Datasets:

Languages:
English
License:
File size: 5,104 Bytes
ab2c994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edade14
b53fe5e
edade14
 
 
 
 
 
 
 
ab2c994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
edade14
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""INSERT TITLE"""

import logging
import datasets


_CITATION = """\
*REDO*

"""

_DESCRIPTION = """\
**REWRITE*

"""

_URL = "https://huggingface.co/datasets/wzkariampuzha/EpiClassifySet/raw/main/"
_TRAINING_FILE = "epi_classify_train.tsv"
_VAL_FILE = "epi_classify_val.tsv"
_TEST_FILE = "epi_classify_test.tsv"


class EpiSetConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(EpiSetConfig, self).__init__(**kwargs)


class EpiSet(datasets.GeneratorBasedBuilder):
    """EpiSet4NER by GARD."""

    BUILDER_CONFIGS = [
        EpiSetConfig(name="EpiSet4NER", version=datasets.Version("1.0.0"), description="EpiSet4NER by NIH NCATS GARD"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "idx": datasets.Value("string"),
                    #"abstracts": datasets.Value("string"),
                    "abstracts": datasets.Sequence(datasets.Value("string")),
                    '''
                    "labels": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "O", #(0)
                                "B-LOC", #(1)
                                "I-LOC", #(2)
                                "B-EPI", #(3)
                                "I-EPI", #(4)
                                "B-STAT", #(5)
                                "I-STAT", #(6)
                            ]
                        )
                    ),
                    '''
                    "labels": datasets.features.ClassLabel(
                        names=[
                            "1 = Epi Abstract",
                            "2 = Not Epi Abstract",
                        ]
                    ),
                    
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/ncats/epi4GARD/tree/master/Epi4GARD#epi4gard",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
            "val": f"{_URL}{_VAL_FILE}",
            "test": f"{_URL}{_TEST_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
        ]

    def _generate_examples(self, filepath):
        logging.info("⏳ Generating examples from = %s", filepath)
        
        with open(filepath, encoding="utf-8") as f:
            data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONNUMERIC)
            next(data)
            for id_, row in enumerate(data):
                yield id_, {
                    "text": row[0],
                    "label": int(row[1]),
                }
        '''
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            abstracts = []
            labels = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n" or line == "abstract\tlabel\n":
                    if abstracts:
                        yield guid, {
                            "idx": str(guid),
                            "abstracts": abstracts,
                            "labels": labels,
                        }
                        guid += 1
                        abstracts = []
                        labels = []
                else:
                    # EpiSet abstracts are space separated
                    splits = line.split("\t")
                    abstracts.append(splits[0])
                    labels.append(splits[1].rstrip())
            # last example
            if tokens:
                yield guid, {
                    "idx": str(guid),
                    "abstracts": abstracts,
                    "labels": labels,
                }
                '''