v[j].x) + abs(v[i].y - v[j].y)) > k){
f = false;
break;
}
}
if(f) isCan = true;
}
if(isCan){
cout << 1 << ln;
}
else{
cout << -1 << ln;
}
}
} | 8 | CPP |
n_tests = int(input())
for test in range(n_tests):
[n, k] = input().split(' ')
k = int(k)
d = []
n = int(n)
for i in range(n):
p = input().split(' ')
p = [int(w) for w in p]
d.append(p)
md = []
t = False
for i in range(n):
q = d[i]
a = 0
for j in range(n):
s = abs(q[0] - d[j][0]) + abs(q[1] - d[j][1])
if s <= k:
a += 1
if a == n:
t = True
break
if t:
print(1)
else:
print(-1) | 8 | PYTHON3 |
test_case=int(input())
for ix in range(test_case):
n=[int(x) for x in input().split()]
no=n[0]
pow=n[1]
dist=[]
flag=False
for ixx in range(no):
point=[int(x) for x in input().split()]
dist.append(point)
for i in range(no):
count=0
for j in range(no):
d=abs(dist[i][0]-dist[j][0])+abs(dist[i][1]-dist[j][1])
if d<=pow:
count=count+1
if count==no:
flag=True
break
if flag:
print("1")
else:
print("-1")
| 8 | PYTHON3 |
#include<bits/stdc++.h>
//#define int long long
#define ll long long
#define p pair<int, int>
#define endl '\n'
const int INF = 1000000001;
using namespace std;
const int C = 998244353;
vector<ll> fact, minus_fact;
ll pow1(ll x, ll y, ll z=C){
if (y == 0){
return 1;
}
if (y % 2 == 0){
return pow1(x*x % z, y/2, z);
}
return pow1(x, y-1, z)*x % z;
}
void facts(int n){
fact = {1}, minus_fact = {1};
for (int q = 1; q <= n; q++){
fact.push_back(fact.back()*q % C);
minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C);
}
}
ll c(int k, int n){
if (k < 0 || k > n){
return 0;
}
return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C;
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
facts(200179);
int n;
cin >> n;
vector<p> a(n);
for (int q = 0; q < n; q++){
cin >> a[q].first >> a[q].second;
}
vector<int> now = {1};
for (int q = 0; q < n; q++){
int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second;
vector<__int128> will(w3-a[q].second, 0);
vector<ll> cc(now.size()+a[q].first);
for (int q1 = 0; q1 < cc.size(); q1++){
cc[q1] = c(q1, a[q].first+a[q].second);
}
for (int q1 = a[q].second; q1 < w3; q1++){
int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second);
for (int q2 = w2; q2 < w; q2++){
will[w1] += cc[q1-q2]*now[q2];
}
}
now = {};
for (__int128 q1: will){
now.push_back(q1 % C);
}
for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--){
now.push_back(now[q1]);
}
}
ll ans = 0;
for (int q: now){
ans += q;
}
cout << ans % C << endl;
return 0;
}
| 13 | CPP |
//CLOCKS_PER_SEC
using namespace std;
#include<bits/stdc++.h>
#define sqr(x) 1ll*(x)*(x)
//#define sort stable_sort
#define ll long long
#define mk make_pair
#define pb push_back
#define in insert
#define mtr(x,y,z) mk(mk(x,y),z)
#define fi first
#define se second
#define lch(x) ((x)<<1)
#define rch(x) (((x)<<1)|1)
#define all(x) (x).begin(),(x).end()
#define titose CLOCKS_PER_SEC
#define fpi(x) freopen(x,"r",stdin);
#define fpo(x) freopen(x,"w",stdout);
#define fprio fpi("in.txt");fpo("out.txt");
#define fast ios_base::sync_with_stdio(false);
inline void read(int &x){int v=0,f=1;char c=getchar();while (!isdigit(c)&&c!='-') c=getchar();if (c=='-') f=-1; else v=(c&15);while (isdigit(c=getchar())) v=(v<<1)+(v<<3)+(c&15);x=v*f;}
inline void read(ll &x){ll v=0ll,f=1ll;char c=getchar();while (!isdigit(c)&&c!='-') c=getchar();if (c=='-') f=-1; else v=(c&15);while (isdigit(c=getchar())) v=(v<<1)+(v<<3)+(c&15);x=v*f;}
inline void readc(char &x){char c;while (((c=getchar())==' ')||c=='\n');x=c;}
#define pii pair<int,int>
#define pll pair<ll,ll>
#define vi vector<int>
#define vl vector<ll>
#define si set<int>
#define sl set<ll>
#define mii map<int,int>
#define mll map<ll,ll>
#define msi map<string,int>
#define msl map<string,ll>
#define piii pair<int,pii >
#define piipi pair<pii,int>
#define plll pair<ll,pll >
#define pllpl pair<pll,ll>
#define pqi priority_queue<int>
#define pql priority_queue<ll>
#define npqi priority_queue<int,vector<int>,greater<int> >
#define npql priority_queue<ll,vector<ll>,greater<ll> >
#define forup(i,a,b) for ((i)=(a);(i)<=(b);(i)++)
#define fordo(i,a,b) for ((i)=(a);(i)>=(b);(i)--)
#define rep(i,x) forup ((i),1,(x))
#define repd(i,x) fordo ((i),(x),1)
#define rep0(i,x) forup ((i),0,((int)(x))-1)
#define rep0d(i,x) fordo ((i),((int)(x))-1,0)
#define itr iterator
#define fe(itcalc,c) for(__typeof((c).begin()) itcalc=(c).begin();itcalc!=(c).end();itcalc++)
#define NO {cout<<"NO";return 0;}
#define YES {cout<<"YES";return 0;}
#define y0 y000000000000000000000000000
#define y1 y111111111111111111111111111
#define j0 j000000000000000000000000000
#define j1 j111111111111111111111111111
#define cl0(a) memset((a),(0),(sizeof((a))))
#define clz(a) memset((a),(0x16),(sizeof((a))))
#define clf(a) memset((a),(-(0x16)),(sizeof((a))))
#define inf 0x3bbbbbbb
#define lnf 0x2bbbbbbbbbbbbbbbll
//#define sqrt divi
#define p2(i) (1ll<<(i))
#define readi read
#define readll read
/*************************************************/
const int mod=998244353,maxn=16384;
int n,m,i,j,fac[240005],inv[240005],fi[240005],rev[maxn+5],a[maxn+5],b[maxn+5],w[maxn+5];
vector<int> v,nxt;
int c(int x,int y)
{
if(x<y||x<0||y<0) return 0;
return 1ll*fac[x]*fi[y]%mod*fi[x-y]%mod;
}
int pw(int x,int y)
{
int z=1;
while(y){
if(y&1)z=1ll*z*x%mod;
x=1ll*x*x%mod;y>>=1;
}
return z;
}
void ntt(int *a,int len,int op)
{
int i,j,k;
rep0(i,len){
if(rev[i]<i){
swap(a[i],a[rev[i]]);
}
}
for(i=1;i<len;i<<=1){
int stp=maxn/i/2;
for(j=0;j<len;j+=i+i){
int t=(op==1?0:maxn);
rep0(k,i){
int x=a[j+k],y=a[j+k+i]*1ll*w[t]%mod;
a[j+k]=(x+y)%mod;a[j+k+i]=(x-y+mod)%mod;
t+=stp*op;
}
}
}
if(op==-1){
rep0(i,len) a[i]=1ll*a[i]*inv[len]%mod;
}
}
int getrev(int x)
{
int len=1,i;
while(len<=x)len<<=1;
rep0(i,len){
rev[i]=(rev[i/2]/2)+((i&1)*(len/2));
}
return len;
}
int main()
{
w[0]=1;w[1]=pw(3,(mod-1)/maxn);
forup(i,2,maxn) w[i]=1ll*w[i-1]*w[1]%mod;
fac[0]=fac[1]=inv[1]=fi[0]=fi[1]=1;
forup(i,2,240003){
fac[i]=1ll*fac[i-1]*i%mod;
inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
fi[i]=1ll*fi[i-1]*inv[i]%mod;
}
read(n);
v.push_back(1);
int _;
rep(_,n){
int x,y;
read(x);read(y);
nxt.clear();nxt.resize(v.size()+x-y);
int l=1-((int)v.size())+y,r=nxt.size()-1+y;
int len=getrev(v.size()+(r-l+1));
rep0(i,len) a[i]=b[i]=0;
rep0(i,v.size()) a[i]=v[i];
rep0(i,r-l+1) b[i]=c(x+y,l+i);
ntt(a,len,1);ntt(b,len,1);
rep0(i,len) a[i]=1ll*a[i]*b[i]%mod;
ntt(a,len,-1);
rep0(i,len){
int to=1-((int)v.size())+i;
if(0<=to&&to<nxt.size()){
nxt[to]=a[i];
}
}
v=nxt;
}
int ans=0;
fe(it,v)ans=(ans+*it)%mod;
cout<<ans<<endl;
return 0;
} | 13 | CPP |
#include<bits/stdc++.h>
using namespace std;
typedef unsigned long long ull;
typedef long long ll;
const int maxm=200025;
const int maxn=1005;
const int maxf=16384+25;
const int mod=998244353;
int n,m,i,j,t,k,s,jc[maxm],ijc[maxm],a[maxn][2],Log[maxm];
int *rev[15];ull *pre3[15],f[maxf],g[maxf],iv_2[15];
inline int Pow(int x,int y,int mo)
{
int ret=1;
while (y)
{
if (y&1) ret=1ll*ret*x%mo;
x=1ll*x*x%mo;y>>=1;
}
return ret;
}
inline int C(int x,int y){return x<y||y<0?0:1ll*jc[x]*ijc[y]%mod*ijc[x-y]%mod;}
inline void NTT(ull *a,int bit,int x)
{
int len=(1<<bit);
for (int i=1;i<len;++i) if (rev[bit][i]>i){swap(a[rev[bit][i]],a[i]);}
for (int i=1;i<len;i<<=1)
{
for (int j=0;j<len;j+=(i<<1))
{
ull *a0=a+j,*a1=a+j+i,*wn=pre3[Log[i]+1];
for (int k=0;k<i;++k,++a0,++a1,++wn)
{
ull tmp=*a1**wn%mod;
*a1=*a0+mod-tmp;*a0+=tmp;
}
}
}
for (int i=0;i<len;++i) a[i]%=mod;
if (x==-1)
{
reverse(a+1,a+len);
ull tmp=iv_2[bit];
for (int i=0;i<len;++i) a[i]=a[i]*tmp%mod;
}
}
int main()
{
jc[0]=jc[1]=ijc[0]=ijc[1]=1;iv_2[0]=1;
for (i=2;i<maxm;++i) jc[i]=1ll*i*jc[i-1]%mod,Log[i]=Log[i>>1]+1;
for (i=1;i<=14;++i)
{
iv_2[i]=iv_2[i-1]*499122177ull%mod;
rev[i]=new int[(1<<i)+1];pre3[i]=new ull[(1<<i)+1];
rev[i][0]=0;
for (j=1;j<(1<<i);++j) rev[i][j]=((rev[i][j>>1]>>1)|((j&1)<<i-1));
pre3[i][0]=1;pre3[i][1]=Pow(3,(mod-1)/(1<<i),mod);
for (j=2;j<=(1<<i);++j) pre3[i][j]=1ll*pre3[i][1]*pre3[i][j-1]%mod;
}
ijc[maxm-1]=Pow(jc[maxm-1],mod-2,mod);
for (i=maxm-2;i>1;--i) ijc[i]=1ll*ijc[i+1]*(i+1)%mod;
//for (i=1;i<=10;++i) printf("%d %d %d\n",i,jc[i],ijc[i]);
//g[0]=1;g[1]=1;NTT(g,10,1);for (i=0;i<1024;++i) g[i]=g[i]*g[i]%mod*g[i]%mod;NTT(g,10,-1);printf("%llu %llu %llu\n",g[0],g[1],g[2]);
scanf("%d",&n);
t=0;f[0]=1;
for (i=1;i<=n;++i)
{
scanf("%d%d",&a[i][0],&a[i][1]);
k=t+a[i][0]-a[i][1];
if (t<64||k<64)
{
for (j=0;j<=t;++j) g[j]=f[j],f[j]=0;
for (j=0;j<=t;++j)
{
ull mul=g[j];
for (s=0;s<=k;++s) f[s]+=mul*C(a[i][0]+a[i][1],a[i][1]+s-j);
if ((j&15)==15)
{
for (s=0;s<=k;++s) f[s]%=mod;
}
}
for (j=0;j<=t;++j) g[j]=0;
for (j=0;j<=k;++j) f[j]%=mod;
}
else
{
int bit=Log[t+k]+1;
for (j=0;j<=t+k;++j) g[j]=C(a[i][0]+a[i][1],a[i][1]+j-t);
NTT(f,bit,1);NTT(g,bit,1);
for (j=0;j<(1<<bit);++j) f[j]=f[j]*g[j]%mod,g[j]=0ull;
NTT(f,bit,-1);
for (j=0;j<(1<<bit);++j) f[j]=(j<=k?f[j+t]:0ull);
}
t=k;
//for (j=0;j<=t;++j) printf("%llu ",f[j]);puts("");
}
ull ans=0;
for (i=0;i<=t;++i)
{
ans+=f[i];if ((i&15)==15) ans%=mod;
}
ans%=mod;
printf("%llu\n",ans);
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define endl '\n'
#define all(v) (v).begin(), (v).end()
template<class A, class B> ostream& operator<<(ostream& os, const pair<A,B>& p) {
return os << '(' << p.first << ", " << p.second << ')';
}
template<class T> auto operator<<(ostream& os, T&& x) -> decltype(x.begin(), os) {
os << '{';
for(auto it = x.begin(); it != x.end(); ++it) os << *it << (it == prev(x.end()) ? "" : ", ");
return os << '}';
}
void dump() {}
template<class T,class... Args> void dump(T&& x,Args... args) { cerr<<x<<"; "; dump(args...); }
#ifdef DEBUG
struct Lf{ ~Lf() { cerr << '\n'; } };
#define debug(x...) cerr << (strcmp(#x, "") ? #x ": " : ""), dump(x), Lf(), cerr << ""
#else
#define debug(...) 0&&cerr
#endif
const int MAX = 1<<23; //max input vector length
const int MOD = 998244353; //prime modulus e.g. 998244353 = 1 + 7*17*2^23
const int G = 3; //generator for Z_MOD
int modpow(int base, int exp) {
base %= MOD;
int result = 1;
while (exp > 0) {
if (exp & 1) result = (1ll*result * base) % MOD;
base = (1ll*base * base) % MOD;
exp >>= 1;
}
return result;
}
int modinv(int a) {
return modpow(a,MOD-2);
}
//FFT=1 for transform, FFT=-1 for inverse transform; N=current input length, should use a power of 2
void fft(vector<int>& a, int FFT, int N) {
static int rev[MAX];
for (int i = 0; i < N; i++) {
rev[i] = (rev[i>>1]>>1)|((i&1)?(N>>1):0);
if (i < rev[i]) swap(a[i], a[rev[i]]);
}
for (int m = 2, m2 = 1; m <= N; m <<= 1, m2 <<= 1) {
int wm = modpow(G, (MOD-1)/m*FFT+(FFT==-1?MOD-1:0));
for (int k = 0; k < N; k += m)
for (int j = 0, u, t, w = 1; j < m2; j++)
t = 1ll*w*a[k+j+m2]%MOD, u = a[k+j], w = 1ll*w*wm%MOD,
a[k+j] = (u+t)%MOD, a[k+j+m2] = (u-t+MOD)%MOD;
}
if (FFT == -1)
for (int i = 0, invN = modinv(N); i < N; i++)
a[i] = 1ll * a[i] * invN % MOD;
}
int degp,degq;
vector<int> P,Q;
void mul() {
int N=1;
for (; N<degp+degq+1; N<<=1);
while ((int)P.size()<N) P.push_back(0);
while ((int)Q.size()<N) Q.push_back(0);
fft(P,1,N);
fft(Q,1,N);
for (int i=0; i<N; ++i) P[i] = (1ll*P[i]*Q[i])%MOD;
fft(P,-1,N);
while (P.back()==0) P.pop_back();
}
int n, a,b, fact[200010], ifact[200010];
void calc() {
fact[0] = 1, fact[1] = 1, ifact[0] = 1, ifact[1] = 1;
for (int i=2; i<=200000; ++i) {
fact[i] = (1ll*fact[i-1]*i) % MOD;
ifact[i] = modinv(fact[i]);
}
}
int C(int x, int y) {
if (y<0 || y>x) return 0;
int div = (1ll*ifact[y]*ifact[x-y])%MOD;
return (1ll*fact[x]*div)%MOD;
}
int main() {
ios::sync_with_stdio(false);
calc();
cin >> n;
P = {1};
for (int i=0; i<n; ++i) {
cin >> a >> b;
int m = P.size();
Q.clear();
for (int j=b-m+1; j<m+a; ++j) Q.push_back(C(a+b,j));
degp = m-1;
degq = Q.size()-1;
mul();
for (int j=0; j<m+a-b; ++j) P[j] = P[m+j-1];
P.resize(m+a-b);
}
int sum = 0;
for (int x : P) {
sum = (sum+x) % MOD;
}
cout << sum << endl;
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define ALL(x) (x).begin(), (x).end()
#define SZ(x) ((int)(x).size())
using namespace std;
typedef pair<int, int> PII;
typedef vector<int> VI;
typedef long long int64;
typedef unsigned long long uint64;
const int mod = 998244353;
//const int mod = 1e9+7
int inc(int a, int b) { a += b; return a >= mod ? a - mod : a; }
int dec(int a, int b) { a -= b; return a < 0 ? a + mod : a; }
int fpow(int a, int x) {
int ret = 1;
for (; x; x >>= 1) {
if (x & 1) ret = 1LL * ret * a % mod;
a = 1LL * a * a % mod;
}
return ret;
}
int inv(int x) { return fpow(x, mod - 2); }
int n, a[1010], b[1010], sa[1010], sb[1010];
int fac[200010], rfac[200010];
int C(int n, int m) {
if (n < m || m < 0) return 0;
return 1LL * fac[n] * rfac[n - m] % mod * rfac[m] % mod;
}
void init(int n) {
for (int i = fac[0] = 1; i <= n; ++i) fac[i] = 1LL * fac[i - 1] * i % mod;
rfac[n] = fpow(fac[n], mod - 2); for (int i = n; i; --i) rfac[i - 1] = 1LL * rfac[i] * i % mod;
}
namespace polynomial {
const int mod = 998244353, modg = 3;
const int N = 1 << 19;
inline int inc(int a, int b) { a += b; return a >= mod ? a - mod : a; }
inline int dec(int a, int b) { a -= b; return a < 0 ? a + mod : a; }
inline int fpow(int a, int x)
{
int ret = 1;
for (; x; x >>= 1)
{
if (x & 1) ret = 1LL * ret * a % mod;
a = 1LL * a * a % mod;
}
return ret;
}
inline int legendre(int x) { return fpow(x, (mod - 1) >> 1); }
inline int fsqrt(int x)
{
if (!x) return 0;
if (mod == 2) return x & 1;
if (legendre(x) == mod - 1) return -1;
int b, w;
do
{
b = rand() % mod;
w = (1LL * b * b - x + mod) % mod;
} while (legendre(w) != mod - 1);
struct item
{
int a, b;
item(int _a = 0, int _b = 0) : a(_a), b(_b) { }
item mul(item y, int w)
{
item x = *this, z;
z.a = (1LL * x.a * y.a + 1LL * x.b * y.b % mod * w) % mod;
z.b = (1LL * x.a * y.b + 1LL * x.b * y.a) % mod;
return z;
}
};
item res(1, 0), a(b, 1);
int p = (mod + 1) / 2;
for (; p; p >>= 1)
{
if (p & 1) res = res.mul(a, w);
a = a.mul(a, w);
}
return min(res.a, dec(0, res.a));
//两个根
}
inline int inv(int x) { return fpow(x, mod - 2); }
//NTT
inline void dft(int *a, int n, int sig)
{
for (int i = 0, j = 0; i < n; ++i)
{
if (i > j) swap(a[i], a[j]);
for (int l = n >> 1; (j ^= l) < l; l >>= 1);
}
for (int i = 1; i < n; i <<= 1)
{
int m = i << 1;
int w = fpow(modg, (mod - 1) / m);
if (sig == -1) w = inv(w);
for (int j = 0; j < n; j += m)
for (int k = 0, v = 1; k < i; ++k, v = 1LL * v * w % mod)
{
int x = a[j + k], y = 1LL * a[j + i + k] * v % mod;
a[j + k] = inc(x, y), a[j + i + k] = dec(x, y);
}
}
if (sig == -1)
{
int invn = inv(n);
for (int i = 0; i < n; ++i)
a[i] = 1LL * a[i] * invn % mod;
}
}
inline void get_inv(int *a, int *r, int n)
{
if (n == 1)
{
r[0] = inv(a[0]);
if (!a[0]) throw "error!";
return;
}
static int x[N], y[N], z[N];
get_inv(a, x, (n + 1) >> 1);
int m = 1;
for (; m < (n << 1); m <<= 1);
memset(y, 0, sizeof(int) * m);
memset(z, 0, sizeof(int) * m);
memcpy(y, x, sizeof(int) * ((n + 1) >> 1));
memcpy(z, a, sizeof(int) * n);
dft(y, m, 1); dft(z, m, 1);
for (int i = 0; i < m; ++i)
z[i] = (((y[i] << 1) - 1LL * y[i] * y[i] % mod * z[i]) % mod + mod) % mod;
dft(z, m, -1);
memcpy(r, z, sizeof(int) * n);
}
inline void get_sqrt(int *a, int *r, int n)
{
if (n == 1)
{
r[0] = fsqrt(a[0]);
if (r[0] == -1) throw "error!";
return;
}
static int x[N], y[N], z[N], w[N];
get_sqrt(a, x, (n + 1) >> 1);
int m = 1;
for (; m < (n << 1); m <<= 1);
memset(y, 0, sizeof(int) * m);
memset(z, 0, sizeof(int) * m);
memset(w, 0, sizeof(int) * m);
memcpy(y, x, sizeof(int) * ((n + 1) >> 1));
get_inv(y, z, n);
memcpy(w, z, sizeof(int) * n);
memset(z, 0, sizeof(int) * m);
memcpy(z, a, sizeof(int) * n);
dft(z, m, 1), dft(w, m, 1);
for (int i = 0; i < m; ++i)
z[i] = 1LL * z[i] * w[i] % mod;
dft(z, m, -1);
for (int i = 0; i < n; ++i) {
x[i] = inc(x[i], z[i]);
if (x[i] & 1) x[i] += mod;
x[i] >>= 1;
}
memcpy(r, x, sizeof(int) * n);
}
void get_division(int *A, int *B, int *D, int n, int m)
{
if (n < m) return void(D[0] = 0);
int t = n - m + 1, p = 1;
for (; p < (t << 1); p <<= 1);
static int x[N], y[N];
fill(x, x + p, 0);
reverse_copy(B, B + m, x);
get_inv(x, y, t);
fill(y + t, y + p, 0);
dft(y, p, 1);
reverse_copy(A, A + n, x);
fill(x + t, x + p, 0);
dft(x, p, 1);
for (int i = 0; i < p; ++i) x[i] = 1LL * x[i] * y[i] % mod;
dft(x, p, -1);
reverse_copy(x, x + t, D);
}
struct poly
{
vector< int > a;
poly() { redeg(0); }
poly(int n, ...)
{
va_list scan;
va_start(scan, n);
redeg(n);
for (int i = n; ~i; --i) a[i] = va_arg(scan, int);
va_end(scan);
}
inline int& operator[](const int &x) { return a[x]; }
inline int deg() { return a.size() - 1; }
inline void redeg(int n) { a.resize(n + 1); }
inline void swap(poly &x) { a.swap(x.a); }
inline void maintain()
{
int p = deg();
while (p > 0 && !a[p]) --p;
redeg(p);
}
inline void scan(int *x, int n)
{
redeg(n);
for (int i = 0; i <= n; ++i) a[i] = x[i];
}
inline int print(int *x)
{
int n = deg();
for (int i = 0; i <= n; ++i) x[i] = a[i];
return n;
}
//翻转
inline poly reverse()
{
poly x = *this;
std::reverse(x.a.begin(), x.a.end());
return x;
}
//积分
inline poly integral()
{
poly x = *this;
x.redeg(deg() + 1);
static int Inv[N];
static int init_n;
if (!init_n)
init_n = Inv[1] = 1;
if (init_n < x.deg())
{
for (int i = init_n + 1, n = x.deg(); i <= n; ++i)
Inv[i] = dec(mod, 1LL * Inv[mod % i] * (mod / i) % mod);
init_n = x.deg();
}
for (int i = x.deg(); i; --i) x[i] = 1LL * x[i - 1] * Inv[i] % mod;
x[0] = 0;
return x;
}
//微分
inline poly diff()
{
poly x = *this;
for (int i = 1; i <= x.deg(); ++i) x[i - 1] = 1LL * x[i] * i % mod;
x[x.deg()] = 0;
x.maintain();
return x;
}
//加法
friend inline poly operator + (poly a, poly b)
{
if (a.deg() < b.deg()) a.swap(b);
for (int i = 0; i <= b.deg(); ++i) a[i] = inc(a[i], b[i]);
return a;
}
//减法
friend inline poly operator - (poly a, poly b)
{
if (a.deg() < b.deg()) a.redeg(b.deg());
for (int i = 0; i <= b.deg(); ++i) a[i] = dec(a[i], b[i]);
return a;
}
//乘法
friend inline poly operator * (poly a, int x)
{
for (int i = 0; i <= a.deg(); ++i)
a[i] = 1LL * a[i] * x % mod;
return a;
}
//乘法
friend inline poly operator * (poly a, poly b)
{
if (min(a.deg(), b.deg()) < 28)
{
poly c;
c.redeg(a.deg() + b.deg());
for (int i = 0; i <= a.deg(); ++i)
if (a[i]) for (int j = 0; j <= b.deg(); ++j)
if (b[j]) c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % mod;
return c;
}
static int x[N], y[N];
int n = 1; for (; n <= a.deg() + b.deg(); n <<= 1);
memset(x, 0, sizeof(int) * n);
memset(y, 0, sizeof(int) * n);
a.print(x), b.print(y);
dft(x, n, 1), dft(y, n, 1);
for (int i = 0; i < n; ++i) x[i] = 1LL * x[i] * y[i] % mod;
dft(x, n, -1);
poly c;
c.scan(x, a.deg() + b.deg());
return c;
}
//除法
friend inline poly operator / (poly a, poly b)
{
a.maintain(), b.maintain();
static int A[N], B[N], D[N];
int n = a.print(A);
int m = b.print(B);
poly d;
get_division(A, B, D, n + 1, m + 1);
d.scan(D, max(n - m + 1, 0));
d.maintain();
return d;
}
//取模
friend inline poly operator % (poly a, poly b)
{
poly d = a / b;
poly r = a - b * d;
r.maintain();
return r;
}
//求逆元 (满足:常数项可以求逆(不为0))
inline poly inv();
//求ln (满足:多项式可以求逆)
inline poly ln();
//求exp (满足:多项式常数项为0)
inline poly exp();
//开根号 (满足:多项式常数项有二次剩余)
inline poly sqrt();
//快速幂前n项 (满足:多项式常数项为1)
inline poly pow(int);
//欧拉公式
inline pair< poly, poly > euler();
//求sin
inline poly sin();
//求cos
inline poly cos();
//求tan
inline poly tan();
//乘方
friend inline poly operator ^ (poly a, int x)
{
int j = -1;
for (int i = 0; i <= a.deg(); ++i)
{
if (a[i])
{
j = i;
break;
}
}
int n = a.deg();
if (~j) return poly(0, 0);
if (1LL * j * x > n) return poly(0, 0);
for (int i = 0; i <= n - j; ++i)
a[i] = a[i + j];
a.redeg(n - j);
int INV = ::inv(a[0]), X = fpow(a[2], x);
for (int i = 0; i <= n - j; ++i) a[i] = 1LL * a[i] * INV % mod;
a = a.pow(x);
for (int i = 0; i <= n - j; ++i) a[i] = 1LL * a[i] * X % mod;
j = fpow(j, x);
a.redeg(n);
for (int i = n; i >= j; --i) a[i] = a[i - j];
for (int i = j - 1; ~i; --i) a[i] = 0;
return a;
}
};
inline poly get_exp(poly &x, int n)
{
if (!n)
{
if (x[0]) throw "error!";
return poly(0, 1);
}
poly F = get_exp(x, n >> 1);
F.redeg(n);
poly G = poly(0, 1) - F.ln();
G.redeg(n);
for (int i = 0; i <= n && i <= x.deg(); ++i)
G[i] = inc(G[i], x.a[i]);
F = G * F;
F.redeg(n);
F.maintain();
return F;
}
inline poly poly::inv()
{
int n = deg();
static int a[N], r[N];
poly c;
memset(a, 0, sizeof(int) * (n + 1));
memset(r, 0, sizeof(int) * (n + 1));
print(a);
get_inv(a, r, n + 1);
c.scan(r, n);
return c;
}
inline poly poly::ln()
{
poly a = this -> diff();
poly b = this -> inv();
poly c = (a * b).integral();
c.redeg(deg());
c.maintain();
return c;
}
inline poly poly::exp() { return get_exp(*this, deg()); }
inline poly poly::sqrt()
{
int n = deg();
static int a[N], r[N];
poly c;
memset(a, 0, sizeof(int) * (n + 1));
memset(r, 0, sizeof(int) * (n + 1));
print(a);
get_sqrt(a, r, n + 1);
c.scan(r, n);
return c;
}
inline poly poly::pow(int x)
{
if (a[0] != 1) throw "error!";
int n = deg();
poly c = this -> ln();
c = c * x;
c = c.exp();
c.redeg(n);
return c;
}
//三角函数操作
namespace trigonometric_function
{
struct complex
{
int a, b;
complex(int _a = 0, int _b = 0) : a(_a), b(_b) { }
inline complex operator + (const complex &x) { return complex(inc(a, x.a), inc(b, x.b)); }
inline complex operator - (const complex &x) { return complex(dec(a, x.a), dec(b, x.b)); }
inline complex operator * (const complex &x)
{
return complex(dec(1LL * a * x.a % mod, 1LL * b * x.b % mod), inc(1LL * a * x.b % mod, 1LL * b * x.a % mod));
}
inline complex operator * (const int &x) { return complex(1LL * a * x % mod, 1LL * b * x % mod); }
inline complex inv()
{
int v = size();
v = ::inv(v);
return complex(a, dec(0, b)) * v;
}
inline int size()
{
return (1LL * a * a + 1LL * b * b) % mod;
}
};
inline void dft(complex *a, int n, int sig)
{
for (int i = 0, j = 0; i < n; ++i)
{
if (i > j) swap(a[i], a[j]);
for (int l = n >> 1; (j ^= l) < l; l >>= 1);
}
for (int i = 1; i < n; i <<= 1)
{
int m = i << 1;
int w = fpow(modg, (mod - 1) / m);
if (sig == -1) w = inv(w);
for (int j = 0; j < n; j += m)
for (int k = 0, v = 1; k < i; ++k, v = 1LL * v * w % mod)
{
complex x = a[j + k], y = a[j + i + k] * v;
a[j + k] = x + y, a[j + i + k] = x - y;
}
}
if (sig == -1)
{
int invn = inv(n);
for (int i = 0; i < n; ++i)
a[i] = a[i] * invn;
}
}
inline void get_inv(complex *a, complex *r, int n)
{
if (n == 1)
{
r[0] = a[0].inv();
if (!a[0].size()) throw "error!";
return;
}
static complex x[N], y[N], z[N];
get_inv(a, x, (n + 1) >> 1);
int m = 1;
for (; m < (n << 1); m <<= 1);
memset(y, 0, sizeof(complex) * m);
memset(z, 0, sizeof(complex) * m);
memcpy(y, x, sizeof(complex) * ((n + 1) >> 1));
memcpy(z, a, sizeof(complex) * n);
dft(y, m, 1); dft(z, m, 1);
for (int i = 0; i < m; ++i)
z[i] = y[i] * 2 - y[i] * y[i] * z[i];
dft(z, m, -1);
memcpy(r, z, sizeof(complex) * n);
}
inline void get_ln(complex *a, complex *r, int n)
{
static complex x[N], y[N];
memcpy(x, a, sizeof(complex) * n);
for (int i = 1; i < n; ++i) x[i - 1] = x[i] * i;
x[n - 1] = complex();
get_inv(a, y, n);
int m = 1;
for (; m < (n << 1); m <<= 1);
static complex A[N], B[N];
memset(A, 0, sizeof(complex) * m);
memcpy(A, x, sizeof(complex) * n);
memset(B, 0, sizeof(complex) * m);
memcpy(B, y, sizeof(complex) * n);
dft(A, m, 1), dft(B, m, 1);
for (int i = 0; i < m; ++i) A[i] = A[i] * B[i];
dft(A, m, -1);
memcpy(r, A, sizeof(complex) * (n - 1));
static int Inv[N];
static int init_n;
if (!init_n)
init_n = Inv[1] = 1;
if (init_n < n)
{
for (int i = init_n + 1; i <= n; ++i)
Inv[i] = dec(mod, 1LL * Inv[mod % i] * (mod / i) % mod);
init_n = n;
}
for (int i = n; i; --i) r[i] = r[i - 1] * Inv[i];
r[0] = complex(0, 0);
}
inline void get_exp(complex *a, complex *r, int n)
{
if (!n)
{
if (a[0].a || a[0].b) throw "error!";
r[0] = complex(1);
return;
}
static complex x[N];
get_exp(a, x, n >> 1);
static complex y[N];
memset(y, 0, sizeof(complex) * (n + 1));
memcpy(y, x, sizeof(complex) * ((n >> 1) + 1));
static complex z[N];
get_ln(y, z, n + 1);
static complex w[N];
memset(w, 0, sizeof(complex) * (n + 1));
memcpy(w, z, sizeof(complex) * (n + 1));
w[0] = complex(1) - w[0];
for (int i = 1; i <= n; ++i)
w[i] = complex(0) - w[i];
for (int i = 0; i <= n; ++i)
w[i] = w[i] + a[i];
int m = 1;
for (; m < (n << 1); m <<= 1);
static complex t[N], s[N];
memset(s, 0, sizeof(complex) * m);
memcpy(s, x, sizeof(complex) * ((n >> 1) + 1));
memset(t, 0, sizeof(complex) * m);
memcpy(t, w, sizeof(complex) * (n + 1));
dft(s, m, 1), dft(t, m, 1);
for (int i = 0; i < m; ++i) s[i] = s[i] * t[i];
dft(s, m, -1);
memcpy(r, s, sizeof(complex) * (n + 1));
}
}
inline pair< poly, poly > poly::euler()
{
static trigonometric_function::complex x[N], y[N];
int n = deg();
for (int i = 0; i <= n; ++i) x[i] = trigonometric_function::complex(0, a[i]);
poly a, b;
trigonometric_function::get_exp(x, y, n);
static int A[N], B[N];
for (int i = 0; i <= n; ++i) A[i] = y[i].a, B[i] = y[i].b;
a.scan(A, n);
b.scan(B, n);
return make_pair(a, b);
}
inline poly poly::sin() { return euler().second; }
inline poly poly::cos() { return euler().first; }
inline poly poly::tan()
{
pair< poly, poly > res = euler();
res.first = res.first.inv();
poly v = res.first * res.second;
v.redeg(deg());
return v;
}
}
using polynomial::poly;
poly ans, p;
int main() {
scanf("%d", &n);
init(200000);
for (int i = 1; i <= n; ++i) {
scanf("%d%d", a + i, b + i);
}
ans = poly(0, 1);
int t = 0;
for (int i = 1; i <= n; ++i) {
//[b[i] - t, a[i]]
static int x[5010]; int tp = 0;
for (int j = b[i] - t; j <= a[i] + t; ++j)
x[tp] = C(a[i] + b[i], j), tp++;
p.scan(x, tp - 1);
poly now = ans * p;
ans.redeg(now.deg() - 2 * t);
for (int j = t; j <= now.deg() - t; ++j) {
ans[j - t] = now[j];
}
t += a[i] - b[i];
}
int res = 0;
for (int i = 0; i <= ans.deg(); ++i) res = inc(res, ans[i]);
printf("%d\n", res);
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
#ifdef NeverBeRed
#include "debug.h"
#else
#define debug(...) 9715
#endif
typedef long long ll;
typedef long double ld;
typedef complex<ld> point;
#define F first
#define S second
template<typename T, typename U>
T pow_mod(T a, U b, int mod)
{
T r = 1;
for (; b > 0; b >>= 1)
{
if (b & 1) r = (ll)r * a % mod;
a = (ll)a * a % mod;
}
return r;
}
namespace ntt
{
const int mod = 998244353;
const int root = 5;
int base = 1;
vector<int> roots;
void ensure_base(int nbase)
{
if (nbase <= base) return;
roots.resize(nbase);
for (int mh = base; mh << 1 <= nbase; mh <<= 1)
{
int wm = pow_mod(root, (mod - 1) / (mh << 1), mod);
roots[mh] = 1;
for (int i = 1; i < mh; ++i)
roots[i + mh] = (ll)roots[i + mh - 1] * wm % mod;
}
base = nbase;
}
void fft(int a[], int n, int sign)
{
ensure_base(n);
for (int i = 1, j = 0; i < n - 1; ++i)
{
for (int k = n >> 1; (j ^= k) < k; k >>= 1);
if (i < j) swap(a[i], a[j]);
}
for (int m, mh = 1; (m = mh << 1) <= n; mh = m)
for (int i = 0; i < n; i += m)
for (int j = i; j < i + mh; ++j)
{
int y = (ll)a[j + mh] * roots[j - i + mh] % mod;
if ((a[j + mh] = a[j] - y) < 0) a[j + mh] += mod;
if ((a[j] += y) >= mod) a[j] -= mod;
}
if (sign < 0)
{
int inv = pow_mod(n, mod - 2, mod);
for (int i = 0; i < n; ++i) a[i] = (ll)a[i] * inv % mod;
reverse(a + 1, a + n);
}
}
vector<int> convolve(vector<int> x, vector<int> y)
{
int n = x.size() + y.size() - 1, sz = 1;
while (sz < n) sz <<= 1;
x.resize(sz);
y.resize(sz);
fft(x.data(), sz, +1);
fft(y.data(), sz, +1);
for (int i = 0; i < sz; ++i)
x[i] = (ll)x[i] * y[i] % mod;
fft(x.data(), sz, -1);
x.resize(n);
return x;
}
}
namespace combinatorics
{
const int mod = 998244353, N = 2e5+5;
int fac[N], ifac[N];
void init()
{
fac[0] = ifac[0] = 1;
for (int i = 1; i < N; ++i)
{
fac[i] = (ll)fac[i-1] * i % mod;
ifac[i] = pow_mod(fac[i], mod-2, mod);
}
}
int comb(int n, int k)
{
if (k < 0 || k > n) return 0;
return (ll)fac[n] * ifac[n-k] % mod * ifac[k] % mod;
}
}
using namespace combinatorics;
int main()
{
#ifdef TurnRed
//freopen("a.in", "r", stdin);
//freopen("a.out", "w", stdout);
#endif
ios_base::sync_with_stdio(0), cin.tie(0);
init();
int n;
cin >> n;
vector<int> p = { 1 };
for (int a, b; n--; )
{
cin >> a >> b;
int sz = p.size();
vector<int> q(2 * sz + a - b);
for (size_t i = 0; i < q.size(); ++i)
q[i] = comb(a + b, b + i - sz);
p = ntt::convolve(p, q);
p.erase(p.begin(), p.begin() + sz);
p.resize(sz + a - b);
}
int ans = 0;
for (auto i : p)
ans = (ans + i) % ntt::mod;
cout << ans << "\n";
return 0;
}
| 13 | CPP |
#include<bits/stdc++.h>
#define pb push_back
#define fi first
#define se second
#define sz(x) (int)x.size()
#define cl(x) x.clear()
#define all(x) x.begin() , x.end()
#define rep(i , x , n) for(int i = x ; i <= n ; i ++)
#define per(i , n , x) for(int i = n ; i >= x ; i --)
#define mem0(x) memset(x , 0 , sizeof(x))
#define mem_1(x) memset(x , -1 , sizeof(x))
#define mem_inf(x) memset(x , 0x3f , sizeof(x))
#define debug(x) cerr << #x << " = " << x << '\n'
#define ddebug(x , y) cerr << #x << " = " << x << " " << #y << " = " << y << '\n'
#define ios std::ios::sync_with_stdio(false) , cin.tie(0)
using namespace std ;
typedef long long ll ;
typedef long double ld ;
typedef pair<int , int> pii ;
typedef pair<ll , ll> pll ;
typedef double db ;
const int maxn = 2e5 + 10 ;
const int inf = 0x3f3f3f3f ;
const double eps = 1e-6 ;
const int mod = 998244353 ;
struct NTT
{
int n , m ;
ll a[maxn << 2] , b[maxn << 2] ;
ll up , l ;
ll pos[maxn << 2] ;
ll powmod(ll a , ll b)
{
ll ans = 1 ;
while(b)
{
if(b & 1) ans = ans * a % mod ;
a = a * a % mod ;
b >>= 1 ;
}
return ans ;
}
void init(int n , int m)
{
up = 1 , l = 0 ;
while(up < (n + m)) up <<= 1 , l ++ ;
rep(i , 0 , up - 1) pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1)) , a[i] = b[i] = 0 ;
}
void solve(ll *a , int mode)
{
rep(i , 0 , up - 1) if(i < pos[i]) swap(a[i] , a[pos[i]]) ;
for(int i = 1 ; i < up ; i <<= 1)
{
ll gn = powmod(3 , (mod - 1) / (i << 1)) ;
if(mode == -1) gn = powmod(gn , mod - 2) ;
for(int j = 0 ; j < up ; j += (i << 1))
{
ll g = 1 ;
for(int k = 0 ; k < i ; k ++ , g = g * gn % mod)
{
ll x = a[j + k] , y = g * a[j + k + i] % mod ;
a[j + k] = (x + y) % mod , a[j + k + i] = (x - y + mod) % mod ;
}
}
}
if(mode == -1)
{
ll invup = powmod(up , mod - 2) ;
rep(i , 0 , up - 1) a[i] = a[i] * invup % mod ;
}
}
} ntt ;
struct Easymath
{
ll qpow(ll a , ll b) //快速幂
{
if(b < 0) return 0 ;
ll ans = 1 ;
a %= mod ;
while(b)
{
if(b & 1) ans = (ans * a) % mod ;
b >>= 1 , a = (a * a) % mod ;
}
return ans % mod ;
}
ll ksc_log(ll x , ll y , ll mod) //快速乘
{
x %= mod , y %= mod ;
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % mod ;
y >>= 1 ;
x = (x + x) % mod ;
}
return ans;
}
ll ksc_O1(ll x , ll y , ll mod) //快速乘
{
x %= mod , y %= mod ;
ll z = (ld)x * y / mod ;
ll ans = x * y - z * mod ;
if(ans < 0) ans += mod ;
else if(ans >= mod) ans -= mod ;
return ans ;
}
int cnt = 0 ;
bool vis[maxn] ;
int prime[maxn] ;
void get_prime(int up) //素数筛
{
memset(vis , 0 , sizeof(vis)) ;
vis[1] = 1 ;
for(int i = 2 ; i <= up ; i ++)
{
if(!vis[i])
prime[++ cnt] = i ;
for(int j = 1 ; j <= cnt && i * prime[j] <= up ; j ++)
{
vis[i * prime[j]] = 1 ;
if(i % prime[j] == 0) break ;
}
}
}
//begin 判定大素数
ll mul(ll a , ll b , ll mod)
{
ll ret = 0 ;
while(b)
{
if(b & 1) ret = (ret + a) % mod ;
a = (a + a) % mod ;
b >>= 1 ;
}
return ret ;
}
ll pow(ll a , ll b , ll mod)
{
ll ret = 1 ;
while(b)
{
if(b & 1) ret = mul(ret , a , mod) ;
a = mul(a , a , mod) ;
b >>= 1 ;
}
return ret ;
}
bool check(ll a , ll n)
{
ll x = n - 1 ;
int t = 0 ;
while((x & 1) == 0)
{
x >>= 1 ;
t ++ ;
}
x = pow(a , x , n) ;
ll y ;
rep(i , 1 , t)
{
y = mul(x , x , n) ;
if(y == 1 && x != 1 && x != n - 1) return 1 ;
x = y ;
}
if(y != 1) return 1 ;
return 0 ;
}
bool Miller_Rabin(ll n)
{
if(n == 2) return 1 ;
if(n == 1 || !(n & 1)) return 0 ;
const int arr[12] = {2,3,5,7,11,13,17,19,23,29,31,37} ;
rep(i , 0 , 11)
{
if(arr[i] >= n) break ;
if(check(arr[i] , n)) return 0 ;
}
return 1 ;
}
//end 判定大素数
ll get_inv(ll x) //逆元
{
return qpow(x , mod - 2) % mod ;
}
ll inv1[maxn] ; //乘法逆元
void init1(int up)
{
inv1[1] = 1 ;
for(int i = 2 ; i <= up ; i ++)
inv1[i] = (ll)(mod - mod / i) * inv1[int(mod % (ll)i)] % mod ;
}
ll fac[maxn] ;
ll inv[maxn] ; //阶乘逆元
void init(int up)
{
fac[0] = fac[1] = inv[0] = inv[1] = 1 ;
for(int i = 2 ; i <= up ; i ++)
{
fac[i] = fac[i - 1] * i % mod ;
inv[i] = -inv[mod % i] * (mod / i) % mod ;
while(inv[i] < 0) inv[i] += mod ;
}
for(int i = 2 ; i <= up ; i ++)
inv[i] = inv[i] * inv[i - 1] % mod ;
}
ll C(int n , int m)
{
if(m < 0 || n < m) return 0 ;
return fac[n] * inv[m] % mod * inv[n - m] % mod ;
}
} em ;
int main()
{
ios ;
int n ;
cin >> n ;
vector<int> dp(10005 , 0) ;
em.init(200000) ;
int m = 1 ;
dp[1] = 1 ;
while(n --)
{
int a , b ;
cin >> a >> b ;
ntt.init(m + 1 , m + a - b - 1 + m + 1) ;
for(int i = 1 ; i <= m ; i ++) ntt.a[i] = dp[i] ;
for(int i = 1 ; i <= m + a - b - 1 + m ; i ++) ntt.b[i] = em.C(a + b , b + i - m) ;
ntt.solve(ntt.a , 1) ;
ntt.solve(ntt.b , 1) ;
rep(i , 0 , ntt.up - 1) ntt.a[i] *= ntt.b[i] , ntt.a[i] %= mod ;
ntt.solve(ntt.a , -1) ;
for(int i = 1 ; i <= m + a - b ; i ++) dp[i] = ntt.a[i + m] ;
m += a - b ;
}
long long ans = 0 ;
for(int i = 1 ; i <= m ; i ++) ans += dp[i] , ans %= mod ;
cout << ans << '\n' ;
return 0 ;
} | 13 | CPP |
#include <bits/stdc++.h>
#define endl '\n'
#define fi first
#define se second
#define MOD(n,k) ( ( ((n) % (k)) + (k) ) % (k))
#define forn(i,n) for (int i = 0; i < int(n); i++)
#define forr(i,a,b) for (int i = a; i <= b; i++)
#define all(v) v.begin(), v.end()
#define pb push_back
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll, ll> ii;
typedef vector<int> vi;
typedef vector<vi> vvi;
typedef vector<ii> vii;
const int MX = 200005, mod = 998244353, g = 3;
int n, a[MX], b[MX];
ll fac[MX], inv[MX];
ll pot (ll b, ll p) {
ll res = 1;
if (p < 0) p += mod - 1;
while (p) {
if (p & 1) (res *= b) %= mod;
(b *= b) %= mod;
p /= 2;
}
return res;
}
ll comb (int n, int k) {
return fac[n] * inv[k] % mod * inv[n - k] % mod;
}
int nearestPowerOfTwo (int n) {
int ans = 1;
while (ans < n) ans <<= 1;
return ans;
}
void ntt (vi &X, int inv) {
int n = X.size();
for (int i = 1, j = 0; i < n - 1; ++i) {
for (int k = n >> 1; (j ^= k) < k; k >>= 1);
if(i < j) swap(X[i], X[j]);
}
vector<ll> wp(n >> 1, 1);
for (int k = 1; k < n; k <<= 1) {
ll wk = pot(g, inv * (mod - 1) / (k << 1));
for (int j = 1; j < k; ++j)
wp[j] = wp[j - 1] * wk % mod;
for (int i = 0; i < n; i += k << 1) {
for (int j = 0; j < k; ++j) {
int u = X[i + j], v = X[i + j + k] * wp[j] % mod;
X[i + j] = u + v < mod ? u + v : u + v - mod;
X[i + j + k] = u - v < 0 ? u - v + mod : u - v;
}
}
}
if (inv == -1) {
ll nrev = pot(n, mod - 2);
for(int i = 0; i < n; ++i)
X[i] = X[i] * nrev % mod;
}
}
vi convolution (vi A, vi B){
int sz = A.size() + B.size() - 1;
int size = nearestPowerOfTwo(sz);
A.resize(size), B.resize(size);
ntt(A, 1), ntt(B, 1);
for(int i = 0; i < size; i++)
A[i] = 1ll * A[i] * B[i] % mod;
ntt(A, -1);
A.resize(sz);
return A;
}
int main () {
ios_base::sync_with_stdio(0); cin.tie(0);
fac[0] = inv[0] = 1;
for (int i = 1; i < MX; i++) {
fac[i] = i * fac[i - 1] % mod;
inv[i] = pot(fac[i], mod - 2);
}
cin >> n;
forn (i, n) cin >> a[i] >> b[i];
vi res = {1};
forn (i, n) {
int sz = (int)res.size() + a[i] - b[i];
int ini = max(0, b[i] - (int)res.size() + 1);
int fin = min(a[i] + b[i], b[i] + sz - 1);
vi p(fin - ini + 1);
forn (j, p.size())
p[j] = comb(a[i] + b[i], ini + j);
vi q = convolution(res, p);
res.resize(sz);
for (int j = 0, k = b[i] - ini; j < sz; j++, k++)
res[j] = q[k];
}
cout << accumulate(all(res), 0, [&] (int a, int b) {
return (a + b) % mod;
}) % mod << endl;
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
static struct FastInput {
static constexpr int BUF_SIZE = 1 << 20;
char buf[BUF_SIZE];
size_t chars_read = 0;
size_t buf_pos = 0;
FILE *in = stdin;
char cur = 0;
inline char get_char() {
if (buf_pos >= chars_read) {
chars_read = fread(buf, 1, BUF_SIZE, in);
buf_pos = 0;
buf[0] = (chars_read == 0 ? -1 : buf[0]);
}
return cur = buf[buf_pos++];
}
inline void tie(int) {}
inline explicit operator bool() {
return cur != -1;
}
inline static bool is_blank(char c) {
return c <= ' ';
}
inline bool skip_blanks() {
while (is_blank(cur) && cur != -1) {
get_char();
}
return cur != -1;
}
inline FastInput& operator>>(char& c) {
skip_blanks();
c = cur;
return *this;
}
inline FastInput& operator>>(string& s) {
if (skip_blanks()) {
s.clear();
do {
s += cur;
} while (!is_blank(get_char()));
}
return *this;
}
template <typename T>
inline FastInput& read_integer(T& n) {
// unsafe, doesn't check that characters are actually digits
n = 0;
if (skip_blanks()) {
int sign = +1;
if (cur == '-') {
sign = -1;
get_char();
}
do {
n += n + (n << 3) + cur - '0';
} while (!is_blank(get_char()));
n *= sign;
}
return *this;
}
template <typename T>
inline typename enable_if<is_integral<T>::value, FastInput&>::type operator>>(T& n) {
return read_integer(n);
}
#if !defined(_WIN32) || defined(_WIN64)
inline FastInput& operator>>(__int128& n) {
return read_integer(n);
}
#endif
template <typename T>
inline typename enable_if<is_floating_point<T>::value, FastInput&>::type operator>>(T& n) {
// not sure if really fast, for compatibility only
n = 0;
if (skip_blanks()) {
string s;
(*this) >> s;
sscanf(s.c_str(), "%lf", &n);
}
return *this;
}
} fast_input;
#define cin fast_input
static struct FastOutput {
static constexpr int BUF_SIZE = 1 << 20;
char buf[BUF_SIZE];
size_t buf_pos = 0;
static constexpr int TMP_SIZE = 1 << 20;
char tmp[TMP_SIZE];
FILE *out = stdout;
inline void put_char(char c) {
buf[buf_pos++] = c;
if (buf_pos == BUF_SIZE) {
fwrite(buf, 1, buf_pos, out);
buf_pos = 0;
}
}
~FastOutput() {
fwrite(buf, 1, buf_pos, out);
}
inline FastOutput& operator<<(char c) {
put_char(c);
return *this;
}
inline FastOutput& operator<<(const char* s) {
while (*s) {
put_char(*s++);
}
return *this;
}
inline FastOutput& operator<<(const string& s) {
for (int i = 0; i < (int) s.size(); i++) {
put_char(s[i]);
}
return *this;
}
template <typename T>
inline char* integer_to_string(T n) {
// beware of TMP_SIZE
char* p = tmp + TMP_SIZE - 1;
if (n == 0) {
*--p = '0';
} else {
bool is_negative = false;
if (n < 0) {
is_negative = true;
n = -n;
}
while (n > 0) {
*--p = (char) ('0' + n % 10);
n /= 10;
}
if (is_negative) {
*--p = '-';
}
}
return p;
}
template <typename T>
inline typename enable_if<is_integral<T>::value, char*>::type stringify(T n) {
return integer_to_string(n);
}
#if !defined(_WIN32) || defined(_WIN64)
inline char* stringify(__int128 n) {
return integer_to_string(n);
}
#endif
template <typename T>
inline typename enable_if<is_floating_point<T>::value, char*>::type stringify(T n) {
sprintf(tmp, "%.17f", n);
return tmp;
}
template <typename T>
inline FastOutput& operator<<(const T& n) {
auto p = stringify(n);
for (; *p != 0; p++) {
put_char(*p);
}
return *this;
}
} fast_output;
// here puts define
typedef long long ll;
typedef long double ld;
typedef unsigned long long ull;
#define rint register int
#define rll register ll
#define pii pair<int, int>
#define pll pair<ll, ll>
//#define p1 first
//#define p2 second
#define fors(i, a, b) for (ll i = (a); i <= (b); ++i)
#define _fors(i, a, b) for (ll i = (a); i >= (b); --i)
#define mp(a, b) make_pair(a, b)
#define mt(a, b, c) make_tuple(a, b, c)
#define mem(A, b) memset(A, b, sizeof(A))
#define all(X) (X).begin(), (X).end()
#define pb push_back
#define eb emplace_back
#define cout fast_output
#define endl '\n'
const int mod = 998244353;
const int maxn = 1e6 + 5;
inline int add(int a, int b) {
return (((a + b) % mod) + mod) % mod;
}
inline int mul(int a, int b) {
return (((1LL * a * b) % mod) + mod) % mod;
}
inline int qpow(int a, int p) {
int ret = 1;
while (p) {
if (p & 1) ret = mul(ret, a);
a = mul(a, a);
p >>= 1;
}
return ret;
}
int cda[4*maxn], cdb[4*maxn];
int res[4*maxn];
inline void NTT(int* a, int a_size, bool inverse) {
int n = a_size;
// 原地快速bit reversal
for(int i = 0, j = 0; i < n; i++) {
if(j > i) swap(a[i], a[j]);
int k = n;
while(j & (k >>= 1)) j &= ~k;
j |= k;
}
int root = inverse ? qpow(3, mod-2) : 3;
for(int step = 1; step < n; step <<= 1) {
int alpha = (mod-1) / step / 2;
// 为求高效,我们并不是依次执行各个完整的DFT合并,而是枚举下标k
// 对于一个下标k,执行所有DFT合并中该下标对应的蝴蝶操作,即通过E[k]和O[k]计算X[k]
int omega = qpow(root, alpha), omegak = 1;
for(int k = 0; k < step; k++) {
// 计算omega^k. 这个方法效率低,但如果用每次乘omega的方法递推会有精度问题。
// 有更快更精确的递推方法,为了清晰起见这里略去
for(int Ek = k; Ek < n; Ek += step << 1) { // Ek是某次DFT合并中E[k]在原始序列中的下标
int Ok = Ek + step; // Ok是该DFT合并中O[k]在原始序列中的下标
int t = mul(a[Ok], omegak); // 蝴蝶操作:x1 * omega^k
a[Ok] = add(a[Ek], -t); // 蝴蝶操作:y1 = x0 - t
a[Ek] = add(a[Ek], t); // 蝴蝶操作:y0 = x0 + t
}
omegak = mul(omegak, omega);
}
}
if(inverse) {
int invn = qpow(n, mod - 2);
fors(i, 0, n-1) a[i] = mul(a[i], invn);
}
return ;
}
// 用FFT实现的快速多项式乘法
inline int NTT_mul(int* v1, int v1_size, int* v2, int v2_size) {
int s1 = v1_size, s2 = v2_size, S = 2;
while(S < s1 + s2) S <<= 1;
fors(i, 0, S-1) cda[i] = 0, cdb[i] = 0;
for(int i = 0; i < s1; i++) cda[i] = v1[i];
NTT(cda, S, false);
for(int i = 0; i < s2; i++) cdb[i] = v2[i];
NTT(cdb, S, false);
for(int i = 0; i < S; i++) cda[i] = mul(cda[i], cdb[i]);
NTT(cda, S, true);
for(int i = 0; i < s1 + s2 - 1; i++) res[i] = cda[i]; // 虚部均为0
return s1 + s2 - 1;
}
int n;
int a[maxn], b[maxn], s[maxn], t[maxn], inv[maxn];
int tab[maxn], itab[maxn];
int m;
void solve() {
inv[1] = 1, tab[0] = 1, itab[0] = 1;
fors(i, 2, 2e5 + 5) inv[i]= mul(-mod/i, inv[mod%i]);
fors(i, 1, 2e5 + 5) tab[i] = mul(tab[i-1], i);
fors(i, 1, 2e5 + 5) itab[i] = mul(itab[i-1], inv[i]);
cin >> n;
fors(i, 1, n) cin >> a[i] >> b[i];
s[0] = 1;
m = 0;
fors(i, 1, n) {
fors(j, 0, a[i] + m - b[i] + m) {
t[j] = j + b[i] - m <= a[i] + b[i] && j + b[i] - m >= 0 ? mul(tab[a[i] + b[i]], mul(itab[j + b[i] - m], itab[a[i] + m - j])) : 0;
}
int tmp = NTT_mul(s, m + 1, t, a[i] + m - b[i] + m + 1);
fors(j, 0, m + a[i] - b[i]) s[j] = res[j + m];
m += a[i] - b[i];
// fors(j, 0, s_siz - 1) cout << s[j] << ' ';
// cout << endl;
}
int ret = 0;
fors(i, 0, m) ret = add(ret, s[i]);
cout << ret << endl;
return ;
}
signed main() {
#ifdef Sakuyalove
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif
ios::sync_with_stdio(false);
cin.tie(0);
int start_time = clock();
int T = 1;
// cin >> T;
while (T--) {
solve();
}
#ifdef Sakuyalove
cout << "time = " << clock() - start_time << endl;
#endif
return 0;
} | 13 | CPP |
#include<cstdio>
typedef long long ll;
const int mod=119<<23|1;
const ll M2=mod*1ll*mod;
int qpow(int x,int k)
{int r=1;for(;k;k>>=1,x=x*1ll*x%mod)if(k&1)r=r*1ll*x%mod;return r;}
int fac[1111111],inv[1111111];
int C(int n,int r)
{return(r<0||n<r)?0:fac[n]*1ll*inv[r]%mod*inv[n-r]%mod;}
void init()
{
register int i;
const int V=1e6;
for(i=fac[0]=1;i<=V;i++)fac[i]=fac[i-1]*1ll*i%mod;
for(inv[i=V]=qpow(fac[V],mod-2);i;i--)
inv[i-1]=inv[i]*1ll*i%mod;
}
int n;
int rv[22222],wi[22222];
void swap(register int&x,register int&y){int t=x;x=y,y=t;}
void NTT(int*x,int SZ,int op)
{
register int i,ii,iii;
for(i=1;i<SZ;i++)rv[i]=(rv[i>>1]>>1)+(i&1)*(SZ>>1);
for(i=1;i<SZ;i++)if(i<rv[i])swap(x[i],x[rv[i]]);
for(i=1;i<SZ;i<<=1)
{
int w=qpow(3,(mod-1)/(i<<1));
if(op<0)w=qpow(w,mod-2);
for(iii=wi[0]=1;iii<i;iii++)wi[iii]=wi[iii-1]*1ll*w%mod;
for(ii=0;ii<SZ;ii+=(i<<1))
for(iii=0;iii<i;iii++)
{
int px=ii+iii,py=px+i;
ll Dt=x[py]*1ll*wi[iii];
x[py]=(x[px]+M2-Dt)%mod,x[px]=(x[px]+Dt)%mod;
}
}if(op<0)
{
int a=qpow(SZ,mod-2);
for(i=0;i<SZ;i++)x[i]=x[i]*1ll*a%mod;
}
}
int cur[22222],pwr,cs[22222];
void upd(int a,int b)
{
register int i;
int pwt=pwr+a-b,tp=pwt+pwr*2,S;
for(i=2;i<=tp;i<<=1);S=i;
for(i=0;i<S;i++)cs[i]=0;
for(i=-pwr;i<=pwt;i++)cs[i+pwr]=C(a+b,b+i);
NTT(cs,S,1),NTT(cur,S,1);
for(i=0;i<S;i++)cur[i]=cur[i]*1ll*cs[i]%mod;
NTT(cur,S,-1);
for(i=0;i<=pwt;i++)cur[i]=cur[i+pwr];
for(i=pwt+1;i<S;i++)cur[i]=0;
pwr=pwt;
}
int main()
{
init(),cur[0]=1,pwr=0;
scanf("%d",&n);
register int i;
for(i=1;i<=n;i++)
{
int a,b;
scanf("%d%d",&a,&b),upd(a,b);
}ll ans=0;
for(i=0;i<=pwr;i++)ans+=cur[i];
printf("%lld\n",ans%mod);
}
/*
Please don't let me down.
*/
// resubmission
| 13 | CPP |
#include <bits/stdc++.h>
#ifdef ALGO
#include "el_psy_congroo.hpp"
#else
#define DUMP(...) 1145141919810
#define CHECK(...) (__VA_ARGS__)
#endif
template<int MOD>
struct Integral {
int v_ = 0;
template<typename T> Integral(T v) : v_(norm(v)) { // Implicit conversion is allowed.
static_assert(std::is_integral<T>::value, "input should be an integral.");
}
Integral() = default;
~Integral() = default;
template<typename T> T norm(T v) const {
if constexpr(std::is_same<long long, T>::value) {
v %= MOD;
if (v < 0) v += MOD;
} else {
if (v >= MOD) v -= MOD;
if (v < 0) v += MOD;
if (v >= MOD || v < 0) {
v %= MOD;
if (v < 0) v += MOD;
}
}
return v;
}
int val() const { return v_; }
Integral& operator += (const Integral& rhs) { v_ += rhs.val(); if (v_ >= MOD) v_ -= MOD; return *this; }
Integral& operator -= (const Integral& rhs) { v_ += MOD - rhs.val(); if (v_ >= MOD) v_ -= MOD; return *this; }
Integral& operator *= (const Integral& rhs) { v_ = v_ * 1LL * rhs.val() % MOD; return *this; }
Integral& operator /= (const Integral& rhs) { v_ = v_ * 1LL * power(rhs.val(), MOD - 2) % MOD; return *this; }
Integral operator + (const Integral& rhs) const { auto copy = *this; return copy += rhs; }
Integral operator - (const Integral& rhs) const { auto copy = *this; return copy -= rhs; }
Integral operator * (const Integral& rhs) const { auto copy = *this; return copy *= rhs; }
Integral operator / (const Integral& rhs) const { auto copy = *this; return copy /= rhs; }
bool operator == (const Integral& rhs) const { return val() == rhs.val(); }
bool operator != (const Integral& rhs) const { return !(*this == rhs); }
const Integral operator - () const { return Integral(-val()); }
const Integral operator ++ () { v_ = norm(v_ + 1); return *this; }
const Integral operator ++ (int) { Integral ret = *this; ++(*this); return ret; }
const Integral operator -- () { v_ = norm(v_ - 1); return *this; }
const Integral operator -- (int) { Integral ret = *this; --(*this); return ret; }
Integral power(long long b) const {
long long ret = 1 % MOD, a = v_;
for ( ; b; b >>= 1, a = a * a % MOD) if (b & 1) ret = ret * a % MOD; return ret;
}
Integral inv() const { return power(MOD - 2); }
};
template<int MOD>
std::string to_string(const Integral<MOD>& v) {
return std::string("Int<>{") + std::to_string(v.val()) + "}";
}
template<int MOD, bool kAllowBruteForce = false>
struct Binomial {
std::vector<Integral<MOD>> factor, inv_factor;
explicit Binomial(int n = 0) : factor(n + 1), inv_factor(n + 1) {
factor[0] = 1;
for (int i = 1; i <= n; ++i) factor[i] = factor[i - 1] * i;
inv_factor[n] = factor[n].inv();
for (int i = n; i >= 1; --i) inv_factor[i - 1] = inv_factor[i] * i;
}
~Binomial() = default;
template<typename T>
Integral<MOD> operator () (T a, T b) const {
if (a < b || b < 0) return 0;
if (a < factor.size()) return factor[a] * inv_factor[b] * inv_factor[a - b];
if constexpr(!kAllowBruteForce) {
throw std::out_of_range("Binomial");
} else {
b = std::min(b, a - b);
Integral<MOD> ret = 1;
for (T i = 1; i <= b; ++i) ret = ret * (a + 1 - i) / i;
return ret;
}
}
};
template<int MOD>
struct PowerTable : public std::vector<Integral<MOD>> {
PowerTable(int n, const Integral<MOD>& g) {
static_assert(sizeof(PowerTable) == sizeof(std::vector<Integral<MOD>>), "");
this->resize(n + 1);
this->at(0) = 1;
this->at(1) = g;
for (int i = 2; i < this->size(); ++i) this->at(i) = this->at(i - 1) * this->at(1);
}
};
const int MOD = 998244353;
using Mint = Integral<MOD>;
using Binom = Binomial<MOD>;
Binom binom(200000);
// PowerTable<MOD> pw2(200000, 2);
template<int MOD = 998244353, int kPrimRoot = 3>
void ntt(Integral<MOD> A[], int n, int inv) {
// inv == 1: ntt, == -1: intt
// MOD == a * b ^ k + 1, n <= b ^ k.
// 998244353 == (7 * 17) * 2 ^ 23 + 1.
// This code works only when b == 2.
Integral<MOD> w = 1, d = Integral<MOD>(kPrimRoot).power((MOD - 1) / n), t;
int i, j, c, s;
if (inv == -1) {
for (i = 1, j = n - 1; i < j; ++i, --j) std::swap(A[i], A[j]);
for (t = Integral<MOD>(n).inv(), i = 0; i < n; ++i) A[i] = A[i] * t;
}
for (s = n >> 1; s; s >>= 1, w = 1, d = d * d) {
for (c = 0; c < s; ++c, w = w * d) {
for (i = c; i < n; i += s << 1) {
A[i | s] = (A[i] - (t = A[i | s])) * w;
A[i] += t;
}
}
}
for (i = 1; i < n; ++i) {
for (j = 0, s = i, c = n >> 1; c; c >>= 1, s >>= 1) j = j << 1 | (s & 1);
if (i < j) std::swap(A[i], A[j]);
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::istream& reader = std::cin;
int n;
reader >> n;
std::vector<Mint> f(1, 1);
for (int at = 1; at <= n; ++at) {
int a, b;
reader >> a >> b;
int m = f.size();
int w = m + a - b + m + 1; // b - m, m + a
int L = 1;
while (L < m + w) L <<= 1;
f.resize(L, 0);
std::vector<Mint> y(L);
for (int i = 0; i < w; ++i) {
y[i] = binom(a + b, i + b - m);
}
ntt(&f[0], L, 1);
ntt(&y[0], L, 1);
for (int i = 0; i < L; ++i) f[i] *= y[i];
ntt(&f[0], L, -1);
for (int i = 0; i < m + a - b; ++i) f[i] = i + m < L ? f[i + m] : 0;
f.resize(m + a - b);
}
std::cout << std::accumulate(f.begin(), f.end(), Mint(0)).val() << std::endl;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int mod = 998244353;
const int maxn = 17000;
int fac[202020], ifac[202020];
int x[maxn], f[maxn], g[maxn];
int C(int n, int k) {
if (k < 0 || k > n || n < 0) return 0;
return fac[n] * (ll)ifac[k] % mod * (ll)ifac[n-k] % mod;
}
const int G = 3;
inline int add(int a, int b) { return a+b>=mod?a+b-mod:a+b; }
inline void inc(int&a, int b) { if ((a+=b)>=mod) a-=mod; }
inline int sub(int a, int b) { return a-b<0?a-b+mod:a-b; }
inline void dec(int&a, int b) { if ((a-=b)<0) a+=mod; }
inline int mul(int a, int b) { return (ll)a*b%mod; }
inline int qpow(int x, int n) { int ans=1; for ( ; n; n>>=1, x=(ll)x*x%mod) if (n&1) ans=(ll)ans*x%mod; return ans; }
//-------------------------------NTT--------------------------------
int wn[30],iwn[30]; //wn[i] = G^((P-1)/(2^i)) (mod P), iwn[i] = wn[i]^(-1) (mod P)
inline void init() {
wn[21] = qpow(G, (mod-1)/(1<<21));
for (int i=20; i>=0; i--) wn[i] = mul(wn[i+1], wn[i+1]);
iwn[21] = qpow(wn[21], (1<<21)-1);
for (int i=20; i>=0; i--) iwn[i] = mul(iwn[i+1], iwn[i+1]);
}
inline void revbin_permute(int a[], int n) {
int i=1, j=n>>1, k;
for ( ; i<n-1; i++) {
if (i < j) swap(a[i], a[j]);
for (k=n>>1; j>=k; ) { j -= k; k >>= 1; }
if (j < k) j += k;
}
}
void NTT(int f[], int ldn, int is) {
int n = (1<<ldn);
revbin_permute(f, n);
for (int i=0; i<n; i+=2) {
int tmp1 = f[i], tmp2 = f[i+1];
f[i] = add(tmp1, tmp2), f[i+1] = sub(tmp1, tmp2);
}
for (int ldm=2; ldm<=ldn; ldm++) {
int m = (1<<ldm), mh = (m>>1);
int dw = is>0?wn[ldm]:iwn[ldm], w = 1;
for (int j=0; j<mh; j++) {
for (int r=0; r<n; r+=m) {
int u = f[r+j], v = mul(f[r+j+mh], w);
f[r+j] = add(u, v);
f[r+j+mh] = sub(u, v);
}
w = mul(w, dw);
}
}
}
void convolution(int f[], int g[], int n) {
int ldn; for (int i=20; i>=0; i--) if (n&(1<<i)) { ldn=i; break; }
NTT(f, ldn, 1); NTT(g, ldn, 1); //会改变g
for (int i=0; i<n; i++) f[i] = mul(f[i], g[i]);
NTT(f, ldn, -1);
int iv = qpow(n, mod-2);
for (int i=0; i<n; i++) f[i] = mul(f[i], iv);
}
int main(void) {
//freopen("g.in", "r", stdin);
int N = 200002;
fac[0]=1; for (int i=1; i<=N; i++) fac[i]=fac[i-1]*(ll)i%mod;
ifac[N]=qpow(fac[N], mod-2); for (int i=N-1; i>=0; i--) ifac[i]=ifac[i+1]*(ll)(i+1)%mod;
init();
int n; scanf("%d", &n);
int cur_len = 1;
x[0] = 1;
for (int i=0; i<n; i++) {
int a, b; scanf("%d%d", &a, &b);
int nex_len = cur_len + a - b;
int tot_len = cur_len + nex_len - 1;
int L = 2; while (L <= cur_len + tot_len) L <<= 1;
// for (int j=0; j<L; j++) f[j] = g[j] = 0;
for (int j=0; j<cur_len; j++) f[j] = x[j];
for (int j=cur_len; j<L; j++) f[j] = 0;
for (int j=0; j<tot_len; j++) {
g[j] = C(a + b, a + cur_len-1 - j);
}
for (int j=tot_len; j<L; j++) g[j] = 0;
// for (int j=0; j<tot_len; j++) printf("%d ", g[j]); puts("");
convolution(f, g, L);
for (int j=cur_len-1; j<cur_len-1+nex_len; j++) x[j-cur_len+1] = f[j];
cur_len = nex_len;
// printf("i = %d, a = %d, b = %d\n", i, a, b);
// for (int j=0; j<cur_len; j++) printf("%d ", x[j]); puts("");
}
int ans = 0;
for (int i=0; i<cur_len; i++) {
ans = (ans + x[i]) % mod;
}
printf("%d\n", ans);
return 0;
}
| 13 | CPP |
#include<cstdio>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N = 1e6 + 50;
const ll mod = 998244353;
int n, ans, cnt = 1;
int jc[N], jc_inv[N];
ll f[N], g[N];
ll qpow(ll a, ll b, int mod){
ll t = 1;
while(b){
if(b & 1) t = (t *a) % mod;
b >>= 1;
a = (a * a) % mod;
}
return t;
}
void NTT(int n, ll *a, int opt){
int i, j = 0, k;
for(i = 0; i < n; i++){
if(i > j) swap(a[i], a[j]);
for(int l = n >> 1; (j ^= l) < l; l >>= 1);
}
for(i = 1; i < n; i <<= 1){
ll wn = qpow(3, (mod - 1) / (i << 1), mod);
int m = i << 1;
for(j = 0; j < n; j += m){
ll w = 1;
for(k = 0; k < i; k++, w = (w * wn) % mod){
ll z = (a[j + i + k] * w) % mod;
a[i + j + k] =( a[j+ k] - z + mod) % mod;
a[j + k] = (a[j + k] + z) % mod;
}
}
}
if(opt == -1) reverse(a + 1, a + n);
}
// 注意多次使用的话要初始化,将数组值清零,注意n和m的意义
// a数组储存最后结果,n,m分别是a,b的项数,数组下标从0开始
int work(ll *a, int n, ll *b, int m){
int fn = 1;
while(fn <= n + m) fn <<= 1;
NTT(fn, a, 1); NTT(fn, b, 1);
// 这里a数组储存结果,所以是a[i] = (a[i] * b[i]) % mod
// 如果是算其他形式多项式相乘,如(2 - a[x] * b[x]) * b[x]的多项式相乘
// 那么要改为a[i] = ((2 - a[i] * b[i]) % mod * b[i] % mod + mod) % mod
for(int i = 0; i <= fn; i++) a[i] = (a[i] * b[i]) % mod;
// 对储存结果的数组NTT
NTT(fn, a, -1);
ll t = qpow(fn, mod - 2, mod);
for(int i = 0; i < fn; i++) a[i] = (a[i] * t) % mod;
return fn;
}
int main(){
scanf("%d", &n);
jc[0] = 1;
for(int i = 1; i < N; ++i) jc[i] = 1LL * jc[i - 1] * i % mod;
jc_inv[N - 1] = qpow(jc[N - 1], mod - 2, mod);
for(int i = N - 2; ~i; --i) jc_inv[i] = 1LL * jc_inv[i + 1] * (i + 1) % mod;
f[1] = 1;
while(n--){
int a, b, tot = -1;
scanf("%d%d", &a, &b);
int max_j = a - b + cnt, max_k = cnt;
int p = 1e9;
for(int i = 1 - max_k; i <= max_j - 1; ++i){
if(a - i >= 0 && b + i >= 0){
if(p == 1e9) p = i;
g[++tot] = 1LL * jc_inv[a - i] * jc_inv[b + i] % mod;
//printf("hh %lld\n", g[tot]);
}
}
int len = work(f, cnt, g, tot);
//for(int i = 0; i <= cnt + tot; ++i) printf("hh %lld\n", f[i]);
for(int i = 0; i < len; ++i) f[i] = f[i] * jc[a + b] % mod;
int tt = -1;
for(int i = 0; i < len; ++i){
if(p >= 0 && p <= max_j) f[++tt] = f[i];
++p;
}
for(int i = tt + 1; i < len; ++i) f[i] = 0;
f[0] = 0, cnt = tt;
//for(int i = 0; i <= cnt; ++i) printf("hh %lld\n", f[i]);
for(int i = 0; i < len; ++i) g[i] = 0;
}
for(int i = 1; i <= cnt; ++i) ans = (ans + f[i]) % mod;
printf("%d", ans);
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
const int N = 1000005;
const int MOD = 998244353;
int n;
int fact[N], ifact[N];
int power(int x, int y) {
int ret = 1;
for (; y; y >>= 1) {
if (y & 1) ret = 1LL * ret * x % MOD;
x = 1LL * x * x % MOD;
}
return ret;
}
namespace FFT {
const int LN = 21;
const int N = 1 << LN;
const int PRIMITIVE_ROOT = 3; // Primitive root modulo `MOD`.
int root[N];
void init_fft() {
const int UNITY = power(PRIMITIVE_ROOT, MOD-1 >> LN);
root[0] = 1;
for (int i = 1; i < N; ++i) {
root[i] = 1LL * UNITY * root[i-1] % MOD;
}
}
// n is the length of polynom
void fft(int n, vector<int> &a, bool invert) {
for (int i = 1, j = 0; i < n; ++i) {
int bit = n >> 1;
for (; j & bit; bit >>= 1) j ^= bit;
j ^= bit;
if (i < j) swap(a[i], a[j]);
}
for (int len = 2; len <= n; len <<= 1) {
int wlen = (invert ? root[N - N/len] : root[N/len]);
for (int i = 0; i < n; i += len) {
int w = 1;
for (int j = 0; j < len>>1; ++j) {
int u = a[i+j];
int v = 1LL * a[i+j + len/2] * w % MOD;
a[i+j] = (u + v) % MOD;
a[i+j + len/2] = (u - v + MOD) % MOD;
w = 1LL * w * wlen % MOD;
}
}
}
if (invert) {
int inv = power(n, MOD-2);
for (int i = 0; i < n; ++i) a[i] = 1LL * a[i] * inv % MOD;
}
}
vector<int> multiply(vector<int> a, vector<int> b) {
int len = (a.size() + b.size() == 2 ? 1 : 1 << (32 - __builtin_clz(a.size() + b.size() - 2)));
a.resize(len); b.resize(len);
fft(len, a, false); fft(len, b, false);
a.resize(len);
for (int i = 0; i < len; ++i) a[i] = 1LL * a[i] * b[i] % MOD;
fft(len, a, true);
return a;
}
}
int C(int n, int k) {
return 1LL * fact[n] * ifact[k] % MOD * ifact[n - k] % MOD;
}
void init() {
fact[0] = 1;
for (int i = 1; i < N; ++i) fact[i] = 1LL * fact[i - 1] * i % MOD;
ifact[N - 1] = power(fact[N - 1], MOD - 2);
for (int i = N - 2; i >= 0; --i) ifact[i] = 1LL * ifact[i + 1] * (i + 1) % MOD;
FFT::init_fft();
}
int solve() {
scanf("%d", &n);
vector<int> v(1, 1);
for (int i = 0; i < n; ++i) {
int a, b;
scanf("%d %d", &a, &b);
int sz = v.size();
int nsz = sz + a - b;
vector<int> mul(sz + nsz);
for (int k = 0; k < mul.size(); ++k) {
int col = b - (int) v.size() + 1 + k;
if (col < 0 || col > a + b) continue;
mul[k] = C(a + b, col);
}
v = FFT::multiply(v, mul);
for (int i = 0; i < nsz; ++i) v[i] = v[i + sz - 1];
v.resize(nsz);
// for (int j = 0; j < nv.size(); ++j) {
// for (int k = 0; k < v.size(); ++k) {
// if (k >= v.size()) break;
// if (b + j - k < 0) continue;
// if (b + j - k > a + b) continue;
// nv[j] = (1LL * C(a + b, b + j - k) * v[k] + nv[j]) % MOD;
// }
// }
}
int ans = 0;
for (int u : v) ans = (ans + u) % MOD;
printf("%d\n", ans);
return 0;
}
int main() {
int t = 1;
init();
// scanf("%d", &t);
for (int tc = 0; tc < t; ++tc) {
// printf("Case #%d: ", tc+1);
solve();
}
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
#define fi first
#define se second
#define DB double
#define U unsigned
#define P std::pair
#define LL long long
#define LD long double
#define pb emplace_back
#define MP std::make_pair
#define SZ(x) ((int)x.size())
#define all(x) x.begin(),x.end()
#define CLR(i,a) memset(i,a,sizeof(i))
#define FOR(i,a,b) for(int i = a;i <= b;++i)
#define ROF(i,a,b) for(int i = a;i >= b;--i)
#define DEBUG(x) std::cerr << #x << '=' << x << std::endl
const int MAXN = 3e5+5;
const int ha = 998244353;
inline int qpow(int a,int n=ha-2){
int res = 1;
while(n){
if(n & 1) res = 1ll*res*a%ha;
a = 1ll*a*a%ha;
n >>= 1;
}
return res;
}
int n,a[MAXN],b[MAXN];
int sz[MAXN];
int f[2][MAXN],now;
int fac[MAXN],inv[MAXN];
inline int C(int n,int m){
return n < 0 || m < 0 || n < m ? 0 : 1ll*fac[n]*inv[m]%ha*inv[n-m]%ha;
}
inline void add(int &x,int y){
x += y-ha;x += x>>31&ha;
}
struct Poly{
std::vector<int> x;
inline int deg(){return SZ(x)-1;}
inline void ext(int n){x.resize(n+1);}
inline int& operator [] (const int &n){return x[n];}
};
int r[MAXN<<2],N;
int W[MAXN<<2];
inline void init(int n){
N = 1;int len = 0;while(N <= n) N <<= 1,++len;
FOR(i,0,N-1) r[i] = (r[i>>1]>>1)|((i&1)<<(len-1));
}
inline void NTT(Poly &A){
A.ext(N-1);FOR(i,0,N-1) if(i < r[i]) std::swap(A[i],A[r[i]]);
int *w = W;
for(int mid = 1;mid < N;mid <<= 1){
for(int i = 0;i < N;i += (mid<<1)){
for(int j = 0;j < mid;++j){
int x = A[i+j],y = 1ll*w[j]*A[i+mid+j]%ha;
A[i+j] = (x+y)%ha;A[i+mid+j] = (x+ha-y)%ha;
}
}
w += (mid<<1);
}
}
inline Poly operator * (Poly A,Poly B){
int len = A.deg()+B.deg();init(len);
NTT(A);NTT(B);FOR(i,0,N-1) A[i] = 1ll*A[i]*B[i]%ha;
NTT(A);std::reverse(A.x.begin()+1,A.x.end());int inv = qpow(N);
A.ext(len);FOR(i,0,A.deg()) A[i] = 1ll*A[i]*inv%ha;
return A;
}
int main(){
// freopen("A.in","r",stdin);
fac[0] = 1;FOR(i,1,MAXN-1) fac[i] = 1ll*fac[i-1]*i%ha;
int *w = W;for(int n = 2,i = 0;i <= 16;++i,n <<= 1) FOR(j,0,n-1) *w = qpow(3,((ha-1)/n)*j),++w;
inv[MAXN-1] = qpow(fac[MAXN-1]);ROF(i,MAXN-2,0) inv[i] = 1ll*inv[i+1]*(i+1)%ha;
scanf("%d",&n);
FOR(i,1,n) scanf("%d%d",a+i,b+i);
sz[0] = 1;Poly ans;ans.ext(1);ans[1] = 1;
FOR(i,1,n){
sz[i] = sz[i-1]+a[i]-b[i];
int l = std::max(-b[i],1-sz[i-1]),r = std::min(a[i],sz[i-1]+a[i]-b[i]-1);
Poly F,G;F.ext(sz[i-1]);G.ext(r-l);
FOR(j,1,sz[i-1]) F[j] = ans[j];
FOR(j,0,r-l) G[j] = 1ll*inv[b[i]+j+l]*inv[a[i]-j-l]%ha;
F = F*G;
ans.x.clear();ans.ext(sz[i]);
FOR(j,1,sz[i]) if(0 <= j-l && j-l <= F.deg()) ans[j] = 1ll*F[j-l]*fac[a[i]+b[i]]%ha;
}
int res = 0;FOR(i,1,ans.deg()) add(res,ans[i]);
printf("%d\n",res);
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count();
mt19937_64 rnd(seed);
const int MOD = 998244353;
#ifdef VIPJML_LOCAL
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v)
{
os << "{";
for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << *vi;
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const vector<pair<A, B>> &v)
{
os << "{";
for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << '(' << vi->first << " " << vi->second << ")";
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const pair<A, B> &p)
{
os << '(' << p.first << ", " << p.second << ')';
return os;
}
void dbg_out() { cerr << endl; }
template <typename Head, typename... Tail>
void dbg_out(Head H, Tail... T)
{
cerr << ' ' << H;
dbg_out(T...);
}
#define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif
using LL = long long;
struct Mint
{
int v;
Mint() : v(0) {}
Mint(int t)
{
v = t % MOD;
if (v < 0)
v += MOD;
}
Mint pow(long long k)
{
Mint res(1), tmp(v);
while (k)
{
if (k & 1)
res *= tmp;
tmp *= tmp;
k >>= 1;
}
return res;
}
Mint inv() { return pow(MOD - 2); }
Mint &operator+=(Mint a)
{
v += a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
Mint &operator-=(Mint a)
{
v += MOD - a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return unsigned(x % m);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
Mint &operator*=(Mint a)
{
v = fast_mod(uint64_t(v) * a.v);
return *this;
}
Mint &operator/=(Mint a) { return (*this) *= a.inv(); }
Mint operator+(Mint a) const { return Mint(v) += a; }
Mint operator-(Mint a) const { return Mint(v) -= a; }
Mint operator*(Mint a) const { return Mint(v) *= a; }
Mint operator/(Mint a) const { return Mint(v) /= a; }
Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); }
bool operator==(const Mint a) const { return v == a.v; }
bool operator!=(const Mint a) const { return v != a.v; }
bool operator<(const Mint a) const { return v < a.v; }
static Mint comb(long long n, int k)
{
Mint num(1), dom(1);
for (int i = 0; i < k; i++)
{
num *= Mint(n - i);
dom *= Mint(i + 1);
}
return num / dom;
}
static Mint inv(int n)
{
return Mint(n).inv();
}
static vector<Mint> getInvArray(int N)
{
vector<Mint> inv(N + 1, 1);
for (int i = 2; i <= N; i++)
inv[i] = inv[MOD % i] * (MOD - MOD / i);
return inv;
}
};
ostream &operator<<(ostream &os, Mint m)
{
os << m.v;
return os;
}
namespace NTT
{
const int G = 3;
const int LOGN = 15;
vector<Mint> w[LOGN];
vector<int> rv[LOGN];
void prepare()
{
for(int st=0;st<LOGN;st++)
{
w[st].assign(1 << st, 1);
Mint bw = Mint(G).pow((MOD-1)/(1 << st));
Mint cw = 1;
for(int k=0;k<( 1 << st);k++) {
w[st][k] = cw;
cw *= bw;
}
}
for(int st=0;st<LOGN;st++)
{
rv[st].assign(1 << st, 0);
if (st == 0)
{
rv[st][0] = 0;
continue;
}
int h = (1 << (st - 1));
for(int k=0;k<( 1 << st);k++)
rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h);
}
}
void ntt(vector<Mint> &d, bool inv = false)
{
int N = 1;
int st=0;
while (N < d.size()){
N *= 2;
st++;
}
//d.resize(N);
for (int i = 0;i<N;i++)
{
if(i<rv[st][i]) swap(d[i],d[rv[st][i]]);
}
int tt=0;
for (int len = 1; len * 2 <= N; len <<= 1)
{
tt++;
for (int i = 0; i + len * 2 <= N; i += len * 2)
{
int dd = N / 2 / len;
for (int j = 0; j < len; j++)
{
Mint t = d[i + j + len] * w[tt][j];
d[i + j + len] = d[i + j] - t;
d[i + j] += t;
}
}
}
if (inv)
{
Mint invN = Mint::inv(N);
for (int i = 0; i < N; i++)
d[i] = d[i] * invN;
reverse(d.begin()+1,d.end());
}
//return d;
}
vector<Mint> conv(vector<Mint> d1, vector<Mint> d2)
{
int num = d1.size() + d2.size() - 1;
int cnt = 1 << (32 - __builtin_clz(num));
d1.resize(cnt), d2.resize(cnt);
ntt(d1);
ntt(d2);
vector<Mint> tmp(d1.size());
for (int i = 0; i < d1.size(); i++)
tmp[i] = d1[i] * d2[i];
ntt(tmp, true);
//r.resize(num);
return tmp;
}
} // namespace NTT
void solve(int caseNum)
{
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++)
cin >> a[i] >> b[i];
vector<Mint> r(1, 1);
auto inv = Mint::getInvArray(2e5);
vector<Mint> P(2e5 + 1, 1);
vector<Mint> IP(2e5 + 1, 1);
for (int i = 2; i < P.size(); i++)
{
P[i] = P[i - 1] * i;
IP[i] = IP[i - 1] * inv[i];
}
NTT::prepare();
for (int i = 0; i < n; i++)
{
int s = max(0, b[i] - (int)r.size() + 1);
int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]);
vector<Mint> x(e - s + 1);
for (int j = s; j <= e; j++)
{
x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j];
}
auto t = NTT::conv(r, x);
int t1 = b[i] - s;
int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1);
vector<Mint> res(t2-t1+1);
for (int j = t1; j <= t2;j++)
{
res[j-t1]=t[j];
}
swap(r, res);
}
Mint sum;
for (auto t : r)
sum += t;
cout << sum.v << endl;
}
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.precision(10);
int T = 1;
//cin >> T;
for (int i = 1; i <= T; i++)
{
solve(i);
}
cout.flush();
return 0;
}
| 13 | CPP |
#include <cstdio>
#include <cstring>
const int MAXN =1e3+20, MAXV =1e5+20, M =998244353;
/*------------------------------IO------------------------------*/
namespace IO_base{
const int MAXB =1<<10;
char gbuf[MAXB], *ps =gbuf, *pt =gbuf;
inline char Getchar(){
if(ps == pt){
ps =gbuf;
pt =gbuf+fread(gbuf, 1, MAXB, stdin);
}
return (ps == pt) ? EOF : *ps++;
}
}
#define getchar IO_base::Getchar
#define putchar IO_base::Putchar
namespace IO_number{
int read(){
int x =0; char c =getchar(); bool f =0;
while(c < '0' || c > '9') (c == '-') ? f =1, c =getchar() : c =getchar();
while(c >= '0' && c <= '9') x =(x<<1)+(x<<3)+(48^c), c =getchar();
return (f) ? -x : x;
}
}
using namespace IO_number;
/*------------------------------Number_Theory------------------------------*/
namespace Number_Theory_base{
// naive mod
inline int mul(const int &x, const int &y, const int &M){
return 1ll*x*y%M;
}
int Pow(int x, int k, const int &M){
int ret =1;
for(; k; k >>=1, x =mul(x, x, M))
if(k&1)
ret =mul(ret, x, M);
return ret;
}
int fact[MAXV*2], fact_inv[MAXV*2];
void pre_Fact(){
fact[0] =1;
for(int i =1; i < MAXV*2; ++i)
fact[i] =mul(fact[i-1], i, M);
fact_inv[MAXV*2-1] =Pow(fact[MAXV*2-1], M-2, M);
for(int i =MAXV*2-1 -1; i >= 0; --i)
fact_inv[i] =mul(fact_inv[i+1], i+1, M);
}
inline int Fact(const int &x){
return fact[x];
}
inline int Fact_Inv(const int &x){
return fact_inv[x];
}
}
using namespace Number_Theory_base;
/*------------------------------Poly------------------------------*/
const int MAXN_Poly =1<<14;
#define MAXN MAXN_Poly
namespace Poly_base{
struct Poly{
int N;
int data[MAXN];
Poly():N(0){
memset(data, 0, sizeof(data));
}
Poly(const int &_N)
:N(_N){
memset(data, 0, sizeof(data));
}
int & operator [] (const int &index){
return data[index];
}
int operator [] (const int &index) const{
return data[index];
}
};
}
using namespace Poly_base;
// *require `Number_Theory_base`
namespace Poly_calc{
#define mul(x, y) mul(x, y, M_NTT)
#define Pow(x, k) Pow(x, k, M_NTT)
#define Inv(x) Pow(x, M_NTT-2)
// helper for Poly_calc
namespace Poly_calc_base{
const int M_NTT =998244353, g_NTT =3;
#define M M_NTT
/* reference of "g": https://en.wikipedia.org/wiki/Primitive_root_modulo_n */
// helper arrays/variables for NTT
int S[MAXN];
bool op;
// helper function for NTT
void NTT_pre(const int &N){
int shift_of_highest_bit =0;
while(N >= (1<<(shift_of_highest_bit+1)))
++shift_of_highest_bit;
--shift_of_highest_bit;
for(int i =0; i < N; ++i)
S[i] =(S[i>>1]>>1)|((i&1)<<shift_of_highest_bit);
op =1;
}
// helper function for NTT
inline void NTT_rev_op(){
op ^=1;
}
// helper function for NTT
inline void swap(int &x, int &y){
x ^=y ^=x ^=y;
}
void NTT(Poly &A){
for(int i =0; i < A.N; ++i)
if(i < S[i])
swap(A[i], A[S[i]]);
for(int N =1; N < A.N; N <<=1){
const int wn =(op) ? Pow(g_NTT, (M-1)/(N<<1)) : Inv(Pow(g_NTT, (M-1)/(N<<1)));
for(int shift_A =0; shift_A < A.N; shift_A +=(N<<1)){
int w =1, *f0 =&A[0]+shift_A, *f1 =&A[0]+shift_A+N;
for(int i =0; i < N; ++i){
const int res =mul(*f1, w);
*f1 =(*f0-res+M)%M, *f0 =(*f0+res)%M;
w =mul(w, wn), ++f0, ++f1;
}
}
}
}
#undef M
}
using namespace Poly_calc_base;
// helper function for conv
int get_Result_N(const int &limit){
int N =1;
while(N < limit)
N <<=1;
return N;
}
// *tips: `MAXN_Poly =get_Result_N(MAXN*2-1);`
void conv(Poly &A, Poly &B, Poly &Result){
const int N =Result.N =A.N =B.N =get_Result_N(A.N+B.N-1);
NTT_pre(N);
NTT(A), NTT(B);
const int Inv_N =Inv(N);
for(int i =0; i < N; ++i)
Result[i] =mul(mul(A[i], B[i]), Inv_N);
NTT_rev_op();
NTT(Result);
}
#undef mul
#undef Pow
#undef Inv
}
using namespace Poly_calc;
#undef MAXN
/*------------------------------Main------------------------------*/
int main(){
pre_Fact();
const int n =read();
Poly A(1);
A[0] =1;
for(int _t =0; _t < n; ++_t){
const int a =read(), b =read();
const int n_A =A.N;
Poly B((n_A+a)-(b-n_A+1)+1);
for(int i =0, j =b-n_A+1; j <= n_A+a; ++i, ++j)
if(j >= 0 && a+b-j >= 0)
B[i] =mul(Fact_Inv(j), Fact_Inv(a+b-j), M);
conv(A, B, B);
A.N =n_A+a-b;
memset(A.data, 0, sizeof(A.data));
for(int i =0; i < A.N; ++i)
A[i] =mul(Fact(a+b), B[n_A+i-1], M);
}
int ans =0;
for(int i =0; i < A.N; ++i)
ans =(ans+A[i])%M;
printf("%d", ans);
} | 13 | CPP |
//EDIR
#include <bits/stdc++.h>
using namespace std;
#define forn(i, n) for (int i = 0; i < int(n); ++i)
#define fore(i, l, r) for (int i = int(l); i < int(r); ++i)
#define sz(a) int((a).size())
template<const int &MOD>
struct _m_int {
int val;
_m_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(uint64_t v) {
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(int v) : _m_int(int64_t(v)) {}
_m_int(unsigned v) : _m_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_m_int& operator+=(const _m_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_m_int& operator-=(const _m_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return unsigned(x % m);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
_m_int& operator*=(const _m_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_m_int& operator/=(const _m_int &other) {
return *this *= other.inv();
}
friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
_m_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_m_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_m_int operator++(int) { _m_int before = *this; ++*this; return before; }
_m_int operator--(int) { _m_int before = *this; --*this; return before; }
_m_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; }
friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; }
friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; }
friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; }
friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; }
friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; }
_m_int inv() const {
return inv_mod(val);
}
_m_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_m_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
a *= a;
p >>= 1;
}
return result;
}
friend string to_string(_m_int<MOD> x) {
return to_string(x.val);
}
friend ostream& operator<<(ostream &os, const _m_int &m) {
return os << m.val;
}
};
extern const int MOD = 998244353;
using Mint = _m_int<MOD>;
const int g = 3;
const int LOGN = 15;
vector<Mint> w[LOGN];
vector<int> rv[LOGN];
void prepare() {
Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN));
forn(st, LOGN - 1) {
w[st].assign(1 << st, 1);
Mint bw = wb.pow(1 << (LOGN - st - 1));
Mint cw = 1;
forn(k, 1 << st) {
w[st][k] = cw;
cw *= bw;
}
}
forn(st, LOGN) {
rv[st].assign(1 << st, 0);
if (st == 0) {
rv[st][0] = 0;
continue;
}
int h = (1 << (st - 1));
forn(k, 1 << st)
rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h);
}
}
void ntt(vector<Mint> &a, bool inv) {
int n = sz(a);
int ln = __builtin_ctz(n);
forn(i, n) {
int ni = rv[ln][i];
if (i < ni) swap(a[i], a[ni]);
}
forn(st, ln) {
int len = 1 << st;
for (int k = 0; k < n; k += (len << 1)) {
fore(pos, k, k + len){
Mint l = a[pos];
Mint r = a[pos + len] * w[st][pos - k];
a[pos] = l + r;
a[pos + len] = l - r;
}
}
}
if (inv) {
Mint rn = Mint(n).inv();
forn(i, n) a[i] *= rn;
reverse(a.begin() + 1, a.end());
}
}
vector<Mint> mul(vector<Mint> a, vector<Mint> b) {
int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1));
a.resize(cnt);
b.resize(cnt);
ntt(a, false);
ntt(b, false);
vector<Mint> c(cnt);
forn(i, cnt) c[i] = a[i] * b[i];
ntt(c, true);
return c;
}
int main() {
prepare();
vector<Mint> fact(1, 1), ifact(1, 1);
auto C = [&](int n, int k) -> Mint {
if (k < 0 || k > n) return 0;
while (sz(fact) <= n) {
fact.push_back(fact.back() * sz(fact));
ifact.push_back(fact.back().inv());
}
return fact[n] * ifact[k] * ifact[n - k];
};
int n;
cin >> n;
vector<int> a(n), b(n);
forn(i, n) cin >> a[i] >> b[i];
vector<Mint> ans(1, 1);
forn(i, n) {
vector<Mint> Cs;
for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j)
Cs.push_back(C(a[i] + b[i], j));
auto res = mul(ans, Cs);
int cnt = sz(ans);
ans.resize(cnt + a[i] - b[i]);
forn(j, sz(ans)) ans[j] = res[cnt + j - 1];
}
cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl;
} | 13 | CPP |
/*
___ ______ __ __
/ |____ __ ___________ _/ ____/___ _/ /___ ____ ______/ /____
/ /| /_ / / / / / ___/ __ `/ / / __ `/ __/ / / / / / / __ / ___/
/ ___ |/ /_/ /_/ (__ ) /_/ / /___/ /_/ / /_/ /_/ / /_/ / /_/ (__ )
/_/ |_/___/\__,_/____/\__,_/\____/\__,_/\__/\__, /\__, /\__,_/____/
/____//____/
/> フ
| _ _|
/`ミ _x 彡
/ |
/ ヽ ?
/ ̄| | | |
| ( ̄ヽ__ヽ_)_)
\二つ
*/
#include <queue>
#include <vector>
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define MP make_pair
#define ll long long
#define fi first
#define se second
using namespace std;
template <typename T>
void read(T &x) {
x = 0; bool f = 0;
char c = getchar();
for (;!isdigit(c);c=getchar()) if (c=='-') f=1;
for (;isdigit(c);c=getchar()) x=x*10+(c^48);
if (f) x=-x;
}
template<typename F>
inline void write(F x, char ed = '\n') {
static short st[30];short tp=0;
if(x<0) putchar('-'),x=-x;
do st[++tp]=x%10,x/=10; while(x);
while(tp) putchar('0'|st[tp--]);
putchar(ed);
}
template <typename T>
inline void Mx(T &x, T y) { x < y && (x = y); }
template <typename T>
inline void Mn(T &x, T y) { x > y && (x = y); }
//#pragma GCC optimize(2)
const int P = 998244353;
namespace Poly {
#define poly vector<int>
#define reg register
inline int mod(int x) { return x >= P ? x - P : x; }
inline void Add(int &x, int y) { x += y; if (x >= P) x -= P; }
template <typename T>
inline int max(T x, T y) { return x > y ? x : y; }
template <typename T>
inline int min(T x, T y) { return x > y ? y : x; }
int fpw(ll x, int mi) {
ll res = 1;
for (; mi; mi >>= 1, x = x * x % P)
if (mi & 1) res = res * x % P;
return res;
}
const int N = 600500;
int E[N], r[N], lim;
inline void Prework(int Maxsize) {
E[1] = lim = 1;
while (lim <= Maxsize) lim <<= 1;
for (int i = 2;i < lim;i <<= 1) {
int *e0 = E + (i >> 1), *e1 = E + i;
ll w = fpw(3, (P - 1) / (i << 1));
for (int j = 0;j < i; j += 2)
e1[j] = e0[j >> 1], e1[j + 1] = e1[j] * w % P;
}
}
inline void getR(int len = lim >> 1) {
for (reg int i = 1;i < lim; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) ? len : 0);
}
inline int getlen(int Maxsize) { lim = 1; while (lim <= Maxsize) lim <<= 1; return lim; }
void init(int Maxsize) { getlen(Maxsize); getR(); }
inline void Dft(poly &A) {
for (reg int i = 1;i < lim; ++i)
if (r[i] < i) std::swap(A[i], A[r[i]]);
if (lim >= 2)
for (reg int j = 0;j < lim; j += 2) {
int x = A[j], y = A[j+1];
A[j] = mod(x + y), A[j+1] = mod(P + x - y);
}
for (int i = 2;i < lim; i <<= 1) {
for (int j = 0;j < lim; j += (i << 1)) {
poly::iterator f = A.begin() + j, g = A.begin() + i + j;
int *e = E + i;
for (int k = 0;k < i; ++k) {
int x = f[k], y = 1ll * g[k] * e[k] % P;
f[k] = mod(x + y), g[k] = mod(P + x - y);
++k;
x = f[k], y = 1ll * g[k] * e[k] % P;
f[k] = mod(x + y), g[k] = mod(P + x - y);
}
}
}
}
inline void iDft(poly &f) {
Dft(f), reverse(f.begin() + 1, f.begin() + lim);
ll inv = P - (P - 1) / lim;
for (int i = 0;i < lim; i++) f[i] = f[i] * inv % P;
}
poly Mul(poly &a, poly &b) {
int s1 = a.size(), s2 = b.size();
if (s1 <= 28 || s2 <= 28) {
poly ans(s1 + s2 - 1);
for (reg int i = 0;i < s1 + s2 - 1; ++i) ans[i] = 0;
for (reg int i = 0;i < s1; ++i)
for (reg int j = 0;j < s2; ++j)
Add(ans[i + j], 1ll * a[i] * b[j] % P);
return ans;
}
init(s1 + s2 - 2);
poly ans(lim); a.resize(lim), b.resize(lim);
Dft(a), Dft(b);
for (int i = 0;i < lim; ++i) ans[i] = 1ll * a[i] * b[i] % P;
return iDft(ans), ans.resize(s1 + s2 - 1), ans;
}
poly operator * (poly a, poly b) { return Mul(a, b); }
}
using Poly::Prework;
using Poly::operator*;
const int N = 205000;
int n;
ll fac[N], inv[N];
int main() {
read(n), fac[0] = fac[1] = inv[0] = inv[1] = 1;
for (int i = 2;i <= 200000; ++i)
fac[i] = fac[i-1] * i % P, inv[i] = (P - P / i) * inv[P % i] % P;
for (int i = 1;i <= 200000; ++i)
inv[i] = inv[i-1] * inv[i] % P;
auto C = [&](int x, int y) {
if (y > x || y < 0) return 0ll;
return fac[x] * inv[y] % P * inv[x-y] % P;
};
Prework(10000);
poly st(2); st[1] = 1;
int nw = 1, tnw;
for (int i = 1, a, b;i <= n; ++i) {
read(a), read(b), tnw = nw + a - b;
poly res(tnw + nw + 1);
for (int i = 0;i <= tnw + nw; ++i) res[i] = C(a + b, a + nw - i);
poly T = st * res;
st.clear();
st.resize(tnw + 1);
for (int i = 1;i <= tnw; ++i) st[i] = T[i + nw];
nw = tnw;
}
ll ans = 0;
for (int i = 1;i <= nw; ++i) ans += st[i];
write(ans % P);
return 0;
}
/*
3
24 21
66 64
1 1
*/ | 13 | CPP |
#include <iostream>
#include <vector>
using namespace std;
const int MOD = 998244353; // 2^23 * 7 * 17 + 1
const int ROOT_OF_UNITY = 15311432;
int mul(int a, int b) { return 1LL * a * b % MOD; }
int powmod(int base, int expo)
{
int t = 1;
for (; expo > 0; expo >>= 1) {
if (expo & 1) t = mul(t, base);
base = mul(base, base);
}
return t;
}
const int MAX2N = 1 << 23;
int roots[MAX2N], inv_roots[MAX2N];
void fft(vector<int>& a, const vector<int>&p, int root[])
{
int n = a.size();
for (int i = 0; i < n; ++i)
if (i < p[i]) swap(a[i], a[p[i]]);
for (int m = 1, t = MAX2N / 2; m < n; m *= 2, t /= 2)
for (int i = 0; i < n; i += m * 2)
for (int j = 0; j < m; ++j) {
int& u = a[i + j];
int& v = a[i + j + m];
v = mul(v, root[j * t]);
int tmp = u - v;
if (tmp < 0) tmp += MOD;
u += v;
if (u >= MOD) u -= MOD;
v = tmp;
}
}
vector<int> polymul(const vector<int>& a, const vector<int>& b)
{
int n = a.size() + b.size();
if (__builtin_popcount(n) != 1) n = 1 << (32 - __builtin_clz(n));
vector<int> pa(a), pb(b);
pa.resize(n), pb.resize(n);
vector<int> p(n);
for (int i = 1; i < n; ++i)
if (i & 1) p[i] = p[i - 1] + n / 2;
else p[i] = p[i / 2] / 2;
fft(pa, p, roots);
fft(pb, p, roots);
for (int i = 0; i < n; ++i)
pa[i] = mul(pa[i], pb[i]);
fft(pa, p, inv_roots);
int inv_n = powmod(n, MOD - 2);
for (int i = 0; i < n; ++i)
pa[i] = mul(pa[i], inv_n);
return pa;
}
const int N = 2e5;
int ft[N + 2], invft[N + 2];
int C(int n, int k) { return k >= 0 && k <= n ? mul(ft[n], mul(invft[k], invft[n - k])) : 0; }
vector<int> src(1, 1);
void add_row(int x, int y)
{
int n = src.size();
int m = n + x - y;
vector<int> b;
for (int i = 0; i < n + m; ++i)
b.push_back(C(x + y, y - n + i));
b = polymul(src, b);
src.resize(m);
copy(b.begin() + n, b.begin() + n + m, src.begin());
}
int main()
{
ft[0] = 1;
for (int i = 1; i <= N; ++i) ft[i] = mul(ft[i - 1], i);
invft[N] = powmod(ft[N], MOD - 2);
for (int i = N - 1; i >= 0; --i) invft[i] = mul(invft[i + 1], i + 1);
roots[0] = 1;
for (int i = 1; i < MAX2N; ++i) roots[i] = mul(roots[i - 1], ROOT_OF_UNITY);
inv_roots[MAX2N - 1] = powmod(roots[MAX2N - 1], MOD - 2);
for (int i = MAX2N - 2; i >= 0; --i) inv_roots[i] = mul(inv_roots[i + 1], ROOT_OF_UNITY);
int q;
cin >> q;
while (q--) {
int x, y;
cin >> x >> y;
add_row(x, y);
}
int res = 0;
for (int x : src) {
res += x;
if (res >= MOD) res -= MOD;
}
cout << res;
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
#define io_speed_up ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
template<typename T>void rd(T&x){int f=0,c;while(!isdigit(c=getchar()))f^=!(c^45);x=(c&15);while(isdigit(c=getchar()))x=x*10+(c&15);if(f)x=-x;} //读整型
template<typename T>void pt(T x,int c=10){if(x<0)putchar('-'),x=-x;if(x>9)pt(x/10,-1);putchar(x%10+48);if(c!=-1)putchar(c);}
template<typename T>void umax(T&x,const T&y){if(x<y)x=y;}
template<typename T>void umin(T&x,const T&y){if(x>y)x=y;}
#define rep(i,a,b) for (int i=a;i<=b;i++)
#define per(i,a,b) for (int i=a;i>=b;i--)
#define for1(i,n) for (int i=1;i<=n;i++)
#define for0(i,n) for (int i=0;i<n;i++)
#define ms(a,b) memset(a,b,sizeof a)
#define all(n) (n).begin(), (n).end()
#define sz(x) (int)x.size()
#define fi first
#define se second
using ll = long long;
using ld = long double;
using pii = pair<int,int>;
using pll = pair<long,long>;
const int inf = 0x3f3f3f3f;
const int maxn = 200005;
const int mod = 998244353;
inline int pow_mod(ll x, int n) {
ll res;
for(res = 1; n; n >>= 1, x = x * x % mod)
if(n & 1)
res = res * x % mod;
return res;
}
inline int add_mod(int x, int y) {
x += y;
return x >= mod ? x - mod : x;
}
inline int sub_mod(int x, int y) {
x -= y;
return x < 0 ? x + mod : x;
}
void NTT(int a[], int n, int op) {
for(int i = 1, j = n >> 1; i < n - 1; ++i) {
if(i < j)
swap(a[i], a[j]);
int k = n >> 1;
while(k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
for(int len = 2; len <= n; len <<= 1) {
int g = pow_mod(3, (mod - 1) / len);
for(int i = 0; i < n; i += len) {
int w = 1;
for(int j = i; j < i + (len >> 1); ++j) {
int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod;
a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t);
w = 1ll * w * g % mod;
}
}
}
if(op == -1) {
reverse(a + 1, a + n);
int inv = pow_mod(n, mod - 2);
for(int i = 0; i < n; ++i)
a[i] = 1ll * a[i] * inv % mod;
}
}
int A[maxn + 5], B[maxn + 5];
int pow2(int x) {
int res = 1;
while(res < x)
res <<= 1;
return res;
}
void convolution(int A[], int B[], int Asize, int Bsize) {
int n = pow2(Asize + Bsize - 1);
for(int i = Asize; i < n; ++i)
A[i] = 0;
for(int i = Bsize; i < n; ++i)
B[i] = 0;
NTT(A, n, 1);
NTT(B, n, 1);
for(int i = 0; i < n; ++i)
A[i] = 1ll * A[i] * B[i] % mod;
NTT(A, n, -1);
return;
}
const int N = 200002;
ll jc[N+1],inv[N+1];
int C(int x,int y) {
if(x<y || y<0) return 0;
return jc[x] * inv[y] % mod * inv[x-y] % mod;
}
int n;
int main() {
io_speed_up;
jc[0] = inv[0] = 1;
rep(i,1,N) jc[i] = jc[i-1]*i%mod;
inv[N] = pow_mod(jc[N],mod-2);
per(i,N-1,1) inv[i] = inv[i+1]*(i+1)%mod;
cin>>n;
A[0] = 1;
int Asize = 1;
rep(i,1,n) {
int a,b,c;
cin>>a>>b; c = a+b;
int sz = Asize + a - b;
per(i,Asize-1,0) B[i] = C(c,b+i-Asize+1);
for0(i,sz-1) B[Asize+i] = C(c,b+i+1);
convolution(A,B,Asize,Asize+sz-1);
for(int i=0;i<sz;i++) A[i] = A[i+Asize-1];
Asize = sz;
}
int ans = 0;
for0(i,Asize) ans = add_mod(ans, A[i]);
cout<<ans<<"\n";
return 0;
} | 13 | CPP |
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
using namespace std;
const int N=5010,M=2e5;
const int mod=998244353,g=3,invg=332748118;
int rev_tag=0;
int cir[N<<4];
int fac[M+10],inv[M+10];
inline int C(int x,int y)
{
if(x<y||y<0) return 0;
return 1ll*fac[x]*inv[y]%mod*inv[x-y]%mod;
}
inline int power(int a,int b)
{
int res=1;
for(;b;b>>=1,a=1ll*a*a%mod)
if(b&1) res=1ll*res*a%mod;
return res;
}
inline void mul(int *A,int *B,int x,int y){ for(int i=x;i<y;i++) A[i]=1ll*A[i]*B[i]%mod; }
inline void clear(int *A,int x,int y){ for(int i=x;i<y;i++) A[i]=0; }
inline void NTT(int *A,int lim,int tag)
{
if(rev_tag!=lim) for(int i=0;i<=lim;i++) cir[i]=(cir[i>>1]>>1)|((i&1)?lim>>1:0);
rev_tag=lim; int buf,w,inv0=power(lim,mod-2);
for(int i=0;i<lim;i++) if(i<cir[i]) swap(A[i],A[cir[i]]);
for(int l=2;l<=lim;l<<=1)
{
int r=l>>1; buf=power(tag?g:invg,(mod-1)/l),w=1;
for(int i=0;i<lim;i+=l,w=1)
for(int j=i;j<i+r;j++,w=1ll*w*buf%mod)
{
int tmp=1ll*w*A[j+r]%mod;
A[j+r]=(A[j]-tmp+mod)%mod;
A[j]=(A[j]+tmp)%mod;
}
}
if(!tag) for(int i=0;i<lim;i++) A[i]=1ll*A[i]*inv0%mod;
}
int f[1010][N],F[N<<4],G[N<<4];
int main()
{
fac[0]=1; for(int i=1;i<=M;i++) fac[i]=1ll*fac[i-1]*i%mod;
inv[M]=power(fac[M],mod-2); for(int i=M-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mod;
int n,ans=0,a,b;
scanf("%d",&n);
int high=1; f[0][1]=1;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a,&b),high+=a-b;
int cur=high-a+b,now=high;
for(int j=1;j<=cur;j++) F[j]=f[i-1][j];
for(int j=-cur;j<=now;j++) G[j+cur]=C(a+b,b+j);
int lim=1; while(lim<(now+cur+1)+cur) lim<<=1;
NTT(F,lim,1),NTT(G,lim,1),mul(F,G,0,lim),NTT(F,lim,0);
for(int j=1;j<=now;j++) f[i][j]=F[j+cur];
clear(F,0,lim),clear(G,0,lim);
}
for(int i=1;i<=high;i++) ans=(ans+f[n][i])%mod;
printf("%d\n",ans);
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
#define forn(i, n) for (int i = 0; i < int(n); ++i)
#define fore(i, l, r) for (int i = int(l); i < int(r); ++i)
#define sz(a) int((a).size())
template<const int &MOD>
struct _m_int {
int val;
_m_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(uint64_t v) {
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(int v) : _m_int(int64_t(v)) {}
_m_int(unsigned v) : _m_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_m_int& operator+=(const _m_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_m_int& operator-=(const _m_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return unsigned(x % m);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
_m_int& operator*=(const _m_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_m_int& operator/=(const _m_int &other) {
return *this *= other.inv();
}
friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
_m_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_m_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_m_int operator++(int) { _m_int before = *this; ++*this; return before; }
_m_int operator--(int) { _m_int before = *this; --*this; return before; }
_m_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; }
friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; }
friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; }
friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; }
friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; }
friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; }
_m_int inv() const {
return inv_mod(val);
}
_m_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_m_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
a *= a;
p >>= 1;
}
return result;
}
friend string to_string(_m_int<MOD> x) {
return to_string(x.val);
}
friend ostream& operator<<(ostream &os, const _m_int &m) {
return os << m.val;
}
};
extern const int MOD = 998244353;
using Mint = _m_int<MOD>;
const int g = 3;
const int LOGN = 20;
vector<Mint> w[LOGN];
vector<int> rv[LOGN];
void prepare() {
Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN));
forn(st, LOGN - 1) {
w[st].assign(1 << st, 1);
Mint bw = wb.pow(1 << (LOGN - st - 1));
Mint cw = 1;
forn(k, 1 << st) {
w[st][k] = cw;
cw *= bw;
}
}
forn(st, LOGN) {
rv[st].assign(1 << st, 0);
if (st == 0) {
rv[st][0] = 0;
continue;
}
int h = (1 << (st - 1));
forn(k, 1 << st)
rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h);
}
}
void ntt(vector<Mint> &a, bool inv) {
int n = sz(a);
int ln = __builtin_ctz(n);
forn(i, n) {
int ni = rv[ln][i];
if (i < ni) swap(a[i], a[ni]);
}
forn(st, ln) {
int len = 1 << st;
for (int k = 0; k < n; k += (len << 1)) {
fore(pos, k, k + len){
Mint l = a[pos];
Mint r = a[pos + len] * w[st][pos - k];
a[pos] = l + r;
a[pos + len] = l - r;
}
}
}
if (inv) {
Mint rn = Mint(n).inv();
forn(i, n) a[i] *= rn;
reverse(a.begin() + 1, a.end());
}
}
vector<Mint> mul(vector<Mint> a, vector<Mint> b) {
int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1));
a.resize(cnt);
b.resize(cnt);
ntt(a, false);
ntt(b, false);
vector<Mint> c(cnt);
forn(i, cnt) c[i] = a[i] * b[i];
ntt(c, true);
return c;
}
int main() {
prepare();
vector<Mint> fact(1, 1), ifact(1, 1);
auto C = [&](int n, int k) -> Mint {
if (k < 0 || k > n) return 0;
while (sz(fact) <= n) {
fact.push_back(fact.back() * sz(fact));
ifact.push_back(fact.back().inv());
}
return fact[n] * ifact[k] * ifact[n - k];
};
int n;
cin >> n;
vector<int> a(n), b(n);
forn(i, n) cin >> a[i] >> b[i];
vector<Mint> ans(1, 1);
forn(i, n) {
vector<Mint> Cs;
for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j)
Cs.push_back(C(a[i] + b[i], j));
auto res = mul(ans, Cs);
int cnt = sz(ans);
ans.resize(cnt + a[i] - b[i]);
forn(j, sz(ans)) ans[j] = res[cnt + j - 1];
}
cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
#define forn(i, n) for (int i = 0; i < int(n); ++i)
#define fore(i, l, r) for (int i = int(l); i < int(r); ++i)
#define sz(a) int((a).size())
template<const int &MOD>
struct _m_int {
int val;
_m_int(int64_t v = 0) {
if (v < 0) v = v % MOD + MOD;
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(uint64_t v) {
if (v >= MOD) v %= MOD;
val = int(v);
}
_m_int(int v) : _m_int(int64_t(v)) {}
_m_int(unsigned v) : _m_int(uint64_t(v)) {}
static int inv_mod(int a, int m = MOD) {
int g = m, r = a, x = 0, y = 1;
while (r != 0) {
int q = g / r;
g %= r; swap(g, r);
x -= q * y; swap(x, y);
}
return x < 0 ? x + m : x;
}
explicit operator int() const { return val; }
explicit operator unsigned() const { return val; }
explicit operator int64_t() const { return val; }
explicit operator uint64_t() const { return val; }
explicit operator double() const { return val; }
explicit operator long double() const { return val; }
_m_int& operator+=(const _m_int &other) {
val -= MOD - other.val;
if (val < 0) val += MOD;
return *this;
}
_m_int& operator-=(const _m_int &other) {
val -= other.val;
if (val < 0) val += MOD;
return *this;
}
static unsigned fast_mod(uint64_t x, unsigned m = MOD) {
#if !defined(_WIN32) || defined(_WIN64)
return unsigned(x % m);
#endif
// Optimized mod for Codeforces 32-bit machines.
// x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int.
unsigned x_high = unsigned(x >> 32), x_low = unsigned(x);
unsigned quot, rem;
asm("divl %4\n"
: "=a" (quot), "=d" (rem)
: "d" (x_high), "a" (x_low), "r" (m));
return rem;
}
_m_int& operator*=(const _m_int &other) {
val = fast_mod(uint64_t(val) * other.val);
return *this;
}
_m_int& operator/=(const _m_int &other) {
return *this *= other.inv();
}
friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; }
friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; }
friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; }
friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; }
_m_int& operator++() {
val = val == MOD - 1 ? 0 : val + 1;
return *this;
}
_m_int& operator--() {
val = val == 0 ? MOD - 1 : val - 1;
return *this;
}
_m_int operator++(int) { _m_int before = *this; ++*this; return before; }
_m_int operator--(int) { _m_int before = *this; --*this; return before; }
_m_int operator-() const {
return val == 0 ? 0 : MOD - val;
}
friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; }
friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; }
friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; }
friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; }
friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; }
friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; }
_m_int inv() const {
return inv_mod(val);
}
_m_int pow(int64_t p) const {
if (p < 0)
return inv().pow(-p);
_m_int a = *this, result = 1;
while (p > 0) {
if (p & 1)
result *= a;
a *= a;
p >>= 1;
}
return result;
}
friend string to_string(_m_int<MOD> x) {
return to_string(x.val);
}
friend ostream& operator<<(ostream &os, const _m_int &m) {
return os << m.val;
}
};
extern const int MOD = 998244353;
using Mint = _m_int<MOD>;
const int g = 3;
const int LOGN = 15;
vector<Mint> w[LOGN];
vector<int> rv[LOGN];
void prepare() {
Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN));
forn(st, LOGN - 1) {
w[st].assign(1 << st, 1);
Mint bw = wb.pow(1 << (LOGN - st - 1));
Mint cw = 1;
forn(k, 1 << st) {
w[st][k] = cw;
cw *= bw;
}
}
forn(st, LOGN) {
rv[st].assign(1 << st, 0);
if (st == 0) {
rv[st][0] = 0;
continue;
}
int h = (1 << (st - 1));
forn(k, 1 << st)
rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h);
}
}
void ntt(vector<Mint> &a, bool inv) {
int n = sz(a);
int ln = __builtin_ctz(n);
forn(i, n) {
int ni = rv[ln][i];
if (i < ni) swap(a[i], a[ni]);
}
forn(st, ln) {
int len = 1 << st;
for (int k = 0; k < n; k += (len << 1)) {
fore(pos, k, k + len){
Mint l = a[pos];
Mint r = a[pos + len] * w[st][pos - k];
a[pos] = l + r;
a[pos + len] = l - r;
}
}
}
if (inv) {
Mint rn = Mint(n).inv();
forn(i, n) a[i] *= rn;
reverse(a.begin() + 1, a.end());
}
}
vector<Mint> mul(vector<Mint> a, vector<Mint> b) {
int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1));
a.resize(cnt);
b.resize(cnt);
ntt(a, false);
ntt(b, false);
vector<Mint> c(cnt);
forn(i, cnt) c[i] = a[i] * b[i];
ntt(c, true);
return c;
}
int main() {
prepare();
vector<Mint> fact(1, 1), ifact(1, 1);
auto C = [&](int n, int k) -> Mint {
if (k < 0 || k > n) return 0;
while (sz(fact) <= n) {
fact.push_back(fact.back() * sz(fact));
ifact.push_back(fact.back().inv());
}
return fact[n] * ifact[k] * ifact[n - k];
};
int n;
cin >> n;
vector<int> a(n), b(n);
forn(i, n) cin >> a[i] >> b[i];
vector<Mint> ans(1, 1);
forn(i, n) {
vector<Mint> Cs;
for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j)
Cs.push_back(C(a[i] + b[i], j));
auto res = mul(ans, Cs);
int cnt = sz(ans);
ans.resize(cnt + a[i] - b[i]);
forn(j, sz(ans)) ans[j] = res[cnt + j - 1];
}
cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
namespace NTT
{
const int P=998244353,g=3;
const int W=22,S=1<<W;
const int J=86583718;
inline int add(int a,int b) {int r=a+b; return r<P?r:r-P;}
inline int sub(int a,int b) {int r=a-b; return r<0?r+P:r;}
inline int mul(long long a,long long b) {return (a*b)%P;}
inline int inv(int a) {return a==1?a:mul(inv(P%a),P-P/a);}
inline int qpow(int a,long long k)
{
int r=1;
while (k)
{
if (k&1) r=mul(r,a);
k>>=1; a=mul(a,a);
}
return r;
}
int r[S],w[2][S];
void init(int lim)
{
int w0=qpow(g,(P-1)/lim);
w[0][0]=w[1][0]=1;
for (int i=1;i<lim;i++) w[0][i]=w[1][lim-i]=mul(w[0][i-1],w0);
for (int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)*(lim>>1));
}
void ntt(int *a,int lim,int o)
{
for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=1;i<lim;i<<=1)
{
for (int j=0,t=lim/(i<<1);j<lim;j+=i<<1)
{
for (int k=j,l=0;k<j+i;k++,l+=t)
{
int x=a[k],y=mul(w[o][l],a[k+i]);
a[k]=add(x,y);
a[k+i]=sub(x,y);
}
}
}
if (o)
{
int tmp=NTT::inv(lim);
for (int i=0;i<lim;i++) a[i]=mul(a[i],tmp);
}
}
vector<int> poly_add(const vector<int> &a,const vector<int> &b)
{
int n=a.size(),m=b.size();
vector<int> c;
for (int i=0;i<max(n,m);i++) c.push_back(add((i<n?a[i]:0),(i<m?b[i]:0)));
return c;
}
vector<int> poly_sub(const vector<int> &a,const vector<int> &b)
{
int n=a.size(),m=b.size();
vector<int> c;
for (int i=0;i<max(n,m);i++) c.push_back(sub((i<n?a[i]:0),(i<m?b[i]:0)));
return c;
}
vector<int> poly_d(const vector<int> &a)
{
int n=a.size();
vector<int> b;
for (int i=1;i<n;i++) b.push_back(mul(a[i],i));
return b;
}
vector<int> poly_s(const vector<int> &a)
{
int n=a.size();
vector<int> b{0};
for (int i=0;i<n;i++) b.push_back(mul(a[i],inv(i+1)));
return b;
}
int p1[S],p2[S];
vector<int> poly_mul(const vector<int> &a,const vector<int> &b)
{
int n=a.size(),m=b.size();
int lim=1;
while (lim<(n<<1)) lim<<=1;
while (lim<(m<<1)) lim<<=1;
init(lim);
for (int i=0;i<lim;i++) r[i]=(i&1)*(lim>>1)+(r[i>>1]>>1);
copy_n(a.begin(),n,p1); fill(p1+n,p1+lim,0);
copy_n(b.begin(),m,p2); fill(p2+m,p2+lim,0);
ntt(p1,lim,0);
ntt(p2,lim,0);
for (int i=0;i<lim;i++) p1[i]=mul(p1[i],p2[i]);
ntt(p1,lim,1);
return vector<int>(p1,p1+n+m-1);
}
vector<int> poly_inv(const vector<int> &a)
{
int n=a.size();
if (n==1) return {inv(a[0])};
auto b=a; b.resize((n+1)>>1);
b=poly_inv(b);
int m=b.size();
int lim=1;
while (lim<(n<<1)) lim<<=1;
while (lim<(m<<1)) lim<<=1;
init(lim);
copy_n(a.begin(),n,p1); fill(p1+n,p1+lim,0);
copy_n(b.begin(),m,p2); fill(p2+m,p2+lim,0);
ntt(p1,lim,1);
ntt(p2,lim,1);
for (int i=0;i<lim;i++) p1[i]=mul(p2[i],sub(2,mul(p1[i],p2[i])));
ntt(p1,lim,-1);
return vector<int>(p1,p1+n);
}
vector<int> poly_div(const vector<int> &a,const vector<int> &b)
{
int n=a.size(),m=b.size();
if (m>n) return {0};
auto ar=a,br=b;
reverse(ar.begin(),ar.end()); reverse(br.begin(),br.end());
ar.resize(n-m+1); br.resize(n-m+1);
br=poly_inv(br);
auto q=poly_mul(ar,br); q.resize(n-m+1);
reverse(q.begin(),q.end());
return q;
}
vector<int> poly_mod(const vector<int> &a,const vector<int> &b)
{
int m=b.size();
auto c=poly_div(a,b);
c=poly_mul(b,c);
c=poly_sub(a,c); c.resize(m-1);
return c;
}
vector<int> poly_sqrt(const vector<int> &a)
{
int n=a.size();
if (n==1) return {1};
auto b=a; b.resize((n+1)>>1);
b=poly_sqrt(b); b.resize(n);
auto c=poly_add(b,poly_mul(poly_inv(b),a)); c.resize(n);
int i2=inv(2); for (int &i:c) i=mul(i,i2);
return c;
}
vector<int> poly_ln(const vector<int> &a)
{
int n=a.size();
auto b=poly_mul(poly_inv(a),poly_d(a));
b.resize(n-1); b=poly_s(b);
return b;
}
vector<int> poly_exp(const vector<int> &a)
{
int n=a.size();
if (n==1) return {1};
auto b=a; b.resize((n+1)>>1);
b=poly_exp(b); b.resize(n);
auto c=poly_sub(a,poly_ln(b)); c[0]=add(c[0],1);
c=poly_mul(b,c); c.resize(n);
return c;
}
vector<int> poly_sin(const vector<int> &a)
{
auto b=a;
for (int &i:b) i=mul(i,J);
auto c=poly_exp(b);
c=poly_sub(c,poly_inv(c));
int i2=inv(2),ij=inv(J);
for (int &i:c) i=mul(i,mul(i2,ij));
return c;
}
vector<int> poly_cos(const vector<int> &a)
{
auto b=a;
for (int &i:b) i=mul(i,J);
auto c=poly_exp(b);
c=poly_add(c,poly_inv(c));
int i2=inv(2);
for (int &i:c) i=mul(i,i2);
return c;
}
vector<int> poly_asin(const vector<int> &a)
{
int n=a.size();
auto b=poly_d(a),c=poly_mul(a,a); c.resize(n);
c=poly_inv(poly_sqrt(poly_sub({1},c)));
b=poly_mul(b,c); b.resize(n-1);
return poly_s(b);
}
vector<int> poly_atan(const vector<int> &a)
{
int n=a.size();
auto b=poly_d(a),c=poly_mul(a,a); c.resize(n);
c=poly_inv(poly_add({1},c));
b=poly_mul(b,c); b.resize(n-1);
return poly_s(b);
}
}
const int N=200010;
int n,a,b;
long long inv[N];
long long fac[N],invf[N];
void linear_inv(long long n,long long p)
{
inv[1]=1;
for (long long i=2;i<=n;i++) inv[i]=(p-p/i)*inv[p%i]%p;
fac[0]=1;
for (long long i=1;i<=n;i++) fac[i]=fac[i-1]*i%p;
invf[n]=NTT::inv(fac[n]);
for (long long i=n-1;i>=0;i--) invf[i]=invf[i+1]*(i+1)%p;
}
long long C(long long n,long long m)
{
if (m>n) return 0;
return NTT::mul(fac[n],NTT::mul(invf[m],invf[n-m]));
}
int main()
{
linear_inv(200000,NTT::P);
scanf("%d",&n);
vector<int> ans={1};
int l=1;
for (int i=1;i<=n;i++)
{
scanf("%d%d",&a,&b);
vector<int> f;
int sz=min(l+l+a-b-1,a+b+1);
for (int j=(a+b+1-sz)/2;j<=a+b-(a+b+1-sz)/2;j++)
{
f.push_back(C(a+b,j));
}
ans=NTT::poly_mul(ans,f);
l+=a-b;
int now=ans.size();
ans.erase(ans.begin(),ans.begin()+(now-l)/2);
ans.erase(ans.end()-(now-l)/2,ans.end());
}
int sum=0;
for (int i:ans)
{
sum=NTT::add(sum,i);
}
printf("%d",sum);
getchar(); getchar();
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count();
mt19937_64 rnd(seed);
const int MOD = 998244353;
#ifdef VIPJML_LOCAL
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v)
{
os << "{";
for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << *vi;
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const vector<pair<A, B>> &v)
{
os << "{";
for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << '(' << vi->first << " " << vi->second << ")";
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const pair<A, B> &p)
{
os << '(' << p.first << ", " << p.second << ')';
return os;
}
void dbg_out() { cerr << endl; }
template <typename Head, typename... Tail>
void dbg_out(Head H, Tail... T)
{
cerr << ' ' << H;
dbg_out(T...);
}
#define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif
using LL = long long;
struct Mint
{
long long v;
Mint() : v(0) {}
Mint(long long t)
{
v = t % MOD;
if (v < 0)
v += MOD;
}
Mint pow(long long k)
{
Mint res(1), tmp(v);
while (k)
{
if (k & 1)
res *= tmp;
tmp *= tmp;
k >>= 1;
}
return res;
}
Mint inv() { return pow(MOD - 2); }
Mint &operator+=(Mint a)
{
v += a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
Mint &operator-=(Mint a)
{
v += MOD - a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
Mint &operator*=(Mint a)
{
v = v * a.v % MOD;
return *this;
}
Mint &operator/=(Mint a) { return (*this) *= a.inv(); }
Mint operator+(Mint a) const { return Mint(v) += a; }
Mint operator-(Mint a) const { return Mint(v) -= a; }
Mint operator*(Mint a) const { return Mint(v) *= a; }
Mint operator/(Mint a) const { return Mint(v) /= a; }
Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); }
bool operator==(const Mint a) const { return v == a.v; }
bool operator!=(const Mint a) const { return v != a.v; }
bool operator<(const Mint a) const { return v < a.v; }
static Mint comb(long long n, int k)
{
Mint num(1), dom(1);
for (int i = 0; i < k; i++)
{
num *= Mint(n - i);
dom *= Mint(i + 1);
}
return num / dom;
}
static Mint inv(int n)
{
return Mint(n).inv();
}
static vector<Mint> getInvArray(int N)
{
vector<Mint> inv(N + 1, 1);
for (int i = 2; i <= N; i++)
inv[i] = inv[MOD % i] * (MOD - MOD / i);
return inv;
}
};
ostream &operator<<(ostream &os, Mint m)
{
os << m.v;
return os;
}
namespace NTT
{
const int G = 3;
vector<Mint> ntt(vector<Mint> d, bool inv = false)
{
int N = 1;
while (N < d.size())
N *= 2;
d.resize(N);
Mint base = Mint(G).pow((MOD - 1) / N);
if (!inv)
{
base = base.inv();
}
vector<Mint> pp(N + 1);
pp[0] = 1;
for (int i = 1; i < N; i++)
{
pp[i] = pp[i - 1] * base;
}
for (int i = 0, j = 0; i < N - 1; i++)
{
if (i < j)
{
swap(d[i], d[j]);
}
int k = N >> 1;
while (k <= j)
{
j -= k;
k >>= 1;
}
j += k;
}
for (int len = 1; len * 2 <= N; len <<= 1)
{
for (int i = 0; i + len * 2 <= N; i += len * 2)
{
int dd = N / 2 / len;
for (int j = 0; j < len; j++)
{
Mint t = d[i + j + len] * pp[dd * j];
d[i + j + len] = d[i + j] - t;
d[i + j] += t;
}
}
}
if (inv)
{
Mint invN = Mint::inv(N);
for (int i = 0; i < N; i++)
d[i] = d[i] * invN;
}
return d;
}
vector<Mint> conv(vector<Mint> d1, vector<Mint> d2)
{
int num = d1.size() + d2.size() - 1;
d1.resize(num), d2.resize(num);
auto t1 = ntt(d1);
auto t2 = ntt(d2);
vector<Mint> tmp(t1.size());
for (int i = 0; i < t1.size(); i++)
tmp[i] = t1[i] * t2[i];
auto r = ntt(tmp, true);
r.resize(num);
return r;
}
} // namespace NTT
void solve(int caseNum)
{
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++)
cin >> a[i] >> b[i];
vector<Mint> r(1, 1);
auto inv = Mint::getInvArray(2e5);
vector<Mint> P(2e5 + 1, 1);
vector<Mint> IP(2e5 + 1, 1);
for (int i = 2; i < P.size(); i++)
{
P[i] = P[i - 1] * i;
IP[i] = IP[i - 1] * inv[i];
}
for (int i = 0; i < n; i++)
{
int s = max(0, b[i] - (int)r.size() + 1);
int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]);
vector<Mint> x(e - s + 1);
for (int j = s; j <= e; j++)
{
x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j];
}
auto t = NTT::conv(r, x);
int t1 = b[i] - s;
int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1);
r.resize(t2-t1+1);
for (int j = t1; j <= t2;j++)
{
r[j-t1]=t[j];
}
}
Mint sum;
for (auto t : r)
sum += t;
cout << sum.v << endl;
}
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.precision(10);
int T = 1;
//cin >> T;
for (int i = 1; i <= T; i++)
{
solve(i);
}
cout.flush();
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int INFi = 1e9+67;
const ll INFll = 1e18;
using NumberType = double;
//ll mod = 1e9+7;
ll mod = 998244353;
namespace std {
template<typename a, typename b>
struct hash<std::pair<a, b> > {
public:
hash() {}
size_t operator()(const std::pair<a, b> &p) const {
return hash<a>()(p.first) + hash<b>()(p.second)*998242353;
}
};
};
//integer division, correctly works with negative values
pair<ll,ll> divNorm(ll a, ll b) {
ll res = a/b;
ll mod = a%b;
if (mod<0) {
res--;
mod+=b;
}
return {res, mod};
}
ll divRoundDown(ll a, ll b) {
auto divRes = divNorm(a,b);
return divRes.first;
}
ll divRoundUp(ll a, ll b) {
auto divRes = divNorm(a,b);
ll res = divRes.first;
if (divRes.second) {
res++;
}
return res;
}
ll bin_pow(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) {
res*=a;
res %=mod;
}
a*=a;
a %= mod;
b>>=1;
}
return res;
}
ll reverse(ll a) {
return bin_pow(a,mod-2);
}
template<int mod, int root, int rootPw>
struct FFT {
private:
ll mul(ll a, ll b) {
return (a*b) % mod;
}
ll bin_pow(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) {
res = mul(res, a);
}
a = mul(a,a);
b>>=1;
}
return res;
}
ll reverse(ll a) {
return bin_pow(a,mod-2);
}
public:
vector<int> operator()(const vector<int>& a, int n, bool invert) {
assert(mod==::mod);
int root_1 = reverse(root);
int pow2 = 1;
while (pow2<n) {
pow2 <<= 1;
}
n = pow2;
vector<int> res(n, 0);
std::copy(a.begin(), a.end(), res.begin());
for (int i=1, j=0; i<n; ++i) {
int bit = n >> 1;
for (; j>=bit; bit>>=1)
j -= bit;
j += bit;
if (i < j)
swap (res[i], res[j]);
}
for (int len=2; len<=n; len<<=1) {
int wlen = invert ? root_1 : root;
for (int i=len; i<rootPw; i<<=1)
wlen = int (wlen * 1ll * wlen % mod);
for (int i=0; i<n; i+=len) {
int w = 1;
for (int j=0; j<len/2; ++j) {
int u = res[i+j], v = int (res[i+j+len/2] * 1ll * w % mod);
res[i+j] = u+v < mod ? u+v : u+v-mod;
res[i+j+len/2] = u-v >= 0 ? u-v : u-v+mod;
w = int (w * 1ll * wlen % mod);
}
}
}
if (invert) {
int nrev = reverse (n);
for (int i=0; i<n; ++i)
res[i] = int (res[i] * 1ll * nrev % mod);
}
return res;
}
};
FFT<998244353, 15311432 /*3^(7*17)*/, 1<<23> fft;
using ld = double;
const int maxn = 3e5+7;
//const int maxn2 = maxn*maxn;
//double dp[10][maxn][maxn*maxn];
ll dpL[maxn][2], dpR[maxn][2];
ll fact[maxn], iFact[maxn];
ll C(ll n, ll k) {
if (n<0 || k<0) return 0;
if (n<k) return 0;
ll kekw = fact[n];
kekw = (kekw*iFact[n-k]) % mod;
kekw = (kekw*iFact[k]) % mod;
return kekw;
}
void solve() {
fact[0] = iFact[0] = 1;
for (int i=1;i<maxn;i++) {
fact[i] = (fact[i-1] * i) % mod;
iFact[i] = reverse(fact[i]);
}
int n;
cin >> n;
vector<ll> a(n), b(n);
vector<int> ans{1};
for (int i=0;i<n;i++) {
int m = ans.size();
cin >> a[i] >> b[i];
vector<int> otherToConv;
for (int j=b[i]-m+1;j<=b[i]+m+a[i]-b[i]-1;j++) {
otherToConv.push_back(C(a[i]+b[i], j));
}
int resLen = m-1 + (m+a[i]-b[i]);
auto image1 = fft(otherToConv, resLen, false);
auto image2 = fft(ans, resLen, false);
for (int i=0;i<image1.size();i++) {
image1[i] = (((ll) image1[i])*((ll) image2[i])) % mod;
}
auto out = fft(image1, resLen, true);
ans.clear();
for (int i=m-1;i<resLen;i++) {
ans.push_back(out[i]);
}
}
ll res = 0;
for (int i=0;i<ans.size();i++) {
res += ans[i];
res %= mod;
}
cout << res;
}
int main() {
// freopen("input.txt","w",stdout);
// int n = 100'000;
// for (int i=0;i<n;i++) {
// cout << 1 << " ";
// }
// cout << "\n";
// for (int i=1;i<n;i++) {
// cout << 1 << " " << i+1 << "\n";
// }
// for (int i=0;i<n;i++) {
// cout << 200'000 << " ";
// }
// cout << 10 << " " << 0 << "\n";
// int starsLeft = 5;
// for (int i=0;i<10;i++) {
// for (int j=0;j<10;j++) {
// int kekw = rand() % 20;
// if (kekw==1 && starsLeft) {
// cout << "*";
// starsLeft--;
// } else {
// cout << ((char) ('0' + (rand() % 10)));
// }
// }
// cout << "\n";
// }
// return 0;
ios_base::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
// freopen("input.txt","r",stdin);
//freopen("output.bin","w",stdout);
//freopen("/tmp/output.txt","w",stdout);
cout << setprecision(2) << fixed;
// int t;
// cin >> t;
// for (int i=0;i<t;i++)
// ll start = clock();
// while (1)
solve();
// double time = (clock() - start) * 1.0 / CLOCKS_PER_SEC;
// cout<< time << "s.";
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count();
mt19937_64 rnd(seed);
const int MOD = 998244353;
#ifdef VIPJML_LOCAL
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v)
{
os << "{";
for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << *vi;
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const vector<pair<A, B>> &v)
{
os << "{";
for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi)
{
if (vi != v.begin())
os << ", ";
os << '(' << vi->first << " " << vi->second << ")";
}
os << "}";
return os;
}
template <typename A, typename B>
ostream &operator<<(ostream &os, const pair<A, B> &p)
{
os << '(' << p.first << ", " << p.second << ')';
return os;
}
void dbg_out() { cerr << endl; }
template <typename Head, typename... Tail>
void dbg_out(Head H, Tail... T)
{
cerr << ' ' << H;
dbg_out(T...);
}
#define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__)
#else
#define dbg(...)
#endif
using LL = long long;
struct Mint
{
int v;
Mint() : v(0) {}
Mint(int t)
{
v = t % MOD;
if (v < 0)
v += MOD;
}
Mint pow(int k)
{
Mint res(1), tmp(v);
while (k)
{
if (k & 1)
res *= tmp;
tmp *= tmp;
k >>= 1;
}
return res;
}
Mint inv() { return pow(MOD - 2); }
Mint &operator+=(Mint a)
{
v += a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
Mint &operator-=(Mint a)
{
v += MOD - a.v;
if (v >= MOD)
v -= MOD;
return *this;
}
Mint &operator*=(Mint a)
{
v = (long long)v * a.v % MOD;
return *this;
}
Mint &operator/=(Mint a) { return (*this) *= a.inv(); }
Mint operator+(Mint a) const { return Mint(v) += a; }
Mint operator-(Mint a) const { return Mint(v) -= a; }
Mint operator*(Mint a) const { return Mint(v) *= a; }
Mint operator/(Mint a) const { return Mint(v) /= a; }
Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); }
bool operator==(const Mint a) const { return v == a.v; }
bool operator!=(const Mint a) const { return v != a.v; }
bool operator<(const Mint a) const { return v < a.v; }
static Mint comb(long long n, int k)
{
Mint num(1), dom(1);
for (int i = 0; i < k; i++)
{
num *= Mint(n - i);
dom *= Mint(i + 1);
}
return num / dom;
}
static Mint inv(int n)
{
return Mint(n).inv();
}
static vector<Mint> getInvArray(int N)
{
vector<Mint> inv(N + 1, 1);
for (int i = 2; i <= N; i++)
inv[i] = inv[MOD % i] * (MOD - MOD / i);
return inv;
}
};
ostream &operator<<(ostream &os, Mint m)
{
os << m.v;
return os;
}
namespace NTT
{
const int G = 3;
vector<Mint> ntt(vector<Mint> d, bool inv = false)
{
int N = 1;
while (N < d.size())
N *= 2;
d.resize(N);
Mint base = Mint(G).pow((MOD - 1) / N);
if (!inv)
{
base = base.inv();
}
vector<Mint> pp(N + 1);
pp[0] = 1;
for (int i = 1; i < N; i++)
{
pp[i] = pp[i - 1] * base;
}
for (int i = 0, j = 0; i < N - 1; i++)
{
if (i < j)
{
swap(d[i], d[j]);
}
int k = N >> 1;
while (k <= j)
{
j -= k;
k >>= 1;
}
j += k;
}
for (int len = 1; len * 2 <= N; len <<= 1)
{
for (int i = 0; i + len * 2 <= N; i += len * 2)
{
int dd = N / 2 / len;
for (int j = 0; j < len; j++)
{
Mint t = d[i + j + len] * pp[dd * j];
d[i + j + len] = d[i + j] - t;
d[i + j] += t;
}
}
}
if (inv)
{
Mint invN = Mint::inv(N);
for (int i = 0; i < N; i++)
d[i] = d[i] * invN;
}
return d;
}
vector<Mint> conv(vector<Mint> d1, vector<Mint> d2)
{
int num = d1.size() + d2.size() - 1;
d1.resize(num), d2.resize(num);
auto t1 = ntt(d1);
auto t2 = ntt(d2);
vector<Mint> tmp(t1.size());
for (int i = 0; i < t1.size(); i++)
tmp[i] = t1[i] * t2[i];
auto r = ntt(tmp, true);
r.resize(num);
return r;
}
} // namespace NTT
void solve(int caseNum)
{
int n;
cin >> n;
vector<int> a(n), b(n);
for (int i = 0; i < n; i++)
cin >> a[i] >> b[i];
vector<Mint> r(1, 1);
auto inv = Mint::getInvArray(2e5);
vector<Mint> P(2e5 + 1, 1);
vector<Mint> IP(2e5 + 1, 1);
for (int i = 2; i < P.size(); i++)
{
P[i] = P[i - 1] * i;
IP[i] = IP[i - 1] * inv[i];
}
for (int i = 0; i < n; i++)
{
int s = max(0, b[i] - (int)r.size() + 1);
int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]);
vector<Mint> x(e - s + 1);
for (int j = s; j <= e; j++)
{
x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j];
}
auto t = NTT::conv(r, x);
int t1 = b[i] - s;
int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1);
r.resize(t2-t1+1);
for (int j = t1; j <= t2;j++)
{
r[j-t1]=t[j];
}
}
Mint sum;
for (auto t : r)
sum += t;
cout << sum.v << endl;
}
int main()
{
std::ios::sync_with_stdio(false);
cin.tie(NULL);
cout.precision(10);
int T = 1;
//cin >> T;
for (int i = 1; i <= T; i++)
{
solve(i);
}
cout.flush();
return 0;
}
| 13 | CPP |
#include <cstdio>
#include <algorithm>
using namespace std;
int quick_power(int a,int b,int Mod){
int ans=1;
while(b){
if(b&1){
ans=1ll*ans*a%Mod;
}
b>>=1;
a=1ll*a*a%Mod;
}
return ans;
}
const int Mod=998244353;
const int Maxn=20000;
const int Maxm=200000;
const int G=3;
void NTT(int *a,int flag,int n){
static int R[Maxn+5],last_len;
int len=1,L=0;
while(len<n){
len<<=1;
L++;
}
if(last_len!=len){
last_len=len;
for(int i=0;i<len;i++){
R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
}
}
for(int i=0;i<len;i++){
if(i<R[i]){
swap(a[i],a[R[i]]);
}
}
for(int j=1;j<len;j<<=1){
int T=quick_power(G,(Mod-1)/(j<<1),Mod);
for(int k=0;k<len;k+=(j<<1)){
for(int l=0,t=1;l<j;l++,t=1ll*t*T%Mod){
int Nx=a[k+l],Ny=1ll*t*a[j+k+l]%Mod;
a[k+l]=(Nx+Ny)%Mod;
a[j+k+l]=(Nx-Ny+Mod)%Mod;
}
}
}
if(flag==-1){
reverse(a+1,a+len);
for(int i=0,t=quick_power(len,Mod-2,Mod);i<len;i++){
a[i]=1ll*a[i]*t%Mod;
}
}
}
int frac[Maxm+5],inv_f[Maxm+5];
void init(){
frac[0]=1;
for(int i=1;i<=Maxm;i++){
frac[i]=1ll*frac[i-1]*i%Mod;
}
inv_f[Maxm]=quick_power(frac[Maxm],Mod-2,Mod);
for(int i=Maxm-1;i>=0;i--){
inv_f[i]=1ll*inv_f[i+1]*(i+1)%Mod;
}
}
int C(int n,int m){
return 1ll*frac[n]*inv_f[m]%Mod*inv_f[n-m]%Mod;
}
void mul(int *a,int a_len,int *b,int b_len,int *c){
static int A[Maxn+5],B[Maxn+5];
for(int i=0;i<a_len;i++){
A[i]=a[i];
}
for(int i=0;i<b_len;i++){
B[i]=b[i];
}
int len=1;
while(len<(a_len+b_len-1)){
len<<=1;
}
for(int i=a_len;i<len;i++){
A[i]=0;
}
for(int i=b_len;i<len;i++){
B[i]=0;
}
NTT(A,1,len);
NTT(B,1,len);
for(int i=0;i<len;i++){
A[i]=1ll*A[i]*B[i]%Mod;
}
NTT(A,-1,len);
for(int i=0;i<a_len+b_len-1;i++){
c[i]=A[i];
}
}
int A[Maxn+5],B[Maxn+5],tmp[Maxn+5];
int a_len,b_len,c_len;
int main(){
init();
int n;
scanf("%d",&n);
a_len=1;
A[0]=1;
for(int i=1;i<=n;i++){
int a,b;
scanf("%d%d",&a,&b);
b_len=(a_len<<1)+20;
for(int i=0;i<b_len;i++){
B[i]=0;
}
for(int i=0;i<b_len;i++){
int id=i-(a_len+10)+b;
B[i]=C(a+b,id);
}
mul(A,a_len,B,b_len,A);
for(int i=0;i<a_len+a-b;i++){
tmp[i]=0;
}
for(int i=0;i<a_len+b_len-1;i++){
int id=(i-(a_len+10));
if(id>=0&&id<a_len+a-b){
tmp[id]=A[i];
}
}
a_len+=a-b;
for(int i=0;i<a_len;i++){
A[i]=tmp[i];
}
}
int ans=0;
for(int i=0;i<a_len;i++){
ans=(ans+A[i])%Mod;
}
printf("%d\n",ans);
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
#define ll long long
#define pii pair<int, int>
#define fir first
#define sec second
#define pb emplace_back
#define gc() getchar()
inline int read()
{
int now=0,f=1; char c=gc();
for(;!isdigit(c);c=='-'&&(f=-1),c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now*f;
}
const int mod = 998244353;
inline int add(int a,int b){return a+b>=mod? a+b-mod: a+b;}
inline int sub(int a,int b){return a<b? a-b+mod: a-b;}
inline int mul(int a,int b){return 1LL*a*b%mod;}
int qpow(int a,int b){
int ret=1;
for(; b; b>>=1){
if(b&1) ret=mul(ret,a);
a=mul(a,a);
}
return ret;
}
const int D = 2e5+10;
const int G = 3;
int wn[D<<4], rev[D<<4];
int NTT_init(int pn){
int step=0; int n = 1;
for(; n<pn; n<<=1) ++step;
for(int i=1; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(step-1));
int g = qpow(G,(mod-1)/n);
wn[0] = 1;
for(int i=1; i<=n; i++) wn[i] = mul(wn[i-1], g);
return n;
}
void NTT(int a[],int n,int f){
for(int i=0; i<n; i++){
if(i<rev[i]) swap(a[i], a[rev[i]]);
}
for(int k=1; k<n; k<<=1){
for(int i=0; i<n; i+=(k<<1)){
int t = n/(k<<1);
for(int j=0; j<k; j++){
int w = (f==1)? wn[t*j]: wn[n-t*j];
int x = a[i+j];
int y = mul(a[i+j+k], w);
a[i+j] = add(x, y);
a[i+j+k] = sub(x, y);
}
}
}
if(f == -1){
int ninv = qpow(n, mod-2);
for(int i=0; i<n; i++) a[i] = mul(a[i], ninv);
}
}
const int M = 1e6+10;
int fac[M], inv[M], ifac[M];
void init(int n){
fac[0]=1;for(int i=1; i<=n; i++)fac[i]=mul(fac[i-1],i);
inv[1]=1;for(int i=2; i<=n; i++)inv[i]=mul(sub(mod,mod/i),inv[mod%i]);
ifac[0]=1;for(int i=1; i<=n; i++)ifac[i]=mul(ifac[i-1],inv[i]);
}
int C(int n,int m){
return (m<0||m>n)? 0: mul(fac[n], mul(ifac[m],ifac[n-m]));
}
const int N = 5e3+10;
int a[N], b[N];
int x[D]{0}, y[D]{0}, ans[D]{0};
int main(){
int n=read();
for(int i=1; i<=n; i++){
a[i]=read(); b[i]=read();
}
init(M-1);
int m=1; ans[0]=1;
for(int i=1; i<=n; i++){
int n_m=m+a[i]-b[i];
for(int j=0; j<m; j++) x[m+j]=ans[j];
for(int j=max(-b[i],-m); j<=min(a[i],n_m); j++) y[m+j]=C(a[i]+b[i],b[i]+j);
//cout<<"x:";for(int j=0; j<10; j++) cout<<x[j]<<' '; cout<<endl;
//cout<<"y:";for(int j=0; j<10; j++) cout<<y[j]<<' '; cout<<endl;
int len = NTT_init(4*(m+5));
//cout<<len<<endl;
NTT(x,len,1);
NTT(y,len,1);
for(int j=0; j<=len; j++) x[j]=mul(x[j],y[j]);
NTT(x,len,-1);
NTT(y,len,-1);
//cout<<"after_x:"; for(int j=0; j<10; j++) cout<<x[j]<<' '; cout<<endl;
for(int j=0; j<m+10; j++) ans[j]=0;
for(int j=0; j<n_m; j++) ans[j]=x[2*m+j];
//for(int j=0; j<n_m; j++) cout<<ans[j]<<' '; cout<<endl;
for(int j=0; j<=len; j++) x[j]=y[j]=0;
m=n_m;
}
int sum=0;
for(int i=0; i<m; i++) sum=add(sum,ans[i]);
printf("%d\n",sum);
return 0;
} | 13 | CPP |
#include<bits/stdc++.h>
#define ll long long
#define p pair<int, int>
#define endl '\n'
const int INF = 1000000001;using namespace std;const int C = 998244353;vector<ll> fact, minus_fact;
ll pow1(ll x, ll y, ll z=C){if (y == 0)return 1;if (y % 2 == 0)return pow1(x*x % z, y/2, z);return pow1(x, y-1, z)*x % z;}
void facts(int n){fact = {1}, minus_fact = {1};for (int q = 1; q <= n; q++){fact.push_back(fact.back()*q % C);minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C);}}
ll c(int k, int n){if (k < 0 || k > n)return 0;return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C;}
signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
facts(200179);
int n;
cin >> n;
vector<p> a(n);
for (int q = 0; q < n; q++){
cin >> a[q].first >> a[q].second;
}
vector<int> now = {1};
for (int q = 0; q < n; q++){
int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second;
vector<__int128> will(w3-a[q].second, 0);
vector<ll> cc(now.size()+a[q].first);
for (int q1 = 0; q1 < cc.size(); q1++){
cc[q1] = c(q1, a[q].first+a[q].second);
}
for (int q1 = a[q].second; q1 < w3; q1++){
int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second);
for (int q2 = w2; q2 < w; q2++){
will[w1] += cc[q1-q2]*now[q2];
}
}
now = {};
for (__int128 q1: will){
now.push_back(q1 % C);
}
for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--){
now.push_back(now[q1]);
}
}
ll ans = 0;
for (int q: now){
ans += q;
}
cout << ans % C << endl;
return 0;
} | 13 | CPP |
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<climits>
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define mod 998244353
#define poly vector<int>
using namespace std;
inline int read(){
int f=1,ans=0;char c=getchar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
while(c>='0'&&c<='9'){ans=ans*10+c-'0';c=getchar();}
return f*ans;
}
const int MAXN=5e5+11;
int flip[MAXN];
int mul(int x,int y){return 1ll*x*y%mod;}
int add(int x,int y){return x+y>=mod?x+y-mod:x+y;}
int sub(int x,int y){return x-y>=0?x-y:x-y+mod;}
int ksm(int a,int b){int ans=1;while(b){if(b&1) ans=mul(ans,a);a=mul(a,a);b>>=1;}return ans;}
void print(poly a){for(auto v:a) printf("%d ",v);printf("\n");return;}
void NTT(poly &f,int opt,int Len){
for(int i=0;i<Len;i++) if(i<flip[i]) swap(f[i],f[flip[i]]);
for(int p=2;p<=Len;p<<=1){
int len=(p>>1),buf=ksm(3,(mod-1)/p); if(opt==-1) buf=ksm(buf,mod-2);
for(int be=0;be<Len;be+=p){
int tmp=1;
for(int l=be;l<be+len;l++){
int t=mul(f[l+len],tmp);
f[l+len]=sub(f[l],t),f[l]=add(f[l],t);
tmp=mul(tmp,buf);
}
}
}
if(opt==-1){
int Inv=ksm(Len,mod-2); for(int i=0;i<Len;i++) f[i]=mul(f[i],Inv);
}return;
}
int setN(int siz){
int cur=1; while(cur<=siz) cur<<=1;
for(int i=1;i<cur;i++) flip[i]=((flip[i>>1]>>1)|(i&1?cur>>1:0));
return cur;
}
poly operator*(poly a,poly b){
int len=a.size()+b.size()-1; int cur=setN(len);
a.resize(cur),b.resize(cur);
for(int i=1;i<cur;i++) flip[i]=(flip[i>>1]>>1|(i&1?cur>>1:0));
NTT(a,1,cur),NTT(b,1,cur);
for(int i=0;i<cur;i++) a[i]=mul(a[i],b[i]);
NTT(a,-1,cur); a.resize(len);
return a;
}
int fac[MAXN],ifac[MAXN],inv[MAXN],N; poly f;
signed main(){
//freopen("B.in","r",stdin);
fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=1;
for(int i=2;i<MAXN;i++) fac[i]=mul(fac[i-1],i),inv[i]=mul((mod-mod/i),inv[mod%i]),ifac[i]=mul(ifac[i-1],inv[i]);
f.pb(0),f.pb(1); N=read();
while(N--){
int a=read(),b=read(); int Maxj=a-b+f.size()-1,Maxk=f.size()-1;
poly g; g.clear();
int X=INT_MAX;
for(int i=1-Maxk;i<=Maxj-1;i++){
if(a-i>=0&&b+i>=0){
if(X==INT_MAX) X=i;g.pb(mul(ifac[b+i],ifac[a-i]));
}
}
f=f*g;
for(int i=0;i<f.size();i++) f[i]=mul(f[i],fac[a+b]);
poly F; F.clear();
for(int i=0;i<f.size();i++){
if(X>=0&&X<=Maxj) F.pb(f[i]);
X++;
}
f=F; f[0]=0;
//print(f);
} int Ans=0; for(auto v:f) Ans=add(Ans,v);
printf("%d\n",Ans);return 0;
}
| 13 | CPP |
#pragma GCC target("avx2")
#pragma GCC optimize("unroll-loops")
#pragma GCC optimize("Ofast")
//#include <bits/stdc++.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <cstdio>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <unordered_set>
#include <unordered_map>
#include <algorithm>
#include <string>
#include <numeric>
#include <cmath>
#include <bitset>
#include <tuple>
#include <memory>
#include <random>
#include <chrono>
#include <sstream>
#include <iterator>
#define ull unsigned long long
#define ll long long
#define all(vec) vec.begin(), vec.end()
#define pb push_back
#define FOR(i,a,b) for(int i = a; i < b; ++i)
#define printvec(vec) for(auto el: vec) {cout << el << " ";}
constexpr long long INF = 200000000000000001LL;
constexpr int INF32 = 2100000001;
size_t seed42 = std::chrono::system_clock::now().time_since_epoch().count();
std::mt19937 rng(seed42);
std::uniform_int_distribution<int> unidistrib;
int randint() {return unidistrib(rng);}
using namespace std;
ull modulo = 998244353 ; // 1+7*17*2^23.
//ull modulo = 1000000007 ;
int modulo32 = 998244353;
ull poww(ull x, ull n) {
if (n == 0)
return 1;
ull answ = poww(x, n/2);
answ = (answ * answ) % modulo;
if (n%2)
answ = (answ * x) % modulo;
return answ;
}
pair<int, int> operator+ (const pair<int, int>& lhs, pair<int, int>& rhs) {
return {lhs.first +rhs.first, lhs.second + rhs.second};
}
template <class T>
ostream& operator << (ostream& lhs, pair<T, T>& rhs) {
return (lhs << rhs.first<<":" << rhs.second);
}
vector<int> r;
vector<int> fft(vector<int>& a, bool inv = false) {
size_t n = a.size();
//vector<int> r(n);
r.resize(n);
for (size_t k = 0; k < n; k++) {
size_t b = 0;
for (size_t z = 1; z < n; z *= 2) {
b *= 2;
if (k&z) ++b;
}
r[b] = a[k];
}
ull wm;
for (int m = 2; m <= n; m *= 2) {
if (!inv)
wm = poww(5ULL, (119ULL<<23)/m);
else
wm = poww(5ULL, (((119ULL<<23)/m) * (modulo-2))%(modulo-1));
for (int k = 0; k < n; k += m) {
ull w = 1;
for (int j = 0; j < m/2; j++) {
int u = r[k+j];
int t = (w*r[k+j+m/2])%modulo;
r[k+j] = (u+t)%modulo32;
r[k+j+m/2] = (u + modulo32 - t) % modulo32;
w = (w*wm)%modulo;
}
}
}
if (inv) {
ull ninv = poww(n, modulo-2);
for (int i = 0; i < n; i++)
r[i] = (ninv*r[i])%modulo;
}
return r;
}
int main() {
#ifdef DARTH
std::ifstream filestream("input.txt");
std::cin.rdbuf(filestream.rdbuf());
#else
ios::sync_with_stdio(false);
std::cin.tie(0);
#endif //DARTH
vector<ull> facc(200002,1), invfac(200002,1);
for(ull i = 2; i <= 200001; ++i) {
facc[i] = (i * facc[i-1]) % modulo;
invfac[i] = poww(facc[i], modulo-2);
}
auto Cnk = [&](int n, int k) {
if (k<0 || k> n)
return 0ULL;
return (((facc[n] * invfac[k]) % modulo) * invfac[n-k])%modulo;
};
int n;
cin >> n;
vector<int> a(n), b(n);
FOR(i,0,n) {
cin >> a[i] >> b[i];
}
int maxsz = 1 << 14;
vector<int> answ (1, 1);
vector<int> cnk;
answ.reserve(1<<14);
cnk.reserve(1<<14);
r.reserve(1<<14);
//vector<ull> tmp(1<<14);
answ[0] = 1;
ull m = 1;
for(int i = 0; i < n; ++i) {
int maxj = 2 * m + a[i] - b[i];
//int maxjj = 2 *m + max(a[i] - b[i], 0);
int maxjpow2 = 1;
while (maxjpow2 < maxj)
maxjpow2<<=1;
answ.resize(maxjpow2, 0ULL);
cnk.resize(maxjpow2, 0ULL);
for (int jplusm = 0; jplusm < maxj; ++jplusm) {
cnk[jplusm] = Cnk(a[i] + b[i], b[i] + jplusm - m);
//cout << a[i] + b[i] - j << " a[i] + b[i] - j" << k << "=" << cnk[k] << " ";
}
fill(cnk.begin()+maxj, cnk.end(), 0);
answ = fft(answ);
cnk = fft(cnk);
for (int j = 0; j < answ.size(); ++j) {
answ[j] = (answ[j]*1ULL*cnk[j]) % modulo;
}
answ = fft(answ, true);
copy(answ.begin() + m, answ.begin() + maxj, answ.begin());
m = m + a[i] - b[i];
fill(answ.begin() + m, answ.end(), 0);
}
cout << (accumulate(answ.begin(), answ.begin()+m, 0ULL)) % modulo;
//cout << answ[3];
//printvec(answ);
return 0;
}
| 13 | CPP |
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int N=5e5+5,p=998244353,g=3,gv=(p+1)/3;
int n,m,rev[N];
ll fc[N],fv[N],iv[N],F[N],G[N],FF[N];
ll qpow(ll a,int b)
{ll ret=1;while(b){if(b&1)ret=ret*a%p;a=a*a%p;b>>=1;}return ret;}
ll inv(ll a){return qpow(a,p-2);}
void getrev(int len)
{for(int i=0;i<len;i++){rev[i]=rev[i>>1]>>1;if(i&1)rev[i]|=len>>1;}}
void ntt(ll *f,int len,int tp){
getrev(len);
for(int i=0;i<len;i++)if(i<rev[i])swap(f[i],f[rev[i]]);
for(int i=2;i<=len;i<<=1){
int stp=i>>1;ll wn=qpow(tp==1?g:gv,(p-1)/i);
for(int j=0;j<len;j+=i){
ll w=1;
for(int k=j;k<j+stp;k++){
ll s1=f[k],s2=f[k+stp]*w%p;w=w*wn%p;
f[k]=(s1+s2)%p,f[k+stp]=(s1-s2+p)%p;
}
}
}
if(tp==-1){ll lv=inv(len);for(int i=0;i<len;i++)f[i]=f[i]*lv%p;}
}
int main(){
scanf("%d",&n);
m=1;F[1]=1;
fc[0]=fc[1]=fv[0]=fv[1]=iv[1]=1;
for(int i=2;i<=N-5;i++)fc[i]=fc[i-1]*i%p,
iv[i]=(p-p/i)*iv[p%i]%p,fv[i]=fv[i-1]*iv[i]%p;
for(int i=1;i<=n;i++){
int a,b,m1=m;scanf("%d%d",&a,&b);m+=a-b;
int len=1;while(len<=(m1*2+m+1))len<<=1;
for(int j=-m1;j<=m;j++)
if(b+j>=0&&a-j>=0)G[j+m1]=fv[b+j]*fv[a-j]%p;
else G[j+m1]=0;
for(int j=m+m1+1;j<len;j++)G[j]=0;
for(int j=1;j<=m1;j++)FF[j]=F[j];FF[0]=0;
for(int j=m1+1;j<len;j++)FF[j]=0;
//for(int j=0;j<len;j++)cout<<G[j]<<" ";cout<<endl;
//for(int j=0;j<len;j++)cout<<FF[j]<<" ";cout<<endl;cout<<endl;
ntt(G,len,1),ntt(FF,len,1);
for(int j=0;j<len;j++)F[j]=FF[j]*G[j]%p;
ntt(F,len,-1);
for(int j=1;j<=m;j++)F[j]=F[j+m1]*fc[a+b]%p;
for(int j=m+1;j<len;j++)F[j]=0;F[0]=0;
//for(int j=0;j<len;j++)cout<<F[j]<<" ";cout<<endl;cout<<endl;
}
ll ans=0;for(int i=1;i<=m;i++)ans=(ans+F[i])%p;
printf("%lld\n",ans);
}
| 13 | CPP |
#include<bits/stdc++.h>
using namespace std;
const int N = 2e5+5;
const int G = 3;
const int mod = 998244353;
int fac[N],rev[N];
int qpow(int a,int b){
int r=1;
while(b){
if(b&1)r=1ll*r*a%mod;
b>>=1;a=1ll*a*a%mod;
}
return r;
}
struct NTT{
int n,m,rev[N<<1];
int a[N<<1],b[N<<1];
void init(int len){
for(n=1,m=0;n<=len;n<<=1,m++);
for(int i=0;i<n;++i){
rev[i]=rev[i>>1]>>1|(1&i)<<(m-1);
a[i]=b[i]=0;
}
}
void FFT(int *a,int f){
for(int i=0;i<n;++i)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int wn=qpow(G,(mod-1)/(i<<1));
if(f==-1)wn=qpow(wn,mod-2);
for(int j=0;j<n;j+=i<<1){
int w=1;
for(int k=0;k<i;++k,w=1ll*w*wn%mod){
int x=a[j+k],y=1ll*a[j+k+i]*w%mod;
a[j+k]=(x+y)%mod;a[j+k+i]=(x-y+mod)%mod;
}
}
}
if(f==-1){
int rn=qpow(n,mod-2);
for(int i=0;i<n;++i)a[i]=1ll*a[i]*rn%mod;
}
}
void work(){
FFT(a,1);FFT(b,1);
for(int i=0;i<n;++i)a[i]=1ll*a[i]*b[i]%mod;
FFT(a,-1);
}
}B;
void init(){
fac[0]=1;
for(int i=1;i<N;++i)fac[i]=1ll*fac[i-1]*i%mod;
rev[N-1]=qpow(fac[N-1],mod-2);
for(int i=N-2;~i;--i)rev[i]=1ll*rev[i+1]*(i+1)%mod;
}
int C(int n,int m){
if(n<m||m<0)return 0;
return 1ll*fac[n]*rev[m]%mod*rev[n-m]%mod;
}
int n,ans[N];
int main(){
init();
cin>>n;
int len=0;
ans[0]=1;
for(int i=1,a,b;i<=n;++i){
cin>>a>>b;
B.init(2*len+a-b);
for(int k=-len;k<=len+a-b;++k)B.a[k+len]=C(a+b,b+k);
for(int j=0;j<=len;++j)B.b[j]=ans[j];
B.work();
// for(int k=-len;k<=len+a-b;++k){
// for(int j=0;j<=len;++j){
// if(j+k>=0)(nex[j+k]+=C(a+b,b+k)*ans[j])%=mod;
// }
// }
for(int k=0;k<=len+a-b;++k){
ans[k]=B.a[k+len];
}
len+=a-b;
}
int res=0;
for(int i=0;i<=len;++i)(res+=ans[i])%=mod;
cout<<res<<endl;
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
using base = ll;//complex<double>;
const ll mod = 998244353;
ll mexp(ll x, ll y) {
ll r = 1;
for(;y;x=x*x%mod, y>>=1) if(y & 1) r = r * x % mod;
return r;
}
ll modd(ll x) {
if(x >= mod) x -= mod;
if(x < 0) x += mod;
return x;
}
base roots[1<<20];
void fft(vector<base>& a, bool inv) {
int n = a.size(), j = 0;
for(int i=1;i<n;i++) {
int bit = (n >> 1);
while(j >= bit) {
j -= bit;
bit >>= 1;
}
j += bit;
if(i < j) swap(a[i], a[j]);
}
// In NTT, let prr = primitive root. Then,
int prr = 3;
ll ang = mexp(prr, (mod - 1) / n);
if(inv) ang = mexp(ang, mod - 2);
roots[0] = 1;
for(int i=1; i<n/2; i++){
roots[i] = roots[i-1] * ang % mod;
}
//also, make sure to apply modulus under here
for(int i=2;i<=n;i<<=1) {
int step = n / i;
for(int j=0;j<n;j+=i) {
for(int k=0;k<i/2;k++) {
base u = a[j+k], v = a[j+k+i/2] * roots[step * k] % mod;
a[j+k] = modd(u+v);
a[j+k+i/2] = modd(u-v+mod);
}
}
}
if(inv) for(int i=0;i<n;i++) a[i] = a[i] * mexp(n, mod-2) % mod;
}
void conv(vector<base>& x, vector<base>& y) {
int n = 2; while(n < x.size()+y.size()) n <<= 1;
x.resize(n), y.resize(n);
fft(x, false); fft(y, false);
for(int i=0;i<n;i++) x[i] = x[i] * y[i] % mod;
fft(x, true);
}
const int lim = 222222;
ll f[lim], fi[lim];
vector<base> ans, mul, nans;
int n;
ll binom(int a, int b) {
if(b < 0 || b > a) return 0;
return f[a] * fi[b] % mod * fi[a-b] % mod;
}
int main()
{
ios_base::sync_with_stdio(false);
cin.tie(NULL);
cin >> n;
ans.reserve(1<<16);
mul.reserve(1<<16);
f[0] = 1;
for(int i=1;i<lim;i++)
f[i] = i * f[i-1] % mod;
fi[lim-1] = mexp(f[lim-1], mod-2);
for(int i=lim-2;i>=0;i--)
fi[i] = (i+1) * fi[i+1] % mod;
ans.push_back(1);
for(int i=0;i<n;i++) {
int a, b;
cin >> a >> b;
int m = ans.size();
int m1 = 2 * m + a - b - 1;
for(int j=0;j<m1;j++)
mul.emplace_back(binom(a+b, b+j-(m-1)));
conv(ans, mul);
nans.clear(); nans.resize(m+a-b);
for(int i=0;i<m+a-b;i++) nans[i] = ans[m-1+i];
ans = nans;
mul.clear();
}
cout << accumulate(ans.begin(), ans.end(), 0LL) % mod;
} | 13 | CPP |
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=(a);i<(b);++i)
#define per(i,b,a) for(int i=(b)-1;i>=(a);--i)
#define ll long long
using namespace std;
const int mod=998244353;
const int N=1<<20;
int jie[N],inv[N],A[N],B[N],w[N],invw[N],len,pos[N],f[N],g[N];
inline int mul(const int &a,const int &b){return 1ll*a*b%mod;}
inline int add(int a,const int &b){a+=b;return a>=mod?a-mod:a;}
inline int sub(int a,const int &b){a-=b;return a<0?a+mod:a;}
ll quick(ll a,ll b){
ll res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}
void INI(){
jie[0]=1;
inv[0]=inv[1]=1;
rep(i,2,N)inv[i]=-1ll*mod/i*inv[mod%i]%mod+mod;
rep(i,1,N){
jie[i]=mul(jie[i-1],i);
inv[i]=mul(inv[i],inv[i-1]);
}
int G=quick(3,(mod-1)/N),IG=quick(G,mod-2);f[0]=g[0]=1;
rep(i,1,N)f[i]=mul(f[i-1],G),g[i]=mul(g[i-1],IG);
}
inline void init(){
int op=len>>1,k=N/len;
for(int i=0,j=0;i<len;++i,j+=k){
w[i]=f[j];invw[i]=g[j];
pos[i]=pos[i>>1]>>1|(i&1?op:0);
}
}
inline void NTT(int *a,int *omg){
rep(i,0,len)if(i<pos[i])swap(a[i],a[pos[i]]);
for(int i=2;i<=len;i<<=1){
int m=i>>1;
for(int *p=a;p!=a+len;p+=i){
rep(j,0,m){
int t=mul(omg[len/i*j],p[j+m]);
p[j+m]=sub(p[j],t);
p[j]=add(p[j],t);
}
}
}
}
int C(int n,int m){
if(n<0||m<0||m>n)return 0;
return mul(mul(jie[n],inv[m]),inv[n-m]);
}
int main(){
INI();
int n,L=1;
scanf("%d",&n);
len=1<<14;
init();
A[0]=1;
while(n--){
int a,b;
scanf("%d%d",&a,&b);
int nL=L+a-b,j,k;
for(j=b-L+1,k=0;a+b-j>=b-L+1;++j,++k){
B[k]=C(a+b,j);
}
for(;k<len;++k)B[k]=0;
rep(i,L,len)A[i]=0;
// rep(i,0,L)cout<<A[i]<<' ';
// cout<<"iniA\n";
NTT(A,w),NTT(B,w);
rep(i,0,len)B[i]=mul(B[i],A[i]);NTT(B,invw);
int inv=quick(len,mod-2);
//
// cout<<"ans\n";
rep(i,0,nL)A[i]=mul(B[i+L-1],inv);
// cout<<nL<<"L\n";
// rep(i,0,nL)cout<<A[i]<<' ';
// cout<<"A\n";
L=nL;
}
int ans=0;
rep(i,0,L)ans=add(ans,A[i]);
printf("%d\n",ans);
} | 13 | CPP |
#include <bits/stdc++.h>
#ifdef NON_SUBMIT
#define TEST(n) (n)
#define tout cerr
#else
#define TEST(n) ((void)0)
#define tout cin
#endif
using namespace std;
const int MOD=998244353, PR=3;
vector<int> X, Y;
int F[300001], Finv[300001];
int mul(int a, int b) {return 1LL*a*b%MOD;}
int fast_pow(int a, int b)
{
int ret=1;
for(;b;b>>=1) {
if(b&1) ret=mul(ret,a);
a=mul(a,a);
}
return ret;
}
void FFT(vector<int> &A,bool inv)
{
int N=A.size();
stack<int> S;
for(int i=0;i<N;i++) {
int j=0;
for(int b=1;b<N;b<<=1) {
j<<=1;
if(b&i) j|=1;
}
if(i<j) swap(A[i],A[j]);
}
S.push(fast_pow(inv ? fast_pow(PR,MOD-2):PR,MOD/N));
for(int i=2;i<N;i<<=1) S.push(mul(S.top(),S.top()));
for(int i=1;i<N;i<<=1) {
int w=S.top();
S.pop();
for(int j=0;j<N;j+=i<<1) {
int th=1;
for(int k=0;k<i;k++) {
int temp=mul(A[i+j+k],th);
A[i+j+k]=A[j+k]-temp;
if(A[i+j+k]<0) A[i+j+k]+=MOD;
A[j+k]+=temp;
if(A[j+k]>=MOD) A[j+k]-=MOD;
th=mul(th,w);
}
}
}
if(inv) {
int v=fast_pow(N,MOD-2);
for(int i=0;i<N;i++) A[i]=mul(A[i],v);
}
}
void conv(vector<int> &A, vector<int> &B)
{
int N=1;
for(;N<A.size()+B.size();N<<=1);
A.resize(N); B.resize(N);
FFT(A,false); FFT(B,false);
for(int i=0;i<N;i++) A[i]=mul(A[i],B[i]);
FFT(A,true);
}
int nCr(int n, int r)
{
return mul(F[n],mul(Finv[r],Finv[n-r]));
}
int main()
{
ios::sync_with_stdio(false);
cin.tie(NULL); cout.tie(NULL);
TEST(freopen("input.txt","r",stdin));
TEST(freopen("output.txt","w",stdout));
TEST(freopen("debug.txt","w",stderr));
int N=1, M, ans=0;
F[0]=Finv[0]=1;
for(int i=1;i<=300000;i++) F[i]=mul(i,F[i-1]);
Finv[300000]=fast_pow(F[300000],MOD-2);
for(int i=300000;--i;) Finv[i]=mul(Finv[i+1],i+1);
X.resize(1,1);
for(cin>>M;M--;) {
int a, b, sz=X.size()+10, os=X.size()+10;
cin>>a>>b;
Y.clear();
for(int i=-sz;i<=sz;i++) {
if(b+i<0 || i>a) {
if(Y.empty()) os--;
}
else Y.push_back(nCr(a+b,b+i));
}
conv(X,Y);
N+=a-b;
for(int i=0;i<N;i++) X[i]=X[os+i];
X.resize(N);
}
for(int i=0;i<N;i++) {
ans+=X[i];
if(ans>=MOD) ans-=MOD;
}
cout<<ans<<'\n';
return 0;
} | 13 | CPP |
#include<bits/stdc++.h>
typedef int LL;
typedef double dl;
#define opt operator
#define pb push_back
#define pii std::pair<LL,LL>
const LL maxn=1e6+9,mod=998244353,inf=0x3f3f3f3f,G=3;
LL Read(){
LL x(0),f(1); char c=getchar();
while(c<'0' || c>'9'){
if(c=='-') f=-1; c=getchar();
}
while(c>='0' && c<='9'){
x=(x<<3ll)+(x<<1ll)+c-'0'; c=getchar();
}return x*f;
}
void Chkmin(LL &x,LL y){
if(y<x) x=y;
}
void Chkmax(LL &x,LL y){
if(y>x) x=y;
}
LL add(LL x,LL y){
return x+=y,x>=mod?x-mod:x;
}
LL dec(LL x,LL y){
return x-=y,x<0?x+mod:x;
}
LL mul(LL x,LL y){
return 1ll*x*y%mod;
}
LL Pow(LL base,LL b){
LL ret(1); while(b){
if(b&1) ret=mul(ret,base); base=mul(base,base); b>>=1;
}return ret;
}
namespace Poly{
LL r[maxn];
LL Fir(LL N){
LL limit(1),len(0);
while(limit<N) limit<<=1,++len;
for(LL i=1;i<limit;++i) r[i]=(r[i>>1]>>1)|((i&1)<<len-1);
return limit;
}
void Ntt(LL *A,LL N,LL op){
for(LL i=1;i<N;++i) if(i<r[i]) std::swap(A[i],A[r[i]]);
for(LL len=1;len<N;len<<=1){
LL wn(Pow(G,(mod-1)/(len<<1))); if(op==-1) wn=Pow(wn,mod-2);
for(LL j=0;j<N;j+=(len<<1)){
for(LL k=0,w=1;k<len;++k,w=mul(w,wn)){
LL x(A[j+k]),y(mul(w,A[j+k+len]));
A[j+k]=add(x,y); A[j+k+len]=dec(x,y);
}
}
}
if(op==-1){
LL Tmp(Pow(N,mod-2));
for(LL i=0;i<N;++i) A[i]=mul(A[i],Tmp);
}
}
void Mul(LL *A,LL *B,LL *C,LL N,LL M,LL len){
static LL tA[maxn],tB[maxn];
LL limit(Fir(N+M-1));
for(LL i=0;i<N;++i) tA[i]=A[i]; for(LL i=N;i<limit;++i) tA[i]=0;
for(LL i=0;i<M;++i) tB[i]=B[i]; for(LL i=M;i<limit;++i) tB[i]=0;
Ntt(tA,limit,1); Ntt(tB,limit,1);
for(LL i=0;i<limit;++i) tA[i]=mul(tA[i],tB[i]);
Ntt(tA,limit,-1);
for(LL i=0;i<limit;++i) C[i]=tA[i];
for(LL i=limit;i<len;++i) C[i]=0;
}
}
LL n;
LL a[maxn],b[maxn],fav[maxn],fac[maxn],f[maxn],h[maxn];
LL C(LL N,LL M){
if(M<0) return 0;
if(N<M) return 0;
return 1ll*fac[N]*fav[M]%mod*fav[N-M]%mod;
}
void Fir(){
LL N(1000000);
fac[0]=1; for(LL i=1;i<=N;++i) fac[i]=mul(fac[i-1],i);
fav[N]=Pow(fac[N],mod-2); for(LL i=N;i>=1;--i) fav[i-1]=mul(fav[i],i);
}
int main(){
Fir();
n=Read();
for(LL i=1;i<=n;++i){
a[i]=Read(); b[i]=Read();
}
LL num(1);
f[num]=1;
LL V(0);
for(LL l=1;l<=n;++l){
LL _num(num+a[l]-b[l]);
LL len1(a[l]),len2(b[l]);
static LL A[maxn],B[maxn],C[maxn],F[maxn];
A[0]=0;
for(LL i=1;i<=num;++i) A[i]=f[i];
for(LL i=0;i<=V+len1;++i) B[i]=0;
LL L(std::max(-len2,-num+1)),R(std::min(len1,_num));
LL tlen(len2-L);
/*
V=len2;
for(LL i=-len2;i<=len1;++i) B[V+i]=mul(fav[len1-i],fav[len2+i]);
printf("%d,%d,%d\n",num+1,V+len1+1,V+_num+1);
Poly::Mul(A,B,C,num+1,V+len1+1,V+_num+1);
*/
V=-L;
for(LL i=L;i<=R;++i) B[V+i]=mul(fav[len1-i],fav[len2+i]);
Poly::Mul(A,B,C,num+1,V+R+1,V+_num+1);
LL tmp(fac[len1+len2]);
for(LL i=1;i<=_num;++i) f[i]=mul(tmp,C[V+i]);
// for(LL i=1;i<=_num;++i) printf("%d ",f[i]); puts("");
num=_num;
}
LL ans(0);
for(LL i=1;i<=num;++i) ans=add(ans,f[i]);
printf("%d\n",ans);
return 0;
}
| 13 | CPP |
#include <bits/stdc++.h>
#define mp make_pair
#define pb push_back
#define X first
#define Y second
#define y0 y12
#define y1 y22
#define INF 987654321
#define PI 3.141592653589793238462643383279502884
#define fup(i,a,b,c) for(int (i)=(a);(i)<=(b);(i)+=(c))
#define fdn(i,a,b,c) for(int (i)=(a);(i)>=(b);(i)-=(c))
#define MEM0(a) memset((a),0,sizeof(a))
#define MEM_1(a) memset((a),-1,sizeof(a))
#define ALL(a) a.begin(),a.end()
#define COMPRESS(a) sort(ALL(a));a.resize(unique(ALL(a))-a.begin())
#define SYNC ios_base::sync_with_stdio(false);cin.tie(0)
using namespace std;
typedef long long ll;
typedef long double ld;
typedef double db;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int, int> Pi;
typedef pair<ll, ll> Pll;
typedef pair<db, db> Pd;
typedef vector<int> Vi;
typedef Vi Vll;
typedef vector<double> Vd;
typedef vector<Pi> VPi;
typedef vector<Pll> VPll;
typedef vector<Pd> VPd;
typedef tuple<int, int, int> iii;
typedef tuple<int,int,int,int> iiii;
typedef tuple<ll, ll, ll> LLL;
typedef vector<iii> Viii;
typedef vector<LLL> VLLL;
typedef complex<double> base;
const int MOD = 998244353;
ll POW(ll a, ll b, ll MMM=MOD) {ll ret=1; for(;b;b>>=1,a=(a*a)%MMM)if(b&1)ret=(ret*a)% MMM; return ret; }
int dx[] = { 0,1,0,-1,1,1,-1,-1 }, dy[] = { 1,0,-1,0,1,-1,1,-1 };
int ddx[]={2,2,-2,-2,1,1,-1,-1},ddy[]={1,-1,1,-1,2,-2,2,-2};
int fac[300001],inv[300001];
int nCr(int n, int r)
{
if(r<0)return 0;
if(r>n)return 0;
int c = fac[n];
c = (1LL*c*inv[r]) % MOD;
c = (1LL*c*inv[n - r]) % MOD;
return c;
}
void fft(Vi &a, bool inv){
int n = a.size(), j = 0;
Vi roots(n/2);
for(int i=1; i<n; i++){
int bit = (n >> 1);
while(j >= bit){
j -= bit;
bit >>= 1;
}
j += bit;
if(i < j) swap(a[i], a[j]);
}
int ang = POW(3,(MOD-1)/n);
if(inv) ang = POW(ang, MOD - 2);
for(int i=0; i<n/2; i++){
roots[i] = (i ? (1LL*roots[i-1]* ang % MOD) : 1);
}
for(int i=2; i<=n; i<<=1){
int step = n / i;
for(int j=0; j<n; j+=i){
for(int k=0; k<i/2; k++){
int u = a[j+k], v = (1LL*a[j+k+i/2] * roots[step * k])%MOD;
a[j+k] = u+v;
if(a[j+k]>=MOD)a[j+k]-=MOD;
a[j+k+i/2] = u-v;
if(a[j+k+i/2]<0)a[j+k+i/2]+=MOD;
}
}
}
if(inv){
ll t=POW(n,MOD-2);
for(int i=0; i<n; i++) a[i] =1LL*a[i]*t%MOD; // skip for OR convolution.
}
}
Vi multiply(Vi &v, Vi &w){
int n = 2; while(n < v.size() + w.size()) n <<= 1;
v.resize(n); w.resize(n);
fft(v, 0); fft(w, 0);
for(int i=0; i<n; i++) v[i] = (1LL*v[i]*w[i])%MOD;
fft(v, 1);
return v;
}
int main() {
fac[0] = inv[0] = 1;
fup(i, 1, 300000, 1)
fac[i] = (1LL*fac[i - 1] * i) % MOD;
inv[300000] = POW(fac[300000], MOD - 2);
fdn(i, 299999, 1, 1)
inv[i] = (1LL*inv[i + 1] * (i+1)) % MOD;
int x=1;
int n;
scanf("%d",&n);
Vi A={1};
fup(i,0,n-1,1){
int a,b;
scanf("%d%d",&a,&b);
int y=x+a-b;
int N=a+b;
int t=x+y-1;
Vi B;
int l=(N-t+1)>>1,r=(N+t)>>1;
fup(i,l,r,1)B.pb(nCr(N,i));
A=multiply(A,B);
int k=x+t-2;
l=(k-y+1)>>1,r=(k+y)>>1;
fup(j,l,r,1)A[j-l]=A[j];
A.resize(y);
x=y;
}
ll ans=0;
for(ll x:A)ans+=x;
printf("%lld\n",ans%MOD);
} | 13 | CPP |
/* _
_ooOoo_
o8888888o
88" . "88
(| -_- |)
.' \\| |// `.
/ \\||| : |||// \
/ _||||| -:- |||||_ \
| | \\\ - /'| | |
| \_| `\`---'// |_/ |
\ .-\__ `-. -'__/-. /
___`. .' /--.--\ `. .'___
."" '< `.___\_<|>_/___.' _> \"".
| | : `- \`. ;`. _/; .'/ / .' ; |
\ \ `-. \_\_`. _.'_/_/ -' _.' /
===========`-.`___`-.__\ \___ /__.-'_.'_.-'================
Please give me AC.
*/
#include<bits/stdc++.h>
using namespace std;
#define mem(a) memset(a,0,sizeof(a))
//#define INF (~(1<<31))
#define inf 0x3f3f3f3f3f3f3f3f
#define eps 1e-8
#define PI 3.141592653589793238462643383
#define lowbit(x) ((x)&(-x))
#define sqr(x) ((x)*(x))
#define pb(x) push_back(x)
#define pf(x) push_front(x)
#define all(v) (v).begin(),(v).end()
#define dbg(x,y) cout<<(x)<<" = "<<(y)<< endl;
#define per(i,a,b) for(int i = a; i >= b; --i)
#define rep(i,a,b) for(int i = a; i <= b; ++i)
#define fi first
#define se second
#define ls (rt<<1)
#define rs (rt<<1|1)
#define ll long long
#define int ll
typedef bitset<2010> bt;
typedef unsigned long long ull;
typedef complex<double> comp;
typedef pair<int,int> pii;
typedef pair<double,double> pdd;
const ll N = 2e5 + 7;
const ll M = 1e9 + 7;
const ll MAXN = 2e18 + 7;
const ll Mod = 998244353;
//const ll Mod = 1e9 + 7;
int _,i,j,k,n,m,p,s,T,t,l,r,o,u,v,w,x,y,z,ans,nex,sum,num,len,en,sx,sy,tx,ty,th,ma,mi,mod,cnt,la,op,res,flag,cas,bk,ret,mid,now,tmp,rt;
int a[N],b[N],c[N],d[N];
char ch;
vector<int> g[N],h;
string s1,s2,s3;
const int G=3,Gi=332748118;
int R[N];
ll pow(ll a,ll n)
{
ll ret=1;
while(n){
if(n&1) ret=ret*a%Mod;
a=a*a%Mod;
n>>=1;
}
return ret%Mod;
}
void ntt(int *A,int n,int rev)
{
for(int i = 0;i < n;i++)
if(i < R[i]) swap(A[i],A[R[i]]);
for(int mid = 1;mid < n;mid<<=1){
ll wn=pow(rev==1? G:Gi,(Mod-1)/(mid<<1));
for(int j = 0;j < n;j+=(mid<<1)){
ll w=1;
for(int k = 0;k < mid;k++,w=w*wn%Mod){
int x=A[j+k],y=w*A[j+k+mid]%Mod;
A[j+k]=(x+y)%Mod;
A[j+k+mid]=(x-y+Mod)%Mod;
}
}
}
}
int inv[N];
void get_inv(int n,int p){
inv[0]=inv[1]=1;
for (int i=2;i<n;i++){
inv[i]=inv[p%i]*(p-p/i)%p;
}
}
int C(int n,int m)
{
return c[n]*d[m]%Mod*d[n-m]%Mod;
}
signed main()
{
int T = 1;
x=1;a[0]=1;
get_inv(N,Mod);
c[0]=1;
for(i = 1;i < N;i++) c[i]=c[i-1]*i%Mod;
d[0]=1;
for(i = 1;i < N;i++) d[i]=d[i-1]*inv[i]%Mod;
scanf("%lld",&T);
while(T--){
scanf("%lld%lld",&n,&m);
for(i = 0;i <= 2*x+n-m-2;i++) b[i]=C(n+m,m+1-x+i);
int L=0; p=1;
while(p<=3*x+n-m-3) p<<=1,L++;
for(i = 0;i < p;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1));
ntt(a,p,1);ntt(b,p,1);
for(i = 0;i < p;i++) a[i]=a[i]*b[i]%Mod;
ntt(a,p,-1);
//dbg(-1,a[0])
ll inv=pow(p,Mod-2);
for(i = 0;i < x+n-m;i++) a[i]=a[i+x-1]*inv%Mod,b[i]=0;
for(i = x+n-m;i <= p;i++) a[i]=b[i]=0;
x=x+n-m;
}
for(i = 0;i <= p;i++)
ans=(ans+a[i])%Mod;
printf("%lld\n",ans);
return 0;
}
| 13 | CPP |
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
typedef long long LL;
using std::vector;
constexpr int LOGN=15, M=998244353, G=3;
vector<int> rev[LOGN];
vector<LL> g[LOGN];
LL Pow(LL a, int k)
{
LL ans=1;
while(k)
{
if(k&1) ans=(ans*a)%M;
a=(a*a)%M, k>>=1;
}
return ans;
}
inline LL Inv(const LL& a)
{
return Pow(a, M-2);
}
void PreNTT()
{
for(int mid=0, len; mid<LOGN-1; mid++)
{
len=1<<mid;
g[mid].assign(len, 1);
LL Gn=Pow(G, (M-1)/(len<<1)), tmp=1;
for(LL i=0; i<len; i++)
{
g[mid][i]=tmp;
tmp=tmp*Gn%M;
}
}
rev[0].push_back(0);
for(int bit_length=1, bit_depth; bit_length<LOGN; bit_length++)
{
bit_depth=1<<bit_length;
vector<int> &rev_now=rev[bit_length];
rev_now.assign(bit_depth, 0);
for(int i=0; i<bit_depth; i++)
rev_now[i]=(rev_now[i>>1]>>1) | (i&1)<<(bit_length-1);
}
}
void NTT(vector<LL> &X, bool reverse=false)
{
int bit_depth=X.size(), bit_length=__builtin_ctz(bit_depth);
for(int i=0, ri; i<bit_depth; i++)
{
ri=rev[bit_length][i];
if(i<ri) std::swap(X[i], X[ri]);
}
for(int mid=0, len; mid<bit_length; mid++)
{
len=1<<mid;
for(int i=0; i<bit_depth; i+=(len<<1))
for(int j=0; j<len; j++)
{
LL x=X[i+j], y=X[i+j+len]*g[mid][j]%M;
X[i+j]=(x+y)%M;
X[i+j+len]=(x-y+M)%M;
}
}
if(reverse)
{
LL inv_n=Inv(bit_depth);
for(int i=0; i<bit_depth; i++)
X[i]=X[i]*inv_n%M;
std::reverse(X.begin()+1, X.end());
}
}
vector<LL> Mul(vector<LL> a, vector<LL> b)
{
int len=1<<(32-__builtin_clz(a.size()+b.size()-1));
a.resize(len), b.resize(len);
NTT(a), NTT(b);
vector<LL> ans(len);
for(int i=0; i<len; i++)
ans[i]=a[i]*b[i];
NTT(ans, true);
return ans;
}
LL Combine(int n, int k)
{
static vector<LL> fac(1, 1), inv_fac(1, 1);
if(k<0 || k>n) return 0;
while((int)fac.size()<=n)
{
fac.push_back(fac.back()*fac.size()%M);
inv_fac.push_back(Inv(fac.back()));
}
return fac[n]*inv_fac[k]%M*inv_fac[n-k]%M;
}
void Test()
{
freopen("temp\\in.txt", "r", stdin);
}
int main()
{
// Test();
PreNTT();
int n, a, b;
scanf("%d", &n);
vector<LL> ans(1, 1);
for(int i=0, w, new_w; i<n; i++)
{
scanf("%d%d", &a, &b);
w=ans.size(), new_w=w+a-b;
vector<LL> tmp;
for(int j=b-w+1; j<w+a; j++)
tmp.push_back(Combine(a+b, j));
auto new_ans=Mul(ans, tmp);
ans.resize(new_w);
for(int j=0; j<new_w; j++)
ans[j]=new_ans[w+j-1];
}
LL sum=0, w=ans.size();
for(int i=0; i<w; i++)
sum=(sum+ans[i])%M;
std::cout<<sum;
return 0;
}
| 13 | CPP |
#include <iostream>
#include <vector>
#include <chrono>
#include <random>
#include <cassert>
#include <algorithm>
std::mt19937 rng((int) std::chrono::steady_clock::now().time_since_epoch().count());
const int MOD = 998244353;
const int me = 20;
const int ms = 1 << me;
long long fexp(long long x, long long e, long long mod = MOD) {
long long ans = 1;
x %= mod;
for(; e > 0; e /= 2, x = x * x % mod) {
if(e & 1) ans = ans * x % mod;
}
return ans;
}
#define add(x, y) x+y>=MOD?x+y-MOD:x+y
const int gen = 3; // use search() from PrimitiveRoot.cpp if MOD isn't 998244353
int bits[ms], root[ms];
void initFFT() {
root[1] = 1;
for(int len = 2; len < ms; len += len) {
int z = (int) fexp(gen, (MOD - 1) / len / 2);
for(int i = len / 2; i < len; i++) {
root[2 * i] = root[i];
root[2 * i + 1] = (int)((long long) root[i] * z % MOD);
}
}
}
void pre(int n) {
int LOG = 0;
while(1 << (LOG + 1) < n) {
LOG++;
}
for(int i = 1; i < n; i++) {
bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG);
}
}
std::vector<int> fft(std::vector<int> a, bool inv = false) {
int n = (int) a.size();
pre(n);
if(inv) {
std::reverse(a.begin() + 1, a.end());
}
for(int i = 0; i < n; i++) {
int to = bits[i];
if(i < to) { std::swap(a[i], a[to]); }
}
for(int len = 1; len < n; len *= 2) {
for(int i = 0; i < n; i += len * 2) {
for(int j = 0; j < len; j++) {
int u = a[i + j], v = (int)((long long) a[i + j + len] * root[len + j] % MOD);
a[i + j] = add(u, v);
a[i + j + len] = add(u, MOD - v);
}
}
}
if(inv) {
long long rev = fexp(n, MOD-2, MOD);
for(int i = 0; i < n; i++)
a[i] = (int)(a[i] * rev % MOD);
}
return a;
}
template <class T>
T fexp(T x, long long e) {
T ans(1);
for(; e > 0; e /= 2) {
if(e & 1) ans = ans * x;
x = x * x;
}
return ans;
}
template <int mod = MOD>
struct modBase {
modBase(int v = 0) : val(v < 0 ? v + mod : v) {}
int val;
void operator += (modBase<mod> o) { *this = *this + o; }
void operator -= (modBase<mod> o) { *this = *this - o; }
void operator *= (modBase<mod> o) { *this = *this * o; }
//void operator /= (modBase<mod> o) { *this = *this / o; }
modBase<mod> operator * (modBase<mod> o) { return (int)((long long) val * o.val % mod); }
//modBase<mod> operator / (modBase<mod> o) { return *this * fexp(o, mod - 2); }
modBase<mod> operator + (modBase<mod> o) { return val + o.val >= mod ? val + o.val - mod : val + o.val; }
modBase<mod> operator - (modBase<mod> o) { return val - o.val < 0 ? val - o.val + mod : val - o.val; }
friend std::ostream& operator << (std::ostream &os, const modBase<mod> &p) {
return os << p.val;
}
friend std::istream& operator >> (std::istream &is, modBase<mod> &p) {
return is >> p.val;
}
};
modBase<> fat[ms], ifat[ms];
void initComb() {
fat[0] = 1;
for(int i = 1; i < ms; i++) {
fat[i] = fat[i-1] * i;
}
ifat[ms-1] = fexp(fat[ms-1], MOD - 2);
for(int i = ms-1; i > 0; i--) {
ifat[i-1] = ifat[i] * i;
}
}
modBase<> comb(int n, int a) { return a < 0 || a > n ? modBase<>(0) : fat[n] * ifat[a] * ifat[n-a]; }
template<class T>
std::vector<T> partitionNumber(int n) {
std::vector<T> ans(n, 0);
ans[0] = 1;
for(int i = 1; i < n; i++) {
for(int j = 1; j * (3 * j + 1) / 2 <= i; j++) {
ans[i] = ((j & 1) ? ans[i] + ans[i - j * (3 * j + 1) / 2] : ans[i] - ans[i - j * (3 * j + 1) / 2]);
}
for(int j = 1; j * (3 * j - 1) / 2 <= i; j++) {
ans[i] = ((j & 1) ? ans[i] + ans[i - j * (3 * j - 1) / 2] : ans[i] - ans[i - j * (3 * j - 1) / 2]);
}
}
return ans;
}
std::vector<int> operator *(std::vector<int> a, std::vector<int> b) {
while(!a.empty() && a.back() == 0) a.pop_back();
while(!b.empty() && b.back() == 0) b.pop_back();
if(a.empty() || b.empty()) return std::vector<int>(0, 0);
int n = 1;
while(n-1 < (int) a.size() + (int) b.size() - 2) n += n;
a.resize(n, 0);
b.resize(n, 0);
a = fft(a, false);
b = fft(b, false);
for(int i = 0; i < n; i++) {
a[i] = (int) ((long long) a[i] * b[i] % MOD);
}
return fft(a, true);
}
int main() {
std::ios_base::sync_with_stdio(false); std::cin.tie(NULL);
initComb();
initFFT();
int n;
std::cin >> n;
std::vector<int> poly(1, 1);
int got = 1;
while(n-- && !poly.empty()) {
int a, b;
std::cin >> a >> b;
std::vector<int> other(2 * got + 20, 0);
for(int i = 0; i < (int) other.size(); i++) {
int id = i - (got + 10) + b;
other[i] = comb(a+b, id).val;
}
poly = poly * other;
std::vector<int> ans(got+a-b, 0);
for(int i = 0; i < (int) poly.size(); i++) {
int id = i - (got + 10);
if(0 <= id && id < (int) ans.size()) {
ans[id] = poly[i];
}
}
got += a - b;
poly = ans;
}
modBase<> ans(0);
for(auto v : poly) {
ans += v;
}
std::cout << ans << '\n';
} | 13 | CPP |
// author: xay5421
// created: Sun Jan 17 14:55:30 2021
#include<bits/stdc++.h>
#define D(...) fprintf(stderr,__VA_ARGS__)
#define SZ(x) ((int)(x).size())
#define rep(i,a,b) for(int i=(a);i<=(b);++i)
using namespace std;
const int P=998244353,N=200005;
int ad(int k1,int k2){return k1+=k2-P,k1+=k1>>31&P;}
int su(int k1,int k2){return k1-=k2,k1+=k1>>31&P;}
int mu(int k1,int k2){return 1LL*k1*k2%P;}
void uad(int&k1,int k2){k1+=k2-P,k1+=k1>>31&P;}
void usu(int&k1,int k2){k1-=k2,k1+=k1>>31&P;}
template<typename... T>int ad(int k1,T... k2){return ad(k1,ad(k2...));}
template<typename... T>void uad(int&k1,T... k2){return uad(k1,ad(k2...));}
template<typename... T>void usu(int&k1,T... k2){return usu(k1,ad(k2...));}
template<typename... T>int mu(int k1,T... k2){return mu(k1,mu(k2...));}
int po(int k1,int k2){
int k3=1;
for(;k2;k2>>=1,k1=mu(k1,k1))if(k2&1)k3=mu(k3,k1);
return k3;
}
void NTT(vector<int>&a,int g,int lim){
a.resize(lim);
for(int i=0,j=0;i<lim;++i){
if(i<j)swap(a[i],a[j]);
for(int k=lim>>1;(j^=k)<k;k>>=1);
}
vector<int>w(lim>>1); w[0]=1;
for(int i=1;i<lim;i<<=1){
for(int j=1,wn=po(g,(P-1)/(i<<1));j<i;++j)w[j]=mu(w[j-1],wn);
for(int j=0;j<lim;j+=i<<1)for(int k=0;k<i;++k){
int x=a[j+k],y=mu(a[i+j+k],w[k]);
a[j+k]=ad(x,y),a[i+j+k]=su(x,y);
}
}
if(g!=3){
const int I=po(lim,P-2);
rep(i,0,lim-1)a[i]=mu(a[i],I);
}
}
vector<int>operator*(vector<int>a,vector<int>b){
int need=SZ(a)+SZ(b)-1,lim=1;
while(lim<=need)lim<<=1;
NTT(a,3,lim),NTT(b,3,lim);
rep(i,0,lim-1)a[i]=mu(a[i],b[i]);
NTT(a,332748118,lim);
return a.resize(need),a;
}
int n,fac[N],inv[N],ifac[N];
int C(int k1,int k2){
if(k1<0||k2<0||k1-k2<0)return 0;
return mu(fac[k1],ifac[k2],ifac[k1-k2]);
}
int main(){
#ifdef xay5421
freopen("a.in","r",stdin);
#endif
fac[0]=fac[1]=inv[0]=inv[1]=ifac[0]=ifac[1]=1;
rep(i,2,N-1)fac[i]=mu(fac[i-1],i),inv[i]=mu(P-P/i,inv[P%i]),ifac[i]=mu(ifac[i-1],inv[i]);
scanf("%d",&n);
vector<int>ans{1};
rep(i,1,n){
int a,b;
scanf("%d%d",&a,&b);
int m=SZ(ans);
vector<int>co;
rep(j,b-m+1,m+a-1){
co.push_back(C(a+b,j));
}
vector<int>res=ans*co;
ans.resize(m+a-b);
rep(i,0,SZ(ans)-1)ans[i]=res[m+i-1];
}
int res=0;
rep(i,0,SZ(ans)-1)uad(res,ans[i]);
printf("%d\n",res);
return 0;
}
| 13 | CPP |
#include<bits/stdc++.h>
#define ll long long
#define p pair<int, int>
#define endl '\n'
const int INF = 1000000001;using namespace std;const int C = 998244353;vector<ll> fact, minus_fact;
ll pow1(ll x, ll y, ll z=C){if (y == 0)return 1;if (y % 2 == 0)return pow1(x*x % z, y/2, z);return pow1(x, y-1, z)*x % z;}
void facts(int n){fact = {1}, minus_fact = {1};for (int q = 1; q <= n; q++){fact.push_back(fact.back()*q % C);minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C);}}
ll c(int k, int n){if (k < 0 || k > n)return 0;return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C;}
signed main(){
ios::sync_with_stdio(false);
cin.tie(nullptr);
cout.tie(nullptr);
facts(200179);
int n;
cin >> n;
vector<p> a(n);
for (int q = 0; q < n; q++)cin >> a[q].first >> a[q].second;
vector<int> now = {1};
for (int q = 0; q < n; q++){
int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second;
vector<__int128> will(w3-a[q].second, 0);
vector<ll> cc(now.size()+a[q].first);
for (int q1 = 0; q1 < cc.size(); q1++){
cc[q1] = c(q1, a[q].first+a[q].second);
}
for (int q1 = a[q].second; q1 < w3; q1++){
int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second);
for (int q2 = w2; q2 < w; q2++)will[w1] += cc[q1-q2]*now[q2];
}
now = {};
for (__int128 q1: will)now.push_back(q1 % C);
for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--)now.push_back(now[q1]);
}
ll ans = 0;for (int q: now)ans += q;
cout << ans % C << endl;
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
#ifdef ALGO
#include "el_psy_congroo.hpp"
#else
#define DUMP(...) 1145141919810
#define CHECK(...) (__VA_ARGS__)
#endif
template<int MOD>
struct Integral {
int v_ = 0;
template<typename T> Integral(T v) : v_(norm(v)) { // Implicit conversion is allowed.
static_assert(std::is_integral<T>::value, "input should be an integral.");
}
Integral() = default;
~Integral() = default;
template<typename T> T norm(T v) const {
if constexpr(std::is_same<long long, T>::value) {
v %= MOD;
if (v < 0) v += MOD;
} else {
if (v >= MOD) v -= MOD;
if (v < 0) v += MOD;
if (v >= MOD || v < 0) {
v %= MOD;
if (v < 0) v += MOD;
}
}
return v;
}
int val() const { return v_; }
Integral operator + (const Integral& rhs) const { return Integral(val() + rhs.val()); }
Integral operator - (const Integral& rhs) const { return Integral(val() - rhs.val()); }
Integral operator * (const Integral& rhs) const { return Integral(val() * 1LL * rhs.val()); }
Integral operator / (const Integral& rhs) const { return *this * rhs.inv(); }
Integral& operator += (const Integral& rhs) { return *this = *this + rhs; }
Integral& operator -= (const Integral& rhs) { return *this = *this - rhs; }
Integral& operator *= (const Integral& rhs) { return *this = *this * rhs; }
Integral& operator /= (const Integral& rhs) { return *this = *this / rhs; }
bool operator == (const Integral& rhs) const { return val() == rhs.val(); }
bool operator != (const Integral& rhs) const { return !(*this == rhs); }
const Integral operator - () const { return Integral(-val()); }
const Integral operator ++ () { v_ = norm(v_ + 1); return *this; }
const Integral operator ++ (int) { Integral ret = *this; ++(*this); return ret; }
const Integral operator -- () { v_ = norm(v_ - 1); return *this; }
const Integral operator -- (int) { Integral ret = *this; --(*this); return ret; }
Integral power(long long b) const {
long long ret = 1 % MOD, a = v_;
for ( ; b; b >>= 1, a = a * a % MOD) if (b & 1) ret = ret * a % MOD; return ret;
}
Integral inv() const { return power(MOD - 2); }
};
template<int MOD>
std::string to_string(const Integral<MOD>& v) {
return std::string("Int<>{") + std::to_string(v.val()) + "}";
}
template<int MOD, bool kAllowBruteForce = false>
struct Binomial {
std::vector<Integral<MOD>> factor, inv_factor;
explicit Binomial(int n = 0) : factor(n + 1), inv_factor(n + 1) {
factor[0] = 1;
for (int i = 1; i <= n; ++i) factor[i] = factor[i - 1] * i;
inv_factor[n] = factor[n].inv();
for (int i = n; i >= 1; --i) inv_factor[i - 1] = inv_factor[i] * i;
}
~Binomial() = default;
template<typename T>
Integral<MOD> operator () (T a, T b) const {
if (a < b || b < 0) return 0;
if (a < factor.size()) return factor[a] * inv_factor[b] * inv_factor[a - b];
if constexpr(!kAllowBruteForce) {
throw std::out_of_range("Binomial");
} else {
b = std::min(b, a - b);
Integral<MOD> ret = 1;
for (T i = 1; i <= b; ++i) ret = ret * (a + 1 - i) / i;
return ret;
}
}
};
template<int MOD>
struct PowerTable : public std::vector<Integral<MOD>> {
PowerTable(int n, const Integral<MOD>& g) {
static_assert(sizeof(PowerTable) == sizeof(std::vector<Integral<MOD>>), "");
this->resize(n + 1);
this->at(0) = 1;
this->at(1) = g;
for (int i = 2; i < this->size(); ++i) this->at(i) = this->at(i - 1) * this->at(1);
}
};
const int MOD = 998244353;
using Mint = Integral<MOD>;
using Binom = Binomial<MOD>;
Binom binom(200000);
// PowerTable<MOD> pw2(200000, 2);
template<int MOD = 998244353, int kPrimRoot = 3>
void ntt(Integral<MOD> A[], int n, int inv) {
// inv == 1: ntt, == -1: intt
// MOD == a * b ^ k + 1, n <= b ^ k.
// 998244353 == (7 * 17) * 2 ^ 23 + 1.
// This code works only when b == 2.
Integral<MOD> w = 1, d = Integral<MOD>(kPrimRoot).power((MOD - 1) / n), t;
int i, j, c, s;
if (inv == -1) {
for (i = 1, j = n - 1; i < j; ++i, --j) std::swap(A[i], A[j]);
for (t = Integral<MOD>(n).inv(), i = 0; i < n; ++i) A[i] = A[i] * t;
}
for (s = n >> 1; s; s >>= 1, w = 1, d = d * d) {
for (c = 0; c < s; ++c, w = w * d) {
for (i = c; i < n; i += s << 1) {
A[i | s] = (A[i] - (t = A[i | s])) * w;
A[i] += t;
}
}
}
for (i = 1; i < n; ++i) {
for (j = 0, s = i, c = n >> 1; c; c >>= 1, s >>= 1) j = j << 1 | (s & 1);
if (i < j) std::swap(A[i], A[j]);
}
}
int main() {
std::ios::sync_with_stdio(false);
std::cin.tie(nullptr);
std::istream& reader = std::cin;
int n;
reader >> n;
std::vector<Mint> f(1, 1);
for (int at = 1; at <= n; ++at) {
int a, b;
reader >> a >> b;
int m = f.size();
int w = m + a - b + m + 1; // b - m, m + a
int L = 1;
while (L < m + w) L <<= 1;
f.resize(L, 0);
std::vector<Mint> y(L);
for (int i = 0; i < w; ++i) {
y[i] = binom(a + b, i + b - m);
}
ntt(&f[0], L, 1);
ntt(&y[0], L, 1);
for (int i = 0; i < L; ++i) f[i] *= y[i];
ntt(&f[0], L, -1);
for (int i = 0; i < m + a - b; ++i) f[i] = i + m < L ? f[i + m] : 0;
f.resize(m + a - b);
}
std::cout << std::accumulate(f.begin(), f.end(), Mint(0)).val() << std::endl;
}
| 13 | CPP |
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<vector>
#define o 1000005
#define FOR(i,a,b) for(int i=a;i<=b;i++)
#define REP(i,a,b) for(int i=a;i>=b;i--)
#define g0(a) memset(a,0,sizeof(a))
#define gc(a,b) memcpy(a,b,sizeof(a))
#define ll long long
using namespace std;
inline int read()
{
int data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=data*10+ch-'0',ch=getchar();
return data*w;
}
int n,m,rev[o];
const int mod=998244353;
int KSM(int x,int k)
{
int tmp=1,y=x;
for(int i=k;i;i>>=1,y=1ll*y*y%mod)if(i&1)tmp=1ll*tmp*y%mod;
return tmp;
}
int Make(int n)
{
int t=0;while(1<<t<=n)t++;
FOR(i,0,(1<<t)-1)rev[i]=rev[i>>1]>>1|(i&1)<<t-1;
return t;
}
void fix(int &x){x+=x>>31&mod;}
void NTT(int a[],int n,int d)
{
FOR(i,0,(1<<n)-1)if(i<rev[i])swap(a[i],a[rev[i]]);
FOR(m,0,n-1)
{
int w=KSM(3,mod-1+(mod-1)/(2<<m)*d);
for(int i=0;i<1<<n;i+=2<<m)
for(int k=i,x=1;k<i+(1<<m);k++,x=1ll*x*w%mod)
{
int t0=a[k],t1=1ll*a[k+(1<<m)]*x%mod;
//cout<<"x="<<x<<"\n"
fix(a[k]=t0+t1-mod),fix(a[k+(1<<m)]=t0-t1);
}
}
if(d==-1){int iv=KSM(1<<n,mod-2);FOR(i,0,(1<<n)-1)a[i]=1ll*a[i]*iv%mod;}
}
int fac[o],inv[o],g[o],f[o],a[o];
void init(int n=300000)
{
fac[0]=1;
FOR(i,1,n)fac[i]=1ll*fac[i-1]*i%mod;
inv[n]=KSM(fac[n],mod-2);
REP(i,n-1,0)inv[i]=1ll*inv[i+1]*(i+1)%mod;
}
int C(int n,int m){return n<m||m<0?0:1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;}
int main()
{
// int p=Make(100);
// FOR(i,0,(1<<p)-1)a[i]=1;
// NTT(a,p,1);
// NTT(a,p,-1);
// FOR(i,0,(1<<p)-1)cout<<a[i]<<" ";
// return 0;
init();
n=read(),m=1;
f[1]=1;
while(n--)
{
int A=read(),B=read(),t=Make(m+A-B+m+m);
FOR(i,0,(1<<t)-1)a[i]=g[i]=0;
FOR(i,-m,m+A-B)g[i+m]=C(A+B,B+i);
FOR(i,1,m)a[i]=f[i];
NTT(g,t,1);NTT(a,t,1);
FOR(i,0,(1<<t)-1)g[i]=1ll*g[i]*a[i]%mod;
NTT(g,t,-1);
FOR(i,1,m+A-B)f[i]=g[i+m];
m+=A-B;
//FOR(i,1,m)cout<<f[i]<<" ";
}
int ans=0;
FOR(i,1,m)fix(ans+=f[i]-mod);
cout<<ans<<'\n';
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
#define C(n,m) (jc[n]*Jc[m]%mod*Jc[(n)-(m)]%mod)
#define add(a,b) a=((a)+(b))%mod
#define min(a,b) (a<b?a:b)
#define max(a,b) (a>b?a:b)
#define mod 998244353
#define Mod 998244351
#define ll long long
#define G 114514
//#define file
using namespace std;
int n,i,j,k,l,A,B,s,N,N2,len;
int f[5011],g[5011],ans;
int a[16384],b[16384],w1[15][16384],w2[15][16384];
ll jc[200001],Jc[200001];
int a2[15][16384];
ll qpower(ll a,int b) {ll ans=1; while (b) {if (b&1) ans=ans*a%mod;a=a*a%mod;b>>=1;} return ans;}
void init()
{
int i,j,k,l;
N=1;
fo(len,1,14)
{
N*=2;
fo(i,0,N-1)
{
j=i,k=0;
fo(l,1,len) k=k*2+(j&1),j>>=1;
a2[len][i]=k;
}
}
ll w,W;
l=2;k=1;
fo(i,1,14)
{
w=qpower(G,(mod-1)/l);W=1;
fo(j,0,k-1) w1[i][j]=W,W=W*w%mod;
w=qpower(G,(mod-1)-(mod-1)/l);W=1;
fo(j,0,k-1) w2[i][j]=W,W=W*w%mod;
l<<=1;k<<=1;
}
}
void dft(int *a,int tp)
{
static int A[16384];
int i,j,k,l,s1=2,s2=1,S=N;
ll u,v;
fo(i,0,N-1) A[a2[len][i]]=a[i];memcpy(a,A,N*4);
fo(i,1,len)
{
S>>=1;
fo(j,0,S-1)
{
fo(k,0,s2-1)
{
if (tp==1)
u=a[j*s1+k],v=1ll*a[j*s1+k+s2]*w1[i][k];
else
u=a[j*s1+k],v=1ll*a[j*s1+k+s2]*w2[i][k];
a[j*s1+k]=(u+v)%mod;
a[j*s1+k+s2]=(u-v)%mod;
}
}
s1<<=1,s2<<=1;
}
}
void work1()
{
int i,j,k,l;
memset(g,0,(s+2)*4);
fo(i,1,s) add(g[i],f[i]),add(g[i+1],f[i]);
++s,memcpy(f,g,(s+1)*4);
}
void work2()
{
int i,j,k,l;
--s;
fo(i,1,s) g[i]=(f[i]+f[i+1])%mod;
memcpy(f,g,(s+1)*4);
}
void work3(int t)
{
int i,j,k,l;
if (!t) return;
len=ceil(log2(s+1))+1,N=qpower(2,len);N2=qpower(N,Mod);
memset(a,0,N*4),memset(b,0,N*4);
fo(i,1,s) g[i]=1ll*f[i]*C(t*2,t)%mod,a[i]=f[i];
fo(i,1,min(s,t)) b[i]=C(t*2,t+i);
dft(a,1),dft(b,1);
fo(i,0,N-1) a[i]=1ll*a[i]*b[i]%mod;
dft(a,-1);
fo(i,1,s) a[i]=1ll*a[i]*N2%mod;
fo(i,1,s) add(g[i],1ll*(a[i]+a[s-i+1]));
memcpy(f,g,(s+1)*4);
}
int main()
{
#ifdef file
freopen("CF1473G.in","r",stdin);
#endif
jc[0]=1;
fo(i,1,200000) jc[i]=jc[i-1]*i%mod;
Jc[200000]=qpower(jc[200000],Mod);
fd(i,200000-1,0) Jc[i]=Jc[i+1]*(i+1)%mod;
scanf("%d",&n);s=1,f[1]=1;
init();
fo(i,1,n)
{
scanf("%d%d",&A,&B);
if (A>B) {fo(j,1,A-B) work1();work3(B);}
else {work3(A);fo(j,1,B-A) work2();}
}
fo(i,1,s) add(ans,f[i]);
printf("%d\n",(ans+mod)%mod);
fclose(stdin);
fclose(stdout);
return 0;
} | 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
//#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC target("avx,avx2")
const ll mod = 998244353;
const int L = 15;
const int N = (1 << L);
int add(int a, int b) {
int c = a + b;
if (c >= mod) c -= mod;
return c;
}
int sub(int a, int b) {
return add(a, mod - b);
}
int mult(int a, int b) {
return ((ll) a * b) % mod;
}
int pw(int a, int b) {
if (!b) return 1;
if (b & 1) return mult(pw(a, b - 1), a);
int x = pw(a, b / 2);
return mult(x, x);
}
int inv2;
int pws[N + 1], ipws[N + 1];
void init() {
inv2 = pw(2, mod - 2);
pws[N] = pw(31, pw(2, 23 - L));
ipws[N] = pw(pws[N], mod - 2);
for (int i = (N >> 1); i; i >>= 1) {
pws[i] = mult(pws[i << 1], pws[i << 1]);
ipws[i] = mult(ipws[i << 1], ipws[i << 1]);
}
}
void fft(vector<int> &s, vector<int> &res, int n, int x, int bs = 0, int bstep = 1, int rs = 0) {
if (n == 1) {
res[rs] = s[bs];
return;
}
fft(s, res, n >> 1, mult(x, x), bs, bstep << 1, rs);
fft(s, res, n >> 1, mult(x, x), bs + bstep, bstep << 1, rs + (n >> 1));
int c = 1;
for (int i = rs; i < rs + (n >> 1); ++i) {
int a = res[i], b = res[i + (n >> 1)];
res[i] = add(a, mult(b, c));
res[i + (n >> 1)] = sub(a, mult(b, c));
c = mult(c, x);
}
}
void poly_mult(const vector<int> &a, const vector<int> &b, vector<int> &c) {
init();
vector<int> fa, fb, fra, frb, rt;
int n = 1;
while (n < max(b.size(), a.size())) n <<= 1;
n <<= 1;
fa.resize(n);
rt = frb = fra = fb = fa;
for (int i = 0; i < a.size(); ++i) fa[i] = a[i];
for (int i = 0; i < b.size(); ++i) fb[i] = b[i];
fft(fa, fra, n, pws[n]);
fft(fb, frb, n, pws[n]);
for (int i = 0; i < n; ++i)
fra[i] = mult(fra[i], frb[i]);
fft(fra, rt, n, ipws[n]);
int inv_n = pw(n, mod - 2);
for (int i = 0; i < n; ++i)
rt[i] = mult(rt[i], inv_n);
c = rt;
}
const ll M = 3e5 + 5;
int fact[M], invfact[M];
int cnk(int n, int k) {
if (n < 0 || k < 0 || n - k < 0) return 0;
return mult(mult(fact[n], invfact[n - k]), invfact[k]);
}
int main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);
fact[0] = 1;
for (int i = 1; i < M; ++i) fact[i] = mult(fact[i - 1], i);
invfact[M - 1] = pw(fact[M - 1], mod - 2);
for (int i = M - 2; i >= 0; --i) invfact[i] = mult(invfact[i + 1], i + 1);
int n, d = 0;
cin >> n;
vector<int> cur = {1};
for (int i = 0; i < n; ++i) {
int a, b;
cin >> a >> b;
int dd = d + a - b;
vector<int> g(d + dd + 1);
for (int j = -d; j <= dd; ++j) g[j + d] = cnk(a + b, b + j);
vector<int> f;
poly_mult(cur, g, f);
cur.resize(dd + 1);
for (int j = 0; j <= dd; ++j)
cur[j] = f[j + d];
d = dd;
}
ll ans = 0;
for (ll x : cur) ans = (ans + x) % mod;
cout << ans;
} | 13 | CPP |
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
using namespace std;
typedef long long ll;
#define N 200015
const int p=998244353;
int n,a,b,f[N],finv[N],inv[N],rev[N],ta[N],tb[N];
inline int C(int nn,int mm){if(nn<mm||nn<0||mm<0)return 0;return 1ll*f[nn]*finv[mm]%p*finv[nn-mm]%p;}
inline int ksm(int d,int k){int ret=1;while(k){if(k&1)ret=1ll*ret*d%p;d=1ll*d*d%p;k>>=1;}return ret;}
inline void ntt(int x[],int len,int mde)
{for(int i=0;i<len;i++)if(i<rev[i])swap(x[i],x[rev[i]]);
for(int i=2;i<=len;i<<=1)
{int wn=ksm(3,(p-1)/i);if(mde<0)wn=ksm(wn,p-2);
for(int j=0,stp=i>>1;j<len;j+=i)for(int k=j,w=1;k<j+stp;k++,w=1ll*w*wn%p)
{int t1=x[k],t2=1ll*x[k+stp]*w%p;
x[k]=(t1+t2)%p,x[k+stp]=(t1-t2+p)%p;
}
}if(mde<0)for(int i=0,te=ksm(len,p-2);i<len;i++)x[i]=1ll*x[i]*te%p;
}
int main()
{
scanf("%d",&n);int len=1;f[0]=finv[0]=f[1]=finv[1]=inv[1]=1;
for(int i=2;i<=200000;i++)
{
inv[i]=1ll*(p-p/i)*inv[p%i]%p;
f[i]=1ll*f[i-1]*i%p;finv[i]=1ll*finv[i-1]*inv[i]%p;
}ta[1]=1;
for(int i=1;i<=n;i++)
{
scanf("%d%d",&a,&b);
int nl=max(len,len+a-b),tle=1;
while(tle<=(nl*3))tle<<=1;
for(int j=1;j<tle;j++){rev[j]=rev[j>>1]>>1;if(j&1)rev[j]|=tle>>1;}
for(int j=len+1;j<tle;j++)ta[j]=0;for(int j=0;j<tle;j++)tb[j]=0;
for(int j=-len;j<=nl;j++)tb[len+j]=C(a+b,b+j);
ntt(ta,tle,1);ntt(tb,tle,1);for(int j=0;j<tle;j++)ta[j]=1ll*ta[j]*tb[j]%p;ntt(ta,tle,-1);
for(int j=1;j<=len+a-b;j++)ta[j]=ta[j+len];
for(int j=len+a-b+1;j<tle;j++)ta[j]=0;len+=a-b;
}int ans=0;for(int i=1;i<=len;i++)(ans+=ta[i])%=p;printf("%d\n",ans);
}
| 13 | CPP |
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1000000;
const int mod = 998244353;
const int g = 3;
const int gi = 332748118;
int a[maxn],b[maxn],dp[maxn];
int c[maxn],pos[maxn],fac[maxn],fav[maxn];
int qpow(int a,int b,int c){
int ans=1;
while(b){
if(b&1)ans=1ll*ans*a%mod;
b>>=1;
a=1ll*a*a%mod;
}
return ans;
}
int init(int n){
int cur=1,ct=0;
while(cur<n)cur<<=1,ct++;
for(int i=0;i<cur;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(ct-1));
return cur;
}
int C(int a,int b){
if(b<0 || b>a)return 0;
return 1ll*fac[a]*fav[b]%mod*fav[a-b]%mod;
}
void ntt(int *a,int len,int fg){
for(int i=0;i<len;++i)if(i<pos[i])swap(a[i],a[pos[i]]);
for(int i=2,mid=1;i<=len;i<<=1,mid<<=1){
int wn=qpow(fg==1?g:gi,(mod-1)/i,mod);
for(int j=0;j<len;j+=i){
int w=1;
for(int k=j;k<j+mid;k++){
int l=a[k],r=1ll*a[k+mid]*w%mod;
a[k]=(l+r)%mod,a[k+mid]=(l-r+mod)%mod;
w=1ll*w*wn%mod;
}
}
}
if(fg==-1){
int invlen=qpow(len,mod-2,mod);
for(int i=0;i<len;++i)a[i]=1ll*invlen*a[i]%mod;
}
}
int main(){
fac[0]=1;
for(int i=1;i<maxn;++i)fac[i]=1ll*fac[i-1]*i%mod;
fav[maxn-1]=qpow(fac[maxn-1],mod-2,mod);
for(int i=maxn-2;i>=0;--i)fav[i]=1ll*fav[i+1]*(i+1)%mod;
int n;
scanf("%d",&n);
dp[0]=1;
int cur=1;
for(int i=1;i<=n;++i){
scanf("%d%d",&a[i],&b[i]);
int le=2*cur+a[i]-b[i]-1;
int len=init(le);
for(int j=b[i]-cur+1,k=0;j<=b[i]+cur+a[i]-b[i]-1;++j,++k)c[k]=C(b[i]+a[i],j);
for(int j=b[i]+cur+a[i]-b[i];j<len;++j)c[j]=0;
// for(int j=0;j<len;++j)printf("%d ",c[j]);puts("");
// for(int j=0;j<len;++j)printf("%d ",dp[j]);puts("");
ntt(dp,len,1);
ntt(c,len,1);
for(int j=0;j<len;++j)dp[j]=1ll*dp[j]*c[j]%mod;
ntt(dp,len,-1);
for(int j=0;j<cur+a[i]-b[i];++j)dp[j]=dp[j+cur-1];
cur+=a[i]-b[i];
// for(int j=0;j<cur;++j)printf("%d ",dp[j]);
for(int j=cur;j<len;++j)dp[j]=0;
// puts("");
}
int ans=0;
for(int i=0;i<cur;++i)ans=(ans+dp[i])%mod;
printf("%d\n",ans);
} | 13 | CPP |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.