Datasets:
mteb
/

results / scripts /create_pr_results_comment.py
Samoed's picture
Fix result script (#229)
264ebcb unverified
"""
Script to generate a Markdown comparison table for new model results in a pull request.
Usage:
gh pr checkout {pr-number}
python scripts/create_pr_results_comment.py [--models MODEL1 MODEL2 ...] [--output OUTPUT_FILE]
Description:
- Compares new model results (added in the current PR) against reference models.
- Outputs a Markdown file with results for each new model and highlights the best scores.
- By default, compares against: intfloat/multilingual-e5-large and google/gemini-embedding-001.
- You can specify reference models with the --models argument.
Arguments:
--reference-models: List of reference models to compare against (default: intfloat/multilingual-e5-large google/gemini-embedding-001)
--output: Output markdown file path (default: model-comparison.md)
Example:
python scripts/create_pr_results_comment.py --models intfloat/multilingual-e5-large myorg/my-new-model
"""
from __future__ import annotations
import argparse
import json
import os
import subprocess
import logging
from collections import defaultdict
from pathlib import Path
import mteb
import pandas as pd
TaskName, ModelName = str, str
# Default reference models to compare against
REFERENCE_MODELS: list[str] = [
"intfloat/multilingual-e5-large",
"google/gemini-embedding-001",
]
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
repo_path = Path(__file__).parents[1]
os.environ["MTEB_CACHE"] = str(repo_path.parent)
def get_diff_from_main() -> list[str]:
differences = subprocess.run(
["git", "diff", "--name-only", "origin/main...HEAD"],
cwd=repo_path,
text=True,
capture_output=True,
).stdout.splitlines()
return differences
def extract_new_models_and_tasks(
differences: list[str],
) -> dict[ModelName, list[TaskName]]:
diffs = [repo_path / diff for diff in differences]
result_diffs = filter(
lambda p: p.exists() and p.suffix == ".json" and p.name != "model_meta.json",
diffs,
)
models = defaultdict(list)
for diff in result_diffs:
model_meta = diff.parent / "model_meta.json"
task_name = diff.stem
with model_meta.open("r") as f:
model_name = json.load(f)["name"]
models[model_name].append(task_name)
return models
def create_comparison_table(
model: str, tasks: list[str], reference_models: list[str]
) -> pd.DataFrame:
models = [model] + reference_models
max_col_name = "Max result"
task_col_name = "task_name"
results = mteb.load_results(models=models, tasks=tasks, download_latest=False)
results = results.join_revisions()
df = results.to_dataframe()
if df.empty:
raise ValueError(f"No results found for models {models} on tasks {tasks}")
df[max_col_name] = None
task_results = mteb.load_results(tasks=tasks, download_latest=False)
task_results = task_results.join_revisions()
task_results_df = task_results.to_dataframe(format="long")
# some scores are in percentage, convert them to decimal
task_results_df.loc[task_results_df["score"] > 1, "score"] /= 100
max_dataframe = task_results_df.groupby(task_col_name).max()
if not max_dataframe.empty:
for task_name, row in max_dataframe.iterrows():
df.loc[df[task_col_name] == task_name, max_col_name] = row["score"]
averages: dict[str, float | None] = {}
for col in models + [max_col_name]:
if col not in df.columns:
continue
numeric = pd.to_numeric(df[col], errors="coerce")
avg = numeric.mean()
averages[col] = avg if not pd.isna(avg) else None
avg_row = pd.DataFrame(
{
task_col_name: ["**Average**"],
**{col: [val] for col, val in averages.items()},
}
)
return pd.concat([df, avg_row], ignore_index=True)
def highlight_max_bold(
df: pd.DataFrame, exclude_cols: list[str] = ["task_name"]
) -> pd.DataFrame:
result_df = df.copy()
for col in result_df.columns:
if col not in exclude_cols:
result_df[col] = result_df[col].apply(
lambda x: f"{x:.2f}"
if isinstance(x, (int, float)) and pd.notna(x)
else x
)
tmp = df.drop(columns=exclude_cols)
for idx in df.index:
row = pd.to_numeric(tmp.loc[idx], errors="coerce")
if row.isna().all():
continue
max_col = row.idxmax()
if pd.notna(row[max_col]):
result_df.at[idx, max_col] = f"**{result_df.at[idx, max_col]}**"
return result_df
def generate_markdown_content(
model_tasks: dict[str, list[str]], reference_models: list[str]
) -> str:
if not model_tasks:
return "# Model Results Comparison\n\nNo new model results found in this PR."
all_tasks = sorted({t for tasks in model_tasks.values() for t in tasks})
new_models = list(model_tasks.keys())
parts: list[str] = [
"# Model Results Comparison",
"",
f"**Reference models:** {', '.join(f'`{m}`' for m in reference_models)}",
f"**New models evaluated:** {', '.join(f'`{m}`' for m in new_models)}",
f"**Tasks:** {', '.join(f'`{t}`' for t in all_tasks)}",
"",
]
for model_name, tasks in model_tasks.items():
parts.append(f"## Results for `{model_name}`")
df = create_comparison_table(model_name, tasks, reference_models)
bold_df = highlight_max_bold(df)
parts.append(bold_df.to_markdown(index=False))
parts.extend(["", "---", ""])
return "\n".join(parts)
def create_argparse() -> argparse.ArgumentParser:
"""Create the argument parser for the script."""
parser = argparse.ArgumentParser(
description="Create PR comment with results comparison."
)
parser.add_argument(
"--reference-models",
nargs="+",
default=REFERENCE_MODELS,
help="List of reference models to compare against (default: %(default)s)",
)
parser.add_argument(
"--output",
type=Path,
default=Path("model-comparison.md"),
help="Output markdown file path",
)
return parser
def main(reference_models: list[str], output_path: Path) -> None:
logger.info("Starting to create PR results comment...")
logger.info(f"Using reference models: {', '.join(reference_models)}")
diff = get_diff_from_main()
model_tasks = extract_new_models_and_tasks(diff)
markdown = generate_markdown_content(model_tasks, reference_models)
output_path.parent.mkdir(parents=True, exist_ok=True)
output_path.write_text(markdown)
if __name__ == "__main__":
parser = create_argparse()
args = parser.parse_args()
main(args.reference_models, args.output)