post_operative / post_operative.py
mstz's picture
Upload post_operative.py
bd31a71
"""PostOperative Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ENCODING_DICS = {
"internal_temperature": {
"low": 0,
"mid": 1,
"high": 2
},
"surface_temperature": {
"low": 0,
"mid": 1,
"high": 2
},
"oxigen_saturation": {
"good": 0,
"excellent": 1
},
"blood_pressure": {
"low": 0,
"mid": 1,
"high": 2
},
"is_surface_temperature_stable": {
"stable": True,
"unstable": False,
},
"is_internal_temperature_stable": {
"stable": 2,
"mod-stable": 1,
"unstable": 0,
},
"is_blood_pressure_stable": {
"stable": 2,
"mod-stable": 1,
"unstable": 0,
}
}
DESCRIPTION = "PostOperative dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
_CITATION = """
@misc{misc_post-operative_patient_82,
author = {Summers,Sharon & Woolery,Linda},
title = {{Post-Operative Patient}},
year = {1993},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C5DG6Q}}
}"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/post_operative/raw/main/post_operative.data"
}
features_types_per_config = {
"post_operative": {
"internal_temperature": datasets.Value("int8"),
"surface_temperature": datasets.Value("int8"),
"oxigen_saturation": datasets.Value("int8"),
"blood_pressure": datasets.Value("int8"),
"is_surface_temperature_stable": datasets.Value("bool"),
"is_internal_temperature_stable": datasets.Value("int8"),
"is_blood_pressure_stable": datasets.Value("int8"),
"perceived_comfort": datasets.Value("int8"),
"decision": datasets.ClassLabel(num_classes=3, names=("discharge", "hospital floor", "intensive care")),
},
"post_operative_binary": {
"internal_temperature": datasets.Value("int8"),
"surface_temperature": datasets.Value("int8"),
"oxigen_saturation": datasets.Value("int8"),
"blood_pressure": datasets.Value("int8"),
"is_surface_temperature_stable": datasets.Value("bool"),
"is_internal_temperature_stable": datasets.Value("int8"),
"is_blood_pressure_stable": datasets.Value("int8"),
"perceived_comfort": datasets.Value("int8"),
"decision": datasets.ClassLabel(num_classes=2, names=("discharge", "don't discharge")),
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class PostOperativeConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(PostOperativeConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class PostOperative(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "post_operative"
BUILDER_CONFIGS = [
PostOperativeConfig(name="post_operative",
description="PostOperative for regression."),
PostOperativeConfig(name="post_operative_binary",
description="PostOperative for binary classification.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
if self.config.name == "post_operative_binary":
data["decision"] = data["decision"].apply(lambda x: 1 if x >= 1 else 0)
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data = data.reset_index()
data.drop("index", axis="columns", inplace=True)
data = data[data.perceived_comfort != "?"]
return data[list(features_types_per_config[self.config.name].keys())]
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")