|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """INSERT TITLE""" | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import datasets | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | *REDO* | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | **REWRITE* | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | _URL = "https://huggingface.co/datasets/wzkariampuzha/EpiClassifySet/raw/main/" | 
					
						
						|  | _TRAINING_FILE = "epi_classify_train.tsv" | 
					
						
						|  | _VAL_FILE = "epi_classify_val.tsv" | 
					
						
						|  | _TEST_FILE = "epi_classify_test.tsv" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EpiSetConfig(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for Conll2003""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, **kwargs): | 
					
						
						|  | """BuilderConfig forConll2003. | 
					
						
						|  | Args: | 
					
						
						|  | **kwargs: keyword arguments forwarded to super. | 
					
						
						|  | """ | 
					
						
						|  | super(EpiSetConfig, self).__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EpiSet(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """EpiSet4NER by GARD.""" | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | EpiSetConfig(name="EpiSet4NER", version=datasets.Version("1.0.0"), description="EpiSet4NER by NIH NCATS GARD"), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "idx": datasets.Value("string"), | 
					
						
						|  |  | 
					
						
						|  | "abstracts": datasets.Sequence(datasets.Value("string")), | 
					
						
						|  | ''' | 
					
						
						|  | "labels": datasets.Sequence( | 
					
						
						|  | datasets.features.ClassLabel( | 
					
						
						|  | names=[ | 
					
						
						|  | "O", #(0) | 
					
						
						|  | "B-LOC", #(1) | 
					
						
						|  | "I-LOC", #(2) | 
					
						
						|  | "B-EPI", #(3) | 
					
						
						|  | "I-EPI", #(4) | 
					
						
						|  | "B-STAT", #(5) | 
					
						
						|  | "I-STAT", #(6) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | ), | 
					
						
						|  | ''' | 
					
						
						|  | "labels": datasets.features.ClassLabel( | 
					
						
						|  | names=[ | 
					
						
						|  | "1 = Epi Abstract", | 
					
						
						|  | "2 = Not Epi Abstract", | 
					
						
						|  | ] | 
					
						
						|  | ), | 
					
						
						|  |  | 
					
						
						|  | } | 
					
						
						|  | ), | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard", | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | """Returns SplitGenerators.""" | 
					
						
						|  | urls_to_download = { | 
					
						
						|  | "train": f"{_URL}{_TRAINING_FILE}", | 
					
						
						|  | "val": f"{_URL}{_VAL_FILE}", | 
					
						
						|  | "test": f"{_URL}{_TEST_FILE}", | 
					
						
						|  | } | 
					
						
						|  | downloaded_files = dl_manager.download_and_extract(urls_to_download) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, filepath): | 
					
						
						|  | logging.info("⏳ Generating examples from = %s", filepath) | 
					
						
						|  |  | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  | data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONNUMERIC) | 
					
						
						|  | next(data) | 
					
						
						|  | for id_, row in enumerate(data): | 
					
						
						|  | yield id_, { | 
					
						
						|  | "text": row[0], | 
					
						
						|  | "label": int(row[1]), | 
					
						
						|  | } | 
					
						
						|  | ''' | 
					
						
						|  | with open(filepath, encoding="utf-8") as f: | 
					
						
						|  | guid = 0 | 
					
						
						|  | abstracts = [] | 
					
						
						|  | labels = [] | 
					
						
						|  | for line in f: | 
					
						
						|  | if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line == "abstract\tlabel\n": | 
					
						
						|  | if abstracts: | 
					
						
						|  | yield guid, { | 
					
						
						|  | "idx": str(guid), | 
					
						
						|  | "abstracts": abstracts, | 
					
						
						|  | "labels": labels, | 
					
						
						|  | } | 
					
						
						|  | guid += 1 | 
					
						
						|  | abstracts = [] | 
					
						
						|  | labels = [] | 
					
						
						|  | else: | 
					
						
						|  | # EpiSet abstracts are space separated | 
					
						
						|  | splits = line.split("\t") | 
					
						
						|  | abstracts.append(splits[0]) | 
					
						
						|  | labels.append(splits[1].rstrip()) | 
					
						
						|  | # last example | 
					
						
						|  | if tokens: | 
					
						
						|  | yield guid, { | 
					
						
						|  | "idx": str(guid), | 
					
						
						|  | "abstracts": abstracts, | 
					
						
						|  | "labels": labels, | 
					
						
						|  | } | 
					
						
						|  | ''' |