Datasets:
File size: 4,859 Bytes
761febb 8c86618 761febb 5e8b1f9 761febb 4303419 761febb c4bda92 761febb d606eed 208cd4c d606eed 761febb 112b4c5 761febb 8d0a9fe 761febb b858b60 761febb 1a4b7ca c2c4214 0d52394 c2c4214 d606eed 0d52394 c39435b 761febb 112b4c5 761febb c2c4214 d606eed 112b4c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
"""Heart"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
"age",
"is_male",
"type_of_chest_pain",
"resting_blood_pressure",
"serum_cholesterol",
"fasting_blood_sugar",
"rest_electrocardiographic_type",
"maximum_heart_rate",
"has_exercise_induced_angina",
"depression_induced_by_exercise",
"slope_of_peak_exercise",
"number_of_major_vessels_colored_by_flourosopy",
"thal",
"has_hearth_disease"
]
DESCRIPTION = "Heart dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
_CITATION = """
@misc{misc_heart_disease_45,
author = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
title = {{Heart Disease}},
year = {1988},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \\url{10.24432/C52P4X}}
}"""
# Dataset info
urls_per_split = {
"hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
}
features_types_per_config = {
"hungary": {
"age": datasets.Value("int8"),
"is_male": datasets.Value("bool"),
"type_of_chest_pain": datasets.Value("string"),
"resting_blood_pressure": datasets.Value("float32"),
"serum_cholesterol": datasets.Value("float32"),
"fasting_blood_sugar": datasets.Value("float32"),
"rest_electrocardiographic_type": datasets.Value("string"),
"maximum_heart_rate": datasets.Value("float32"),
"has_exercise_induced_angina": datasets.Value("bool"),
"depression_induced_by_exercise": datasets.Value("float32"),
"has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
_ENCODING_DICS = {
"type_of_chest_pain": {
1: "typical angina",
2: "atypical angina",
3: "non-anginal pain",
4: "asymptomatic"
}
}
class HeartConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(HeartConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Heart(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "hungary"
BUILDER_CONFIGS = [
HeartConfig(name="hungary",
description="Heart for binary classification, hungary dataset.")
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath, header=None)
data.columns = _BASE_FEATURE_NAMES
data = self.preprocess(data, self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data, config):
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
data[["age"]].applymap(int)
data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
data.drop("thal", axis="columns", inplace=True)
data = data[data.serum_cholesterol != "?"]
data = data.infer_objects()
data = data[data.resting_blood_pressure != "?"]
data = data[data.fasting_blood_sugar != "?"]
data = data[data.rest_electrocardiographic_type != "?"]
data = data[data.maximum_heart_rate != "?"]
data = data[data.has_exercise_induced_angina != "?"]
data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
"serum_cholesterol": float, "maximum_heart_rate": float,
"resting_blood_pressure": float, "fasting_blood_sugar": float})
return data
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")
|