File size: 5,014 Bytes
7483238
 
 
 
 
 
 
 
 
 
 
 
 
718b85a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b119d56
 
 
718b85a
 
09ee3cb
b119d56
09ee3cb
718b85a
7483238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09ee3cb
b119d56
718b85a
7483238
 
 
 
 
 
 
 
09ee3cb
b119d56
718b85a
7483238
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd31a71
7483238
 
 
 
 
 
 
54cb3a0
7483238
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""PostOperative Dataset"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")

_ENCODING_DICS = {
    "internal_temperature": {
        "low": 0,
        "mid": 1,
        "high": 2
    },
    "surface_temperature": {
        "low": 0,
        "mid": 1,
        "high": 2
    },
    "oxigen_saturation": {
        "good": 0,
        "excellent": 1
    },
    "blood_pressure": {
        "low": 0,
        "mid": 1,
        "high": 2
    },
    "is_surface_temperature_stable": {
        "stable": True,
        "unstable": False,
    },
    "is_internal_temperature_stable": {
        "stable": 2,
        "mod-stable": 1,
        "unstable": 0,
    },
    "is_blood_pressure_stable": {
        "stable": 2,
        "mod-stable": 1,
        "unstable": 0,
    }
}

DESCRIPTION = "PostOperative dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/78/page+blocks+classification")
_CITATION = """
@misc{misc_post-operative_patient_82,
  author       = {Summers,Sharon & Woolery,Linda},
  title        = {{Post-Operative Patient}},
  year         = {1993},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5DG6Q}}
}"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/post_operative/raw/main/post_operative.data"
}
features_types_per_config = {
    "post_operative": {
        "internal_temperature": datasets.Value("int8"),
        "surface_temperature": datasets.Value("int8"),
        "oxigen_saturation": datasets.Value("int8"),
        "blood_pressure": datasets.Value("int8"),
        "is_surface_temperature_stable": datasets.Value("bool"),
        "is_internal_temperature_stable": datasets.Value("int8"),
        "is_blood_pressure_stable": datasets.Value("int8"),
        "perceived_comfort": datasets.Value("int8"),
        "decision": datasets.ClassLabel(num_classes=3, names=("discharge", "hospital floor", "intensive care")),
    },
    "post_operative_binary": {
		"internal_temperature": datasets.Value("int8"),
        "surface_temperature": datasets.Value("int8"),
        "oxigen_saturation": datasets.Value("int8"),
        "blood_pressure": datasets.Value("int8"),
        "is_surface_temperature_stable": datasets.Value("bool"),
        "is_internal_temperature_stable": datasets.Value("int8"),
        "is_blood_pressure_stable": datasets.Value("int8"),
        "perceived_comfort": datasets.Value("int8"),
        "decision": datasets.ClassLabel(num_classes=2, names=("discharge", "don't discharge")),
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class PostOperativeConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(PostOperativeConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class PostOperative(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "post_operative"
    BUILDER_CONFIGS = [
        PostOperativeConfig(name="post_operative",
                   description="PostOperative for regression."),
        PostOperativeConfig(name="post_operative_binary",
                   description="PostOperative for binary classification.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        data = self.preprocess(data)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
        if self.config.name == "post_operative_binary":
            data["decision"] = data["decision"].apply(lambda x: 1 if x >= 1 else 0)

        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)
        
        data = data.reset_index()
        data.drop("index", axis="columns", inplace=True)
        data = data[data.perceived_comfort != "?"]
                
        return data[list(features_types_per_config[self.config.name].keys())]

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")