|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""INSERT TITLE""" |
|
|
|
import logging |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
*REDO* |
|
|
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
**REWRITE* |
|
|
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/wzkariampuzha/EpiClassifySet/raw/main/" |
|
_TRAINING_FILE = "epi_classify_train.tsv" |
|
_VAL_FILE = "epi_classify_val.tsv" |
|
_TEST_FILE = "epi_classify_test.tsv" |
|
|
|
|
|
class EpiSetConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for Conll2003""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig forConll2003. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EpiSetConfig, self).__init__(**kwargs) |
|
|
|
|
|
class EpiSet(datasets.GeneratorBasedBuilder): |
|
"""EpiSet4NER by GARD.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
EpiSetConfig(name="EpiSet4NER", version=datasets.Version("1.0.0"), description="EpiSet4NER by NIH NCATS GARD"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"idx": datasets.Value("string"), |
|
|
|
"abstracts": datasets.Sequence(datasets.Value("string")), |
|
''' |
|
"labels": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", #(0) |
|
"B-LOC", #(1) |
|
"I-LOC", #(2) |
|
"B-EPI", #(3) |
|
"I-EPI", #(4) |
|
"B-STAT", #(5) |
|
"I-STAT", #(6) |
|
] |
|
) |
|
), |
|
''' |
|
"labels": datasets.features.ClassLabel( |
|
names=[ |
|
"1 = Epi Abstract", |
|
"2 = Not Epi Abstract", |
|
] |
|
), |
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"val": f"{_URL}{_VAL_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logging.info("⏳ Generating examples from = %s", filepath) |
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONNUMERIC) |
|
next(data) |
|
for id_, row in enumerate(data): |
|
yield id_, { |
|
"text": row[0], |
|
"label": int(row[1]), |
|
} |
|
''' |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
abstracts = [] |
|
labels = [] |
|
for line in f: |
|
if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line == "abstract\tlabel\n": |
|
if abstracts: |
|
yield guid, { |
|
"idx": str(guid), |
|
"abstracts": abstracts, |
|
"labels": labels, |
|
} |
|
guid += 1 |
|
abstracts = [] |
|
labels = [] |
|
else: |
|
# EpiSet abstracts are space separated |
|
splits = line.split("\t") |
|
abstracts.append(splits[0]) |
|
labels.append(splits[1].rstrip()) |
|
# last example |
|
if tokens: |
|
yield guid, { |
|
"idx": str(guid), |
|
"abstracts": abstracts, |
|
"labels": labels, |
|
} |
|
''' |