Datasets:
mteb
/

File size: 6,856 Bytes
bbc4e83
 
 
 
 
0af4146
bbc4e83
 
 
0af4146
bbc4e83
 
 
 
0af4146
 
bbc4e83
 
0af4146
bbc4e83
 
 
 
 
 
 
 
0af4146
bbc4e83
 
 
 
 
 
 
 
0af4146
 
bbc4e83
 
 
 
0af4146
 
 
 
bbc4e83
0af4146
 
 
bbc4e83
 
0af4146
bbc4e83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0af4146
 
 
 
 
 
bbc4e83
0af4146
bbc4e83
 
 
0af4146
 
bbc4e83
0af4146
 
 
264ebcb
 
 
 
 
0af4146
 
264ebcb
0af4146
 
 
264ebcb
 
0af4146
 
 
 
 
bbc4e83
0af4146
 
bbc4e83
 
0af4146
bbc4e83
 
0af4146
 
 
bbc4e83
0af4146
 
 
 
 
 
 
 
 
bbc4e83
0af4146
 
 
 
 
 
bbc4e83
 
 
 
0af4146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbc4e83
0af4146
bbc4e83
 
 
 
0af4146
bbc4e83
0af4146
bbc4e83
 
0af4146
 
 
 
 
 
bbc4e83
 
 
0af4146
 
 
bbc4e83
 
0af4146
 
 
 
 
bbc4e83
 
 
 
 
0af4146
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
"""
Script to generate a Markdown comparison table for new model results in a pull request.

Usage:
    gh pr checkout {pr-number}
    python scripts/create_pr_results_comment.py [--models MODEL1 MODEL2 ...] [--output OUTPUT_FILE]

Description:
    - Compares new model results (added in the current PR) against reference models.
    - Outputs a Markdown file with results for each new model and highlights the best scores.
    - By default, compares against: intfloat/multilingual-e5-large and google/gemini-embedding-001.
    - You can specify reference models with the --models argument.

Arguments:
    --reference-models: List of reference models to compare against (default: intfloat/multilingual-e5-large google/gemini-embedding-001)
    --output: Output markdown file path (default: model-comparison.md)

Example:
    python scripts/create_pr_results_comment.py --models intfloat/multilingual-e5-large myorg/my-new-model
"""

from __future__ import annotations

import argparse
import json
import os
import subprocess
import logging
from collections import defaultdict
from pathlib import Path

import mteb
import pandas as pd

TaskName, ModelName = str, str

# Default reference models to compare against
REFERENCE_MODELS: list[str] = [
    "intfloat/multilingual-e5-large",
    "google/gemini-embedding-001",
]

logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)

repo_path = Path(__file__).parents[1]

os.environ["MTEB_CACHE"] = str(repo_path.parent)


def get_diff_from_main() -> list[str]:
    differences = subprocess.run(
        ["git", "diff", "--name-only", "origin/main...HEAD"],
        cwd=repo_path,
        text=True,
        capture_output=True,
    ).stdout.splitlines()

    return differences


def extract_new_models_and_tasks(
    differences: list[str],
) -> dict[ModelName, list[TaskName]]:
    diffs = [repo_path / diff for diff in differences]
    result_diffs = filter(
        lambda p: p.exists() and p.suffix == ".json" and p.name != "model_meta.json",
        diffs,
    )

    models = defaultdict(list)
    for diff in result_diffs:
        model_meta = diff.parent / "model_meta.json"
        task_name = diff.stem

        with model_meta.open("r") as f:
            model_name = json.load(f)["name"]

        models[model_name].append(task_name)

    return models


def create_comparison_table(
    model: str, tasks: list[str], reference_models: list[str]
) -> pd.DataFrame:
    models = [model] + reference_models
    max_col_name = "Max result"
    task_col_name = "task_name"
    results = mteb.load_results(models=models, tasks=tasks, download_latest=False)

    results = results.join_revisions()
    df = results.to_dataframe()

    if df.empty:
        raise ValueError(f"No results found for models {models} on tasks {tasks}")

    df[max_col_name] = None
    task_results = mteb.load_results(tasks=tasks, download_latest=False)
    task_results = task_results.join_revisions()

    task_results_df = task_results.to_dataframe(format="long")
    # some scores are in percentage, convert them to decimal
    task_results_df.loc[task_results_df["score"] > 1, "score"] /= 100
    max_dataframe = task_results_df.groupby(task_col_name).max()
    if not max_dataframe.empty:
        for task_name, row in max_dataframe.iterrows():
            df.loc[df[task_col_name] == task_name, max_col_name] = row["score"]

    averages: dict[str, float | None] = {}
    for col in models + [max_col_name]:
        if col not in df.columns:
            continue
        numeric = pd.to_numeric(df[col], errors="coerce")
        avg = numeric.mean()
        averages[col] = avg if not pd.isna(avg) else None

    avg_row = pd.DataFrame(
        {
            task_col_name: ["**Average**"],
            **{col: [val] for col, val in averages.items()},
        }
    )
    return pd.concat([df, avg_row], ignore_index=True)


def highlight_max_bold(
    df: pd.DataFrame, exclude_cols: list[str] = ["task_name"]
) -> pd.DataFrame:
    result_df = df.copy()
    for col in result_df.columns:
        if col not in exclude_cols:
            result_df[col] = result_df[col].apply(
                lambda x: f"{x:.2f}"
                if isinstance(x, (int, float)) and pd.notna(x)
                else x
            )

    tmp = df.drop(columns=exclude_cols)
    for idx in df.index:
        row = pd.to_numeric(tmp.loc[idx], errors="coerce")
        if row.isna().all():
            continue
        max_col = row.idxmax()
        if pd.notna(row[max_col]):
            result_df.at[idx, max_col] = f"**{result_df.at[idx, max_col]}**"

    return result_df


def generate_markdown_content(
    model_tasks: dict[str, list[str]], reference_models: list[str]
) -> str:
    if not model_tasks:
        return "# Model Results Comparison\n\nNo new model results found in this PR."

    all_tasks = sorted({t for tasks in model_tasks.values() for t in tasks})
    new_models = list(model_tasks.keys())

    parts: list[str] = [
        "# Model Results Comparison",
        "",
        f"**Reference models:** {', '.join(f'`{m}`' for m in reference_models)}",
        f"**New models evaluated:** {', '.join(f'`{m}`' for m in new_models)}",
        f"**Tasks:** {', '.join(f'`{t}`' for t in all_tasks)}",
        "",
    ]

    for model_name, tasks in model_tasks.items():
        parts.append(f"## Results for `{model_name}`")

        df = create_comparison_table(model_name, tasks, reference_models)
        bold_df = highlight_max_bold(df)
        parts.append(bold_df.to_markdown(index=False))

        parts.extend(["", "---", ""])

    return "\n".join(parts)


def create_argparse() -> argparse.ArgumentParser:
    """Create the argument parser for the script."""
    parser = argparse.ArgumentParser(
        description="Create PR comment with results comparison."
    )
    parser.add_argument(
        "--reference-models",
        nargs="+",
        default=REFERENCE_MODELS,
        help="List of reference models to compare against (default: %(default)s)",
    )
    parser.add_argument(
        "--output",
        type=Path,
        default=Path("model-comparison.md"),
        help="Output markdown file path",
    )
    return parser


def main(reference_models: list[str], output_path: Path) -> None:
    logger.info("Starting to create PR results comment...")
    logger.info(f"Using reference models: {', '.join(reference_models)}")
    diff = get_diff_from_main()

    model_tasks = extract_new_models_and_tasks(diff)
    markdown = generate_markdown_content(model_tasks, reference_models)

    output_path.parent.mkdir(parents=True, exist_ok=True)
    output_path.write_text(markdown)


if __name__ == "__main__":
    parser = create_argparse()
    args = parser.parse_args()
    main(args.reference_models, args.output)