solution
stringlengths
11
983k
difficulty
int64
0
21
language
stringclasses
2 values
#include<bits/stdc++.h> using namespace std; #define ll long long #define ld long double #define int long long #define double long double #define fr(n) for(int i=0;i<n;i++) #define sortv(a) sort(a.begin(),a.end()) #define pb push_back #define endl "\n" #define pii pair<int,int> const int N = 1e6+5; const int mod = 998244353; vector<int> adj[100005]; vector<bool> vis(100005,false); // int mod = 1e9+7; int modexpo(int x,int p){ int res = 1; x = x%mod; while(p){ if(p%2) res = res * x; p >>= 1; x = x*x % mod; res %= mod; } return res; } int isprime(int n){ if(n < 2) return 0; if(n < 4) return 1; if(n % 2 == 0 or n % 3 == 0) return 0; for(int i = 5; i*i <= n; i += 6) if(n % i == 0 or n % (i+2) == 0) return 0; return 1; } void pairsort(int a[], int b[], int n){ pair<int, int> pairt[n]; for (int i = 0; i < n; i++) { pairt[i].first = a[i]; pairt[i].second = b[i]; } sort(pairt, pairt + n); for (int i = 0; i < n; i++) { a[i] = pairt[i].first; b[i] = pairt[i].second; } } void solve() { int n,k; cin >> n >> k; int x[n], y[n]; fr(n) cin >> x[i] >> y[i]; for(int i=0;i<n;i++) { int maxx = 0; for(int j=0;j<n;j++) { maxx = max(maxx, abs(x[i]-x[j])+abs(y[i]-y[j])); } if(maxx <= k) { cout << 1; return; } } cout << -1; } int32_t main() { int q = 1; cin >> q; while(q--) solve(),cout << endl; return 0; }
8
CPP
#include<bits/stdc++.h> using namespace :: std; #define ll long long #define pb push_back #define mp make_pair #define ld long double #define F first #define S second const int maxn=200; const ll inf=1e16+900; int x[maxn]; int y[maxn]; bool ger[maxn][maxn]; int main(){ int t; cin>>t; while(t--){ int n,k; cin>>n>>k; for(int i=0;i<n;i++){ cin>>x[i]>>y[i]; } bool findd=0; for(int i=0;i<n;i++){ int d=0; for(int j=0;j<n;j++){ ger[i][j]=(abs(x[i]-x[j])+abs(y[i]-y[j])<=k); d+=ger[i][j]; } if(d==n){ cout<<1<<endl; findd=1; break; } } if(!findd){ cout<<-1<<endl; } } }
8
CPP
''' Name : Jaymeet Mehta codeforces id :mj_13 Problem : ''' from sys import stdin,stdout def doit(): global points,n,k for i in range(n): x1,y1=points[i] ok=True for j in range(n): x2,y2=points[j] distance=abs(x1-x2)+abs(y1-y2) if distance>k: ok=False break if ok: return 1 return -1 test=int(stdin.readline()) for _ in range(test): n,k = map(int,stdin.readline().split()) points=[] for i in range(n): x,y = map(int,stdin.readline().split()) points.append([x,y]) print(doit())
8
PYTHON3
import os import sys from io import BytesIO, IOBase # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline() # -------------------------------------------------------------------- def RL(): return map(int, sys.stdin.readline().split()) def RLL(): return list(map(int, sys.stdin.readline().split())) def N(): return int(input()) def print_list(l): print(' '.join(map(str,l))) # sys.setrecursionlimit(100000) # import random # from functools import reduce # from functools import lru_cache # from heapq import * # from collections import deque as dq # import math # import bisect as bs # from collections import Counter # from collections import defaultdict as dc for _ in range(N()): n, k = RL() dic = [[] for _ in range(n)] p = [] for _ in range(n): x, y = RL() p.append((x, y)) for i in range(n - 1): for j in range(i + 1, n): if abs(p[i][0] - p[j][0]) + abs(p[i][1] - p[j][1]) <= k: dic[i].append(j) dic[j].append(i) res = -1 for i in range(n): if len(dic[i]) == n - 1: res = 1 break print(res)
8
PYTHON3
/**-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* *-* *-* *-* Bismillahir Rahmanir Rahim *-* *-* *-* *-* Author: Ahsan Habib (comrade) *-* *-* Metropolitan University *-* *-* Language: C++ *-* *-* *-* *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-**/ #include<bits/stdc++.h> #include<cstdio> #define pii pair<ll,ll > #include<string> #define In freopen("ahsan.txt","r",stdin); #define ll long long #define ff first #define ss second #define pb push_back #define sortv(v) sort(v.begin(),v.end()) #define bug(a) cerr << #a << " : " << a << endl #define sz(x) x.size() #define MOD 1000000007 #define inf 999999999999 /** I don'n know anything like you But one thing I know vary obviously That is I am "Ahsan" **/ const int mx = 1e6+5; const int MAX = 1e6; using namespace std; ll a[MAX],m,i,t,k,ev=0,od=0,tt=0,n,cas = 1, cum[300050]; vector<pii>G[MAX]; const int N = 1e6 + 100; int main() { /***********************************/ ios::sync_with_stdio(true); cin.tie(0); ///In; /**********************************/ int t; cin>>t; while(t--) { vector<pii>v,v2; int n,k ; cin>>n>>k; for(int i = 0; i<n; i++) { int x,y; cin>>x>>y; v.push_back(pii(x,y)); } int f = 1; for(int i = 0; i<n; i++) { f = 1; for(int j = 0; j<n; j++) { int tm = abs(v[i].ff - v[j].ff)+abs(v[i].second- v[j].second); if(tm>k) { f = 0; break; } } if(f==1) { break; } } if(f==0) { cout<<"-1"<<endl; } else cout<<"1"<<endl; } return 0; }
8
CPP
from collections import defaultdict for t in range(int(input())): ball_idx=defaultdict(list) rang=defaultdict(list) n,k=map(int,input().split()) listi=[] for i in range(n): x,y=map(int,input().split()) p=[] p.append(x) p.append(y) listi.append(p) kam=False # for i in listi: # print(i[0],i[1],end=" ") for i in listi: count=0 for j in listi: p=abs(i[0]-j[0]) l=abs(i[1]-j[1]) if (0<p+l<=k): count+=1 if count==n-1: kam=True print(1) break if kam==False: print(-1)
8
PYTHON3
for _ in range(int(input())): n,k=map(int,input().split()) l=[] for i in range(n): l.append(list(map(int,input().split()))) l.sort(key=lambda x:x[0]+x[1]) #print(l) f=0 for i in range(n): for j in range(n): x1=l[i][0] y1=l[i][1] x2=l[j][0] y2=l[j][1] d=abs(x1-x2)+abs(y1-y2) if d>k: f+=1 break if f==n: print(-1) else: print(1)
8
PYTHON3
/* Author : Dinesh Verra College : ABV-IIITM Date : 11/12/2020 */ // #pragma GCC optimize("Ofast") #include <bits/stdc++.h> // #include <boost/multiprecision/cpp_int.hpp> // using namespace boost::multiprecision; using namespace std; typedef long long ll; // #define ll int typedef unsigned long long ull; #define cu continue #define br break #define pb push_back #define eb emplace_back #define mod 1000000007 #define inf 1000000000 #define pll pair <ll,ll> #define min_pq priority_queue<pll,vector <pll>, greater <pll> > #define ar array #define F first #define S second #define var(n) vector<ar<ll,n>> #define vll vector <ll> #define vpll vector <pll> #define dbg(n) cout<<#n<<' '<<n<<endl; #define all(v) v.begin(),v.end() #define nl cout<<'\n' template <typename A1> void prn(A1&& arg) { cout<<arg<<'\n'; } template <typename A1, typename... A> void prn(A1&& arg, A&&... args) { cout<<arg<<' '; prn(args...); } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); #ifndef ONLINE_JUDGE freopen("/home/dinesh_verra/cpp/input.txt","r",stdin); // freopen("/home/dinesh_verra/cpp/A.txt","w",stdout); #endif ll t; cin>>t; while(t--) { ll n,k; cin>>n>>k; var(2) a(n); ll cnt; for(ll i=0;i<n;i++) cin>>a[i][0]>>a[i][1]; for(ll i=0;i<n;i++) { cnt=0; for(ll j=0;j<n;j++) { if(i==j) cu; if(abs(a[i][0]-a[j][0])+abs(a[i][1]-a[j][1]) <= k) cnt++; } if(cnt==(n-1)) { prn(1); goto end; } } prn(-1); end: cu; } }
8
CPP
#include<bits/stdc++.h> using namespace std;const int N=1e2+7;int T_T,n,m,i,j,x[N],y[N],flag; int main(){ for(cin>>T_T;T_T--;){ for(cin>>n>>m,flag=0,i=1;i<=n;++i)cin>>x[i]>>y[i]; for(i=1;i<=n;++i){ for(j=1;j<=n;++j)if(j!=i&&abs(x[i]-x[j])+abs(y[i]-y[j])>m)break; if(j==n+1)flag=1; } cout<<(flag?1:-1)<<endl; } }
8
CPP
#include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m;ll l,r; const int maxn=1e6+1; pair<int,int>p[105]; int w[50]; void run(){ cin>>n>>m;int ans=-1; for(int i=1;i<=n;i++)cin>>p[i].first>>p[i].second; for(int i=1;i<=n;i++){ int f=0; for(int j=1;j<=n;j++){ if(abs(p[i].first-p[j].first)+abs(p[i].second-p[j].second)>m){f=1;break;} } if(!f){ans=1;break;} } cout<<ans<<endl; } int main(){ int T; cin>>T; for(int i=1;i<=T;i++)run(); // run(); }
8
CPP
import sys input = sys.stdin.readline import math for _ in range(int(input())): n, k = list(map(int,input().split())) points = [] for i in range(n): points.append(tuple(map(int,input().split()))) adj = dict() for i in range(n): for j in range(i+1,n): temp1 = points[i] temp2 = points[j] if abs(temp1[0]-temp2[0])+abs(temp1[1]-temp2[1])<=k: if temp1 not in adj: adj[temp1]=0 if temp2 not in adj: adj[temp2]=0 adj[temp1]+=1 adj[temp2]+=1 ans = False for key in adj: if adj[key]==n-1: ans = True if ans: print(1) else: print(-1)
8
PYTHON3
t = int(input()) for _ in range(t): n,k = map(int, input().split()) a = [0] * n for i in range(n): a[i] = tuple(map(int, input().split())) d = [0] * n for i in range(n-1): for j in range(i+1, n): dist = abs(a[i][0] - a[j][0]) + abs(a[i][1] - a[j][1]) if dist <= k: d[i] += 1 d[j] += 1 if (n-1) in d: print(1) else: print(-1)
8
PYTHON3
#include <iostream> #include <math.h> #include <vector> #include <algorithm> #include <set> #define ll long long int #define pb push_back #define F(i,n) for(ll i=0;i<n;i++) using namespace std; int main() { ll t=1; cin>>t; while(t--){ ll n,k; cin>>n>>k; vector <pair<ll,ll> > v; ll x,y; F(i,n) { cin>>x>>y; v.pb({x,y}); } ll flag=0; F(i,n) { ll f=0; F(j,n) { if(abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second)>k) f=1; } if(f==0) {flag=1;} } if(flag==1) cout<<1; else cout<<-1; cout<<endl; } }
8
CPP
import sys import os from io import BytesIO, IOBase #Fast IO Region BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") T = int(input()) for _ in range(T): n, k = map(int, input().split()) arr = [] for i in range(n): x, y = map(int, input().split()) arr.append((x,y)) ok = False for i in range(n): cx, cy = arr[i] for j in range(n): if abs(cx - arr[j][0]) + abs(cy - arr[j][1]) > k: break else: ok = True break if ok: print(1) continue print(-1)
8
PYTHON3
#include<bits/stdc++.h> //#pragma GCC optimize(2) #define rep(i,a,n) for (int i=a;i<=n;i++) #define per(i,a,n) for (int i=a;i>=n;i--) using namespace std; #define IOS ios_base::sync_with_stdio(0); cin.tie(0);cout.tie(0) #define ll long long #define ull unsigned long long #define PII pair<int,int> #define pb push_back #define fi first #define se second #define all(a) a+1,a+n+1 #define ALL(a) a.begin(),a.end() #define debug(a) cout <<#a << "=" << a << endl; const int INF = 0x3f3f3f3f; const ll LINF = 1ll<<60; const int mod=1e9+7; #define TT int T;cin>>T;while(T--) inline int read(){int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+(ch^48);ch=getchar();}return x*f;} inline void write(int x){if(x<0) putchar('-'),x=-x;if(x>9) write(x/10);putchar(x%10+'0');} void solve(){ int n,k; cin>>n>>k; PII a[110]; rep(i,1,n) cin>>a[i].fi>>a[i].se; rep(i,1,n){ int f=1; rep(j,1,n){ if(abs(a[i].fi-a[j].fi)+abs(a[i].se-a[j].se)>k){ f=0; break; } } if(f==1){ cout<<1<<endl; return; } } cout<<-1<<endl; return; } int main(){ TT{ solve(); } return 0; }
8
CPP
test = int(input()) def dist(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) for t in range(test): n, k = map(int, input().split()) P = [list(map(int, input().split())) for i in range(n)] found = None for i in range(n): found = True for j in range(n): if i == j: continue elif dist(P[i], P[j]) > k: found = False break if found: break if found: print(1) else: print(-1)
8
PYTHON3
t = int(input()) for _ in range(t): n, k = map(int, input().split()) xy = [tuple(map(int, input().split())) for i in range(n)] ans = -1 for x, y in xy: flag = True for x2, y2 in xy: dx = abs(x2-x) dy = abs(y2-y) if dx + dy <= k: continue else: flag = False break if flag: ans = 1 break print(ans)
8
PYTHON3
t = int(input()) for _ in range(t): n,k = [int(x) for x in input().split()] points = [] for i in range(n): points.append(([int(x) for x in input().split()])) for i in range(len(points)): y=0 for j in range(len(points)): a,b = points[i][0],points[i][1] c,d = points[j][0],points[j][1] if abs(a-c)+abs(b-d)<=k: y+=1 else: break if y==len(points): print(1) break else: print(-1)
8
PYTHON3
def f(n,k): pts = [list(map(int, input().split())) for _ in range(n)] deg = [0 for _ in range(n)] for i in range(n): for j in range(i+1, n): a,b = pts[i] x,y = pts[j] man = abs(x-a)+abs(y-b) if man <= k: deg[i] += 1 deg[j] += 1 if max(deg) == n-1: return 1 else: return -1 t = int(input()) for i in range(t): n,k = list(map(int, input().split())) print(f(n,k))
8
PYTHON3
t=int(input()) for _ in range(t): n,k=list(map(int,input().split())) c=[] for i in range(n): c.append(list(map(int,input().split()))) f=1 for i in range(n): f=1 for j in range(n): if abs(c[i][0]-c[j][0])+abs(c[i][1]-c[j][1])>k: f=-1 break if f==1: break print(f)
8
PYTHON3
t=int(input()) for i in range(t): n,k=map(int,input().split()) li=[] for j in range(n): li.append(list(map(int,input().split()))) for j in range(n): c=0 x1=li[j][0] y1=li[j][1] for k1 in range(n): x2=li[k1][0] y2=li[k1][1] dist=abs(x1-x2)+abs(y1-y2) if dist>k: c=1 break if c==0: print(1) break if c==1: print(-1)
8
PYTHON3
for i in range(int(input())): n,k=map(int,input().split());l=[];t=-1 for i in range(n):x,y=map(int,input().split());l.append([x,y]) for i in l: q=0 for j in l: if abs(i[1]-j[1])+abs(i[0]-j[0])<=k:q+=1 else:break if q==n:t=1 print(t)
8
PYTHON3
# region fastio # from https://codeforces.com/contest/1333/submission/75948789 import sys, io, os BUFSIZE = 8192 class FastIO(io.IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = io.BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(io.IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") def print(*args, **kwargs): """Prints the values to a stream, or to sys.stdout by default.""" sep, file = kwargs.pop("sep", " "), kwargs.pop("file", sys.stdout) at_start = True for x in args: if not at_start: file.write(sep) file.write(str(x)) at_start = False file.write(kwargs.pop("end", "\n")) if kwargs.pop("flush", False): file.flush() sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") #endregion T = int(input()) for _ in range(T): N, K = map(int, input().split()) XY = [list(map(int, input().split())) for _ in range(N)] for cx, cy in XY: f = True for x, y in XY: d = abs(cx-x) + abs(cy-y) if d > K: f = False break if f: print(1) break else: print(-1)
8
PYTHON3
from math import * from collections import deque from copy import deepcopy import sys def inp(): return sys.stdin.readline().rstrip("\r\n") #for fast input def multi(): return map(int,input().split()) def strmulti(): return map(str, inp().split()) def lis(): return list(map(int, inp().split())) def lcm(a,b): return (a*b)//gcd(a,b) def ncr(n,r): return factorial(n) // (factorial(r) * factorial(max(n - r, 1))) def stringlis(): return list(map(str, inp().split())) def out(var): sys.stdout.write(str(var)) #for fast output, always take string def printlist(a) : print(' '.join(str(a[i]) for i in range(len(a)))) def isPrime(n) : if (n <= 1) : return False if (n <= 3) : return True if (n % 2 == 0 or n % 3 == 0) : return False i = 5 while(i * i <= n) : if (n % i == 0 or n % (i + 2) == 0) : return False i = i + 6 return True #copied functions end #start coding t=int(inp()) for _ in range(t): n,k=multi() a=[] for i in range(n): a.append(lis()) ans=-1 num=0 for i in range(n): already=True for j in range(n): if(i==j): continue if(abs(a[i][0]-a[j][0])+abs(a[i][1]-a[j][1])>k ): already=False break if(already): ans=1 break print(ans)
8
PYTHON3
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; inline int read() { int n=0,f=1,ch=getchar(); while(ch<'0'||ch>'9') { if(ch=='-')f=-1; ch=getchar(); } while(ch>='0'&&ch<='9') { n=n*10+ch-'0'; ch=getchar(); } return n*f; } int x[501],y[501]; int main() { int t,n,k,ans=0; bool flag; t=read(); for(int greg=1;greg<=t;greg++) { n=read(); k=read(); for(int i=1;i<=n;i++) { x[i]=read(); y[i]=read(); } flag=false; for(int i=1;i<=n;i++) { flag=false; for(int j=1;j<=n;j++) { if(abs(x[i]-x[j])+abs(y[i]-y[j])>k) { flag=true; break; } } if(flag==false) { printf("1\n"); break; } } if(flag==true)printf("-1\n"); } return 0; }
8
CPP
#include <bits/stdc++.h> #define ll long #define lll long long #define mp make_pair #define pb push_back #define inf 1000000001 lll p = 1000000007; using namespace std; lll sq(lll i){ return i*i; } lll fact(ll n){ ll ans=1; for(ll i=1; i<=n;i++)ans=(ans*i)%p; return ans; } //***********************GRAPH ALGORITHMS************************************************************* void dfs(vector <ll> v[], vector<ll> &df, ll cov[], ll i){ //Also outputed resultant dfs df.pb(i); for(ll j=0; j<v[i].size(); j++){if(cov[v[i][j]]==0){cov[v[i][j]]=cov[i]; dfs(v, df, cov, v[i][j]);}} } void djikstra (vector <pair<ll, ll>> v[], ll d[], ll par[], ll s, ll n){ //n^2 for(ll i=0; i<n;i++){d[i]=inf; par[i]=-1;} par[s]=s; d[s]=0; bool cov[n]; for(ll i=0; i<n;i++)cov[i]=0; ll u=-1; for(int j=0; j<n;j++) { u=-1; for(ll i=0; i<n;i++){ if(!cov[i] && (d[i]<d[u] || u==-1))u=i; } cov[u]=1; for(ll i=0; i<v[u].size(); i++){ if(d[v[u][i].first] > d[u]+v[u][i].second){d[v[u][i].first]=d[u]+v[u][i].second; /*cout << d[u] << " " <<v[u][i].second <<"\n"; */par[v[u][i].first]=u;} } } } ll findConnComp(vector <ll> v[], ll cov[], ll n){ ll j=0; vector <ll> df; for(ll i=0; i<n;i++)cov[i]=0; for(ll i=0; i<n; i++){ if(!cov[i]){cov[i]=++j; dfs(v, df, cov, i);} } return j; } //*****************CODE STARTS ************************************** int main(){ ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); ll t; cin >> t; while(t--){ ll n, k; cin >> n >> k; pair<ll, ll> pos[n]; for(int i=0; i<n;i++){ cin >> pos[i].first >> pos[i].second; } vector <ll> v[n]; for(ll i=0; i<n;i++){ for(ll j=i+1; j<n;j++){ if(abs(pos[i].first-pos[j].first) + abs(pos[i].second-pos[j].second)<=k){v[i].pb(j); v[j].pb(i);} } } bool done=0; for(ll i=0; i<n;i++)if(v[i].size()==n-1)done=1; if(done)cout << "1\n"; else cout <<"-1\n"; } }
8
CPP
from collections import Counter class Point: def __init__(self, x, y): self.x = x self.y = y def __eq__(self, other): return self.x == other.x and self.y == other.y def manhattan_dist(x1, y1, x2, y2): return abs(x1-x2) + abs(y1-y2) def solve(points, k): for p1 in points: found = True for p2 in points: if p1 == p2: continue if manhattan_dist(p1.x, p1.y, p2.x, p2.y) > k: found = False break if found: return 1 return -1 if __name__ == "__main__": for t in range(int(input())): n, k = list(map(int, input().split())) points = [] for i in range(n): x, y = list(map(int, input().split())) points.append(Point(x, y)) print(solve(points, k))
8
PYTHON3
''' 3 3 2 0 0 3 3 1 1 3 3 6 7 8 8 6 9 4 1 0 0 0 1 0 2 0 3 ''' from collections import defaultdict tcs = int(input()) for tc in range(tcs): n, k = list(map(int, input().split())) li = list() for i in range(n): x, y = list(map(int, input().split())) li.append([x, y]) ans = -1 for i in range(n): flag = True for j in range(n): if i!=j and k<abs(li[i][0]-li[j][0])+abs(li[i][1]-li[j][1]): flag = False break if flag: ans = 1 break print(ans)
8
PYTHON3
#include<bits/stdc++.h> #define FOR(i,s,t) for(int i=s;i<=t;++i) #define REP(i,t,s) for(int i=t;i>=s;--i) #define mem(a,x) memset(a,x,sizeof a) using namespace std; typedef long long ll; int x[222],y[222]; int t,n; int dis(int i,int j) { return abs(x[i]-x[j])+abs(y[i]-y[j]); } int k; int main() { cin>>t; while(t--) { cin>>n>>k; FOR(i,1,n) cin>>x[i]>>y[i]; FOR(i,1,n) { int j; for(j=1;j<=n;++j) if(dis(i,j)>k) break; if(j==n+1) { cout<<1<<endl; goto xx; } } cout<<-1<<endl; xx:; } }
8
CPP
from sys import stdin, gettrace if gettrace(): inputi = input else: def input(): return next(stdin)[:-1] def inputi(): return stdin.buffer.readline() def solve(): n, k = map(int, inputi().split()) points = [] for _ in range(n): points.append(tuple(map(int, inputi().split()))) dist = [] for px, py in points: for qx, qy in points: if abs(px-qx) + abs(py-qy) > k: break else: print(1) return else: print(-1) def main(): t = int(inputi()) for _ in range(t): solve() if __name__ == "__main__": main()
8
PYTHON3
#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; #define mp make_pair #define pb push_back #define ip pair<ll,ll> #define iip pair<pair<ll,ll>,int> #define ff first #define ss second #define MAX 2000005 #define f(j,i,k) for(ll j=i;j<k;j++) #define fe(j,i,k) for(ll j=i;j<=k;j++) #define fr(j,i,k) for(ll j=i;j>=k;j--) const ll MOD = 1000000007; int main(){ ios_base::sync_with_stdio(false); cin.tie(NULL); ll t; cin>>t; while(t--){ ll n,k; cin>>n>>k; ll x[n]; ll y[n]; f(i,0,n) cin>>x[i]>>y[i]; ll A[n][n]; f(i,0,n) f(j,0,n){ if(i==j){ A[i][j]=0; continue; } A[i][j]=LLONG_MAX; if(abs(x[i]-x[j])+abs(y[i]-y[j])<=k) A[i][j]=1; } ll found=0; f(i,0,n){ ll here=1; f(j,0,n){ if(A[i][j]==LLONG_MAX){ here=0; break; } } if(here){ found=1; break; } } if(found) cout<<1<<endl; else { cout<<-1<<endl; } // f(i,0,n){ // f(j,0,n){ // cout<<A[i][j]<<" "; // } // cout<<endl; // } // cout<<endl; // ll dist[n][n]; // f(i,0,n) // f(j,0,n) // dist[i][j]=A[i][j]; // f(k,0,n) // f(i,0,n) // f(j,0,n){ // if (dist[i][k]!=LLONG_MAX && dist[k][j]!=LLONG_MAX && dist[i][k] + dist[k][j] < dist[i][j]) // dist[i][j] = dist[i][k] + dist[k][j]; // } // f(i,0,n){ // f(j,0,n){ // cout<<dist[i][j]<<" "; // } // cout<<endl; // } // ll mymax=LLONG_MIN; // f(i,0,n) // f(j,0,n) // if(dist[i][j]>mymax) // mymax=dist[i][j]; // if(mymax==LLONG_MAX){ // cout<<-1<<endl; // } // else // { // if(mymax&1) // { // } // cout<<max(1ll,mymax-2)<<endl; // } } }
8
CPP
#include "bits/stdc++.h" #define ll long long using namespace std; void solve() { int n, k; cin >> n >> k; vector<vector<int>> a(n, vector<int>(2)); bool sw = 1; for (int i = 0; i < n; i++) cin >> a[i][0] >> a[i][1]; for(int i = 0; i < n; i++) { bool flag = 0; for (int j = 0; j < n; j++){ if (i != j && abs(a[i][0] - a[j][0]) + abs(a[i][1] - a[j][1]) > k) { flag = 1; break; } } if(!flag){ sw = 0; break; } } if(!sw) cout << 1 << endl; else cout << -1 << endl; } signed main() { ios_base::sync_with_stdio(false); int t; cin >> t; while (t--) solve(); }
8
CPP
import sys def main(balls, k): n = len(balls) x, y = balls[0] for x, y in balls: good = True for _x, _y in balls: if abs(x-_x)+abs(y-_y) > k: good = False continue if good: return 1 return -1 if __name__ == '__main__': n, k = -1, -1 n_tests = -1 balls = [] for line in sys.stdin: if n_tests == -1: n_tests = int(line.strip()) n, k = -1, -1 elif n == k == -1: n, k = [int(c) for c in line.strip().split()] else: balls.append([int(c) for c in line.strip().split()]) if len(balls) == n: print(main(balls, k)) balls = [] n, k = -1, -1
8
PYTHON3
t = int(input()) def dist(x1, x2, y1, y2): return abs(x1 - x2) + abs(y1 - y2) for _ in range(t): n, k = map(int, input().split()) nums = [] for i in range(n): x, y = map(int, input().split()) nums.append([x, y]) ans = -1 for i in range(n): mx = 0 for j in range(n): mx = max(mx, dist(nums[i][0], nums[j][0], nums[i][1], nums[j][1])) if mx <= k: ans = 1 print(ans)
8
PYTHON3
#include <bits/stdc++.h> using namespace std; //--------------------------------------------------------- //#define _FILE_IO_ // Testing with I/O #define WLIB_DEF // WLIB - Utility functions #define WIO_DEF // WIO - Generic I/O functions //--------------------------------------------------------- #ifdef WLIB_DEF /* Utility functions collection * Math Functions: _gcd_, _lcm_, _fact_, _pow_, _inv_, _C_, _A_ * String Functions: _zfunc_, _pfunc_, _isPalindrome_ * Vector Functions: _pSum_ */ namespace WLIB{ #define MYDEFS #ifdef MYDEFS // DFS #define __graph_(t,name,siz) std::vector< std::vector<t> > name(siz) #define __add_edge_(g,a,b) g[a].push_back(b); g[b].push_back(a) // loops // #define __FOR_(it,st,nd)_ ___aux_FOR_ ## #(st<=nd)_(it,st,nd) // #define __aux_FOR_true_(it,st,nd) for(int it = st; it <= nd; it++) // #define __aux_FOR_false_(it,st,nd) for(int it = st; it >= nd; it--) #endif namespace LIB_TYPES { typedef long long lint; } // >>> Math Functions <<< // Greatest common divisor | Time: log(N) | Memory: 1 LIB_TYPES::lint _gcd_(LIB_TYPES::lint a, LIB_TYPES::lint b) { if(b == 0) return a; return _gcd_(b, a%b); } // Least common multiple | Time: log(N) | Memory: 1 LIB_TYPES::lint _lcm_(LIB_TYPES::lint a, LIB_TYPES::lint b) { return (a * b) / _gcd_(a,b); } // Factorial of n by modulo mod | Time: N | Memory: 1 LIB_TYPES::lint _fact_(LIB_TYPES::lint n, LIB_TYPES::lint mod) { LIB_TYPES::lint fct = 1; for(LIB_TYPES::lint i = 1; i <= n; i++) fct = (fct * i) % mod; return fct % mod; } // pw-th power of x by modulo mod| Time: log(pw) | Memory: 1 LIB_TYPES::lint _pow_(LIB_TYPES::lint base, LIB_TYPES::lint pw, LIB_TYPES::lint mod) { LIB_TYPES::lint ans = 1ll; while(pw > 0ll) { if(pw & 1ll) ans = (ans * base) % mod; pw = pw >> 1ll; base = (base * base) % mod; } return ans % mod; } // Inverse of x by modulo mod | Time: log(mod) | Memory: 1 LIB_TYPES::lint _inv_(LIB_TYPES::lint x, LIB_TYPES::lint mod) { return _pow_(x, mod-2, mod) % mod; } // C by modulo mod | Time: N + log(mod) | Memory: 1 LIB_TYPES::lint _C_(LIB_TYPES::lint n, LIB_TYPES::lint m, LIB_TYPES::lint mod) { return (_fact_(n, mod) * _inv_( ((_fact_(m, mod) * _fact_(n-m, mod)) % mod), mod)) % mod; } // A by module mod | Time: N + log(mod) | Memory: 1 LIB_TYPES::lint _A_(LIB_TYPES::lint n, LIB_TYPES::lint m, LIB_TYPES::lint mod) { return (_fact_(n, mod) * _inv_( _fact_(n-m, mod), mod)) % mod; } // List of prime numbers less or equal to N std::vector<LIB_TYPES::lint> _primes_until_(LIB_TYPES::lint N) { std::vector<bool> isPrime(N+1,true); std::vector<LIB_TYPES::lint> primes; for(LIB_TYPES::lint i = 2; i <= N; i++) { if(!isPrime[i]) continue; primes.push_back(i); for(LIB_TYPES::lint j = i*i; j <= N; j+=i) isPrime[j] = false; } return primes; } // >>> String Functions <<< // P function | Time: N | Memory: N vector<int> _pfunc_(string str) { vector<int> p(str.length(),0); for(int i = 1, j = 0; i < str.length(); i++) { while(j > 0 && str[j] != str[i]) { j = p[j-1]; } if(str[i] == str[j]) j++; p[i] = j; } return p; } // Z function | Time: N | Memory: N vector<int> _zfunc_(string str) { vector<int> z(str.size(),0); for(int i = 1, l = 0, r = 0; i < str.size(); i++) { if(i <= r) z[i] = min(z[i-l],r-i+1); while(i+z[i]<str.size() && str[i+z[i]] == str[z[i]]) z[i]++; if(z[i]-1 > r && z[i] != 0) { l = i; r = z[i] - 1; } } return z; } // Is the string Palindrome or Not | Time: N | Memory: N bool _isPalindrome_(string str, int L=0, int R=-1) { if(R == -1) R = str.length()-1; while(L < R) { if(str[L] != str[R]) return false; L++; R--; } return true; } // >>> Vector Functions <<< // Prefix sum | Time: N | Memory: N template <class T> vector<T> _pSum_(vector<T> v) { for(int i = 1; i < v.size(); i++) v[i] += v[i-1]; return v; } } #endif #ifdef WIO_DEF /* Generic I/O functions * Functions: _readV_, _printV_ * Defines: __endl_ */ namespace WIO{ #define __endl_ cout<<endl; // Read vector | Time: N | Memory: 1 template <class T> void _readV_(vector<T> &v, int offset = 0, int n = -1) { if(n == -1) n = v.size()-1; for(int i = offset; i <= n; i++) cin >> v[i]; } // Print vector | Time: N | Memory: N template <class T> void _printV_(vector<T> v, int offset = 0, int n = -1) { if(n == -1) n = v.size()-1; for(int i = offset; i <= n; i++) cout << v[i] << " "; } bool WIO_DEBUG_LOGS_FLAG = false; void _log_(string s) { if(WIO_DEBUG_LOGS_FLAG) cout << "LOG:: " << s << endl; } void _elog_(string s) { if(WIO_DEBUG_LOGS_FLAG) cout << "ERROR:: " << s << endl; } void _celog_(string s) { if(WIO_DEBUG_LOGS_FLAG) cout << "CRITICAL_ERROR::" << s << endl; assert(0); } } #endif //--------------------------------------------------------- #define for_in_range(i,s,f) for(int i = s; i <= f; i++) typedef long long lint; typedef vector<lint> vlint; typedef vector<vector<int>> matrix_int; typedef vector<vector<lint>> matrix_lint; #define fi first #define se second const lint MOD = 1e9+7; const lint PRIME = 31; const lint LOG = 30; const lint INF = INT64_MAX; const lint MAXN= 1e6; void solve(); int main() { //---------------------Local flags------------------------- //--------------------------------------------------------- //#define _FILE_IO_ //WIO::WIO_DEBUG_LOGS_FLAG = true; //--------------------------------------------------------- ios_base::sync_with_stdio(false); #ifdef _FILE_IO_ freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); #endif int tst = 1; cin >> tst; while(tst--) solve(); } void solve() { lint n, k; cin >> n >> k; vector<pair<lint,lint>> v; for(int i = 0; i < n; i++) { int x, y; cin >> x >> y; v.push_back({x,y}); } for(int i = 0; i < n; i++) { lint flag = true; for(int j = 0; j < n; j++) { // cout <<v[i].first << " "<<v[i].second<<" "<< abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second) << endl; if(abs(v[i].first-v[j].first)+abs(v[i].second-v[j].second) > k) { flag = false; break; } } if(flag) { cout << 1 << endl; return; } } cout << -1 << endl; return; }
8
CPP
/* /> フ | _ _| /`ミ _x 彡 * MEOW * / | / ヽ ノ / ̄| | | | | ( ̄ヽ__ヽ_)_) \二つ */ #include <bits/stdc++.h> #define ll long long #define db(x) cout << (#x) << " = " << x << "\n" ; #define pb push_back #define mt make_tuple #define F first #define S second using namespace std; bool comp(pair <ll , ll> &a , pair <ll , ll> &b){ ll s1 = a.F + a.S , s2 = b.F + b.S; if(s1==s2){ return a.F < b.F; } else return s1 < s2; } int main(){ ios_base::sync_with_stdio(false); cin.tie(NULL); #ifndef ONLINE_JUDGE freopen("input.txt", "r", stdin); freopen("output.txt", "w", stdout); #endif /* uWu */ ll t; cin >> t; while(t--){ ll n , k; cin >> n >> k; vector < pair < ll , ll > > arr; for(ll i = 0;i<n;i++){ ll a , b; cin >> a >> b; arr.pb({a,b}); } ll extreme_d = 0 , found = 0; for(ll i=0;i<n;i++){ ll a = arr[i].F , b = arr[i].S; found = 1; for(ll j=0;j<n;j++){ ll c = arr[j].F , d = arr[j].S; if(abs(a-c) + abs(b-d)>k) found = 0; } if(found) break; } if(found){ cout << 1 << "\n"; } else { cout << -1 << "\n"; } } return 0; }
8
CPP
#include<bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef string ss ; typedef pair<int, int> pi; typedef pair<ll,ll> pl; typedef vector<int> vi; typedef vector<ll> vl; #define mp make_pair #define pb push_back void solve(){ ll n,k=0,q=0; string s; cin >> n >> k ; ll x[n],y[n]; for(int i=0 ; i<n ; i++){ cin >> x[i] >> y[i]; } bool ok=false; for(int i=0 ; i<n ; i++){ for(int j=0 ; j<n ; j++){ if(abs(x[i]-x[j]) + abs(y[i]-y[j]) <= k){ q++; } if(q==n) ok=true; } q=0; } cout << (ok ? "1\n" : "-1\n") ; } int main() { ios_base::sync_with_stdio(0); cin.tie(0); int t=1; cin >> t; while(t--) solve(); return 0; }
8
CPP
#include<iostream> #include<cstring> #include<cassert> #include<cmath> #include<map> #include<set> #include<queue> #include<stack> #include<vector> #include<time.h> #include<bitset> #include<cstdio> #include<algorithm> using namespace std; #define REP(i,x,y) for(int i=x;i<=y;i++) #define rep(i,n) REP(i,1,n) #define rep0(i,n) REP(i,0,n-1) #define repG(i,x) for(int i=pos[x];~i;i=e[i].next) #define ll long long #define db double const int N=1e5+7; const int INF=1e9+7; int T,n,k; int X[N],Y[N]; int main(){ scanf("%d",&T); while(T--){ scanf("%d%d",&n,&k); rep(i,n)scanf("%d%d",&X[i],&Y[i]); bool ans=0; rep(i,n){ bool fl=1; rep(j,n)if(abs(X[i]-X[j])+abs(Y[i]-Y[j])>k)fl=0; if(fl){ ans=1; break; } } if(ans)puts("1"); else puts("-1"); } return 0; }
8
CPP
#include <bits/stdc++.h> #define f first #define s second using namespace std; using li = long long; using ld = long double; using pii = pair<int, int>; const int INF = 1e9 + 13; const int N = 112; vector<int> g[N]; int d[N]; pii a[N]; void solve() { int n, k; cin >> n >> k; // for(int i = 0; i < n; i++) { // g[i].erase(g[i].begin(), g[i].end()); //// for(int j = 0; j < n; j++) { //// d[i][j] = INF; //// } // } for(int i = 0; i < n; i++) { cin >> a[i].f >> a[i].s; } for(int i = 0; i < n; i++) { int cnt = 0; for(int j = 0; j < n; j++) { if(abs(a[i].f - a[j].f) + abs(a[i].s - a[j].s) <= k) { cnt++; } } if(cnt == n) { cout << 1 << endl; return; } } cout << -1 << endl; } int main() { int t = 1; cin >> t; while(t--) solve(); }
8
CPP
def canCollapse(balls, k): if len(balls) <= 1: return True for a in balls: found = 0 for b in balls: if abs(a[0] - b[0]) + abs(a[1] - b[1]) <= k: found += 1 if found <= 1: return False if found == len(balls): return True return False t = int(input()) for i in range(t): n, k = map(int, input().split(" ")) balls = [] for j in range(n): balls.append(list(map(int, input().split(" ")))) print(1 if canCollapse(balls, k) else -1)
8
PYTHON3
t=int(input()) for i in range(t): n1,k=map(int,input().strip().split()) l=[] for i in range(n1): x,y=map(int,input().strip().split()) l.append([x,y]) flag=0 y=0 for j in l: flag=0 for m in l: s=abs(j[0]-m[0]) s+=abs(j[1]-m[1]) if s>k: flag=1 break if flag==0: y=1 break if y==1: print("1") else: print("-1")
8
PYTHON3
#include<bits/stdc++.h> const int maxn=105; using namespace std; int t,n,k,sum[maxn],x[maxn],y[maxn]; int calc(int i,int j){ return abs(x[i]-x[j])+abs(y[i]-y[j]); } int main(){ scanf("%d",&t); for(;t;t--){ memset(sum,0,sizeof(sum)); scanf("%d %d",&n,&k); for(int i=1;i<=n;i++)scanf("%d %d",&x[i],&y[i]); for(int i=1;i<=n;i++)for(int j=i+1;j<=n;j++)if(calc(i,j)<=k)sum[i]++,sum[j]++; for(int i=1;i<=n;i++){ if(sum[i]==n-1){puts("1");break;} if(i==n)puts("-1"); } } return 0; }
8
CPP
from collections import defaultdict,deque import sys import bisect input=sys.stdin.readline t=int(input()) for ii in range(t): n,k=map(int,input().split()) store=[] for i in range(n): x,y=map(int,input().split()) store.append((x,y)) check=[0]*(n) for i in range(n): for j in range(n): if i!=j: manhat=abs(store[i][0]-store[j][0])+abs(store[i][1]-store[j][1]) if manhat<=k: check[i]+=1 if (n-1) in check: print(1) else: print(-1)
8
PYTHON3
import sys input = lambda: sys.stdin.readline().rstrip() T = int(input()) for _ in range(T): N, K = map(int, input().split()) X = [] for _ in range(N): x, y = map(int, input().split()) X.append((x, y)) for i, (x, y) in enumerate(X): for j, (x2, y2) in enumerate(X): # print("x, x2, y, y2 =", x, x2, y, y2) if abs(x - x2) + abs(y - y2) > K: break else: print(1) break else: print(-1)
8
PYTHON3
for test in range(int(input())): n, k = list(map(int, input().split())) balls = [] for i in range(n): balls.append(tuple(map(int, input().split()))) balls.sort() found = False for c_ball in balls: ok = True for ball in balls: ok &= abs(c_ball[0] - ball[0]) + abs(c_ball[1] - ball[1]) <= k if ok: found = True if found: print(1) else: print(-1)
8
PYTHON3
/**Bismillahir Rahmanir Rarim**/ #include <stdio.h> #include <stdlib.h> #include <string.h> #include<bits/stdc++.h> #define ll long long #define ld long double #define fi first #define se second #define mp make_pair #define pb push_back #define all(c) c.begin(), c.end() #define CC(x) cout << (x) << endl #define rep(i,n) for(int i=0;i<n;i++) #define FastRead ios_base::sync_with_stdio(false);cin.tie(NULL); #define EPS 1e-9 #define sz(v) int((v).size()) const unsigned long long inf=1e18; const int range=1e6; const long long inff=1e-12; const int dx[] = { 0, 1, -1, 0 }; const int dy[] = { -1, 0, 0, 1 }; typedef unsigned long long ull; ll gcd(ll a, ll b) {if (b == 0)return a;return gcd(b, a % b);} using namespace std; bool cmp(const pair<ll,ll>&a, const pair<ll,ll>&b){return (a.se>b.se);} void vecp(vector<ll>v){for(int i=0;i<sz(v);i++){cout <<v[i]<<" ";}cout <<endl;} int main() { FastRead ll x,y,l,r,n,c,z,a=0,b=0,cas=1,d,x1,x2,y1,y2,t,N,mx=0,k; cin >> t; while(t--){ cin >>x>>k; vector<pair<int,int>>p(x); for(int i=0;i<x;i++){ cin >>p[i].fi >>p[i].se; } sort(all(p)); int f=0,ff=0; for(int i=0;i<x;i++){ f=0; for(int j=0;j<x;j++){ if(i!=j){ ll a=abs(p[i].fi-p[j].fi); ll b=abs(p[i].se-p[j].se); if(a+b<=k){ continue; } else{ f=1; break; } } } if(f==0){ ff=1; break; } } if(ff==0){ cout <<-1 <<endl; } else{ cout <<1 <<endl; } } }
8
CPP
#pragma GCC optimize("Ofast") #pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,avx2,fma") #pragma GCC optimize("unroll-loops") #include <bits/stdc++.h> using namespace std; typedef long long ll; typedef long double ld; typedef pair<int,int> p32; typedef pair<ll,ll> p64; typedef pair<double,double> pdd; typedef vector<ll> v64; typedef vector<int> v32; typedef vector<vector<int> > vv32; typedef vector<vector<ll> > vv64; typedef vector<vector<p64> > vvp64; typedef vector<p64> vp64; typedef vector<p32> vp32; ll MOD = 1791791791; double eps = 1e-12; #define forn(i,e) for(ll i = 0; i < e; i++) #define forsn(i,s,e) for(ll i = s; i < e; i++) #define rforn(i,s) for(ll i = s; i >= 0; i--) #define rforsn(i,s,e) for(ll i = s; i >= e; i--) #define ln "\n" #define dbg(x) cout<<#x<<" = "<<x<<ln #define mp make_pair #define pb push_back #define fi first #define se second #define INF 2e18 #define fast_cin() ios_base::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL) #define all(x) (x).begin(), (x).end() #define sz(x) ((ll)(x).size()) struct Point{ ll x; ll y; }; int main() { fast_cin(); ll t,n,k; cin >> t; forn(d,t){ cin >> n >> k; vector<Point> v(n); forn(i,n){ cin >> v[i].x >> v[i].y; } bool isCan = false; forn(i,n){ bool f = true; forn(j,n){ if((abs(v[i].x - v[j].x) + abs(v[i].y - v[j].y)) > k){ f = false; break; } } if(f) isCan = true; } if(isCan){ cout << 1 << ln; } else{ cout << -1 << ln; } } }
8
CPP
n_tests = int(input()) for test in range(n_tests): [n, k] = input().split(' ') k = int(k) d = [] n = int(n) for i in range(n): p = input().split(' ') p = [int(w) for w in p] d.append(p) md = [] t = False for i in range(n): q = d[i] a = 0 for j in range(n): s = abs(q[0] - d[j][0]) + abs(q[1] - d[j][1]) if s <= k: a += 1 if a == n: t = True break if t: print(1) else: print(-1)
8
PYTHON3
test_case=int(input()) for ix in range(test_case): n=[int(x) for x in input().split()] no=n[0] pow=n[1] dist=[] flag=False for ixx in range(no): point=[int(x) for x in input().split()] dist.append(point) for i in range(no): count=0 for j in range(no): d=abs(dist[i][0]-dist[j][0])+abs(dist[i][1]-dist[j][1]) if d<=pow: count=count+1 if count==no: flag=True break if flag: print("1") else: print("-1")
8
PYTHON3
#include<bits/stdc++.h> //#define int long long #define ll long long #define p pair<int, int> #define endl '\n' const int INF = 1000000001; using namespace std; const int C = 998244353; vector<ll> fact, minus_fact; ll pow1(ll x, ll y, ll z=C){ if (y == 0){ return 1; } if (y % 2 == 0){ return pow1(x*x % z, y/2, z); } return pow1(x, y-1, z)*x % z; } void facts(int n){ fact = {1}, minus_fact = {1}; for (int q = 1; q <= n; q++){ fact.push_back(fact.back()*q % C); minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C); } } ll c(int k, int n){ if (k < 0 || k > n){ return 0; } return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C; } signed main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); facts(200179); int n; cin >> n; vector<p> a(n); for (int q = 0; q < n; q++){ cin >> a[q].first >> a[q].second; } vector<int> now = {1}; for (int q = 0; q < n; q++){ int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second; vector<__int128> will(w3-a[q].second, 0); vector<ll> cc(now.size()+a[q].first); for (int q1 = 0; q1 < cc.size(); q1++){ cc[q1] = c(q1, a[q].first+a[q].second); } for (int q1 = a[q].second; q1 < w3; q1++){ int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second); for (int q2 = w2; q2 < w; q2++){ will[w1] += cc[q1-q2]*now[q2]; } } now = {}; for (__int128 q1: will){ now.push_back(q1 % C); } for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--){ now.push_back(now[q1]); } } ll ans = 0; for (int q: now){ ans += q; } cout << ans % C << endl; return 0; }
13
CPP
//CLOCKS_PER_SEC using namespace std; #include<bits/stdc++.h> #define sqr(x) 1ll*(x)*(x) //#define sort stable_sort #define ll long long #define mk make_pair #define pb push_back #define in insert #define mtr(x,y,z) mk(mk(x,y),z) #define fi first #define se second #define lch(x) ((x)<<1) #define rch(x) (((x)<<1)|1) #define all(x) (x).begin(),(x).end() #define titose CLOCKS_PER_SEC #define fpi(x) freopen(x,"r",stdin); #define fpo(x) freopen(x,"w",stdout); #define fprio fpi("in.txt");fpo("out.txt"); #define fast ios_base::sync_with_stdio(false); inline void read(int &x){int v=0,f=1;char c=getchar();while (!isdigit(c)&&c!='-') c=getchar();if (c=='-') f=-1; else v=(c&15);while (isdigit(c=getchar())) v=(v<<1)+(v<<3)+(c&15);x=v*f;} inline void read(ll &x){ll v=0ll,f=1ll;char c=getchar();while (!isdigit(c)&&c!='-') c=getchar();if (c=='-') f=-1; else v=(c&15);while (isdigit(c=getchar())) v=(v<<1)+(v<<3)+(c&15);x=v*f;} inline void readc(char &x){char c;while (((c=getchar())==' ')||c=='\n');x=c;} #define pii pair<int,int> #define pll pair<ll,ll> #define vi vector<int> #define vl vector<ll> #define si set<int> #define sl set<ll> #define mii map<int,int> #define mll map<ll,ll> #define msi map<string,int> #define msl map<string,ll> #define piii pair<int,pii > #define piipi pair<pii,int> #define plll pair<ll,pll > #define pllpl pair<pll,ll> #define pqi priority_queue<int> #define pql priority_queue<ll> #define npqi priority_queue<int,vector<int>,greater<int> > #define npql priority_queue<ll,vector<ll>,greater<ll> > #define forup(i,a,b) for ((i)=(a);(i)<=(b);(i)++) #define fordo(i,a,b) for ((i)=(a);(i)>=(b);(i)--) #define rep(i,x) forup ((i),1,(x)) #define repd(i,x) fordo ((i),(x),1) #define rep0(i,x) forup ((i),0,((int)(x))-1) #define rep0d(i,x) fordo ((i),((int)(x))-1,0) #define itr iterator #define fe(itcalc,c) for(__typeof((c).begin()) itcalc=(c).begin();itcalc!=(c).end();itcalc++) #define NO {cout<<"NO";return 0;} #define YES {cout<<"YES";return 0;} #define y0 y000000000000000000000000000 #define y1 y111111111111111111111111111 #define j0 j000000000000000000000000000 #define j1 j111111111111111111111111111 #define cl0(a) memset((a),(0),(sizeof((a)))) #define clz(a) memset((a),(0x16),(sizeof((a)))) #define clf(a) memset((a),(-(0x16)),(sizeof((a)))) #define inf 0x3bbbbbbb #define lnf 0x2bbbbbbbbbbbbbbbll //#define sqrt divi #define p2(i) (1ll<<(i)) #define readi read #define readll read /*************************************************/ const int mod=998244353,maxn=16384; int n,m,i,j,fac[240005],inv[240005],fi[240005],rev[maxn+5],a[maxn+5],b[maxn+5],w[maxn+5]; vector<int> v,nxt; int c(int x,int y) { if(x<y||x<0||y<0) return 0; return 1ll*fac[x]*fi[y]%mod*fi[x-y]%mod; } int pw(int x,int y) { int z=1; while(y){ if(y&1)z=1ll*z*x%mod; x=1ll*x*x%mod;y>>=1; } return z; } void ntt(int *a,int len,int op) { int i,j,k; rep0(i,len){ if(rev[i]<i){ swap(a[i],a[rev[i]]); } } for(i=1;i<len;i<<=1){ int stp=maxn/i/2; for(j=0;j<len;j+=i+i){ int t=(op==1?0:maxn); rep0(k,i){ int x=a[j+k],y=a[j+k+i]*1ll*w[t]%mod; a[j+k]=(x+y)%mod;a[j+k+i]=(x-y+mod)%mod; t+=stp*op; } } } if(op==-1){ rep0(i,len) a[i]=1ll*a[i]*inv[len]%mod; } } int getrev(int x) { int len=1,i; while(len<=x)len<<=1; rep0(i,len){ rev[i]=(rev[i/2]/2)+((i&1)*(len/2)); } return len; } int main() { w[0]=1;w[1]=pw(3,(mod-1)/maxn); forup(i,2,maxn) w[i]=1ll*w[i-1]*w[1]%mod; fac[0]=fac[1]=inv[1]=fi[0]=fi[1]=1; forup(i,2,240003){ fac[i]=1ll*fac[i-1]*i%mod; inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod; fi[i]=1ll*fi[i-1]*inv[i]%mod; } read(n); v.push_back(1); int _; rep(_,n){ int x,y; read(x);read(y); nxt.clear();nxt.resize(v.size()+x-y); int l=1-((int)v.size())+y,r=nxt.size()-1+y; int len=getrev(v.size()+(r-l+1)); rep0(i,len) a[i]=b[i]=0; rep0(i,v.size()) a[i]=v[i]; rep0(i,r-l+1) b[i]=c(x+y,l+i); ntt(a,len,1);ntt(b,len,1); rep0(i,len) a[i]=1ll*a[i]*b[i]%mod; ntt(a,len,-1); rep0(i,len){ int to=1-((int)v.size())+i; if(0<=to&&to<nxt.size()){ nxt[to]=a[i]; } } v=nxt; } int ans=0; fe(it,v)ans=(ans+*it)%mod; cout<<ans<<endl; return 0; }
13
CPP
#include<bits/stdc++.h> using namespace std; typedef unsigned long long ull; typedef long long ll; const int maxm=200025; const int maxn=1005; const int maxf=16384+25; const int mod=998244353; int n,m,i,j,t,k,s,jc[maxm],ijc[maxm],a[maxn][2],Log[maxm]; int *rev[15];ull *pre3[15],f[maxf],g[maxf],iv_2[15]; inline int Pow(int x,int y,int mo) { int ret=1; while (y) { if (y&1) ret=1ll*ret*x%mo; x=1ll*x*x%mo;y>>=1; } return ret; } inline int C(int x,int y){return x<y||y<0?0:1ll*jc[x]*ijc[y]%mod*ijc[x-y]%mod;} inline void NTT(ull *a,int bit,int x) { int len=(1<<bit); for (int i=1;i<len;++i) if (rev[bit][i]>i){swap(a[rev[bit][i]],a[i]);} for (int i=1;i<len;i<<=1) { for (int j=0;j<len;j+=(i<<1)) { ull *a0=a+j,*a1=a+j+i,*wn=pre3[Log[i]+1]; for (int k=0;k<i;++k,++a0,++a1,++wn) { ull tmp=*a1**wn%mod; *a1=*a0+mod-tmp;*a0+=tmp; } } } for (int i=0;i<len;++i) a[i]%=mod; if (x==-1) { reverse(a+1,a+len); ull tmp=iv_2[bit]; for (int i=0;i<len;++i) a[i]=a[i]*tmp%mod; } } int main() { jc[0]=jc[1]=ijc[0]=ijc[1]=1;iv_2[0]=1; for (i=2;i<maxm;++i) jc[i]=1ll*i*jc[i-1]%mod,Log[i]=Log[i>>1]+1; for (i=1;i<=14;++i) { iv_2[i]=iv_2[i-1]*499122177ull%mod; rev[i]=new int[(1<<i)+1];pre3[i]=new ull[(1<<i)+1]; rev[i][0]=0; for (j=1;j<(1<<i);++j) rev[i][j]=((rev[i][j>>1]>>1)|((j&1)<<i-1)); pre3[i][0]=1;pre3[i][1]=Pow(3,(mod-1)/(1<<i),mod); for (j=2;j<=(1<<i);++j) pre3[i][j]=1ll*pre3[i][1]*pre3[i][j-1]%mod; } ijc[maxm-1]=Pow(jc[maxm-1],mod-2,mod); for (i=maxm-2;i>1;--i) ijc[i]=1ll*ijc[i+1]*(i+1)%mod; //for (i=1;i<=10;++i) printf("%d %d %d\n",i,jc[i],ijc[i]); //g[0]=1;g[1]=1;NTT(g,10,1);for (i=0;i<1024;++i) g[i]=g[i]*g[i]%mod*g[i]%mod;NTT(g,10,-1);printf("%llu %llu %llu\n",g[0],g[1],g[2]); scanf("%d",&n); t=0;f[0]=1; for (i=1;i<=n;++i) { scanf("%d%d",&a[i][0],&a[i][1]); k=t+a[i][0]-a[i][1]; if (t<64||k<64) { for (j=0;j<=t;++j) g[j]=f[j],f[j]=0; for (j=0;j<=t;++j) { ull mul=g[j]; for (s=0;s<=k;++s) f[s]+=mul*C(a[i][0]+a[i][1],a[i][1]+s-j); if ((j&15)==15) { for (s=0;s<=k;++s) f[s]%=mod; } } for (j=0;j<=t;++j) g[j]=0; for (j=0;j<=k;++j) f[j]%=mod; } else { int bit=Log[t+k]+1; for (j=0;j<=t+k;++j) g[j]=C(a[i][0]+a[i][1],a[i][1]+j-t); NTT(f,bit,1);NTT(g,bit,1); for (j=0;j<(1<<bit);++j) f[j]=f[j]*g[j]%mod,g[j]=0ull; NTT(f,bit,-1); for (j=0;j<(1<<bit);++j) f[j]=(j<=k?f[j+t]:0ull); } t=k; //for (j=0;j<=t;++j) printf("%llu ",f[j]);puts(""); } ull ans=0; for (i=0;i<=t;++i) { ans+=f[i];if ((i&15)==15) ans%=mod; } ans%=mod; printf("%llu\n",ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; using ll = long long; #define endl '\n' #define all(v) (v).begin(), (v).end() template<class A, class B> ostream& operator<<(ostream& os, const pair<A,B>& p) { return os << '(' << p.first << ", " << p.second << ')'; } template<class T> auto operator<<(ostream& os, T&& x) -> decltype(x.begin(), os) { os << '{'; for(auto it = x.begin(); it != x.end(); ++it) os << *it << (it == prev(x.end()) ? "" : ", "); return os << '}'; } void dump() {} template<class T,class... Args> void dump(T&& x,Args... args) { cerr<<x<<"; "; dump(args...); } #ifdef DEBUG struct Lf{ ~Lf() { cerr << '\n'; } }; #define debug(x...) cerr << (strcmp(#x, "") ? #x ": " : ""), dump(x), Lf(), cerr << "" #else #define debug(...) 0&&cerr #endif const int MAX = 1<<23; //max input vector length const int MOD = 998244353; //prime modulus e.g. 998244353 = 1 + 7*17*2^23 const int G = 3; //generator for Z_MOD int modpow(int base, int exp) { base %= MOD; int result = 1; while (exp > 0) { if (exp & 1) result = (1ll*result * base) % MOD; base = (1ll*base * base) % MOD; exp >>= 1; } return result; } int modinv(int a) { return modpow(a,MOD-2); } //FFT=1 for transform, FFT=-1 for inverse transform; N=current input length, should use a power of 2 void fft(vector<int>& a, int FFT, int N) { static int rev[MAX]; for (int i = 0; i < N; i++) { rev[i] = (rev[i>>1]>>1)|((i&1)?(N>>1):0); if (i < rev[i]) swap(a[i], a[rev[i]]); } for (int m = 2, m2 = 1; m <= N; m <<= 1, m2 <<= 1) { int wm = modpow(G, (MOD-1)/m*FFT+(FFT==-1?MOD-1:0)); for (int k = 0; k < N; k += m) for (int j = 0, u, t, w = 1; j < m2; j++) t = 1ll*w*a[k+j+m2]%MOD, u = a[k+j], w = 1ll*w*wm%MOD, a[k+j] = (u+t)%MOD, a[k+j+m2] = (u-t+MOD)%MOD; } if (FFT == -1) for (int i = 0, invN = modinv(N); i < N; i++) a[i] = 1ll * a[i] * invN % MOD; } int degp,degq; vector<int> P,Q; void mul() { int N=1; for (; N<degp+degq+1; N<<=1); while ((int)P.size()<N) P.push_back(0); while ((int)Q.size()<N) Q.push_back(0); fft(P,1,N); fft(Q,1,N); for (int i=0; i<N; ++i) P[i] = (1ll*P[i]*Q[i])%MOD; fft(P,-1,N); while (P.back()==0) P.pop_back(); } int n, a,b, fact[200010], ifact[200010]; void calc() { fact[0] = 1, fact[1] = 1, ifact[0] = 1, ifact[1] = 1; for (int i=2; i<=200000; ++i) { fact[i] = (1ll*fact[i-1]*i) % MOD; ifact[i] = modinv(fact[i]); } } int C(int x, int y) { if (y<0 || y>x) return 0; int div = (1ll*ifact[y]*ifact[x-y])%MOD; return (1ll*fact[x]*div)%MOD; } int main() { ios::sync_with_stdio(false); calc(); cin >> n; P = {1}; for (int i=0; i<n; ++i) { cin >> a >> b; int m = P.size(); Q.clear(); for (int j=b-m+1; j<m+a; ++j) Q.push_back(C(a+b,j)); degp = m-1; degq = Q.size()-1; mul(); for (int j=0; j<m+a-b; ++j) P[j] = P[m+j-1]; P.resize(m+a-b); } int sum = 0; for (int x : P) { sum = (sum+x) % MOD; } cout << sum << endl; return 0; }
13
CPP
#include <bits/stdc++.h> #define mp make_pair #define pb push_back #define fi first #define se second #define ALL(x) (x).begin(), (x).end() #define SZ(x) ((int)(x).size()) using namespace std; typedef pair<int, int> PII; typedef vector<int> VI; typedef long long int64; typedef unsigned long long uint64; const int mod = 998244353; //const int mod = 1e9+7 int inc(int a, int b) { a += b; return a >= mod ? a - mod : a; } int dec(int a, int b) { a -= b; return a < 0 ? a + mod : a; } int fpow(int a, int x) { int ret = 1; for (; x; x >>= 1) { if (x & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; } return ret; } int inv(int x) { return fpow(x, mod - 2); } int n, a[1010], b[1010], sa[1010], sb[1010]; int fac[200010], rfac[200010]; int C(int n, int m) { if (n < m || m < 0) return 0; return 1LL * fac[n] * rfac[n - m] % mod * rfac[m] % mod; } void init(int n) { for (int i = fac[0] = 1; i <= n; ++i) fac[i] = 1LL * fac[i - 1] * i % mod; rfac[n] = fpow(fac[n], mod - 2); for (int i = n; i; --i) rfac[i - 1] = 1LL * rfac[i] * i % mod; } namespace polynomial { const int mod = 998244353, modg = 3; const int N = 1 << 19; inline int inc(int a, int b) { a += b; return a >= mod ? a - mod : a; } inline int dec(int a, int b) { a -= b; return a < 0 ? a + mod : a; } inline int fpow(int a, int x) { int ret = 1; for (; x; x >>= 1) { if (x & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; } return ret; } inline int legendre(int x) { return fpow(x, (mod - 1) >> 1); } inline int fsqrt(int x) { if (!x) return 0; if (mod == 2) return x & 1; if (legendre(x) == mod - 1) return -1; int b, w; do { b = rand() % mod; w = (1LL * b * b - x + mod) % mod; } while (legendre(w) != mod - 1); struct item { int a, b; item(int _a = 0, int _b = 0) : a(_a), b(_b) { } item mul(item y, int w) { item x = *this, z; z.a = (1LL * x.a * y.a + 1LL * x.b * y.b % mod * w) % mod; z.b = (1LL * x.a * y.b + 1LL * x.b * y.a) % mod; return z; } }; item res(1, 0), a(b, 1); int p = (mod + 1) / 2; for (; p; p >>= 1) { if (p & 1) res = res.mul(a, w); a = a.mul(a, w); } return min(res.a, dec(0, res.a)); //两个根 } inline int inv(int x) { return fpow(x, mod - 2); } //NTT inline void dft(int *a, int n, int sig) { for (int i = 0, j = 0; i < n; ++i) { if (i > j) swap(a[i], a[j]); for (int l = n >> 1; (j ^= l) < l; l >>= 1); } for (int i = 1; i < n; i <<= 1) { int m = i << 1; int w = fpow(modg, (mod - 1) / m); if (sig == -1) w = inv(w); for (int j = 0; j < n; j += m) for (int k = 0, v = 1; k < i; ++k, v = 1LL * v * w % mod) { int x = a[j + k], y = 1LL * a[j + i + k] * v % mod; a[j + k] = inc(x, y), a[j + i + k] = dec(x, y); } } if (sig == -1) { int invn = inv(n); for (int i = 0; i < n; ++i) a[i] = 1LL * a[i] * invn % mod; } } inline void get_inv(int *a, int *r, int n) { if (n == 1) { r[0] = inv(a[0]); if (!a[0]) throw "error!"; return; } static int x[N], y[N], z[N]; get_inv(a, x, (n + 1) >> 1); int m = 1; for (; m < (n << 1); m <<= 1); memset(y, 0, sizeof(int) * m); memset(z, 0, sizeof(int) * m); memcpy(y, x, sizeof(int) * ((n + 1) >> 1)); memcpy(z, a, sizeof(int) * n); dft(y, m, 1); dft(z, m, 1); for (int i = 0; i < m; ++i) z[i] = (((y[i] << 1) - 1LL * y[i] * y[i] % mod * z[i]) % mod + mod) % mod; dft(z, m, -1); memcpy(r, z, sizeof(int) * n); } inline void get_sqrt(int *a, int *r, int n) { if (n == 1) { r[0] = fsqrt(a[0]); if (r[0] == -1) throw "error!"; return; } static int x[N], y[N], z[N], w[N]; get_sqrt(a, x, (n + 1) >> 1); int m = 1; for (; m < (n << 1); m <<= 1); memset(y, 0, sizeof(int) * m); memset(z, 0, sizeof(int) * m); memset(w, 0, sizeof(int) * m); memcpy(y, x, sizeof(int) * ((n + 1) >> 1)); get_inv(y, z, n); memcpy(w, z, sizeof(int) * n); memset(z, 0, sizeof(int) * m); memcpy(z, a, sizeof(int) * n); dft(z, m, 1), dft(w, m, 1); for (int i = 0; i < m; ++i) z[i] = 1LL * z[i] * w[i] % mod; dft(z, m, -1); for (int i = 0; i < n; ++i) { x[i] = inc(x[i], z[i]); if (x[i] & 1) x[i] += mod; x[i] >>= 1; } memcpy(r, x, sizeof(int) * n); } void get_division(int *A, int *B, int *D, int n, int m) { if (n < m) return void(D[0] = 0); int t = n - m + 1, p = 1; for (; p < (t << 1); p <<= 1); static int x[N], y[N]; fill(x, x + p, 0); reverse_copy(B, B + m, x); get_inv(x, y, t); fill(y + t, y + p, 0); dft(y, p, 1); reverse_copy(A, A + n, x); fill(x + t, x + p, 0); dft(x, p, 1); for (int i = 0; i < p; ++i) x[i] = 1LL * x[i] * y[i] % mod; dft(x, p, -1); reverse_copy(x, x + t, D); } struct poly { vector< int > a; poly() { redeg(0); } poly(int n, ...) { va_list scan; va_start(scan, n); redeg(n); for (int i = n; ~i; --i) a[i] = va_arg(scan, int); va_end(scan); } inline int& operator[](const int &x) { return a[x]; } inline int deg() { return a.size() - 1; } inline void redeg(int n) { a.resize(n + 1); } inline void swap(poly &x) { a.swap(x.a); } inline void maintain() { int p = deg(); while (p > 0 && !a[p]) --p; redeg(p); } inline void scan(int *x, int n) { redeg(n); for (int i = 0; i <= n; ++i) a[i] = x[i]; } inline int print(int *x) { int n = deg(); for (int i = 0; i <= n; ++i) x[i] = a[i]; return n; } //翻转 inline poly reverse() { poly x = *this; std::reverse(x.a.begin(), x.a.end()); return x; } //积分 inline poly integral() { poly x = *this; x.redeg(deg() + 1); static int Inv[N]; static int init_n; if (!init_n) init_n = Inv[1] = 1; if (init_n < x.deg()) { for (int i = init_n + 1, n = x.deg(); i <= n; ++i) Inv[i] = dec(mod, 1LL * Inv[mod % i] * (mod / i) % mod); init_n = x.deg(); } for (int i = x.deg(); i; --i) x[i] = 1LL * x[i - 1] * Inv[i] % mod; x[0] = 0; return x; } //微分 inline poly diff() { poly x = *this; for (int i = 1; i <= x.deg(); ++i) x[i - 1] = 1LL * x[i] * i % mod; x[x.deg()] = 0; x.maintain(); return x; } //加法 friend inline poly operator + (poly a, poly b) { if (a.deg() < b.deg()) a.swap(b); for (int i = 0; i <= b.deg(); ++i) a[i] = inc(a[i], b[i]); return a; } //减法 friend inline poly operator - (poly a, poly b) { if (a.deg() < b.deg()) a.redeg(b.deg()); for (int i = 0; i <= b.deg(); ++i) a[i] = dec(a[i], b[i]); return a; } //乘法 friend inline poly operator * (poly a, int x) { for (int i = 0; i <= a.deg(); ++i) a[i] = 1LL * a[i] * x % mod; return a; } //乘法 friend inline poly operator * (poly a, poly b) { if (min(a.deg(), b.deg()) < 28) { poly c; c.redeg(a.deg() + b.deg()); for (int i = 0; i <= a.deg(); ++i) if (a[i]) for (int j = 0; j <= b.deg(); ++j) if (b[j]) c[i + j] = (c[i + j] + 1LL * a[i] * b[j]) % mod; return c; } static int x[N], y[N]; int n = 1; for (; n <= a.deg() + b.deg(); n <<= 1); memset(x, 0, sizeof(int) * n); memset(y, 0, sizeof(int) * n); a.print(x), b.print(y); dft(x, n, 1), dft(y, n, 1); for (int i = 0; i < n; ++i) x[i] = 1LL * x[i] * y[i] % mod; dft(x, n, -1); poly c; c.scan(x, a.deg() + b.deg()); return c; } //除法 friend inline poly operator / (poly a, poly b) { a.maintain(), b.maintain(); static int A[N], B[N], D[N]; int n = a.print(A); int m = b.print(B); poly d; get_division(A, B, D, n + 1, m + 1); d.scan(D, max(n - m + 1, 0)); d.maintain(); return d; } //取模 friend inline poly operator % (poly a, poly b) { poly d = a / b; poly r = a - b * d; r.maintain(); return r; } //求逆元 (满足:常数项可以求逆(不为0)) inline poly inv(); //求ln (满足:多项式可以求逆) inline poly ln(); //求exp (满足:多项式常数项为0) inline poly exp(); //开根号 (满足:多项式常数项有二次剩余) inline poly sqrt(); //快速幂前n项 (满足:多项式常数项为1) inline poly pow(int); //欧拉公式 inline pair< poly, poly > euler(); //求sin inline poly sin(); //求cos inline poly cos(); //求tan inline poly tan(); //乘方 friend inline poly operator ^ (poly a, int x) { int j = -1; for (int i = 0; i <= a.deg(); ++i) { if (a[i]) { j = i; break; } } int n = a.deg(); if (~j) return poly(0, 0); if (1LL * j * x > n) return poly(0, 0); for (int i = 0; i <= n - j; ++i) a[i] = a[i + j]; a.redeg(n - j); int INV = ::inv(a[0]), X = fpow(a[2], x); for (int i = 0; i <= n - j; ++i) a[i] = 1LL * a[i] * INV % mod; a = a.pow(x); for (int i = 0; i <= n - j; ++i) a[i] = 1LL * a[i] * X % mod; j = fpow(j, x); a.redeg(n); for (int i = n; i >= j; --i) a[i] = a[i - j]; for (int i = j - 1; ~i; --i) a[i] = 0; return a; } }; inline poly get_exp(poly &x, int n) { if (!n) { if (x[0]) throw "error!"; return poly(0, 1); } poly F = get_exp(x, n >> 1); F.redeg(n); poly G = poly(0, 1) - F.ln(); G.redeg(n); for (int i = 0; i <= n && i <= x.deg(); ++i) G[i] = inc(G[i], x.a[i]); F = G * F; F.redeg(n); F.maintain(); return F; } inline poly poly::inv() { int n = deg(); static int a[N], r[N]; poly c; memset(a, 0, sizeof(int) * (n + 1)); memset(r, 0, sizeof(int) * (n + 1)); print(a); get_inv(a, r, n + 1); c.scan(r, n); return c; } inline poly poly::ln() { poly a = this -> diff(); poly b = this -> inv(); poly c = (a * b).integral(); c.redeg(deg()); c.maintain(); return c; } inline poly poly::exp() { return get_exp(*this, deg()); } inline poly poly::sqrt() { int n = deg(); static int a[N], r[N]; poly c; memset(a, 0, sizeof(int) * (n + 1)); memset(r, 0, sizeof(int) * (n + 1)); print(a); get_sqrt(a, r, n + 1); c.scan(r, n); return c; } inline poly poly::pow(int x) { if (a[0] != 1) throw "error!"; int n = deg(); poly c = this -> ln(); c = c * x; c = c.exp(); c.redeg(n); return c; } //三角函数操作 namespace trigonometric_function { struct complex { int a, b; complex(int _a = 0, int _b = 0) : a(_a), b(_b) { } inline complex operator + (const complex &x) { return complex(inc(a, x.a), inc(b, x.b)); } inline complex operator - (const complex &x) { return complex(dec(a, x.a), dec(b, x.b)); } inline complex operator * (const complex &x) { return complex(dec(1LL * a * x.a % mod, 1LL * b * x.b % mod), inc(1LL * a * x.b % mod, 1LL * b * x.a % mod)); } inline complex operator * (const int &x) { return complex(1LL * a * x % mod, 1LL * b * x % mod); } inline complex inv() { int v = size(); v = ::inv(v); return complex(a, dec(0, b)) * v; } inline int size() { return (1LL * a * a + 1LL * b * b) % mod; } }; inline void dft(complex *a, int n, int sig) { for (int i = 0, j = 0; i < n; ++i) { if (i > j) swap(a[i], a[j]); for (int l = n >> 1; (j ^= l) < l; l >>= 1); } for (int i = 1; i < n; i <<= 1) { int m = i << 1; int w = fpow(modg, (mod - 1) / m); if (sig == -1) w = inv(w); for (int j = 0; j < n; j += m) for (int k = 0, v = 1; k < i; ++k, v = 1LL * v * w % mod) { complex x = a[j + k], y = a[j + i + k] * v; a[j + k] = x + y, a[j + i + k] = x - y; } } if (sig == -1) { int invn = inv(n); for (int i = 0; i < n; ++i) a[i] = a[i] * invn; } } inline void get_inv(complex *a, complex *r, int n) { if (n == 1) { r[0] = a[0].inv(); if (!a[0].size()) throw "error!"; return; } static complex x[N], y[N], z[N]; get_inv(a, x, (n + 1) >> 1); int m = 1; for (; m < (n << 1); m <<= 1); memset(y, 0, sizeof(complex) * m); memset(z, 0, sizeof(complex) * m); memcpy(y, x, sizeof(complex) * ((n + 1) >> 1)); memcpy(z, a, sizeof(complex) * n); dft(y, m, 1); dft(z, m, 1); for (int i = 0; i < m; ++i) z[i] = y[i] * 2 - y[i] * y[i] * z[i]; dft(z, m, -1); memcpy(r, z, sizeof(complex) * n); } inline void get_ln(complex *a, complex *r, int n) { static complex x[N], y[N]; memcpy(x, a, sizeof(complex) * n); for (int i = 1; i < n; ++i) x[i - 1] = x[i] * i; x[n - 1] = complex(); get_inv(a, y, n); int m = 1; for (; m < (n << 1); m <<= 1); static complex A[N], B[N]; memset(A, 0, sizeof(complex) * m); memcpy(A, x, sizeof(complex) * n); memset(B, 0, sizeof(complex) * m); memcpy(B, y, sizeof(complex) * n); dft(A, m, 1), dft(B, m, 1); for (int i = 0; i < m; ++i) A[i] = A[i] * B[i]; dft(A, m, -1); memcpy(r, A, sizeof(complex) * (n - 1)); static int Inv[N]; static int init_n; if (!init_n) init_n = Inv[1] = 1; if (init_n < n) { for (int i = init_n + 1; i <= n; ++i) Inv[i] = dec(mod, 1LL * Inv[mod % i] * (mod / i) % mod); init_n = n; } for (int i = n; i; --i) r[i] = r[i - 1] * Inv[i]; r[0] = complex(0, 0); } inline void get_exp(complex *a, complex *r, int n) { if (!n) { if (a[0].a || a[0].b) throw "error!"; r[0] = complex(1); return; } static complex x[N]; get_exp(a, x, n >> 1); static complex y[N]; memset(y, 0, sizeof(complex) * (n + 1)); memcpy(y, x, sizeof(complex) * ((n >> 1) + 1)); static complex z[N]; get_ln(y, z, n + 1); static complex w[N]; memset(w, 0, sizeof(complex) * (n + 1)); memcpy(w, z, sizeof(complex) * (n + 1)); w[0] = complex(1) - w[0]; for (int i = 1; i <= n; ++i) w[i] = complex(0) - w[i]; for (int i = 0; i <= n; ++i) w[i] = w[i] + a[i]; int m = 1; for (; m < (n << 1); m <<= 1); static complex t[N], s[N]; memset(s, 0, sizeof(complex) * m); memcpy(s, x, sizeof(complex) * ((n >> 1) + 1)); memset(t, 0, sizeof(complex) * m); memcpy(t, w, sizeof(complex) * (n + 1)); dft(s, m, 1), dft(t, m, 1); for (int i = 0; i < m; ++i) s[i] = s[i] * t[i]; dft(s, m, -1); memcpy(r, s, sizeof(complex) * (n + 1)); } } inline pair< poly, poly > poly::euler() { static trigonometric_function::complex x[N], y[N]; int n = deg(); for (int i = 0; i <= n; ++i) x[i] = trigonometric_function::complex(0, a[i]); poly a, b; trigonometric_function::get_exp(x, y, n); static int A[N], B[N]; for (int i = 0; i <= n; ++i) A[i] = y[i].a, B[i] = y[i].b; a.scan(A, n); b.scan(B, n); return make_pair(a, b); } inline poly poly::sin() { return euler().second; } inline poly poly::cos() { return euler().first; } inline poly poly::tan() { pair< poly, poly > res = euler(); res.first = res.first.inv(); poly v = res.first * res.second; v.redeg(deg()); return v; } } using polynomial::poly; poly ans, p; int main() { scanf("%d", &n); init(200000); for (int i = 1; i <= n; ++i) { scanf("%d%d", a + i, b + i); } ans = poly(0, 1); int t = 0; for (int i = 1; i <= n; ++i) { //[b[i] - t, a[i]] static int x[5010]; int tp = 0; for (int j = b[i] - t; j <= a[i] + t; ++j) x[tp] = C(a[i] + b[i], j), tp++; p.scan(x, tp - 1); poly now = ans * p; ans.redeg(now.deg() - 2 * t); for (int j = t; j <= now.deg() - t; ++j) { ans[j - t] = now[j]; } t += a[i] - b[i]; } int res = 0; for (int i = 0; i <= ans.deg(); ++i) res = inc(res, ans[i]); printf("%d\n", res); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; #ifdef NeverBeRed #include "debug.h" #else #define debug(...) 9715 #endif typedef long long ll; typedef long double ld; typedef complex<ld> point; #define F first #define S second template<typename T, typename U> T pow_mod(T a, U b, int mod) { T r = 1; for (; b > 0; b >>= 1) { if (b & 1) r = (ll)r * a % mod; a = (ll)a * a % mod; } return r; } namespace ntt { const int mod = 998244353; const int root = 5; int base = 1; vector<int> roots; void ensure_base(int nbase) { if (nbase <= base) return; roots.resize(nbase); for (int mh = base; mh << 1 <= nbase; mh <<= 1) { int wm = pow_mod(root, (mod - 1) / (mh << 1), mod); roots[mh] = 1; for (int i = 1; i < mh; ++i) roots[i + mh] = (ll)roots[i + mh - 1] * wm % mod; } base = nbase; } void fft(int a[], int n, int sign) { ensure_base(n); for (int i = 1, j = 0; i < n - 1; ++i) { for (int k = n >> 1; (j ^= k) < k; k >>= 1); if (i < j) swap(a[i], a[j]); } for (int m, mh = 1; (m = mh << 1) <= n; mh = m) for (int i = 0; i < n; i += m) for (int j = i; j < i + mh; ++j) { int y = (ll)a[j + mh] * roots[j - i + mh] % mod; if ((a[j + mh] = a[j] - y) < 0) a[j + mh] += mod; if ((a[j] += y) >= mod) a[j] -= mod; } if (sign < 0) { int inv = pow_mod(n, mod - 2, mod); for (int i = 0; i < n; ++i) a[i] = (ll)a[i] * inv % mod; reverse(a + 1, a + n); } } vector<int> convolve(vector<int> x, vector<int> y) { int n = x.size() + y.size() - 1, sz = 1; while (sz < n) sz <<= 1; x.resize(sz); y.resize(sz); fft(x.data(), sz, +1); fft(y.data(), sz, +1); for (int i = 0; i < sz; ++i) x[i] = (ll)x[i] * y[i] % mod; fft(x.data(), sz, -1); x.resize(n); return x; } } namespace combinatorics { const int mod = 998244353, N = 2e5+5; int fac[N], ifac[N]; void init() { fac[0] = ifac[0] = 1; for (int i = 1; i < N; ++i) { fac[i] = (ll)fac[i-1] * i % mod; ifac[i] = pow_mod(fac[i], mod-2, mod); } } int comb(int n, int k) { if (k < 0 || k > n) return 0; return (ll)fac[n] * ifac[n-k] % mod * ifac[k] % mod; } } using namespace combinatorics; int main() { #ifdef TurnRed //freopen("a.in", "r", stdin); //freopen("a.out", "w", stdout); #endif ios_base::sync_with_stdio(0), cin.tie(0); init(); int n; cin >> n; vector<int> p = { 1 }; for (int a, b; n--; ) { cin >> a >> b; int sz = p.size(); vector<int> q(2 * sz + a - b); for (size_t i = 0; i < q.size(); ++i) q[i] = comb(a + b, b + i - sz); p = ntt::convolve(p, q); p.erase(p.begin(), p.begin() + sz); p.resize(sz + a - b); } int ans = 0; for (auto i : p) ans = (ans + i) % ntt::mod; cout << ans << "\n"; return 0; }
13
CPP
#include<bits/stdc++.h> #define pb push_back #define fi first #define se second #define sz(x) (int)x.size() #define cl(x) x.clear() #define all(x) x.begin() , x.end() #define rep(i , x , n) for(int i = x ; i <= n ; i ++) #define per(i , n , x) for(int i = n ; i >= x ; i --) #define mem0(x) memset(x , 0 , sizeof(x)) #define mem_1(x) memset(x , -1 , sizeof(x)) #define mem_inf(x) memset(x , 0x3f , sizeof(x)) #define debug(x) cerr << #x << " = " << x << '\n' #define ddebug(x , y) cerr << #x << " = " << x << " " << #y << " = " << y << '\n' #define ios std::ios::sync_with_stdio(false) , cin.tie(0) using namespace std ; typedef long long ll ; typedef long double ld ; typedef pair<int , int> pii ; typedef pair<ll , ll> pll ; typedef double db ; const int maxn = 2e5 + 10 ; const int inf = 0x3f3f3f3f ; const double eps = 1e-6 ; const int mod = 998244353 ; struct NTT { int n , m ; ll a[maxn << 2] , b[maxn << 2] ; ll up , l ; ll pos[maxn << 2] ; ll powmod(ll a , ll b) { ll ans = 1 ; while(b) { if(b & 1) ans = ans * a % mod ; a = a * a % mod ; b >>= 1 ; } return ans ; } void init(int n , int m) { up = 1 , l = 0 ; while(up < (n + m)) up <<= 1 , l ++ ; rep(i , 0 , up - 1) pos[i] = (pos[i >> 1] >> 1) | ((i & 1) << (l - 1)) , a[i] = b[i] = 0 ; } void solve(ll *a , int mode) { rep(i , 0 , up - 1) if(i < pos[i]) swap(a[i] , a[pos[i]]) ; for(int i = 1 ; i < up ; i <<= 1) { ll gn = powmod(3 , (mod - 1) / (i << 1)) ; if(mode == -1) gn = powmod(gn , mod - 2) ; for(int j = 0 ; j < up ; j += (i << 1)) { ll g = 1 ; for(int k = 0 ; k < i ; k ++ , g = g * gn % mod) { ll x = a[j + k] , y = g * a[j + k + i] % mod ; a[j + k] = (x + y) % mod , a[j + k + i] = (x - y + mod) % mod ; } } } if(mode == -1) { ll invup = powmod(up , mod - 2) ; rep(i , 0 , up - 1) a[i] = a[i] * invup % mod ; } } } ntt ; struct Easymath { ll qpow(ll a , ll b) //快速幂 { if(b < 0) return 0 ; ll ans = 1 ; a %= mod ; while(b) { if(b & 1) ans = (ans * a) % mod ; b >>= 1 , a = (a * a) % mod ; } return ans % mod ; } ll ksc_log(ll x , ll y , ll mod) //快速乘 { x %= mod , y %= mod ; ll ans = 0; while(y) { if(y & 1) ans = (ans + x) % mod ; y >>= 1 ; x = (x + x) % mod ; } return ans; } ll ksc_O1(ll x , ll y , ll mod) //快速乘 { x %= mod , y %= mod ; ll z = (ld)x * y / mod ; ll ans = x * y - z * mod ; if(ans < 0) ans += mod ; else if(ans >= mod) ans -= mod ; return ans ; } int cnt = 0 ; bool vis[maxn] ; int prime[maxn] ; void get_prime(int up) //素数筛 { memset(vis , 0 , sizeof(vis)) ; vis[1] = 1 ; for(int i = 2 ; i <= up ; i ++) { if(!vis[i]) prime[++ cnt] = i ; for(int j = 1 ; j <= cnt && i * prime[j] <= up ; j ++) { vis[i * prime[j]] = 1 ; if(i % prime[j] == 0) break ; } } } //begin 判定大素数 ll mul(ll a , ll b , ll mod) { ll ret = 0 ; while(b) { if(b & 1) ret = (ret + a) % mod ; a = (a + a) % mod ; b >>= 1 ; } return ret ; } ll pow(ll a , ll b , ll mod) { ll ret = 1 ; while(b) { if(b & 1) ret = mul(ret , a , mod) ; a = mul(a , a , mod) ; b >>= 1 ; } return ret ; } bool check(ll a , ll n) { ll x = n - 1 ; int t = 0 ; while((x & 1) == 0) { x >>= 1 ; t ++ ; } x = pow(a , x , n) ; ll y ; rep(i , 1 , t) { y = mul(x , x , n) ; if(y == 1 && x != 1 && x != n - 1) return 1 ; x = y ; } if(y != 1) return 1 ; return 0 ; } bool Miller_Rabin(ll n) { if(n == 2) return 1 ; if(n == 1 || !(n & 1)) return 0 ; const int arr[12] = {2,3,5,7,11,13,17,19,23,29,31,37} ; rep(i , 0 , 11) { if(arr[i] >= n) break ; if(check(arr[i] , n)) return 0 ; } return 1 ; } //end 判定大素数 ll get_inv(ll x) //逆元 { return qpow(x , mod - 2) % mod ; } ll inv1[maxn] ; //乘法逆元 void init1(int up) { inv1[1] = 1 ; for(int i = 2 ; i <= up ; i ++) inv1[i] = (ll)(mod - mod / i) * inv1[int(mod % (ll)i)] % mod ; } ll fac[maxn] ; ll inv[maxn] ; //阶乘逆元 void init(int up) { fac[0] = fac[1] = inv[0] = inv[1] = 1 ; for(int i = 2 ; i <= up ; i ++) { fac[i] = fac[i - 1] * i % mod ; inv[i] = -inv[mod % i] * (mod / i) % mod ; while(inv[i] < 0) inv[i] += mod ; } for(int i = 2 ; i <= up ; i ++) inv[i] = inv[i] * inv[i - 1] % mod ; } ll C(int n , int m) { if(m < 0 || n < m) return 0 ; return fac[n] * inv[m] % mod * inv[n - m] % mod ; } } em ; int main() { ios ; int n ; cin >> n ; vector<int> dp(10005 , 0) ; em.init(200000) ; int m = 1 ; dp[1] = 1 ; while(n --) { int a , b ; cin >> a >> b ; ntt.init(m + 1 , m + a - b - 1 + m + 1) ; for(int i = 1 ; i <= m ; i ++) ntt.a[i] = dp[i] ; for(int i = 1 ; i <= m + a - b - 1 + m ; i ++) ntt.b[i] = em.C(a + b , b + i - m) ; ntt.solve(ntt.a , 1) ; ntt.solve(ntt.b , 1) ; rep(i , 0 , ntt.up - 1) ntt.a[i] *= ntt.b[i] , ntt.a[i] %= mod ; ntt.solve(ntt.a , -1) ; for(int i = 1 ; i <= m + a - b ; i ++) dp[i] = ntt.a[i + m] ; m += a - b ; } long long ans = 0 ; for(int i = 1 ; i <= m ; i ++) ans += dp[i] , ans %= mod ; cout << ans << '\n' ; return 0 ; }
13
CPP
#include <bits/stdc++.h> #define endl '\n' #define fi first #define se second #define MOD(n,k) ( ( ((n) % (k)) + (k) ) % (k)) #define forn(i,n) for (int i = 0; i < int(n); i++) #define forr(i,a,b) for (int i = a; i <= b; i++) #define all(v) v.begin(), v.end() #define pb push_back using namespace std; typedef long long ll; typedef long double ld; typedef pair<ll, ll> ii; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<ii> vii; const int MX = 200005, mod = 998244353, g = 3; int n, a[MX], b[MX]; ll fac[MX], inv[MX]; ll pot (ll b, ll p) { ll res = 1; if (p < 0) p += mod - 1; while (p) { if (p & 1) (res *= b) %= mod; (b *= b) %= mod; p /= 2; } return res; } ll comb (int n, int k) { return fac[n] * inv[k] % mod * inv[n - k] % mod; } int nearestPowerOfTwo (int n) { int ans = 1; while (ans < n) ans <<= 1; return ans; } void ntt (vi &X, int inv) { int n = X.size(); for (int i = 1, j = 0; i < n - 1; ++i) { for (int k = n >> 1; (j ^= k) < k; k >>= 1); if(i < j) swap(X[i], X[j]); } vector<ll> wp(n >> 1, 1); for (int k = 1; k < n; k <<= 1) { ll wk = pot(g, inv * (mod - 1) / (k << 1)); for (int j = 1; j < k; ++j) wp[j] = wp[j - 1] * wk % mod; for (int i = 0; i < n; i += k << 1) { for (int j = 0; j < k; ++j) { int u = X[i + j], v = X[i + j + k] * wp[j] % mod; X[i + j] = u + v < mod ? u + v : u + v - mod; X[i + j + k] = u - v < 0 ? u - v + mod : u - v; } } } if (inv == -1) { ll nrev = pot(n, mod - 2); for(int i = 0; i < n; ++i) X[i] = X[i] * nrev % mod; } } vi convolution (vi A, vi B){ int sz = A.size() + B.size() - 1; int size = nearestPowerOfTwo(sz); A.resize(size), B.resize(size); ntt(A, 1), ntt(B, 1); for(int i = 0; i < size; i++) A[i] = 1ll * A[i] * B[i] % mod; ntt(A, -1); A.resize(sz); return A; } int main () { ios_base::sync_with_stdio(0); cin.tie(0); fac[0] = inv[0] = 1; for (int i = 1; i < MX; i++) { fac[i] = i * fac[i - 1] % mod; inv[i] = pot(fac[i], mod - 2); } cin >> n; forn (i, n) cin >> a[i] >> b[i]; vi res = {1}; forn (i, n) { int sz = (int)res.size() + a[i] - b[i]; int ini = max(0, b[i] - (int)res.size() + 1); int fin = min(a[i] + b[i], b[i] + sz - 1); vi p(fin - ini + 1); forn (j, p.size()) p[j] = comb(a[i] + b[i], ini + j); vi q = convolution(res, p); res.resize(sz); for (int j = 0, k = b[i] - ini; j < sz; j++, k++) res[j] = q[k]; } cout << accumulate(all(res), 0, [&] (int a, int b) { return (a + b) % mod; }) % mod << endl; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; static struct FastInput { static constexpr int BUF_SIZE = 1 << 20; char buf[BUF_SIZE]; size_t chars_read = 0; size_t buf_pos = 0; FILE *in = stdin; char cur = 0; inline char get_char() { if (buf_pos >= chars_read) { chars_read = fread(buf, 1, BUF_SIZE, in); buf_pos = 0; buf[0] = (chars_read == 0 ? -1 : buf[0]); } return cur = buf[buf_pos++]; } inline void tie(int) {} inline explicit operator bool() { return cur != -1; } inline static bool is_blank(char c) { return c <= ' '; } inline bool skip_blanks() { while (is_blank(cur) && cur != -1) { get_char(); } return cur != -1; } inline FastInput& operator>>(char& c) { skip_blanks(); c = cur; return *this; } inline FastInput& operator>>(string& s) { if (skip_blanks()) { s.clear(); do { s += cur; } while (!is_blank(get_char())); } return *this; } template <typename T> inline FastInput& read_integer(T& n) { // unsafe, doesn't check that characters are actually digits n = 0; if (skip_blanks()) { int sign = +1; if (cur == '-') { sign = -1; get_char(); } do { n += n + (n << 3) + cur - '0'; } while (!is_blank(get_char())); n *= sign; } return *this; } template <typename T> inline typename enable_if<is_integral<T>::value, FastInput&>::type operator>>(T& n) { return read_integer(n); } #if !defined(_WIN32) || defined(_WIN64) inline FastInput& operator>>(__int128& n) { return read_integer(n); } #endif template <typename T> inline typename enable_if<is_floating_point<T>::value, FastInput&>::type operator>>(T& n) { // not sure if really fast, for compatibility only n = 0; if (skip_blanks()) { string s; (*this) >> s; sscanf(s.c_str(), "%lf", &n); } return *this; } } fast_input; #define cin fast_input static struct FastOutput { static constexpr int BUF_SIZE = 1 << 20; char buf[BUF_SIZE]; size_t buf_pos = 0; static constexpr int TMP_SIZE = 1 << 20; char tmp[TMP_SIZE]; FILE *out = stdout; inline void put_char(char c) { buf[buf_pos++] = c; if (buf_pos == BUF_SIZE) { fwrite(buf, 1, buf_pos, out); buf_pos = 0; } } ~FastOutput() { fwrite(buf, 1, buf_pos, out); } inline FastOutput& operator<<(char c) { put_char(c); return *this; } inline FastOutput& operator<<(const char* s) { while (*s) { put_char(*s++); } return *this; } inline FastOutput& operator<<(const string& s) { for (int i = 0; i < (int) s.size(); i++) { put_char(s[i]); } return *this; } template <typename T> inline char* integer_to_string(T n) { // beware of TMP_SIZE char* p = tmp + TMP_SIZE - 1; if (n == 0) { *--p = '0'; } else { bool is_negative = false; if (n < 0) { is_negative = true; n = -n; } while (n > 0) { *--p = (char) ('0' + n % 10); n /= 10; } if (is_negative) { *--p = '-'; } } return p; } template <typename T> inline typename enable_if<is_integral<T>::value, char*>::type stringify(T n) { return integer_to_string(n); } #if !defined(_WIN32) || defined(_WIN64) inline char* stringify(__int128 n) { return integer_to_string(n); } #endif template <typename T> inline typename enable_if<is_floating_point<T>::value, char*>::type stringify(T n) { sprintf(tmp, "%.17f", n); return tmp; } template <typename T> inline FastOutput& operator<<(const T& n) { auto p = stringify(n); for (; *p != 0; p++) { put_char(*p); } return *this; } } fast_output; // here puts define typedef long long ll; typedef long double ld; typedef unsigned long long ull; #define rint register int #define rll register ll #define pii pair<int, int> #define pll pair<ll, ll> //#define p1 first //#define p2 second #define fors(i, a, b) for (ll i = (a); i <= (b); ++i) #define _fors(i, a, b) for (ll i = (a); i >= (b); --i) #define mp(a, b) make_pair(a, b) #define mt(a, b, c) make_tuple(a, b, c) #define mem(A, b) memset(A, b, sizeof(A)) #define all(X) (X).begin(), (X).end() #define pb push_back #define eb emplace_back #define cout fast_output #define endl '\n' const int mod = 998244353; const int maxn = 1e6 + 5; inline int add(int a, int b) { return (((a + b) % mod) + mod) % mod; } inline int mul(int a, int b) { return (((1LL * a * b) % mod) + mod) % mod; } inline int qpow(int a, int p) { int ret = 1; while (p) { if (p & 1) ret = mul(ret, a); a = mul(a, a); p >>= 1; } return ret; } int cda[4*maxn], cdb[4*maxn]; int res[4*maxn]; inline void NTT(int* a, int a_size, bool inverse) { int n = a_size; // 原地快速bit reversal for(int i = 0, j = 0; i < n; i++) { if(j > i) swap(a[i], a[j]); int k = n; while(j & (k >>= 1)) j &= ~k; j |= k; } int root = inverse ? qpow(3, mod-2) : 3; for(int step = 1; step < n; step <<= 1) { int alpha = (mod-1) / step / 2; // 为求高效,我们并不是依次执行各个完整的DFT合并,而是枚举下标k // 对于一个下标k,执行所有DFT合并中该下标对应的蝴蝶操作,即通过E[k]和O[k]计算X[k] int omega = qpow(root, alpha), omegak = 1; for(int k = 0; k < step; k++) { // 计算omega^k. 这个方法效率低,但如果用每次乘omega的方法递推会有精度问题。 // 有更快更精确的递推方法,为了清晰起见这里略去 for(int Ek = k; Ek < n; Ek += step << 1) { // Ek是某次DFT合并中E[k]在原始序列中的下标 int Ok = Ek + step; // Ok是该DFT合并中O[k]在原始序列中的下标 int t = mul(a[Ok], omegak); // 蝴蝶操作:x1 * omega^k a[Ok] = add(a[Ek], -t); // 蝴蝶操作:y1 = x0 - t a[Ek] = add(a[Ek], t); // 蝴蝶操作:y0 = x0 + t } omegak = mul(omegak, omega); } } if(inverse) { int invn = qpow(n, mod - 2); fors(i, 0, n-1) a[i] = mul(a[i], invn); } return ; } // 用FFT实现的快速多项式乘法 inline int NTT_mul(int* v1, int v1_size, int* v2, int v2_size) { int s1 = v1_size, s2 = v2_size, S = 2; while(S < s1 + s2) S <<= 1; fors(i, 0, S-1) cda[i] = 0, cdb[i] = 0; for(int i = 0; i < s1; i++) cda[i] = v1[i]; NTT(cda, S, false); for(int i = 0; i < s2; i++) cdb[i] = v2[i]; NTT(cdb, S, false); for(int i = 0; i < S; i++) cda[i] = mul(cda[i], cdb[i]); NTT(cda, S, true); for(int i = 0; i < s1 + s2 - 1; i++) res[i] = cda[i]; // 虚部均为0 return s1 + s2 - 1; } int n; int a[maxn], b[maxn], s[maxn], t[maxn], inv[maxn]; int tab[maxn], itab[maxn]; int m; void solve() { inv[1] = 1, tab[0] = 1, itab[0] = 1; fors(i, 2, 2e5 + 5) inv[i]= mul(-mod/i, inv[mod%i]); fors(i, 1, 2e5 + 5) tab[i] = mul(tab[i-1], i); fors(i, 1, 2e5 + 5) itab[i] = mul(itab[i-1], inv[i]); cin >> n; fors(i, 1, n) cin >> a[i] >> b[i]; s[0] = 1; m = 0; fors(i, 1, n) { fors(j, 0, a[i] + m - b[i] + m) { t[j] = j + b[i] - m <= a[i] + b[i] && j + b[i] - m >= 0 ? mul(tab[a[i] + b[i]], mul(itab[j + b[i] - m], itab[a[i] + m - j])) : 0; } int tmp = NTT_mul(s, m + 1, t, a[i] + m - b[i] + m + 1); fors(j, 0, m + a[i] - b[i]) s[j] = res[j + m]; m += a[i] - b[i]; // fors(j, 0, s_siz - 1) cout << s[j] << ' '; // cout << endl; } int ret = 0; fors(i, 0, m) ret = add(ret, s[i]); cout << ret << endl; return ; } signed main() { #ifdef Sakuyalove freopen("in.txt", "r", stdin); freopen("out.txt", "w", stdout); #endif ios::sync_with_stdio(false); cin.tie(0); int start_time = clock(); int T = 1; // cin >> T; while (T--) { solve(); } #ifdef Sakuyalove cout << "time = " << clock() - start_time << endl; #endif return 0; }
13
CPP
#include<cstdio> typedef long long ll; const int mod=119<<23|1; const ll M2=mod*1ll*mod; int qpow(int x,int k) {int r=1;for(;k;k>>=1,x=x*1ll*x%mod)if(k&1)r=r*1ll*x%mod;return r;} int fac[1111111],inv[1111111]; int C(int n,int r) {return(r<0||n<r)?0:fac[n]*1ll*inv[r]%mod*inv[n-r]%mod;} void init() { register int i; const int V=1e6; for(i=fac[0]=1;i<=V;i++)fac[i]=fac[i-1]*1ll*i%mod; for(inv[i=V]=qpow(fac[V],mod-2);i;i--) inv[i-1]=inv[i]*1ll*i%mod; } int n; int rv[22222],wi[22222]; void swap(register int&x,register int&y){int t=x;x=y,y=t;} void NTT(int*x,int SZ,int op) { register int i,ii,iii; for(i=1;i<SZ;i++)rv[i]=(rv[i>>1]>>1)+(i&1)*(SZ>>1); for(i=1;i<SZ;i++)if(i<rv[i])swap(x[i],x[rv[i]]); for(i=1;i<SZ;i<<=1) { int w=qpow(3,(mod-1)/(i<<1)); if(op<0)w=qpow(w,mod-2); for(iii=wi[0]=1;iii<i;iii++)wi[iii]=wi[iii-1]*1ll*w%mod; for(ii=0;ii<SZ;ii+=(i<<1)) for(iii=0;iii<i;iii++) { int px=ii+iii,py=px+i; ll Dt=x[py]*1ll*wi[iii]; x[py]=(x[px]+M2-Dt)%mod,x[px]=(x[px]+Dt)%mod; } }if(op<0) { int a=qpow(SZ,mod-2); for(i=0;i<SZ;i++)x[i]=x[i]*1ll*a%mod; } } int cur[22222],pwr,cs[22222]; void upd(int a,int b) { register int i; int pwt=pwr+a-b,tp=pwt+pwr*2,S; for(i=2;i<=tp;i<<=1);S=i; for(i=0;i<S;i++)cs[i]=0; for(i=-pwr;i<=pwt;i++)cs[i+pwr]=C(a+b,b+i); NTT(cs,S,1),NTT(cur,S,1); for(i=0;i<S;i++)cur[i]=cur[i]*1ll*cs[i]%mod; NTT(cur,S,-1); for(i=0;i<=pwt;i++)cur[i]=cur[i+pwr]; for(i=pwt+1;i<S;i++)cur[i]=0; pwr=pwt; } int main() { init(),cur[0]=1,pwr=0; scanf("%d",&n); register int i; for(i=1;i<=n;i++) { int a,b; scanf("%d%d",&a,&b),upd(a,b); }ll ans=0; for(i=0;i<=pwr;i++)ans+=cur[i]; printf("%lld\n",ans%mod); } /* Please don't let me down. */ // resubmission
13
CPP
#include <bits/stdc++.h> #ifdef ALGO #include "el_psy_congroo.hpp" #else #define DUMP(...) 1145141919810 #define CHECK(...) (__VA_ARGS__) #endif template<int MOD> struct Integral { int v_ = 0; template<typename T> Integral(T v) : v_(norm(v)) { // Implicit conversion is allowed. static_assert(std::is_integral<T>::value, "input should be an integral."); } Integral() = default; ~Integral() = default; template<typename T> T norm(T v) const { if constexpr(std::is_same<long long, T>::value) { v %= MOD; if (v < 0) v += MOD; } else { if (v >= MOD) v -= MOD; if (v < 0) v += MOD; if (v >= MOD || v < 0) { v %= MOD; if (v < 0) v += MOD; } } return v; } int val() const { return v_; } Integral& operator += (const Integral& rhs) { v_ += rhs.val(); if (v_ >= MOD) v_ -= MOD; return *this; } Integral& operator -= (const Integral& rhs) { v_ += MOD - rhs.val(); if (v_ >= MOD) v_ -= MOD; return *this; } Integral& operator *= (const Integral& rhs) { v_ = v_ * 1LL * rhs.val() % MOD; return *this; } Integral& operator /= (const Integral& rhs) { v_ = v_ * 1LL * power(rhs.val(), MOD - 2) % MOD; return *this; } Integral operator + (const Integral& rhs) const { auto copy = *this; return copy += rhs; } Integral operator - (const Integral& rhs) const { auto copy = *this; return copy -= rhs; } Integral operator * (const Integral& rhs) const { auto copy = *this; return copy *= rhs; } Integral operator / (const Integral& rhs) const { auto copy = *this; return copy /= rhs; } bool operator == (const Integral& rhs) const { return val() == rhs.val(); } bool operator != (const Integral& rhs) const { return !(*this == rhs); } const Integral operator - () const { return Integral(-val()); } const Integral operator ++ () { v_ = norm(v_ + 1); return *this; } const Integral operator ++ (int) { Integral ret = *this; ++(*this); return ret; } const Integral operator -- () { v_ = norm(v_ - 1); return *this; } const Integral operator -- (int) { Integral ret = *this; --(*this); return ret; } Integral power(long long b) const { long long ret = 1 % MOD, a = v_; for ( ; b; b >>= 1, a = a * a % MOD) if (b & 1) ret = ret * a % MOD; return ret; } Integral inv() const { return power(MOD - 2); } }; template<int MOD> std::string to_string(const Integral<MOD>& v) { return std::string("Int<>{") + std::to_string(v.val()) + "}"; } template<int MOD, bool kAllowBruteForce = false> struct Binomial { std::vector<Integral<MOD>> factor, inv_factor; explicit Binomial(int n = 0) : factor(n + 1), inv_factor(n + 1) { factor[0] = 1; for (int i = 1; i <= n; ++i) factor[i] = factor[i - 1] * i; inv_factor[n] = factor[n].inv(); for (int i = n; i >= 1; --i) inv_factor[i - 1] = inv_factor[i] * i; } ~Binomial() = default; template<typename T> Integral<MOD> operator () (T a, T b) const { if (a < b || b < 0) return 0; if (a < factor.size()) return factor[a] * inv_factor[b] * inv_factor[a - b]; if constexpr(!kAllowBruteForce) { throw std::out_of_range("Binomial"); } else { b = std::min(b, a - b); Integral<MOD> ret = 1; for (T i = 1; i <= b; ++i) ret = ret * (a + 1 - i) / i; return ret; } } }; template<int MOD> struct PowerTable : public std::vector<Integral<MOD>> { PowerTable(int n, const Integral<MOD>& g) { static_assert(sizeof(PowerTable) == sizeof(std::vector<Integral<MOD>>), ""); this->resize(n + 1); this->at(0) = 1; this->at(1) = g; for (int i = 2; i < this->size(); ++i) this->at(i) = this->at(i - 1) * this->at(1); } }; const int MOD = 998244353; using Mint = Integral<MOD>; using Binom = Binomial<MOD>; Binom binom(200000); // PowerTable<MOD> pw2(200000, 2); template<int MOD = 998244353, int kPrimRoot = 3> void ntt(Integral<MOD> A[], int n, int inv) { // inv == 1: ntt, == -1: intt // MOD == a * b ^ k + 1, n <= b ^ k. // 998244353 == (7 * 17) * 2 ^ 23 + 1. // This code works only when b == 2. Integral<MOD> w = 1, d = Integral<MOD>(kPrimRoot).power((MOD - 1) / n), t; int i, j, c, s; if (inv == -1) { for (i = 1, j = n - 1; i < j; ++i, --j) std::swap(A[i], A[j]); for (t = Integral<MOD>(n).inv(), i = 0; i < n; ++i) A[i] = A[i] * t; } for (s = n >> 1; s; s >>= 1, w = 1, d = d * d) { for (c = 0; c < s; ++c, w = w * d) { for (i = c; i < n; i += s << 1) { A[i | s] = (A[i] - (t = A[i | s])) * w; A[i] += t; } } } for (i = 1; i < n; ++i) { for (j = 0, s = i, c = n >> 1; c; c >>= 1, s >>= 1) j = j << 1 | (s & 1); if (i < j) std::swap(A[i], A[j]); } } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::istream& reader = std::cin; int n; reader >> n; std::vector<Mint> f(1, 1); for (int at = 1; at <= n; ++at) { int a, b; reader >> a >> b; int m = f.size(); int w = m + a - b + m + 1; // b - m, m + a int L = 1; while (L < m + w) L <<= 1; f.resize(L, 0); std::vector<Mint> y(L); for (int i = 0; i < w; ++i) { y[i] = binom(a + b, i + b - m); } ntt(&f[0], L, 1); ntt(&y[0], L, 1); for (int i = 0; i < L; ++i) f[i] *= y[i]; ntt(&f[0], L, -1); for (int i = 0; i < m + a - b; ++i) f[i] = i + m < L ? f[i + m] : 0; f.resize(m + a - b); } std::cout << std::accumulate(f.begin(), f.end(), Mint(0)).val() << std::endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; using ll = long long; const int mod = 998244353; const int maxn = 17000; int fac[202020], ifac[202020]; int x[maxn], f[maxn], g[maxn]; int C(int n, int k) { if (k < 0 || k > n || n < 0) return 0; return fac[n] * (ll)ifac[k] % mod * (ll)ifac[n-k] % mod; } const int G = 3; inline int add(int a, int b) { return a+b>=mod?a+b-mod:a+b; } inline void inc(int&a, int b) { if ((a+=b)>=mod) a-=mod; } inline int sub(int a, int b) { return a-b<0?a-b+mod:a-b; } inline void dec(int&a, int b) { if ((a-=b)<0) a+=mod; } inline int mul(int a, int b) { return (ll)a*b%mod; } inline int qpow(int x, int n) { int ans=1; for ( ; n; n>>=1, x=(ll)x*x%mod) if (n&1) ans=(ll)ans*x%mod; return ans; } //-------------------------------NTT-------------------------------- int wn[30],iwn[30]; //wn[i] = G^((P-1)/(2^i)) (mod P), iwn[i] = wn[i]^(-1) (mod P) inline void init() { wn[21] = qpow(G, (mod-1)/(1<<21)); for (int i=20; i>=0; i--) wn[i] = mul(wn[i+1], wn[i+1]); iwn[21] = qpow(wn[21], (1<<21)-1); for (int i=20; i>=0; i--) iwn[i] = mul(iwn[i+1], iwn[i+1]); } inline void revbin_permute(int a[], int n) { int i=1, j=n>>1, k; for ( ; i<n-1; i++) { if (i < j) swap(a[i], a[j]); for (k=n>>1; j>=k; ) { j -= k; k >>= 1; } if (j < k) j += k; } } void NTT(int f[], int ldn, int is) { int n = (1<<ldn); revbin_permute(f, n); for (int i=0; i<n; i+=2) { int tmp1 = f[i], tmp2 = f[i+1]; f[i] = add(tmp1, tmp2), f[i+1] = sub(tmp1, tmp2); } for (int ldm=2; ldm<=ldn; ldm++) { int m = (1<<ldm), mh = (m>>1); int dw = is>0?wn[ldm]:iwn[ldm], w = 1; for (int j=0; j<mh; j++) { for (int r=0; r<n; r+=m) { int u = f[r+j], v = mul(f[r+j+mh], w); f[r+j] = add(u, v); f[r+j+mh] = sub(u, v); } w = mul(w, dw); } } } void convolution(int f[], int g[], int n) { int ldn; for (int i=20; i>=0; i--) if (n&(1<<i)) { ldn=i; break; } NTT(f, ldn, 1); NTT(g, ldn, 1); //会改变g for (int i=0; i<n; i++) f[i] = mul(f[i], g[i]); NTT(f, ldn, -1); int iv = qpow(n, mod-2); for (int i=0; i<n; i++) f[i] = mul(f[i], iv); } int main(void) { //freopen("g.in", "r", stdin); int N = 200002; fac[0]=1; for (int i=1; i<=N; i++) fac[i]=fac[i-1]*(ll)i%mod; ifac[N]=qpow(fac[N], mod-2); for (int i=N-1; i>=0; i--) ifac[i]=ifac[i+1]*(ll)(i+1)%mod; init(); int n; scanf("%d", &n); int cur_len = 1; x[0] = 1; for (int i=0; i<n; i++) { int a, b; scanf("%d%d", &a, &b); int nex_len = cur_len + a - b; int tot_len = cur_len + nex_len - 1; int L = 2; while (L <= cur_len + tot_len) L <<= 1; // for (int j=0; j<L; j++) f[j] = g[j] = 0; for (int j=0; j<cur_len; j++) f[j] = x[j]; for (int j=cur_len; j<L; j++) f[j] = 0; for (int j=0; j<tot_len; j++) { g[j] = C(a + b, a + cur_len-1 - j); } for (int j=tot_len; j<L; j++) g[j] = 0; // for (int j=0; j<tot_len; j++) printf("%d ", g[j]); puts(""); convolution(f, g, L); for (int j=cur_len-1; j<cur_len-1+nex_len; j++) x[j-cur_len+1] = f[j]; cur_len = nex_len; // printf("i = %d, a = %d, b = %d\n", i, a, b); // for (int j=0; j<cur_len; j++) printf("%d ", x[j]); puts(""); } int ans = 0; for (int i=0; i<cur_len; i++) { ans = (ans + x[i]) % mod; } printf("%d\n", ans); return 0; }
13
CPP
#include<cstdio> #include<algorithm> using namespace std; typedef long long ll; const int N = 1e6 + 50; const ll mod = 998244353; int n, ans, cnt = 1; int jc[N], jc_inv[N]; ll f[N], g[N]; ll qpow(ll a, ll b, int mod){ ll t = 1; while(b){ if(b & 1) t = (t *a) % mod; b >>= 1; a = (a * a) % mod; } return t; } void NTT(int n, ll *a, int opt){ int i, j = 0, k; for(i = 0; i < n; i++){ if(i > j) swap(a[i], a[j]); for(int l = n >> 1; (j ^= l) < l; l >>= 1); } for(i = 1; i < n; i <<= 1){ ll wn = qpow(3, (mod - 1) / (i << 1), mod); int m = i << 1; for(j = 0; j < n; j += m){ ll w = 1; for(k = 0; k < i; k++, w = (w * wn) % mod){ ll z = (a[j + i + k] * w) % mod; a[i + j + k] =( a[j+ k] - z + mod) % mod; a[j + k] = (a[j + k] + z) % mod; } } } if(opt == -1) reverse(a + 1, a + n); } // 注意多次使用的话要初始化,将数组值清零,注意n和m的意义 // a数组储存最后结果,n,m分别是a,b的项数,数组下标从0开始 int work(ll *a, int n, ll *b, int m){ int fn = 1; while(fn <= n + m) fn <<= 1; NTT(fn, a, 1); NTT(fn, b, 1); // 这里a数组储存结果,所以是a[i] = (a[i] * b[i]) % mod // 如果是算其他形式多项式相乘,如(2 - a[x] * b[x]) * b[x]的多项式相乘 // 那么要改为a[i] = ((2 - a[i] * b[i]) % mod * b[i] % mod + mod) % mod for(int i = 0; i <= fn; i++) a[i] = (a[i] * b[i]) % mod; // 对储存结果的数组NTT NTT(fn, a, -1); ll t = qpow(fn, mod - 2, mod); for(int i = 0; i < fn; i++) a[i] = (a[i] * t) % mod; return fn; } int main(){ scanf("%d", &n); jc[0] = 1; for(int i = 1; i < N; ++i) jc[i] = 1LL * jc[i - 1] * i % mod; jc_inv[N - 1] = qpow(jc[N - 1], mod - 2, mod); for(int i = N - 2; ~i; --i) jc_inv[i] = 1LL * jc_inv[i + 1] * (i + 1) % mod; f[1] = 1; while(n--){ int a, b, tot = -1; scanf("%d%d", &a, &b); int max_j = a - b + cnt, max_k = cnt; int p = 1e9; for(int i = 1 - max_k; i <= max_j - 1; ++i){ if(a - i >= 0 && b + i >= 0){ if(p == 1e9) p = i; g[++tot] = 1LL * jc_inv[a - i] * jc_inv[b + i] % mod; //printf("hh %lld\n", g[tot]); } } int len = work(f, cnt, g, tot); //for(int i = 0; i <= cnt + tot; ++i) printf("hh %lld\n", f[i]); for(int i = 0; i < len; ++i) f[i] = f[i] * jc[a + b] % mod; int tt = -1; for(int i = 0; i < len; ++i){ if(p >= 0 && p <= max_j) f[++tt] = f[i]; ++p; } for(int i = tt + 1; i < len; ++i) f[i] = 0; f[0] = 0, cnt = tt; //for(int i = 0; i <= cnt; ++i) printf("hh %lld\n", f[i]); for(int i = 0; i < len; ++i) g[i] = 0; } for(int i = 1; i <= cnt; ++i) ans = (ans + f[i]) % mod; printf("%d", ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const int N = 1000005; const int MOD = 998244353; int n; int fact[N], ifact[N]; int power(int x, int y) { int ret = 1; for (; y; y >>= 1) { if (y & 1) ret = 1LL * ret * x % MOD; x = 1LL * x * x % MOD; } return ret; } namespace FFT { const int LN = 21; const int N = 1 << LN; const int PRIMITIVE_ROOT = 3; // Primitive root modulo `MOD`. int root[N]; void init_fft() { const int UNITY = power(PRIMITIVE_ROOT, MOD-1 >> LN); root[0] = 1; for (int i = 1; i < N; ++i) { root[i] = 1LL * UNITY * root[i-1] % MOD; } } // n is the length of polynom void fft(int n, vector<int> &a, bool invert) { for (int i = 1, j = 0; i < n; ++i) { int bit = n >> 1; for (; j & bit; bit >>= 1) j ^= bit; j ^= bit; if (i < j) swap(a[i], a[j]); } for (int len = 2; len <= n; len <<= 1) { int wlen = (invert ? root[N - N/len] : root[N/len]); for (int i = 0; i < n; i += len) { int w = 1; for (int j = 0; j < len>>1; ++j) { int u = a[i+j]; int v = 1LL * a[i+j + len/2] * w % MOD; a[i+j] = (u + v) % MOD; a[i+j + len/2] = (u - v + MOD) % MOD; w = 1LL * w * wlen % MOD; } } } if (invert) { int inv = power(n, MOD-2); for (int i = 0; i < n; ++i) a[i] = 1LL * a[i] * inv % MOD; } } vector<int> multiply(vector<int> a, vector<int> b) { int len = (a.size() + b.size() == 2 ? 1 : 1 << (32 - __builtin_clz(a.size() + b.size() - 2))); a.resize(len); b.resize(len); fft(len, a, false); fft(len, b, false); a.resize(len); for (int i = 0; i < len; ++i) a[i] = 1LL * a[i] * b[i] % MOD; fft(len, a, true); return a; } } int C(int n, int k) { return 1LL * fact[n] * ifact[k] % MOD * ifact[n - k] % MOD; } void init() { fact[0] = 1; for (int i = 1; i < N; ++i) fact[i] = 1LL * fact[i - 1] * i % MOD; ifact[N - 1] = power(fact[N - 1], MOD - 2); for (int i = N - 2; i >= 0; --i) ifact[i] = 1LL * ifact[i + 1] * (i + 1) % MOD; FFT::init_fft(); } int solve() { scanf("%d", &n); vector<int> v(1, 1); for (int i = 0; i < n; ++i) { int a, b; scanf("%d %d", &a, &b); int sz = v.size(); int nsz = sz + a - b; vector<int> mul(sz + nsz); for (int k = 0; k < mul.size(); ++k) { int col = b - (int) v.size() + 1 + k; if (col < 0 || col > a + b) continue; mul[k] = C(a + b, col); } v = FFT::multiply(v, mul); for (int i = 0; i < nsz; ++i) v[i] = v[i + sz - 1]; v.resize(nsz); // for (int j = 0; j < nv.size(); ++j) { // for (int k = 0; k < v.size(); ++k) { // if (k >= v.size()) break; // if (b + j - k < 0) continue; // if (b + j - k > a + b) continue; // nv[j] = (1LL * C(a + b, b + j - k) * v[k] + nv[j]) % MOD; // } // } } int ans = 0; for (int u : v) ans = (ans + u) % MOD; printf("%d\n", ans); return 0; } int main() { int t = 1; init(); // scanf("%d", &t); for (int tc = 0; tc < t; ++tc) { // printf("Case #%d: ", tc+1); solve(); } return 0; }
13
CPP
#include <bits/stdc++.h> #define fi first #define se second #define DB double #define U unsigned #define P std::pair #define LL long long #define LD long double #define pb emplace_back #define MP std::make_pair #define SZ(x) ((int)x.size()) #define all(x) x.begin(),x.end() #define CLR(i,a) memset(i,a,sizeof(i)) #define FOR(i,a,b) for(int i = a;i <= b;++i) #define ROF(i,a,b) for(int i = a;i >= b;--i) #define DEBUG(x) std::cerr << #x << '=' << x << std::endl const int MAXN = 3e5+5; const int ha = 998244353; inline int qpow(int a,int n=ha-2){ int res = 1; while(n){ if(n & 1) res = 1ll*res*a%ha; a = 1ll*a*a%ha; n >>= 1; } return res; } int n,a[MAXN],b[MAXN]; int sz[MAXN]; int f[2][MAXN],now; int fac[MAXN],inv[MAXN]; inline int C(int n,int m){ return n < 0 || m < 0 || n < m ? 0 : 1ll*fac[n]*inv[m]%ha*inv[n-m]%ha; } inline void add(int &x,int y){ x += y-ha;x += x>>31&ha; } struct Poly{ std::vector<int> x; inline int deg(){return SZ(x)-1;} inline void ext(int n){x.resize(n+1);} inline int& operator [] (const int &n){return x[n];} }; int r[MAXN<<2],N; int W[MAXN<<2]; inline void init(int n){ N = 1;int len = 0;while(N <= n) N <<= 1,++len; FOR(i,0,N-1) r[i] = (r[i>>1]>>1)|((i&1)<<(len-1)); } inline void NTT(Poly &A){ A.ext(N-1);FOR(i,0,N-1) if(i < r[i]) std::swap(A[i],A[r[i]]); int *w = W; for(int mid = 1;mid < N;mid <<= 1){ for(int i = 0;i < N;i += (mid<<1)){ for(int j = 0;j < mid;++j){ int x = A[i+j],y = 1ll*w[j]*A[i+mid+j]%ha; A[i+j] = (x+y)%ha;A[i+mid+j] = (x+ha-y)%ha; } } w += (mid<<1); } } inline Poly operator * (Poly A,Poly B){ int len = A.deg()+B.deg();init(len); NTT(A);NTT(B);FOR(i,0,N-1) A[i] = 1ll*A[i]*B[i]%ha; NTT(A);std::reverse(A.x.begin()+1,A.x.end());int inv = qpow(N); A.ext(len);FOR(i,0,A.deg()) A[i] = 1ll*A[i]*inv%ha; return A; } int main(){ // freopen("A.in","r",stdin); fac[0] = 1;FOR(i,1,MAXN-1) fac[i] = 1ll*fac[i-1]*i%ha; int *w = W;for(int n = 2,i = 0;i <= 16;++i,n <<= 1) FOR(j,0,n-1) *w = qpow(3,((ha-1)/n)*j),++w; inv[MAXN-1] = qpow(fac[MAXN-1]);ROF(i,MAXN-2,0) inv[i] = 1ll*inv[i+1]*(i+1)%ha; scanf("%d",&n); FOR(i,1,n) scanf("%d%d",a+i,b+i); sz[0] = 1;Poly ans;ans.ext(1);ans[1] = 1; FOR(i,1,n){ sz[i] = sz[i-1]+a[i]-b[i]; int l = std::max(-b[i],1-sz[i-1]),r = std::min(a[i],sz[i-1]+a[i]-b[i]-1); Poly F,G;F.ext(sz[i-1]);G.ext(r-l); FOR(j,1,sz[i-1]) F[j] = ans[j]; FOR(j,0,r-l) G[j] = 1ll*inv[b[i]+j+l]*inv[a[i]-j-l]%ha; F = F*G; ans.x.clear();ans.ext(sz[i]); FOR(j,1,sz[i]) if(0 <= j-l && j-l <= F.deg()) ans[j] = 1ll*F[j-l]*fac[a[i]+b[i]]%ha; } int res = 0;FOR(i,1,ans.deg()) add(res,ans[i]); printf("%d\n",res); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count(); mt19937_64 rnd(seed); const int MOD = 998244353; #ifdef VIPJML_LOCAL template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { os << "{"; for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << *vi; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const vector<pair<A, B>> &v) { os << "{"; for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << '(' << vi->first << " " << vi->second << ")"; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const pair<A, B> &p) { os << '(' << p.first << ", " << p.second << ')'; return os; } void dbg_out() { cerr << endl; } template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) { cerr << ' ' << H; dbg_out(T...); } #define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__) #else #define dbg(...) #endif using LL = long long; struct Mint { int v; Mint() : v(0) {} Mint(int t) { v = t % MOD; if (v < 0) v += MOD; } Mint pow(long long k) { Mint res(1), tmp(v); while (k) { if (k & 1) res *= tmp; tmp *= tmp; k >>= 1; } return res; } Mint inv() { return pow(MOD - 2); } Mint &operator+=(Mint a) { v += a.v; if (v >= MOD) v -= MOD; return *this; } Mint &operator-=(Mint a) { v += MOD - a.v; if (v >= MOD) v -= MOD; return *this; } static unsigned fast_mod(uint64_t x, unsigned m = MOD) { #if !defined(_WIN32) || defined(_WIN64) return unsigned(x % m); #endif // Optimized mod for Codeforces 32-bit machines. // x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int. unsigned x_high = unsigned(x >> 32), x_low = unsigned(x); unsigned quot, rem; asm("divl %4\n" : "=a" (quot), "=d" (rem) : "d" (x_high), "a" (x_low), "r" (m)); return rem; } Mint &operator*=(Mint a) { v = fast_mod(uint64_t(v) * a.v); return *this; } Mint &operator/=(Mint a) { return (*this) *= a.inv(); } Mint operator+(Mint a) const { return Mint(v) += a; } Mint operator-(Mint a) const { return Mint(v) -= a; } Mint operator*(Mint a) const { return Mint(v) *= a; } Mint operator/(Mint a) const { return Mint(v) /= a; } Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); } bool operator==(const Mint a) const { return v == a.v; } bool operator!=(const Mint a) const { return v != a.v; } bool operator<(const Mint a) const { return v < a.v; } static Mint comb(long long n, int k) { Mint num(1), dom(1); for (int i = 0; i < k; i++) { num *= Mint(n - i); dom *= Mint(i + 1); } return num / dom; } static Mint inv(int n) { return Mint(n).inv(); } static vector<Mint> getInvArray(int N) { vector<Mint> inv(N + 1, 1); for (int i = 2; i <= N; i++) inv[i] = inv[MOD % i] * (MOD - MOD / i); return inv; } }; ostream &operator<<(ostream &os, Mint m) { os << m.v; return os; } namespace NTT { const int G = 3; const int LOGN = 15; vector<Mint> w[LOGN]; vector<int> rv[LOGN]; void prepare() { for(int st=0;st<LOGN;st++) { w[st].assign(1 << st, 1); Mint bw = Mint(G).pow((MOD-1)/(1 << st)); Mint cw = 1; for(int k=0;k<( 1 << st);k++) { w[st][k] = cw; cw *= bw; } } for(int st=0;st<LOGN;st++) { rv[st].assign(1 << st, 0); if (st == 0) { rv[st][0] = 0; continue; } int h = (1 << (st - 1)); for(int k=0;k<( 1 << st);k++) rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h); } } void ntt(vector<Mint> &d, bool inv = false) { int N = 1; int st=0; while (N < d.size()){ N *= 2; st++; } //d.resize(N); for (int i = 0;i<N;i++) { if(i<rv[st][i]) swap(d[i],d[rv[st][i]]); } int tt=0; for (int len = 1; len * 2 <= N; len <<= 1) { tt++; for (int i = 0; i + len * 2 <= N; i += len * 2) { int dd = N / 2 / len; for (int j = 0; j < len; j++) { Mint t = d[i + j + len] * w[tt][j]; d[i + j + len] = d[i + j] - t; d[i + j] += t; } } } if (inv) { Mint invN = Mint::inv(N); for (int i = 0; i < N; i++) d[i] = d[i] * invN; reverse(d.begin()+1,d.end()); } //return d; } vector<Mint> conv(vector<Mint> d1, vector<Mint> d2) { int num = d1.size() + d2.size() - 1; int cnt = 1 << (32 - __builtin_clz(num)); d1.resize(cnt), d2.resize(cnt); ntt(d1); ntt(d2); vector<Mint> tmp(d1.size()); for (int i = 0; i < d1.size(); i++) tmp[i] = d1[i] * d2[i]; ntt(tmp, true); //r.resize(num); return tmp; } } // namespace NTT void solve(int caseNum) { int n; cin >> n; vector<int> a(n), b(n); for (int i = 0; i < n; i++) cin >> a[i] >> b[i]; vector<Mint> r(1, 1); auto inv = Mint::getInvArray(2e5); vector<Mint> P(2e5 + 1, 1); vector<Mint> IP(2e5 + 1, 1); for (int i = 2; i < P.size(); i++) { P[i] = P[i - 1] * i; IP[i] = IP[i - 1] * inv[i]; } NTT::prepare(); for (int i = 0; i < n; i++) { int s = max(0, b[i] - (int)r.size() + 1); int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]); vector<Mint> x(e - s + 1); for (int j = s; j <= e; j++) { x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j]; } auto t = NTT::conv(r, x); int t1 = b[i] - s; int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1); vector<Mint> res(t2-t1+1); for (int j = t1; j <= t2;j++) { res[j-t1]=t[j]; } swap(r, res); } Mint sum; for (auto t : r) sum += t; cout << sum.v << endl; } int main() { std::ios::sync_with_stdio(false); cin.tie(NULL); cout.precision(10); int T = 1; //cin >> T; for (int i = 1; i <= T; i++) { solve(i); } cout.flush(); return 0; }
13
CPP
#include <cstdio> #include <cstring> const int MAXN =1e3+20, MAXV =1e5+20, M =998244353; /*------------------------------IO------------------------------*/ namespace IO_base{ const int MAXB =1<<10; char gbuf[MAXB], *ps =gbuf, *pt =gbuf; inline char Getchar(){ if(ps == pt){ ps =gbuf; pt =gbuf+fread(gbuf, 1, MAXB, stdin); } return (ps == pt) ? EOF : *ps++; } } #define getchar IO_base::Getchar #define putchar IO_base::Putchar namespace IO_number{ int read(){ int x =0; char c =getchar(); bool f =0; while(c < '0' || c > '9') (c == '-') ? f =1, c =getchar() : c =getchar(); while(c >= '0' && c <= '9') x =(x<<1)+(x<<3)+(48^c), c =getchar(); return (f) ? -x : x; } } using namespace IO_number; /*------------------------------Number_Theory------------------------------*/ namespace Number_Theory_base{ // naive mod inline int mul(const int &x, const int &y, const int &M){ return 1ll*x*y%M; } int Pow(int x, int k, const int &M){ int ret =1; for(; k; k >>=1, x =mul(x, x, M)) if(k&1) ret =mul(ret, x, M); return ret; } int fact[MAXV*2], fact_inv[MAXV*2]; void pre_Fact(){ fact[0] =1; for(int i =1; i < MAXV*2; ++i) fact[i] =mul(fact[i-1], i, M); fact_inv[MAXV*2-1] =Pow(fact[MAXV*2-1], M-2, M); for(int i =MAXV*2-1 -1; i >= 0; --i) fact_inv[i] =mul(fact_inv[i+1], i+1, M); } inline int Fact(const int &x){ return fact[x]; } inline int Fact_Inv(const int &x){ return fact_inv[x]; } } using namespace Number_Theory_base; /*------------------------------Poly------------------------------*/ const int MAXN_Poly =1<<14; #define MAXN MAXN_Poly namespace Poly_base{ struct Poly{ int N; int data[MAXN]; Poly():N(0){ memset(data, 0, sizeof(data)); } Poly(const int &_N) :N(_N){ memset(data, 0, sizeof(data)); } int & operator [] (const int &index){ return data[index]; } int operator [] (const int &index) const{ return data[index]; } }; } using namespace Poly_base; // *require `Number_Theory_base` namespace Poly_calc{ #define mul(x, y) mul(x, y, M_NTT) #define Pow(x, k) Pow(x, k, M_NTT) #define Inv(x) Pow(x, M_NTT-2) // helper for Poly_calc namespace Poly_calc_base{ const int M_NTT =998244353, g_NTT =3; #define M M_NTT /* reference of "g": https://en.wikipedia.org/wiki/Primitive_root_modulo_n */ // helper arrays/variables for NTT int S[MAXN]; bool op; // helper function for NTT void NTT_pre(const int &N){ int shift_of_highest_bit =0; while(N >= (1<<(shift_of_highest_bit+1))) ++shift_of_highest_bit; --shift_of_highest_bit; for(int i =0; i < N; ++i) S[i] =(S[i>>1]>>1)|((i&1)<<shift_of_highest_bit); op =1; } // helper function for NTT inline void NTT_rev_op(){ op ^=1; } // helper function for NTT inline void swap(int &x, int &y){ x ^=y ^=x ^=y; } void NTT(Poly &A){ for(int i =0; i < A.N; ++i) if(i < S[i]) swap(A[i], A[S[i]]); for(int N =1; N < A.N; N <<=1){ const int wn =(op) ? Pow(g_NTT, (M-1)/(N<<1)) : Inv(Pow(g_NTT, (M-1)/(N<<1))); for(int shift_A =0; shift_A < A.N; shift_A +=(N<<1)){ int w =1, *f0 =&A[0]+shift_A, *f1 =&A[0]+shift_A+N; for(int i =0; i < N; ++i){ const int res =mul(*f1, w); *f1 =(*f0-res+M)%M, *f0 =(*f0+res)%M; w =mul(w, wn), ++f0, ++f1; } } } } #undef M } using namespace Poly_calc_base; // helper function for conv int get_Result_N(const int &limit){ int N =1; while(N < limit) N <<=1; return N; } // *tips: `MAXN_Poly =get_Result_N(MAXN*2-1);` void conv(Poly &A, Poly &B, Poly &Result){ const int N =Result.N =A.N =B.N =get_Result_N(A.N+B.N-1); NTT_pre(N); NTT(A), NTT(B); const int Inv_N =Inv(N); for(int i =0; i < N; ++i) Result[i] =mul(mul(A[i], B[i]), Inv_N); NTT_rev_op(); NTT(Result); } #undef mul #undef Pow #undef Inv } using namespace Poly_calc; #undef MAXN /*------------------------------Main------------------------------*/ int main(){ pre_Fact(); const int n =read(); Poly A(1); A[0] =1; for(int _t =0; _t < n; ++_t){ const int a =read(), b =read(); const int n_A =A.N; Poly B((n_A+a)-(b-n_A+1)+1); for(int i =0, j =b-n_A+1; j <= n_A+a; ++i, ++j) if(j >= 0 && a+b-j >= 0) B[i] =mul(Fact_Inv(j), Fact_Inv(a+b-j), M); conv(A, B, B); A.N =n_A+a-b; memset(A.data, 0, sizeof(A.data)); for(int i =0; i < A.N; ++i) A[i] =mul(Fact(a+b), B[n_A+i-1], M); } int ans =0; for(int i =0; i < A.N; ++i) ans =(ans+A[i])%M; printf("%d", ans); }
13
CPP
//EDIR #include <bits/stdc++.h> using namespace std; #define forn(i, n) for (int i = 0; i < int(n); ++i) #define fore(i, l, r) for (int i = int(l); i < int(r); ++i) #define sz(a) int((a).size()) template<const int &MOD> struct _m_int { int val; _m_int(int64_t v = 0) { if (v < 0) v = v % MOD + MOD; if (v >= MOD) v %= MOD; val = int(v); } _m_int(uint64_t v) { if (v >= MOD) v %= MOD; val = int(v); } _m_int(int v) : _m_int(int64_t(v)) {} _m_int(unsigned v) : _m_int(uint64_t(v)) {} static int inv_mod(int a, int m = MOD) { int g = m, r = a, x = 0, y = 1; while (r != 0) { int q = g / r; g %= r; swap(g, r); x -= q * y; swap(x, y); } return x < 0 ? x + m : x; } explicit operator int() const { return val; } explicit operator unsigned() const { return val; } explicit operator int64_t() const { return val; } explicit operator uint64_t() const { return val; } explicit operator double() const { return val; } explicit operator long double() const { return val; } _m_int& operator+=(const _m_int &other) { val -= MOD - other.val; if (val < 0) val += MOD; return *this; } _m_int& operator-=(const _m_int &other) { val -= other.val; if (val < 0) val += MOD; return *this; } static unsigned fast_mod(uint64_t x, unsigned m = MOD) { #if !defined(_WIN32) || defined(_WIN64) return unsigned(x % m); #endif // Optimized mod for Codeforces 32-bit machines. // x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int. unsigned x_high = unsigned(x >> 32), x_low = unsigned(x); unsigned quot, rem; asm("divl %4\n" : "=a" (quot), "=d" (rem) : "d" (x_high), "a" (x_low), "r" (m)); return rem; } _m_int& operator*=(const _m_int &other) { val = fast_mod(uint64_t(val) * other.val); return *this; } _m_int& operator/=(const _m_int &other) { return *this *= other.inv(); } friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; } friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; } friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; } friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; } _m_int& operator++() { val = val == MOD - 1 ? 0 : val + 1; return *this; } _m_int& operator--() { val = val == 0 ? MOD - 1 : val - 1; return *this; } _m_int operator++(int) { _m_int before = *this; ++*this; return before; } _m_int operator--(int) { _m_int before = *this; --*this; return before; } _m_int operator-() const { return val == 0 ? 0 : MOD - val; } friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; } friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; } friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; } friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; } friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; } friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; } _m_int inv() const { return inv_mod(val); } _m_int pow(int64_t p) const { if (p < 0) return inv().pow(-p); _m_int a = *this, result = 1; while (p > 0) { if (p & 1) result *= a; a *= a; p >>= 1; } return result; } friend string to_string(_m_int<MOD> x) { return to_string(x.val); } friend ostream& operator<<(ostream &os, const _m_int &m) { return os << m.val; } }; extern const int MOD = 998244353; using Mint = _m_int<MOD>; const int g = 3; const int LOGN = 15; vector<Mint> w[LOGN]; vector<int> rv[LOGN]; void prepare() { Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN)); forn(st, LOGN - 1) { w[st].assign(1 << st, 1); Mint bw = wb.pow(1 << (LOGN - st - 1)); Mint cw = 1; forn(k, 1 << st) { w[st][k] = cw; cw *= bw; } } forn(st, LOGN) { rv[st].assign(1 << st, 0); if (st == 0) { rv[st][0] = 0; continue; } int h = (1 << (st - 1)); forn(k, 1 << st) rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h); } } void ntt(vector<Mint> &a, bool inv) { int n = sz(a); int ln = __builtin_ctz(n); forn(i, n) { int ni = rv[ln][i]; if (i < ni) swap(a[i], a[ni]); } forn(st, ln) { int len = 1 << st; for (int k = 0; k < n; k += (len << 1)) { fore(pos, k, k + len){ Mint l = a[pos]; Mint r = a[pos + len] * w[st][pos - k]; a[pos] = l + r; a[pos + len] = l - r; } } } if (inv) { Mint rn = Mint(n).inv(); forn(i, n) a[i] *= rn; reverse(a.begin() + 1, a.end()); } } vector<Mint> mul(vector<Mint> a, vector<Mint> b) { int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1)); a.resize(cnt); b.resize(cnt); ntt(a, false); ntt(b, false); vector<Mint> c(cnt); forn(i, cnt) c[i] = a[i] * b[i]; ntt(c, true); return c; } int main() { prepare(); vector<Mint> fact(1, 1), ifact(1, 1); auto C = [&](int n, int k) -> Mint { if (k < 0 || k > n) return 0; while (sz(fact) <= n) { fact.push_back(fact.back() * sz(fact)); ifact.push_back(fact.back().inv()); } return fact[n] * ifact[k] * ifact[n - k]; }; int n; cin >> n; vector<int> a(n), b(n); forn(i, n) cin >> a[i] >> b[i]; vector<Mint> ans(1, 1); forn(i, n) { vector<Mint> Cs; for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j) Cs.push_back(C(a[i] + b[i], j)); auto res = mul(ans, Cs); int cnt = sz(ans); ans.resize(cnt + a[i] - b[i]); forn(j, sz(ans)) ans[j] = res[cnt + j - 1]; } cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl; }
13
CPP
/* ___ ______ __ __ / |____ __ ___________ _/ ____/___ _/ /___ ____ ______/ /____ / /| /_ / / / / / ___/ __ `/ / / __ `/ __/ / / / / / / __ / ___/ / ___ |/ /_/ /_/ (__ ) /_/ / /___/ /_/ / /_/ /_/ / /_/ / /_/ (__ ) /_/ |_/___/\__,_/____/\__,_/\____/\__,_/\__/\__, /\__, /\__,_/____/ /____//____/      />  フ      |  _  _|      /`ミ _x 彡      /      |     /  ヽ   ?  / ̄|   | | |  | ( ̄ヽ__ヽ_)_)  \二つ */ #include <queue> #include <vector> #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #define MP make_pair #define ll long long #define fi first #define se second using namespace std; template <typename T> void read(T &x) { x = 0; bool f = 0; char c = getchar(); for (;!isdigit(c);c=getchar()) if (c=='-') f=1; for (;isdigit(c);c=getchar()) x=x*10+(c^48); if (f) x=-x; } template<typename F> inline void write(F x, char ed = '\n') { static short st[30];short tp=0; if(x<0) putchar('-'),x=-x; do st[++tp]=x%10,x/=10; while(x); while(tp) putchar('0'|st[tp--]); putchar(ed); } template <typename T> inline void Mx(T &x, T y) { x < y && (x = y); } template <typename T> inline void Mn(T &x, T y) { x > y && (x = y); } //#pragma GCC optimize(2) const int P = 998244353; namespace Poly { #define poly vector<int> #define reg register inline int mod(int x) { return x >= P ? x - P : x; } inline void Add(int &x, int y) { x += y; if (x >= P) x -= P; } template <typename T> inline int max(T x, T y) { return x > y ? x : y; } template <typename T> inline int min(T x, T y) { return x > y ? y : x; } int fpw(ll x, int mi) { ll res = 1; for (; mi; mi >>= 1, x = x * x % P) if (mi & 1) res = res * x % P; return res; } const int N = 600500; int E[N], r[N], lim; inline void Prework(int Maxsize) { E[1] = lim = 1; while (lim <= Maxsize) lim <<= 1; for (int i = 2;i < lim;i <<= 1) { int *e0 = E + (i >> 1), *e1 = E + i; ll w = fpw(3, (P - 1) / (i << 1)); for (int j = 0;j < i; j += 2) e1[j] = e0[j >> 1], e1[j + 1] = e1[j] * w % P; } } inline void getR(int len = lim >> 1) { for (reg int i = 1;i < lim; ++i) r[i] = (r[i >> 1] >> 1) | ((i & 1) ? len : 0); } inline int getlen(int Maxsize) { lim = 1; while (lim <= Maxsize) lim <<= 1; return lim; } void init(int Maxsize) { getlen(Maxsize); getR(); } inline void Dft(poly &A) { for (reg int i = 1;i < lim; ++i) if (r[i] < i) std::swap(A[i], A[r[i]]); if (lim >= 2) for (reg int j = 0;j < lim; j += 2) { int x = A[j], y = A[j+1]; A[j] = mod(x + y), A[j+1] = mod(P + x - y); } for (int i = 2;i < lim; i <<= 1) { for (int j = 0;j < lim; j += (i << 1)) { poly::iterator f = A.begin() + j, g = A.begin() + i + j; int *e = E + i; for (int k = 0;k < i; ++k) { int x = f[k], y = 1ll * g[k] * e[k] % P; f[k] = mod(x + y), g[k] = mod(P + x - y); ++k; x = f[k], y = 1ll * g[k] * e[k] % P; f[k] = mod(x + y), g[k] = mod(P + x - y); } } } } inline void iDft(poly &f) { Dft(f), reverse(f.begin() + 1, f.begin() + lim); ll inv = P - (P - 1) / lim; for (int i = 0;i < lim; i++) f[i] = f[i] * inv % P; } poly Mul(poly &a, poly &b) { int s1 = a.size(), s2 = b.size(); if (s1 <= 28 || s2 <= 28) { poly ans(s1 + s2 - 1); for (reg int i = 0;i < s1 + s2 - 1; ++i) ans[i] = 0; for (reg int i = 0;i < s1; ++i) for (reg int j = 0;j < s2; ++j) Add(ans[i + j], 1ll * a[i] * b[j] % P); return ans; } init(s1 + s2 - 2); poly ans(lim); a.resize(lim), b.resize(lim); Dft(a), Dft(b); for (int i = 0;i < lim; ++i) ans[i] = 1ll * a[i] * b[i] % P; return iDft(ans), ans.resize(s1 + s2 - 1), ans; } poly operator * (poly a, poly b) { return Mul(a, b); } } using Poly::Prework; using Poly::operator*; const int N = 205000; int n; ll fac[N], inv[N]; int main() { read(n), fac[0] = fac[1] = inv[0] = inv[1] = 1; for (int i = 2;i <= 200000; ++i) fac[i] = fac[i-1] * i % P, inv[i] = (P - P / i) * inv[P % i] % P; for (int i = 1;i <= 200000; ++i) inv[i] = inv[i-1] * inv[i] % P; auto C = [&](int x, int y) { if (y > x || y < 0) return 0ll; return fac[x] * inv[y] % P * inv[x-y] % P; }; Prework(10000); poly st(2); st[1] = 1; int nw = 1, tnw; for (int i = 1, a, b;i <= n; ++i) { read(a), read(b), tnw = nw + a - b; poly res(tnw + nw + 1); for (int i = 0;i <= tnw + nw; ++i) res[i] = C(a + b, a + nw - i); poly T = st * res; st.clear(); st.resize(tnw + 1); for (int i = 1;i <= tnw; ++i) st[i] = T[i + nw]; nw = tnw; } ll ans = 0; for (int i = 1;i <= nw; ++i) ans += st[i]; write(ans % P); return 0; } /* 3 24 21 66 64 1 1 */
13
CPP
#include <iostream> #include <vector> using namespace std; const int MOD = 998244353; // 2^23 * 7 * 17 + 1 const int ROOT_OF_UNITY = 15311432; int mul(int a, int b) { return 1LL * a * b % MOD; } int powmod(int base, int expo) { int t = 1; for (; expo > 0; expo >>= 1) { if (expo & 1) t = mul(t, base); base = mul(base, base); } return t; } const int MAX2N = 1 << 23; int roots[MAX2N], inv_roots[MAX2N]; void fft(vector<int>& a, const vector<int>&p, int root[]) { int n = a.size(); for (int i = 0; i < n; ++i) if (i < p[i]) swap(a[i], a[p[i]]); for (int m = 1, t = MAX2N / 2; m < n; m *= 2, t /= 2) for (int i = 0; i < n; i += m * 2) for (int j = 0; j < m; ++j) { int& u = a[i + j]; int& v = a[i + j + m]; v = mul(v, root[j * t]); int tmp = u - v; if (tmp < 0) tmp += MOD; u += v; if (u >= MOD) u -= MOD; v = tmp; } } vector<int> polymul(const vector<int>& a, const vector<int>& b) { int n = a.size() + b.size(); if (__builtin_popcount(n) != 1) n = 1 << (32 - __builtin_clz(n)); vector<int> pa(a), pb(b); pa.resize(n), pb.resize(n); vector<int> p(n); for (int i = 1; i < n; ++i) if (i & 1) p[i] = p[i - 1] + n / 2; else p[i] = p[i / 2] / 2; fft(pa, p, roots); fft(pb, p, roots); for (int i = 0; i < n; ++i) pa[i] = mul(pa[i], pb[i]); fft(pa, p, inv_roots); int inv_n = powmod(n, MOD - 2); for (int i = 0; i < n; ++i) pa[i] = mul(pa[i], inv_n); return pa; } const int N = 2e5; int ft[N + 2], invft[N + 2]; int C(int n, int k) { return k >= 0 && k <= n ? mul(ft[n], mul(invft[k], invft[n - k])) : 0; } vector<int> src(1, 1); void add_row(int x, int y) { int n = src.size(); int m = n + x - y; vector<int> b; for (int i = 0; i < n + m; ++i) b.push_back(C(x + y, y - n + i)); b = polymul(src, b); src.resize(m); copy(b.begin() + n, b.begin() + n + m, src.begin()); } int main() { ft[0] = 1; for (int i = 1; i <= N; ++i) ft[i] = mul(ft[i - 1], i); invft[N] = powmod(ft[N], MOD - 2); for (int i = N - 1; i >= 0; --i) invft[i] = mul(invft[i + 1], i + 1); roots[0] = 1; for (int i = 1; i < MAX2N; ++i) roots[i] = mul(roots[i - 1], ROOT_OF_UNITY); inv_roots[MAX2N - 1] = powmod(roots[MAX2N - 1], MOD - 2); for (int i = MAX2N - 2; i >= 0; --i) inv_roots[i] = mul(inv_roots[i + 1], ROOT_OF_UNITY); int q; cin >> q; while (q--) { int x, y; cin >> x >> y; add_row(x, y); } int res = 0; for (int x : src) { res += x; if (res >= MOD) res -= MOD; } cout << res; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; #define io_speed_up ios::sync_with_stdio(false),cin.tie(0),cout.tie(0) template<typename T>void rd(T&x){int f=0,c;while(!isdigit(c=getchar()))f^=!(c^45);x=(c&15);while(isdigit(c=getchar()))x=x*10+(c&15);if(f)x=-x;} //读整型 template<typename T>void pt(T x,int c=10){if(x<0)putchar('-'),x=-x;if(x>9)pt(x/10,-1);putchar(x%10+48);if(c!=-1)putchar(c);} template<typename T>void umax(T&x,const T&y){if(x<y)x=y;} template<typename T>void umin(T&x,const T&y){if(x>y)x=y;} #define rep(i,a,b) for (int i=a;i<=b;i++) #define per(i,a,b) for (int i=a;i>=b;i--) #define for1(i,n) for (int i=1;i<=n;i++) #define for0(i,n) for (int i=0;i<n;i++) #define ms(a,b) memset(a,b,sizeof a) #define all(n) (n).begin(), (n).end() #define sz(x) (int)x.size() #define fi first #define se second using ll = long long; using ld = long double; using pii = pair<int,int>; using pll = pair<long,long>; const int inf = 0x3f3f3f3f; const int maxn = 200005; const int mod = 998244353; inline int pow_mod(ll x, int n) { ll res; for(res = 1; n; n >>= 1, x = x * x % mod) if(n & 1) res = res * x % mod; return res; } inline int add_mod(int x, int y) { x += y; return x >= mod ? x - mod : x; } inline int sub_mod(int x, int y) { x -= y; return x < 0 ? x + mod : x; } void NTT(int a[], int n, int op) { for(int i = 1, j = n >> 1; i < n - 1; ++i) { if(i < j) swap(a[i], a[j]); int k = n >> 1; while(k <= j) { j -= k; k >>= 1; } j += k; } for(int len = 2; len <= n; len <<= 1) { int g = pow_mod(3, (mod - 1) / len); for(int i = 0; i < n; i += len) { int w = 1; for(int j = i; j < i + (len >> 1); ++j) { int u = a[j], t = 1ll * a[j + (len >> 1)] * w % mod; a[j] = add_mod(u, t), a[j + (len >> 1)] = sub_mod(u, t); w = 1ll * w * g % mod; } } } if(op == -1) { reverse(a + 1, a + n); int inv = pow_mod(n, mod - 2); for(int i = 0; i < n; ++i) a[i] = 1ll * a[i] * inv % mod; } } int A[maxn + 5], B[maxn + 5]; int pow2(int x) { int res = 1; while(res < x) res <<= 1; return res; } void convolution(int A[], int B[], int Asize, int Bsize) { int n = pow2(Asize + Bsize - 1); for(int i = Asize; i < n; ++i) A[i] = 0; for(int i = Bsize; i < n; ++i) B[i] = 0; NTT(A, n, 1); NTT(B, n, 1); for(int i = 0; i < n; ++i) A[i] = 1ll * A[i] * B[i] % mod; NTT(A, n, -1); return; } const int N = 200002; ll jc[N+1],inv[N+1]; int C(int x,int y) { if(x<y || y<0) return 0; return jc[x] * inv[y] % mod * inv[x-y] % mod; } int n; int main() { io_speed_up; jc[0] = inv[0] = 1; rep(i,1,N) jc[i] = jc[i-1]*i%mod; inv[N] = pow_mod(jc[N],mod-2); per(i,N-1,1) inv[i] = inv[i+1]*(i+1)%mod; cin>>n; A[0] = 1; int Asize = 1; rep(i,1,n) { int a,b,c; cin>>a>>b; c = a+b; int sz = Asize + a - b; per(i,Asize-1,0) B[i] = C(c,b+i-Asize+1); for0(i,sz-1) B[Asize+i] = C(c,b+i+1); convolution(A,B,Asize,Asize+sz-1); for(int i=0;i<sz;i++) A[i] = A[i+Asize-1]; Asize = sz; } int ans = 0; for0(i,Asize) ans = add_mod(ans, A[i]); cout<<ans<<"\n"; return 0; }
13
CPP
#include <iostream> #include <cstdio> #include <cstring> #include <string> using namespace std; const int N=5010,M=2e5; const int mod=998244353,g=3,invg=332748118; int rev_tag=0; int cir[N<<4]; int fac[M+10],inv[M+10]; inline int C(int x,int y) { if(x<y||y<0) return 0; return 1ll*fac[x]*inv[y]%mod*inv[x-y]%mod; } inline int power(int a,int b) { int res=1; for(;b;b>>=1,a=1ll*a*a%mod) if(b&1) res=1ll*res*a%mod; return res; } inline void mul(int *A,int *B,int x,int y){ for(int i=x;i<y;i++) A[i]=1ll*A[i]*B[i]%mod; } inline void clear(int *A,int x,int y){ for(int i=x;i<y;i++) A[i]=0; } inline void NTT(int *A,int lim,int tag) { if(rev_tag!=lim) for(int i=0;i<=lim;i++) cir[i]=(cir[i>>1]>>1)|((i&1)?lim>>1:0); rev_tag=lim; int buf,w,inv0=power(lim,mod-2); for(int i=0;i<lim;i++) if(i<cir[i]) swap(A[i],A[cir[i]]); for(int l=2;l<=lim;l<<=1) { int r=l>>1; buf=power(tag?g:invg,(mod-1)/l),w=1; for(int i=0;i<lim;i+=l,w=1) for(int j=i;j<i+r;j++,w=1ll*w*buf%mod) { int tmp=1ll*w*A[j+r]%mod; A[j+r]=(A[j]-tmp+mod)%mod; A[j]=(A[j]+tmp)%mod; } } if(!tag) for(int i=0;i<lim;i++) A[i]=1ll*A[i]*inv0%mod; } int f[1010][N],F[N<<4],G[N<<4]; int main() { fac[0]=1; for(int i=1;i<=M;i++) fac[i]=1ll*fac[i-1]*i%mod; inv[M]=power(fac[M],mod-2); for(int i=M-1;i>=0;i--) inv[i]=1ll*inv[i+1]*(i+1)%mod; int n,ans=0,a,b; scanf("%d",&n); int high=1; f[0][1]=1; for(int i=1;i<=n;i++) { scanf("%d%d",&a,&b),high+=a-b; int cur=high-a+b,now=high; for(int j=1;j<=cur;j++) F[j]=f[i-1][j]; for(int j=-cur;j<=now;j++) G[j+cur]=C(a+b,b+j); int lim=1; while(lim<(now+cur+1)+cur) lim<<=1; NTT(F,lim,1),NTT(G,lim,1),mul(F,G,0,lim),NTT(F,lim,0); for(int j=1;j<=now;j++) f[i][j]=F[j+cur]; clear(F,0,lim),clear(G,0,lim); } for(int i=1;i<=high;i++) ans=(ans+f[n][i])%mod; printf("%d\n",ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; #define forn(i, n) for (int i = 0; i < int(n); ++i) #define fore(i, l, r) for (int i = int(l); i < int(r); ++i) #define sz(a) int((a).size()) template<const int &MOD> struct _m_int { int val; _m_int(int64_t v = 0) { if (v < 0) v = v % MOD + MOD; if (v >= MOD) v %= MOD; val = int(v); } _m_int(uint64_t v) { if (v >= MOD) v %= MOD; val = int(v); } _m_int(int v) : _m_int(int64_t(v)) {} _m_int(unsigned v) : _m_int(uint64_t(v)) {} static int inv_mod(int a, int m = MOD) { int g = m, r = a, x = 0, y = 1; while (r != 0) { int q = g / r; g %= r; swap(g, r); x -= q * y; swap(x, y); } return x < 0 ? x + m : x; } explicit operator int() const { return val; } explicit operator unsigned() const { return val; } explicit operator int64_t() const { return val; } explicit operator uint64_t() const { return val; } explicit operator double() const { return val; } explicit operator long double() const { return val; } _m_int& operator+=(const _m_int &other) { val -= MOD - other.val; if (val < 0) val += MOD; return *this; } _m_int& operator-=(const _m_int &other) { val -= other.val; if (val < 0) val += MOD; return *this; } static unsigned fast_mod(uint64_t x, unsigned m = MOD) { #if !defined(_WIN32) || defined(_WIN64) return unsigned(x % m); #endif // Optimized mod for Codeforces 32-bit machines. // x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int. unsigned x_high = unsigned(x >> 32), x_low = unsigned(x); unsigned quot, rem; asm("divl %4\n" : "=a" (quot), "=d" (rem) : "d" (x_high), "a" (x_low), "r" (m)); return rem; } _m_int& operator*=(const _m_int &other) { val = fast_mod(uint64_t(val) * other.val); return *this; } _m_int& operator/=(const _m_int &other) { return *this *= other.inv(); } friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; } friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; } friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; } friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; } _m_int& operator++() { val = val == MOD - 1 ? 0 : val + 1; return *this; } _m_int& operator--() { val = val == 0 ? MOD - 1 : val - 1; return *this; } _m_int operator++(int) { _m_int before = *this; ++*this; return before; } _m_int operator--(int) { _m_int before = *this; --*this; return before; } _m_int operator-() const { return val == 0 ? 0 : MOD - val; } friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; } friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; } friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; } friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; } friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; } friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; } _m_int inv() const { return inv_mod(val); } _m_int pow(int64_t p) const { if (p < 0) return inv().pow(-p); _m_int a = *this, result = 1; while (p > 0) { if (p & 1) result *= a; a *= a; p >>= 1; } return result; } friend string to_string(_m_int<MOD> x) { return to_string(x.val); } friend ostream& operator<<(ostream &os, const _m_int &m) { return os << m.val; } }; extern const int MOD = 998244353; using Mint = _m_int<MOD>; const int g = 3; const int LOGN = 20; vector<Mint> w[LOGN]; vector<int> rv[LOGN]; void prepare() { Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN)); forn(st, LOGN - 1) { w[st].assign(1 << st, 1); Mint bw = wb.pow(1 << (LOGN - st - 1)); Mint cw = 1; forn(k, 1 << st) { w[st][k] = cw; cw *= bw; } } forn(st, LOGN) { rv[st].assign(1 << st, 0); if (st == 0) { rv[st][0] = 0; continue; } int h = (1 << (st - 1)); forn(k, 1 << st) rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h); } } void ntt(vector<Mint> &a, bool inv) { int n = sz(a); int ln = __builtin_ctz(n); forn(i, n) { int ni = rv[ln][i]; if (i < ni) swap(a[i], a[ni]); } forn(st, ln) { int len = 1 << st; for (int k = 0; k < n; k += (len << 1)) { fore(pos, k, k + len){ Mint l = a[pos]; Mint r = a[pos + len] * w[st][pos - k]; a[pos] = l + r; a[pos + len] = l - r; } } } if (inv) { Mint rn = Mint(n).inv(); forn(i, n) a[i] *= rn; reverse(a.begin() + 1, a.end()); } } vector<Mint> mul(vector<Mint> a, vector<Mint> b) { int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1)); a.resize(cnt); b.resize(cnt); ntt(a, false); ntt(b, false); vector<Mint> c(cnt); forn(i, cnt) c[i] = a[i] * b[i]; ntt(c, true); return c; } int main() { prepare(); vector<Mint> fact(1, 1), ifact(1, 1); auto C = [&](int n, int k) -> Mint { if (k < 0 || k > n) return 0; while (sz(fact) <= n) { fact.push_back(fact.back() * sz(fact)); ifact.push_back(fact.back().inv()); } return fact[n] * ifact[k] * ifact[n - k]; }; int n; cin >> n; vector<int> a(n), b(n); forn(i, n) cin >> a[i] >> b[i]; vector<Mint> ans(1, 1); forn(i, n) { vector<Mint> Cs; for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j) Cs.push_back(C(a[i] + b[i], j)); auto res = mul(ans, Cs); int cnt = sz(ans); ans.resize(cnt + a[i] - b[i]); forn(j, sz(ans)) ans[j] = res[cnt + j - 1]; } cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; #define forn(i, n) for (int i = 0; i < int(n); ++i) #define fore(i, l, r) for (int i = int(l); i < int(r); ++i) #define sz(a) int((a).size()) template<const int &MOD> struct _m_int { int val; _m_int(int64_t v = 0) { if (v < 0) v = v % MOD + MOD; if (v >= MOD) v %= MOD; val = int(v); } _m_int(uint64_t v) { if (v >= MOD) v %= MOD; val = int(v); } _m_int(int v) : _m_int(int64_t(v)) {} _m_int(unsigned v) : _m_int(uint64_t(v)) {} static int inv_mod(int a, int m = MOD) { int g = m, r = a, x = 0, y = 1; while (r != 0) { int q = g / r; g %= r; swap(g, r); x -= q * y; swap(x, y); } return x < 0 ? x + m : x; } explicit operator int() const { return val; } explicit operator unsigned() const { return val; } explicit operator int64_t() const { return val; } explicit operator uint64_t() const { return val; } explicit operator double() const { return val; } explicit operator long double() const { return val; } _m_int& operator+=(const _m_int &other) { val -= MOD - other.val; if (val < 0) val += MOD; return *this; } _m_int& operator-=(const _m_int &other) { val -= other.val; if (val < 0) val += MOD; return *this; } static unsigned fast_mod(uint64_t x, unsigned m = MOD) { #if !defined(_WIN32) || defined(_WIN64) return unsigned(x % m); #endif // Optimized mod for Codeforces 32-bit machines. // x must be less than 2^32 * m for this to work, so that x / m fits in an unsigned 32-bit int. unsigned x_high = unsigned(x >> 32), x_low = unsigned(x); unsigned quot, rem; asm("divl %4\n" : "=a" (quot), "=d" (rem) : "d" (x_high), "a" (x_low), "r" (m)); return rem; } _m_int& operator*=(const _m_int &other) { val = fast_mod(uint64_t(val) * other.val); return *this; } _m_int& operator/=(const _m_int &other) { return *this *= other.inv(); } friend _m_int operator+(const _m_int &a, const _m_int &b) { return _m_int(a) += b; } friend _m_int operator-(const _m_int &a, const _m_int &b) { return _m_int(a) -= b; } friend _m_int operator*(const _m_int &a, const _m_int &b) { return _m_int(a) *= b; } friend _m_int operator/(const _m_int &a, const _m_int &b) { return _m_int(a) /= b; } _m_int& operator++() { val = val == MOD - 1 ? 0 : val + 1; return *this; } _m_int& operator--() { val = val == 0 ? MOD - 1 : val - 1; return *this; } _m_int operator++(int) { _m_int before = *this; ++*this; return before; } _m_int operator--(int) { _m_int before = *this; --*this; return before; } _m_int operator-() const { return val == 0 ? 0 : MOD - val; } friend bool operator==(const _m_int &a, const _m_int &b) { return a.val == b.val; } friend bool operator!=(const _m_int &a, const _m_int &b) { return a.val != b.val; } friend bool operator<(const _m_int &a, const _m_int &b) { return a.val < b.val; } friend bool operator>(const _m_int &a, const _m_int &b) { return a.val > b.val; } friend bool operator<=(const _m_int &a, const _m_int &b) { return a.val <= b.val; } friend bool operator>=(const _m_int &a, const _m_int &b) { return a.val >= b.val; } _m_int inv() const { return inv_mod(val); } _m_int pow(int64_t p) const { if (p < 0) return inv().pow(-p); _m_int a = *this, result = 1; while (p > 0) { if (p & 1) result *= a; a *= a; p >>= 1; } return result; } friend string to_string(_m_int<MOD> x) { return to_string(x.val); } friend ostream& operator<<(ostream &os, const _m_int &m) { return os << m.val; } }; extern const int MOD = 998244353; using Mint = _m_int<MOD>; const int g = 3; const int LOGN = 15; vector<Mint> w[LOGN]; vector<int> rv[LOGN]; void prepare() { Mint wb = Mint(g).pow((MOD - 1) / (1 << LOGN)); forn(st, LOGN - 1) { w[st].assign(1 << st, 1); Mint bw = wb.pow(1 << (LOGN - st - 1)); Mint cw = 1; forn(k, 1 << st) { w[st][k] = cw; cw *= bw; } } forn(st, LOGN) { rv[st].assign(1 << st, 0); if (st == 0) { rv[st][0] = 0; continue; } int h = (1 << (st - 1)); forn(k, 1 << st) rv[st][k] = (rv[st - 1][k & (h - 1)] << 1) | (k >= h); } } void ntt(vector<Mint> &a, bool inv) { int n = sz(a); int ln = __builtin_ctz(n); forn(i, n) { int ni = rv[ln][i]; if (i < ni) swap(a[i], a[ni]); } forn(st, ln) { int len = 1 << st; for (int k = 0; k < n; k += (len << 1)) { fore(pos, k, k + len){ Mint l = a[pos]; Mint r = a[pos + len] * w[st][pos - k]; a[pos] = l + r; a[pos + len] = l - r; } } } if (inv) { Mint rn = Mint(n).inv(); forn(i, n) a[i] *= rn; reverse(a.begin() + 1, a.end()); } } vector<Mint> mul(vector<Mint> a, vector<Mint> b) { int cnt = 1 << (32 - __builtin_clz(sz(a) + sz(b) - 1)); a.resize(cnt); b.resize(cnt); ntt(a, false); ntt(b, false); vector<Mint> c(cnt); forn(i, cnt) c[i] = a[i] * b[i]; ntt(c, true); return c; } int main() { prepare(); vector<Mint> fact(1, 1), ifact(1, 1); auto C = [&](int n, int k) -> Mint { if (k < 0 || k > n) return 0; while (sz(fact) <= n) { fact.push_back(fact.back() * sz(fact)); ifact.push_back(fact.back().inv()); } return fact[n] * ifact[k] * ifact[n - k]; }; int n; cin >> n; vector<int> a(n), b(n); forn(i, n) cin >> a[i] >> b[i]; vector<Mint> ans(1, 1); forn(i, n) { vector<Mint> Cs; for (int j = b[i] - sz(ans) + 1; j < sz(ans) + a[i]; ++j) Cs.push_back(C(a[i] + b[i], j)); auto res = mul(ans, Cs); int cnt = sz(ans); ans.resize(cnt + a[i] - b[i]); forn(j, sz(ans)) ans[j] = res[cnt + j - 1]; } cout << accumulate(ans.begin(), ans.end(), Mint(0)) << endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; namespace NTT { const int P=998244353,g=3; const int W=22,S=1<<W; const int J=86583718; inline int add(int a,int b) {int r=a+b; return r<P?r:r-P;} inline int sub(int a,int b) {int r=a-b; return r<0?r+P:r;} inline int mul(long long a,long long b) {return (a*b)%P;} inline int inv(int a) {return a==1?a:mul(inv(P%a),P-P/a);} inline int qpow(int a,long long k) { int r=1; while (k) { if (k&1) r=mul(r,a); k>>=1; a=mul(a,a); } return r; } int r[S],w[2][S]; void init(int lim) { int w0=qpow(g,(P-1)/lim); w[0][0]=w[1][0]=1; for (int i=1;i<lim;i++) w[0][i]=w[1][lim-i]=mul(w[0][i-1],w0); for (int i=0;i<lim;i++) r[i]=(r[i>>1]>>1)|((i&1)*(lim>>1)); } void ntt(int *a,int lim,int o) { for (int i=0;i<lim;i++) if (i<r[i]) swap(a[i],a[r[i]]); for (int i=1;i<lim;i<<=1) { for (int j=0,t=lim/(i<<1);j<lim;j+=i<<1) { for (int k=j,l=0;k<j+i;k++,l+=t) { int x=a[k],y=mul(w[o][l],a[k+i]); a[k]=add(x,y); a[k+i]=sub(x,y); } } } if (o) { int tmp=NTT::inv(lim); for (int i=0;i<lim;i++) a[i]=mul(a[i],tmp); } } vector<int> poly_add(const vector<int> &a,const vector<int> &b) { int n=a.size(),m=b.size(); vector<int> c; for (int i=0;i<max(n,m);i++) c.push_back(add((i<n?a[i]:0),(i<m?b[i]:0))); return c; } vector<int> poly_sub(const vector<int> &a,const vector<int> &b) { int n=a.size(),m=b.size(); vector<int> c; for (int i=0;i<max(n,m);i++) c.push_back(sub((i<n?a[i]:0),(i<m?b[i]:0))); return c; } vector<int> poly_d(const vector<int> &a) { int n=a.size(); vector<int> b; for (int i=1;i<n;i++) b.push_back(mul(a[i],i)); return b; } vector<int> poly_s(const vector<int> &a) { int n=a.size(); vector<int> b{0}; for (int i=0;i<n;i++) b.push_back(mul(a[i],inv(i+1))); return b; } int p1[S],p2[S]; vector<int> poly_mul(const vector<int> &a,const vector<int> &b) { int n=a.size(),m=b.size(); int lim=1; while (lim<(n<<1)) lim<<=1; while (lim<(m<<1)) lim<<=1; init(lim); for (int i=0;i<lim;i++) r[i]=(i&1)*(lim>>1)+(r[i>>1]>>1); copy_n(a.begin(),n,p1); fill(p1+n,p1+lim,0); copy_n(b.begin(),m,p2); fill(p2+m,p2+lim,0); ntt(p1,lim,0); ntt(p2,lim,0); for (int i=0;i<lim;i++) p1[i]=mul(p1[i],p2[i]); ntt(p1,lim,1); return vector<int>(p1,p1+n+m-1); } vector<int> poly_inv(const vector<int> &a) { int n=a.size(); if (n==1) return {inv(a[0])}; auto b=a; b.resize((n+1)>>1); b=poly_inv(b); int m=b.size(); int lim=1; while (lim<(n<<1)) lim<<=1; while (lim<(m<<1)) lim<<=1; init(lim); copy_n(a.begin(),n,p1); fill(p1+n,p1+lim,0); copy_n(b.begin(),m,p2); fill(p2+m,p2+lim,0); ntt(p1,lim,1); ntt(p2,lim,1); for (int i=0;i<lim;i++) p1[i]=mul(p2[i],sub(2,mul(p1[i],p2[i]))); ntt(p1,lim,-1); return vector<int>(p1,p1+n); } vector<int> poly_div(const vector<int> &a,const vector<int> &b) { int n=a.size(),m=b.size(); if (m>n) return {0}; auto ar=a,br=b; reverse(ar.begin(),ar.end()); reverse(br.begin(),br.end()); ar.resize(n-m+1); br.resize(n-m+1); br=poly_inv(br); auto q=poly_mul(ar,br); q.resize(n-m+1); reverse(q.begin(),q.end()); return q; } vector<int> poly_mod(const vector<int> &a,const vector<int> &b) { int m=b.size(); auto c=poly_div(a,b); c=poly_mul(b,c); c=poly_sub(a,c); c.resize(m-1); return c; } vector<int> poly_sqrt(const vector<int> &a) { int n=a.size(); if (n==1) return {1}; auto b=a; b.resize((n+1)>>1); b=poly_sqrt(b); b.resize(n); auto c=poly_add(b,poly_mul(poly_inv(b),a)); c.resize(n); int i2=inv(2); for (int &i:c) i=mul(i,i2); return c; } vector<int> poly_ln(const vector<int> &a) { int n=a.size(); auto b=poly_mul(poly_inv(a),poly_d(a)); b.resize(n-1); b=poly_s(b); return b; } vector<int> poly_exp(const vector<int> &a) { int n=a.size(); if (n==1) return {1}; auto b=a; b.resize((n+1)>>1); b=poly_exp(b); b.resize(n); auto c=poly_sub(a,poly_ln(b)); c[0]=add(c[0],1); c=poly_mul(b,c); c.resize(n); return c; } vector<int> poly_sin(const vector<int> &a) { auto b=a; for (int &i:b) i=mul(i,J); auto c=poly_exp(b); c=poly_sub(c,poly_inv(c)); int i2=inv(2),ij=inv(J); for (int &i:c) i=mul(i,mul(i2,ij)); return c; } vector<int> poly_cos(const vector<int> &a) { auto b=a; for (int &i:b) i=mul(i,J); auto c=poly_exp(b); c=poly_add(c,poly_inv(c)); int i2=inv(2); for (int &i:c) i=mul(i,i2); return c; } vector<int> poly_asin(const vector<int> &a) { int n=a.size(); auto b=poly_d(a),c=poly_mul(a,a); c.resize(n); c=poly_inv(poly_sqrt(poly_sub({1},c))); b=poly_mul(b,c); b.resize(n-1); return poly_s(b); } vector<int> poly_atan(const vector<int> &a) { int n=a.size(); auto b=poly_d(a),c=poly_mul(a,a); c.resize(n); c=poly_inv(poly_add({1},c)); b=poly_mul(b,c); b.resize(n-1); return poly_s(b); } } const int N=200010; int n,a,b; long long inv[N]; long long fac[N],invf[N]; void linear_inv(long long n,long long p) { inv[1]=1; for (long long i=2;i<=n;i++) inv[i]=(p-p/i)*inv[p%i]%p; fac[0]=1; for (long long i=1;i<=n;i++) fac[i]=fac[i-1]*i%p; invf[n]=NTT::inv(fac[n]); for (long long i=n-1;i>=0;i--) invf[i]=invf[i+1]*(i+1)%p; } long long C(long long n,long long m) { if (m>n) return 0; return NTT::mul(fac[n],NTT::mul(invf[m],invf[n-m])); } int main() { linear_inv(200000,NTT::P); scanf("%d",&n); vector<int> ans={1}; int l=1; for (int i=1;i<=n;i++) { scanf("%d%d",&a,&b); vector<int> f; int sz=min(l+l+a-b-1,a+b+1); for (int j=(a+b+1-sz)/2;j<=a+b-(a+b+1-sz)/2;j++) { f.push_back(C(a+b,j)); } ans=NTT::poly_mul(ans,f); l+=a-b; int now=ans.size(); ans.erase(ans.begin(),ans.begin()+(now-l)/2); ans.erase(ans.end()-(now-l)/2,ans.end()); } int sum=0; for (int i:ans) { sum=NTT::add(sum,i); } printf("%d",sum); getchar(); getchar(); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count(); mt19937_64 rnd(seed); const int MOD = 998244353; #ifdef VIPJML_LOCAL template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { os << "{"; for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << *vi; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const vector<pair<A, B>> &v) { os << "{"; for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << '(' << vi->first << " " << vi->second << ")"; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const pair<A, B> &p) { os << '(' << p.first << ", " << p.second << ')'; return os; } void dbg_out() { cerr << endl; } template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) { cerr << ' ' << H; dbg_out(T...); } #define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__) #else #define dbg(...) #endif using LL = long long; struct Mint { long long v; Mint() : v(0) {} Mint(long long t) { v = t % MOD; if (v < 0) v += MOD; } Mint pow(long long k) { Mint res(1), tmp(v); while (k) { if (k & 1) res *= tmp; tmp *= tmp; k >>= 1; } return res; } Mint inv() { return pow(MOD - 2); } Mint &operator+=(Mint a) { v += a.v; if (v >= MOD) v -= MOD; return *this; } Mint &operator-=(Mint a) { v += MOD - a.v; if (v >= MOD) v -= MOD; return *this; } Mint &operator*=(Mint a) { v = v * a.v % MOD; return *this; } Mint &operator/=(Mint a) { return (*this) *= a.inv(); } Mint operator+(Mint a) const { return Mint(v) += a; } Mint operator-(Mint a) const { return Mint(v) -= a; } Mint operator*(Mint a) const { return Mint(v) *= a; } Mint operator/(Mint a) const { return Mint(v) /= a; } Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); } bool operator==(const Mint a) const { return v == a.v; } bool operator!=(const Mint a) const { return v != a.v; } bool operator<(const Mint a) const { return v < a.v; } static Mint comb(long long n, int k) { Mint num(1), dom(1); for (int i = 0; i < k; i++) { num *= Mint(n - i); dom *= Mint(i + 1); } return num / dom; } static Mint inv(int n) { return Mint(n).inv(); } static vector<Mint> getInvArray(int N) { vector<Mint> inv(N + 1, 1); for (int i = 2; i <= N; i++) inv[i] = inv[MOD % i] * (MOD - MOD / i); return inv; } }; ostream &operator<<(ostream &os, Mint m) { os << m.v; return os; } namespace NTT { const int G = 3; vector<Mint> ntt(vector<Mint> d, bool inv = false) { int N = 1; while (N < d.size()) N *= 2; d.resize(N); Mint base = Mint(G).pow((MOD - 1) / N); if (!inv) { base = base.inv(); } vector<Mint> pp(N + 1); pp[0] = 1; for (int i = 1; i < N; i++) { pp[i] = pp[i - 1] * base; } for (int i = 0, j = 0; i < N - 1; i++) { if (i < j) { swap(d[i], d[j]); } int k = N >> 1; while (k <= j) { j -= k; k >>= 1; } j += k; } for (int len = 1; len * 2 <= N; len <<= 1) { for (int i = 0; i + len * 2 <= N; i += len * 2) { int dd = N / 2 / len; for (int j = 0; j < len; j++) { Mint t = d[i + j + len] * pp[dd * j]; d[i + j + len] = d[i + j] - t; d[i + j] += t; } } } if (inv) { Mint invN = Mint::inv(N); for (int i = 0; i < N; i++) d[i] = d[i] * invN; } return d; } vector<Mint> conv(vector<Mint> d1, vector<Mint> d2) { int num = d1.size() + d2.size() - 1; d1.resize(num), d2.resize(num); auto t1 = ntt(d1); auto t2 = ntt(d2); vector<Mint> tmp(t1.size()); for (int i = 0; i < t1.size(); i++) tmp[i] = t1[i] * t2[i]; auto r = ntt(tmp, true); r.resize(num); return r; } } // namespace NTT void solve(int caseNum) { int n; cin >> n; vector<int> a(n), b(n); for (int i = 0; i < n; i++) cin >> a[i] >> b[i]; vector<Mint> r(1, 1); auto inv = Mint::getInvArray(2e5); vector<Mint> P(2e5 + 1, 1); vector<Mint> IP(2e5 + 1, 1); for (int i = 2; i < P.size(); i++) { P[i] = P[i - 1] * i; IP[i] = IP[i - 1] * inv[i]; } for (int i = 0; i < n; i++) { int s = max(0, b[i] - (int)r.size() + 1); int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]); vector<Mint> x(e - s + 1); for (int j = s; j <= e; j++) { x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j]; } auto t = NTT::conv(r, x); int t1 = b[i] - s; int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1); r.resize(t2-t1+1); for (int j = t1; j <= t2;j++) { r[j-t1]=t[j]; } } Mint sum; for (auto t : r) sum += t; cout << sum.v << endl; } int main() { std::ios::sync_with_stdio(false); cin.tie(NULL); cout.precision(10); int T = 1; //cin >> T; for (int i = 1; i <= T; i++) { solve(i); } cout.flush(); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; typedef long long ll; const int INFi = 1e9+67; const ll INFll = 1e18; using NumberType = double; //ll mod = 1e9+7; ll mod = 998244353; namespace std { template<typename a, typename b> struct hash<std::pair<a, b> > { public: hash() {} size_t operator()(const std::pair<a, b> &p) const { return hash<a>()(p.first) + hash<b>()(p.second)*998242353; } }; }; //integer division, correctly works with negative values pair<ll,ll> divNorm(ll a, ll b) { ll res = a/b; ll mod = a%b; if (mod<0) { res--; mod+=b; } return {res, mod}; } ll divRoundDown(ll a, ll b) { auto divRes = divNorm(a,b); return divRes.first; } ll divRoundUp(ll a, ll b) { auto divRes = divNorm(a,b); ll res = divRes.first; if (divRes.second) { res++; } return res; } ll bin_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) { res*=a; res %=mod; } a*=a; a %= mod; b>>=1; } return res; } ll reverse(ll a) { return bin_pow(a,mod-2); } template<int mod, int root, int rootPw> struct FFT { private: ll mul(ll a, ll b) { return (a*b) % mod; } ll bin_pow(ll a, ll b) { ll res = 1; while (b) { if (b & 1) { res = mul(res, a); } a = mul(a,a); b>>=1; } return res; } ll reverse(ll a) { return bin_pow(a,mod-2); } public: vector<int> operator()(const vector<int>& a, int n, bool invert) { assert(mod==::mod); int root_1 = reverse(root); int pow2 = 1; while (pow2<n) { pow2 <<= 1; } n = pow2; vector<int> res(n, 0); std::copy(a.begin(), a.end(), res.begin()); for (int i=1, j=0; i<n; ++i) { int bit = n >> 1; for (; j>=bit; bit>>=1) j -= bit; j += bit; if (i < j) swap (res[i], res[j]); } for (int len=2; len<=n; len<<=1) { int wlen = invert ? root_1 : root; for (int i=len; i<rootPw; i<<=1) wlen = int (wlen * 1ll * wlen % mod); for (int i=0; i<n; i+=len) { int w = 1; for (int j=0; j<len/2; ++j) { int u = res[i+j], v = int (res[i+j+len/2] * 1ll * w % mod); res[i+j] = u+v < mod ? u+v : u+v-mod; res[i+j+len/2] = u-v >= 0 ? u-v : u-v+mod; w = int (w * 1ll * wlen % mod); } } } if (invert) { int nrev = reverse (n); for (int i=0; i<n; ++i) res[i] = int (res[i] * 1ll * nrev % mod); } return res; } }; FFT<998244353, 15311432 /*3^(7*17)*/, 1<<23> fft; using ld = double; const int maxn = 3e5+7; //const int maxn2 = maxn*maxn; //double dp[10][maxn][maxn*maxn]; ll dpL[maxn][2], dpR[maxn][2]; ll fact[maxn], iFact[maxn]; ll C(ll n, ll k) { if (n<0 || k<0) return 0; if (n<k) return 0; ll kekw = fact[n]; kekw = (kekw*iFact[n-k]) % mod; kekw = (kekw*iFact[k]) % mod; return kekw; } void solve() { fact[0] = iFact[0] = 1; for (int i=1;i<maxn;i++) { fact[i] = (fact[i-1] * i) % mod; iFact[i] = reverse(fact[i]); } int n; cin >> n; vector<ll> a(n), b(n); vector<int> ans{1}; for (int i=0;i<n;i++) { int m = ans.size(); cin >> a[i] >> b[i]; vector<int> otherToConv; for (int j=b[i]-m+1;j<=b[i]+m+a[i]-b[i]-1;j++) { otherToConv.push_back(C(a[i]+b[i], j)); } int resLen = m-1 + (m+a[i]-b[i]); auto image1 = fft(otherToConv, resLen, false); auto image2 = fft(ans, resLen, false); for (int i=0;i<image1.size();i++) { image1[i] = (((ll) image1[i])*((ll) image2[i])) % mod; } auto out = fft(image1, resLen, true); ans.clear(); for (int i=m-1;i<resLen;i++) { ans.push_back(out[i]); } } ll res = 0; for (int i=0;i<ans.size();i++) { res += ans[i]; res %= mod; } cout << res; } int main() { // freopen("input.txt","w",stdout); // int n = 100'000; // for (int i=0;i<n;i++) { // cout << 1 << " "; // } // cout << "\n"; // for (int i=1;i<n;i++) { // cout << 1 << " " << i+1 << "\n"; // } // for (int i=0;i<n;i++) { // cout << 200'000 << " "; // } // cout << 10 << " " << 0 << "\n"; // int starsLeft = 5; // for (int i=0;i<10;i++) { // for (int j=0;j<10;j++) { // int kekw = rand() % 20; // if (kekw==1 && starsLeft) { // cout << "*"; // starsLeft--; // } else { // cout << ((char) ('0' + (rand() % 10))); // } // } // cout << "\n"; // } // return 0; ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); // freopen("input.txt","r",stdin); //freopen("output.bin","w",stdout); //freopen("/tmp/output.txt","w",stdout); cout << setprecision(2) << fixed; // int t; // cin >> t; // for (int i=0;i<t;i++) // ll start = clock(); // while (1) solve(); // double time = (clock() - start) * 1.0 / CLOCKS_PER_SEC; // cout<< time << "s."; return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; const uint64_t seed = std::chrono::system_clock::now().time_since_epoch().count(); mt19937_64 rnd(seed); const int MOD = 998244353; #ifdef VIPJML_LOCAL template <typename T> ostream &operator<<(ostream &os, const vector<T> &v) { os << "{"; for (typename vector<T>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << *vi; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const vector<pair<A, B>> &v) { os << "{"; for (typename vector<pair<A, B>>::const_iterator vi = v.begin(); vi != v.end(); ++vi) { if (vi != v.begin()) os << ", "; os << '(' << vi->first << " " << vi->second << ")"; } os << "}"; return os; } template <typename A, typename B> ostream &operator<<(ostream &os, const pair<A, B> &p) { os << '(' << p.first << ", " << p.second << ')'; return os; } void dbg_out() { cerr << endl; } template <typename Head, typename... Tail> void dbg_out(Head H, Tail... T) { cerr << ' ' << H; dbg_out(T...); } #define dbg(...) cerr << "(" << #__VA_ARGS__ << "):", dbg_out(__VA_ARGS__) #else #define dbg(...) #endif using LL = long long; struct Mint { int v; Mint() : v(0) {} Mint(int t) { v = t % MOD; if (v < 0) v += MOD; } Mint pow(int k) { Mint res(1), tmp(v); while (k) { if (k & 1) res *= tmp; tmp *= tmp; k >>= 1; } return res; } Mint inv() { return pow(MOD - 2); } Mint &operator+=(Mint a) { v += a.v; if (v >= MOD) v -= MOD; return *this; } Mint &operator-=(Mint a) { v += MOD - a.v; if (v >= MOD) v -= MOD; return *this; } Mint &operator*=(Mint a) { v = (long long)v * a.v % MOD; return *this; } Mint &operator/=(Mint a) { return (*this) *= a.inv(); } Mint operator+(Mint a) const { return Mint(v) += a; } Mint operator-(Mint a) const { return Mint(v) -= a; } Mint operator*(Mint a) const { return Mint(v) *= a; } Mint operator/(Mint a) const { return Mint(v) /= a; } Mint operator-() const { return v ? Mint(MOD - v) : Mint(v); } bool operator==(const Mint a) const { return v == a.v; } bool operator!=(const Mint a) const { return v != a.v; } bool operator<(const Mint a) const { return v < a.v; } static Mint comb(long long n, int k) { Mint num(1), dom(1); for (int i = 0; i < k; i++) { num *= Mint(n - i); dom *= Mint(i + 1); } return num / dom; } static Mint inv(int n) { return Mint(n).inv(); } static vector<Mint> getInvArray(int N) { vector<Mint> inv(N + 1, 1); for (int i = 2; i <= N; i++) inv[i] = inv[MOD % i] * (MOD - MOD / i); return inv; } }; ostream &operator<<(ostream &os, Mint m) { os << m.v; return os; } namespace NTT { const int G = 3; vector<Mint> ntt(vector<Mint> d, bool inv = false) { int N = 1; while (N < d.size()) N *= 2; d.resize(N); Mint base = Mint(G).pow((MOD - 1) / N); if (!inv) { base = base.inv(); } vector<Mint> pp(N + 1); pp[0] = 1; for (int i = 1; i < N; i++) { pp[i] = pp[i - 1] * base; } for (int i = 0, j = 0; i < N - 1; i++) { if (i < j) { swap(d[i], d[j]); } int k = N >> 1; while (k <= j) { j -= k; k >>= 1; } j += k; } for (int len = 1; len * 2 <= N; len <<= 1) { for (int i = 0; i + len * 2 <= N; i += len * 2) { int dd = N / 2 / len; for (int j = 0; j < len; j++) { Mint t = d[i + j + len] * pp[dd * j]; d[i + j + len] = d[i + j] - t; d[i + j] += t; } } } if (inv) { Mint invN = Mint::inv(N); for (int i = 0; i < N; i++) d[i] = d[i] * invN; } return d; } vector<Mint> conv(vector<Mint> d1, vector<Mint> d2) { int num = d1.size() + d2.size() - 1; d1.resize(num), d2.resize(num); auto t1 = ntt(d1); auto t2 = ntt(d2); vector<Mint> tmp(t1.size()); for (int i = 0; i < t1.size(); i++) tmp[i] = t1[i] * t2[i]; auto r = ntt(tmp, true); r.resize(num); return r; } } // namespace NTT void solve(int caseNum) { int n; cin >> n; vector<int> a(n), b(n); for (int i = 0; i < n; i++) cin >> a[i] >> b[i]; vector<Mint> r(1, 1); auto inv = Mint::getInvArray(2e5); vector<Mint> P(2e5 + 1, 1); vector<Mint> IP(2e5 + 1, 1); for (int i = 2; i < P.size(); i++) { P[i] = P[i - 1] * i; IP[i] = IP[i - 1] * inv[i]; } for (int i = 0; i < n; i++) { int s = max(0, b[i] - (int)r.size() + 1); int e = min(a[i] + (int)r.size() - 1, a[i] + b[i]); vector<Mint> x(e - s + 1); for (int j = s; j <= e; j++) { x[j - s] = P[a[i] + b[i]] * IP[j] * IP[a[i] + b[i] - j]; } auto t = NTT::conv(r, x); int t1 = b[i] - s; int t2 = min(a[i] + (int)r.size() - 1 - s, (int)t.size() - 1); r.resize(t2-t1+1); for (int j = t1; j <= t2;j++) { r[j-t1]=t[j]; } } Mint sum; for (auto t : r) sum += t; cout << sum.v << endl; } int main() { std::ios::sync_with_stdio(false); cin.tie(NULL); cout.precision(10); int T = 1; //cin >> T; for (int i = 1; i <= T; i++) { solve(i); } cout.flush(); return 0; }
13
CPP
#include <cstdio> #include <algorithm> using namespace std; int quick_power(int a,int b,int Mod){ int ans=1; while(b){ if(b&1){ ans=1ll*ans*a%Mod; } b>>=1; a=1ll*a*a%Mod; } return ans; } const int Mod=998244353; const int Maxn=20000; const int Maxm=200000; const int G=3; void NTT(int *a,int flag,int n){ static int R[Maxn+5],last_len; int len=1,L=0; while(len<n){ len<<=1; L++; } if(last_len!=len){ last_len=len; for(int i=0;i<len;i++){ R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)); } } for(int i=0;i<len;i++){ if(i<R[i]){ swap(a[i],a[R[i]]); } } for(int j=1;j<len;j<<=1){ int T=quick_power(G,(Mod-1)/(j<<1),Mod); for(int k=0;k<len;k+=(j<<1)){ for(int l=0,t=1;l<j;l++,t=1ll*t*T%Mod){ int Nx=a[k+l],Ny=1ll*t*a[j+k+l]%Mod; a[k+l]=(Nx+Ny)%Mod; a[j+k+l]=(Nx-Ny+Mod)%Mod; } } } if(flag==-1){ reverse(a+1,a+len); for(int i=0,t=quick_power(len,Mod-2,Mod);i<len;i++){ a[i]=1ll*a[i]*t%Mod; } } } int frac[Maxm+5],inv_f[Maxm+5]; void init(){ frac[0]=1; for(int i=1;i<=Maxm;i++){ frac[i]=1ll*frac[i-1]*i%Mod; } inv_f[Maxm]=quick_power(frac[Maxm],Mod-2,Mod); for(int i=Maxm-1;i>=0;i--){ inv_f[i]=1ll*inv_f[i+1]*(i+1)%Mod; } } int C(int n,int m){ return 1ll*frac[n]*inv_f[m]%Mod*inv_f[n-m]%Mod; } void mul(int *a,int a_len,int *b,int b_len,int *c){ static int A[Maxn+5],B[Maxn+5]; for(int i=0;i<a_len;i++){ A[i]=a[i]; } for(int i=0;i<b_len;i++){ B[i]=b[i]; } int len=1; while(len<(a_len+b_len-1)){ len<<=1; } for(int i=a_len;i<len;i++){ A[i]=0; } for(int i=b_len;i<len;i++){ B[i]=0; } NTT(A,1,len); NTT(B,1,len); for(int i=0;i<len;i++){ A[i]=1ll*A[i]*B[i]%Mod; } NTT(A,-1,len); for(int i=0;i<a_len+b_len-1;i++){ c[i]=A[i]; } } int A[Maxn+5],B[Maxn+5],tmp[Maxn+5]; int a_len,b_len,c_len; int main(){ init(); int n; scanf("%d",&n); a_len=1; A[0]=1; for(int i=1;i<=n;i++){ int a,b; scanf("%d%d",&a,&b); b_len=(a_len<<1)+20; for(int i=0;i<b_len;i++){ B[i]=0; } for(int i=0;i<b_len;i++){ int id=i-(a_len+10)+b; B[i]=C(a+b,id); } mul(A,a_len,B,b_len,A); for(int i=0;i<a_len+a-b;i++){ tmp[i]=0; } for(int i=0;i<a_len+b_len-1;i++){ int id=(i-(a_len+10)); if(id>=0&&id<a_len+a-b){ tmp[id]=A[i]; } } a_len+=a-b; for(int i=0;i<a_len;i++){ A[i]=tmp[i]; } } int ans=0; for(int i=0;i<a_len;i++){ ans=(ans+A[i])%Mod; } printf("%d\n",ans); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; #define ll long long #define pii pair<int, int> #define fir first #define sec second #define pb emplace_back #define gc() getchar() inline int read() { int now=0,f=1; char c=gc(); for(;!isdigit(c);c=='-'&&(f=-1),c=gc()); for(;isdigit(c);now=now*10+c-48,c=gc()); return now*f; } const int mod = 998244353; inline int add(int a,int b){return a+b>=mod? a+b-mod: a+b;} inline int sub(int a,int b){return a<b? a-b+mod: a-b;} inline int mul(int a,int b){return 1LL*a*b%mod;} int qpow(int a,int b){ int ret=1; for(; b; b>>=1){ if(b&1) ret=mul(ret,a); a=mul(a,a); } return ret; } const int D = 2e5+10; const int G = 3; int wn[D<<4], rev[D<<4]; int NTT_init(int pn){ int step=0; int n = 1; for(; n<pn; n<<=1) ++step; for(int i=1; i<n; i++) rev[i] = (rev[i>>1]>>1) | ((i&1)<<(step-1)); int g = qpow(G,(mod-1)/n); wn[0] = 1; for(int i=1; i<=n; i++) wn[i] = mul(wn[i-1], g); return n; } void NTT(int a[],int n,int f){ for(int i=0; i<n; i++){ if(i<rev[i]) swap(a[i], a[rev[i]]); } for(int k=1; k<n; k<<=1){ for(int i=0; i<n; i+=(k<<1)){ int t = n/(k<<1); for(int j=0; j<k; j++){ int w = (f==1)? wn[t*j]: wn[n-t*j]; int x = a[i+j]; int y = mul(a[i+j+k], w); a[i+j] = add(x, y); a[i+j+k] = sub(x, y); } } } if(f == -1){ int ninv = qpow(n, mod-2); for(int i=0; i<n; i++) a[i] = mul(a[i], ninv); } } const int M = 1e6+10; int fac[M], inv[M], ifac[M]; void init(int n){ fac[0]=1;for(int i=1; i<=n; i++)fac[i]=mul(fac[i-1],i); inv[1]=1;for(int i=2; i<=n; i++)inv[i]=mul(sub(mod,mod/i),inv[mod%i]); ifac[0]=1;for(int i=1; i<=n; i++)ifac[i]=mul(ifac[i-1],inv[i]); } int C(int n,int m){ return (m<0||m>n)? 0: mul(fac[n], mul(ifac[m],ifac[n-m])); } const int N = 5e3+10; int a[N], b[N]; int x[D]{0}, y[D]{0}, ans[D]{0}; int main(){ int n=read(); for(int i=1; i<=n; i++){ a[i]=read(); b[i]=read(); } init(M-1); int m=1; ans[0]=1; for(int i=1; i<=n; i++){ int n_m=m+a[i]-b[i]; for(int j=0; j<m; j++) x[m+j]=ans[j]; for(int j=max(-b[i],-m); j<=min(a[i],n_m); j++) y[m+j]=C(a[i]+b[i],b[i]+j); //cout<<"x:";for(int j=0; j<10; j++) cout<<x[j]<<' '; cout<<endl; //cout<<"y:";for(int j=0; j<10; j++) cout<<y[j]<<' '; cout<<endl; int len = NTT_init(4*(m+5)); //cout<<len<<endl; NTT(x,len,1); NTT(y,len,1); for(int j=0; j<=len; j++) x[j]=mul(x[j],y[j]); NTT(x,len,-1); NTT(y,len,-1); //cout<<"after_x:"; for(int j=0; j<10; j++) cout<<x[j]<<' '; cout<<endl; for(int j=0; j<m+10; j++) ans[j]=0; for(int j=0; j<n_m; j++) ans[j]=x[2*m+j]; //for(int j=0; j<n_m; j++) cout<<ans[j]<<' '; cout<<endl; for(int j=0; j<=len; j++) x[j]=y[j]=0; m=n_m; } int sum=0; for(int i=0; i<m; i++) sum=add(sum,ans[i]); printf("%d\n",sum); return 0; }
13
CPP
#include<bits/stdc++.h> #define ll long long #define p pair<int, int> #define endl '\n' const int INF = 1000000001;using namespace std;const int C = 998244353;vector<ll> fact, minus_fact; ll pow1(ll x, ll y, ll z=C){if (y == 0)return 1;if (y % 2 == 0)return pow1(x*x % z, y/2, z);return pow1(x, y-1, z)*x % z;} void facts(int n){fact = {1}, minus_fact = {1};for (int q = 1; q <= n; q++){fact.push_back(fact.back()*q % C);minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C);}} ll c(int k, int n){if (k < 0 || k > n)return 0;return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C;} signed main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); facts(200179); int n; cin >> n; vector<p> a(n); for (int q = 0; q < n; q++){ cin >> a[q].first >> a[q].second; } vector<int> now = {1}; for (int q = 0; q < n; q++){ int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second; vector<__int128> will(w3-a[q].second, 0); vector<ll> cc(now.size()+a[q].first); for (int q1 = 0; q1 < cc.size(); q1++){ cc[q1] = c(q1, a[q].first+a[q].second); } for (int q1 = a[q].second; q1 < w3; q1++){ int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second); for (int q2 = w2; q2 < w; q2++){ will[w1] += cc[q1-q2]*now[q2]; } } now = {}; for (__int128 q1: will){ now.push_back(q1 % C); } for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--){ now.push_back(now[q1]); } } ll ans = 0; for (int q: now){ ans += q; } cout << ans % C << endl; return 0; }
13
CPP
#include<iostream> #include<cstring> #include<cstdio> #include<cstring> #include<vector> #include<queue> #include<algorithm> #include<climits> #define pii pair<int,int> #define pb push_back #define mp make_pair #define fi first #define se second #define mod 998244353 #define poly vector<int> using namespace std; inline int read(){ int f=1,ans=0;char c=getchar(); while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();} while(c>='0'&&c<='9'){ans=ans*10+c-'0';c=getchar();} return f*ans; } const int MAXN=5e5+11; int flip[MAXN]; int mul(int x,int y){return 1ll*x*y%mod;} int add(int x,int y){return x+y>=mod?x+y-mod:x+y;} int sub(int x,int y){return x-y>=0?x-y:x-y+mod;} int ksm(int a,int b){int ans=1;while(b){if(b&1) ans=mul(ans,a);a=mul(a,a);b>>=1;}return ans;} void print(poly a){for(auto v:a) printf("%d ",v);printf("\n");return;} void NTT(poly &f,int opt,int Len){ for(int i=0;i<Len;i++) if(i<flip[i]) swap(f[i],f[flip[i]]); for(int p=2;p<=Len;p<<=1){ int len=(p>>1),buf=ksm(3,(mod-1)/p); if(opt==-1) buf=ksm(buf,mod-2); for(int be=0;be<Len;be+=p){ int tmp=1; for(int l=be;l<be+len;l++){ int t=mul(f[l+len],tmp); f[l+len]=sub(f[l],t),f[l]=add(f[l],t); tmp=mul(tmp,buf); } } } if(opt==-1){ int Inv=ksm(Len,mod-2); for(int i=0;i<Len;i++) f[i]=mul(f[i],Inv); }return; } int setN(int siz){ int cur=1; while(cur<=siz) cur<<=1; for(int i=1;i<cur;i++) flip[i]=((flip[i>>1]>>1)|(i&1?cur>>1:0)); return cur; } poly operator*(poly a,poly b){ int len=a.size()+b.size()-1; int cur=setN(len); a.resize(cur),b.resize(cur); for(int i=1;i<cur;i++) flip[i]=(flip[i>>1]>>1|(i&1?cur>>1:0)); NTT(a,1,cur),NTT(b,1,cur); for(int i=0;i<cur;i++) a[i]=mul(a[i],b[i]); NTT(a,-1,cur); a.resize(len); return a; } int fac[MAXN],ifac[MAXN],inv[MAXN],N; poly f; signed main(){ //freopen("B.in","r",stdin); fac[0]=fac[1]=ifac[0]=ifac[1]=inv[1]=1; for(int i=2;i<MAXN;i++) fac[i]=mul(fac[i-1],i),inv[i]=mul((mod-mod/i),inv[mod%i]),ifac[i]=mul(ifac[i-1],inv[i]); f.pb(0),f.pb(1); N=read(); while(N--){ int a=read(),b=read(); int Maxj=a-b+f.size()-1,Maxk=f.size()-1; poly g; g.clear(); int X=INT_MAX; for(int i=1-Maxk;i<=Maxj-1;i++){ if(a-i>=0&&b+i>=0){ if(X==INT_MAX) X=i;g.pb(mul(ifac[b+i],ifac[a-i])); } } f=f*g; for(int i=0;i<f.size();i++) f[i]=mul(f[i],fac[a+b]); poly F; F.clear(); for(int i=0;i<f.size();i++){ if(X>=0&&X<=Maxj) F.pb(f[i]); X++; } f=F; f[0]=0; //print(f); } int Ans=0; for(auto v:f) Ans=add(Ans,v); printf("%d\n",Ans);return 0; }
13
CPP
#pragma GCC target("avx2") #pragma GCC optimize("unroll-loops") #pragma GCC optimize("Ofast") //#include <bits/stdc++.h> #include <vector> #include <iostream> #include <fstream> #include <cstdio> #include <map> #include <set> #include <queue> #include <stack> #include <unordered_set> #include <unordered_map> #include <algorithm> #include <string> #include <numeric> #include <cmath> #include <bitset> #include <tuple> #include <memory> #include <random> #include <chrono> #include <sstream> #include <iterator> #define ull unsigned long long #define ll long long #define all(vec) vec.begin(), vec.end() #define pb push_back #define FOR(i,a,b) for(int i = a; i < b; ++i) #define printvec(vec) for(auto el: vec) {cout << el << " ";} constexpr long long INF = 200000000000000001LL; constexpr int INF32 = 2100000001; size_t seed42 = std::chrono::system_clock::now().time_since_epoch().count(); std::mt19937 rng(seed42); std::uniform_int_distribution<int> unidistrib; int randint() {return unidistrib(rng);} using namespace std; ull modulo = 998244353 ; // 1+7*17*2^23. //ull modulo = 1000000007 ; int modulo32 = 998244353; ull poww(ull x, ull n) { if (n == 0) return 1; ull answ = poww(x, n/2); answ = (answ * answ) % modulo; if (n%2) answ = (answ * x) % modulo; return answ; } pair<int, int> operator+ (const pair<int, int>& lhs, pair<int, int>& rhs) { return {lhs.first +rhs.first, lhs.second + rhs.second}; } template <class T> ostream& operator << (ostream& lhs, pair<T, T>& rhs) { return (lhs << rhs.first<<":" << rhs.second); } vector<int> r; vector<int> fft(vector<int>& a, bool inv = false) { size_t n = a.size(); //vector<int> r(n); r.resize(n); for (size_t k = 0; k < n; k++) { size_t b = 0; for (size_t z = 1; z < n; z *= 2) { b *= 2; if (k&z) ++b; } r[b] = a[k]; } ull wm; for (int m = 2; m <= n; m *= 2) { if (!inv) wm = poww(5ULL, (119ULL<<23)/m); else wm = poww(5ULL, (((119ULL<<23)/m) * (modulo-2))%(modulo-1)); for (int k = 0; k < n; k += m) { ull w = 1; for (int j = 0; j < m/2; j++) { int u = r[k+j]; int t = (w*r[k+j+m/2])%modulo; r[k+j] = (u+t)%modulo32; r[k+j+m/2] = (u + modulo32 - t) % modulo32; w = (w*wm)%modulo; } } } if (inv) { ull ninv = poww(n, modulo-2); for (int i = 0; i < n; i++) r[i] = (ninv*r[i])%modulo; } return r; } int main() { #ifdef DARTH std::ifstream filestream("input.txt"); std::cin.rdbuf(filestream.rdbuf()); #else ios::sync_with_stdio(false); std::cin.tie(0); #endif //DARTH vector<ull> facc(200002,1), invfac(200002,1); for(ull i = 2; i <= 200001; ++i) { facc[i] = (i * facc[i-1]) % modulo; invfac[i] = poww(facc[i], modulo-2); } auto Cnk = [&](int n, int k) { if (k<0 || k> n) return 0ULL; return (((facc[n] * invfac[k]) % modulo) * invfac[n-k])%modulo; }; int n; cin >> n; vector<int> a(n), b(n); FOR(i,0,n) { cin >> a[i] >> b[i]; } int maxsz = 1 << 14; vector<int> answ (1, 1); vector<int> cnk; answ.reserve(1<<14); cnk.reserve(1<<14); r.reserve(1<<14); //vector<ull> tmp(1<<14); answ[0] = 1; ull m = 1; for(int i = 0; i < n; ++i) { int maxj = 2 * m + a[i] - b[i]; //int maxjj = 2 *m + max(a[i] - b[i], 0); int maxjpow2 = 1; while (maxjpow2 < maxj) maxjpow2<<=1; answ.resize(maxjpow2, 0ULL); cnk.resize(maxjpow2, 0ULL); for (int jplusm = 0; jplusm < maxj; ++jplusm) { cnk[jplusm] = Cnk(a[i] + b[i], b[i] + jplusm - m); //cout << a[i] + b[i] - j << " a[i] + b[i] - j" << k << "=" << cnk[k] << " "; } fill(cnk.begin()+maxj, cnk.end(), 0); answ = fft(answ); cnk = fft(cnk); for (int j = 0; j < answ.size(); ++j) { answ[j] = (answ[j]*1ULL*cnk[j]) % modulo; } answ = fft(answ, true); copy(answ.begin() + m, answ.begin() + maxj, answ.begin()); m = m + a[i] - b[i]; fill(answ.begin() + m, answ.end(), 0); } cout << (accumulate(answ.begin(), answ.begin()+m, 0ULL)) % modulo; //cout << answ[3]; //printvec(answ); return 0; }
13
CPP
#include<bits/stdc++.h> using namespace std; #define ll long long const int N=5e5+5,p=998244353,g=3,gv=(p+1)/3; int n,m,rev[N]; ll fc[N],fv[N],iv[N],F[N],G[N],FF[N]; ll qpow(ll a,int b) {ll ret=1;while(b){if(b&1)ret=ret*a%p;a=a*a%p;b>>=1;}return ret;} ll inv(ll a){return qpow(a,p-2);} void getrev(int len) {for(int i=0;i<len;i++){rev[i]=rev[i>>1]>>1;if(i&1)rev[i]|=len>>1;}} void ntt(ll *f,int len,int tp){ getrev(len); for(int i=0;i<len;i++)if(i<rev[i])swap(f[i],f[rev[i]]); for(int i=2;i<=len;i<<=1){ int stp=i>>1;ll wn=qpow(tp==1?g:gv,(p-1)/i); for(int j=0;j<len;j+=i){ ll w=1; for(int k=j;k<j+stp;k++){ ll s1=f[k],s2=f[k+stp]*w%p;w=w*wn%p; f[k]=(s1+s2)%p,f[k+stp]=(s1-s2+p)%p; } } } if(tp==-1){ll lv=inv(len);for(int i=0;i<len;i++)f[i]=f[i]*lv%p;} } int main(){ scanf("%d",&n); m=1;F[1]=1; fc[0]=fc[1]=fv[0]=fv[1]=iv[1]=1; for(int i=2;i<=N-5;i++)fc[i]=fc[i-1]*i%p, iv[i]=(p-p/i)*iv[p%i]%p,fv[i]=fv[i-1]*iv[i]%p; for(int i=1;i<=n;i++){ int a,b,m1=m;scanf("%d%d",&a,&b);m+=a-b; int len=1;while(len<=(m1*2+m+1))len<<=1; for(int j=-m1;j<=m;j++) if(b+j>=0&&a-j>=0)G[j+m1]=fv[b+j]*fv[a-j]%p; else G[j+m1]=0; for(int j=m+m1+1;j<len;j++)G[j]=0; for(int j=1;j<=m1;j++)FF[j]=F[j];FF[0]=0; for(int j=m1+1;j<len;j++)FF[j]=0; //for(int j=0;j<len;j++)cout<<G[j]<<" ";cout<<endl; //for(int j=0;j<len;j++)cout<<FF[j]<<" ";cout<<endl;cout<<endl; ntt(G,len,1),ntt(FF,len,1); for(int j=0;j<len;j++)F[j]=FF[j]*G[j]%p; ntt(F,len,-1); for(int j=1;j<=m;j++)F[j]=F[j+m1]*fc[a+b]%p; for(int j=m+1;j<len;j++)F[j]=0;F[0]=0; //for(int j=0;j<len;j++)cout<<F[j]<<" ";cout<<endl;cout<<endl; } ll ans=0;for(int i=1;i<=m;i++)ans=(ans+F[i])%p; printf("%lld\n",ans); }
13
CPP
#include<bits/stdc++.h> using namespace std; const int N = 2e5+5; const int G = 3; const int mod = 998244353; int fac[N],rev[N]; int qpow(int a,int b){ int r=1; while(b){ if(b&1)r=1ll*r*a%mod; b>>=1;a=1ll*a*a%mod; } return r; } struct NTT{ int n,m,rev[N<<1]; int a[N<<1],b[N<<1]; void init(int len){ for(n=1,m=0;n<=len;n<<=1,m++); for(int i=0;i<n;++i){ rev[i]=rev[i>>1]>>1|(1&i)<<(m-1); a[i]=b[i]=0; } } void FFT(int *a,int f){ for(int i=0;i<n;++i)if(i<rev[i])swap(a[i],a[rev[i]]); for(int i=1;i<n;i<<=1){ int wn=qpow(G,(mod-1)/(i<<1)); if(f==-1)wn=qpow(wn,mod-2); for(int j=0;j<n;j+=i<<1){ int w=1; for(int k=0;k<i;++k,w=1ll*w*wn%mod){ int x=a[j+k],y=1ll*a[j+k+i]*w%mod; a[j+k]=(x+y)%mod;a[j+k+i]=(x-y+mod)%mod; } } } if(f==-1){ int rn=qpow(n,mod-2); for(int i=0;i<n;++i)a[i]=1ll*a[i]*rn%mod; } } void work(){ FFT(a,1);FFT(b,1); for(int i=0;i<n;++i)a[i]=1ll*a[i]*b[i]%mod; FFT(a,-1); } }B; void init(){ fac[0]=1; for(int i=1;i<N;++i)fac[i]=1ll*fac[i-1]*i%mod; rev[N-1]=qpow(fac[N-1],mod-2); for(int i=N-2;~i;--i)rev[i]=1ll*rev[i+1]*(i+1)%mod; } int C(int n,int m){ if(n<m||m<0)return 0; return 1ll*fac[n]*rev[m]%mod*rev[n-m]%mod; } int n,ans[N]; int main(){ init(); cin>>n; int len=0; ans[0]=1; for(int i=1,a,b;i<=n;++i){ cin>>a>>b; B.init(2*len+a-b); for(int k=-len;k<=len+a-b;++k)B.a[k+len]=C(a+b,b+k); for(int j=0;j<=len;++j)B.b[j]=ans[j]; B.work(); // for(int k=-len;k<=len+a-b;++k){ // for(int j=0;j<=len;++j){ // if(j+k>=0)(nex[j+k]+=C(a+b,b+k)*ans[j])%=mod; // } // } for(int k=0;k<=len+a-b;++k){ ans[k]=B.a[k+len]; } len+=a-b; } int res=0; for(int i=0;i<=len;++i)(res+=ans[i])%=mod; cout<<res<<endl; }
13
CPP
#include <bits/stdc++.h> using namespace std; using ll = long long; using base = ll;//complex<double>; const ll mod = 998244353; ll mexp(ll x, ll y) { ll r = 1; for(;y;x=x*x%mod, y>>=1) if(y & 1) r = r * x % mod; return r; } ll modd(ll x) { if(x >= mod) x -= mod; if(x < 0) x += mod; return x; } base roots[1<<20]; void fft(vector<base>& a, bool inv) { int n = a.size(), j = 0; for(int i=1;i<n;i++) { int bit = (n >> 1); while(j >= bit) { j -= bit; bit >>= 1; } j += bit; if(i < j) swap(a[i], a[j]); } // In NTT, let prr = primitive root. Then, int prr = 3; ll ang = mexp(prr, (mod - 1) / n); if(inv) ang = mexp(ang, mod - 2); roots[0] = 1; for(int i=1; i<n/2; i++){ roots[i] = roots[i-1] * ang % mod; } //also, make sure to apply modulus under here for(int i=2;i<=n;i<<=1) { int step = n / i; for(int j=0;j<n;j+=i) { for(int k=0;k<i/2;k++) { base u = a[j+k], v = a[j+k+i/2] * roots[step * k] % mod; a[j+k] = modd(u+v); a[j+k+i/2] = modd(u-v+mod); } } } if(inv) for(int i=0;i<n;i++) a[i] = a[i] * mexp(n, mod-2) % mod; } void conv(vector<base>& x, vector<base>& y) { int n = 2; while(n < x.size()+y.size()) n <<= 1; x.resize(n), y.resize(n); fft(x, false); fft(y, false); for(int i=0;i<n;i++) x[i] = x[i] * y[i] % mod; fft(x, true); } const int lim = 222222; ll f[lim], fi[lim]; vector<base> ans, mul, nans; int n; ll binom(int a, int b) { if(b < 0 || b > a) return 0; return f[a] * fi[b] % mod * fi[a-b] % mod; } int main() { ios_base::sync_with_stdio(false); cin.tie(NULL); cin >> n; ans.reserve(1<<16); mul.reserve(1<<16); f[0] = 1; for(int i=1;i<lim;i++) f[i] = i * f[i-1] % mod; fi[lim-1] = mexp(f[lim-1], mod-2); for(int i=lim-2;i>=0;i--) fi[i] = (i+1) * fi[i+1] % mod; ans.push_back(1); for(int i=0;i<n;i++) { int a, b; cin >> a >> b; int m = ans.size(); int m1 = 2 * m + a - b - 1; for(int j=0;j<m1;j++) mul.emplace_back(binom(a+b, b+j-(m-1))); conv(ans, mul); nans.clear(); nans.resize(m+a-b); for(int i=0;i<m+a-b;i++) nans[i] = ans[m-1+i]; ans = nans; mul.clear(); } cout << accumulate(ans.begin(), ans.end(), 0LL) % mod; }
13
CPP
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=(a);i<(b);++i) #define per(i,b,a) for(int i=(b)-1;i>=(a);--i) #define ll long long using namespace std; const int mod=998244353; const int N=1<<20; int jie[N],inv[N],A[N],B[N],w[N],invw[N],len,pos[N],f[N],g[N]; inline int mul(const int &a,const int &b){return 1ll*a*b%mod;} inline int add(int a,const int &b){a+=b;return a>=mod?a-mod:a;} inline int sub(int a,const int &b){a-=b;return a<0?a+mod:a;} ll quick(ll a,ll b){ ll res=1; while(b){ if(b&1)res=res*a%mod; a=a*a%mod; b>>=1; } return res; } void INI(){ jie[0]=1; inv[0]=inv[1]=1; rep(i,2,N)inv[i]=-1ll*mod/i*inv[mod%i]%mod+mod; rep(i,1,N){ jie[i]=mul(jie[i-1],i); inv[i]=mul(inv[i],inv[i-1]); } int G=quick(3,(mod-1)/N),IG=quick(G,mod-2);f[0]=g[0]=1; rep(i,1,N)f[i]=mul(f[i-1],G),g[i]=mul(g[i-1],IG); } inline void init(){ int op=len>>1,k=N/len; for(int i=0,j=0;i<len;++i,j+=k){ w[i]=f[j];invw[i]=g[j]; pos[i]=pos[i>>1]>>1|(i&1?op:0); } } inline void NTT(int *a,int *omg){ rep(i,0,len)if(i<pos[i])swap(a[i],a[pos[i]]); for(int i=2;i<=len;i<<=1){ int m=i>>1; for(int *p=a;p!=a+len;p+=i){ rep(j,0,m){ int t=mul(omg[len/i*j],p[j+m]); p[j+m]=sub(p[j],t); p[j]=add(p[j],t); } } } } int C(int n,int m){ if(n<0||m<0||m>n)return 0; return mul(mul(jie[n],inv[m]),inv[n-m]); } int main(){ INI(); int n,L=1; scanf("%d",&n); len=1<<14; init(); A[0]=1; while(n--){ int a,b; scanf("%d%d",&a,&b); int nL=L+a-b,j,k; for(j=b-L+1,k=0;a+b-j>=b-L+1;++j,++k){ B[k]=C(a+b,j); } for(;k<len;++k)B[k]=0; rep(i,L,len)A[i]=0; // rep(i,0,L)cout<<A[i]<<' '; // cout<<"iniA\n"; NTT(A,w),NTT(B,w); rep(i,0,len)B[i]=mul(B[i],A[i]);NTT(B,invw); int inv=quick(len,mod-2); // // cout<<"ans\n"; rep(i,0,nL)A[i]=mul(B[i+L-1],inv); // cout<<nL<<"L\n"; // rep(i,0,nL)cout<<A[i]<<' '; // cout<<"A\n"; L=nL; } int ans=0; rep(i,0,L)ans=add(ans,A[i]); printf("%d\n",ans); }
13
CPP
#include <bits/stdc++.h> #ifdef NON_SUBMIT #define TEST(n) (n) #define tout cerr #else #define TEST(n) ((void)0) #define tout cin #endif using namespace std; const int MOD=998244353, PR=3; vector<int> X, Y; int F[300001], Finv[300001]; int mul(int a, int b) {return 1LL*a*b%MOD;} int fast_pow(int a, int b) { int ret=1; for(;b;b>>=1) { if(b&1) ret=mul(ret,a); a=mul(a,a); } return ret; } void FFT(vector<int> &A,bool inv) { int N=A.size(); stack<int> S; for(int i=0;i<N;i++) { int j=0; for(int b=1;b<N;b<<=1) { j<<=1; if(b&i) j|=1; } if(i<j) swap(A[i],A[j]); } S.push(fast_pow(inv ? fast_pow(PR,MOD-2):PR,MOD/N)); for(int i=2;i<N;i<<=1) S.push(mul(S.top(),S.top())); for(int i=1;i<N;i<<=1) { int w=S.top(); S.pop(); for(int j=0;j<N;j+=i<<1) { int th=1; for(int k=0;k<i;k++) { int temp=mul(A[i+j+k],th); A[i+j+k]=A[j+k]-temp; if(A[i+j+k]<0) A[i+j+k]+=MOD; A[j+k]+=temp; if(A[j+k]>=MOD) A[j+k]-=MOD; th=mul(th,w); } } } if(inv) { int v=fast_pow(N,MOD-2); for(int i=0;i<N;i++) A[i]=mul(A[i],v); } } void conv(vector<int> &A, vector<int> &B) { int N=1; for(;N<A.size()+B.size();N<<=1); A.resize(N); B.resize(N); FFT(A,false); FFT(B,false); for(int i=0;i<N;i++) A[i]=mul(A[i],B[i]); FFT(A,true); } int nCr(int n, int r) { return mul(F[n],mul(Finv[r],Finv[n-r])); } int main() { ios::sync_with_stdio(false); cin.tie(NULL); cout.tie(NULL); TEST(freopen("input.txt","r",stdin)); TEST(freopen("output.txt","w",stdout)); TEST(freopen("debug.txt","w",stderr)); int N=1, M, ans=0; F[0]=Finv[0]=1; for(int i=1;i<=300000;i++) F[i]=mul(i,F[i-1]); Finv[300000]=fast_pow(F[300000],MOD-2); for(int i=300000;--i;) Finv[i]=mul(Finv[i+1],i+1); X.resize(1,1); for(cin>>M;M--;) { int a, b, sz=X.size()+10, os=X.size()+10; cin>>a>>b; Y.clear(); for(int i=-sz;i<=sz;i++) { if(b+i<0 || i>a) { if(Y.empty()) os--; } else Y.push_back(nCr(a+b,b+i)); } conv(X,Y); N+=a-b; for(int i=0;i<N;i++) X[i]=X[os+i]; X.resize(N); } for(int i=0;i<N;i++) { ans+=X[i]; if(ans>=MOD) ans-=MOD; } cout<<ans<<'\n'; return 0; }
13
CPP
#include<bits/stdc++.h> typedef int LL; typedef double dl; #define opt operator #define pb push_back #define pii std::pair<LL,LL> const LL maxn=1e6+9,mod=998244353,inf=0x3f3f3f3f,G=3; LL Read(){ LL x(0),f(1); char c=getchar(); while(c<'0' || c>'9'){ if(c=='-') f=-1; c=getchar(); } while(c>='0' && c<='9'){ x=(x<<3ll)+(x<<1ll)+c-'0'; c=getchar(); }return x*f; } void Chkmin(LL &x,LL y){ if(y<x) x=y; } void Chkmax(LL &x,LL y){ if(y>x) x=y; } LL add(LL x,LL y){ return x+=y,x>=mod?x-mod:x; } LL dec(LL x,LL y){ return x-=y,x<0?x+mod:x; } LL mul(LL x,LL y){ return 1ll*x*y%mod; } LL Pow(LL base,LL b){ LL ret(1); while(b){ if(b&1) ret=mul(ret,base); base=mul(base,base); b>>=1; }return ret; } namespace Poly{ LL r[maxn]; LL Fir(LL N){ LL limit(1),len(0); while(limit<N) limit<<=1,++len; for(LL i=1;i<limit;++i) r[i]=(r[i>>1]>>1)|((i&1)<<len-1); return limit; } void Ntt(LL *A,LL N,LL op){ for(LL i=1;i<N;++i) if(i<r[i]) std::swap(A[i],A[r[i]]); for(LL len=1;len<N;len<<=1){ LL wn(Pow(G,(mod-1)/(len<<1))); if(op==-1) wn=Pow(wn,mod-2); for(LL j=0;j<N;j+=(len<<1)){ for(LL k=0,w=1;k<len;++k,w=mul(w,wn)){ LL x(A[j+k]),y(mul(w,A[j+k+len])); A[j+k]=add(x,y); A[j+k+len]=dec(x,y); } } } if(op==-1){ LL Tmp(Pow(N,mod-2)); for(LL i=0;i<N;++i) A[i]=mul(A[i],Tmp); } } void Mul(LL *A,LL *B,LL *C,LL N,LL M,LL len){ static LL tA[maxn],tB[maxn]; LL limit(Fir(N+M-1)); for(LL i=0;i<N;++i) tA[i]=A[i]; for(LL i=N;i<limit;++i) tA[i]=0; for(LL i=0;i<M;++i) tB[i]=B[i]; for(LL i=M;i<limit;++i) tB[i]=0; Ntt(tA,limit,1); Ntt(tB,limit,1); for(LL i=0;i<limit;++i) tA[i]=mul(tA[i],tB[i]); Ntt(tA,limit,-1); for(LL i=0;i<limit;++i) C[i]=tA[i]; for(LL i=limit;i<len;++i) C[i]=0; } } LL n; LL a[maxn],b[maxn],fav[maxn],fac[maxn],f[maxn],h[maxn]; LL C(LL N,LL M){ if(M<0) return 0; if(N<M) return 0; return 1ll*fac[N]*fav[M]%mod*fav[N-M]%mod; } void Fir(){ LL N(1000000); fac[0]=1; for(LL i=1;i<=N;++i) fac[i]=mul(fac[i-1],i); fav[N]=Pow(fac[N],mod-2); for(LL i=N;i>=1;--i) fav[i-1]=mul(fav[i],i); } int main(){ Fir(); n=Read(); for(LL i=1;i<=n;++i){ a[i]=Read(); b[i]=Read(); } LL num(1); f[num]=1; LL V(0); for(LL l=1;l<=n;++l){ LL _num(num+a[l]-b[l]); LL len1(a[l]),len2(b[l]); static LL A[maxn],B[maxn],C[maxn],F[maxn]; A[0]=0; for(LL i=1;i<=num;++i) A[i]=f[i]; for(LL i=0;i<=V+len1;++i) B[i]=0; LL L(std::max(-len2,-num+1)),R(std::min(len1,_num)); LL tlen(len2-L); /* V=len2; for(LL i=-len2;i<=len1;++i) B[V+i]=mul(fav[len1-i],fav[len2+i]); printf("%d,%d,%d\n",num+1,V+len1+1,V+_num+1); Poly::Mul(A,B,C,num+1,V+len1+1,V+_num+1); */ V=-L; for(LL i=L;i<=R;++i) B[V+i]=mul(fav[len1-i],fav[len2+i]); Poly::Mul(A,B,C,num+1,V+R+1,V+_num+1); LL tmp(fac[len1+len2]); for(LL i=1;i<=_num;++i) f[i]=mul(tmp,C[V+i]); // for(LL i=1;i<=_num;++i) printf("%d ",f[i]); puts(""); num=_num; } LL ans(0); for(LL i=1;i<=num;++i) ans=add(ans,f[i]); printf("%d\n",ans); return 0; }
13
CPP
#include <bits/stdc++.h> #define mp make_pair #define pb push_back #define X first #define Y second #define y0 y12 #define y1 y22 #define INF 987654321 #define PI 3.141592653589793238462643383279502884 #define fup(i,a,b,c) for(int (i)=(a);(i)<=(b);(i)+=(c)) #define fdn(i,a,b,c) for(int (i)=(a);(i)>=(b);(i)-=(c)) #define MEM0(a) memset((a),0,sizeof(a)) #define MEM_1(a) memset((a),-1,sizeof(a)) #define ALL(a) a.begin(),a.end() #define COMPRESS(a) sort(ALL(a));a.resize(unique(ALL(a))-a.begin()) #define SYNC ios_base::sync_with_stdio(false);cin.tie(0) using namespace std; typedef long long ll; typedef long double ld; typedef double db; typedef unsigned int uint; typedef unsigned long long ull; typedef pair<int, int> Pi; typedef pair<ll, ll> Pll; typedef pair<db, db> Pd; typedef vector<int> Vi; typedef Vi Vll; typedef vector<double> Vd; typedef vector<Pi> VPi; typedef vector<Pll> VPll; typedef vector<Pd> VPd; typedef tuple<int, int, int> iii; typedef tuple<int,int,int,int> iiii; typedef tuple<ll, ll, ll> LLL; typedef vector<iii> Viii; typedef vector<LLL> VLLL; typedef complex<double> base; const int MOD = 998244353; ll POW(ll a, ll b, ll MMM=MOD) {ll ret=1; for(;b;b>>=1,a=(a*a)%MMM)if(b&1)ret=(ret*a)% MMM; return ret; } int dx[] = { 0,1,0,-1,1,1,-1,-1 }, dy[] = { 1,0,-1,0,1,-1,1,-1 }; int ddx[]={2,2,-2,-2,1,1,-1,-1},ddy[]={1,-1,1,-1,2,-2,2,-2}; int fac[300001],inv[300001]; int nCr(int n, int r) { if(r<0)return 0; if(r>n)return 0; int c = fac[n]; c = (1LL*c*inv[r]) % MOD; c = (1LL*c*inv[n - r]) % MOD; return c; } void fft(Vi &a, bool inv){ int n = a.size(), j = 0; Vi roots(n/2); for(int i=1; i<n; i++){ int bit = (n >> 1); while(j >= bit){ j -= bit; bit >>= 1; } j += bit; if(i < j) swap(a[i], a[j]); } int ang = POW(3,(MOD-1)/n); if(inv) ang = POW(ang, MOD - 2); for(int i=0; i<n/2; i++){ roots[i] = (i ? (1LL*roots[i-1]* ang % MOD) : 1); } for(int i=2; i<=n; i<<=1){ int step = n / i; for(int j=0; j<n; j+=i){ for(int k=0; k<i/2; k++){ int u = a[j+k], v = (1LL*a[j+k+i/2] * roots[step * k])%MOD; a[j+k] = u+v; if(a[j+k]>=MOD)a[j+k]-=MOD; a[j+k+i/2] = u-v; if(a[j+k+i/2]<0)a[j+k+i/2]+=MOD; } } } if(inv){ ll t=POW(n,MOD-2); for(int i=0; i<n; i++) a[i] =1LL*a[i]*t%MOD; // skip for OR convolution. } } Vi multiply(Vi &v, Vi &w){ int n = 2; while(n < v.size() + w.size()) n <<= 1; v.resize(n); w.resize(n); fft(v, 0); fft(w, 0); for(int i=0; i<n; i++) v[i] = (1LL*v[i]*w[i])%MOD; fft(v, 1); return v; } int main() { fac[0] = inv[0] = 1; fup(i, 1, 300000, 1) fac[i] = (1LL*fac[i - 1] * i) % MOD; inv[300000] = POW(fac[300000], MOD - 2); fdn(i, 299999, 1, 1) inv[i] = (1LL*inv[i + 1] * (i+1)) % MOD; int x=1; int n; scanf("%d",&n); Vi A={1}; fup(i,0,n-1,1){ int a,b; scanf("%d%d",&a,&b); int y=x+a-b; int N=a+b; int t=x+y-1; Vi B; int l=(N-t+1)>>1,r=(N+t)>>1; fup(i,l,r,1)B.pb(nCr(N,i)); A=multiply(A,B); int k=x+t-2; l=(k-y+1)>>1,r=(k+y)>>1; fup(j,l,r,1)A[j-l]=A[j]; A.resize(y); x=y; } ll ans=0; for(ll x:A)ans+=x; printf("%lld\n",ans%MOD); }
13
CPP
/* _ _ooOoo_ o8888888o 88" . "88 (| -_- |) .' \\| |// `. / \\||| : |||// \ / _||||| -:- |||||_ \ | | \\\ - /'| | | | \_| `\`---'// |_/ | \ .-\__ `-. -'__/-. / ___`. .' /--.--\ `. .'___ ."" '< `.___\_<|>_/___.' _> \"". | | : `- \`. ;`. _/; .'/ / .' ; | \ \ `-. \_\_`. _.'_/_/ -' _.' / ===========`-.`___`-.__\ \___ /__.-'_.'_.-'================ Please give me AC. */ #include<bits/stdc++.h> using namespace std; #define mem(a) memset(a,0,sizeof(a)) //#define INF (~(1<<31)) #define inf 0x3f3f3f3f3f3f3f3f #define eps 1e-8 #define PI 3.141592653589793238462643383 #define lowbit(x) ((x)&(-x)) #define sqr(x) ((x)*(x)) #define pb(x) push_back(x) #define pf(x) push_front(x) #define all(v) (v).begin(),(v).end() #define dbg(x,y) cout<<(x)<<" = "<<(y)<< endl; #define per(i,a,b) for(int i = a; i >= b; --i) #define rep(i,a,b) for(int i = a; i <= b; ++i) #define fi first #define se second #define ls (rt<<1) #define rs (rt<<1|1) #define ll long long #define int ll typedef bitset<2010> bt; typedef unsigned long long ull; typedef complex<double> comp; typedef pair<int,int> pii; typedef pair<double,double> pdd; const ll N = 2e5 + 7; const ll M = 1e9 + 7; const ll MAXN = 2e18 + 7; const ll Mod = 998244353; //const ll Mod = 1e9 + 7; int _,i,j,k,n,m,p,s,T,t,l,r,o,u,v,w,x,y,z,ans,nex,sum,num,len,en,sx,sy,tx,ty,th,ma,mi,mod,cnt,la,op,res,flag,cas,bk,ret,mid,now,tmp,rt; int a[N],b[N],c[N],d[N]; char ch; vector<int> g[N],h; string s1,s2,s3; const int G=3,Gi=332748118; int R[N]; ll pow(ll a,ll n) { ll ret=1; while(n){ if(n&1) ret=ret*a%Mod; a=a*a%Mod; n>>=1; } return ret%Mod; } void ntt(int *A,int n,int rev) { for(int i = 0;i < n;i++) if(i < R[i]) swap(A[i],A[R[i]]); for(int mid = 1;mid < n;mid<<=1){ ll wn=pow(rev==1? G:Gi,(Mod-1)/(mid<<1)); for(int j = 0;j < n;j+=(mid<<1)){ ll w=1; for(int k = 0;k < mid;k++,w=w*wn%Mod){ int x=A[j+k],y=w*A[j+k+mid]%Mod; A[j+k]=(x+y)%Mod; A[j+k+mid]=(x-y+Mod)%Mod; } } } } int inv[N]; void get_inv(int n,int p){ inv[0]=inv[1]=1; for (int i=2;i<n;i++){ inv[i]=inv[p%i]*(p-p/i)%p; } } int C(int n,int m) { return c[n]*d[m]%Mod*d[n-m]%Mod; } signed main() { int T = 1; x=1;a[0]=1; get_inv(N,Mod); c[0]=1; for(i = 1;i < N;i++) c[i]=c[i-1]*i%Mod; d[0]=1; for(i = 1;i < N;i++) d[i]=d[i-1]*inv[i]%Mod; scanf("%lld",&T); while(T--){ scanf("%lld%lld",&n,&m); for(i = 0;i <= 2*x+n-m-2;i++) b[i]=C(n+m,m+1-x+i); int L=0; p=1; while(p<=3*x+n-m-3) p<<=1,L++; for(i = 0;i < p;i++) R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)); ntt(a,p,1);ntt(b,p,1); for(i = 0;i < p;i++) a[i]=a[i]*b[i]%Mod; ntt(a,p,-1); //dbg(-1,a[0]) ll inv=pow(p,Mod-2); for(i = 0;i < x+n-m;i++) a[i]=a[i+x-1]*inv%Mod,b[i]=0; for(i = x+n-m;i <= p;i++) a[i]=b[i]=0; x=x+n-m; } for(i = 0;i <= p;i++) ans=(ans+a[i])%Mod; printf("%lld\n",ans); return 0; }
13
CPP
#include<iostream> #include<cstdio> #include<algorithm> #include<vector> typedef long long LL; using std::vector; constexpr int LOGN=15, M=998244353, G=3; vector<int> rev[LOGN]; vector<LL> g[LOGN]; LL Pow(LL a, int k) { LL ans=1; while(k) { if(k&1) ans=(ans*a)%M; a=(a*a)%M, k>>=1; } return ans; } inline LL Inv(const LL& a) { return Pow(a, M-2); } void PreNTT() { for(int mid=0, len; mid<LOGN-1; mid++) { len=1<<mid; g[mid].assign(len, 1); LL Gn=Pow(G, (M-1)/(len<<1)), tmp=1; for(LL i=0; i<len; i++) { g[mid][i]=tmp; tmp=tmp*Gn%M; } } rev[0].push_back(0); for(int bit_length=1, bit_depth; bit_length<LOGN; bit_length++) { bit_depth=1<<bit_length; vector<int> &rev_now=rev[bit_length]; rev_now.assign(bit_depth, 0); for(int i=0; i<bit_depth; i++) rev_now[i]=(rev_now[i>>1]>>1) | (i&1)<<(bit_length-1); } } void NTT(vector<LL> &X, bool reverse=false) { int bit_depth=X.size(), bit_length=__builtin_ctz(bit_depth); for(int i=0, ri; i<bit_depth; i++) { ri=rev[bit_length][i]; if(i<ri) std::swap(X[i], X[ri]); } for(int mid=0, len; mid<bit_length; mid++) { len=1<<mid; for(int i=0; i<bit_depth; i+=(len<<1)) for(int j=0; j<len; j++) { LL x=X[i+j], y=X[i+j+len]*g[mid][j]%M; X[i+j]=(x+y)%M; X[i+j+len]=(x-y+M)%M; } } if(reverse) { LL inv_n=Inv(bit_depth); for(int i=0; i<bit_depth; i++) X[i]=X[i]*inv_n%M; std::reverse(X.begin()+1, X.end()); } } vector<LL> Mul(vector<LL> a, vector<LL> b) { int len=1<<(32-__builtin_clz(a.size()+b.size()-1)); a.resize(len), b.resize(len); NTT(a), NTT(b); vector<LL> ans(len); for(int i=0; i<len; i++) ans[i]=a[i]*b[i]; NTT(ans, true); return ans; } LL Combine(int n, int k) { static vector<LL> fac(1, 1), inv_fac(1, 1); if(k<0 || k>n) return 0; while((int)fac.size()<=n) { fac.push_back(fac.back()*fac.size()%M); inv_fac.push_back(Inv(fac.back())); } return fac[n]*inv_fac[k]%M*inv_fac[n-k]%M; } void Test() { freopen("temp\\in.txt", "r", stdin); } int main() { // Test(); PreNTT(); int n, a, b; scanf("%d", &n); vector<LL> ans(1, 1); for(int i=0, w, new_w; i<n; i++) { scanf("%d%d", &a, &b); w=ans.size(), new_w=w+a-b; vector<LL> tmp; for(int j=b-w+1; j<w+a; j++) tmp.push_back(Combine(a+b, j)); auto new_ans=Mul(ans, tmp); ans.resize(new_w); for(int j=0; j<new_w; j++) ans[j]=new_ans[w+j-1]; } LL sum=0, w=ans.size(); for(int i=0; i<w; i++) sum=(sum+ans[i])%M; std::cout<<sum; return 0; }
13
CPP
#include <iostream> #include <vector> #include <chrono> #include <random> #include <cassert> #include <algorithm> std::mt19937 rng((int) std::chrono::steady_clock::now().time_since_epoch().count()); const int MOD = 998244353; const int me = 20; const int ms = 1 << me; long long fexp(long long x, long long e, long long mod = MOD) { long long ans = 1; x %= mod; for(; e > 0; e /= 2, x = x * x % mod) { if(e & 1) ans = ans * x % mod; } return ans; } #define add(x, y) x+y>=MOD?x+y-MOD:x+y const int gen = 3; // use search() from PrimitiveRoot.cpp if MOD isn't 998244353 int bits[ms], root[ms]; void initFFT() { root[1] = 1; for(int len = 2; len < ms; len += len) { int z = (int) fexp(gen, (MOD - 1) / len / 2); for(int i = len / 2; i < len; i++) { root[2 * i] = root[i]; root[2 * i + 1] = (int)((long long) root[i] * z % MOD); } } } void pre(int n) { int LOG = 0; while(1 << (LOG + 1) < n) { LOG++; } for(int i = 1; i < n; i++) { bits[i] = (bits[i >> 1] >> 1) | ((i & 1) << LOG); } } std::vector<int> fft(std::vector<int> a, bool inv = false) { int n = (int) a.size(); pre(n); if(inv) { std::reverse(a.begin() + 1, a.end()); } for(int i = 0; i < n; i++) { int to = bits[i]; if(i < to) { std::swap(a[i], a[to]); } } for(int len = 1; len < n; len *= 2) { for(int i = 0; i < n; i += len * 2) { for(int j = 0; j < len; j++) { int u = a[i + j], v = (int)((long long) a[i + j + len] * root[len + j] % MOD); a[i + j] = add(u, v); a[i + j + len] = add(u, MOD - v); } } } if(inv) { long long rev = fexp(n, MOD-2, MOD); for(int i = 0; i < n; i++) a[i] = (int)(a[i] * rev % MOD); } return a; } template <class T> T fexp(T x, long long e) { T ans(1); for(; e > 0; e /= 2) { if(e & 1) ans = ans * x; x = x * x; } return ans; } template <int mod = MOD> struct modBase { modBase(int v = 0) : val(v < 0 ? v + mod : v) {} int val; void operator += (modBase<mod> o) { *this = *this + o; } void operator -= (modBase<mod> o) { *this = *this - o; } void operator *= (modBase<mod> o) { *this = *this * o; } //void operator /= (modBase<mod> o) { *this = *this / o; } modBase<mod> operator * (modBase<mod> o) { return (int)((long long) val * o.val % mod); } //modBase<mod> operator / (modBase<mod> o) { return *this * fexp(o, mod - 2); } modBase<mod> operator + (modBase<mod> o) { return val + o.val >= mod ? val + o.val - mod : val + o.val; } modBase<mod> operator - (modBase<mod> o) { return val - o.val < 0 ? val - o.val + mod : val - o.val; } friend std::ostream& operator << (std::ostream &os, const modBase<mod> &p) { return os << p.val; } friend std::istream& operator >> (std::istream &is, modBase<mod> &p) { return is >> p.val; } }; modBase<> fat[ms], ifat[ms]; void initComb() { fat[0] = 1; for(int i = 1; i < ms; i++) { fat[i] = fat[i-1] * i; } ifat[ms-1] = fexp(fat[ms-1], MOD - 2); for(int i = ms-1; i > 0; i--) { ifat[i-1] = ifat[i] * i; } } modBase<> comb(int n, int a) { return a < 0 || a > n ? modBase<>(0) : fat[n] * ifat[a] * ifat[n-a]; } template<class T> std::vector<T> partitionNumber(int n) { std::vector<T> ans(n, 0); ans[0] = 1; for(int i = 1; i < n; i++) { for(int j = 1; j * (3 * j + 1) / 2 <= i; j++) { ans[i] = ((j & 1) ? ans[i] + ans[i - j * (3 * j + 1) / 2] : ans[i] - ans[i - j * (3 * j + 1) / 2]); } for(int j = 1; j * (3 * j - 1) / 2 <= i; j++) { ans[i] = ((j & 1) ? ans[i] + ans[i - j * (3 * j - 1) / 2] : ans[i] - ans[i - j * (3 * j - 1) / 2]); } } return ans; } std::vector<int> operator *(std::vector<int> a, std::vector<int> b) { while(!a.empty() && a.back() == 0) a.pop_back(); while(!b.empty() && b.back() == 0) b.pop_back(); if(a.empty() || b.empty()) return std::vector<int>(0, 0); int n = 1; while(n-1 < (int) a.size() + (int) b.size() - 2) n += n; a.resize(n, 0); b.resize(n, 0); a = fft(a, false); b = fft(b, false); for(int i = 0; i < n; i++) { a[i] = (int) ((long long) a[i] * b[i] % MOD); } return fft(a, true); } int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(NULL); initComb(); initFFT(); int n; std::cin >> n; std::vector<int> poly(1, 1); int got = 1; while(n-- && !poly.empty()) { int a, b; std::cin >> a >> b; std::vector<int> other(2 * got + 20, 0); for(int i = 0; i < (int) other.size(); i++) { int id = i - (got + 10) + b; other[i] = comb(a+b, id).val; } poly = poly * other; std::vector<int> ans(got+a-b, 0); for(int i = 0; i < (int) poly.size(); i++) { int id = i - (got + 10); if(0 <= id && id < (int) ans.size()) { ans[id] = poly[i]; } } got += a - b; poly = ans; } modBase<> ans(0); for(auto v : poly) { ans += v; } std::cout << ans << '\n'; }
13
CPP
// author: xay5421 // created: Sun Jan 17 14:55:30 2021 #include<bits/stdc++.h> #define D(...) fprintf(stderr,__VA_ARGS__) #define SZ(x) ((int)(x).size()) #define rep(i,a,b) for(int i=(a);i<=(b);++i) using namespace std; const int P=998244353,N=200005; int ad(int k1,int k2){return k1+=k2-P,k1+=k1>>31&P;} int su(int k1,int k2){return k1-=k2,k1+=k1>>31&P;} int mu(int k1,int k2){return 1LL*k1*k2%P;} void uad(int&k1,int k2){k1+=k2-P,k1+=k1>>31&P;} void usu(int&k1,int k2){k1-=k2,k1+=k1>>31&P;} template<typename... T>int ad(int k1,T... k2){return ad(k1,ad(k2...));} template<typename... T>void uad(int&k1,T... k2){return uad(k1,ad(k2...));} template<typename... T>void usu(int&k1,T... k2){return usu(k1,ad(k2...));} template<typename... T>int mu(int k1,T... k2){return mu(k1,mu(k2...));} int po(int k1,int k2){ int k3=1; for(;k2;k2>>=1,k1=mu(k1,k1))if(k2&1)k3=mu(k3,k1); return k3; } void NTT(vector<int>&a,int g,int lim){ a.resize(lim); for(int i=0,j=0;i<lim;++i){ if(i<j)swap(a[i],a[j]); for(int k=lim>>1;(j^=k)<k;k>>=1); } vector<int>w(lim>>1); w[0]=1; for(int i=1;i<lim;i<<=1){ for(int j=1,wn=po(g,(P-1)/(i<<1));j<i;++j)w[j]=mu(w[j-1],wn); for(int j=0;j<lim;j+=i<<1)for(int k=0;k<i;++k){ int x=a[j+k],y=mu(a[i+j+k],w[k]); a[j+k]=ad(x,y),a[i+j+k]=su(x,y); } } if(g!=3){ const int I=po(lim,P-2); rep(i,0,lim-1)a[i]=mu(a[i],I); } } vector<int>operator*(vector<int>a,vector<int>b){ int need=SZ(a)+SZ(b)-1,lim=1; while(lim<=need)lim<<=1; NTT(a,3,lim),NTT(b,3,lim); rep(i,0,lim-1)a[i]=mu(a[i],b[i]); NTT(a,332748118,lim); return a.resize(need),a; } int n,fac[N],inv[N],ifac[N]; int C(int k1,int k2){ if(k1<0||k2<0||k1-k2<0)return 0; return mu(fac[k1],ifac[k2],ifac[k1-k2]); } int main(){ #ifdef xay5421 freopen("a.in","r",stdin); #endif fac[0]=fac[1]=inv[0]=inv[1]=ifac[0]=ifac[1]=1; rep(i,2,N-1)fac[i]=mu(fac[i-1],i),inv[i]=mu(P-P/i,inv[P%i]),ifac[i]=mu(ifac[i-1],inv[i]); scanf("%d",&n); vector<int>ans{1}; rep(i,1,n){ int a,b; scanf("%d%d",&a,&b); int m=SZ(ans); vector<int>co; rep(j,b-m+1,m+a-1){ co.push_back(C(a+b,j)); } vector<int>res=ans*co; ans.resize(m+a-b); rep(i,0,SZ(ans)-1)ans[i]=res[m+i-1]; } int res=0; rep(i,0,SZ(ans)-1)uad(res,ans[i]); printf("%d\n",res); return 0; }
13
CPP
#include<bits/stdc++.h> #define ll long long #define p pair<int, int> #define endl '\n' const int INF = 1000000001;using namespace std;const int C = 998244353;vector<ll> fact, minus_fact; ll pow1(ll x, ll y, ll z=C){if (y == 0)return 1;if (y % 2 == 0)return pow1(x*x % z, y/2, z);return pow1(x, y-1, z)*x % z;} void facts(int n){fact = {1}, minus_fact = {1};for (int q = 1; q <= n; q++){fact.push_back(fact.back()*q % C);minus_fact.push_back(minus_fact.back()*pow1(q, C-2) % C);}} ll c(int k, int n){if (k < 0 || k > n)return 0;return fact[n]*minus_fact[k] % C*minus_fact[n-k] % C;} signed main(){ ios::sync_with_stdio(false); cin.tie(nullptr); cout.tie(nullptr); facts(200179); int n; cin >> n; vector<p> a(n); for (int q = 0; q < n; q++)cin >> a[q].first >> a[q].second; vector<int> now = {1}; for (int q = 0; q < n; q++){ int w3 = (now.size()+a[q].first+a[q].second+1)/2, w4 = now.size()+a[q].first+a[q].second; vector<__int128> will(w3-a[q].second, 0); vector<ll> cc(now.size()+a[q].first); for (int q1 = 0; q1 < cc.size(); q1++){ cc[q1] = c(q1, a[q].first+a[q].second); } for (int q1 = a[q].second; q1 < w3; q1++){ int w = min(q1+1, (int)now.size()), w1 = q1-a[q].second, w2 = max(0, q1-a[q].first-a[q].second); for (int q2 = w2; q2 < w; q2++)will[w1] += cc[q1-q2]*now[q2]; } now = {}; for (__int128 q1: will)now.push_back(q1 % C); for (int q1 = (int)now.size()-1-w4 % 2; q1 > -1; q1--)now.push_back(now[q1]); } ll ans = 0;for (int q: now)ans += q; cout << ans % C << endl; return 0; }
13
CPP
#include <bits/stdc++.h> #ifdef ALGO #include "el_psy_congroo.hpp" #else #define DUMP(...) 1145141919810 #define CHECK(...) (__VA_ARGS__) #endif template<int MOD> struct Integral { int v_ = 0; template<typename T> Integral(T v) : v_(norm(v)) { // Implicit conversion is allowed. static_assert(std::is_integral<T>::value, "input should be an integral."); } Integral() = default; ~Integral() = default; template<typename T> T norm(T v) const { if constexpr(std::is_same<long long, T>::value) { v %= MOD; if (v < 0) v += MOD; } else { if (v >= MOD) v -= MOD; if (v < 0) v += MOD; if (v >= MOD || v < 0) { v %= MOD; if (v < 0) v += MOD; } } return v; } int val() const { return v_; } Integral operator + (const Integral& rhs) const { return Integral(val() + rhs.val()); } Integral operator - (const Integral& rhs) const { return Integral(val() - rhs.val()); } Integral operator * (const Integral& rhs) const { return Integral(val() * 1LL * rhs.val()); } Integral operator / (const Integral& rhs) const { return *this * rhs.inv(); } Integral& operator += (const Integral& rhs) { return *this = *this + rhs; } Integral& operator -= (const Integral& rhs) { return *this = *this - rhs; } Integral& operator *= (const Integral& rhs) { return *this = *this * rhs; } Integral& operator /= (const Integral& rhs) { return *this = *this / rhs; } bool operator == (const Integral& rhs) const { return val() == rhs.val(); } bool operator != (const Integral& rhs) const { return !(*this == rhs); } const Integral operator - () const { return Integral(-val()); } const Integral operator ++ () { v_ = norm(v_ + 1); return *this; } const Integral operator ++ (int) { Integral ret = *this; ++(*this); return ret; } const Integral operator -- () { v_ = norm(v_ - 1); return *this; } const Integral operator -- (int) { Integral ret = *this; --(*this); return ret; } Integral power(long long b) const { long long ret = 1 % MOD, a = v_; for ( ; b; b >>= 1, a = a * a % MOD) if (b & 1) ret = ret * a % MOD; return ret; } Integral inv() const { return power(MOD - 2); } }; template<int MOD> std::string to_string(const Integral<MOD>& v) { return std::string("Int<>{") + std::to_string(v.val()) + "}"; } template<int MOD, bool kAllowBruteForce = false> struct Binomial { std::vector<Integral<MOD>> factor, inv_factor; explicit Binomial(int n = 0) : factor(n + 1), inv_factor(n + 1) { factor[0] = 1; for (int i = 1; i <= n; ++i) factor[i] = factor[i - 1] * i; inv_factor[n] = factor[n].inv(); for (int i = n; i >= 1; --i) inv_factor[i - 1] = inv_factor[i] * i; } ~Binomial() = default; template<typename T> Integral<MOD> operator () (T a, T b) const { if (a < b || b < 0) return 0; if (a < factor.size()) return factor[a] * inv_factor[b] * inv_factor[a - b]; if constexpr(!kAllowBruteForce) { throw std::out_of_range("Binomial"); } else { b = std::min(b, a - b); Integral<MOD> ret = 1; for (T i = 1; i <= b; ++i) ret = ret * (a + 1 - i) / i; return ret; } } }; template<int MOD> struct PowerTable : public std::vector<Integral<MOD>> { PowerTable(int n, const Integral<MOD>& g) { static_assert(sizeof(PowerTable) == sizeof(std::vector<Integral<MOD>>), ""); this->resize(n + 1); this->at(0) = 1; this->at(1) = g; for (int i = 2; i < this->size(); ++i) this->at(i) = this->at(i - 1) * this->at(1); } }; const int MOD = 998244353; using Mint = Integral<MOD>; using Binom = Binomial<MOD>; Binom binom(200000); // PowerTable<MOD> pw2(200000, 2); template<int MOD = 998244353, int kPrimRoot = 3> void ntt(Integral<MOD> A[], int n, int inv) { // inv == 1: ntt, == -1: intt // MOD == a * b ^ k + 1, n <= b ^ k. // 998244353 == (7 * 17) * 2 ^ 23 + 1. // This code works only when b == 2. Integral<MOD> w = 1, d = Integral<MOD>(kPrimRoot).power((MOD - 1) / n), t; int i, j, c, s; if (inv == -1) { for (i = 1, j = n - 1; i < j; ++i, --j) std::swap(A[i], A[j]); for (t = Integral<MOD>(n).inv(), i = 0; i < n; ++i) A[i] = A[i] * t; } for (s = n >> 1; s; s >>= 1, w = 1, d = d * d) { for (c = 0; c < s; ++c, w = w * d) { for (i = c; i < n; i += s << 1) { A[i | s] = (A[i] - (t = A[i | s])) * w; A[i] += t; } } } for (i = 1; i < n; ++i) { for (j = 0, s = i, c = n >> 1; c; c >>= 1, s >>= 1) j = j << 1 | (s & 1); if (i < j) std::swap(A[i], A[j]); } } int main() { std::ios::sync_with_stdio(false); std::cin.tie(nullptr); std::istream& reader = std::cin; int n; reader >> n; std::vector<Mint> f(1, 1); for (int at = 1; at <= n; ++at) { int a, b; reader >> a >> b; int m = f.size(); int w = m + a - b + m + 1; // b - m, m + a int L = 1; while (L < m + w) L <<= 1; f.resize(L, 0); std::vector<Mint> y(L); for (int i = 0; i < w; ++i) { y[i] = binom(a + b, i + b - m); } ntt(&f[0], L, 1); ntt(&y[0], L, 1); for (int i = 0; i < L; ++i) f[i] *= y[i]; ntt(&f[0], L, -1); for (int i = 0; i < m + a - b; ++i) f[i] = i + m < L ? f[i + m] : 0; f.resize(m + a - b); } std::cout << std::accumulate(f.begin(), f.end(), Mint(0)).val() << std::endl; }
13
CPP
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #include<queue> #include<map> #include<vector> #define o 1000005 #define FOR(i,a,b) for(int i=a;i<=b;i++) #define REP(i,a,b) for(int i=a;i>=b;i--) #define g0(a) memset(a,0,sizeof(a)) #define gc(a,b) memcpy(a,b,sizeof(a)) #define ll long long using namespace std; inline int read() { int data=0,w=1; char ch=0; while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar(); if(ch=='-')w=-1,ch=getchar(); while(ch>='0'&&ch<='9')data=data*10+ch-'0',ch=getchar(); return data*w; } int n,m,rev[o]; const int mod=998244353; int KSM(int x,int k) { int tmp=1,y=x; for(int i=k;i;i>>=1,y=1ll*y*y%mod)if(i&1)tmp=1ll*tmp*y%mod; return tmp; } int Make(int n) { int t=0;while(1<<t<=n)t++; FOR(i,0,(1<<t)-1)rev[i]=rev[i>>1]>>1|(i&1)<<t-1; return t; } void fix(int &x){x+=x>>31&mod;} void NTT(int a[],int n,int d) { FOR(i,0,(1<<n)-1)if(i<rev[i])swap(a[i],a[rev[i]]); FOR(m,0,n-1) { int w=KSM(3,mod-1+(mod-1)/(2<<m)*d); for(int i=0;i<1<<n;i+=2<<m) for(int k=i,x=1;k<i+(1<<m);k++,x=1ll*x*w%mod) { int t0=a[k],t1=1ll*a[k+(1<<m)]*x%mod; //cout<<"x="<<x<<"\n" fix(a[k]=t0+t1-mod),fix(a[k+(1<<m)]=t0-t1); } } if(d==-1){int iv=KSM(1<<n,mod-2);FOR(i,0,(1<<n)-1)a[i]=1ll*a[i]*iv%mod;} } int fac[o],inv[o],g[o],f[o],a[o]; void init(int n=300000) { fac[0]=1; FOR(i,1,n)fac[i]=1ll*fac[i-1]*i%mod; inv[n]=KSM(fac[n],mod-2); REP(i,n-1,0)inv[i]=1ll*inv[i+1]*(i+1)%mod; } int C(int n,int m){return n<m||m<0?0:1ll*fac[n]*inv[m]%mod*inv[n-m]%mod;} int main() { // int p=Make(100); // FOR(i,0,(1<<p)-1)a[i]=1; // NTT(a,p,1); // NTT(a,p,-1); // FOR(i,0,(1<<p)-1)cout<<a[i]<<" "; // return 0; init(); n=read(),m=1; f[1]=1; while(n--) { int A=read(),B=read(),t=Make(m+A-B+m+m); FOR(i,0,(1<<t)-1)a[i]=g[i]=0; FOR(i,-m,m+A-B)g[i+m]=C(A+B,B+i); FOR(i,1,m)a[i]=f[i]; NTT(g,t,1);NTT(a,t,1); FOR(i,0,(1<<t)-1)g[i]=1ll*g[i]*a[i]%mod; NTT(g,t,-1); FOR(i,1,m+A-B)f[i]=g[i+m]; m+=A-B; //FOR(i,1,m)cout<<f[i]<<" "; } int ans=0; FOR(i,1,m)fix(ans+=f[i]-mod); cout<<ans<<'\n'; return 0; }
13
CPP
#include <bits/stdc++.h> #define fo(a,b,c) for (a=b; a<=c; a++) #define fd(a,b,c) for (a=b; a>=c; a--) #define C(n,m) (jc[n]*Jc[m]%mod*Jc[(n)-(m)]%mod) #define add(a,b) a=((a)+(b))%mod #define min(a,b) (a<b?a:b) #define max(a,b) (a>b?a:b) #define mod 998244353 #define Mod 998244351 #define ll long long #define G 114514 //#define file using namespace std; int n,i,j,k,l,A,B,s,N,N2,len; int f[5011],g[5011],ans; int a[16384],b[16384],w1[15][16384],w2[15][16384]; ll jc[200001],Jc[200001]; int a2[15][16384]; ll qpower(ll a,int b) {ll ans=1; while (b) {if (b&1) ans=ans*a%mod;a=a*a%mod;b>>=1;} return ans;} void init() { int i,j,k,l; N=1; fo(len,1,14) { N*=2; fo(i,0,N-1) { j=i,k=0; fo(l,1,len) k=k*2+(j&1),j>>=1; a2[len][i]=k; } } ll w,W; l=2;k=1; fo(i,1,14) { w=qpower(G,(mod-1)/l);W=1; fo(j,0,k-1) w1[i][j]=W,W=W*w%mod; w=qpower(G,(mod-1)-(mod-1)/l);W=1; fo(j,0,k-1) w2[i][j]=W,W=W*w%mod; l<<=1;k<<=1; } } void dft(int *a,int tp) { static int A[16384]; int i,j,k,l,s1=2,s2=1,S=N; ll u,v; fo(i,0,N-1) A[a2[len][i]]=a[i];memcpy(a,A,N*4); fo(i,1,len) { S>>=1; fo(j,0,S-1) { fo(k,0,s2-1) { if (tp==1) u=a[j*s1+k],v=1ll*a[j*s1+k+s2]*w1[i][k]; else u=a[j*s1+k],v=1ll*a[j*s1+k+s2]*w2[i][k]; a[j*s1+k]=(u+v)%mod; a[j*s1+k+s2]=(u-v)%mod; } } s1<<=1,s2<<=1; } } void work1() { int i,j,k,l; memset(g,0,(s+2)*4); fo(i,1,s) add(g[i],f[i]),add(g[i+1],f[i]); ++s,memcpy(f,g,(s+1)*4); } void work2() { int i,j,k,l; --s; fo(i,1,s) g[i]=(f[i]+f[i+1])%mod; memcpy(f,g,(s+1)*4); } void work3(int t) { int i,j,k,l; if (!t) return; len=ceil(log2(s+1))+1,N=qpower(2,len);N2=qpower(N,Mod); memset(a,0,N*4),memset(b,0,N*4); fo(i,1,s) g[i]=1ll*f[i]*C(t*2,t)%mod,a[i]=f[i]; fo(i,1,min(s,t)) b[i]=C(t*2,t+i); dft(a,1),dft(b,1); fo(i,0,N-1) a[i]=1ll*a[i]*b[i]%mod; dft(a,-1); fo(i,1,s) a[i]=1ll*a[i]*N2%mod; fo(i,1,s) add(g[i],1ll*(a[i]+a[s-i+1])); memcpy(f,g,(s+1)*4); } int main() { #ifdef file freopen("CF1473G.in","r",stdin); #endif jc[0]=1; fo(i,1,200000) jc[i]=jc[i-1]*i%mod; Jc[200000]=qpower(jc[200000],Mod); fd(i,200000-1,0) Jc[i]=Jc[i+1]*(i+1)%mod; scanf("%d",&n);s=1,f[1]=1; init(); fo(i,1,n) { scanf("%d%d",&A,&B); if (A>B) {fo(j,1,A-B) work1();work3(B);} else {work3(A);fo(j,1,B-A) work2();} } fo(i,1,s) add(ans,f[i]); printf("%d\n",(ans+mod)%mod); fclose(stdin); fclose(stdout); return 0; }
13
CPP
#include <bits/stdc++.h> using namespace std; typedef long long ll; //#pragma GCC optimize("Ofast,no-stack-protector,unroll-loops,fast-math") //#pragma GCC target("sse,sse2,sse3,ssse3,sse4.1,sse4.2,popcnt,abm,mmx,avx,tune=native") //#pragma GCC target("avx,avx2") const ll mod = 998244353; const int L = 15; const int N = (1 << L); int add(int a, int b) { int c = a + b; if (c >= mod) c -= mod; return c; } int sub(int a, int b) { return add(a, mod - b); } int mult(int a, int b) { return ((ll) a * b) % mod; } int pw(int a, int b) { if (!b) return 1; if (b & 1) return mult(pw(a, b - 1), a); int x = pw(a, b / 2); return mult(x, x); } int inv2; int pws[N + 1], ipws[N + 1]; void init() { inv2 = pw(2, mod - 2); pws[N] = pw(31, pw(2, 23 - L)); ipws[N] = pw(pws[N], mod - 2); for (int i = (N >> 1); i; i >>= 1) { pws[i] = mult(pws[i << 1], pws[i << 1]); ipws[i] = mult(ipws[i << 1], ipws[i << 1]); } } void fft(vector<int> &s, vector<int> &res, int n, int x, int bs = 0, int bstep = 1, int rs = 0) { if (n == 1) { res[rs] = s[bs]; return; } fft(s, res, n >> 1, mult(x, x), bs, bstep << 1, rs); fft(s, res, n >> 1, mult(x, x), bs + bstep, bstep << 1, rs + (n >> 1)); int c = 1; for (int i = rs; i < rs + (n >> 1); ++i) { int a = res[i], b = res[i + (n >> 1)]; res[i] = add(a, mult(b, c)); res[i + (n >> 1)] = sub(a, mult(b, c)); c = mult(c, x); } } void poly_mult(const vector<int> &a, const vector<int> &b, vector<int> &c) { init(); vector<int> fa, fb, fra, frb, rt; int n = 1; while (n < max(b.size(), a.size())) n <<= 1; n <<= 1; fa.resize(n); rt = frb = fra = fb = fa; for (int i = 0; i < a.size(); ++i) fa[i] = a[i]; for (int i = 0; i < b.size(); ++i) fb[i] = b[i]; fft(fa, fra, n, pws[n]); fft(fb, frb, n, pws[n]); for (int i = 0; i < n; ++i) fra[i] = mult(fra[i], frb[i]); fft(fra, rt, n, ipws[n]); int inv_n = pw(n, mod - 2); for (int i = 0; i < n; ++i) rt[i] = mult(rt[i], inv_n); c = rt; } const ll M = 3e5 + 5; int fact[M], invfact[M]; int cnk(int n, int k) { if (n < 0 || k < 0 || n - k < 0) return 0; return mult(mult(fact[n], invfact[n - k]), invfact[k]); } int main() { ios_base::sync_with_stdio(false); cin.tie(nullptr); fact[0] = 1; for (int i = 1; i < M; ++i) fact[i] = mult(fact[i - 1], i); invfact[M - 1] = pw(fact[M - 1], mod - 2); for (int i = M - 2; i >= 0; --i) invfact[i] = mult(invfact[i + 1], i + 1); int n, d = 0; cin >> n; vector<int> cur = {1}; for (int i = 0; i < n; ++i) { int a, b; cin >> a >> b; int dd = d + a - b; vector<int> g(d + dd + 1); for (int j = -d; j <= dd; ++j) g[j + d] = cnk(a + b, b + j); vector<int> f; poly_mult(cur, g, f); cur.resize(dd + 1); for (int j = 0; j <= dd; ++j) cur[j] = f[j + d]; d = dd; } ll ans = 0; for (ll x : cur) ans = (ans + x) % mod; cout << ans; }
13
CPP
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cmath> #include<vector> #include<queue> #include<map> using namespace std; typedef long long ll; #define N 200015 const int p=998244353; int n,a,b,f[N],finv[N],inv[N],rev[N],ta[N],tb[N]; inline int C(int nn,int mm){if(nn<mm||nn<0||mm<0)return 0;return 1ll*f[nn]*finv[mm]%p*finv[nn-mm]%p;} inline int ksm(int d,int k){int ret=1;while(k){if(k&1)ret=1ll*ret*d%p;d=1ll*d*d%p;k>>=1;}return ret;} inline void ntt(int x[],int len,int mde) {for(int i=0;i<len;i++)if(i<rev[i])swap(x[i],x[rev[i]]); for(int i=2;i<=len;i<<=1) {int wn=ksm(3,(p-1)/i);if(mde<0)wn=ksm(wn,p-2); for(int j=0,stp=i>>1;j<len;j+=i)for(int k=j,w=1;k<j+stp;k++,w=1ll*w*wn%p) {int t1=x[k],t2=1ll*x[k+stp]*w%p; x[k]=(t1+t2)%p,x[k+stp]=(t1-t2+p)%p; } }if(mde<0)for(int i=0,te=ksm(len,p-2);i<len;i++)x[i]=1ll*x[i]*te%p; } int main() { scanf("%d",&n);int len=1;f[0]=finv[0]=f[1]=finv[1]=inv[1]=1; for(int i=2;i<=200000;i++) { inv[i]=1ll*(p-p/i)*inv[p%i]%p; f[i]=1ll*f[i-1]*i%p;finv[i]=1ll*finv[i-1]*inv[i]%p; }ta[1]=1; for(int i=1;i<=n;i++) { scanf("%d%d",&a,&b); int nl=max(len,len+a-b),tle=1; while(tle<=(nl*3))tle<<=1; for(int j=1;j<tle;j++){rev[j]=rev[j>>1]>>1;if(j&1)rev[j]|=tle>>1;} for(int j=len+1;j<tle;j++)ta[j]=0;for(int j=0;j<tle;j++)tb[j]=0; for(int j=-len;j<=nl;j++)tb[len+j]=C(a+b,b+j); ntt(ta,tle,1);ntt(tb,tle,1);for(int j=0;j<tle;j++)ta[j]=1ll*ta[j]*tb[j]%p;ntt(ta,tle,-1); for(int j=1;j<=len+a-b;j++)ta[j]=ta[j+len]; for(int j=len+a-b+1;j<tle;j++)ta[j]=0;len+=a-b; }int ans=0;for(int i=1;i<=len;i++)(ans+=ta[i])%=p;printf("%d\n",ans); }
13
CPP
#include <bits/stdc++.h> using namespace std; const int maxn = 1000000; const int mod = 998244353; const int g = 3; const int gi = 332748118; int a[maxn],b[maxn],dp[maxn]; int c[maxn],pos[maxn],fac[maxn],fav[maxn]; int qpow(int a,int b,int c){ int ans=1; while(b){ if(b&1)ans=1ll*ans*a%mod; b>>=1; a=1ll*a*a%mod; } return ans; } int init(int n){ int cur=1,ct=0; while(cur<n)cur<<=1,ct++; for(int i=0;i<cur;++i)pos[i]=(pos[i>>1]>>1)|((i&1)<<(ct-1)); return cur; } int C(int a,int b){ if(b<0 || b>a)return 0; return 1ll*fac[a]*fav[b]%mod*fav[a-b]%mod; } void ntt(int *a,int len,int fg){ for(int i=0;i<len;++i)if(i<pos[i])swap(a[i],a[pos[i]]); for(int i=2,mid=1;i<=len;i<<=1,mid<<=1){ int wn=qpow(fg==1?g:gi,(mod-1)/i,mod); for(int j=0;j<len;j+=i){ int w=1; for(int k=j;k<j+mid;k++){ int l=a[k],r=1ll*a[k+mid]*w%mod; a[k]=(l+r)%mod,a[k+mid]=(l-r+mod)%mod; w=1ll*w*wn%mod; } } } if(fg==-1){ int invlen=qpow(len,mod-2,mod); for(int i=0;i<len;++i)a[i]=1ll*invlen*a[i]%mod; } } int main(){ fac[0]=1; for(int i=1;i<maxn;++i)fac[i]=1ll*fac[i-1]*i%mod; fav[maxn-1]=qpow(fac[maxn-1],mod-2,mod); for(int i=maxn-2;i>=0;--i)fav[i]=1ll*fav[i+1]*(i+1)%mod; int n; scanf("%d",&n); dp[0]=1; int cur=1; for(int i=1;i<=n;++i){ scanf("%d%d",&a[i],&b[i]); int le=2*cur+a[i]-b[i]-1; int len=init(le); for(int j=b[i]-cur+1,k=0;j<=b[i]+cur+a[i]-b[i]-1;++j,++k)c[k]=C(b[i]+a[i],j); for(int j=b[i]+cur+a[i]-b[i];j<len;++j)c[j]=0; // for(int j=0;j<len;++j)printf("%d ",c[j]);puts(""); // for(int j=0;j<len;++j)printf("%d ",dp[j]);puts(""); ntt(dp,len,1); ntt(c,len,1); for(int j=0;j<len;++j)dp[j]=1ll*dp[j]*c[j]%mod; ntt(dp,len,-1); for(int j=0;j<cur+a[i]-b[i];++j)dp[j]=dp[j+cur-1]; cur+=a[i]-b[i]; // for(int j=0;j<cur;++j)printf("%d ",dp[j]); for(int j=cur;j<len;++j)dp[j]=0; // puts(""); } int ans=0; for(int i=0;i<cur;++i)ans=(ans+dp[i])%mod; printf("%d\n",ans); }
13
CPP