repo_name
stringlengths
5
100
path
stringlengths
4
375
copies
stringclasses
991 values
size
stringlengths
4
7
content
stringlengths
666
1M
license
stringclasses
15 values
ilexius/odoo
addons/im_livechat/report/im_livechat_report_channel.py
7
3048
# -*- coding: utf-8 -*- from openerp import fields, models, tools class ImLivechatReportChannel(models.Model): """ Livechat Support Report on the Channels """ _name = "im_livechat.report.channel" _description = "Livechat Support Report" _order = 'start_date, technical_name' _auto = False uuid = fields.Char('UUID', readonly=True) channel_id = fields.Many2one('mail.channel', 'Conversation', readonly=True) channel_name = fields.Char('Channel Name', readonly=True) technical_name = fields.Char('Code', readonly=True) livechat_channel_id = fields.Many2one('im_livechat.channel', 'Channel', readonly=True) start_date = fields.Datetime('Start Date of session', readonly=True, help="Start date of the conversation") start_date_hour = fields.Char('Hour of start Date of session', readonly=True) duration = fields.Float('Average duration', digits=(16, 2), readonly=True, group_operator="avg", help="Duration of the conversation (in seconds)") nbr_speaker = fields.Integer('# of speakers', readonly=True, group_operator="avg", help="Number of different speakers") nbr_message = fields.Integer('Average message', readonly=True, group_operator="avg", help="Number of message in the conversation") partner_id = fields.Many2one('res.partner', 'Operator', readonly=True) def init(self, cr): # Note : start_date_hour must be remove when the read_group will allow grouping on the hour of a datetime. Don't forget to change the view ! tools.drop_view_if_exists(cr, 'im_livechat_report_channel') cr.execute(""" CREATE OR REPLACE VIEW im_livechat_report_channel AS ( SELECT C.id as id, C.uuid as uuid, C.id as channel_id, C.name as channel_name, CONCAT(L.name, ' / ', C.id) as technical_name, C.livechat_channel_id as livechat_channel_id, C.create_date as start_date, to_char(date_trunc('hour', C.create_date), 'YYYY-MM-DD HH24:MI:SS') as start_date_hour, EXTRACT('epoch' FROM (max((SELECT (max(M.create_date)) FROM mail_message M JOIN mail_message_mail_channel_rel R ON (R.mail_message_id = M.id) WHERE R.mail_channel_id = C.id))-C.create_date)) as duration, count(distinct P.id) as nbr_speaker, count(distinct M.id) as nbr_message, MAX(S.partner_id) as partner_id FROM mail_channel C JOIN mail_message_mail_channel_rel R ON (C.id = R.mail_channel_id) JOIN mail_message M ON (M.id = R.mail_message_id) JOIN mail_channel_partner S ON (S.channel_id = C.id) JOIN im_livechat_channel L ON (L.id = C.livechat_channel_id) LEFT JOIN res_partner P ON (M.author_id = P.id) GROUP BY C.id, C.name, C.livechat_channel_id, L.name, C.create_date, C.uuid ) """)
gpl-3.0
njantrania/osf.io
tasks.py
2
25686
#!/usr/bin/env python # -*- coding: utf-8 -*- """Invoke tasks. To run a task, run ``$ invoke <COMMAND>``. To see a list of commands, run ``$ invoke --list``. """ import os import sys import code import platform import subprocess import logging from invoke import task, run from website import settings logging.getLogger('invoke').setLevel(logging.CRITICAL) HERE = os.path.dirname(os.path.abspath(__file__)) WHEELHOUSE_PATH = os.environ.get('WHEELHOUSE') def get_bin_path(): """Get parent path of current python binary. """ return os.path.dirname(sys.executable) def bin_prefix(cmd): """Prefix command with current binary path. """ return os.path.join(get_bin_path(), cmd) try: __import__('rednose') except ImportError: TEST_CMD = 'nosetests' else: TEST_CMD = 'nosetests --rednose' @task def server(host=None, port=5000, debug=True, live=False): """Run the app server.""" from website.app import init_app app = init_app(set_backends=True, routes=True) settings.API_SERVER_PORT = port if live: from livereload import Server server = Server(app.wsgi_app) server.watch(os.path.join(HERE, 'website', 'static', 'public')) server.serve(port=port) else: app.run(host=host, port=port, debug=debug, threaded=debug, extra_files=[settings.ASSET_HASH_PATH]) @task def apiserver(port=8000, live=False): """Run the API server.""" cmd = 'python manage.py runserver {}'.format(port) if live: cmd += ' livereload' run(cmd, echo=True, pty=True) SHELL_BANNER = """ {version} +--------------------------------------------------+ |cccccccccccccccccccccccccccccccccccccccccccccccccc| |ccccccccccccccccccccccOOOOOOOccccccccccccccccccccc| |ccccccccccccccccccccOOOOOOOOOOcccccccccccccccccccc| |cccccccccccccccccccOOOOOOOOOOOOccccccccccccccccccc| |cccccccccOOOOOOOcccOOOOOOOOOOOOcccOOOOOOOccccccccc| |cccccccOOOOOOOOOOccOOOOOsssOOOOcOOOOOOOOOOOccccccc| |ccccccOOOOOOOOOOOOccOOssssssOOccOOOOOOOOOOOccccccc| |ccccccOOOOOOOOOOOOOcOssssssssOcOOOOOOOOOOOOOcccccc| |ccccccOOOOOOOOOOOOsOcOssssssOOOOOOOOOOOOOOOccccccc| |cccccccOOOOOOOOOOOssccOOOOOOcOssOOOOOOOOOOcccccccc| |cccccccccOOOOOOOsssOccccccccccOssOOOOOOOcccccccccc| |cccccOOOccccOOssssOccccccccccccOssssOccccOOOcccccc| |ccOOOOOOOOOOOOOccccccccccccccccccccOOOOOOOOOOOOccc| |cOOOOOOOOssssssOcccccccccccccccccOOssssssOOOOOOOOc| |cOOOOOOOssssssssOccccccccccccccccOsssssssOOOOOOOOc| |cOOOOOOOOsssssssOccccccccccccccccOsssssssOOOOOOOOc| |cOOOOOOOOOssssOOccccccccccccccccccOsssssOOOOOOOOcc| |cccOOOOOOOOOOOOOOOccccccccccccccOOOOOOOOOOOOOOOccc| |ccccccccccccOOssssOOccccccccccOssssOOOcccccccccccc| |ccccccccOOOOOOOOOssOccccOOcccOsssOOOOOOOOccccccccc| |cccccccOOOOOOOOOOOsOcOOssssOcOssOOOOOOOOOOOccccccc| |ccccccOOOOOOOOOOOOOOOsssssssOcOOOOOOOOOOOOOOcccccc| |ccccccOOOOOOOOOOOOOcOssssssssOcOOOOOOOOOOOOOcccccc| |ccccccOOOOOOOOOOOOcccOssssssOcccOOOOOOOOOOOccccccc| |ccccccccOOOOOOOOOcccOOOOOOOOOOcccOOOOOOOOOcccccccc| |ccccccccccOOOOcccccOOOOOOOOOOOcccccOOOOccccccccccc| |ccccccccccccccccccccOOOOOOOOOOcccccccccccccccccccc| |cccccccccccccccccccccOOOOOOOOOcccccccccccccccccccc| |cccccccccccccccccccccccOOOOccccccccccccccccccccccc| |cccccccccccccccccccccccccccccccccccccccccccccccccc| +--------------------------------------------------+ Welcome to the OSF Python Shell. Happy hacking! Available variables: {context} """ def make_shell_context(): from modularodm import Q from framework.auth import User, Auth from framework.mongo import database from website.app import init_app from website.project.model import Node from website import models # all models from website import settings import requests app = init_app() context = { 'app': app, 'db': database, 'User': User, 'Auth': Auth, 'Node': Node, 'Q': Q, 'models': models, 'run_tests': test, 'rget': requests.get, 'rpost': requests.post, 'rdelete': requests.delete, 'rput': requests.put, 'settings': settings, } try: # Add a fake factory for generating fake names, emails, etc. from faker import Factory fake = Factory.create() context['fake'] = fake except ImportError: pass return context def format_context(context): lines = [] for name, obj in context.items(): line = "{name}: {obj!r}".format(**locals()) lines.append(line) return '\n'.join(lines) # Shell command adapted from Flask-Script. See NOTICE for license info. @task def shell(): context = make_shell_context() banner = SHELL_BANNER.format(version=sys.version, context=format_context(context) ) try: try: # 0.10.x from IPython.Shell import IPShellEmbed ipshell = IPShellEmbed(banner=banner) ipshell(global_ns={}, local_ns=context) except ImportError: # 0.12+ from IPython import embed embed(banner1=banner, user_ns=context) return except ImportError: pass # fallback to basic python shell code.interact(banner, local=context) return @task(aliases=['mongo']) def mongoserver(daemon=False, config=None): """Run the mongod process. """ if not config: platform_configs = { 'darwin': '/usr/local/etc/tokumx.conf', # default for homebrew install 'linux': '/etc/tokumx.conf', } platform = str(sys.platform).lower() config = platform_configs.get(platform) port = settings.DB_PORT cmd = 'mongod --port {0}'.format(port) if config: cmd += ' --config {0}'.format(config) if daemon: cmd += " --fork" run(cmd, echo=True) @task(aliases=['mongoshell']) def mongoclient(): """Run the mongo shell for the OSF database.""" db = settings.DB_NAME port = settings.DB_PORT run("mongo {db} --port {port}".format(db=db, port=port), pty=True) @task def mongodump(path): """Back up the contents of the running OSF database""" db = settings.DB_NAME port = settings.DB_PORT cmd = "mongodump --db {db} --port {port} --out {path}".format( db=db, port=port, path=path, pty=True) if settings.DB_USER: cmd += ' --username {0}'.format(settings.DB_USER) if settings.DB_PASS: cmd += ' --password {0}'.format(settings.DB_PASS) run(cmd, echo=True) print() print("To restore from the dumped database, run `invoke mongorestore {0}`".format( os.path.join(path, settings.DB_NAME))) @task def mongorestore(path, drop=False): """Restores the running OSF database with the contents of the database at the location given its argument. By default, the contents of the specified database are added to the existing database. The `--drop` option will cause the existing database to be dropped. A caveat: if you `invoke mongodump {path}`, you must restore with `invoke mongorestore {path}/{settings.DB_NAME}, as that's where the database dump will be stored. """ db = settings.DB_NAME port = settings.DB_PORT cmd = "mongorestore --db {db} --port {port}".format( db=db, port=port, pty=True) if settings.DB_USER: cmd += ' --username {0}'.format(settings.DB_USER) if settings.DB_PASS: cmd += ' --password {0}'.format(settings.DB_PASS) if drop: cmd += " --drop" cmd += " " + path run(cmd, echo=True) @task def sharejs(host=None, port=None, db_host=None, db_port=None, db_name=None, cors_allow_origin=None): """Start a local ShareJS server.""" if host: os.environ['SHAREJS_SERVER_HOST'] = host if port: os.environ['SHAREJS_SERVER_PORT'] = port if db_host: os.environ['SHAREJS_DB_HOST'] = db_host if db_port: os.environ['SHAREJS_DB_PORT'] = db_port if db_name: os.environ['SHAREJS_DB_NAME'] = db_name if cors_allow_origin: os.environ['SHAREJS_CORS_ALLOW_ORIGIN'] = cors_allow_origin if settings.SENTRY_DSN: os.environ['SHAREJS_SENTRY_DSN'] = settings.SENTRY_DSN share_server = os.path.join(settings.ADDON_PATH, 'wiki', 'shareServer.js') run("node {0}".format(share_server)) @task(aliases=['celery']) def celery_worker(level="debug", hostname=None, beat=False): """Run the Celery process.""" cmd = 'celery worker -A framework.tasks -l {0}'.format(level) if hostname: cmd = cmd + ' --hostname={}'.format(hostname) # beat sets up a cron like scheduler, refer to website/settings if beat: cmd = cmd + ' --beat' run(bin_prefix(cmd), pty=True) @task(aliases=['beat']) def celery_beat(level="debug", schedule=None): """Run the Celery process.""" # beat sets up a cron like scheduler, refer to website/settings cmd = 'celery beat -A framework.tasks -l {0}'.format(level) if schedule: cmd = cmd + ' --schedule={}'.format(schedule) run(bin_prefix(cmd), pty=True) @task def rabbitmq(): """Start a local rabbitmq server. NOTE: this is for development only. The production environment should start the server as a daemon. """ run("rabbitmq-server", pty=True) @task(aliases=['elastic']) def elasticsearch(): """Start a local elasticsearch server NOTE: Requires that elasticsearch is installed. See README for instructions """ import platform if platform.linux_distribution()[0] == 'Ubuntu': run("sudo service elasticsearch start") elif platform.system() == 'Darwin': # Mac OSX run('elasticsearch') else: print("Your system is not recognized, you will have to start elasticsearch manually") @task def migrate_search(delete=False, index=settings.ELASTIC_INDEX): """Migrate the search-enabled models.""" from website.search_migration.migrate import migrate migrate(delete, index=index) @task def rebuild_search(): """Delete and recreate the index for elasticsearch""" run("curl -s -XDELETE {uri}/{index}*".format(uri=settings.ELASTIC_URI, index=settings.ELASTIC_INDEX)) run("curl -s -XPUT {uri}/{index}".format(uri=settings.ELASTIC_URI, index=settings.ELASTIC_INDEX)) migrate_search() @task def mailserver(port=1025): """Run a SMTP test server.""" cmd = 'python -m smtpd -n -c DebuggingServer localhost:{port}'.format(port=port) run(bin_prefix(cmd), pty=True) @task def jshint(): """Run JSHint syntax check""" js_folder = os.path.join(HERE, 'website', 'static', 'js') cmd = 'jshint {}'.format(js_folder) run(cmd, echo=True) @task(aliases=['flake8']) def flake(): run('flake8 .', echo=True) def pip_install(req_file): """Return the proper 'pip install' command for installing the dependencies defined in ``req_file``. """ cmd = bin_prefix('pip install --exists-action w --upgrade -r {} '.format(req_file)) if WHEELHOUSE_PATH: cmd += ' --no-index --find-links={}'.format(WHEELHOUSE_PATH) return cmd @task(aliases=['req']) def requirements(addons=False, release=False, dev=False, metrics=False): """Install python dependencies. Examples: inv requirements --dev inv requirements --addons inv requirements --release inv requirements --metrics """ if release or addons: addon_requirements() # "release" takes precedence if release: req_file = os.path.join(HERE, 'requirements', 'release.txt') elif dev: # then dev requirements req_file = os.path.join(HERE, 'requirements', 'dev.txt') elif metrics: # then dev requirements req_file = os.path.join(HERE, 'requirements', 'metrics.txt') else: # then base requirements req_file = os.path.join(HERE, 'requirements.txt') run(pip_install(req_file), echo=True) @task def test_module(module=None, verbosity=2): """Helper for running tests. """ # Allow selecting specific submodule module_fmt = ' '.join(module) if isinstance(module, list) else module args = " --verbosity={0} -s {1}".format(verbosity, module_fmt) # Use pty so the process buffers "correctly" run(bin_prefix(TEST_CMD) + args, pty=True) @task def test_osf(): """Run the OSF test suite.""" test_module(module="tests/") @task def test_api(): """Run the API test suite.""" test_module(module="api_tests/") @task def test_addons(): """Run all the tests in the addons directory. """ modules = [] for addon in settings.ADDONS_REQUESTED: module = os.path.join(settings.BASE_PATH, 'addons', addon) modules.append(module) test_module(module=modules) @task def test(all=False, syntax=False): """ Run unit tests: OSF (always), plus addons and syntax checks (optional) """ if syntax: flake() jshint() test_osf() test_api() if all: test_addons() karma(single=True, browsers='PhantomJS') @task def test_travis_osf(): """ Run half of the tests to help travis go faster """ flake() jshint() test_osf() @task def test_travis_else(): """ Run other half of the tests to help travis go faster """ test_addons() test_api() karma(single=True, browsers='PhantomJS') @task def karma(single=False, sauce=False, browsers=None): """Run JS tests with Karma. Requires Chrome to be installed.""" karma_bin = os.path.join( HERE, 'node_modules', 'karma', 'bin', 'karma' ) cmd = '{} start'.format(karma_bin) if sauce: cmd += ' karma.saucelabs.conf.js' if single: cmd += ' --single-run' # Use browsers if specified on the command-line, otherwise default # what's specified in karma.conf.js if browsers: cmd += ' --browsers {}'.format(browsers) run(cmd, echo=True) @task def wheelhouse(addons=False, release=False, dev=False, metrics=False): """Install python dependencies. Examples: inv wheelhouse --dev inv wheelhouse --addons inv wheelhouse --release inv wheelhouse --metrics """ if release or addons: for directory in os.listdir(settings.ADDON_PATH): path = os.path.join(settings.ADDON_PATH, directory) if os.path.isdir(path): req_file = os.path.join(path, 'requirements.txt') if os.path.exists(req_file): cmd = 'pip wheel --find-links={} -r {} --wheel-dir={}'.format(WHEELHOUSE_PATH, req_file, WHEELHOUSE_PATH) run(cmd, pty=True) if release: req_file = os.path.join(HERE, 'requirements', 'release.txt') elif dev: req_file = os.path.join(HERE, 'requirements', 'dev.txt') elif metrics: req_file = os.path.join(HERE, 'requirements', 'metrics.txt') else: req_file = os.path.join(HERE, 'requirements.txt') cmd = 'pip wheel --find-links={} -r {} --wheel-dir={}'.format(WHEELHOUSE_PATH, req_file, WHEELHOUSE_PATH) run(cmd, pty=True) @task def addon_requirements(): """Install all addon requirements.""" for directory in os.listdir(settings.ADDON_PATH): path = os.path.join(settings.ADDON_PATH, directory) if os.path.isdir(path): try: requirements_file = os.path.join(path, 'requirements.txt') open(requirements_file) print('Installing requirements for {0}'.format(directory)) cmd = 'pip install --exists-action w --upgrade -r {0}'.format(requirements_file) if WHEELHOUSE_PATH: cmd += ' --no-index --find-links={}'.format(WHEELHOUSE_PATH) run(bin_prefix(cmd)) except IOError: pass print('Finished') @task def encryption(owner=None): """Generate GnuPG key. For local development: > invoke encryption On Linode: > sudo env/bin/invoke encryption --owner www-data """ if not settings.USE_GNUPG: print('GnuPG is not enabled. No GnuPG key will be generated.') return import gnupg gpg = gnupg.GPG(gnupghome=settings.GNUPG_HOME, gpgbinary=settings.GNUPG_BINARY) keys = gpg.list_keys() if keys: print('Existing GnuPG key found') return print('Generating GnuPG key') input_data = gpg.gen_key_input(name_real='OSF Generated Key') gpg.gen_key(input_data) if owner: run('sudo chown -R {0} {1}'.format(owner, settings.GNUPG_HOME)) @task def travis_addon_settings(): for directory in os.listdir(settings.ADDON_PATH): path = os.path.join(settings.ADDON_PATH, directory, 'settings') if os.path.isdir(path): try: open(os.path.join(path, 'local-travis.py')) run('cp {path}/local-travis.py {path}/local.py'.format(path=path)) except IOError: pass @task def copy_addon_settings(): for directory in os.listdir(settings.ADDON_PATH): path = os.path.join(settings.ADDON_PATH, directory, 'settings') if os.path.isdir(path) and not os.path.isfile(os.path.join(path, 'local.py')): try: open(os.path.join(path, 'local-dist.py')) run('cp {path}/local-dist.py {path}/local.py'.format(path=path)) except IOError: pass @task def copy_settings(addons=False): # Website settings if not os.path.isfile('website/settings/local.py'): print('Creating local.py file') run('cp website/settings/local-dist.py website/settings/local.py') # Addon settings if addons: copy_addon_settings() @task def packages(): brew_commands = [ 'update', 'upgrade', 'install libxml2', 'install libxslt', 'install elasticsearch', 'install gpg', 'install node', 'tap tokutek/tokumx', 'install tokumx-bin', ] if platform.system() == 'Darwin': print('Running brew commands') for item in brew_commands: command = 'brew {cmd}'.format(cmd=item) run(command) elif platform.system() == 'Linux': # TODO: Write a script similar to brew bundle for Ubuntu # e.g., run('sudo apt-get install [list of packages]') pass @task def npm_bower(): print('Installing bower') run('npm install -g bower', echo=True) @task(aliases=['bower']) def bower_install(): print('Installing bower-managed packages') bower_bin = os.path.join(HERE, 'node_modules', 'bower', 'bin', 'bower') run('{} prune'.format(bower_bin), echo=True) run('{} install'.format(bower_bin), echo=True) @task def setup(): """Creates local settings, installs requirements, and generates encryption key""" copy_settings(addons=True) packages() requirements(addons=True, dev=True) encryption() from website.app import build_js_config_files from website import settings # Build nodeCategories.json before building assets build_js_config_files(settings) assets(dev=True, watch=False) @task def analytics(): from website.app import init_app import matplotlib matplotlib.use('Agg') init_app() from scripts.analytics import ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) modules = ( logs, addons, comments, folders, links, watch, email_invites, permissions, profile, benchmarks ) for module in modules: module.main() @task def clear_sessions(months=1, dry_run=False): from website.app import init_app init_app(routes=False, set_backends=True) from scripts import clear_sessions clear_sessions.clear_sessions_relative(months=months, dry_run=dry_run) # Release tasks @task def hotfix(name, finish=False, push=False): """Rename hotfix branch to hotfix/<next-patch-version> and optionally finish hotfix. """ print('Checking out master to calculate curent version') run('git checkout master') latest_version = latest_tag_info()['current_version'] print('Current version is: {}'.format(latest_version)) major, minor, patch = latest_version.split('.') next_patch_version = '.'.join([major, minor, str(int(patch) + 1)]) print('Bumping to next patch version: {}'.format(next_patch_version)) print('Renaming branch...') new_branch_name = 'hotfix/{}'.format(next_patch_version) run('git checkout {}'.format(name), echo=True) run('git branch -m {}'.format(new_branch_name), echo=True) if finish: run('git flow hotfix finish {}'.format(next_patch_version), echo=True, pty=True) if push: run('git push origin master', echo=True) run('git push --tags', echo=True) run('git push origin develop', echo=True) @task def feature(name, finish=False, push=False): """Rename the current branch to a feature branch and optionally finish it.""" print('Renaming branch...') run('git branch -m feature/{}'.format(name), echo=True) if finish: run('git flow feature finish {}'.format(name), echo=True) if push: run('git push origin develop', echo=True) # Adapted from bumpversion def latest_tag_info(): try: # git-describe doesn't update the git-index, so we do that # subprocess.check_output(["git", "update-index", "--refresh"]) # get info about the latest tag in git describe_out = subprocess.check_output([ "git", "describe", "--dirty", "--tags", "--long", "--abbrev=40" ], stderr=subprocess.STDOUT ).decode().split("-") except subprocess.CalledProcessError as err: raise err # logger.warn("Error when running git describe") return {} info = {} if describe_out[-1].strip() == "dirty": info["dirty"] = True describe_out.pop() info["commit_sha"] = describe_out.pop().lstrip("g") info["distance_to_latest_tag"] = int(describe_out.pop()) info["current_version"] = describe_out.pop().lstrip("v") # assert type(info["current_version"]) == str assert 0 == len(describe_out) return info # Tasks for generating and bundling SSL certificates # See http://cosdev.readthedocs.org/en/latest/osf/ops.html for details @task def generate_key(domain, bits=2048): cmd = 'openssl genrsa -des3 -out {0}.key {1}'.format(domain, bits) run(cmd) @task def generate_key_nopass(domain): cmd = 'openssl rsa -in {domain}.key -out {domain}.key.nopass'.format( domain=domain ) run(cmd) @task def generate_csr(domain): cmd = 'openssl req -new -key {domain}.key.nopass -out {domain}.csr'.format( domain=domain ) run(cmd) @task def request_ssl_cert(domain): """Generate a key, a key with password removed, and a signing request for the specified domain. Usage: > invoke request_ssl_cert pizza.osf.io """ generate_key(domain) generate_key_nopass(domain) generate_csr(domain) @task def bundle_certs(domain, cert_path): """Concatenate certificates from NameCheap in the correct order. Certificate files must be in the same directory. """ cert_files = [ '{0}.crt'.format(domain), 'COMODORSADomainValidationSecureServerCA.crt', 'COMODORSAAddTrustCA.crt', 'AddTrustExternalCARoot.crt', ] certs = ' '.join( os.path.join(cert_path, cert_file) for cert_file in cert_files ) cmd = 'cat {certs} > {domain}.bundle.crt'.format( certs=certs, domain=domain, ) run(cmd) @task def clean_assets(): """Remove built JS files.""" public_path = os.path.join(HERE, 'website', 'static', 'public') js_path = os.path.join(public_path, 'js') run('rm -rf {0}'.format(js_path), echo=True) @task(aliases=['pack']) def webpack(clean=False, watch=False, dev=False): """Build static assets with webpack.""" if clean: clean_assets() webpack_bin = os.path.join(HERE, 'node_modules', 'webpack', 'bin', 'webpack.js') args = [webpack_bin] if settings.DEBUG_MODE and dev: args += ['--colors'] else: args += ['--progress'] if watch: args += ['--watch'] config_file = 'webpack.dev.config.js' if dev else 'webpack.prod.config.js' args += ['--config {0}'.format(config_file)] command = ' '.join(args) run(command, echo=True) @task() def build_js_config_files(): from website import settings from website.app import build_js_config_files as _build_js_config_files print('Building JS config files...') _build_js_config_files(settings) print("...Done.") @task() def assets(dev=False, watch=False): """Install and build static assets.""" npm = 'npm install' if not dev: npm += ' --production' run(npm, echo=True) bower_install() build_js_config_files() # Always set clean=False to prevent possible mistakes # on prod webpack(clean=False, watch=watch, dev=dev) @task def generate_self_signed(domain): """Generate self-signed SSL key and certificate. """ cmd = ( 'openssl req -x509 -nodes -days 365 -newkey rsa:2048' ' -keyout {0}.key -out {0}.crt' ).format(domain) run(cmd) @task def update_citation_styles(): from scripts import parse_citation_styles total = parse_citation_styles.main() print("Parsed {} styles".format(total))
apache-2.0
Adel-Magebinary/odoo
addons/l10n_ch/__openerp__.py
260
2575
# -*- coding: utf-8 -*- ############################################################################## # # Author: Nicolas Bessi. Copyright Camptocamp SA # Financial contributors: Hasa SA, Open Net SA, # Prisme Solutions Informatique SA, Quod SA # # Translation contributors: brain-tec AG, Agile Business Group # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## {'name': 'Switzerland - Accounting', 'description': """ Swiss localization ================== **Multilang Swiss PME/KMU 2015 account chart and taxes** **Author:** Camptocamp SA **Financial contributors:** Prisme Solutions Informatique SA, Quod SA **Translation contributors:** brain-tec AG, Agile Business Group The swiss localization addons are organized this way: ``l10n_ch`` Multilang Swiss PME/KMU 2015 account chart and taxes (official addon) ``l10n_ch_base_bank`` Technical module that introduces a new and simplified version of bank type management ``l10n_ch_bank`` List of swiss banks ``l10n_ch_zip`` List of swiss postal zip ``l10n_ch_dta`` Support of the DTA payment protocol (will be deprecated by the end of 2014) ``l10n_ch_payment_slip`` Support of ESR/BVR payment slip report and reconciliation. ``l10n_ch`` is located in the core Odoo modules. The other modules are in: https://github.com/OCA/l10n-switzerland """, 'version': '8.0', 'author': 'Camptocamp', 'category': 'Localization/Account Charts', 'website': 'http://www.camptocamp.com', 'depends': ['account', 'l10n_multilang'], 'data': ['report/balance_sheet.xml', 'report/profit_and_loss.xml', 'chart/account.xml', 'chart/vat2011.xml', 'chart/fiscal_position.xml', ], 'demo': [], 'test': [], 'auto_install': False, 'installable': True, } # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
rmfitzpatrick/ansible
lib/ansible/modules/commands/shell.py
44
5468
# Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # # There is no actual shell module source, when you use 'shell' in ansible, # it runs the 'command' module with special arguments and it behaves differently. # See the command source and the comment "#USE_SHELL". from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['stableinterface'], 'supported_by': 'core'} DOCUMENTATION = ''' --- module: shell short_description: Execute commands in nodes. description: - The C(shell) module takes the command name followed by a list of space-delimited arguments. It is almost exactly like the M(command) module but runs the command through a shell (C(/bin/sh)) on the remote node. - For Windows targets, use the M(win_shell) module instead. version_added: "0.2" options: free_form: description: - The shell module takes a free form command to run, as a string. There's not an actual option named "free form". See the examples! required: true default: null creates: description: - a filename, when it already exists, this step will B(not) be run. required: no default: null removes: description: - a filename, when it does not exist, this step will B(not) be run. version_added: "0.8" required: no default: null chdir: description: - cd into this directory before running the command required: false default: null version_added: "0.6" executable: description: - change the shell used to execute the command. Should be an absolute path to the executable. required: false default: null version_added: "0.9" warn: description: - if command warnings are on in ansible.cfg, do not warn about this particular line if set to no/false. required: false default: True version_added: "1.8" stdin: version_added: "2.4" description: - Set the stdin of the command directly to the specified value. required: false default: null notes: - If you want to execute a command securely and predictably, it may be better to use the M(command) module instead. Best practices when writing playbooks will follow the trend of using M(command) unless the C(shell) module is explicitly required. When running ad-hoc commands, use your best judgement. - To sanitize any variables passed to the shell module, you should use "{{ var | quote }}" instead of just "{{ var }}" to make sure they don't include evil things like semicolons. - For Windows targets, use the M(win_shell) module instead. requirements: [ ] author: - Ansible Core Team - Michael DeHaan ''' EXAMPLES = ''' - name: Execute the command in remote shell; stdout goes to the specified file on the remote. shell: somescript.sh >> somelog.txt - name: Change the working directory to somedir/ before executing the command. shell: somescript.sh >> somelog.txt args: chdir: somedir/ # You can also use the 'args' form to provide the options. - name: This command will change the working directory to somedir/ and will only run when somedir/somelog.txt doesn't exist. shell: somescript.sh >> somelog.txt args: chdir: somedir/ creates: somelog.txt - name: Run a command that uses non-posix shell-isms (in this example /bin/sh doesn't handle redirection and wildcards together but bash does) shell: cat < /tmp/*txt args: executable: /bin/bash - name: Run a command using a templated variable (always use quote filter to avoid injection) shell: cat {{ myfile|quote }} # You can use shell to run other executables to perform actions inline - name: Run expect to wait for a successful PXE boot via out-of-band CIMC shell: | set timeout 300 spawn ssh admin@{{ cimc_host }} expect "password:" send "{{ cimc_password }}\\n" expect "\\n{{ cimc_name }}" send "connect host\\n" expect "pxeboot.n12" send "\\n" exit 0 args: executable: /usr/bin/expect delegate_to: localhost ''' RETURN = ''' msg: description: changed returned: always type: boolean sample: True start: description: The command execution start time returned: always type: string sample: '2016-02-25 09:18:26.429568' end: description: The command execution end time returned: always type: string sample: '2016-02-25 09:18:26.755339' delta: description: The command execution delta time returned: always type: string sample: '0:00:00.325771' stdout: description: The command standard output returned: always type: string sample: 'Clustering node rabbit@slave1 with rabbit@master ...' stderr: description: The command standard error returned: always type: string sample: 'ls: cannot access foo: No such file or directory' cmd: description: The command executed by the task returned: always type: string sample: 'rabbitmqctl join_cluster rabbit@master' rc: description: The command return code (0 means success) returned: always type: int sample: 0 stdout_lines: description: The command standard output split in lines returned: always type: list sample: [u'Clustering node rabbit@slave1 with rabbit@master ...'] '''
gpl-3.0
chenhengjie123/crosswalk-web-driver
xwalkdriver/embed_version_in_cpp.py
3
1108
#!/usr/bin/env python # Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Embeds Xwalk user data files in C++ code.""" import optparse import os import sys import xwalk_paths import cpp_source sys.path.insert(0, os.path.join(xwalk_paths.GetSrc(), 'build', 'util')) import lastchange def main(): parser = optparse.OptionParser() parser.add_option('', '--version-file') parser.add_option( '', '--directory', type='string', default='.', help='Path to directory where the cc/h file should be created') options, args = parser.parse_args() version = open(options.version_file, 'r').read().strip() revision = lastchange.FetchVersionInfo(None).revision if revision: version += '.' + revision.strip() global_string_map = { 'kXwalkDriverVersion': version } cpp_source.WriteSource('version', 'xwalk/test/xwalkdriver', options.directory, global_string_map) if __name__ == '__main__': sys.exit(main())
bsd-3-clause
magicwang-cn/kubernetes
examples/selenium/selenium-test.py
173
1109
#!/usr/bin/env python # Copyright 2015 The Kubernetes Authors All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities def check_browser(browser): driver = webdriver.Remote( command_executor='http://selenium-hub:4444/wd/hub', desired_capabilities=getattr(DesiredCapabilities, browser) ) driver.get("http://google.com") assert "google" in driver.page_source driver.close() print("Browser %s checks out!" % browser) check_browser("FIREFOX") check_browser("CHROME")
apache-2.0
nschmidtALICE/AliPhysics
PWGPP/Alignment/utils/readMilleBinary.py
41
4281
#!/usr/bin/python ## \file # Read millepede binary file and print records # # Hardcoded defaults can be replaced by command line arguments for # - Name of binary file # - Number of records to print # - Number of records to skip (optional) # # Description of the output from readMilleBinary.py # - Records (tracks) start with \c '===' followed by record number and length # (<0 for binary files containing doubles) # - Measurements: A measurement with global derivatives is called a 'global measurement', # otherwise 'local measurement'. Usually the real measurements from the detectors are 'global' # ones and virtual measurements e.g. to describe multiple scattering are 'local'. # - 'Global' measurements start with \c '-g-' followed by measurement number, first global label, # number of local and global derivatives, measurement value and error. The next lines contain # local and global labels (array('i')) and derivatives (array('f') or array('d')). # - 'Local' measurements start with \c '-l-' followed by measurement number, first local label, # number of local and global derivatives, measurement value and error. The next lines contain # local labels (array('i')) and derivatives (array('f') or array('d')). # # Tested with SL4, SL5, SL6 import array, sys # ############### read millepede binary file ################# # ## Binary file type (C or Fortran) Cfiles = 1 # Cfiles #Cfiles = 0 # Fortran files # ## Integer format intfmt = 'i' # SL5, gcc-4 #intfmt = 'l' # SL4, gcc-3 # ## Binary file name fname = "milleBinaryISN.dat" # ## number of records (tracks) to show mrec = 10 ## number of records (track) to skip before skiprec = 0 # # ## C. Kleinwort - DESY ######################## # ## use command line arguments ? narg = len(sys.argv) if narg > 1: if narg < 3: print " usage: readMilleBinary.py <file name> <number of records> [<number of records to skip>]" sys.exit(2) else: fname = sys.argv[1] mrec = int(sys.argv[2]) if narg > 3: skiprec = int(sys.argv[3]) #print " input ", fname, mrec, skiprec f = open(fname, "rb") nrec = 0 try: while (nrec < mrec + skiprec): # read 1 record if (Cfiles == 0): lenf = array.array(intfmt) lenf.fromfile(f, 2) length = array.array(intfmt) length.fromfile(f, 1) nr = abs(length[0] / 2) nrec += 1 if length[0] > 0: glder = array.array('f') else: glder = array.array('d') glder.fromfile(f, nr) inder = array.array(intfmt) inder.fromfile(f, nr) if (Cfiles == 0): lenf = array.array(intfmt) lenf.fromfile(f, 2) if (nrec <= skiprec): # must be after last fromfile continue print " === NR ", nrec, length[0] / 2 i = 0 nh = 0 ja = 0 jb = 0 jsp = 0 nsp = 0 while (i < (nr - 1)): i += 1 while (i < nr) and (inder[i] != 0): i += 1 ja = i i += 1 while (i < nr) and (inder[i] != 0): i += 1 jb = i i += 1 while (i < nr) and (inder[i] != 0): i += 1 i -= 1 # special data ? if (ja + 1 == jb) and (glder[jb] < 0.): jsp = jb nsp = int(-glder[jb]) i += nsp print ' ### spec. ', nsp, inder[jsp + 1:i + 1], glder[jsp + 1:i + 1] continue nh += 1 if (jb < i): # measurement with global derivatives print ' -g- meas. ', nh, inder[jb + 1], jb - ja - 1, i - jb, glder[ja], glder[jb] else: # measurement without global derivatives print ' -l- meas. ', nh, inder[ja + 1], jb - ja - 1, i - jb, glder[ja], glder[jb] if (ja + 1 < jb): print " local ", inder[ja + 1:jb] print " local ", glder[ja + 1:jb] if (jb + 1 < i + 1): print " global ", inder[jb + 1:i + 1] print " global ", glder[jb + 1:i + 1] except EOFError: pass # print "end of file" f.close()
bsd-3-clause
intgr/django
tests/template_tests/syntax_tests/i18n/test_get_language_info_list.py
55
2028
from django.test import SimpleTestCase from django.utils import translation from ...utils import setup class GetLanguageInfoListTests(SimpleTestCase): libraries = { 'custom': 'template_tests.templatetags.custom', 'i18n': 'django.templatetags.i18n', } @setup({'i18n30': '{% load i18n %}' '{% get_language_info_list for langcodes as langs %}' '{% for l in langs %}{{ l.code }}: {{ l.name }}/' '{{ l.name_local }} bidi={{ l.bidi }}; {% endfor %}'}) def test_i18n30(self): output = self.engine.render_to_string('i18n30', {'langcodes': ['it', 'no']}) self.assertEqual(output, 'it: Italian/italiano bidi=False; no: Norwegian/norsk bidi=False; ') @setup({'i18n31': '{% load i18n %}' '{% get_language_info_list for langcodes as langs %}' '{% for l in langs %}{{ l.code }}: {{ l.name }}/' '{{ l.name_local }} bidi={{ l.bidi }}; {% endfor %}'}) def test_i18n31(self): output = self.engine.render_to_string('i18n31', {'langcodes': (('sl', 'Slovenian'), ('fa', 'Persian'))}) self.assertEqual( output, 'sl: Slovenian/Sloven\u0161\u010dina bidi=False; ' 'fa: Persian/\u0641\u0627\u0631\u0633\u06cc bidi=True; ' ) @setup({'i18n38_2': '{% load i18n custom %}' '{% get_language_info_list for langcodes|noop:"x y" as langs %}' '{% for l in langs %}{{ l.code }}: {{ l.name }}/' '{{ l.name_local }}/{{ l.name_translated }} ' 'bidi={{ l.bidi }}; {% endfor %}'}) def test_i18n38_2(self): with translation.override('cs'): output = self.engine.render_to_string('i18n38_2', {'langcodes': ['it', 'fr']}) self.assertEqual( output, 'it: Italian/italiano/italsky bidi=False; ' 'fr: French/français/francouzsky bidi=False; ' )
bsd-3-clause
Asilva4700/Aljos
Aljos/node_modules/node-gyp/gyp/pylib/gyp/generator/dump_dependency_json.py
1534
3426
# Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import collections import os import gyp import gyp.common import gyp.msvs_emulation import json import sys generator_supports_multiple_toolsets = True generator_wants_static_library_dependencies_adjusted = False generator_filelist_paths = { } generator_default_variables = { } for dirname in ['INTERMEDIATE_DIR', 'SHARED_INTERMEDIATE_DIR', 'PRODUCT_DIR', 'LIB_DIR', 'SHARED_LIB_DIR']: # Some gyp steps fail if these are empty(!). generator_default_variables[dirname] = 'dir' for unused in ['RULE_INPUT_PATH', 'RULE_INPUT_ROOT', 'RULE_INPUT_NAME', 'RULE_INPUT_DIRNAME', 'RULE_INPUT_EXT', 'EXECUTABLE_PREFIX', 'EXECUTABLE_SUFFIX', 'STATIC_LIB_PREFIX', 'STATIC_LIB_SUFFIX', 'SHARED_LIB_PREFIX', 'SHARED_LIB_SUFFIX', 'CONFIGURATION_NAME']: generator_default_variables[unused] = '' def CalculateVariables(default_variables, params): generator_flags = params.get('generator_flags', {}) for key, val in generator_flags.items(): default_variables.setdefault(key, val) default_variables.setdefault('OS', gyp.common.GetFlavor(params)) flavor = gyp.common.GetFlavor(params) if flavor =='win': # Copy additional generator configuration data from VS, which is shared # by the Windows Ninja generator. import gyp.generator.msvs as msvs_generator generator_additional_non_configuration_keys = getattr(msvs_generator, 'generator_additional_non_configuration_keys', []) generator_additional_path_sections = getattr(msvs_generator, 'generator_additional_path_sections', []) gyp.msvs_emulation.CalculateCommonVariables(default_variables, params) def CalculateGeneratorInputInfo(params): """Calculate the generator specific info that gets fed to input (called by gyp).""" generator_flags = params.get('generator_flags', {}) if generator_flags.get('adjust_static_libraries', False): global generator_wants_static_library_dependencies_adjusted generator_wants_static_library_dependencies_adjusted = True toplevel = params['options'].toplevel_dir generator_dir = os.path.relpath(params['options'].generator_output or '.') # output_dir: relative path from generator_dir to the build directory. output_dir = generator_flags.get('output_dir', 'out') qualified_out_dir = os.path.normpath(os.path.join( toplevel, generator_dir, output_dir, 'gypfiles')) global generator_filelist_paths generator_filelist_paths = { 'toplevel': toplevel, 'qualified_out_dir': qualified_out_dir, } def GenerateOutput(target_list, target_dicts, data, params): # Map of target -> list of targets it depends on. edges = {} # Queue of targets to visit. targets_to_visit = target_list[:] while len(targets_to_visit) > 0: target = targets_to_visit.pop() if target in edges: continue edges[target] = [] for dep in target_dicts[target].get('dependencies', []): edges[target].append(dep) targets_to_visit.append(dep) try: filepath = params['generator_flags']['output_dir'] except KeyError: filepath = '.' filename = os.path.join(filepath, 'dump.json') f = open(filename, 'w') json.dump(edges, f) f.close() print 'Wrote json to %s.' % filename
gpl-3.0
twilio/twilio-python
tests/integration/messaging/v1/test_brand_registration.py
1
5343
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from tests import IntegrationTestCase from tests.holodeck import Request from twilio.base.exceptions import TwilioException from twilio.http.response import Response class BrandRegistrationTestCase(IntegrationTestCase): def test_fetch_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.messaging.v1.brand_registrations("BNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.holodeck.assert_has_request(Request( 'get', 'https://messaging.twilio.com/v1/a2p/BrandRegistrations/BNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', )) def test_fetch_response(self): self.holodeck.mock(Response( 200, ''' { "sid": "BN0044409f7e067e279523808d267e2d85", "account_sid": "AC78e8e67fc0246521490fb9907fd0c165", "customer_profile_bundle_sid": "BU3344409f7e067e279523808d267e2d85", "a2p_profile_bundle_sid": "BU3344409f7e067e279523808d267e2d85", "date_created": "2021-01-27T14:18:35Z", "date_updated": "2021-01-27T14:18:36Z", "status": "PENDING", "tcr_id": "BXXXXXX", "failure_reason": "Registration error", "url": "https://messaging.twilio.com/v1/a2p/BrandRegistrations/BN0044409f7e067e279523808d267e2d85" } ''' )) actual = self.client.messaging.v1.brand_registrations("BNXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.assertIsNotNone(actual) def test_list_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.messaging.v1.brand_registrations.list() self.holodeck.assert_has_request(Request( 'get', 'https://messaging.twilio.com/v1/a2p/BrandRegistrations', )) def test_read_response(self): self.holodeck.mock(Response( 200, ''' { "meta": { "page": 0, "page_size": 50, "first_page_url": "https://messaging.twilio.com/v1/a2p/BrandRegistrations?PageSize=50&Page=0", "previous_page_url": null, "next_page_url": null, "key": "data", "url": "https://messaging.twilio.com/v1/a2p/BrandRegistrations?PageSize=50&Page=0" }, "data": [ { "sid": "BN0044409f7e067e279523808d267e2d85", "account_sid": "AC78e8e67fc0246521490fb9907fd0c165", "customer_profile_bundle_sid": "BU3344409f7e067e279523808d267e2d85", "a2p_profile_bundle_sid": "BU3344409f7e067e279523808d267e2d85", "date_created": "2021-01-27T14:18:35Z", "date_updated": "2021-01-27T14:18:36Z", "status": "APPROVED", "tcr_id": "BXXXXXX", "failure_reason": "Registration error", "url": "https://messaging.twilio.com/v1/a2p/BrandRegistrations/BN0044409f7e067e279523808d267e2d85" } ] } ''' )) actual = self.client.messaging.v1.brand_registrations.list() self.assertIsNotNone(actual) def test_create_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.messaging.v1.brand_registrations.create(customer_profile_bundle_sid="BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", a2p_profile_bundle_sid="BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") values = { 'CustomerProfileBundleSid': "BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", 'A2PProfileBundleSid': "BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", } self.holodeck.assert_has_request(Request( 'post', 'https://messaging.twilio.com/v1/a2p/BrandRegistrations', data=values, )) def test_create_response(self): self.holodeck.mock(Response( 201, ''' { "sid": "BN0044409f7e067e279523808d267e2d85", "account_sid": "AC78e8e67fc0246521490fb9907fd0c165", "customer_profile_bundle_sid": "BU0000009f7e067e279523808d267e2d90", "a2p_profile_bundle_sid": "BU1111109f7e067e279523808d267e2d85", "date_created": "2021-01-28T10:45:51Z", "date_updated": "2021-01-28T10:45:51Z", "status": "PENDING", "tcr_id": "BXXXXXX", "failure_reason": "Registration error", "url": "https://messaging.twilio.com/v1/a2p/BrandRegistrations/BN0044409f7e067e279523808d267e2d85" } ''' )) actual = self.client.messaging.v1.brand_registrations.create(customer_profile_bundle_sid="BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX", a2p_profile_bundle_sid="BUXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") self.assertIsNotNone(actual)
mit
PressLabs/cobalt
tests/unit/engine/conftest.py
1
1900
# Copyright 2016 Presslabs SRL # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from etcd import Lock from pytest import fixture, mark from engine import Engine, Lease, Executor @fixture @mark.usefixtures('p_create_leaser', 'p_create_lock', 'p_create_executor') def engine(m_etcd_client, volume_manager, machine_manager): return Engine(m_etcd_client, volume_manager, machine_manager, {'leaser': {'lease_ttl': 0, 'refresh_ttl': 0}, 'executor': {'timeout': 10}}) @fixture def m_lock(mocker): return mocker.MagicMock(spec=Lock) @fixture def m_lease(mocker): return mocker.MagicMock(spec=Lease) @fixture def m_executor(mocker): return mocker.MagicMock(spec=Executor) @fixture def executor(volume_manager, machine_manager): return Executor(volume_manager, machine_manager, {'timeout': 0}) @fixture def p_create_executor(mocker, engine): return mocker.patch.object(engine, '_create_executor') @fixture def p_engine_executor_timeout(mocker, engine): return mocker.patch.object(engine.executor, 'timeout') @fixture def p_engine_executor_reset(mocker, engine): return mocker.patch.object(engine.executor, 'reset') @fixture def p_executor_process(mocker, executor): return mocker.patch.object(executor, '_process') @fixture def p_executor_active_machines(mocker, executor): return mocker.patch.object(executor, 'get_active_machines')
apache-2.0
prutseltje/ansible
lib/ansible/modules/web_infrastructure/ansible_tower/tower_group.py
15
5852
#!/usr/bin/python # coding: utf-8 -*- # (c) 2017, Wayne Witzel III <[email protected]> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: tower_group author: "Wayne Witzel III (@wwitzel3)" version_added: "2.3" short_description: create, update, or destroy Ansible Tower group. description: - Create, update, or destroy Ansible Tower groups. See U(https://www.ansible.com/tower) for an overview. options: name: description: - The name to use for the group. required: True description: description: - The description to use for the group. inventory: description: - Inventory the group should be made a member of. required: True variables: description: - Variables to use for the group, use C(@) for a file. credential: description: - Credential to use for the group. source: description: - The source to use for this group. choices: ["manual", "file", "ec2", "rax", "vmware", "gce", "azure", "azure_rm", "openstack", "satellite6" , "cloudforms", "custom"] source_regions: description: - Regions for cloud provider. source_vars: description: - Override variables from source with variables from this field. instance_filters: description: - Comma-separated list of filter expressions for matching hosts. group_by: description: - Limit groups automatically created from inventory source. source_script: description: - Inventory script to be used when group type is C(custom). overwrite: description: - Delete child groups and hosts not found in source. type: bool default: 'no' overwrite_vars: description: - Override vars in child groups and hosts with those from external source. update_on_launch: description: - Refresh inventory data from its source each time a job is run. type: bool default: 'no' state: description: - Desired state of the resource. default: "present" choices: ["present", "absent"] extends_documentation_fragment: tower ''' EXAMPLES = ''' - name: Add tower group tower_group: name: localhost description: "Local Host Group" inventory: "Local Inventory" state: present tower_config_file: "~/tower_cli.cfg" ''' import os from ansible.module_utils.ansible_tower import tower_argument_spec, tower_auth_config, tower_check_mode, HAS_TOWER_CLI try: import tower_cli import tower_cli.utils.exceptions as exc from tower_cli.conf import settings except ImportError: pass def main(): argument_spec = tower_argument_spec() argument_spec.update(dict( name=dict(required=True), description=dict(), inventory=dict(required=True), variables=dict(), credential=dict(), source=dict(choices=["manual", "file", "ec2", "rax", "vmware", "gce", "azure", "azure_rm", "openstack", "satellite6", "cloudforms", "custom"], default="manual"), source_regions=dict(), source_vars=dict(), instance_filters=dict(), group_by=dict(), source_script=dict(), overwrite=dict(type='bool', default=False), overwrite_vars=dict(), update_on_launch=dict(type='bool', default=False), state=dict(choices=['present', 'absent'], default='present'), )) module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) if not HAS_TOWER_CLI: module.fail_json(msg='ansible-tower-cli required for this module') name = module.params.get('name') inventory = module.params.get('inventory') credential = module.params.get('credential') state = module.params.get('state') variables = module.params.get('variables') if variables: if variables.startswith('@'): filename = os.path.expanduser(variables[1:]) with open(filename, 'r') as f: variables = f.read() json_output = {'group': name, 'state': state} tower_auth = tower_auth_config(module) with settings.runtime_values(**tower_auth): tower_check_mode(module) group = tower_cli.get_resource('group') try: params = module.params.copy() params['create_on_missing'] = True params['variables'] = variables inv_res = tower_cli.get_resource('inventory') inv = inv_res.get(name=inventory) params['inventory'] = inv['id'] if credential: cred_res = tower_cli.get_resource('credential') cred = cred_res.get(name=credential) params['credential'] = cred['id'] if state == 'present': result = group.modify(**params) json_output['id'] = result['id'] elif state == 'absent': result = group.delete(**params) except (exc.NotFound) as excinfo: module.fail_json(msg='Failed to update the group, inventory not found: {0}'.format(excinfo), changed=False) except (exc.ConnectionError, exc.BadRequest, exc.NotFound) as excinfo: module.fail_json(msg='Failed to update the group: {0}'.format(excinfo), changed=False) json_output['changed'] = result['changed'] module.exit_json(**json_output) from ansible.module_utils.basic import AnsibleModule if __name__ == '__main__': main()
gpl-3.0
mdhaman/superdesk-core
apps/io/feeding_services/reuters.py
1
11746
# -*- coding: utf-8; -*- # # This file is part of Superdesk. # # Copyright 2013, 2014 Sourcefabric z.u. and contributors. # # For the full copyright and license information, please see the # AUTHORS and LICENSE files distributed with this source code, or # at https://www.sourcefabric.org/superdesk/license import datetime import traceback import superdesk import requests from flask import current_app as app from superdesk.errors import IngestApiError from superdesk.etree import etree, ParseError from superdesk.io.registry import register_feeding_service, register_feeding_service_parser from superdesk.io.feeding_services.http_service import HTTPFeedingService from superdesk.logging import logger from superdesk.utc import utcnow from urllib.parse import urlparse, urlunparse from flask_babel import _ requests.packages.urllib3.disable_warnings() class ReutersHTTPFeedingService(HTTPFeedingService): """ Feeding Service class which can read article(s) using HTTP provided by Reuters. """ NAME = 'reuters_http' ERRORS = [IngestApiError.apiTimeoutError().get_error_description(), IngestApiError.apiRedirectError().get_error_description(), IngestApiError.apiRequestError().get_error_description(), IngestApiError.apiUnicodeError().get_error_description(), IngestApiError.apiParseError().get_error_description(), IngestApiError.apiGeneralError().get_error_description()] DATE_FORMAT = '%Y.%m.%d.%H.%M' label = 'Reuters feed API' fields = [ { 'id': 'url', 'type': 'text', 'label': 'Feed URL', 'placeholder': 'Feed URL', 'required': True, 'default': 'http://rmb.reuters.com/rmd/rest/xml' }, { 'id': 'auth_url', 'type': 'text', 'label': 'URL for Authentication', 'placeholder': 'authentication url', 'required': True, 'default': 'https://commerce.reuters.com/rmd/rest/xml/login' }, { 'id': 'username', 'type': 'text', 'label': 'Username', 'placeholder': 'Username', 'required': True }, { 'id': 'password', 'type': 'password', 'label': 'Password', 'placeholder': 'Password', 'required': True } ] session = None def _update(self, provider, update): updated = utcnow() last_updated = provider.get('last_updated') ttl_minutes = app.config['INGEST_EXPIRY_MINUTES'] if not last_updated or last_updated < updated - datetime.timedelta(minutes=ttl_minutes): last_updated = updated - datetime.timedelta(minutes=ttl_minutes) self.provider = provider provider_config = provider.get('config') if not provider_config: provider_config = {} provider['config'] = provider_config provider_config.setdefault('url', 'http://rmb.reuters.com/rmd/rest/xml') provider_config.setdefault('auth_url', 'https://commerce.reuters.com/rmd/rest/xml/login') self.URL = provider_config.get('url') for channel in self._get_channels(): ids = self._get_article_ids(channel, last_updated, updated) for id in ids: try: items = self.fetch_ingest(id) if items: yield items # if there was an exception processing the one of the bunch log it and continue except Exception as ex: logger.warn('Reuters item {} has not been retrieved'.format(id)) logger.exception(ex) def _get_channels(self): """Get subscribed channels.""" channels = [] tree = self._get_tree('channels') for channel in tree.findall('channelInformation'): channels.append(channel.find('alias').text) return channels def _get_tree(self, endpoint, payload=None): """Get xml response for given API endpoint and payload. :param: endpoint :type endpoint: str :param: payload :type payload: str """ if payload is None: payload = {} payload['token'] = self._get_auth_token(self.provider, update=True) url = self._get_absolute_url(endpoint) if not self.session: self.session = requests.Session() retries = 0 while True: try: response = self.session.get(url, params=payload, timeout=(30, 15)) except requests.exceptions.Timeout as ex: if retries < 3: logger.warn('Reuters API timeout retrying, retries {}'.format(retries)) retries += 1 continue raise IngestApiError.apiTimeoutError(ex, self.provider) except requests.exceptions.TooManyRedirects as ex: # Tell the user their URL was bad and try a different one raise IngestApiError.apiRedirectError(ex, self.provider) except requests.exceptions.RequestException as ex: # catastrophic error. bail. raise IngestApiError.apiRequestError(ex, self.provider) except Exception as error: traceback.print_exc() raise IngestApiError.apiGeneralError(error, self.provider) if response.status_code == 404: raise LookupError(_('Not found {payload}').format(payload=payload)) break try: return etree.fromstring(response.content) # workaround for http mock lib except UnicodeEncodeError as error: traceback.print_exc() raise IngestApiError.apiUnicodeError(error, self.provider) except ParseError as error: traceback.print_exc() raise IngestApiError.apiParseError(error, self.provider) except Exception as error: traceback.print_exc() raise IngestApiError.apiGeneralError(error, self.provider) def _get_absolute_url(self, endpoint): """ Get absolute URL for given endpoint. :param: endpoint :type endpoint: str """ return '/'.join([self.URL, endpoint]) def _get_article_ids(self, channel, last_updated, updated): """ Get article ids which should be upserted also save the poll token that is returned. """ ids = set() payload = {'channel': channel, 'fieldsRef': 'id'} # check if the channel has a pollToken if not fall back to dateRange last_poll_token = self._get_poll_token(channel) if last_poll_token is not None: logger.info("Reuters requesting channel {} with poll token {}".format(channel, last_poll_token)) payload['pollToken'] = last_poll_token else: payload['dateRange'] = "%s-%s" % (self._format_date(last_updated), self._format_date(updated)) logger.info("Reuters requesting channel {} with dateRange {}".format(channel, payload['dateRange'])) tree = self._get_tree('items', payload) status_code = tree.find('status').get('code') if tree.tag == 'results' else tree.get('code') # check the returned status if status_code != '10': logger.warn("Reuters channel request returned status code {}".format(status_code)) # status code 30 indicates failure if status_code == '30': # invalid token logger.warn("Reuters error on channel {} code {} {}".format(channel, tree.find('error').get('code'), tree.find('error').text)) if tree.find('error').get('code') == '2100': self._save_poll_token(channel, None) logger.warn("Reuters channel invalid token reseting {}".format(status_code)) return ids # extract the returned poll token if there is one poll_token = tree.find('pollToken') if poll_token is not None: # a new token indicated new content if poll_token.text != last_poll_token: logger.info("Reuters channel {} new token {}".format(channel, poll_token.text)) self._save_poll_token(channel, poll_token.text) else: # the token has not changed, so nothing new logger.info("Reuters channel {} nothing new".format(channel)) return ids else: logger.info("Reuters channel {} retrieved no token".format(channel)) return ids for result in tree.findall('result'): id = result.find('id').text ids.add(id) logger.info("Reuters id : {}".format(id)) return ids def _save_poll_token(self, channel, poll_token): """Saves the poll token for the passed channel in the config section of the :param channel: :param poll_token: :return: """ # get the provider in case it has been updated by another channel ingest_provider_service = superdesk.get_resource_service('ingest_providers') provider = ingest_provider_service.find_one(req=None, _id=self.provider[superdesk.config.ID_FIELD]) provider_token = provider.get('tokens') if 'poll_tokens' not in provider_token: provider_token['poll_tokens'] = {channel: poll_token} else: provider_token['poll_tokens'][channel] = poll_token upd_provider = {'tokens': provider_token} ingest_provider_service.system_update(self.provider[superdesk.config.ID_FIELD], upd_provider, self.provider) def _get_poll_token(self, channel): """Get the poll token from provider config if it is available. :param channel: :return: token """ if 'tokens' in self.provider and 'poll_tokens' in self.provider['tokens']: return self.provider.get('tokens').get('poll_tokens').get(channel, None) def _format_date(self, date): return date.strftime(self.DATE_FORMAT) def fetch_ingest(self, id): items = self._parse_items(id) result_items = [] while items: item = items.pop() self.add_timestamps(item) try: items.extend(self._fetch_items_in_package(item)) result_items.append(item) except LookupError as err: self.log_item_error(err, item, self.provider) return [] return result_items def _parse_items(self, id): """ Parse item message and return given items. """ payload = {'id': id} tree = self._get_tree('item', payload) parser = self.get_feed_parser(self.provider, tree) items = parser.parse(tree, self.provider) return items def _fetch_items_in_package(self, item): """ Fetch remote assets for given item. """ items = [] for group in item.get('groups', []): for ref in group.get('refs', []): if 'residRef' in ref: items.extend(self._parse_items(ref.get('residRef'))) return items def prepare_href(self, href, mimetype=None): (scheme, netloc, path, params, query, fragment) = urlparse(href) new_href = urlunparse((scheme, netloc, path, '', '', '')) return '%s?auth_token=%s' % (new_href, self._get_auth_token(self.provider, update=True)) register_feeding_service(ReutersHTTPFeedingService) register_feeding_service_parser(ReutersHTTPFeedingService.NAME, 'newsml2')
agpl-3.0
izv/IzVerifier
IzVerifier/izspecs/containers/izclasses.py
1
4268
import re from IzVerifier.izspecs.containers.izcontainer import IzContainer from IzVerifier.izspecs.containers.constants import * from os import walk __author__ = 'fcanas' class IzClasses(IzContainer): """ Container for parsing and storing custom classes used in izpack installers. """ properties = { NAME: "classes", DEFINITION_SPEC_FILES: [], REFERENCE_SPEC_FILES: [ "install", "userInputSpec", "ProcessPanel.Spec", "core-packs"], ATTRIBUTES: ['class', 'name', 'classname', 'installer'], SPEC_ELEMENT: '', PARENT_OPENING_TAG: '', PARENT_CLOSING_TAG: '', WHITE_LIST: [], PATTERNS: [], READ_PATTERNS: [], WRITE_PATTERNS: [], WHITE_LIST_PATTERNS: ['^com.izforge.izpack.*$'] } def __init__(self, path=None): """ Initializes the container from the path to the root of custom source code. Note: does not make use of parent class __init__. """ self.container = {} self.referenced = {} if path: self.parse(path) def parse(self, root): """ Izclasses are not pre-defined anywhere. All we can do is make a collection of all custom classes used in source code and index that. """ for paths, dirs, files in walk(root): for f in files: if '.java' in f: path = paths + '/' + f name = self.path_to_id(root, path) self.container[name] = path def get_keys(self): """ Returns a set of all the keys for existing custom classes. """ return set(self.container.keys()) | set(self.properties[WHITE_LIST]) def count(self): """ Return number of vars found in definition file. """ return len(self.container.keys()) def print_keys(self): """ Prints all of the variable keys found in definition spec. """ for key in self.container.keys(): print key def get_spec_elements(self): """ Returns a set of xml elements defining each variable. """ return set(self.container.values()) def to_string(self): return str(self.container) def has_reference(self, element): """ Return true if the given element contains an izpack var reference. """ def is_izpack_class(classname): """ Determines if this references an izpack built-in class. """ if type(classname) is list: classname = classname[0] return not '.' in classname if element.has_attr('name') and element.name == 'executeclass': return not is_izpack_class(element['name']) if element.has_attr('class'): return not is_izpack_class(element['class']) if element.has_attr('classname'): return not is_izpack_class(element['classname']) if element.has_attr('installer') and element.name == 'listener': return not is_izpack_class(element['installer']) return False def has_definition(self, element): """ Custom izpack classes are not defined by xml descriptors, so this method is unused. """ pass @staticmethod def path_to_id(root, path): """ Transforms a classpath to a class id. """ path = path.replace(root, '').replace('/', '.') path = re.sub('\.java$', '', path) return path @staticmethod def element_sort_key(element): """ Returns the key to use when sorting elements of this container. """ return element['class'].lower() @staticmethod def get_identifier(element): """ Returns the identifying value for this element. """ return element['class'] @staticmethod def get_value(element): """ Returns the main 'value' for this element. """ return element @staticmethod def ref_transformer(ref): """ Unwraps the ref if necessary. """ return [ref]
mit
NonnEmilia/OpenGenfri
pos/pos/settings.py
2
3093
""" Django settings for pos project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Ignore the following error when using ipython: # /usr/local/lib/python2.7/site-packages/django/db/backends/sqlite3/base.py:63: # RuntimeWarning: SQLite received a naive datetime (2014-12-19 16:46:59.585773) # while time zone support is active. import warnings import exceptions warnings.filterwarnings("ignore", category=exceptions.RuntimeWarning, module='django.db.backends.sqlite3.base', lineno=63) # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'at=5ht_msawx#8jns_#fu!)x6c7n*0x5+2&(&mmq^o)!#-#h^n' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True TEMPLATE_DIRS = [os.path.join(BASE_DIR, 'templates')] ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'webpos', 'easy_pdf', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'pos.urls' WSGI_APPLICATION = 'pos.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), # 'ATOMIC_REQUESTS': True, } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'it-IT' TIME_ZONE = 'Europe/Rome' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ STATIC_URL = '/static/' LOGIN_URL = '/login/' LOGIN_REDIRECT_URL = '/' #LOGGING = { # 'version': 1, # 'disable_existing_loggers': False, # 'handlers': { # 'file': { # 'level': 'DEBUG', # 'class': 'logging.FileHandler', # 'filename': 'everything.log', # }, # }, # 'loggers': { # 'django.request': { # 'handlers': ['file'], # 'level': 'DEBUG', # 'propagate': True, # }, # }, #} STATIC_ROOT = BASE_DIR + '/static/'
mit
htwenhe/DJOA
env/Lib/site-packages/django/utils/version.py
344
2445
from __future__ import unicode_literals import datetime import os import subprocess from django.utils.lru_cache import lru_cache def get_version(version=None): "Returns a PEP 386-compliant version number from VERSION." version = get_complete_version(version) # Now build the two parts of the version number: # main = X.Y[.Z] # sub = .devN - for pre-alpha releases # | {a|b|c}N - for alpha, beta and rc releases main = get_main_version(version) sub = '' if version[3] == 'alpha' and version[4] == 0: git_changeset = get_git_changeset() if git_changeset: sub = '.dev%s' % git_changeset elif version[3] != 'final': mapping = {'alpha': 'a', 'beta': 'b', 'rc': 'c'} sub = mapping[version[3]] + str(version[4]) return str(main + sub) def get_main_version(version=None): "Returns main version (X.Y[.Z]) from VERSION." version = get_complete_version(version) parts = 2 if version[2] == 0 else 3 return '.'.join(str(x) for x in version[:parts]) def get_complete_version(version=None): """Returns a tuple of the django version. If version argument is non-empty, then checks for correctness of the tuple provided. """ if version is None: from django import VERSION as version else: assert len(version) == 5 assert version[3] in ('alpha', 'beta', 'rc', 'final') return version def get_docs_version(version=None): version = get_complete_version(version) if version[3] != 'final': return 'dev' else: return '%d.%d' % version[:2] @lru_cache() def get_git_changeset(): """Returns a numeric identifier of the latest git changeset. The result is the UTC timestamp of the changeset in YYYYMMDDHHMMSS format. This value isn't guaranteed to be unique, but collisions are very unlikely, so it's sufficient for generating the development version numbers. """ repo_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) git_log = subprocess.Popen('git log --pretty=format:%ct --quiet -1 HEAD', stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, cwd=repo_dir, universal_newlines=True) timestamp = git_log.communicate()[0] try: timestamp = datetime.datetime.utcfromtimestamp(int(timestamp)) except ValueError: return None return timestamp.strftime('%Y%m%d%H%M%S')
mit
zanbel/david
tests/test_vocabcompiler.py
38
5213
#!/usr/bin/env python2 # -*- coding: utf-8-*- import unittest import tempfile import contextlib import logging import shutil import mock from client import vocabcompiler class TestVocabCompiler(unittest.TestCase): def testPhraseExtraction(self): expected_phrases = ['MOCK'] mock_module = mock.Mock() mock_module.WORDS = ['MOCK'] with mock.patch('client.brain.Brain.get_modules', classmethod(lambda cls: [mock_module])): extracted_phrases = vocabcompiler.get_all_phrases() self.assertEqual(expected_phrases, extracted_phrases) def testKeywordPhraseExtraction(self): expected_phrases = ['MOCK'] with tempfile.TemporaryFile() as f: # We can't use mock_open here, because it doesn't seem to work # with the 'for line in f' syntax f.write("MOCK\n") f.seek(0) with mock.patch('%s.open' % vocabcompiler.__name__, return_value=f, create=True): extracted_phrases = vocabcompiler.get_keyword_phrases() self.assertEqual(expected_phrases, extracted_phrases) class TestVocabulary(unittest.TestCase): VOCABULARY = vocabcompiler.DummyVocabulary @contextlib.contextmanager def do_in_tempdir(self): tempdir = tempfile.mkdtemp() yield tempdir shutil.rmtree(tempdir) def testVocabulary(self): phrases = ['GOOD BAD UGLY'] with self.do_in_tempdir() as tempdir: self.vocab = self.VOCABULARY(path=tempdir) self.assertIsNone(self.vocab.compiled_revision) self.assertFalse(self.vocab.is_compiled) self.assertFalse(self.vocab.matches_phrases(phrases)) # We're now testing error handling. To avoid flooding the # output with error messages that are catched anyway, # we'll temporarly disable logging. Otherwise, error log # messages and traceback would be printed so that someone # might think that tests failed even though they succeeded. logging.disable(logging.ERROR) with self.assertRaises(OSError): with mock.patch('os.makedirs', side_effect=OSError('test')): self.vocab.compile(phrases) with self.assertRaises(OSError): with mock.patch('%s.open' % vocabcompiler.__name__, create=True, side_effect=OSError('test')): self.vocab.compile(phrases) class StrangeCompilationError(Exception): pass with mock.patch.object(self.vocab, '_compile_vocabulary', side_effect=StrangeCompilationError('test') ): with self.assertRaises(StrangeCompilationError): self.vocab.compile(phrases) with self.assertRaises(StrangeCompilationError): with mock.patch('os.remove', side_effect=OSError('test')): self.vocab.compile(phrases) # Re-enable logging again logging.disable(logging.NOTSET) self.vocab.compile(phrases) self.assertIsInstance(self.vocab.compiled_revision, str) self.assertTrue(self.vocab.is_compiled) self.assertTrue(self.vocab.matches_phrases(phrases)) self.vocab.compile(phrases) self.vocab.compile(phrases, force=True) class TestPocketsphinxVocabulary(TestVocabulary): VOCABULARY = vocabcompiler.PocketsphinxVocabulary @unittest.skipUnless(hasattr(vocabcompiler, 'cmuclmtk'), "CMUCLMTK not present") def testVocabulary(self): super(TestPocketsphinxVocabulary, self).testVocabulary() self.assertIsInstance(self.vocab.decoder_kwargs, dict) self.assertIn('lm', self.vocab.decoder_kwargs) self.assertIn('dict', self.vocab.decoder_kwargs) def testPatchedVocabulary(self): def write_test_vocab(text, output_file): with open(output_file, "w") as f: for word in text.split(' '): f.write("%s\n" % word) def write_test_lm(text, output_file, **kwargs): with open(output_file, "w") as f: f.write("TEST") class DummyG2P(object): def __init__(self, *args, **kwargs): pass @classmethod def get_config(self, *args, **kwargs): return {} def translate(self, *args, **kwargs): return {'GOOD': ['G UH D', 'G UW D'], 'BAD': ['B AE D'], 'UGLY': ['AH G L IY']} with mock.patch('client.vocabcompiler.cmuclmtk', create=True) as mocked_cmuclmtk: mocked_cmuclmtk.text2vocab = write_test_vocab mocked_cmuclmtk.text2lm = write_test_lm with mock.patch('client.vocabcompiler.PhonetisaurusG2P', DummyG2P): self.testVocabulary()
mit
noisemaster/AdamTestBot
unidecode/x01e.py
246
3853
data = ( 'A', # 0x00 'a', # 0x01 'B', # 0x02 'b', # 0x03 'B', # 0x04 'b', # 0x05 'B', # 0x06 'b', # 0x07 'C', # 0x08 'c', # 0x09 'D', # 0x0a 'd', # 0x0b 'D', # 0x0c 'd', # 0x0d 'D', # 0x0e 'd', # 0x0f 'D', # 0x10 'd', # 0x11 'D', # 0x12 'd', # 0x13 'E', # 0x14 'e', # 0x15 'E', # 0x16 'e', # 0x17 'E', # 0x18 'e', # 0x19 'E', # 0x1a 'e', # 0x1b 'E', # 0x1c 'e', # 0x1d 'F', # 0x1e 'f', # 0x1f 'G', # 0x20 'g', # 0x21 'H', # 0x22 'h', # 0x23 'H', # 0x24 'h', # 0x25 'H', # 0x26 'h', # 0x27 'H', # 0x28 'h', # 0x29 'H', # 0x2a 'h', # 0x2b 'I', # 0x2c 'i', # 0x2d 'I', # 0x2e 'i', # 0x2f 'K', # 0x30 'k', # 0x31 'K', # 0x32 'k', # 0x33 'K', # 0x34 'k', # 0x35 'L', # 0x36 'l', # 0x37 'L', # 0x38 'l', # 0x39 'L', # 0x3a 'l', # 0x3b 'L', # 0x3c 'l', # 0x3d 'M', # 0x3e 'm', # 0x3f 'M', # 0x40 'm', # 0x41 'M', # 0x42 'm', # 0x43 'N', # 0x44 'n', # 0x45 'N', # 0x46 'n', # 0x47 'N', # 0x48 'n', # 0x49 'N', # 0x4a 'n', # 0x4b 'O', # 0x4c 'o', # 0x4d 'O', # 0x4e 'o', # 0x4f 'O', # 0x50 'o', # 0x51 'O', # 0x52 'o', # 0x53 'P', # 0x54 'p', # 0x55 'P', # 0x56 'p', # 0x57 'R', # 0x58 'r', # 0x59 'R', # 0x5a 'r', # 0x5b 'R', # 0x5c 'r', # 0x5d 'R', # 0x5e 'r', # 0x5f 'S', # 0x60 's', # 0x61 'S', # 0x62 's', # 0x63 'S', # 0x64 's', # 0x65 'S', # 0x66 's', # 0x67 'S', # 0x68 's', # 0x69 'T', # 0x6a 't', # 0x6b 'T', # 0x6c 't', # 0x6d 'T', # 0x6e 't', # 0x6f 'T', # 0x70 't', # 0x71 'U', # 0x72 'u', # 0x73 'U', # 0x74 'u', # 0x75 'U', # 0x76 'u', # 0x77 'U', # 0x78 'u', # 0x79 'U', # 0x7a 'u', # 0x7b 'V', # 0x7c 'v', # 0x7d 'V', # 0x7e 'v', # 0x7f 'W', # 0x80 'w', # 0x81 'W', # 0x82 'w', # 0x83 'W', # 0x84 'w', # 0x85 'W', # 0x86 'w', # 0x87 'W', # 0x88 'w', # 0x89 'X', # 0x8a 'x', # 0x8b 'X', # 0x8c 'x', # 0x8d 'Y', # 0x8e 'y', # 0x8f 'Z', # 0x90 'z', # 0x91 'Z', # 0x92 'z', # 0x93 'Z', # 0x94 'z', # 0x95 'h', # 0x96 't', # 0x97 'w', # 0x98 'y', # 0x99 'a', # 0x9a 'S', # 0x9b '[?]', # 0x9c '[?]', # 0x9d 'Ss', # 0x9e '[?]', # 0x9f 'A', # 0xa0 'a', # 0xa1 'A', # 0xa2 'a', # 0xa3 'A', # 0xa4 'a', # 0xa5 'A', # 0xa6 'a', # 0xa7 'A', # 0xa8 'a', # 0xa9 'A', # 0xaa 'a', # 0xab 'A', # 0xac 'a', # 0xad 'A', # 0xae 'a', # 0xaf 'A', # 0xb0 'a', # 0xb1 'A', # 0xb2 'a', # 0xb3 'A', # 0xb4 'a', # 0xb5 'A', # 0xb6 'a', # 0xb7 'E', # 0xb8 'e', # 0xb9 'E', # 0xba 'e', # 0xbb 'E', # 0xbc 'e', # 0xbd 'E', # 0xbe 'e', # 0xbf 'E', # 0xc0 'e', # 0xc1 'E', # 0xc2 'e', # 0xc3 'E', # 0xc4 'e', # 0xc5 'E', # 0xc6 'e', # 0xc7 'I', # 0xc8 'i', # 0xc9 'I', # 0xca 'i', # 0xcb 'O', # 0xcc 'o', # 0xcd 'O', # 0xce 'o', # 0xcf 'O', # 0xd0 'o', # 0xd1 'O', # 0xd2 'o', # 0xd3 'O', # 0xd4 'o', # 0xd5 'O', # 0xd6 'o', # 0xd7 'O', # 0xd8 'o', # 0xd9 'O', # 0xda 'o', # 0xdb 'O', # 0xdc 'o', # 0xdd 'O', # 0xde 'o', # 0xdf 'O', # 0xe0 'o', # 0xe1 'O', # 0xe2 'o', # 0xe3 'U', # 0xe4 'u', # 0xe5 'U', # 0xe6 'u', # 0xe7 'U', # 0xe8 'u', # 0xe9 'U', # 0xea 'u', # 0xeb 'U', # 0xec 'u', # 0xed 'U', # 0xee 'u', # 0xef 'U', # 0xf0 'u', # 0xf1 'Y', # 0xf2 'y', # 0xf3 'Y', # 0xf4 'y', # 0xf5 'Y', # 0xf6 'y', # 0xf7 'Y', # 0xf8 'y', # 0xf9 '[?]', # 0xfa '[?]', # 0xfb '[?]', # 0xfc '[?]', # 0xfd '[?]', # 0xfe )
mit
alexjc/pylearn2
pylearn2/models/mlp.py
5
166132
""" Multilayer Perceptron """ __authors__ = "Ian Goodfellow" __copyright__ = "Copyright 2012-2013, Universite de Montreal" __credits__ = ["Ian Goodfellow", "David Warde-Farley"] __license__ = "3-clause BSD" __maintainer__ = "LISA Lab" import logging import math import operator import sys import warnings import numpy as np from theano.compat import six from theano.compat.six.moves import reduce, xrange from theano import config from theano.gof.op import get_debug_values from theano.sandbox.cuda import cuda_enabled from theano.sandbox.cuda.dnn import dnn_available, dnn_pool from theano.sandbox.rng_mrg import MRG_RandomStreams from theano.tensor.signal.downsample import max_pool_2d import theano.tensor as T from pylearn2.compat import OrderedDict from pylearn2.costs.mlp import Default from pylearn2.expr.probabilistic_max_pooling import max_pool_channels # Try to import the fast cudnn library, else fallback to conv2d if cuda_enabled and dnn_available(): try: from pylearn2.linear import cudnn2d as conv2d except ImportError: from pylearn2.linear import conv2d else: from pylearn2.linear import conv2d from pylearn2.linear.matrixmul import MatrixMul from pylearn2.model_extensions.norm_constraint import MaxL2FilterNorm from pylearn2.models.model import Model from pylearn2.monitor import get_monitor_doc from pylearn2.expr.nnet import arg_of_softmax from pylearn2.expr.nnet import pseudoinverse_softmax_numpy from pylearn2.space import CompositeSpace from pylearn2.space import Conv2DSpace from pylearn2.space import Space from pylearn2.space import VectorSpace, IndexSpace from pylearn2.utils import function from pylearn2.utils import is_iterable from pylearn2.utils import py_float_types from pylearn2.utils import py_integer_types from pylearn2.utils import safe_union from pylearn2.utils import safe_zip from pylearn2.utils import safe_izip from pylearn2.utils import sharedX from pylearn2.utils import wraps from pylearn2.utils import contains_inf from pylearn2.utils import isfinite from pylearn2.utils.data_specs import DataSpecsMapping from pylearn2.expr.nnet import (elemwise_kl, kl, compute_precision, compute_recall, compute_f1) # Only to be used by the deprecation warning wrapper functions from pylearn2.costs.mlp import L1WeightDecay as _L1WD from pylearn2.costs.mlp import WeightDecay as _WD logger = logging.getLogger(__name__) logger.debug("MLP changing the recursion limit.") # We need this to be high enough that the big theano graphs we make # when doing max pooling via subtensors don't cause python to complain. # python intentionally declares stack overflow well before the stack # segment is actually exceeded. But we can't make this value too big # either, or we'll get seg faults when the python interpreter really # does go over the stack segment. # IG encountered seg faults on eos3 (a machine at LISA labo) when using # 50000 so for now it is set to 40000. # I think the actual safe recursion limit can't be predicted in advance # because you don't know how big of a stack frame each function will # make, so there is not really a "correct" way to do this. Really the # python interpreter should provide an option to raise the error # precisely when you're going to exceed the stack segment. sys.setrecursionlimit(40000) class Layer(Model): """ Abstract class. A Layer of an MLP. May only belong to one MLP. Parameters ---------- kwargs : dict Passed on to the superclass. Notes ----- This is not currently a Block because as far as I know the Block interface assumes every input is a single matrix. It doesn't support using Spaces to work with composite inputs, stacked multichannel image inputs, etc. If the Block interface were upgraded to be that flexible, then we could make this a block. """ # When applying dropout to a layer's input, use this for masked values. # Usually this will be 0, but certain kinds of layers may want to override # this behaviour. dropout_input_mask_value = 0. def get_mlp(self): """ Returns the MLP that this layer belongs to. Returns ------- mlp : MLP The MLP that this layer belongs to, or None if it has not been assigned to an MLP yet. """ if hasattr(self, 'mlp'): return self.mlp return None def set_mlp(self, mlp): """ Assigns this layer to an MLP. This layer will then use the MLP's random number generator, batch size, etc. This layer's name must be unique within the MLP. Parameters ---------- mlp : MLP """ assert self.get_mlp() is None self.mlp = mlp def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): """ Returns monitoring channels. Parameters ---------- state_below : member of self.input_space A minibatch of states that this Layer took as input. Most of the time providing state_blow is unnecessary when state is given. state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. targets : member of self.output_space Should be None unless this is the last layer. If specified, it should be a minibatch of targets for the last layer. Returns ------- channels : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ return OrderedDict() def fprop(self, state_below): """ Does the forward prop transformation for this layer. Parameters ---------- state_below : member of self.input_space A minibatch of states of the layer below. Returns ------- state : member of self.output_space A minibatch of states of this layer. """ raise NotImplementedError( str(type(self)) + " does not implement fprop.") def cost(self, Y, Y_hat): """ The cost of outputting Y_hat when the true output is Y. Parameters ---------- Y : theano.gof.Variable The targets Y_hat : theano.gof.Variable The predictions. Assumed to be the output of the layer's `fprop` method. The implmentation is permitted to do things like look at the ancestors of `Y_hat` in the theano graph. This is useful for e.g. computing numerically stable *log* probabilities when `Y_hat` is the *probability*. Returns ------- cost : theano.gof.Variable A Theano scalar describing the cost. """ raise NotImplementedError( str(type(self)) + " does not implement mlp.Layer.cost.") def cost_from_cost_matrix(self, cost_matrix): """ The cost final scalar cost computed from the cost matrix Parameters ---------- cost_matrix : WRITEME Examples -------- >>> # C = model.cost_matrix(Y, Y_hat) >>> # Do something with C like setting some values to 0 >>> # cost = model.cost_from_cost_matrix(C) """ raise NotImplementedError( str(type(self)) + " does not implement " "mlp.Layer.cost_from_cost_matrix.") def cost_matrix(self, Y, Y_hat): """ The element wise cost of outputting Y_hat when the true output is Y. Parameters ---------- Y : WRITEME Y_hat : WRITEME Returns ------- WRITEME """ raise NotImplementedError( str(type(self)) + " does not implement mlp.Layer.cost_matrix") def set_weights(self, weights): """ Sets the weights of the layer. Parameters ---------- weights : ndarray A numpy ndarray containing the desired weights of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement set_weights.") def get_biases(self): """ Returns the value of the biases of the layer. Returns ------- biases : ndarray A numpy ndarray containing the biases of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement " "get_biases (perhaps because the class has no biases).") def set_biases(self, biases): """ Sets the biases of the layer. Parameters ---------- biases : ndarray A numpy ndarray containing the desired biases of the layer. This docstring is provided by the Layer base class. Layer subclasses should add their own docstring explaining the subclass-specific format of the ndarray. """ raise NotImplementedError( str(type(self)) + " does not implement " "set_biases (perhaps because the class has no biases).") def get_weights_format(self): """ Returns a description of how to interpret the weights of the layer. Returns ------- format: tuple Either ('v', 'h') or ('h', 'v'). ('v', 'h') means a weight matrix of shape (num visible units, num hidden units), while ('h', 'v') means the transpose of it. """ raise NotImplementedError def get_weight_decay(self, coeff): """ Provides an expression for a squared L2 penalty on the weights. Parameters ---------- coeff : float or tuple The coefficient on the weight decay penalty for this layer. This docstring is provided by the Layer base class. Individual Layer subclasses should add their own docstring explaining the format of `coeff` for that particular layer. For most ordinary layers, `coeff` is a single float to multiply by the weight decay term. Layers containing many pieces may take a tuple or nested tuple of floats, and should explain the semantics of the different elements of the tuple. Returns ------- weight_decay : theano.gof.Variable An expression for the weight decay penalty term for this layer. """ raise NotImplementedError( str(type(self)) + " does not implement get_weight_decay.") def get_l1_weight_decay(self, coeff): """ Provides an expression for an L1 penalty on the weights. Parameters ---------- coeff : float or tuple The coefficient on the L1 weight decay penalty for this layer. This docstring is provided by the Layer base class. Individual Layer subclasses should add their own docstring explaining the format of `coeff` for that particular layer. For most ordinary layers, `coeff` is a single float to multiply by the weight decay term. Layers containing many pieces may take a tuple or nested tuple of floats, and should explain the semantics of the different elements of the tuple. Returns ------- weight_decay : theano.gof.Variable An expression for the L1 weight decay penalty term for this layer. """ raise NotImplementedError( str(type(self)) + " does not implement get_l1_weight_decay.") def set_input_space(self, space): """ Tells the layer to prepare for input formatted according to the given space. Parameters ---------- space : Space The Space the input to this layer will lie in. Notes ----- This usually resets parameters. """ raise NotImplementedError( str(type(self)) + " does not implement set_input_space.") class MLP(Layer): """ A multilayer perceptron. Note that it's possible for an entire MLP to be a single layer of a larger MLP. Parameters ---------- layers : list A list of Layer objects. The final layer specifies the output space of this MLP. batch_size : int, optional If not specified then must be a positive integer. Mostly useful if one of your layers involves a Theano op like convolution that requires a hard-coded batch size. nvis : int, optional Number of "visible units" (input units). Equivalent to specifying `input_space=VectorSpace(dim=nvis)`. Note that certain methods require a different type of input space (e.g. a Conv2Dspace in the case of convnets). Use the input_space parameter in such cases. Should be None if the MLP is part of another MLP. input_space : Space object, optional A Space specifying the kind of input the MLP accepts. If None, input space is specified by nvis. Should be None if the MLP is part of another MLP. input_source : string or (nested) tuple of strings, optional A (nested) tuple of strings specifiying the input sources this MLP accepts. The structure should match that of input_space. The default is 'features'. Note that this argument is ignored when the MLP is nested. target_source : string or (nested) tuple of strings, optional A (nested) tuple of strings specifiying the target sources this MLP accepts. The structure should match that of target_space. The default is 'targets'. Note that this argument is ignored when the MLP is nested. layer_name : name of the MLP layer. Should be None if the MLP is not part of another MLP. seed : WRITEME monitor_targets : bool, optional Default: True If true, includes monitoring channels that are functions of the targets. This can be disabled to allow monitoring on monitoring datasets that do not include targets. kwargs : dict Passed on to the superclass. """ def __init__(self, layers, batch_size=None, input_space=None, input_source='features', target_source='targets', nvis=None, seed=None, layer_name=None, monitor_targets=True, **kwargs): super(MLP, self).__init__(**kwargs) self.seed = seed assert isinstance(layers, list) assert all(isinstance(layer, Layer) for layer in layers) assert len(layers) >= 1 self.layer_name = layer_name self.layer_names = set() for layer in layers: assert layer.get_mlp() is None if layer.layer_name in self.layer_names: raise ValueError("MLP.__init__ given two or more layers " "with same name: " + layer.layer_name) layer.set_mlp(self) self.layer_names.add(layer.layer_name) self.layers = layers self.batch_size = batch_size self.force_batch_size = batch_size self._input_source = input_source self._target_source = target_source self.monitor_targets = monitor_targets if input_space is not None or nvis is not None: self._nested = False self.setup_rng() # check if the layer_name is None (the MLP is the outer MLP) assert layer_name is None if nvis is not None: input_space = VectorSpace(nvis) # Check whether the input_space and input_source structures match try: DataSpecsMapping((input_space, input_source)) except ValueError: raise ValueError("The structures of `input_space`, %s, and " "`input_source`, %s do not match. If you " "specified a CompositeSpace as an input, " "be sure to specify the data sources as well." % (input_space, input_source)) self.input_space = input_space self._update_layer_input_spaces() else: self._nested = True self.freeze_set = set([]) @property def input_source(self): assert not self._nested, "A nested MLP does not have an input source" return self._input_source @property def target_source(self): assert not self._nested, "A nested MLP does not have a target source" return self._target_source def setup_rng(self): """ .. todo:: WRITEME """ assert not self._nested, "Nested MLPs should use their parent's RNG" if self.seed is None: self.seed = [2013, 1, 4] self.rng = np.random.RandomState(self.seed) @wraps(Layer.get_default_cost) def get_default_cost(self): return Default() @wraps(Layer.get_output_space) def get_output_space(self): return self.layers[-1].get_output_space() @wraps(Layer.get_target_space) def get_target_space(self): return self.layers[-1].get_target_space() @wraps(Layer.set_input_space) def set_input_space(self, space): if hasattr(self, "mlp"): assert self._nested self.rng = self.mlp.rng self.batch_size = self.mlp.batch_size self.input_space = space self._update_layer_input_spaces() def _update_layer_input_spaces(self): """ Tells each layer what its input space should be. Notes ----- This usually resets the layer's parameters! """ layers = self.layers try: layers[0].set_input_space(self.get_input_space()) except BadInputSpaceError as e: raise TypeError("Layer 0 (" + str(layers[0]) + " of type " + str(type(layers[0])) + ") does not support the MLP's " + "specified input space (" + str(self.get_input_space()) + " of type " + str(type(self.get_input_space())) + "). Original exception: " + str(e)) for i in xrange(1, len(layers)): layers[i].set_input_space(layers[i - 1].get_output_space()) def add_layers(self, layers): """ Add new layers on top of the existing hidden layers Parameters ---------- layers : WRITEME """ existing_layers = self.layers assert len(existing_layers) > 0 for layer in layers: assert layer.get_mlp() is None layer.set_mlp(self) # In the case of nested MLPs, input/output spaces may have not yet # been initialized if not self._nested or hasattr(self, 'input_space'): layer.set_input_space(existing_layers[-1].get_output_space()) existing_layers.append(layer) assert layer.layer_name not in self.layer_names self.layer_names.add(layer.layer_name) def freeze(self, parameter_set): """ Freezes some of the parameters (new theano functions that implement learning will not use them; existing theano functions will continue to modify them). Parameters ---------- parameter_set : set Set of parameters to freeze. """ self.freeze_set = self.freeze_set.union(parameter_set) @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self, data): # if the MLP is the outer MLP \ # (ie MLP is not contained in another structure) if self.monitor_targets: X, Y = data else: X = data Y = None rval = self.get_layer_monitoring_channels(state_below=X, targets=Y) return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() state = state_below for layer in self.layers: # We don't go through all the inner layers recursively state_below = state state = layer.fprop(state) args = [state_below, state] if layer is self.layers[-1] and targets is not None: args.append(targets) ch = layer.get_layer_monitoring_channels(*args) if not isinstance(ch, OrderedDict): raise TypeError(str((type(ch), layer.layer_name))) for key in ch: value = ch[key] doc = get_monitor_doc(value) if doc is None: doc = str(type(layer)) + \ ".get_monitoring_channels_from_state did" + \ " not provide any further documentation for" + \ " this channel." doc = 'This channel came from a layer called "' + \ layer.layer_name + '" of an MLP.\n' + doc value.__doc__ = doc rval[layer.layer_name + '_' + key] = value return rval def get_monitoring_data_specs(self): """ Returns data specs requiring both inputs and targets. Returns ------- data_specs: TODO The data specifications for both inputs and targets. """ if not self.monitor_targets: return (self.get_input_space(), self.get_input_source()) space = CompositeSpace((self.get_input_space(), self.get_target_space())) source = (self.get_input_source(), self.get_target_source()) return (space, source) @wraps(Layer.get_params) def get_params(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") rval = [] for layer in self.layers: for param in layer.get_params(): if param.name is None: logger.info(type(layer)) layer_params = layer.get_params() assert not isinstance(layer_params, set) for param in layer_params: if param not in rval: rval.append(param) rval = [elem for elem in rval if elem not in self.freeze_set] assert all([elem.name is not None for elem in rval]) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeffs): # check the case where coeffs is a scalar if not hasattr(coeffs, '__iter__'): coeffs = [coeffs] * len(self.layers) layer_costs = [] for layer, coeff in safe_izip(self.layers, coeffs): if coeff != 0.: layer_costs += [layer.get_weight_decay(coeff)] if len(layer_costs) == 0: return T.constant(0, dtype=config.floatX) total_cost = reduce(operator.add, layer_costs) return total_cost @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeffs): # check the case where coeffs is a scalar if not hasattr(coeffs, '__iter__'): coeffs = [coeffs] * len(self.layers) layer_costs = [] for layer, coeff in safe_izip(self.layers, coeffs): if coeff != 0.: layer_costs += [layer.get_l1_weight_decay(coeff)] if len(layer_costs) == 0: return T.constant(0, dtype=config.floatX) total_cost = reduce(operator.add, layer_costs) return total_cost @wraps(Model.set_batch_size) def set_batch_size(self, batch_size): self.batch_size = batch_size self.force_batch_size = batch_size for layer in self.layers: layer.set_batch_size(batch_size) @wraps(Layer._modify_updates) def _modify_updates(self, updates): for layer in self.layers: layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return get_lr_scalers_from_layers(self) @wraps(Layer.get_weights) def get_weights(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights() @wraps(Layer.get_weights_view_shape) def get_weights_view_shape(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_view_shape() @wraps(Layer.get_weights_format) def get_weights_format(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_format() @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") return self.layers[0].get_weights_topo() def dropout_fprop(self, state_below, default_input_include_prob=0.5, input_include_probs=None, default_input_scale=2., input_scales=None, per_example=True): """ Returns the output of the MLP, when applying dropout to the input and intermediate layers. Parameters ---------- state_below : WRITEME The input to the MLP default_input_include_prob : WRITEME input_include_probs : WRITEME default_input_scale : WRITEME input_scales : WRITEME per_example : bool, optional Sample a different mask value for every example in a batch. Defaults to `True`. If `False`, sample one mask per mini-batch. Notes ----- Each input to each layer is randomly included or excluded for each example. The probability of inclusion is independent for each input and each example. Each layer uses `default_input_include_prob` unless that layer's name appears as a key in input_include_probs, in which case the input inclusion probability is given by the corresponding value. Each feature is also multiplied by a scale factor. The scale factor for each layer's input scale is determined by the same scheme as the input probabilities. """ if input_include_probs is None: input_include_probs = {} if input_scales is None: input_scales = {} self._validate_layer_names(list(input_include_probs.keys())) self._validate_layer_names(list(input_scales.keys())) theano_rng = MRG_RandomStreams(max(self.rng.randint(2 ** 15), 1)) for layer in self.layers: layer_name = layer.layer_name if layer_name in input_include_probs: include_prob = input_include_probs[layer_name] else: include_prob = default_input_include_prob if layer_name in input_scales: scale = input_scales[layer_name] else: scale = default_input_scale state_below = self.apply_dropout( state=state_below, include_prob=include_prob, theano_rng=theano_rng, scale=scale, mask_value=layer.dropout_input_mask_value, input_space=layer.get_input_space(), per_example=per_example ) state_below = layer.fprop(state_below) return state_below def masked_fprop(self, state_below, mask, masked_input_layers=None, default_input_scale=2., input_scales=None): """ Forward propagate through the network with a dropout mask determined by an integer (the binary representation of which is used to generate the mask). Parameters ---------- state_below : tensor_like The (symbolic) output state of the layer below. mask : int An integer indexing possible binary masks. It should be < 2 ** get_total_input_dimension(masked_input_layers) and greater than or equal to 0. masked_input_layers : list, optional A list of layer names to mask. If `None`, the input to all layers (including the first hidden layer) is masked. default_input_scale : float, optional The amount to scale inputs in masked layers that do not appear in `input_scales`. Defaults to 2. input_scales : dict, optional A dictionary mapping layer names to floating point numbers indicating how much to scale input to a given layer. Returns ------- masked_output : tensor_like The output of the forward propagation of the masked network. """ if input_scales is not None: self._validate_layer_names(input_scales) else: input_scales = {} if any(n not in masked_input_layers for n in input_scales): layers = [n for n in input_scales if n not in masked_input_layers] raise ValueError("input scales provided for layer not masked: " % ", ".join(layers)) if masked_input_layers is not None: self._validate_layer_names(masked_input_layers) else: masked_input_layers = self.layer_names num_inputs = self.get_total_input_dimension(masked_input_layers) assert mask >= 0, "Mask must be a non-negative integer." if mask > 0 and math.log(mask, 2) > num_inputs: raise ValueError("mask value of %d too large; only %d " "inputs to layers (%s)" % (mask, num_inputs, ", ".join(masked_input_layers))) def binary_string(x, length, dtype): """ Create the binary representation of an integer `x`, padded to `length`, with dtype `dtype`. Parameters ---------- length : WRITEME dtype : WRITEME Returns ------- WRITEME """ s = np.empty(length, dtype=dtype) for i in range(length - 1, -1, -1): if x // (2 ** i) == 1: s[i] = 1 else: s[i] = 0 x = x % (2 ** i) return s remaining_mask = mask for layer in self.layers: if layer.layer_name in masked_input_layers: scale = input_scales.get(layer.layer_name, default_input_scale) n_inputs = layer.get_input_space().get_total_dimension() layer_dropout_mask = remaining_mask & (2 ** n_inputs - 1) remaining_mask >>= n_inputs mask = binary_string(layer_dropout_mask, n_inputs, 'uint8') shape = layer.get_input_space().get_origin_batch(1).shape s_mask = T.as_tensor_variable(mask).reshape(shape) if layer.dropout_input_mask_value == 0: state_below = state_below * s_mask * scale else: state_below = T.switch(s_mask, state_below * scale, layer.dropout_input_mask_value) state_below = layer.fprop(state_below) return state_below def _validate_layer_names(self, layers): """ .. todo:: WRITEME """ if any(layer not in self.layer_names for layer in layers): unknown_names = [layer for layer in layers if layer not in self.layer_names] raise ValueError("MLP has no layer(s) named %s" % ", ".join(unknown_names)) def get_total_input_dimension(self, layers): """ Get the total number of inputs to the layers whose names are listed in `layers`. Used for computing the total number of dropout masks. Parameters ---------- layers : WRITEME Returns ------- WRITEME """ self._validate_layer_names(layers) total = 0 for layer in self.layers: if layer.layer_name in layers: total += layer.get_input_space().get_total_dimension() return total @wraps(Layer.fprop) def fprop(self, state_below, return_all=False): if not hasattr(self, "input_space"): raise AttributeError("Input space has not been provided.") rval = self.layers[0].fprop(state_below) rlist = [rval] for layer in self.layers[1:]: rval = layer.fprop(rval) rlist.append(rval) if return_all: return rlist return rval def apply_dropout(self, state, include_prob, scale, theano_rng, input_space, mask_value=0, per_example=True): """ .. todo:: WRITEME Parameters ---------- state: WRITEME include_prob : WRITEME scale : WRITEME theano_rng : WRITEME input_space : WRITEME mask_value : WRITEME per_example : bool, optional Sample a different mask value for every example in a batch. Defaults to `True`. If `False`, sample one mask per mini-batch. """ if include_prob in [None, 1.0, 1]: return state assert scale is not None if isinstance(state, tuple): return tuple(self.apply_dropout(substate, include_prob, scale, theano_rng, mask_value) for substate in state) # TODO: all of this assumes that if it's not a tuple, it's # a dense tensor. It hasn't been tested with sparse types. # A method to format the mask (or any other values) as # the given symbolic type should be added to the Spaces # interface. if per_example: mask = theano_rng.binomial(p=include_prob, size=state.shape, dtype=state.dtype) else: batch = input_space.get_origin_batch(1) mask = theano_rng.binomial(p=include_prob, size=batch.shape, dtype=state.dtype) rebroadcast = T.Rebroadcast(*zip(xrange(batch.ndim), [s == 1 for s in batch.shape])) mask = rebroadcast(mask) if mask_value == 0: rval = state * mask * scale else: rval = T.switch(mask, state * scale, mask_value) return T.cast(rval, state.dtype) @wraps(Layer.cost) def cost(self, Y, Y_hat): return self.layers[-1].cost(Y, Y_hat) @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): return self.layers[-1].cost_matrix(Y, Y_hat) @wraps(Layer.cost_from_cost_matrix) def cost_from_cost_matrix(self, cost_matrix): return self.layers[-1].cost_from_cost_matrix(cost_matrix) def cost_from_X(self, data): """ Computes self.cost, but takes data=(X, Y) rather than Y_hat as an argument. This is just a wrapper around self.cost that computes Y_hat by calling Y_hat = self.fprop(X) Parameters ---------- data : WRITEME """ self.cost_from_X_data_specs()[0].validate(data) X, Y = data Y_hat = self.fprop(X) return self.cost(Y, Y_hat) def cost_from_X_data_specs(self): """ Returns the data specs needed by cost_from_X. This is useful if cost_from_X is used in a MethodCost. """ space = CompositeSpace((self.get_input_space(), self.get_target_space())) source = (self.get_input_source(), self.get_target_source()) return (space, source) def __str__(self): """ Summarizes the MLP by printing the size and format of the input to all layers. Feel free to add reasonably concise info as needed. """ rval = [] for layer in self.layers: rval.append(layer.layer_name) input_space = layer.get_input_space() rval.append('\tInput space: ' + str(input_space)) rval.append('\tTotal input dimension: ' + str(input_space.get_total_dimension())) rval = '\n'.join(rval) return rval class Softmax(Layer): """ A layer that can apply an optional affine transformation to vectorial inputs followed by a softmax nonlinearity. Parameters ---------- n_classes : int Number of classes for softmax targets. layer_name : string Name of Softmax layers. irange : float If specified, initialized each weight randomly in U(-irange, irange). istdev : float If specified, initialize each weight randomly from N(0,istdev). sparse_init : int If specified, initial sparse_init number of weights for each unit from N(0,1). W_lr_scale : float Scale for weight learning rate. b_lr_scale : float Scale for bias learning rate. max_row_norm : float Maximum norm for a row of the weight matrix. no_affine : boolean If True, softmax nonlinearity is applied directly to inputs. max_col_norm : float Maximum norm for a column of the weight matrix. init_bias_target_marginals : dataset Take the probability distribution of the targets into account to intelligently initialize biases. binary_target_dim : int, optional If your targets are class labels (i.e. a binary vector) then set the number of targets here so that an IndexSpace of the proper dimension can be used as the target space. This allows the softmax to compute the cost much more quickly than if it needs to convert the targets into a VectorSpace. With binary_target_dim>1, you can use one layer to simultaneously predict a bag of words (i.e. order is not important, the same element can be included more than once). non_redundant : bool If True, learns only n_classes - 1 biases and weight vectors kwargs : dict Passed on to the superclass. """ def __init__(self, n_classes, layer_name, irange=None, istdev=None, sparse_init=None, W_lr_scale=None, b_lr_scale=None, max_row_norm=None, no_affine=False, max_col_norm=None, init_bias_target_marginals=None, binary_target_dim=None, non_redundant=False, **kwargs): super(Softmax, self).__init__(**kwargs) if max_col_norm is not None: self.extensions.append(MaxL2FilterNorm(max_col_norm, axis=0)) if max_row_norm is not None: self.extensions.append(MaxL2FilterNorm(max_row_norm, axis=1)) if non_redundant: if init_bias_target_marginals: msg = ("init_bias_target_marginals currently only works " "with the overcomplete parameterization.") raise NotImplementedError(msg) if isinstance(W_lr_scale, str): W_lr_scale = float(W_lr_scale) self.__dict__.update(locals()) del self.self del self.init_bias_target_marginals if not isinstance(n_classes, py_integer_types): raise TypeError("n_classes is of type %s, but must be integer" % type(n_classes)) if binary_target_dim is not None: assert isinstance(binary_target_dim, py_integer_types) self._has_binary_target = True self._target_space = IndexSpace(dim=binary_target_dim, max_labels=n_classes) else: self._has_binary_target = False self.output_space = VectorSpace(n_classes) if not no_affine: self.b = sharedX(np.zeros((n_classes - self.non_redundant,)), name='softmax_b') if init_bias_target_marginals: y = init_bias_target_marginals.y if init_bias_target_marginals.y_labels is None: marginals = y.mean(axis=0) else: # compute class frequencies if np.max(y.shape) != np.prod(y.shape): raise AssertionError("Use of " "`init_bias_target_marginals` " "requires that each example has " "a single label.") marginals = np.bincount(y.flat) / float(y.shape[0]) assert marginals.ndim == 1 b = pseudoinverse_softmax_numpy(marginals).astype(self.b.dtype) assert b.ndim == 1 assert b.dtype == self.b.dtype self.b.set_value(b) else: assert init_bias_target_marginals is None def __setstate__(self, state): super(Softmax, self).__setstate__(state) # Patch old pickle files if not hasattr(self, 'non_redundant'): self.non_redundant = False if not hasattr(self, 'mask_weights'): self.mask_weights = None @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): rval = OrderedDict() if self.W_lr_scale is not None: assert isinstance(self.W_lr_scale, float) rval[self.W] = self.W_lr_scale if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None if self.b_lr_scale is not None: assert isinstance(self.b_lr_scale, float) rval[self.b] = self.b_lr_scale return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() if not self.no_affine: W = self.W assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval.update(OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ])) if (state_below is not None) or (state is not None): if state is None: state = self.fprop(state_below) mx = state.max(axis=1) rval.update(OrderedDict([('mean_max_class', mx.mean()), ('max_max_class', mx.max()), ('min_max_class', mx.min())])) if (targets is not None): if ((not self._has_binary_target) or self.binary_target_dim == 1): # if binary_target_dim>1, the misclass rate is ill-defined y_hat = T.argmax(state, axis=1) y = (targets.reshape(y_hat.shape) if self._has_binary_target else T.argmax(targets, axis=1)) misclass = T.neq(y, y_hat).mean() misclass = T.cast(misclass, config.floatX) rval['misclass'] = misclass rval['nll'] = self.cost(Y_hat=state, Y=targets) return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if not isinstance(space, Space): raise TypeError("Expected Space, got " + str(space) + " of type " + str(type(space))) self.input_dim = space.get_total_dimension() self.needs_reformat = not isinstance(space, VectorSpace) if self.no_affine: desired_dim = self.n_classes - self.non_redundant assert self.input_dim == desired_dim else: desired_dim = self.input_dim self.desired_space = VectorSpace(desired_dim) if not self.needs_reformat: assert self.desired_space == self.input_space rng = self.mlp.rng if self.no_affine: self._params = [] else: num_cols = self.n_classes - self.non_redundant if self.irange is not None: assert self.istdev is None assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, num_cols)) elif self.istdev is not None: assert self.sparse_init is None W = rng.randn(self.input_dim, num_cols) * self.istdev else: assert self.sparse_init is not None W = np.zeros((self.input_dim, num_cols)) for i in xrange(num_cols): for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0.: idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() self.W = sharedX(W, 'softmax_W') self._params = [self.b, self.W] @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() desired = self.W.get_value().T ipt = self.desired_space.np_format_as(desired, self.input_space) rval = Conv2DSpace.convert_numpy(ipt, self.input_space.axes, ('b', 0, 1, 'c')) return rval @wraps(Layer.get_weights) def get_weights(self): if not isinstance(self.input_space, VectorSpace): raise NotImplementedError() return self.W.get_value() @wraps(Layer.set_weights) def set_weights(self, weights): self.W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) if self.needs_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) self.desired_space.validate(state_below) assert state_below.ndim == 2 if not hasattr(self, 'no_affine'): self.no_affine = False if self.no_affine: Z = state_below else: assert self.W.ndim == 2 b = self.b Z = T.dot(state_below, self.W) + b if self.non_redundant: zeros = T.alloc(0., Z.shape[0], 1) Z = T.concatenate((zeros, Z), axis=1) rval = T.nnet.softmax(Z) for value in get_debug_values(rval): if self.mlp.batch_size is not None: assert value.shape[0] == self.mlp.batch_size return rval def _cost(self, Y, Y_hat): z = arg_of_softmax(Y_hat) assert z.ndim == 2 z = z - z.max(axis=1).dimshuffle(0, 'x') log_prob = z - T.log(T.exp(z).sum(axis=1).dimshuffle(0, 'x')) # we use sum and not mean because this is really one variable per row if self._has_binary_target: # The following code is the equivalent of accessing log_prob by the # indices in Y, but it is written such that the computation can # happen on the GPU rather than CPU. flat_Y = Y.flatten() flat_Y.name = 'flat_Y' flat_log_prob = log_prob.flatten() flat_log_prob.name = 'flat_log_prob' range_ = T.arange(Y.shape[0]) if self.binary_target_dim > 1: # because of an error in optimization (local_useless_tile) # when tiling with (1, 1) range_ = T.tile(range_.dimshuffle(0, 'x'), (1, self.binary_target_dim)).flatten() flat_indices = flat_Y + range_ * self.n_classes flat_indices.name = 'flat_indices' log_prob_of = flat_log_prob[flat_indices].reshape(Y.shape, ndim=2) log_prob_of.name = 'log_prob_of' else: log_prob_of = (Y * log_prob) return log_prob_of @wraps(Layer.cost) def cost(self, Y, Y_hat): log_prob_of = self._cost(Y, Y_hat).sum(axis=1) assert log_prob_of.ndim == 1 rval = log_prob_of.mean() return - rval @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): log_prob_of = self._cost(Y, Y_hat) if self._has_binary_target: flat_Y = Y.flatten() flat_matrix = T.alloc(0, (Y.shape[0] * log_prob_of.shape[1])) flat_indices = flat_Y + T.extra_ops.repeat( T.arange(Y.shape[0]) * log_prob_of.shape[1], Y.shape[1] ) log_prob_of = T.set_subtensor(flat_matrix[flat_indices], flat_Y) return -log_prob_of @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') return coeff * T.sqr(self.W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W = self.W return coeff * abs(W).sum() @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.no_affine: return class SoftmaxPool(Layer): """ A hidden layer that uses the softmax function to do max pooling over groups of units. When the pooling size is 1, this reduces to a standard sigmoidal MLP layer. Parameters ---------- detector_layer_dim : WRITEME layer_name : str The name of the layer. All layers in an MLP must have a unique name. pool_size : WRITEME irange : float, optional If specified, initialized each weight randomly in U(-irange, irange). sparse_init : int, optional If specified, initial sparse_init number of weights for each unit from N(0,1). sparse_stdev : WRITEME include_prob : float, optional Probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. init_bias : WRITEME W_lr_scale : float, optional Multiply the learning rate on the weights by this constant. b_lr_scale : float, optional Multiply the learning rate on the biases by this constant. mask_weights : WRITEME max_col_norm : float, optional Maximum norm for a column of the weight matrix. """ def __init__(self, detector_layer_dim, layer_name, pool_size=1, irange=None, sparse_init=None, sparse_stdev=1., include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, mask_weights=None, max_col_norm=None): super(SoftmaxPool, self).__init__() self.__dict__.update(locals()) del self.self self.b = sharedX(np.zeros((self.detector_layer_dim,)) + init_bias, name=(layer_name + '_b')) if max_col_norm is not None: self.extensions.append(MaxL2FilterNorm(max_col_norm, axis=0)) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if isinstance(space, VectorSpace): self.requires_reformat = False self.input_dim = space.dim else: self.requires_reformat = True self.input_dim = space.get_total_dimension() self.desired_space = VectorSpace(self.input_dim) if not (self.detector_layer_dim % self.pool_size == 0): raise ValueError("detector_layer_dim = %d, pool_size = %d. " "Should be divisible but remainder is %d" % (self.detector_layer_dim, self.pool_size, self.detector_layer_dim % self.pool_size)) self.h_space = VectorSpace(self.detector_layer_dim) self.pool_layer_dim = self.detector_layer_dim / self.pool_size self.output_space = VectorSpace(self.pool_layer_dim) rng = self.mlp.rng if self.irange is not None: assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, self.detector_layer_dim)) * \ (rng.uniform(0., 1., (self.input_dim, self.detector_layer_dim)) < self.include_prob) else: assert self.sparse_init is not None W = np.zeros((self.input_dim, self.detector_layer_dim)) def mask_rejects(idx, i): if self.mask_weights is None: return False return self.mask_weights[idx, i] == 0. for i in xrange(self.detector_layer_dim): assert self.sparse_init <= self.input_dim for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0 or mask_rejects(idx, i): idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() W *= self.sparse_stdev W = sharedX(W) W.name = self.layer_name + '_W' self.transformer = MatrixMul(W) W, = self.transformer.get_params() assert W.name is not None if self.mask_weights is not None: expected_shape = (self.input_dim, self.detector_layer_dim) if expected_shape != self.mask_weights.shape: raise ValueError("Expected mask with shape " + str(expected_shape) + " but got " + str(self.mask_weights.shape)) self.mask = sharedX(self.mask_weights) @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.mask_weights is not None: W, = self.transformer.get_params() if W in updates: updates[W] = updates[W] * self.mask @wraps(Layer.get_params) def get_params(self): assert self.b.name is not None W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.get_weights) def get_weights(self): if self.requires_reformat: # This is not really an unimplemented case. # We actually don't know how to format the weights # in design space. We got the data in topo space # and we don't have access to the dataset raise NotImplementedError() W, = self.transformer.get_params() return W.get_value() @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): """ .. todo:: WRITEME """ self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_weights_view_shape) def get_weights_view_shape(self): total = self.detector_layer_dim cols = self.pool_size if cols == 1: # Let the PatchViewer decide how to arrange the units # when they're not pooled raise NotImplementedError() # When they are pooled, make each pooling unit have one row rows = total / cols return rows, cols @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() W, = self.transformer.get_params() W = W.T W = W.reshape((self.detector_layer_dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.num_channels)) W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c')) return function([], W)() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, **kwargs): W, = self.transformer.get_params() assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval = OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ]) if (state_below is not None) or (state is not None): if state is None: P = self.fprop(state_below) else: P = state if self.pool_size == 1: vars_and_prefixes = [(P, '')] else: vars_and_prefixes = [(P, 'p_')] for var, prefix in vars_and_prefixes: v_max = var.max(axis=0) v_min = var.min(axis=0) v_mean = var.mean(axis=0) v_range = v_max - v_min # max_x.mean_u is "the mean over *u*nits of the max over # e*x*amples" The x and u are included in the name because # otherwise its hard to remember which axis is which when # reading the monitor I use inner.outer rather than # outer_of_inner or something like that because I want # mean_x.* to appear next to each other in the alphabetical # list, as these are commonly plotted together for key, val in [('max_x.max_u', v_max.max()), ('max_x.mean_u', v_max.mean()), ('max_x.min_u', v_max.min()), ('min_x.max_u', v_min.max()), ('min_x.mean_u', v_min.mean()), ('min_x.min_u', v_min.min()), ('range_x.max_u', v_range.max()), ('range_x.mean_u', v_range.mean()), ('range_x.min_u', v_range.min()), ('mean_x.max_u', v_mean.max()), ('mean_x.mean_u', v_mean.mean()), ('mean_x.min_u', v_mean.min())]: rval[prefix + key] = val return rval @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) if self.requires_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) z = self.transformer.lmul(state_below) + self.b if self.layer_name is not None: z.name = self.layer_name + '_z' p, h = max_pool_channels(z, self.pool_size) p.name = self.layer_name + '_p_' return p class Linear(Layer): """ A "linear model" in machine learning terminology. This would be more accurately described as an affine model because it adds an offset to the output as well as doing a matrix multiplication. The output is: output = T.dot(weights, input) + biases This class may be used as the output layer of an MLP for regression. It may also be used as a hidden layer. Most hidden layers classes are subclasses of this class that add apply a fixed nonlinearity to the output of the affine transformation provided by this class. One notable use of this class is to provide "bottleneck" layers. By using a Linear layer with few hidden units followed by a nonlinear layer such as RectifiedLinear with many hidden units, one essentially gets a RectifiedLinear layer with a factored weight matrix, which can reduce the number of parameters in the model (by making the effective weight matrix low rank). Parameters ---------- dim : int The number of elements in the output of the layer. layer_name : str The name of the layer. All layers in an MLP must have a unique name. irange : float, optional If specified, initialized each weight randomly in U(-irange, irange). istdev : float, optional If specified, initialize each weight randomly from N(0,istdev). sparse_init : int, optional If specified, initial sparse_init number of weights for each unit from N(0,1). sparse_stdev : WRITEME include_prob : float Probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. Anything that can be broadcasted to a numpy vector. Provides the initial value of the biases of the model. When using this class as an output layer (specifically the Linear class, or subclasses that don't change the output like LinearGaussian, but not subclasses that change the output, like Softmax) it can be a good idea to set this to the return value of the `mean_of_targets` function. This provides the mean value of all the targets in the training set, so the model is initialized to a dummy model that predicts the expected value of each output variable. W_lr_scale : float, optional Multiply the learning rate on the weights by this constant. b_lr_scale : float, optional Multiply the learning rate on the biases by this constant. mask_weights : ndarray, optional If provided, the weights will be multiplied by this mask after each learning update. max_row_norm : float, optional Maximum norm for a row of the weight matrix. max_col_norm : float, optional Maximum norm for a column of the weight matrix. min_col_norm : WRITEME copy_input : REMOVED use_abs_loss : bool, optional If True, the cost function will be mean absolute error rather than mean squared error. You can think of mean squared error as fitting a Gaussian distribution with variance 1, or as learning to predict the mean of the data. You can think of mean absolute error as fitting a Laplace distribution with variance 1, or as learning to predict the median of the data. use_bias : bool, optional If False, does not add the bias term to the output. kwargs : dict Passed on to superclass constructor. """ def __init__(self, dim, layer_name, irange=None, istdev=None, sparse_init=None, sparse_stdev=1., include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, mask_weights=None, max_row_norm=None, max_col_norm=None, min_col_norm=None, copy_input=None, use_abs_loss=False, use_bias=True, **kwargs): if copy_input is not None: raise AssertionError( "The copy_input option had a bug and has " "been removed from the library.") super(Linear, self).__init__(**kwargs) if use_bias and init_bias is None: init_bias = 0. self.__dict__.update(locals()) del self.self if use_bias: self.b = sharedX(np.zeros((self.dim,)) + init_bias, name=(layer_name + '_b')) else: assert b_lr_scale is None init_bias is None if (((max_col_norm is not None) or (min_col_norm is not None)) and (max_row_norm is not None)): raise ValueError('Column and row constraint ' 'at the same time is forbidden.') if (max_col_norm is not None) or (min_col_norm is not None): self.extensions.append(MaxL2FilterNorm( limit=max_col_norm, min_limit=min_col_norm, axis=0)) if max_row_norm is not None: self.extensions.append(MaxL2FilterNorm(max_row_norm, axis=1)) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if isinstance(space, VectorSpace): self.requires_reformat = False self.input_dim = space.dim else: self.requires_reformat = True self.input_dim = space.get_total_dimension() self.desired_space = VectorSpace(self.input_dim) self.output_space = VectorSpace(self.dim) rng = self.mlp.rng if self.irange is not None: assert self.istdev is None assert self.sparse_init is None W = rng.uniform(-self.irange, self.irange, (self.input_dim, self.dim)) * \ (rng.uniform(0., 1., (self.input_dim, self.dim)) < self.include_prob) elif self.istdev is not None: assert self.sparse_init is None W = rng.randn(self.input_dim, self.dim) * self.istdev else: assert self.sparse_init is not None W = np.zeros((self.input_dim, self.dim)) def mask_rejects(idx, i): if self.mask_weights is None: return False return self.mask_weights[idx, i] == 0. for i in xrange(self.dim): assert self.sparse_init <= self.input_dim for j in xrange(self.sparse_init): idx = rng.randint(0, self.input_dim) while W[idx, i] != 0 or mask_rejects(idx, i): idx = rng.randint(0, self.input_dim) W[idx, i] = rng.randn() W *= self.sparse_stdev W = sharedX(W) W.name = self.layer_name + '_W' self.transformer = MatrixMul(W) W, = self.transformer.get_params() assert W.name is not None if self.mask_weights is not None: expected_shape = (self.input_dim, self.dim) if expected_shape != self.mask_weights.shape: raise ValueError("Expected mask with shape " + str(expected_shape) + " but got " + str(self.mask_weights.shape)) self.mask = sharedX(self.mask_weights) @wraps(Layer._modify_updates) def _modify_updates(self, updates): if self.mask_weights is not None: W, = self.transformer.get_params() if W in updates: updates[W] = updates[W] * self.mask @wraps(Layer.get_params) def get_params(self): W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) if self.use_bias: assert self.b.name is not None assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.get_weights) def get_weights(self): if self.requires_reformat: # This is not really an unimplemented case. # We actually don't know how to format the weights # in design space. We got the data in topo space # and we don't have access to the dataset raise NotImplementedError() W, = self.transformer.get_params() W = W.get_value() return W @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): """ .. todo:: WRITEME """ return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_weights_topo) def get_weights_topo(self): if not isinstance(self.input_space, Conv2DSpace): raise NotImplementedError() W, = self.transformer.get_params() W = W.T W = W.reshape((self.dim, self.input_space.shape[0], self.input_space.shape[1], self.input_space.num_channels)) W = Conv2DSpace.convert(W, self.input_space.axes, ('b', 0, 1, 'c')) return function([], W)() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): W, = self.transformer.get_params() assert W.ndim == 2 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=1)) col_norms = T.sqrt(sq_W.sum(axis=0)) rval = OrderedDict([('row_norms_min', row_norms.min()), ('row_norms_mean', row_norms.mean()), ('row_norms_max', row_norms.max()), ('col_norms_min', col_norms.min()), ('col_norms_mean', col_norms.mean()), ('col_norms_max', col_norms.max()), ]) if (state is not None) or (state_below is not None): if state is None: state = self.fprop(state_below) mx = state.max(axis=0) mean = state.mean(axis=0) mn = state.min(axis=0) rg = mx - mn rval['range_x_max_u'] = rg.max() rval['range_x_mean_u'] = rg.mean() rval['range_x_min_u'] = rg.min() rval['max_x_max_u'] = mx.max() rval['max_x_mean_u'] = mx.mean() rval['max_x_min_u'] = mx.min() rval['mean_x_max_u'] = mean.max() rval['mean_x_mean_u'] = mean.mean() rval['mean_x_min_u'] = mean.min() rval['min_x_max_u'] = mn.max() rval['min_x_mean_u'] = mn.mean() rval['min_x_min_u'] = mn.min() return rval def _linear_part(self, state_below): """ Parameters ---------- state_below : member of input_space Returns ------- output : theano matrix Affine transformation of state_below """ self.input_space.validate(state_below) if self.requires_reformat: state_below = self.input_space.format_as(state_below, self.desired_space) z = self.transformer.lmul(state_below) if self.use_bias: z += self.b if self.layer_name is not None: z.name = self.layer_name + '_z' return z @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) return p @wraps(Layer.cost) def cost(self, Y, Y_hat): return self.cost_from_cost_matrix(self.cost_matrix(Y, Y_hat)) @wraps(Layer.cost_from_cost_matrix) def cost_from_cost_matrix(self, cost_matrix): return cost_matrix.sum(axis=1).mean() @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): if(self.use_abs_loss): return T.abs_(Y - Y_hat) else: return T.sqr(Y - Y_hat) class Tanh(Linear): """ A layer that performs an affine transformation of its (vectorial) input followed by a hyperbolic tangent elementwise nonlinearity. Parameters ---------- kwargs : dict Keyword arguments to pass through to `Linear` class constructor. """ @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.tanh(p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class Sigmoid(Linear): """ A layer that performs an affine transformation of its input followed by a logistic sigmoid elementwise nonlinearity. Parameters ---------- monitor_style : string Values can be any of ['detection', 'one_hot_class', 'bit_vector_class'] 'detection' is the default. - 'detection' : get_monitor_from_state makes no assumptions about target, reports info about how good model is at detecting positive bits. This will monitor precision, recall, and F1 score based on a detection threshold of 0.5. Note that these quantities are computed *per-minibatch* and averaged together. Unless your entire monitoring dataset fits in one minibatch, this is not the same as the true F1 score, etc., and will usually seriously overestimate your performance. - 'one_hot_class' : get_monitor_from_state assumes target is one-hot class indicator, even though you're training the model as k independent sigmoids. Gives info on how good the argmax over the sigmoids behaves as a classifier. - 'bit_vector_class' : get_monitor_from_state treats each sigmoid as predicting a 1 iff its value is > 0.5. Each example is counted as correct iff all of the bits in its target are predicted correctly. This includes as a special case the situation where the target is a single 0 or 1 label. - 'classification' : deprecated; originally this string was used for 'one_hot_class', then due to a miscommunication it was changed to be used for 'bit_vector_class'. kwargs : dict Passed through to the Layer class constructor """ def __init__(self, monitor_style='detection', **kwargs): super(Sigmoid, self).__init__(**kwargs) if monitor_style == 'classification': monitor_style = 'bit_vector_class' warnings.warn("The 'classification' monitor style is deprecated." " Switch to 'bit_vector_class' (or possibly" " 'one_hot_class' if your code predates 8f4b62b3df)." " 'classification' may be removed on or after " "2015-04-21.") assert monitor_style in ['one_hot_class', 'bit_vector_class', 'detection'] self.monitor_style = monitor_style @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.nnet.sigmoid(p) return p @wraps(Layer.cost) def cost(self, Y, Y_hat): """ Returns a batch (vector) of mean across units of KL divergence for each example. Parameters ---------- Y : theano.gof.Variable Targets Y_hat : theano.gof.Variable Output of `fprop` mean across units, mean across batch of KL divergence Notes ----- Uses KL(P || Q) where P is defined by Y and Q is defined by Y_hat Currently Y must be purely binary. If it's not, you'll still get the right gradient, but the value in the monitoring channel will be wrong. Y_hat must be generated by fprop, i.e., it must be a symbolic sigmoid. p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) For binary p, some terms drop out: - p log q - (1-p) log (1-q) - p log sigmoid(z) - (1-p) log sigmoid(-z) p softplus(-z) + (1-p) softplus(z) """ total = self.kl(Y=Y, Y_hat=Y_hat) ave = total.mean() return ave def kl(self, Y, Y_hat): """ Computes the KL divergence. Parameters ---------- Y : Variable targets for the sigmoid outputs. Currently Y must be purely binary. If it's not, you'll still get the right gradient, but the value in the monitoring channel will be wrong. Y_hat : Variable predictions made by the sigmoid layer. Y_hat must be generated by fprop, i.e., it must be a symbolic sigmoid. Returns ------- ave : Variable average kl divergence between Y and Y_hat. Notes ----- Warning: This function expects a sigmoid nonlinearity in the output layer and it uses kl function under pylearn2/expr/nnet/. Returns a batch (vector) of mean across units of KL divergence for each example, KL(P || Q) where P is defined by Y and Q is defined by Y_hat: p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) For binary p, some terms drop out: - p log q - (1-p) log (1-q) - p log sigmoid(z) - (1-p) log sigmoid(-z) p softplus(-z) + (1-p) softplus(z) """ batch_axis = self.output_space.get_batch_axis() div = kl(Y=Y, Y_hat=Y_hat, batch_axis=batch_axis) return div @wraps(Layer.cost_matrix) def cost_matrix(self, Y, Y_hat): rval = elemwise_kl(Y, Y_hat) assert rval.ndim == 2 return rval def get_detection_channels_from_state(self, state, target): """ Returns monitoring channels when using the layer to do detection of binary events. Parameters ---------- state : theano.gof.Variable Output of `fprop` target : theano.gof.Variable The targets from the dataset Returns ------- channels : OrderedDict Dictionary mapping channel names to Theano channel values. """ rval = OrderedDict() y_hat = state > 0.5 y = target > 0.5 wrong_bit = T.cast(T.neq(y, y_hat), state.dtype) rval['01_loss'] = wrong_bit.mean() rval['kl'] = self.cost(Y_hat=state, Y=target) y = T.cast(y, state.dtype) y_hat = T.cast(y_hat, state.dtype) tp = (y * y_hat).sum() fp = ((1 - y) * y_hat).sum() precision = compute_precision(tp, fp) recall = compute_recall(y, tp) f1 = compute_f1(precision, recall) rval['precision'] = precision rval['recall'] = recall rval['f1'] = f1 tp = (y * y_hat).sum(axis=0) fp = ((1 - y) * y_hat).sum(axis=0) precision = compute_precision(tp, fp) rval['per_output_precision_max'] = precision.max() rval['per_output_precision_mean'] = precision.mean() rval['per_output_precision_min'] = precision.min() recall = compute_recall(y, tp) rval['per_output_recall_max'] = recall.max() rval['per_output_recall_mean'] = recall.mean() rval['per_output_recall_min'] = recall.min() f1 = compute_f1(precision, recall) rval['per_output_f1_max'] = f1.max() rval['per_output_f1_mean'] = f1.mean() rval['per_output_f1_min'] = f1.min() return rval @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = super(Sigmoid, self).get_layer_monitoring_channels( state=state, targets=targets) if (targets is not None) and \ ((state_below is not None) or (state is not None)): if state is None: state = self.fprop(state_below) if self.monitor_style == 'detection': rval.update(self.get_detection_channels_from_state(state, targets)) elif self.monitor_style == 'one_hot_class': # For this monitor style, we know (by assumption) that # exactly one bit is always on, so we pick # the single most likely bit under the model, regardless # of whether its probability exceeds 0.5 prediction = state.argmax(axis=1) labels = targets.argmax(axis=1) incorrect = T.neq(prediction, labels) misclass = T.cast(incorrect, config.floatX).mean() rval['misclass'] = misclass else: assert self.monitor_style == 'bit_vector_class' # Threshold Y_hat at 0.5. prediction = T.gt(state, 0.5) # If even one feature is wrong for a given training example, # it's considered incorrect, so we max over columns. incorrect = T.neq(targets, prediction).max(axis=1) rval['misclass'] = T.cast(incorrect, config.floatX).mean() return rval class RectifiedLinear(Linear): """ Rectified linear MLP layer (Glorot and Bengio 2011). Parameters ---------- left_slope : float The slope the line should have left of 0. kwargs : dict Keyword arguments to pass to `Linear` class constructor. """ def __init__(self, left_slope=0.0, **kwargs): super(RectifiedLinear, self).__init__(**kwargs) self.left_slope = left_slope @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) # Original: p = p * (p > 0.) + self.left_slope * p * (p < 0.) # T.switch is faster. # For details, see benchmarks in # pylearn2/scripts/benchmark/time_relu.py p = T.switch(p > 0., p, self.left_slope * p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class Softplus(Linear): """ An MLP layer using the softplus nonlinearity h = log(1 + exp(Wx + b)) Parameters ---------- kwargs : dict Keyword arguments to `Linear` constructor. """ def __init__(self, **kwargs): super(Softplus, self).__init__(**kwargs) @wraps(Layer.fprop) def fprop(self, state_below): p = self._linear_part(state_below) p = T.nnet.softplus(p) return p @wraps(Layer.cost) def cost(self, *args, **kwargs): raise NotImplementedError() class SpaceConverter(Layer): """ A Layer with no parameters that converts the input from one space to another. Parameters ---------- layer_name : str Name of the layer. output_space : Space The space to convert to. """ def __init__(self, layer_name, output_space): super(SpaceConverter, self).__init__() self.__dict__.update(locals()) del self.self self._params = [] @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space @wraps(Layer.fprop) def fprop(self, state_below): return self.input_space.format_as(state_below, self.output_space) class ConvNonlinearity(object): """ Abstract convolutional nonlinearity class. """ def apply(self, linear_response): """ Applies the nonlinearity over the convolutional layer. Parameters ---------- linear_response: Variable linear response of the layer. Returns ------- p: Variable the response of the layer after the activation function is applied over. """ p = linear_response return p def _get_monitoring_channels_for_activations(self, state): """ Computes the monitoring channels which does not require targets. Parameters ---------- state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. Returns ------- rval : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ rval = OrderedDict({}) mx = state.max(axis=0) mean = state.mean(axis=0) mn = state.min(axis=0) rg = mx - mn rval['range_x_max_u'] = rg.max() rval['range_x_mean_u'] = rg.mean() rval['range_x_min_u'] = rg.min() rval['max_x_max_u'] = mx.max() rval['max_x_mean_u'] = mx.mean() rval['max_x_min_u'] = mx.min() rval['mean_x_max_u'] = mean.max() rval['mean_x_mean_u'] = mean.mean() rval['mean_x_min_u'] = mean.min() rval['min_x_max_u'] = mn.max() rval['min_x_mean_u'] = mn.mean() rval['min_x_min_u'] = mn.min() return rval def get_monitoring_channels_from_state(self, state, target, cost_fn=None): """ Override the default get_monitoring_channels_from_state function. Parameters ---------- state : member of self.output_space A minibatch of states that this Layer took on during fprop. Provided externally so that we don't need to make a second expression for it. This helps keep the Theano graph smaller so that function compilation runs faster. target : member of self.output_space Should be None unless this is the last layer. If specified, it should be a minibatch of targets for the last layer. cost_fn : theano computational graph or None This is the theano computational graph of a cost function. Returns ------- rval : OrderedDict A dictionary mapping channel names to monitoring channels of interest for this layer. """ rval = self._get_monitoring_channels_for_activations(state) return rval def cost(self, Y, Y_hat, batch_axis): """ The cost of outputting Y_hat when the true output is Y. Parameters ---------- Y : theano.gof.Variable Output of `fprop` Y_hat : theano.gof.Variable Targets batch_axis : integer axis representing batch dimension Returns ------- cost : theano.gof.Variable 0-D tensor describing the cost """ raise NotImplementedError( str(type(self)) + " does not implement cost function.") class IdentityConvNonlinearity(ConvNonlinearity): """ Linear convolutional nonlinearity class. """ def __init__(self): self.non_lin_name = "linear" @wraps(ConvNonlinearity.get_monitoring_channels_from_state) def get_monitoring_channels_from_state(self, state, target, cost_fn=False): rval = super(IdentityConvNonlinearity, self).get_monitoring_channels_from_state(state, target, cost_fn) if target is not None: prediction = T.gt(state, 0.5) incorrect = T.new(target, prediction).max(axis=1) rval["misclass"] = T.cast(incorrect, config.floatX).mean() return rval @wraps(ConvNonlinearity.cost, append=True) def cost(self, Y, Y_hat, batch_axis): """ Notes ----- Mean squared error across examples in a batch """ return T.sum(T.mean(T.sqr(Y-Y_hat), axis=batch_axis)) class RectifierConvNonlinearity(ConvNonlinearity): """ A simple rectifier nonlinearity class for convolutional layers. Parameters ---------- left_slope : float The slope of the left half of the activation function. """ def __init__(self, left_slope=0.0): """ Parameters ---------- left_slope : float, optional left slope for the linear response of the rectifier function. default is 0.0. """ self.non_lin_name = "rectifier" self.left_slope = left_slope @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the rectifier nonlinearity over the convolutional layer. """ p = linear_response * (linear_response > 0.) + self.left_slope *\ linear_response * (linear_response < 0.) return p class SigmoidConvNonlinearity(ConvNonlinearity): """ Sigmoid nonlinearity class for convolutional layers. Parameters ---------- monitor_style : str, optional default monitor_style is "classification". This determines whether to do classification or detection. """ def __init__(self, monitor_style="classification"): assert monitor_style in ['classification', 'detection'] self.monitor_style = monitor_style self.non_lin_name = "sigmoid" @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the sigmoid nonlinearity over the convolutional layer. """ p = T.nnet.sigmoid(linear_response) return p @wraps(ConvNonlinearity.get_monitoring_channels_from_state) def get_monitoring_channels_from_state(self, state, target, cost_fn=None): rval = super(SigmoidConvNonlinearity, self).get_monitoring_channels_from_state(state, target, cost_fn) if target is not None: y_hat = state > 0.5 y = target > 0.5 wrong_bit = T.cast(T.neq(y, y_hat), state.dtype) rval['01_loss'] = wrong_bit.mean() rval['kl'] = cost_fn(Y_hat=state, Y=target) y = T.cast(y, state.dtype) y_hat = T.cast(y_hat, state.dtype) tp = (y * y_hat).sum() fp = ((1 - y) * y_hat).sum() precision = compute_precision(tp, fp) recall = compute_recall(y, tp) f1 = compute_f1(precision, recall) rval['precision'] = precision rval['recall'] = recall rval['f1'] = f1 tp = (y * y_hat).sum(axis=[0, 1]) fp = ((1 - y) * y_hat).sum(axis=[0, 1]) precision = compute_precision(tp, fp) rval['per_output_precision_max'] = precision.max() rval['per_output_precision_mean'] = precision.mean() rval['per_output_precision_min'] = precision.min() recall = compute_recall(y, tp) rval['per_output_recall_max'] = recall.max() rval['per_output_recall_mean'] = recall.mean() rval['per_output_recall_min'] = recall.min() f1 = compute_f1(precision, recall) rval['per_output_f1_max'] = f1.max() rval['per_output_f1_mean'] = f1.mean() rval['per_output_f1_min'] = f1.min() return rval @wraps(ConvNonlinearity.cost, append=True) def cost(self, Y, Y_hat, batch_axis): """ Notes ----- Cost mean across units, mean across batch of KL divergence KL(P || Q) where P is defined by Y and Q is defined by Y_hat KL(P || Q) = p log p - p log q + (1-p) log (1-p) - (1-p) log (1-q) """ ave_total = kl(Y=Y, Y_hat=Y_hat, batch_axis=batch_axis) ave = ave_total.mean() return ave class TanhConvNonlinearity(ConvNonlinearity): """ Tanh nonlinearity class for convolutional layers. """ def __init__(self): self.non_lin_name = "tanh" @wraps(ConvNonlinearity.apply) def apply(self, linear_response): """ Applies the tanh nonlinearity over the convolutional layer. """ p = T.tanh(linear_response) return p class ConvElemwise(Layer): """ Generic convolutional elemwise layer. Takes the ConvNonlinearity object as an argument and implements convolutional layer with the specified nonlinearity. This function can implement: * Linear convolutional layer * Rectifier convolutional layer * Sigmoid convolutional layer * Tanh convolutional layer based on the nonlinearity argument that it recieves. Parameters ---------- output_channels : int The number of output channels the layer should have. kernel_shape : tuple The shape of the convolution kernel. pool_shape : tuple The shape of the spatial max pooling. A two-tuple of ints. pool_stride : tuple The stride of the spatial max pooling. Also must be square. layer_name : str A name for this layer that will be prepended to monitoring channels related to this layer. nonlinearity : object An instance of a nonlinearity object which might be inherited from the ConvNonlinearity class. irange : float, optional if specified, initializes each weight randomly in U(-irange, irange) border_mode : str, optional A string indicating the size of the output: - "full" : The output is the full discrete linear convolution of the inputs. - "valid" : The output consists only of those elements that do not rely on the zero-padding. (Default) sparse_init : WRITEME include_prob : float, optional probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 1.0. init_bias : float, optional All biases are initialized to this number. Default is 0. W_lr_scale : float or None The learning rate on the weights for this layer is multiplied by this scaling factor b_lr_scale : float or None The learning rate on the biases for this layer is multiplied by this scaling factor max_kernel_norm : float or None If specified, each kernel is constrained to have at most this norm. pool_type : str or None The type of the pooling operation performed the convolution. Default pooling type is max-pooling. tied_b : bool, optional If true, all biases in the same channel are constrained to be the same as each other. Otherwise, each bias at each location is learned independently. Default is true. detector_normalization : callable or None See `output_normalization`. If pooling argument is not provided, detector_normalization is not applied on the layer. output_normalization : callable or None if specified, should be a callable object. the state of the network is optionally replaced with normalization(state) at each of the 3 points in processing: - detector: the maxout units can be normalized prior to the spatial pooling - output: the output of the layer, after sptial pooling, can be normalized as well kernel_stride : 2-tuple of ints, optional The stride of the convolution kernel. Default is (1, 1). """ def __init__(self, output_channels, kernel_shape, layer_name, nonlinearity, irange=None, border_mode='valid', sparse_init=None, include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, max_kernel_norm=None, pool_type=None, pool_shape=None, pool_stride=None, tied_b=None, detector_normalization=None, output_normalization=None, kernel_stride=(1, 1), monitor_style="classification"): if (irange is None) and (sparse_init is None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvElemwise.") elif (irange is not None) and (sparse_init is not None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvElemwise and not both.") if pool_type is not None: assert pool_shape is not None, ( "You should specify the shape of the spatial %s-pooling." % pool_type) assert pool_stride is not None, ( "You should specify the strides of the spatial %s-pooling." % pool_type) assert nonlinearity is not None super(ConvElemwise, self).__init__() self.nonlin = nonlinearity self.__dict__.update(locals()) assert monitor_style in ['classification', 'detection'], ( "%s.monitor_style should be either" "detection or classification" % self.__class__.__name__) del self.self if max_kernel_norm is not None: self.extensions.append( MaxL2FilterNorm(max_kernel_norm, axis=(1, 2, 3)) ) def initialize_transformer(self, rng): """ This function initializes the transformer of the class. Re-running this function will reset the transformer. Parameters ---------- rng : object random number generator object. """ if self.irange is not None: assert self.sparse_init is None self.transformer = conv2d.make_random_conv2D( irange=self.irange, input_space=self.input_space, output_space=self.detector_space, kernel_shape=self.kernel_shape, subsample=self.kernel_stride, border_mode=self.border_mode, rng=rng) elif self.sparse_init is not None: self.transformer = conv2d.make_sparse_random_conv2D( num_nonzero=self.sparse_init, input_space=self.input_space, output_space=self.detector_space, kernel_shape=self.kernel_shape, subsample=self.kernel_stride, border_mode=self.border_mode, rng=rng) else: raise ValueError('irange and sparse_init cannot be both None') def initialize_output_space(self): """ Initializes the output space of the ConvElemwise layer by taking pooling operator and the hyperparameters of the convolutional layer into consideration as well. """ dummy_batch_size = self.mlp.batch_size if dummy_batch_size is None: dummy_batch_size = 2 dummy_detector =\ sharedX(self.detector_space.get_origin_batch(dummy_batch_size)) if self.pool_type is not None: assert self.pool_type in ['max', 'mean'] if self.pool_type == 'max': dummy_p = max_pool(bc01=dummy_detector, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) elif self.pool_type == 'mean': dummy_p = mean_pool(bc01=dummy_detector, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) dummy_p = dummy_p.eval() self.output_space = Conv2DSpace(shape=[dummy_p.shape[2], dummy_p.shape[3]], num_channels=self.output_channels, axes=('b', 'c', 0, 1)) else: dummy_detector = dummy_detector.eval() self.output_space = Conv2DSpace(shape=[dummy_detector.shape[2], dummy_detector.shape[3]], num_channels=self.output_channels, axes=('b', 'c', 0, 1)) logger.info('Output space: {0}'.format(self.output_space.shape)) @wraps(Layer.set_input_space) def set_input_space(self, space): """ Note: this function will reset the parameters! """ self.input_space = space if not isinstance(space, Conv2DSpace): raise BadInputSpaceError(self.__class__.__name__ + ".set_input_space " "expected a Conv2DSpace, got " + str(space) + " of type " + str(type(space))) rng = self.mlp.rng if self.border_mode == 'valid': output_shape = [int((self.input_space.shape[0] - self.kernel_shape[0]) / self.kernel_stride[0]) + 1, int((self.input_space.shape[1] - self.kernel_shape[1]) / self.kernel_stride[1]) + 1] elif self.border_mode == 'full': output_shape = [int((self.input_space.shape[0] + self.kernel_shape[0]) / self.kernel_stride[0]) - 1, int((self.input_space.shape[1] + self.kernel_shape[1]) / self.kernel_stride[1]) - 1] self.detector_space = Conv2DSpace(shape=output_shape, num_channels=self.output_channels, axes=('b', 'c', 0, 1)) self.initialize_transformer(rng) W, = self.transformer.get_params() W.name = self.layer_name + '_W' if self.tied_b: self.b = sharedX(np.zeros((self.detector_space.num_channels)) + self.init_bias) else: self.b = sharedX(self.detector_space.get_origin() + self.init_bias) self.b.name = self.layer_name + '_b' logger.info('Input shape: {0}'.format(self.input_space.shape)) logger.info('Detector space: {0}'.format(self.detector_space.shape)) self.initialize_output_space() @wraps(Layer.get_params) def get_params(self): assert self.b.name is not None W, = self.transformer.get_params() assert W.name is not None rval = self.transformer.get_params() assert not isinstance(rval, set) rval = list(rval) assert self.b not in rval rval.append(self.b) return rval @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * T.sqr(W).sum() @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeff): if isinstance(coeff, str): coeff = float(coeff) assert isinstance(coeff, float) or hasattr(coeff, 'dtype') W, = self.transformer.get_params() return coeff * abs(W).sum() @wraps(Layer.set_weights) def set_weights(self, weights): W, = self.transformer.get_params() W.set_value(weights) @wraps(Layer.set_biases) def set_biases(self, biases): self.b.set_value(biases) @wraps(Layer.get_biases) def get_biases(self): return self.b.get_value() @wraps(Layer.get_weights_format) def get_weights_format(self): return ('v', 'h') @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): if not hasattr(self, 'W_lr_scale'): self.W_lr_scale = None if not hasattr(self, 'b_lr_scale'): self.b_lr_scale = None rval = OrderedDict() if self.W_lr_scale is not None: W, = self.transformer.get_params() rval[W] = self.W_lr_scale if self.b_lr_scale is not None: rval[self.b] = self.b_lr_scale return rval @wraps(Layer.get_weights_topo) def get_weights_topo(self): outp, inp, rows, cols = range(4) raw = self.transformer._filters.get_value() return np.transpose(raw, (outp, rows, cols, inp)) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): W, = self.transformer.get_params() assert W.ndim == 4 sq_W = T.sqr(W) row_norms = T.sqrt(sq_W.sum(axis=(1, 2, 3))) rval = OrderedDict([ ('kernel_norms_min', row_norms.min()), ('kernel_norms_mean', row_norms.mean()), ('kernel_norms_max', row_norms.max()), ]) cst = self.cost orval = self.nonlin.get_monitoring_channels_from_state(state, targets, cost_fn=cst) rval.update(orval) return rval @wraps(Layer.fprop) def fprop(self, state_below): self.input_space.validate(state_below) z = self.transformer.lmul(state_below) if not hasattr(self, 'tied_b'): self.tied_b = False if self.tied_b: b = self.b.dimshuffle('x', 0, 'x', 'x') else: b = self.b.dimshuffle('x', 0, 1, 2) z = z + b d = self.nonlin.apply(z) if self.layer_name is not None: d.name = self.layer_name + '_z' self.detector_space.validate(d) if self.pool_type is not None: # Format the input to be supported by max pooling if not hasattr(self, 'detector_normalization'): self.detector_normalization = None if self.detector_normalization: d = self.detector_normalization(d) assert self.pool_type in ['max', 'mean'], ("pool_type should be" "either max or mean" "pooling.") if self.pool_type == 'max': p = max_pool(bc01=d, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) elif self.pool_type == 'mean': p = mean_pool(bc01=d, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape) self.output_space.validate(p) else: p = d if not hasattr(self, 'output_normalization'): self.output_normalization = None if self.output_normalization: p = self.output_normalization(p) return p @wraps(Layer.cost, append=True) def cost(self, Y, Y_hat): """ Notes ----- The cost method calls `self.nonlin.cost` """ batch_axis = self.output_space.get_batch_axis() return self.nonlin.cost(Y=Y, Y_hat=Y_hat, batch_axis=batch_axis) class ConvRectifiedLinear(ConvElemwise): """ A convolutional rectified linear layer, based on theano's B01C formatted convolution. Parameters ---------- output_channels : int The number of output channels the layer should have. kernel_shape : tuple The shape of the convolution kernel. pool_shape : tuple The shape of the spatial max pooling. A two-tuple of ints. pool_stride : tuple The stride of the spatial max pooling. Also must be square. layer_name : str A name for this layer that will be prepended to monitoring channels related to this layer. irange : float if specified, initializes each weight randomly in U(-irange, irange) border_mode : str A string indicating the size of the output: - "full" : The output is the full discrete linear convolution of the inputs. - "valid" : The output consists only of those elements that do not rely on the zero-padding. (Default) include_prob : float probability of including a weight element in the set of weights initialized to U(-irange, irange). If not included it is initialized to 0. init_bias : float All biases are initialized to this number W_lr_scale : float The learning rate on the weights for this layer is multiplied by this scaling factor b_lr_scale : float The learning rate on the biases for this layer is multiplied by this scaling factor left_slope : float The slope of the left half of the activation function max_kernel_norm : float If specifed, each kernel is constrained to have at most this norm. pool_type : The type of the pooling operation performed the the convolution. Default pooling type is max-pooling. tied_b : bool If true, all biases in the same channel are constrained to be the same as each other. Otherwise, each bias at each location is learned independently. detector_normalization : callable See `output_normalization` output_normalization : callable if specified, should be a callable object. the state of the network is optionally replaced with normalization(state) at each of the 3 points in processing: - detector: the rectifier units can be normalized prior to the spatial pooling - output: the output of the layer, after spatial pooling, can be normalized as well kernel_stride : tuple The stride of the convolution kernel. A two-tuple of ints. """ def __init__(self, output_channels, kernel_shape, pool_shape, pool_stride, layer_name, irange=None, border_mode='valid', sparse_init=None, include_prob=1.0, init_bias=0., W_lr_scale=None, b_lr_scale=None, left_slope=0.0, max_kernel_norm=None, pool_type='max', tied_b=False, detector_normalization=None, output_normalization=None, kernel_stride=(1, 1), monitor_style="classification"): nonlinearity = RectifierConvNonlinearity(left_slope) if (irange is None) and (sparse_init is None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvRectifiedLinear.") elif (irange is not None) and (sparse_init is not None): raise AssertionError("You should specify either irange or " "sparse_init when calling the constructor of " "ConvRectifiedLinear and not both.") # Alias the variables for pep8 mkn = max_kernel_norm dn = detector_normalization on = output_normalization super(ConvRectifiedLinear, self).__init__(output_channels, kernel_shape, layer_name, nonlinearity, irange=irange, border_mode=border_mode, sparse_init=sparse_init, include_prob=include_prob, init_bias=init_bias, W_lr_scale=W_lr_scale, b_lr_scale=b_lr_scale, pool_shape=pool_shape, pool_stride=pool_stride, max_kernel_norm=mkn, pool_type=pool_type, tied_b=tied_b, detector_normalization=dn, output_normalization=on, kernel_stride=kernel_stride, monitor_style=monitor_style) def pool_dnn(bc01, pool_shape, pool_stride, mode='max'): """ cuDNN pooling op. Parameters ---------- bc01 : theano tensor Minibatch in format (batch size, channels, rows, cols). pool_shape : tuple Shape of the pool region (rows, cols). pool_stride : tuple Strides between pooling regions (row stride, col stride). mode : str Flag for `mean` or `max` pooling. Returns ------- mx : theano tensor The output of pooling applied to `bc01`. """ assert mode in ['max', 'mean'] if mode == 'mean': raise NotImplementedError('Mean pooling is not implemented ' 'in Pylearn2 using cuDNN as of ' 'January 19th, 2015.') mx = dnn_pool(bc01, tuple(pool_shape), tuple(pool_stride), mode) return mx def max_pool(bc01, pool_shape, pool_stride, image_shape, try_dnn=True): """ Theano's max pooling op only supports pool_stride = pool_shape so here we have a graph that does max pooling with strides Parameters ---------- bc01 : theano tensor minibatch in format (batch size, channels, rows, cols) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple avoid doing some of the arithmetic in theano try_dnn : bool Flag to set cuDNN use (default: True). Returns ------- pooled : theano tensor The output of pooling applied to `bc01` See Also -------- max_pool_c01b : Same functionality but with ('c', 0, 1, 'b') axes sandbox.cuda_convnet.pool.max_pool_c01b : Same functionality as `max_pool_c01b` but GPU-only and considerably faster. mean_pool : Mean pooling instead of max pooling """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride assert pr <= r assert pc <= c name = bc01.name if name is None: name = 'anon_bc01' if try_dnn and bc01.dtype == "float32": use_dnn = dnn_available() else: use_dnn = False if pool_shape == pool_stride and not use_dnn: mx = max_pool_2d(bc01, pool_shape, False) mx.name = 'max_pool(' + name + ')' return mx # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp # Catch case where p_strd > p_shp causes pool # to be set outside of im_shp. if p_strd * rval >= im_shp: rval -= 1 return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for bc01v in get_debug_values(bc01): assert not contains_inf(bc01v) assert bc01v.shape[2] == image_shape[0] assert bc01v.shape[3] == image_shape[1] if (required_r > r) or (required_c > c): small_r = min(required_r, r) small_c = min(required_c, c) assert bc01.dtype.startswith('float') wide_infinity = T.alloc(T.constant(-np.inf, dtype=bc01.dtype), bc01.shape[0], bc01.shape[1], required_r, required_c) bc01 = T.set_subtensor(wide_infinity[:, :, 0:small_r, 0:small_c], bc01[:, :, 0:small_r, 0:small_c]) name = 'infinite_padded_' + name if use_dnn: mx = pool_dnn(bc01, pool_shape, pool_stride, 'max') else: for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = bc01[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] cur.name = ('max_pool_cur_' + name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) if mx is None: mx = cur else: mx = T.maximum(mx, cur) mx.name = ('max_pool_mx_' + name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx.name = 'max_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx def max_pool_c01b(c01b, pool_shape, pool_stride, image_shape): """ Theano's max pooling op only supports pool_stride = pool_shape so here we have a graph that does max pooling with strides Parameters ---------- c01b : theano tensor minibatch in format (channels, rows, cols, batch size) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple avoid doing some of the arithmetic in theano Returns ------- pooled : theano tensor The output of pooling applied to `c01b` See Also -------- sandbox.cuda_convnet.pool.max_pool_c01b : Same functionality but GPU-only and considerably faster. max_pool : Same functionality but with ('b', 0, 1, 'c') axes """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride assert pr > 0 assert pc > 0 assert pr <= r assert pc <= c # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for c01bv in get_debug_values(c01b): assert not contains_inf(c01bv) assert c01bv.shape[1] == r assert c01bv.shape[2] == c wide_infinity = T.alloc(-np.inf, c01b.shape[0], required_r, required_c, c01b.shape[3]) name = c01b.name if name is None: name = 'anon_bc01' c01b = T.set_subtensor(wide_infinity[:, 0:r, 0:c, :], c01b) c01b.name = 'infinite_padded_' + name for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = c01b[:, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs, :] cur.name = ('max_pool_cur_' + c01b.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) if mx is None: mx = cur else: mx = T.maximum(mx, cur) mx.name = ('max_pool_mx_' + c01b.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx.name = 'max_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx def mean_pool(bc01, pool_shape, pool_stride, image_shape): """ Does mean pooling (aka average pooling) via a Theano graph. Parameters ---------- bc01 : theano tensor minibatch in format (batch size, channels, rows, cols) pool_shape : tuple shape of the pool region (rows, cols) pool_stride : tuple strides between pooling regions (row stride, col stride) image_shape : tuple (rows, cols) tuple to avoid doing some arithmetic in theano Returns ------- pooled : theano tensor The output of pooling applied to `bc01` See Also -------- max_pool : Same thing but with max pooling Examples -------- >>> import theano >>> import theano.tensor as T >>> from pylearn2.models.mlp import mean_pool >>> import numpy as np >>> t = np.array([[1, 1, 3, 3], ... [1, 1, 3, 3], ... [5, 5, 7, 7], ... [5, 5, 7, 7], ... [9, 9, 11, 11], ... [9, 9, 11, 11]]) >>> X = np.zeros((3, t.shape[0], t.shape[1])) >>> X[:] = t >>> X = X[np.newaxis] >>> X_sym = T.tensor4('X') >>> pool_it = mean_pool(X_sym, pool_shape=(2, 2), pool_stride=(2, 2), ... image_shape=(6, 4)) >>> f = theano.function(inputs=[X_sym], outputs=pool_it) This will pool over over windows of size (2, 2) while also stepping by this same amount, shrinking the examples input to [[1, 3], [5, 7], [9, 11]]. """ mx = None r, c = image_shape pr, pc = pool_shape rs, cs = pool_stride # Compute index in pooled space of last needed pool # (needed = each input pixel must appear in at least one pool) def last_pool(im_shp, p_shp, p_strd): rval = int(np.ceil(float(im_shp - p_shp) / p_strd)) assert p_strd * rval + p_shp >= im_shp assert p_strd * (rval - 1) + p_shp < im_shp return rval # Compute starting row of the last pool last_pool_r = last_pool(image_shape[0], pool_shape[0], pool_stride[0]) * pool_stride[0] # Compute number of rows needed in image for all indexes to work out required_r = last_pool_r + pr last_pool_c = last_pool(image_shape[1], pool_shape[1], pool_stride[1]) * pool_stride[1] required_c = last_pool_c + pc for bc01v in get_debug_values(bc01): assert not contains_inf(bc01v) assert bc01v.shape[2] == image_shape[0] assert bc01v.shape[3] == image_shape[1] wide_infinity = T.alloc(-np.inf, bc01.shape[0], bc01.shape[1], required_r, required_c) name = bc01.name if name is None: name = 'anon_bc01' bc01 = T.set_subtensor(wide_infinity[:, :, 0:r, 0:c], bc01) bc01.name = 'infinite_padded_' + name # Create a 'mask' used to keep count of the number of elements summed for # each position wide_infinity_count = T.alloc(0, bc01.shape[0], bc01.shape[1], required_r, required_c) bc01_count = T.set_subtensor(wide_infinity_count[:, :, 0:r, 0:c], 1) for row_within_pool in xrange(pool_shape[0]): row_stop = last_pool_r + row_within_pool + 1 for col_within_pool in xrange(pool_shape[1]): col_stop = last_pool_c + col_within_pool + 1 cur = bc01[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] cur.name = ('mean_pool_cur_' + bc01.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) cur_count = bc01_count[:, :, row_within_pool:row_stop:rs, col_within_pool:col_stop:cs] if mx is None: mx = cur count = cur_count else: mx = mx + cur count = count + cur_count mx.name = ('mean_pool_mx_' + bc01.name + '_' + str(row_within_pool) + '_' + str(col_within_pool)) mx /= count mx.name = 'mean_pool(' + name + ')' for mxv in get_debug_values(mx): assert isfinite(mxv) return mx @wraps(_WD) def WeightDecay(*args, **kwargs): warnings.warn("pylearn2.models.mlp.WeightDecay has moved to " "pylearn2.costs.mlp.WeightDecay. This link" "may be removed after 2015-05-13.") return _WD(*args, **kwargs) @wraps(_L1WD) def L1WeightDecay(*args, **kwargs): warnings.warn("pylearn2.models.mlp.L1WeightDecay has moved to " "pylearn2.costs.mlp.WeightDecay. This link" "may be removed after 2015-05-13.") return _L1WD(*args, **kwargs) class LinearGaussian(Linear): """ A Linear layer augmented with a precision vector, for modeling conditionally Gaussian data. Specifically, given an input x, this layer models the distrbution over the output as y ~ p(y | x) = N(y | Wx + b, beta^-1) i.e., y is conditionally Gaussian with mean Wx + b and variance beta^-1. beta is a diagonal precision matrix so beta^-1 is a diagonal covariance matrix. Internally, beta is stored as the vector of diagonal values on this matrix. Since the output covariance is not a function of the input, this does not provide an example-specific estimate of the error in the mean. However, the vector-valued beta does mean that maximizing log p(y | x) will reweight the mean squared error so that variables that can be estimated easier will receive a higher penalty. This is one way of adapting the model better to heterogenous data. Parameters ---------- init_beta : float or ndarray Any value > 0 that can be broadcasted to a vector of shape (dim, ). The elements of beta are initialized to this value. A good value is often the precision (inverse variance) of the target variables in the training set, as provided by the `beta_from_targets` function. This is the optimal beta for a dummy model that just predicts the mean target value from the training set. min_beta : float The elements of beta are constrained to be >= this value. This value must be > 0., otherwise the output conditional is not constrained to be a valid probability distribution. A good value is often the precision (inverse variance) of the target variables in the training set, as provided by the `beta_from_targets` function. This is the optimal beta for a dummy model that just predicts the mean target value from the training set. A trained model should always be able to obtain at least this much precision, at least on the training set. max_beta : float The elements of beta are constrained to be <= this value. We impose this constraint because for problems where the training set values can be predicted exactly, beta can grow without bound, which also makes the gradients grow without bound, resulting in numerical problems. kwargs : dict Arguments to the `Linear` superclass. """ def __init__(self, init_beta, min_beta, max_beta, beta_lr_scale, **kwargs): super(LinearGaussian, self).__init__(**kwargs) self.__dict__.update(locals()) del self.self del self.kwargs @wraps(Layer.set_input_space) def set_input_space(self, space): super(LinearGaussian, self).set_input_space(space) assert isinstance(self.output_space, VectorSpace) self.beta = sharedX(self.output_space.get_origin() + self.init_beta, 'beta') @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = super(LinearGaussian, self).get_layer_monitoring_channels(state_below, state, targets) assert isinstance(rval, OrderedDict) rval['beta_min'] = self.beta.min() rval['beta_mean'] = self.beta.mean() rval['beta_max'] = self.beta.max() if targets: rval['mse'] = T.sqr(state - targets).mean() return rval @wraps(Linear.cost) def cost(self, Y, Y_hat): return (0.5 * T.dot(T.sqr(Y - Y_hat), self.beta).mean() - 0.5 * T.log(self.beta).sum()) @wraps(Linear.cost_matrix) def cost_matrix(self, Y, Y_hat): return 0.5 * T.sqr(Y - Y_hat) * self.beta - 0.5 * T.log(self.beta) @wraps(Layer._modify_updates) def _modify_updates(self, updates): super(LinearGaussian, self)._modify_updates(updates) if self.beta in updates: updates[self.beta] = T.clip(updates[self.beta], self.min_beta, self.max_beta) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): rval = super(LinearGaussian, self).get_lr_scalers() if self.beta_lr_scale is not None: rval[self.beta] = self.beta_lr_scale return rval @wraps(Layer.get_params) def get_params(self): return super(LinearGaussian, self).get_params() + [self.beta] def beta_from_design(design, min_var=1e-6, max_var=1e6): """ Returns the marginal precision of a design matrix. Parameters ---------- design : ndarray A numpy ndarray containing a design matrix min_var : float max_var : float All variances are constrained to lie in the range [min_var, max_var] to avoid numerical issues like infinite precision. Returns ------- beta : ndarray A 1D vector containing the marginal precision of each variable in the design matrix. """ return 1. / np.clip(design.var(axis=0), min_var, max_var) def beta_from_targets(dataset, **kwargs): """ Returns the marginal precision of the targets in a dataset. Parameters ---------- dataset : DenseDesignMatrix A DenseDesignMatrix with a targets field `y` kwargs : dict Extra arguments to `beta_from_design` Returns ------- beta : ndarray A 1-D vector containing the marginal precision of the *targets* in `dataset`. """ return beta_from_design(dataset.y, **kwargs) def beta_from_features(dataset, **kwargs): """ Returns the marginal precision of the features in a dataset. Parameters ---------- dataset : DenseDesignMatrix The dataset to compute the precision on. kwargs : dict Passed through to `beta_from_design` Returns ------- beta : ndarray Vector of precision values for each feature in `dataset` """ return beta_from_design(dataset.X, **kwargs) def mean_of_targets(dataset): """ Returns the mean of the targets in a dataset. Parameters ---------- dataset : DenseDesignMatrix Returns ------- mn : ndarray A 1-D vector with entry i giving the mean of target i """ return dataset.y.mean(axis=0) class PretrainedLayer(Layer): """ A layer whose weights are initialized, and optionally fixed, based on prior training. Parameters ---------- layer_content : Model Should implement "upward_pass" (RBM and Autoencoder do this) freeze_params: bool If True, regard layer_conent's parameters as fixed If False, they become parameters of this layer and can be fine-tuned to optimize the MLP's cost function. """ def __init__(self, layer_name, layer_content, freeze_params=False): super(PretrainedLayer, self).__init__() self.__dict__.update(locals()) del self.self @wraps(Layer.set_input_space) def set_input_space(self, space): assert self.get_input_space() == space @wraps(Layer.get_params) def get_params(self): if self.freeze_params: return [] return self.layer_content.get_params() @wraps(Layer.get_input_space) def get_input_space(self): return self.layer_content.get_input_space() @wraps(Layer.get_output_space) def get_output_space(self): return self.layer_content.get_output_space() @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): return OrderedDict([]) @wraps(Layer.fprop) def fprop(self, state_below): return self.layer_content.upward_pass(state_below) class CompositeLayer(Layer): """ A Layer that runs several layers in parallel. Its default behavior is to pass the layer's input to each of the components. Alternatively, it can take a CompositeSpace as an input and a mapping from inputs to layers i.e. providing each component layer with a subset of the inputs. Parameters ---------- layer_name : str The name of this layer layers : tuple or list The component layers to run in parallel. inputs_to_layers : dict mapping int to list of ints, optional Can only be used if the input space is a CompositeSpace. If inputs_to_layers[i] contains j, it means input i will be given as input to component j. Note that if multiple inputs are passed on to e.g. an inner CompositeLayer, the same order will be maintained. If the list is empty, the input will be discarded. If an input does not appear in the dictionary, it will be given to all components. Examples -------- >>> composite_layer = CompositeLayer( ... layer_name='composite_layer', ... layers=[Tanh(7, 'h0', 0.1), Sigmoid(5, 'h1', 0.1)], ... inputs_to_layers={ ... 0: [1], ... 1: [0] ... }) This CompositeLayer has a CompositeSpace with 2 subspaces as its input space. The first input is given to the Sigmoid layer, the second input is given to the Tanh layer. >>> wrapper_layer = CompositeLayer( ... layer_name='wrapper_layer', ... layers=[Linear(9, 'h2', 0.1), ... composite_layer, ... Tanh(7, 'h3', 0.1)], ... inputs_to_layers={ ... 0: [1], ... 2: [] ... }) This CompositeLayer takes 3 inputs. The first one is given to the inner CompositeLayer. The second input is passed on to each component layer i.e. to the Tanh, Linear as well as CompositeLayer. The third input is discarded. Note that the inner CompositeLayer wil receive the inputs with the same ordering i.e. [0, 1], and never [1, 0]. """ def __init__(self, layer_name, layers, inputs_to_layers=None): self.num_layers = len(layers) if inputs_to_layers is not None: if not isinstance(inputs_to_layers, dict): raise TypeError("CompositeLayer expected inputs_to_layers to " "be dict, got " + str(type(inputs_to_layers))) self.inputs_to_layers = OrderedDict() for key in sorted(inputs_to_layers): assert isinstance(key, py_integer_types) value = inputs_to_layers[key] assert is_iterable(value) assert all(isinstance(v, py_integer_types) for v in value) # Check 'not value' to support case of empty list assert not value or all(0 <= v < self.num_layers for v in value) self.inputs_to_layers[key] = sorted(value) super(CompositeLayer, self).__init__() self.__dict__.update(locals()) del self.self @property def routing_needed(self): return self.inputs_to_layers is not None @wraps(Layer.set_input_space) def set_input_space(self, space): if not isinstance(space, CompositeSpace): if self.inputs_to_layers is not None: raise ValueError("CompositeLayer received an inputs_to_layers " "mapping, but does not have a CompositeSpace " "as its input space, so there is nothing to " "map. Received " + str(space) + " as input " "space.") elif self.routing_needed: if not max(self.inputs_to_layers) < len(space.components): raise ValueError("The inputs_to_layers mapping of " "CompositeSpace contains they key " + str(max(self.inputs_to_layers)) + " " "(0-based) but the input space only " "contains " + str(self.num_layers) + " " "layers.") # Invert the dictionary self.layers_to_inputs = OrderedDict() for i in xrange(self.num_layers): inputs = [] for j in xrange(len(space.components)): if j in self.inputs_to_layers: if i in self.inputs_to_layers[j]: inputs.append(j) else: inputs.append(j) self.layers_to_inputs[i] = inputs for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_space = space.restrict(self.layers_to_inputs[i]) else: cur_space = space layer.set_input_space(cur_space) self.input_space = space self.output_space = CompositeSpace(tuple(layer.get_output_space() for layer in self.layers)) self._target_space = CompositeSpace(tuple(layer.get_target_space() for layer in self.layers)) @wraps(Layer.get_params) def get_params(self): rval = [] for layer in self.layers: rval = safe_union(layer.get_params(), rval) return rval @wraps(Layer.fprop) def fprop(self, state_below): rvals = [] for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_state_below = [state_below[j] for j in self.layers_to_inputs[i]] # This is to mimic the behavior of CompositeSpace's restrict # method, which only returns a CompositeSpace when the number # of components is greater than 1 if len(cur_state_below) == 1: cur_state_below, = cur_state_below else: cur_state_below = state_below rvals.append(layer.fprop(cur_state_below)) return tuple(rvals) def _weight_decay_aggregate(self, method_name, coeff): if isinstance(coeff, py_float_types): return T.sum([getattr(layer, method_name)(coeff) for layer in self.layers]) elif is_iterable(coeff): assert all(layer_coeff >= 0 for layer_coeff in coeff) return T.sum([getattr(layer, method_name)(layer_coeff) for layer, layer_coeff in safe_zip(self.layers, coeff) if layer_coeff > 0], dtype=config.floatX) else: raise TypeError("CompositeLayer's " + method_name + " received " "coefficients of type " + str(type(coeff)) + " " "but must be provided with a float or list/tuple") def get_weight_decay(self, coeff): """ Provides an expression for a squared L2 penalty on the weights, which is the weighted sum of the squared L2 penalties of the layer components. Parameters ---------- coeff : float or tuple/list The coefficient on the squared L2 weight decay penalty for this layer. If a single value is provided, this coefficient is used for each component layer. If a list of tuple of coefficients is given they are passed on to the component layers in the given order. Returns ------- weight_decay : theano.gof.Variable An expression for the squared L2 weight decay penalty term for this layer. """ return self._weight_decay_aggregate('get_weight_decay', coeff) def get_l1_weight_decay(self, coeff): """ Provides an expression for a squared L1 penalty on the weights, which is the weighted sum of the squared L1 penalties of the layer components. Parameters ---------- coeff : float or tuple/list The coefficient on the L1 weight decay penalty for this layer. If a single value is provided, this coefficient is used for each component layer. If a list of tuple of coefficients is given they are passed on to the component layers in the given order. Returns ------- weight_decay : theano.gof.Variable An expression for the L1 weight decay penalty term for this layer. """ return self._weight_decay_aggregate('get_l1_weight_decay', coeff) @wraps(Layer.cost) def cost(self, Y, Y_hat): return sum(layer.cost(Y_elem, Y_hat_elem) for layer, Y_elem, Y_hat_elem in safe_zip(self.layers, Y, Y_hat)) @wraps(Layer.set_mlp) def set_mlp(self, mlp): super(CompositeLayer, self).set_mlp(mlp) for layer in self.layers: layer.set_mlp(mlp) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): rval = OrderedDict() # TODO: reduce redundancy with fprop method for i, layer in enumerate(self.layers): if self.routing_needed and i in self.layers_to_inputs: cur_state_below = [state_below[j] for j in self.layers_to_inputs[i]] # This is to mimic the behavior of CompositeSpace's restrict # method, which only returns a CompositeSpace when the number # of components is greater than 1 if len(cur_state_below) == 1: cur_state_below, = cur_state_below else: cur_state_below = state_below if state is not None: cur_state = state[i] else: cur_state = None if targets is not None: cur_targets = targets[i] else: cur_targets = None d = layer.get_layer_monitoring_channels( cur_state_below, cur_state, cur_targets) for key in d: rval[layer.layer_name + '_' + key] = d[key] return rval @wraps(Model._modify_updates) def _modify_updates(self, updates): for layer in self.layers: layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return get_lr_scalers_from_layers(self) class FlattenerLayer(Layer): """ A wrapper around a different layer that flattens the original layer's output. The cost works by unflattening the target and then calling the wrapped Layer's cost. This is mostly intended for use with CompositeLayer as the wrapped Layer, and is mostly useful as a workaround for theano not having a TupleVariable with which to represent a composite target. There are obvious memory, performance, and readability issues with doing this, so really it would be better for theano to support TupleTypes. See pylearn2.sandbox.tuple_var and the theano-dev e-mail thread "TupleType". Parameters ---------- raw_layer : Layer Layer that FlattenerLayer wraps. """ def __init__(self, raw_layer): super(FlattenerLayer, self).__init__() self.__dict__.update(locals()) del self.self self.layer_name = raw_layer.layer_name @wraps(Layer.set_input_space) def set_input_space(self, space): self.raw_layer.set_input_space(space) total_dim = self.raw_layer.get_output_space().get_total_dimension() self.output_space = VectorSpace(total_dim) @wraps(Layer.get_input_space) def get_input_space(self): return self.raw_layer.get_input_space() @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self, data): return self.raw_layer.get_monitoring_channels(data) @wraps(Layer.get_layer_monitoring_channels) def get_layer_monitoring_channels(self, state_below=None, state=None, targets=None): raw_space = self.raw_layer.get_output_space() state = raw_space.undo_format_as(state, self.get_output_space()) if targets is not None: targets = self.get_target_space().format_as( targets, self.raw_layer.get_target_space()) return self.raw_layer.get_layer_monitoring_channels( state_below=state_below, state=state, targets=targets ) @wraps(Layer.get_monitoring_data_specs) def get_monitoring_data_specs(self): return self.raw_layer.get_monitoring_data_specs() @wraps(Layer.get_params) def get_params(self): return self.raw_layer.get_params() @wraps(Layer.get_weights) def get_weights(self): return self.raw_layer.get_weights() @wraps(Layer.get_weight_decay) def get_weight_decay(self, coeffs): return self.raw_layer.get_weight_decay(coeffs) @wraps(Layer.get_l1_weight_decay) def get_l1_weight_decay(self, coeffs): return self.raw_layer.get_l1_weight_decay(coeffs) @wraps(Layer.set_batch_size) def set_batch_size(self, batch_size): self.raw_layer.set_batch_size(batch_size) @wraps(Layer._modify_updates) def _modify_updates(self, updates): self.raw_layer.modify_updates(updates) @wraps(Layer.get_lr_scalers) def get_lr_scalers(self): return self.raw_layer.get_lr_scalers() @wraps(Layer.fprop) def fprop(self, state_below): raw = self.raw_layer.fprop(state_below) return self.raw_layer.get_output_space().format_as(raw, self.output_space) @wraps(Layer.cost) def cost(self, Y, Y_hat): raw_space = self.raw_layer.get_output_space() target_space = self.output_space raw_Y = target_space.format_as(Y, raw_space) raw_Y_hat = raw_space.undo_format_as(Y_hat, target_space) raw_space.validate(raw_Y_hat) return self.raw_layer.cost(raw_Y, raw_Y_hat) @wraps(Layer.set_mlp) def set_mlp(self, mlp): super(FlattenerLayer, self).set_mlp(mlp) self.raw_layer.set_mlp(mlp) class WindowLayer(Layer): """ Layer used to select a window of an image input. The input of the layer must be Conv2DSpace. Parameters ---------- layer_name : str A name for this layer. window : tuple A four-tuple of ints indicating respectively the top left x and y position, and the bottom right x and y position of the window. """ def __init__(self, layer_name, window): super(WindowLayer, self).__init__() self.__dict__.update(locals()) del self.self if window[0] < 0 or window[0] > window[2] or \ window[1] < 0 or window[1] > window[3]: raise ValueError("WindowLayer: bad window parameter") @wraps(Layer.fprop) def fprop(self, state_below): extracts = [slice(None), slice(None), slice(None), slice(None)] extracts[self.rows] = slice(self.window[0], self.window[2] + 1) extracts[self.cols] = slice(self.window[1], self.window[3] + 1) extracts = tuple(extracts) return state_below[extracts] @wraps(Layer.set_input_space) def set_input_space(self, space): self.input_space = space if not isinstance(space, Conv2DSpace): raise TypeError("The input to a Window layer should be a " "Conv2DSpace, but layer " + self.layer_name + " got " + str(type(self.input_space))) axes = space.axes self.rows = axes.index(0) self.cols = axes.index(1) nrows = space.shape[0] ncols = space.shape[1] if self.window[2] + 1 > nrows or self.window[3] + 1 > ncols: raise ValueError("WindowLayer: bad window shape. " "Input is [" + str(nrows) + ", " + str(ncols) + "], " "but layer " + self.layer_name + " has window " + str(self.window)) self.output_space = Conv2DSpace( shape=[self.window[2] - self.window[0] + 1, self.window[3] - self.window[1] + 1], num_channels=space.num_channels, axes=axes) @wraps(Layer.get_params) def get_params(self): return [] @wraps(Layer.get_monitoring_channels) def get_monitoring_channels(self): return [] def generate_dropout_mask(mlp, default_include_prob=0.5, input_include_probs=None, rng=(2013, 5, 17)): """ Generate a dropout mask (as an integer) given inclusion probabilities. Parameters ---------- mlp : object An MLP object. default_include_prob : float, optional The probability of including an input to a hidden layer, for layers not listed in `input_include_probs`. Default is 0.5. input_include_probs : dict, optional A dictionary mapping layer names to probabilities of input inclusion for that layer. Default is `None`, in which `default_include_prob` is used for all layers. rng : RandomState object or seed, optional A `numpy.random.RandomState` object or a seed used to create one. Returns ------- mask : int An integer indexing a dropout mask for the network, drawn with the appropriate probability given the inclusion probabilities. """ if input_include_probs is None: input_include_probs = {} if not hasattr(rng, 'uniform'): rng = np.random.RandomState(rng) total_units = 0 mask = 0 for layer in mlp.layers: if layer.layer_name in input_include_probs: p = input_include_probs[layer.layer_name] else: p = default_include_prob for _ in xrange(layer.get_input_space().get_total_dimension()): mask |= int(rng.uniform() < p) << total_units total_units += 1 return mask def sampled_dropout_average(mlp, inputs, num_masks, default_input_include_prob=0.5, input_include_probs=None, default_input_scale=2., input_scales=None, rng=(2013, 5, 17), per_example=False): """ Take the geometric mean over a number of randomly sampled dropout masks for an MLP with softmax outputs. Parameters ---------- mlp : object An MLP object. inputs : tensor_like A Theano variable representing a minibatch appropriate for fpropping through the MLP. num_masks : int The number of masks to sample. default_input_include_prob : float, optional The probability of including an input to a hidden layer, for layers not listed in `input_include_probs`. Default is 0.5. input_include_probs : dict, optional A dictionary mapping layer names to probabilities of input inclusion for that layer. Default is `None`, in which `default_include_prob` is used for all layers. default_input_scale : float, optional The amount to scale input in dropped out layers. input_scales : dict, optional A dictionary mapping layer names to constants by which to scale the input. rng : RandomState object or seed, optional A `numpy.random.RandomState` object or a seed used to create one. per_example : bool, optional If `True`, generate a different mask for every single test example, so you have `num_masks` per example instead of `num_mask` networks total. If `False`, `num_masks` masks are fixed in the graph. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all the networks. """ if input_include_probs is None: input_include_probs = {} if input_scales is None: input_scales = {} if not hasattr(rng, 'uniform'): rng = np.random.RandomState(rng) mlp._validate_layer_names(list(input_include_probs.keys())) mlp._validate_layer_names(list(input_scales.keys())) if per_example: outputs = [mlp.dropout_fprop(inputs, default_input_include_prob, input_include_probs, default_input_scale, input_scales) for _ in xrange(num_masks)] else: masks = [generate_dropout_mask(mlp, default_input_include_prob, input_include_probs, rng) for _ in xrange(num_masks)] outputs = [mlp.masked_fprop(inputs, mask, None, default_input_scale, input_scales) for mask in masks] return geometric_mean_prediction(outputs) def exhaustive_dropout_average(mlp, inputs, masked_input_layers=None, default_input_scale=2., input_scales=None): """ Take the geometric mean over all dropout masks of an MLP with softmax outputs. Parameters ---------- mlp : object An MLP object. inputs : tensor_like A Theano variable representing a minibatch appropriate for fpropping through the MLP. masked_input_layers : list, optional A list of layer names whose input should be masked. Default is all layers (including the first hidden layer, i.e. mask the input). default_input_scale : float, optional The amount to scale input in dropped out layers. input_scales : dict, optional A dictionary mapping layer names to constants by which to scale the input. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all exponentially many masked subnetworks. Notes ----- This is obviously exponential in the size of the network, don't do this except for tiny toy networks. """ if masked_input_layers is None: masked_input_layers = mlp.layer_names mlp._validate_layer_names(masked_input_layers) if input_scales is None: input_scales = {} mlp._validate_layer_names(input_scales.keys()) if any(key not in masked_input_layers for key in input_scales): not_in = [key for key in input_scales if key not in mlp.layer_names] raise ValueError(", ".join(not_in) + " in input_scales" " but not masked") num_inputs = mlp.get_total_input_dimension(masked_input_layers) outputs = [mlp.masked_fprop(inputs, mask, masked_input_layers, default_input_scale, input_scales) for mask in xrange(2 ** num_inputs)] return geometric_mean_prediction(outputs) def geometric_mean_prediction(forward_props): """ Take the geometric mean over all dropout masks of an MLP with softmax outputs. Parameters ---------- forward_props : list A list of Theano graphs corresponding to forward propagations through the network with different dropout masks. Returns ------- geo_mean : tensor_like A symbolic graph for the geometric mean prediction of all exponentially many masked subnetworks. Notes ----- This is obviously exponential in the size of the network, don't do this except for tiny toy networks. """ presoftmax = [] for out in forward_props: assert isinstance(out.owner.op, T.nnet.Softmax) assert len(out.owner.inputs) == 1 presoftmax.append(out.owner.inputs[0]) average = reduce(operator.add, presoftmax) / float(len(presoftmax)) return T.nnet.softmax(average) class BadInputSpaceError(TypeError): """ An error raised by an MLP layer when set_input_space is given an object that is not one of the Spaces that layer supports. """ def get_lr_scalers_from_layers(owner): """ Get the learning rate scalers for all member layers of `owner`. Parameters ---------- owner : Model Any Model with a `layers` field Returns ------- lr_scalers : OrderedDict A dictionary mapping parameters of `owner` to learning rate scalers. """ rval = OrderedDict() params = owner.get_params() for layer in owner.layers: contrib = layer.get_lr_scalers() assert isinstance(contrib, OrderedDict) # No two layers can contend to scale a parameter assert not any([key in rval for key in contrib]) # Don't try to scale anything that's not a parameter assert all([key in params for key in contrib]) rval.update(contrib) assert all([isinstance(val, float) for val in rval.values()]) return rval
bsd-3-clause
forging2012/taiga-back
taiga/mdrender/extensions/semi_sane_lists.py
25
1281
# Copyright (c) 2012, the Dart project authors. Please see the AUTHORS file # for details. All rights reserved. Use of this source code is governed by a # BSD-style license that can be found in the LICENSE file. import markdown class SemiSaneOListProcessor(markdown.blockprocessors.OListProcessor): SIBLING_TAGS = ['ol'] class SemiSaneUListProcessor(markdown.blockprocessors.UListProcessor): SIBLING_TAGS = ['ul'] class SemiSaneListExtension(markdown.Extension): """An extension that causes lists to be treated the same way GitHub does. Like the sane_lists extension, GitHub considers a list to end if it's separated by multiple newlines from another list of a different type. Unlike the sane_lists extension, GitHub will mix list types if they're not separated by multiple newlines. GitHub also recognizes lists that start in the middle of a paragraph. This is currently not supported by this extension, since the Python parser has a deeply-ingrained belief that blocks are always separated by multiple newlines. """ def extendMarkdown(self, md, md_globals): md.parser.blockprocessors['olist'] = SemiSaneOListProcessor(md.parser) md.parser.blockprocessors['ulist'] = SemiSaneUListProcessor(md.parser)
agpl-3.0
hamzehd/edx-platform
cms/djangoapps/contentstore/management/commands/prompt.py
204
1122
import sys def query_yes_no(question, default="yes"): """Ask a yes/no question via raw_input() and return their answer. "question" is a string that is presented to the user. "default" is the presumed answer if the user just hits <Enter>. It must be "yes" (the default), "no" or None (meaning an answer is required of the user). The "answer" return value is one of "yes" or "no". """ valid = { "yes": True, "y": True, "ye": True, "no": False, "n": False, } if default is None: prompt = " [y/n] " elif default == "yes": prompt = " [Y/n] " elif default == "no": prompt = " [y/N] " else: raise ValueError("invalid default answer: '%s'" % default) while True: sys.stdout.write(question + prompt) choice = raw_input().lower() if default is not None and choice == '': return valid[default] elif choice in valid: return valid[choice] else: sys.stdout.write("Please respond with 'yes' or 'no' (or 'y' or 'n').\n")
agpl-3.0
staranjeet/fjord
fjord/suggest/tests/test_dummy.py
1
2216
import datetime from fjord.base.tests import TestCase from fjord.feedback.tests import ResponseFactory from fjord.suggest import get_suggesters from fjord.suggest.utils import get_suggestions from fjord.suggest.providers.dummy import DummySuggester from fjord.suggest.tests import SuggesterTestMixin class DummySuggesterLoadingTestCase(SuggesterTestMixin, TestCase): suggesters = [] def test_didnt_load(self): dummy_providers = [ prov for prov in get_suggesters() if isinstance(prov, DummySuggester) ] assert len(dummy_providers) == 0 class DummySuggesterTestCase(SuggesterTestMixin, TestCase): suggesters = [ 'fjord.suggest.providers.dummy.DummySuggester' ] def test_load(self): dummy_providers = [ prov for prov in get_suggesters() if isinstance(prov, DummySuggester) ] assert len(dummy_providers) == 1 def test_get_suggestions(self): now = u'ts_{0}'.format(datetime.datetime.now()) req = self.get_feedback_post_request({ 'happy': 1, 'description': now, 'url': u'http://example.com/{0}'.format(now) }) feedback = ResponseFactory( happy=True, description=now, url=u'http://example.com/{0}'.format(now) ) # Try with just the feedback links = get_suggestions(feedback) assert len(links) == 1 assert links[0].provider == 'dummy' assert links[0].provider_version == 1 assert links[0].cssclass == u'document' assert links[0].summary == u'summary {0}'.format(now) assert links[0].description == u'description {0}'.format(now) assert links[0].url == feedback.url # Now with the feedback and request links = get_suggestions(feedback, req) assert len(links) == 1 assert links[0].provider == 'dummy' assert links[0].provider_version == 1 assert links[0].cssclass == u'document' assert links[0].summary == u'summary {0}'.format(now) assert links[0].description == u'description {0}'.format(now) assert links[0].url == feedback.url
bsd-3-clause
sorenh/cc
vendor/boto/boto/pyami/installers/ubuntu/mysql.py
50
4876
# Copyright (c) 2006-2009 Mitch Garnaat http://garnaat.org/ # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, dis- # tribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the fol- # lowing conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABIL- # ITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT # SHALL THE AUTHOR BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # """ This installer will install mysql-server on an Ubuntu machine. In addition to the normal installation done by apt-get, it will also configure the new MySQL server to store it's data files in a different location. By default, this is /mnt but that can be configured in the [MySQL] section of the boto config file passed to the instance. """ from boto.pyami.installers.ubuntu.installer import Installer import os import boto from boto.utils import ShellCommand from ConfigParser import SafeConfigParser import time ConfigSection = """ [MySQL] root_password = <will be used as MySQL root password, default none> data_dir = <new data dir for MySQL, default is /mnt> """ class MySQL(Installer): def install(self): self.run('apt-get update') self.run('apt-get -y install mysql-server', notify=True, exit_on_error=True) # def set_root_password(self, password=None): # if not password: # password = boto.config.get('MySQL', 'root_password') # if password: # self.run('mysqladmin -u root password %s' % password) # return password def change_data_dir(self, password=None): data_dir = boto.config.get('MySQL', 'data_dir', '/mnt') fresh_install = False; is_mysql_running_command = ShellCommand('mysqladmin ping') # exit status 0 if mysql is running is_mysql_running_command.run() if is_mysql_running_command.getStatus() == 0: # mysql is running. This is the state apt-get will leave it in. If it isn't running, # that means mysql was already installed on the AMI and there's no need to stop it, # saving 40 seconds on instance startup. time.sleep(10) #trying to stop mysql immediately after installing it fails # We need to wait until mysql creates the root account before we kill it # or bad things will happen i = 0 while self.run("echo 'quit' | mysql -u root") != 0 and i<5: time.sleep(5) i = i + 1 self.run('/etc/init.d/mysql stop') self.run("pkill -9 mysql") mysql_path = os.path.join(data_dir, 'mysql') if not os.path.exists(mysql_path): self.run('mkdir %s' % mysql_path) fresh_install = True; self.run('chown -R mysql:mysql %s' % mysql_path) fp = open('/etc/mysql/conf.d/use_mnt.cnf', 'w') fp.write('# created by pyami\n') fp.write('# use the %s volume for data\n' % data_dir) fp.write('[mysqld]\n') fp.write('datadir = %s\n' % mysql_path) fp.write('log_bin = %s\n' % os.path.join(mysql_path, 'mysql-bin.log')) fp.close() if fresh_install: self.run('cp -pr /var/lib/mysql/* %s/' % mysql_path) self.start('mysql') else: #get the password ubuntu expects to use: config_parser = SafeConfigParser() config_parser.read('/etc/mysql/debian.cnf') password = config_parser.get('client', 'password') # start the mysql deamon, then mysql with the required grant statement piped into it: self.start('mysql') time.sleep(10) #time for mysql to start grant_command = "echo \"GRANT ALL PRIVILEGES ON *.* TO 'debian-sys-maint'@'localhost' IDENTIFIED BY '%s' WITH GRANT OPTION;\" | mysql" % password while self.run(grant_command) != 0: time.sleep(5) # leave mysqld running def main(self): self.install() # change_data_dir runs 'mysql -u root' which assumes there is no mysql password, i # and changing that is too ugly to be worth it: #self.set_root_password() self.change_data_dir()
apache-2.0
mogoweb/chromium-crosswalk
chrome/test/functional/test_clean_exit.py
69
1495
#!/usr/bin/env python # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import logging import os import signal import subprocess import tempfile import unittest import pyauto_functional import pyauto import test_utils class SimpleTest(pyauto.PyUITest): def ExtraChromeFlags(self): """Ensures Chrome is launched with custom flags. Returns: A list of extra flags to pass to Chrome when it is launched. """ fd, self._strace_log = tempfile.mkstemp() os.close(fd) extra_flags = ['--no-sandbox', '--child-clean-exit', '--renderer-cmd-prefix=/usr/bin/strace -o %s' % self._strace_log] logging.debug('Strace file is: %s' % self._strace_log) return pyauto.PyUITest.ExtraChromeFlags(self) + extra_flags def testCleanExit(self): """Ensures the renderer process cleanly exits.""" url = self.GetHttpURLForDataPath('title2.html') self.NavigateToURL(url) os.kill(self.GetBrowserInfo()['browser_pid'], signal.SIGINT) self.WaitUntil(lambda: self._IsFileOpen(self._strace_log)) strace_contents = open(self._strace_log).read() self.assertTrue('exit_group' in strace_contents) os.remove(self._strace_log) def _IsFileOpen(self, filename): p = subprocess.Popen(['lsof', filename]) return p.communicate()[0] == '' if __name__ == '__main__': pyauto_functional.Main()
bsd-3-clause
Spondoolies-Tech/kernel
tools/perf/tests/attr.py
105
9117
#! /usr/bin/python import os import sys import glob import optparse import tempfile import logging import shutil import ConfigParser class Fail(Exception): def __init__(self, test, msg): self.msg = msg self.test = test def getMsg(self): return '\'%s\' - %s' % (self.test.path, self.msg) class Unsup(Exception): def __init__(self, test): self.test = test def getMsg(self): return '\'%s\'' % self.test.path class Event(dict): terms = [ 'flags', 'type', 'size', 'config', 'sample_period', 'sample_type', 'read_format', 'disabled', 'inherit', 'pinned', 'exclusive', 'exclude_user', 'exclude_kernel', 'exclude_hv', 'exclude_idle', 'mmap', 'comm', 'freq', 'inherit_stat', 'enable_on_exec', 'task', 'watermark', 'precise_ip', 'mmap_data', 'sample_id_all', 'exclude_host', 'exclude_guest', 'exclude_callchain_kernel', 'exclude_callchain_user', 'wakeup_events', 'bp_type', 'config1', 'config2', 'branch_sample_type', 'sample_regs_user', 'sample_stack_user', ] def add(self, data): for key, val in data: log.debug(" %s = %s" % (key, val)) self[key] = val def __init__(self, name, data, base): log.info(" Event %s" % name); self.name = name; self.group = '' self.add(base) self.add(data) def compare_data(self, a, b): # Allow multiple values in assignment separated by '|' a_list = a.split('|') b_list = b.split('|') for a_item in a_list: for b_item in b_list: if (a_item == b_item): return True elif (a_item == '*') or (b_item == '*'): return True return False def equal(self, other): for t in Event.terms: log.debug(" [%s] %s %s" % (t, self[t], other[t])); if not self.has_key(t) or not other.has_key(t): return False if not self.compare_data(self[t], other[t]): return False return True # Test file description needs to have following sections: # [config] # - just single instance in file # - needs to specify: # 'command' - perf command name # 'args' - special command arguments # 'ret' - expected command return value (0 by default) # # [eventX:base] # - one or multiple instances in file # - expected values assignments class Test(object): def __init__(self, path, options): parser = ConfigParser.SafeConfigParser() parser.read(path) log.warning("running '%s'" % path) self.path = path self.test_dir = options.test_dir self.perf = options.perf self.command = parser.get('config', 'command') self.args = parser.get('config', 'args') try: self.ret = parser.get('config', 'ret') except: self.ret = 0 self.expect = {} self.result = {} log.info(" loading expected events"); self.load_events(path, self.expect) def is_event(self, name): if name.find("event") == -1: return False else: return True def load_events(self, path, events): parser_event = ConfigParser.SafeConfigParser() parser_event.read(path) # The event record section header contains 'event' word, # optionaly followed by ':' allowing to load 'parent # event' first as a base for section in filter(self.is_event, parser_event.sections()): parser_items = parser_event.items(section); base_items = {} # Read parent event if there's any if (':' in section): base = section[section.index(':') + 1:] parser_base = ConfigParser.SafeConfigParser() parser_base.read(self.test_dir + '/' + base) base_items = parser_base.items('event') e = Event(section, parser_items, base_items) events[section] = e def run_cmd(self, tempdir): cmd = "PERF_TEST_ATTR=%s %s %s -o %s/perf.data %s" % (tempdir, self.perf, self.command, tempdir, self.args) ret = os.WEXITSTATUS(os.system(cmd)) log.info(" running '%s' ret %d " % (cmd, ret)) if ret != int(self.ret): raise Unsup(self) def compare(self, expect, result): match = {} log.info(" compare"); # For each expected event find all matching # events in result. Fail if there's not any. for exp_name, exp_event in expect.items(): exp_list = [] log.debug(" matching [%s]" % exp_name) for res_name, res_event in result.items(): log.debug(" to [%s]" % res_name) if (exp_event.equal(res_event)): exp_list.append(res_name) log.debug(" ->OK") else: log.debug(" ->FAIL"); log.info(" match: [%s] matches %s" % (exp_name, str(exp_list))) # we did not any matching event - fail if (not exp_list): raise Fail(self, 'match failure'); match[exp_name] = exp_list # For each defined group in the expected events # check we match the same group in the result. for exp_name, exp_event in expect.items(): group = exp_event.group if (group == ''): continue for res_name in match[exp_name]: res_group = result[res_name].group if res_group not in match[group]: raise Fail(self, 'group failure') log.info(" group: [%s] matches group leader %s" % (exp_name, str(match[group]))) log.info(" matched") def resolve_groups(self, events): for name, event in events.items(): group_fd = event['group_fd']; if group_fd == '-1': continue; for iname, ievent in events.items(): if (ievent['fd'] == group_fd): event.group = iname log.debug('[%s] has group leader [%s]' % (name, iname)) break; def run(self): tempdir = tempfile.mkdtemp(); try: # run the test script self.run_cmd(tempdir); # load events expectation for the test log.info(" loading result events"); for f in glob.glob(tempdir + '/event*'): self.load_events(f, self.result); # resolve group_fd to event names self.resolve_groups(self.expect); self.resolve_groups(self.result); # do the expectation - results matching - both ways self.compare(self.expect, self.result) self.compare(self.result, self.expect) finally: # cleanup shutil.rmtree(tempdir) def run_tests(options): for f in glob.glob(options.test_dir + '/' + options.test): try: Test(f, options).run() except Unsup, obj: log.warning("unsupp %s" % obj.getMsg()) def setup_log(verbose): global log level = logging.CRITICAL if verbose == 1: level = logging.WARNING if verbose == 2: level = logging.INFO if verbose >= 3: level = logging.DEBUG log = logging.getLogger('test') log.setLevel(level) ch = logging.StreamHandler() ch.setLevel(level) formatter = logging.Formatter('%(message)s') ch.setFormatter(formatter) log.addHandler(ch) USAGE = '''%s [OPTIONS] -d dir # tests dir -p path # perf binary -t test # single test -v # verbose level ''' % sys.argv[0] def main(): parser = optparse.OptionParser(usage=USAGE) parser.add_option("-t", "--test", action="store", type="string", dest="test") parser.add_option("-d", "--test-dir", action="store", type="string", dest="test_dir") parser.add_option("-p", "--perf", action="store", type="string", dest="perf") parser.add_option("-v", "--verbose", action="count", dest="verbose") options, args = parser.parse_args() if args: parser.error('FAILED wrong arguments %s' % ' '.join(args)) return -1 setup_log(options.verbose) if not options.test_dir: print 'FAILED no -d option specified' sys.exit(-1) if not options.test: options.test = 'test*' try: run_tests(options) except Fail, obj: print "FAILED %s" % obj.getMsg(); sys.exit(-1) sys.exit(0) if __name__ == '__main__': main()
gpl-2.0
ahmadassaf/zulip
zerver/management/commands/rename_stream.py
11
1417
from __future__ import absolute_import from __future__ import print_function from typing import Any from argparse import ArgumentParser from django.core.management.base import BaseCommand from zerver.lib.actions import do_rename_stream from zerver.lib.str_utils import force_text from zerver.models import Realm, get_realm import sys class Command(BaseCommand): help = """Change the stream name for a realm.""" def add_arguments(self, parser): # type: (ArgumentParser) -> None parser.add_argument('domain', metavar='<domain>', type=str, help="domain to operate on") parser.add_argument('old_name', metavar='<old name>', type=str, help='name of stream to be renamed') parser.add_argument('new_name', metavar='<new name>', type=str, help='new name to rename the stream to') def handle(self, *args, **options): # type: (*Any, **str) -> None domain = options['domain'] old_name = options['old_name'] new_name = options['new_name'] encoding = sys.getfilesystemencoding() realm = get_realm(force_text(domain, encoding)) if realm is None: print("Unknown domain %s" % (domain,)) exit(1) do_rename_stream(realm, force_text(old_name, encoding), force_text(new_name, encoding))
apache-2.0
kimiscircle/fdfs_client-py
setup.py
2
1133
#!/usr/bin/env python import os from fdfs_client import __version__ try: from setuptools import setup, Extension except ImportError: from distutils.core import setup, Extension f = open(os.path.join(os.path.dirname(__file__), 'README.md')) long_description = f.read() f.close() sdict = { 'name': 'fdfs_client-py', 'version': __version__, 'description': 'Python client for Fastdfs ver 4.06', 'long_description': long_description, 'author': 'scott yuan', 'author_email': '[email protected]', 'maintainer': 'scott yuan', 'maintainer_email': '[email protected]', 'keywords': ['Fastdfs', 'Distribute File System'], 'license': 'GPLV3', 'packages': ['fdfs_client'], 'classifiers': [ 'Development Status :: 1 - Production/Beta', 'Environment :: Console', 'Intended Audience :: Developers', 'License :: GPLV3', 'Operating System :: OS Independent', 'Programming Language :: Python'], 'ext_modules': [Extension('fdfs_client.sendfile', sources=['fdfs_client/sendfilemodule.c'])], } setup(**sdict)
gpl-3.0
atomicjets/twitter-for-bigquery
libs/config.py
6
56933
# Copyright 2004-2010 by Vinay Sajip. All Rights Reserved. # # Permission to use, copy, modify, and distribute this software and its # documentation for any purpose and without fee is hereby granted, # provided that the above copyright notice appear in all copies and that # both that copyright notice and this permission notice appear in # supporting documentation, and that the name of Vinay Sajip # not be used in advertising or publicity pertaining to distribution # of the software without specific, written prior permission. # VINAY SAJIP DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING # ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL # VINAY SAJIP BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR # ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER # IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT # OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ This is a configuration module for Python. This module should work under Python versions >= 2.2, and cannot be used with earlier versions since it uses new-style classes. Development and testing has only been carried out (so far) on Python 2.3.4 and Python 2.4.2. See the test module (test_config.py) included in the U{distribution<http://www.red-dove.com/python_config.html|_blank>} (follow the download link). A simple example - with the example configuration file:: messages: [ { stream : `sys.stderr` message: 'Welcome' name: 'Harry' } { stream : `sys.stdout` message: 'Welkom' name: 'Ruud' } { stream : $messages[0].stream message: 'Bienvenue' name: Yves } ] a program to read the configuration would be:: from config import Config f = file('simple.cfg') cfg = Config(f) for m in cfg.messages: s = '%s, %s' % (m.message, m.name) try: print >> m.stream, s except IOError, e: print e which, when run, would yield the console output:: Welcome, Harry Welkom, Ruud Bienvenue, Yves See U{this tutorial<http://www.red-dove.com/python_config.html|_blank>} for more information. @version: 0.3.9 @author: Vinay Sajip @copyright: Copyright (C) 2004-2010 Vinay Sajip. All Rights Reserved. @var streamOpener: The default stream opener. This is a factory function which takes a string (e.g. filename) and returns a stream suitable for reading. If unable to open the stream, an IOError exception should be thrown. The default value of this variable is L{defaultStreamOpener}. For an example of how it's used, see test_config.py (search for streamOpener). """ __author__ = "Vinay Sajip <[email protected]>" __status__ = "alpha" __version__ = "0.3.9" __date__ = "11 May 2010" from types import StringType, UnicodeType import codecs import logging import os import sys WORD = 'a' NUMBER = '9' STRING = '"' EOF = '' LCURLY = '{' RCURLY = '}' LBRACK = '[' LBRACK2 = 'a[' RBRACK = ']' LPAREN = '(' LPAREN2 = '((' RPAREN = ')' DOT = '.' COMMA = ',' COLON = ':' AT = '@' PLUS = '+' MINUS = '-' STAR = '*' SLASH = '/' MOD = '%' BACKTICK = '`' DOLLAR = '$' TRUE = 'True' FALSE = 'False' NONE = 'None' WORDCHARS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_" if sys.platform == 'win32': NEWLINE = '\r\n' elif os.name == 'mac': NEWLINE = '\r' else: NEWLINE = '\n' try: import encodings.utf_32 has_utf32 = True except: has_utf32 = False try: from logging.handlers import NullHandler except ImportError: class NullHandler(logging.Handler): def emit(self, record): pass logger = logging.getLogger(__name__) if not logger.handlers: logger.addHandler(NullHandler()) class ConfigInputStream(object): """ An input stream which can read either ANSI files with default encoding or Unicode files with BOMs. Handles UTF-8, UTF-16LE, UTF-16BE. Could handle UTF-32 if Python had built-in support. """ def __init__(self, stream): """ Initialize an instance. @param stream: The underlying stream to be read. Should be seekable. @type stream: A stream (file-like object). """ encoding = None signature = stream.read(4) used = -1 if has_utf32: if signature == codecs.BOM_UTF32_LE: encoding = 'utf-32le' elif signature == codecs.BOM_UTF32_BE: encoding = 'utf-32be' if encoding is None: if signature[:3] == codecs.BOM_UTF8: used = 3 encoding = 'utf-8' elif signature[:2] == codecs.BOM_UTF16_LE: used = 2 encoding = 'utf-16le' elif signature[:2] == codecs.BOM_UTF16_BE: used = 2 encoding = 'utf-16be' else: used = 0 if used >= 0: stream.seek(used) if encoding: reader = codecs.getreader(encoding) stream = reader(stream) self.stream = stream self.encoding = encoding def read(self, size): if (size == 0) or (self.encoding is None): rv = self.stream.read(size) else: rv = u'' while size > 0: rv += self.stream.read(1) size -= 1 return rv def close(self): self.stream.close() def readline(self): if self.encoding is None: line = '' else: line = u'' while True: c = self.stream.read(1) if c: line += c if c == '\n': break return line class ConfigOutputStream(object): """ An output stream which can write either ANSI files with default encoding or Unicode files with BOMs. Handles UTF-8, UTF-16LE, UTF-16BE. Could handle UTF-32 if Python had built-in support. """ def __init__(self, stream, encoding=None): """ Initialize an instance. @param stream: The underlying stream to be written. @type stream: A stream (file-like object). @param encoding: The desired encoding. @type encoding: str """ if encoding is not None: encoding = str(encoding).lower() self.encoding = encoding if encoding == "utf-8": stream.write(codecs.BOM_UTF8) elif encoding == "utf-16be": stream.write(codecs.BOM_UTF16_BE) elif encoding == "utf-16le": stream.write(codecs.BOM_UTF16_LE) elif encoding == "utf-32be": stream.write(codecs.BOM_UTF32_BE) elif encoding == "utf-32le": stream.write(codecs.BOM_UTF32_LE) if encoding is not None: writer = codecs.getwriter(encoding) stream = writer(stream) self.stream = stream def write(self, data): self.stream.write(data) def flush(self): self.stream.flush() def close(self): self.stream.close() def defaultStreamOpener(name): """ This function returns a read-only stream, given its name. The name passed in should correspond to an existing stream, otherwise an exception will be raised. This is the default value of L{streamOpener}; assign your own callable to streamOpener to return streams based on names. For example, you could use urllib2.urlopen(). @param name: The name of a stream, most commonly a file name. @type name: str @return: A stream with the specified name. @rtype: A read-only stream (file-like object) """ return ConfigInputStream(file(name, 'rb')) streamOpener = None class ConfigError(Exception): """ This is the base class of exceptions raised by this module. """ pass class ConfigFormatError(ConfigError): """ This is the base class of exceptions raised due to syntax errors in configurations. """ pass class ConfigResolutionError(ConfigError): """ This is the base class of exceptions raised due to semantic errors in configurations. """ pass def isWord(s): """ See if a passed-in value is an identifier. If the value passed in is not a string, False is returned. An identifier consists of alphanumerics or underscore characters. Examples:: isWord('a word') ->False isWord('award') -> True isWord(9) -> False isWord('a_b_c_') ->True @note: isWord('9abc') will return True - not exactly correct, but adequate for the way it's used here. @param s: The name to be tested @type s: any @return: True if a word, else False @rtype: bool """ if type(s) != type(''): return False s = s.replace('_', '') return s.isalnum() def makePath(prefix, suffix): """ Make a path from a prefix and suffix. Examples:: makePath('', 'suffix') -> 'suffix' makePath('prefix', 'suffix') -> 'prefix.suffix' makePath('prefix', '[1]') -> 'prefix[1]' @param prefix: The prefix to use. If it evaluates as false, the suffix is returned. @type prefix: str @param suffix: The suffix to use. It is either an identifier or an index in brackets. @type suffix: str @return: The path concatenation of prefix and suffix, with a dot if the suffix is not a bracketed index. @rtype: str """ if not prefix: rv = suffix elif suffix[0] == '[': rv = prefix + suffix else: rv = prefix + '.' + suffix return rv class Container(object): """ This internal class is the base class for mappings and sequences. @ivar path: A string which describes how to get to this instance from the root of the hierarchy. Example:: a.list.of[1].or['more'].elements """ def __init__(self, parent): """ Initialize an instance. @param parent: The parent of this instance in the hierarchy. @type parent: A L{Container} instance. """ object.__setattr__(self, 'parent', parent) def setPath(self, path): """ Set the path for this instance. @param path: The path - a string which describes how to get to this instance from the root of the hierarchy. @type path: str """ object.__setattr__(self, 'path', path) def evaluate(self, item): """ Evaluate items which are instances of L{Reference} or L{Expression}. L{Reference} instances are evaluated using L{Reference.resolve}, and L{Expression} instances are evaluated using L{Expression.evaluate}. @param item: The item to be evaluated. @type item: any @return: If the item is an instance of L{Reference} or L{Expression}, the evaluated value is returned, otherwise the item is returned unchanged. """ if isinstance(item, Reference): item = item.resolve(self) elif isinstance(item, Expression): item = item.evaluate(self) return item def writeToStream(self, stream, indent, container): """ Write this instance to a stream at the specified indentation level. Should be redefined in subclasses. @param stream: The stream to write to @type stream: A writable stream (file-like object) @param indent: The indentation level @type indent: int @param container: The container of this instance @type container: L{Container} @raise NotImplementedError: If a subclass does not override this """ raise NotImplementedError def writeValue(self, value, stream, indent): if isinstance(self, Mapping): indstr = ' ' else: indstr = indent * ' ' if isinstance(value, Reference) or isinstance(value, Expression): stream.write('%s%r%s' % (indstr, value, NEWLINE)) else: if (type(value) is StringType): # and not isWord(value): value = repr(value) stream.write('%s%s%s' % (indstr, value, NEWLINE)) class Mapping(Container): """ This internal class implements key-value mappings in configurations. """ def __init__(self, parent=None): """ Initialize an instance. @param parent: The parent of this instance in the hierarchy. @type parent: A L{Container} instance. """ Container.__init__(self, parent) object.__setattr__(self, 'path', '') object.__setattr__(self, 'data', {}) object.__setattr__(self, 'order', []) # to preserve ordering object.__setattr__(self, 'comments', {}) def __delitem__(self, key): """ Remove an item """ data = object.__getattribute__(self, 'data') if key not in data: raise AttributeError(key) order = object.__getattribute__(self, 'order') comments = object.__getattribute__(self, 'comments') del data[key] order.remove(key) del comments[key] def __getitem__(self, key): data = object.__getattribute__(self, 'data') if key not in data: raise AttributeError(key) rv = data[key] return self.evaluate(rv) __getattr__ = __getitem__ def __getattribute__(self, name): if name == "__dict__": return {} if name in ["__methods__", "__members__"]: return [] #if name == "__class__": # return '' data = object.__getattribute__(self, "data") useData = data.has_key(name) if useData: rv = getattr(data, name) else: rv = object.__getattribute__(self, name) if rv is None: raise AttributeError(name) return rv def iteritems(self): for key in self.keys(): yield(key, self[key]) raise StopIteration def __contains__(self, item): order = object.__getattribute__(self, 'order') return item in order def addMapping(self, key, value, comment, setting=False): """ Add a key-value mapping with a comment. @param key: The key for the mapping. @type key: str @param value: The value for the mapping. @type value: any @param comment: The comment for the key (can be None). @type comment: str @param setting: If True, ignore clashes. This is set to true when called from L{__setattr__}. @raise ConfigFormatError: If an existing key is seen again and setting is False. """ data = object.__getattribute__(self, 'data') order = object.__getattribute__(self, 'order') comments = object.__getattribute__(self, 'comments') data[key] = value if key not in order: order.append(key) elif not setting: raise ConfigFormatError("repeated key: %s" % key) comments[key] = comment def __setattr__(self, name, value): self.addMapping(name, value, None, True) __setitem__ = __setattr__ def keys(self): """ Return the keys in a similar way to a dictionary. """ return object.__getattribute__(self, 'order') def get(self, key, default=None): """ Allows a dictionary-style get operation. """ if key in self: return self[key] return default def __str__(self): return str(object.__getattribute__(self, 'data')) def __repr__(self): return repr(object.__getattribute__(self, 'data')) def __len__(self): return len(object.__getattribute__(self, 'order')) def __iter__(self): return self.iterkeys() def iterkeys(self): order = object.__getattribute__(self, 'order') return order.__iter__() def writeToStream(self, stream, indent, container): """ Write this instance to a stream at the specified indentation level. Should be redefined in subclasses. @param stream: The stream to write to @type stream: A writable stream (file-like object) @param indent: The indentation level @type indent: int @param container: The container of this instance @type container: L{Container} """ indstr = indent * ' ' if len(self) == 0: stream.write(' { }%s' % NEWLINE) else: if isinstance(container, Mapping): stream.write(NEWLINE) stream.write('%s{%s' % (indstr, NEWLINE)) self.save(stream, indent + 1) stream.write('%s}%s' % (indstr, NEWLINE)) def save(self, stream, indent=0): """ Save this configuration to the specified stream. @param stream: A stream to which the configuration is written. @type stream: A write-only stream (file-like object). @param indent: The indentation level for the output. @type indent: int """ indstr = indent * ' ' order = object.__getattribute__(self, 'order') data = object.__getattribute__(self, 'data') maxlen = 0 # max(map(lambda x: len(x), order)) for key in order: comment = self.comments[key] if isWord(key): skey = key else: skey = repr(key) if comment: stream.write('%s#%s' % (indstr, comment)) stream.write('%s%-*s :' % (indstr, maxlen, skey)) value = data[key] if isinstance(value, Container): value.writeToStream(stream, indent, self) else: self.writeValue(value, stream, indent) class Config(Mapping): """ This class represents a configuration, and is the only one which clients need to interface to, under normal circumstances. """ class Namespace(object): """ This internal class is used for implementing default namespaces. An instance acts as a namespace. """ def __init__(self): self.sys = sys self.os = os def __repr__(self): return "<Namespace('%s')>" % ','.join(self.__dict__.keys()) def __init__(self, streamOrFile=None, parent=None): """ Initializes an instance. @param streamOrFile: If specified, causes this instance to be loaded from the stream (by calling L{load}). If a string is provided, it is passed to L{streamOpener} to open a stream. Otherwise, the passed value is assumed to be a stream and used as is. @type streamOrFile: A readable stream (file-like object) or a name. @param parent: If specified, this becomes the parent of this instance in the configuration hierarchy. @type parent: a L{Container} instance. """ Mapping.__init__(self, parent) object.__setattr__(self, 'reader', ConfigReader(self)) object.__setattr__(self, 'namespaces', [Config.Namespace()]) object.__setattr__(self, 'resolving', set()) if streamOrFile is not None: if isinstance(streamOrFile, StringType) or isinstance(streamOrFile, UnicodeType): global streamOpener if streamOpener is None: streamOpener = defaultStreamOpener streamOrFile = streamOpener(streamOrFile) load = object.__getattribute__(self, "load") load(streamOrFile) def load(self, stream): """ Load the configuration from the specified stream. Multiple streams can be used to populate the same instance, as long as there are no clashing keys. The stream is closed. @param stream: A stream from which the configuration is read. @type stream: A read-only stream (file-like object). @raise ConfigError: if keys in the loaded configuration clash with existing keys. @raise ConfigFormatError: if there is a syntax error in the stream. """ reader = object.__getattribute__(self, 'reader') #object.__setattr__(self, 'root', reader.load(stream)) reader.load(stream) stream.close() def addNamespace(self, ns, name=None): """ Add a namespace to this configuration which can be used to evaluate (resolve) dotted-identifier expressions. @param ns: The namespace to be added. @type ns: A module or other namespace suitable for passing as an argument to vars(). @param name: A name for the namespace, which, if specified, provides an additional level of indirection. @type name: str """ namespaces = object.__getattribute__(self, 'namespaces') if name is None: namespaces.append(ns) else: setattr(namespaces[0], name, ns) def removeNamespace(self, ns, name=None): """ Remove a namespace added with L{addNamespace}. @param ns: The namespace to be removed. @param name: The name which was specified when L{addNamespace} was called. @type name: str """ namespaces = object.__getattribute__(self, 'namespaces') if name is None: namespaces.remove(ns) else: delattr(namespaces[0], name) def save(self, stream, indent=0): """ Save this configuration to the specified stream. The stream is closed if this is the top-level configuration in the hierarchy. L{Mapping.save} is called to do all the work. @param stream: A stream to which the configuration is written. @type stream: A write-only stream (file-like object). @param indent: The indentation level for the output. @type indent: int """ Mapping.save(self, stream, indent) if indent == 0: stream.close() def getByPath(self, path): """ Obtain a value in the configuration via its path. @param path: The path of the required value @type path: str @return the value at the specified path. @rtype: any @raise ConfigError: If the path is invalid """ s = 'self.' + path try: return eval(s) except Exception, e: raise ConfigError(str(e)) class Sequence(Container): """ This internal class implements a value which is a sequence of other values. """ class SeqIter(object): """ This internal class implements an iterator for a L{Sequence} instance. """ def __init__(self, seq): self.seq = seq self.limit = len(object.__getattribute__(seq, 'data')) self.index = 0 def __iter__(self): return self def next(self): if self.index >= self.limit: raise StopIteration rv = self.seq[self.index] self.index += 1 return rv def __init__(self, parent=None): """ Initialize an instance. @param parent: The parent of this instance in the hierarchy. @type parent: A L{Container} instance. """ Container.__init__(self, parent) object.__setattr__(self, 'data', []) object.__setattr__(self, 'comments', []) def append(self, item, comment): """ Add an item to the sequence. @param item: The item to add. @type item: any @param comment: A comment for the item. @type comment: str """ data = object.__getattribute__(self, 'data') comments = object.__getattribute__(self, 'comments') data.append(item) comments.append(comment) def __getitem__(self, index): data = object.__getattribute__(self, 'data') try: rv = data[index] except (IndexError, KeyError, TypeError): raise ConfigResolutionError('%r is not a valid index for %r' % (index, object.__getattribute__(self, 'path'))) if not isinstance(rv, list): rv = self.evaluate(rv) else: # deal with a slice result = [] for a in rv: result.append(self.evaluate(a)) rv = result return rv def __iter__(self): return Sequence.SeqIter(self) def __repr__(self): return repr(object.__getattribute__(self, 'data')) def __str__(self): return str(self[:]) # using the slice evaluates the contents def __len__(self): return len(object.__getattribute__(self, 'data')) def writeToStream(self, stream, indent, container): """ Write this instance to a stream at the specified indentation level. Should be redefined in subclasses. @param stream: The stream to write to @type stream: A writable stream (file-like object) @param indent: The indentation level @type indent: int @param container: The container of this instance @type container: L{Container} """ indstr = indent * ' ' if len(self) == 0: stream.write(' [ ]%s' % NEWLINE) else: if isinstance(container, Mapping): stream.write(NEWLINE) stream.write('%s[%s' % (indstr, NEWLINE)) self.save(stream, indent + 1) stream.write('%s]%s' % (indstr, NEWLINE)) def save(self, stream, indent): """ Save this instance to the specified stream. @param stream: A stream to which the configuration is written. @type stream: A write-only stream (file-like object). @param indent: The indentation level for the output, > 0 @type indent: int """ if indent == 0: raise ConfigError("sequence cannot be saved as a top-level item") data = object.__getattribute__(self, 'data') comments = object.__getattribute__(self, 'comments') indstr = indent * ' ' for i in xrange(0, len(data)): value = data[i] comment = comments[i] if comment: stream.write('%s#%s' % (indstr, comment)) if isinstance(value, Container): value.writeToStream(stream, indent, self) else: self.writeValue(value, stream, indent) class Reference(object): """ This internal class implements a value which is a reference to another value. """ def __init__(self, config, type, ident): """ Initialize an instance. @param config: The configuration which contains this reference. @type config: A L{Config} instance. @param type: The type of reference. @type type: BACKTICK or DOLLAR @param ident: The identifier which starts the reference. @type ident: str """ self.config = config self.type = type self.elements = [ident] def addElement(self, type, ident): """ Add an element to the reference. @param type: The type of reference. @type type: BACKTICK or DOLLAR @param ident: The identifier which continues the reference. @type ident: str """ self.elements.append((type, ident)) def findConfig(self, container): """ Find the closest enclosing configuration to the specified container. @param container: The container to start from. @type container: L{Container} @return: The closest enclosing configuration, or None. @rtype: L{Config} """ while (container is not None) and not isinstance(container, Config): container = object.__getattribute__(container, 'parent') return container def resolve(self, container): """ Resolve this instance in the context of a container. @param container: The container to resolve from. @type container: L{Container} @return: The resolved value. @rtype: any @raise ConfigResolutionError: If resolution fails. """ rv = None path = object.__getattribute__(container, 'path') current = self.findConfig(container) while current is not None: if self.type == BACKTICK: namespaces = object.__getattribute__(current, 'namespaces') found = False s = str(self)[1:-1] for ns in namespaces: try: try: rv = eval(s, vars(ns)) except TypeError: #Python 2.7 - vars is a dictproxy rv = eval(s, {}, vars(ns)) found = True break except: logger.debug("unable to resolve %r in %r", s, ns) pass if found: break else: firstkey = self.elements[0] if firstkey in current.resolving: current.resolving.remove(firstkey) raise ConfigResolutionError("Circular reference: %r" % firstkey) current.resolving.add(firstkey) key = firstkey try: rv = current[key] for item in self.elements[1:]: key = item[1] rv = rv[key] current.resolving.remove(firstkey) break except ConfigResolutionError: raise except: logger.debug("Unable to resolve %r: %s", key, sys.exc_info()[1]) rv = None pass current.resolving.discard(firstkey) current = self.findConfig(object.__getattribute__(current, 'parent')) if current is None: raise ConfigResolutionError("unable to evaluate %r in the configuration %s" % (self, path)) return rv def __str__(self): s = self.elements[0] for tt, tv in self.elements[1:]: if tt == DOT: s += '.%s' % tv else: s += '[%r]' % tv if self.type == BACKTICK: return BACKTICK + s + BACKTICK else: return DOLLAR + s def __repr__(self): return self.__str__() class Expression(object): """ This internal class implements a value which is obtained by evaluating an expression. """ def __init__(self, op, lhs, rhs): """ Initialize an instance. @param op: the operation expressed in the expression. @type op: PLUS, MINUS, STAR, SLASH, MOD @param lhs: the left-hand-side operand of the expression. @type lhs: any Expression or primary value. @param rhs: the right-hand-side operand of the expression. @type rhs: any Expression or primary value. """ self.op = op self.lhs = lhs self.rhs = rhs def __str__(self): return '%r %s %r' % (self.lhs, self.op, self.rhs) def __repr__(self): return self.__str__() def evaluate(self, container): """ Evaluate this instance in the context of a container. @param container: The container to evaluate in from. @type container: L{Container} @return: The evaluated value. @rtype: any @raise ConfigResolutionError: If evaluation fails. @raise ZeroDivideError: If division by zero occurs. @raise TypeError: If the operation is invalid, e.g. subtracting one string from another. """ lhs = self.lhs if isinstance(lhs, Reference): lhs = lhs.resolve(container) elif isinstance(lhs, Expression): lhs = lhs.evaluate(container) rhs = self.rhs if isinstance(rhs, Reference): rhs = rhs.resolve(container) elif isinstance(rhs, Expression): rhs = rhs.evaluate(container) op = self.op if op == PLUS: rv = lhs + rhs elif op == MINUS: rv = lhs - rhs elif op == STAR: rv = lhs * rhs elif op == SLASH: rv = lhs / rhs else: rv = lhs % rhs return rv class ConfigReader(object): """ This internal class implements a parser for configurations. """ def __init__(self, config): self.filename = None self.config = config self.lineno = 0 self.colno = 0 self.lastc = None self.last_token = None self.commentchars = '#' self.whitespace = ' \t\r\n' self.quotes = '\'"' self.punct = ':-+*/%,.{}[]()@`$' self.digits = '0123456789' self.wordchars = '%s' % WORDCHARS # make a copy self.identchars = self.wordchars + self.digits self.pbchars = [] self.pbtokens = [] self.comment = None def location(self): """ Return the current location (filename, line, column) in the stream as a string. Used when printing error messages, @return: A string representing a location in the stream being read. @rtype: str """ return "%s(%d,%d)" % (self.filename, self.lineno, self.colno) def getChar(self): """ Get the next char from the stream. Update line and column numbers appropriately. @return: The next character from the stream. @rtype: str """ if self.pbchars: c = self.pbchars.pop() else: c = self.stream.read(1) self.colno += 1 if c == '\n': self.lineno += 1 self.colno = 1 return c def __repr__(self): return "<ConfigReader at 0x%08x>" % id(self) __str__ = __repr__ def getToken(self): """ Get a token from the stream. String values are returned in a form where you need to eval() the returned value to get the actual string. The return value is (token_type, token_value). Multiline string tokenizing is thanks to David Janes (BlogMatrix) @return: The next token. @rtype: A token tuple. """ if self.pbtokens: return self.pbtokens.pop() stream = self.stream self.comment = None token = '' tt = EOF while True: c = self.getChar() if not c: break elif c == '#': self.comment = stream.readline() self.lineno += 1 continue if c in self.quotes: token = c quote = c tt = STRING escaped = False multiline = False c1 = self.getChar() if c1 == quote: c2 = self.getChar() if c2 == quote: multiline = True token += quote token += quote else: self.pbchars.append(c2) self.pbchars.append(c1) else: self.pbchars.append(c1) while True: c = self.getChar() if not c: break token += c if (c == quote) and not escaped: if not multiline or (len(token) >= 6 and token.endswith(token[:3]) and token[-4] != '\\'): break if c == '\\': escaped = not escaped else: escaped = False if not c: raise ConfigFormatError('%s: Unterminated quoted string: %r, %r' % (self.location(), token, c)) break if c in self.whitespace: self.lastc = c continue elif c in self.punct: token = c tt = c if (self.lastc == ']') or (self.lastc in self.identchars): if c == '[': tt = LBRACK2 elif c == '(': tt = LPAREN2 break elif c in self.digits: token = c tt = NUMBER in_exponent=False while True: c = self.getChar() if not c: break if c in self.digits: token += c elif (c == '.') and token.find('.') < 0 and not in_exponent: token += c elif (c == '-') and token.find('-') < 0 and in_exponent: token += c elif (c in 'eE') and token.find('e') < 0 and\ token.find('E') < 0: token += c in_exponent = True else: if c and (c not in self.whitespace): self.pbchars.append(c) break break elif c in self.wordchars: token = c tt = WORD c = self.getChar() while c and (c in self.identchars): token += c c = self.getChar() if c: # and c not in self.whitespace: self.pbchars.append(c) if token == "True": tt = TRUE elif token == "False": tt = FALSE elif token == "None": tt = NONE break else: raise ConfigFormatError('%s: Unexpected character: %r' % (self.location(), c)) if token: self.lastc = token[-1] else: self.lastc = None self.last_token = tt return (tt, token) def load(self, stream, parent=None, suffix=None): """ Load the configuration from the specified stream. @param stream: A stream from which to load the configuration. @type stream: A stream (file-like object). @param parent: The parent of the configuration (to which this reader belongs) in the hierarchy. Specified when the configuration is included in another one. @type parent: A L{Container} instance. @param suffix: The suffix of this configuration in the parent configuration. Should be specified whenever the parent is not None. @raise ConfigError: If parent is specified but suffix is not. @raise ConfigFormatError: If there are syntax errors in the stream. """ if parent is not None: if suffix is None: raise ConfigError("internal error: load called with parent but no suffix") self.config.setPath(makePath(object.__getattribute__(parent, 'path'), suffix)) self.setStream(stream) self.token = self.getToken() self.parseMappingBody(self.config) if self.token[0] != EOF: raise ConfigFormatError('%s: expecting EOF, found %r' % (self.location(), self.token[1])) def setStream(self, stream): """ Set the stream to the specified value, and prepare to read from it. @param stream: A stream from which to load the configuration. @type stream: A stream (file-like object). """ self.stream = stream if hasattr(stream, 'name'): filename = stream.name else: filename = '?' self.filename = filename self.lineno = 1 self.colno = 1 def match(self, t): """ Ensure that the current token type matches the specified value, and advance to the next token. @param t: The token type to match. @type t: A valid token type. @return: The token which was last read from the stream before this function is called. @rtype: a token tuple - see L{getToken}. @raise ConfigFormatError: If the token does not match what's expected. """ if self.token[0] != t: raise ConfigFormatError("%s: expecting %s, found %r" % (self.location(), t, self.token[1])) rv = self.token self.token = self.getToken() return rv def parseMappingBody(self, parent): """ Parse the internals of a mapping, and add entries to the provided L{Mapping}. @param parent: The mapping to add entries to. @type parent: A L{Mapping} instance. """ while self.token[0] in [WORD, STRING]: self.parseKeyValuePair(parent) def parseKeyValuePair(self, parent): """ Parse a key-value pair, and add it to the provided L{Mapping}. @param parent: The mapping to add entries to. @type parent: A L{Mapping} instance. @raise ConfigFormatError: if a syntax error is found. """ comment = self.comment tt, tv = self.token if tt == WORD: key = tv suffix = tv elif tt == STRING: key = eval(tv) suffix = '[%s]' % tv else: msg = "%s: expecting word or string, found %r" raise ConfigFormatError(msg % (self.location(), tv)) self.token = self.getToken() # for now, we allow key on its own as a short form of key : True if self.token[0] == COLON: self.token = self.getToken() value = self.parseValue(parent, suffix) else: value = True try: parent.addMapping(key, value, comment) except Exception, e: raise ConfigFormatError("%s: %s, %r" % (self.location(), e, self.token[1])) tt = self.token[0] if tt not in [EOF, WORD, STRING, RCURLY, COMMA]: msg = "%s: expecting one of EOF, WORD, STRING,\ RCURLY, COMMA, found %r" raise ConfigFormatError(msg % (self.location(), self.token[1])) if tt == COMMA: self.token = self.getToken() def parseValue(self, parent, suffix): """ Parse a value. @param parent: The container to which the value will be added. @type parent: A L{Container} instance. @param suffix: The suffix for the value. @type suffix: str @return: The value @rtype: any @raise ConfigFormatError: if a syntax error is found. """ tt = self.token[0] if tt in [STRING, WORD, NUMBER, LPAREN, DOLLAR, TRUE, FALSE, NONE, BACKTICK, MINUS]: rv = self.parseScalar() elif tt == LBRACK: rv = self.parseSequence(parent, suffix) elif tt in [LCURLY, AT]: rv = self.parseMapping(parent, suffix) else: raise ConfigFormatError("%s: unexpected input: %r" % (self.location(), self.token[1])) return rv def parseSequence(self, parent, suffix): """ Parse a sequence. @param parent: The container to which the sequence will be added. @type parent: A L{Container} instance. @param suffix: The suffix for the value. @type suffix: str @return: a L{Sequence} instance representing the sequence. @rtype: L{Sequence} @raise ConfigFormatError: if a syntax error is found. """ rv = Sequence(parent) rv.setPath(makePath(object.__getattribute__(parent, 'path'), suffix)) self.match(LBRACK) comment = self.comment tt = self.token[0] while tt in [STRING, WORD, NUMBER, LCURLY, LBRACK, LPAREN, DOLLAR, TRUE, FALSE, NONE, BACKTICK, MINUS]: suffix = '[%d]' % len(rv) value = self.parseValue(parent, suffix) rv.append(value, comment) tt = self.token[0] comment = self.comment if tt == COMMA: self.match(COMMA) tt = self.token[0] comment = self.comment continue self.match(RBRACK) return rv def parseMapping(self, parent, suffix): """ Parse a mapping. @param parent: The container to which the mapping will be added. @type parent: A L{Container} instance. @param suffix: The suffix for the value. @type suffix: str @return: a L{Mapping} instance representing the mapping. @rtype: L{Mapping} @raise ConfigFormatError: if a syntax error is found. """ if self.token[0] == LCURLY: self.match(LCURLY) rv = Mapping(parent) rv.setPath( makePath(object.__getattribute__(parent, 'path'), suffix)) self.parseMappingBody(rv) self.match(RCURLY) else: self.match(AT) tt, fn = self.match(STRING) rv = Config(eval(fn), parent) return rv def parseScalar(self): """ Parse a scalar - a terminal value such as a string or number, or an L{Expression} or L{Reference}. @return: the parsed scalar @rtype: any scalar @raise ConfigFormatError: if a syntax error is found. """ lhs = self.parseTerm() tt = self.token[0] while tt in [PLUS, MINUS]: self.match(tt) rhs = self.parseTerm() lhs = Expression(tt, lhs, rhs) tt = self.token[0] return lhs def parseTerm(self): """ Parse a term in an additive expression (a + b, a - b) @return: the parsed term @rtype: any scalar @raise ConfigFormatError: if a syntax error is found. """ lhs = self.parseFactor() tt = self.token[0] while tt in [STAR, SLASH, MOD]: self.match(tt) rhs = self.parseFactor() lhs = Expression(tt, lhs, rhs) tt = self.token[0] return lhs def parseFactor(self): """ Parse a factor in an multiplicative expression (a * b, a / b, a % b) @return: the parsed factor @rtype: any scalar @raise ConfigFormatError: if a syntax error is found. """ tt = self.token[0] if tt in [NUMBER, WORD, STRING, TRUE, FALSE, NONE]: rv = self.token[1] if tt != WORD: rv = eval(rv) self.match(tt) elif tt == LPAREN: self.match(LPAREN) rv = self.parseScalar() self.match(RPAREN) elif tt == DOLLAR: self.match(DOLLAR) rv = self.parseReference(DOLLAR) elif tt == BACKTICK: self.match(BACKTICK) rv = self.parseReference(BACKTICK) self.match(BACKTICK) elif tt == MINUS: self.match(MINUS) rv = -self.parseScalar() else: raise ConfigFormatError("%s: unexpected input: %r" % (self.location(), self.token[1])) return rv def parseReference(self, type): """ Parse a reference. @return: the parsed reference @rtype: L{Reference} @raise ConfigFormatError: if a syntax error is found. """ word = self.match(WORD) rv = Reference(self.config, type, word[1]) while self.token[0] in [DOT, LBRACK2]: self.parseSuffix(rv) return rv def parseSuffix(self, ref): """ Parse a reference suffix. @param ref: The reference of which this suffix is a part. @type ref: L{Reference}. @raise ConfigFormatError: if a syntax error is found. """ tt = self.token[0] if tt == DOT: self.match(DOT) word = self.match(WORD) ref.addElement(DOT, word[1]) else: self.match(LBRACK2) tt, tv = self.token if tt not in [NUMBER, STRING]: raise ConfigFormatError("%s: expected number or string, found %r" % (self.location(), tv)) self.token = self.getToken() tv = eval(tv) self.match(RBRACK) ref.addElement(LBRACK, tv) def defaultMergeResolve(map1, map2, key): """ A default resolver for merge conflicts. Returns a string indicating what action to take to resolve the conflict. @param map1: The map being merged into. @type map1: L{Mapping}. @param map2: The map being used as the merge operand. @type map2: L{Mapping}. @param key: The key in map2 (which also exists in map1). @type key: str @return: One of "merge", "append", "mismatch" or "overwrite" indicating what action should be taken. This should be appropriate to the objects being merged - e.g. there is no point returning "merge" if the two objects are instances of L{Sequence}. @rtype: str """ obj1 = map1[key] obj2 = map2[key] if isinstance(obj1, Mapping) and isinstance(obj2, Mapping): rv = "merge" elif isinstance(obj1, Sequence) and isinstance(obj2, Sequence): rv = "append" else: rv = "mismatch" return rv def overwriteMergeResolve(map1, map2, key): """ An overwriting resolver for merge conflicts. Calls L{defaultMergeResolve}, but where a "mismatch" is detected, returns "overwrite" instead. @param map1: The map being merged into. @type map1: L{Mapping}. @param map2: The map being used as the merge operand. @type map2: L{Mapping}. @param key: The key in map2 (which also exists in map1). @type key: str """ rv = defaultMergeResolve(map1, map2, key) if rv == "mismatch": rv = "overwrite" return rv class ConfigMerger(object): """ This class is used for merging two configurations. If a key exists in the merge operand but not the merge target, then the entry is copied from the merge operand to the merge target. If a key exists in both configurations, then a resolver (a callable) is called to decide how to handle the conflict. """ def __init__(self, resolver=defaultMergeResolve): """ Initialise an instance. @param resolver: @type resolver: A callable which takes the argument list (map1, map2, key) where map1 is the mapping being merged into, map2 is the merge operand and key is the clashing key. The callable should return a string indicating how the conflict should be resolved. For possible return values, see L{defaultMergeResolve}. The default value preserves the old behaviour """ self.resolver = resolver def merge(self, merged, mergee): """ Merge two configurations. The second configuration is unchanged, and the first is changed to reflect the results of the merge. @param merged: The configuration to merge into. @type merged: L{Config}. @param mergee: The configuration to merge. @type mergee: L{Config}. """ self.mergeMapping(merged, mergee) def mergeMapping(self, map1, map2): """ Merge two mappings recursively. The second mapping is unchanged, and the first is changed to reflect the results of the merge. @param map1: The mapping to merge into. @type map1: L{Mapping}. @param map2: The mapping to merge. @type map2: L{Mapping}. """ keys = map1.keys() for key in map2.keys(): if key not in keys: map1[key] = map2[key] else: obj1 = map1[key] obj2 = map2[key] decision = self.resolver(map1, map2, key) if decision == "merge": self.mergeMapping(obj1, obj2) elif decision == "append": self.mergeSequence(obj1, obj2) elif decision == "overwrite": map1[key] = obj2 elif decision == "mismatch": self.handleMismatch(obj1, obj2) else: msg = "unable to merge: don't know how to implement %r" raise ValueError(msg % decision) def mergeSequence(self, seq1, seq2): """ Merge two sequences. The second sequence is unchanged, and the first is changed to have the elements of the second appended to it. @param seq1: The sequence to merge into. @type seq1: L{Sequence}. @param seq2: The sequence to merge. @type seq2: L{Sequence}. """ data1 = object.__getattribute__(seq1, 'data') data2 = object.__getattribute__(seq2, 'data') for obj in data2: data1.append(obj) comment1 = object.__getattribute__(seq1, 'comments') comment2 = object.__getattribute__(seq2, 'comments') for obj in comment2: comment1.append(obj) def handleMismatch(self, obj1, obj2): """ Handle a mismatch between two objects. @param obj1: The object to merge into. @type obj1: any @param obj2: The object to merge. @type obj2: any """ raise ConfigError("unable to merge %r with %r" % (obj1, obj2)) class ConfigList(list): """ This class implements an ordered list of configurations and allows you to try getting the configuration from each entry in turn, returning the first successfully obtained value. """ def getByPath(self, path): """ Obtain a value from the first configuration in the list which defines it. @param path: The path of the value to retrieve. @type path: str @return: The value from the earliest configuration in the list which defines it. @rtype: any @raise ConfigError: If no configuration in the list has an entry with the specified path. """ found = False rv = None for entry in self: try: rv = entry.getByPath(path) found = True break except ConfigError: pass if not found: raise ConfigError("unable to resolve %r" % path) return rv
apache-2.0
dkodnik/arp
addons/sale_analytic_plans/__init__.py
443
1208
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## #---------------------------------------------------------- # Init Sales #---------------------------------------------------------- import sale_analytic_plans # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
brandond/ansible
lib/ansible/modules/network/aci/aci_tenant_span_src_group_to_dst_group.py
19
7078
#!/usr/bin/python # -*- coding: utf-8 -*- # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'certified'} DOCUMENTATION = r''' --- module: aci_tenant_span_src_group_to_dst_group short_description: Bind SPAN source groups to destination groups (span:SpanLbl) description: - Bind SPAN source groups to associated destinaton groups on Cisco ACI fabrics. version_added: '2.4' options: description: description: - The description for Span source group to destination group binding. type: str aliases: [ descr ] dst_group: description: - The Span destination group to associate with the source group. type: str src_group: description: - The name of the Span source group. type: str state: description: - Use C(present) or C(absent) for adding or removing. - Use C(query) for listing an object or multiple objects. type: str choices: [ absent, present, query ] default: present tenant: description: - The name of the Tenant. type: str aliases: [ tenant_name ] extends_documentation_fragment: aci notes: - The C(tenant), C(src_group), and C(dst_group) must exist before using this module in your playbook. The M(aci_tenant), M(aci_tenant_span_src_group), and M(aci_tenant_span_dst_group) modules can be used for this. seealso: - module: aci_tenant - module: aci_tenant_span_src_group - module: aci_tenant_span_dst_group - name: APIC Management Information Model reference description: More information about the internal APIC class B(span:SrcGrp). link: https://developer.cisco.com/docs/apic-mim-ref/ author: - Jacob McGill (@jmcgill298) ''' EXAMPLES = r''' - aci_tenant_span_src_group_to_dst_group: host: apic username: admin password: SomeSecretPassword tenant: production src_group: "{{ src_group }}" dst_group: "{{ dst_group }}" description: "{{ description }}" delegate_to: localhost ''' RETURN = r''' current: description: The existing configuration from the APIC after the module has finished returned: success type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production environment", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] error: description: The error information as returned from the APIC returned: failure type: dict sample: { "code": "122", "text": "unknown managed object class foo" } raw: description: The raw output returned by the APIC REST API (xml or json) returned: parse error type: str sample: '<?xml version="1.0" encoding="UTF-8"?><imdata totalCount="1"><error code="122" text="unknown managed object class foo"/></imdata>' sent: description: The actual/minimal configuration pushed to the APIC returned: info type: list sample: { "fvTenant": { "attributes": { "descr": "Production environment" } } } previous: description: The original configuration from the APIC before the module has started returned: info type: list sample: [ { "fvTenant": { "attributes": { "descr": "Production", "dn": "uni/tn-production", "name": "production", "nameAlias": "", "ownerKey": "", "ownerTag": "" } } } ] proposed: description: The assembled configuration from the user-provided parameters returned: info type: dict sample: { "fvTenant": { "attributes": { "descr": "Production environment", "name": "production" } } } filter_string: description: The filter string used for the request returned: failure or debug type: str sample: ?rsp-prop-include=config-only method: description: The HTTP method used for the request to the APIC returned: failure or debug type: str sample: POST response: description: The HTTP response from the APIC returned: failure or debug type: str sample: OK (30 bytes) status: description: The HTTP status from the APIC returned: failure or debug type: int sample: 200 url: description: The HTTP url used for the request to the APIC returned: failure or debug type: str sample: https://10.11.12.13/api/mo/uni/tn-production.json ''' from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.network.aci.aci import ACIModule, aci_argument_spec def main(): argument_spec = aci_argument_spec() argument_spec.update( tenant=dict(type='str', aliases=['tenant_name']), # Not required for querying all objects dst_group=dict(type='str'), # Not required for querying all objects src_group=dict(type='str'), # Not required for querying all objects description=dict(type='str', aliases=['descr']), state=dict(type='str', default='present', choices=['absent', 'present', 'query']), ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True, required_if=[ ['state', 'absent', ['dst_group', 'src_group', 'tenant']], ['state', 'present', ['dst_group', 'src_group', 'tenant']], ], ) description = module.params['description'] dst_group = module.params['dst_group'] src_group = module.params['src_group'] state = module.params['state'] tenant = module.params['tenant'] aci = ACIModule(module) aci.construct_url( root_class=dict( aci_class='fvTenant', aci_rn='tn-{0}'.format(tenant), module_object=tenant, target_filter={'name': tenant}, ), subclass_1=dict( aci_class='spanSrcGrp', aci_rn='srcgrp-{0}'.format(src_group), module_object=src_group, target_filter={'name': src_group}, ), subclass_2=dict( aci_class='spanSpanLbl', aci_rn='spanlbl-{0}'.format(dst_group), module_object=dst_group, target_filter={'name': dst_group}, ), ) aci.get_existing() if state == 'present': aci.payload( aci_class='spanSpanLbl', class_config=dict( descr=description, name=dst_group, ), ) aci.get_diff(aci_class='spanSpanLbl') aci.post_config() elif state == 'absent': aci.delete_config() aci.exit_json() if __name__ == "__main__": main()
gpl-3.0
sdlBasic/sdlbrt
win32/mingw/opt/lib/python2.7/toaiff.py
293
3142
"""Convert "arbitrary" sound files to AIFF (Apple and SGI's audio format). Input may be compressed. Uncompressed file type may be AIFF, WAV, VOC, 8SVX, NeXT/Sun, and others. An exception is raised if the file is not of a recognized type. Returned filename is either the input filename or a temporary filename; in the latter case the caller must ensure that it is removed. Other temporary files used are removed by the function. """ from warnings import warnpy3k warnpy3k("the toaiff module has been removed in Python 3.0", stacklevel=2) del warnpy3k import os import tempfile import pipes import sndhdr __all__ = ["error", "toaiff"] table = {} t = pipes.Template() t.append('sox -t au - -t aiff -r 8000 -', '--') table['au'] = t # XXX The following is actually sub-optimal. # XXX The HCOM sampling rate can be 22k, 22k/2, 22k/3 or 22k/4. # XXX We must force the output sampling rate else the SGI won't play # XXX files sampled at 5.5k or 7.333k; however this means that files # XXX sampled at 11k are unnecessarily expanded. # XXX Similar comments apply to some other file types. t = pipes.Template() t.append('sox -t hcom - -t aiff -r 22050 -', '--') table['hcom'] = t t = pipes.Template() t.append('sox -t voc - -t aiff -r 11025 -', '--') table['voc'] = t t = pipes.Template() t.append('sox -t wav - -t aiff -', '--') table['wav'] = t t = pipes.Template() t.append('sox -t 8svx - -t aiff -r 16000 -', '--') table['8svx'] = t t = pipes.Template() t.append('sox -t sndt - -t aiff -r 16000 -', '--') table['sndt'] = t t = pipes.Template() t.append('sox -t sndr - -t aiff -r 16000 -', '--') table['sndr'] = t uncompress = pipes.Template() uncompress.append('uncompress', '--') class error(Exception): pass def toaiff(filename): temps = [] ret = None try: ret = _toaiff(filename, temps) finally: for temp in temps[:]: if temp != ret: try: os.unlink(temp) except os.error: pass temps.remove(temp) return ret def _toaiff(filename, temps): if filename[-2:] == '.Z': (fd, fname) = tempfile.mkstemp() os.close(fd) temps.append(fname) sts = uncompress.copy(filename, fname) if sts: raise error, filename + ': uncompress failed' else: fname = filename try: ftype = sndhdr.whathdr(fname) if ftype: ftype = ftype[0] # All we're interested in except IOError, msg: if type(msg) == type(()) and len(msg) == 2 and \ type(msg[0]) == type(0) and type(msg[1]) == type(''): msg = msg[1] if type(msg) != type(''): msg = repr(msg) raise error, filename + ': ' + msg if ftype == 'aiff': return fname if ftype is None or not ftype in table: raise error, '%s: unsupported audio file type %r' % (filename, ftype) (fd, temp) = tempfile.mkstemp() os.close(fd) temps.append(temp) sts = table[ftype].copy(fname, temp) if sts: raise error, filename + ': conversion to aiff failed' return temp
lgpl-2.1
jakebailey/PrairieLearn
tools/generate_text.py
4
6445
#!/usr/bin/env python import os, fnmatch, sys, re, hashlib, subprocess, platform, glob CONVERT_CMD = "convert" if platform.system() == "Windows": globspec = "C:\Program Files\ImageMagick*\convert.exe" magicks = glob.glob(globspec) if len(magicks) < 1: print("ERROR: No files match %s" % globspec) sys.exit(1) if len(magicks) > 1: print("ERROR: Multiple files match %s" % globspec) for m in magicks: print(m) sys.exit(1) CONVERT_CMD = magicks[0] print("Convert command: %s" % CONVERT_CMD) # find strings that look like "TEX:abc" or 'TEX:abc' (note different quote types # use <quote> to store the type of quote # use the negative-lookahead regex ((?!(?P=quote)).) to match non-quote characters TEXT_RE = re.compile("(?P<quote>['\"])TEX:(((?!(?P=quote)).)+)(?P=quote)") # filename regexp for generated files FILENAME_RE = re.compile("[0-9a-fA-F]{40}\\..{3}") if len(sys.argv) <= 2: print("Usage: generate_text <outputdir> <basedir1> <basedir2> ...") print("or: generate_text --subdir <basedir1> <basedir2> ...") sys.exit(0) if sys.argv[1] == "--subdir": MODE = "subdir" print("Output directory: 'text/' within each subdirectory") else: MODE = "textdir" TEXT_DIR = sys.argv[1] print("Output directory: %s" % TEXT_DIR) def output_dir(filename): if MODE == "textdir": return TEXT_DIR else: return os.path.join(os.path.dirname(filename), "text") def ensure_dir_exists(d): if not os.path.isdir(d): os.mkdir(d) escape_seqs = { "b": "\b", "f": "\f", "n": "\n", "r": "\r", "t": "\t", "v": "\v", "'": "'", '"': '"', "\\": "\\", } def unescape(s): chars = [] i = 0 while i < len(s): if s[i] != "\\": chars.append(s[i]) else: if i == len(s) - 1: break i += 1 if s[i] in escape_seqs: chars.append(escape_seqs[s[i]]) i += 1 return "".join(chars) def process_file(filename): print(filename) img_filenames = [] with open(filename) as file: for line in file: for match in TEXT_RE.finditer(line): match_text = match.group(2) text = unescape(match_text) hash = hashlib.sha1(text.encode()).hexdigest() print(hash + " " + text) tex_filename = hash + ".tex" pdf_filename = hash + ".pdf" img_filename = hash + ".png" outdir = output_dir(filename) ensure_dir_exists(outdir) tex_full_filename = os.path.join(outdir, tex_filename) img_full_filename = os.path.join(outdir, img_filename) if not os.path.exists(img_full_filename): print("Writing tex file " + tex_full_filename) with open(tex_full_filename, "w") as texfile: texfile.write("\\documentclass[12pt]{article}\n") texfile.write("\\usepackage{amsmath,amsthm,amssymb}\n") texfile.write("\\begin{document}\n") texfile.write("\\thispagestyle{empty}\n") texfile.write(text + "\n") texfile.write("\\end{document}\n") print("Running pdflatex on " + tex_filename) subprocess.check_call(["pdflatex", tex_filename], cwd=outdir) print("Running convert on " + pdf_filename) subprocess.check_call([CONVERT_CMD, "-density", "96", pdf_filename, "-trim", "+repage", img_filename], cwd=outdir) img_filenames.append(img_filename) img_hi_filename = hash + "_hi.png" img_hi_full_filename = os.path.join(outdir, img_hi_filename) if not os.path.exists(img_hi_full_filename): print("Writing tex file " + tex_full_filename) with open(tex_full_filename, "w") as texfile: texfile.write("\\documentclass[12pt]{article}\n") texfile.write("\\usepackage{amsmath,amsthm,amssymb}\n") texfile.write("\\begin{document}\n") texfile.write("\\thispagestyle{empty}\n") texfile.write(text + "\n") texfile.write("\\end{document}\n") print("Running pdflatex on " + tex_filename) subprocess.check_call(["pdflatex", tex_filename], cwd=outdir) print("Running convert on " + pdf_filename) subprocess.check_call([CONVERT_CMD, "-density", "600", pdf_filename, "-trim", "+repage", img_hi_filename], cwd=outdir) img_filenames.append(img_hi_filename) return img_filenames def delete_non_matching(basedir, nondelete_filenames): if not os.path.exists(basedir) or not os.path.isdir(basedir): return filenames = os.listdir(basedir) for filename in filenames: if filename not in nondelete_filenames: if FILENAME_RE.match(filename): full_filename = os.path.join(basedir, filename) print("deleting " + full_filename) os.unlink(full_filename) if MODE == "subdir": for basedir in sys.argv[2:]: print("########################################") print("Processing %s" % basedir) for (dirpath, dirnames, filenames) in os.walk(basedir): img_filenames = [] for filename in fnmatch.filter(filenames, "*.js"): img_filenames += process_file(os.path.join(dirpath, filename)) text_dir = os.path.join(dirpath, "text") delete_non_matching(text_dir, img_filenames) else: img_filenames = [] for basedir in sys.argv[2:]: print("########################################") print("Processing %s" % basedir) for (dirpath, dirnames, filenames) in os.walk(basedir): for filename in fnmatch.filter(filenames, "*.js"): img_filenames += process_file(os.path.join(dirpath, filename)) delete_non_matching(TEXT_DIR, img_filenames)
agpl-3.0
f3r/scikit-learn
examples/decomposition/plot_kernel_pca.py
353
2011
""" ========== Kernel PCA ========== This example shows that Kernel PCA is able to find a projection of the data that makes data linearly separable. """ print(__doc__) # Authors: Mathieu Blondel # Andreas Mueller # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles np.random.seed(0) X, y = make_circles(n_samples=400, factor=.3, noise=.05) kpca = KernelPCA(kernel="rbf", fit_inverse_transform=True, gamma=10) X_kpca = kpca.fit_transform(X) X_back = kpca.inverse_transform(X_kpca) pca = PCA() X_pca = pca.fit_transform(X) # Plot results plt.figure() plt.subplot(2, 2, 1, aspect='equal') plt.title("Original space") reds = y == 0 blues = y == 1 plt.plot(X[reds, 0], X[reds, 1], "ro") plt.plot(X[blues, 0], X[blues, 1], "bo") plt.xlabel("$x_1$") plt.ylabel("$x_2$") X1, X2 = np.meshgrid(np.linspace(-1.5, 1.5, 50), np.linspace(-1.5, 1.5, 50)) X_grid = np.array([np.ravel(X1), np.ravel(X2)]).T # projection on the first principal component (in the phi space) Z_grid = kpca.transform(X_grid)[:, 0].reshape(X1.shape) plt.contour(X1, X2, Z_grid, colors='grey', linewidths=1, origin='lower') plt.subplot(2, 2, 2, aspect='equal') plt.plot(X_pca[reds, 0], X_pca[reds, 1], "ro") plt.plot(X_pca[blues, 0], X_pca[blues, 1], "bo") plt.title("Projection by PCA") plt.xlabel("1st principal component") plt.ylabel("2nd component") plt.subplot(2, 2, 3, aspect='equal') plt.plot(X_kpca[reds, 0], X_kpca[reds, 1], "ro") plt.plot(X_kpca[blues, 0], X_kpca[blues, 1], "bo") plt.title("Projection by KPCA") plt.xlabel("1st principal component in space induced by $\phi$") plt.ylabel("2nd component") plt.subplot(2, 2, 4, aspect='equal') plt.plot(X_back[reds, 0], X_back[reds, 1], "ro") plt.plot(X_back[blues, 0], X_back[blues, 1], "bo") plt.title("Original space after inverse transform") plt.xlabel("$x_1$") plt.ylabel("$x_2$") plt.subplots_adjust(0.02, 0.10, 0.98, 0.94, 0.04, 0.35) plt.show()
bsd-3-clause
vlinhd11/vlinhd11-android-scripting
python/src/Lib/io.py
51
64383
""" The io module provides the Python interfaces to stream handling. The builtin open function is defined in this module. At the top of the I/O hierarchy is the abstract base class IOBase. It defines the basic interface to a stream. Note, however, that there is no seperation between reading and writing to streams; implementations are allowed to throw an IOError if they do not support a given operation. Extending IOBase is RawIOBase which deals simply with the reading and writing of raw bytes to a stream. FileIO subclasses RawIOBase to provide an interface to OS files. BufferedIOBase deals with buffering on a raw byte stream (RawIOBase). Its subclasses, BufferedWriter, BufferedReader, and BufferedRWPair buffer streams that are readable, writable, and both respectively. BufferedRandom provides a buffered interface to random access streams. BytesIO is a simple stream of in-memory bytes. Another IOBase subclass, TextIOBase, deals with the encoding and decoding of streams into text. TextIOWrapper, which extends it, is a buffered text interface to a buffered raw stream (`BufferedIOBase`). Finally, StringIO is a in-memory stream for text. Argument names are not part of the specification, and only the arguments of open() are intended to be used as keyword arguments. data: DEFAULT_BUFFER_SIZE An int containing the default buffer size used by the module's buffered I/O classes. open() uses the file's blksize (as obtained by os.stat) if possible. """ # New I/O library conforming to PEP 3116. # This is a prototype; hopefully eventually some of this will be # reimplemented in C. # XXX edge cases when switching between reading/writing # XXX need to support 1 meaning line-buffered # XXX whenever an argument is None, use the default value # XXX read/write ops should check readable/writable # XXX buffered readinto should work with arbitrary buffer objects # XXX use incremental encoder for text output, at least for UTF-16 and UTF-8-SIG # XXX check writable, readable and seekable in appropriate places from __future__ import print_function from __future__ import unicode_literals __author__ = ("Guido van Rossum <[email protected]>, " "Mike Verdone <[email protected]>, " "Mark Russell <[email protected]>") __all__ = ["BlockingIOError", "open", "IOBase", "RawIOBase", "FileIO", "BytesIO", "StringIO", "BufferedIOBase", "BufferedReader", "BufferedWriter", "BufferedRWPair", "BufferedRandom", "TextIOBase", "TextIOWrapper"] import os import abc import codecs import _fileio import threading # open() uses st_blksize whenever we can DEFAULT_BUFFER_SIZE = 8 * 1024 # bytes # py3k has only new style classes __metaclass__ = type class BlockingIOError(IOError): """Exception raised when I/O would block on a non-blocking I/O stream.""" def __init__(self, errno, strerror, characters_written=0): IOError.__init__(self, errno, strerror) self.characters_written = characters_written def open(file, mode="r", buffering=None, encoding=None, errors=None, newline=None, closefd=True): r"""Open file and return a stream. If the file cannot be opened, an IOError is raised. file is either a string giving the name (and the path if the file isn't in the current working directory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when the returned I/O object is closed, unless closefd is set to False.) mode is an optional string that specifies the mode in which the file is opened. It defaults to 'r' which means open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already exists), and 'a' for appending (which on some Unix systems, means that all writes append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the encoding used is platform dependent. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available modes are: ========= =============================================================== Character Meaning --------- --------------------------------------------------------------- 'r' open for reading (default) 'w' open for writing, truncating the file first 'a' open for writing, appending to the end of the file if it exists 'b' binary mode 't' text mode (default) '+' open a disk file for updating (reading and writing) 'U' universal newline mode (for backwards compatibility; unneeded for new code) ========= =============================================================== The default mode is 'rt' (open for reading text). For binary random access, the mode 'w+b' opens and truncates the file to 0 bytes, while 'r+b' opens the file without truncation. Python distinguishes between files opened in binary and text modes, even when the underlying operating system doesn't. Files opened in binary mode (appending 'b' to the mode argument) return contents as bytes objects without any decoding. In text mode (the default, or when 't' is appended to the mode argument), the contents of the file are returned as strings, the bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given. buffering is an optional integer used to set the buffering policy. By default full buffering is on. Pass 0 to switch buffering off (only allowed in binary mode), 1 to set line buffering, and an integer > 1 for full buffering. encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode. The default encoding is platform dependent, but any encoding supported by Python can be passed. See the codecs module for the list of supported encodings. errors is an optional string that specifies how encoding errors are to be handled---this argument should not be used in binary mode. Pass 'strict' to raise a ValueError exception if there is an encoding error (the default of None has the same effect), or pass 'ignore' to ignore errors. (Note that ignoring encoding errors can lead to data loss.) See the documentation for codecs.register for a list of the permitted encoding error strings. newline controls how universal newlines works (it only applies to text mode). It can be None, '', '\n', '\r', and '\r\n'. It works as follows: * On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in '\n', '\r', or '\r\n', and these are translated into '\n' before being returned to the caller. If it is '', universal newline mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal values, input lines are only terminated by the given string, and the line ending is returned to the caller untranslated. * On output, if newline is None, any '\n' characters written are translated to the system default line separator, os.linesep. If newline is '', no translation takes place. If newline is any of the other legal values, any '\n' characters written are translated to the given string. If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not work when a file name is given and must be True in that case. open() returns a file object whose type depends on the mode, and through which the standard file operations such as reading and writing are performed. When open() is used to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a TextIOWrapper. When used to open a file in a binary mode, the returned class varies: in read binary mode, it returns a BufferedReader; in write binary and append binary modes, it returns a BufferedWriter, and in read/write mode, it returns a BufferedRandom. It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringIO can be used like a file opened in a text mode, and for bytes a BytesIO can be used like a file opened in a binary mode. """ if not isinstance(file, (basestring, int)): raise TypeError("invalid file: %r" % file) if not isinstance(mode, basestring): raise TypeError("invalid mode: %r" % mode) if buffering is not None and not isinstance(buffering, int): raise TypeError("invalid buffering: %r" % buffering) if encoding is not None and not isinstance(encoding, basestring): raise TypeError("invalid encoding: %r" % encoding) if errors is not None and not isinstance(errors, basestring): raise TypeError("invalid errors: %r" % errors) modes = set(mode) if modes - set("arwb+tU") or len(mode) > len(modes): raise ValueError("invalid mode: %r" % mode) reading = "r" in modes writing = "w" in modes appending = "a" in modes updating = "+" in modes text = "t" in modes binary = "b" in modes if "U" in modes: if writing or appending: raise ValueError("can't use U and writing mode at once") reading = True if text and binary: raise ValueError("can't have text and binary mode at once") if reading + writing + appending > 1: raise ValueError("can't have read/write/append mode at once") if not (reading or writing or appending): raise ValueError("must have exactly one of read/write/append mode") if binary and encoding is not None: raise ValueError("binary mode doesn't take an encoding argument") if binary and errors is not None: raise ValueError("binary mode doesn't take an errors argument") if binary and newline is not None: raise ValueError("binary mode doesn't take a newline argument") raw = FileIO(file, (reading and "r" or "") + (writing and "w" or "") + (appending and "a" or "") + (updating and "+" or ""), closefd) if buffering is None: buffering = -1 line_buffering = False if buffering == 1 or buffering < 0 and raw.isatty(): buffering = -1 line_buffering = True if buffering < 0: buffering = DEFAULT_BUFFER_SIZE try: bs = os.fstat(raw.fileno()).st_blksize except (os.error, AttributeError): pass else: if bs > 1: buffering = bs if buffering < 0: raise ValueError("invalid buffering size") if buffering == 0: if binary: return raw raise ValueError("can't have unbuffered text I/O") if updating: buffer = BufferedRandom(raw, buffering) elif writing or appending: buffer = BufferedWriter(raw, buffering) elif reading: buffer = BufferedReader(raw, buffering) else: raise ValueError("unknown mode: %r" % mode) if binary: return buffer text = TextIOWrapper(buffer, encoding, errors, newline, line_buffering) text.mode = mode return text class _DocDescriptor: """Helper for builtins.open.__doc__ """ def __get__(self, obj, typ): return ( "open(file, mode='r', buffering=None, encoding=None, " "errors=None, newline=None, closefd=True)\n\n" + open.__doc__) class OpenWrapper: """Wrapper for builtins.open Trick so that open won't become a bound method when stored as a class variable (as dumbdbm does). See initstdio() in Python/pythonrun.c. """ __doc__ = _DocDescriptor() def __new__(cls, *args, **kwargs): return open(*args, **kwargs) class UnsupportedOperation(ValueError, IOError): pass class IOBase(object): """The abstract base class for all I/O classes, acting on streams of bytes. There is no public constructor. This class provides dummy implementations for many methods that derived classes can override selectively; the default implementations represent a file that cannot be read, written or seeked. Even though IOBase does not declare read, readinto, or write because their signatures will vary, implementations and clients should consider those methods part of the interface. Also, implementations may raise a IOError when operations they do not support are called. The basic type used for binary data read from or written to a file is bytes. bytearrays are accepted too, and in some cases (such as readinto) needed. Text I/O classes work with str data. Note that calling any method (even inquiries) on a closed stream is undefined. Implementations may raise IOError in this case. IOBase (and its subclasses) support the iterator protocol, meaning that an IOBase object can be iterated over yielding the lines in a stream. IOBase also supports the :keyword:`with` statement. In this example, fp is closed after the suite of the with statment is complete: with open('spam.txt', 'r') as fp: fp.write('Spam and eggs!') """ __metaclass__ = abc.ABCMeta ### Internal ### def _unsupported(self, name): """Internal: raise an exception for unsupported operations.""" raise UnsupportedOperation("%s.%s() not supported" % (self.__class__.__name__, name)) ### Positioning ### def seek(self, pos, whence = 0): """Change stream position. Change the stream position to byte offset offset. offset is interpreted relative to the position indicated by whence. Values for whence are: * 0 -- start of stream (the default); offset should be zero or positive * 1 -- current stream position; offset may be negative * 2 -- end of stream; offset is usually negative Return the new absolute position. """ self._unsupported("seek") def tell(self): """Return current stream position.""" return self.seek(0, 1) def truncate(self, pos = None): """Truncate file to size bytes. Size defaults to the current IO position as reported by tell(). Return the new size. """ self._unsupported("truncate") ### Flush and close ### def flush(self): """Flush write buffers, if applicable. This is not implemented for read-only and non-blocking streams. """ # XXX Should this return the number of bytes written??? __closed = False def close(self): """Flush and close the IO object. This method has no effect if the file is already closed. """ if not self.__closed: try: self.flush() except IOError: pass # If flush() fails, just give up self.__closed = True def __del__(self): """Destructor. Calls close().""" # The try/except block is in case this is called at program # exit time, when it's possible that globals have already been # deleted, and then the close() call might fail. Since # there's nothing we can do about such failures and they annoy # the end users, we suppress the traceback. try: self.close() except: pass ### Inquiries ### def seekable(self): """Return whether object supports random access. If False, seek(), tell() and truncate() will raise IOError. This method may need to do a test seek(). """ return False def _checkSeekable(self, msg=None): """Internal: raise an IOError if file is not seekable """ if not self.seekable(): raise IOError("File or stream is not seekable." if msg is None else msg) def readable(self): """Return whether object was opened for reading. If False, read() will raise IOError. """ return False def _checkReadable(self, msg=None): """Internal: raise an IOError if file is not readable """ if not self.readable(): raise IOError("File or stream is not readable." if msg is None else msg) def writable(self): """Return whether object was opened for writing. If False, write() and truncate() will raise IOError. """ return False def _checkWritable(self, msg=None): """Internal: raise an IOError if file is not writable """ if not self.writable(): raise IOError("File or stream is not writable." if msg is None else msg) @property def closed(self): """closed: bool. True iff the file has been closed. For backwards compatibility, this is a property, not a predicate. """ return self.__closed def _checkClosed(self, msg=None): """Internal: raise an ValueError if file is closed """ if self.closed: raise ValueError("I/O operation on closed file." if msg is None else msg) ### Context manager ### def __enter__(self): """Context management protocol. Returns self.""" self._checkClosed() return self def __exit__(self, *args): """Context management protocol. Calls close()""" self.close() ### Lower-level APIs ### # XXX Should these be present even if unimplemented? def fileno(self): """Returns underlying file descriptor if one exists. An IOError is raised if the IO object does not use a file descriptor. """ self._unsupported("fileno") def isatty(self): """Return whether this is an 'interactive' stream. Return False if it can't be determined. """ self._checkClosed() return False ### Readline[s] and writelines ### def readline(self, limit = -1): r"""Read and return a line from the stream. If limit is specified, at most limit bytes will be read. The line terminator is always b'\n' for binary files; for text files, the newlines argument to open can be used to select the line terminator(s) recognized. """ self._checkClosed() if hasattr(self, "peek"): def nreadahead(): readahead = self.peek(1) if not readahead: return 1 n = (readahead.find(b"\n") + 1) or len(readahead) if limit >= 0: n = min(n, limit) return n else: def nreadahead(): return 1 if limit is None: limit = -1 if not isinstance(limit, (int, long)): raise TypeError("limit must be an integer") res = bytearray() while limit < 0 or len(res) < limit: b = self.read(nreadahead()) if not b: break res += b if res.endswith(b"\n"): break return bytes(res) def __iter__(self): self._checkClosed() return self def next(self): line = self.readline() if not line: raise StopIteration return line def readlines(self, hint=None): """Return a list of lines from the stream. hint can be specified to control the number of lines read: no more lines will be read if the total size (in bytes/characters) of all lines so far exceeds hint. """ if hint is None: hint = -1 if not isinstance(hint, (int, long)): raise TypeError("hint must be an integer") if hint <= 0: return list(self) n = 0 lines = [] for line in self: lines.append(line) n += len(line) if n >= hint: break return lines def writelines(self, lines): self._checkClosed() for line in lines: self.write(line) class RawIOBase(IOBase): """Base class for raw binary I/O.""" # The read() method is implemented by calling readinto(); derived # classes that want to support read() only need to implement # readinto() as a primitive operation. In general, readinto() can be # more efficient than read(). # (It would be tempting to also provide an implementation of # readinto() in terms of read(), in case the latter is a more suitable # primitive operation, but that would lead to nasty recursion in case # a subclass doesn't implement either.) def read(self, n = -1): """Read and return up to n bytes. Returns an empty bytes array on EOF, or None if the object is set not to block and has no data to read. """ if n is None: n = -1 if n < 0: return self.readall() b = bytearray(n.__index__()) n = self.readinto(b) del b[n:] return bytes(b) def readall(self): """Read until EOF, using multiple read() call.""" res = bytearray() while True: data = self.read(DEFAULT_BUFFER_SIZE) if not data: break res += data return bytes(res) def readinto(self, b): """Read up to len(b) bytes into b. Returns number of bytes read (0 for EOF), or None if the object is set not to block as has no data to read. """ self._unsupported("readinto") def write(self, b): """Write the given buffer to the IO stream. Returns the number of bytes written, which may be less than len(b). """ self._unsupported("write") class FileIO(_fileio._FileIO, RawIOBase): """Raw I/O implementation for OS files.""" # This multiply inherits from _FileIO and RawIOBase to make # isinstance(io.FileIO(), io.RawIOBase) return True without requiring # that _fileio._FileIO inherits from io.RawIOBase (which would be hard # to do since _fileio.c is written in C). def __init__(self, name, mode="r", closefd=True): _fileio._FileIO.__init__(self, name, mode, closefd) self._name = name def close(self): _fileio._FileIO.close(self) RawIOBase.close(self) @property def name(self): return self._name class BufferedIOBase(IOBase): """Base class for buffered IO objects. The main difference with RawIOBase is that the read() method supports omitting the size argument, and does not have a default implementation that defers to readinto(). In addition, read(), readinto() and write() may raise BlockingIOError if the underlying raw stream is in non-blocking mode and not ready; unlike their raw counterparts, they will never return None. A typical implementation should not inherit from a RawIOBase implementation, but wrap one. """ def read(self, n = None): """Read and return up to n bytes. If the argument is omitted, None, or negative, reads and returns all data until EOF. If the argument is positive, and the underlying raw stream is not 'interactive', multiple raw reads may be issued to satisfy the byte count (unless EOF is reached first). But for interactive raw streams (XXX and for pipes?), at most one raw read will be issued, and a short result does not imply that EOF is imminent. Returns an empty bytes array on EOF. Raises BlockingIOError if the underlying raw stream has no data at the moment. """ self._unsupported("read") def readinto(self, b): """Read up to len(b) bytes into b. Like read(), this may issue multiple reads to the underlying raw stream, unless the latter is 'interactive'. Returns the number of bytes read (0 for EOF). Raises BlockingIOError if the underlying raw stream has no data at the moment. """ # XXX This ought to work with anything that supports the buffer API data = self.read(len(b)) n = len(data) try: b[:n] = data except TypeError as err: import array if not isinstance(b, array.array): raise err b[:n] = array.array(b'b', data) return n def write(self, b): """Write the given buffer to the IO stream. Return the number of bytes written, which is never less than len(b). Raises BlockingIOError if the buffer is full and the underlying raw stream cannot accept more data at the moment. """ self._unsupported("write") class _BufferedIOMixin(BufferedIOBase): """A mixin implementation of BufferedIOBase with an underlying raw stream. This passes most requests on to the underlying raw stream. It does *not* provide implementations of read(), readinto() or write(). """ def __init__(self, raw): self.raw = raw ### Positioning ### def seek(self, pos, whence=0): return self.raw.seek(pos, whence) def tell(self): return self.raw.tell() def truncate(self, pos=None): # Flush the stream. We're mixing buffered I/O with lower-level I/O, # and a flush may be necessary to synch both views of the current # file state. self.flush() if pos is None: pos = self.tell() # XXX: Should seek() be used, instead of passing the position # XXX directly to truncate? return self.raw.truncate(pos) ### Flush and close ### def flush(self): self.raw.flush() def close(self): if not self.closed: try: self.flush() except IOError: pass # If flush() fails, just give up self.raw.close() ### Inquiries ### def seekable(self): return self.raw.seekable() def readable(self): return self.raw.readable() def writable(self): return self.raw.writable() @property def closed(self): return self.raw.closed @property def name(self): return self.raw.name @property def mode(self): return self.raw.mode ### Lower-level APIs ### def fileno(self): return self.raw.fileno() def isatty(self): return self.raw.isatty() class _BytesIO(BufferedIOBase): """Buffered I/O implementation using an in-memory bytes buffer.""" # XXX More docs def __init__(self, initial_bytes=None): buf = bytearray() if initial_bytes is not None: buf += bytearray(initial_bytes) self._buffer = buf self._pos = 0 def getvalue(self): """Return the bytes value (contents) of the buffer """ if self.closed: raise ValueError("getvalue on closed file") return bytes(self._buffer) def read(self, n=None): if self.closed: raise ValueError("read from closed file") if n is None: n = -1 if not isinstance(n, (int, long)): raise TypeError("argument must be an integer") if n < 0: n = len(self._buffer) if len(self._buffer) <= self._pos: return b"" newpos = min(len(self._buffer), self._pos + n) b = self._buffer[self._pos : newpos] self._pos = newpos return bytes(b) def read1(self, n): """this is the same as read. """ return self.read(n) def write(self, b): if self.closed: raise ValueError("write to closed file") if isinstance(b, unicode): raise TypeError("can't write unicode to binary stream") n = len(b) if n == 0: return 0 pos = self._pos if pos > len(self._buffer): # Inserts null bytes between the current end of the file # and the new write position. padding = b'\x00' * (pos - len(self._buffer)) self._buffer += padding self._buffer[pos:pos + n] = b self._pos += n return n def seek(self, pos, whence=0): if self.closed: raise ValueError("seek on closed file") try: pos = pos.__index__() except AttributeError as err: raise TypeError("an integer is required") # from err if whence == 0: if pos < 0: raise ValueError("negative seek position %r" % (pos,)) self._pos = pos elif whence == 1: self._pos = max(0, self._pos + pos) elif whence == 2: self._pos = max(0, len(self._buffer) + pos) else: raise ValueError("invalid whence value") return self._pos def tell(self): if self.closed: raise ValueError("tell on closed file") return self._pos def truncate(self, pos=None): if self.closed: raise ValueError("truncate on closed file") if pos is None: pos = self._pos elif pos < 0: raise ValueError("negative truncate position %r" % (pos,)) del self._buffer[pos:] return self.seek(pos) def readable(self): return True def writable(self): return True def seekable(self): return True # Use the faster implementation of BytesIO if available try: import _bytesio class BytesIO(_bytesio._BytesIO, BufferedIOBase): __doc__ = _bytesio._BytesIO.__doc__ except ImportError: BytesIO = _BytesIO class BufferedReader(_BufferedIOMixin): """BufferedReader(raw[, buffer_size]) A buffer for a readable, sequential BaseRawIO object. The constructor creates a BufferedReader for the given readable raw stream and buffer_size. If buffer_size is omitted, DEFAULT_BUFFER_SIZE is used. """ def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE): """Create a new buffered reader using the given readable raw IO object. """ raw._checkReadable() _BufferedIOMixin.__init__(self, raw) self.buffer_size = buffer_size self._reset_read_buf() self._read_lock = threading.Lock() def _reset_read_buf(self): self._read_buf = b"" self._read_pos = 0 def read(self, n=None): """Read n bytes. Returns exactly n bytes of data unless the underlying raw IO stream reaches EOF or if the call would block in non-blocking mode. If n is negative, read until EOF or until read() would block. """ with self._read_lock: return self._read_unlocked(n) def _read_unlocked(self, n=None): nodata_val = b"" empty_values = (b"", None) buf = self._read_buf pos = self._read_pos # Special case for when the number of bytes to read is unspecified. if n is None or n == -1: self._reset_read_buf() chunks = [buf[pos:]] # Strip the consumed bytes. current_size = 0 while True: # Read until EOF or until read() would block. chunk = self.raw.read() if chunk in empty_values: nodata_val = chunk break current_size += len(chunk) chunks.append(chunk) return b"".join(chunks) or nodata_val # The number of bytes to read is specified, return at most n bytes. avail = len(buf) - pos # Length of the available buffered data. if n <= avail: # Fast path: the data to read is fully buffered. self._read_pos += n return buf[pos:pos+n] # Slow path: read from the stream until enough bytes are read, # or until an EOF occurs or until read() would block. chunks = [buf[pos:]] wanted = max(self.buffer_size, n) while avail < n: chunk = self.raw.read(wanted) if chunk in empty_values: nodata_val = chunk break avail += len(chunk) chunks.append(chunk) # n is more then avail only when an EOF occurred or when # read() would have blocked. n = min(n, avail) out = b"".join(chunks) self._read_buf = out[n:] # Save the extra data in the buffer. self._read_pos = 0 return out[:n] if out else nodata_val def peek(self, n=0): """Returns buffered bytes without advancing the position. The argument indicates a desired minimal number of bytes; we do at most one raw read to satisfy it. We never return more than self.buffer_size. """ with self._read_lock: return self._peek_unlocked(n) def _peek_unlocked(self, n=0): want = min(n, self.buffer_size) have = len(self._read_buf) - self._read_pos if have < want: to_read = self.buffer_size - have current = self.raw.read(to_read) if current: self._read_buf = self._read_buf[self._read_pos:] + current self._read_pos = 0 return self._read_buf[self._read_pos:] def read1(self, n): """Reads up to n bytes, with at most one read() system call.""" # Returns up to n bytes. If at least one byte is buffered, we # only return buffered bytes. Otherwise, we do one raw read. if n <= 0: return b"" with self._read_lock: self._peek_unlocked(1) return self._read_unlocked( min(n, len(self._read_buf) - self._read_pos)) def tell(self): return self.raw.tell() - len(self._read_buf) + self._read_pos def seek(self, pos, whence=0): with self._read_lock: if whence == 1: pos -= len(self._read_buf) - self._read_pos pos = self.raw.seek(pos, whence) self._reset_read_buf() return pos class BufferedWriter(_BufferedIOMixin): """A buffer for a writeable sequential RawIO object. The constructor creates a BufferedWriter for the given writeable raw stream. If the buffer_size is not given, it defaults to DEAFULT_BUFFER_SIZE. If max_buffer_size is omitted, it defaults to twice the buffer size. """ def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE, max_buffer_size=None): raw._checkWritable() _BufferedIOMixin.__init__(self, raw) self.buffer_size = buffer_size self.max_buffer_size = (2*buffer_size if max_buffer_size is None else max_buffer_size) self._write_buf = bytearray() self._write_lock = threading.Lock() def write(self, b): if self.closed: raise ValueError("write to closed file") if isinstance(b, unicode): raise TypeError("can't write unicode to binary stream") with self._write_lock: # XXX we can implement some more tricks to try and avoid # partial writes if len(self._write_buf) > self.buffer_size: # We're full, so let's pre-flush the buffer try: self._flush_unlocked() except BlockingIOError as e: # We can't accept anything else. # XXX Why not just let the exception pass through? raise BlockingIOError(e.errno, e.strerror, 0) before = len(self._write_buf) self._write_buf.extend(b) written = len(self._write_buf) - before if len(self._write_buf) > self.buffer_size: try: self._flush_unlocked() except BlockingIOError as e: if len(self._write_buf) > self.max_buffer_size: # We've hit max_buffer_size. We have to accept a # partial write and cut back our buffer. overage = len(self._write_buf) - self.max_buffer_size self._write_buf = self._write_buf[:self.max_buffer_size] raise BlockingIOError(e.errno, e.strerror, overage) return written def truncate(self, pos=None): with self._write_lock: self._flush_unlocked() if pos is None: pos = self.raw.tell() return self.raw.truncate(pos) def flush(self): with self._write_lock: self._flush_unlocked() def _flush_unlocked(self): if self.closed: raise ValueError("flush of closed file") written = 0 try: while self._write_buf: n = self.raw.write(self._write_buf) del self._write_buf[:n] written += n except BlockingIOError as e: n = e.characters_written del self._write_buf[:n] written += n raise BlockingIOError(e.errno, e.strerror, written) def tell(self): return self.raw.tell() + len(self._write_buf) def seek(self, pos, whence=0): with self._write_lock: self._flush_unlocked() return self.raw.seek(pos, whence) class BufferedRWPair(BufferedIOBase): """A buffered reader and writer object together. A buffered reader object and buffered writer object put together to form a sequential IO object that can read and write. This is typically used with a socket or two-way pipe. reader and writer are RawIOBase objects that are readable and writeable respectively. If the buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE. The max_buffer_size (for the buffered writer) defaults to twice the buffer size. """ # XXX The usefulness of this (compared to having two separate IO # objects) is questionable. def __init__(self, reader, writer, buffer_size=DEFAULT_BUFFER_SIZE, max_buffer_size=None): """Constructor. The arguments are two RawIO instances. """ reader._checkReadable() writer._checkWritable() self.reader = BufferedReader(reader, buffer_size) self.writer = BufferedWriter(writer, buffer_size, max_buffer_size) def read(self, n=None): if n is None: n = -1 return self.reader.read(n) def readinto(self, b): return self.reader.readinto(b) def write(self, b): return self.writer.write(b) def peek(self, n=0): return self.reader.peek(n) def read1(self, n): return self.reader.read1(n) def readable(self): return self.reader.readable() def writable(self): return self.writer.writable() def flush(self): return self.writer.flush() def close(self): self.writer.close() self.reader.close() def isatty(self): return self.reader.isatty() or self.writer.isatty() @property def closed(self): return self.writer.closed class BufferedRandom(BufferedWriter, BufferedReader): """A buffered interface to random access streams. The constructor creates a reader and writer for a seekable stream, raw, given in the first argument. If the buffer_size is omitted it defaults to DEFAULT_BUFFER_SIZE. The max_buffer_size (for the buffered writer) defaults to twice the buffer size. """ def __init__(self, raw, buffer_size=DEFAULT_BUFFER_SIZE, max_buffer_size=None): raw._checkSeekable() BufferedReader.__init__(self, raw, buffer_size) BufferedWriter.__init__(self, raw, buffer_size, max_buffer_size) def seek(self, pos, whence=0): self.flush() # First do the raw seek, then empty the read buffer, so that # if the raw seek fails, we don't lose buffered data forever. pos = self.raw.seek(pos, whence) with self._read_lock: self._reset_read_buf() return pos def tell(self): if self._write_buf: return self.raw.tell() + len(self._write_buf) else: return BufferedReader.tell(self) def truncate(self, pos=None): if pos is None: pos = self.tell() # Use seek to flush the read buffer. self.seek(pos) return BufferedWriter.truncate(self) def read(self, n=None): if n is None: n = -1 self.flush() return BufferedReader.read(self, n) def readinto(self, b): self.flush() return BufferedReader.readinto(self, b) def peek(self, n=0): self.flush() return BufferedReader.peek(self, n) def read1(self, n): self.flush() return BufferedReader.read1(self, n) def write(self, b): if self._read_buf: # Undo readahead with self._read_lock: self.raw.seek(self._read_pos - len(self._read_buf), 1) self._reset_read_buf() return BufferedWriter.write(self, b) class TextIOBase(IOBase): """Base class for text I/O. This class provides a character and line based interface to stream I/O. There is no readinto method because Python's character strings are immutable. There is no public constructor. """ def read(self, n = -1): """Read at most n characters from stream. Read from underlying buffer until we have n characters or we hit EOF. If n is negative or omitted, read until EOF. """ self._unsupported("read") def write(self, s): """Write string s to stream.""" self._unsupported("write") def truncate(self, pos = None): """Truncate size to pos.""" self._unsupported("truncate") def readline(self): """Read until newline or EOF. Returns an empty string if EOF is hit immediately. """ self._unsupported("readline") @property def encoding(self): """Subclasses should override.""" return None @property def newlines(self): """Line endings translated so far. Only line endings translated during reading are considered. Subclasses should override. """ return None class IncrementalNewlineDecoder(codecs.IncrementalDecoder): """Codec used when reading a file in universal newlines mode. It wraps another incremental decoder, translating \\r\\n and \\r into \\n. It also records the types of newlines encountered. When used with translate=False, it ensures that the newline sequence is returned in one piece. """ def __init__(self, decoder, translate, errors='strict'): codecs.IncrementalDecoder.__init__(self, errors=errors) self.translate = translate self.decoder = decoder self.seennl = 0 self.pendingcr = False def decode(self, input, final=False): # decode input (with the eventual \r from a previous pass) output = self.decoder.decode(input, final=final) if self.pendingcr and (output or final): output = "\r" + output self.pendingcr = False # retain last \r even when not translating data: # then readline() is sure to get \r\n in one pass if output.endswith("\r") and not final: output = output[:-1] self.pendingcr = True # Record which newlines are read crlf = output.count('\r\n') cr = output.count('\r') - crlf lf = output.count('\n') - crlf self.seennl |= (lf and self._LF) | (cr and self._CR) \ | (crlf and self._CRLF) if self.translate: if crlf: output = output.replace("\r\n", "\n") if cr: output = output.replace("\r", "\n") return output def getstate(self): buf, flag = self.decoder.getstate() flag <<= 1 if self.pendingcr: flag |= 1 return buf, flag def setstate(self, state): buf, flag = state self.pendingcr = bool(flag & 1) self.decoder.setstate((buf, flag >> 1)) def reset(self): self.seennl = 0 self.pendingcr = False self.decoder.reset() _LF = 1 _CR = 2 _CRLF = 4 @property def newlines(self): return (None, "\n", "\r", ("\r", "\n"), "\r\n", ("\n", "\r\n"), ("\r", "\r\n"), ("\r", "\n", "\r\n") )[self.seennl] class TextIOWrapper(TextIOBase): r"""Character and line based layer over a BufferedIOBase object, buffer. encoding gives the name of the encoding that the stream will be decoded or encoded with. It defaults to locale.getpreferredencoding. errors determines the strictness of encoding and decoding (see the codecs.register) and defaults to "strict". newline can be None, '', '\n', '\r', or '\r\n'. It controls the handling of line endings. If it is None, universal newlines is enabled. With this enabled, on input, the lines endings '\n', '\r', or '\r\n' are translated to '\n' before being returned to the caller. Conversely, on output, '\n' is translated to the system default line seperator, os.linesep. If newline is any other of its legal values, that newline becomes the newline when the file is read and it is returned untranslated. On output, '\n' is converted to the newline. If line_buffering is True, a call to flush is implied when a call to write contains a newline character. """ _CHUNK_SIZE = 128 def __init__(self, buffer, encoding=None, errors=None, newline=None, line_buffering=False): if newline not in (None, "", "\n", "\r", "\r\n"): raise ValueError("illegal newline value: %r" % (newline,)) if encoding is None: try: encoding = os.device_encoding(buffer.fileno()) except (AttributeError, UnsupportedOperation): pass if encoding is None: try: import locale except ImportError: # Importing locale may fail if Python is being built encoding = "ascii" else: encoding = locale.getpreferredencoding() if not isinstance(encoding, basestring): raise ValueError("invalid encoding: %r" % encoding) if errors is None: errors = "strict" else: if not isinstance(errors, basestring): raise ValueError("invalid errors: %r" % errors) self.buffer = buffer self._line_buffering = line_buffering self._encoding = encoding self._errors = errors self._readuniversal = not newline self._readtranslate = newline is None self._readnl = newline self._writetranslate = newline != '' self._writenl = newline or os.linesep self._encoder = None self._decoder = None self._decoded_chars = '' # buffer for text returned from decoder self._decoded_chars_used = 0 # offset into _decoded_chars for read() self._snapshot = None # info for reconstructing decoder state self._seekable = self._telling = self.buffer.seekable() # self._snapshot is either None, or a tuple (dec_flags, next_input) # where dec_flags is the second (integer) item of the decoder state # and next_input is the chunk of input bytes that comes next after the # snapshot point. We use this to reconstruct decoder states in tell(). # Naming convention: # - "bytes_..." for integer variables that count input bytes # - "chars_..." for integer variables that count decoded characters @property def encoding(self): return self._encoding @property def errors(self): return self._errors @property def line_buffering(self): return self._line_buffering def seekable(self): return self._seekable def readable(self): return self.buffer.readable() def writable(self): return self.buffer.writable() def flush(self): self.buffer.flush() self._telling = self._seekable def close(self): try: self.flush() except: pass # If flush() fails, just give up self.buffer.close() @property def closed(self): return self.buffer.closed @property def name(self): return self.buffer.name def fileno(self): return self.buffer.fileno() def isatty(self): return self.buffer.isatty() def write(self, s): if self.closed: raise ValueError("write to closed file") if not isinstance(s, unicode): raise TypeError("can't write %s to text stream" % s.__class__.__name__) length = len(s) haslf = (self._writetranslate or self._line_buffering) and "\n" in s if haslf and self._writetranslate and self._writenl != "\n": s = s.replace("\n", self._writenl) encoder = self._encoder or self._get_encoder() # XXX What if we were just reading? b = encoder.encode(s) self.buffer.write(b) if self._line_buffering and (haslf or "\r" in s): self.flush() self._snapshot = None if self._decoder: self._decoder.reset() return length def _get_encoder(self): make_encoder = codecs.getincrementalencoder(self._encoding) self._encoder = make_encoder(self._errors) return self._encoder def _get_decoder(self): make_decoder = codecs.getincrementaldecoder(self._encoding) decoder = make_decoder(self._errors) if self._readuniversal: decoder = IncrementalNewlineDecoder(decoder, self._readtranslate) self._decoder = decoder return decoder # The following three methods implement an ADT for _decoded_chars. # Text returned from the decoder is buffered here until the client # requests it by calling our read() or readline() method. def _set_decoded_chars(self, chars): """Set the _decoded_chars buffer.""" self._decoded_chars = chars self._decoded_chars_used = 0 def _get_decoded_chars(self, n=None): """Advance into the _decoded_chars buffer.""" offset = self._decoded_chars_used if n is None: chars = self._decoded_chars[offset:] else: chars = self._decoded_chars[offset:offset + n] self._decoded_chars_used += len(chars) return chars def _rewind_decoded_chars(self, n): """Rewind the _decoded_chars buffer.""" if self._decoded_chars_used < n: raise AssertionError("rewind decoded_chars out of bounds") self._decoded_chars_used -= n def _read_chunk(self): """ Read and decode the next chunk of data from the BufferedReader. The return value is True unless EOF was reached. The decoded string is placed in self._decoded_chars (replacing its previous value). The entire input chunk is sent to the decoder, though some of it may remain buffered in the decoder, yet to be converted. """ if self._decoder is None: raise ValueError("no decoder") if self._telling: # To prepare for tell(), we need to snapshot a point in the # file where the decoder's input buffer is empty. dec_buffer, dec_flags = self._decoder.getstate() # Given this, we know there was a valid snapshot point # len(dec_buffer) bytes ago with decoder state (b'', dec_flags). # Read a chunk, decode it, and put the result in self._decoded_chars. input_chunk = self.buffer.read1(self._CHUNK_SIZE) eof = not input_chunk self._set_decoded_chars(self._decoder.decode(input_chunk, eof)) if self._telling: # At the snapshot point, len(dec_buffer) bytes before the read, # the next input to be decoded is dec_buffer + input_chunk. self._snapshot = (dec_flags, dec_buffer + input_chunk) return not eof def _pack_cookie(self, position, dec_flags=0, bytes_to_feed=0, need_eof=0, chars_to_skip=0): # The meaning of a tell() cookie is: seek to position, set the # decoder flags to dec_flags, read bytes_to_feed bytes, feed them # into the decoder with need_eof as the EOF flag, then skip # chars_to_skip characters of the decoded result. For most simple # decoders, tell() will often just give a byte offset in the file. return (position | (dec_flags<<64) | (bytes_to_feed<<128) | (chars_to_skip<<192) | bool(need_eof)<<256) def _unpack_cookie(self, bigint): rest, position = divmod(bigint, 1<<64) rest, dec_flags = divmod(rest, 1<<64) rest, bytes_to_feed = divmod(rest, 1<<64) need_eof, chars_to_skip = divmod(rest, 1<<64) return position, dec_flags, bytes_to_feed, need_eof, chars_to_skip def tell(self): if not self._seekable: raise IOError("underlying stream is not seekable") if not self._telling: raise IOError("telling position disabled by next() call") self.flush() position = self.buffer.tell() decoder = self._decoder if decoder is None or self._snapshot is None: if self._decoded_chars: # This should never happen. raise AssertionError("pending decoded text") return position # Skip backward to the snapshot point (see _read_chunk). dec_flags, next_input = self._snapshot position -= len(next_input) # How many decoded characters have been used up since the snapshot? chars_to_skip = self._decoded_chars_used if chars_to_skip == 0: # We haven't moved from the snapshot point. return self._pack_cookie(position, dec_flags) # Starting from the snapshot position, we will walk the decoder # forward until it gives us enough decoded characters. saved_state = decoder.getstate() try: # Note our initial start point. decoder.setstate((b'', dec_flags)) start_pos = position start_flags, bytes_fed, chars_decoded = dec_flags, 0, 0 need_eof = 0 # Feed the decoder one byte at a time. As we go, note the # nearest "safe start point" before the current location # (a point where the decoder has nothing buffered, so seek() # can safely start from there and advance to this location). for next_byte in next_input: bytes_fed += 1 chars_decoded += len(decoder.decode(next_byte)) dec_buffer, dec_flags = decoder.getstate() if not dec_buffer and chars_decoded <= chars_to_skip: # Decoder buffer is empty, so this is a safe start point. start_pos += bytes_fed chars_to_skip -= chars_decoded start_flags, bytes_fed, chars_decoded = dec_flags, 0, 0 if chars_decoded >= chars_to_skip: break else: # We didn't get enough decoded data; signal EOF to get more. chars_decoded += len(decoder.decode(b'', final=True)) need_eof = 1 if chars_decoded < chars_to_skip: raise IOError("can't reconstruct logical file position") # The returned cookie corresponds to the last safe start point. return self._pack_cookie( start_pos, start_flags, bytes_fed, need_eof, chars_to_skip) finally: decoder.setstate(saved_state) def truncate(self, pos=None): self.flush() if pos is None: pos = self.tell() self.seek(pos) return self.buffer.truncate() def seek(self, cookie, whence=0): if self.closed: raise ValueError("tell on closed file") if not self._seekable: raise IOError("underlying stream is not seekable") if whence == 1: # seek relative to current position if cookie != 0: raise IOError("can't do nonzero cur-relative seeks") # Seeking to the current position should attempt to # sync the underlying buffer with the current position. whence = 0 cookie = self.tell() if whence == 2: # seek relative to end of file if cookie != 0: raise IOError("can't do nonzero end-relative seeks") self.flush() position = self.buffer.seek(0, 2) self._set_decoded_chars('') self._snapshot = None if self._decoder: self._decoder.reset() return position if whence != 0: raise ValueError("invalid whence (%r, should be 0, 1 or 2)" % (whence,)) if cookie < 0: raise ValueError("negative seek position %r" % (cookie,)) self.flush() # The strategy of seek() is to go back to the safe start point # and replay the effect of read(chars_to_skip) from there. start_pos, dec_flags, bytes_to_feed, need_eof, chars_to_skip = \ self._unpack_cookie(cookie) # Seek back to the safe start point. self.buffer.seek(start_pos) self._set_decoded_chars('') self._snapshot = None # Restore the decoder to its state from the safe start point. if self._decoder or dec_flags or chars_to_skip: self._decoder = self._decoder or self._get_decoder() self._decoder.setstate((b'', dec_flags)) self._snapshot = (dec_flags, b'') if chars_to_skip: # Just like _read_chunk, feed the decoder and save a snapshot. input_chunk = self.buffer.read(bytes_to_feed) self._set_decoded_chars( self._decoder.decode(input_chunk, need_eof)) self._snapshot = (dec_flags, input_chunk) # Skip chars_to_skip of the decoded characters. if len(self._decoded_chars) < chars_to_skip: raise IOError("can't restore logical file position") self._decoded_chars_used = chars_to_skip return cookie def read(self, n=None): if n is None: n = -1 decoder = self._decoder or self._get_decoder() if n < 0: # Read everything. result = (self._get_decoded_chars() + decoder.decode(self.buffer.read(), final=True)) self._set_decoded_chars('') self._snapshot = None return result else: # Keep reading chunks until we have n characters to return. eof = False result = self._get_decoded_chars(n) while len(result) < n and not eof: eof = not self._read_chunk() result += self._get_decoded_chars(n - len(result)) return result def next(self): self._telling = False line = self.readline() if not line: self._snapshot = None self._telling = self._seekable raise StopIteration return line def readline(self, limit=None): if self.closed: raise ValueError("read from closed file") if limit is None: limit = -1 if not isinstance(limit, (int, long)): raise TypeError("limit must be an integer") # Grab all the decoded text (we will rewind any extra bits later). line = self._get_decoded_chars() start = 0 decoder = self._decoder or self._get_decoder() pos = endpos = None while True: if self._readtranslate: # Newlines are already translated, only search for \n pos = line.find('\n', start) if pos >= 0: endpos = pos + 1 break else: start = len(line) elif self._readuniversal: # Universal newline search. Find any of \r, \r\n, \n # The decoder ensures that \r\n are not split in two pieces # In C we'd look for these in parallel of course. nlpos = line.find("\n", start) crpos = line.find("\r", start) if crpos == -1: if nlpos == -1: # Nothing found start = len(line) else: # Found \n endpos = nlpos + 1 break elif nlpos == -1: # Found lone \r endpos = crpos + 1 break elif nlpos < crpos: # Found \n endpos = nlpos + 1 break elif nlpos == crpos + 1: # Found \r\n endpos = crpos + 2 break else: # Found \r endpos = crpos + 1 break else: # non-universal pos = line.find(self._readnl) if pos >= 0: endpos = pos + len(self._readnl) break if limit >= 0 and len(line) >= limit: endpos = limit # reached length limit break # No line ending seen yet - get more data more_line = '' while self._read_chunk(): if self._decoded_chars: break if self._decoded_chars: line += self._get_decoded_chars() else: # end of file self._set_decoded_chars('') self._snapshot = None return line if limit >= 0 and endpos > limit: endpos = limit # don't exceed limit # Rewind _decoded_chars to just after the line ending we found. self._rewind_decoded_chars(len(line) - endpos) return line[:endpos] @property def newlines(self): return self._decoder.newlines if self._decoder else None class StringIO(TextIOWrapper): """An in-memory stream for text. The initial_value argument sets the value of object. The other arguments are like those of TextIOWrapper's constructor. """ def __init__(self, initial_value="", encoding="utf-8", errors="strict", newline="\n"): super(StringIO, self).__init__(BytesIO(), encoding=encoding, errors=errors, newline=newline) if initial_value: if not isinstance(initial_value, unicode): initial_value = unicode(initial_value) self.write(initial_value) self.seek(0) def getvalue(self): self.flush() return self.buffer.getvalue().decode(self._encoding, self._errors)
apache-2.0
hlieberman/debian-ansible
lib/ansible/module_utils/known_hosts.py
8
5832
# This code is part of Ansible, but is an independent component. # This particular file snippet, and this file snippet only, is BSD licensed. # Modules you write using this snippet, which is embedded dynamically by Ansible # still belong to the author of the module, and may assign their own license # to the complete work. # # Copyright (c), Michael DeHaan <[email protected]>, 2012-2013 # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE # USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import hmac from hashlib import sha1 HASHED_KEY_MAGIC = "|1|" def add_git_host_key(module, url, accept_hostkey=True, create_dir=True): """ idempotently add a git url hostkey """ fqdn = get_fqdn(module.params['repo']) if fqdn: known_host = check_hostkey(module, fqdn) if not known_host: if accept_hostkey: rc, out, err = add_host_key(module, fqdn, create_dir=create_dir) if rc != 0: module.fail_json(msg="failed to add %s hostkey: %s" % (fqdn, out + err)) else: module.fail_json(msg="%s has an unknown hostkey. Set accept_hostkey to True or manually add the hostkey prior to running the git module" % fqdn) def get_fqdn(repo_url): """ chop the hostname out of a giturl """ result = None if "@" in repo_url and not repo_url.startswith("http"): repo_url = repo_url.split("@", 1)[1] if ":" in repo_url: repo_url = repo_url.split(":")[0] result = repo_url elif "/" in repo_url: repo_url = repo_url.split("/")[0] result = repo_url return result def check_hostkey(module, fqdn): return not not_in_host_file(module, fqdn) # this is a variant of code found in connection_plugins/paramiko.py and we should modify # the paramiko code to import and use this. def not_in_host_file(self, host): if 'USER' in os.environ: user_host_file = os.path.expandvars("~${USER}/.ssh/known_hosts") else: user_host_file = "~/.ssh/known_hosts" user_host_file = os.path.expanduser(user_host_file) host_file_list = [] host_file_list.append(user_host_file) host_file_list.append("/etc/ssh/ssh_known_hosts") host_file_list.append("/etc/ssh/ssh_known_hosts2") hfiles_not_found = 0 for hf in host_file_list: if not os.path.exists(hf): hfiles_not_found += 1 continue try: host_fh = open(hf) except IOError, e: hfiles_not_found += 1 continue else: data = host_fh.read() host_fh.close() for line in data.split("\n"): if line is None or " " not in line: continue tokens = line.split() if tokens[0].find(HASHED_KEY_MAGIC) == 0: # this is a hashed known host entry try: (kn_salt,kn_host) = tokens[0][len(HASHED_KEY_MAGIC):].split("|",2) hash = hmac.new(kn_salt.decode('base64'), digestmod=sha1) hash.update(host) if hash.digest() == kn_host.decode('base64'): return False except: # invalid hashed host key, skip it continue else: # standard host file entry if host in tokens[0]: return False return True def add_host_key(module, fqdn, key_type="rsa", create_dir=False): """ use ssh-keyscan to add the hostkey """ result = False keyscan_cmd = module.get_bin_path('ssh-keyscan', True) if 'USER' in os.environ: user_ssh_dir = os.path.expandvars("~${USER}/.ssh/") user_host_file = os.path.expandvars("~${USER}/.ssh/known_hosts") else: user_ssh_dir = "~/.ssh/" user_host_file = "~/.ssh/known_hosts" user_ssh_dir = os.path.expanduser(user_ssh_dir) if not os.path.exists(user_ssh_dir): if create_dir: try: os.makedirs(user_ssh_dir, 0700) except: module.fail_json(msg="failed to create host key directory: %s" % user_ssh_dir) else: module.fail_json(msg="%s does not exist" % user_ssh_dir) elif not os.path.isdir(user_ssh_dir): module.fail_json(msg="%s is not a directory" % user_ssh_dir) this_cmd = "%s -t %s %s" % (keyscan_cmd, key_type, fqdn) rc, out, err = module.run_command(this_cmd) module.append_to_file(user_host_file, out) return rc, out, err
gpl-3.0
cliqz/socorro
alembic/versions/c1ac31c8fea_fix_bug_972612_is_gc_count_should_be_.py
14
1359
"""fix bug 972612 - is_gc_count should be per-ADU Revision ID: c1ac31c8fea Revises: 1aa9adb91413 Create Date: 2014-02-13 15:14:23.916163 """ # revision identifiers, used by Alembic. revision = 'c1ac31c8fea' down_revision = '491cdcf9f97c' import datetime from alembic import op from socorro.lib import citexttype, jsontype, buildtype from socorro.lib.migrations import fix_permissions, load_stored_proc import sqlalchemy as sa from sqlalchemy import types from sqlalchemy.dialects import postgresql from sqlalchemy.sql import table, column def upgrade(): load_stored_proc(op, ['crash_madu.sql', 'update_gccrashes.sql']) op.execute(""" TRUNCATE gccrashes """) op.alter_column(u'gccrashes', u'is_gc_count', new_column_name=u'gc_count_madu', type_=sa.REAL()) now = datetime.datetime.utcnow() for backfill_date in [ (now - datetime.timedelta(days=days)).strftime("%Y-%m-%d") for days in range(1,30)]: op.execute(""" SELECT backfill_gccrashes('%s') """ % backfill_date) op.execute(""" COMMIT """) def downgrade(): load_stored_proc(op, ['update_gccrashes.sql']) op.execute(""" DROP FUNCTION crash_madu(bigint, numeric, numeric) """) op.alter_column(u'gccrashes', u'gc_count_madu', new_column_name=u'is_gc_count', type_=sa.INT())
mpl-2.0
jfhumann/servo
tests/wpt/css-tests/tools/pywebsocket/src/example/origin_check_wsh.py
516
1992
# Copyright 2011, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # This example is derived from test/testdata/handlers/origin_check_wsh.py. def web_socket_do_extra_handshake(request): if request.ws_origin == 'http://example.com': return raise ValueError('Unacceptable origin: %r' % request.ws_origin) def web_socket_transfer_data(request): request.connection.write('origin_check_wsh.py is called for %s, %s' % (request.ws_resource, request.ws_protocol)) # vi:sts=4 sw=4 et
mpl-2.0
clones/python-blinker
blinker/_utilities.py
3
4253
from weakref import ref from blinker._saferef import BoundMethodWeakref try: callable except NameError: def callable(object): return hasattr(object, '__call__') try: from collections import defaultdict except: class defaultdict(dict): def __init__(self, default_factory=None, *a, **kw): if (default_factory is not None and not hasattr(default_factory, '__call__')): raise TypeError('first argument must be callable') dict.__init__(self, *a, **kw) self.default_factory = default_factory def __getitem__(self, key): try: return dict.__getitem__(self, key) except KeyError: return self.__missing__(key) def __missing__(self, key): if self.default_factory is None: raise KeyError(key) self[key] = value = self.default_factory() return value def __reduce__(self): if self.default_factory is None: args = tuple() else: args = self.default_factory, return type(self), args, None, None, self.items() def copy(self): return self.__copy__() def __copy__(self): return type(self)(self.default_factory, self) def __deepcopy__(self, memo): import copy return type(self)(self.default_factory, copy.deepcopy(self.items())) def __repr__(self): return 'defaultdict(%s, %s)' % (self.default_factory, dict.__repr__(self)) try: from contextlib import contextmanager except ImportError: def contextmanager(fn): def oops(*args, **kw): raise RuntimeError("Python 2.5 or above is required to use " "context managers.") oops.__name__ = fn.__name__ return oops class _symbol(object): def __init__(self, name): """Construct a new named symbol.""" self.__name__ = self.name = name def __reduce__(self): return symbol, (self.name,) def __repr__(self): return self.name _symbol.__name__ = 'symbol' class symbol(object): """A constant symbol. >>> symbol('foo') is symbol('foo') True >>> symbol('foo') foo A slight refinement of the MAGICCOOKIE=object() pattern. The primary advantage of symbol() is its repr(). They are also singletons. Repeated calls of symbol('name') will all return the same instance. """ symbols = {} def __new__(cls, name): try: return cls.symbols[name] except KeyError: return cls.symbols.setdefault(name, _symbol(name)) def hashable_identity(obj): if hasattr(obj, 'im_func'): return (id(obj.im_func), id(obj.im_self)) else: return id(obj) WeakTypes = (ref, BoundMethodWeakref) class annotatable_weakref(ref): """A weakref.ref that supports custom instance attributes.""" def reference(object, callback=None, **annotations): """Return an annotated weak ref.""" if callable(object): weak = callable_reference(object, callback) else: weak = annotatable_weakref(object, callback) for key, value in annotations.items(): setattr(weak, key, value) return weak def callable_reference(object, callback=None): """Return an annotated weak ref, supporting bound instance methods.""" if hasattr(object, 'im_self') and object.im_self is not None: return BoundMethodWeakref(target=object, on_delete=callback) elif hasattr(object, '__self__') and object.__self__ is not None: return BoundMethodWeakref(target=object, on_delete=callback) return annotatable_weakref(object, callback) class lazy_property(object): """A @property that is only evaluated once.""" def __init__(self, deferred): self._deferred = deferred self.__doc__ = deferred.__doc__ def __get__(self, obj, cls): if obj is None: return self value = self._deferred(obj) setattr(obj, self._deferred.__name__, value) return value
mit
sos22/minios-hacks
tools/xm-test/tests/network/07_network_dom0_udp_pos.py
42
1550
#!/usr/bin/python # Copyright (C) International Business Machines Corp., 2006 # Author: <[email protected]> # UDP tests to dom0. # - determines dom0 network # - creates a single guest domain # - sets up a single NIC on same subnet as dom0 # - conducts hping2 udp tests to the dom0 IP address # hping2 $dom0_IP -2 -c 1 -d $size # where $size = 1, 48, 64, 512, 1440, 1448, 1500, 1505, # 4096, 4192, 32767, 65507, 65508 trysizes = [ 1, 48, 64, 512, 1440, 1500, 1505, 4096, 4192, 32767, 65495 ] from XmTestLib import * rc = 0 # Test creates 1 domain, which requires 2 ips: 1 for the domains and 1 for # aliases on dom0 if xmtest_netconf.canRunNetTest(2) == False: SKIP("Don't have enough free configured IPs to run this test") # Fire up a guest domain w/1 nic domain = XmTestDomain() domain.newDevice(XenNetDevice, "eth0") try: console = domain.start() except DomainError, e: if verbose: print "Failed to create test domain because:" print e.extra FAIL(str(e)) try: # Ping dom0 fails="" netdev = domain.getDevice("eth0") dom0ip = netdev.getDom0AliasIP() for size in trysizes: out = console.runCmd("hping2 " + dom0ip + " -E /dev/urandom -2 -q -c 20" + " --fast -d " + str(size) + " -N " + str(size)) if out["return"]: fails += " " + str(size) print out["output"] except ConsoleError, e: FAIL(str(e)) domain.stop() if len(fails): FAIL("UDP hping2 to dom0 failed for size" + fails + ".")
gpl-2.0
boomsbloom/dtm-fmri
DTM/for_gensim/lib/python2.7/site-packages/sklearn/datasets/samples_generator.py
7
56557
""" Generate samples of synthetic data sets. """ # Authors: B. Thirion, G. Varoquaux, A. Gramfort, V. Michel, O. Grisel, # G. Louppe, J. Nothman # License: BSD 3 clause import numbers import array import numpy as np from scipy import linalg import scipy.sparse as sp from ..preprocessing import MultiLabelBinarizer from ..utils import check_array, check_random_state from ..utils import shuffle as util_shuffle from ..utils.fixes import astype from ..utils.random import sample_without_replacement from ..externals import six map = six.moves.map zip = six.moves.zip def _generate_hypercube(samples, dimensions, rng): """Returns distinct binary samples of length dimensions """ if dimensions > 30: return np.hstack([_generate_hypercube(samples, dimensions - 30, rng), _generate_hypercube(samples, 30, rng)]) out = astype(sample_without_replacement(2 ** dimensions, samples, random_state=rng), dtype='>u4', copy=False) out = np.unpackbits(out.view('>u1')).reshape((-1, 32))[:, -dimensions:] return out def make_classification(n_samples=100, n_features=20, n_informative=2, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=2, weights=None, flip_y=0.01, class_sep=1.0, hypercube=True, shift=0.0, scale=1.0, shuffle=True, random_state=None): """Generate a random n-class classification problem. This initially creates clusters of points normally distributed (std=1) about vertices of a `2 * class_sep`-sided hypercube, and assigns an equal number of clusters to each class. It introduces interdependence between these features and adds various types of further noise to the data. Prior to shuffling, `X` stacks a number of these primary "informative" features, "redundant" linear combinations of these, "repeated" duplicates of sampled features, and arbitrary noise for and remaining features. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. These comprise `n_informative` informative features, `n_redundant` redundant features, `n_repeated` duplicated features and `n_features-n_informative-n_redundant- n_repeated` useless features drawn at random. n_informative : int, optional (default=2) The number of informative features. Each class is composed of a number of gaussian clusters each located around the vertices of a hypercube in a subspace of dimension `n_informative`. For each cluster, informative features are drawn independently from N(0, 1) and then randomly linearly combined within each cluster in order to add covariance. The clusters are then placed on the vertices of the hypercube. n_redundant : int, optional (default=2) The number of redundant features. These features are generated as random linear combinations of the informative features. n_repeated : int, optional (default=0) The number of duplicated features, drawn randomly from the informative and the redundant features. n_classes : int, optional (default=2) The number of classes (or labels) of the classification problem. n_clusters_per_class : int, optional (default=2) The number of clusters per class. weights : list of floats or None (default=None) The proportions of samples assigned to each class. If None, then classes are balanced. Note that if `len(weights) == n_classes - 1`, then the last class weight is automatically inferred. More than `n_samples` samples may be returned if the sum of `weights` exceeds 1. flip_y : float, optional (default=0.01) The fraction of samples whose class are randomly exchanged. class_sep : float, optional (default=1.0) The factor multiplying the hypercube dimension. hypercube : boolean, optional (default=True) If True, the clusters are put on the vertices of a hypercube. If False, the clusters are put on the vertices of a random polytope. shift : float, array of shape [n_features] or None, optional (default=0.0) Shift features by the specified value. If None, then features are shifted by a random value drawn in [-class_sep, class_sep]. scale : float, array of shape [n_features] or None, optional (default=1.0) Multiply features by the specified value. If None, then features are scaled by a random value drawn in [1, 100]. Note that scaling happens after shifting. shuffle : boolean, optional (default=True) Shuffle the samples and the features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for class membership of each sample. Notes ----- The algorithm is adapted from Guyon [1] and was designed to generate the "Madelon" dataset. References ---------- .. [1] I. Guyon, "Design of experiments for the NIPS 2003 variable selection benchmark", 2003. See also -------- make_blobs: simplified variant make_multilabel_classification: unrelated generator for multilabel tasks """ generator = check_random_state(random_state) # Count features, clusters and samples if n_informative + n_redundant + n_repeated > n_features: raise ValueError("Number of informative, redundant and repeated " "features must sum to less than the number of total" " features") if 2 ** n_informative < n_classes * n_clusters_per_class: raise ValueError("n_classes * n_clusters_per_class must" " be smaller or equal 2 ** n_informative") if weights and len(weights) not in [n_classes, n_classes - 1]: raise ValueError("Weights specified but incompatible with number " "of classes.") n_useless = n_features - n_informative - n_redundant - n_repeated n_clusters = n_classes * n_clusters_per_class if weights and len(weights) == (n_classes - 1): weights.append(1.0 - sum(weights)) if weights is None: weights = [1.0 / n_classes] * n_classes weights[-1] = 1.0 - sum(weights[:-1]) # Distribute samples among clusters by weight n_samples_per_cluster = [] for k in range(n_clusters): n_samples_per_cluster.append(int(n_samples * weights[k % n_classes] / n_clusters_per_class)) for i in range(n_samples - sum(n_samples_per_cluster)): n_samples_per_cluster[i % n_clusters] += 1 # Initialize X and y X = np.zeros((n_samples, n_features)) y = np.zeros(n_samples, dtype=np.int) # Build the polytope whose vertices become cluster centroids centroids = _generate_hypercube(n_clusters, n_informative, generator).astype(float) centroids *= 2 * class_sep centroids -= class_sep if not hypercube: centroids *= generator.rand(n_clusters, 1) centroids *= generator.rand(1, n_informative) # Initially draw informative features from the standard normal X[:, :n_informative] = generator.randn(n_samples, n_informative) # Create each cluster; a variant of make_blobs stop = 0 for k, centroid in enumerate(centroids): start, stop = stop, stop + n_samples_per_cluster[k] y[start:stop] = k % n_classes # assign labels X_k = X[start:stop, :n_informative] # slice a view of the cluster A = 2 * generator.rand(n_informative, n_informative) - 1 X_k[...] = np.dot(X_k, A) # introduce random covariance X_k += centroid # shift the cluster to a vertex # Create redundant features if n_redundant > 0: B = 2 * generator.rand(n_informative, n_redundant) - 1 X[:, n_informative:n_informative + n_redundant] = \ np.dot(X[:, :n_informative], B) # Repeat some features if n_repeated > 0: n = n_informative + n_redundant indices = ((n - 1) * generator.rand(n_repeated) + 0.5).astype(np.intp) X[:, n:n + n_repeated] = X[:, indices] # Fill useless features if n_useless > 0: X[:, -n_useless:] = generator.randn(n_samples, n_useless) # Randomly replace labels if flip_y >= 0.0: flip_mask = generator.rand(n_samples) < flip_y y[flip_mask] = generator.randint(n_classes, size=flip_mask.sum()) # Randomly shift and scale if shift is None: shift = (2 * generator.rand(n_features) - 1) * class_sep X += shift if scale is None: scale = 1 + 100 * generator.rand(n_features) X *= scale if shuffle: # Randomly permute samples X, y = util_shuffle(X, y, random_state=generator) # Randomly permute features indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] return X, y def make_multilabel_classification(n_samples=100, n_features=20, n_classes=5, n_labels=2, length=50, allow_unlabeled=True, sparse=False, return_indicator='dense', return_distributions=False, random_state=None): """Generate a random multilabel classification problem. For each sample, the generative process is: - pick the number of labels: n ~ Poisson(n_labels) - n times, choose a class c: c ~ Multinomial(theta) - pick the document length: k ~ Poisson(length) - k times, choose a word: w ~ Multinomial(theta_c) In the above process, rejection sampling is used to make sure that n is never zero or more than `n_classes`, and that the document length is never zero. Likewise, we reject classes which have already been chosen. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=20) The total number of features. n_classes : int, optional (default=5) The number of classes of the classification problem. n_labels : int, optional (default=2) The average number of labels per instance. More precisely, the number of labels per sample is drawn from a Poisson distribution with ``n_labels`` as its expected value, but samples are bounded (using rejection sampling) by ``n_classes``, and must be nonzero if ``allow_unlabeled`` is False. length : int, optional (default=50) The sum of the features (number of words if documents) is drawn from a Poisson distribution with this expected value. allow_unlabeled : bool, optional (default=True) If ``True``, some instances might not belong to any class. sparse : bool, optional (default=False) If ``True``, return a sparse feature matrix .. versionadded:: 0.17 parameter to allow *sparse* output. return_indicator : 'dense' (default) | 'sparse' | False If ``dense`` return ``Y`` in the dense binary indicator format. If ``'sparse'`` return ``Y`` in the sparse binary indicator format. ``False`` returns a list of lists of labels. return_distributions : bool, optional (default=False) If ``True``, return the prior class probability and conditional probabilities of features given classes, from which the data was drawn. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. Y : array or sparse CSR matrix of shape [n_samples, n_classes] The label sets. p_c : array, shape [n_classes] The probability of each class being drawn. Only returned if ``return_distributions=True``. p_w_c : array, shape [n_features, n_classes] The probability of each feature being drawn given each class. Only returned if ``return_distributions=True``. """ generator = check_random_state(random_state) p_c = generator.rand(n_classes) p_c /= p_c.sum() cumulative_p_c = np.cumsum(p_c) p_w_c = generator.rand(n_features, n_classes) p_w_c /= np.sum(p_w_c, axis=0) def sample_example(): _, n_classes = p_w_c.shape # pick a nonzero number of labels per document by rejection sampling y_size = n_classes + 1 while (not allow_unlabeled and y_size == 0) or y_size > n_classes: y_size = generator.poisson(n_labels) # pick n classes y = set() while len(y) != y_size: # pick a class with probability P(c) c = np.searchsorted(cumulative_p_c, generator.rand(y_size - len(y))) y.update(c) y = list(y) # pick a non-zero document length by rejection sampling n_words = 0 while n_words == 0: n_words = generator.poisson(length) # generate a document of length n_words if len(y) == 0: # if sample does not belong to any class, generate noise word words = generator.randint(n_features, size=n_words) return words, y # sample words with replacement from selected classes cumulative_p_w_sample = p_w_c.take(y, axis=1).sum(axis=1).cumsum() cumulative_p_w_sample /= cumulative_p_w_sample[-1] words = np.searchsorted(cumulative_p_w_sample, generator.rand(n_words)) return words, y X_indices = array.array('i') X_indptr = array.array('i', [0]) Y = [] for i in range(n_samples): words, y = sample_example() X_indices.extend(words) X_indptr.append(len(X_indices)) Y.append(y) X_data = np.ones(len(X_indices), dtype=np.float64) X = sp.csr_matrix((X_data, X_indices, X_indptr), shape=(n_samples, n_features)) X.sum_duplicates() if not sparse: X = X.toarray() # return_indicator can be True due to backward compatibility if return_indicator in (True, 'sparse', 'dense'): lb = MultiLabelBinarizer(sparse_output=(return_indicator == 'sparse')) Y = lb.fit([range(n_classes)]).transform(Y) elif return_indicator is not False: raise ValueError("return_indicator must be either 'sparse', 'dense' " 'or False.') if return_distributions: return X, Y, p_c, p_w_c return X, Y def make_hastie_10_2(n_samples=12000, random_state=None): """Generates data for binary classification used in Hastie et al. 2009, Example 10.2. The ten features are standard independent Gaussian and the target ``y`` is defined by:: y[i] = 1 if np.sum(X[i] ** 2) > 9.34 else -1 Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=12000) The number of samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 10] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. See also -------- make_gaussian_quantiles: a generalization of this dataset approach """ rs = check_random_state(random_state) shape = (n_samples, 10) X = rs.normal(size=shape).reshape(shape) y = ((X ** 2.0).sum(axis=1) > 9.34).astype(np.float64) y[y == 0.0] = -1.0 return X, y def make_regression(n_samples=100, n_features=100, n_informative=10, n_targets=1, bias=0.0, effective_rank=None, tail_strength=0.5, noise=0.0, shuffle=True, coef=False, random_state=None): """Generate a random regression problem. The input set can either be well conditioned (by default) or have a low rank-fat tail singular profile. See :func:`make_low_rank_matrix` for more details. The output is generated by applying a (potentially biased) random linear regression model with `n_informative` nonzero regressors to the previously generated input and some gaussian centered noise with some adjustable scale. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. n_informative : int, optional (default=10) The number of informative features, i.e., the number of features used to build the linear model used to generate the output. n_targets : int, optional (default=1) The number of regression targets, i.e., the dimension of the y output vector associated with a sample. By default, the output is a scalar. bias : float, optional (default=0.0) The bias term in the underlying linear model. effective_rank : int or None, optional (default=None) if not None: The approximate number of singular vectors required to explain most of the input data by linear combinations. Using this kind of singular spectrum in the input allows the generator to reproduce the correlations often observed in practice. if None: The input set is well conditioned, centered and gaussian with unit variance. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile if `effective_rank` is not None. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. shuffle : boolean, optional (default=True) Shuffle the samples and the features. coef : boolean, optional (default=False) If True, the coefficients of the underlying linear model are returned. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] or [n_samples, n_targets] The output values. coef : array of shape [n_features] or [n_features, n_targets], optional The coefficient of the underlying linear model. It is returned only if coef is True. """ n_informative = min(n_features, n_informative) generator = check_random_state(random_state) if effective_rank is None: # Randomly generate a well conditioned input set X = generator.randn(n_samples, n_features) else: # Randomly generate a low rank, fat tail input set X = make_low_rank_matrix(n_samples=n_samples, n_features=n_features, effective_rank=effective_rank, tail_strength=tail_strength, random_state=generator) # Generate a ground truth model with only n_informative features being non # zeros (the other features are not correlated to y and should be ignored # by a sparsifying regularizers such as L1 or elastic net) ground_truth = np.zeros((n_features, n_targets)) ground_truth[:n_informative, :] = 100 * generator.rand(n_informative, n_targets) y = np.dot(X, ground_truth) + bias # Add noise if noise > 0.0: y += generator.normal(scale=noise, size=y.shape) # Randomly permute samples and features if shuffle: X, y = util_shuffle(X, y, random_state=generator) indices = np.arange(n_features) generator.shuffle(indices) X[:, :] = X[:, indices] ground_truth = ground_truth[indices] y = np.squeeze(y) if coef: return X, y, np.squeeze(ground_truth) else: return X, y def make_circles(n_samples=100, shuffle=True, noise=None, random_state=None, factor=.8): """Make a large circle containing a smaller circle in 2d. A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle: bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. factor : double < 1 (default=.8) Scale factor between inner and outer circle. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ if factor > 1 or factor < 0: raise ValueError("'factor' has to be between 0 and 1.") generator = check_random_state(random_state) # so as not to have the first point = last point, we add one and then # remove it. linspace = np.linspace(0, 2 * np.pi, n_samples // 2 + 1)[:-1] outer_circ_x = np.cos(linspace) outer_circ_y = np.sin(linspace) inner_circ_x = outer_circ_x * factor inner_circ_y = outer_circ_y * factor X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples // 2, dtype=np.intp), np.ones(n_samples // 2, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_moons(n_samples=100, shuffle=True, noise=None, random_state=None): """Make two interleaving half circles A simple toy dataset to visualize clustering and classification algorithms. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points generated. shuffle : bool, optional (default=True) Whether to shuffle the samples. noise : double or None (default=None) Standard deviation of Gaussian noise added to the data. Returns ------- X : array of shape [n_samples, 2] The generated samples. y : array of shape [n_samples] The integer labels (0 or 1) for class membership of each sample. """ n_samples_out = n_samples // 2 n_samples_in = n_samples - n_samples_out generator = check_random_state(random_state) outer_circ_x = np.cos(np.linspace(0, np.pi, n_samples_out)) outer_circ_y = np.sin(np.linspace(0, np.pi, n_samples_out)) inner_circ_x = 1 - np.cos(np.linspace(0, np.pi, n_samples_in)) inner_circ_y = 1 - np.sin(np.linspace(0, np.pi, n_samples_in)) - .5 X = np.vstack((np.append(outer_circ_x, inner_circ_x), np.append(outer_circ_y, inner_circ_y))).T y = np.hstack([np.zeros(n_samples_in, dtype=np.intp), np.ones(n_samples_out, dtype=np.intp)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) if noise is not None: X += generator.normal(scale=noise, size=X.shape) return X, y def make_blobs(n_samples=100, n_features=2, centers=3, cluster_std=1.0, center_box=(-10.0, 10.0), shuffle=True, random_state=None): """Generate isotropic Gaussian blobs for clustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The total number of points equally divided among clusters. n_features : int, optional (default=2) The number of features for each sample. centers : int or array of shape [n_centers, n_features], optional (default=3) The number of centers to generate, or the fixed center locations. cluster_std : float or sequence of floats, optional (default=1.0) The standard deviation of the clusters. center_box : pair of floats (min, max), optional (default=(-10.0, 10.0)) The bounding box for each cluster center when centers are generated at random. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for cluster membership of each sample. Examples -------- >>> from sklearn.datasets.samples_generator import make_blobs >>> X, y = make_blobs(n_samples=10, centers=3, n_features=2, ... random_state=0) >>> print(X.shape) (10, 2) >>> y array([0, 0, 1, 0, 2, 2, 2, 1, 1, 0]) See also -------- make_classification: a more intricate variant """ generator = check_random_state(random_state) if isinstance(centers, numbers.Integral): centers = generator.uniform(center_box[0], center_box[1], size=(centers, n_features)) else: centers = check_array(centers) n_features = centers.shape[1] if isinstance(cluster_std, numbers.Real): cluster_std = np.ones(len(centers)) * cluster_std X = [] y = [] n_centers = centers.shape[0] n_samples_per_center = [int(n_samples // n_centers)] * n_centers for i in range(n_samples % n_centers): n_samples_per_center[i] += 1 for i, (n, std) in enumerate(zip(n_samples_per_center, cluster_std)): X.append(centers[i] + generator.normal(scale=std, size=(n, n_features))) y += [i] * n X = np.concatenate(X) y = np.array(y) if shuffle: indices = np.arange(n_samples) generator.shuffle(indices) X = X[indices] y = y[indices] return X, y def make_friedman1(n_samples=100, n_features=10, noise=0.0, random_state=None): """Generate the "Friedman \#1" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are independent features uniformly distributed on the interval [0, 1]. The output `y` is created according to the formula:: y(X) = 10 * sin(pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * N(0, 1). Out of the `n_features` features, only 5 are actually used to compute `y`. The remaining features are independent of `y`. The number of features has to be >= 5. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. Should be at least 5. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ if n_features < 5: raise ValueError("n_features must be at least five.") generator = check_random_state(random_state) X = generator.rand(n_samples, n_features) y = 10 * np.sin(np.pi * X[:, 0] * X[:, 1]) + 20 * (X[:, 2] - 0.5) ** 2 \ + 10 * X[:, 3] + 5 * X[:, 4] + noise * generator.randn(n_samples) return X, y def make_friedman2(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#2" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] \ - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = (X[:, 0] ** 2 + (X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) ** 2) ** 0.5 \ + noise * generator.randn(n_samples) return X, y def make_friedman3(n_samples=100, noise=0.0, random_state=None): """Generate the "Friedman \#3" regression problem This dataset is described in Friedman [1] and Breiman [2]. Inputs `X` are 4 independent features uniformly distributed on the intervals:: 0 <= X[:, 0] <= 100, 40 * pi <= X[:, 1] <= 560 * pi, 0 <= X[:, 2] <= 1, 1 <= X[:, 3] <= 11. The output `y` is created according to the formula:: y(X) = arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) \ / X[:, 0]) + noise * N(0, 1). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. noise : float, optional (default=0.0) The standard deviation of the gaussian noise applied to the output. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 4] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] J. Friedman, "Multivariate adaptive regression splines", The Annals of Statistics 19 (1), pages 1-67, 1991. .. [2] L. Breiman, "Bagging predictors", Machine Learning 24, pages 123-140, 1996. """ generator = check_random_state(random_state) X = generator.rand(n_samples, 4) X[:, 0] *= 100 X[:, 1] *= 520 * np.pi X[:, 1] += 40 * np.pi X[:, 3] *= 10 X[:, 3] += 1 y = np.arctan((X[:, 1] * X[:, 2] - 1 / (X[:, 1] * X[:, 3])) / X[:, 0]) \ + noise * generator.randn(n_samples) return X, y def make_low_rank_matrix(n_samples=100, n_features=100, effective_rank=10, tail_strength=0.5, random_state=None): """Generate a mostly low rank matrix with bell-shaped singular values Most of the variance can be explained by a bell-shaped curve of width effective_rank: the low rank part of the singular values profile is:: (1 - tail_strength) * exp(-1.0 * (i / effective_rank) ** 2) The remaining singular values' tail is fat, decreasing as:: tail_strength * exp(-0.1 * i / effective_rank). The low rank part of the profile can be considered the structured signal part of the data while the tail can be considered the noisy part of the data that cannot be summarized by a low number of linear components (singular vectors). This kind of singular profiles is often seen in practice, for instance: - gray level pictures of faces - TF-IDF vectors of text documents crawled from the web Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=100) The number of features. effective_rank : int, optional (default=10) The approximate number of singular vectors required to explain most of the data by linear combinations. tail_strength : float between 0.0 and 1.0, optional (default=0.5) The relative importance of the fat noisy tail of the singular values profile. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The matrix. """ generator = check_random_state(random_state) n = min(n_samples, n_features) # Random (ortho normal) vectors u, _ = linalg.qr(generator.randn(n_samples, n), mode='economic') v, _ = linalg.qr(generator.randn(n_features, n), mode='economic') # Index of the singular values singular_ind = np.arange(n, dtype=np.float64) # Build the singular profile by assembling signal and noise components low_rank = ((1 - tail_strength) * np.exp(-1.0 * (singular_ind / effective_rank) ** 2)) tail = tail_strength * np.exp(-0.1 * singular_ind / effective_rank) s = np.identity(n) * (low_rank + tail) return np.dot(np.dot(u, s), v.T) def make_sparse_coded_signal(n_samples, n_components, n_features, n_nonzero_coefs, random_state=None): """Generate a signal as a sparse combination of dictionary elements. Returns a matrix Y = DX, such as D is (n_features, n_components), X is (n_components, n_samples) and each column of X has exactly n_nonzero_coefs non-zero elements. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int number of samples to generate n_components: int, number of components in the dictionary n_features : int number of features of the dataset to generate n_nonzero_coefs : int number of active (non-zero) coefficients in each sample random_state : int or RandomState instance, optional (default=None) seed used by the pseudo random number generator Returns ------- data : array of shape [n_features, n_samples] The encoded signal (Y). dictionary : array of shape [n_features, n_components] The dictionary with normalized components (D). code : array of shape [n_components, n_samples] The sparse code such that each column of this matrix has exactly n_nonzero_coefs non-zero items (X). """ generator = check_random_state(random_state) # generate dictionary D = generator.randn(n_features, n_components) D /= np.sqrt(np.sum((D ** 2), axis=0)) # generate code X = np.zeros((n_components, n_samples)) for i in range(n_samples): idx = np.arange(n_components) generator.shuffle(idx) idx = idx[:n_nonzero_coefs] X[idx, i] = generator.randn(n_nonzero_coefs) # encode signal Y = np.dot(D, X) return map(np.squeeze, (Y, D, X)) def make_sparse_uncorrelated(n_samples=100, n_features=10, random_state=None): """Generate a random regression problem with sparse uncorrelated design This dataset is described in Celeux et al [1]. as:: X ~ N(0, 1) y(X) = X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3] Only the first 4 features are informative. The remaining features are useless. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of samples. n_features : int, optional (default=10) The number of features. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The input samples. y : array of shape [n_samples] The output values. References ---------- .. [1] G. Celeux, M. El Anbari, J.-M. Marin, C. P. Robert, "Regularization in regression: comparing Bayesian and frequentist methods in a poorly informative situation", 2009. """ generator = check_random_state(random_state) X = generator.normal(loc=0, scale=1, size=(n_samples, n_features)) y = generator.normal(loc=(X[:, 0] + 2 * X[:, 1] - 2 * X[:, 2] - 1.5 * X[:, 3]), scale=np.ones(n_samples)) return X, y def make_spd_matrix(n_dim, random_state=None): """Generate a random symmetric, positive-definite matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_dim : int The matrix dimension. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_dim, n_dim] The random symmetric, positive-definite matrix. See also -------- make_sparse_spd_matrix """ generator = check_random_state(random_state) A = generator.rand(n_dim, n_dim) U, s, V = linalg.svd(np.dot(A.T, A)) X = np.dot(np.dot(U, 1.0 + np.diag(generator.rand(n_dim))), V) return X def make_sparse_spd_matrix(dim=1, alpha=0.95, norm_diag=False, smallest_coef=.1, largest_coef=.9, random_state=None): """Generate a sparse symmetric definite positive matrix. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- dim : integer, optional (default=1) The size of the random matrix to generate. alpha : float between 0 and 1, optional (default=0.95) The probability that a coefficient is zero (see notes). Larger values enforce more sparsity. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. largest_coef : float between 0 and 1, optional (default=0.9) The value of the largest coefficient. smallest_coef : float between 0 and 1, optional (default=0.1) The value of the smallest coefficient. norm_diag : boolean, optional (default=False) Whether to normalize the output matrix to make the leading diagonal elements all 1 Returns ------- prec : sparse matrix of shape (dim, dim) The generated matrix. Notes ----- The sparsity is actually imposed on the cholesky factor of the matrix. Thus alpha does not translate directly into the filling fraction of the matrix itself. See also -------- make_spd_matrix """ random_state = check_random_state(random_state) chol = -np.eye(dim) aux = random_state.rand(dim, dim) aux[aux < alpha] = 0 aux[aux > alpha] = (smallest_coef + (largest_coef - smallest_coef) * random_state.rand(np.sum(aux > alpha))) aux = np.tril(aux, k=-1) # Permute the lines: we don't want to have asymmetries in the final # SPD matrix permutation = random_state.permutation(dim) aux = aux[permutation].T[permutation] chol += aux prec = np.dot(chol.T, chol) if norm_diag: # Form the diagonal vector into a row matrix d = np.diag(prec).reshape(1, prec.shape[0]) d = 1. / np.sqrt(d) prec *= d prec *= d.T return prec def make_swiss_roll(n_samples=100, noise=0.0, random_state=None): """Generate a swiss roll dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. Notes ----- The algorithm is from Marsland [1]. References ---------- .. [1] S. Marsland, "Machine Learning: An Algorithmic Perspective", Chapter 10, 2009. http://seat.massey.ac.nz/personal/s.r.marsland/Code/10/lle.py """ generator = check_random_state(random_state) t = 1.5 * np.pi * (1 + 2 * generator.rand(1, n_samples)) x = t * np.cos(t) y = 21 * generator.rand(1, n_samples) z = t * np.sin(t) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_s_curve(n_samples=100, noise=0.0, random_state=None): """Generate an S curve dataset. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- n_samples : int, optional (default=100) The number of sample points on the S curve. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, 3] The points. t : array of shape [n_samples] The univariate position of the sample according to the main dimension of the points in the manifold. """ generator = check_random_state(random_state) t = 3 * np.pi * (generator.rand(1, n_samples) - 0.5) x = np.sin(t) y = 2.0 * generator.rand(1, n_samples) z = np.sign(t) * (np.cos(t) - 1) X = np.concatenate((x, y, z)) X += noise * generator.randn(3, n_samples) X = X.T t = np.squeeze(t) return X, t def make_gaussian_quantiles(mean=None, cov=1., n_samples=100, n_features=2, n_classes=3, shuffle=True, random_state=None): """Generate isotropic Gaussian and label samples by quantile This classification dataset is constructed by taking a multi-dimensional standard normal distribution and defining classes separated by nested concentric multi-dimensional spheres such that roughly equal numbers of samples are in each class (quantiles of the :math:`\chi^2` distribution). Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- mean : array of shape [n_features], optional (default=None) The mean of the multi-dimensional normal distribution. If None then use the origin (0, 0, ...). cov : float, optional (default=1.) The covariance matrix will be this value times the unit matrix. This dataset only produces symmetric normal distributions. n_samples : int, optional (default=100) The total number of points equally divided among classes. n_features : int, optional (default=2) The number of features for each sample. n_classes : int, optional (default=3) The number of classes shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape [n_samples, n_features] The generated samples. y : array of shape [n_samples] The integer labels for quantile membership of each sample. Notes ----- The dataset is from Zhu et al [1]. References ---------- .. [1] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ if n_samples < n_classes: raise ValueError("n_samples must be at least n_classes") generator = check_random_state(random_state) if mean is None: mean = np.zeros(n_features) else: mean = np.array(mean) # Build multivariate normal distribution X = generator.multivariate_normal(mean, cov * np.identity(n_features), (n_samples,)) # Sort by distance from origin idx = np.argsort(np.sum((X - mean[np.newaxis, :]) ** 2, axis=1)) X = X[idx, :] # Label by quantile step = n_samples // n_classes y = np.hstack([np.repeat(np.arange(n_classes), step), np.repeat(n_classes - 1, n_samples - step * n_classes)]) if shuffle: X, y = util_shuffle(X, y, random_state=generator) return X, y def _shuffle(data, random_state=None): generator = check_random_state(random_state) n_rows, n_cols = data.shape row_idx = generator.permutation(n_rows) col_idx = generator.permutation(n_cols) result = data[row_idx][:, col_idx] return result, row_idx, col_idx def make_biclusters(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with constant block diagonal structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer The number of biclusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Dhillon, I. S. (2001, August). Co-clustering documents and words using bipartite spectral graph partitioning. In Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 269-274). ACM. See also -------- make_checkerboard """ generator = check_random_state(random_state) n_rows, n_cols = shape consts = generator.uniform(minval, maxval, n_clusters) # row and column clusters of approximately equal sizes row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_clusters, n_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_clusters, n_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_clusters): selector = np.outer(row_labels == i, col_labels == i) result[selector] += consts[i] if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == c for c in range(n_clusters)) cols = np.vstack(col_labels == c for c in range(n_clusters)) return result, rows, cols def make_checkerboard(shape, n_clusters, noise=0.0, minval=10, maxval=100, shuffle=True, random_state=None): """Generate an array with block checkerboard structure for biclustering. Read more in the :ref:`User Guide <sample_generators>`. Parameters ---------- shape : iterable (n_rows, n_cols) The shape of the result. n_clusters : integer or iterable (n_row_clusters, n_column_clusters) The number of row and column clusters. noise : float, optional (default=0.0) The standard deviation of the gaussian noise. minval : int, optional (default=10) Minimum value of a bicluster. maxval : int, optional (default=100) Maximum value of a bicluster. shuffle : boolean, optional (default=True) Shuffle the samples. random_state : int, RandomState instance or None, optional (default=None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Returns ------- X : array of shape `shape` The generated array. rows : array of shape (n_clusters, X.shape[0],) The indicators for cluster membership of each row. cols : array of shape (n_clusters, X.shape[1],) The indicators for cluster membership of each column. References ---------- .. [1] Kluger, Y., Basri, R., Chang, J. T., & Gerstein, M. (2003). Spectral biclustering of microarray data: coclustering genes and conditions. Genome research, 13(4), 703-716. See also -------- make_biclusters """ generator = check_random_state(random_state) if hasattr(n_clusters, "__len__"): n_row_clusters, n_col_clusters = n_clusters else: n_row_clusters = n_col_clusters = n_clusters # row and column clusters of approximately equal sizes n_rows, n_cols = shape row_sizes = generator.multinomial(n_rows, np.repeat(1.0 / n_row_clusters, n_row_clusters)) col_sizes = generator.multinomial(n_cols, np.repeat(1.0 / n_col_clusters, n_col_clusters)) row_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_row_clusters), row_sizes))) col_labels = np.hstack(list(np.repeat(val, rep) for val, rep in zip(range(n_col_clusters), col_sizes))) result = np.zeros(shape, dtype=np.float64) for i in range(n_row_clusters): for j in range(n_col_clusters): selector = np.outer(row_labels == i, col_labels == j) result[selector] += generator.uniform(minval, maxval) if noise > 0: result += generator.normal(scale=noise, size=result.shape) if shuffle: result, row_idx, col_idx = _shuffle(result, random_state) row_labels = row_labels[row_idx] col_labels = col_labels[col_idx] rows = np.vstack(row_labels == label for label in range(n_row_clusters) for _ in range(n_col_clusters)) cols = np.vstack(col_labels == label for _ in range(n_row_clusters) for label in range(n_col_clusters)) return result, rows, cols
mit
ChristosChristofidis/twitter_nlp
hbc/python/evalLLda.py
10
5418
#!/usr/bin/python import sys import re from optparse import OptionParser from LdaFeatures import LdaFeatures parser = OptionParser() parser.add_option("--gold", dest='gold', default='gold') parser.add_option("--dictionaries", dest='dictionaries', default='dictionaries') parser.add_option("--dictmap", dest='dictmap', default='dict-label') parser.add_option("--labelmap", dest='labelmap', default=None) parser.add_option("--entityTopic", dest='entityTopic', default='entity-topic') parser.add_option("--entities", dest='entities', default='entities') parser.add_option("--fbBaseline", action='store_true', dest='fbBaseline', default=False) parser.add_option("--predictedSeg", dest='predictedSeg', default=None) parser.add_option("--pInc", action='store_true', dest='pInc', default=False) parser.add_option("--threshold", dest='threshold', type='float', default=0.0) (options, args) = parser.parse_args() #Read in dictionaries dictionaries = [] for line in open(options.dictionaries): dictionaries.append(line.rstrip('\n')) #Read in mappings from dictionaries to labels dict2label = {} for line in open(options.dictmap): (d, l) = line.rstrip('\n').split(' ') dict2label[d] = l label2label = None if options.labelmap: label2label = {} for line in open(options.labelmap): (l1, l2) = line.rstrip('\n').split(' ') label2label[l1] = l2 def MapLabel(label): if label2label and label2label.has_key(label): return label2label[label] else: return label #Read in the gold labels gold = [] for line in open(options.gold): gold.append(MapLabel(line.rstrip('\n'))) #Read in entities entities = [] for line in open(options.entities): entities.append(line.rstrip('\n')) #Read in labels labels = [] for line in open('labels'): labels.append([int(x) for x in line.rstrip('\n').split(' ')]) #Read in predicted segmentation goldTypeCounts = None if options.predictedSeg: goldTypeCounts = {} for line in open(options.predictedSeg): (word, predicted, g) = line.rstrip('\n').split('\t') if g[0:2] == "B-": #print g g = MapLabel(g[2:]) print g if g != 'error': goldTypeCounts[g] = goldTypeCounts.get(g,0.0) + 1.0 goldTypeCounts['all'] = goldTypeCounts.get('all',0.0) + 1.0 print goldTypeCounts #Read in predictions and probabilities i = 0 pred = [] dictLabelCnt = {} confusionMatrix = {} tp = {} fp = {} tn = {} fn = {} n = {} for line in open(options.entityTopic): fields = line.rstrip('\n').split('\t') counts = [float(x.split(':')[1]) for x in fields[1:]] dictIds = [int(x.split(':')[0]) for x in fields[1:]] dictionary = dictionaries[dictIds[0]-1] if options.pInc: p = counts[0] else: p = counts[0] / sum(counts) # if dict2label[dictionary] == 'NONE' and len(dictIds) > 1: # dictionary = dictionaries[dictIds[1]-1] # p = counts[1] / sum(counts) if dict2label[dictionary] != gold[i]: pred.append((entities[i],dictionary,dict2label[dictionary],gold[i],p)) if gold[i] != 'error': dictLabelCnt["%s\t%s" % (dictionary, gold[i])] = dictLabelCnt.get("%s\t%s" % (dictionary, gold[i]),0) + 1 confusionMatrix["%s\t%s" % (dict2label[dictionary], gold[i])] = confusionMatrix.get("%s\t%s" % (dict2label[dictionary], gold[i]),0) + 1 if gold[i] != 'error': n[gold[i]] = n.get(gold[i],0.0) + 1.0 n['all'] = n.get('all',0.0) + 1.0 if (options.fbBaseline and (sum(labels[i]) == 1)) or (not options.fbBaseline and p >= options.threshold and dict2label[dictionary] != 'NONE'): if dict2label[dictionary] == gold[i]: tp[dict2label[dictionary]] = tp.get(dict2label[dictionary],0.0) + 1.0 tp['all'] = tp.get('all',0.0) + 1.0 else: fp[dict2label[dictionary]] = fp.get(dict2label[dictionary],0.0) + 1.0 fp['all'] = fp.get('all',0.0) + 1.0 if gold[i] != 'error': fn[gold[i]] = fn.get(gold[i],0.0) + 1.0 fn['all'] = fn.get('all',0.0) + 1.0 else: #print "%s\t%s\t%s" % (dictionary, dict2label[dictionary], gold[i]) if gold[i] != 'error': fn[gold[i]] = fn.get(gold[i],0.0) + 1.0 fn['all'] = fn.get('all',0.0) + 1.0 i += 1 print "\n".join([str(x) for x in pred]) for pair in sorted(dictLabelCnt.keys(), cmp=lambda a,b: cmp(dictLabelCnt[b], dictLabelCnt[a])): print "%s\t%s" % (pair, str(dictLabelCnt[pair])) print "\nConfusion matrix:" for pair in sorted(confusionMatrix.keys(), cmp=lambda a,b: cmp(confusionMatrix[b], confusionMatrix[a])): (pred, gold) = pair.split('\t') print "%s\t%s\t%s\t%s\t%s" % (gold, pred, str(confusionMatrix[pair]), confusionMatrix[pair] / n.get(gold,-1), n.get(gold,-1)) if goldTypeCounts: n = goldTypeCounts for t in sorted(tp.keys(), lambda a,b: cmp(n[b],n[a])): p = tp.get(t,0.0) / (tp.get(t,0.0) + fp.get(t,0.0)) if options.predictedSeg: #r = tp.get(t,0.0) / (tp.get(t,0.0) + goldTypeCounts[t]) r = tp.get(t,0.0) / (goldTypeCounts[t]) f = 2 * p * r / (p + r) print "%s\tP=%s\tR=%s\tF=%s\tN=%s" % (t, p, r, f, goldTypeCounts[t]) else: r = tp.get(t,0.0) / (tp.get(t,0.0) + fn.get(t,0.0)) f = 2 * p * r / (p + r) print "%s\tP=%s\tR=%s\tF=%s\tN=%s" % (t, p, r, f, n[t])
gpl-3.0
ocelot-collab/ocelot
ocelot_gui/app/ui_forms/sim_twiss.py
1
10760
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'app/ui_forms/sim_twiss.ui' # # Created by: PyQt5 UI code generator 5.10.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form_Twiss(object): def setupUi(self, Form_Twiss): Form_Twiss.setObjectName("Form_Twiss") Form_Twiss.resize(1200, 750) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(Form_Twiss.sizePolicy().hasHeightForWidth()) Form_Twiss.setSizePolicy(sizePolicy) Form_Twiss.setLocale(QtCore.QLocale(QtCore.QLocale.English, QtCore.QLocale.UnitedStates)) self.gridLayout = QtWidgets.QGridLayout(Form_Twiss) self.gridLayout.setObjectName("gridLayout") self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setContentsMargins(-1, 0, -1, 0) self.verticalLayout_5.setSpacing(6) self.verticalLayout_5.setObjectName("verticalLayout_5") self.groupBox = QtWidgets.QGroupBox(Form_Twiss) self.groupBox.setObjectName("groupBox") self.verticalLayout_8 = QtWidgets.QVBoxLayout(self.groupBox) self.verticalLayout_8.setContentsMargins(0, 6, 0, 0) self.verticalLayout_8.setSpacing(0) self.verticalLayout_8.setObjectName("verticalLayout_8") self.verticalLayout_7 = QtWidgets.QVBoxLayout() self.verticalLayout_7.setSpacing(0) self.verticalLayout_7.setObjectName("verticalLayout_7") self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setContentsMargins(-1, -1, -1, 6) self.horizontalLayout_4.setSpacing(0) self.horizontalLayout_4.setObjectName("horizontalLayout_4") self.plus_button = QtWidgets.QPushButton(self.groupBox) self.plus_button.setMaximumSize(QtCore.QSize(60, 16777215)) self.plus_button.setObjectName("plus_button") self.horizontalLayout_4.addWidget(self.plus_button) self.edit_delta = QtWidgets.QDoubleSpinBox(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.edit_delta.sizePolicy().hasHeightForWidth()) self.edit_delta.setSizePolicy(sizePolicy) self.edit_delta.setMaximumSize(QtCore.QSize(100, 16777215)) self.edit_delta.setDecimals(3) self.edit_delta.setMinimum(-9999999999.0) self.edit_delta.setMaximum(9999999999.99) self.edit_delta.setSingleStep(0.1) self.edit_delta.setProperty("value", 1.0) self.edit_delta.setObjectName("edit_delta") self.horizontalLayout_4.addWidget(self.edit_delta) self.minus_button = QtWidgets.QPushButton(self.groupBox) self.minus_button.setMaximumSize(QtCore.QSize(60, 16777215)) self.minus_button.setObjectName("minus_button") self.horizontalLayout_4.addWidget(self.minus_button) self.verticalLayout_7.addLayout(self.horizontalLayout_4) self.scroll = QtWidgets.QScrollArea(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.scroll.sizePolicy().hasHeightForWidth()) self.scroll.setSizePolicy(sizePolicy) self.scroll.setMinimumSize(QtCore.QSize(300, 0)) self.scroll.setMaximumSize(QtCore.QSize(300, 16777215)) self.scroll.setVerticalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOn) self.scroll.setHorizontalScrollBarPolicy(QtCore.Qt.ScrollBarAlwaysOff) self.scroll.setWidgetResizable(True) self.scroll.setAlignment(QtCore.Qt.AlignLeading|QtCore.Qt.AlignLeft|QtCore.Qt.AlignTop) self.scroll.setObjectName("scroll") self.scrollAreaWidgetContents = QtWidgets.QWidget() self.scrollAreaWidgetContents.setGeometry(QtCore.QRect(0, 0, 284, 534)) self.scrollAreaWidgetContents.setAutoFillBackground(False) self.scrollAreaWidgetContents.setStyleSheet("background-color: rgb(255, 255, 255);") self.scrollAreaWidgetContents.setObjectName("scrollAreaWidgetContents") self.verticalLayoutWidget = QtWidgets.QWidget(self.scrollAreaWidgetContents) self.verticalLayoutWidget.setGeometry(QtCore.QRect(0, 0, 281, 80)) self.verticalLayoutWidget.setObjectName("verticalLayoutWidget") self.widgetArea = QtWidgets.QVBoxLayout(self.verticalLayoutWidget) self.widgetArea.setContentsMargins(0, 0, 0, 2) self.widgetArea.setSpacing(0) self.widgetArea.setObjectName("widgetArea") self.scroll.setWidget(self.scrollAreaWidgetContents) self.verticalLayout_7.addWidget(self.scroll) self.verticalLayout_8.addLayout(self.verticalLayout_7) self.horizontalLayout_6 = QtWidgets.QHBoxLayout() self.horizontalLayout_6.setContentsMargins(-1, 6, -1, 6) self.horizontalLayout_6.setObjectName("horizontalLayout_6") self.label_3 = QtWidgets.QLabel(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_3.sizePolicy().hasHeightForWidth()) self.label_3.setSizePolicy(sizePolicy) self.label_3.setObjectName("label_3") self.horizontalLayout_6.addWidget(self.label_3) self.edit_tws_step = QtWidgets.QDoubleSpinBox(self.groupBox) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.edit_tws_step.sizePolicy().hasHeightForWidth()) self.edit_tws_step.setSizePolicy(sizePolicy) self.edit_tws_step.setMaximumSize(QtCore.QSize(100, 16777215)) self.edit_tws_step.setDecimals(6) self.edit_tws_step.setMaximum(9999999999.0) self.edit_tws_step.setSingleStep(0.1) self.edit_tws_step.setObjectName("edit_tws_step") self.horizontalLayout_6.addWidget(self.edit_tws_step) self.verticalLayout_8.addLayout(self.horizontalLayout_6) self.verticalLayout_5.addWidget(self.groupBox) self.calc_params = QtWidgets.QPushButton(Form_Twiss) self.calc_params.setObjectName("calc_params") self.verticalLayout_5.addWidget(self.calc_params) self.calc_matching = QtWidgets.QPushButton(Form_Twiss) self.calc_matching.setObjectName("calc_matching") self.verticalLayout_5.addWidget(self.calc_matching) self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setContentsMargins(-1, 0, 0, -1) self.horizontalLayout_5.setSpacing(6) self.horizontalLayout_5.setObjectName("horizontalLayout_5") self.btn1 = QtWidgets.QPushButton(Form_Twiss) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn1.sizePolicy().hasHeightForWidth()) self.btn1.setSizePolicy(sizePolicy) self.btn1.setObjectName("btn1") self.horizontalLayout_5.addWidget(self.btn1) self.btn2 = QtWidgets.QPushButton(Form_Twiss) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.btn2.sizePolicy().hasHeightForWidth()) self.btn2.setSizePolicy(sizePolicy) self.btn2.setObjectName("btn2") self.horizontalLayout_5.addWidget(self.btn2) self.verticalLayout_5.addLayout(self.horizontalLayout_5) self.gridLayout.addLayout(self.verticalLayout_5, 1, 1, 1, 1) self.verticalLayout_6 = QtWidgets.QVBoxLayout() self.verticalLayout_6.setContentsMargins(0, -1, -1, -1) self.verticalLayout_6.setSpacing(6) self.verticalLayout_6.setObjectName("verticalLayout_6") self.label = QtWidgets.QLabel(Form_Twiss) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setObjectName("label") self.verticalLayout_6.addWidget(self.label) self.tws_plot_widget = QtWidgets.QWidget(Form_Twiss) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tws_plot_widget.sizePolicy().hasHeightForWidth()) self.tws_plot_widget.setSizePolicy(sizePolicy) self.tws_plot_widget.setMinimumSize(QtCore.QSize(850, 700)) self.tws_plot_widget.setObjectName("tws_plot_widget") self.verticalLayout_6.addWidget(self.tws_plot_widget) self.gridLayout.addLayout(self.verticalLayout_6, 1, 0, 1, 1) self.retranslateUi(Form_Twiss) QtCore.QMetaObject.connectSlotsByName(Form_Twiss) def retranslateUi(self, Form_Twiss): _translate = QtCore.QCoreApplication.translate Form_Twiss.setWindowTitle(_translate("Form_Twiss", "Form")) self.groupBox.setTitle(_translate("Form_Twiss", "Tuning elements list")) self.plus_button.setText(_translate("Form_Twiss", "+")) self.minus_button.setText(_translate("Form_Twiss", "-")) self.label_3.setText(_translate("Form_Twiss", "Twiss function step, m")) self.calc_params.setText(_translate("Form_Twiss", "Calculate Main Parameters")) self.calc_matching.setText(_translate("Form_Twiss", "Matching")) self.btn1.setText(_translate("Form_Twiss", "Update")) self.btn2.setText(_translate("Form_Twiss", "Reset")) self.label.setText(_translate("Form_Twiss", "Twiss functions")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form_Twiss = QtWidgets.QWidget() ui = Ui_Form_Twiss() ui.setupUi(Form_Twiss) Form_Twiss.show() sys.exit(app.exec_())
gpl-3.0
davidhstocker/Graphyne
Config/Test/TestRepository/EventInitRemove.py
1
1141
''' Created on Dec 13, 2016 @author: David Stocker ''' import Graphyne.Scripting import Graphyne.Graph class OnInitialize(Graphyne.Scripting.StateEventScript): """ This class tests the initialize event. As this event has no return mechanism, we'll test it by adding a property. The EventInitRemove.InitRemoveEventTest entity that this script will be attached to has no properties. So we'll add a property during script execution, which we can then check for later. """ def execute(self, selfUUID, params): Graphyne.Graph.api.addEntityStringProperty(selfUUID, "AProp", "Hello") class OnDelete(Graphyne.Scripting.StateEventScript): """ This class tests the terminate event. It echos 'Hello World' back. """ def execute(self, selfUUID, params): ''' Echo the string "Hello World", where the "Hello" part comes from the AProp property added in the OnInitialize script. ''' hello = Graphyne.Graph.api.getEntityPropertyValue(selfUUID, "AProp") return "%s World" %(hello)
apache-2.0
ProfessionalIT/professionalit-webiste
sdk/google_appengine/lib/django-1.5/django/contrib/auth/management/__init__.py
70
6746
""" Creates permissions for all installed apps that need permissions. """ from __future__ import unicode_literals import getpass import locale import unicodedata from django.contrib.auth import models as auth_app, get_user_model from django.core import exceptions from django.core.management.base import CommandError from django.db import DEFAULT_DB_ALIAS, router from django.db.models import get_models, signals from django.utils import six from django.utils.six.moves import input def _get_permission_codename(action, opts): return '%s_%s' % (action, opts.object_name.lower()) def _get_all_permissions(opts, ctype): """ Returns (codename, name) for all permissions in the given opts. """ builtin = _get_builtin_permissions(opts) custom = list(opts.permissions) _check_permission_clashing(custom, builtin, ctype) return builtin + custom def _get_builtin_permissions(opts): """ Returns (codename, name) for all autogenerated permissions. """ perms = [] for action in ('add', 'change', 'delete'): perms.append((_get_permission_codename(action, opts), 'Can %s %s' % (action, opts.verbose_name_raw))) return perms def _check_permission_clashing(custom, builtin, ctype): """ Check that permissions for a model do not clash. Raises CommandError if there are duplicate permissions. """ pool = set() builtin_codenames = set(p[0] for p in builtin) for codename, _name in custom: if codename in pool: raise CommandError( "The permission codename '%s' is duplicated for model '%s.%s'." % (codename, ctype.app_label, ctype.model_class().__name__)) elif codename in builtin_codenames: raise CommandError( "The permission codename '%s' clashes with a builtin permission " "for model '%s.%s'." % (codename, ctype.app_label, ctype.model_class().__name__)) pool.add(codename) def create_permissions(app, created_models, verbosity, db=DEFAULT_DB_ALIAS, **kwargs): if not router.allow_syncdb(db, auth_app.Permission): return from django.contrib.contenttypes.models import ContentType app_models = get_models(app) # This will hold the permissions we're looking for as # (content_type, (codename, name)) searched_perms = list() # The codenames and ctypes that should exist. ctypes = set() for klass in app_models: # Force looking up the content types in the current database # before creating foreign keys to them. ctype = ContentType.objects.db_manager(db).get_for_model(klass) ctypes.add(ctype) for perm in _get_all_permissions(klass._meta, ctype): searched_perms.append((ctype, perm)) # Find all the Permissions that have a context_type for a model we're # looking for. We don't need to check for codenames since we already have # a list of the ones we're going to create. all_perms = set(auth_app.Permission.objects.using(db).filter( content_type__in=ctypes, ).values_list( "content_type", "codename" )) perms = [ auth_app.Permission(codename=codename, name=name, content_type=ctype) for ctype, (codename, name) in searched_perms if (ctype.pk, codename) not in all_perms ] auth_app.Permission.objects.using(db).bulk_create(perms) if verbosity >= 2: for perm in perms: print("Adding permission '%s'" % perm) def create_superuser(app, created_models, verbosity, db, **kwargs): from django.core.management import call_command UserModel = get_user_model() if UserModel in created_models and kwargs.get('interactive', True): msg = ("\nYou just installed Django's auth system, which means you " "don't have any superusers defined.\nWould you like to create one " "now? (yes/no): ") confirm = input(msg) while 1: if confirm not in ('yes', 'no'): confirm = input('Please enter either "yes" or "no": ') continue if confirm == 'yes': call_command("createsuperuser", interactive=True, database=db) break def get_system_username(): """ Try to determine the current system user's username. :returns: The username as a unicode string, or an empty string if the username could not be determined. """ try: result = getpass.getuser() except (ImportError, KeyError): # KeyError will be raised by os.getpwuid() (called by getuser()) # if there is no corresponding entry in the /etc/passwd file # (a very restricted chroot environment, for example). return '' if not six.PY3: try: default_locale = locale.getdefaultlocale()[1] except ValueError: return '' if not default_locale: return '' try: result = result.decode(default_locale) except UnicodeDecodeError: # UnicodeDecodeError - preventive treatment for non-latin Windows. return '' return result def get_default_username(check_db=True): """ Try to determine the current system user's username to use as a default. :param check_db: If ``True``, requires that the username does not match an existing ``auth.User`` (otherwise returns an empty string). :returns: The username, or an empty string if no username can be determined. """ # If the User model has been swapped out, we can't make any assumptions # about the default user name. if auth_app.User._meta.swapped: return '' default_username = get_system_username() try: default_username = unicodedata.normalize('NFKD', default_username)\ .encode('ascii', 'ignore').decode('ascii').replace(' ', '').lower() except UnicodeDecodeError: return '' # Run the username validator try: auth_app.User._meta.get_field('username').run_validators(default_username) except exceptions.ValidationError: return '' # Don't return the default username if it is already taken. if check_db and default_username: try: auth_app.User._default_manager.get(username=default_username) except auth_app.User.DoesNotExist: pass else: return '' return default_username signals.post_syncdb.connect(create_permissions, dispatch_uid="django.contrib.auth.management.create_permissions") signals.post_syncdb.connect(create_superuser, sender=auth_app, dispatch_uid="django.contrib.auth.management.create_superuser")
lgpl-3.0
LambdaCast/LambdaCast
portal/migrations/0018_auto__add_field_video_audioThumbURL.py
1
11900
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding field 'Video.audioThumbURL' db.add_column('portal_video', 'audioThumbURL', self.gf('django.db.models.fields.URLField')(default='', max_length=200, blank=True), keep_default=False) def backwards(self, orm): # Deleting field 'Video.audioThumbURL' db.delete_column('portal_video', 'audioThumbURL') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'taggit.tag': { 'Meta': {'object_name': 'Tag'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'slug': ('django.db.models.fields.SlugField', [], {'unique': 'True', 'max_length': '100'}) }, 'taggit.taggeditem': { 'Meta': {'object_name': 'TaggedItem'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_tagged_items'", 'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'object_id': ('django.db.models.fields.IntegerField', [], {'db_index': 'True'}), 'tag': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'taggit_taggeditem_items'", 'to': "orm['taggit.Tag']"}) }, 'portal.channel': { 'Meta': {'object_name': 'Channel'}, 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'featured': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique': 'True', 'max_length': '50', 'populate_from': 'None', 'unique_with': '()'}) }, 'portal.collection': { 'Meta': {'object_name': 'Collection'}, 'channel': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['portal.Channel']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date': ('django.db.models.fields.DateField', [], {'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '1000'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique': 'True', 'max_length': '50', 'populate_from': 'None', 'unique_with': '()'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'videos': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['portal.Video']", 'symmetrical': 'False'}) }, 'portal.comment': { 'Meta': {'object_name': 'Comment'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '1000'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True', 'blank': 'True'}), 'moderated': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'timecode': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'video': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['portal.Video']"}) }, 'portal.hotfolder': { 'Meta': {'object_name': 'Hotfolder'}, 'activated': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'autoPublish': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'channel': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['portal.Channel']"}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'defaultName': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'max_length': '1000', 'null': 'True', 'blank': 'True'}), 'folderName': ('django.db.models.fields.CharField', [], {'max_length': '30'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'kind': ('django.db.models.fields.IntegerField', [], {'max_length': '1'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'portal.video': { 'Meta': {'object_name': 'Video'}, 'assemblyid': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), 'audioThumbURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'autoPublish': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'channel': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['portal.Channel']", 'null': 'True', 'blank': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), 'date': ('django.db.models.fields.DateField', [], {}), 'description': ('django.db.models.fields.TextField', [], {}), 'duration': ('django.db.models.fields.DecimalField', [], {'null': 'True', 'max_digits': '10', 'decimal_places': '2', 'blank': 'True'}), 'encodingDone': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'kind': ('django.db.models.fields.IntegerField', [], {'max_length': '1'}), 'linkURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'mp3Size': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'mp3URL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'mp4Size': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'mp4URL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'oggSize': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'oggURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'originalFile': ('django.db.models.fields.files.FileField', [], {'max_length': '2048', 'blank': 'True'}), 'published': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'slug': ('autoslug.fields.AutoSlugField', [], {'unique': 'True', 'max_length': '50', 'populate_from': 'None', 'unique_with': '()'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '200'}), 'torrentDone': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'torrentURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'videoThumbURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}), 'webmSize': ('django.db.models.fields.BigIntegerField', [], {'null': 'True', 'blank': 'True'}), 'webmURL': ('django.db.models.fields.URLField', [], {'max_length': '200', 'blank': 'True'}) } } complete_apps = ['portal']
bsd-2-clause
krujos/strava-private-to-public
private-to-public.py
1
3601
""" Really could have implemented this all in javascript on the client side... """ from __future__ import print_function import requests from flask import Flask, redirect, url_for, request, session, abort, jsonify import os import sys import logging import json STRAVA_CLIENT_ID = 1367 Flask.get = lambda self, path: self.route(path, methods=['get']) Flask.put = lambda self, path: self.route(path, methods=['put']) Flask.post = lambda self, path: self.route(path, methods=['post']) Flask.delete = lambda self, path: self.route(path, methods=['delete']) app = Flask(__name__) if not os.environ.get("CLIENT_SECRET"): print("ERROR: CLIENT_SECRET is not defined", file=sys.stderr) exit(1) client_secret = os.environ.get("CLIENT_SECRET") Flask.secret_key = client_secret app.secret_key = client_secret redirect_url = "http://127.0.0.1:5000" @app.get('/') def index(): """Return static content, index.html only, or handle callbacks.""" #Call back from Strava for token exchange. if request.args.get('code'): code = request.args.get('code') session.permanent = True session['CODE'] = code app.logger.debug("Code = %s " % code) get_token(request.args.get('code')) return redirect(url_for('static', filename='loggedin.html')) return redirect(url_for('static', filename='index.html')) def get_token(code): data = {"client_id": STRAVA_CLIENT_ID, "client_secret": client_secret, "code": code} url = 'https://www.strava.com/oauth/token' app.logger.debug("Post URL = %s" % url) response = requests.post(url, data=data) app.logger.info("Login post returned %d" % response.status_code) app.logger.debug(response.json()) session['token'] = response.json()['access_token'] athlete = response.json()['athlete'] session['athlete_id'] = athlete['id'] session['athlete_name'] = athlete['firstname'] + " " + athlete['lastname'] @app.get('/athlete') def get_current_user(): try: return jsonify({"id": session['athlete_id'], "name": session['athlete_name']}) except KeyError: abort(404) @app.get('/login') def login(): return "https://www.strava.com/oauth/authorize?client_id=%s&response_type=code&redirect_uri=%s&scope=view_private,write" \ % (STRAVA_CLIENT_ID, redirect_url) @app.get('/rides/<page>') @app.get('/rides') def get_rides(page=1): """Attempt to get all of a users rides so we can filter out the private ones""" url = "https://www.strava.com/api/v3/athlete/activities" data = {"per_page": 50, "page": page, "access_token": session['token']} response = requests.get(url, data=data) app.logger.debug("Strava return code = %d" % response.status_code) app.logger.debug(response.json()) return json.dumps(response.json())#there has to be a better way. @app.put('/ride/<ride_id>') def update_ride(ride_id): ride = request.json app.logger.debug(ride) if int(ride['id']) != int(ride_id): abort(400) app.logger.debug("Updating ride " + ride_id) data = {"access_token": session['token']} params = {"private": int(ride['private']), "trainer": int(ride['trainer'])} url = "https://www.strava.com/api/v3/activities/" + ride_id response = requests.put(url, data=data, params=params) app.logger.debug(response.status_code) return json.dumps(response.json()) if __name__ == '__main__': app.logger.setLevel(logging.INFO) file_handler = logging.FileHandler('strava.log') app.logger.addHandler(file_handler) app.run()
apache-2.0
boxu0001/practice
py3/S1604_time.py
1
2759
''' 1604. Alert Using Same Key-Card Three or More Times in a One Hour Period Medium LeetCode company workers use key-cards to unlock office doors. Each time a worker uses their key-card, the security system saves the worker's name and the time when it was used. The system emits an alert if any worker uses the key-card three or more times in a one-hour period. You are given a list of strings keyName and keyTime where [keyName[i], keyTime[i]] corresponds to a person's name and the time when their key-card was used in a single day. Access times are given in the 24-hour time format "HH:MM", such as "23:51" and "09:49". Return a list of unique worker names who received an alert for frequent keycard use. Sort the names in ascending order alphabetically. Notice that "10:00" - "11:00" is considered to be within a one-hour period, while "22:51" - "23:52" is not considered to be within a one-hour period. Example 1: Input: keyName = ["daniel","daniel","daniel","luis","luis","luis","luis"], keyTime = ["10:00","10:40","11:00","09:00","11:00","13:00","15:00"] Output: ["daniel"] Explanation: "daniel" used the keycard 3 times in a one-hour period ("10:00","10:40", "11:00"). Example 2: Input: keyName = ["alice","alice","alice","bob","bob","bob","bob"], keyTime = ["12:01","12:00","18:00","21:00","21:20","21:30","23:00"] Output: ["bob"] Explanation: "bob" used the keycard 3 times in a one-hour period ("21:00","21:20", "21:30"). Example 3: Input: keyName = ["john","john","john"], keyTime = ["23:58","23:59","00:01"] Output: [] Example 4: Input: keyName = ["leslie","leslie","leslie","clare","clare","clare","clare"], keyTime = ["13:00","13:20","14:00","18:00","18:51","19:30","19:49"] Output: ["clare","leslie"] Constraints: 1 <= keyName.length, keyTime.length <= 105 keyName.length == keyTime.length keyTime[i] is in the format "HH:MM". [keyName[i], keyTime[i]] is unique. 1 <= keyName[i].length <= 10 keyName[i] contains only lowercase English letters. ''' class Solution: def alertNames(self, keyName: List[str], keyTime: List[str]) -> List[str]: nameTimes = {} result=[] for i, name in enumerate(keyName): h, m=keyTime[i].split(":") if name not in nameTimes: nameTimes[name] = [int(h)*60+int(m)] else: nameTimes[name] +=[int(h)*60+int(m)] for name in nameTimes: times = sorted(nameTimes[name]) find = False lnt = len(times) for ti in range(lnt-2): if times[ti+2] - times[ti] <= 60: find=True break if find: result+=[name] return sorted(result)
gpl-3.0
craighiller/serendipity
venv/lib/python2.7/site-packages/setuptools/command/build_ext.py
286
11854
from distutils.command.build_ext import build_ext as _du_build_ext try: # Attempt to use Pyrex for building extensions, if available from Pyrex.Distutils.build_ext import build_ext as _build_ext except ImportError: _build_ext = _du_build_ext import os, sys from distutils.file_util import copy_file from setuptools.extension import Library from distutils.ccompiler import new_compiler from distutils.sysconfig import customize_compiler try: # Python 2.7 or >=3.2 from sysconfig import _CONFIG_VARS except ImportError: from distutils.sysconfig import get_config_var get_config_var("LDSHARED") # make sure _config_vars is initialized del get_config_var from distutils.sysconfig import _config_vars as _CONFIG_VARS from distutils import log from distutils.errors import * have_rtld = False use_stubs = False libtype = 'shared' if sys.platform == "darwin": use_stubs = True elif os.name != 'nt': try: from dl import RTLD_NOW have_rtld = True use_stubs = True except ImportError: pass def if_dl(s): if have_rtld: return s return '' class build_ext(_build_ext): def run(self): """Build extensions in build directory, then copy if --inplace""" old_inplace, self.inplace = self.inplace, 0 _build_ext.run(self) self.inplace = old_inplace if old_inplace: self.copy_extensions_to_source() def copy_extensions_to_source(self): build_py = self.get_finalized_command('build_py') for ext in self.extensions: fullname = self.get_ext_fullname(ext.name) filename = self.get_ext_filename(fullname) modpath = fullname.split('.') package = '.'.join(modpath[:-1]) package_dir = build_py.get_package_dir(package) dest_filename = os.path.join(package_dir,os.path.basename(filename)) src_filename = os.path.join(self.build_lib,filename) # Always copy, even if source is older than destination, to ensure # that the right extensions for the current Python/platform are # used. copy_file( src_filename, dest_filename, verbose=self.verbose, dry_run=self.dry_run ) if ext._needs_stub: self.write_stub(package_dir or os.curdir, ext, True) if _build_ext is not _du_build_ext and not hasattr(_build_ext,'pyrex_sources'): # Workaround for problems using some Pyrex versions w/SWIG and/or 2.4 def swig_sources(self, sources, *otherargs): # first do any Pyrex processing sources = _build_ext.swig_sources(self, sources) or sources # Then do any actual SWIG stuff on the remainder return _du_build_ext.swig_sources(self, sources, *otherargs) def get_ext_filename(self, fullname): filename = _build_ext.get_ext_filename(self,fullname) if fullname in self.ext_map: ext = self.ext_map[fullname] if isinstance(ext,Library): fn, ext = os.path.splitext(filename) return self.shlib_compiler.library_filename(fn,libtype) elif use_stubs and ext._links_to_dynamic: d,fn = os.path.split(filename) return os.path.join(d,'dl-'+fn) return filename def initialize_options(self): _build_ext.initialize_options(self) self.shlib_compiler = None self.shlibs = [] self.ext_map = {} def finalize_options(self): _build_ext.finalize_options(self) self.extensions = self.extensions or [] self.check_extensions_list(self.extensions) self.shlibs = [ext for ext in self.extensions if isinstance(ext,Library)] if self.shlibs: self.setup_shlib_compiler() for ext in self.extensions: ext._full_name = self.get_ext_fullname(ext.name) for ext in self.extensions: fullname = ext._full_name self.ext_map[fullname] = ext # distutils 3.1 will also ask for module names # XXX what to do with conflicts? self.ext_map[fullname.split('.')[-1]] = ext ltd = ext._links_to_dynamic = \ self.shlibs and self.links_to_dynamic(ext) or False ext._needs_stub = ltd and use_stubs and not isinstance(ext,Library) filename = ext._file_name = self.get_ext_filename(fullname) libdir = os.path.dirname(os.path.join(self.build_lib,filename)) if ltd and libdir not in ext.library_dirs: ext.library_dirs.append(libdir) if ltd and use_stubs and os.curdir not in ext.runtime_library_dirs: ext.runtime_library_dirs.append(os.curdir) def setup_shlib_compiler(self): compiler = self.shlib_compiler = new_compiler( compiler=self.compiler, dry_run=self.dry_run, force=self.force ) if sys.platform == "darwin": tmp = _CONFIG_VARS.copy() try: # XXX Help! I don't have any idea whether these are right... _CONFIG_VARS['LDSHARED'] = "gcc -Wl,-x -dynamiclib -undefined dynamic_lookup" _CONFIG_VARS['CCSHARED'] = " -dynamiclib" _CONFIG_VARS['SO'] = ".dylib" customize_compiler(compiler) finally: _CONFIG_VARS.clear() _CONFIG_VARS.update(tmp) else: customize_compiler(compiler) if self.include_dirs is not None: compiler.set_include_dirs(self.include_dirs) if self.define is not None: # 'define' option is a list of (name,value) tuples for (name,value) in self.define: compiler.define_macro(name, value) if self.undef is not None: for macro in self.undef: compiler.undefine_macro(macro) if self.libraries is not None: compiler.set_libraries(self.libraries) if self.library_dirs is not None: compiler.set_library_dirs(self.library_dirs) if self.rpath is not None: compiler.set_runtime_library_dirs(self.rpath) if self.link_objects is not None: compiler.set_link_objects(self.link_objects) # hack so distutils' build_extension() builds a library instead compiler.link_shared_object = link_shared_object.__get__(compiler) def get_export_symbols(self, ext): if isinstance(ext,Library): return ext.export_symbols return _build_ext.get_export_symbols(self,ext) def build_extension(self, ext): _compiler = self.compiler try: if isinstance(ext,Library): self.compiler = self.shlib_compiler _build_ext.build_extension(self,ext) if ext._needs_stub: self.write_stub( self.get_finalized_command('build_py').build_lib, ext ) finally: self.compiler = _compiler def links_to_dynamic(self, ext): """Return true if 'ext' links to a dynamic lib in the same package""" # XXX this should check to ensure the lib is actually being built # XXX as dynamic, and not just using a locally-found version or a # XXX static-compiled version libnames = dict.fromkeys([lib._full_name for lib in self.shlibs]) pkg = '.'.join(ext._full_name.split('.')[:-1]+['']) for libname in ext.libraries: if pkg+libname in libnames: return True return False def get_outputs(self): outputs = _build_ext.get_outputs(self) optimize = self.get_finalized_command('build_py').optimize for ext in self.extensions: if ext._needs_stub: base = os.path.join(self.build_lib, *ext._full_name.split('.')) outputs.append(base+'.py') outputs.append(base+'.pyc') if optimize: outputs.append(base+'.pyo') return outputs def write_stub(self, output_dir, ext, compile=False): log.info("writing stub loader for %s to %s",ext._full_name, output_dir) stub_file = os.path.join(output_dir, *ext._full_name.split('.'))+'.py' if compile and os.path.exists(stub_file): raise DistutilsError(stub_file+" already exists! Please delete.") if not self.dry_run: f = open(stub_file,'w') f.write('\n'.join([ "def __bootstrap__():", " global __bootstrap__, __file__, __loader__", " import sys, os, pkg_resources, imp"+if_dl(", dl"), " __file__ = pkg_resources.resource_filename(__name__,%r)" % os.path.basename(ext._file_name), " del __bootstrap__", " if '__loader__' in globals():", " del __loader__", if_dl(" old_flags = sys.getdlopenflags()"), " old_dir = os.getcwd()", " try:", " os.chdir(os.path.dirname(__file__))", if_dl(" sys.setdlopenflags(dl.RTLD_NOW)"), " imp.load_dynamic(__name__,__file__)", " finally:", if_dl(" sys.setdlopenflags(old_flags)"), " os.chdir(old_dir)", "__bootstrap__()", "" # terminal \n ])) f.close() if compile: from distutils.util import byte_compile byte_compile([stub_file], optimize=0, force=True, dry_run=self.dry_run) optimize = self.get_finalized_command('install_lib').optimize if optimize > 0: byte_compile([stub_file], optimize=optimize, force=True, dry_run=self.dry_run) if os.path.exists(stub_file) and not self.dry_run: os.unlink(stub_file) if use_stubs or os.name=='nt': # Build shared libraries # def link_shared_object(self, objects, output_libname, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None ): self.link( self.SHARED_LIBRARY, objects, output_libname, output_dir, libraries, library_dirs, runtime_library_dirs, export_symbols, debug, extra_preargs, extra_postargs, build_temp, target_lang ) else: # Build static libraries everywhere else libtype = 'static' def link_shared_object(self, objects, output_libname, output_dir=None, libraries=None, library_dirs=None, runtime_library_dirs=None, export_symbols=None, debug=0, extra_preargs=None, extra_postargs=None, build_temp=None, target_lang=None ): # XXX we need to either disallow these attrs on Library instances, # or warn/abort here if set, or something... #libraries=None, library_dirs=None, runtime_library_dirs=None, #export_symbols=None, extra_preargs=None, extra_postargs=None, #build_temp=None assert output_dir is None # distutils build_ext doesn't pass this output_dir,filename = os.path.split(output_libname) basename, ext = os.path.splitext(filename) if self.library_filename("x").startswith('lib'): # strip 'lib' prefix; this is kludgy if some platform uses # a different prefix basename = basename[3:] self.create_static_lib( objects, basename, output_dir, debug, target_lang )
mit
modulexcite/catapult
third_party/html5lib-python/utils/spider.py
436
4157
#!/usr/bin/env python """Spider to try and find bugs in the parser. Requires httplib2 and elementtree usage: import spider s = spider.Spider() s.spider("http://www.google.com", maxURLs=100) """ import urllib.request, urllib.error, urllib.parse import urllib.robotparser import md5 import httplib2 import html5lib from html5lib.treebuilders import etree class Spider(object): def __init__(self): self.unvisitedURLs = set() self.visitedURLs = set() self.buggyURLs=set() self.robotParser = urllib.robotparser.RobotFileParser() self.contentDigest = {} self.http = httplib2.Http(".cache") def run(self, initialURL, maxURLs=1000): urlNumber = 0 self.visitedURLs.add(initialURL) content = self.loadURL(initialURL) while maxURLs is None or urlNumber < maxURLs: if content is not None: self.parse(content) urlNumber += 1 if not self.unvisitedURLs: break content = self.loadURL(self.unvisitedURLs.pop()) def parse(self, content): failed = False p = html5lib.HTMLParser(tree=etree.TreeBuilder) try: tree = p.parse(content) except: self.buggyURLs.add(self.currentURL) failed = True print("BUGGY:", self.currentURL) self.visitedURLs.add(self.currentURL) if not failed: self.updateURLs(tree) def loadURL(self, url): resp, content = self.http.request(url, "GET") self.currentURL = url digest = md5.md5(content).hexdigest() if digest in self.contentDigest: content = None self.visitedURLs.add(url) else: self.contentDigest[digest] = url if resp['status'] != "200": content = None return content def updateURLs(self, tree): """Take all the links in the current document, extract the URLs and update the list of visited and unvisited URLs according to whether we have seen them before or not""" urls = set() #Remove all links we have already visited for link in tree.findall(".//a"): try: url = urllib.parse.urldefrag(link.attrib['href'])[0] if (url and url not in self.unvisitedURLs and url not in self.visitedURLs): urls.add(url) except KeyError: pass #Remove all non-http URLs and a dd a sutiable base URL where that is #missing newUrls = set() for url in urls: splitURL = list(urllib.parse.urlsplit(url)) if splitURL[0] != "http": continue if splitURL[1] == "": splitURL[1] = urllib.parse.urlsplit(self.currentURL)[1] newUrls.add(urllib.parse.urlunsplit(splitURL)) urls = newUrls responseHeaders = {} #Now we want to find the content types of the links we haven't visited for url in urls: try: resp, content = self.http.request(url, "HEAD") responseHeaders[url] = resp except AttributeError as KeyError: #Don't know why this happens pass #Remove links not of content-type html or pages not found #XXX - need to deal with other status codes? toVisit = set([url for url in urls if url in responseHeaders and "html" in responseHeaders[url]['content-type'] and responseHeaders[url]['status'] == "200"]) #Now check we are allowed to spider the page for url in toVisit: robotURL = list(urllib.parse.urlsplit(url)[:2]) robotURL.extend(["robots.txt", "", ""]) robotURL = urllib.parse.urlunsplit(robotURL) self.robotParser.set_url(robotURL) if not self.robotParser.can_fetch("*", url): toVisit.remove(url) self.visitedURLs.update(urls) self.unvisitedURLs.update(toVisit)
bsd-3-clause
r0balo/pelisalacarta
python/main-classic/channels/peliculasnu.py
1
10999
# -*- coding: utf-8 -*- #------------------------------------------------------------ # pelisalacarta - XBMC Plugin # Canal para peliculas.nu # http://blog.tvalacarta.info/plugin-xbmc/pelisalacarta/ #------------------------------------------------------------ import urllib from core import config from core import httptools from core import jsontools from core import logger from core import scrapertools from core import servertools from core import tmdb from core.item import Item __modo_grafico__ = config.get_setting("modo_grafico", "peliculasnu") __perfil__ = int(config.get_setting("perfil", "peliculasnu")) # Fijar perfil de color perfil = [['0xFFFFE6CC', '0xFFFFCE9C', '0xFF994D00'], ['0xFFA5F6AF', '0xFF5FDA6D', '0xFF11811E'], ['0xFF58D3F7', '0xFF2E9AFE', '0xFF2E64FE']] color1, color2, color3 = perfil[__perfil__] host = "http://peliculas.nu/" def mainlist(item): logger.info() itemlist = [] item.text_color = color1 itemlist.append(item.clone(title="Novedades", action="entradas", url=host, fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="Más Vistas", action="entradas", url=host+"mas-vistas", fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="Mejor Valoradas", action="entradas", url=host+"mejor-valoradas", fanart="http://i.imgur.com/c3HS8kj.png")) item.text_color = color2 itemlist.append(item.clone(title="En Español", action="entradas", url=host+"?s=Español", fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="En Latino", action="entradas", url=host+"?s=Latino", fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="En VOSE", action="entradas", url=host+"?s=VOSE", fanart="http://i.imgur.com/c3HS8kj.png")) item.text_color = color3 itemlist.append(item.clone(title="Por género", action="indices", fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="Por letra", action="indices", fanart="http://i.imgur.com/c3HS8kj.png")) itemlist.append(item.clone(title="", action="")) itemlist.append(item.clone(title="Buscar...", action="search")) itemlist.append(item.clone(action="configuracion", title="Configurar canal...", text_color="gold", folder=False)) return itemlist def configuracion(item): from platformcode import platformtools ret = platformtools.show_channel_settings() platformtools.itemlist_refresh() return ret def search(item, texto): logger.info() texto = texto.replace(" ", "+") try: item.url= "%s?s=%s" % (host, texto) return entradas(item) # Se captura la excepción, para no interrumpir al buscador global si un canal falla except: import sys for line in sys.exc_info(): logger.error("%s" % line) return [] def newest(categoria): logger.info() itemlist = [] item = Item() try: if categoria == "peliculas": item.url = host item.from_newest = True item.action = "entradas" itemlist = entradas(item) if itemlist[-1].action == "entradas": itemlist.pop() # Se captura la excepción, para no interrumpir al canal novedades si un canal falla except: import sys for line in sys.exc_info(): logger.error("{0}".format(line)) return [] return itemlist def entradas(item): logger.info() itemlist = [] data = httptools.downloadpage(item.url).data patron = '<li class="TPostMv">.*?href="([^"]+)".*?src="([^"]+)".*?class="Title">([^<]+)<.*?' \ '.*?"Date AAIco-date_range">(\d+).*?class="Qlty">([^<]+)<.*?<p class="Idioma(.*?)</p>' matches = scrapertools.find_multiple_matches(data, patron) if item.extra == "next": matches_ = matches[15:] else: matches_ = matches[:15] for scrapedurl, scrapedthumbnail, scrapedtitle, year, calidad, data_idioma in matches_: idiomas = [] if "/espm" in data_idioma: idiomas.append("CAST") if "/latinom" in data_idioma: idiomas.append("LAT") if "/vosemi" in data_idioma: idiomas.append("VOSE") titulo = "%s [%s]" % (scrapedtitle, calidad) if idiomas: titulo += " [%s]" % "/".join(idiomas) scrapedthumbnail = scrapedthumbnail.replace("-160x242", "") infolabels = {'year': year} itemlist.append(Item(channel=item.channel, action="findvideos", url=scrapedurl, title=titulo, contentTitle=scrapedtitle, infoLabels=infolabels, text_color=color2, thumbnail=scrapedthumbnail, contentType="movie", fulltitle=scrapedtitle)) if not item.from_newest: tmdb.set_infoLabels_itemlist(itemlist, __modo_grafico__) if not item.extra and len(matches) > 15: itemlist.append(item.clone(title=">> Página Siguiente", extra="next", text_color=color3)) elif item.extra == "next": next_page = scrapertools.find_single_match(data, '<a class="nextpostslink".*?href="([^"]+)"') if next_page: itemlist.append(item.clone(title=">> Página Siguiente", url=next_page, text_color=color3, extra="")) return itemlist def listado(item): logger.info() itemlist = [] data = httptools.downloadpage(item.url).data patron = '<td class="MvTbImg">.*?href="([^"]+)".*?src="([^"]+)".*?<strong>([^<]+)<.*?' \ '.*?<td>(\d+).*?class="Qlty">([^<]+)<' matches = scrapertools.find_multiple_matches(data, patron) if item.extra == "next": matches_ = matches[15:] else: matches_ = matches[:15] for scrapedurl, scrapedthumbnail, scrapedtitle, year, calidad in matches_: titulo = "%s [%s]" % (scrapedtitle, calidad) scrapedthumbnail = scrapedthumbnail.replace("-55x85", "") infolabels = {'year': year} itemlist.append(Item(channel=item.channel, action="findvideos", url=scrapedurl, title=titulo, contentTitle=scrapedtitle, infoLabels=infolabels, text_color=color2, thumbnail=scrapedthumbnail, contentType="movie", fulltitle=scrapedtitle)) tmdb.set_infoLabels_itemlist(itemlist, __modo_grafico__) if not item.extra and len(matches) > 15: itemlist.append(item.clone(title=">> Página Siguiente", extra="next", text_color=color3)) elif item.extra == "next": next_page = scrapertools.find_single_match(data, '<a class="nextpostslink".*?href="([^"]+)"') if next_page: itemlist.append(item.clone(title=">> Página Siguiente", url=next_page, text_color=color3, extra="")) return itemlist def indices(item): logger.info() itemlist = [] data = httptools.downloadpage(host).data if "letra" in item.title: action = "listado" bloque = scrapertools.find_single_match(data, '<ul class="AZList">(.*?)</ul>') else: action = "entradas" bloque = scrapertools.find_single_match(data, 'Géneros</a>(.*?)</ul>') matches = scrapertools.find_multiple_matches(bloque, '<li.*?<a href="([^"]+)">([^<]+)</a>') for scrapedurl, scrapedtitle in matches: itemlist.append(item.clone(action=action, url=scrapedurl, title=scrapedtitle)) return itemlist def findvideos(item): logger.info() itemlist = [] tmdb.set_infoLabels_item(item, __modo_grafico__) data = httptools.downloadpage(item.url).data if not item.infoLabels["plot"]: item.infoLabels["plot"] = scrapertools.find_single_match(data, '<div class="Description">.*?<p>(.*?)</p>') fanart = scrapertools.find_single_match(data, '<img class="TPostBg" src="([^"]+)"') if not item.fanart and fanart: item.fanart = fanart patron = '<li class="Button STPb.*?data-tipo="([^"]+)" data-playersource="([^"]+)".*?><span>.*?<span>(.*?)</span>' matches = scrapertools.find_multiple_matches(data, patron) for tipo, source, title in matches: if tipo == "trailer": continue post = "source=%s&action=obtenerurl" % urllib.quote(source) headers = {'X-Requested-With': 'XMLHttpRequest', 'Referer': item.url} data_url = httptools.downloadpage(host+'wp-admin/admin-ajax.php', post, headers=headers).data url = jsontools.load_json(data_url).get("url") if "online.desmix" in url or "metiscs" in url: server = "directo" elif "openload" in url: server = "openload" url += "|Referer=" + item.url else: server = servertools.get_server_from_url(url) title = "%s - %s" % (unicode(server, "utf8").capitalize().encode("utf8"), title) itemlist.append(item.clone(action="play", url=url, title=title, server=server, text_color=color3)) if item.extra != "findvideos" and config.get_library_support(): itemlist.append(item.clone(title="Añadir película a la biblioteca", action="add_pelicula_to_library", extra="findvideos", text_color="green")) return itemlist def play(item): logger.info() itemlist = [] if "drive.php?v=" in item.url: if not item.url.startswith("http:"): item.url = "http:" + item.url data = httptools.downloadpage(item.url).data subtitulo = scrapertools.find_single_match(data, "var subtitulo='([^']+)'") patron = '{"label":\s*"([^"]+)","type":\s*"video/([^"]+)","src":\s*"([^"]+)"' matches = scrapertools.find_multiple_matches(data, patron) for calidad, extension, url in matches: url = url.replace(",", "%2C") title = ".%s %s [directo]" % (extension, calidad) itemlist.append([title, url, 0, subtitulo]) try: itemlist.sort(key=lambda it:int(it[0].split(" ")[1].split("p")[0])) except: pass elif "metiscs" in item.url: if not item.url.startswith("http:"): item.url = "http:" + item.url referer = {'Referer': "http://peliculas.nu"} data = httptools.downloadpage(item.url, headers=referer).data from lib import jsunpack packed = scrapertools.find_single_match(data, '<script type="text/javascript">(eval\(function.*?)</script>') data_js = jsunpack.unpack(packed) patron = '{"file":\s*"([^"]+)","label":\s*"([^"]+)","type":\s*"video/([^"]+)"' matches = scrapertools.find_multiple_matches(data_js, patron) for url, calidad, extension in matches: url = url.replace(",", "%2C") title = ".%s %s [directo]" % (extension, calidad) itemlist.insert(0, [title, url]) else: enlaces = servertools.findvideosbyserver(item.url, item.server)[0] if len(enlaces) > 0: itemlist.append(item.clone(action="play", server=enlaces[2], url=enlaces[1])) return itemlist
gpl-3.0
Samsung/meminsight
lifetime-analysis/delta-staleness.py
1
2439
# # Copyright (c) 2014 Samsung Electronics Co., Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import os import tempfile import shutil import subprocess annex = True def gen_wrapper_html(js_files,inline=None): script_tags = ["<script src=\"%s\"></script>"%os.path.basename(x) for x in js_files] # create dummy HTML file loading js_file in /tmp html = "<html><head></head><body>" if inline != None: html += "<script>" + inline + "</script>" html += "%s</body></html>"%"".join(script_tags) return html def gen_wrapper_html_file(js_files, filename,inline=None): html = gen_wrapper_html(js_files,inline) dummy_file = open(filename, "w") dummy_file.write(html) dummy_file.close() arg = os.path.abspath(sys.argv[1]) dir = os.path.dirname(arg) if annex: appTempDir = os.path.abspath("../../annex") shutil.copy(arg,os.path.join(appTempDir,"combined.js")) else: appTempDir = tempfile.mkdtemp() print "app temp dir " + appTempDir shutil.copy(arg,appTempDir) gen_wrapper_html_file([arg],os.path.join(appTempDir,'index.html')) instTempDir = tempfile.mkdtemp() print "inst temp dir " + instTempDir genTraceCmd = ['node', os.path.join(os.path.dirname(os.path.realpath(__file__)),'../memory-trace/drivers/memTraceDriver.js'), '--outputDir', instTempDir, appTempDir] sp = subprocess.Popen(genTraceCmd,stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = sp.communicate() print out print >> sys.stderr, err refCountCmd = "java -ea -Dtesting=yes -jar build/libs/memory-analysis-v2-all.jar --staleness --trace".split(' ') refCountCmd.append(os.path.join(instTempDir,os.path.basename(appTempDir),'mem-trace')) sp = subprocess.Popen(refCountCmd,stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = sp.communicate() print out print >> sys.stderr, err if not annex: shutil.rmtree(appTempDir) shutil.rmtree(instTempDir)
apache-2.0
andymckay/addons-server
src/olympia/files/helpers.py
2
15973
import codecs import mimetypes import os import stat from django.conf import settings from django.core.files.storage import default_storage as storage from django.utils.datastructures import SortedDict from django.utils.encoding import smart_unicode from django.utils.translation import get_language, ugettext as _ from django.template.defaultfilters import filesizeformat from validator.testcases.packagelayout import ( blacklisted_extensions, blacklisted_magic_numbers) import jinja2 import commonware.log from cache_nuggets.lib import memoize, Message from jingo import register, get_env from olympia import amo from olympia.amo.utils import rm_local_tmp_dir from olympia.amo.urlresolvers import reverse from olympia.files.utils import extract_xpi, get_md5 # Allow files with a shebang through. blacklisted_magic_numbers = [b for b in list(blacklisted_magic_numbers) if b != (0x23, 0x21)] blacklisted_extensions = [b for b in list(blacklisted_extensions) if b != 'sh'] task_log = commonware.log.getLogger('z.task') @register.function def file_viewer_class(value, key): result = [] if value['directory']: result.append('directory closed') else: result.append('file') if value['short'] == key: result.append('selected') if value.get('diff'): result.append('diff') return ' '.join(result) @register.function def file_tree(files, selected): depth = 0 output = ['<ul class="root">'] t = get_env().get_template('files/node.html') for k, v in files.items(): if v['depth'] > depth: output.append('<ul class="js-hidden">') elif v['depth'] < depth: output.extend(['</ul>' for x in range(v['depth'], depth)]) output.append(t.render({'value': v, 'selected': selected})) depth = v['depth'] output.extend(['</ul>' for x in range(depth, -1, -1)]) return jinja2.Markup('\n'.join(output)) class FileViewer(object): """ Provide access to a storage-managed file by copying it locally and extracting info from it. `src` is a storage-managed path and `dest` is a local temp path. """ def __init__(self, file_obj): self.file = file_obj self.addon = self.file.version.addon self.src = file_obj.current_file_path self.dest = os.path.join(settings.TMP_PATH, 'file_viewer', str(file_obj.pk)) self._files, self.selected = None, None def __str__(self): return str(self.file.id) def _extraction_cache_key(self): return ('%s:file-viewer:extraction-in-progress:%s' % (settings.CACHE_PREFIX, self.file.id)) def extract(self): """ Will make all the directories and expand the files. Raises error on nasty files. """ try: os.makedirs(os.path.dirname(self.dest)) except OSError, err: pass if self.is_search_engine() and self.src.endswith('.xml'): try: os.makedirs(self.dest) except OSError, err: pass copyfileobj(storage.open(self.src), open(os.path.join(self.dest, self.file.filename), 'w')) else: try: extract_xpi(self.src, self.dest, expand=True) except Exception, err: task_log.error('Error (%s) extracting %s' % (err, self.src)) raise def cleanup(self): if os.path.exists(self.dest): rm_local_tmp_dir(self.dest) def is_search_engine(self): """Is our file for a search engine?""" return self.file.version.addon.type == amo.ADDON_SEARCH def is_extracted(self): """If the file has been extracted or not.""" return (os.path.exists(self.dest) and not Message(self._extraction_cache_key()).get()) def _is_binary(self, mimetype, path): """Uses the filename to see if the file can be shown in HTML or not.""" # Re-use the blacklisted data from amo-validator to spot binaries. ext = os.path.splitext(path)[1][1:] if ext in blacklisted_extensions: return True if os.path.exists(path) and not os.path.isdir(path): with storage.open(path, 'r') as rfile: bytes = tuple(map(ord, rfile.read(4))) if any(bytes[:len(x)] == x for x in blacklisted_magic_numbers): return True if mimetype: major, minor = mimetype.split('/') if major == 'image': return 'image' # Mark that the file is binary, but an image. return False def read_file(self, allow_empty=False): """ Reads the file. Imposes a file limit and tries to cope with UTF-8 and UTF-16 files appropriately. Return file contents and a list of error messages. """ try: file_data = self._read_file(allow_empty) return file_data except (IOError, OSError): self.selected['msg'] = _('That file no longer exists.') return '' def _read_file(self, allow_empty=False): if not self.selected and allow_empty: return '' assert self.selected, 'Please select a file' if self.selected['size'] > settings.FILE_VIEWER_SIZE_LIMIT: # L10n: {0} is the file size limit of the file viewer. msg = _(u'File size is over the limit of {0}.').format( filesizeformat(settings.FILE_VIEWER_SIZE_LIMIT)) self.selected['msg'] = msg return '' with storage.open(self.selected['full'], 'r') as opened: cont = opened.read() codec = 'utf-16' if cont.startswith(codecs.BOM_UTF16) else 'utf-8' try: return cont.decode(codec) except UnicodeDecodeError: cont = cont.decode(codec, 'ignore') # L10n: {0} is the filename. self.selected['msg'] = ( _('Problems decoding {0}.').format(codec)) return cont def select(self, file_): self.selected = self.get_files().get(file_) def is_binary(self): if self.selected: binary = self.selected['binary'] if binary and (binary != 'image'): self.selected['msg'] = _('This file is not viewable online. ' 'Please download the file to view ' 'the contents.') return binary def is_directory(self): if self.selected: if self.selected['directory']: self.selected['msg'] = _('This file is a directory.') return self.selected['directory'] def get_default(self, key=None): """Gets the default file and copes with search engines.""" if key: return key files = self.get_files() for manifest in ('install.rdf', 'manifest.json', 'package.json'): if manifest in files: return manifest return files.keys()[0] if files else None # Eg: it's a search engine. def get_files(self): """ Returns a SortedDict, ordered by the filename of all the files in the addon-file. Full of all the useful information you'll need to serve this file, build templates etc. """ if self._files: return self._files if not self.is_extracted(): return {} # In case a cron job comes along and deletes the files # mid tree building. try: self._files = self._get_files(locale=get_language()) return self._files except (OSError, IOError): return {} def truncate(self, filename, pre_length=15, post_length=10, ellipsis=u'..'): """ Truncates a filename so that somelongfilename.htm becomes: some...htm as it truncates around the extension. """ root, ext = os.path.splitext(filename) if len(root) > pre_length: root = root[:pre_length] + ellipsis if len(ext) > post_length: ext = ext[:post_length] + ellipsis return root + ext def get_syntax(self, filename): """ Converts a filename into a syntax for the syntax highlighter, with some modifications for specific common mozilla files. The list of syntaxes is from: http://alexgorbatchev.com/SyntaxHighlighter/manual/brushes/ """ if filename: short = os.path.splitext(filename)[1][1:] syntax_map = {'xul': 'xml', 'rdf': 'xml', 'jsm': 'js', 'json': 'js'} short = syntax_map.get(short, short) if short in ['actionscript3', 'as3', 'bash', 'shell', 'cpp', 'c', 'c#', 'c-sharp', 'csharp', 'css', 'diff', 'html', 'java', 'javascript', 'js', 'jscript', 'patch', 'pas', 'php', 'plain', 'py', 'python', 'sass', 'scss', 'text', 'sql', 'vb', 'vbnet', 'xml', 'xhtml', 'xslt']: return short return 'plain' @memoize(prefix='file-viewer', time=60 * 60) def _get_files(self, locale=None): """We need the `locale` parameter for the memoization. The `@memoize` decorator uses the prefix *and the parameters* to come up with a memoize key. We thus add a (seemingly useless) `locale` parameter. Otherwise, we would just always have the urls for the files with the locale from the first person checking them. """ all_files, res = [], SortedDict() # Not using os.path.walk so we get just the right order. def iterate(path): path_dirs, path_files = storage.listdir(path) for dirname in sorted(path_dirs): full = os.path.join(path, dirname) all_files.append(full) iterate(full) for filename in sorted(path_files): full = os.path.join(path, filename) all_files.append(full) iterate(self.dest) for path in all_files: filename = smart_unicode(os.path.basename(path), errors='replace') short = smart_unicode(path[len(self.dest) + 1:], errors='replace') mime, encoding = mimetypes.guess_type(filename) directory = os.path.isdir(path) res[short] = { 'binary': self._is_binary(mime, path), 'depth': short.count(os.sep), 'directory': directory, 'filename': filename, 'full': path, 'md5': get_md5(path) if not directory else '', 'mimetype': mime or 'application/octet-stream', 'syntax': self.get_syntax(filename), 'modified': os.stat(path)[stat.ST_MTIME], 'short': short, 'size': os.stat(path)[stat.ST_SIZE], 'truncated': self.truncate(filename), 'url': reverse('files.list', args=[self.file.id, 'file', short]), 'url_serve': reverse('files.redirect', args=[self.file.id, short]), 'version': self.file.version.version, } return res class DiffHelper(object): def __init__(self, left, right): self.left = FileViewer(left) self.right = FileViewer(right) self.addon = self.left.addon self.key = None def __str__(self): return '%s:%s' % (self.left, self.right) def extract(self): self.left.extract(), self.right.extract() def cleanup(self): self.left.cleanup(), self.right.cleanup() def is_extracted(self): return self.left.is_extracted() and self.right.is_extracted() def get_url(self, short): return reverse('files.compare', args=[self.left.file.id, self.right.file.id, 'file', short]) def get_files(self): """ Get the files from the primary and: - remap any diffable ones to the compare url as opposed to the other - highlight any diffs """ left_files = self.left.get_files() right_files = self.right.get_files() different = [] for key, file in left_files.items(): file['url'] = self.get_url(file['short']) diff = file['md5'] != right_files.get(key, {}).get('md5') file['diff'] = diff if diff: different.append(file) # Now mark every directory above each different file as different. for diff in different: for depth in range(diff['depth']): key = '/'.join(diff['short'].split('/')[:depth + 1]) if key in left_files: left_files[key]['diff'] = True return left_files def get_deleted_files(self): """ Get files that exist in right, but not in left. These are files that have been deleted between the two versions. Every element will be marked as a diff. """ different = SortedDict() if self.right.is_search_engine(): return different def keep(path): if path not in different: copy = dict(right_files[path]) copy.update({'url': self.get_url(file['short']), 'diff': True}) different[path] = copy left_files = self.left.get_files() right_files = self.right.get_files() for key, file in right_files.items(): if key not in left_files: # Make sure we have all the parent directories of # deleted files. dir = key while os.path.dirname(dir): dir = os.path.dirname(dir) keep(dir) keep(key) return different def read_file(self): """Reads both selected files.""" return [self.left.read_file(allow_empty=True), self.right.read_file(allow_empty=True)] def select(self, key): """ Select a file and adds the file object to self.one and self.two for later fetching. Does special work for search engines. """ self.key = key self.left.select(key) if key and self.right.is_search_engine(): # There's only one file in a search engine. key = self.right.get_default() self.right.select(key) return self.left.selected and self.right.selected def is_binary(self): """Tells you if both selected files are binary.""" return (self.left.is_binary() or self.right.is_binary()) def is_diffable(self): """Tells you if the selected files are diffable.""" if not self.left.selected and not self.right.selected: return False for obj in [self.left, self.right]: if obj.is_binary(): return False if obj.is_directory(): return False return True def copyfileobj(fsrc, fdst, length=64 * 1024): """copy data from file-like object fsrc to file-like object fdst""" while True: buf = fsrc.read(length) if not buf: break fdst.write(buf) def rmtree(prefix): dirs, files = storage.listdir(prefix) for fname in files: storage.delete(os.path.join(prefix, fname)) for d in dirs: rmtree(os.path.join(prefix, d)) storage.delete(prefix)
bsd-3-clause
alanjw/GreenOpenERP-Win-X86
python/Lib/site-packages/unidecode/x067.py
252
4635
data = ( 'Zui ', # 0x00 'Can ', # 0x01 'Xu ', # 0x02 'Hui ', # 0x03 'Yin ', # 0x04 'Qie ', # 0x05 'Fen ', # 0x06 'Pi ', # 0x07 'Yue ', # 0x08 'You ', # 0x09 'Ruan ', # 0x0a 'Peng ', # 0x0b 'Ban ', # 0x0c 'Fu ', # 0x0d 'Ling ', # 0x0e 'Fei ', # 0x0f 'Qu ', # 0x10 '[?] ', # 0x11 'Nu ', # 0x12 'Tiao ', # 0x13 'Shuo ', # 0x14 'Zhen ', # 0x15 'Lang ', # 0x16 'Lang ', # 0x17 'Juan ', # 0x18 'Ming ', # 0x19 'Huang ', # 0x1a 'Wang ', # 0x1b 'Tun ', # 0x1c 'Zhao ', # 0x1d 'Ji ', # 0x1e 'Qi ', # 0x1f 'Ying ', # 0x20 'Zong ', # 0x21 'Wang ', # 0x22 'Tong ', # 0x23 'Lang ', # 0x24 '[?] ', # 0x25 'Meng ', # 0x26 'Long ', # 0x27 'Mu ', # 0x28 'Deng ', # 0x29 'Wei ', # 0x2a 'Mo ', # 0x2b 'Ben ', # 0x2c 'Zha ', # 0x2d 'Zhu ', # 0x2e 'Zhu ', # 0x2f '[?] ', # 0x30 'Zhu ', # 0x31 'Ren ', # 0x32 'Ba ', # 0x33 'Po ', # 0x34 'Duo ', # 0x35 'Duo ', # 0x36 'Dao ', # 0x37 'Li ', # 0x38 'Qiu ', # 0x39 'Ji ', # 0x3a 'Jiu ', # 0x3b 'Bi ', # 0x3c 'Xiu ', # 0x3d 'Ting ', # 0x3e 'Ci ', # 0x3f 'Sha ', # 0x40 'Eburi ', # 0x41 'Za ', # 0x42 'Quan ', # 0x43 'Qian ', # 0x44 'Yu ', # 0x45 'Gan ', # 0x46 'Wu ', # 0x47 'Cha ', # 0x48 'Shan ', # 0x49 'Xun ', # 0x4a 'Fan ', # 0x4b 'Wu ', # 0x4c 'Zi ', # 0x4d 'Li ', # 0x4e 'Xing ', # 0x4f 'Cai ', # 0x50 'Cun ', # 0x51 'Ren ', # 0x52 'Shao ', # 0x53 'Tuo ', # 0x54 'Di ', # 0x55 'Zhang ', # 0x56 'Mang ', # 0x57 'Chi ', # 0x58 'Yi ', # 0x59 'Gu ', # 0x5a 'Gong ', # 0x5b 'Du ', # 0x5c 'Yi ', # 0x5d 'Qi ', # 0x5e 'Shu ', # 0x5f 'Gang ', # 0x60 'Tiao ', # 0x61 'Moku ', # 0x62 'Soma ', # 0x63 'Tochi ', # 0x64 'Lai ', # 0x65 'Sugi ', # 0x66 'Mang ', # 0x67 'Yang ', # 0x68 'Ma ', # 0x69 'Miao ', # 0x6a 'Si ', # 0x6b 'Yuan ', # 0x6c 'Hang ', # 0x6d 'Fei ', # 0x6e 'Bei ', # 0x6f 'Jie ', # 0x70 'Dong ', # 0x71 'Gao ', # 0x72 'Yao ', # 0x73 'Xian ', # 0x74 'Chu ', # 0x75 'Qun ', # 0x76 'Pa ', # 0x77 'Shu ', # 0x78 'Hua ', # 0x79 'Xin ', # 0x7a 'Chou ', # 0x7b 'Zhu ', # 0x7c 'Chou ', # 0x7d 'Song ', # 0x7e 'Ban ', # 0x7f 'Song ', # 0x80 'Ji ', # 0x81 'Yue ', # 0x82 'Jin ', # 0x83 'Gou ', # 0x84 'Ji ', # 0x85 'Mao ', # 0x86 'Pi ', # 0x87 'Bi ', # 0x88 'Wang ', # 0x89 'Ang ', # 0x8a 'Fang ', # 0x8b 'Fen ', # 0x8c 'Yi ', # 0x8d 'Fu ', # 0x8e 'Nan ', # 0x8f 'Xi ', # 0x90 'Hu ', # 0x91 'Ya ', # 0x92 'Dou ', # 0x93 'Xun ', # 0x94 'Zhen ', # 0x95 'Yao ', # 0x96 'Lin ', # 0x97 'Rui ', # 0x98 'E ', # 0x99 'Mei ', # 0x9a 'Zhao ', # 0x9b 'Guo ', # 0x9c 'Zhi ', # 0x9d 'Cong ', # 0x9e 'Yun ', # 0x9f 'Waku ', # 0xa0 'Dou ', # 0xa1 'Shu ', # 0xa2 'Zao ', # 0xa3 '[?] ', # 0xa4 'Li ', # 0xa5 'Haze ', # 0xa6 'Jian ', # 0xa7 'Cheng ', # 0xa8 'Matsu ', # 0xa9 'Qiang ', # 0xaa 'Feng ', # 0xab 'Nan ', # 0xac 'Xiao ', # 0xad 'Xian ', # 0xae 'Ku ', # 0xaf 'Ping ', # 0xb0 'Yi ', # 0xb1 'Xi ', # 0xb2 'Zhi ', # 0xb3 'Guai ', # 0xb4 'Xiao ', # 0xb5 'Jia ', # 0xb6 'Jia ', # 0xb7 'Gou ', # 0xb8 'Fu ', # 0xb9 'Mo ', # 0xba 'Yi ', # 0xbb 'Ye ', # 0xbc 'Ye ', # 0xbd 'Shi ', # 0xbe 'Nie ', # 0xbf 'Bi ', # 0xc0 'Duo ', # 0xc1 'Yi ', # 0xc2 'Ling ', # 0xc3 'Bing ', # 0xc4 'Ni ', # 0xc5 'La ', # 0xc6 'He ', # 0xc7 'Pan ', # 0xc8 'Fan ', # 0xc9 'Zhong ', # 0xca 'Dai ', # 0xcb 'Ci ', # 0xcc 'Yang ', # 0xcd 'Fu ', # 0xce 'Bo ', # 0xcf 'Mou ', # 0xd0 'Gan ', # 0xd1 'Qi ', # 0xd2 'Ran ', # 0xd3 'Rou ', # 0xd4 'Mao ', # 0xd5 'Zhao ', # 0xd6 'Song ', # 0xd7 'Zhe ', # 0xd8 'Xia ', # 0xd9 'You ', # 0xda 'Shen ', # 0xdb 'Ju ', # 0xdc 'Tuo ', # 0xdd 'Zuo ', # 0xde 'Nan ', # 0xdf 'Ning ', # 0xe0 'Yong ', # 0xe1 'Di ', # 0xe2 'Zhi ', # 0xe3 'Zha ', # 0xe4 'Cha ', # 0xe5 'Dan ', # 0xe6 'Gu ', # 0xe7 'Pu ', # 0xe8 'Jiu ', # 0xe9 'Ao ', # 0xea 'Fu ', # 0xeb 'Jian ', # 0xec 'Bo ', # 0xed 'Duo ', # 0xee 'Ke ', # 0xef 'Nai ', # 0xf0 'Zhu ', # 0xf1 'Bi ', # 0xf2 'Liu ', # 0xf3 'Chai ', # 0xf4 'Zha ', # 0xf5 'Si ', # 0xf6 'Zhu ', # 0xf7 'Pei ', # 0xf8 'Shi ', # 0xf9 'Guai ', # 0xfa 'Cha ', # 0xfb 'Yao ', # 0xfc 'Jue ', # 0xfd 'Jiu ', # 0xfe 'Shi ', # 0xff )
agpl-3.0
sodafree/backend
build/ipython/build/lib.linux-i686-2.7/IPython/core/magics/execution.py
3
40995
"""Implementation of execution-related magic functions. """ #----------------------------------------------------------------------------- # Copyright (c) 2012 The IPython Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Stdlib import __builtin__ as builtin_mod import bdb import os import sys import time from StringIO import StringIO # cProfile was added in Python2.5 try: import cProfile as profile import pstats except ImportError: # profile isn't bundled by default in Debian for license reasons try: import profile, pstats except ImportError: profile = pstats = None # Our own packages from IPython.core import debugger, oinspect from IPython.core import magic_arguments from IPython.core import page from IPython.core.error import UsageError from IPython.core.macro import Macro from IPython.core.magic import (Magics, magics_class, line_magic, cell_magic, line_cell_magic, on_off, needs_local_scope) from IPython.testing.skipdoctest import skip_doctest from IPython.utils import py3compat from IPython.utils.io import capture_output from IPython.utils.ipstruct import Struct from IPython.utils.module_paths import find_mod from IPython.utils.path import get_py_filename, unquote_filename from IPython.utils.timing import clock, clock2 from IPython.utils.warn import warn, error #----------------------------------------------------------------------------- # Magic implementation classes #----------------------------------------------------------------------------- @magics_class class ExecutionMagics(Magics): """Magics related to code execution, debugging, profiling, etc. """ def __init__(self, shell): super(ExecutionMagics, self).__init__(shell) if profile is None: self.prun = self.profile_missing_notice # Default execution function used to actually run user code. self.default_runner = None def profile_missing_notice(self, *args, **kwargs): error("""\ The profile module could not be found. It has been removed from the standard python packages because of its non-free license. To use profiling, install the python-profiler package from non-free.""") @skip_doctest @line_cell_magic def prun(self, parameter_s='', cell=None, user_mode=True, opts=None,arg_lst=None,prog_ns=None): """Run a statement through the python code profiler. Usage, in line mode: %prun [options] statement Usage, in cell mode: %%prun [options] [statement] code... code... In cell mode, the additional code lines are appended to the (possibly empty) statement in the first line. Cell mode allows you to easily profile multiline blocks without having to put them in a separate function. The given statement (which doesn't require quote marks) is run via the python profiler in a manner similar to the profile.run() function. Namespaces are internally managed to work correctly; profile.run cannot be used in IPython because it makes certain assumptions about namespaces which do not hold under IPython. Options: -l <limit>: you can place restrictions on what or how much of the profile gets printed. The limit value can be: * A string: only information for function names containing this string is printed. * An integer: only these many lines are printed. * A float (between 0 and 1): this fraction of the report is printed (for example, use a limit of 0.4 to see the topmost 40% only). You can combine several limits with repeated use of the option. For example, '-l __init__ -l 5' will print only the topmost 5 lines of information about class constructors. -r: return the pstats.Stats object generated by the profiling. This object has all the information about the profile in it, and you can later use it for further analysis or in other functions. -s <key>: sort profile by given key. You can provide more than one key by using the option several times: '-s key1 -s key2 -s key3...'. The default sorting key is 'time'. The following is copied verbatim from the profile documentation referenced below: When more than one key is provided, additional keys are used as secondary criteria when the there is equality in all keys selected before them. Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are the keys currently defined: Valid Arg Meaning "calls" call count "cumulative" cumulative time "file" file name "module" file name "pcalls" primitive call count "line" line number "name" function name "nfl" name/file/line "stdname" standard name "time" internal time Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name, file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between "nfl" and "stdname" is that the standard name is a sort of the name as printed, which means that the embedded line numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same) appear in the string order "20" "3" and "40". In contrast, "nfl" does a numeric compare of the line numbers. In fact, sort_stats("nfl") is the same as sort_stats("name", "file", "line"). -T <filename>: save profile results as shown on screen to a text file. The profile is still shown on screen. -D <filename>: save (via dump_stats) profile statistics to given filename. This data is in a format understood by the pstats module, and is generated by a call to the dump_stats() method of profile objects. The profile is still shown on screen. -q: suppress output to the pager. Best used with -T and/or -D above. If you want to run complete programs under the profiler's control, use '%run -p [prof_opts] filename.py [args to program]' where prof_opts contains profiler specific options as described here. You can read the complete documentation for the profile module with:: In [1]: import profile; profile.help() """ opts_def = Struct(D=[''],l=[],s=['time'],T=['']) if user_mode: # regular user call opts,arg_str = self.parse_options(parameter_s,'D:l:rs:T:q', list_all=True, posix=False) namespace = self.shell.user_ns if cell is not None: arg_str += '\n' + cell else: # called to run a program by %run -p try: filename = get_py_filename(arg_lst[0]) except IOError as e: try: msg = str(e) except UnicodeError: msg = e.message error(msg) return arg_str = 'execfile(filename,prog_ns)' namespace = { 'execfile': self.shell.safe_execfile, 'prog_ns': prog_ns, 'filename': filename } opts.merge(opts_def) prof = profile.Profile() try: prof = prof.runctx(arg_str,namespace,namespace) sys_exit = '' except SystemExit: sys_exit = """*** SystemExit exception caught in code being profiled.""" stats = pstats.Stats(prof).strip_dirs().sort_stats(*opts.s) lims = opts.l if lims: lims = [] # rebuild lims with ints/floats/strings for lim in opts.l: try: lims.append(int(lim)) except ValueError: try: lims.append(float(lim)) except ValueError: lims.append(lim) # Trap output. stdout_trap = StringIO() if hasattr(stats,'stream'): # In newer versions of python, the stats object has a 'stream' # attribute to write into. stats.stream = stdout_trap stats.print_stats(*lims) else: # For older versions, we manually redirect stdout during printing sys_stdout = sys.stdout try: sys.stdout = stdout_trap stats.print_stats(*lims) finally: sys.stdout = sys_stdout output = stdout_trap.getvalue() output = output.rstrip() if 'q' not in opts: page.page(output) print sys_exit, dump_file = opts.D[0] text_file = opts.T[0] if dump_file: dump_file = unquote_filename(dump_file) prof.dump_stats(dump_file) print '\n*** Profile stats marshalled to file',\ `dump_file`+'.',sys_exit if text_file: text_file = unquote_filename(text_file) pfile = open(text_file,'w') pfile.write(output) pfile.close() print '\n*** Profile printout saved to text file',\ `text_file`+'.',sys_exit if opts.has_key('r'): return stats else: return None @line_magic def pdb(self, parameter_s=''): """Control the automatic calling of the pdb interactive debugger. Call as '%pdb on', '%pdb 1', '%pdb off' or '%pdb 0'. If called without argument it works as a toggle. When an exception is triggered, IPython can optionally call the interactive pdb debugger after the traceback printout. %pdb toggles this feature on and off. The initial state of this feature is set in your configuration file (the option is ``InteractiveShell.pdb``). If you want to just activate the debugger AFTER an exception has fired, without having to type '%pdb on' and rerunning your code, you can use the %debug magic.""" par = parameter_s.strip().lower() if par: try: new_pdb = {'off':0,'0':0,'on':1,'1':1}[par] except KeyError: print ('Incorrect argument. Use on/1, off/0, ' 'or nothing for a toggle.') return else: # toggle new_pdb = not self.shell.call_pdb # set on the shell self.shell.call_pdb = new_pdb print 'Automatic pdb calling has been turned',on_off(new_pdb) @line_magic def debug(self, parameter_s=''): """Activate the interactive debugger in post-mortem mode. If an exception has just occurred, this lets you inspect its stack frames interactively. Note that this will always work only on the last traceback that occurred, so you must call this quickly after an exception that you wish to inspect has fired, because if another one occurs, it clobbers the previous one. If you want IPython to automatically do this on every exception, see the %pdb magic for more details. """ self.shell.debugger(force=True) @line_magic def tb(self, s): """Print the last traceback with the currently active exception mode. See %xmode for changing exception reporting modes.""" self.shell.showtraceback() @skip_doctest @line_magic def run(self, parameter_s='', runner=None, file_finder=get_py_filename): """Run the named file inside IPython as a program. Usage:\\ %run [-n -i -t [-N<N>] -d [-b<N>] -p [profile options]] file [args] Parameters after the filename are passed as command-line arguments to the program (put in sys.argv). Then, control returns to IPython's prompt. This is similar to running at a system prompt:\\ $ python file args\\ but with the advantage of giving you IPython's tracebacks, and of loading all variables into your interactive namespace for further use (unless -p is used, see below). The file is executed in a namespace initially consisting only of __name__=='__main__' and sys.argv constructed as indicated. It thus sees its environment as if it were being run as a stand-alone program (except for sharing global objects such as previously imported modules). But after execution, the IPython interactive namespace gets updated with all variables defined in the program (except for __name__ and sys.argv). This allows for very convenient loading of code for interactive work, while giving each program a 'clean sheet' to run in. Options: -n: __name__ is NOT set to '__main__', but to the running file's name without extension (as python does under import). This allows running scripts and reloading the definitions in them without calling code protected by an ' if __name__ == "__main__" ' clause. -i: run the file in IPython's namespace instead of an empty one. This is useful if you are experimenting with code written in a text editor which depends on variables defined interactively. -e: ignore sys.exit() calls or SystemExit exceptions in the script being run. This is particularly useful if IPython is being used to run unittests, which always exit with a sys.exit() call. In such cases you are interested in the output of the test results, not in seeing a traceback of the unittest module. -t: print timing information at the end of the run. IPython will give you an estimated CPU time consumption for your script, which under Unix uses the resource module to avoid the wraparound problems of time.clock(). Under Unix, an estimate of time spent on system tasks is also given (for Windows platforms this is reported as 0.0). If -t is given, an additional -N<N> option can be given, where <N> must be an integer indicating how many times you want the script to run. The final timing report will include total and per run results. For example (testing the script uniq_stable.py):: In [1]: run -t uniq_stable IPython CPU timings (estimated):\\ User : 0.19597 s.\\ System: 0.0 s.\\ In [2]: run -t -N5 uniq_stable IPython CPU timings (estimated):\\ Total runs performed: 5\\ Times : Total Per run\\ User : 0.910862 s, 0.1821724 s.\\ System: 0.0 s, 0.0 s. -d: run your program under the control of pdb, the Python debugger. This allows you to execute your program step by step, watch variables, etc. Internally, what IPython does is similar to calling: pdb.run('execfile("YOURFILENAME")') with a breakpoint set on line 1 of your file. You can change the line number for this automatic breakpoint to be <N> by using the -bN option (where N must be an integer). For example:: %run -d -b40 myscript will set the first breakpoint at line 40 in myscript.py. Note that the first breakpoint must be set on a line which actually does something (not a comment or docstring) for it to stop execution. When the pdb debugger starts, you will see a (Pdb) prompt. You must first enter 'c' (without quotes) to start execution up to the first breakpoint. Entering 'help' gives information about the use of the debugger. You can easily see pdb's full documentation with "import pdb;pdb.help()" at a prompt. -p: run program under the control of the Python profiler module (which prints a detailed report of execution times, function calls, etc). You can pass other options after -p which affect the behavior of the profiler itself. See the docs for %prun for details. In this mode, the program's variables do NOT propagate back to the IPython interactive namespace (because they remain in the namespace where the profiler executes them). Internally this triggers a call to %prun, see its documentation for details on the options available specifically for profiling. There is one special usage for which the text above doesn't apply: if the filename ends with .ipy, the file is run as ipython script, just as if the commands were written on IPython prompt. -m: specify module name to load instead of script path. Similar to the -m option for the python interpreter. Use this option last if you want to combine with other %run options. Unlike the python interpreter only source modules are allowed no .pyc or .pyo files. For example:: %run -m example will run the example module. """ # get arguments and set sys.argv for program to be run. opts, arg_lst = self.parse_options(parameter_s, 'nidtN:b:pD:l:rs:T:em:', mode='list', list_all=1) if "m" in opts: modulename = opts["m"][0] modpath = find_mod(modulename) if modpath is None: warn('%r is not a valid modulename on sys.path'%modulename) return arg_lst = [modpath] + arg_lst try: filename = file_finder(arg_lst[0]) except IndexError: warn('you must provide at least a filename.') print '\n%run:\n', oinspect.getdoc(self.run) return except IOError as e: try: msg = str(e) except UnicodeError: msg = e.message error(msg) return if filename.lower().endswith('.ipy'): self.shell.safe_execfile_ipy(filename) return # Control the response to exit() calls made by the script being run exit_ignore = 'e' in opts # Make sure that the running script gets a proper sys.argv as if it # were run from a system shell. save_argv = sys.argv # save it for later restoring # simulate shell expansion on arguments, at least tilde expansion args = [ os.path.expanduser(a) for a in arg_lst[1:] ] sys.argv = [filename] + args # put in the proper filename # protect sys.argv from potential unicode strings on Python 2: if not py3compat.PY3: sys.argv = [ py3compat.cast_bytes(a) for a in sys.argv ] if 'i' in opts: # Run in user's interactive namespace prog_ns = self.shell.user_ns __name__save = self.shell.user_ns['__name__'] prog_ns['__name__'] = '__main__' main_mod = self.shell.new_main_mod(prog_ns) else: # Run in a fresh, empty namespace if 'n' in opts: name = os.path.splitext(os.path.basename(filename))[0] else: name = '__main__' main_mod = self.shell.new_main_mod() prog_ns = main_mod.__dict__ prog_ns['__name__'] = name # Since '%run foo' emulates 'python foo.py' at the cmd line, we must # set the __file__ global in the script's namespace prog_ns['__file__'] = filename # pickle fix. See interactiveshell for an explanation. But we need to # make sure that, if we overwrite __main__, we replace it at the end main_mod_name = prog_ns['__name__'] if main_mod_name == '__main__': restore_main = sys.modules['__main__'] else: restore_main = False # This needs to be undone at the end to prevent holding references to # every single object ever created. sys.modules[main_mod_name] = main_mod try: stats = None with self.shell.readline_no_record: if 'p' in opts: stats = self.prun('', None, False, opts, arg_lst, prog_ns) else: if 'd' in opts: deb = debugger.Pdb(self.shell.colors) # reset Breakpoint state, which is moronically kept # in a class bdb.Breakpoint.next = 1 bdb.Breakpoint.bplist = {} bdb.Breakpoint.bpbynumber = [None] # Set an initial breakpoint to stop execution maxtries = 10 bp = int(opts.get('b', [1])[0]) checkline = deb.checkline(filename, bp) if not checkline: for bp in range(bp + 1, bp + maxtries + 1): if deb.checkline(filename, bp): break else: msg = ("\nI failed to find a valid line to set " "a breakpoint\n" "after trying up to line: %s.\n" "Please set a valid breakpoint manually " "with the -b option." % bp) error(msg) return # if we find a good linenumber, set the breakpoint deb.do_break('%s:%s' % (filename, bp)) # Start file run print "NOTE: Enter 'c' at the", print "%s prompt to start your script." % deb.prompt ns = {'execfile': py3compat.execfile, 'prog_ns': prog_ns} try: deb.run('execfile("%s", prog_ns)' % filename, ns) except: etype, value, tb = sys.exc_info() # Skip three frames in the traceback: the %run one, # one inside bdb.py, and the command-line typed by the # user (run by exec in pdb itself). self.shell.InteractiveTB(etype, value, tb, tb_offset=3) else: if runner is None: runner = self.default_runner if runner is None: runner = self.shell.safe_execfile if 't' in opts: # timed execution try: nruns = int(opts['N'][0]) if nruns < 1: error('Number of runs must be >=1') return except (KeyError): nruns = 1 twall0 = time.time() if nruns == 1: t0 = clock2() runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) t1 = clock2() t_usr = t1[0] - t0[0] t_sys = t1[1] - t0[1] print "\nIPython CPU timings (estimated):" print " User : %10.2f s." % t_usr print " System : %10.2f s." % t_sys else: runs = range(nruns) t0 = clock2() for nr in runs: runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) t1 = clock2() t_usr = t1[0] - t0[0] t_sys = t1[1] - t0[1] print "\nIPython CPU timings (estimated):" print "Total runs performed:", nruns print " Times : %10.2f %10.2f" % ('Total', 'Per run') print " User : %10.2f s, %10.2f s." % (t_usr, t_usr / nruns) print " System : %10.2f s, %10.2f s." % (t_sys, t_sys / nruns) twall1 = time.time() print "Wall time: %10.2f s." % (twall1 - twall0) else: # regular execution runner(filename, prog_ns, prog_ns, exit_ignore=exit_ignore) if 'i' in opts: self.shell.user_ns['__name__'] = __name__save else: # The shell MUST hold a reference to prog_ns so after %run # exits, the python deletion mechanism doesn't zero it out # (leaving dangling references). self.shell.cache_main_mod(prog_ns, filename) # update IPython interactive namespace # Some forms of read errors on the file may mean the # __name__ key was never set; using pop we don't have to # worry about a possible KeyError. prog_ns.pop('__name__', None) self.shell.user_ns.update(prog_ns) finally: # It's a bit of a mystery why, but __builtins__ can change from # being a module to becoming a dict missing some key data after # %run. As best I can see, this is NOT something IPython is doing # at all, and similar problems have been reported before: # http://coding.derkeiler.com/Archive/Python/comp.lang.python/2004-10/0188.html # Since this seems to be done by the interpreter itself, the best # we can do is to at least restore __builtins__ for the user on # exit. self.shell.user_ns['__builtins__'] = builtin_mod # Ensure key global structures are restored sys.argv = save_argv if restore_main: sys.modules['__main__'] = restore_main else: # Remove from sys.modules the reference to main_mod we'd # added. Otherwise it will trap references to objects # contained therein. del sys.modules[main_mod_name] return stats @skip_doctest @line_cell_magic def timeit(self, line='', cell=None): """Time execution of a Python statement or expression Usage, in line mode: %timeit [-n<N> -r<R> [-t|-c]] statement or in cell mode: %%timeit [-n<N> -r<R> [-t|-c]] setup_code code code... Time execution of a Python statement or expression using the timeit module. This function can be used both as a line and cell magic: - In line mode you can time a single-line statement (though multiple ones can be chained with using semicolons). - In cell mode, the statement in the first line is used as setup code (executed but not timed) and the body of the cell is timed. The cell body has access to any variables created in the setup code. Options: -n<N>: execute the given statement <N> times in a loop. If this value is not given, a fitting value is chosen. -r<R>: repeat the loop iteration <R> times and take the best result. Default: 3 -t: use time.time to measure the time, which is the default on Unix. This function measures wall time. -c: use time.clock to measure the time, which is the default on Windows and measures wall time. On Unix, resource.getrusage is used instead and returns the CPU user time. -p<P>: use a precision of <P> digits to display the timing result. Default: 3 Examples -------- :: In [1]: %timeit pass 10000000 loops, best of 3: 53.3 ns per loop In [2]: u = None In [3]: %timeit u is None 10000000 loops, best of 3: 184 ns per loop In [4]: %timeit -r 4 u == None 1000000 loops, best of 4: 242 ns per loop In [5]: import time In [6]: %timeit -n1 time.sleep(2) 1 loops, best of 3: 2 s per loop The times reported by %timeit will be slightly higher than those reported by the timeit.py script when variables are accessed. This is due to the fact that %timeit executes the statement in the namespace of the shell, compared with timeit.py, which uses a single setup statement to import function or create variables. Generally, the bias does not matter as long as results from timeit.py are not mixed with those from %timeit.""" import timeit import math # XXX: Unfortunately the unicode 'micro' symbol can cause problems in # certain terminals. Until we figure out a robust way of # auto-detecting if the terminal can deal with it, use plain 'us' for # microseconds. I am really NOT happy about disabling the proper # 'micro' prefix, but crashing is worse... If anyone knows what the # right solution for this is, I'm all ears... # # Note: using # # s = u'\xb5' # s.encode(sys.getdefaultencoding()) # # is not sufficient, as I've seen terminals where that fails but # print s # # succeeds # # See bug: https://bugs.launchpad.net/ipython/+bug/348466 #units = [u"s", u"ms",u'\xb5',"ns"] units = [u"s", u"ms",u'us',"ns"] scaling = [1, 1e3, 1e6, 1e9] opts, stmt = self.parse_options(line,'n:r:tcp:', posix=False, strict=False) if stmt == "" and cell is None: return timefunc = timeit.default_timer number = int(getattr(opts, "n", 0)) repeat = int(getattr(opts, "r", timeit.default_repeat)) precision = int(getattr(opts, "p", 3)) if hasattr(opts, "t"): timefunc = time.time if hasattr(opts, "c"): timefunc = clock timer = timeit.Timer(timer=timefunc) # this code has tight coupling to the inner workings of timeit.Timer, # but is there a better way to achieve that the code stmt has access # to the shell namespace? transform = self.shell.input_splitter.transform_cell if cell is None: # called as line magic setup = 'pass' stmt = timeit.reindent(transform(stmt), 8) else: setup = timeit.reindent(transform(stmt), 4) stmt = timeit.reindent(transform(cell), 8) # From Python 3.3, this template uses new-style string formatting. if sys.version_info >= (3, 3): src = timeit.template.format(stmt=stmt, setup=setup) else: src = timeit.template % dict(stmt=stmt, setup=setup) # Track compilation time so it can be reported if too long # Minimum time above which compilation time will be reported tc_min = 0.1 t0 = clock() code = compile(src, "<magic-timeit>", "exec") tc = clock()-t0 ns = {} exec code in self.shell.user_ns, ns timer.inner = ns["inner"] if number == 0: # determine number so that 0.2 <= total time < 2.0 number = 1 for i in range(1, 10): if timer.timeit(number) >= 0.2: break number *= 10 best = min(timer.repeat(repeat, number)) / number if best > 0.0 and best < 1000.0: order = min(-int(math.floor(math.log10(best)) // 3), 3) elif best >= 1000.0: order = 0 else: order = 3 print u"%d loops, best of %d: %.*g %s per loop" % (number, repeat, precision, best * scaling[order], units[order]) if tc > tc_min: print "Compiler time: %.2f s" % tc @skip_doctest @needs_local_scope @line_magic def time(self,parameter_s, user_locals): """Time execution of a Python statement or expression. The CPU and wall clock times are printed, and the value of the expression (if any) is returned. Note that under Win32, system time is always reported as 0, since it can not be measured. This function provides very basic timing functionality. In Python 2.3, the timeit module offers more control and sophistication, so this could be rewritten to use it (patches welcome). Examples -------- :: In [1]: time 2**128 CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 Out[1]: 340282366920938463463374607431768211456L In [2]: n = 1000000 In [3]: time sum(range(n)) CPU times: user 1.20 s, sys: 0.05 s, total: 1.25 s Wall time: 1.37 Out[3]: 499999500000L In [4]: time print 'hello world' hello world CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 Note that the time needed by Python to compile the given expression will be reported if it is more than 0.1s. In this example, the actual exponentiation is done by Python at compilation time, so while the expression can take a noticeable amount of time to compute, that time is purely due to the compilation: In [5]: time 3**9999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s In [6]: time 3**999999; CPU times: user 0.00 s, sys: 0.00 s, total: 0.00 s Wall time: 0.00 s Compiler : 0.78 s """ # fail immediately if the given expression can't be compiled expr = self.shell.prefilter(parameter_s,False) # Minimum time above which compilation time will be reported tc_min = 0.1 try: mode = 'eval' t0 = clock() code = compile(expr,'<timed eval>',mode) tc = clock()-t0 except SyntaxError: mode = 'exec' t0 = clock() code = compile(expr,'<timed exec>',mode) tc = clock()-t0 # skew measurement as little as possible glob = self.shell.user_ns wtime = time.time # time execution wall_st = wtime() if mode=='eval': st = clock2() out = eval(code, glob, user_locals) end = clock2() else: st = clock2() exec code in glob, user_locals end = clock2() out = None wall_end = wtime() # Compute actual times and report wall_time = wall_end-wall_st cpu_user = end[0]-st[0] cpu_sys = end[1]-st[1] cpu_tot = cpu_user+cpu_sys print "CPU times: user %.2f s, sys: %.2f s, total: %.2f s" % \ (cpu_user,cpu_sys,cpu_tot) print "Wall time: %.2f s" % wall_time if tc > tc_min: print "Compiler : %.2f s" % tc return out @skip_doctest @line_magic def macro(self, parameter_s=''): """Define a macro for future re-execution. It accepts ranges of history, filenames or string objects. Usage:\\ %macro [options] name n1-n2 n3-n4 ... n5 .. n6 ... Options: -r: use 'raw' input. By default, the 'processed' history is used, so that magics are loaded in their transformed version to valid Python. If this option is given, the raw input as typed as the command line is used instead. This will define a global variable called `name` which is a string made of joining the slices and lines you specify (n1,n2,... numbers above) from your input history into a single string. This variable acts like an automatic function which re-executes those lines as if you had typed them. You just type 'name' at the prompt and the code executes. The syntax for indicating input ranges is described in %history. Note: as a 'hidden' feature, you can also use traditional python slice notation, where N:M means numbers N through M-1. For example, if your history contains (%hist prints it):: 44: x=1 45: y=3 46: z=x+y 47: print x 48: a=5 49: print 'x',x,'y',y you can create a macro with lines 44 through 47 (included) and line 49 called my_macro with:: In [55]: %macro my_macro 44-47 49 Now, typing `my_macro` (without quotes) will re-execute all this code in one pass. You don't need to give the line-numbers in order, and any given line number can appear multiple times. You can assemble macros with any lines from your input history in any order. The macro is a simple object which holds its value in an attribute, but IPython's display system checks for macros and executes them as code instead of printing them when you type their name. You can view a macro's contents by explicitly printing it with:: print macro_name """ opts,args = self.parse_options(parameter_s,'r',mode='list') if not args: # List existing macros return sorted(k for k,v in self.shell.user_ns.iteritems() if\ isinstance(v, Macro)) if len(args) == 1: raise UsageError( "%macro insufficient args; usage '%macro name n1-n2 n3-4...") name, codefrom = args[0], " ".join(args[1:]) #print 'rng',ranges # dbg try: lines = self.shell.find_user_code(codefrom, 'r' in opts) except (ValueError, TypeError) as e: print e.args[0] return macro = Macro(lines) self.shell.define_macro(name, macro) print 'Macro `%s` created. To execute, type its name (without quotes).' % name print '=== Macro contents: ===' print macro, @magic_arguments.magic_arguments() @magic_arguments.argument('output', type=str, default='', nargs='?', help="""The name of the variable in which to store output. This is a utils.io.CapturedIO object with stdout/err attributes for the text of the captured output. CapturedOutput also has a show() method for displaying the output, and __call__ as well, so you can use that to quickly display the output. If unspecified, captured output is discarded. """ ) @magic_arguments.argument('--no-stderr', action="store_true", help="""Don't capture stderr.""" ) @magic_arguments.argument('--no-stdout', action="store_true", help="""Don't capture stdout.""" ) @cell_magic def capture(self, line, cell): """run the cell, capturing stdout/err""" args = magic_arguments.parse_argstring(self.capture, line) out = not args.no_stdout err = not args.no_stderr with capture_output(out, err) as io: self.shell.run_cell(cell) if args.output: self.shell.user_ns[args.output] = io
bsd-3-clause
tumbl3w33d/ansible
lib/ansible/modules/cloud/amazon/s3_website.py
13
11787
#!/usr/bin/python # Copyright: Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: s3_website short_description: Configure an s3 bucket as a website description: - Configure an s3 bucket as a website version_added: "2.2" requirements: [ boto3 ] author: Rob White (@wimnat) options: name: description: - "Name of the s3 bucket" required: true type: str error_key: description: - "The object key name to use when a 4XX class error occurs. To remove an error key, set to None." type: str redirect_all_requests: description: - "Describes the redirect behavior for every request to this s3 bucket website endpoint" type: str state: description: - "Add or remove s3 website configuration" choices: [ 'present', 'absent' ] required: true type: str suffix: description: - > Suffix that is appended to a request that is for a directory on the website endpoint (e.g. if the suffix is index.html and you make a request to samplebucket/images/ the data that is returned will be for the object with the key name images/index.html). The suffix must not include a slash character. default: index.html type: str extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Configure an s3 bucket to redirect all requests to example.com - s3_website: name: mybucket.com redirect_all_requests: example.com state: present # Remove website configuration from an s3 bucket - s3_website: name: mybucket.com state: absent # Configure an s3 bucket as a website with index and error pages - s3_website: name: mybucket.com suffix: home.htm error_key: errors/404.htm state: present ''' RETURN = ''' index_document: description: index document type: complex returned: always contains: suffix: description: suffix that is appended to a request that is for a directory on the website endpoint returned: success type: str sample: index.html error_document: description: error document type: complex returned: always contains: key: description: object key name to use when a 4XX class error occurs returned: when error_document parameter set type: str sample: error.html redirect_all_requests_to: description: where to redirect requests type: complex returned: always contains: host_name: description: name of the host where requests will be redirected. returned: when redirect all requests parameter set type: str sample: ansible.com protocol: description: protocol to use when redirecting requests. returned: when redirect all requests parameter set type: str sample: https routing_rules: description: routing rules type: list returned: always contains: condition: type: complex description: A container for describing a condition that must be met for the specified redirect to apply. contains: http_error_code_returned_equals: description: The HTTP error code when the redirect is applied. returned: always type: str key_prefix_equals: description: object key name prefix when the redirect is applied. For example, to redirect requests for ExamplePage.html, the key prefix will be ExamplePage.html returned: when routing rule present type: str sample: docs/ redirect: type: complex description: Container for redirect information. returned: always contains: host_name: description: name of the host where requests will be redirected. returned: when host name set as part of redirect rule type: str sample: ansible.com http_redirect_code: description: The HTTP redirect code to use on the response. returned: when routing rule present type: str protocol: description: Protocol to use when redirecting requests. returned: when routing rule present type: str sample: http replace_key_prefix_with: description: object key prefix to use in the redirect request returned: when routing rule present type: str sample: documents/ replace_key_with: description: object key prefix to use in the redirect request returned: when routing rule present type: str sample: documents/ ''' import time try: import boto3 from botocore.exceptions import ClientError, ParamValidationError HAS_BOTO3 = True except ImportError: HAS_BOTO3 = False from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import (HAS_BOTO3, boto3_conn, camel_dict_to_snake_dict, ec2_argument_spec, get_aws_connection_info) def _create_redirect_dict(url): redirect_dict = {} url_split = url.split(':') # Did we split anything? if len(url_split) == 2: redirect_dict[u'Protocol'] = url_split[0] redirect_dict[u'HostName'] = url_split[1].replace('//', '') elif len(url_split) == 1: redirect_dict[u'HostName'] = url_split[0] else: raise ValueError('Redirect URL appears invalid') return redirect_dict def _create_website_configuration(suffix, error_key, redirect_all_requests): website_configuration = {} if error_key is not None: website_configuration['ErrorDocument'] = {'Key': error_key} if suffix is not None: website_configuration['IndexDocument'] = {'Suffix': suffix} if redirect_all_requests is not None: website_configuration['RedirectAllRequestsTo'] = _create_redirect_dict(redirect_all_requests) return website_configuration def enable_or_update_bucket_as_website(client_connection, resource_connection, module): bucket_name = module.params.get("name") redirect_all_requests = module.params.get("redirect_all_requests") # If redirect_all_requests is set then don't use the default suffix that has been set if redirect_all_requests is not None: suffix = None else: suffix = module.params.get("suffix") error_key = module.params.get("error_key") changed = False try: bucket_website = resource_connection.BucketWebsite(bucket_name) except ClientError as e: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) try: website_config = client_connection.get_bucket_website(Bucket=bucket_name) except ClientError as e: if e.response['Error']['Code'] == 'NoSuchWebsiteConfiguration': website_config = None else: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) if website_config is None: try: bucket_website.put(WebsiteConfiguration=_create_website_configuration(suffix, error_key, redirect_all_requests)) changed = True except (ClientError, ParamValidationError) as e: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) except ValueError as e: module.fail_json(msg=str(e)) else: try: if (suffix is not None and website_config['IndexDocument']['Suffix'] != suffix) or \ (error_key is not None and website_config['ErrorDocument']['Key'] != error_key) or \ (redirect_all_requests is not None and website_config['RedirectAllRequestsTo'] != _create_redirect_dict(redirect_all_requests)): try: bucket_website.put(WebsiteConfiguration=_create_website_configuration(suffix, error_key, redirect_all_requests)) changed = True except (ClientError, ParamValidationError) as e: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) except KeyError as e: try: bucket_website.put(WebsiteConfiguration=_create_website_configuration(suffix, error_key, redirect_all_requests)) changed = True except (ClientError, ParamValidationError) as e: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) except ValueError as e: module.fail_json(msg=str(e)) # Wait 5 secs before getting the website_config again to give it time to update time.sleep(5) website_config = client_connection.get_bucket_website(Bucket=bucket_name) module.exit_json(changed=changed, **camel_dict_to_snake_dict(website_config)) def disable_bucket_as_website(client_connection, module): changed = False bucket_name = module.params.get("name") try: client_connection.get_bucket_website(Bucket=bucket_name) except ClientError as e: if e.response['Error']['Code'] == 'NoSuchWebsiteConfiguration': module.exit_json(changed=changed) else: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) try: client_connection.delete_bucket_website(Bucket=bucket_name) changed = True except ClientError as e: module.fail_json(msg=e.message, **camel_dict_to_snake_dict(e.response)) module.exit_json(changed=changed) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( name=dict(type='str', required=True), state=dict(type='str', required=True, choices=['present', 'absent']), suffix=dict(type='str', required=False, default='index.html'), error_key=dict(type='str', required=False), redirect_all_requests=dict(type='str', required=False) ) ) module = AnsibleModule( argument_spec=argument_spec, mutually_exclusive=[ ['redirect_all_requests', 'suffix'], ['redirect_all_requests', 'error_key'] ]) if not HAS_BOTO3: module.fail_json(msg='boto3 required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module, boto3=True) if region: client_connection = boto3_conn(module, conn_type='client', resource='s3', region=region, endpoint=ec2_url, **aws_connect_params) resource_connection = boto3_conn(module, conn_type='resource', resource='s3', region=region, endpoint=ec2_url, **aws_connect_params) else: module.fail_json(msg="region must be specified") state = module.params.get("state") if state == 'present': enable_or_update_bucket_as_website(client_connection, resource_connection, module) elif state == 'absent': disable_bucket_as_website(client_connection, module) if __name__ == '__main__': main()
gpl-3.0
dalejung/trtools
trtools/core/topper.py
1
4199
import bottleneck as nb import pandas as pd import numpy as np from trtools.monkey import patch def bn_topn(arr, N, ascending=None): """ Return the top N results. Negative N will give N lowest results Paramters --------- arr : Series one dimension array N : int number of elements to return. Negative numbers will return smallest ascending : bool Ordering of the return values. Default behavior is greatest absolute magnitude. Note ---- Default ascending order depends on N and whether you are looking for the top and bottom results. If you are looking for the top results, the most positive results will come first. If you are looking for the bottom results, then the most negative results comes first """ if arr.ndim > 1: raise Exception("Only works on ndim=1") if ascending is None: ascending = not N > 0 arr = arr[~np.isnan(arr)] if N > 0: # nlargest N = min(abs(N), len(arr)) N = len(arr) - abs(N) sl = slice(N, None) else: # nsmallest N = min(abs(N), len(arr)) sl = slice(None, N) if N == 0: bn_res = arr else: out = nb.partsort(arr, N) bn_res = out[sl] bn_res = np.sort(bn_res) # sort output if not ascending: bn_res = bn_res[::-1] return bn_res def bn_topargn(arr, N, ascending=None): """ Return the indices of the top N results. The following should be equivalent >>> res1 = arr[bn_topargn(arr, 10)] >>> res2 = bn_topn(arr, 10) >>> np.all(res1 == res2) True """ if arr.ndim > 1: raise Exception("Only works on ndim=1") if ascending is None: ascending = not N > 0 na_mask = np.isnan(arr) has_na = na_mask.sum() if has_na: # store the old indices for translating back later old_index_map = np.where(~na_mask)[0] arr = arr[~na_mask] if N > 0: # nlargest N = len(arr) - abs(N) sl = slice(N, None) else: # nsmallest N = abs(N) sl = slice(None, N) out = nb.argpartsort(arr, N) index = out[sl] # sort the index by their values index_sort = np.argsort(arr[index]) if not ascending: index_sort = index_sort[::-1] index = index[index_sort] # index is only correct with arr without nans. # Map back to old_index if needed if has_na: index = old_index_map[index] return index topn = bn_topn topargn = bn_topargn @patch(pd.Series, 'topn') def _topn_series(self, N, ascending=None): return pd.Series(topn(self, N, ascending=ascending)) @patch(pd.Series, 'topargn') def _topargn_series(self, N, ascending=None): return pd.Series(topargn(self, N, ascending=ascending)) # bn.partsort works on matrix, but i dunno how to handle nans in that case # i suppose I could min/max and then set Nan to sentinal values? @patch(pd.DataFrame, 'topn', override=True) def topn_df(self, N, ascending=None, wrap=True): vals = self.values rows = vals.shape[0] # don't make the return have more columns than the dataframes cols = min(len(self.columns), abs(N)) ret = np.ndarray((rows, cols)) ret[:] = np.nan for i in range(rows): r = topn(vals[i], N=N, ascending=ascending) ret[i][:len(r)] = r if wrap: return pd.DataFrame(ret, index=self.index) return np.array(ret) @patch(pd.DataFrame, 'topargn', override=True) def topargn_df(self, N, ascending=None, wrap=True): vals = self.values rows = vals.shape[0] ret = np.ndarray((rows, abs(N)), dtype=int) for i in range(rows): r = topargn(vals[i], N=N, ascending=ascending) ret[i] = r if wrap: return pd.DataFrame(ret, index=self.index) return np.array(ret) @patch(pd.DataFrame, 'topindexn', override=True) def topindexn_df(self, N, ascending=None): """ Pretty much topargn, except it returns column key instead of positional int """ # get pos args ret = topargn_df(self, N=N, ascending=ascending, wrap=False) # grab column values ret = self.columns[ret] return pd.DataFrame(ret, index=self.index)
mit
qubesuser/qubes-core-admin
qubes/app.py
1
42427
# # The Qubes OS Project, https://www.qubes-os.org/ # # Copyright (C) 2010-2015 Joanna Rutkowska <[email protected]> # Copyright (C) 2011-2015 Marek Marczykowski-Górecki # <[email protected]> # Copyright (C) 2014-2015 Wojtek Porczyk <[email protected]> # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, see <https://www.gnu.org/licenses/>. # import collections import errno import functools import grp import logging import os import random import subprocess import sys import tempfile import time import traceback import uuid import itertools import lxml.etree import jinja2 import libvirt try: import xen.lowlevel.xs # pylint: disable=wrong-import-order import xen.lowlevel.xc # pylint: disable=wrong-import-order except ImportError: pass if os.name == 'posix': # pylint: disable=wrong-import-order import fcntl elif os.name == 'nt': # pylint: disable=import-error import win32con import win32file import pywintypes else: raise RuntimeError("Qubes works only on POSIX or WinNT systems") # pylint: disable=wrong-import-position import qubes import qubes.ext import qubes.utils import qubes.storage import qubes.vm import qubes.vm.adminvm import qubes.vm.qubesvm import qubes.vm.templatevm # pylint: enable=wrong-import-position class VirDomainWrapper(object): # pylint: disable=too-few-public-methods def __init__(self, connection, vm): self._connection = connection self._vm = vm def _reconnect_if_dead(self): is_dead = not self._vm.connect().isAlive() if is_dead: # pylint: disable=protected-access self._connection._reconnect_if_dead() self._vm = self._connection._conn.lookupByUUID(self._vm.UUID()) return is_dead def __getattr__(self, attrname): attr = getattr(self._vm, attrname) if not isinstance(attr, collections.Callable): return attr @functools.wraps(attr) def wrapper(*args, **kwargs): try: return attr(*args, **kwargs) except libvirt.libvirtError: if self._reconnect_if_dead(): return getattr(self._vm, attrname)(*args, **kwargs) raise return wrapper class VirConnectWrapper(object): # pylint: disable=too-few-public-methods def __init__(self, uri): self._conn = libvirt.open(uri) def _reconnect_if_dead(self): is_dead = not self._conn.isAlive() if is_dead: self._conn = libvirt.open(self._conn.getURI()) # TODO: re-register event handlers return is_dead def _wrap_domain(self, ret): if isinstance(ret, libvirt.virDomain): ret = VirDomainWrapper(self, ret) return ret def __getattr__(self, attrname): attr = getattr(self._conn, attrname) if not isinstance(attr, collections.Callable): return attr if attrname == 'close': return attr @functools.wraps(attr) def wrapper(*args, **kwargs): try: return self._wrap_domain(attr(*args, **kwargs)) except libvirt.libvirtError: if self._reconnect_if_dead(): return self._wrap_domain( getattr(self._conn, attrname)(*args, **kwargs)) raise return wrapper class VMMConnection(object): '''Connection to Virtual Machine Manager (libvirt)''' def __init__(self, offline_mode=None): ''' :param offline_mode: enable/disable offline mode; default is to enable when running in chroot as root, otherwise disable ''' if offline_mode is None: offline_mode = bool(os.getuid() == 0 and os.stat('/') != os.stat('/proc/1/root/.')) self._offline_mode = offline_mode self._libvirt_conn = None self._xs = None self._xc = None @property def offline_mode(self): '''Check or enable offline mode (do not actually connect to vmm)''' return self._offline_mode def _libvirt_error_handler(self, ctx, error): pass def init_vmm_connection(self): '''Initialise connection This method is automatically called when getting''' if self._libvirt_conn is not None: # Already initialized return if self._offline_mode: # Do not initialize in offline mode raise qubes.exc.QubesException( 'VMM operations disabled in offline mode') if 'xen.lowlevel.xs' in sys.modules: self._xs = xen.lowlevel.xs.xs() if 'xen.lowlevel.xc' in sys.modules: self._xc = xen.lowlevel.xc.xc() self._libvirt_conn = VirConnectWrapper( qubes.config.defaults['libvirt_uri']) libvirt.registerErrorHandler(self._libvirt_error_handler, None) @property def libvirt_conn(self): '''Connection to libvirt''' self.init_vmm_connection() return self._libvirt_conn @property def xs(self): '''Connection to Xen Store This property in available only when running on Xen. ''' # XXX what about the case when we run under KVM, # but xen modules are importable? if 'xen.lowlevel.xs' not in sys.modules: raise AttributeError( 'xs object is available under Xen hypervisor only') self.init_vmm_connection() return self._xs @property def xc(self): '''Connection to Xen This property in available only when running on Xen. ''' # XXX what about the case when we run under KVM, # but xen modules are importable? if 'xen.lowlevel.xc' not in sys.modules: raise AttributeError( 'xc object is available under Xen hypervisor only') self.init_vmm_connection() return self._xc def close(self): libvirt.registerErrorHandler(None, None) if self._xs: self._xs.close() self._xs = None if self._libvirt_conn: self._libvirt_conn.close() self._libvirt_conn = None self._xc = None # and pray it will get garbage-collected class QubesHost(object): '''Basic information about host machine :param qubes.Qubes app: Qubes application context (must have \ :py:attr:`Qubes.vmm` attribute defined) ''' def __init__(self, app): self.app = app self._no_cpus = None self._total_mem = None self._physinfo = None def _fetch(self): if self._no_cpus is not None: return # pylint: disable=unused-variable (model, memory, cpus, mhz, nodes, socket, cores, threads) = \ self.app.vmm.libvirt_conn.getInfo() self._total_mem = int(memory) * 1024 self._no_cpus = cpus self.app.log.debug('QubesHost: no_cpus={} memory_total={}'.format( self.no_cpus, self.memory_total)) try: self.app.log.debug('QubesHost: xen_free_memory={}'.format( self.get_free_xen_memory())) except NotImplementedError: pass @property def memory_total(self): '''Total memory, in kbytes''' if self.app.vmm.offline_mode: return 2**64-1 self._fetch() return self._total_mem @property def no_cpus(self): '''Number of CPUs''' if self.app.vmm.offline_mode: return 42 self._fetch() return self._no_cpus def get_free_xen_memory(self): '''Get free memory from Xen's physinfo. :raises NotImplementedError: when not under Xen ''' try: self._physinfo = self.app.xc.physinfo() except AttributeError: raise NotImplementedError('This function requires Xen hypervisor') return int(self._physinfo['free_memory']) def get_vm_stats(self, previous_time=None, previous=None, only_vm=None): '''Measure cpu usage for all domains at once. If previous measurements are given, CPU usage will be given in percents of time. Otherwise only absolute value (seconds). Return a tuple of (measurements_time, measurements), where measurements is a dictionary with key: domid, value: dict: - cpu_time - absolute CPU usage (seconds since its startup) - cpu_usage - CPU usage in % - memory_kb - current memory assigned, in kb This function requires Xen hypervisor. ..warning: This function may return info about implementation-specific VMs, like stubdomains for HVM :param previous: previous measurement :param previous_time: time of previous measurement :param only_vm: get measurements only for this VM :raises NotImplementedError: when not under Xen ''' if (previous_time is None) != (previous is None): raise ValueError( 'previous and previous_time must be given together (or none)') if previous is None: previous = {} current_time = time.time() current = {} try: if only_vm: xid = only_vm.xid if xid < 0: raise qubes.exc.QubesVMNotRunningError(only_vm) info = self.app.vmm.xc.domain_getinfo(xid, 1) if info[0]['domid'] != xid: raise qubes.exc.QubesVMNotRunningError(only_vm) else: info = self.app.vmm.xc.domain_getinfo(0, 1024) except AttributeError: raise NotImplementedError( 'This function requires Xen hypervisor') # TODO: add stubdomain stats to actual VMs for vm in info: domid = vm['domid'] current[domid] = {} current[domid]['memory_kb'] = vm['mem_kb'] current[domid]['cpu_time'] = int( vm['cpu_time'] / max(vm['online_vcpus'], 1)) if domid in previous: current[domid]['cpu_usage'] = int( (current[domid]['cpu_time'] - previous[domid]['cpu_time']) / 1000 ** 3 * 100 / (current_time - previous_time)) if current[domid]['cpu_usage'] < 0: # VM has been rebooted current[domid]['cpu_usage'] = 0 else: current[domid]['cpu_usage'] = 0 return (current_time, current) class VMCollection(object): '''A collection of Qubes VMs VMCollection supports ``in`` operator. You may test for ``qid``, ``name`` and whole VM object's presence. Iterating over VMCollection will yield machine objects. ''' def __init__(self, app): self.app = app self._dict = dict() def close(self): del self.app self._dict.clear() del self._dict def __repr__(self): return '<{} {!r}>'.format( self.__class__.__name__, list(sorted(self.keys()))) def items(self): '''Iterate over ``(qid, vm)`` pairs''' for qid in self.qids(): yield (qid, self[qid]) def qids(self): '''Iterate over all qids qids are sorted by numerical order. ''' return iter(sorted(self._dict.keys())) keys = qids def names(self): '''Iterate over all names names are sorted by lexical order. ''' return iter(sorted(vm.name for vm in self._dict.values())) def vms(self): '''Iterate over all machines vms are sorted by qid. ''' return iter(sorted(self._dict.values())) __iter__ = vms values = vms def add(self, value, _enable_events=True): '''Add VM to collection :param qubes.vm.BaseVM value: VM to add :raises TypeError: when value is of wrong type :raises ValueError: when there is already VM which has equal ``qid`` ''' # this violates duck typing, but is needed # for VMProperty to function correctly if not isinstance(value, qubes.vm.BaseVM): raise TypeError('{} holds only BaseVM instances'.format( self.__class__.__name__)) if value.qid in self: raise ValueError('This collection already holds VM that has ' 'qid={!r} ({!r})'.format(value.qid, self[value.qid])) if value.name in self: raise ValueError('A VM named {!s} already exists' .format(value.name)) self._dict[value.qid] = value if _enable_events: value.events_enabled = True self.app.fire_event('domain-add', vm=value) return value def __getitem__(self, key): if isinstance(key, int): return self._dict[key] if isinstance(key, str): for vm in self: if vm.name == key: return vm raise KeyError(key) if isinstance(key, qubes.vm.BaseVM): key = key.uuid if isinstance(key, uuid.UUID): for vm in self: if vm.uuid == key: return vm raise KeyError(key) raise KeyError(key) def __delitem__(self, key): vm = self[key] if not vm.is_halted(): raise qubes.exc.QubesVMNotHaltedError(vm) self.app.fire_event('domain-pre-delete', pre_event=True, vm=vm) try: vm.libvirt_domain.undefine() except libvirt.libvirtError as e: if e.get_error_code() == libvirt.VIR_ERR_NO_DOMAIN: # already undefined pass del self._dict[vm.qid] self.app.fire_event('domain-delete', vm=vm) def __contains__(self, key): return any((key == vm or key == vm.qid or key == vm.name) for vm in self) def __len__(self): return len(self._dict) def get_vms_based_on(self, template): template = self[template] return set(vm for vm in self if hasattr(vm, 'template') and vm.template == template) def get_vms_connected_to(self, netvm): new_vms = set([self[netvm]]) dependent_vms = set() # Dependency resolving only makes sense on NetVM (or derivative) # if not self[netvm_qid].is_netvm(): # return set([]) while new_vms: cur_vm = new_vms.pop() for vm in cur_vm.connected_vms: if vm in dependent_vms: continue dependent_vms.add(vm) # if vm.is_netvm(): new_vms.add(vm) return dependent_vms # XXX with Qubes Admin Api this will probably lead to race condition # whole process of creating and adding should be synchronised def get_new_unused_qid(self): used_ids = set(self.qids()) for i in range(1, qubes.config.max_qid): if i not in used_ids: return i raise LookupError("Cannot find unused qid!") def get_new_unused_netid(self): used_ids = set([vm.netid for vm in self]) # if vm.is_netvm()]) for i in range(1, qubes.config.max_netid): if i not in used_ids: return i raise LookupError("Cannot find unused netid!") def get_new_unused_dispid(self): for _ in range(int(qubes.config.max_dispid ** 0.5)): dispid = random.SystemRandom().randrange(qubes.config.max_dispid) if not any(getattr(vm, 'dispid', None) == dispid for vm in self): return dispid raise LookupError(( 'https://xkcd.com/221/', 'http://dilbert.com/strip/2001-10-25')[random.randint(0, 1)]) def _default_pool(app): ''' Default storage pool. 1. If there is one named 'default', use it. 2. Check if root fs is on LVM thin - use that 3. Look for file-based pool pointing /var/lib/qubes 4. Fail ''' if 'default' in app.pools: return app.pools['default'] else: rootfs = os.stat('/') root_major = (rootfs.st_dev & 0xff00) >> 8 root_minor = rootfs.st_dev & 0xff for pool in app.pools.values(): if pool.config.get('driver', None) != 'lvm_thin': continue thin_pool = pool.config['thin_pool'] thin_volumes = subprocess.check_output( ['lvs', '--select', 'pool_lv=' + thin_pool, '-o', 'lv_kernel_major,lv_kernel_minor', '--noheadings']) thin_volumes = thin_volumes.decode() if any([str(root_major), str(root_minor)] == thin_vol.split() for thin_vol in thin_volumes.splitlines()): return pool # not a thin volume? look for file pools for pool in app.pools.values(): if pool.config.get('driver', None) != 'file': continue if pool.config['dir_path'] == qubes.config.qubes_base_dir: return pool raise AttributeError('Cannot determine default storage pool') def _setter_pool(app, prop, value): if isinstance(value, qubes.storage.Pool): return value try: return app.pools[value] except KeyError: raise qubes.exc.QubesPropertyValueError(app, prop, value, 'No such storage pool') class Qubes(qubes.PropertyHolder): '''Main Qubes application :param str store: path to ``qubes.xml`` The store is loaded in stages: 1. In the first stage there are loaded some basic features from store (currently labels). 2. In the second stage stubs for all VMs are loaded. They are filled with their basic properties, like ``qid`` and ``name``. 3. In the third stage all global properties are loaded. They often reference VMs, like default netvm, so they should be filled after loading VMs. 4. In the fourth stage all remaining VM properties are loaded. They also need all VMs loaded, because they represent dependencies between VMs like aforementioned netvm. 5. In the fifth stage there are some fixups to ensure sane system operation. This class emits following events: .. event:: domain-add (subject, event, vm) When domain is added. :param subject: Event emitter :param event: Event name (``'domain-add'``) :param vm: Domain object .. event:: domain-pre-delete (subject, event, vm) When domain is deleted. VM still has reference to ``app`` object, and is contained within VMCollection. You may prevent removal by raising an exception. :param subject: Event emitter :param event: Event name (``'domain-pre-delete'``) :param vm: Domain object .. event:: domain-delete (subject, event, vm) When domain is deleted. VM still has reference to ``app`` object, but is not contained within VMCollection. :param subject: Event emitter :param event: Event name (``'domain-delete'``) :param vm: Domain object Methods and attributes: ''' default_netvm = qubes.VMProperty('default_netvm', load_stage=3, default=None, allow_none=True, doc='''Default NetVM for AppVMs. Initial state is `None`, which means that AppVMs are not connected to the Internet.''') default_fw_netvm = qubes.VMProperty('default_fw_netvm', load_stage=3, default=None, allow_none=True, doc='''Default NetVM for ProxyVMs. Initial state is `None`, which means that ProxyVMs (including FirewallVM) are not connected to the Internet.''') default_template = qubes.VMProperty('default_template', load_stage=3, vmclass=qubes.vm.templatevm.TemplateVM, doc='Default template for new AppVMs') updatevm = qubes.VMProperty('updatevm', load_stage=3, allow_none=True, doc='''Which VM to use as `yum` proxy for updating AdminVM and TemplateVMs''') clockvm = qubes.VMProperty('clockvm', load_stage=3, default=None, allow_none=True, doc='Which VM to use as NTP proxy for updating AdminVM') default_kernel = qubes.property('default_kernel', load_stage=3, doc='Which kernel to use when not overriden in VM') default_dispvm = qubes.VMProperty('default_dispvm', load_stage=3, doc='Default DispVM base for service calls', allow_none=True) default_pool = qubes.property('default_pool', load_stage=3, default=_default_pool, setter=_setter_pool, doc='Default storage pool') default_pool_private = qubes.property('default_pool_private', load_stage=3, default=lambda app: app.default_pool, setter=_setter_pool, doc='Default storage pool for private volumes') default_pool_root = qubes.property('default_pool_root', load_stage=3, default=lambda app: app.default_pool, setter=_setter_pool, doc='Default storage pool for root volumes') default_pool_volatile = qubes.property('default_pool_volatile', load_stage=3, default=lambda app: app.default_pool, setter=_setter_pool, doc='Default storage pool for volatile volumes') default_pool_kernel = qubes.property('default_pool_kernel', load_stage=3, default=lambda app: app.default_pool, setter=_setter_pool, doc='Default storage pool for kernel volumes') stats_interval = qubes.property('stats_interval', default=3, type=int, doc='Interval in seconds for VM stats reporting (memory, CPU usage)') # TODO #1637 #892 check_updates_vm = qubes.property('check_updates_vm', type=bool, setter=qubes.property.bool, default=True, doc='check for updates inside qubes') def __init__(self, store=None, load=True, offline_mode=None, lock=False, **kwargs): #: logger instance for logging global messages self.log = logging.getLogger('app') self.log.debug('init() -> %#x', id(self)) self.log.debug('stack:') for frame in traceback.extract_stack(): self.log.debug('%s', frame) self._extensions = qubes.ext.get_extensions() #: collection of all VMs managed by this Qubes instance self.domains = VMCollection(self) #: collection of all available labels for VMs self.labels = {} #: collection of all pools self.pools = {} #: Connection to VMM self.vmm = VMMConnection(offline_mode=offline_mode) #: Information about host system self.host = QubesHost(self) if store is not None: self._store = store else: self._store = os.environ.get('QUBES_XML_PATH', os.path.join( qubes.config.qubes_base_dir, qubes.config.system_path['qubes_store_filename'])) super(Qubes, self).__init__(xml=None, **kwargs) self.__load_timestamp = None self.__locked_fh = None self._domain_event_callback_id = None #: jinja2 environment for libvirt XML templates self.env = jinja2.Environment( loader=jinja2.FileSystemLoader([ '/etc/qubes/templates', '/usr/share/qubes/templates', ]), undefined=jinja2.StrictUndefined) if load: self.load(lock=lock) self.events_enabled = True @property def store(self): return self._store def load(self, lock=False): '''Open qubes.xml :throws EnvironmentError: failure on parsing store :throws xml.parsers.expat.ExpatError: failure on parsing store :raises lxml.etree.XMLSyntaxError: on syntax error in qubes.xml ''' fh = self._acquire_lock() self.xml = lxml.etree.parse(fh) # stage 1: load labels and pools for node in self.xml.xpath('./labels/label'): label = qubes.Label.fromxml(node) self.labels[label.index] = label for node in self.xml.xpath('./pools/pool'): name = node.get('name') assert name, "Pool name '%s' is invalid " % name try: self.pools[name] = self._get_pool(**node.attrib) except qubes.exc.QubesException as e: self.log.error(str(e)) # stage 2: load VMs for node in self.xml.xpath('./domains/domain'): # pylint: disable=no-member cls = self.get_vm_class(node.get('class')) vm = cls(self, node) vm.load_properties(load_stage=2) vm.init_log() self.domains.add(vm, _enable_events=False) if 0 not in self.domains: self.domains.add( qubes.vm.adminvm.AdminVM(self, None, qid=0, name='dom0'), _enable_events=False) # stage 3: load global properties self.load_properties(load_stage=3) # stage 4: fill all remaining VM properties for vm in self.domains: vm.load_properties(load_stage=4) vm.load_extras() # stage 5: misc fixups self.property_require('default_fw_netvm', allow_none=True) self.property_require('default_netvm', allow_none=True) self.property_require('default_template') self.property_require('clockvm', allow_none=True) self.property_require('updatevm', allow_none=True) for vm in self.domains: vm.events_enabled = True vm.fire_event('domain-load') # get a file timestamp (before closing it - still holding the lock!), # to detect whether anyone else have modified it in the meantime self.__load_timestamp = os.path.getmtime(self._store) if not lock: self._release_lock() def __xml__(self): element = lxml.etree.Element('qubes') element.append(self.xml_labels()) pools_xml = lxml.etree.Element('pools') for pool in self.pools.values(): xml = pool.__xml__() if xml is not None: pools_xml.append(xml) element.append(pools_xml) element.append(self.xml_properties()) domains = lxml.etree.Element('domains') for vm in self.domains: domains.append(vm.__xml__()) element.append(domains) return element def __str__(self): return type(self).__name__ def save(self, lock=True): '''Save all data to qubes.xml There are several problems with saving :file:`qubes.xml` which must be mitigated: - Running out of disk space. No space left should not result in empty file. This is done by writing to temporary file and then renaming. - Attempts to write two or more files concurrently. This is done by sophisticated locking. :param bool lock: keep file locked after saving :throws EnvironmentError: failure on saving ''' if not self.__locked_fh: self._acquire_lock(for_save=True) fh_new = tempfile.NamedTemporaryFile( prefix=self._store, delete=False) lxml.etree.ElementTree(self.__xml__()).write( fh_new, encoding='utf-8', pretty_print=True) fh_new.flush() try: os.chown(fh_new.name, -1, grp.getgrnam('qubes').gr_gid) os.chmod(fh_new.name, 0o660) except KeyError: # group 'qubes' not found # don't change mode if no 'qubes' group in the system pass os.rename(fh_new.name, self._store) # update stored mtime, in case of multiple save() calls without # loading qubes.xml again self.__load_timestamp = os.path.getmtime(self._store) # this releases lock for all other processes, # but they should instantly block on the new descriptor self.__locked_fh.close() self.__locked_fh = fh_new if not lock: self._release_lock() def close(self): '''Deconstruct the object and break circular references After calling this the object is unusable, not even for saving.''' self.log.debug('close() <- %#x', id(self)) for frame in traceback.extract_stack(): self.log.debug('%s', frame) super().close() if self._domain_event_callback_id is not None: self.vmm.libvirt_conn.domainEventDeregisterAny( self._domain_event_callback_id) self._domain_event_callback_id = None # Only our Lord, The God Almighty, knows what references # are kept in extensions. del self._extensions for vm in self.domains: vm.close() self.domains.close() del self.domains self.vmm.close() del self.vmm del self.host if self.__locked_fh: self._release_lock() def _acquire_lock(self, for_save=False): assert self.__locked_fh is None, 'double lock' while True: try: fd = os.open(self._store, os.O_RDWR | (os.O_CREAT * int(for_save))) except OSError as e: if not for_save and e.errno == errno.ENOENT: raise qubes.exc.QubesException( 'Qubes XML store {!r} is missing; ' 'use qubes-create tool'.format(self._store)) raise # While we were waiting for lock, someone could have unlink()ed # (or rename()d) our file out of the filesystem. We have to # ensure we got lock on something linked to filesystem. # If not, try again. if os.fstat(fd) != os.stat(self._store): os.close(fd) continue if self.__load_timestamp and \ os.path.getmtime(self._store) != self.__load_timestamp: os.close(fd) raise qubes.exc.QubesException( 'Someone else modified qubes.xml in the meantime') break if os.name == 'posix': fcntl.lockf(fd, fcntl.LOCK_EX) elif os.name == 'nt': # pylint: disable=protected-access overlapped = pywintypes.OVERLAPPED() win32file.LockFileEx( win32file._get_osfhandle(fd), win32con.LOCKFILE_EXCLUSIVE_LOCK, 0, -0x10000, overlapped) self.__locked_fh = os.fdopen(fd, 'r+b') return self.__locked_fh def _release_lock(self): assert self.__locked_fh is not None, 'double release' # intentionally do not call explicit unlock to not unlock the file # before all buffers are flushed self.__locked_fh.close() self.__locked_fh = None def load_initial_values(self): self.labels = { 1: qubes.Label(1, '0xcc0000', 'red'), 2: qubes.Label(2, '0xf57900', 'orange'), 3: qubes.Label(3, '0xedd400', 'yellow'), 4: qubes.Label(4, '0x73d216', 'green'), 5: qubes.Label(5, '0x555753', 'gray'), 6: qubes.Label(6, '0x3465a4', 'blue'), 7: qubes.Label(7, '0x75507b', 'purple'), 8: qubes.Label(8, '0x000000', 'black'), } assert max(self.labels.keys()) == qubes.config.max_default_label # check if the default LVM Thin pool qubes_dom0/pool00 exists if os.path.exists('/dev/mapper/qubes_dom0-pool00-tpool'): self.add_pool(volume_group='qubes_dom0', thin_pool='pool00', name='lvm', driver='lvm_thin') # pool based on /var/lib/qubes will be created here: for name, config in qubes.config.defaults['pool_configs'].items(): self.pools[name] = self._get_pool(**config) self.default_pool_kernel = 'linux-kernel' self.domains.add( qubes.vm.adminvm.AdminVM(self, None, label='black')) @classmethod def create_empty_store(cls, *args, **kwargs): self = cls(*args, load=False, **kwargs) if os.path.exists(self.store): raise qubes.exc.QubesException( '{} already exists, aborting'.format(self.store)) self.load_initial_values() # TODO py3 get lock= as keyword-only arg self.save(kwargs.get('lock')) return self def xml_labels(self): '''Serialise labels :rtype: lxml.etree._Element ''' labels = lxml.etree.Element('labels') for label in sorted(self.labels.values(), key=lambda labl: labl.index): labels.append(label.__xml__()) return labels @staticmethod def get_vm_class(clsname): '''Find the class for a domain. Classes are registered as setuptools' entry points in ``qubes.vm`` group. Any package may supply their own classes. :param str clsname: name of the class :return type: class ''' try: return qubes.utils.get_entry_point_one( qubes.vm.VM_ENTRY_POINT, clsname) except KeyError: raise qubes.exc.QubesException( 'no such VM class: {!r}'.format(clsname)) # don't catch TypeError def add_new_vm(self, cls, qid=None, **kwargs): '''Add new Virtual Machine to collection ''' if qid is None: qid = self.domains.get_new_unused_qid() if isinstance(cls, str): cls = self.get_vm_class(cls) # handle default template; specifically allow template=None (do not # override it with default template) if 'template' not in kwargs and hasattr(cls, 'template'): kwargs['template'] = self.default_template elif 'template' in kwargs and isinstance(kwargs['template'], str): kwargs['template'] = self.domains[kwargs['template']] return self.domains.add(cls(self, None, qid=qid, **kwargs)) def get_label(self, label): '''Get label as identified by index or name :throws KeyError: when label is not found ''' # first search for index, verbatim try: return self.labels[label] except KeyError: pass # then search for name for i in self.labels.values(): if i.name == label: return i # last call, if label is a number represented as str, search in indices try: return self.labels[int(label)] except (KeyError, ValueError): pass raise KeyError(label) def add_pool(self, name, **kwargs): """ Add a storage pool to config.""" if name in self.pools.keys(): raise qubes.exc.QubesException('pool named %s already exists \n' % name) kwargs['name'] = name pool = self._get_pool(**kwargs) pool.setup() self.pools[name] = pool return pool def remove_pool(self, name): """ Remove a storage pool from config file. """ try: pool = self.pools[name] del self.pools[name] pool.destroy() except KeyError: return def get_pool(self, pool): ''' Returns a :py:class:`qubes.storage.Pool` instance ''' if isinstance(pool, qubes.storage.Pool): return pool try: return self.pools[pool] except KeyError: raise qubes.exc.QubesException('Unknown storage pool ' + pool) @staticmethod def _get_pool(**kwargs): try: name = kwargs['name'] assert name, 'Name needs to be an non empty string' except KeyError: raise qubes.exc.QubesException('No pool name for pool') try: driver = kwargs['driver'] except KeyError: raise qubes.exc.QubesException('No driver specified for pool ' + name) try: klass = qubes.utils.get_entry_point_one( qubes.storage.STORAGE_ENTRY_POINT, driver) del kwargs['driver'] return klass(**kwargs) except KeyError: raise qubes.exc.QubesException('No driver %s for pool %s' % (driver, name)) def register_event_handlers(self): '''Register libvirt event handlers, which will translate libvirt events into qubes.events. This function should be called only in 'qubesd' process and only when mainloop has been already set. ''' self._domain_event_callback_id = ( self.vmm.libvirt_conn.domainEventRegisterAny( None, # any domain libvirt.VIR_DOMAIN_EVENT_ID_LIFECYCLE, self._domain_event_callback, None)) def _domain_event_callback(self, _conn, domain, event, _detail, _opaque): '''Generic libvirt event handler (virConnectDomainEventCallback), translate libvirt event into qubes.events. ''' if not self.events_enabled: return try: vm = self.domains[domain.name()] except KeyError: # ignore events for unknown domains return if event == libvirt.VIR_DOMAIN_EVENT_STOPPED: vm.fire_event('domain-shutdown') @qubes.events.handler('domain-pre-delete') def on_domain_pre_deleted(self, event, vm): # pylint: disable=unused-argument for obj in itertools.chain(self.domains, (self,)): for prop in obj.property_list(): try: if isinstance(prop, qubes.vm.VMProperty) and \ getattr(obj, prop.__name__) == vm: self.log.error( 'Cannot remove %s, used by %s.%s', vm, obj, prop.__name__) raise qubes.exc.QubesVMInUseError(vm) except AttributeError: pass @qubes.events.handler('domain-delete') def on_domain_deleted(self, event, vm): # pylint: disable=unused-argument for propname in ( 'default_netvm', 'default_fw_netvm', 'clockvm', 'updatevm', 'default_template', ): try: if getattr(self, propname) == vm: delattr(self, propname) except AttributeError: pass @qubes.events.handler('property-pre-set:clockvm') def on_property_pre_set_clockvm(self, event, name, newvalue, oldvalue=None): # pylint: disable=unused-argument,no-self-use if newvalue is None: return if 'service.clocksync' not in newvalue.features: newvalue.features['service.clocksync'] = True @qubes.events.handler('property-set:clockvm') def on_property_set_clockvm(self, event, name, newvalue, oldvalue=None): # pylint: disable=unused-argument,no-self-use if oldvalue and oldvalue.features.get('service.clocksync', False): del oldvalue.features['service.clocksync'] @qubes.events.handler( 'property-pre-set:default_netvm', 'property-pre-set:default_fw_netvm') def on_property_pre_set_default_netvm(self, event, name, newvalue, oldvalue=None): # pylint: disable=unused-argument,invalid-name if newvalue is not None and oldvalue is not None \ and oldvalue.is_running() and not newvalue.is_running() \ and self.domains.get_vms_connected_to(oldvalue): raise qubes.exc.QubesVMNotRunningError(newvalue, 'Cannot change {!r} to domain that ' 'is not running ({!r}).'.format(name, newvalue.name)) @qubes.events.handler('property-set:default_fw_netvm') def on_property_set_default_fw_netvm(self, event, name, newvalue, oldvalue=None): # pylint: disable=unused-argument,invalid-name for vm in self.domains: if hasattr(vm, 'provides_network') and vm.provides_network and \ hasattr(vm, 'netvm') and vm.property_is_default('netvm'): # fire property-del:netvm as it is responsible for resetting # netvm to it's default value vm.fire_event('property-pre-del:netvm', pre_event=True, name='netvm', oldvalue=oldvalue) vm.fire_event('property-del:netvm', name='netvm', oldvalue=oldvalue) @qubes.events.handler('property-set:default_netvm') def on_property_set_default_netvm(self, event, name, newvalue, oldvalue=None): # pylint: disable=unused-argument for vm in self.domains: if hasattr(vm, 'provides_network') and not vm.provides_network and \ hasattr(vm, 'netvm') and vm.property_is_default('netvm'): # fire property-del:netvm as it is responsible for resetting # netvm to it's default value vm.fire_event('property-pre-del:netvm', pre_event=True, name='netvm', oldvalue=oldvalue) vm.fire_event('property-del:netvm', name='netvm', oldvalue=oldvalue)
gpl-2.0
uberlaggydarwin/bugfree-wookie
scripts/tracing/draw_functrace.py
14676
3560
#!/usr/bin/python """ Copyright 2008 (c) Frederic Weisbecker <[email protected]> Licensed under the terms of the GNU GPL License version 2 This script parses a trace provided by the function tracer in kernel/trace/trace_functions.c The resulted trace is processed into a tree to produce a more human view of the call stack by drawing textual but hierarchical tree of calls. Only the functions's names and the the call time are provided. Usage: Be sure that you have CONFIG_FUNCTION_TRACER # mount -t debugfs nodev /sys/kernel/debug # echo function > /sys/kernel/debug/tracing/current_tracer $ cat /sys/kernel/debug/tracing/trace_pipe > ~/raw_trace_func Wait some times but not too much, the script is a bit slow. Break the pipe (Ctrl + Z) $ scripts/draw_functrace.py < raw_trace_func > draw_functrace Then you have your drawn trace in draw_functrace """ import sys, re class CallTree: """ This class provides a tree representation of the functions call stack. If a function has no parent in the kernel (interrupt, syscall, kernel thread...) then it is attached to a virtual parent called ROOT. """ ROOT = None def __init__(self, func, time = None, parent = None): self._func = func self._time = time if parent is None: self._parent = CallTree.ROOT else: self._parent = parent self._children = [] def calls(self, func, calltime): """ If a function calls another one, call this method to insert it into the tree at the appropriate place. @return: A reference to the newly created child node. """ child = CallTree(func, calltime, self) self._children.append(child) return child def getParent(self, func): """ Retrieve the last parent of the current node that has the name given by func. If this function is not on a parent, then create it as new child of root @return: A reference to the parent. """ tree = self while tree != CallTree.ROOT and tree._func != func: tree = tree._parent if tree == CallTree.ROOT: child = CallTree.ROOT.calls(func, None) return child return tree def __repr__(self): return self.__toString("", True) def __toString(self, branch, lastChild): if self._time is not None: s = "%s----%s (%s)\n" % (branch, self._func, self._time) else: s = "%s----%s\n" % (branch, self._func) i = 0 if lastChild: branch = branch[:-1] + " " while i < len(self._children): if i != len(self._children) - 1: s += "%s" % self._children[i].__toString(branch +\ " |", False) else: s += "%s" % self._children[i].__toString(branch +\ " |", True) i += 1 return s class BrokenLineException(Exception): """If the last line is not complete because of the pipe breakage, we want to stop the processing and ignore this line. """ pass class CommentLineException(Exception): """ If the line is a comment (as in the beginning of the trace file), just ignore it. """ pass def parseLine(line): line = line.strip() if line.startswith("#"): raise CommentLineException m = re.match("[^]]+?\\] +([0-9.]+): (\\w+) <-(\\w+)", line) if m is None: raise BrokenLineException return (m.group(1), m.group(2), m.group(3)) def main(): CallTree.ROOT = CallTree("Root (Nowhere)", None, None) tree = CallTree.ROOT for line in sys.stdin: try: calltime, callee, caller = parseLine(line) except BrokenLineException: break except CommentLineException: continue tree = tree.getParent(caller) tree = tree.calls(callee, calltime) print CallTree.ROOT if __name__ == "__main__": main()
gpl-2.0
InspectorB/3Dami-python
src/raw/load.py
1
5632
from os.path import abspath, exists, isdir, isfile, walk, join, basename, expanduser, getsize import io from utils.pubsub import PubSub import struct from wire.ttypes import TBinaryProtocol from wire.ttypes import Message from thrift.transport import TTransport class DataLocation: """A DataLocation represents where data resides on disk""" ignore_paths = ['rdiff-backup-data'] def __init__(self, directory): """ Arguments: directory -- A directory path string """ self.location = abspath(expanduser(directory)) assert exists(self.location), "The given path does not exist" assert isdir(self.location), "The given path is not a directory" @staticmethod def sort_paths_by_size(paths): """ Sort the list of paths by the size of the files. Directories are filtered out. """ files = [p for p in paths if isfile(p)] files_with_size = [(p, getsize(p)) for p in files] files_sorted = sorted(files_with_size, key=lambda x: x[1], reverse=True) return [f[0] for f in files_sorted] def list_files(self, sort_by_size=False): """ :param sort_by_size: instead of listing the files by creation date, return them sorted by size. This is useful for distributing work on the cluster, where we want the biggest files to be processed first. N.B. This should only be used with the sessions, and not with the raw data, for there we want to maintain temporal order. """ files = [] def visit(fs, directory, names): for ip in DataLocation.ignore_paths: if ip in names: names.remove(ip) fs.extend([n for n in [join(directory, m) for m in names] if isfile(n) and basename(n)[0] != '.']) walk(self.location, visit, files) if sort_by_size: return self.sort_paths_by_size(files) else: return files def count_files(self): return len(self.list_files()) class LoaderBase(PubSub): """"Load data from file and for each object notify subscribers""" PUBLISH_BOTH = 2 PUBLISH_HEADER = 1 PUBLISH_NONE = 0 def __init__(self, selector=None): PubSub.__init__(self) self.selector = selector def on_finish(self): pass def read_single(self, fp): with io.open(fp, "rb", 2**16) as buf: transport = TTransport.TFileObjectTransport(buf) protocol = TBinaryProtocol.TBinaryProtocol(transport) try: while True: hbs = buf.read(48) # Header is 48 bytes long, see scala code if len(hbs) != 48: break # Stop reading from this file if there aren't enough bytes header = struct.unpack_from('>qqqqhhiii', hbs) if self.selector == None \ or self.selector == self.PUBLISH_BOTH \ or (hasattr(self.selector, '__call__') and self.selector(header) == self.PUBLISH_BOTH): msg = Message() msg.read(protocol) self.publish((header, msg)) else: buf.seek(Header.size(header), io.SEEK_CUR) if self.selector == self.PUBLISH_HEADER \ or (hasattr(self.selector, '__call__') and self.selector(header) == self.PUBLISH_HEADER): self.publish((header, None)) except EOFError, e: print 'Encountered unexpected EOF in file %s' % fp def read(self): raise Exception("Implement!") class Loader(LoaderBase): """"Load data from files provided by a DataLocation""" def __init__(self, dl, selector=None): """ The loader goes through all files at the given data location and loads a header and then the corresponding message. The selector determines what is published. Arguments: dl -- a DataLocation selector -- a function that determines what is published """ LoaderBase.__init__(self, selector=selector) self.dl = dl self.handled_files = 0 def read(self): for fp in self.dl.list_files(): self.handled_files += 1 self.read_single(fp) # Notify everyone we've finished self.finish() class LoaderSingle(LoaderBase): """Load only a single file""" def __init__(self, fp, selector=None): """ The loader goes through all files at the given data location and loads a header and then the corresponding message. The selector determines what is published. Arguments: fp -- a file path (string) selector -- a function that determines what is published """ LoaderBase.__init__(self, selector=selector) self.fp = fp def read(self): self.read_single(self.fp) # Notify everyone we've finished self.finish() class Header: """ The Header class is useful for dealing with header tuples. """ def __init__(self): raise Exception("Bad boy!") @staticmethod def timestamp_server(t): return t[0] @staticmethod def timestamp_client(t): return t[1] @staticmethod def user(t): return t[2] @staticmethod def size(t): return t[3] @staticmethod def type_metadata(t): return t[4] @staticmethod def type_data(t): return t[5]
gpl-3.0
llvm/llvm-zorg
zorg/buildbot/commands/NinjaCommand.py
1
3878
# TODO: Use Interpolate instead of WithProperties. import re from buildbot.process.properties import WithProperties from buildbot.steps.shell import WarningCountingShellCommand class NinjaCommand(WarningCountingShellCommand): DEFAULT_NINJA = 'ninja' @staticmethod def sanitize_kwargs(kwargs): # kwargs we could get and must not pass through # to the buildstep.RemoteShellCommand constructor. # Note: This is a workaround of the buildbot design issue, # thus should be removed once the original issue gets fixed. consume_kwargs = [ "jobs", "loadaverage", ] sanitized_kwargs = kwargs.copy() for k in consume_kwargs: if k in sanitized_kwargs.keys(): del sanitized_kwargs[k] return sanitized_kwargs name = "build" haltOnFailure = True description = ["building"] descriptionDone = ["build"] renderables = ( 'options', 'targets', 'ninja', ) def __init__(self, options=None, targets=None, ninja=DEFAULT_NINJA, logObserver=None, **kwargs): self.ninja = ninja self.targets = targets if options is None: self.options = list() else: self.options = list(options) if logObserver: self.logObserver = logObserver self.addLogObserver('stdio', self.logObserver) j_opt = re.compile(r'^-j$|^-j\d+$') l_opt = re.compile(r'^-l$|^-l\d+(\.(\d+)?)?$') command = list() command += [self.ninja] # We can get jobs in the options. If so, we would use that. if not any(j_opt.search(opt) for opt in self.options if isinstance(opt, str)): # Otherwise let's see if we got it in the kwargs. if kwargs.get('jobs', None): self.options += ["-j", kwargs['jobs']] else: # Use the property if option was not explicitly # specified. command += [ WithProperties("%(jobs:+-j)s"), WithProperties("%(jobs:-)s"), ] # The same logic is for handling the loadaverage option. if not any(l_opt.search(opt) for opt in self.options if isinstance(opt, str)): if kwargs.get('loadaverage', None): self.options += ["-l", kwargs['loadaverage']] else: command += [ WithProperties("%(loadaverage:+-l)s"), WithProperties("%(loadaverage:-)s"), ] if self.options: command += self.options if self.targets: command += self.targets # Remove here all the kwargs any of our LLVM buildbot command could consume. # Note: We will remove all the empty items from the command at start, as we # still didn't get yet WithProperties rendered. sanitized_kwargs = self.sanitize_kwargs(kwargs) sanitized_kwargs["command"] = command # And upcall to let the base class do its work super().__init__(**sanitized_kwargs) def setupEnvironment(self, cmd): # First upcall to get everything prepared. super().setupEnvironment(cmd) # Set default status format string. if cmd.args['env'] is None: cmd.args['env'] = {} cmd.args['env']['NINJA_STATUS'] = cmd.args['env'].get('NINJA_STATUS', "%e [%u/%r/%f] ") def buildCommandKwargs(self, warnings): kwargs = super().buildCommandKwargs(warnings) # Remove all the empty items from the command list, # which we could get if Interpolate rendered to empty strings. kwargs['command'] = [cmd for cmd in kwargs['command'] if cmd] return kwargs
apache-2.0
markstoehr/structured_gaussian_mixtures
structured_gaussian_mixtures/online_GMM_no_mean.py
1
3515
from __future__ import division, print_function from bm_tools import OnlineLogsumexp, sigmoid, log1pexp, logsumexp import numpy TRAIN = "/home/mark/Projects/succotash/succotash/datasets/train_examples.npy" TEST = "/home/mark/Projects/succotash/succotash/datasets/test_examples.npy" X = numpy.load(TRAIN) n_components = 25 n_features = X.shape[1] model_means = numpy.zeros((n_components,n_features)) model_weights = numpy.ones(n_components)/n_components model_covars = numpy.zeros((n_components,n_features)) first_moment_stats = numpy.zeros(model_means.shape) second_moment_stats = numpy.zeros(model_means.shape) weights = numpy.zeros(model_weights.shape) def score_samples(X,model_means,model_weights,model_covars,use_scipy_misc=False): inv_covars = 1.0/model_covars n_features = X.shape[1] lpr= - 0.5 * ( n_features * numpy.log(2*numpy.pi) + numpy.sum(numpy.log(model_covars),1) + numpy.sum( (model_means**2)*inv_covars,1) - 2 * numpy.dot(X, (model_means*inv_covars).T) + numpy.dot(X**2, inv_covars.T)) if numpy.any(numpy.isnan(lpr)): import pdb; pdb.set_trace() lpr += numpy.log(model_weights) logprob = logsumexp(lpr) responsibilities = numpy.exp(lpr - logprob[:,numpy.newaxis]) return logprob, responsibilities for i in xrange(n_components): # model_means[i] = numpy.mean(X[i::n_components],0) model_covars[i] = numpy.mean((X[i::n_components] - model_means[i])**2,0) minibatch_size = 300 alpha = 0.05 n_batches = X.shape[0]/minibatch_size current_log_likelihood=None for i in xrange(2000): prev_log_likelihood = current_log_likelihood batch_idx = i % n_batches if batch_idx == n_batches - 1: batch_end = X.shape[0] else: batch_end = (batch_idx+1)*minibatch_size cur_minibatch_size = batch_end - batch_idx*minibatch_size X_batch = X[batch_idx*minibatch_size:batch_end] lls, responsibilities = score_samples( X_batch, model_means,model_weights,model_covars) current_log_likelihood = lls.mean() if prev_log_likelihood is not None: change = abs((current_log_likelihood - prev_log_likelihood)/prev_log_likelihood) if change < .00001: pass #break weights_tmp = responsibilities.sum(0) if i == 0: weights[:] = weights_tmp else: weights += alpha * ( weights_tmp - weights) inverse_weights = 1.0/(weights_tmp[:,numpy.newaxis] + 1e-5) model_weights = weights/(weights.sum() + 1e-5) + 1e-6 model_weights /= model_weights.sum() # model_means[:] = first_moment_stats weighted_X_sq_sum = numpy.dot(responsibilities.T,X_batch**2) * inverse_weights if i == 0: second_moment_stats[:] = weighted_X_sq_sum else: second_moment_stats[:] += alpha * (weighted_X_sq_sum - second_moment_stats) model_covars = second_moment_stats - first_moment_stats**2 print(current_log_likelihood,i) X_test = numpy.load(TEST) lls, responsibilities = score_samples(X_test,model_means,model_weights,model_covars) print(lls.mean()) # n_c = 25; lls = -2054.1306788521774 # n_c = 50; lls = -2041.20835419 # n_c = 100; lls = -2040.87370778 # n_c = 200; lls = -2040.81411834 # n_c = 300; lls = -2041.50793475 from sklearn.mixture import gmm smodel = gmm.GMM(n_components=25, covariance_type='diag', n_iter=2000, init_params='wc', params='wc') smodel.means_ = numpy.zeros((n_components, n_features)) smodel.fit(X) smodel.score(X_test).mean()
apache-2.0
zzeleznick/zDjango
venv/lib/python2.7/site-packages/psycopg2/tests/test_extras_dictcursor.py
62
17404
#!/usr/bin/env python # # extras_dictcursor - test if DictCursor extension class works # # Copyright (C) 2004-2010 Federico Di Gregorio <[email protected]> # # psycopg2 is free software: you can redistribute it and/or modify it # under the terms of the GNU Lesser General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # psycopg2 is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public # License for more details. import time from datetime import timedelta import psycopg2 import psycopg2.extras from testutils import unittest, ConnectingTestCase, skip_before_postgres from testutils import skip_if_no_namedtuple class ExtrasDictCursorTests(ConnectingTestCase): """Test if DictCursor extension class works.""" def setUp(self): ConnectingTestCase.setUp(self) curs = self.conn.cursor() curs.execute("CREATE TEMPORARY TABLE ExtrasDictCursorTests (foo text)") curs.execute("INSERT INTO ExtrasDictCursorTests VALUES ('bar')") self.conn.commit() def testDictConnCursorArgs(self): self.conn.close() self.conn = self.connect(connection_factory=psycopg2.extras.DictConnection) cur = self.conn.cursor() self.assert_(isinstance(cur, psycopg2.extras.DictCursor)) self.assertEqual(cur.name, None) # overridable cur = self.conn.cursor('foo', cursor_factory=psycopg2.extras.NamedTupleCursor) self.assertEqual(cur.name, 'foo') self.assert_(isinstance(cur, psycopg2.extras.NamedTupleCursor)) def testDictCursorWithPlainCursorFetchOne(self): self._testWithPlainCursor(lambda curs: curs.fetchone()) def testDictCursorWithPlainCursorFetchMany(self): self._testWithPlainCursor(lambda curs: curs.fetchmany(100)[0]) def testDictCursorWithPlainCursorFetchManyNoarg(self): self._testWithPlainCursor(lambda curs: curs.fetchmany()[0]) def testDictCursorWithPlainCursorFetchAll(self): self._testWithPlainCursor(lambda curs: curs.fetchall()[0]) def testDictCursorWithPlainCursorIter(self): def getter(curs): for row in curs: return row self._testWithPlainCursor(getter) def testUpdateRow(self): row = self._testWithPlainCursor(lambda curs: curs.fetchone()) row['foo'] = 'qux' self.failUnless(row['foo'] == 'qux') self.failUnless(row[0] == 'qux') @skip_before_postgres(8, 0) def testDictCursorWithPlainCursorIterRowNumber(self): curs = self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) self._testIterRowNumber(curs) def _testWithPlainCursor(self, getter): curs = self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) curs.execute("SELECT * FROM ExtrasDictCursorTests") row = getter(curs) self.failUnless(row['foo'] == 'bar') self.failUnless(row[0] == 'bar') return row def testDictCursorWithPlainCursorRealFetchOne(self): self._testWithPlainCursorReal(lambda curs: curs.fetchone()) def testDictCursorWithPlainCursorRealFetchMany(self): self._testWithPlainCursorReal(lambda curs: curs.fetchmany(100)[0]) def testDictCursorWithPlainCursorRealFetchManyNoarg(self): self._testWithPlainCursorReal(lambda curs: curs.fetchmany()[0]) def testDictCursorWithPlainCursorRealFetchAll(self): self._testWithPlainCursorReal(lambda curs: curs.fetchall()[0]) def testDictCursorWithPlainCursorRealIter(self): def getter(curs): for row in curs: return row self._testWithPlainCursorReal(getter) @skip_before_postgres(8, 0) def testDictCursorWithPlainCursorRealIterRowNumber(self): curs = self.conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) self._testIterRowNumber(curs) def _testWithPlainCursorReal(self, getter): curs = self.conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) curs.execute("SELECT * FROM ExtrasDictCursorTests") row = getter(curs) self.failUnless(row['foo'] == 'bar') def testDictCursorWithNamedCursorFetchOne(self): self._testWithNamedCursor(lambda curs: curs.fetchone()) def testDictCursorWithNamedCursorFetchMany(self): self._testWithNamedCursor(lambda curs: curs.fetchmany(100)[0]) def testDictCursorWithNamedCursorFetchManyNoarg(self): self._testWithNamedCursor(lambda curs: curs.fetchmany()[0]) def testDictCursorWithNamedCursorFetchAll(self): self._testWithNamedCursor(lambda curs: curs.fetchall()[0]) def testDictCursorWithNamedCursorIter(self): def getter(curs): for row in curs: return row self._testWithNamedCursor(getter) @skip_before_postgres(8, 2) def testDictCursorWithNamedCursorNotGreedy(self): curs = self.conn.cursor('tmp', cursor_factory=psycopg2.extras.DictCursor) self._testNamedCursorNotGreedy(curs) @skip_before_postgres(8, 0) def testDictCursorWithNamedCursorIterRowNumber(self): curs = self.conn.cursor('tmp', cursor_factory=psycopg2.extras.DictCursor) self._testIterRowNumber(curs) def _testWithNamedCursor(self, getter): curs = self.conn.cursor('aname', cursor_factory=psycopg2.extras.DictCursor) curs.execute("SELECT * FROM ExtrasDictCursorTests") row = getter(curs) self.failUnless(row['foo'] == 'bar') self.failUnless(row[0] == 'bar') def testDictCursorRealWithNamedCursorFetchOne(self): self._testWithNamedCursorReal(lambda curs: curs.fetchone()) def testDictCursorRealWithNamedCursorFetchMany(self): self._testWithNamedCursorReal(lambda curs: curs.fetchmany(100)[0]) def testDictCursorRealWithNamedCursorFetchManyNoarg(self): self._testWithNamedCursorReal(lambda curs: curs.fetchmany()[0]) def testDictCursorRealWithNamedCursorFetchAll(self): self._testWithNamedCursorReal(lambda curs: curs.fetchall()[0]) def testDictCursorRealWithNamedCursorIter(self): def getter(curs): for row in curs: return row self._testWithNamedCursorReal(getter) @skip_before_postgres(8, 2) def testDictCursorRealWithNamedCursorNotGreedy(self): curs = self.conn.cursor('tmp', cursor_factory=psycopg2.extras.RealDictCursor) self._testNamedCursorNotGreedy(curs) @skip_before_postgres(8, 0) def testDictCursorRealWithNamedCursorIterRowNumber(self): curs = self.conn.cursor('tmp', cursor_factory=psycopg2.extras.RealDictCursor) self._testIterRowNumber(curs) def _testWithNamedCursorReal(self, getter): curs = self.conn.cursor('aname', cursor_factory=psycopg2.extras.RealDictCursor) curs.execute("SELECT * FROM ExtrasDictCursorTests") row = getter(curs) self.failUnless(row['foo'] == 'bar') def _testNamedCursorNotGreedy(self, curs): curs.itersize = 2 curs.execute("""select clock_timestamp() as ts from generate_series(1,3)""") recs = [] for t in curs: time.sleep(0.01) recs.append(t) # check that the dataset was not fetched in a single gulp self.assert_(recs[1]['ts'] - recs[0]['ts'] < timedelta(seconds=0.005)) self.assert_(recs[2]['ts'] - recs[1]['ts'] > timedelta(seconds=0.0099)) def _testIterRowNumber(self, curs): # Only checking for dataset < itersize: # see CursorTests.test_iter_named_cursor_rownumber curs.itersize = 20 curs.execute("""select * from generate_series(1,10)""") for i, r in enumerate(curs): self.assertEqual(i + 1, curs.rownumber) def testPickleDictRow(self): import pickle curs = self.conn.cursor(cursor_factory=psycopg2.extras.DictCursor) curs.execute("select 10 as a, 20 as b") r = curs.fetchone() d = pickle.dumps(r) r1 = pickle.loads(d) self.assertEqual(r, r1) self.assertEqual(r[0], r1[0]) self.assertEqual(r[1], r1[1]) self.assertEqual(r['a'], r1['a']) self.assertEqual(r['b'], r1['b']) self.assertEqual(r._index, r1._index) def testPickleRealDictRow(self): import pickle curs = self.conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor) curs.execute("select 10 as a, 20 as b") r = curs.fetchone() d = pickle.dumps(r) r1 = pickle.loads(d) self.assertEqual(r, r1) self.assertEqual(r['a'], r1['a']) self.assertEqual(r['b'], r1['b']) self.assertEqual(r._column_mapping, r1._column_mapping) class NamedTupleCursorTest(ConnectingTestCase): def setUp(self): ConnectingTestCase.setUp(self) from psycopg2.extras import NamedTupleConnection try: from collections import namedtuple except ImportError: return self.conn = self.connect(connection_factory=NamedTupleConnection) curs = self.conn.cursor() curs.execute("CREATE TEMPORARY TABLE nttest (i int, s text)") curs.execute("INSERT INTO nttest VALUES (1, 'foo')") curs.execute("INSERT INTO nttest VALUES (2, 'bar')") curs.execute("INSERT INTO nttest VALUES (3, 'baz')") self.conn.commit() @skip_if_no_namedtuple def test_cursor_args(self): cur = self.conn.cursor('foo', cursor_factory=psycopg2.extras.DictCursor) self.assertEqual(cur.name, 'foo') self.assert_(isinstance(cur, psycopg2.extras.DictCursor)) @skip_if_no_namedtuple def test_fetchone(self): curs = self.conn.cursor() curs.execute("select * from nttest order by 1") t = curs.fetchone() self.assertEqual(t[0], 1) self.assertEqual(t.i, 1) self.assertEqual(t[1], 'foo') self.assertEqual(t.s, 'foo') self.assertEqual(curs.rownumber, 1) self.assertEqual(curs.rowcount, 3) @skip_if_no_namedtuple def test_fetchmany_noarg(self): curs = self.conn.cursor() curs.arraysize = 2 curs.execute("select * from nttest order by 1") res = curs.fetchmany() self.assertEqual(2, len(res)) self.assertEqual(res[0].i, 1) self.assertEqual(res[0].s, 'foo') self.assertEqual(res[1].i, 2) self.assertEqual(res[1].s, 'bar') self.assertEqual(curs.rownumber, 2) self.assertEqual(curs.rowcount, 3) @skip_if_no_namedtuple def test_fetchmany(self): curs = self.conn.cursor() curs.execute("select * from nttest order by 1") res = curs.fetchmany(2) self.assertEqual(2, len(res)) self.assertEqual(res[0].i, 1) self.assertEqual(res[0].s, 'foo') self.assertEqual(res[1].i, 2) self.assertEqual(res[1].s, 'bar') self.assertEqual(curs.rownumber, 2) self.assertEqual(curs.rowcount, 3) @skip_if_no_namedtuple def test_fetchall(self): curs = self.conn.cursor() curs.execute("select * from nttest order by 1") res = curs.fetchall() self.assertEqual(3, len(res)) self.assertEqual(res[0].i, 1) self.assertEqual(res[0].s, 'foo') self.assertEqual(res[1].i, 2) self.assertEqual(res[1].s, 'bar') self.assertEqual(res[2].i, 3) self.assertEqual(res[2].s, 'baz') self.assertEqual(curs.rownumber, 3) self.assertEqual(curs.rowcount, 3) @skip_if_no_namedtuple def test_executemany(self): curs = self.conn.cursor() curs.executemany("delete from nttest where i = %s", [(1,), (2,)]) curs.execute("select * from nttest order by 1") res = curs.fetchall() self.assertEqual(1, len(res)) self.assertEqual(res[0].i, 3) self.assertEqual(res[0].s, 'baz') @skip_if_no_namedtuple def test_iter(self): curs = self.conn.cursor() curs.execute("select * from nttest order by 1") i = iter(curs) self.assertEqual(curs.rownumber, 0) t = i.next() self.assertEqual(t.i, 1) self.assertEqual(t.s, 'foo') self.assertEqual(curs.rownumber, 1) self.assertEqual(curs.rowcount, 3) t = i.next() self.assertEqual(t.i, 2) self.assertEqual(t.s, 'bar') self.assertEqual(curs.rownumber, 2) self.assertEqual(curs.rowcount, 3) t = i.next() self.assertEqual(t.i, 3) self.assertEqual(t.s, 'baz') self.assertRaises(StopIteration, i.next) self.assertEqual(curs.rownumber, 3) self.assertEqual(curs.rowcount, 3) def test_error_message(self): try: from collections import namedtuple except ImportError: # an import error somewhere from psycopg2.extras import NamedTupleConnection try: self.conn = self.connect( connection_factory=NamedTupleConnection) curs = self.conn.cursor() curs.execute("select 1") curs.fetchone() except ImportError: pass else: self.fail("expecting ImportError") else: return self.skipTest("namedtuple available") @skip_if_no_namedtuple def test_record_updated(self): curs = self.conn.cursor() curs.execute("select 1 as foo;") r = curs.fetchone() self.assertEqual(r.foo, 1) curs.execute("select 2 as bar;") r = curs.fetchone() self.assertEqual(r.bar, 2) self.assertRaises(AttributeError, getattr, r, 'foo') @skip_if_no_namedtuple def test_no_result_no_surprise(self): curs = self.conn.cursor() curs.execute("update nttest set s = s") self.assertRaises(psycopg2.ProgrammingError, curs.fetchone) curs.execute("update nttest set s = s") self.assertRaises(psycopg2.ProgrammingError, curs.fetchall) @skip_if_no_namedtuple def test_minimal_generation(self): # Instrument the class to verify it gets called the minimum number of times. from psycopg2.extras import NamedTupleCursor f_orig = NamedTupleCursor._make_nt calls = [0] def f_patched(self_): calls[0] += 1 return f_orig(self_) NamedTupleCursor._make_nt = f_patched try: curs = self.conn.cursor() curs.execute("select * from nttest order by 1") curs.fetchone() curs.fetchone() curs.fetchone() self.assertEqual(1, calls[0]) curs.execute("select * from nttest order by 1") curs.fetchone() curs.fetchall() self.assertEqual(2, calls[0]) curs.execute("select * from nttest order by 1") curs.fetchone() curs.fetchmany(1) self.assertEqual(3, calls[0]) finally: NamedTupleCursor._make_nt = f_orig @skip_if_no_namedtuple @skip_before_postgres(8, 0) def test_named(self): curs = self.conn.cursor('tmp') curs.execute("""select i from generate_series(0,9) i""") recs = [] recs.extend(curs.fetchmany(5)) recs.append(curs.fetchone()) recs.extend(curs.fetchall()) self.assertEqual(range(10), [t.i for t in recs]) @skip_if_no_namedtuple def test_named_fetchone(self): curs = self.conn.cursor('tmp') curs.execute("""select 42 as i""") t = curs.fetchone() self.assertEqual(t.i, 42) @skip_if_no_namedtuple def test_named_fetchmany(self): curs = self.conn.cursor('tmp') curs.execute("""select 42 as i""") recs = curs.fetchmany(10) self.assertEqual(recs[0].i, 42) @skip_if_no_namedtuple def test_named_fetchall(self): curs = self.conn.cursor('tmp') curs.execute("""select 42 as i""") recs = curs.fetchall() self.assertEqual(recs[0].i, 42) @skip_if_no_namedtuple @skip_before_postgres(8, 2) def test_not_greedy(self): curs = self.conn.cursor('tmp') curs.itersize = 2 curs.execute("""select clock_timestamp() as ts from generate_series(1,3)""") recs = [] for t in curs: time.sleep(0.01) recs.append(t) # check that the dataset was not fetched in a single gulp self.assert_(recs[1].ts - recs[0].ts < timedelta(seconds=0.005)) self.assert_(recs[2].ts - recs[1].ts > timedelta(seconds=0.0099)) @skip_if_no_namedtuple @skip_before_postgres(8, 0) def test_named_rownumber(self): curs = self.conn.cursor('tmp') # Only checking for dataset < itersize: # see CursorTests.test_iter_named_cursor_rownumber curs.itersize = 4 curs.execute("""select * from generate_series(1,3)""") for i, t in enumerate(curs): self.assertEqual(i + 1, curs.rownumber) def test_suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == "__main__": unittest.main()
mit
npinto/bangmetric
bangmetric/_sklearn_ridge.py
1
28105
""" Ridge regression """ # Author: Mathieu Blondel <[email protected]> # Reuben Fletcher-Costin <[email protected]> # License: Simplified BSD from abc import ABCMeta, abstractmethod import warnings import numpy as np from sklearn.linear_model.base import LinearModel from sklearn.base import RegressorMixin from sklearn.base import ClassifierMixin from sklearn.utils.extmath import safe_sparse_dot from sklearn.utils import safe_asarray from sklearn.preprocessing import LabelBinarizer from sklearn.grid_search import GridSearchCV def _solve(A, b, solver, tol): # helper method for ridge_regression, A is symmetric positive if solver == 'auto': if hasattr(A, 'todense'): solver = 'sparse_cg' else: solver = 'dense_cholesky' if solver == 'sparse_cg': if b.ndim < 2: from scipy.sparse import linalg as sp_linalg sol, error = sp_linalg.cg(A, b, tol=tol) if error: raise ValueError("Failed with error code %d" % error) return sol else: # sparse_cg cannot handle a 2-d b. sol = [] for j in range(b.shape[1]): sol.append(_solve(A, b[:, j], solver="sparse_cg", tol=tol)) return np.array(sol).T elif solver == 'dense_cholesky': from scipy import linalg if hasattr(A, 'todense'): A = A.todense() return linalg.solve(A, b, sym_pos=True, overwrite_a=True) else: raise NotImplementedError('Solver %s not implemented' % solver) def ridge_regression(X, y, alpha, sample_weight=1.0, solver='auto', tol=1e-3): """Solve the ridge equation by the method of normal equations. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_responses] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample solver : {'auto', 'dense_cholesky', 'sparse_cg'}, optional Solver to use in the computational routines. 'dense_cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. tol: float Precision of the solution. Returns ------- coef: array, shape = [n_features] or [n_responses, n_features] Weight vector(s). Notes ----- This function won't compute the intercept. """ n_samples, n_features = X.shape is_sparse = False if hasattr(X, 'todense'): # lazy import of scipy.sparse from scipy import sparse is_sparse = sparse.issparse(X) if is_sparse: if n_features > n_samples or \ isinstance(sample_weight, np.ndarray) or \ sample_weight != 1.0: I = sparse.lil_matrix((n_samples, n_samples)) I.setdiag(np.ones(n_samples) * alpha * sample_weight) c = _solve(X * X.T + I, y, solver, tol) coef = X.T * c else: I = sparse.lil_matrix((n_features, n_features)) I.setdiag(np.ones(n_features) * alpha) coef = _solve(X.T * X + I, X.T * y, solver, tol) else: if n_features > n_samples or \ isinstance(sample_weight, np.ndarray) or \ sample_weight != 1.0: # kernel ridge # w = X.T * inv(X X^t + alpha*Id) y A = np.dot(X, X.T) A.flat[::n_samples + 1] += alpha * sample_weight coef = np.dot(X.T, _solve(A, y, solver, tol)) else: # ridge # w = inv(X^t X + alpha*Id) * X.T y A = np.dot(X.T, X) A.flat[::n_features + 1] += alpha coef = _solve(A, np.dot(X.T, y), solver, tol) return coef.T class _BaseRidge(LinearModel): __metaclass__ = ABCMeta @abstractmethod def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=1e-3): self.alpha = alpha self.fit_intercept = fit_intercept self.normalize = normalize self.copy_X = copy_X self.tol = tol def fit(self, X, y, sample_weight=1.0, solver='auto'): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_responses] Target values sample_weight : float or numpy array of shape [n_samples] Individual weights for each sample solver : {'auto', 'dense_cholesky', 'sparse_cg'} Solver to use in the computational routines. 'dense_cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. Returns ------- self : returns an instance of self. """ X = safe_asarray(X, dtype=np.float) y = np.asarray(y, dtype=np.float) X, y, X_mean, y_mean, X_std = \ self._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) self.coef_ = ridge_regression(X, y, self.alpha, sample_weight, solver, self.tol) self._set_intercept(X_mean, y_mean, X_std) return self class Ridge(_BaseRidge, RegressorMixin): """Linear least squares with l2 regularization. This model solves a regression model where the loss function is the linear least squares function and regularization is given by the l2-norm. Also known as Ridge Regression or Tikhonov regularization. This estimator has built-in support for multi-variate regression (i.e., when y is a 2d-array of shape [n_samples, n_responses]). Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If True, the regressors X are normalized copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. tol: float Precision of the solution. Attributes ---------- `coef_` : array, shape = [n_features] or [n_responses, n_features] Weight vector(s). See also -------- RidgeClassifier, RidgeCV Examples -------- >>> from sklearn.linear_model import Ridge >>> import numpy as np >>> n_samples, n_features = 10, 5 >>> np.random.seed(0) >>> y = np.random.randn(n_samples) >>> X = np.random.randn(n_samples, n_features) >>> clf = Ridge(alpha=1.0) >>> clf.fit(X, y) # doctest: +NORMALIZE_WHITESPACE Ridge(alpha=1.0, copy_X=True, fit_intercept=True, normalize=False, tol=0.001) """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=1e-3): super(Ridge, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, tol=tol) class RidgeClassifier(_BaseRidge, ClassifierMixin): """Classifier using Ridge regression. Parameters ---------- alpha : float Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If True, the regressors X are normalized copy_X : boolean, optional, default True If True, X will be copied; else, it may be overwritten. tol: float Precision of the solution. class_weight : dict, optional Weights associated with classes in the form {class_label : weight}. If not given, all classes are supposed to have weight one. Attributes ---------- `coef_` : array, shape = [n_features] or [n_classes, n_features] Weight vector(s). See also -------- Ridge, RidgeClassifierCV Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, tol=1e-3, class_weight=None): super(RidgeClassifier, self).__init__(alpha=alpha, fit_intercept=fit_intercept, normalize=normalize, copy_X=copy_X, tol=tol) self.class_weight = class_weight def fit(self, X, y, solver='auto'): """Fit Ridge regression model. Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples,n_features] Training data y : array-like, shape = [n_samples] Target values solver : {'auto', 'dense_cholesky', 'sparse_cg'} Solver to use in the computational routines. 'dense_cholesky' will use the standard scipy.linalg.solve function, 'sparse_cg' will use the conjugate gradient solver as found in scipy.sparse.linalg.cg while 'auto' will chose the most appropriate depending on the matrix X. Returns ------- self : returns an instance of self. """ if self.class_weight is None: class_weight = {} else: class_weight = self.class_weight sample_weight_classes = np.array([class_weight.get(k, 1.0) for k in y]) self.label_binarizer = LabelBinarizer() Y = self.label_binarizer.fit_transform(y) _BaseRidge.fit(self, X, Y, solver=solver, sample_weight=sample_weight_classes) return self def predict(self, X): """Predict target values according to the fitted model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- y : array, shape = [n_samples] """ Y = self.decision_function(X) return self.label_binarizer.inverse_transform(Y) class _RidgeGCV(LinearModel): """Ridge regression with built-in Generalized Cross-Validation It allows efficient Leave-One-Out cross-validation. This class is not intended to be used directly. Use RidgeCV instead. Notes ----- We want to solve (K + alpha*Id)c = y, where K = X X^T is the kernel matrix. Let G = (K + alpha*Id)^-1. Dual solution: c = Gy Primal solution: w = X^T c Compute eigendecomposition K = Q V Q^T. Then G = Q (V + alpha*Id)^-1 Q^T, where (V + alpha*Id) is diagonal. It is thus inexpensive to inverse for many alphas. Let loov be the vector of prediction values for each example when the model was fitted with all examples but this example. loov = (KGY - diag(KG)Y) / diag(I-KG) Let looe be the vector of prediction errors for each example when the model was fitted with all examples but this example. looe = y - loov = c / diag(G) References ---------- http://cbcl.mit.edu/projects/cbcl/publications/ps/MIT-CSAIL-TR-2007-025.pdf http://www.mit.edu/~9.520/spring07/Classes/rlsslides.pdf """ def __init__(self, alphas=[0.1, 1.0, 10.0], fit_intercept=True, normalize=False, score_func=None, loss_func=None, copy_X=True, gcv_mode=None, store_cv_values=False): self.alphas = np.asarray(alphas) self.fit_intercept = fit_intercept self.normalize = normalize self.score_func = score_func self.loss_func = loss_func self.copy_X = copy_X self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def _pre_compute(self, X, y): # even if X is very sparse, K is usually very dense K = safe_sparse_dot(X, X.T, dense_output=True) from scipy import linalg v, Q = linalg.eigh(K) QT_y = np.dot(Q.T, y) return v, Q, QT_y def _decomp_diag(self, v_prime, Q): # compute diagonal of the matrix: dot(Q, dot(diag(v_prime), Q^T)) return (v_prime * Q ** 2).sum(axis=-1) def _diag_dot(self, D, B): # compute dot(diag(D), B) if len(B.shape) > 1: # handle case where B is > 1-d D = D[(slice(None), ) + (np.newaxis, ) * (len(B.shape) - 1)] return D * B def _errors(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values(self, alpha, y, v, Q, QT_y): # don't construct matrix G, instead compute action on y & diagonal w = 1.0 / (v + alpha) c = np.dot(Q, self._diag_dot(w, QT_y)) G_diag = self._decomp_diag(w, Q) # handle case where y is 2-d if len(y.shape) != 1: G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def _pre_compute_svd(self, X, y): from scipy import sparse if sparse.issparse(X) and hasattr(X, 'toarray'): X = X.toarray() U, s, _ = np.linalg.svd(X, full_matrices=0) v = s ** 2 UT_y = np.dot(U.T, y) return v, U, UT_y def _errors_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case where y is 2-d G_diag = G_diag[:, np.newaxis] return (c / G_diag) ** 2, c def _values_svd(self, alpha, y, v, U, UT_y): w = ((v + alpha) ** -1) - (alpha ** -1) c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha ** -1) * y G_diag = self._decomp_diag(w, U) + (alpha ** -1) if len(y.shape) != 1: # handle case when y is 2-d G_diag = G_diag[:, np.newaxis] return y - (c / G_diag), c def fit(self, X, y, sample_weight=1.0): """Fit Ridge regression model Parameters ---------- X : {array-like, sparse matrix}, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_responses] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ X = safe_asarray(X, dtype=np.float) y = np.asarray(y, dtype=np.float) n_samples, n_features = X.shape X, y, X_mean, y_mean, X_std = LinearModel._center_data(X, y, self.fit_intercept, self.normalize, self.copy_X) gcv_mode = self.gcv_mode with_sw = len(np.shape(sample_weight)) if gcv_mode is None or gcv_mode == 'auto': if n_features > n_samples or with_sw: gcv_mode = 'eigen' else: gcv_mode = 'svd' elif gcv_mode == "svd" and with_sw: # FIXME non-uniform sample weights not yet supported warnings.warn("non-uniform sample weights unsupported for svd, " "forcing usage of eigen") gcv_mode = 'eigen' if gcv_mode == 'eigen': _pre_compute = self._pre_compute _errors = self._errors _values = self._values elif gcv_mode == 'svd': # assert n_samples >= n_features _pre_compute = self._pre_compute_svd _errors = self._errors_svd _values = self._values_svd else: raise ValueError('bad gcv_mode "%s"' % gcv_mode) v, Q, QT_y = _pre_compute(X, y) n_y = 1 if len(y.shape) == 1 else y.shape[1] cv_values = np.zeros((n_samples * n_y, len(self.alphas))) C = [] error = self.score_func is None and self.loss_func is None for i, alpha in enumerate(self.alphas): if error: out, c = _errors(sample_weight * alpha, y, v, Q, QT_y) else: out, c = _values(sample_weight * alpha, y, v, Q, QT_y) cv_values[:, i] = out.ravel() C.append(c) if error: best = cv_values.mean(axis=0).argmin() else: func = self.score_func if self.score_func else self.loss_func out = [func(y.ravel(), cv_values[:, i]) for i in range(len(self.alphas))] best = np.argmax(out) if self.score_func else np.argmin(out) self.best_alpha = self.alphas[best] self.dual_coef_ = C[best] self.coef_ = safe_sparse_dot(self.dual_coef_.T, X) self._set_intercept(X_mean, y_mean, X_std) if self.store_cv_values: if len(y.shape) == 1: cv_values_shape = n_samples, len(self.alphas) else: cv_values_shape = n_samples, n_y, len(self.alphas) self.cv_values_ = cv_values.reshape(cv_values_shape) return self class _BaseRidgeCV(LinearModel): def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, gcv_mode=None, store_cv_values=False): self.alphas = alphas self.fit_intercept = fit_intercept self.normalize = normalize self.score_func = score_func self.loss_func = loss_func self.cv = cv self.gcv_mode = gcv_mode self.store_cv_values = store_cv_values def fit(self, X, y, sample_weight=1.0): """Fit Ridge regression model Parameters ---------- X : array-like, shape = [n_samples, n_features] Training data y : array-like, shape = [n_samples] or [n_samples, n_responses] Target values sample_weight : float or array-like of shape [n_samples] Sample weight Returns ------- self : Returns self. """ if self.cv is None: estimator = _RidgeGCV(self.alphas, self.fit_intercept, self.score_func, self.loss_func, gcv_mode=self.gcv_mode, store_cv_values=self.store_cv_values) estimator.fit(X, y, sample_weight=sample_weight) self.best_alpha = estimator.best_alpha if self.store_cv_values: self.cv_values_ = estimator.cv_values_ else: if self.store_cv_values: raise ValueError("cv!=None and store_cv_values=True " " are incompatible") parameters = {'alpha': self.alphas} # FIXME: sample_weight must be split into training/validation data # too! #fit_params = {'sample_weight' : sample_weight} fit_params = {} gs = GridSearchCV(Ridge(fit_intercept=self.fit_intercept), parameters, fit_params=fit_params, cv=self.cv) gs.fit(X, y) estimator = gs.best_estimator_ self.best_alpha = gs.best_estimator_.alpha self.coef_ = estimator.coef_ self.intercept_ = estimator.intercept_ return self class RidgeCV(_BaseRidgeCV, RegressorMixin): """Ridge regression with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Parameters ---------- alphas: numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to ``(2*C)^-1`` in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If True, the regressors X are normalized score_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the performance of prediction (big is good) if None is passed, the score of the estimator is maximized loss_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the performance of prediction (small is good) if None is passed, the score of the estimator is maximized cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. gcv_mode : {None, 'auto', 'svd', eigen'}, optional Flag indicating which strategy to use when performing Generalized Cross-Validation. Options are:: 'auto' : use svd if n_samples > n_features, otherwise use eigen 'svd' : force computation via singular value decomposition of X 'eigen' : force computation via eigendecomposition of X^T X The 'auto' mode is the default and is intended to pick the cheaper \ option of the two depending upon the shape of the training data. store_cv_values : boolean, default=False Flag indicating if the cross-validation values corresponding to each alpha should be stored in the `cv_values_` attribute (see below). This flag is only compatible with `cv=None` (i.e. using Generalized Cross-Validation). Attributes ---------- `coef_` : array, shape = [n_features] or [n_responses, n_features] Weight vector(s). cv_values_ : array, shape = [n_samples, n_alphas] or \ shape = [n_samples, n_responses, n_alphas], optional Cross-validation values for each alpha (if `store_cv_values=True` and `cv=None`). After `fit()` has been called, this attribute will contain the mean squared errors (by default) or the values of the `{loss,score}_func` function (if provided in the constructor). See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation """ pass class RidgeClassifierCV(_BaseRidgeCV, ClassifierMixin): """Ridge classifier with built-in cross-validation. By default, it performs Generalized Cross-Validation, which is a form of efficient Leave-One-Out cross-validation. Currently, only the n_features > n_samples case is handled efficiently. Parameters ---------- alphas: numpy array of shape [n_alphas] Array of alpha values to try. Small positive values of alpha improve the conditioning of the problem and reduce the variance of the estimates. Alpha corresponds to (2*C)^-1 in other linear models such as LogisticRegression or LinearSVC. fit_intercept : boolean Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered). normalize : boolean, optional If True, the regressors X are normalized score_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the performance of prediction (big is good) if None is passed, the score of the estimator is maximized loss_func: callable, optional function that takes 2 arguments and compares them in order to evaluate the performance of prediction (small is good) if None is passed, the score of the estimator is maximized cv : cross-validation generator, optional If None, Generalized Cross-Validation (efficient Leave-One-Out) will be used. class_weight : dict, optional Weights associated with classes in the form {class_label : weight}. If not given, all classes are supposed to have weight one. See also -------- Ridge: Ridge regression RidgeClassifier: Ridge classifier RidgeCV: Ridge regression with built-in cross validation Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge. """ def __init__(self, alphas=np.array([0.1, 1.0, 10.0]), fit_intercept=True, normalize=False, score_func=None, loss_func=None, cv=None, class_weight=None): super(RidgeClassifierCV, self).__init__(alphas=alphas, fit_intercept=fit_intercept, normalize=normalize, score_func=score_func, loss_func=loss_func, cv=cv) self.class_weight = class_weight def fit(self, X, y, sample_weight=1.0, class_weight=None): """Fit the ridge classifier. Parameters ---------- X : array-like, shape = [n_samples, n_features] Training vectors, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape = [n_samples] Target values. sample_weight : float or numpy array of shape [n_samples] Sample weight class_weight : dict, optional Weights associated with classes in the form {class_label : weight}. If not given, all classes are supposed to have weight one. Returns ------- self : object Returns self. """ if class_weight != None: warnings.warn("'class_weight' is now an initialization parameter." "Using it in the 'fit' method is deprecated.", DeprecationWarning) self.class_weight_ = class_weight else: self.class_weight_ = self.class_weight if self.class_weight_ is None: self.class_weight_ = {} sample_weight2 = np.array([self.class_weight_.get(k, 1.0) for k in y]) self.label_binarizer = LabelBinarizer() Y = self.label_binarizer.fit_transform(y) _BaseRidgeCV.fit(self, X, Y, sample_weight=sample_weight * sample_weight2) return self def predict(self, X): """Predict target values according to the fitted model. Parameters ---------- X : array-like, shape = [n_samples, n_features] Returns ------- y : array, shape = [n_samples] """ Y = self.decision_function(X) return self.label_binarizer.inverse_transform(Y)
bsd-3-clause
moijes12/oh-mainline
vendor/packages/kombu/kombu/pidbox.py
23
12704
""" kombu.pidbox =============== Generic process mailbox. """ from __future__ import absolute_import import socket import warnings from collections import defaultdict, deque from copy import copy from itertools import count from threading import local from time import time from . import Exchange, Queue, Consumer, Producer from .clocks import LamportClock from .common import maybe_declare, oid_from from .exceptions import InconsistencyError from .five import range from .log import get_logger from .utils import cached_property, kwdict, uuid, reprcall REPLY_QUEUE_EXPIRES = 10 W_PIDBOX_IN_USE = """\ A node named {node.hostname} is already using this process mailbox! Maybe you forgot to shutdown the other node or did not do so properly? Or if you meant to start multiple nodes on the same host please make sure you give each node a unique node name! """ __all__ = ['Node', 'Mailbox'] logger = get_logger(__name__) debug, error = logger.debug, logger.error class Node(object): #: hostname of the node. hostname = None #: the :class:`Mailbox` this is a node for. mailbox = None #: map of method name/handlers. handlers = None #: current context (passed on to handlers) state = None #: current channel. channel = None def __init__(self, hostname, state=None, channel=None, handlers=None, mailbox=None): self.channel = channel self.mailbox = mailbox self.hostname = hostname self.state = state self.adjust_clock = self.mailbox.clock.adjust if handlers is None: handlers = {} self.handlers = handlers def Consumer(self, channel=None, no_ack=True, accept=None, **options): queue = self.mailbox.get_queue(self.hostname) def verify_exclusive(name, messages, consumers): if consumers: warnings.warn(W_PIDBOX_IN_USE.format(node=self)) queue.on_declared = verify_exclusive return Consumer( channel or self.channel, [queue], no_ack=no_ack, accept=self.mailbox.accept if accept is None else accept, **options ) def handler(self, fun): self.handlers[fun.__name__] = fun return fun def on_decode_error(self, message, exc): error('Cannot decode message: %r', exc, exc_info=1) def listen(self, channel=None, callback=None): consumer = self.Consumer(channel=channel, callbacks=[callback or self.handle_message], on_decode_error=self.on_decode_error) consumer.consume() return consumer def dispatch(self, method, arguments=None, reply_to=None, ticket=None, **kwargs): arguments = arguments or {} debug('pidbox received method %s [reply_to:%s ticket:%s]', reprcall(method, (), kwargs=arguments), reply_to, ticket) handle = reply_to and self.handle_call or self.handle_cast try: reply = handle(method, kwdict(arguments)) except SystemExit: raise except Exception as exc: error('pidbox command error: %r', exc, exc_info=1) reply = {'error': repr(exc)} if reply_to: self.reply({self.hostname: reply}, exchange=reply_to['exchange'], routing_key=reply_to['routing_key'], ticket=ticket) return reply def handle(self, method, arguments={}): return self.handlers[method](self.state, **arguments) def handle_call(self, method, arguments): return self.handle(method, arguments) def handle_cast(self, method, arguments): return self.handle(method, arguments) def handle_message(self, body, message=None): destination = body.get('destination') if message: self.adjust_clock(message.headers.get('clock') or 0) if not destination or self.hostname in destination: return self.dispatch(**kwdict(body)) dispatch_from_message = handle_message def reply(self, data, exchange, routing_key, ticket, **kwargs): self.mailbox._publish_reply(data, exchange, routing_key, ticket, channel=self.channel, serializer=self.mailbox.serializer) class Mailbox(object): node_cls = Node exchange_fmt = '%s.pidbox' reply_exchange_fmt = 'reply.%s.pidbox' #: Name of application. namespace = None #: Connection (if bound). connection = None #: Exchange type (usually direct, or fanout for broadcast). type = 'direct' #: mailbox exchange (init by constructor). exchange = None #: exchange to send replies to. reply_exchange = None #: Only accepts json messages by default. accept = ['json'] #: Message serializer serializer = None def __init__(self, namespace, type='direct', connection=None, clock=None, accept=None, serializer=None): self.namespace = namespace self.connection = connection self.type = type self.clock = LamportClock() if clock is None else clock self.exchange = self._get_exchange(self.namespace, self.type) self.reply_exchange = self._get_reply_exchange(self.namespace) self._tls = local() self.unclaimed = defaultdict(deque) self.accept = self.accept if accept is None else accept self.serializer = self.serializer if serializer is None else serializer def __call__(self, connection): bound = copy(self) bound.connection = connection return bound def Node(self, hostname=None, state=None, channel=None, handlers=None): hostname = hostname or socket.gethostname() return self.node_cls(hostname, state, channel, handlers, mailbox=self) def call(self, destination, command, kwargs={}, timeout=None, callback=None, channel=None): return self._broadcast(command, kwargs, destination, reply=True, timeout=timeout, callback=callback, channel=channel) def cast(self, destination, command, kwargs={}): return self._broadcast(command, kwargs, destination, reply=False) def abcast(self, command, kwargs={}): return self._broadcast(command, kwargs, reply=False) def multi_call(self, command, kwargs={}, timeout=1, limit=None, callback=None, channel=None): return self._broadcast(command, kwargs, reply=True, timeout=timeout, limit=limit, callback=callback, channel=channel) def get_reply_queue(self): oid = self.oid return Queue( '%s.%s' % (oid, self.reply_exchange.name), exchange=self.reply_exchange, routing_key=oid, durable=False, auto_delete=True, queue_arguments={'x-expires': int(REPLY_QUEUE_EXPIRES * 1000)}, ) @cached_property def reply_queue(self): return self.get_reply_queue() def get_queue(self, hostname): return Queue('%s.%s.pidbox' % (hostname, self.namespace), exchange=self.exchange, durable=False, auto_delete=True) def _publish_reply(self, reply, exchange, routing_key, ticket, channel=None, **opts): chan = channel or self.connection.default_channel exchange = Exchange(exchange, exchange_type='direct', delivery_mode='transient', durable=False) producer = Producer(chan, auto_declare=False) try: producer.publish( reply, exchange=exchange, routing_key=routing_key, declare=[exchange], headers={ 'ticket': ticket, 'clock': self.clock.forward(), }, **opts ) except InconsistencyError: pass # queue probably deleted and no one is expecting a reply. def _publish(self, type, arguments, destination=None, reply_ticket=None, channel=None, timeout=None, serializer=None): message = {'method': type, 'arguments': arguments, 'destination': destination} chan = channel or self.connection.default_channel exchange = self.exchange if reply_ticket: maybe_declare(self.reply_queue(channel)) message.update(ticket=reply_ticket, reply_to={'exchange': self.reply_exchange.name, 'routing_key': self.oid}) serializer = serializer or self.serializer producer = Producer(chan, auto_declare=False) producer.publish( message, exchange=exchange.name, declare=[exchange], headers={'clock': self.clock.forward(), 'expires': time() + timeout if timeout else 0}, serializer=serializer, ) def _broadcast(self, command, arguments=None, destination=None, reply=False, timeout=1, limit=None, callback=None, channel=None, serializer=None): if destination is not None and \ not isinstance(destination, (list, tuple)): raise ValueError( 'destination must be a list/tuple not {0}'.format( type(destination))) arguments = arguments or {} reply_ticket = reply and uuid() or None chan = channel or self.connection.default_channel # Set reply limit to number of destinations (if specified) if limit is None and destination: limit = destination and len(destination) or None serializer = serializer or self.serializer self._publish(command, arguments, destination=destination, reply_ticket=reply_ticket, channel=chan, timeout=timeout, serializer=serializer) if reply_ticket: return self._collect(reply_ticket, limit=limit, timeout=timeout, callback=callback, channel=chan) def _collect(self, ticket, limit=None, timeout=1, callback=None, channel=None, accept=None): if accept is None: accept = self.accept chan = channel or self.connection.default_channel queue = self.reply_queue consumer = Consumer(channel, [queue], accept=accept, no_ack=True) responses = [] unclaimed = self.unclaimed adjust_clock = self.clock.adjust try: return unclaimed.pop(ticket) except KeyError: pass def on_message(body, message): # ticket header added in kombu 2.5 header = message.headers.get adjust_clock(header('clock') or 0) expires = header('expires') if expires and time() > expires: return this_id = header('ticket', ticket) if this_id == ticket: if callback: callback(body) responses.append(body) else: unclaimed[this_id].append(body) consumer.register_callback(on_message) try: with consumer: for i in limit and range(limit) or count(): try: self.connection.drain_events(timeout=timeout) except socket.timeout: break return responses finally: chan.after_reply_message_received(queue.name) def _get_exchange(self, namespace, type): return Exchange(self.exchange_fmt % namespace, type=type, durable=False, delivery_mode='transient') def _get_reply_exchange(self, namespace): return Exchange(self.reply_exchange_fmt % namespace, type='direct', durable=False, delivery_mode='transient') @cached_property def oid(self): try: return self._tls.OID except AttributeError: oid = self._tls.OID = oid_from(self) return oid
agpl-3.0
cervinko/calibre-web
vendor/jinja2/__init__.py
14
2268
# -*- coding: utf-8 -*- """ jinja2 ~~~~~~ Jinja2 is a template engine written in pure Python. It provides a Django inspired non-XML syntax but supports inline expressions and an optional sandboxed environment. Nutshell -------- Here a small example of a Jinja2 template:: {% extends 'base.html' %} {% block title %}Memberlist{% endblock %} {% block content %} <ul> {% for user in users %} <li><a href="{{ user.url }}">{{ user.username }}</a></li> {% endfor %} </ul> {% endblock %} :copyright: (c) 2010 by the Jinja Team. :license: BSD, see LICENSE for more details. """ __docformat__ = 'restructuredtext en' __version__ = '2.7' # high level interface from jinja2.environment import Environment, Template # loaders from jinja2.loaders import BaseLoader, FileSystemLoader, PackageLoader, \ DictLoader, FunctionLoader, PrefixLoader, ChoiceLoader, \ ModuleLoader # bytecode caches from jinja2.bccache import BytecodeCache, FileSystemBytecodeCache, \ MemcachedBytecodeCache # undefined types from jinja2.runtime import Undefined, DebugUndefined, StrictUndefined # exceptions from jinja2.exceptions import TemplateError, UndefinedError, \ TemplateNotFound, TemplatesNotFound, TemplateSyntaxError, \ TemplateAssertionError # decorators and public utilities from jinja2.filters import environmentfilter, contextfilter, \ evalcontextfilter from jinja2.utils import Markup, escape, clear_caches, \ environmentfunction, evalcontextfunction, contextfunction, \ is_undefined __all__ = [ 'Environment', 'Template', 'BaseLoader', 'FileSystemLoader', 'PackageLoader', 'DictLoader', 'FunctionLoader', 'PrefixLoader', 'ChoiceLoader', 'BytecodeCache', 'FileSystemBytecodeCache', 'MemcachedBytecodeCache', 'Undefined', 'DebugUndefined', 'StrictUndefined', 'TemplateError', 'UndefinedError', 'TemplateNotFound', 'TemplatesNotFound', 'TemplateSyntaxError', 'TemplateAssertionError', 'ModuleLoader', 'environmentfilter', 'contextfilter', 'Markup', 'escape', 'environmentfunction', 'contextfunction', 'clear_caches', 'is_undefined', 'evalcontextfilter', 'evalcontextfunction' ]
gpl-3.0
nrhine1/scikit-learn
examples/applications/wikipedia_principal_eigenvector.py
233
7819
""" =============================== Wikipedia principal eigenvector =============================== A classical way to assert the relative importance of vertices in a graph is to compute the principal eigenvector of the adjacency matrix so as to assign to each vertex the values of the components of the first eigenvector as a centrality score: http://en.wikipedia.org/wiki/Eigenvector_centrality On the graph of webpages and links those values are called the PageRank scores by Google. The goal of this example is to analyze the graph of links inside wikipedia articles to rank articles by relative importance according to this eigenvector centrality. The traditional way to compute the principal eigenvector is to use the power iteration method: http://en.wikipedia.org/wiki/Power_iteration Here the computation is achieved thanks to Martinsson's Randomized SVD algorithm implemented in the scikit. The graph data is fetched from the DBpedia dumps. DBpedia is an extraction of the latent structured data of the Wikipedia content. """ # Author: Olivier Grisel <[email protected]> # License: BSD 3 clause from __future__ import print_function from bz2 import BZ2File import os from datetime import datetime from pprint import pprint from time import time import numpy as np from scipy import sparse from sklearn.decomposition import randomized_svd from sklearn.externals.joblib import Memory from sklearn.externals.six.moves.urllib.request import urlopen from sklearn.externals.six import iteritems print(__doc__) ############################################################################### # Where to download the data, if not already on disk redirects_url = "http://downloads.dbpedia.org/3.5.1/en/redirects_en.nt.bz2" redirects_filename = redirects_url.rsplit("/", 1)[1] page_links_url = "http://downloads.dbpedia.org/3.5.1/en/page_links_en.nt.bz2" page_links_filename = page_links_url.rsplit("/", 1)[1] resources = [ (redirects_url, redirects_filename), (page_links_url, page_links_filename), ] for url, filename in resources: if not os.path.exists(filename): print("Downloading data from '%s', please wait..." % url) opener = urlopen(url) open(filename, 'wb').write(opener.read()) print() ############################################################################### # Loading the redirect files memory = Memory(cachedir=".") def index(redirects, index_map, k): """Find the index of an article name after redirect resolution""" k = redirects.get(k, k) return index_map.setdefault(k, len(index_map)) DBPEDIA_RESOURCE_PREFIX_LEN = len("http://dbpedia.org/resource/") SHORTNAME_SLICE = slice(DBPEDIA_RESOURCE_PREFIX_LEN + 1, -1) def short_name(nt_uri): """Remove the < and > URI markers and the common URI prefix""" return nt_uri[SHORTNAME_SLICE] def get_redirects(redirects_filename): """Parse the redirections and build a transitively closed map out of it""" redirects = {} print("Parsing the NT redirect file") for l, line in enumerate(BZ2File(redirects_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue redirects[short_name(split[0])] = short_name(split[2]) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) # compute the transitive closure print("Computing the transitive closure of the redirect relation") for l, source in enumerate(redirects.keys()): transitive_target = None target = redirects[source] seen = set([source]) while True: transitive_target = target target = redirects.get(target) if target is None or target in seen: break seen.add(target) redirects[source] = transitive_target if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) return redirects # disabling joblib as the pickling of large dicts seems much too slow #@memory.cache def get_adjacency_matrix(redirects_filename, page_links_filename, limit=None): """Extract the adjacency graph as a scipy sparse matrix Redirects are resolved first. Returns X, the scipy sparse adjacency matrix, redirects as python dict from article names to article names and index_map a python dict from article names to python int (article indexes). """ print("Computing the redirect map") redirects = get_redirects(redirects_filename) print("Computing the integer index map") index_map = dict() links = list() for l, line in enumerate(BZ2File(page_links_filename)): split = line.split() if len(split) != 4: print("ignoring malformed line: " + line) continue i = index(redirects, index_map, short_name(split[0])) j = index(redirects, index_map, short_name(split[2])) links.append((i, j)) if l % 1000000 == 0: print("[%s] line: %08d" % (datetime.now().isoformat(), l)) if limit is not None and l >= limit - 1: break print("Computing the adjacency matrix") X = sparse.lil_matrix((len(index_map), len(index_map)), dtype=np.float32) for i, j in links: X[i, j] = 1.0 del links print("Converting to CSR representation") X = X.tocsr() print("CSR conversion done") return X, redirects, index_map # stop after 5M links to make it possible to work in RAM X, redirects, index_map = get_adjacency_matrix( redirects_filename, page_links_filename, limit=5000000) names = dict((i, name) for name, i in iteritems(index_map)) print("Computing the principal singular vectors using randomized_svd") t0 = time() U, s, V = randomized_svd(X, 5, n_iter=3) print("done in %0.3fs" % (time() - t0)) # print the names of the wikipedia related strongest compenents of the the # principal singular vector which should be similar to the highest eigenvector print("Top wikipedia pages according to principal singular vectors") pprint([names[i] for i in np.abs(U.T[0]).argsort()[-10:]]) pprint([names[i] for i in np.abs(V[0]).argsort()[-10:]]) def centrality_scores(X, alpha=0.85, max_iter=100, tol=1e-10): """Power iteration computation of the principal eigenvector This method is also known as Google PageRank and the implementation is based on the one from the NetworkX project (BSD licensed too) with copyrights by: Aric Hagberg <[email protected]> Dan Schult <[email protected]> Pieter Swart <[email protected]> """ n = X.shape[0] X = X.copy() incoming_counts = np.asarray(X.sum(axis=1)).ravel() print("Normalizing the graph") for i in incoming_counts.nonzero()[0]: X.data[X.indptr[i]:X.indptr[i + 1]] *= 1.0 / incoming_counts[i] dangle = np.asarray(np.where(X.sum(axis=1) == 0, 1.0 / n, 0)).ravel() scores = np.ones(n, dtype=np.float32) / n # initial guess for i in range(max_iter): print("power iteration #%d" % i) prev_scores = scores scores = (alpha * (scores * X + np.dot(dangle, prev_scores)) + (1 - alpha) * prev_scores.sum() / n) # check convergence: normalized l_inf norm scores_max = np.abs(scores).max() if scores_max == 0.0: scores_max = 1.0 err = np.abs(scores - prev_scores).max() / scores_max print("error: %0.6f" % err) if err < n * tol: return scores return scores print("Computing principal eigenvector score using a power iteration method") t0 = time() scores = centrality_scores(X, max_iter=100, tol=1e-10) print("done in %0.3fs" % (time() - t0)) pprint([names[i] for i in np.abs(scores).argsort()[-10:]])
bsd-3-clause
v0i0/lammps
python/examples/simple.py
9
2271
#!/usr/bin/env python -i # preceding line should have path for Python on your machine # simple.py # Purpose: mimic operation of examples/COUPLE/simple/simple.cpp via Python # Serial syntax: simple.py in.lammps # in.lammps = LAMMPS input script # Parallel syntax: mpirun -np 4 simple.py in.lammps # in.lammps = LAMMPS input script # also need to uncomment either Pypar or mpi4py sections below from __future__ import print_function import sys import numpy as np import ctypes # parse command line argv = sys.argv if len(argv) != 2: print("Syntax: simple.py in.lammps") sys.exit() infile = sys.argv[1] me = 0 # uncomment this if running in parallel via Pypar #import pypar #me = pypar.rank() #nprocs = pypar.size() # uncomment this if running in parallel via mpi4py #from mpi4py import MPI #me = MPI.COMM_WORLD.Get_rank() #nprocs = MPI.COMM_WORLD.Get_size() from lammps import lammps lmp = lammps() # run infile one line at a time lines = open(infile,'r').readlines() for line in lines: lmp.command(line) # run 10 more steps # get coords from LAMMPS # change coords of 1st atom # put coords back into LAMMPS # run a single step with changed coords lmp.command("run 10") x = lmp.gather_atoms("x",1,3) v = lmp.gather_atoms("v",1,3) epsilon = 0.1 x[0] += epsilon lmp.scatter_atoms("x",1,3,x) lmp.command("run 1"); # extract force on single atom two different ways f = lmp.extract_atom("f",3) print("Force on 1 atom via extract_atom: ",f[0][0]) fx = lmp.extract_variable("fx","all",1) print("Force on 1 atom via extract_variable:",fx[0]) # use commands_string() and commands_list() to invoke more commands strtwo = "run 10\nrun 20" lmp.commands_string(strtwo) cmds = ["run 10","run 20"] lmp.commands_list(cmds) # delete all atoms # create_atoms() to create new ones with old coords, vels # initial thermo should be same as step 20 natoms = lmp.get_natoms() type = natoms*[1] lmp.command("delete_atoms group all"); lmp.create_atoms(natoms,None,type,x,v); lmp.command("run 10"); # uncomment if running in parallel via Pypar #print("Proc %d out of %d procs has" % (me,nprocs), lmp) #pypar.finalize() # uncomment if running in parallel via mpi4py #print "Proc %d out of %d procs has" % (me,nprocs), lmp #MPI.Finalize()
gpl-2.0
songfj/calibre
src/calibre/ebooks/rtf2xml/border_parse.py
22
8124
######################################################################### # # # # # copyright 2002 Paul Henry Tremblay # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # # General Public License for more details. # # # # # ######################################################################### import sys class BorderParse: """ Parse a border line and return a dictionary of attributes and values """ def __init__(self): # cw<bd<bor-t-r-hi<nu<true self.__border_dict = { 'bor-t-r-hi' : 'border-table-row-horizontal-inside', 'bor-t-r-vi' : 'border-table-row-vertical-inside', 'bor-t-r-to' : 'border-table-row-top', 'bor-t-r-le' : 'border-table-row-left', 'bor-t-r-bo' : 'border-table-row-bottom', 'bor-t-r-ri' : 'border-table-row-right', 'bor-cel-bo' : 'border-cell-bottom', 'bor-cel-to' : 'border-cell-top', 'bor-cel-le' : 'border-cell-left', 'bor-cel-ri' : 'border-cell-right', 'bor-par-bo' : 'border-paragraph-bottom', 'bor-par-to' : 'border-paragraph-top', 'bor-par-le' : 'border-paragraph-left', 'bor-par-ri' : 'border-paragraph-right', 'bor-par-bx' : 'border-paragraph-box', 'bor-for-ev' : 'border-for-every-paragraph', 'bor-outsid' : 'border-outside', 'bor-none__' : 'border', # border type => bt 'bdr-li-wid' : 'line-width', 'bdr-sp-wid' : 'padding', 'bdr-color_' : 'color', } self.__border_style_dict = { 'bdr-single' : 'single', 'bdr-doubtb' : 'double-thickness-border', 'bdr-shadow' : 'shadowed-border', 'bdr-double' : 'double-border', 'bdr-dotted' : 'dotted-border', 'bdr-dashed' : 'dashed', 'bdr-hair__' : 'hairline', 'bdr-inset_' : 'inset', 'bdr-das-sm' : 'dash-small', 'bdr-dot-sm' : 'dot-dash', 'bdr-dot-do' : 'dot-dot-dash', 'bdr-outset' : 'outset', 'bdr-trippl' : 'tripple', 'bdr-thsm__' : 'thick-thin-small', 'bdr-htsm__' : 'thin-thick-small', 'bdr-hthsm_' : 'thin-thick-thin-small', 'bdr-thm___' : 'thick-thin-medium', 'bdr-htm___' : 'thin-thick-medium', 'bdr-hthm__' : 'thin-thick-thin-medium', 'bdr-thl___' : 'thick-thin-large', 'bdr-hthl__' : 'thin-thick-thin-large', 'bdr-wavy__' : 'wavy', 'bdr-d-wav_' : 'double-wavy', 'bdr-strip_' : 'striped', 'bdr-embos_' : 'emboss', 'bdr-engra_' : 'engrave', 'bdr-frame_' : 'frame', } def parse_border(self, line): """ Requires: line -- line with border definition in it Returns: ? Logic: """ border_dict = {} border_style_dict = {} border_style_list = [] border_type = self.__border_dict.get(line[6:16]) if not border_type: sys.stderr.write( 'module is border_parse.py\n' 'function is parse_border\n' 'token does not have a dictionary value\n' 'token is "%s"' % line ) return border_dict att_line = line[20:-1] atts = att_line.split('|') # cw<bd<bor-cel-ri<nu< # border has no value--should be no lines if len(atts) == 1 and atts[0] == '': border_dict[border_type] = 'none' return border_dict # border-paragraph-right for att in atts: values = att.split(':') if len(values) ==2: att = values[0] value = values[1] else: value = 'true' style_att = self.__border_style_dict.get(att) if style_att: att = '%s-%s' % (border_type, att) border_style_dict[att] = value border_style_list.append(style_att) else: att = self.__border_dict.get(att) if not att: sys.stderr.write( 'module is border_parse_def.py\n' 'function is parse_border\n' 'token does not have an att value\n' 'line is "%s"' % line ) att = '%s-%s' % (border_type, att) border_dict[att] = value new_border_dict = self.__determine_styles(border_type, border_style_list) border_dict.update(new_border_dict) return border_dict def __determine_styles(self, border_type, border_style_list): new_border_dict = {} att = '%s-style' % border_type if 'shadowed-border' in border_style_list: new_border_dict[att] = 'shadowed' elif 'engraved' in border_style_list: new_border_dict[att] = 'engraved' elif 'emboss' in border_style_list: new_border_dict[att] = 'emboss' elif 'striped' in border_style_list: new_border_dict[att] = 'striped' elif 'thin-thick-thin-small' in border_style_list: new_border_dict[att] = 'thin-thick-thin-small' elif 'thick-thin-large' in border_style_list: new_border_dict[att] = 'thick-thin-large' elif 'thin-thick-thin-medium' in border_style_list: new_border_dict[att] = 'thin-thick-thin-medium' elif 'thin-thick-medium' in border_style_list: new_border_dict[att] = 'thin-thick-medium' elif 'thick-thin-medium' in border_style_list: new_border_dict[att] = 'thick-thin-medium' elif 'thick-thin-small' in border_style_list: new_border_dict[att] = 'thick-thin-small' elif 'thick-thin-small' in border_style_list: new_border_dict[att] = 'thick-thin-small' elif 'double-wavy' in border_style_list: new_border_dict[att] = 'double-wavy' elif 'dot-dot-dash' in border_style_list: new_border_dict[att] = 'dot-dot-dash' elif 'dot-dash' in border_style_list: new_border_dict[att] = 'dot-dash' elif 'dotted-border' in border_style_list: new_border_dict[att] = 'dotted' elif 'wavy' in border_style_list: new_border_dict[att] = 'wavy' elif 'dash-small' in border_style_list: new_border_dict[att] = 'dash-small' elif 'dashed' in border_style_list: new_border_dict[att] = 'dashed' elif 'frame' in border_style_list: new_border_dict[att] = 'frame' elif 'inset' in border_style_list: new_border_dict[att] = 'inset' elif 'outset' in border_style_list: new_border_dict[att] = 'outset' elif 'tripple-border' in border_style_list: new_border_dict[att] = 'tripple' elif 'double-border' in border_style_list: new_border_dict[att] = 'double' elif 'double-thickness-border' in border_style_list: new_border_dict[att] = 'double-thickness' elif 'hairline' in border_style_list: new_border_dict[att] = 'hairline' elif 'single' in border_style_list: new_border_dict[att] = 'single' else: if border_style_list: new_border_dict[att] = border_style_list[0] return new_border_dict
gpl-3.0
n1bor/bitcoin
test/functional/feature_config_args.py
6
13099
#!/usr/bin/env python3 # Copyright (c) 2017-2020 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test various command line arguments and configuration file parameters.""" import os import time from test_framework.test_framework import BitcoinTestFramework from test_framework import util class ConfArgsTest(BitcoinTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 self.supports_cli = False self.wallet_names = [] def test_config_file_parser(self): self.stop_node(0) inc_conf_file_path = os.path.join(self.nodes[0].datadir, 'include.conf') with open(os.path.join(self.nodes[0].datadir, 'bitcoin.conf'), 'a', encoding='utf-8') as conf: conf.write('includeconf={}\n'.format(inc_conf_file_path)) self.nodes[0].assert_start_raises_init_error( expected_msg='Error: Error parsing command line arguments: Invalid parameter -dash_cli=1', extra_args=['-dash_cli=1'], ) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('dash_conf=1\n') with self.nodes[0].assert_debug_log(expected_msgs=['Ignoring unknown configuration value dash_conf']): self.start_node(0) self.stop_node(0) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('-dash=1\n') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 1: -dash=1, options in configuration file must be specified without leading -') if self.is_wallet_compiled(): with open(inc_conf_file_path, 'w', encoding='utf8') as conf: conf.write("wallet=foo\n") self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Config setting for -wallet only applied on %s network when in [%s] section.' % (self.chain, self.chain)) main_conf_file_path = os.path.join(self.options.tmpdir, 'node0', 'bitcoin_main.conf') util.write_config(main_conf_file_path, n=0, chain='', extra_config='includeconf={}\n'.format(inc_conf_file_path)) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('acceptnonstdtxn=1\n') self.nodes[0].assert_start_raises_init_error(extra_args=["-conf={}".format(main_conf_file_path)], expected_msg='Error: acceptnonstdtxn is not currently supported for main chain') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('nono\n') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 1: nono, if you intended to specify a negated option, use nono=1 instead') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\nrpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 3, using # in rpcpassword can be ambiguous and should be avoided') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\nmain.rpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 3, using # in rpcpassword can be ambiguous and should be avoided') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('server=1\nrpcuser=someuser\n[main]\nrpcpassword=some#pass') self.nodes[0].assert_start_raises_init_error(expected_msg='Error: Error reading configuration file: parse error on line 4, using # in rpcpassword can be ambiguous and should be avoided') inc_conf_file2_path = os.path.join(self.nodes[0].datadir, 'include2.conf') with open(os.path.join(self.nodes[0].datadir, 'bitcoin.conf'), 'a', encoding='utf-8') as conf: conf.write('includeconf={}\n'.format(inc_conf_file2_path)) with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('testnot.datadir=1\n') with open(inc_conf_file2_path, 'w', encoding='utf-8') as conf: conf.write('[testnet]\n') self.restart_node(0) self.nodes[0].stop_node(expected_stderr='Warning: ' + inc_conf_file_path + ':1 Section [testnot] is not recognized.' + os.linesep + inc_conf_file2_path + ':1 Section [testnet] is not recognized.') with open(inc_conf_file_path, 'w', encoding='utf-8') as conf: conf.write('') # clear with open(inc_conf_file2_path, 'w', encoding='utf-8') as conf: conf.write('') # clear def test_invalid_command_line_options(self): self.nodes[0].assert_start_raises_init_error( expected_msg='Error: No proxy server specified. Use -proxy=<ip> or -proxy=<ip:port>.', extra_args=['-proxy'], ) def test_log_buffer(self): self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['Warning: parsed potentially confusing double-negative -connect=0\n']): self.start_node(0, extra_args=['-noconnect=0']) def test_args_log(self): self.stop_node(0) self.log.info('Test config args logging') with self.nodes[0].assert_debug_log( expected_msgs=[ 'Command-line arg: addnode="some.node"', 'Command-line arg: rpcauth=****', 'Command-line arg: rpcbind=****', 'Command-line arg: rpcpassword=****', 'Command-line arg: rpcuser=****', 'Command-line arg: torpassword=****', 'Config file arg: %s="1"' % self.chain, 'Config file arg: [%s] server="1"' % self.chain, ], unexpected_msgs=[ 'alice:f7efda5c189b999524f151318c0c86$d5b51b3beffbc0', '127.1.1.1', 'secret-rpcuser', 'secret-torpassword', ]): self.start_node(0, extra_args=[ '-addnode=some.node', '-rpcauth=alice:f7efda5c189b999524f151318c0c86$d5b51b3beffbc0', '-rpcbind=127.1.1.1', '-rpcpassword=', '-rpcuser=secret-rpcuser', '-torpassword=secret-torpassword', ]) def test_networkactive(self): self.log.info('Test -networkactive option') self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: true\n']): self.start_node(0) self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: true\n']): self.start_node(0, extra_args=['-networkactive']) self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: true\n']): self.start_node(0, extra_args=['-networkactive=1']) self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: false\n']): self.start_node(0, extra_args=['-networkactive=0']) self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: false\n']): self.start_node(0, extra_args=['-nonetworkactive']) self.stop_node(0) with self.nodes[0].assert_debug_log(expected_msgs=['SetNetworkActive: false\n']): self.start_node(0, extra_args=['-nonetworkactive=1']) def test_seed_peers(self): self.log.info('Test seed peers') default_data_dir = self.nodes[0].datadir # Only regtest has no fixed seeds. To avoid connections to random # nodes, regtest is the only network where it is safe to enable # -fixedseeds in tests util.assert_equal(self.nodes[0].getblockchaininfo()['chain'],'regtest') self.stop_node(0) # No peers.dat exists and -dnsseed=1 # We expect the node will use DNS Seeds, but Regtest mode has 0 DNS seeds # So after 60 seconds, the node should fallback to fixed seeds (this is a slow test) assert not os.path.exists(os.path.join(default_data_dir, "peers.dat")) start = int(time.time()) with self.nodes[0].assert_debug_log(expected_msgs=[ "Loaded 0 addresses from peers.dat", "0 addresses found from DNS seeds", ]): self.start_node(0, extra_args=['-dnsseed=1', '-fixedseeds=1', f'-mocktime={start}']) with self.nodes[0].assert_debug_log(expected_msgs=[ "Adding fixed seeds as 60 seconds have passed and addrman is empty", ]): self.nodes[0].setmocktime(start + 65) self.stop_node(0) # No peers.dat exists and -dnsseed=0 # We expect the node will fallback immediately to fixed seeds assert not os.path.exists(os.path.join(default_data_dir, "peers.dat")) start = time.time() with self.nodes[0].assert_debug_log(expected_msgs=[ "Loaded 0 addresses from peers.dat", "DNS seeding disabled", "Adding fixed seeds as -dnsseed=0, -addnode is not provided and all -seednode(s) attempted\n", ]): self.start_node(0, extra_args=['-dnsseed=0', '-fixedseeds=1']) assert time.time() - start < 60 self.stop_node(0) # No peers.dat exists and dns seeds are disabled. # We expect the node will not add fixed seeds when explicitly disabled. assert not os.path.exists(os.path.join(default_data_dir, "peers.dat")) start = time.time() with self.nodes[0].assert_debug_log(expected_msgs=[ "Loaded 0 addresses from peers.dat", "DNS seeding disabled", "Fixed seeds are disabled", ]): self.start_node(0, extra_args=['-dnsseed=0', '-fixedseeds=0']) assert time.time() - start < 60 self.stop_node(0) # No peers.dat exists and -dnsseed=0, but a -addnode is provided # We expect the node will allow 60 seconds prior to using fixed seeds assert not os.path.exists(os.path.join(default_data_dir, "peers.dat")) start = int(time.time()) with self.nodes[0].assert_debug_log(expected_msgs=[ "Loaded 0 addresses from peers.dat", "DNS seeding disabled", ]): self.start_node(0, extra_args=['-dnsseed=0', '-fixedseeds=1', '-addnode=fakenodeaddr', f'-mocktime={start}']) with self.nodes[0].assert_debug_log(expected_msgs=[ "Adding fixed seeds as 60 seconds have passed and addrman is empty", ]): self.nodes[0].setmocktime(start + 65) def run_test(self): self.test_log_buffer() self.test_args_log() self.test_seed_peers() self.test_networkactive() self.test_config_file_parser() self.test_invalid_command_line_options() # Remove the -datadir argument so it doesn't override the config file self.nodes[0].args = [arg for arg in self.nodes[0].args if not arg.startswith("-datadir")] default_data_dir = self.nodes[0].datadir new_data_dir = os.path.join(default_data_dir, 'newdatadir') new_data_dir_2 = os.path.join(default_data_dir, 'newdatadir2') # Check that using -datadir argument on non-existent directory fails self.nodes[0].datadir = new_data_dir self.nodes[0].assert_start_raises_init_error(['-datadir=' + new_data_dir], 'Error: Specified data directory "' + new_data_dir + '" does not exist.') # Check that using non-existent datadir in conf file fails conf_file = os.path.join(default_data_dir, "bitcoin.conf") # datadir needs to be set before [chain] section conf_file_contents = open(conf_file, encoding='utf8').read() with open(conf_file, 'w', encoding='utf8') as f: f.write("datadir=" + new_data_dir + "\n") f.write(conf_file_contents) self.nodes[0].assert_start_raises_init_error(['-conf=' + conf_file], 'Error: Error reading configuration file: specified data directory "' + new_data_dir + '" does not exist.') # Create the directory and ensure the config file now works os.mkdir(new_data_dir) self.start_node(0, ['-conf='+conf_file]) self.stop_node(0) assert os.path.exists(os.path.join(new_data_dir, self.chain, 'blocks')) # Ensure command line argument overrides datadir in conf os.mkdir(new_data_dir_2) self.nodes[0].datadir = new_data_dir_2 self.start_node(0, ['-datadir='+new_data_dir_2, '-conf='+conf_file]) assert os.path.exists(os.path.join(new_data_dir_2, self.chain, 'blocks')) if __name__ == '__main__': ConfArgsTest().main()
mit
BonexGu/Blik2D-SDK
Blik2D/addon/opencv-3.1.0_for_blik/samples/python/lk_track.py
5
3155
#!/usr/bin/env python ''' Lucas-Kanade tracker ==================== Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack for track initialization and back-tracking for match verification between frames. Usage ----- lk_track.py [<video_source>] Keys ---- ESC - exit ''' # Python 2/3 compatibility from __future__ import print_function import numpy as np import cv2 import video from common import anorm2, draw_str from time import clock lk_params = dict( winSize = (15, 15), maxLevel = 2, criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03)) feature_params = dict( maxCorners = 500, qualityLevel = 0.3, minDistance = 7, blockSize = 7 ) class App: def __init__(self, video_src): self.track_len = 10 self.detect_interval = 5 self.tracks = [] self.cam = video.create_capture(video_src) self.frame_idx = 0 def run(self): while True: ret, frame = self.cam.read() frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) vis = frame.copy() if len(self.tracks) > 0: img0, img1 = self.prev_gray, frame_gray p0 = np.float32([tr[-1] for tr in self.tracks]).reshape(-1, 1, 2) p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params) p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params) d = abs(p0-p0r).reshape(-1, 2).max(-1) good = d < 1 new_tracks = [] for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good): if not good_flag: continue tr.append((x, y)) if len(tr) > self.track_len: del tr[0] new_tracks.append(tr) cv2.circle(vis, (x, y), 2, (0, 255, 0), -1) self.tracks = new_tracks cv2.polylines(vis, [np.int32(tr) for tr in self.tracks], False, (0, 255, 0)) draw_str(vis, (20, 20), 'track count: %d' % len(self.tracks)) if self.frame_idx % self.detect_interval == 0: mask = np.zeros_like(frame_gray) mask[:] = 255 for x, y in [np.int32(tr[-1]) for tr in self.tracks]: cv2.circle(mask, (x, y), 5, 0, -1) p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params) if p is not None: for x, y in np.float32(p).reshape(-1, 2): self.tracks.append([(x, y)]) self.frame_idx += 1 self.prev_gray = frame_gray cv2.imshow('lk_track', vis) ch = 0xFF & cv2.waitKey(1) if ch == 27: break def main(): import sys try: video_src = sys.argv[1] except: video_src = 0 print(__doc__) App(video_src).run() cv2.destroyAllWindows() if __name__ == '__main__': main()
mit
ContinuumIO/odo
odo/backends/tests/test_text.py
9
1610
from __future__ import absolute_import, division, print_function from odo.backends.text import (TextFile, resource, convert, discover, append, drop, chunks, Temp) from odo.utils import tmpfile, filetexts, filetext from datashape import dshape import gzip import os def test_resource(): assert isinstance(resource('foo.txt'), TextFile) assert isinstance(resource('foo.log.gz'), TextFile) assert isinstance(resource('/path/to/foo.log'), TextFile) def test_open(): r = resource('foo.log.gz') assert r.open == gzip.open def test_convert(): with filetext('Hello\nWorld') as fn: assert convert(list, TextFile(fn)) == ['Hello\n', 'World'] def test_append(): with tmpfile('log') as fn: t = TextFile(fn) append(t, ['Hello', 'World']) assert os.path.exists(fn) with open(fn) as f: assert list(map(str.strip, f.readlines())) == ['Hello', 'World'] def test_discover(): assert discover(TextFile('')) == dshape('var * string') def test_drop(): with filetext('hello\nworld') as fn: t = TextFile(fn) assert os.path.exists(fn) drop(t) assert not os.path.exists(fn) def test_chunks_textfile(): with filetexts({'a1.log': 'Hello\nWorld', 'a2.log': 'Hola\nMundo'}) as fns: logs = chunks(TextFile)(list(map(TextFile, fns))) assert set(map(str.strip, convert(list, logs))) == \ set(['Hello', 'World', 'Hola', 'Mundo']) def test_temp(): t = convert(Temp(TextFile), [1, 2, 3]) assert [int(line.strip()) for line in convert(list, t)] == [1, 2, 3]
bsd-3-clause
Raghavan-Lab/LabUtilities
split_fasta.py
1
2647
#!/usr/bin/python # -*- coding: utf-8 -*- """ Splits a multi-sequence fasta file into multiple files containing n number of reads. Examples: Split a very large fasta file into smaller files containing 10,000 reads python split_fasta.py -f large_amino_acid_file.faa -n 10000 NOTE: This script places the output files in the current directory. It's recommended that you create an empty directory to work in. """ import argparse from collections import namedtuple from Bio import SeqIO def get_options(): """ Returns command line arguments as an Argparse object :return: command line options """ parser = argparse.ArgumentParser() parser.add_argument('-n', help='Number of reads per output file', default=1000) parser.add_argument('-f', help='Fasta file to split') return parser.parse_args() def save_fasta_slice(slice, start_record, end_record): """ Saves a list of namedtuples as a fasta file :param slice: list of reads to save :type : list :param start_record: first record in slice :type : int :param end_record: last record in slice :type : int """ output_file = 'sequences_{}_to_{}.fasta'.format(start_record, end_record) with open(output_file, 'w') as fasta_slice: for sequence in slice: # output is in fasta format fasta_slice.write('{id}\n{seq}\n\n'.format(id=sequence.seq_id, seq=sequence.seq)) def main(): """ Reads a fasta file into a list of tuples (sequence id, nucleotide/amino acid sequence) and saves n sized batches into output files. """ # get command line arguments options = get_options() # Keep track of the read numbers for each chunk first_seq = 1 last_seq = 0 sequence_buffer = [] FastaRead = namedtuple('FastaRead', ['seq_id', 'seq']) for record in SeqIO.parse(options.f, "fasta"): last_seq += 1 sequence_buffer.append(FastaRead('>{}'.format(record.description), record.seq)) # Save a file if we have enough reads if len(sequence_buffer) >= int(options.n): # flush the buffer save_fasta_slice(sequence_buffer, first_seq, last_seq) print('\tsaved records: {} to {}'.format(first_seq, last_seq)) # Reset buffer and starting record number sequence_buffer = [] first_seq = last_seq + 1 # save remaining bits save_fasta_slice(sequence_buffer, first_seq, last_seq) if __name__ == '__main__': print('Splitting Fasta file...') main() print('Job Complete')
gpl-2.0
drpngx/tensorflow
tensorflow/python/kernel_tests/conv2d_transpose_test.py
15
12105
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for convolution related functionality in tensorflow.ops.nn.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from six.moves import xrange # pylint: disable=redefined-builtin from tensorflow.python.framework import constant_op from tensorflow.python.framework import dtypes from tensorflow.python.framework import test_util from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradient_checker from tensorflow.python.ops import nn_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables import tensorflow.python.ops.nn_grad # pylint: disable=unused-import from tensorflow.python.platform import test class Conv2DTransposeTest(test.TestCase): def testConv2DTransposeSingleStride(self): with self.test_session(): strides = [1, 1, 1, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 6, 4, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") value = output.eval() # We count the number of cells being added at the locations in the output. # At the center, #cells=kernel_height * kernel_width # At the corners, #cells=ceil(kernel_height/2) * ceil(kernel_width/2) # At the borders, #cells=ceil(kernel_height/2)*kernel_width or # kernel_height * ceil(kernel_width/2) for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[2]): for h in xrange(y_shape[1]): target = 4 * 3.0 h_in = h > 0 and h < y_shape[1] - 1 w_in = w > 0 and w < y_shape[2] - 1 if h_in and w_in: target += 5 * 3.0 elif h_in or w_in: target += 2 * 3.0 self.assertAllClose(target, value[n, h, w, k]) def testConv2DTransposeSame(self): with self.test_session(): strides = [1, 2, 2, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 12, 8, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[2]): for h in xrange(y_shape[1]): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[1] == 0 and h > 0 and h < y_shape[1] - 1 w_in = w % strides[2] == 0 and w > 0 and w < y_shape[2] - 1 if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 self.assertAllClose(target, value[n, h, w, k]) def testConv2DTransposeValid(self): with self.test_session(): strides = [1, 2, 2, 1] # Input, output: [batch, height, width, depth] x_shape = [2, 6, 4, 3] y_shape = [2, 13, 9, 2] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="VALID") value = output.eval() cache_values = np.zeros(y_shape, dtype=np.float32) # The amount of padding added pad = 1 for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(pad, y_shape[2] - pad): for h in xrange(pad, y_shape[1] - pad): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[1] == 0 and h > pad and h < y_shape[ 1] - 1 - pad w_in = w % strides[2] == 0 and w > pad and w < y_shape[ 2] - 1 - pad if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 cache_values[n, h, w, k] = target # copy values in the border cache_values[n, :, 0, k] = cache_values[n, :, 1, k] cache_values[n, :, -1, k] = cache_values[n, :, -2, k] cache_values[n, 0, :, k] = cache_values[n, 1, :, k] cache_values[n, -1, :, k] = cache_values[n, -2, :, k] self.assertAllClose(cache_values, value) def testGradient(self): x_shape = [2, 6, 4, 3] f_shape = [3, 3, 2, 3] y_shape = [2, 12, 8, 2] strides = [1, 2, 2, 1] np.random.seed(1) # Make it reproducible. x_val = np.random.random_sample(x_shape).astype(np.float64) f_val = np.random.random_sample(f_shape).astype(np.float64) with self.test_session(): x = constant_op.constant(x_val, name="x", dtype=dtypes.float32) f = constant_op.constant(f_val, name="f", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME") err = gradient_checker.compute_gradient_error([x, f], [x_shape, f_shape], output, y_shape) print("conv2d_transpose gradient err = %g " % err) err_tolerance = 0.0005 self.assertLess(err, err_tolerance) def testConv2DTransposeSingleStrideNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 1, 1] # Input, output: [batch, depth, height, width, depth] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 6, 4] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[3]): for h in xrange(y_shape[2]): target = 4 * 3.0 h_in = h > 0 and h < y_shape[2] - 1 w_in = w > 0 and w < y_shape[3] - 1 if h_in and w_in: target += 5 * 3.0 elif h_in or w_in: target += 2 * 3.0 self.assertAllClose(target, value[n, k, h, w]) def testConv2DTransposeSameNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 2, 2] # Input, output: [batch, depth, height, width] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 12, 8] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="SAME", data_format="NCHW") value = output.eval() for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(y_shape[3]): for h in xrange(y_shape[2]): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[2] == 0 and h > 0 and h < y_shape[2] - 1 w_in = w % strides[3] == 0 and w > 0 and w < y_shape[3] - 1 if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 self.assertAllClose(target, value[n, k, h, w]) def testConv2DTransposeValidNCHW(self): # `NCHW` data format is only supported for CUDA device. if test.is_gpu_available(cuda_only=True): with self.test_session(use_gpu=True): strides = [1, 1, 2, 2] # Input, output: [batch, depth, height, width] x_shape = [2, 3, 6, 4] y_shape = [2, 2, 13, 9] # Filter: [kernel_height, kernel_width, output_depth, input_depth] f_shape = [3, 3, 2, 3] x = constant_op.constant( 1.0, shape=x_shape, name="x", dtype=dtypes.float32) f = constant_op.constant( 1.0, shape=f_shape, name="filter", dtype=dtypes.float32) output = nn_ops.conv2d_transpose( x, f, y_shape, strides=strides, padding="VALID", data_format="NCHW") value = output.eval() cache_values = np.zeros(y_shape, dtype=np.float32) # The amount of padding added pad = 1 for n in xrange(x_shape[0]): for k in xrange(f_shape[2]): for w in xrange(pad, y_shape[3] - pad): for h in xrange(pad, y_shape[2] - pad): target = 3.0 # We add a case for locations divisible by the stride. h_in = h % strides[2] == 0 and h > pad and h < y_shape[ 2] - 1 - pad w_in = w % strides[3] == 0 and w > pad and w < y_shape[ 3] - 1 - pad if h_in and w_in: target += 9.0 elif h_in or w_in: target += 3.0 cache_values[n, k, h, w] = target # copy values in the border cache_values[n, k, :, 0] = cache_values[n, k, :, 1] cache_values[n, k, :, -1] = cache_values[n, k, :, -2] cache_values[n, k, 0, :] = cache_values[n, k, 1, :] cache_values[n, k, -1, :] = cache_values[n, k, -2, :] self.assertAllClose(cache_values, value) @test_util.enable_c_shapes def testConv2DTransposeShapeInference(self): # Test case for 8972 initializer = random_ops.truncated_normal( [3, 3, 5, 1], mean=0.0, stddev=0.01, dtype=dtypes.float32) x = variables.Variable(random_ops.random_normal([3, 10, 5, 1])) f = variable_scope.get_variable("f", initializer=initializer) f_shape = array_ops.stack([array_ops.shape(x)[0], 10, 5, 5]) output = nn_ops.conv2d_transpose( x, f, f_shape, strides=[1, 1, 1, 1], padding="SAME") self.assertEqual(output.get_shape().as_list(), [3, 10, 5, 5]) if __name__ == "__main__": test.main()
apache-2.0
AospPlus/android_kernel_htc_enrc2b-old
tools/perf/scripts/python/sched-migration.py
11215
11670
#!/usr/bin/python # # Cpu task migration overview toy # # Copyright (C) 2010 Frederic Weisbecker <[email protected]> # # perf script event handlers have been generated by perf script -g python # # This software is distributed under the terms of the GNU General # Public License ("GPL") version 2 as published by the Free Software # Foundation. import os import sys from collections import defaultdict from UserList import UserList sys.path.append(os.environ['PERF_EXEC_PATH'] + \ '/scripts/python/Perf-Trace-Util/lib/Perf/Trace') sys.path.append('scripts/python/Perf-Trace-Util/lib/Perf/Trace') from perf_trace_context import * from Core import * from SchedGui import * threads = { 0 : "idle"} def thread_name(pid): return "%s:%d" % (threads[pid], pid) class RunqueueEventUnknown: @staticmethod def color(): return None def __repr__(self): return "unknown" class RunqueueEventSleep: @staticmethod def color(): return (0, 0, 0xff) def __init__(self, sleeper): self.sleeper = sleeper def __repr__(self): return "%s gone to sleep" % thread_name(self.sleeper) class RunqueueEventWakeup: @staticmethod def color(): return (0xff, 0xff, 0) def __init__(self, wakee): self.wakee = wakee def __repr__(self): return "%s woke up" % thread_name(self.wakee) class RunqueueEventFork: @staticmethod def color(): return (0, 0xff, 0) def __init__(self, child): self.child = child def __repr__(self): return "new forked task %s" % thread_name(self.child) class RunqueueMigrateIn: @staticmethod def color(): return (0, 0xf0, 0xff) def __init__(self, new): self.new = new def __repr__(self): return "task migrated in %s" % thread_name(self.new) class RunqueueMigrateOut: @staticmethod def color(): return (0xff, 0, 0xff) def __init__(self, old): self.old = old def __repr__(self): return "task migrated out %s" % thread_name(self.old) class RunqueueSnapshot: def __init__(self, tasks = [0], event = RunqueueEventUnknown()): self.tasks = tuple(tasks) self.event = event def sched_switch(self, prev, prev_state, next): event = RunqueueEventUnknown() if taskState(prev_state) == "R" and next in self.tasks \ and prev in self.tasks: return self if taskState(prev_state) != "R": event = RunqueueEventSleep(prev) next_tasks = list(self.tasks[:]) if prev in self.tasks: if taskState(prev_state) != "R": next_tasks.remove(prev) elif taskState(prev_state) == "R": next_tasks.append(prev) if next not in next_tasks: next_tasks.append(next) return RunqueueSnapshot(next_tasks, event) def migrate_out(self, old): if old not in self.tasks: return self next_tasks = [task for task in self.tasks if task != old] return RunqueueSnapshot(next_tasks, RunqueueMigrateOut(old)) def __migrate_in(self, new, event): if new in self.tasks: self.event = event return self next_tasks = self.tasks[:] + tuple([new]) return RunqueueSnapshot(next_tasks, event) def migrate_in(self, new): return self.__migrate_in(new, RunqueueMigrateIn(new)) def wake_up(self, new): return self.__migrate_in(new, RunqueueEventWakeup(new)) def wake_up_new(self, new): return self.__migrate_in(new, RunqueueEventFork(new)) def load(self): """ Provide the number of tasks on the runqueue. Don't count idle""" return len(self.tasks) - 1 def __repr__(self): ret = self.tasks.__repr__() ret += self.origin_tostring() return ret class TimeSlice: def __init__(self, start, prev): self.start = start self.prev = prev self.end = start # cpus that triggered the event self.event_cpus = [] if prev is not None: self.total_load = prev.total_load self.rqs = prev.rqs.copy() else: self.rqs = defaultdict(RunqueueSnapshot) self.total_load = 0 def __update_total_load(self, old_rq, new_rq): diff = new_rq.load() - old_rq.load() self.total_load += diff def sched_switch(self, ts_list, prev, prev_state, next, cpu): old_rq = self.prev.rqs[cpu] new_rq = old_rq.sched_switch(prev, prev_state, next) if old_rq is new_rq: return self.rqs[cpu] = new_rq self.__update_total_load(old_rq, new_rq) ts_list.append(self) self.event_cpus = [cpu] def migrate(self, ts_list, new, old_cpu, new_cpu): if old_cpu == new_cpu: return old_rq = self.prev.rqs[old_cpu] out_rq = old_rq.migrate_out(new) self.rqs[old_cpu] = out_rq self.__update_total_load(old_rq, out_rq) new_rq = self.prev.rqs[new_cpu] in_rq = new_rq.migrate_in(new) self.rqs[new_cpu] = in_rq self.__update_total_load(new_rq, in_rq) ts_list.append(self) if old_rq is not out_rq: self.event_cpus.append(old_cpu) self.event_cpus.append(new_cpu) def wake_up(self, ts_list, pid, cpu, fork): old_rq = self.prev.rqs[cpu] if fork: new_rq = old_rq.wake_up_new(pid) else: new_rq = old_rq.wake_up(pid) if new_rq is old_rq: return self.rqs[cpu] = new_rq self.__update_total_load(old_rq, new_rq) ts_list.append(self) self.event_cpus = [cpu] def next(self, t): self.end = t return TimeSlice(t, self) class TimeSliceList(UserList): def __init__(self, arg = []): self.data = arg def get_time_slice(self, ts): if len(self.data) == 0: slice = TimeSlice(ts, TimeSlice(-1, None)) else: slice = self.data[-1].next(ts) return slice def find_time_slice(self, ts): start = 0 end = len(self.data) found = -1 searching = True while searching: if start == end or start == end - 1: searching = False i = (end + start) / 2 if self.data[i].start <= ts and self.data[i].end >= ts: found = i end = i continue if self.data[i].end < ts: start = i elif self.data[i].start > ts: end = i return found def set_root_win(self, win): self.root_win = win def mouse_down(self, cpu, t): idx = self.find_time_slice(t) if idx == -1: return ts = self[idx] rq = ts.rqs[cpu] raw = "CPU: %d\n" % cpu raw += "Last event : %s\n" % rq.event.__repr__() raw += "Timestamp : %d.%06d\n" % (ts.start / (10 ** 9), (ts.start % (10 ** 9)) / 1000) raw += "Duration : %6d us\n" % ((ts.end - ts.start) / (10 ** 6)) raw += "Load = %d\n" % rq.load() for t in rq.tasks: raw += "%s \n" % thread_name(t) self.root_win.update_summary(raw) def update_rectangle_cpu(self, slice, cpu): rq = slice.rqs[cpu] if slice.total_load != 0: load_rate = rq.load() / float(slice.total_load) else: load_rate = 0 red_power = int(0xff - (0xff * load_rate)) color = (0xff, red_power, red_power) top_color = None if cpu in slice.event_cpus: top_color = rq.event.color() self.root_win.paint_rectangle_zone(cpu, color, top_color, slice.start, slice.end) def fill_zone(self, start, end): i = self.find_time_slice(start) if i == -1: return for i in xrange(i, len(self.data)): timeslice = self.data[i] if timeslice.start > end: return for cpu in timeslice.rqs: self.update_rectangle_cpu(timeslice, cpu) def interval(self): if len(self.data) == 0: return (0, 0) return (self.data[0].start, self.data[-1].end) def nr_rectangles(self): last_ts = self.data[-1] max_cpu = 0 for cpu in last_ts.rqs: if cpu > max_cpu: max_cpu = cpu return max_cpu class SchedEventProxy: def __init__(self): self.current_tsk = defaultdict(lambda : -1) self.timeslices = TimeSliceList() def sched_switch(self, headers, prev_comm, prev_pid, prev_prio, prev_state, next_comm, next_pid, next_prio): """ Ensure the task we sched out this cpu is really the one we logged. Otherwise we may have missed traces """ on_cpu_task = self.current_tsk[headers.cpu] if on_cpu_task != -1 and on_cpu_task != prev_pid: print "Sched switch event rejected ts: %s cpu: %d prev: %s(%d) next: %s(%d)" % \ (headers.ts_format(), headers.cpu, prev_comm, prev_pid, next_comm, next_pid) threads[prev_pid] = prev_comm threads[next_pid] = next_comm self.current_tsk[headers.cpu] = next_pid ts = self.timeslices.get_time_slice(headers.ts()) ts.sched_switch(self.timeslices, prev_pid, prev_state, next_pid, headers.cpu) def migrate(self, headers, pid, prio, orig_cpu, dest_cpu): ts = self.timeslices.get_time_slice(headers.ts()) ts.migrate(self.timeslices, pid, orig_cpu, dest_cpu) def wake_up(self, headers, comm, pid, success, target_cpu, fork): if success == 0: return ts = self.timeslices.get_time_slice(headers.ts()) ts.wake_up(self.timeslices, pid, target_cpu, fork) def trace_begin(): global parser parser = SchedEventProxy() def trace_end(): app = wx.App(False) timeslices = parser.timeslices frame = RootFrame(timeslices, "Migration") app.MainLoop() def sched__sched_stat_runtime(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, runtime, vruntime): pass def sched__sched_stat_iowait(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, delay): pass def sched__sched_stat_sleep(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, delay): pass def sched__sched_stat_wait(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, delay): pass def sched__sched_process_fork(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, parent_comm, parent_pid, child_comm, child_pid): pass def sched__sched_process_wait(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio): pass def sched__sched_process_exit(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio): pass def sched__sched_process_free(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio): pass def sched__sched_migrate_task(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio, orig_cpu, dest_cpu): headers = EventHeaders(common_cpu, common_secs, common_nsecs, common_pid, common_comm) parser.migrate(headers, pid, prio, orig_cpu, dest_cpu) def sched__sched_switch(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, prev_comm, prev_pid, prev_prio, prev_state, next_comm, next_pid, next_prio): headers = EventHeaders(common_cpu, common_secs, common_nsecs, common_pid, common_comm) parser.sched_switch(headers, prev_comm, prev_pid, prev_prio, prev_state, next_comm, next_pid, next_prio) def sched__sched_wakeup_new(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio, success, target_cpu): headers = EventHeaders(common_cpu, common_secs, common_nsecs, common_pid, common_comm) parser.wake_up(headers, comm, pid, success, target_cpu, 1) def sched__sched_wakeup(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio, success, target_cpu): headers = EventHeaders(common_cpu, common_secs, common_nsecs, common_pid, common_comm) parser.wake_up(headers, comm, pid, success, target_cpu, 0) def sched__sched_wait_task(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid, prio): pass def sched__sched_kthread_stop_ret(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, ret): pass def sched__sched_kthread_stop(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm, comm, pid): pass def trace_unhandled(event_name, context, common_cpu, common_secs, common_nsecs, common_pid, common_comm): pass
gpl-2.0
edxnercel/edx-platform
lms/djangoapps/courseware/tests/test_footer.py
63
2297
""" Tests related to the basic footer-switching based off SITE_NAME to ensure edx.org uses an edx footer but other instances use an Open edX footer. """ from mock import patch from nose.plugins.attrib import attr from django.conf import settings from django.test import TestCase from django.test.utils import override_settings @attr('shard_1') class TestFooter(TestCase): SOCIAL_MEDIA_NAMES = [ "facebook", "google_plus", "twitter", "linkedin", "tumblr", "meetup", "reddit", "youtube", ] SOCIAL_MEDIA_URLS = { "facebook": "http://www.facebook.com/", "google_plus": "https://plus.google.com/", "twitter": "https://twitter.com/", "linkedin": "http://www.linkedin.com/", "tumblr": "http://www.tumblr.com/", "meetup": "http://www.meetup.com/", "reddit": "http://www.reddit.com/", "youtube": "https://www.youtube.com/" } def test_edx_footer(self): """ Verify that the homepage, when accessed at edx.org, has the edX footer """ with patch.dict('django.conf.settings.FEATURES', {"IS_EDX_DOMAIN": True}): resp = self.client.get('/') self.assertEqual(resp.status_code, 200) self.assertContains(resp, 'footer-edx-v3') def test_openedx_footer(self): """ Verify that the homepage, when accessed at something other than edx.org, has the Open edX footer """ with patch.dict('django.conf.settings.FEATURES', {"IS_EDX_DOMAIN": False}): resp = self.client.get('/') self.assertEqual(resp.status_code, 200) self.assertContains(resp, 'footer-openedx') @patch.dict(settings.FEATURES, {'IS_EDX_DOMAIN': True}) @override_settings( SOCIAL_MEDIA_FOOTER_NAMES=SOCIAL_MEDIA_NAMES, SOCIAL_MEDIA_FOOTER_URLS=SOCIAL_MEDIA_URLS ) def test_edx_footer_social_links(self): resp = self.client.get('/') for name, url in self.SOCIAL_MEDIA_URLS.iteritems(): self.assertContains(resp, url) self.assertContains(resp, settings.SOCIAL_MEDIA_FOOTER_DISPLAY[name]['title']) self.assertContains(resp, settings.SOCIAL_MEDIA_FOOTER_DISPLAY[name]['icon'])
agpl-3.0
johan--/Quiz-Program
vendor/bundle/ruby/2.2.0/gems/libv8-3.16.14.7/vendor/gyp/test/builddir/gyptest-default.py
74
2670
#!/usr/bin/env python # Copyright (c) 2012 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Verify the settings that cause a set of programs to be created in a specific build directory, and that no intermediate built files get created outside of that build directory hierarchy even when referred to with deeply-nested ../../.. paths. """ import TestGyp # TODO(mmoss): Make only supports (theoretically) a single, global build # directory (through GYP_GENERATOR_FLAGS 'output_dir'), rather than # gyp-file-specific settings (e.g. the stuff in builddir.gypi) that the other # generators support, so this doesn't work yet for make. # TODO(mmoss) Make also has the issue that the top-level Makefile is written to # the "--depth" location, which is one level above 'src', but then this test # moves 'src' somewhere else, leaving the Makefile behind, so make can't find # its sources. I'm not sure if make is wrong for writing outside the current # directory, or if the test is wrong for assuming everything generated is under # the current directory. # Android does not support setting the build directory. test = TestGyp.TestGyp(formats=['!make', '!ninja', '!android']) test.run_gyp('prog1.gyp', '--depth=..', chdir='src') if test.format == 'msvs': if test.uses_msbuild: test.must_contain('src/prog1.vcxproj', '<OutDir>..\\builddir\\Default\\</OutDir>') else: test.must_contain('src/prog1.vcproj', 'OutputDirectory="..\\builddir\\Default\\"') test.relocate('src', 'relocate/src') test.subdir('relocate/builddir') # Make sure that all the built ../../etc. files only get put under builddir, # by making all of relocate read-only and then making only builddir writable. test.writable('relocate', False) test.writable('relocate/builddir', True) # Suppress the test infrastructure's setting SYMROOT on the command line. test.build('prog1.gyp', SYMROOT=None, chdir='relocate/src') expect1 = """\ Hello from prog1.c Hello from func1.c """ expect2 = """\ Hello from subdir2/prog2.c Hello from func2.c """ expect3 = """\ Hello from subdir2/subdir3/prog3.c Hello from func3.c """ expect4 = """\ Hello from subdir2/subdir3/subdir4/prog4.c Hello from func4.c """ expect5 = """\ Hello from subdir2/subdir3/subdir4/subdir5/prog5.c Hello from func5.c """ def run_builddir(prog, expect): dir = 'relocate/builddir/Default/' test.run(program=test.workpath(dir + prog), stdout=expect) run_builddir('prog1', expect1) run_builddir('prog2', expect2) run_builddir('prog3', expect3) run_builddir('prog4', expect4) run_builddir('prog5', expect5) test.pass_test()
cc0-1.0
hsduk/lets-encrypt-preview
acme/acme/jose/jwk_test.py
32
7207
"""Tests for acme.jose.jwk.""" import binascii import unittest from acme import test_util from acme.jose import errors from acme.jose import json_util from acme.jose import util DSA_PEM = test_util.load_vector('dsa512_key.pem') RSA256_KEY = test_util.load_rsa_private_key('rsa256_key.pem') RSA512_KEY = test_util.load_rsa_private_key('rsa512_key.pem') class JWKTest(unittest.TestCase): """Tests for acme.jose.jwk.JWK.""" def test_load(self): from acme.jose.jwk import JWK self.assertRaises(errors.Error, JWK.load, DSA_PEM) def test_load_subclass_wrong_type(self): from acme.jose.jwk import JWKRSA self.assertRaises(errors.Error, JWKRSA.load, DSA_PEM) class JWKTestBaseMixin(object): """Mixin test for JWK subclass tests.""" thumbprint = NotImplemented def test_thumbprint_private(self): self.assertEqual(self.thumbprint, self.jwk.thumbprint()) def test_thumbprint_public(self): self.assertEqual(self.thumbprint, self.jwk.public_key().thumbprint()) class JWKOctTest(unittest.TestCase, JWKTestBaseMixin): """Tests for acme.jose.jwk.JWKOct.""" thumbprint = (b"\xf3\xe7\xbe\xa8`\xd2\xdap\xe9}\x9c\xce>" b"\xd0\xfcI\xbe\xcd\x92'\xd4o\x0e\xf41\xea" b"\x8e(\x8a\xb2i\x1c") def setUp(self): from acme.jose.jwk import JWKOct self.jwk = JWKOct(key=b'foo') self.jobj = {'kty': 'oct', 'k': json_util.encode_b64jose(b'foo')} def test_to_partial_json(self): self.assertEqual(self.jwk.to_partial_json(), self.jobj) def test_from_json(self): from acme.jose.jwk import JWKOct self.assertEqual(self.jwk, JWKOct.from_json(self.jobj)) def test_from_json_hashable(self): from acme.jose.jwk import JWKOct hash(JWKOct.from_json(self.jobj)) def test_load(self): from acme.jose.jwk import JWKOct self.assertEqual(self.jwk, JWKOct.load(b'foo')) def test_public_key(self): self.assertTrue(self.jwk.public_key() is self.jwk) class JWKRSATest(unittest.TestCase, JWKTestBaseMixin): """Tests for acme.jose.jwk.JWKRSA.""" # pylint: disable=too-many-instance-attributes thumbprint = (b'\x83K\xdc#3\x98\xca\x98\xed\xcb\x80\x80<\x0c' b'\xf0\x95\xb9H\xb2*l\xbd$\xe5&|O\x91\xd4 \xb0Y') def setUp(self): from acme.jose.jwk import JWKRSA self.jwk256 = JWKRSA(key=RSA256_KEY.public_key()) self.jwk256json = { 'kty': 'RSA', 'e': 'AQAB', 'n': 'm2Fylv-Uz7trgTW8EBHP3FQSMeZs2GNQ6VRo1sIVJEk', } # pylint: disable=protected-access self.jwk256_not_comparable = JWKRSA( key=RSA256_KEY.public_key()._wrapped) self.jwk512 = JWKRSA(key=RSA512_KEY.public_key()) self.jwk512json = { 'kty': 'RSA', 'e': 'AQAB', 'n': 'rHVztFHtH92ucFJD_N_HW9AsdRsUuHUBBBDlHwNlRd3fp5' '80rv2-6QWE30cWgdmJS86ObRz6lUTor4R0T-3C5Q', } self.private = JWKRSA(key=RSA256_KEY) self.private_json_small = self.jwk256json.copy() self.private_json_small['d'] = ( 'lPQED_EPTV0UIBfNI3KP2d9Jlrc2mrMllmf946bu-CE') self.private_json = self.jwk256json.copy() self.private_json.update({ 'd': 'lPQED_EPTV0UIBfNI3KP2d9Jlrc2mrMllmf946bu-CE', 'p': 'zUVNZn4lLLBD1R6NE8TKNQ', 'q': 'wcfKfc7kl5jfqXArCRSURQ', 'dp': 'CWJFq43QvT5Bm5iN8n1okQ', 'dq': 'bHh2u7etM8LKKCF2pY2UdQ', 'qi': 'oi45cEkbVoJjAbnQpFY87Q', }) self.jwk = self.private def test_init_auto_comparable(self): self.assertTrue(isinstance( self.jwk256_not_comparable.key, util.ComparableRSAKey)) self.assertEqual(self.jwk256, self.jwk256_not_comparable) def test_encode_param_zero(self): from acme.jose.jwk import JWKRSA # pylint: disable=protected-access # TODO: move encode/decode _param to separate class self.assertEqual('AA', JWKRSA._encode_param(0)) def test_equals(self): self.assertEqual(self.jwk256, self.jwk256) self.assertEqual(self.jwk512, self.jwk512) def test_not_equals(self): self.assertNotEqual(self.jwk256, self.jwk512) self.assertNotEqual(self.jwk512, self.jwk256) def test_load(self): from acme.jose.jwk import JWKRSA self.assertEqual(self.private, JWKRSA.load( test_util.load_vector('rsa256_key.pem'))) def test_public_key(self): self.assertEqual(self.jwk256, self.private.public_key()) def test_to_partial_json(self): self.assertEqual(self.jwk256.to_partial_json(), self.jwk256json) self.assertEqual(self.jwk512.to_partial_json(), self.jwk512json) self.assertEqual(self.private.to_partial_json(), self.private_json) def test_from_json(self): from acme.jose.jwk import JWK self.assertEqual( self.jwk256, JWK.from_json(self.jwk256json)) self.assertEqual( self.jwk512, JWK.from_json(self.jwk512json)) self.assertEqual(self.private, JWK.from_json(self.private_json)) def test_from_json_private_small(self): from acme.jose.jwk import JWK self.assertEqual(self.private, JWK.from_json(self.private_json_small)) def test_from_json_missing_one_additional(self): from acme.jose.jwk import JWK del self.private_json['q'] self.assertRaises(errors.Error, JWK.from_json, self.private_json) def test_from_json_hashable(self): from acme.jose.jwk import JWK hash(JWK.from_json(self.jwk256json)) def test_from_json_non_schema_errors(self): # valid against schema, but still failing from acme.jose.jwk import JWK self.assertRaises(errors.DeserializationError, JWK.from_json, {'kty': 'RSA', 'e': 'AQAB', 'n': ''}) self.assertRaises(errors.DeserializationError, JWK.from_json, {'kty': 'RSA', 'e': 'AQAB', 'n': '1'}) def test_thumbprint_go_jose(self): # https://github.com/square/go-jose/blob/4ddd71883fa547d37fbf598071f04512d8bafee3/jwk.go#L155 # https://github.com/square/go-jose/blob/4ddd71883fa547d37fbf598071f04512d8bafee3/jwk_test.go#L331-L344 # https://github.com/square/go-jose/blob/4ddd71883fa547d37fbf598071f04512d8bafee3/jwk_test.go#L384 from acme.jose.jwk import JWKRSA key = JWKRSA.json_loads("""{ "kty": "RSA", "kid": "[email protected]", "use": "sig", "n": "n4EPtAOCc9AlkeQHPzHStgAbgs7bTZLwUBZdR8_KuKPEHLd4rHVTeT-O-XV2jRojdNhxJWTDvNd7nqQ0VEiZQHz_AJmSCpMaJMRBSFKrKb2wqVwGU_NsYOYL-QtiWN2lbzcEe6XC0dApr5ydQLrHqkHHig3RBordaZ6Aj-oBHqFEHYpPe7Tpe-OfVfHd1E6cS6M1FZcD1NNLYD5lFHpPI9bTwJlsde3uhGqC0ZCuEHg8lhzwOHrtIQbS0FVbb9k3-tVTU4fg_3L_vniUFAKwuCLqKnS2BYwdq_mzSnbLY7h_qixoR7jig3__kRhuaxwUkRz5iaiQkqgc5gHdrNP5zw", "e": "AQAB" }""") self.assertEqual( binascii.hexlify(key.thumbprint()), b"f63838e96077ad1fc01c3f8405774dedc0641f558ebb4b40dccf5f9b6d66a932") if __name__ == '__main__': unittest.main() # pragma: no cover
apache-2.0
cloud9UG/odoo
addons/account/test/test_parent_structure.py
432
2108
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2010 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## # # TODO: move this in a YAML test with !python tag # import xmlrpclib DB = 'training3' USERID = 1 USERPASS = 'admin' sock = xmlrpclib.ServerProxy('http://%s:%s/xmlrpc/object' % ('localhost',8069)) ids = sock.execute(DB, USERID, USERPASS, 'account.account', 'search', [], {}) account_lists = sock.execute(DB, USERID, USERPASS, 'account.account', 'read', ids, ['parent_id','parent_left','parent_right']) accounts = dict(map(lambda x: (x['id'],x), account_lists)) for a in account_lists: if a['parent_id']: assert a['parent_left'] > accounts[a['parent_id'][0]]['parent_left'] assert a['parent_right'] < accounts[a['parent_id'][0]]['parent_right'] assert a['parent_left'] < a['parent_right'] for a2 in account_lists: assert not ((a2['parent_right']>a['parent_left']) and (a2['parent_left']<a['parent_left']) and (a2['parent_right']<a['parent_right'])) if a2['parent_id']==a['id']: assert (a2['parent_left']>a['parent_left']) and (a2['parent_right']<a['parent_right']) # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
osmc/osmc
package/mediacenter-addon-osmc/src/script.module.osmcsetting.services/resources/lib/osmcservices/osmc/osmc_setting.py
2
1337
# -*- coding: utf-8 -*- """ Copyright (C) 2014-2020 OSMC (KodeKarnage) This file is part of script.module.osmcsetting.services SPDX-License-Identifier: GPL-2.0-or-later See LICENSES/GPL-2.0-or-later for more information. """ import os import xbmcgui from osmccommon import osmc_setting from osmccommon.osmc_logging import StandardLogger from ..services_gui import ServiceSelectionGui addon_id = "script.module.osmcsetting.services" log = StandardLogger(addon_id, os.path.basename(__file__)).log class OSMCSettingClass(osmc_setting.OSMCSettingClass): def __init__(self): super(OSMCSettingClass, self).__init__() self.addon_id = addon_id self.short_name = 'Services' self.short_name_i18n = 32058 self.description = 'Control OSMC services' self.description_i18n = 32059 self.setting_data_method = { 'none': { 'setting_value': '', } } self.reboot_required = False def run(self): xml = "ServiceBrowser_720OSMC.xml" \ if xbmcgui.Window(10000).getProperty("SkinHeight") == '720' \ else "ServiceBrowser_OSMC.xml" creation = ServiceSelectionGui(xml, self.me.getAddonInfo('path'), 'Default', addon=self.me) creation.doModal() del creation
gpl-2.0
hchen1202/django-react
virtualenv/lib/python3.6/site-packages/django/core/checks/security/sessions.py
57
2781
from django.conf import settings from .. import Tags, Warning, register from ..utils import patch_middleware_message def add_session_cookie_message(message): return message + ( " Using a secure-only session cookie makes it more difficult for " "network traffic sniffers to hijack user sessions." ) W010 = Warning( add_session_cookie_message( "You have 'django.contrib.sessions' in your INSTALLED_APPS, " "but you have not set SESSION_COOKIE_SECURE to True." ), id='security.W010', ) W011 = Warning( add_session_cookie_message( "You have 'django.contrib.sessions.middleware.SessionMiddleware' " "in your MIDDLEWARE, but you have not set " "SESSION_COOKIE_SECURE to True." ), id='security.W011', ) W012 = Warning( add_session_cookie_message("SESSION_COOKIE_SECURE is not set to True."), id='security.W012', ) def add_httponly_message(message): return message + ( " Using an HttpOnly session cookie makes it more difficult for " "cross-site scripting attacks to hijack user sessions." ) W013 = Warning( add_httponly_message( "You have 'django.contrib.sessions' in your INSTALLED_APPS, " "but you have not set SESSION_COOKIE_HTTPONLY to True.", ), id='security.W013', ) W014 = Warning( add_httponly_message( "You have 'django.contrib.sessions.middleware.SessionMiddleware' " "in your MIDDLEWARE, but you have not set " "SESSION_COOKIE_HTTPONLY to True." ), id='security.W014', ) W015 = Warning( add_httponly_message("SESSION_COOKIE_HTTPONLY is not set to True."), id='security.W015', ) @register(Tags.security, deploy=True) def check_session_cookie_secure(app_configs, **kwargs): errors = [] if not settings.SESSION_COOKIE_SECURE: if _session_app(): errors.append(W010) if _session_middleware(): errors.append(patch_middleware_message(W011)) if len(errors) > 1: errors = [W012] return errors @register(Tags.security, deploy=True) def check_session_cookie_httponly(app_configs, **kwargs): errors = [] if not settings.SESSION_COOKIE_HTTPONLY: if _session_app(): errors.append(W013) if _session_middleware(): errors.append(patch_middleware_message(W014)) if len(errors) > 1: errors = [W015] return errors def _session_middleware(): return ("django.contrib.sessions.middleware.SessionMiddleware" in settings.MIDDLEWARE_CLASSES or settings.MIDDLEWARE and "django.contrib.sessions.middleware.SessionMiddleware" in settings.MIDDLEWARE) def _session_app(): return "django.contrib.sessions" in settings.INSTALLED_APPS
mit
da4089/wireshark
doc/extcap_example.py
5
10476
#!/usr/bin/env python # Copyright 2014 Roland Knall <rknall [AT] gmail.com> # # Wireshark - Network traffic analyzer # By Gerald Combs <[email protected]> # Copyright 1998 Gerald Combs # # This program is free software; you can redistribute it and/or # modify it under the terms of the GNU General Public License # as published by the Free Software Foundation; either version 2 # of the License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. """ This is a generic example, which produces pcap packages every n seconds, and is configurable via extcap options. @note { To use this script on Windows, please generate an extcap_example.bat inside the extcap folder, with the following content: ------- @echo off <Path to python interpreter> <Path to script file> %* ------- Windows is not able to execute Python scripts directly, which also goes for all other script-based formates beside VBScript } """ import os import sys import signal import re import argparse import time import struct import binascii from threading import Thread ERROR_USAGE = 0 ERROR_ARG = 1 ERROR_INTERFACE = 2 ERROR_FIFO = 3 doExit = False globalinterface = 0 def signalHandler(signal, frame): global doExit doExit = True #### EXTCAP FUNCTIONALITY """@brief Extcap configuration This method prints the extcap configuration, which will be picked up by the interface in Wireshark to present a interface specific configuration for this extcap plugin """ def extcap_config(interface): args = [] values = [] args.append ( (0, '--delay', 'Time delay', 'Time delay between packages', 'integer', '{range=1,15}{default=5}') ) args.append ( (1, '--message', 'Message', 'Package message content', 'string', '{required=true}') ) args.append ( (2, '--verify', 'Verify', 'Verify package content', 'boolflag', '{default=yes}') ) args.append ( (3, '--remote', 'Remote Channel', 'Remote Channel Selector', 'selector', '')) args.append ( (4, '--fake_ip', 'Fake IP Address', 'Use this ip address as sender', 'string', '{save=false}{validation=\\b(?:(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\.){3}(?:25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)\\b}')) args.append ( (5, '--ltest', 'Long Test', 'Long Test Value', 'long', '{default=123123123123123123}')) args.append ( (6, '--d1test', 'Double 1 Test', 'Long Test Value', 'double', '{default=123.456}')) args.append ( (7, '--d2test', 'Double 2 Test', 'Long Test Value', 'double', '{default= 123,456}')) args.append ( (8, '--password', 'Password', 'Package message password', 'password', '') ) values.append ( (3, "if1", "Remote1", "true" ) ) values.append ( (3, "if2", "Remote2", "false" ) ) for arg in args: print ("arg {number=%d}{call=%s}{display=%s}{tooltip=%s}{type=%s}%s" % arg) for value in values: print ("value {arg=%d}{value=%s}{display=%s}{default=%s}" % value) def extcap_interfaces(): print ("extcap {version=1.0}") print ("interface {value=example1}{display=Example interface usage for extcap}") def extcap_dlts(interface): if ( interface == '1' ): print ("dlt {number=147}{name=USER0}{display=Demo Implementation for Extcap}") """ ### FAKE DATA GENERATOR Extcap capture routine This routine simulates a capture by any kind of user defined device. The parameters are user specified and must be handled by the extcap. The data captured inside this routine is fake, so change this routine to present your own input data, or call your own capture program via Popen for example. See for more details. """ def unsigned(n): return int(n) & 0xFFFFFFFF def append_bytes(ba, blist): for c in range(0, len(blist)): ba.append(blist[c]) return ba def pcap_fake_header(): header = bytearray() header = append_bytes(header, struct.pack('<L', int ('a1b2c3d4', 16) )) header = append_bytes(header, struct.pack('<H', unsigned(2)) ) # Pcap Major Version header = append_bytes(header, struct.pack('<H', unsigned(4)) ) # Pcap Minor Version header = append_bytes(header, struct.pack('<I', int(0))) # Timezone header = append_bytes(header, struct.pack('<I', int(0))) # Accurancy of timestamps header = append_bytes(header, struct.pack('<L', int ('0000ffff', 16) )) # Max Length of capture frame header = append_bytes(header, struct.pack('<L', unsigned(1))) # Ethernet return header # Calculates and returns the IP checksum based on the given IP Header def ip_checksum(iph): #split into bytes words = splitN(''.join(iph.split()),4) csum = 0; for word in words: csum += int(word, base=16) csum += (csum >> 16) csum = csum & 0xFFFF ^ 0xFFFF return csum def pcap_fake_package ( message, fake_ip ): pcap = bytearray() #length = 14 bytes [ eth ] + 20 bytes [ ip ] + messagelength caplength = len(message) + 14 + 20 timestamp = int(time.time()) pcap = append_bytes(pcap, struct.pack('<L', unsigned(timestamp) ) ) # timestamp seconds pcap = append_bytes(pcap, struct.pack('<L', 0x00 ) ) # timestamp nanoseconds pcap = append_bytes(pcap, struct.pack('<L', unsigned(caplength) ) ) # length captured pcap = append_bytes(pcap, struct.pack('<L', unsigned(caplength) ) ) # length in frame # ETH pcap = append_bytes(pcap, struct.pack('h', 0 )) # source mac pcap = append_bytes(pcap, struct.pack('h', 0 )) # source mac pcap = append_bytes(pcap, struct.pack('h', 0 )) # source mac pcap = append_bytes(pcap, struct.pack('h', 0 )) # dest mac pcap = append_bytes(pcap, struct.pack('h', 0 )) # dest mac pcap = append_bytes(pcap, struct.pack('h', 0 )) # dest mac pcap = append_bytes(pcap, struct.pack('<h', unsigned(8) )) # protocol (ip) # IP pcap = append_bytes(pcap, struct.pack('b', int ( '45', 16) )) # IP version pcap = append_bytes(pcap, struct.pack('b', int ( '0', 16) )) # pcap = append_bytes(pcap, struct.pack('>H', unsigned(len(message)+20) )) # length of data + payload pcap = append_bytes(pcap, struct.pack('<H', int ( '0', 16) )) # Identification pcap = append_bytes(pcap, struct.pack('b', int ( '40', 16) )) # Don't fragment pcap = append_bytes(pcap, struct.pack('b', int ( '0', 16) )) # Fragment Offset pcap = append_bytes(pcap, struct.pack('b', int ( '40', 16) )) pcap = append_bytes(pcap, struct.pack('B', 0xFE )) # Protocol (2 = unspecified) pcap = append_bytes(pcap, struct.pack('<H', int ( '0000', 16) )) # Checksum parts = fake_ip.split('.') ipadr = (int(parts[0]) << 24) + (int(parts[1]) << 16) + (int(parts[2]) << 8) + int(parts[3]) pcap = append_bytes(pcap, struct.pack('>L', ipadr )) # Source IP pcap = append_bytes(pcap, struct.pack('>L', int ( '7F000001', 16) )) # Dest IP pcap = append_bytes(pcap, message) return pcap def extcap_capture(interface, fifo, delay, verify, message, remote, fake_ip): global doExit signal.signal(signal.SIGINT, signalHandler) signal.signal(signal.SIGTERM , signalHandler) tdelay = delay if delay != 0 else 5 try: os.stat(fifo) except OSError: doExit = True print ( "Fifo does not exist, exiting!" ) fh = open(fifo, 'w+b', 0 ) fh.write (pcap_fake_header()) while doExit == False: out = str( "%s|%04X%s|%s" % ( remote.strip(), len(message), message, verify ) ) try: fh.write (pcap_fake_package(out, fake_ip)) time.sleep(tdelay) except IOError: doExit = True fh.close() #### def usage(): print ( "Usage: %s <--extcap-interfaces | --extcap-dlts | --extcap-interface | --extcap-config | --capture | --extcap-capture-filter | --fifo>" % sys.argv[0] ) if __name__ == '__main__': interface = "" # Capture options delay = 0 message = "" fake_ip = "" parser = argparse.ArgumentParser( prog="Extcap Example", description="Extcap example program for python" ) # Extcap Arguments parser.add_argument("--capture", help="Start the capture routine", action="store_true" ) parser.add_argument("--extcap-interfaces", help="Provide a list of interfaces to capture from", action="store_true") parser.add_argument("--extcap-interface", help="Provide the interface to capture from") parser.add_argument("--extcap-dlts", help="Provide a list of dlts for the given interface", action="store_true") parser.add_argument("--extcap-config", help="Provide a list of configurations for the given interface", action="store_true") parser.add_argument("--extcap-capture-filter", help="Used together with capture to provide a capture filter") parser.add_argument("--fifo", help="Use together with capture to provide the fifo to dump data to") # Interface Arguments parser.add_argument("--verify", help="Demonstrates a verification bool flag", action="store_true" ) parser.add_argument("--delay", help="Demonstrates an integer variable", type=int, default=0, choices=[0, 1, 2, 3, 4, 5] ) parser.add_argument("--remote", help="Demonstrates a selector choice", default="if1", choices=["if1", "if2"] ) parser.add_argument("--message", help="Demonstrates string variable", nargs='?', default="" ) parser.add_argument("--fake_ip", help="Add a fake sender IP adress", nargs='?', default="127.0.0.1" ) args, unknown = parser.parse_known_args() if ( len(sys.argv) <= 1 ): parser.exit("No arguments given!") if ( args.extcap_interfaces == False and args.extcap_interface == None ): parser.exit("An interface must be provided or the selection must be displayed") if ( args.extcap_interfaces == True or args.extcap_interface == None ): extcap_interfaces() sys.exit(0) if ( len(unknown) > 1 ): print("Extcap Example %d unknown arguments given" % len(unknown) ) m = re.match ( 'example(\d+)', args.extcap_interface ) if not m: sys.exit(ERROR_INTERFACE) interface = m.group(1) message = args.message if ( args.message == None or len(args.message) == 0 ): message = "Extcap Test" fake_ip = args.fake_ip if ( args.fake_ip == None or len(args.fake_ip) < 7 or len(args.fake_ip.split('.')) != 4 ): fake_ip = "127.0.0.1" if args.extcap_config: extcap_config(interface) elif args.extcap_dlts: extcap_dlts(interface) elif args.capture: if args.fifo is None: sys.exit(ERROR_FIFO) extcap_capture(interface, args.fifo, args.delay, args.verify, message, args.remote, fake_ip) else: usage() sys.exit(ERROR_USAGE)
gpl-2.0
Skype4Py/Skype4Py
Skype4Py/lang/ru.py
23
19299
apiAttachAvailable = u'\u0412\u043e\u0437\u043c\u043e\u0436\u043d\u043e \u0441\u043e\u0435\u0434\u0438\u043d\u0435\u043d\u0438\u0435 \u0447\u0435\u0440\u0435\u0437 \u0418\u041f\u041f' apiAttachNotAvailable = u'\u041d\u0435\u0432\u043e\u0437\u043c\u043e\u0436\u0435\u043d' apiAttachPendingAuthorization = u'\u041e\u0436\u0438\u0434\u0430\u043d\u0438\u0435 \u0430\u0432\u0442\u043e\u0440\u0438\u0437\u0430\u0446\u0438\u0438' apiAttachRefused = u'\u041e\u0442\u043a\u0430\u0437' apiAttachSuccess = u'\u0423\u0434\u0430\u043b\u043e\u0441\u044c!' apiAttachUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' budDeletedFriend = u'\u0423\u0434\u0430\u043b\u0435\u043d \u0438\u0437 \u0441\u043f\u0438\u0441\u043a\u0430 \u0434\u0440\u0443\u0437\u0435\u0439' budFriend = u'\u0414\u0440\u0443\u0433' budNeverBeenFriend = u'\u041d\u0438\u043a\u043e\u0433\u0434\u0430 \u043d\u0435 \u0431\u044b\u043b \u0432 \u0441\u043f\u0438\u0441\u043a\u0435 \u0434\u0440\u0443\u0437\u0435\u0439' budPendingAuthorization = u'\u041e\u0436\u0438\u0434\u0430\u043d\u0438\u0435 \u0430\u0432\u0442\u043e\u0440\u0438\u0437\u0430\u0446\u0438\u0438' budUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cfrBlockedByRecipient = u'\u0417\u0432\u043e\u043d\u043e\u043a \u0437\u0430\u0431\u043b\u043e\u043a\u0438\u0440\u043e\u0432\u0430\u043d \u043f\u043e\u043b\u0443\u0447\u0430\u0442\u0435\u043b\u0435\u043c' cfrMiscError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0441\u043c\u0435\u0448\u0430\u043d\u043d\u043e\u0433\u043e \u0442\u0438\u043f\u0430' cfrNoCommonCodec = u'\u041d\u0435\u0442 \u043f\u0440\u0430\u0432\u0438\u043b\u044c\u043d\u043e\u0433\u043e \u043a\u043e\u0434\u0435\u043a\u0430' cfrNoProxyFound = u'\u041f\u0440\u043e\u043a\u0441\u0438 \u043d\u0435 \u043d\u0430\u0439\u0434\u0435\u043d' cfrNotAuthorizedByRecipient = u'\u0422\u0435\u043a\u0443\u0449\u0438\u0439 \u043f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u0435\u043b\u044c \u043d\u0435 \u0430\u0432\u0442\u043e\u0440\u0438\u0437\u0438\u0440\u043e\u0432\u0430\u043d \u043f\u043e\u043b\u0443\u0447\u0430\u0442\u0435\u043b\u0435\u043c' cfrRecipientNotFriend = u'\u041f\u043e\u043b\u0443\u0447\u0430\u0442\u0435\u043b\u044c \u043d\u0435 \u0434\u0440\u0443\u0433' cfrRemoteDeviceError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0437\u0432\u0443\u043a\u0430 \u0443 \u0430\u0431\u043e\u043d\u0435\u043d\u0442\u0430' cfrSessionTerminated = u'\u0421\u0432\u044f\u0437\u044c \u0437\u0430\u043a\u043e\u043d\u0447\u0435\u043d\u0430' cfrSoundIOError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0437\u0432\u0443\u043a\u0430' cfrSoundRecordingError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0437\u0430\u043f\u0438\u0441\u0438 \u0437\u0432\u0443\u043a\u0430' cfrUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cfrUserDoesNotExist = u'\u041f\u043e\u043b\u044c\u0437\u043e\u0432\u0430\u0442\u0435\u043b\u044c/\u043d\u043e\u043c\u0435\u0440 \u043d\u0435 \u0441\u0443\u0449\u0435\u0441\u0442\u0432\u0443\u0435\u0442' cfrUserIsOffline = u'\u041e\u043d/\u041e\u043d\u0430 \u043d\u0435 \u0432 \u0441\u0435\u0442\u0438' chsAllCalls = u'\u0423\u0441\u0442\u0430\u0440\u0435\u0432\u0448\u0430\u044f \u0432\u0435\u0440\u0441\u0438\u044f \u0434\u0438\u0430\u043b\u043e\u0433\u0430' chsDialog = u'\u0414\u0438\u0430\u043b\u043e\u0433' chsIncomingCalls = u'\u041e\u0436\u0438\u0434\u0430\u0435\u0442\u0441\u044f \u043f\u0440\u0438\u043d\u044f\u0442\u0438\u0435 \u043f\u0440\u0438\u0433\u043b\u0430\u0448\u0435\u043d\u0438\u044f \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u0438\u043c\u0438 \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u0430\u043c\u0438' chsLegacyDialog = u'\u0423\u0441\u0442\u0430\u0440\u0435\u0432\u0448\u0430\u044f \u0432\u0435\u0440\u0441\u0438\u044f \u0434\u0438\u0430\u043b\u043e\u0433\u0430' chsMissedCalls = u'\u0414\u0438\u0430\u043b\u043e\u0433' chsMultiNeedAccept = u'\u041e\u0436\u0438\u0434\u0430\u0435\u0442\u0441\u044f \u043f\u0440\u0438\u043d\u044f\u0442\u0438\u0435 \u043f\u0440\u0438\u0433\u043b\u0430\u0448\u0435\u043d\u0438\u044f \u043d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u0438\u043c\u0438 \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u0430\u043c\u0438' chsMultiSubscribed = u'\u041d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u043e\u0432 \u0432\u043e\u0448\u043b\u043e \u0432 \u0447\u0430\u0442' chsOutgoingCalls = u'\u041d\u0435\u0441\u043a\u043e\u043b\u044c\u043a\u043e \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u043e\u0432 \u0432\u043e\u0448\u043b\u043e \u0432 \u0447\u0430\u0442' chsUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' chsUnsubscribed = u'\u041d\u0435 \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0430\u0431\u043e\u043d\u0435\u043d\u0442\u043e\u043c' clsBusy = u'\u0417\u0430\u043d\u044f\u0442' clsCancelled = u'\u041e\u0442\u043c\u0435\u043d\u0438\u0442\u044c' clsEarlyMedia = u'\u041f\u0440\u043e\u0438\u0433\u0440\u044b\u0432\u0430\u043d\u0438\u0435 \u043f\u0440\u0435\u0434\u0432\u0430\u0440\u0438\u0442\u0435\u043b\u044c\u043d\u044b\u0445 \u0441\u0438\u0433\u043d\u0430\u043b\u043e\u0432 (Early Media)' clsFailed = u'\u041a \u0441\u043e\u0436\u0430\u043b\u0435\u043d\u0438\u044e, \u0437\u0432\u043e\u043d\u043e\u043a \u043d\u0435 \u0443\u0434\u0430\u043b\u0441\u044f' clsFinished = u'\u041a\u043e\u043d\u0435\u0446' clsInProgress = u'\u0418\u0434\u0435\u0442 \u0440\u0430\u0437\u0433\u043e\u0432\u043e\u0440' clsLocalHold = u'\u041b\u043e\u043a\u0430\u043b\u044c\u043d\u043e\u0435 \u0443\u0434\u0435\u0440\u0436\u0430\u043d\u0438\u0435 \u0437\u0432\u043e\u043d\u043a\u0430' clsMissed = u'\u041f\u0440\u043e\u043f\u0443\u0449\u0435\u043d\u043d\u044b\u0439 \u0437\u0432\u043e\u043d\u043e\u043a' clsOnHold = u'\u0412 \u043e\u0436\u0438\u0434\u0430\u043d\u0438\u0438' clsRefused = u'\u041e\u0442\u043a\u0430\u0437' clsRemoteHold = u'\u0423\u0434\u0430\u043b\u0435\u043d\u043d\u043e\u0435 \u0443\u0434\u0435\u0440\u0436\u0430\u043d\u0438\u0435 \u0437\u0432\u043e\u043d\u043a\u0430' clsRinging = u'\u0437\u0432\u043e\u043d\u0438\u0442' clsRouting = u'\u041c\u0430\u0440\u0448\u0440\u0443\u0442\u0438\u0437\u0430\u0446\u0438\u044f' clsTransferred = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' clsTransferring = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' clsUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' clsUnplaced = u'\u041d\u0435 \u0431\u044b\u043b \u043d\u0430\u0431\u0440\u0430\u043d' clsVoicemailBufferingGreeting = u'\u0411\u0443\u0444\u0435\u0440\u0438\u0437\u0430\u0446\u0438\u044f \u043f\u0440\u0438\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u044f' clsVoicemailCancelled = u'\u0413\u043e\u043b\u043e\u0441\u043e\u0432\u043e\u0435 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u043e\u0442\u043c\u0435\u043d\u0435\u043d\u043e' clsVoicemailFailed = u'\u0421\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u043d\u0430 \u0430\u0432\u0442\u043e\u043e\u0442\u0432\u0435\u0442\u0447\u0438\u043a \u043d\u0435 \u0443\u0434\u0430\u043b\u043e\u0441\u044c' clsVoicemailPlayingGreeting = u'\u041f\u0440\u043e\u0438\u0433\u0440\u044b\u0432\u0430\u043d\u0438\u0435 \u043f\u0440\u0438\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u044f' clsVoicemailRecording = u'\u0417\u0430\u043f\u0438\u0441\u044b\u0432\u0430\u0435\u043c \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435' clsVoicemailSent = u'\u0413\u043e\u043b\u043e\u0441\u043e\u0432\u043e\u0435 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435 \u043e\u0442\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u043e' clsVoicemailUploading = u'\u0417\u0430\u0433\u0440\u0443\u0437\u043a\u0430 \u0433\u043e\u043b\u043e\u0441\u043e\u0432\u043e\u0433\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f' cltIncomingP2P = u'\u0412\u0445\u043e\u0434\u044f\u0449\u0438\u0439 \u043f\u0438\u0440\u0438\u043d\u0433\u043e\u0432\u044b\u0439 \u0437\u0432\u043e\u043d\u043e\u043a' cltIncomingPSTN = u'\u0412\u0445\u043e\u0434\u044f\u0449\u0438\u0439 \u0442\u0435\u043b\u0435\u0444\u043e\u043d\u043d\u044b\u0439 \u0437\u0432\u043e\u043d\u043e\u043a' cltOutgoingP2P = u'\u0418\u0441\u0445\u043e\u0434\u044f\u0449\u0438\u0439 \u043f\u0438\u0440\u0438\u043d\u0433\u043e\u0432\u044b\u0439 \u0437\u0432\u043e\u043d\u043e\u043a' cltOutgoingPSTN = u'\u0418\u0441\u0445\u043e\u0434\u044f\u0449\u0438\u0439 \u0442\u0435\u043b\u0435\u0444\u043e\u043d\u043d\u044b\u0439 \u0437\u0432\u043e\u043d\u043e\u043a' cltUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cmeAddedMembers = u'\u0414\u043e\u0431\u0430\u0432\u0438\u043b (-\u0430) \u043d\u043e\u0432\u044b\u0445 \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u043e\u0432' cmeCreatedChatWith = u'\u041d\u0430\u0447\u0430\u0442 \u0447\u0430\u0442 \u0441' cmeEmoted = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cmeLeft = u'\u0423\u0448\u0435\u043b' cmeSaid = u'\u0421\u043a\u0430\u0437\u0430\u043b (-\u0430)' cmeSawMembers = u'\u0412\u0438\u0434\u0435\u043b \u0443\u0447\u0430\u0441\u0442\u043d\u0438\u043a\u043e\u0432' cmeSetTopic = u'\u041e\u043f\u0440\u0435\u0434\u0435\u043b\u0438\u043b \u0442\u0435\u043c\u0443' cmeUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cmsRead = u'\u041f\u0440\u043e\u0447\u0442\u0435\u043d\u043e' cmsReceived = u'\u041f\u043e\u043b\u0443\u0447\u0435\u043d\u043e' cmsSending = u'\u041e\u0442\u043f\u0440\u0430\u0432\u043a\u0430...' cmsSent = u'\u041e\u0442\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u043e' cmsUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' conConnecting = u'\u0421\u043e\u0435\u0434\u0438\u043d\u044f\u0435\u043c' conOffline = u'\u041d\u0435 \u0432 \u0441\u0435\u0442\u0438' conOnline = u'\u0412 \u0441\u0435\u0442\u0438' conPausing = u'\u041f\u0430\u0443\u0437\u0430' conUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cusAway = u'\u041d\u0435\u0442 \u043d\u0430 \u043c\u0435\u0441\u0442\u0435' cusDoNotDisturb = u'\u041d\u0435 \u0431\u0435\u0441\u043f\u043e\u043a\u043e\u0438\u0442\u044c' cusInvisible = u'\u041d\u0435\u0432\u0438\u0434\u0438\u043c\u044b\u0439' cusLoggedOut = u'\u041d\u0435 \u0432 \u0441\u0435\u0442\u0438' cusNotAvailable = u'\u041d\u0435\u0432\u043e\u0437\u043c\u043e\u0436\u0435\u043d' cusOffline = u'\u041d\u0435 \u0432 \u0441\u0435\u0442\u0438' cusOnline = u'\u0412 \u0441\u0435\u0442\u0438' cusSkypeMe = u'\u0421\u0432\u043e\u0431\u043e\u0434\u0435\u043d \u0434\u043b\u044f \u0440\u0430\u0437\u0433\u043e\u0432\u043e\u0440\u0430' cusUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' cvsBothEnabled = u'\u041f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u044c \u0438 \u043f\u0435\u0440\u0435\u0434\u0430\u0432\u0430\u0442\u044c \u0432\u0438\u0434\u0435\u043e\u0442\u0440\u0430\u043d\u0441\u043b\u044f\u0446\u0438\u044e' cvsNone = u'\u041d\u0435\u0442 \u043a\u0430\u0440\u0442\u0438\u043d\u043a\u0438' cvsReceiveEnabled = u'\u041f\u0440\u0438\u043d\u0438\u043c\u0430\u0442\u044c \u0432\u0438\u0434\u0435\u043e\u0442\u0440\u0430\u043d\u0441\u043b\u044f\u0446\u0438\u044e' cvsSendEnabled = u'\u041f\u0435\u0440\u0435\u0434\u0430\u0432\u0430\u0442\u044c \u0432\u0438\u0434\u0435\u043e\u0442\u0440\u0430\u043d\u0441\u043b\u044f\u0446\u0438\u044e' cvsUnknown = u'' grpAllFriends = u'\u0412\u0441\u0435 \u0434\u0440\u0443\u0437\u044c\u044f' grpAllUsers = u'\u0412\u0441\u0435 \u0430\u0431\u043e\u043d\u0435\u043d\u0442\u044b' grpCustomGroup = u'\u041e\u0441\u043e\u0431\u044b\u0435' grpOnlineFriends = u'\u0414\u0440\u0443\u0437\u044c\u044f \u0432 \u0441\u0435\u0442\u0438' grpPendingAuthorizationFriends = u'\u041e\u0436\u0438\u0434\u0430\u043d\u0438\u0435 \u0430\u0432\u0442\u043e\u0440\u0438\u0437\u0430\u0446\u0438\u0438' grpProposedSharedGroup = u'Proposed Shared Group' grpRecentlyContactedUsers = u'\u041d\u0435\u0434\u0430\u0432\u043d\u043e \u043e\u0431\u0449\u0430\u043b\u0438\u0441\u044c' grpSharedGroup = u'Shared Group' grpSkypeFriends = u'\u0414\u0440\u0443\u0437\u044c\u044f \u043f\u043e Skype' grpSkypeOutFriends = u'\u0414\u0440\u0443\u0437\u044c\u044f \u043f\u043e SkypeOut' grpUngroupedFriends = u'\u041d\u0435\u0433\u0440\u0443\u043f\u043f\u0438\u0440\u043e\u0432\u0430\u043d\u043d\u044b\u0435 \u0434\u0440\u0443\u0437\u044c\u044f' grpUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' grpUsersAuthorizedByMe = u'\u0410\u0432\u0442\u043e\u0440\u0438\u0437\u043e\u0432\u0430\u043d\u043d\u044b\u0435 \u043c\u043d\u043e\u0439' grpUsersBlockedByMe = u'\u0411\u043b\u043e\u043a\u0438\u0440\u043e\u0432\u0430\u043d\u043d\u044b\u0435 \u043c\u043d\u043e\u0439' grpUsersWaitingMyAuthorization = u'\u041e\u0436\u0438\u0434\u0430\u044e\u0442 \u043c\u043e\u0435\u0439 \u0430\u0432\u0442\u043e\u0440\u0438\u0437\u0430\u0446\u0438\u0438' leaAddDeclined = u'\u041f\u0440\u0438\u0433\u043b\u0430\u0448\u0435\u043d\u0438\u0435 \u043e\u0442\u043a\u043b\u043e\u043d\u0435\u043d\u043e' leaAddedNotAuthorized = u'\u041f\u0440\u0438\u0433\u043b\u0430\u0448\u0430\u0435\u043c\u044b\u0439 \u0434\u043e\u043b\u0436\u0435\u043d \u0438\u043c\u0435\u0442\u044c \u0440\u0430\u0437\u0440\u0435\u0448\u0435\u043d\u0438\u0435' leaAdderNotFriend = u'\u041f\u0440\u0438\u0433\u043b\u0430\u0448\u0430\u044e\u0449\u0438\u0439 \u0434\u043e\u043b\u0436\u0435\u043d \u0431\u044b\u0442\u044c \u0434\u0440\u0443\u0433\u043e\u043c' leaUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' leaUnsubscribe = u'\u041d\u0435 \u044f\u0432\u043b\u044f\u0435\u0442\u0441\u044f \u0430\u0431\u043e\u043d\u0435\u043d\u0442\u043e\u043c' leaUserIncapable = u'\u041d\u0435 \u043f\u043e\u0434\u0434\u0435\u0440\u0436\u0438\u0432\u0430\u0435\u0442\u0441\u044f \u0430\u0431\u043e\u043d\u0435\u043d\u0442\u043e\u043c' leaUserNotFound = u'\u0410\u0431\u043e\u043d\u0435\u043d\u0442 \u043d\u0435 \u043d\u0430\u0439\u0434\u0435\u043d' olsAway = u'\u041d\u0435\u0442 \u043d\u0430 \u043c\u0435\u0441\u0442\u0435' olsDoNotDisturb = u'\u041d\u0435 \u0431\u0435\u0441\u043f\u043e\u043a\u043e\u0438\u0442\u044c' olsNotAvailable = u'\u041d\u0435\u0434\u043e\u0441\u0442\u0443\u043f\u0435\u043d' olsOffline = u'\u041d\u0435 \u0432 \u0441\u0435\u0442\u0438' olsOnline = u'\u0412 \u0441\u0435\u0442\u0438' olsSkypeMe = u'\u0421\u0432\u043e\u0431\u043e\u0434\u0435\u043d \u0434\u043b\u044f \u0440\u0430\u0437\u0433\u043e\u0432\u043e\u0440\u0430' olsSkypeOut = u'SkypeOut' olsUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' smsMessageStatusComposing = u'Composing' smsMessageStatusDelivered = u'Delivered' smsMessageStatusFailed = u'Failed' smsMessageStatusRead = u'Read' smsMessageStatusReceived = u'Received' smsMessageStatusSendingToServer = u'Sending to Server' smsMessageStatusSentToServer = u'Sent to Server' smsMessageStatusSomeTargetsFailed = u'Some Targets Failed' smsMessageStatusUnknown = u'Unknown' smsMessageTypeCCRequest = u'Confirmation Code Request' smsMessageTypeCCSubmit = u'Confirmation Code Submit' smsMessageTypeIncoming = u'Incoming' smsMessageTypeOutgoing = u'Outgoing' smsMessageTypeUnknown = u'Unknown' smsTargetStatusAcceptable = u'Acceptable' smsTargetStatusAnalyzing = u'Analyzing' smsTargetStatusDeliveryFailed = u'Delivery Failed' smsTargetStatusDeliveryPending = u'Delivery Pending' smsTargetStatusDeliverySuccessful = u'Delivery Successful' smsTargetStatusNotRoutable = u'Not Routable' smsTargetStatusUndefined = u'Undefined' smsTargetStatusUnknown = u'Unknown' usexFemale = u'\u0416\u0435\u043d\u0441\u043a\u0438\u0439' usexMale = u'\u041c\u0443\u0436\u0441\u043a\u043e\u0439' usexUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' vmrConnectError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0441\u043e\u0435\u0434\u0438\u043d\u0435\u043d\u0438\u044f' vmrFileReadError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0447\u0442\u0435\u043d\u0438\u044f \u0444\u0430\u0439\u043b\u0430' vmrFileWriteError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0437\u0430\u043f\u0438\u0441\u0438 \u0444\u0430\u0439\u043b\u0430' vmrMiscError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0441\u043c\u0435\u0448\u0430\u043d\u043d\u043e\u0433\u043e \u0442\u0438\u043f\u0430' vmrNoError = u'\u041d\u0435\u0442 \u043e\u0448\u0438\u0431\u043a\u0438' vmrNoPrivilege = u'\u041d\u0435\u0442 \u043f\u0440\u0438\u0432\u0438\u043b\u0435\u0433\u0438\u0439 \u043d\u0430 \u0433\u043e\u043b\u043e\u0441\u043e\u0432\u0443\u044e \u043f\u043e\u0447\u0442\u0443' vmrNoVoicemail = u'\u0422\u0430\u043a\u043e\u0433\u043e \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u044f \u043d\u0435\u0442' vmrPlaybackError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0432\u043e\u0441\u043f\u0440\u043e\u0438\u0437\u0432\u0435\u0434\u0435\u043d\u0438\u044f' vmrRecordingError = u'\u041e\u0448\u0438\u0431\u043a\u0430 \u0437\u0430\u043f\u0438\u0441\u0438' vmrUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' vmsBlank = u'\u041f\u0443\u0441\u0442\u043e\u0435' vmsBuffering = u'\u0411\u0443\u0444\u0435\u0440\u0438\u0437\u0438\u0440\u0443\u0435\u0442\u0441\u044f' vmsDeleting = u'\u0423\u0434\u0430\u043b\u044f\u0435\u0442\u0441\u044f' vmsDownloading = u'\u0417\u0430\u0433\u0440\u0443\u0436\u0430\u0435\u0442\u0441\u044f' vmsFailed = u'\u041f\u0440\u043e\u0438\u0437\u043e\u0448\u0435\u043b \u0441\u0431\u043e\u0439' vmsNotDownloaded = u'\u041d\u0435 \u0437\u0430\u0433\u0440\u0443\u0436\u0435\u043d\u043e' vmsPlayed = u'\u041f\u0440\u043e\u0441\u043b\u0443\u0448\u0430\u043d\u043e' vmsPlaying = u'\u041f\u0440\u043e\u0441\u043b\u0443\u0448\u0438\u0432\u0430\u0435\u0442\u0441\u044f' vmsRecorded = u'\u0417\u0430\u043f\u0438\u0441\u0430\u043d\u043e' vmsRecording = u'\u0417\u0430\u043f\u0438\u0441\u044b\u0432\u0430\u0435\u043c \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435' vmsUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' vmsUnplayed = u'\u041d\u0435 \u043f\u0440\u043e\u0441\u043b\u0443\u0448\u0430\u043d\u043e' vmsUploaded = u'\u041e\u0442\u043f\u0440\u0430\u0432\u043b\u0435\u043d\u043e' vmsUploading = u'\u041e\u0442\u043f\u0440\u0430\u0432\u043b\u044f\u0435\u0442\u0441\u044f' vmtCustomGreeting = u'\u0421\u043f\u0435\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0435 \u043f\u0440\u0438\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u0435' vmtDefaultGreeting = u'\u0421\u0442\u0430\u043d\u0434\u0430\u0440\u0442\u043d\u043e\u0435 \u043f\u0440\u0438\u0432\u0435\u0442\u0441\u0442\u0432\u0438\u0435' vmtIncoming = u'\u0432\u0445\u043e\u0434\u044f\u0449\u0435\u0435 \u0433\u043e\u043b\u043e\u0441\u043e\u0432\u043e\u0435 \u0441\u043e\u043e\u0431\u0449\u0435\u043d\u0438\u0435' vmtOutgoing = u'\u0418\u0441\u0445\u043e\u0434\u044f\u0449\u0435\u0435' vmtUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e' vssAvailable = u'\u0412\u043e\u0437\u043c\u043e\u0436\u0435\u043d' vssNotAvailable = u'\u041d\u0435\u0432\u043e\u0437\u043c\u043e\u0436\u0435\u043d' vssPaused = u'\u041f\u0430\u0443\u0437\u0430' vssRejected = u'\u041e\u0442\u043a\u043b\u043e\u043d\u0435\u043d' vssRunning = u'\u0412 \u043f\u0440\u043e\u0446\u0435\u0441\u0441\u0435' vssStarting = u'\u041d\u0430\u0447\u0438\u043d\u0430\u0435\u0442\u0441\u044f' vssStopping = u'\u0417\u0430\u043a\u0430\u043d\u0447\u0438\u0432\u0430\u0435\u0442\u0441\u044f' vssUnknown = u'\u041d\u0435\u0438\u0437\u0432\u0435\u0441\u0442\u043d\u043e'
bsd-3-clause
amwelch/a10sdk-python
a10sdk/core/cgnv6/cgnv6_stateful_firewall_tcp_syn_timeout.py
2
1325
from a10sdk.common.A10BaseClass import A10BaseClass class SynTimeout(A10BaseClass): """ :param syn_timeout_val: {"description": "Set Seconds session can remain in half-open state before being deleted (default: 4 seconds)", "format": "number", "default": 4, "optional": true, "maximum": 30, "minimum": 2, "type": "number"} :param uuid: {"description": "uuid of the object", "format": "string", "minLength": 1, "modify-not-allowed": 1, "optional": true, "maxLength": 64, "type": "string"} :param DeviceProxy: The device proxy for REST operations and session handling. Refer to `common/device_proxy.py` Class Description:: Configure TCP SYNtimeout. Class syn-timeout supports CRUD Operations and inherits from `common/A10BaseClass`. This class is the `"PARENT"` class for this module.` URL for this object:: `https://<Hostname|Ip address>//axapi/v3/cgnv6/stateful-firewall/tcp/syn-timeout`. """ def __init__(self, **kwargs): self.ERROR_MSG = "" self.required=[] self.b_key = "syn-timeout" self.a10_url="/axapi/v3/cgnv6/stateful-firewall/tcp/syn-timeout" self.DeviceProxy = "" self.syn_timeout_val = "" self.uuid = "" for keys, value in kwargs.items(): setattr(self,keys, value)
apache-2.0
mikeywaites/flask-arrested
tests/test_endpoint.py
1
10244
import json from mock import patch, MagicMock from flask import Response from werkzeug.exceptions import HTTPException from arrested import ( ArrestedAPI, Resource, Endpoint, ResponseHandler, GetListMixin, CreateMixin, PutObjectMixin, PatchObjectMixin ) from tests.utils import assertResponse def test_get_endpoint_name(): """test that user specified names are used by the get_name method """ class MyEndpoint(Endpoint): name = 'test' endpoint = MyEndpoint() assert endpoint.get_name() == 'test' def test_get_endpoint_name_defaults_to_class_name(): """test the endpoint name will default to the classname if no custom name is provided """ class MyEndpoint(Endpoint): name = None endpoint = MyEndpoint() assert endpoint.get_name() == 'myendpoint' def test_make_response(): """Test the default response returned by make_response method """ data = json.dumps({'foo': 'bar'}) resp = Endpoint().make_response(data) exp_resp = Response( response=data, headers=None, mimetype='application/json', status=200 ) assertResponse(resp, exp_resp) def test_make_response_set_mimetype(): """test make response with a specific mimetype param passed to make_response method """ data = json.dumps({'foo': 'bar'}) resp = Endpoint().make_response(data, mime='text/html') exp_resp = Response( response=data, headers=None, mimetype='text/html', status=200 ) assertResponse(resp, exp_resp) def test_make_response_set_headers(): """Test make_response with custom headers """ data = json.dumps({'foo': 'bar'}) resp = Endpoint().make_response(data, headers={'Cache-Control': 'must-revalidate'}) exp_resp = Response( response=data, headers={'Cache-Control': 'must-revalidate'}, mimetype='application/json', status=200 ) assertResponse(resp, exp_resp) def test_make_response_set_status(): """Test make_response with no default status code """ data = json.dumps({'foo': 'bar'}) resp = Endpoint().make_response(data, status=201) exp_resp = Response( response=data, headers=None, mimetype='application/json', status=201 ) assertResponse(resp, exp_resp) def test_get_response_handler_with_custom_handler_params(): """test get_response_handler method is passed custom params when get_response_handler_params is overridden """ class FakeMapper(object): pass class MyEndpoint(Endpoint): def get_response_handler_params(self, **params): params = super(MyEndpoint, self).get_response_handler_params(**params) params['mapper_class'] = FakeMapper return params handler = MyEndpoint().get_response_handler() assert isinstance(handler, ResponseHandler) assert handler.params == {'mapper_class': FakeMapper} def test_get_response_handler_custom_handler(): class MyResponseHandler(ResponseHandler): pass class MyEndpoint(Endpoint): response_handler = MyResponseHandler handler = MyEndpoint().get_response_handler() assert isinstance(handler, MyResponseHandler) def test_get_request_handler(): pass def test_get_request_handler_custom_handler(): pass def test_return_error_response(): endpoint = Endpoint() try: endpoint.return_error(400, payload={'error': True}) except HTTPException as resp: assert resp.code == 400 assert resp.response.data == b'{"error": true}' def test_endpoint_dispatch_request_method_not_allowed_returns_error(app): class MyEndpoint(Endpoint, GetListMixin): methods = ["GET"] def handle_get_request(self): pass with patch.object(MyEndpoint, 'return_error') as mock_return_error: with app.test_request_context('/test', method='POST'): MyEndpoint().dispatch_request() mock_return_error.assert_called_once_with(405) def test_get_calls_handle_get_request(): class MyEndpoint(Endpoint): def handle_get_request(self): pass data = {'foo': 'bar'} with patch.object(MyEndpoint, 'handle_get_request', return_value=data) as mocked: MyEndpoint().get() mocked.assert_called_once() def test_post_calls_handle_post_request(): class MyEndpoint(Endpoint): def handle_post_request(self): pass data = {'foo': 'bar'} with patch.object(MyEndpoint, 'handle_post_request', return_value=data) as _mock: MyEndpoint().post() _mock.assert_called_once() def test_put_calls_handle_put_request(): class MyEndpoint(Endpoint): def handle_put_request(self): pass data = {'foo': 'bar'} with patch.object(MyEndpoint, 'handle_put_request', return_value=data) as _mock: MyEndpoint().put() _mock.assert_called_once() def test_patch_calls_handle_patch_request(): class MyEndpoint(Endpoint): def handle_patch_request(self): pass data = {'foo': 'bar'} with patch.object(MyEndpoint, 'handle_patch_request', return_value=data) as _mock: MyEndpoint().patch() _mock.assert_called_once() def test_endpoint_dispatch_request_method_calls_process_before_request_hooks(app): class MyEndpoint(Endpoint, GetListMixin): methods = ["GET"] def handle_get_request(self): pass with patch.object(Endpoint, 'process_before_request_hooks') as mock_before_hooks: MyEndpoint().dispatch_request() mock_before_hooks.assert_called_once_with() def test_endpoint_dispatch_request_method_calls_process_after_request_hooks(app): mock_response = MagicMock(spec=Response) class MyEndpoint(Endpoint, GetListMixin): methods = ["GET"] def handle_get_request(self): return mock_response with patch.object(Endpoint, 'process_after_request_hooks') as mock_after_hooks: MyEndpoint().dispatch_request() mock_after_hooks.assert_called_once_with(mock_response) def test_process_before_request_hooks_processed_in_order(app): call_sequence = [] def test_hook(type_, sequence): def hook(endpoint): sequence.append(type_) return hook api_hook = test_hook('api', call_sequence) resource_hook = test_hook('resource', call_sequence) endpoint_hook = test_hook('endpoint', call_sequence) endpoint_get_hook = test_hook('endpoint_get', call_sequence) my_api = ArrestedAPI(before_all_hooks=[api_hook], url_prefix='/') my_api.init_app(app) my_resource = Resource('test', __name__, before_all_hooks=[resource_hook]) class MyEndpoint(Endpoint): before_all_hooks = [endpoint_hook] before_get_hooks = [endpoint_get_hook] url = '' my_resource.add_endpoint(Endpoint) my_api.register_resource(my_resource) endpoint = MyEndpoint() endpoint.resource = my_resource endpoint.meth = 'get' endpoint.process_before_request_hooks() assert call_sequence == ['api', 'resource', 'endpoint', 'endpoint_get'] def test_process_before_hooks_no_resource(app): log_request = MagicMock(return_value=None) class MyEndpoint(Endpoint, GetListMixin): before_get_hooks = [log_request, ] def get_objects(self): return [{'foo': 'bar'}] endpoint = MyEndpoint() endpoint.resource = None endpoint.meth = 'get' endpoint.process_before_request_hooks() log_request.assert_called_once() def test_process_before_hooks_request_meth_not_handled(app): log_request = MagicMock(return_value=None) class MyEndpoint(Endpoint, GetListMixin): before_get_hooks = [log_request, ] def get_objects(self): return [{'foo': 'bar'}] endpoint = MyEndpoint() endpoint.resource = None endpoint.meth = 'options' endpoint.process_before_request_hooks() assert not log_request.called def test_process_after_request_hooks_processed_in_order(app): call_sequence = [] def test_hook(type_, sequence): def hook(endpoint, resp): sequence.append(type_) return hook api_hook = test_hook('api', call_sequence) resource_hook = test_hook('resource', call_sequence) endpoint_hook = test_hook('endpoint', call_sequence) endpoint_get_hook = test_hook('endpoint_get', call_sequence) my_api = ArrestedAPI(after_all_hooks=[api_hook], url_prefix='/') my_api.init_app(app) my_resource = Resource('test', __name__, after_all_hooks=[resource_hook]) class MyEndpoint(Endpoint): after_all_hooks = [endpoint_hook] after_get_hooks = [endpoint_get_hook] url = '' my_resource.add_endpoint(Endpoint) my_api.register_resource(my_resource) endpoint = MyEndpoint() endpoint.resource = my_resource endpoint.meth = 'get' resp = MagicMock(spec=Response()) endpoint.process_after_request_hooks(resp) assert call_sequence == ['endpoint_get', 'endpoint', 'resource', 'api'] def test_process_after_hooks_no_resource(app): log_request = MagicMock(return_value=None) class MyEndpoint(Endpoint, GetListMixin): after_get_hooks = [log_request, ] def get_objects(self): return [{'foo': 'bar'}] endpoint = MyEndpoint() endpoint.resource = None endpoint.meth = 'get' resp = MagicMock(spec=Response()) endpoint.process_after_request_hooks(resp) log_request.assert_called_once() def test_process_after_hooks_request_meth_not_handled(app): log_request = MagicMock(return_value=None) class MyEndpoint(Endpoint, GetListMixin): after_get_hooks = [log_request, ] def get_objects(self): return [{'foo': 'bar'}] endpoint = MyEndpoint() endpoint.resource = None endpoint.meth = 'options' resp = MagicMock(spec=Response()) endpoint.process_after_request_hooks(resp) assert not log_request.called def test_delete_calls_handle_delete_request(): pass def test_restrict_methods(): pass def test_endpoint_url(): pass
mit
linux-on-ibm-z/kubernetes
translations/extract.py
137
3951
#!/usr/bin/env python # Copyright 2017 The Kubernetes Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Extract strings from command files and externalize into translation files. Expects to be run from the root directory of the repository. Usage: extract.py pkg/kubectl/cmd/apply.go """ import fileinput import sys import re class MatchHandler(object): """ Simple holder for a regular expression and a function to run if that regular expression matches a line. The function should expect (re.match, file, linenumber) as parameters """ def __init__(self, regex, replace_fn): self.regex = re.compile(regex) self.replace_fn = replace_fn def short_replace(match, file, line_number): """Replace a Short: ... cobra command description with an internationalization """ sys.stdout.write('{}i18n.T({}),\n'.format(match.group(1), match.group(2))) SHORT_MATCH = MatchHandler(r'(\s+Short:\s+)("[^"]+"),', short_replace) def import_replace(match, file, line_number): """Add an extra import for the i18n library. Doesn't try to be smart and detect if it's already present, assumes a gofmt round wil fix things. """ sys.stdout.write('{}\n"k8s.io/kubectl/pkg/util/i18n"\n'.format(match.group(1))) IMPORT_MATCH = MatchHandler('(.*"k8s.io/kubectl/pkg/cmd/util")', import_replace) def string_flag_replace(match, file, line_number): """Replace a cmd.Flags().String("...", "", "...") with an internationalization """ sys.stdout.write('{}i18n.T("{})"))\n'.format(match.group(1), match.group(2))) STRING_FLAG_MATCH = MatchHandler('(\s+cmd\.Flags\(\).String\("[^"]*", "[^"]*", )"([^"]*)"\)', string_flag_replace) def long_string_replace(match, file, line_number): return '{}i18n.T({}){}'.format(match.group(1), match.group(2), match.group(3)) LONG_DESC_MATCH = MatchHandler('(LongDesc\()(`[^`]+`)([^\n]\n)', long_string_replace) EXAMPLE_MATCH = MatchHandler('(Examples\()(`[^`]+`)([^\n]\n)', long_string_replace) def replace(filename, matchers, multiline_matchers): """Given a file and a set of matchers, run those matchers across the file and replace it with the results. """ # Run all the matchers line_number = 0 for line in fileinput.input(filename, inplace=True): line_number += 1 matched = False for matcher in matchers: match = matcher.regex.match(line) if match: matcher.replace_fn(match, filename, line_number) matched = True break if not matched: sys.stdout.write(line) sys.stdout.flush() with open(filename, 'r') as datafile: content = datafile.read() for matcher in multiline_matchers: match = matcher.regex.search(content) while match: rep = matcher.replace_fn(match, filename, 0) # Escape back references in the replacement string # (And escape for Python) # (And escape for regex) rep = re.sub('\\\\(\\d)', '\\\\\\\\\\1', rep) content = matcher.regex.sub(rep, content, 1) match = matcher.regex.search(content) sys.stdout.write(content) # gofmt the file again from subprocess import call call(["goimports", "-w", filename]) replace(sys.argv[1], [SHORT_MATCH, IMPORT_MATCH, STRING_FLAG_MATCH], [LONG_DESC_MATCH, EXAMPLE_MATCH])
apache-2.0
Bulochkin/tensorflow_pack
tensorflow/contrib/compiler/jit.py
129
4433
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Library for controlling the Tensorflow/XLA JIT compiler.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import contextlib from tensorflow.core.framework import attr_value_pb2 from tensorflow.python.framework import ops _XLA_SCOPE_KEY = ("__xla_scope",) class _XlaScope(object): """Keeps track of previous XLA scope calls, and depth of current call.""" def __init__(self, count, depth): self.count = count self.depth = depth @contextlib.contextmanager def experimental_jit_scope(compile_ops=True, separate_compiled_gradients=False): """Enable or disable JIT compilation of operators within the scope. NOTE: This is an experimental feature. The compilation is a hint and only supported on a best-effort basis. Example usage: with tf.contrib.compiler.experimental_jit_scope(): c = tf.matmul(a, b) # compiled with tf.contrib.compiler.experimental_jit_scope(compile_ops=False): d = tf.matmul(a, c) # not compiled with tf.contrib.compiler.experimental_jit_scope( compile_ops=lambda node_def: 'matmul' in node_def.op.lower()): e = tf.matmul(a, b) + d # matmul is compiled, the addition is not. Example of separate_compiled_gradients: # In the example below, the computations for f, g and h will all be compiled # in separate scopes. with tf.contrib.compiler.experimental_jit_scope( separate_compiled_gradients=True): f = tf.matmul(a, b) g = tf.gradients([f], [a, b], name='mygrads1') h = tf.gradients([f], [a, b], name='mygrads2') Args: compile_ops: Whether to enable or disable compilation in the scope. Either a Python bool, or a callable that accepts the parameter `node_def` and returns a python bool. separate_compiled_gradients: If true put each gradient subgraph into a separate compilation scope. This gives fine-grained control over which portions of the graph will be compiled as a single unit. Compiling gradients separately may yield better performance for some graphs. The scope is named based on the scope of the forward computation as well as the name of the gradients. As a result, the gradients will be compiled in a scope that is separate from both the forward computation, and from other gradients. Yields: The current scope, enabling or disabling compilation. """ if callable(compile_ops): def xla_compile(node_def): return attr_value_pb2.AttrValue(b=compile_ops(node_def)) else: xla_compile = attr_value_pb2.AttrValue(b=compile_ops) attrs = { "_XlaCompile": xla_compile, "_XlaSeparateCompiledGradients": attr_value_pb2.AttrValue(b=bool(separate_compiled_gradients)) } # Find the singleton counter for the current scoped graph. If it # doesn't exist, create one. xla_scope_counter = ops.get_collection(_XLA_SCOPE_KEY) if not xla_scope_counter: xla_scope_counter = _XlaScope(0, 0) ops.add_to_collection(_XLA_SCOPE_KEY, xla_scope_counter) else: xla_scope_counter = xla_scope_counter[0] if xla_scope_counter.depth == 0: # If we're at the root xla scope, we can increase the counter so # future calls to jit_scope use a different scope value. # If we're already within a scope, we'll be fusing using the scope # controlled by the parent. attrs["_XlaScope"] = attr_value_pb2.AttrValue( s=("jit_scope_%d" % xla_scope_counter.count).encode()) xla_scope_counter.count += 1 xla_scope_counter.depth += 1 # pylint: disable=protected-access with ops.get_default_graph()._attr_scope(attrs): yield # pylint: enable=protected-access xla_scope_counter.depth -= 1
apache-2.0
jiangzhixiao/odoo
addons/account/report/account_financial_report.py
380
6365
############################################################################## # # OpenERP, Open Source Management Solution # Copyright (C) 2004-2009 Tiny SPRL (<http://tiny.be>). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import time from openerp.report import report_sxw from common_report_header import common_report_header from openerp.tools.translate import _ from openerp.osv import osv class report_account_common(report_sxw.rml_parse, common_report_header): def __init__(self, cr, uid, name, context=None): super(report_account_common, self).__init__(cr, uid, name, context=context) self.localcontext.update( { 'get_lines': self.get_lines, 'time': time, 'get_fiscalyear': self._get_fiscalyear, 'get_account': self._get_account, 'get_start_period': self.get_start_period, 'get_end_period': self.get_end_period, 'get_filter': self._get_filter, 'get_start_date':self._get_start_date, 'get_end_date':self._get_end_date, 'get_target_move': self._get_target_move, }) self.context = context def set_context(self, objects, data, ids, report_type=None): new_ids = ids if (data['model'] == 'ir.ui.menu'): new_ids = 'chart_account_id' in data['form'] and [data['form']['chart_account_id']] or [] objects = self.pool.get('account.account').browse(self.cr, self.uid, new_ids) return super(report_account_common, self).set_context(objects, data, new_ids, report_type=report_type) def get_lines(self, data): lines = [] account_obj = self.pool.get('account.account') currency_obj = self.pool.get('res.currency') ids2 = self.pool.get('account.financial.report')._get_children_by_order(self.cr, self.uid, [data['form']['account_report_id'][0]], context=data['form']['used_context']) for report in self.pool.get('account.financial.report').browse(self.cr, self.uid, ids2, context=data['form']['used_context']): vals = { 'name': report.name, 'balance': report.balance * report.sign or 0.0, 'type': 'report', 'level': bool(report.style_overwrite) and report.style_overwrite or report.level, 'account_type': report.type =='sum' and 'view' or False, #used to underline the financial report balances } if data['form']['debit_credit']: vals['debit'] = report.debit vals['credit'] = report.credit if data['form']['enable_filter']: vals['balance_cmp'] = self.pool.get('account.financial.report').browse(self.cr, self.uid, report.id, context=data['form']['comparison_context']).balance * report.sign or 0.0 lines.append(vals) account_ids = [] if report.display_detail == 'no_detail': #the rest of the loop is used to display the details of the financial report, so it's not needed here. continue if report.type == 'accounts' and report.account_ids: account_ids = account_obj._get_children_and_consol(self.cr, self.uid, [x.id for x in report.account_ids]) elif report.type == 'account_type' and report.account_type_ids: account_ids = account_obj.search(self.cr, self.uid, [('user_type','in', [x.id for x in report.account_type_ids])]) if account_ids: for account in account_obj.browse(self.cr, self.uid, account_ids, context=data['form']['used_context']): #if there are accounts to display, we add them to the lines with a level equals to their level in #the COA + 1 (to avoid having them with a too low level that would conflicts with the level of data #financial reports for Assets, liabilities...) if report.display_detail == 'detail_flat' and account.type == 'view': continue flag = False vals = { 'name': account.code + ' ' + account.name, 'balance': account.balance != 0 and account.balance * report.sign or account.balance, 'type': 'account', 'level': report.display_detail == 'detail_with_hierarchy' and min(account.level + 1,6) or 6, #account.level + 1 'account_type': account.type, } if data['form']['debit_credit']: vals['debit'] = account.debit vals['credit'] = account.credit if not currency_obj.is_zero(self.cr, self.uid, account.company_id.currency_id, vals['balance']): flag = True if data['form']['enable_filter']: vals['balance_cmp'] = account_obj.browse(self.cr, self.uid, account.id, context=data['form']['comparison_context']).balance * report.sign or 0.0 if not currency_obj.is_zero(self.cr, self.uid, account.company_id.currency_id, vals['balance_cmp']): flag = True if flag: lines.append(vals) return lines class report_financial(osv.AbstractModel): _name = 'report.account.report_financial' _inherit = 'report.abstract_report' _template = 'account.report_financial' _wrapped_report_class = report_account_common # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
lezzago/LambdaMart
lambdamart.py
1
10588
import numpy as np import math import random import copy from sklearn.tree import DecisionTreeRegressor from multiprocessing import Pool from RegressionTree import RegressionTree import pandas as pd import pickle def dcg(scores): """ Returns the DCG value of the list of scores. Parameters ---------- scores : list Contains labels in a certain ranked order Returns ------- DCG_val: int This is the value of the DCG on the given scores """ return np.sum([ (np.power(2, scores[i]) - 1) / np.log2(i + 2) for i in xrange(len(scores)) ]) def dcg_k(scores, k): """ Returns the DCG value of the list of scores and truncates to k values. Parameters ---------- scores : list Contains labels in a certain ranked order k : int In the amount of values you want to only look at for computing DCG Returns ------- DCG_val: int This is the value of the DCG on the given scores """ return np.sum([ (np.power(2, scores[i]) - 1) / np.log2(i + 2) for i in xrange(len(scores[:k])) ]) def ideal_dcg(scores): """ Returns the Ideal DCG value of the list of scores. Parameters ---------- scores : list Contains labels in a certain ranked order Returns ------- Ideal_DCG_val: int This is the value of the Ideal DCG on the given scores """ scores = [score for score in sorted(scores)[::-1]] return dcg(scores) def ideal_dcg_k(scores, k): """ Returns the Ideal DCG value of the list of scores and truncates to k values. Parameters ---------- scores : list Contains labels in a certain ranked order k : int In the amount of values you want to only look at for computing DCG Returns ------- Ideal_DCG_val: int This is the value of the Ideal DCG on the given scores """ scores = [score for score in sorted(scores)[::-1]] return dcg_k(scores, k) def single_dcg(scores, i, j): """ Returns the DCG value at a single point. Parameters ---------- scores : list Contains labels in a certain ranked order i : int This points to the ith value in scores j : int This sets the ith value in scores to be the jth rank Returns ------- Single_DCG: int This is the value of the DCG at a single point """ return (np.power(2, scores[i]) - 1) / np.log2(j + 2) def compute_lambda(args): """ Returns the lambda and w values for a given query. Parameters ---------- args : zipped value of true_scores, predicted_scores, good_ij_pairs, idcg, query_key Contains a list of the true labels of documents, list of the predicted labels of documents, i and j pairs where true_score[i] > true_score[j], idcg values, and query keys. Returns ------- lambdas : numpy array This contains the calculated lambda values w : numpy array This contains the computed w values query_key : int This is the query id these values refer to """ true_scores, predicted_scores, good_ij_pairs, idcg, query_key = args num_docs = len(true_scores) sorted_indexes = np.argsort(predicted_scores)[::-1] rev_indexes = np.argsort(sorted_indexes) true_scores = true_scores[sorted_indexes] predicted_scores = predicted_scores[sorted_indexes] lambdas = np.zeros(num_docs) w = np.zeros(num_docs) single_dcgs = {} for i,j in good_ij_pairs: if (i,i) not in single_dcgs: single_dcgs[(i,i)] = single_dcg(true_scores, i, i) single_dcgs[(i,j)] = single_dcg(true_scores, i, j) if (j,j) not in single_dcgs: single_dcgs[(j,j)] = single_dcg(true_scores, j, j) single_dcgs[(j,i)] = single_dcg(true_scores, j, i) for i,j in good_ij_pairs: z_ndcg = abs(single_dcgs[(i,j)] - single_dcgs[(i,i)] + single_dcgs[(j,i)] - single_dcgs[(j,j)]) / idcg rho = 1 / (1 + np.exp(predicted_scores[i] - predicted_scores[j])) rho_complement = 1.0 - rho lambda_val = z_ndcg * rho lambdas[i] += lambda_val lambdas[j] -= lambda_val w_val = rho * rho_complement * z_ndcg w[i] += w_val w[j] += w_val return lambdas[rev_indexes], w[rev_indexes], query_key def group_queries(training_data, qid_index): """ Returns a dictionary that groups the documents by their query ids. Parameters ---------- training_data : Numpy array of lists Contains a list of document information. Each document's format is [relevance score, query index, feature vector] qid_index : int This is the index where the qid is located in the training data Returns ------- query_indexes : dictionary The keys were the different query ids and teh values were the indexes in the training data that are associated of those keys. """ query_indexes = {} index = 0 for record in training_data: query_indexes.setdefault(record[qid_index], []) query_indexes[record[qid_index]].append(index) index += 1 return query_indexes def get_pairs(scores): """ Returns pairs of indexes where the first value in the pair has a higher score than the second value in the pair. Parameters ---------- scores : list of int Contain a list of numbers Returns ------- query_pair : list of pairs This contains a list of pairs of indexes in scores. """ query_pair = [] for query_scores in scores: temp = sorted(query_scores, reverse=True) pairs = [] for i in xrange(len(temp)): for j in xrange(len(temp)): if temp[i] > temp[j]: pairs.append((i,j)) query_pair.append(pairs) return query_pair class LambdaMART: def __init__(self, training_data=None, number_of_trees=5, learning_rate=0.1, tree_type='sklearn'): """ This is the constructor for the LambdaMART object. Parameters ---------- training_data : list of int Contain a list of numbers number_of_trees : int (default: 5) Number of trees LambdaMART goes through learning_rate : float (default: 0.1) Rate at which we update our prediction with each tree tree_type : string (default: "sklearn") Either "sklearn" for using Sklearn implementation of the tree of "original" for using our implementation """ if tree_type != 'sklearn' and tree_type != 'original': raise ValueError('The "tree_type" must be "sklearn" or "original"') self.training_data = training_data self.number_of_trees = number_of_trees self.learning_rate = learning_rate self.trees = [] self.tree_type = tree_type def fit(self): """ Fits the model on the training data. """ predicted_scores = np.zeros(len(self.training_data)) query_indexes = group_queries(self.training_data, 1) query_keys = query_indexes.keys() true_scores = [self.training_data[query_indexes[query], 0] for query in query_keys] good_ij_pairs = get_pairs(true_scores) tree_data = pd.DataFrame(self.training_data[:, 2:7]) labels = self.training_data[:, 0] # ideal dcg calculation idcg = [ideal_dcg(scores) for scores in true_scores] for k in xrange(self.number_of_trees): print 'Tree %d' % (k) lambdas = np.zeros(len(predicted_scores)) w = np.zeros(len(predicted_scores)) pred_scores = [predicted_scores[query_indexes[query]] for query in query_keys] pool = Pool() for lambda_val, w_val, query_key in pool.map(compute_lambda, zip(true_scores, pred_scores, good_ij_pairs, idcg, query_keys), chunksize=1): indexes = query_indexes[query_key] lambdas[indexes] = lambda_val w[indexes] = w_val pool.close() if self.tree_type == 'sklearn': # Sklearn implementation of the tree tree = DecisionTreeRegressor(max_depth=50) tree.fit(self.training_data[:,2:], lambdas) self.trees.append(tree) prediction = tree.predict(self.training_data[:,2:]) predicted_scores += prediction * self.learning_rate elif self.tree_type == 'original': # Our implementation of the tree tree = RegressionTree(tree_data, lambdas, max_depth=10, ideal_ls= 0.001) tree.fit() prediction = tree.predict(self.training_data[:,2:]) predicted_scores += prediction * self.learning_rate def predict(self, data): """ Predicts the scores for the test dataset. Parameters ---------- data : Numpy array of documents Numpy array of documents with each document's format is [query index, feature vector] Returns ------- predicted_scores : Numpy array of scores This contains an array or the predicted scores for the documents. """ data = np.array(data) query_indexes = group_queries(data, 0) predicted_scores = np.zeros(len(data)) for query in query_indexes: results = np.zeros(len(query_indexes[query])) for tree in self.trees: results += self.learning_rate * tree.predict(data[query_indexes[query], 1:]) predicted_scores[query_indexes[query]] = results return predicted_scores def validate(self, data, k): """ Predicts the scores for the test dataset and calculates the NDCG value. Parameters ---------- data : Numpy array of documents Numpy array of documents with each document's format is [relevance score, query index, feature vector] k : int this is used to compute the NDCG@k Returns ------- average_ndcg : float This is the average NDCG value of all the queries predicted_scores : Numpy array of scores This contains an array or the predicted scores for the documents. """ data = np.array(data) query_indexes = group_queries(data, 1) average_ndcg = [] predicted_scores = np.zeros(len(data)) for query in query_indexes: results = np.zeros(len(query_indexes[query])) for tree in self.trees: results += self.learning_rate * tree.predict(data[query_indexes[query], 2:]) predicted_sorted_indexes = np.argsort(results)[::-1] t_results = data[query_indexes[query], 0] t_results = t_results[predicted_sorted_indexes] predicted_scores[query_indexes[query]] = results dcg_val = dcg_k(t_results, k) idcg_val = ideal_dcg_k(t_results, k) ndcg_val = (dcg_val / idcg_val) average_ndcg.append(ndcg_val) average_ndcg = np.nanmean(average_ndcg) return average_ndcg, predicted_scores def save(self, fname): """ Saves the model into a ".lmart" file with the name given as a parameter. Parameters ---------- fname : string Filename of the file you want to save """ pickle.dump(self, open('%s.lmart' % (fname), "wb"), protocol=2) def load(self, fname): """ Loads the model from the ".lmart" file given as a parameter. Parameters ---------- fname : string Filename of the file you want to load """ model = pickle.load(open(fname , "rb")) self.training_data = model.training_data self.number_of_trees = model.number_of_trees self.tree_type = model.tree_type self.learning_rate = model.learning_rate self.trees = model.trees
mit
Lkhagvadelger/phantomjs
src/qt/qtwebkit/Tools/Scripts/webkitpy/common/checkout/scm/scm_unittest.py
119
71750
# Copyright (C) 2009 Google Inc. All rights reserved. # Copyright (C) 2009 Apple Inc. All rights reserved. # Copyright (C) 2011 Daniel Bates ([email protected]). All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import atexit import base64 import codecs import getpass import os import os.path import re import stat import sys import subprocess import tempfile import time import unittest2 as unittest import urllib import shutil from datetime import date from webkitpy.common.checkout.checkout import Checkout from webkitpy.common.config.committers import Committer # FIXME: This should not be needed from webkitpy.common.net.bugzilla import Attachment # FIXME: This should not be needed from webkitpy.common.system.executive import Executive, ScriptError from webkitpy.common.system.filesystem_mock import MockFileSystem from webkitpy.common.system.outputcapture import OutputCapture from webkitpy.common.system.executive_mock import MockExecutive from .git import Git, AmbiguousCommitError from .detection import detect_scm_system from .scm import SCM, CheckoutNeedsUpdate, commit_error_handler, AuthenticationError from .svn import SVN # We cache the mock SVN repo so that we don't create it again for each call to an SVNTest or GitTest test_ method. # We store it in a global variable so that we can delete this cached repo on exit(3). # FIXME: Remove this once we migrate to Python 2.7. Unittest in Python 2.7 supports module-specific setup and teardown functions. cached_svn_repo_path = None def remove_dir(path): # Change directory to / to ensure that we aren't in the directory we want to delete. os.chdir('/') shutil.rmtree(path) # FIXME: Remove this once we migrate to Python 2.7. Unittest in Python 2.7 supports module-specific setup and teardown functions. @atexit.register def delete_cached_mock_repo_at_exit(): if cached_svn_repo_path: remove_dir(cached_svn_repo_path) # Eventually we will want to write tests which work for both scms. (like update_webkit, changed_files, etc.) # Perhaps through some SCMTest base-class which both SVNTest and GitTest inherit from. def run_command(*args, **kwargs): # FIXME: This should not be a global static. # New code should use Executive.run_command directly instead return Executive().run_command(*args, **kwargs) # FIXME: This should be unified into one of the executive.py commands! # Callers could use run_and_throw_if_fail(args, cwd=cwd, quiet=True) def run_silent(args, cwd=None): # Note: Not thread safe: http://bugs.python.org/issue2320 process = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd=cwd) process.communicate() # ignore output exit_code = process.wait() if exit_code: raise ScriptError('Failed to run "%s" exit_code: %d cwd: %s' % (args, exit_code, cwd)) def write_into_file_at_path(file_path, contents, encoding="utf-8"): if encoding: with codecs.open(file_path, "w", encoding) as file: file.write(contents) else: with open(file_path, "w") as file: file.write(contents) def read_from_path(file_path, encoding="utf-8"): with codecs.open(file_path, "r", encoding) as file: return file.read() def _make_diff(command, *args): # We use this wrapper to disable output decoding. diffs should be treated as # binary files since they may include text files of multiple differnet encodings. # FIXME: This should use an Executive. return run_command([command, "diff"] + list(args), decode_output=False) def _svn_diff(*args): return _make_diff("svn", *args) def _git_diff(*args): return _make_diff("git", *args) # Exists to share svn repository creation code between the git and svn tests class SVNTestRepository(object): @classmethod def _svn_add(cls, path): run_command(["svn", "add", path]) @classmethod def _svn_commit(cls, message): run_command(["svn", "commit", "--quiet", "--message", message]) @classmethod def _setup_test_commits(cls, svn_repo_url): svn_checkout_path = tempfile.mkdtemp(suffix="svn_test_checkout") run_command(['svn', 'checkout', '--quiet', svn_repo_url, svn_checkout_path]) # Add some test commits os.chdir(svn_checkout_path) write_into_file_at_path("test_file", "test1") cls._svn_add("test_file") cls._svn_commit("initial commit") write_into_file_at_path("test_file", "test1test2") # This used to be the last commit, but doing so broke # GitTest.test_apply_git_patch which use the inverse diff of the last commit. # svn-apply fails to remove directories in Git, see: # https://bugs.webkit.org/show_bug.cgi?id=34871 os.mkdir("test_dir") # Slash should always be the right path separator since we use cygwin on Windows. test_file3_path = "test_dir/test_file3" write_into_file_at_path(test_file3_path, "third file") cls._svn_add("test_dir") cls._svn_commit("second commit") write_into_file_at_path("test_file", "test1test2test3\n") write_into_file_at_path("test_file2", "second file") cls._svn_add("test_file2") cls._svn_commit("third commit") # This 4th commit is used to make sure that our patch file handling # code correctly treats patches as binary and does not attempt to # decode them assuming they're utf-8. write_into_file_at_path("test_file", u"latin1 test: \u00A0\n", "latin1") write_into_file_at_path("test_file2", u"utf-8 test: \u00A0\n", "utf-8") cls._svn_commit("fourth commit") # svn does not seem to update after commit as I would expect. run_command(['svn', 'update']) remove_dir(svn_checkout_path) # This is a hot function since it's invoked by unittest before calling each test_ method in SVNTest and # GitTest. We create a mock SVN repo once and then perform an SVN checkout from a filesystem copy of # it since it's expensive to create the mock repo. @classmethod def setup(cls, test_object): global cached_svn_repo_path if not cached_svn_repo_path: cached_svn_repo_path = cls._setup_mock_repo() test_object.temp_directory = tempfile.mkdtemp(suffix="svn_test") test_object.svn_repo_path = os.path.join(test_object.temp_directory, "repo") test_object.svn_repo_url = "file://%s" % test_object.svn_repo_path test_object.svn_checkout_path = os.path.join(test_object.temp_directory, "checkout") shutil.copytree(cached_svn_repo_path, test_object.svn_repo_path) run_command(['svn', 'checkout', '--quiet', test_object.svn_repo_url + "/trunk", test_object.svn_checkout_path]) @classmethod def _setup_mock_repo(cls): # Create an test SVN repository svn_repo_path = tempfile.mkdtemp(suffix="svn_test_repo") svn_repo_url = "file://%s" % svn_repo_path # Not sure this will work on windows # git svn complains if we don't pass --pre-1.5-compatible, not sure why: # Expected FS format '2'; found format '3' at /usr/local/libexec/git-core//git-svn line 1477 run_command(['svnadmin', 'create', '--pre-1.5-compatible', svn_repo_path]) # Create a test svn checkout svn_checkout_path = tempfile.mkdtemp(suffix="svn_test_checkout") run_command(['svn', 'checkout', '--quiet', svn_repo_url, svn_checkout_path]) # Create and checkout a trunk dir to match the standard svn configuration to match git-svn's expectations os.chdir(svn_checkout_path) os.mkdir('trunk') cls._svn_add('trunk') # We can add tags and branches as well if we ever need to test those. cls._svn_commit('add trunk') # Change directory out of the svn checkout so we can delete the checkout directory. remove_dir(svn_checkout_path) cls._setup_test_commits(svn_repo_url + "/trunk") return svn_repo_path @classmethod def tear_down(cls, test_object): remove_dir(test_object.temp_directory) # Now that we've deleted the checkout paths, cwddir may be invalid # Change back to a valid directory so that later calls to os.getcwd() do not fail. if os.path.isabs(__file__): path = os.path.dirname(__file__) else: path = sys.path[0] os.chdir(detect_scm_system(path).checkout_root) # For testing the SCM baseclass directly. class SCMClassTests(unittest.TestCase): def setUp(self): self.dev_null = open(os.devnull, "w") # Used to make our Popen calls quiet. def tearDown(self): self.dev_null.close() def test_run_command_with_pipe(self): input_process = subprocess.Popen(['echo', 'foo\nbar'], stdout=subprocess.PIPE, stderr=self.dev_null) self.assertEqual(run_command(['grep', 'bar'], input=input_process.stdout), "bar\n") # Test the non-pipe case too: self.assertEqual(run_command(['grep', 'bar'], input="foo\nbar"), "bar\n") command_returns_non_zero = ['/bin/sh', '--invalid-option'] # Test when the input pipe process fails. input_process = subprocess.Popen(command_returns_non_zero, stdout=subprocess.PIPE, stderr=self.dev_null) self.assertNotEqual(input_process.poll(), 0) self.assertRaises(ScriptError, run_command, ['grep', 'bar'], input=input_process.stdout) # Test when the run_command process fails. input_process = subprocess.Popen(['echo', 'foo\nbar'], stdout=subprocess.PIPE, stderr=self.dev_null) # grep shows usage and calls exit(2) when called w/o arguments. self.assertRaises(ScriptError, run_command, command_returns_non_zero, input=input_process.stdout) def test_error_handlers(self): git_failure_message="Merge conflict during commit: Your file or directory 'WebCore/ChangeLog' is probably out-of-date: resource out of date; try updating at /usr/local/libexec/git-core//git-svn line 469" svn_failure_message="""svn: Commit failed (details follow): svn: File or directory 'ChangeLog' is out of date; try updating svn: resource out of date; try updating """ command_does_not_exist = ['does_not_exist', 'invalid_option'] self.assertRaises(OSError, run_command, command_does_not_exist) self.assertRaises(OSError, run_command, command_does_not_exist, error_handler=Executive.ignore_error) command_returns_non_zero = ['/bin/sh', '--invalid-option'] self.assertRaises(ScriptError, run_command, command_returns_non_zero) # Check if returns error text: self.assertTrue(run_command(command_returns_non_zero, error_handler=Executive.ignore_error)) self.assertRaises(CheckoutNeedsUpdate, commit_error_handler, ScriptError(output=git_failure_message)) self.assertRaises(CheckoutNeedsUpdate, commit_error_handler, ScriptError(output=svn_failure_message)) self.assertRaises(ScriptError, commit_error_handler, ScriptError(output='blah blah blah')) # GitTest and SVNTest inherit from this so any test_ methods here will be run once for this class and then once for each subclass. class SCMTest(unittest.TestCase): def _create_patch(self, patch_contents): # FIXME: This code is brittle if the Attachment API changes. attachment = Attachment({"bug_id": 12345}, None) attachment.contents = lambda: patch_contents joe_cool = Committer("Joe Cool", "[email protected]") attachment.reviewer = lambda: joe_cool return attachment def _setup_webkittools_scripts_symlink(self, local_scm): webkit_scm = detect_scm_system(os.path.dirname(os.path.abspath(__file__))) webkit_scripts_directory = webkit_scm.scripts_directory() local_scripts_directory = local_scm.scripts_directory() os.mkdir(os.path.dirname(local_scripts_directory)) os.symlink(webkit_scripts_directory, local_scripts_directory) # Tests which both GitTest and SVNTest should run. # FIXME: There must be a simpler way to add these w/o adding a wrapper method to both subclasses def _shared_test_changed_files(self): write_into_file_at_path("test_file", "changed content") self.assertItemsEqual(self.scm.changed_files(), ["test_file"]) write_into_file_at_path("test_dir/test_file3", "new stuff") self.assertItemsEqual(self.scm.changed_files(), ["test_dir/test_file3", "test_file"]) old_cwd = os.getcwd() os.chdir("test_dir") # Validate that changed_files does not change with our cwd, see bug 37015. self.assertItemsEqual(self.scm.changed_files(), ["test_dir/test_file3", "test_file"]) os.chdir(old_cwd) def _shared_test_added_files(self): write_into_file_at_path("test_file", "changed content") self.assertItemsEqual(self.scm.added_files(), []) write_into_file_at_path("added_file", "new stuff") self.scm.add("added_file") write_into_file_at_path("added_file3", "more new stuff") write_into_file_at_path("added_file4", "more new stuff") self.scm.add_list(["added_file3", "added_file4"]) os.mkdir("added_dir") write_into_file_at_path("added_dir/added_file2", "new stuff") self.scm.add("added_dir") # SVN reports directory changes, Git does not. added_files = self.scm.added_files() if "added_dir" in added_files: added_files.remove("added_dir") self.assertItemsEqual(added_files, ["added_dir/added_file2", "added_file", "added_file3", "added_file4"]) # Test also to make sure discard_working_directory_changes removes added files self.scm.discard_working_directory_changes() self.assertItemsEqual(self.scm.added_files(), []) self.assertFalse(os.path.exists("added_file")) self.assertFalse(os.path.exists("added_file3")) self.assertFalse(os.path.exists("added_file4")) self.assertFalse(os.path.exists("added_dir")) def _shared_test_changed_files_for_revision(self): # SVN reports directory changes, Git does not. changed_files = self.scm.changed_files_for_revision(3) if "test_dir" in changed_files: changed_files.remove("test_dir") self.assertItemsEqual(changed_files, ["test_dir/test_file3", "test_file"]) self.assertItemsEqual(self.scm.changed_files_for_revision(4), ["test_file", "test_file2"]) # Git and SVN return different orders. self.assertItemsEqual(self.scm.changed_files_for_revision(2), ["test_file"]) def _shared_test_contents_at_revision(self): self.assertEqual(self.scm.contents_at_revision("test_file", 3), "test1test2") self.assertEqual(self.scm.contents_at_revision("test_file", 4), "test1test2test3\n") # Verify that contents_at_revision returns a byte array, aka str(): self.assertEqual(self.scm.contents_at_revision("test_file", 5), u"latin1 test: \u00A0\n".encode("latin1")) self.assertEqual(self.scm.contents_at_revision("test_file2", 5), u"utf-8 test: \u00A0\n".encode("utf-8")) self.assertEqual(self.scm.contents_at_revision("test_file2", 4), "second file") # Files which don't exist: # Currently we raise instead of returning None because detecting the difference between # "file not found" and any other error seems impossible with svn (git seems to expose such through the return code). self.assertRaises(ScriptError, self.scm.contents_at_revision, "test_file2", 2) self.assertRaises(ScriptError, self.scm.contents_at_revision, "does_not_exist", 2) def _shared_test_revisions_changing_file(self): self.assertItemsEqual(self.scm.revisions_changing_file("test_file"), [5, 4, 3, 2]) self.assertRaises(ScriptError, self.scm.revisions_changing_file, "non_existent_file") def _shared_test_committer_email_for_revision(self): self.assertEqual(self.scm.committer_email_for_revision(3), getpass.getuser()) # Committer "email" will be the current user def _shared_test_reverse_diff(self): self._setup_webkittools_scripts_symlink(self.scm) # Git's apply_reverse_diff uses resolve-ChangeLogs # Only test the simple case, as any other will end up with conflict markers. self.scm.apply_reverse_diff('5') self.assertEqual(read_from_path('test_file'), "test1test2test3\n") def _shared_test_diff_for_revision(self): # Patch formats are slightly different between svn and git, so just regexp for things we know should be there. r3_patch = self.scm.diff_for_revision(4) self.assertRegexpMatches(r3_patch, 'test3') self.assertNotRegexpMatches(r3_patch, 'test4') self.assertRegexpMatches(r3_patch, 'test2') self.assertRegexpMatches(self.scm.diff_for_revision(3), 'test2') def _shared_test_svn_apply_git_patch(self): self._setup_webkittools_scripts_symlink(self.scm) git_binary_addition = """diff --git a/fizzbuzz7.gif b/fizzbuzz7.gif new file mode 100644 index 0000000000000000000000000000000000000000..64a9532e7794fcd791f6f12157406d90 60151690 GIT binary patch literal 512 zcmZ?wbhEHbRAx|MU|?iW{Kxc~?KofD;ckY;H+&5HnHl!!GQMD7h+sU{_)e9f^V3c? zhJP##HdZC#4K}7F68@!1jfWQg2daCm-gs#3|JREDT>c+pG4L<_2;w##WMO#ysPPap zLqpAf1OE938xAsSp4!5f-o><?VKe(#0jEcwfHGF4%M1^kRs14oVBp2ZEL{E1N<-zJ zsfLmOtKta;2_;2c#^S1-8cf<nb!QnGl>c!Xe6RXvrEtAWBvSDTgTO1j3vA31Puw!A zs(87q)j_mVDTqBo-P+03-P5mHCEnJ+x}YdCuS7#bCCyePUe(ynK+|4b-3qK)T?Z&) zYG+`tl4h?GZv_$t82}X4*DTE|$;{DEiPyF@)U-1+FaX++T9H{&%cag`W1|zVP@`%b zqiSkp6{BTpWTkCr!=<C6Q=?#~R8^JfrliAF6Q^gV9Iup8RqCXqqhqC`qsyhk<-nlB z00f{QZvfK&|Nm#oZ0TQl`Yr$BIa6A@16O26ud7H<QM=xl`toLKnz-3h@9c9q&wm|X z{89I|WPyD!*M?gv?q`;L=2YFeXrJQNti4?}s!zFo=5CzeBxC69xA<zrjP<wUcCRh4 ptUl-ZG<%a~#LwkIWv&q!KSCH7tQ8cJDiw+|GV?MN)RjY50RTb-xvT&H literal 0 HcmV?d00001 """ self.checkout.apply_patch(self._create_patch(git_binary_addition)) added = read_from_path('fizzbuzz7.gif', encoding=None) self.assertEqual(512, len(added)) self.assertTrue(added.startswith('GIF89a')) self.assertIn('fizzbuzz7.gif', self.scm.changed_files()) # The file already exists. self.assertRaises(ScriptError, self.checkout.apply_patch, self._create_patch(git_binary_addition)) git_binary_modification = """diff --git a/fizzbuzz7.gif b/fizzbuzz7.gif index 64a9532e7794fcd791f6f12157406d9060151690..323fae03f4606ea9991df8befbb2fca7 GIT binary patch literal 7 OcmYex&reD$;sO8*F9L)B literal 512 zcmZ?wbhEHbRAx|MU|?iW{Kxc~?KofD;ckY;H+&5HnHl!!GQMD7h+sU{_)e9f^V3c? zhJP##HdZC#4K}7F68@!1jfWQg2daCm-gs#3|JREDT>c+pG4L<_2;w##WMO#ysPPap zLqpAf1OE938xAsSp4!5f-o><?VKe(#0jEcwfHGF4%M1^kRs14oVBp2ZEL{E1N<-zJ zsfLmOtKta;2_;2c#^S1-8cf<nb!QnGl>c!Xe6RXvrEtAWBvSDTgTO1j3vA31Puw!A zs(87q)j_mVDTqBo-P+03-P5mHCEnJ+x}YdCuS7#bCCyePUe(ynK+|4b-3qK)T?Z&) zYG+`tl4h?GZv_$t82}X4*DTE|$;{DEiPyF@)U-1+FaX++T9H{&%cag`W1|zVP@`%b zqiSkp6{BTpWTkCr!=<C6Q=?#~R8^JfrliAF6Q^gV9Iup8RqCXqqhqC`qsyhk<-nlB z00f{QZvfK&|Nm#oZ0TQl`Yr$BIa6A@16O26ud7H<QM=xl`toLKnz-3h@9c9q&wm|X z{89I|WPyD!*M?gv?q`;L=2YFeXrJQNti4?}s!zFo=5CzeBxC69xA<zrjP<wUcCRh4 ptUl-ZG<%a~#LwkIWv&q!KSCH7tQ8cJDiw+|GV?MN)RjY50RTb-xvT&H """ self.checkout.apply_patch(self._create_patch(git_binary_modification)) modified = read_from_path('fizzbuzz7.gif', encoding=None) self.assertEqual('foobar\n', modified) self.assertIn('fizzbuzz7.gif', self.scm.changed_files()) # Applying the same modification should fail. self.assertRaises(ScriptError, self.checkout.apply_patch, self._create_patch(git_binary_modification)) git_binary_deletion = """diff --git a/fizzbuzz7.gif b/fizzbuzz7.gif deleted file mode 100644 index 323fae0..0000000 GIT binary patch literal 0 HcmV?d00001 literal 7 OcmYex&reD$;sO8*F9L)B """ self.checkout.apply_patch(self._create_patch(git_binary_deletion)) self.assertFalse(os.path.exists('fizzbuzz7.gif')) self.assertNotIn('fizzbuzz7.gif', self.scm.changed_files()) # Cannot delete again. self.assertRaises(ScriptError, self.checkout.apply_patch, self._create_patch(git_binary_deletion)) def _shared_test_add_recursively(self): os.mkdir("added_dir") write_into_file_at_path("added_dir/added_file", "new stuff") self.scm.add("added_dir/added_file") self.assertIn("added_dir/added_file", self.scm.added_files()) def _shared_test_delete_recursively(self): os.mkdir("added_dir") write_into_file_at_path("added_dir/added_file", "new stuff") self.scm.add("added_dir/added_file") self.assertIn("added_dir/added_file", self.scm.added_files()) self.scm.delete("added_dir/added_file") self.assertNotIn("added_dir", self.scm.added_files()) def _shared_test_delete_recursively_or_not(self): os.mkdir("added_dir") write_into_file_at_path("added_dir/added_file", "new stuff") write_into_file_at_path("added_dir/another_added_file", "more new stuff") self.scm.add("added_dir/added_file") self.scm.add("added_dir/another_added_file") self.assertIn("added_dir/added_file", self.scm.added_files()) self.assertIn("added_dir/another_added_file", self.scm.added_files()) self.scm.delete("added_dir/added_file") self.assertIn("added_dir/another_added_file", self.scm.added_files()) def _shared_test_exists(self, scm, commit_function): os.chdir(scm.checkout_root) self.assertFalse(scm.exists('foo.txt')) write_into_file_at_path('foo.txt', 'some stuff') self.assertFalse(scm.exists('foo.txt')) scm.add('foo.txt') commit_function('adding foo') self.assertTrue(scm.exists('foo.txt')) scm.delete('foo.txt') commit_function('deleting foo') self.assertFalse(scm.exists('foo.txt')) def _shared_test_head_svn_revision(self): self.assertEqual(self.scm.head_svn_revision(), '5') # Context manager that overrides the current timezone. class TimezoneOverride(object): def __init__(self, timezone_string): self._timezone_string = timezone_string def __enter__(self): if hasattr(time, 'tzset'): self._saved_timezone = os.environ.get('TZ', None) os.environ['TZ'] = self._timezone_string time.tzset() def __exit__(self, type, value, traceback): if hasattr(time, 'tzset'): if self._saved_timezone: os.environ['TZ'] = self._saved_timezone else: del os.environ['TZ'] time.tzset() class SVNTest(SCMTest): @staticmethod def _set_date_and_reviewer(changelog_entry): # Joe Cool matches the reviewer set in SCMTest._create_patch changelog_entry = changelog_entry.replace('REVIEWER_HERE', 'Joe Cool') # svn-apply will update ChangeLog entries with today's date (as in Cupertino, CA, US) with TimezoneOverride('PST8PDT'): return changelog_entry.replace('DATE_HERE', date.today().isoformat()) def test_svn_apply(self): first_entry = """2009-10-26 Eric Seidel <[email protected]> Reviewed by Foo Bar. Most awesome change ever. * scm_unittest.py: """ intermediate_entry = """2009-10-27 Eric Seidel <[email protected]> Reviewed by Baz Bar. A more awesomer change yet! * scm_unittest.py: """ one_line_overlap_patch = """Index: ChangeLog =================================================================== --- ChangeLog (revision 5) +++ ChangeLog (working copy) @@ -1,5 +1,13 @@ 2009-10-26 Eric Seidel <[email protected]> %(whitespace)s + Reviewed by NOBODY (OOPS!). + + Second most awesome change ever. + + * scm_unittest.py: + +2009-10-26 Eric Seidel <[email protected]> + Reviewed by Foo Bar. %(whitespace)s Most awesome change ever. """ % {'whitespace': ' '} one_line_overlap_entry = """DATE_HERE Eric Seidel <[email protected]> Reviewed by REVIEWER_HERE. Second most awesome change ever. * scm_unittest.py: """ two_line_overlap_patch = """Index: ChangeLog =================================================================== --- ChangeLog (revision 5) +++ ChangeLog (working copy) @@ -2,6 +2,14 @@ %(whitespace)s Reviewed by Foo Bar. %(whitespace)s + Second most awesome change ever. + + * scm_unittest.py: + +2009-10-26 Eric Seidel <[email protected]> + + Reviewed by Foo Bar. + Most awesome change ever. %(whitespace)s * scm_unittest.py: """ % {'whitespace': ' '} two_line_overlap_entry = """DATE_HERE Eric Seidel <[email protected]> Reviewed by Foo Bar. Second most awesome change ever. * scm_unittest.py: """ write_into_file_at_path('ChangeLog', first_entry) run_command(['svn', 'add', 'ChangeLog']) run_command(['svn', 'commit', '--quiet', '--message', 'ChangeLog commit']) # Patch files were created against just 'first_entry'. # Add a second commit to make svn-apply have to apply the patches with fuzz. changelog_contents = "%s\n%s" % (intermediate_entry, first_entry) write_into_file_at_path('ChangeLog', changelog_contents) run_command(['svn', 'commit', '--quiet', '--message', 'Intermediate commit']) self._setup_webkittools_scripts_symlink(self.scm) self.checkout.apply_patch(self._create_patch(one_line_overlap_patch)) expected_changelog_contents = "%s\n%s" % (self._set_date_and_reviewer(one_line_overlap_entry), changelog_contents) self.assertEqual(read_from_path('ChangeLog'), expected_changelog_contents) self.scm.revert_files(['ChangeLog']) self.checkout.apply_patch(self._create_patch(two_line_overlap_patch)) expected_changelog_contents = "%s\n%s" % (self._set_date_and_reviewer(two_line_overlap_entry), changelog_contents) self.assertEqual(read_from_path('ChangeLog'), expected_changelog_contents) def setUp(self): SVNTestRepository.setup(self) os.chdir(self.svn_checkout_path) self.scm = detect_scm_system(self.svn_checkout_path) self.scm.svn_server_realm = None # For historical reasons, we test some checkout code here too. self.checkout = Checkout(self.scm) def tearDown(self): SVNTestRepository.tear_down(self) def test_detect_scm_system_relative_url(self): scm = detect_scm_system(".") # I wanted to assert that we got the right path, but there was some # crazy magic with temp folder names that I couldn't figure out. self.assertTrue(scm.checkout_root) def test_create_patch_is_full_patch(self): test_dir_path = os.path.join(self.svn_checkout_path, "test_dir2") os.mkdir(test_dir_path) test_file_path = os.path.join(test_dir_path, 'test_file2') write_into_file_at_path(test_file_path, 'test content') run_command(['svn', 'add', 'test_dir2']) # create_patch depends on 'svn-create-patch', so make a dummy version. scripts_path = os.path.join(self.svn_checkout_path, 'Tools', 'Scripts') os.makedirs(scripts_path) create_patch_path = os.path.join(scripts_path, 'svn-create-patch') write_into_file_at_path(create_patch_path, '#!/bin/sh\necho $PWD') # We could pass -n to prevent the \n, but not all echo accept -n. os.chmod(create_patch_path, stat.S_IXUSR | stat.S_IRUSR) # Change into our test directory and run the create_patch command. os.chdir(test_dir_path) scm = detect_scm_system(test_dir_path) self.assertEqual(scm.checkout_root, self.svn_checkout_path) # Sanity check that detection worked right. patch_contents = scm.create_patch() # Our fake 'svn-create-patch' returns $PWD instead of a patch, check that it was executed from the root of the repo. self.assertEqual("%s\n" % os.path.realpath(scm.checkout_root), patch_contents) # Add a \n because echo adds a \n. def test_detection(self): self.assertEqual(self.scm.display_name(), "svn") self.assertEqual(self.scm.supports_local_commits(), False) def test_apply_small_binary_patch(self): patch_contents = """Index: test_file.swf =================================================================== Cannot display: file marked as a binary type. svn:mime-type = application/octet-stream Property changes on: test_file.swf ___________________________________________________________________ Name: svn:mime-type + application/octet-stream Q1dTBx0AAAB42itg4GlgYJjGwMDDyODMxMDw34GBgQEAJPQDJA== """ expected_contents = base64.b64decode("Q1dTBx0AAAB42itg4GlgYJjGwMDDyODMxMDw34GBgQEAJPQDJA==") self._setup_webkittools_scripts_symlink(self.scm) patch_file = self._create_patch(patch_contents) self.checkout.apply_patch(patch_file) actual_contents = read_from_path("test_file.swf", encoding=None) self.assertEqual(actual_contents, expected_contents) def test_apply_svn_patch(self): patch = self._create_patch(_svn_diff("-r5:4")) self._setup_webkittools_scripts_symlink(self.scm) Checkout(self.scm).apply_patch(patch) def test_commit_logs(self): # Commits have dates and usernames in them, so we can't just direct compare. self.assertRegexpMatches(self.scm.last_svn_commit_log(), 'fourth commit') self.assertRegexpMatches(self.scm.svn_commit_log(3), 'second commit') def _shared_test_commit_with_message(self, username=None): write_into_file_at_path('test_file', 'more test content') commit_text = self.scm.commit_with_message("another test commit", username) self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') def test_commit_in_subdir(self, username=None): write_into_file_at_path('test_dir/test_file3', 'more test content') os.chdir("test_dir") commit_text = self.scm.commit_with_message("another test commit", username) os.chdir("..") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') def test_commit_text_parsing(self): self._shared_test_commit_with_message() def test_commit_with_username(self): self._shared_test_commit_with_message("[email protected]") def test_commit_without_authorization(self): # FIXME: https://bugs.webkit.org/show_bug.cgi?id=111669 # This test ends up looking in the actal $HOME/.subversion for authorization, # which makes it fragile. For now, set it to use a realm that won't be authorized, # but we should really plumb through a fake_home_dir here like we do in # test_has_authorization_for_realm. self.scm.svn_server_realm = '<http://svn.example.com:80> Example' self.assertRaises(AuthenticationError, self._shared_test_commit_with_message) def test_has_authorization_for_realm_using_credentials_with_passtype(self): credentials = """ K 8 passtype V 8 keychain K 15 svn:realmstring V 39 <http://svn.webkit.org:80> Mac OS Forge K 8 username V 17 [email protected] END """ self.assertTrue(self._test_has_authorization_for_realm_using_credentials(SVN.svn_server_realm, credentials)) def test_has_authorization_for_realm_using_credentials_with_password(self): credentials = """ K 15 svn:realmstring V 39 <http://svn.webkit.org:80> Mac OS Forge K 8 username V 17 [email protected] K 8 password V 4 blah END """ self.assertTrue(self._test_has_authorization_for_realm_using_credentials(SVN.svn_server_realm, credentials)) def _test_has_authorization_for_realm_using_credentials(self, realm, credentials): fake_home_dir = tempfile.mkdtemp(suffix="fake_home_dir") svn_config_dir_path = os.path.join(fake_home_dir, ".subversion") os.mkdir(svn_config_dir_path) fake_webkit_auth_file = os.path.join(svn_config_dir_path, "fake_webkit_auth_file") write_into_file_at_path(fake_webkit_auth_file, credentials) result = self.scm.has_authorization_for_realm(realm, home_directory=fake_home_dir) os.remove(fake_webkit_auth_file) os.rmdir(svn_config_dir_path) os.rmdir(fake_home_dir) return result def test_not_have_authorization_for_realm_with_credentials_missing_password_and_passtype(self): credentials = """ K 15 svn:realmstring V 39 <http://svn.webkit.org:80> Mac OS Forge K 8 username V 17 [email protected] END """ self.assertFalse(self._test_has_authorization_for_realm_using_credentials(SVN.svn_server_realm, credentials)) def test_not_have_authorization_for_realm_when_missing_credentials_file(self): fake_home_dir = tempfile.mkdtemp(suffix="fake_home_dir") svn_config_dir_path = os.path.join(fake_home_dir, ".subversion") os.mkdir(svn_config_dir_path) self.assertFalse(self.scm.has_authorization_for_realm(SVN.svn_server_realm, home_directory=fake_home_dir)) os.rmdir(svn_config_dir_path) os.rmdir(fake_home_dir) def test_reverse_diff(self): self._shared_test_reverse_diff() def test_diff_for_revision(self): self._shared_test_diff_for_revision() def test_svn_apply_git_patch(self): self._shared_test_svn_apply_git_patch() def test_changed_files(self): self._shared_test_changed_files() def test_changed_files_for_revision(self): self._shared_test_changed_files_for_revision() def test_added_files(self): self._shared_test_added_files() def test_contents_at_revision(self): self._shared_test_contents_at_revision() def test_revisions_changing_file(self): self._shared_test_revisions_changing_file() def test_committer_email_for_revision(self): self._shared_test_committer_email_for_revision() def test_add_recursively(self): self._shared_test_add_recursively() def test_delete(self): os.chdir(self.svn_checkout_path) self.scm.delete("test_file") self.assertIn("test_file", self.scm.deleted_files()) def test_delete_list(self): os.chdir(self.svn_checkout_path) self.scm.delete_list(["test_file", "test_file2"]) self.assertIn("test_file", self.scm.deleted_files()) self.assertIn("test_file2", self.scm.deleted_files()) def test_delete_recursively(self): self._shared_test_delete_recursively() def test_delete_recursively_or_not(self): self._shared_test_delete_recursively_or_not() def test_head_svn_revision(self): self._shared_test_head_svn_revision() def test_propset_propget(self): filepath = os.path.join(self.svn_checkout_path, "test_file") expected_mime_type = "x-application/foo-bar" self.scm.propset("svn:mime-type", expected_mime_type, filepath) self.assertEqual(expected_mime_type, self.scm.propget("svn:mime-type", filepath)) def test_show_head(self): write_into_file_at_path("test_file", u"Hello!", "utf-8") SVNTestRepository._svn_commit("fourth commit") self.assertEqual("Hello!", self.scm.show_head('test_file')) def test_show_head_binary(self): data = "\244" write_into_file_at_path("binary_file", data, encoding=None) self.scm.add("binary_file") self.scm.commit_with_message("a test commit") self.assertEqual(data, self.scm.show_head('binary_file')) def do_test_diff_for_file(self): write_into_file_at_path('test_file', 'some content') self.scm.commit_with_message("a test commit") diff = self.scm.diff_for_file('test_file') self.assertEqual(diff, "") write_into_file_at_path("test_file", "changed content") diff = self.scm.diff_for_file('test_file') self.assertIn("-some content", diff) self.assertIn("+changed content", diff) def clean_bogus_dir(self): self.bogus_dir = self.scm._bogus_dir_name() if os.path.exists(self.bogus_dir): shutil.rmtree(self.bogus_dir) def test_diff_for_file_with_existing_bogus_dir(self): self.clean_bogus_dir() os.mkdir(self.bogus_dir) self.do_test_diff_for_file() self.assertTrue(os.path.exists(self.bogus_dir)) shutil.rmtree(self.bogus_dir) def test_diff_for_file_with_missing_bogus_dir(self): self.clean_bogus_dir() self.do_test_diff_for_file() self.assertFalse(os.path.exists(self.bogus_dir)) def test_svn_lock(self): if self.scm.svn_version() >= "1.7": # the following technique with .svn/lock then svn update doesn't work with subversion client 1.7 or later pass else: svn_root_lock_path = ".svn/lock" write_into_file_at_path(svn_root_lock_path, "", "utf-8") # webkit-patch uses a Checkout object and runs update-webkit, just use svn update here. self.assertRaises(ScriptError, run_command, ['svn', 'update']) self.scm.discard_working_directory_changes() self.assertFalse(os.path.exists(svn_root_lock_path)) run_command(['svn', 'update']) # Should succeed and not raise. def test_exists(self): self._shared_test_exists(self.scm, self.scm.commit_with_message) class GitTest(SCMTest): def setUp(self): """Sets up fresh git repository with one commit. Then setups a second git repo that tracks the first one.""" # FIXME: We should instead clone a git repo that is tracking an SVN repo. # That better matches what we do with WebKit. self.original_dir = os.getcwd() self.untracking_checkout_path = tempfile.mkdtemp(suffix="git_test_checkout2") run_command(['git', 'init', self.untracking_checkout_path]) os.chdir(self.untracking_checkout_path) write_into_file_at_path('foo_file', 'foo') run_command(['git', 'add', 'foo_file']) run_command(['git', 'commit', '-am', 'dummy commit']) self.untracking_scm = detect_scm_system(self.untracking_checkout_path) self.tracking_git_checkout_path = tempfile.mkdtemp(suffix="git_test_checkout") run_command(['git', 'clone', '--quiet', self.untracking_checkout_path, self.tracking_git_checkout_path]) os.chdir(self.tracking_git_checkout_path) self.tracking_scm = detect_scm_system(self.tracking_git_checkout_path) def tearDown(self): # Change back to a valid directory so that later calls to os.getcwd() do not fail. os.chdir(self.original_dir) run_command(['rm', '-rf', self.tracking_git_checkout_path]) run_command(['rm', '-rf', self.untracking_checkout_path]) def test_remote_branch_ref(self): self.assertEqual(self.tracking_scm.remote_branch_ref(), 'refs/remotes/origin/master') os.chdir(self.untracking_checkout_path) self.assertRaises(ScriptError, self.untracking_scm.remote_branch_ref) def test_multiple_remotes(self): run_command(['git', 'config', '--add', 'svn-remote.svn.fetch', 'trunk:remote1']) run_command(['git', 'config', '--add', 'svn-remote.svn.fetch', 'trunk:remote2']) self.assertEqual(self.tracking_scm.remote_branch_ref(), 'remote1') def test_create_patch(self): write_into_file_at_path('test_file_commit1', 'contents') run_command(['git', 'add', 'test_file_commit1']) scm = self.tracking_scm scm.commit_locally_with_message('message') patch = scm.create_patch() self.assertNotRegexpMatches(patch, r'Subversion Revision:') def test_orderfile(self): os.mkdir("Tools") os.mkdir("Source") os.mkdir("LayoutTests") os.mkdir("Websites") # Slash should always be the right path separator since we use cygwin on Windows. Tools_ChangeLog = "Tools/ChangeLog" write_into_file_at_path(Tools_ChangeLog, "contents") Source_ChangeLog = "Source/ChangeLog" write_into_file_at_path(Source_ChangeLog, "contents") LayoutTests_ChangeLog = "LayoutTests/ChangeLog" write_into_file_at_path(LayoutTests_ChangeLog, "contents") Websites_ChangeLog = "Websites/ChangeLog" write_into_file_at_path(Websites_ChangeLog, "contents") Tools_ChangeFile = "Tools/ChangeFile" write_into_file_at_path(Tools_ChangeFile, "contents") Source_ChangeFile = "Source/ChangeFile" write_into_file_at_path(Source_ChangeFile, "contents") LayoutTests_ChangeFile = "LayoutTests/ChangeFile" write_into_file_at_path(LayoutTests_ChangeFile, "contents") Websites_ChangeFile = "Websites/ChangeFile" write_into_file_at_path(Websites_ChangeFile, "contents") run_command(['git', 'add', 'Tools/ChangeLog']) run_command(['git', 'add', 'LayoutTests/ChangeLog']) run_command(['git', 'add', 'Source/ChangeLog']) run_command(['git', 'add', 'Websites/ChangeLog']) run_command(['git', 'add', 'Tools/ChangeFile']) run_command(['git', 'add', 'LayoutTests/ChangeFile']) run_command(['git', 'add', 'Source/ChangeFile']) run_command(['git', 'add', 'Websites/ChangeFile']) scm = self.tracking_scm scm.commit_locally_with_message('message') patch = scm.create_patch() self.assertTrue(re.search(r'Tools/ChangeLog', patch).start() < re.search(r'Tools/ChangeFile', patch).start()) self.assertTrue(re.search(r'Websites/ChangeLog', patch).start() < re.search(r'Websites/ChangeFile', patch).start()) self.assertTrue(re.search(r'Source/ChangeLog', patch).start() < re.search(r'Source/ChangeFile', patch).start()) self.assertTrue(re.search(r'LayoutTests/ChangeLog', patch).start() < re.search(r'LayoutTests/ChangeFile', patch).start()) self.assertTrue(re.search(r'Source/ChangeLog', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Tools/ChangeLog', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Websites/ChangeLog', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Source/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Tools/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Websites/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeLog', patch).start()) self.assertTrue(re.search(r'Source/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeFile', patch).start()) self.assertTrue(re.search(r'Tools/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeFile', patch).start()) self.assertTrue(re.search(r'Websites/ChangeFile', patch).start() < re.search(r'LayoutTests/ChangeFile', patch).start()) def test_exists(self): scm = self.untracking_scm self._shared_test_exists(scm, scm.commit_locally_with_message) def test_head_svn_revision(self): scm = detect_scm_system(self.untracking_checkout_path) # If we cloned a git repo tracking an SVN repo, this would give the same result as # self._shared_test_head_svn_revision(). self.assertEqual(scm.head_svn_revision(), '') def test_rename_files(self): scm = self.tracking_scm run_command(['git', 'mv', 'foo_file', 'bar_file']) scm.commit_locally_with_message('message') patch = scm.create_patch() self.assertNotRegexpMatches(patch, r'rename from ') self.assertNotRegexpMatches(patch, r'rename to ') class GitSVNTest(SCMTest): def _setup_git_checkout(self): self.git_checkout_path = tempfile.mkdtemp(suffix="git_test_checkout") # --quiet doesn't make git svn silent, so we use run_silent to redirect output run_silent(['git', 'svn', 'clone', '-T', 'trunk', self.svn_repo_url, self.git_checkout_path]) os.chdir(self.git_checkout_path) def _tear_down_git_checkout(self): # Change back to a valid directory so that later calls to os.getcwd() do not fail. os.chdir(self.original_dir) run_command(['rm', '-rf', self.git_checkout_path]) def setUp(self): self.original_dir = os.getcwd() SVNTestRepository.setup(self) self._setup_git_checkout() self.scm = detect_scm_system(self.git_checkout_path) self.scm.svn_server_realm = None # For historical reasons, we test some checkout code here too. self.checkout = Checkout(self.scm) def tearDown(self): SVNTestRepository.tear_down(self) self._tear_down_git_checkout() def test_detection(self): self.assertEqual(self.scm.display_name(), "git") self.assertEqual(self.scm.supports_local_commits(), True) def test_read_git_config(self): key = 'test.git-config' value = 'git-config value' run_command(['git', 'config', key, value]) self.assertEqual(self.scm.read_git_config(key), value) def test_local_commits(self): test_file = os.path.join(self.git_checkout_path, 'test_file') write_into_file_at_path(test_file, 'foo') run_command(['git', 'commit', '-a', '-m', 'local commit']) self.assertEqual(len(self.scm.local_commits()), 1) def test_discard_local_commits(self): test_file = os.path.join(self.git_checkout_path, 'test_file') write_into_file_at_path(test_file, 'foo') run_command(['git', 'commit', '-a', '-m', 'local commit']) self.assertEqual(len(self.scm.local_commits()), 1) self.scm.discard_local_commits() self.assertEqual(len(self.scm.local_commits()), 0) def test_delete_branch(self): new_branch = 'foo' run_command(['git', 'checkout', '-b', new_branch]) self.assertEqual(run_command(['git', 'symbolic-ref', 'HEAD']).strip(), 'refs/heads/' + new_branch) run_command(['git', 'checkout', '-b', 'bar']) self.scm.delete_branch(new_branch) self.assertNotRegexpMatches(run_command(['git', 'branch']), r'foo') def test_remote_merge_base(self): # Diff to merge-base should include working-copy changes, # which the diff to svn_branch.. doesn't. test_file = os.path.join(self.git_checkout_path, 'test_file') write_into_file_at_path(test_file, 'foo') diff_to_common_base = _git_diff(self.scm.remote_branch_ref() + '..') diff_to_merge_base = _git_diff(self.scm.remote_merge_base()) self.assertNotRegexpMatches(diff_to_common_base, r'foo') self.assertRegexpMatches(diff_to_merge_base, r'foo') def test_rebase_in_progress(self): svn_test_file = os.path.join(self.svn_checkout_path, 'test_file') write_into_file_at_path(svn_test_file, "svn_checkout") run_command(['svn', 'commit', '--message', 'commit to conflict with git commit'], cwd=self.svn_checkout_path) git_test_file = os.path.join(self.git_checkout_path, 'test_file') write_into_file_at_path(git_test_file, "git_checkout") run_command(['git', 'commit', '-a', '-m', 'commit to be thrown away by rebase abort']) # --quiet doesn't make git svn silent, so use run_silent to redirect output self.assertRaises(ScriptError, run_silent, ['git', 'svn', '--quiet', 'rebase']) # Will fail due to a conflict leaving us mid-rebase. self.assertTrue(self.scm.rebase_in_progress()) # Make sure our cleanup works. self.scm.discard_working_directory_changes() self.assertFalse(self.scm.rebase_in_progress()) # Make sure cleanup doesn't throw when no rebase is in progress. self.scm.discard_working_directory_changes() def test_commitish_parsing(self): # Multiple revisions are cherry-picked. self.assertEqual(len(self.scm.commit_ids_from_commitish_arguments(['HEAD~2'])), 1) self.assertEqual(len(self.scm.commit_ids_from_commitish_arguments(['HEAD', 'HEAD~2'])), 2) # ... is an invalid range specifier self.assertRaises(ScriptError, self.scm.commit_ids_from_commitish_arguments, ['trunk...HEAD']) def test_commitish_order(self): commit_range = 'HEAD~3..HEAD' actual_commits = self.scm.commit_ids_from_commitish_arguments([commit_range]) expected_commits = [] expected_commits += reversed(run_command(['git', 'rev-list', commit_range]).splitlines()) self.assertEqual(actual_commits, expected_commits) def test_apply_git_patch(self): # We carefullly pick a diff which does not have a directory addition # as currently svn-apply will error out when trying to remove directories # in Git: https://bugs.webkit.org/show_bug.cgi?id=34871 patch = self._create_patch(_git_diff('HEAD..HEAD^')) self._setup_webkittools_scripts_symlink(self.scm) Checkout(self.scm).apply_patch(patch) def test_commit_text_parsing(self): write_into_file_at_path('test_file', 'more test content') commit_text = self.scm.commit_with_message("another test commit") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') def test_commit_with_message_working_copy_only(self): write_into_file_at_path('test_file_commit1', 'more test content') run_command(['git', 'add', 'test_file_commit1']) commit_text = self.scm.commit_with_message("yet another test commit") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit1') def _local_commit(self, filename, contents, message): write_into_file_at_path(filename, contents) run_command(['git', 'add', filename]) self.scm.commit_locally_with_message(message) def _one_local_commit(self): self._local_commit('test_file_commit1', 'more test content', 'another test commit') def _one_local_commit_plus_working_copy_changes(self): self._one_local_commit() write_into_file_at_path('test_file_commit2', 'still more test content') run_command(['git', 'add', 'test_file_commit2']) def _second_local_commit(self): self._local_commit('test_file_commit2', 'still more test content', 'yet another test commit') def _two_local_commits(self): self._one_local_commit() self._second_local_commit() def _three_local_commits(self): self._local_commit('test_file_commit0', 'more test content', 'another test commit') self._two_local_commits() def test_revisions_changing_files_with_local_commit(self): self._one_local_commit() self.assertItemsEqual(self.scm.revisions_changing_file('test_file_commit1'), []) def test_commit_with_message(self): self._one_local_commit_plus_working_copy_changes() self.assertRaises(AmbiguousCommitError, self.scm.commit_with_message, "yet another test commit") commit_text = self.scm.commit_with_message("yet another test commit", force_squash=True) self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit2') self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_git_commit(self): self._two_local_commits() commit_text = self.scm.commit_with_message("another test commit", git_commit="HEAD^") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit1') self.assertNotRegexpMatches(svn_log, r'test_file_commit2') def test_commit_with_message_git_commit_range(self): self._three_local_commits() commit_text = self.scm.commit_with_message("another test commit", git_commit="HEAD~2..HEAD") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertNotRegexpMatches(svn_log, r'test_file_commit0') self.assertRegexpMatches(svn_log, r'test_file_commit1') self.assertRegexpMatches(svn_log, r'test_file_commit2') def test_commit_with_message_only_local_commit(self): self._one_local_commit() commit_text = self.scm.commit_with_message("another test commit") svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_multiple_local_commits_and_working_copy(self): self._two_local_commits() write_into_file_at_path('test_file_commit1', 'working copy change') self.assertRaises(AmbiguousCommitError, self.scm.commit_with_message, "another test commit") commit_text = self.scm.commit_with_message("another test commit", force_squash=True) self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit2') self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_git_commit_and_working_copy(self): self._two_local_commits() write_into_file_at_path('test_file_commit1', 'working copy change') self.assertRaises(ScriptError, self.scm.commit_with_message, "another test commit", git_commit="HEAD^") def test_commit_with_message_multiple_local_commits_always_squash(self): run_command(['git', 'config', 'webkit-patch.commit-should-always-squash', 'true']) self._two_local_commits() commit_text = self.scm.commit_with_message("yet another test commit") self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit2') self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_multiple_local_commits(self): self._two_local_commits() self.assertRaises(AmbiguousCommitError, self.scm.commit_with_message, "yet another test commit") commit_text = self.scm.commit_with_message("yet another test commit", force_squash=True) self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertRegexpMatches(svn_log, r'test_file_commit2') self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_not_synced(self): run_command(['git', 'checkout', '-b', 'my-branch', 'trunk~3']) self._two_local_commits() self.assertRaises(AmbiguousCommitError, self.scm.commit_with_message, "another test commit") commit_text = self.scm.commit_with_message("another test commit", force_squash=True) self.assertEqual(self.scm.svn_revision_from_commit_text(commit_text), '6') svn_log = run_command(['git', 'svn', 'log', '--limit=1', '--verbose']) self.assertNotRegexpMatches(svn_log, r'test_file2') self.assertRegexpMatches(svn_log, r'test_file_commit2') self.assertRegexpMatches(svn_log, r'test_file_commit1') def test_commit_with_message_not_synced_with_conflict(self): run_command(['git', 'checkout', '-b', 'my-branch', 'trunk~3']) self._local_commit('test_file2', 'asdf', 'asdf commit') # There's a conflict between trunk and the test_file2 modification. self.assertRaises(ScriptError, self.scm.commit_with_message, "another test commit", force_squash=True) def test_upstream_branch(self): run_command(['git', 'checkout', '-t', '-b', 'my-branch']) run_command(['git', 'checkout', '-t', '-b', 'my-second-branch']) self.assertEqual(self.scm._upstream_branch(), 'my-branch') def test_remote_branch_ref(self): self.assertEqual(self.scm.remote_branch_ref(), 'refs/remotes/trunk') def test_reverse_diff(self): self._shared_test_reverse_diff() def test_diff_for_revision(self): self._shared_test_diff_for_revision() def test_svn_apply_git_patch(self): self._shared_test_svn_apply_git_patch() def test_create_patch_local_plus_working_copy(self): self._one_local_commit_plus_working_copy_changes() patch = self.scm.create_patch() self.assertRegexpMatches(patch, r'test_file_commit1') self.assertRegexpMatches(patch, r'test_file_commit2') def test_create_patch(self): self._one_local_commit_plus_working_copy_changes() patch = self.scm.create_patch() self.assertRegexpMatches(patch, r'test_file_commit2') self.assertRegexpMatches(patch, r'test_file_commit1') self.assertRegexpMatches(patch, r'Subversion Revision: 5') def test_create_patch_after_merge(self): run_command(['git', 'checkout', '-b', 'dummy-branch', 'trunk~3']) self._one_local_commit() run_command(['git', 'merge', 'trunk']) patch = self.scm.create_patch() self.assertRegexpMatches(patch, r'test_file_commit1') self.assertRegexpMatches(patch, r'Subversion Revision: 5') def test_create_patch_with_changed_files(self): self._one_local_commit_plus_working_copy_changes() patch = self.scm.create_patch(changed_files=['test_file_commit2']) self.assertRegexpMatches(patch, r'test_file_commit2') def test_create_patch_with_rm_and_changed_files(self): self._one_local_commit_plus_working_copy_changes() os.remove('test_file_commit1') patch = self.scm.create_patch() patch_with_changed_files = self.scm.create_patch(changed_files=['test_file_commit1', 'test_file_commit2']) self.assertEqual(patch, patch_with_changed_files) def test_create_patch_git_commit(self): self._two_local_commits() patch = self.scm.create_patch(git_commit="HEAD^") self.assertRegexpMatches(patch, r'test_file_commit1') self.assertNotRegexpMatches(patch, r'test_file_commit2') def test_create_patch_git_commit_range(self): self._three_local_commits() patch = self.scm.create_patch(git_commit="HEAD~2..HEAD") self.assertNotRegexpMatches(patch, r'test_file_commit0') self.assertRegexpMatches(patch, r'test_file_commit2') self.assertRegexpMatches(patch, r'test_file_commit1') def test_create_patch_working_copy_only(self): self._one_local_commit_plus_working_copy_changes() patch = self.scm.create_patch(git_commit="HEAD....") self.assertNotRegexpMatches(patch, r'test_file_commit1') self.assertRegexpMatches(patch, r'test_file_commit2') def test_create_patch_multiple_local_commits(self): self._two_local_commits() patch = self.scm.create_patch() self.assertRegexpMatches(patch, r'test_file_commit2') self.assertRegexpMatches(patch, r'test_file_commit1') def test_create_patch_not_synced(self): run_command(['git', 'checkout', '-b', 'my-branch', 'trunk~3']) self._two_local_commits() patch = self.scm.create_patch() self.assertNotRegexpMatches(patch, r'test_file2') self.assertRegexpMatches(patch, r'test_file_commit2') self.assertRegexpMatches(patch, r'test_file_commit1') def test_create_binary_patch(self): # Create a git binary patch and check the contents. test_file_name = 'binary_file' test_file_path = os.path.join(self.git_checkout_path, test_file_name) file_contents = ''.join(map(chr, range(256))) write_into_file_at_path(test_file_path, file_contents, encoding=None) run_command(['git', 'add', test_file_name]) patch = self.scm.create_patch() self.assertRegexpMatches(patch, r'\nliteral 0\n') self.assertRegexpMatches(patch, r'\nliteral 256\n') # Check if we can apply the created patch. run_command(['git', 'rm', '-f', test_file_name]) self._setup_webkittools_scripts_symlink(self.scm) self.checkout.apply_patch(self._create_patch(patch)) self.assertEqual(file_contents, read_from_path(test_file_path, encoding=None)) # Check if we can create a patch from a local commit. write_into_file_at_path(test_file_path, file_contents, encoding=None) run_command(['git', 'add', test_file_name]) run_command(['git', 'commit', '-m', 'binary diff']) patch_from_local_commit = self.scm.create_patch('HEAD') self.assertRegexpMatches(patch_from_local_commit, r'\nliteral 0\n') self.assertRegexpMatches(patch_from_local_commit, r'\nliteral 256\n') def test_changed_files_local_plus_working_copy(self): self._one_local_commit_plus_working_copy_changes() files = self.scm.changed_files() self.assertIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) # working copy should *not* be in the list. files = self.scm.changed_files('trunk..') self.assertIn('test_file_commit1', files) self.assertNotIn('test_file_commit2', files) # working copy *should* be in the list. files = self.scm.changed_files('trunk....') self.assertIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) def test_changed_files_git_commit(self): self._two_local_commits() files = self.scm.changed_files(git_commit="HEAD^") self.assertIn('test_file_commit1', files) self.assertNotIn('test_file_commit2', files) def test_changed_files_git_commit_range(self): self._three_local_commits() files = self.scm.changed_files(git_commit="HEAD~2..HEAD") self.assertNotIn('test_file_commit0', files) self.assertIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) def test_changed_files_working_copy_only(self): self._one_local_commit_plus_working_copy_changes() files = self.scm.changed_files(git_commit="HEAD....") self.assertNotIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) def test_changed_files_multiple_local_commits(self): self._two_local_commits() files = self.scm.changed_files() self.assertIn('test_file_commit2', files) self.assertIn('test_file_commit1', files) def test_changed_files_not_synced(self): run_command(['git', 'checkout', '-b', 'my-branch', 'trunk~3']) self._two_local_commits() files = self.scm.changed_files() self.assertNotIn('test_file2', files) self.assertIn('test_file_commit2', files) self.assertIn('test_file_commit1', files) def test_changed_files_not_synced(self): run_command(['git', 'checkout', '-b', 'my-branch', 'trunk~3']) self._two_local_commits() files = self.scm.changed_files() self.assertNotIn('test_file2', files) self.assertIn('test_file_commit2', files) self.assertIn('test_file_commit1', files) def test_changed_files(self): self._shared_test_changed_files() def test_changed_files_for_revision(self): self._shared_test_changed_files_for_revision() def test_changed_files_upstream(self): run_command(['git', 'checkout', '-t', '-b', 'my-branch']) self._one_local_commit() run_command(['git', 'checkout', '-t', '-b', 'my-second-branch']) self._second_local_commit() write_into_file_at_path('test_file_commit0', 'more test content') run_command(['git', 'add', 'test_file_commit0']) # equivalent to 'git diff my-branch..HEAD, should not include working changes files = self.scm.changed_files(git_commit='UPSTREAM..') self.assertNotIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) self.assertNotIn('test_file_commit0', files) # equivalent to 'git diff my-branch', *should* include working changes files = self.scm.changed_files(git_commit='UPSTREAM....') self.assertNotIn('test_file_commit1', files) self.assertIn('test_file_commit2', files) self.assertIn('test_file_commit0', files) def test_contents_at_revision(self): self._shared_test_contents_at_revision() def test_revisions_changing_file(self): self._shared_test_revisions_changing_file() def test_added_files(self): self._shared_test_added_files() def test_committer_email_for_revision(self): self._shared_test_committer_email_for_revision() def test_add_recursively(self): self._shared_test_add_recursively() def test_delete(self): self._two_local_commits() self.scm.delete('test_file_commit1') self.assertIn("test_file_commit1", self.scm.deleted_files()) def test_delete_list(self): self._two_local_commits() self.scm.delete_list(["test_file_commit1", "test_file_commit2"]) self.assertIn("test_file_commit1", self.scm.deleted_files()) self.assertIn("test_file_commit2", self.scm.deleted_files()) def test_delete_recursively(self): self._shared_test_delete_recursively() def test_delete_recursively_or_not(self): self._shared_test_delete_recursively_or_not() def test_head_svn_revision(self): self._shared_test_head_svn_revision() def test_to_object_name(self): relpath = 'test_file_commit1' fullpath = os.path.realpath(os.path.join(self.git_checkout_path, relpath)) self.assertEqual(relpath, self.scm.to_object_name(fullpath)) def test_show_head(self): self._two_local_commits() self.assertEqual("more test content", self.scm.show_head('test_file_commit1')) def test_show_head_binary(self): self._two_local_commits() data = "\244" write_into_file_at_path("binary_file", data, encoding=None) self.scm.add("binary_file") self.scm.commit_locally_with_message("a test commit") self.assertEqual(data, self.scm.show_head('binary_file')) def test_diff_for_file(self): self._two_local_commits() write_into_file_at_path('test_file_commit1', "Updated", encoding=None) diff = self.scm.diff_for_file('test_file_commit1') cached_diff = self.scm.diff_for_file('test_file_commit1') self.assertIn("+Updated", diff) self.assertIn("-more test content", diff) self.scm.add('test_file_commit1') cached_diff = self.scm.diff_for_file('test_file_commit1') self.assertIn("+Updated", cached_diff) self.assertIn("-more test content", cached_diff) def test_exists(self): self._shared_test_exists(self.scm, self.scm.commit_locally_with_message) # We need to split off more of these SCM tests to use mocks instead of the filesystem. # This class is the first part of that. class GitTestWithMock(unittest.TestCase): maxDiff = None def make_scm(self, logging_executive=False): # We do this should_log dance to avoid logging when Git.__init__ runs sysctl on mac to check for 64-bit support. scm = Git(cwd=".", executive=MockExecutive(), filesystem=MockFileSystem()) scm.read_git_config = lambda *args, **kw: "MOCKKEY:MOCKVALUE" scm._executive._should_log = logging_executive return scm def test_create_patch(self): scm = self.make_scm(logging_executive=True) expected_stderr = """\ MOCK run_command: ['git', 'merge-base', 'MOCKVALUE', 'HEAD'], cwd=%(checkout)s MOCK run_command: ['git', 'diff', '--binary', '--no-color', '--no-ext-diff', '--full-index', '--no-renames', '', 'MOCK output of child process', '--'], cwd=%(checkout)s MOCK run_command: ['git', 'rev-parse', '--show-toplevel'], cwd=%(checkout)s MOCK run_command: ['git', 'log', '-1', '--grep=git-svn-id:', '--date=iso', './MOCK output of child process/MOCK output of child process'], cwd=%(checkout)s """ % {'checkout': scm.checkout_root} OutputCapture().assert_outputs(self, scm.create_patch, expected_logs=expected_stderr) def test_push_local_commits_to_server_with_username_and_password(self): self.assertEqual(self.make_scm().push_local_commits_to_server(username='[email protected]', password='blah'), "MOCK output of child process") def test_push_local_commits_to_server_without_username_and_password(self): self.assertRaises(AuthenticationError, self.make_scm().push_local_commits_to_server) def test_push_local_commits_to_server_with_username_and_without_password(self): self.assertRaises(AuthenticationError, self.make_scm().push_local_commits_to_server, {'username': '[email protected]'}) def test_push_local_commits_to_server_without_username_and_with_password(self): self.assertRaises(AuthenticationError, self.make_scm().push_local_commits_to_server, {'password': 'blah'}) def test_timestamp_of_revision(self): scm = self.make_scm() scm.find_checkout_root = lambda path: '' scm._run_git = lambda args: 'Date: 2013-02-08 08:05:49 +0000' self.assertEqual(scm.timestamp_of_revision('some-path', '12345'), '2013-02-08T08:05:49Z') scm._run_git = lambda args: 'Date: 2013-02-08 01:02:03 +0130' self.assertEqual(scm.timestamp_of_revision('some-path', '12345'), '2013-02-07T23:32:03Z') scm._run_git = lambda args: 'Date: 2013-02-08 01:55:21 -0800' self.assertEqual(scm.timestamp_of_revision('some-path', '12345'), '2013-02-08T09:55:21Z')
bsd-3-clause
tntnatbry/tensorflow
tensorflow/python/layers/base.py
8
12144
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # pylint: disable=unused-import,g-bad-import-order """Contains the base Layer class, from which all layers inherit. This is a private class and its internal implementation is subject to changes in the future. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import inspect import re from six.moves import xrange # pylint: disable=redefined-builtin import numpy as np import six from tensorflow.python.framework import ops from tensorflow.python.framework import dtypes from tensorflow.python.ops import variables as tf_variables from tensorflow.python.ops import variable_scope as vs class _Layer(object): """Base layer class. WARNING: Do not subclass this layer unless you know what you are doing: the API is subject to future changes. This is the class from which all layers inherit, implementing common infrastructure functionality. A layer is a class implementing common neural networks operations, such as convolution, batch norm, etc. These operations require managing variables, losses, and updates, as well as applying TensorFlow ops to input tensors. Properties: trainable: Whether the layer should be trained (boolean). name: The name of the layer (string). dtype: Default dtype of the layer (dtypes.float32). trainable_variables: List of trainable variables. non_trainable_variables: List of non-trainable variables. variables: List of all variables of this layer, trainable and non-trainable. updates: List of update ops of this layer. losses: List of losses added by this layer. """ def __init__(self, trainable=True, name=None, dtype=dtypes.float32, **kwargs): # We use a kwargs dict here because these kwargs only exist # for compatibility reasons. # The list of kwargs is subject to changes in the future. # We do not want to commit to it or to expose the list to users at all. # Note this is exactly as safe as defining kwargs in the function signature, # the only difference being that the list of valid kwargs is defined # below rather rather in the signature, and default values are defined # in calls to kwargs.get(). allowed_kwargs = { '_scope', '_reuse', } for kwarg in kwargs: if kwarg not in allowed_kwargs: raise TypeError('Keyword argument not understood:', kwarg) self._trainable = trainable self._built = False self._trainable_variables = [] self._non_trainable_variables = [] self._updates = [] self._losses = [] self._reuse = kwargs.get('_reuse') self.dtype = dtype # Determine base name (non-unique). base_name = name if not name: base_name = _to_snake_case(self.__class__.__name__) # Determine variable scope. scope = kwargs.get('_scope') if scope: self._scope = next(vs.variable_scope(scope).gen) else: self._scope = next(vs.variable_scope(None, default_name=base_name).gen) # Unique name is borrowed from scope to match variable names. self.name = self._scope.name def __setattr__(self, name, value): if hasattr(self, name): # Only allow private attributes to be set more than once, under the # convention that private attributes should only be set from inside # the class. # All attributes meant to be set several times should be set to private. if name[0] != '_': raise AttributeError('Read-only property cannot be set: %s' % name) super(_Layer, self).__setattr__(name, value) @property def trainable_variables(self): return self._trainable_variables if self.trainable else [] @property def non_trainable_variables(self): return self._non_trainable_variables if self.trainable else self.variables @property def trainable_weights(self): return self.trainable_variables @property def non_trainable_weights(self): return self.non_trainable_variables @property def variables(self): """Returns the list of all layer variables/weights. Returns: A list of variables. """ return self._trainable_variables + self._non_trainable_variables @property def updates(self): return self._updates @property def losses(self): return self._losses @property def built(self): return self._built @property def trainable(self): return self._trainable @property def weights(self): """Returns the list of all layer variables/weights. Returns: A list of variables. """ return self.variables def build(self, _): """Creates the variables of the layer. """ self._built = True def call(self, inputs, **kwargs): """The logic of the layer lives here. Arguments: inputs: input tensor(s). **kwargs: additional keyword arguments. Returns: Output tensor(s). """ raise NotImplementedError def _compute_output_shape(self, input_shape): """Computes the output shape of the layer given the input shape. Assumes that the layer will be built to match that input shape. Args: input_shape: A (possibly nested tuple of) `TensorShape`. It need not be fully defined (e.g. the batch size may be unknown). Returns: A (possibly nested tuple of) `TensorShape`. Raises: TypeError: if `input_shape` is not a (possibly nested tuple of) `TensorShape`. ValueError: if `input_shape` is incomplete or is incompatible with the the layer. """ raise NotImplementedError def _add_variable(self, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, variable_getter=vs.get_variable): """Adds a new variable to the layer. Arguments: name: variable name. shape: variable shape. dtype: The type of the variable. Defaults to `self.dtype`. initializer: initializer instance (callable). regularizer: regularizer instance (callable). trainable: whether the variable should be part of the layer's "trainable_variables" (e.g. variables, biases) or "non_trainable_variables" (e.g. BatchNorm mean, stddev). variable_getter: The getter to use for TensorFlow variables. Returns: The created variable. """ if dtype is None: dtype = self.dtype existing_variables = set(tf_variables.global_variables()) variable = variable_getter(name, shape=shape, initializer=initializer, dtype=dtype, trainable=trainable and self.trainable) # TODO(sguada) fix name = variable.op.name if variable in existing_variables: return variable if regularizer: # To match the behavior of tf.get_variable(), we only # apply regularization if the variable is newly created. if isinstance(variable, tf_variables.PartitionedVariable): for v in variable: with ops.colocate_with(v.op): with ops.name_scope(name + '/Regularizer'): regularization = regularizer(v) if regularization is not None: self._losses.append(regularization) _add_elements_to_collection( regularization, ops.GraphKeys.REGULARIZATION_LOSSES) else: with ops.colocate_with(variable.op): with ops.name_scope(name + '/Regularizer'): regularization = regularizer(variable) if regularization is not None: self._losses.append(regularization) _add_elements_to_collection( regularization, ops.GraphKeys.REGULARIZATION_LOSSES) if trainable: self._trainable_variables.append(variable) else: self._non_trainable_variables.append(variable) return variable def __call__(self, inputs, **kwargs): """Wraps `call`, applying pre- and post-processing steps. Arguments: inputs: input tensor(s). **kwargs: additional keyword arguments to be passed to `self.call`. Returns: Output tensor(s). """ # Define a custom getter to override tf.get_variable when creating layer # variables. The current custom getter is nested by the variable scope. def variable_getter(getter, name, shape, dtype=None, initializer=None, regularizer=None, trainable=True, **kwargs): return self._add_variable( name, shape, initializer=initializer, regularizer=regularizer, dtype=dtype, trainable=trainable, variable_getter=functools.partial(getter, **kwargs)) # Build (if necessary) and call the layer, inside a variable scope. with vs.variable_scope(self._scope, reuse=True if self._built else self._reuse, custom_getter=variable_getter) as scope: with ops.name_scope(scope.original_name_scope): if not self.built: input_list = _to_list(inputs) input_shapes = [x.get_shape() for x in input_list] if len(input_shapes) == 1: self.build(input_shapes[0]) else: self.build(input_shapes) self._built = True outputs = self.call(inputs, **kwargs) # Apply activity regularization. # Note that it should be applied every time the layer creates a new # output, since it is output-specific. if hasattr(self, 'activity_regularizer') and self.activity_regularizer: output_list = _to_list(outputs) for output in output_list: with ops.name_scope('ActivityRegularizer'): activity_regularization = self.activity_regularizer(output) self._losses.append(activity_regularization) _add_elements_to_collection( activity_regularization, ops.GraphKeys.REGULARIZATION_LOSSES) # Update global default collections. _add_elements_to_collection(self.updates, ops.GraphKeys.UPDATE_OPS) return outputs def apply(self, inputs, **kwargs): """Apply the layer on a input. This simply wraps `self.__call__`. Arguments: inputs: Input tensor(s). **kwargs: additional keyword arguments to be passed to `self.call`. Returns: Output tensor(s). """ return self.__call__(inputs, **kwargs) def _to_snake_case(name): intermediate = re.sub('(.)([A-Z][a-z0-9]+)', r'\1_\2', name) insecure = re.sub('([a-z])([A-Z])', r'\1_\2', intermediate).lower() # If the class is private the name starts with "_" which is not secure # for creating scopes. We prefix the name with "private" in this case. if insecure[0] != '_': return insecure return 'private' + insecure def _to_list(x): """This normalizes a list/tuple or single element into a list. If a single element is passed, we return a list of size 1 containing the element. Arguments: x: list or tuple or single element. Returns: A list. """ if isinstance(x, (list, tuple)): return list(x) return [x] def _add_elements_to_collection(elements, collections): elements = _to_list(elements) collections = _to_list(collections) for name in collections: collection = ops.get_collection_ref(name) collection_set = set(collection) for element in elements: if element not in collection_set: collection.append(element)
apache-2.0
keyurpatel076/MissionPlannerGit
packages/IronPython.StdLib.2.7.5-beta1/content/Lib/sre_constants.py
349
7137
# # Secret Labs' Regular Expression Engine # # various symbols used by the regular expression engine. # run this script to update the _sre include files! # # Copyright (c) 1998-2001 by Secret Labs AB. All rights reserved. # # See the sre.py file for information on usage and redistribution. # """Internal support module for sre""" # update when constants are added or removed MAGIC = 20031017 # max code word in this release MAXREPEAT = 65535 # SRE standard exception (access as sre.error) # should this really be here? class error(Exception): pass # operators FAILURE = "failure" SUCCESS = "success" ANY = "any" ANY_ALL = "any_all" ASSERT = "assert" ASSERT_NOT = "assert_not" AT = "at" BIGCHARSET = "bigcharset" BRANCH = "branch" CALL = "call" CATEGORY = "category" CHARSET = "charset" GROUPREF = "groupref" GROUPREF_IGNORE = "groupref_ignore" GROUPREF_EXISTS = "groupref_exists" IN = "in" IN_IGNORE = "in_ignore" INFO = "info" JUMP = "jump" LITERAL = "literal" LITERAL_IGNORE = "literal_ignore" MARK = "mark" MAX_REPEAT = "max_repeat" MAX_UNTIL = "max_until" MIN_REPEAT = "min_repeat" MIN_UNTIL = "min_until" NEGATE = "negate" NOT_LITERAL = "not_literal" NOT_LITERAL_IGNORE = "not_literal_ignore" RANGE = "range" REPEAT = "repeat" REPEAT_ONE = "repeat_one" SUBPATTERN = "subpattern" MIN_REPEAT_ONE = "min_repeat_one" # positions AT_BEGINNING = "at_beginning" AT_BEGINNING_LINE = "at_beginning_line" AT_BEGINNING_STRING = "at_beginning_string" AT_BOUNDARY = "at_boundary" AT_NON_BOUNDARY = "at_non_boundary" AT_END = "at_end" AT_END_LINE = "at_end_line" AT_END_STRING = "at_end_string" AT_LOC_BOUNDARY = "at_loc_boundary" AT_LOC_NON_BOUNDARY = "at_loc_non_boundary" AT_UNI_BOUNDARY = "at_uni_boundary" AT_UNI_NON_BOUNDARY = "at_uni_non_boundary" # categories CATEGORY_DIGIT = "category_digit" CATEGORY_NOT_DIGIT = "category_not_digit" CATEGORY_SPACE = "category_space" CATEGORY_NOT_SPACE = "category_not_space" CATEGORY_WORD = "category_word" CATEGORY_NOT_WORD = "category_not_word" CATEGORY_LINEBREAK = "category_linebreak" CATEGORY_NOT_LINEBREAK = "category_not_linebreak" CATEGORY_LOC_WORD = "category_loc_word" CATEGORY_LOC_NOT_WORD = "category_loc_not_word" CATEGORY_UNI_DIGIT = "category_uni_digit" CATEGORY_UNI_NOT_DIGIT = "category_uni_not_digit" CATEGORY_UNI_SPACE = "category_uni_space" CATEGORY_UNI_NOT_SPACE = "category_uni_not_space" CATEGORY_UNI_WORD = "category_uni_word" CATEGORY_UNI_NOT_WORD = "category_uni_not_word" CATEGORY_UNI_LINEBREAK = "category_uni_linebreak" CATEGORY_UNI_NOT_LINEBREAK = "category_uni_not_linebreak" OPCODES = [ # failure=0 success=1 (just because it looks better that way :-) FAILURE, SUCCESS, ANY, ANY_ALL, ASSERT, ASSERT_NOT, AT, BRANCH, CALL, CATEGORY, CHARSET, BIGCHARSET, GROUPREF, GROUPREF_EXISTS, GROUPREF_IGNORE, IN, IN_IGNORE, INFO, JUMP, LITERAL, LITERAL_IGNORE, MARK, MAX_UNTIL, MIN_UNTIL, NOT_LITERAL, NOT_LITERAL_IGNORE, NEGATE, RANGE, REPEAT, REPEAT_ONE, SUBPATTERN, MIN_REPEAT_ONE ] ATCODES = [ AT_BEGINNING, AT_BEGINNING_LINE, AT_BEGINNING_STRING, AT_BOUNDARY, AT_NON_BOUNDARY, AT_END, AT_END_LINE, AT_END_STRING, AT_LOC_BOUNDARY, AT_LOC_NON_BOUNDARY, AT_UNI_BOUNDARY, AT_UNI_NON_BOUNDARY ] CHCODES = [ CATEGORY_DIGIT, CATEGORY_NOT_DIGIT, CATEGORY_SPACE, CATEGORY_NOT_SPACE, CATEGORY_WORD, CATEGORY_NOT_WORD, CATEGORY_LINEBREAK, CATEGORY_NOT_LINEBREAK, CATEGORY_LOC_WORD, CATEGORY_LOC_NOT_WORD, CATEGORY_UNI_DIGIT, CATEGORY_UNI_NOT_DIGIT, CATEGORY_UNI_SPACE, CATEGORY_UNI_NOT_SPACE, CATEGORY_UNI_WORD, CATEGORY_UNI_NOT_WORD, CATEGORY_UNI_LINEBREAK, CATEGORY_UNI_NOT_LINEBREAK ] def makedict(list): d = {} i = 0 for item in list: d[item] = i i = i + 1 return d OPCODES = makedict(OPCODES) ATCODES = makedict(ATCODES) CHCODES = makedict(CHCODES) # replacement operations for "ignore case" mode OP_IGNORE = { GROUPREF: GROUPREF_IGNORE, IN: IN_IGNORE, LITERAL: LITERAL_IGNORE, NOT_LITERAL: NOT_LITERAL_IGNORE } AT_MULTILINE = { AT_BEGINNING: AT_BEGINNING_LINE, AT_END: AT_END_LINE } AT_LOCALE = { AT_BOUNDARY: AT_LOC_BOUNDARY, AT_NON_BOUNDARY: AT_LOC_NON_BOUNDARY } AT_UNICODE = { AT_BOUNDARY: AT_UNI_BOUNDARY, AT_NON_BOUNDARY: AT_UNI_NON_BOUNDARY } CH_LOCALE = { CATEGORY_DIGIT: CATEGORY_DIGIT, CATEGORY_NOT_DIGIT: CATEGORY_NOT_DIGIT, CATEGORY_SPACE: CATEGORY_SPACE, CATEGORY_NOT_SPACE: CATEGORY_NOT_SPACE, CATEGORY_WORD: CATEGORY_LOC_WORD, CATEGORY_NOT_WORD: CATEGORY_LOC_NOT_WORD, CATEGORY_LINEBREAK: CATEGORY_LINEBREAK, CATEGORY_NOT_LINEBREAK: CATEGORY_NOT_LINEBREAK } CH_UNICODE = { CATEGORY_DIGIT: CATEGORY_UNI_DIGIT, CATEGORY_NOT_DIGIT: CATEGORY_UNI_NOT_DIGIT, CATEGORY_SPACE: CATEGORY_UNI_SPACE, CATEGORY_NOT_SPACE: CATEGORY_UNI_NOT_SPACE, CATEGORY_WORD: CATEGORY_UNI_WORD, CATEGORY_NOT_WORD: CATEGORY_UNI_NOT_WORD, CATEGORY_LINEBREAK: CATEGORY_UNI_LINEBREAK, CATEGORY_NOT_LINEBREAK: CATEGORY_UNI_NOT_LINEBREAK } # flags SRE_FLAG_TEMPLATE = 1 # template mode (disable backtracking) SRE_FLAG_IGNORECASE = 2 # case insensitive SRE_FLAG_LOCALE = 4 # honour system locale SRE_FLAG_MULTILINE = 8 # treat target as multiline string SRE_FLAG_DOTALL = 16 # treat target as a single string SRE_FLAG_UNICODE = 32 # use unicode locale SRE_FLAG_VERBOSE = 64 # ignore whitespace and comments SRE_FLAG_DEBUG = 128 # debugging # flags for INFO primitive SRE_INFO_PREFIX = 1 # has prefix SRE_INFO_LITERAL = 2 # entire pattern is literal (given by prefix) SRE_INFO_CHARSET = 4 # pattern starts with character from given set if __name__ == "__main__": def dump(f, d, prefix): items = d.items() items.sort(key=lambda a: a[1]) for k, v in items: f.write("#define %s_%s %s\n" % (prefix, k.upper(), v)) f = open("sre_constants.h", "w") f.write("""\ /* * Secret Labs' Regular Expression Engine * * regular expression matching engine * * NOTE: This file is generated by sre_constants.py. If you need * to change anything in here, edit sre_constants.py and run it. * * Copyright (c) 1997-2001 by Secret Labs AB. All rights reserved. * * See the _sre.c file for information on usage and redistribution. */ """) f.write("#define SRE_MAGIC %d\n" % MAGIC) dump(f, OPCODES, "SRE_OP") dump(f, ATCODES, "SRE") dump(f, CHCODES, "SRE") f.write("#define SRE_FLAG_TEMPLATE %d\n" % SRE_FLAG_TEMPLATE) f.write("#define SRE_FLAG_IGNORECASE %d\n" % SRE_FLAG_IGNORECASE) f.write("#define SRE_FLAG_LOCALE %d\n" % SRE_FLAG_LOCALE) f.write("#define SRE_FLAG_MULTILINE %d\n" % SRE_FLAG_MULTILINE) f.write("#define SRE_FLAG_DOTALL %d\n" % SRE_FLAG_DOTALL) f.write("#define SRE_FLAG_UNICODE %d\n" % SRE_FLAG_UNICODE) f.write("#define SRE_FLAG_VERBOSE %d\n" % SRE_FLAG_VERBOSE) f.write("#define SRE_INFO_PREFIX %d\n" % SRE_INFO_PREFIX) f.write("#define SRE_INFO_LITERAL %d\n" % SRE_INFO_LITERAL) f.write("#define SRE_INFO_CHARSET %d\n" % SRE_INFO_CHARSET) f.close() print "done"
gpl-3.0
geminy/aidear
oss/qt/qt-everywhere-opensource-src-5.9.0/qtwebengine/src/3rdparty/chromium/third_party/webrtc/tools/compare_videos.py
13
5925
#!/usr/bin/env python # Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. import optparse import os import shutil import subprocess import sys import tempfile SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) # Chrome browsertests will throw away stderr; avoid that output gets lost. sys.stderr = sys.stdout def _ParseArgs(): """Registers the command-line options.""" usage = 'usage: %prog [options]' parser = optparse.OptionParser(usage=usage) parser.add_option('--label', type='string', default='MY_TEST', help=('Label of the test, used to identify different ' 'tests. Default: %default')) parser.add_option('--ref_video', type='string', help='Reference video to compare with (YUV).') parser.add_option('--test_video', type='string', help=('Test video to be compared with the reference ' 'video (YUV).')) parser.add_option('--frame_analyzer', type='string', help='Path to the frame analyzer executable.') parser.add_option('--barcode_decoder', type='string', help=('Path to the barcode decoder script. By default, we ' 'will assume we can find it in barcode_tools/' 'relative to this directory.')) parser.add_option('--ffmpeg_path', type='string', help=('The path to where the ffmpeg executable is located. ' 'If omitted, it will be assumed to be present in the ' 'PATH with the name ffmpeg[.exe].')) parser.add_option('--zxing_path', type='string', help=('The path to where the zxing executable is located. ' 'If omitted, it will be assumed to be present in the ' 'PATH with the name zxing[.exe].')) parser.add_option('--stats_file', type='string', default='stats.txt', help=('Path to the temporary stats file to be created and ' 'used. Default: %default')) parser.add_option('--yuv_frame_width', type='int', default=640, help='Width of the YUV file\'s frames. Default: %default') parser.add_option('--yuv_frame_height', type='int', default=480, help='Height of the YUV file\'s frames. Default: %default') options, _ = parser.parse_args() if not options.ref_video: parser.error('You must provide a path to the reference video!') if not os.path.exists(options.ref_video): parser.error('Cannot find the reference video at %s' % options.ref_video) if not options.test_video: parser.error('You must provide a path to the test video!') if not os.path.exists(options.test_video): parser.error('Cannot find the test video at %s' % options.test_video) if not options.frame_analyzer: parser.error('You must provide the path to the frame analyzer executable!') if not os.path.exists(options.frame_analyzer): parser.error('Cannot find frame analyzer executable at %s!' % options.frame_analyzer) return options def main(): """The main function. A simple invocation is: ./webrtc/tools/barcode_tools/compare_videos.py --ref_video=<path_and_name_of_reference_video> --test_video=<path_and_name_of_test_video> --frame_analyzer=<path_and_name_of_the_frame_analyzer_executable> Notice that the prerequisites for barcode_decoder.py also applies to this script. The means the following executables have to be available in the PATH: * zxing * ffmpeg """ options = _ParseArgs() if options.barcode_decoder: path_to_decoder = options.barcode_decoder else: path_to_decoder = os.path.join(SCRIPT_DIR, 'barcode_tools', 'barcode_decoder.py') # On Windows, sometimes the inherited stdin handle from the parent process # fails. Work around this by passing null to stdin to the subprocesses. null_filehandle = open(os.devnull, 'r') # Run barcode decoder on the test video to identify frame numbers. png_working_directory = tempfile.mkdtemp() cmd = [ sys.executable, path_to_decoder, '--yuv_file=%s' % options.test_video, '--yuv_frame_width=%d' % options.yuv_frame_width, '--yuv_frame_height=%d' % options.yuv_frame_height, '--stats_file=%s' % options.stats_file, '--png_working_dir=%s' % png_working_directory, ] if options.zxing_path: cmd.append('--zxing_path=%s' % options.zxing_path) if options.ffmpeg_path: cmd.append('--ffmpeg_path=%s' % options.ffmpeg_path) barcode_decoder = subprocess.Popen(cmd, stdin=null_filehandle, stdout=sys.stdout, stderr=sys.stderr) barcode_decoder.wait() shutil.rmtree(png_working_directory) if barcode_decoder.returncode != 0: print 'Failed to run barcode decoder script.' return 1 # Run frame analyzer to compare the videos and print output. cmd = [ options.frame_analyzer, '--label=%s' % options.label, '--reference_file=%s' % options.ref_video, '--test_file=%s' % options.test_video, '--stats_file=%s' % options.stats_file, '--width=%d' % options.yuv_frame_width, '--height=%d' % options.yuv_frame_height, ] frame_analyzer = subprocess.Popen(cmd, stdin=null_filehandle, stdout=sys.stdout, stderr=sys.stderr) frame_analyzer.wait() if frame_analyzer.returncode != 0: print 'Failed to run frame analyzer.' return 1 return 0 if __name__ == '__main__': sys.exit(main())
gpl-3.0
StefanRijnhart/OpenUpgrade
addons/edi/models/__init__.py
442
1116
# -*- coding: utf-8 -*- ############################################################################## # # OpenERP, Open Source Business Applications # Copyright (c) 2011 OpenERP S.A. <http://openerp.com> # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero General Public License as # published by the Free Software Foundation, either version 3 of the # License, or (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################## import edi import res_partner import res_company import res_currency # vim:expandtab:smartindent:tabstop=4:softtabstop=4:shiftwidth=4:
agpl-3.0
ChromiumWebApps/chromium
chrome/test/mini_installer/registry_verifier.py
44
4287
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import _winreg import verifier class RegistryVerifier(verifier.Verifier): """Verifies that the current registry matches the specified criteria.""" def _RootKeyConstant(self, root_key): """Converts a root registry key string into a _winreg.HKEY_* constant.""" root_key_mapping = { 'HKEY_CLASSES_ROOT': _winreg.HKEY_CLASSES_ROOT, 'HKEY_CURRENT_USER': _winreg.HKEY_CURRENT_USER, 'HKEY_LOCAL_MACHINE': _winreg.HKEY_LOCAL_MACHINE, 'HKEY_USERS': _winreg.HKEY_USERS, } if root_key not in root_key_mapping: raise KeyError("Unknown root registry key '%s'" % root_key) return root_key_mapping[root_key] def _ValueTypeConstant(self, value_type): """Converts a registry value type string into a _winreg.REG_* constant.""" value_type_mapping = { 'BINARY': _winreg.REG_BINARY, 'DWORD': _winreg.REG_DWORD, 'DWORD_LITTLE_ENDIAN': _winreg.REG_DWORD_LITTLE_ENDIAN, 'DWORD_BIG_ENDIAN': _winreg.REG_DWORD_BIG_ENDIAN, 'EXPAND_SZ': _winreg.REG_EXPAND_SZ, 'LINK': _winreg.REG_LINK, 'MULTI_SZ': _winreg.REG_MULTI_SZ, 'NONE': _winreg.REG_NONE, 'SZ': _winreg.REG_SZ, } if value_type not in value_type_mapping: raise KeyError("Unknown registry value type '%s'" % value_type) return value_type_mapping[value_type] def _VerifyExpectation(self, expectation_name, expectation, variable_expander): """Overridden from verifier.Verifier. Verifies a registry key according to the |expectation|. Args: expectation_name: The registry key being verified. It is expanded using Expand. expectation: A dictionary with the following keys and values: 'exists' a boolean indicating whether the registry key should exist. 'values' (optional) a dictionary where each key is a registry value and its associated value is a dictionary with the following key and values: 'type' a string indicating the type of the registry value. 'data' the associated data of the registry value. If it is a string, it is expanded using Expand. variable_expander: A VariableExpander object. """ key = variable_expander.Expand(expectation_name) root_key, sub_key = key.split('\\', 1) try: # Query the Windows registry for the registry key. It will throw a # WindowsError if the key doesn't exist. key_handle = _winreg.OpenKey(self._RootKeyConstant(root_key), sub_key, 0, _winreg.KEY_QUERY_VALUE) except WindowsError: # Key doesn't exist. See that it matches the expectation. assert not expectation['exists'], ('Registry key %s is missing' % key) return # The key exists, see that it matches the expectation. assert expectation['exists'], ('Registry key %s exists' % key) # Verify the expected values. if 'values' not in expectation: return for value, value_expectation in expectation['values'].iteritems(): # Query the value. It will throw a WindowsError if the value doesn't # exist. try: data, value_type = _winreg.QueryValueEx(key_handle, value) except WindowsError: raise KeyError("Value '%s' of registry key %s is missing" % ( value, key)) # Verify the type of the value. expected_value_type = value_expectation['type'] assert self._ValueTypeConstant(expected_value_type) == value_type, \ "Value '%s' of registry key %s has unexpected type '%s'" % ( value, key, expected_value_type) # Verify the associated data of the value. expected_data = value_expectation['data'] if isinstance(expected_data, basestring): expected_data = variable_expander.Expand(expected_data) assert expected_data == data, \ ("Value '%s' of registry key %s has unexpected data.\n" " Expected: %s\n" " Actual: %s" % (value, key, expected_data, data))
bsd-3-clause
crosswalk-project/chromium-crosswalk-efl
third_party/cython/src/Cython/Compiler/Parsing.py
87
107990
# cython: auto_cpdef=True, infer_types=True, language_level=3, py2_import=True # # Parser # # This should be done automatically import cython cython.declare(Nodes=object, ExprNodes=object, EncodedString=object, BytesLiteral=object, StringEncoding=object, FileSourceDescriptor=object, lookup_unicodechar=object, Future=object, Options=object, error=object, warning=object, Builtin=object, ModuleNode=object, Utils=object, re=object, _unicode=object, _bytes=object) import re from unicodedata import lookup as lookup_unicodechar from Cython.Compiler.Scanning import PyrexScanner, FileSourceDescriptor import Nodes import ExprNodes import Builtin import StringEncoding from StringEncoding import EncodedString, BytesLiteral, _unicode, _bytes from ModuleNode import ModuleNode from Errors import error, warning from Cython import Utils import Future import Options class Ctx(object): # Parsing context level = 'other' visibility = 'private' cdef_flag = 0 typedef_flag = 0 api = 0 overridable = 0 nogil = 0 namespace = None templates = None allow_struct_enum_decorator = False def __init__(self, **kwds): self.__dict__.update(kwds) def __call__(self, **kwds): ctx = Ctx() d = ctx.__dict__ d.update(self.__dict__) d.update(kwds) return ctx def p_ident(s, message = "Expected an identifier"): if s.sy == 'IDENT': name = s.systring s.next() return name else: s.error(message) def p_ident_list(s): names = [] while s.sy == 'IDENT': names.append(s.systring) s.next() if s.sy != ',': break s.next() return names #------------------------------------------ # # Expressions # #------------------------------------------ def p_binop_operator(s): pos = s.position() op = s.sy s.next() return op, pos def p_binop_expr(s, ops, p_sub_expr): n1 = p_sub_expr(s) while s.sy in ops: op, pos = p_binop_operator(s) n2 = p_sub_expr(s) n1 = ExprNodes.binop_node(pos, op, n1, n2) if op == '/': if Future.division in s.context.future_directives: n1.truedivision = True else: n1.truedivision = None # unknown return n1 #lambdef: 'lambda' [varargslist] ':' test def p_lambdef(s, allow_conditional=True): # s.sy == 'lambda' pos = s.position() s.next() if s.sy == ':': args = [] star_arg = starstar_arg = None else: args, star_arg, starstar_arg = p_varargslist( s, terminator=':', annotated=False) s.expect(':') if allow_conditional: expr = p_test(s) else: expr = p_test_nocond(s) return ExprNodes.LambdaNode( pos, args = args, star_arg = star_arg, starstar_arg = starstar_arg, result_expr = expr) #lambdef_nocond: 'lambda' [varargslist] ':' test_nocond def p_lambdef_nocond(s): return p_lambdef(s, allow_conditional=False) #test: or_test ['if' or_test 'else' test] | lambdef def p_test(s): if s.sy == 'lambda': return p_lambdef(s) pos = s.position() expr = p_or_test(s) if s.sy == 'if': s.next() test = p_or_test(s) s.expect('else') other = p_test(s) return ExprNodes.CondExprNode(pos, test=test, true_val=expr, false_val=other) else: return expr #test_nocond: or_test | lambdef_nocond def p_test_nocond(s): if s.sy == 'lambda': return p_lambdef_nocond(s) else: return p_or_test(s) #or_test: and_test ('or' and_test)* def p_or_test(s): return p_rassoc_binop_expr(s, ('or',), p_and_test) def p_rassoc_binop_expr(s, ops, p_subexpr): n1 = p_subexpr(s) if s.sy in ops: pos = s.position() op = s.sy s.next() n2 = p_rassoc_binop_expr(s, ops, p_subexpr) n1 = ExprNodes.binop_node(pos, op, n1, n2) return n1 #and_test: not_test ('and' not_test)* def p_and_test(s): #return p_binop_expr(s, ('and',), p_not_test) return p_rassoc_binop_expr(s, ('and',), p_not_test) #not_test: 'not' not_test | comparison def p_not_test(s): if s.sy == 'not': pos = s.position() s.next() return ExprNodes.NotNode(pos, operand = p_not_test(s)) else: return p_comparison(s) #comparison: expr (comp_op expr)* #comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not' def p_comparison(s): n1 = p_starred_expr(s) if s.sy in comparison_ops: pos = s.position() op = p_cmp_op(s) n2 = p_starred_expr(s) n1 = ExprNodes.PrimaryCmpNode(pos, operator = op, operand1 = n1, operand2 = n2) if s.sy in comparison_ops: n1.cascade = p_cascaded_cmp(s) return n1 def p_test_or_starred_expr(s): if s.sy == '*': return p_starred_expr(s) else: return p_test(s) def p_starred_expr(s): pos = s.position() if s.sy == '*': starred = True s.next() else: starred = False expr = p_bit_expr(s) if starred: expr = ExprNodes.StarredTargetNode(pos, expr) return expr def p_cascaded_cmp(s): pos = s.position() op = p_cmp_op(s) n2 = p_starred_expr(s) result = ExprNodes.CascadedCmpNode(pos, operator = op, operand2 = n2) if s.sy in comparison_ops: result.cascade = p_cascaded_cmp(s) return result def p_cmp_op(s): if s.sy == 'not': s.next() s.expect('in') op = 'not_in' elif s.sy == 'is': s.next() if s.sy == 'not': s.next() op = 'is_not' else: op = 'is' else: op = s.sy s.next() if op == '<>': op = '!=' return op comparison_ops = cython.declare(set, set([ '<', '>', '==', '>=', '<=', '<>', '!=', 'in', 'is', 'not' ])) #expr: xor_expr ('|' xor_expr)* def p_bit_expr(s): return p_binop_expr(s, ('|',), p_xor_expr) #xor_expr: and_expr ('^' and_expr)* def p_xor_expr(s): return p_binop_expr(s, ('^',), p_and_expr) #and_expr: shift_expr ('&' shift_expr)* def p_and_expr(s): return p_binop_expr(s, ('&',), p_shift_expr) #shift_expr: arith_expr (('<<'|'>>') arith_expr)* def p_shift_expr(s): return p_binop_expr(s, ('<<', '>>'), p_arith_expr) #arith_expr: term (('+'|'-') term)* def p_arith_expr(s): return p_binop_expr(s, ('+', '-'), p_term) #term: factor (('*'|'/'|'%') factor)* def p_term(s): return p_binop_expr(s, ('*', '/', '%', '//'), p_factor) #factor: ('+'|'-'|'~'|'&'|typecast|sizeof) factor | power def p_factor(s): # little indirection for C-ification purposes return _p_factor(s) def _p_factor(s): sy = s.sy if sy in ('+', '-', '~'): op = s.sy pos = s.position() s.next() return ExprNodes.unop_node(pos, op, p_factor(s)) elif not s.in_python_file: if sy == '&': pos = s.position() s.next() arg = p_factor(s) return ExprNodes.AmpersandNode(pos, operand = arg) elif sy == "<": return p_typecast(s) elif sy == 'IDENT' and s.systring == "sizeof": return p_sizeof(s) return p_power(s) def p_typecast(s): # s.sy == "<" pos = s.position() s.next() base_type = p_c_base_type(s) is_memslice = isinstance(base_type, Nodes.MemoryViewSliceTypeNode) is_template = isinstance(base_type, Nodes.TemplatedTypeNode) is_const = isinstance(base_type, Nodes.CConstTypeNode) if (not is_memslice and not is_template and not is_const and base_type.name is None): s.error("Unknown type") declarator = p_c_declarator(s, empty = 1) if s.sy == '?': s.next() typecheck = 1 else: typecheck = 0 s.expect(">") operand = p_factor(s) if is_memslice: return ExprNodes.CythonArrayNode(pos, base_type_node=base_type, operand=operand) return ExprNodes.TypecastNode(pos, base_type = base_type, declarator = declarator, operand = operand, typecheck = typecheck) def p_sizeof(s): # s.sy == ident "sizeof" pos = s.position() s.next() s.expect('(') # Here we decide if we are looking at an expression or type # If it is actually a type, but parsable as an expression, # we treat it as an expression here. if looking_at_expr(s): operand = p_test(s) node = ExprNodes.SizeofVarNode(pos, operand = operand) else: base_type = p_c_base_type(s) declarator = p_c_declarator(s, empty = 1) node = ExprNodes.SizeofTypeNode(pos, base_type = base_type, declarator = declarator) s.expect(')') return node def p_yield_expression(s): # s.sy == "yield" pos = s.position() s.next() is_yield_from = False if s.sy == 'from': is_yield_from = True s.next() if s.sy != ')' and s.sy not in statement_terminators: arg = p_testlist(s) else: if is_yield_from: s.error("'yield from' requires a source argument", pos=pos, fatal=False) arg = None if is_yield_from: return ExprNodes.YieldFromExprNode(pos, arg=arg) else: return ExprNodes.YieldExprNode(pos, arg=arg) def p_yield_statement(s): # s.sy == "yield" yield_expr = p_yield_expression(s) return Nodes.ExprStatNode(yield_expr.pos, expr=yield_expr) #power: atom trailer* ('**' factor)* def p_power(s): if s.systring == 'new' and s.peek()[0] == 'IDENT': return p_new_expr(s) n1 = p_atom(s) while s.sy in ('(', '[', '.'): n1 = p_trailer(s, n1) if s.sy == '**': pos = s.position() s.next() n2 = p_factor(s) n1 = ExprNodes.binop_node(pos, '**', n1, n2) return n1 def p_new_expr(s): # s.systring == 'new'. pos = s.position() s.next() cppclass = p_c_base_type(s) return p_call(s, ExprNodes.NewExprNode(pos, cppclass = cppclass)) #trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME def p_trailer(s, node1): pos = s.position() if s.sy == '(': return p_call(s, node1) elif s.sy == '[': return p_index(s, node1) else: # s.sy == '.' s.next() name = EncodedString( p_ident(s) ) return ExprNodes.AttributeNode(pos, obj = node1, attribute = name) # arglist: argument (',' argument)* [','] # argument: [test '='] test # Really [keyword '='] test def p_call_parse_args(s, allow_genexp = True): # s.sy == '(' pos = s.position() s.next() positional_args = [] keyword_args = [] star_arg = None starstar_arg = None while s.sy not in ('**', ')'): if s.sy == '*': if star_arg: s.error("only one star-arg parameter allowed", pos=s.position()) s.next() star_arg = p_test(s) else: arg = p_test(s) if s.sy == '=': s.next() if not arg.is_name: s.error("Expected an identifier before '='", pos=arg.pos) encoded_name = EncodedString(arg.name) keyword = ExprNodes.IdentifierStringNode( arg.pos, value=encoded_name) arg = p_test(s) keyword_args.append((keyword, arg)) else: if keyword_args: s.error("Non-keyword arg following keyword arg", pos=arg.pos) if star_arg: s.error("Non-keyword arg following star-arg", pos=arg.pos) positional_args.append(arg) if s.sy != ',': break s.next() if s.sy == 'for': if len(positional_args) == 1 and not star_arg: positional_args = [ p_genexp(s, positional_args[0]) ] elif s.sy == '**': s.next() starstar_arg = p_test(s) if s.sy == ',': s.next() s.expect(')') return positional_args, keyword_args, star_arg, starstar_arg def p_call_build_packed_args(pos, positional_args, keyword_args, star_arg, starstar_arg): arg_tuple = None keyword_dict = None if positional_args or not star_arg: arg_tuple = ExprNodes.TupleNode(pos, args = positional_args) if star_arg: star_arg_tuple = ExprNodes.AsTupleNode(pos, arg = star_arg) if arg_tuple: arg_tuple = ExprNodes.binop_node(pos, operator = '+', operand1 = arg_tuple, operand2 = star_arg_tuple) else: arg_tuple = star_arg_tuple if keyword_args or starstar_arg: keyword_args = [ExprNodes.DictItemNode(pos=key.pos, key=key, value=value) for key, value in keyword_args] if starstar_arg: keyword_dict = ExprNodes.KeywordArgsNode( pos, starstar_arg = starstar_arg, keyword_args = keyword_args) else: keyword_dict = ExprNodes.DictNode( pos, key_value_pairs = keyword_args) return arg_tuple, keyword_dict def p_call(s, function): # s.sy == '(' pos = s.position() positional_args, keyword_args, star_arg, starstar_arg = \ p_call_parse_args(s) if not (keyword_args or star_arg or starstar_arg): return ExprNodes.SimpleCallNode(pos, function = function, args = positional_args) else: arg_tuple, keyword_dict = p_call_build_packed_args( pos, positional_args, keyword_args, star_arg, starstar_arg) return ExprNodes.GeneralCallNode(pos, function = function, positional_args = arg_tuple, keyword_args = keyword_dict) #lambdef: 'lambda' [varargslist] ':' test #subscriptlist: subscript (',' subscript)* [','] def p_index(s, base): # s.sy == '[' pos = s.position() s.next() subscripts, is_single_value = p_subscript_list(s) if is_single_value and len(subscripts[0]) == 2: start, stop = subscripts[0] result = ExprNodes.SliceIndexNode(pos, base = base, start = start, stop = stop) else: indexes = make_slice_nodes(pos, subscripts) if is_single_value: index = indexes[0] else: index = ExprNodes.TupleNode(pos, args = indexes) result = ExprNodes.IndexNode(pos, base = base, index = index) s.expect(']') return result def p_subscript_list(s): is_single_value = True items = [p_subscript(s)] while s.sy == ',': is_single_value = False s.next() if s.sy == ']': break items.append(p_subscript(s)) return items, is_single_value #subscript: '.' '.' '.' | test | [test] ':' [test] [':' [test]] def p_subscript(s): # Parse a subscript and return a list of # 1, 2 or 3 ExprNodes, depending on how # many slice elements were encountered. pos = s.position() start = p_slice_element(s, (':',)) if s.sy != ':': return [start] s.next() stop = p_slice_element(s, (':', ',', ']')) if s.sy != ':': return [start, stop] s.next() step = p_slice_element(s, (':', ',', ']')) return [start, stop, step] def p_slice_element(s, follow_set): # Simple expression which may be missing iff # it is followed by something in follow_set. if s.sy not in follow_set: return p_test(s) else: return None def expect_ellipsis(s): s.expect('.') s.expect('.') s.expect('.') def make_slice_nodes(pos, subscripts): # Convert a list of subscripts as returned # by p_subscript_list into a list of ExprNodes, # creating SliceNodes for elements with 2 or # more components. result = [] for subscript in subscripts: if len(subscript) == 1: result.append(subscript[0]) else: result.append(make_slice_node(pos, *subscript)) return result def make_slice_node(pos, start, stop = None, step = None): if not start: start = ExprNodes.NoneNode(pos) if not stop: stop = ExprNodes.NoneNode(pos) if not step: step = ExprNodes.NoneNode(pos) return ExprNodes.SliceNode(pos, start = start, stop = stop, step = step) #atom: '(' [yield_expr|testlist_comp] ')' | '[' [listmaker] ']' | '{' [dict_or_set_maker] '}' | '`' testlist '`' | NAME | NUMBER | STRING+ def p_atom(s): pos = s.position() sy = s.sy if sy == '(': s.next() if s.sy == ')': result = ExprNodes.TupleNode(pos, args = []) elif s.sy == 'yield': result = p_yield_expression(s) else: result = p_testlist_comp(s) s.expect(')') return result elif sy == '[': return p_list_maker(s) elif sy == '{': return p_dict_or_set_maker(s) elif sy == '`': return p_backquote_expr(s) elif sy == '.': expect_ellipsis(s) return ExprNodes.EllipsisNode(pos) elif sy == 'INT': return p_int_literal(s) elif sy == 'FLOAT': value = s.systring s.next() return ExprNodes.FloatNode(pos, value = value) elif sy == 'IMAG': value = s.systring[:-1] s.next() return ExprNodes.ImagNode(pos, value = value) elif sy == 'BEGIN_STRING': kind, bytes_value, unicode_value = p_cat_string_literal(s) if kind == 'c': return ExprNodes.CharNode(pos, value = bytes_value) elif kind == 'u': return ExprNodes.UnicodeNode(pos, value = unicode_value, bytes_value = bytes_value) elif kind == 'b': return ExprNodes.BytesNode(pos, value = bytes_value) else: return ExprNodes.StringNode(pos, value = bytes_value, unicode_value = unicode_value) elif sy == 'IDENT': name = EncodedString( s.systring ) s.next() if name == "None": return ExprNodes.NoneNode(pos) elif name == "True": return ExprNodes.BoolNode(pos, value=True) elif name == "False": return ExprNodes.BoolNode(pos, value=False) elif name == "NULL" and not s.in_python_file: return ExprNodes.NullNode(pos) else: return p_name(s, name) else: s.error("Expected an identifier or literal") def p_int_literal(s): pos = s.position() value = s.systring s.next() unsigned = "" longness = "" while value[-1] in u"UuLl": if value[-1] in u"Ll": longness += "L" else: unsigned += "U" value = value[:-1] # '3L' is ambiguous in Py2 but not in Py3. '3U' and '3LL' are # illegal in Py2 Python files. All suffixes are illegal in Py3 # Python files. is_c_literal = None if unsigned: is_c_literal = True elif longness: if longness == 'LL' or s.context.language_level >= 3: is_c_literal = True if s.in_python_file: if is_c_literal: error(pos, "illegal integer literal syntax in Python source file") is_c_literal = False return ExprNodes.IntNode(pos, is_c_literal = is_c_literal, value = value, unsigned = unsigned, longness = longness) def p_name(s, name): pos = s.position() if not s.compile_time_expr and name in s.compile_time_env: value = s.compile_time_env.lookup_here(name) node = wrap_compile_time_constant(pos, value) if node is not None: return node return ExprNodes.NameNode(pos, name=name) def wrap_compile_time_constant(pos, value): rep = repr(value) if value is None: return ExprNodes.NoneNode(pos) elif value is Ellipsis: return ExprNodes.EllipsisNode(pos) elif isinstance(value, bool): return ExprNodes.BoolNode(pos, value=value) elif isinstance(value, int): return ExprNodes.IntNode(pos, value=rep) elif isinstance(value, long): return ExprNodes.IntNode(pos, value=rep, longness="L") elif isinstance(value, float): return ExprNodes.FloatNode(pos, value=rep) elif isinstance(value, _unicode): return ExprNodes.UnicodeNode(pos, value=EncodedString(value)) elif isinstance(value, _bytes): return ExprNodes.BytesNode(pos, value=BytesLiteral(value)) elif isinstance(value, tuple): args = [wrap_compile_time_constant(pos, arg) for arg in value] if None not in args: return ExprNodes.TupleNode(pos, args=args) else: # error already reported return None error(pos, "Invalid type for compile-time constant: %r (type %s)" % (value, value.__class__.__name__)) return None def p_cat_string_literal(s): # A sequence of one or more adjacent string literals. # Returns (kind, bytes_value, unicode_value) # where kind in ('b', 'c', 'u', '') kind, bytes_value, unicode_value = p_string_literal(s) if kind == 'c' or s.sy != 'BEGIN_STRING': return kind, bytes_value, unicode_value bstrings, ustrings = [bytes_value], [unicode_value] bytes_value = unicode_value = None while s.sy == 'BEGIN_STRING': pos = s.position() next_kind, next_bytes_value, next_unicode_value = p_string_literal(s) if next_kind == 'c': error(pos, "Cannot concatenate char literal with another string or char literal") elif next_kind != kind: error(pos, "Cannot mix string literals of different types, expected %s'', got %s''" % (kind, next_kind)) else: bstrings.append(next_bytes_value) ustrings.append(next_unicode_value) # join and rewrap the partial literals if kind in ('b', 'c', '') or kind == 'u' and None not in bstrings: # Py3 enforced unicode literals are parsed as bytes/unicode combination bytes_value = BytesLiteral( StringEncoding.join_bytes(bstrings) ) bytes_value.encoding = s.source_encoding if kind in ('u', ''): unicode_value = EncodedString( u''.join([ u for u in ustrings if u is not None ]) ) return kind, bytes_value, unicode_value def p_opt_string_literal(s, required_type='u'): if s.sy == 'BEGIN_STRING': kind, bytes_value, unicode_value = p_string_literal(s, required_type) if required_type == 'u': return unicode_value elif required_type == 'b': return bytes_value else: s.error("internal parser configuration error") else: return None def check_for_non_ascii_characters(string): for c in string: if c >= u'\x80': return True return False def p_string_literal(s, kind_override=None): # A single string or char literal. Returns (kind, bvalue, uvalue) # where kind in ('b', 'c', 'u', ''). The 'bvalue' is the source # code byte sequence of the string literal, 'uvalue' is the # decoded Unicode string. Either of the two may be None depending # on the 'kind' of string, only unprefixed strings have both # representations. # s.sy == 'BEGIN_STRING' pos = s.position() is_raw = False is_python3_source = s.context.language_level >= 3 has_non_ASCII_literal_characters = False kind = s.systring[:1].lower() if kind == 'r': # Py3 allows both 'br' and 'rb' as prefix if s.systring[1:2].lower() == 'b': kind = 'b' else: kind = '' is_raw = True elif kind in 'ub': is_raw = s.systring[1:2].lower() == 'r' elif kind != 'c': kind = '' if kind == '' and kind_override is None and Future.unicode_literals in s.context.future_directives: chars = StringEncoding.StrLiteralBuilder(s.source_encoding) kind = 'u' else: if kind_override is not None and kind_override in 'ub': kind = kind_override if kind == 'u': chars = StringEncoding.UnicodeLiteralBuilder() elif kind == '': chars = StringEncoding.StrLiteralBuilder(s.source_encoding) else: chars = StringEncoding.BytesLiteralBuilder(s.source_encoding) while 1: s.next() sy = s.sy systr = s.systring #print "p_string_literal: sy =", sy, repr(s.systring) ### if sy == 'CHARS': chars.append(systr) if is_python3_source and not has_non_ASCII_literal_characters and check_for_non_ascii_characters(systr): has_non_ASCII_literal_characters = True elif sy == 'ESCAPE': if is_raw: chars.append(systr) if is_python3_source and not has_non_ASCII_literal_characters \ and check_for_non_ascii_characters(systr): has_non_ASCII_literal_characters = True else: c = systr[1] if c in u"01234567": chars.append_charval( int(systr[1:], 8) ) elif c in u"'\"\\": chars.append(c) elif c in u"abfnrtv": chars.append( StringEncoding.char_from_escape_sequence(systr)) elif c == u'\n': pass elif c == u'x': # \xXX if len(systr) == 4: chars.append_charval( int(systr[2:], 16) ) else: s.error("Invalid hex escape '%s'" % systr, fatal=False) elif c in u'NUu' and kind in ('u', ''): # \uxxxx, \Uxxxxxxxx, \N{...} chrval = -1 if c == u'N': try: chrval = ord(lookup_unicodechar(systr[3:-1])) except KeyError: s.error("Unknown Unicode character name %s" % repr(systr[3:-1]).lstrip('u')) elif len(systr) in (6,10): chrval = int(systr[2:], 16) if chrval > 1114111: # sys.maxunicode: s.error("Invalid unicode escape '%s'" % systr) chrval = -1 else: s.error("Invalid unicode escape '%s'" % systr, fatal=False) if chrval >= 0: chars.append_uescape(chrval, systr) else: chars.append(u'\\' + systr[1:]) if is_python3_source and not has_non_ASCII_literal_characters \ and check_for_non_ascii_characters(systr): has_non_ASCII_literal_characters = True elif sy == 'NEWLINE': chars.append(u'\n') elif sy == 'END_STRING': break elif sy == 'EOF': s.error("Unclosed string literal", pos=pos) else: s.error("Unexpected token %r:%r in string literal" % (sy, s.systring)) if kind == 'c': unicode_value = None bytes_value = chars.getchar() if len(bytes_value) != 1: error(pos, u"invalid character literal: %r" % bytes_value) else: bytes_value, unicode_value = chars.getstrings() if is_python3_source and has_non_ASCII_literal_characters: # Python 3 forbids literal non-ASCII characters in byte strings if kind != 'u': s.error("bytes can only contain ASCII literal characters.", pos=pos, fatal=False) bytes_value = None s.next() return (kind, bytes_value, unicode_value) # list_display ::= "[" [listmaker] "]" # listmaker ::= expression ( comp_for | ( "," expression )* [","] ) # comp_iter ::= comp_for | comp_if # comp_for ::= "for" expression_list "in" testlist [comp_iter] # comp_if ::= "if" test [comp_iter] def p_list_maker(s): # s.sy == '[' pos = s.position() s.next() if s.sy == ']': s.expect(']') return ExprNodes.ListNode(pos, args = []) expr = p_test(s) if s.sy == 'for': append = ExprNodes.ComprehensionAppendNode(pos, expr=expr) loop = p_comp_for(s, append) s.expect(']') return ExprNodes.ComprehensionNode( pos, loop=loop, append=append, type = Builtin.list_type, # list comprehensions leak their loop variable in Py2 has_local_scope = s.context.language_level >= 3) else: if s.sy == ',': s.next() exprs = p_simple_expr_list(s, expr) else: exprs = [expr] s.expect(']') return ExprNodes.ListNode(pos, args = exprs) def p_comp_iter(s, body): if s.sy == 'for': return p_comp_for(s, body) elif s.sy == 'if': return p_comp_if(s, body) else: # insert the 'append' operation into the loop return body def p_comp_for(s, body): # s.sy == 'for' pos = s.position() s.next() kw = p_for_bounds(s, allow_testlist=False) kw.update(else_clause = None, body = p_comp_iter(s, body)) return Nodes.ForStatNode(pos, **kw) def p_comp_if(s, body): # s.sy == 'if' pos = s.position() s.next() test = p_test_nocond(s) return Nodes.IfStatNode(pos, if_clauses = [Nodes.IfClauseNode(pos, condition = test, body = p_comp_iter(s, body))], else_clause = None ) #dictmaker: test ':' test (',' test ':' test)* [','] def p_dict_or_set_maker(s): # s.sy == '{' pos = s.position() s.next() if s.sy == '}': s.next() return ExprNodes.DictNode(pos, key_value_pairs = []) item = p_test(s) if s.sy == ',' or s.sy == '}': # set literal values = [item] while s.sy == ',': s.next() if s.sy == '}': break values.append( p_test(s) ) s.expect('}') return ExprNodes.SetNode(pos, args=values) elif s.sy == 'for': # set comprehension append = ExprNodes.ComprehensionAppendNode( item.pos, expr=item) loop = p_comp_for(s, append) s.expect('}') return ExprNodes.ComprehensionNode( pos, loop=loop, append=append, type=Builtin.set_type) elif s.sy == ':': # dict literal or comprehension key = item s.next() value = p_test(s) if s.sy == 'for': # dict comprehension append = ExprNodes.DictComprehensionAppendNode( item.pos, key_expr=key, value_expr=value) loop = p_comp_for(s, append) s.expect('}') return ExprNodes.ComprehensionNode( pos, loop=loop, append=append, type=Builtin.dict_type) else: # dict literal items = [ExprNodes.DictItemNode(key.pos, key=key, value=value)] while s.sy == ',': s.next() if s.sy == '}': break key = p_test(s) s.expect(':') value = p_test(s) items.append( ExprNodes.DictItemNode(key.pos, key=key, value=value)) s.expect('}') return ExprNodes.DictNode(pos, key_value_pairs=items) else: # raise an error s.expect('}') return ExprNodes.DictNode(pos, key_value_pairs = []) # NOTE: no longer in Py3 :) def p_backquote_expr(s): # s.sy == '`' pos = s.position() s.next() args = [p_test(s)] while s.sy == ',': s.next() args.append(p_test(s)) s.expect('`') if len(args) == 1: arg = args[0] else: arg = ExprNodes.TupleNode(pos, args = args) return ExprNodes.BackquoteNode(pos, arg = arg) def p_simple_expr_list(s, expr=None): exprs = expr is not None and [expr] or [] while s.sy not in expr_terminators: exprs.append( p_test(s) ) if s.sy != ',': break s.next() return exprs def p_test_or_starred_expr_list(s, expr=None): exprs = expr is not None and [expr] or [] while s.sy not in expr_terminators: exprs.append( p_test_or_starred_expr(s) ) if s.sy != ',': break s.next() return exprs #testlist: test (',' test)* [','] def p_testlist(s): pos = s.position() expr = p_test(s) if s.sy == ',': s.next() exprs = p_simple_expr_list(s, expr) return ExprNodes.TupleNode(pos, args = exprs) else: return expr # testlist_star_expr: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] ) def p_testlist_star_expr(s): pos = s.position() expr = p_test_or_starred_expr(s) if s.sy == ',': s.next() exprs = p_test_or_starred_expr_list(s, expr) return ExprNodes.TupleNode(pos, args = exprs) else: return expr # testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] ) def p_testlist_comp(s): pos = s.position() expr = p_test_or_starred_expr(s) if s.sy == ',': s.next() exprs = p_test_or_starred_expr_list(s, expr) return ExprNodes.TupleNode(pos, args = exprs) elif s.sy == 'for': return p_genexp(s, expr) else: return expr def p_genexp(s, expr): # s.sy == 'for' loop = p_comp_for(s, Nodes.ExprStatNode( expr.pos, expr = ExprNodes.YieldExprNode(expr.pos, arg=expr))) return ExprNodes.GeneratorExpressionNode(expr.pos, loop=loop) expr_terminators = cython.declare(set, set([ ')', ']', '}', ':', '=', 'NEWLINE'])) #------------------------------------------------------- # # Statements # #------------------------------------------------------- def p_global_statement(s): # assume s.sy == 'global' pos = s.position() s.next() names = p_ident_list(s) return Nodes.GlobalNode(pos, names = names) def p_nonlocal_statement(s): pos = s.position() s.next() names = p_ident_list(s) return Nodes.NonlocalNode(pos, names = names) def p_expression_or_assignment(s): expr_list = [p_testlist_star_expr(s)] if s.sy == '=' and expr_list[0].is_starred: # This is a common enough error to make when learning Cython to let # it fail as early as possible and give a very clear error message. s.error("a starred assignment target must be in a list or tuple" " - maybe you meant to use an index assignment: var[0] = ...", pos=expr_list[0].pos) while s.sy == '=': s.next() if s.sy == 'yield': expr = p_yield_expression(s) else: expr = p_testlist_star_expr(s) expr_list.append(expr) if len(expr_list) == 1: if re.match(r"([+*/\%^\&|-]|<<|>>|\*\*|//)=", s.sy): lhs = expr_list[0] if isinstance(lhs, ExprNodes.SliceIndexNode): # implementation requires IndexNode lhs = ExprNodes.IndexNode( lhs.pos, base=lhs.base, index=make_slice_node(lhs.pos, lhs.start, lhs.stop)) elif not isinstance(lhs, (ExprNodes.AttributeNode, ExprNodes.IndexNode, ExprNodes.NameNode) ): error(lhs.pos, "Illegal operand for inplace operation.") operator = s.sy[:-1] s.next() if s.sy == 'yield': rhs = p_yield_expression(s) else: rhs = p_testlist(s) return Nodes.InPlaceAssignmentNode(lhs.pos, operator = operator, lhs = lhs, rhs = rhs) expr = expr_list[0] return Nodes.ExprStatNode(expr.pos, expr=expr) rhs = expr_list[-1] if len(expr_list) == 2: return Nodes.SingleAssignmentNode(rhs.pos, lhs = expr_list[0], rhs = rhs) else: return Nodes.CascadedAssignmentNode(rhs.pos, lhs_list = expr_list[:-1], rhs = rhs) def p_print_statement(s): # s.sy == 'print' pos = s.position() ends_with_comma = 0 s.next() if s.sy == '>>': s.next() stream = p_test(s) if s.sy == ',': s.next() ends_with_comma = s.sy in ('NEWLINE', 'EOF') else: stream = None args = [] if s.sy not in ('NEWLINE', 'EOF'): args.append(p_test(s)) while s.sy == ',': s.next() if s.sy in ('NEWLINE', 'EOF'): ends_with_comma = 1 break args.append(p_test(s)) arg_tuple = ExprNodes.TupleNode(pos, args = args) return Nodes.PrintStatNode(pos, arg_tuple = arg_tuple, stream = stream, append_newline = not ends_with_comma) def p_exec_statement(s): # s.sy == 'exec' pos = s.position() s.next() code = p_bit_expr(s) if isinstance(code, ExprNodes.TupleNode): # Py3 compatibility syntax tuple_variant = True args = code.args if len(args) not in (2, 3): s.error("expected tuple of length 2 or 3, got length %d" % len(args), pos=pos, fatal=False) args = [code] else: tuple_variant = False args = [code] if s.sy == 'in': if tuple_variant: s.error("tuple variant of exec does not support additional 'in' arguments", fatal=False) s.next() args.append(p_test(s)) if s.sy == ',': s.next() args.append(p_test(s)) return Nodes.ExecStatNode(pos, args=args) def p_del_statement(s): # s.sy == 'del' pos = s.position() s.next() # FIXME: 'exprlist' in Python args = p_simple_expr_list(s) return Nodes.DelStatNode(pos, args = args) def p_pass_statement(s, with_newline = 0): pos = s.position() s.expect('pass') if with_newline: s.expect_newline("Expected a newline") return Nodes.PassStatNode(pos) def p_break_statement(s): # s.sy == 'break' pos = s.position() s.next() return Nodes.BreakStatNode(pos) def p_continue_statement(s): # s.sy == 'continue' pos = s.position() s.next() return Nodes.ContinueStatNode(pos) def p_return_statement(s): # s.sy == 'return' pos = s.position() s.next() if s.sy not in statement_terminators: value = p_testlist(s) else: value = None return Nodes.ReturnStatNode(pos, value = value) def p_raise_statement(s): # s.sy == 'raise' pos = s.position() s.next() exc_type = None exc_value = None exc_tb = None cause = None if s.sy not in statement_terminators: exc_type = p_test(s) if s.sy == ',': s.next() exc_value = p_test(s) if s.sy == ',': s.next() exc_tb = p_test(s) elif s.sy == 'from': s.next() cause = p_test(s) if exc_type or exc_value or exc_tb: return Nodes.RaiseStatNode(pos, exc_type = exc_type, exc_value = exc_value, exc_tb = exc_tb, cause = cause) else: return Nodes.ReraiseStatNode(pos) def p_import_statement(s): # s.sy in ('import', 'cimport') pos = s.position() kind = s.sy s.next() items = [p_dotted_name(s, as_allowed = 1)] while s.sy == ',': s.next() items.append(p_dotted_name(s, as_allowed = 1)) stats = [] for pos, target_name, dotted_name, as_name in items: dotted_name = EncodedString(dotted_name) if kind == 'cimport': stat = Nodes.CImportStatNode(pos, module_name = dotted_name, as_name = as_name) else: if as_name and "." in dotted_name: name_list = ExprNodes.ListNode(pos, args = [ ExprNodes.IdentifierStringNode(pos, value = EncodedString("*"))]) else: name_list = None stat = Nodes.SingleAssignmentNode(pos, lhs = ExprNodes.NameNode(pos, name = as_name or target_name), rhs = ExprNodes.ImportNode(pos, module_name = ExprNodes.IdentifierStringNode( pos, value = dotted_name), level = None, name_list = name_list)) stats.append(stat) return Nodes.StatListNode(pos, stats = stats) def p_from_import_statement(s, first_statement = 0): # s.sy == 'from' pos = s.position() s.next() if s.sy == '.': # count relative import level level = 0 while s.sy == '.': level += 1 s.next() if s.sy == 'cimport': s.error("Relative cimport is not supported yet") else: level = None if level is not None and s.sy == 'import': # we are dealing with "from .. import foo, bar" dotted_name_pos, dotted_name = s.position(), '' elif level is not None and s.sy == 'cimport': # "from .. cimport" s.error("Relative cimport is not supported yet") else: (dotted_name_pos, _, dotted_name, _) = \ p_dotted_name(s, as_allowed = 0) if s.sy in ('import', 'cimport'): kind = s.sy s.next() else: s.error("Expected 'import' or 'cimport'") is_cimport = kind == 'cimport' is_parenthesized = False if s.sy == '*': imported_names = [(s.position(), "*", None, None)] s.next() else: if s.sy == '(': is_parenthesized = True s.next() imported_names = [p_imported_name(s, is_cimport)] while s.sy == ',': s.next() if is_parenthesized and s.sy == ')': break imported_names.append(p_imported_name(s, is_cimport)) if is_parenthesized: s.expect(')') dotted_name = EncodedString(dotted_name) if dotted_name == '__future__': if not first_statement: s.error("from __future__ imports must occur at the beginning of the file") elif level is not None: s.error("invalid syntax") else: for (name_pos, name, as_name, kind) in imported_names: if name == "braces": s.error("not a chance", name_pos) break try: directive = getattr(Future, name) except AttributeError: s.error("future feature %s is not defined" % name, name_pos) break s.context.future_directives.add(directive) return Nodes.PassStatNode(pos) elif kind == 'cimport': return Nodes.FromCImportStatNode(pos, module_name = dotted_name, imported_names = imported_names) else: imported_name_strings = [] items = [] for (name_pos, name, as_name, kind) in imported_names: encoded_name = EncodedString(name) imported_name_strings.append( ExprNodes.IdentifierStringNode(name_pos, value = encoded_name)) items.append( (name, ExprNodes.NameNode(name_pos, name = as_name or name))) import_list = ExprNodes.ListNode( imported_names[0][0], args = imported_name_strings) dotted_name = EncodedString(dotted_name) return Nodes.FromImportStatNode(pos, module = ExprNodes.ImportNode(dotted_name_pos, module_name = ExprNodes.IdentifierStringNode(pos, value = dotted_name), level = level, name_list = import_list), items = items) imported_name_kinds = cython.declare( set, set(['class', 'struct', 'union'])) def p_imported_name(s, is_cimport): pos = s.position() kind = None if is_cimport and s.systring in imported_name_kinds: kind = s.systring s.next() name = p_ident(s) as_name = p_as_name(s) return (pos, name, as_name, kind) def p_dotted_name(s, as_allowed): pos = s.position() target_name = p_ident(s) as_name = None names = [target_name] while s.sy == '.': s.next() names.append(p_ident(s)) if as_allowed: as_name = p_as_name(s) return (pos, target_name, u'.'.join(names), as_name) def p_as_name(s): if s.sy == 'IDENT' and s.systring == 'as': s.next() return p_ident(s) else: return None def p_assert_statement(s): # s.sy == 'assert' pos = s.position() s.next() cond = p_test(s) if s.sy == ',': s.next() value = p_test(s) else: value = None return Nodes.AssertStatNode(pos, cond = cond, value = value) statement_terminators = cython.declare(set, set([';', 'NEWLINE', 'EOF'])) def p_if_statement(s): # s.sy == 'if' pos = s.position() s.next() if_clauses = [p_if_clause(s)] while s.sy == 'elif': s.next() if_clauses.append(p_if_clause(s)) else_clause = p_else_clause(s) return Nodes.IfStatNode(pos, if_clauses = if_clauses, else_clause = else_clause) def p_if_clause(s): pos = s.position() test = p_test(s) body = p_suite(s) return Nodes.IfClauseNode(pos, condition = test, body = body) def p_else_clause(s): if s.sy == 'else': s.next() return p_suite(s) else: return None def p_while_statement(s): # s.sy == 'while' pos = s.position() s.next() test = p_test(s) body = p_suite(s) else_clause = p_else_clause(s) return Nodes.WhileStatNode(pos, condition = test, body = body, else_clause = else_clause) def p_for_statement(s): # s.sy == 'for' pos = s.position() s.next() kw = p_for_bounds(s, allow_testlist=True) body = p_suite(s) else_clause = p_else_clause(s) kw.update(body = body, else_clause = else_clause) return Nodes.ForStatNode(pos, **kw) def p_for_bounds(s, allow_testlist=True): target = p_for_target(s) if s.sy == 'in': s.next() iterator = p_for_iterator(s, allow_testlist) return dict( target = target, iterator = iterator ) elif not s.in_python_file: if s.sy == 'from': s.next() bound1 = p_bit_expr(s) else: # Support shorter "for a <= x < b" syntax bound1, target = target, None rel1 = p_for_from_relation(s) name2_pos = s.position() name2 = p_ident(s) rel2_pos = s.position() rel2 = p_for_from_relation(s) bound2 = p_bit_expr(s) step = p_for_from_step(s) if target is None: target = ExprNodes.NameNode(name2_pos, name = name2) else: if not target.is_name: error(target.pos, "Target of for-from statement must be a variable name") elif name2 != target.name: error(name2_pos, "Variable name in for-from range does not match target") if rel1[0] != rel2[0]: error(rel2_pos, "Relation directions in for-from do not match") return dict(target = target, bound1 = bound1, relation1 = rel1, relation2 = rel2, bound2 = bound2, step = step, ) else: s.expect('in') return {} def p_for_from_relation(s): if s.sy in inequality_relations: op = s.sy s.next() return op else: s.error("Expected one of '<', '<=', '>' '>='") def p_for_from_step(s): if s.sy == 'IDENT' and s.systring == 'by': s.next() step = p_bit_expr(s) return step else: return None inequality_relations = cython.declare(set, set(['<', '<=', '>', '>='])) def p_target(s, terminator): pos = s.position() expr = p_starred_expr(s) if s.sy == ',': s.next() exprs = [expr] while s.sy != terminator: exprs.append(p_starred_expr(s)) if s.sy != ',': break s.next() return ExprNodes.TupleNode(pos, args = exprs) else: return expr def p_for_target(s): return p_target(s, 'in') def p_for_iterator(s, allow_testlist=True): pos = s.position() if allow_testlist: expr = p_testlist(s) else: expr = p_or_test(s) return ExprNodes.IteratorNode(pos, sequence = expr) def p_try_statement(s): # s.sy == 'try' pos = s.position() s.next() body = p_suite(s) except_clauses = [] else_clause = None if s.sy in ('except', 'else'): while s.sy == 'except': except_clauses.append(p_except_clause(s)) if s.sy == 'else': s.next() else_clause = p_suite(s) body = Nodes.TryExceptStatNode(pos, body = body, except_clauses = except_clauses, else_clause = else_clause) if s.sy != 'finally': return body # try-except-finally is equivalent to nested try-except/try-finally if s.sy == 'finally': s.next() finally_clause = p_suite(s) return Nodes.TryFinallyStatNode(pos, body = body, finally_clause = finally_clause) else: s.error("Expected 'except' or 'finally'") def p_except_clause(s): # s.sy == 'except' pos = s.position() s.next() exc_type = None exc_value = None is_except_as = False if s.sy != ':': exc_type = p_test(s) # normalise into list of single exception tests if isinstance(exc_type, ExprNodes.TupleNode): exc_type = exc_type.args else: exc_type = [exc_type] if s.sy == ',' or (s.sy == 'IDENT' and s.systring == 'as' and s.context.language_level == 2): s.next() exc_value = p_test(s) elif s.sy == 'IDENT' and s.systring == 'as': # Py3 syntax requires a name here s.next() pos2 = s.position() name = p_ident(s) exc_value = ExprNodes.NameNode(pos2, name = name) is_except_as = True body = p_suite(s) return Nodes.ExceptClauseNode(pos, pattern = exc_type, target = exc_value, body = body, is_except_as=is_except_as) def p_include_statement(s, ctx): pos = s.position() s.next() # 'include' unicode_include_file_name = p_string_literal(s, 'u')[2] s.expect_newline("Syntax error in include statement") if s.compile_time_eval: include_file_name = unicode_include_file_name include_file_path = s.context.find_include_file(include_file_name, pos) if include_file_path: s.included_files.append(include_file_name) f = Utils.open_source_file(include_file_path, mode="rU") source_desc = FileSourceDescriptor(include_file_path) s2 = PyrexScanner(f, source_desc, s, source_encoding=f.encoding, parse_comments=s.parse_comments) try: tree = p_statement_list(s2, ctx) finally: f.close() return tree else: return None else: return Nodes.PassStatNode(pos) def p_with_statement(s): s.next() # 'with' if s.systring == 'template' and not s.in_python_file: node = p_with_template(s) else: node = p_with_items(s) return node def p_with_items(s): pos = s.position() if not s.in_python_file and s.sy == 'IDENT' and s.systring in ('nogil', 'gil'): state = s.systring s.next() if s.sy == ',': s.next() body = p_with_items(s) else: body = p_suite(s) return Nodes.GILStatNode(pos, state = state, body = body) else: manager = p_test(s) target = None if s.sy == 'IDENT' and s.systring == 'as': s.next() target = p_starred_expr(s) if s.sy == ',': s.next() body = p_with_items(s) else: body = p_suite(s) return Nodes.WithStatNode(pos, manager = manager, target = target, body = body) def p_with_template(s): pos = s.position() templates = [] s.next() s.expect('[') templates.append(s.systring) s.next() while s.systring == ',': s.next() templates.append(s.systring) s.next() s.expect(']') if s.sy == ':': s.next() s.expect_newline("Syntax error in template function declaration") s.expect_indent() body_ctx = Ctx() body_ctx.templates = templates func_or_var = p_c_func_or_var_declaration(s, pos, body_ctx) s.expect_dedent() return func_or_var else: error(pos, "Syntax error in template function declaration") def p_simple_statement(s, first_statement = 0): #print "p_simple_statement:", s.sy, s.systring ### if s.sy == 'global': node = p_global_statement(s) elif s.sy == 'nonlocal': node = p_nonlocal_statement(s) elif s.sy == 'print': node = p_print_statement(s) elif s.sy == 'exec': node = p_exec_statement(s) elif s.sy == 'del': node = p_del_statement(s) elif s.sy == 'break': node = p_break_statement(s) elif s.sy == 'continue': node = p_continue_statement(s) elif s.sy == 'return': node = p_return_statement(s) elif s.sy == 'raise': node = p_raise_statement(s) elif s.sy in ('import', 'cimport'): node = p_import_statement(s) elif s.sy == 'from': node = p_from_import_statement(s, first_statement = first_statement) elif s.sy == 'yield': node = p_yield_statement(s) elif s.sy == 'assert': node = p_assert_statement(s) elif s.sy == 'pass': node = p_pass_statement(s) else: node = p_expression_or_assignment(s) return node def p_simple_statement_list(s, ctx, first_statement = 0): # Parse a series of simple statements on one line # separated by semicolons. stat = p_simple_statement(s, first_statement = first_statement) pos = stat.pos stats = [] if not isinstance(stat, Nodes.PassStatNode): stats.append(stat) while s.sy == ';': #print "p_simple_statement_list: maybe more to follow" ### s.next() if s.sy in ('NEWLINE', 'EOF'): break stat = p_simple_statement(s, first_statement = first_statement) if isinstance(stat, Nodes.PassStatNode): continue stats.append(stat) first_statement = False if not stats: stat = Nodes.PassStatNode(pos) elif len(stats) == 1: stat = stats[0] else: stat = Nodes.StatListNode(pos, stats = stats) s.expect_newline("Syntax error in simple statement list") return stat def p_compile_time_expr(s): old = s.compile_time_expr s.compile_time_expr = 1 expr = p_testlist(s) s.compile_time_expr = old return expr def p_DEF_statement(s): pos = s.position() denv = s.compile_time_env s.next() # 'DEF' name = p_ident(s) s.expect('=') expr = p_compile_time_expr(s) value = expr.compile_time_value(denv) #print "p_DEF_statement: %s = %r" % (name, value) ### denv.declare(name, value) s.expect_newline() return Nodes.PassStatNode(pos) def p_IF_statement(s, ctx): pos = s.position() saved_eval = s.compile_time_eval current_eval = saved_eval denv = s.compile_time_env result = None while 1: s.next() # 'IF' or 'ELIF' expr = p_compile_time_expr(s) s.compile_time_eval = current_eval and bool(expr.compile_time_value(denv)) body = p_suite(s, ctx) if s.compile_time_eval: result = body current_eval = 0 if s.sy != 'ELIF': break if s.sy == 'ELSE': s.next() s.compile_time_eval = current_eval body = p_suite(s, ctx) if current_eval: result = body if not result: result = Nodes.PassStatNode(pos) s.compile_time_eval = saved_eval return result def p_statement(s, ctx, first_statement = 0): cdef_flag = ctx.cdef_flag decorators = None if s.sy == 'ctypedef': if ctx.level not in ('module', 'module_pxd'): s.error("ctypedef statement not allowed here") #if ctx.api: # error(s.position(), "'api' not allowed with 'ctypedef'") return p_ctypedef_statement(s, ctx) elif s.sy == 'DEF': return p_DEF_statement(s) elif s.sy == 'IF': return p_IF_statement(s, ctx) elif s.sy == 'DECORATOR': if ctx.level not in ('module', 'class', 'c_class', 'function', 'property', 'module_pxd', 'c_class_pxd', 'other'): s.error('decorator not allowed here') s.level = ctx.level decorators = p_decorators(s) bad_toks = 'def', 'cdef', 'cpdef', 'class' if not ctx.allow_struct_enum_decorator and s.sy not in bad_toks: s.error("Decorators can only be followed by functions or classes") elif s.sy == 'pass' and cdef_flag: # empty cdef block return p_pass_statement(s, with_newline = 1) overridable = 0 if s.sy == 'cdef': cdef_flag = 1 s.next() elif s.sy == 'cpdef': cdef_flag = 1 overridable = 1 s.next() if cdef_flag: if ctx.level not in ('module', 'module_pxd', 'function', 'c_class', 'c_class_pxd'): s.error('cdef statement not allowed here') s.level = ctx.level node = p_cdef_statement(s, ctx(overridable = overridable)) if decorators is not None: tup = Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode if ctx.allow_struct_enum_decorator: tup += Nodes.CStructOrUnionDefNode, Nodes.CEnumDefNode if not isinstance(node, tup): s.error("Decorators can only be followed by functions or classes") node.decorators = decorators return node else: if ctx.api: s.error("'api' not allowed with this statement", fatal=False) elif s.sy == 'def': # def statements aren't allowed in pxd files, except # as part of a cdef class if ('pxd' in ctx.level) and (ctx.level != 'c_class_pxd'): s.error('def statement not allowed here') s.level = ctx.level return p_def_statement(s, decorators) elif s.sy == 'class': if ctx.level not in ('module', 'function', 'class', 'other'): s.error("class definition not allowed here") return p_class_statement(s, decorators) elif s.sy == 'include': if ctx.level not in ('module', 'module_pxd'): s.error("include statement not allowed here") return p_include_statement(s, ctx) elif ctx.level == 'c_class' and s.sy == 'IDENT' and s.systring == 'property': return p_property_decl(s) elif s.sy == 'pass' and ctx.level != 'property': return p_pass_statement(s, with_newline=True) else: if ctx.level in ('c_class_pxd', 'property'): node = p_ignorable_statement(s) if node is not None: return node s.error("Executable statement not allowed here") if s.sy == 'if': return p_if_statement(s) elif s.sy == 'while': return p_while_statement(s) elif s.sy == 'for': return p_for_statement(s) elif s.sy == 'try': return p_try_statement(s) elif s.sy == 'with': return p_with_statement(s) else: return p_simple_statement_list( s, ctx, first_statement = first_statement) def p_statement_list(s, ctx, first_statement = 0): # Parse a series of statements separated by newlines. pos = s.position() stats = [] while s.sy not in ('DEDENT', 'EOF'): stat = p_statement(s, ctx, first_statement = first_statement) if isinstance(stat, Nodes.PassStatNode): continue stats.append(stat) first_statement = False if not stats: return Nodes.PassStatNode(pos) elif len(stats) == 1: return stats[0] else: return Nodes.StatListNode(pos, stats = stats) def p_suite(s, ctx=Ctx()): return p_suite_with_docstring(s, ctx, with_doc_only=False)[1] def p_suite_with_docstring(s, ctx, with_doc_only=False): s.expect(':') doc = None if s.sy == 'NEWLINE': s.next() s.expect_indent() if with_doc_only: doc = p_doc_string(s) body = p_statement_list(s, ctx) s.expect_dedent() else: if ctx.api: s.error("'api' not allowed with this statement", fatal=False) if ctx.level in ('module', 'class', 'function', 'other'): body = p_simple_statement_list(s, ctx) else: body = p_pass_statement(s) s.expect_newline("Syntax error in declarations") if not with_doc_only: doc, body = _extract_docstring(body) return doc, body def p_positional_and_keyword_args(s, end_sy_set, templates = None): """ Parses positional and keyword arguments. end_sy_set should contain any s.sy that terminate the argument list. Argument expansion (* and **) are not allowed. Returns: (positional_args, keyword_args) """ positional_args = [] keyword_args = [] pos_idx = 0 while s.sy not in end_sy_set: if s.sy == '*' or s.sy == '**': s.error('Argument expansion not allowed here.', fatal=False) parsed_type = False if s.sy == 'IDENT' and s.peek()[0] == '=': ident = s.systring s.next() # s.sy is '=' s.next() if looking_at_expr(s): arg = p_test(s) else: base_type = p_c_base_type(s, templates = templates) declarator = p_c_declarator(s, empty = 1) arg = Nodes.CComplexBaseTypeNode(base_type.pos, base_type = base_type, declarator = declarator) parsed_type = True keyword_node = ExprNodes.IdentifierStringNode( arg.pos, value = EncodedString(ident)) keyword_args.append((keyword_node, arg)) was_keyword = True else: if looking_at_expr(s): arg = p_test(s) else: base_type = p_c_base_type(s, templates = templates) declarator = p_c_declarator(s, empty = 1) arg = Nodes.CComplexBaseTypeNode(base_type.pos, base_type = base_type, declarator = declarator) parsed_type = True positional_args.append(arg) pos_idx += 1 if len(keyword_args) > 0: s.error("Non-keyword arg following keyword arg", pos=arg.pos) if s.sy != ',': if s.sy not in end_sy_set: if parsed_type: s.error("Unmatched %s" % " or ".join(end_sy_set)) break s.next() return positional_args, keyword_args def p_c_base_type(s, self_flag = 0, nonempty = 0, templates = None): # If self_flag is true, this is the base type for the # self argument of a C method of an extension type. if s.sy == '(': return p_c_complex_base_type(s, templates = templates) else: return p_c_simple_base_type(s, self_flag, nonempty = nonempty, templates = templates) def p_calling_convention(s): if s.sy == 'IDENT' and s.systring in calling_convention_words: result = s.systring s.next() return result else: return "" calling_convention_words = cython.declare( set, set(["__stdcall", "__cdecl", "__fastcall"])) def p_c_complex_base_type(s, templates = None): # s.sy == '(' pos = s.position() s.next() base_type = p_c_base_type(s, templates = templates) declarator = p_c_declarator(s, empty = 1) s.expect(')') type_node = Nodes.CComplexBaseTypeNode(pos, base_type = base_type, declarator = declarator) if s.sy == '[': if is_memoryviewslice_access(s): type_node = p_memoryviewslice_access(s, type_node) else: type_node = p_buffer_or_template(s, type_node, templates) return type_node def p_c_simple_base_type(s, self_flag, nonempty, templates = None): #print "p_c_simple_base_type: self_flag =", self_flag, nonempty is_basic = 0 signed = 1 longness = 0 complex = 0 module_path = [] pos = s.position() if not s.sy == 'IDENT': error(pos, "Expected an identifier, found '%s'" % s.sy) if s.systring == 'const': s.next() base_type = p_c_base_type(s, self_flag = self_flag, nonempty = nonempty, templates = templates) return Nodes.CConstTypeNode(pos, base_type = base_type) if looking_at_base_type(s): #print "p_c_simple_base_type: looking_at_base_type at", s.position() is_basic = 1 if s.sy == 'IDENT' and s.systring in special_basic_c_types: signed, longness = special_basic_c_types[s.systring] name = s.systring s.next() else: signed, longness = p_sign_and_longness(s) if s.sy == 'IDENT' and s.systring in basic_c_type_names: name = s.systring s.next() else: name = 'int' # long [int], short [int], long [int] complex, etc. if s.sy == 'IDENT' and s.systring == 'complex': complex = 1 s.next() elif looking_at_dotted_name(s): #print "p_c_simple_base_type: looking_at_type_name at", s.position() name = s.systring s.next() while s.sy == '.': module_path.append(name) s.next() name = p_ident(s) else: name = s.systring s.next() if nonempty and s.sy != 'IDENT': # Make sure this is not a declaration of a variable or function. if s.sy == '(': s.next() if (s.sy == '*' or s.sy == '**' or s.sy == '&' or (s.sy == 'IDENT' and s.systring in calling_convention_words)): s.put_back('(', '(') else: s.put_back('(', '(') s.put_back('IDENT', name) name = None elif s.sy not in ('*', '**', '[', '&'): s.put_back('IDENT', name) name = None type_node = Nodes.CSimpleBaseTypeNode(pos, name = name, module_path = module_path, is_basic_c_type = is_basic, signed = signed, complex = complex, longness = longness, is_self_arg = self_flag, templates = templates) # declarations here. if s.sy == '[': if is_memoryviewslice_access(s): type_node = p_memoryviewslice_access(s, type_node) else: type_node = p_buffer_or_template(s, type_node, templates) if s.sy == '.': s.next() name = p_ident(s) type_node = Nodes.CNestedBaseTypeNode(pos, base_type = type_node, name = name) return type_node def p_buffer_or_template(s, base_type_node, templates): # s.sy == '[' pos = s.position() s.next() # Note that buffer_positional_options_count=1, so the only positional argument is dtype. # For templated types, all parameters are types. positional_args, keyword_args = ( p_positional_and_keyword_args(s, (']',), templates) ) s.expect(']') if s.sy == '[': base_type_node = p_buffer_or_template(s, base_type_node, templates) keyword_dict = ExprNodes.DictNode(pos, key_value_pairs = [ ExprNodes.DictItemNode(pos=key.pos, key=key, value=value) for key, value in keyword_args ]) result = Nodes.TemplatedTypeNode(pos, positional_args = positional_args, keyword_args = keyword_dict, base_type_node = base_type_node) return result def p_bracketed_base_type(s, base_type_node, nonempty, empty): # s.sy == '[' if empty and not nonempty: # sizeof-like thing. Only anonymous C arrays allowed (int[SIZE]). return base_type_node elif not empty and nonempty: # declaration of either memoryview slice or buffer. if is_memoryviewslice_access(s): return p_memoryviewslice_access(s, base_type_node) else: return p_buffer_or_template(s, base_type_node, None) # return p_buffer_access(s, base_type_node) elif not empty and not nonempty: # only anonymous C arrays and memoryview slice arrays here. We # disallow buffer declarations for now, due to ambiguity with anonymous # C arrays. if is_memoryviewslice_access(s): return p_memoryviewslice_access(s, base_type_node) else: return base_type_node def is_memoryviewslice_access(s): # s.sy == '[' # a memoryview slice declaration is distinguishable from a buffer access # declaration by the first entry in the bracketed list. The buffer will # not have an unnested colon in the first entry; the memoryview slice will. saved = [(s.sy, s.systring)] s.next() retval = False if s.systring == ':': retval = True elif s.sy == 'INT': saved.append((s.sy, s.systring)) s.next() if s.sy == ':': retval = True for sv in saved[::-1]: s.put_back(*sv) return retval def p_memoryviewslice_access(s, base_type_node): # s.sy == '[' pos = s.position() s.next() subscripts, _ = p_subscript_list(s) # make sure each entry in subscripts is a slice for subscript in subscripts: if len(subscript) < 2: s.error("An axis specification in memoryview declaration does not have a ':'.") s.expect(']') indexes = make_slice_nodes(pos, subscripts) result = Nodes.MemoryViewSliceTypeNode(pos, base_type_node = base_type_node, axes = indexes) return result def looking_at_name(s): return s.sy == 'IDENT' and not s.systring in calling_convention_words def looking_at_expr(s): if s.systring in base_type_start_words: return False elif s.sy == 'IDENT': is_type = False name = s.systring dotted_path = [] s.next() while s.sy == '.': s.next() dotted_path.append(s.systring) s.expect('IDENT') saved = s.sy, s.systring if s.sy == 'IDENT': is_type = True elif s.sy == '*' or s.sy == '**': s.next() is_type = s.sy in (')', ']') s.put_back(*saved) elif s.sy == '(': s.next() is_type = s.sy == '*' s.put_back(*saved) elif s.sy == '[': s.next() is_type = s.sy == ']' s.put_back(*saved) dotted_path.reverse() for p in dotted_path: s.put_back('IDENT', p) s.put_back('.', '.') s.put_back('IDENT', name) return not is_type and saved[0] else: return True def looking_at_base_type(s): #print "looking_at_base_type?", s.sy, s.systring, s.position() return s.sy == 'IDENT' and s.systring in base_type_start_words def looking_at_dotted_name(s): if s.sy == 'IDENT': name = s.systring s.next() result = s.sy == '.' s.put_back('IDENT', name) return result else: return 0 def looking_at_call(s): "See if we're looking at a.b.c(" # Don't mess up the original position, so save and restore it. # Unfortunately there's no good way to handle this, as a subsequent call # to next() will not advance the position until it reads a new token. position = s.start_line, s.start_col result = looking_at_expr(s) == u'(' if not result: s.start_line, s.start_col = position return result basic_c_type_names = cython.declare( set, set(["void", "char", "int", "float", "double", "bint"])) special_basic_c_types = cython.declare(dict, { # name : (signed, longness) "Py_UNICODE" : (0, 0), "Py_UCS4" : (0, 0), "Py_ssize_t" : (2, 0), "ssize_t" : (2, 0), "size_t" : (0, 0), "ptrdiff_t" : (2, 0), }) sign_and_longness_words = cython.declare( set, set(["short", "long", "signed", "unsigned"])) base_type_start_words = cython.declare( set, basic_c_type_names | sign_and_longness_words | set(special_basic_c_types)) struct_enum_union = cython.declare( set, set(["struct", "union", "enum", "packed"])) def p_sign_and_longness(s): signed = 1 longness = 0 while s.sy == 'IDENT' and s.systring in sign_and_longness_words: if s.systring == 'unsigned': signed = 0 elif s.systring == 'signed': signed = 2 elif s.systring == 'short': longness = -1 elif s.systring == 'long': longness += 1 s.next() return signed, longness def p_opt_cname(s): literal = p_opt_string_literal(s, 'u') if literal is not None: cname = EncodedString(literal) cname.encoding = s.source_encoding else: cname = None return cname def p_c_declarator(s, ctx = Ctx(), empty = 0, is_type = 0, cmethod_flag = 0, assignable = 0, nonempty = 0, calling_convention_allowed = 0): # If empty is true, the declarator must be empty. If nonempty is true, # the declarator must be nonempty. Otherwise we don't care. # If cmethod_flag is true, then if this declarator declares # a function, it's a C method of an extension type. pos = s.position() if s.sy == '(': s.next() if s.sy == ')' or looking_at_name(s): base = Nodes.CNameDeclaratorNode(pos, name = EncodedString(u""), cname = None) result = p_c_func_declarator(s, pos, ctx, base, cmethod_flag) else: result = p_c_declarator(s, ctx, empty = empty, is_type = is_type, cmethod_flag = cmethod_flag, nonempty = nonempty, calling_convention_allowed = 1) s.expect(')') else: result = p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag, assignable, nonempty) if not calling_convention_allowed and result.calling_convention and s.sy != '(': error(s.position(), "%s on something that is not a function" % result.calling_convention) while s.sy in ('[', '('): pos = s.position() if s.sy == '[': result = p_c_array_declarator(s, result) else: # sy == '(' s.next() result = p_c_func_declarator(s, pos, ctx, result, cmethod_flag) cmethod_flag = 0 return result def p_c_array_declarator(s, base): pos = s.position() s.next() # '[' if s.sy != ']': dim = p_testlist(s) else: dim = None s.expect(']') return Nodes.CArrayDeclaratorNode(pos, base = base, dimension = dim) def p_c_func_declarator(s, pos, ctx, base, cmethod_flag): # Opening paren has already been skipped args = p_c_arg_list(s, ctx, cmethod_flag = cmethod_flag, nonempty_declarators = 0) ellipsis = p_optional_ellipsis(s) s.expect(')') nogil = p_nogil(s) exc_val, exc_check = p_exception_value_clause(s) with_gil = p_with_gil(s) return Nodes.CFuncDeclaratorNode(pos, base = base, args = args, has_varargs = ellipsis, exception_value = exc_val, exception_check = exc_check, nogil = nogil or ctx.nogil or with_gil, with_gil = with_gil) supported_overloaded_operators = cython.declare(set, set([ '+', '-', '*', '/', '%', '++', '--', '~', '|', '&', '^', '<<', '>>', ',', '==', '!=', '>=', '>', '<=', '<', '[]', '()', '!', ])) def p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag, assignable, nonempty): pos = s.position() calling_convention = p_calling_convention(s) if s.sy == '*': s.next() if s.systring == 'const': const_pos = s.position() s.next() const_base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, cmethod_flag = cmethod_flag, assignable = assignable, nonempty = nonempty) base = Nodes.CConstDeclaratorNode(const_pos, base = const_base) else: base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, cmethod_flag = cmethod_flag, assignable = assignable, nonempty = nonempty) result = Nodes.CPtrDeclaratorNode(pos, base = base) elif s.sy == '**': # scanner returns this as a single token s.next() base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, cmethod_flag = cmethod_flag, assignable = assignable, nonempty = nonempty) result = Nodes.CPtrDeclaratorNode(pos, base = Nodes.CPtrDeclaratorNode(pos, base = base)) elif s.sy == '&': s.next() base = p_c_declarator(s, ctx, empty = empty, is_type = is_type, cmethod_flag = cmethod_flag, assignable = assignable, nonempty = nonempty) result = Nodes.CReferenceDeclaratorNode(pos, base = base) else: rhs = None if s.sy == 'IDENT': name = EncodedString(s.systring) if empty: error(s.position(), "Declarator should be empty") s.next() cname = p_opt_cname(s) if name != 'operator' and s.sy == '=' and assignable: s.next() rhs = p_test(s) else: if nonempty: error(s.position(), "Empty declarator") name = "" cname = None if cname is None and ctx.namespace is not None and nonempty: cname = ctx.namespace + "::" + name if name == 'operator' and ctx.visibility == 'extern' and nonempty: op = s.sy if [1 for c in op if c in '+-*/<=>!%&|([^~,']: s.next() # Handle diphthong operators. if op == '(': s.expect(')') op = '()' elif op == '[': s.expect(']') op = '[]' elif op in ('-', '+', '|', '&') and s.sy == op: op *= 2 # ++, --, ... s.next() elif s.sy == '=': op += s.sy # +=, -=, ... s.next() if op not in supported_overloaded_operators: s.error("Overloading operator '%s' not yet supported." % op, fatal=False) name += op result = Nodes.CNameDeclaratorNode(pos, name = name, cname = cname, default = rhs) result.calling_convention = calling_convention return result def p_nogil(s): if s.sy == 'IDENT' and s.systring == 'nogil': s.next() return 1 else: return 0 def p_with_gil(s): if s.sy == 'with': s.next() s.expect_keyword('gil') return 1 else: return 0 def p_exception_value_clause(s): exc_val = None exc_check = 0 if s.sy == 'except': s.next() if s.sy == '*': exc_check = 1 s.next() elif s.sy == '+': exc_check = '+' s.next() if s.sy == 'IDENT': name = s.systring s.next() exc_val = p_name(s, name) else: if s.sy == '?': exc_check = 1 s.next() exc_val = p_test(s) return exc_val, exc_check c_arg_list_terminators = cython.declare(set, set(['*', '**', '.', ')'])) def p_c_arg_list(s, ctx = Ctx(), in_pyfunc = 0, cmethod_flag = 0, nonempty_declarators = 0, kw_only = 0, annotated = 1): # Comma-separated list of C argument declarations, possibly empty. # May have a trailing comma. args = [] is_self_arg = cmethod_flag while s.sy not in c_arg_list_terminators: args.append(p_c_arg_decl(s, ctx, in_pyfunc, is_self_arg, nonempty = nonempty_declarators, kw_only = kw_only, annotated = annotated)) if s.sy != ',': break s.next() is_self_arg = 0 return args def p_optional_ellipsis(s): if s.sy == '.': expect_ellipsis(s) return 1 else: return 0 def p_c_arg_decl(s, ctx, in_pyfunc, cmethod_flag = 0, nonempty = 0, kw_only = 0, annotated = 1): pos = s.position() not_none = or_none = 0 default = None annotation = None if s.in_python_file: # empty type declaration base_type = Nodes.CSimpleBaseTypeNode(pos, name = None, module_path = [], is_basic_c_type = 0, signed = 0, complex = 0, longness = 0, is_self_arg = cmethod_flag, templates = None) else: base_type = p_c_base_type(s, cmethod_flag, nonempty = nonempty) declarator = p_c_declarator(s, ctx, nonempty = nonempty) if s.sy in ('not', 'or') and not s.in_python_file: kind = s.sy s.next() if s.sy == 'IDENT' and s.systring == 'None': s.next() else: s.error("Expected 'None'") if not in_pyfunc: error(pos, "'%s None' only allowed in Python functions" % kind) or_none = kind == 'or' not_none = kind == 'not' if annotated and s.sy == ':': s.next() annotation = p_test(s) if s.sy == '=': s.next() if 'pxd' in ctx.level: if s.sy not in ['*', '?']: error(pos, "default values cannot be specified in pxd files, use ? or *") default = ExprNodes.BoolNode(1) s.next() else: default = p_test(s) return Nodes.CArgDeclNode(pos, base_type = base_type, declarator = declarator, not_none = not_none, or_none = or_none, default = default, annotation = annotation, kw_only = kw_only) def p_api(s): if s.sy == 'IDENT' and s.systring == 'api': s.next() return 1 else: return 0 def p_cdef_statement(s, ctx): pos = s.position() ctx.visibility = p_visibility(s, ctx.visibility) ctx.api = ctx.api or p_api(s) if ctx.api: if ctx.visibility not in ('private', 'public'): error(pos, "Cannot combine 'api' with '%s'" % ctx.visibility) if (ctx.visibility == 'extern') and s.sy == 'from': return p_cdef_extern_block(s, pos, ctx) elif s.sy == 'import': s.next() return p_cdef_extern_block(s, pos, ctx) elif p_nogil(s): ctx.nogil = 1 if ctx.overridable: error(pos, "cdef blocks cannot be declared cpdef") return p_cdef_block(s, ctx) elif s.sy == ':': if ctx.overridable: error(pos, "cdef blocks cannot be declared cpdef") return p_cdef_block(s, ctx) elif s.sy == 'class': if ctx.level not in ('module', 'module_pxd'): error(pos, "Extension type definition not allowed here") if ctx.overridable: error(pos, "Extension types cannot be declared cpdef") return p_c_class_definition(s, pos, ctx) elif s.sy == 'IDENT' and s.systring == 'cppclass': return p_cpp_class_definition(s, pos, ctx) elif s.sy == 'IDENT' and s.systring in struct_enum_union: if ctx.level not in ('module', 'module_pxd'): error(pos, "C struct/union/enum definition not allowed here") if ctx.overridable: error(pos, "C struct/union/enum cannot be declared cpdef") return p_struct_enum(s, pos, ctx) elif s.sy == 'IDENT' and s.systring == 'fused': return p_fused_definition(s, pos, ctx) else: return p_c_func_or_var_declaration(s, pos, ctx) def p_cdef_block(s, ctx): return p_suite(s, ctx(cdef_flag = 1)) def p_cdef_extern_block(s, pos, ctx): if ctx.overridable: error(pos, "cdef extern blocks cannot be declared cpdef") include_file = None s.expect('from') if s.sy == '*': s.next() else: include_file = p_string_literal(s, 'u')[2] ctx = ctx(cdef_flag = 1, visibility = 'extern') if s.systring == "namespace": s.next() ctx.namespace = p_string_literal(s, 'u')[2] if p_nogil(s): ctx.nogil = 1 body = p_suite(s, ctx) return Nodes.CDefExternNode(pos, include_file = include_file, body = body, namespace = ctx.namespace) def p_c_enum_definition(s, pos, ctx): # s.sy == ident 'enum' s.next() if s.sy == 'IDENT': name = s.systring s.next() cname = p_opt_cname(s) if cname is None and ctx.namespace is not None: cname = ctx.namespace + "::" + name else: name = None cname = None items = None s.expect(':') items = [] if s.sy != 'NEWLINE': p_c_enum_line(s, ctx, items) else: s.next() # 'NEWLINE' s.expect_indent() while s.sy not in ('DEDENT', 'EOF'): p_c_enum_line(s, ctx, items) s.expect_dedent() return Nodes.CEnumDefNode( pos, name = name, cname = cname, items = items, typedef_flag = ctx.typedef_flag, visibility = ctx.visibility, api = ctx.api, in_pxd = ctx.level == 'module_pxd') def p_c_enum_line(s, ctx, items): if s.sy != 'pass': p_c_enum_item(s, ctx, items) while s.sy == ',': s.next() if s.sy in ('NEWLINE', 'EOF'): break p_c_enum_item(s, ctx, items) else: s.next() s.expect_newline("Syntax error in enum item list") def p_c_enum_item(s, ctx, items): pos = s.position() name = p_ident(s) cname = p_opt_cname(s) if cname is None and ctx.namespace is not None: cname = ctx.namespace + "::" + name value = None if s.sy == '=': s.next() value = p_test(s) items.append(Nodes.CEnumDefItemNode(pos, name = name, cname = cname, value = value)) def p_c_struct_or_union_definition(s, pos, ctx): packed = False if s.systring == 'packed': packed = True s.next() if s.sy != 'IDENT' or s.systring != 'struct': s.expected('struct') # s.sy == ident 'struct' or 'union' kind = s.systring s.next() name = p_ident(s) cname = p_opt_cname(s) if cname is None and ctx.namespace is not None: cname = ctx.namespace + "::" + name attributes = None if s.sy == ':': s.next() s.expect('NEWLINE') s.expect_indent() attributes = [] body_ctx = Ctx() while s.sy != 'DEDENT': if s.sy != 'pass': attributes.append( p_c_func_or_var_declaration(s, s.position(), body_ctx)) else: s.next() s.expect_newline("Expected a newline") s.expect_dedent() else: s.expect_newline("Syntax error in struct or union definition") return Nodes.CStructOrUnionDefNode(pos, name = name, cname = cname, kind = kind, attributes = attributes, typedef_flag = ctx.typedef_flag, visibility = ctx.visibility, api = ctx.api, in_pxd = ctx.level == 'module_pxd', packed = packed) def p_fused_definition(s, pos, ctx): """ c(type)def fused my_fused_type: ... """ # s.systring == 'fused' if ctx.level not in ('module', 'module_pxd'): error(pos, "Fused type definition not allowed here") s.next() name = p_ident(s) s.expect(":") s.expect_newline() s.expect_indent() types = [] while s.sy != 'DEDENT': if s.sy != 'pass': #types.append(p_c_declarator(s)) types.append(p_c_base_type(s)) #, nonempty=1)) else: s.next() s.expect_newline() s.expect_dedent() if not types: error(pos, "Need at least one type") return Nodes.FusedTypeNode(pos, name=name, types=types) def p_struct_enum(s, pos, ctx): if s.systring == 'enum': return p_c_enum_definition(s, pos, ctx) else: return p_c_struct_or_union_definition(s, pos, ctx) def p_visibility(s, prev_visibility): pos = s.position() visibility = prev_visibility if s.sy == 'IDENT' and s.systring in ('extern', 'public', 'readonly'): visibility = s.systring if prev_visibility != 'private' and visibility != prev_visibility: s.error("Conflicting visibility options '%s' and '%s'" % (prev_visibility, visibility), fatal=False) s.next() return visibility def p_c_modifiers(s): if s.sy == 'IDENT' and s.systring in ('inline',): modifier = s.systring s.next() return [modifier] + p_c_modifiers(s) return [] def p_c_func_or_var_declaration(s, pos, ctx): cmethod_flag = ctx.level in ('c_class', 'c_class_pxd') modifiers = p_c_modifiers(s) base_type = p_c_base_type(s, nonempty = 1, templates = ctx.templates) declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag, assignable = 1, nonempty = 1) declarator.overridable = ctx.overridable if s.sy == 'IDENT' and s.systring == 'const' and ctx.level == 'cpp_class': s.next() is_const_method = 1 else: is_const_method = 0 if s.sy == ':': if ctx.level not in ('module', 'c_class', 'module_pxd', 'c_class_pxd', 'cpp_class') and not ctx.templates: s.error("C function definition not allowed here") doc, suite = p_suite_with_docstring(s, Ctx(level='function')) result = Nodes.CFuncDefNode(pos, visibility = ctx.visibility, base_type = base_type, declarator = declarator, body = suite, doc = doc, modifiers = modifiers, api = ctx.api, overridable = ctx.overridable, is_const_method = is_const_method) else: #if api: # s.error("'api' not allowed with variable declaration") if is_const_method: declarator.is_const_method = is_const_method declarators = [declarator] while s.sy == ',': s.next() if s.sy == 'NEWLINE': break declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag, assignable = 1, nonempty = 1) declarators.append(declarator) doc_line = s.start_line + 1 s.expect_newline("Syntax error in C variable declaration") if ctx.level in ('c_class', 'c_class_pxd') and s.start_line == doc_line: doc = p_doc_string(s) else: doc = None result = Nodes.CVarDefNode(pos, visibility = ctx.visibility, base_type = base_type, declarators = declarators, in_pxd = ctx.level in ('module_pxd', 'c_class_pxd'), doc = doc, api = ctx.api, modifiers = modifiers, overridable = ctx.overridable) return result def p_ctypedef_statement(s, ctx): # s.sy == 'ctypedef' pos = s.position() s.next() visibility = p_visibility(s, ctx.visibility) api = p_api(s) ctx = ctx(typedef_flag = 1, visibility = visibility) if api: ctx.api = 1 if s.sy == 'class': return p_c_class_definition(s, pos, ctx) elif s.sy == 'IDENT' and s.systring in struct_enum_union: return p_struct_enum(s, pos, ctx) elif s.sy == 'IDENT' and s.systring == 'fused': return p_fused_definition(s, pos, ctx) else: base_type = p_c_base_type(s, nonempty = 1) declarator = p_c_declarator(s, ctx, is_type = 1, nonempty = 1) s.expect_newline("Syntax error in ctypedef statement") return Nodes.CTypeDefNode( pos, base_type = base_type, declarator = declarator, visibility = visibility, api = api, in_pxd = ctx.level == 'module_pxd') def p_decorators(s): decorators = [] while s.sy == 'DECORATOR': pos = s.position() s.next() decstring = p_dotted_name(s, as_allowed=0)[2] names = decstring.split('.') decorator = ExprNodes.NameNode(pos, name=EncodedString(names[0])) for name in names[1:]: decorator = ExprNodes.AttributeNode(pos, attribute=EncodedString(name), obj=decorator) if s.sy == '(': decorator = p_call(s, decorator) decorators.append(Nodes.DecoratorNode(pos, decorator=decorator)) s.expect_newline("Expected a newline after decorator") return decorators def p_def_statement(s, decorators=None): # s.sy == 'def' pos = s.position() s.next() name = EncodedString( p_ident(s) ) s.expect('(') args, star_arg, starstar_arg = p_varargslist(s, terminator=')') s.expect(')') if p_nogil(s): error(pos, "Python function cannot be declared nogil") return_type_annotation = None if s.sy == '->': s.next() return_type_annotation = p_test(s) doc, body = p_suite_with_docstring(s, Ctx(level='function')) return Nodes.DefNode(pos, name = name, args = args, star_arg = star_arg, starstar_arg = starstar_arg, doc = doc, body = body, decorators = decorators, return_type_annotation = return_type_annotation) def p_varargslist(s, terminator=')', annotated=1): args = p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1, annotated = annotated) star_arg = None starstar_arg = None if s.sy == '*': s.next() if s.sy == 'IDENT': star_arg = p_py_arg_decl(s, annotated=annotated) if s.sy == ',': s.next() args.extend(p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1, kw_only = 1, annotated = annotated)) elif s.sy != terminator: s.error("Syntax error in Python function argument list") if s.sy == '**': s.next() starstar_arg = p_py_arg_decl(s, annotated=annotated) return (args, star_arg, starstar_arg) def p_py_arg_decl(s, annotated = 1): pos = s.position() name = p_ident(s) annotation = None if annotated and s.sy == ':': s.next() annotation = p_test(s) return Nodes.PyArgDeclNode(pos, name = name, annotation = annotation) def p_class_statement(s, decorators): # s.sy == 'class' pos = s.position() s.next() class_name = EncodedString( p_ident(s) ) class_name.encoding = s.source_encoding arg_tuple = None keyword_dict = None starstar_arg = None if s.sy == '(': positional_args, keyword_args, star_arg, starstar_arg = \ p_call_parse_args(s, allow_genexp = False) arg_tuple, keyword_dict = p_call_build_packed_args( pos, positional_args, keyword_args, star_arg, None) if arg_tuple is None: # XXX: empty arg_tuple arg_tuple = ExprNodes.TupleNode(pos, args=[]) doc, body = p_suite_with_docstring(s, Ctx(level='class')) return Nodes.PyClassDefNode( pos, name=class_name, bases=arg_tuple, keyword_args=keyword_dict, starstar_arg=starstar_arg, doc=doc, body=body, decorators=decorators, force_py3_semantics=s.context.language_level >= 3) def p_c_class_definition(s, pos, ctx): # s.sy == 'class' s.next() module_path = [] class_name = p_ident(s) while s.sy == '.': s.next() module_path.append(class_name) class_name = p_ident(s) if module_path and ctx.visibility != 'extern': error(pos, "Qualified class name only allowed for 'extern' C class") if module_path and s.sy == 'IDENT' and s.systring == 'as': s.next() as_name = p_ident(s) else: as_name = class_name objstruct_name = None typeobj_name = None base_class_module = None base_class_name = None if s.sy == '(': s.next() base_class_path = [p_ident(s)] while s.sy == '.': s.next() base_class_path.append(p_ident(s)) if s.sy == ',': s.error("C class may only have one base class", fatal=False) s.expect(')') base_class_module = ".".join(base_class_path[:-1]) base_class_name = base_class_path[-1] if s.sy == '[': if ctx.visibility not in ('public', 'extern') and not ctx.api: error(s.position(), "Name options only allowed for 'public', 'api', or 'extern' C class") objstruct_name, typeobj_name = p_c_class_options(s) if s.sy == ':': if ctx.level == 'module_pxd': body_level = 'c_class_pxd' else: body_level = 'c_class' doc, body = p_suite_with_docstring(s, Ctx(level=body_level)) else: s.expect_newline("Syntax error in C class definition") doc = None body = None if ctx.visibility == 'extern': if not module_path: error(pos, "Module name required for 'extern' C class") if typeobj_name: error(pos, "Type object name specification not allowed for 'extern' C class") elif ctx.visibility == 'public': if not objstruct_name: error(pos, "Object struct name specification required for 'public' C class") if not typeobj_name: error(pos, "Type object name specification required for 'public' C class") elif ctx.visibility == 'private': if ctx.api: if not objstruct_name: error(pos, "Object struct name specification required for 'api' C class") if not typeobj_name: error(pos, "Type object name specification required for 'api' C class") else: error(pos, "Invalid class visibility '%s'" % ctx.visibility) return Nodes.CClassDefNode(pos, visibility = ctx.visibility, typedef_flag = ctx.typedef_flag, api = ctx.api, module_name = ".".join(module_path), class_name = class_name, as_name = as_name, base_class_module = base_class_module, base_class_name = base_class_name, objstruct_name = objstruct_name, typeobj_name = typeobj_name, in_pxd = ctx.level == 'module_pxd', doc = doc, body = body) def p_c_class_options(s): objstruct_name = None typeobj_name = None s.expect('[') while 1: if s.sy != 'IDENT': break if s.systring == 'object': s.next() objstruct_name = p_ident(s) elif s.systring == 'type': s.next() typeobj_name = p_ident(s) if s.sy != ',': break s.next() s.expect(']', "Expected 'object' or 'type'") return objstruct_name, typeobj_name def p_property_decl(s): pos = s.position() s.next() # 'property' name = p_ident(s) doc, body = p_suite_with_docstring( s, Ctx(level='property'), with_doc_only=True) return Nodes.PropertyNode(pos, name=name, doc=doc, body=body) def p_ignorable_statement(s): """ Parses any kind of ignorable statement that is allowed in .pxd files. """ if s.sy == 'BEGIN_STRING': pos = s.position() string_node = p_atom(s) if s.sy != 'EOF': s.expect_newline("Syntax error in string") return Nodes.ExprStatNode(pos, expr=string_node) return None def p_doc_string(s): if s.sy == 'BEGIN_STRING': pos = s.position() kind, bytes_result, unicode_result = p_cat_string_literal(s) if s.sy != 'EOF': s.expect_newline("Syntax error in doc string") if kind in ('u', ''): return unicode_result warning(pos, "Python 3 requires docstrings to be unicode strings") return bytes_result else: return None def _extract_docstring(node): """ Extract a docstring from a statement or from the first statement in a list. Remove the statement if found. Return a tuple (plain-docstring or None, node). """ doc_node = None if node is None: pass elif isinstance(node, Nodes.ExprStatNode): if node.expr.is_string_literal: doc_node = node.expr node = Nodes.StatListNode(node.pos, stats=[]) elif isinstance(node, Nodes.StatListNode) and node.stats: stats = node.stats if isinstance(stats[0], Nodes.ExprStatNode): if stats[0].expr.is_string_literal: doc_node = stats[0].expr del stats[0] if doc_node is None: doc = None elif isinstance(doc_node, ExprNodes.BytesNode): warning(node.pos, "Python 3 requires docstrings to be unicode strings") doc = doc_node.value elif isinstance(doc_node, ExprNodes.StringNode): doc = doc_node.unicode_value if doc is None: doc = doc_node.value else: doc = doc_node.value return doc, node def p_code(s, level=None, ctx=Ctx): body = p_statement_list(s, ctx(level = level), first_statement = 1) if s.sy != 'EOF': s.error("Syntax error in statement [%s,%s]" % ( repr(s.sy), repr(s.systring))) return body _match_compiler_directive_comment = cython.declare(object, re.compile( r"^#\s*cython\s*:\s*((\w|[.])+\s*=.*)$").match) def p_compiler_directive_comments(s): result = {} while s.sy == 'commentline': m = _match_compiler_directive_comment(s.systring) if m: directives = m.group(1).strip() try: result.update(Options.parse_directive_list( directives, ignore_unknown=True)) except ValueError, e: s.error(e.args[0], fatal=False) s.next() return result def p_module(s, pxd, full_module_name, ctx=Ctx): pos = s.position() directive_comments = p_compiler_directive_comments(s) s.parse_comments = False if 'language_level' in directive_comments: s.context.set_language_level(directive_comments['language_level']) doc = p_doc_string(s) if pxd: level = 'module_pxd' else: level = 'module' body = p_statement_list(s, ctx(level=level), first_statement = 1) if s.sy != 'EOF': s.error("Syntax error in statement [%s,%s]" % ( repr(s.sy), repr(s.systring))) return ModuleNode(pos, doc = doc, body = body, full_module_name = full_module_name, directive_comments = directive_comments) def p_cpp_class_definition(s, pos, ctx): # s.sy == 'cppclass' s.next() module_path = [] class_name = p_ident(s) cname = p_opt_cname(s) if cname is None and ctx.namespace is not None: cname = ctx.namespace + "::" + class_name if s.sy == '.': error(pos, "Qualified class name not allowed C++ class") if s.sy == '[': s.next() templates = [p_ident(s)] while s.sy == ',': s.next() templates.append(p_ident(s)) s.expect(']') else: templates = None if s.sy == '(': s.next() base_classes = [p_c_base_type(s, templates = templates)] while s.sy == ',': s.next() base_classes.append(p_c_base_type(s, templates = templates)) s.expect(')') else: base_classes = [] if s.sy == '[': error(s.position(), "Name options not allowed for C++ class") nogil = p_nogil(s) if s.sy == ':': s.next() s.expect('NEWLINE') s.expect_indent() attributes = [] body_ctx = Ctx(visibility = ctx.visibility, level='cpp_class', nogil=nogil or ctx.nogil) body_ctx.templates = templates while s.sy != 'DEDENT': if s.systring == 'cppclass': attributes.append( p_cpp_class_definition(s, s.position(), body_ctx)) elif s.sy != 'pass': attributes.append( p_c_func_or_var_declaration(s, s.position(), body_ctx)) else: s.next() s.expect_newline("Expected a newline") s.expect_dedent() else: attributes = None s.expect_newline("Syntax error in C++ class definition") return Nodes.CppClassNode(pos, name = class_name, cname = cname, base_classes = base_classes, visibility = ctx.visibility, in_pxd = ctx.level == 'module_pxd', attributes = attributes, templates = templates) #---------------------------------------------- # # Debugging # #---------------------------------------------- def print_parse_tree(f, node, level, key = None): from types import ListType, TupleType from Nodes import Node ind = " " * level if node: f.write(ind) if key: f.write("%s: " % key) t = type(node) if t is tuple: f.write("(%s @ %s\n" % (node[0], node[1])) for i in xrange(2, len(node)): print_parse_tree(f, node[i], level+1) f.write("%s)\n" % ind) return elif isinstance(node, Node): try: tag = node.tag except AttributeError: tag = node.__class__.__name__ f.write("%s @ %s\n" % (tag, node.pos)) for name, value in node.__dict__.items(): if name != 'tag' and name != 'pos': print_parse_tree(f, value, level+1, name) return elif t is list: f.write("[\n") for i in xrange(len(node)): print_parse_tree(f, node[i], level+1) f.write("%s]\n" % ind) return f.write("%s%s\n" % (ind, node))
bsd-3-clause
sigmavirus24/pip
pip/vcs/git.py
3
11208
from __future__ import absolute_import import logging import tempfile import os.path from pip.compat import samefile from pip.exceptions import BadCommand from pip._vendor.six.moves.urllib import parse as urllib_parse from pip._vendor.six.moves.urllib import request as urllib_request from pip._vendor.packaging.version import parse as parse_version from pip.utils import display_path, rmtree from pip.vcs import vcs, VersionControl urlsplit = urllib_parse.urlsplit urlunsplit = urllib_parse.urlunsplit logger = logging.getLogger(__name__) class Git(VersionControl): name = 'git' dirname = '.git' repo_name = 'clone' schemes = ( 'git', 'git+http', 'git+https', 'git+ssh', 'git+git', 'git+file', ) def __init__(self, url=None, *args, **kwargs): # Works around an apparent Git bug # (see http://article.gmane.org/gmane.comp.version-control.git/146500) if url: scheme, netloc, path, query, fragment = urlsplit(url) if scheme.endswith('file'): initial_slashes = path[:-len(path.lstrip('/'))] newpath = ( initial_slashes + urllib_request.url2pathname(path) .replace('\\', '/').lstrip('/') ) url = urlunsplit((scheme, netloc, newpath, query, fragment)) after_plus = scheme.find('+') + 1 url = scheme[:after_plus] + urlunsplit( (scheme[after_plus:], netloc, newpath, query, fragment), ) super(Git, self).__init__(url, *args, **kwargs) def get_git_version(self): VERSION_PFX = 'git version ' version = self.run_command(['version'], show_stdout=False) if version.startswith(VERSION_PFX): version = version[len(VERSION_PFX):].split()[0] else: version = '' # get first 3 positions of the git version becasue # on windows it is x.y.z.windows.t, and this parses as # LegacyVersion which always smaller than a Version. version = '.'.join(version.split('.')[:3]) return parse_version(version) def export(self, location): """Export the Git repository at the url to the destination location""" temp_dir = tempfile.mkdtemp('-export', 'pip-') self.unpack(temp_dir) try: if not location.endswith('/'): location = location + '/' self.run_command( ['checkout-index', '-a', '-f', '--prefix', location], show_stdout=False, cwd=temp_dir) finally: rmtree(temp_dir) def check_rev_options(self, rev, dest, rev_options): """Check the revision options before checkout to compensate that tags and branches may need origin/ as a prefix. Returns the SHA1 of the branch or tag if found. """ revisions = self.get_short_refs(dest) origin_rev = 'origin/%s' % rev if origin_rev in revisions: # remote branch return [revisions[origin_rev]] elif rev in revisions: # a local tag or branch name return [revisions[rev]] else: logger.warning( "Could not find a tag or branch '%s', assuming commit.", rev, ) return rev_options def check_version(self, dest, rev_options): """ Compare the current sha to the ref. ref may be a branch or tag name, but current rev will always point to a sha. This means that a branch or tag will never compare as True. So this ultimately only matches against exact shas. """ return self.get_revision(dest).startswith(rev_options[0]) def switch(self, dest, url, rev_options): self.run_command(['config', 'remote.origin.url', url], cwd=dest) self.run_command(['checkout', '-q'] + rev_options, cwd=dest) self.update_submodules(dest) def update(self, dest, rev_options): # First fetch changes from the default remote if self.get_git_version() >= parse_version('1.9.0'): # fetch tags in addition to everything else self.run_command(['fetch', '-q', '--tags'], cwd=dest) else: self.run_command(['fetch', '-q'], cwd=dest) # Then reset to wanted revision (maybe even origin/master) if rev_options: rev_options = self.check_rev_options( rev_options[0], dest, rev_options, ) self.run_command(['reset', '--hard', '-q'] + rev_options, cwd=dest) #: update submodules self.update_submodules(dest) def obtain(self, dest): url, rev = self.get_url_rev() if rev: rev_options = [rev] rev_display = ' (to %s)' % rev else: rev_options = ['origin/master'] rev_display = '' if self.check_destination(dest, url, rev_options, rev_display): logger.info( 'Cloning %s%s to %s', url, rev_display, display_path(dest), ) self.run_command(['clone', '-q', url, dest]) if rev: rev_options = self.check_rev_options(rev, dest, rev_options) # Only do a checkout if rev_options differs from HEAD if not self.check_version(dest, rev_options): self.run_command( ['checkout', '-q'] + rev_options, cwd=dest, ) #: repo may contain submodules self.update_submodules(dest) def get_url(self, location): """Return URL of the first remote encountered.""" remotes = self.run_command( ['config', '--get-regexp', 'remote\..*\.url'], show_stdout=False, cwd=location) remotes = remotes.splitlines() found_remote = remotes[0] for remote in remotes: if remote.startswith('remote.origin.url '): found_remote = remote break url = found_remote.split(' ')[1] return url.strip() def get_revision(self, location): current_rev = self.run_command( ['rev-parse', 'HEAD'], show_stdout=False, cwd=location) return current_rev.strip() def get_full_refs(self, location): """Yields tuples of (commit, ref) for branches and tags""" output = self.run_command(['show-ref'], show_stdout=False, cwd=location) for line in output.strip().splitlines(): commit, ref = line.split(' ', 1) yield commit.strip(), ref.strip() def is_ref_remote(self, ref): return ref.startswith('refs/remotes/') def is_ref_branch(self, ref): return ref.startswith('refs/heads/') def is_ref_tag(self, ref): return ref.startswith('refs/tags/') def is_ref_commit(self, ref): """A ref is a commit sha if it is not anything else""" return not any(( self.is_ref_remote(ref), self.is_ref_branch(ref), self.is_ref_tag(ref), )) # Should deprecate `get_refs` since it's ambiguous def get_refs(self, location): return self.get_short_refs(location) def get_short_refs(self, location): """Return map of named refs (branches or tags) to commit hashes.""" rv = {} for commit, ref in self.get_full_refs(location): ref_name = None if self.is_ref_remote(ref): ref_name = ref[len('refs/remotes/'):] elif self.is_ref_branch(ref): ref_name = ref[len('refs/heads/'):] elif self.is_ref_tag(ref): ref_name = ref[len('refs/tags/'):] if ref_name is not None: rv[ref_name] = commit return rv def _get_subdirectory(self, location): """Return the relative path of setup.py to the git repo root.""" # find the repo root git_dir = self.run_command(['rev-parse', '--git-dir'], show_stdout=False, cwd=location).strip() if not os.path.isabs(git_dir): git_dir = os.path.join(location, git_dir) root_dir = os.path.join(git_dir, '..') # find setup.py orig_location = location while not os.path.exists(os.path.join(location, 'setup.py')): last_location = location location = os.path.dirname(location) if location == last_location: # We've traversed up to the root of the filesystem without # finding setup.py logger.warning( "Could not find setup.py for directory %s (tried all " "parent directories)", orig_location, ) return None # relative path of setup.py to repo root if samefile(root_dir, location): return None return os.path.relpath(location, root_dir) def get_src_requirement(self, dist, location): repo = self.get_url(location) if not repo.lower().startswith('git:'): repo = 'git+' + repo egg_project_name = dist.egg_name().split('-', 1)[0] if not repo: return None current_rev = self.get_revision(location) req = '%s@%s#egg=%s' % (repo, current_rev, egg_project_name) subdirectory = self._get_subdirectory(location) if subdirectory: req += '&subdirectory=' + subdirectory return req def get_url_rev(self): """ Prefixes stub URLs like 'user@hostname:user/repo.git' with 'ssh://'. That's required because although they use SSH they sometimes doesn't work with a ssh:// scheme (e.g. Github). But we need a scheme for parsing. Hence we remove it again afterwards and return it as a stub. """ if '://' not in self.url: assert 'file:' not in self.url self.url = self.url.replace('git+', 'git+ssh://') url, rev = super(Git, self).get_url_rev() url = url.replace('ssh://', '') else: url, rev = super(Git, self).get_url_rev() return url, rev def update_submodules(self, location): if not os.path.exists(os.path.join(location, '.gitmodules')): return self.run_command( ['submodule', 'update', '--init', '--recursive', '-q'], cwd=location, ) @classmethod def controls_location(cls, location): if super(Git, cls).controls_location(location): return True try: r = cls().run_command(['rev-parse'], cwd=location, show_stdout=False, on_returncode='ignore') return not r except BadCommand: logger.debug("could not determine if %s is under git control " "because git is not available", location) return False vcs.register(Git)
mit
shakamunyi/tensorflow
tensorflow/python/kernel_tests/sparse_slice_op_test.py
47
13161
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for SparseReorder.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import sparse_tensor from tensorflow.python.ops import sparse_ops from tensorflow.python.platform import test class SparseSliceOpTest(test.TestCase): def _SparseTensor_4x6(self): # [0 | |2 | |4 |5 ] # [ |11| |13|14| ] # [20| | |23| |25] # [30| |32|33| |35] ind = np.array([[0, 0], [0, 2], [0, 4], [0, 5], [1, 1], [1, 3], [1, 4], [2, 0], [2, 3], [2, 5], [3, 0], [3, 2], [3, 3], [3, 5]]).astype(np.int64) val = np.array( [0, 2, 4, 5, 11, 13, 14, 20, 23, 25, 30, 32, 33, 35]).astype(np.int64) shape = np.array([4, 6]).astype(np.int64) return sparse_tensor.SparseTensor(ind, val, shape) def _SparseTensor_5x7(self): # [0 | |2 | |4 |5 | ] # [ |11| |13|14| |16] # [20| | |23| |25| ] # [30| |32|33| |35| ] # [ |41| | |44| |46] ind = np.array([[0, 0], [0, 2], [0, 4], [0, 5], [1, 1], [1, 3], [1, 4], [1, 6], [2, 0], [2, 3], [2, 5], [3, 0], [3, 2], [3, 3], [3, 5], [4, 1], [4, 4], [4, 6]]).astype(np.int64) val = np.array( [0, 2, 4, 5, 11, 13, 14, 16, 20, 23, 25, 30, 32, 33, 35, 41, 44, 46]).astype(np.int64) shape = np.array([5, 7]).astype(np.int64) return sparse_tensor.SparseTensor(ind, val, shape) def _SparseTensorValue_3x4x2(self): # slice(:,:, 0) # ['a0'| |'b0'| ] # [ |'c0'| |'d0'] # [ | |'e0'| ] # slice(:,:, 1) # ['a1'| |'b1'| ] # [ |'c1'| |'d1'] # [ | |'e1'| ] ind = np.array([[0, 0, 0], [0, 0, 1], [0, 2, 0], [0, 2, 1], [1, 1, 0], [1, 1, 1], [1, 3, 0], [1, 3, 1], [2, 2, 0], [2, 2, 1]]).astype(np.int64) val = np.array(['a0', 'a1', 'b0', 'b1', 'c0', 'c1', 'd0', 'd1', 'e0', 'e1']) shape = np.array([3, 4, 2]).astype(np.int64) return sparse_tensor.SparseTensorValue(ind, val, shape) def _SparseTensor_3x4x2(self): return sparse_tensor.SparseTensor.from_value(self._SparseTensorValue_3x4x2( )) def testSliceMatrixRows(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_4x6() sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [2, 6]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [2, 0], [3, 7]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [0, 2], [0, 4], [0, 5], [1, 1], [1, 3], [1, 4]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 2, 4, 5, 11, 13, 14]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [2, 6]) self.assertAllEqual(sp_tensor1.indices.eval(), [[0, 0], [0, 3], [0, 5], [1, 0], [1, 2], [1, 3], [1, 5]]) self.assertAllEqual(sp_tensor1.values.eval(), [20, 23, 25, 30, 32, 33, 35]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [2, 6]) def testSliceMatrixUnevenCols(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_5x7() sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [5, 3]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [0, 3], [5, 2]) sp_tensor2 = sparse_ops.sparse_slice(sp_input, [0, 5], [5, 2]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [0, 2], [1, 1], [2, 0], [3, 0], [3, 2], [4, 1]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 2, 11, 20, 30, 32, 41]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [5, 3]) self.assertAllEqual(sp_tensor1.indices.eval(), [[0, 1], [1, 0], [1, 1], [2, 0], [3, 0], [4, 1]]) self.assertAllEqual(sp_tensor1.values.eval(), [4, 13, 14, 23, 33, 44]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [5, 2]) self.assertAllEqual(sp_tensor2.indices.eval(), [[0, 0], [1, 1], [2, 0], [3, 0], [4, 1]]) self.assertAllEqual(sp_tensor2.values.eval(), [5, 16, 25, 35, 46]) self.assertAllEqual(sp_tensor2.dense_shape.eval(), [5, 2]) sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [5, 2]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [0, 2], [5, 2]) sp_tensor2 = sparse_ops.sparse_slice(sp_input, [0, 4], [5, 2]) sp_tensor3 = sparse_ops.sparse_slice(sp_input, [0, 6], [5, 2]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [1, 1], [2, 0], [3, 0], [4, 1]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 11, 20, 30, 41]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [5, 2]) self.assertAllEqual(sp_tensor1.indices.eval(), [[0, 0], [1, 1], [2, 1], [3, 0], [3, 1]]) self.assertAllEqual(sp_tensor1.values.eval(), [2, 13, 23, 32, 33]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [5, 2]) self.assertAllEqual(sp_tensor2.indices.eval(), [[0, 0], [0, 1], [1, 0], [2, 1], [3, 1], [4, 0]]) self.assertAllEqual(sp_tensor2.values.eval(), [4, 5, 14, 25, 35, 44]) self.assertAllEqual(sp_tensor2.dense_shape.eval(), [5, 2]) self.assertAllEqual(sp_tensor3.indices.eval(), [[1, 0], [4, 0]]) self.assertAllEqual(sp_tensor3.values.eval(), [16, 46]) self.assertAllEqual(sp_tensor3.dense_shape.eval(), [5, 1]) def testSliceMatrixUnevenRows(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_5x7() sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [3, 7]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [3, 0], [3, 7]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [0, 2], [0, 4], [0, 5], [1, 1], [1, 3], [1, 4], [1, 6], [2, 0], [2, 3], [2, 5]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 2, 4, 5, 11, 13, 14, 16, 20, 23, 25]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [3, 7]) self.assertAllEqual(sp_tensor1.indices.eval(), [[0, 0], [0, 2], [0, 3], [0, 5], [1, 1], [1, 4], [1, 6]]) self.assertAllEqual(sp_tensor1.values.eval(), [30, 32, 33, 35, 41, 44, 46]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [2, 7]) sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [2, 7]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [2, 0], [2, 7]) sp_tensor2 = sparse_ops.sparse_slice(sp_input, [4, 0], [2, 7]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [0, 2], [0, 4], [0, 5], [1, 1], [1, 3], [1, 4], [1, 6]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 2, 4, 5, 11, 13, 14, 16]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [2, 7]) self.assertAllEqual(sp_tensor1.values.eval(), [20, 23, 25, 30, 32, 33, 35]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [2, 7]) self.assertAllEqual(sp_tensor2.indices.eval(), [[0, 1], [0, 4], [0, 6]]) self.assertAllEqual(sp_tensor2.values.eval(), [41, 44, 46]) self.assertAllEqual(sp_tensor2.dense_shape.eval(), [1, 7]) return def testSliceAllRows(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_4x6() sp_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [1, 6]) sp_tensor1 = sparse_ops.sparse_slice(sp_input, [1, 0], [1, 6]) sp_tensor2 = sparse_ops.sparse_slice(sp_input, [2, 0], [1, 7]) sp_tensor3 = sparse_ops.sparse_slice(sp_input, [3, 0], [2, 7]) self.assertAllEqual(sp_tensor0.indices.eval(), [[0, 0], [0, 2], [0, 4], [0, 5]]) self.assertAllEqual(sp_tensor0.values.eval(), [0, 2, 4, 5]) self.assertAllEqual(sp_tensor0.dense_shape.eval(), [1, 6]) self.assertAllEqual(sp_tensor1.indices.eval(), [[0, 1], [0, 3], [0, 4]]) self.assertAllEqual(sp_tensor1.values.eval(), [11, 13, 14]) self.assertAllEqual(sp_tensor1.dense_shape.eval(), [1, 6]) self.assertAllEqual(sp_tensor2.indices.eval(), [[0, 0], [0, 3], [0, 5]]) self.assertAllEqual(sp_tensor2.values.eval(), [20, 23, 25]) self.assertAllEqual(sp_tensor2.dense_shape.eval(), [1, 6]) self.assertAllEqual(sp_tensor3.indices.eval(), [[0, 0], [0, 2], [0, 3], [0, 5]]) self.assertAllEqual(sp_tensor3.values.eval(), [30, 32, 33, 35]) self.assertAllEqual(sp_tensor3.dense_shape.eval(), [1, 6]) def testSliceColumns(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_4x6() sparse_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [4, 2]) sparse_tensor1 = sparse_ops.sparse_slice(sp_input, [0, 2], [5, 2]) sparse_tensor2 = sparse_ops.sparse_slice(sp_input, [0, 4], [5, 3]) self.assertAllEqual(sparse_tensor0.indices.eval(), [[0, 0], [1, 1], [2, 0], [3, 0]]) self.assertAllEqual(sparse_tensor0.values.eval(), [0, 11, 20, 30]) self.assertAllEqual(sparse_tensor0.dense_shape.eval(), [4, 2]) self.assertAllEqual(sparse_tensor1.indices.eval(), [[0, 0], [1, 1], [2, 1], [3, 0], [3, 1]]) self.assertAllEqual(sparse_tensor1.values.eval(), [2, 13, 23, 32, 33]) self.assertAllEqual(sparse_tensor1.dense_shape.eval(), [4, 2]) self.assertAllEqual(sparse_tensor2.indices.eval(), [[0, 0], [0, 1], [1, 0], [2, 1], [3, 1]]) self.assertAllEqual(sparse_tensor2.values.eval(), [4, 5, 14, 25, 35]) self.assertAllEqual(sparse_tensor2.dense_shape.eval(), [4, 2]) def testSliceAllColumns(self): with self.test_session(use_gpu=False): sp_input=self._SparseTensor_4x6() sparse_tensor0 = sparse_ops.sparse_slice(sp_input, [0, 0], [4, 1]) sparse_tensor1 = sparse_ops.sparse_slice(sp_input, [0, 1], [4, 1]) sparse_tensor2 = sparse_ops.sparse_slice(sp_input, [0, 2], [4, 1]) sparse_tensor3 = sparse_ops.sparse_slice(sp_input, [0, 3], [4, 1]) sparse_tensor4 = sparse_ops.sparse_slice(sp_input, [0, 4], [5, 1]) sparse_tensor5 = sparse_ops.sparse_slice(sp_input, [0, 5], [6, 3]) self.assertAllEqual(sparse_tensor0.indices.eval(), [[0, 0], [2, 0], [3, 0]]) self.assertAllEqual(sparse_tensor0.values.eval(), [0, 20, 30]) self.assertAllEqual(sparse_tensor0.dense_shape.eval(), [4, 1]) self.assertAllEqual(sparse_tensor1.indices.eval(), [[1, 0]]) self.assertAllEqual(sparse_tensor1.values.eval(), [11]) self.assertAllEqual(sparse_tensor1.dense_shape.eval(), [4, 1]) self.assertAllEqual(sparse_tensor2.indices.eval(), [[0, 0], [3, 0]]) self.assertAllEqual(sparse_tensor2.values.eval(), [2, 32]) self.assertAllEqual(sparse_tensor2.dense_shape.eval(), [4, 1]) self.assertAllEqual(sparse_tensor3.indices.eval(), [[1, 0], [2, 0], [3, 0]]) self.assertAllEqual(sparse_tensor3.dense_shape.eval(), [4, 1]) self.assertAllEqual(sparse_tensor3.values.eval(), [13, 23, 33]) self.assertAllEqual(sparse_tensor4.indices.eval(), [[0, 0], [1, 0]]) self.assertAllEqual(sparse_tensor4.values.eval(), [4, 14]) self.assertAllEqual(sparse_tensor4.dense_shape.eval(), [4, 1]) self.assertAllEqual(sparse_tensor5.indices.eval(), [[0, 0], [2, 0], [3, 0]]) self.assertAllEqual(sparse_tensor5.values.eval(), [5, 25, 35]) self.assertAllEqual(sparse_tensor5.dense_shape.eval(), [4, 1]) if __name__ == '__main__': test.main()
apache-2.0
B-UMMI/INNUca
src/SPAdes-3.13.0-Linux/share/spades/pyyaml2/tokens.py
985
2573
class Token(object): def __init__(self, start_mark, end_mark): self.start_mark = start_mark self.end_mark = end_mark def __repr__(self): attributes = [key for key in self.__dict__ if not key.endswith('_mark')] attributes.sort() arguments = ', '.join(['%s=%r' % (key, getattr(self, key)) for key in attributes]) return '%s(%s)' % (self.__class__.__name__, arguments) #class BOMToken(Token): # id = '<byte order mark>' class DirectiveToken(Token): id = '<directive>' def __init__(self, name, value, start_mark, end_mark): self.name = name self.value = value self.start_mark = start_mark self.end_mark = end_mark class DocumentStartToken(Token): id = '<document start>' class DocumentEndToken(Token): id = '<document end>' class StreamStartToken(Token): id = '<stream start>' def __init__(self, start_mark=None, end_mark=None, encoding=None): self.start_mark = start_mark self.end_mark = end_mark self.encoding = encoding class StreamEndToken(Token): id = '<stream end>' class BlockSequenceStartToken(Token): id = '<block sequence start>' class BlockMappingStartToken(Token): id = '<block mapping start>' class BlockEndToken(Token): id = '<block end>' class FlowSequenceStartToken(Token): id = '[' class FlowMappingStartToken(Token): id = '{' class FlowSequenceEndToken(Token): id = ']' class FlowMappingEndToken(Token): id = '}' class KeyToken(Token): id = '?' class ValueToken(Token): id = ':' class BlockEntryToken(Token): id = '-' class FlowEntryToken(Token): id = ',' class AliasToken(Token): id = '<alias>' def __init__(self, value, start_mark, end_mark): self.value = value self.start_mark = start_mark self.end_mark = end_mark class AnchorToken(Token): id = '<anchor>' def __init__(self, value, start_mark, end_mark): self.value = value self.start_mark = start_mark self.end_mark = end_mark class TagToken(Token): id = '<tag>' def __init__(self, value, start_mark, end_mark): self.value = value self.start_mark = start_mark self.end_mark = end_mark class ScalarToken(Token): id = '<scalar>' def __init__(self, value, plain, start_mark, end_mark, style=None): self.value = value self.plain = plain self.start_mark = start_mark self.end_mark = end_mark self.style = style
gpl-3.0
swatilodha/coala
tests/parsing/StringProcessing/UnescapedSearchForTest.py
17
6174
from coalib.parsing.StringProcessing import unescaped_search_for from tests.parsing.StringProcessing.StringProcessingTestBase import ( StringProcessingTestBase) class UnescapedSearchForTest(StringProcessingTestBase): # Match either "out1" or "out2". test_basic_pattern = "out1|out2" # These are the expected results for the zero-group of the # returned MatchObject's. test_basic_expected_results = [ [r"out1", r"out2"], [r"out1", r"out2"], [r"out1", r"out2"], [r"out1", r"out2"], [r"out1", r"out2"], [r"out1", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2", r"out2"], [r"out1", r"out2"], [], [r"out1", r"out2"], [], []] @staticmethod def list_zero_group(it): """ Collects all MatchObject elements from the given iterator and extracts their first matching group (group 0). :param it: The input iterator where to collect from. """ return [elem.group(0) for elem in it] # Test the unescaped_search_for() function. def test_basic(self): expected_results = self.test_basic_expected_results self.assertResultsEqual( unescaped_search_for, {(self.test_basic_pattern, test_string, 0, 0, True): result for test_string, result in zip(self.test_strings, expected_results)}, self.list_zero_group) # Test unescaped_search_for() with a simple pattern. def test_simple_pattern(self): expected_results = [ 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 6 * [r"'"], [], [], [], []] self.assertResultsEqual( unescaped_search_for, {(r"'", test_string, 0, 0, use_regex): result for test_string, result in zip(self.test_strings, expected_results) for use_regex in [True, False]}, self.list_zero_group) # Test unescaped_search_for() with an empty pattern. def test_empty_pattern(self): # Since an empty pattern can also be escaped, the result contains # special cases. Especially we check the completely matched string (and # not only the matched pattern itself) we need to place also the # matched escape characters inside the result list consumed from the # internal regex of unescaped_search_for(). expected_results = [ 38 * [r""], 38 * [r""], 38 * [r""], 37 * [r""], 38 * [r""], 38 * [r""], 39 * [r""], 38 * [r""], 37 * [r""], 38 * [r""], 37 * [r""], 38 * [r""], 37 * [r""], 39 * [r""], [r""], 15 * [r""], [r""], 2 * [r""]] self.assertResultsEqual( unescaped_search_for, {(r"", test_string, 0, 0, use_regex): result for test_string, result in zip(self.test_strings, expected_results) for use_regex in [True, False]}, self.list_zero_group) # Test unescaped_search_for() for its max_match parameter. def test_max_match(self): search_pattern = self.test_basic_pattern expected_master_results = self.test_basic_expected_results self.assertResultsEqual( unescaped_search_for, {(search_pattern, test_string, 0, max_match, True): result for max_match in [1, 2, 3, 4, 5, 6, 987, 1122334455] for test_string, result in zip( self.test_strings, [elem[0: max_match] for elem in expected_master_results])}, self.list_zero_group) # Test unescaped_search_for() for its max_match parameter with matches # that are also escaped. def test_max_match_escaping_flaw(self): expected_master_results = [ 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 2 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 4 * [r"'"], 6 * [r"'"], [], [], [], []] self.assertResultsEqual( unescaped_search_for, {(r"'", test_string, 0, max_match, use_regex): result for max_match in [1, 2, 3, 4, 5, 6, 100] for test_string, result in zip( self.test_strings, [elem[0: max_match] for elem in expected_master_results]) for use_regex in [True, False]}, self.list_zero_group) # Test unescaped_search_for() with regexes disabled. def test_disabled_regex(self): search_pattern = r"\'" expected_results = [ [], [search_pattern], [], [], [search_pattern], [], [], [search_pattern], [search_pattern], [], [], [], [], [], [], [], [], []] self.assertResultsEqual( unescaped_search_for, {(search_pattern, test_string, 0, 0, False): result for test_string, result in zip(self.test_strings, expected_results)}, self.list_zero_group)
agpl-3.0
drexly/openhgsenti
lib/django/contrib/gis/db/backends/base/models.py
434
7111
import re from django.contrib.gis import gdal from django.utils import six from django.utils.encoding import python_2_unicode_compatible @python_2_unicode_compatible class SpatialRefSysMixin(object): """ The SpatialRefSysMixin is a class used by the database-dependent SpatialRefSys objects to reduce redundant code. """ # For pulling out the spheroid from the spatial reference string. This # regular expression is used only if the user does not have GDAL installed. # TODO: Flattening not used in all ellipsoids, could also be a minor axis, # or 'b' parameter. spheroid_regex = re.compile(r'.+SPHEROID\[\"(?P<name>.+)\",(?P<major>\d+(\.\d+)?),(?P<flattening>\d{3}\.\d+),') # For pulling out the units on platforms w/o GDAL installed. # TODO: Figure out how to pull out angular units of projected coordinate system and # fix for LOCAL_CS types. GDAL should be highly recommended for performing # distance queries. units_regex = re.compile( r'.+UNIT ?\["(?P<unit_name>[\w \'\(\)]+)", ?(?P<unit>[\d\.]+)' r'(,AUTHORITY\["(?P<unit_auth_name>[\w \'\(\)]+)",' r'"(?P<unit_auth_val>\d+)"\])?\]([\w ]+)?(,' r'AUTHORITY\["(?P<auth_name>[\w \'\(\)]+)","(?P<auth_val>\d+)"\])?\]$' ) @property def srs(self): """ Returns a GDAL SpatialReference object, if GDAL is installed. """ if gdal.HAS_GDAL: # TODO: Is caching really necessary here? Is complexity worth it? if hasattr(self, '_srs'): # Returning a clone of the cached SpatialReference object. return self._srs.clone() else: # Attempting to cache a SpatialReference object. # Trying to get from WKT first. try: self._srs = gdal.SpatialReference(self.wkt) return self.srs except Exception as msg: pass try: self._srs = gdal.SpatialReference(self.proj4text) return self.srs except Exception as msg: pass raise Exception('Could not get OSR SpatialReference from WKT: %s\nError:\n%s' % (self.wkt, msg)) else: raise Exception('GDAL is not installed.') @property def ellipsoid(self): """ Returns a tuple of the ellipsoid parameters: (semimajor axis, semiminor axis, and inverse flattening). """ if gdal.HAS_GDAL: return self.srs.ellipsoid else: m = self.spheroid_regex.match(self.wkt) if m: return (float(m.group('major')), float(m.group('flattening'))) else: return None @property def name(self): "Returns the projection name." return self.srs.name @property def spheroid(self): "Returns the spheroid name for this spatial reference." return self.srs['spheroid'] @property def datum(self): "Returns the datum for this spatial reference." return self.srs['datum'] @property def projected(self): "Is this Spatial Reference projected?" if gdal.HAS_GDAL: return self.srs.projected else: return self.wkt.startswith('PROJCS') @property def local(self): "Is this Spatial Reference local?" if gdal.HAS_GDAL: return self.srs.local else: return self.wkt.startswith('LOCAL_CS') @property def geographic(self): "Is this Spatial Reference geographic?" if gdal.HAS_GDAL: return self.srs.geographic else: return self.wkt.startswith('GEOGCS') @property def linear_name(self): "Returns the linear units name." if gdal.HAS_GDAL: return self.srs.linear_name elif self.geographic: return None else: m = self.units_regex.match(self.wkt) return m.group('unit_name') @property def linear_units(self): "Returns the linear units." if gdal.HAS_GDAL: return self.srs.linear_units elif self.geographic: return None else: m = self.units_regex.match(self.wkt) return m.group('unit') @property def angular_name(self): "Returns the name of the angular units." if gdal.HAS_GDAL: return self.srs.angular_name elif self.projected: return None else: m = self.units_regex.match(self.wkt) return m.group('unit_name') @property def angular_units(self): "Returns the angular units." if gdal.HAS_GDAL: return self.srs.angular_units elif self.projected: return None else: m = self.units_regex.match(self.wkt) return m.group('unit') @property def units(self): "Returns a tuple of the units and the name." if self.projected or self.local: return (self.linear_units, self.linear_name) elif self.geographic: return (self.angular_units, self.angular_name) else: return (None, None) @classmethod def get_units(cls, wkt): """ Class method used by GeometryField on initialization to retrieve the units on the given WKT, without having to use any of the database fields. """ if gdal.HAS_GDAL: return gdal.SpatialReference(wkt).units else: m = cls.units_regex.match(wkt) return m.group('unit'), m.group('unit_name') @classmethod def get_spheroid(cls, wkt, string=True): """ Class method used by GeometryField on initialization to retrieve the `SPHEROID[..]` parameters from the given WKT. """ if gdal.HAS_GDAL: srs = gdal.SpatialReference(wkt) sphere_params = srs.ellipsoid sphere_name = srs['spheroid'] else: m = cls.spheroid_regex.match(wkt) if m: sphere_params = (float(m.group('major')), float(m.group('flattening'))) sphere_name = m.group('name') else: return None if not string: return sphere_name, sphere_params else: # `string` parameter used to place in format acceptable by PostGIS if len(sphere_params) == 3: radius, flattening = sphere_params[0], sphere_params[2] else: radius, flattening = sphere_params return 'SPHEROID["%s",%s,%s]' % (sphere_name, radius, flattening) def __str__(self): """ Returns the string representation. If GDAL is installed, it will be 'pretty' OGC WKT. """ try: return six.text_type(self.srs) except Exception: return six.text_type(self.wkt)
apache-2.0