File size: 4,859 Bytes
761febb
 
 
8c86618
761febb
 
 
 
 
 
 
 
5e8b1f9
 
 
 
 
 
 
 
 
 
 
 
 
761febb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4303419
761febb
 
 
c4bda92
 
 
 
 
 
 
 
 
 
761febb
 
 
 
 
d606eed
 
208cd4c
 
 
d606eed
 
 
761febb
 
 
 
 
 
 
 
 
112b4c5
761febb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d0a9fe
761febb
 
 
b858b60
761febb
1a4b7ca
c2c4214
 
 
0d52394
c2c4214
 
 
d606eed
 
 
0d52394
c39435b
761febb
112b4c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
761febb
c2c4214
d606eed
 
 
 
112b4c5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""Heart"""

from typing import List
from functools import partial

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "age",
    "is_male",
    "type_of_chest_pain",
    "resting_blood_pressure",
    "serum_cholesterol",
    "fasting_blood_sugar",
    "rest_electrocardiographic_type",
    "maximum_heart_rate",
    "has_exercise_induced_angina",
    "depression_induced_by_exercise",
    "slope_of_peak_exercise",
    "number_of_major_vessels_colored_by_flourosopy",
    "thal",
    "has_hearth_disease"
]

DESCRIPTION = "Heart dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Heart"
_URLS = ("https://huggingface.co/datasets/mstz/heart/raw/heart.csv")
_CITATION = """
@misc{misc_heart_disease_45,
  author       = {Janosi,Andras, Steinbrunn,William, Pfisterer,Matthias, Detrano,Robert & M.D.,M.D.},
  title        = {{Heart Disease}},
  year         = {1988},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C52P4X}}
}"""

# Dataset info
urls_per_split = {
    "hungary": {"train": "https://huggingface.co/datasets/mstz/heart/raw/main/processed.hungarian.data"},
}
features_types_per_config = {
    "hungary": {
        "age": datasets.Value("int8"),
        "is_male": datasets.Value("bool"),
        "type_of_chest_pain": datasets.Value("string"),
        "resting_blood_pressure": datasets.Value("float32"),
        "serum_cholesterol": datasets.Value("float32"),
        "fasting_blood_sugar": datasets.Value("float32"),
        "rest_electrocardiographic_type": datasets.Value("string"),
        "maximum_heart_rate": datasets.Value("float32"),
        "has_exercise_induced_angina": datasets.Value("bool"),
        "depression_induced_by_exercise": datasets.Value("float32"),
        "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}

_ENCODING_DICS = {
    "type_of_chest_pain": {
        1: "typical angina",
        2: "atypical angina",
        3: "non-anginal pain",
        4: "asymptomatic"
    }
}

class HeartConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(HeartConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Heart(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "hungary"
    BUILDER_CONFIGS = [
        HeartConfig(name="hungary",
                    description="Heart for binary classification, hungary dataset.")
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath, header=None)
        data.columns = _BASE_FEATURE_NAMES
        data = self.preprocess(data, self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data, config):
        for feature in _ENCODING_DICS:
            encoding_function = partial(self.encode, feature)
            data.loc[:, feature] = data[feature].apply(encoding_function)

        data[["age"]].applymap(int)

        data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
        data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
        data.drop("thal", axis="columns", inplace=True)
        data = data[data.serum_cholesterol != "?"]

        data = data.infer_objects()

        data = data[data.resting_blood_pressure != "?"]
        data = data[data.fasting_blood_sugar != "?"]
        data = data[data.rest_electrocardiographic_type != "?"]
        data = data[data.maximum_heart_rate != "?"]
        data = data[data.has_exercise_induced_angina != "?"]

        data = data.astype({"is_male": bool, "has_exercise_induced_angina": bool,
                            "serum_cholesterol": float, "maximum_heart_rate": float,
                            "resting_blood_pressure": float, "fasting_blood_sugar": float})       

        return data

    def encode(self, feature, value):
        if feature in _ENCODING_DICS:
            return _ENCODING_DICS[feature][value]
        raise ValueError(f"Unknown feature: {feature}")