mstz commited on
Commit
c2c4214
·
1 Parent(s): c39435b

Upload heart.py

Browse files
Files changed (1) hide show
  1. heart.py +20 -11
heart.py CHANGED
@@ -105,9 +105,6 @@ features_types_per_config = {
105
  "maximum_heart_rate": datasets.Value("float32"),
106
  "has_exercise_induced_angina": datasets.Value("bool"),
107
  "depression_induced_by_exercise": datasets.Value("float32"),
108
- "slope_of_peak_exercise": datasets.Value("float32"),
109
- "number_of_major_vessels_colored_by_flourosopy": datasets.Value("int16"),
110
- "thal": datasets.Value("float32"),
111
  "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
112
  },
113
  }
@@ -159,7 +156,19 @@ class Heart(datasets.GeneratorBasedBuilder):
159
  def _generate_examples(self, filepath: str):
160
  data = pandas.read_csv(filepath, header=None)
161
  data.columns = _BASE_FEATURE_NAMES
 
 
 
 
 
 
 
 
 
162
 
 
 
 
163
  for feature in _ENCODING_DICS:
164
  encoding_function = partial(self.encode, feature)
165
  data.loc[:, feature] = data[feature].apply(encoding_function)
@@ -168,17 +177,17 @@ class Heart(datasets.GeneratorBasedBuilder):
168
  data[["age"]].applymap(int)
169
  data = data[data.thal != "?"]
170
  data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"]
171
- data = data.infer_objects()
172
 
173
- print(data.head())
174
- print(data.dtypes)
175
- print(data.number_of_major_vessels_colored_by_flourosopy.unique())
176
- print(data.thal.unique())
177
 
178
- for row_id, row in data.iterrows():
179
- data_row = dict(row)
 
180
 
181
- yield row_id, data_row
182
 
183
  def encode(self, feature, value):
184
  if feature in _ENCODING_DICS:
 
105
  "maximum_heart_rate": datasets.Value("float32"),
106
  "has_exercise_induced_angina": datasets.Value("bool"),
107
  "depression_induced_by_exercise": datasets.Value("float32"),
 
 
 
108
  "has_hearth_disease": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
109
  },
110
  }
 
156
  def _generate_examples(self, filepath: str):
157
  data = pandas.read_csv(filepath, header=None)
158
  data.columns = _BASE_FEATURE_NAMES
159
+ data = self.process(data, self.config.name)
160
+
161
+ print(data.head())
162
+ print(data.dtypes)
163
+ print(data.number_of_major_vessels_colored_by_flourosopy.unique())
164
+ print(data.thal.unique())
165
+
166
+ for row_id, row in data.iterrows():
167
+ data_row = dict(row)
168
 
169
+ yield row_id, data_row
170
+
171
+ def preprocess(self, data, config):
172
  for feature in _ENCODING_DICS:
173
  encoding_function = partial(self.encode, feature)
174
  data.loc[:, feature] = data[feature].apply(encoding_function)
 
177
  data[["age"]].applymap(int)
178
  data = data[data.thal != "?"]
179
  data = data[data.number_of_major_vessels_colored_by_flourosopy != "?"]
 
180
 
181
+ if config == "hungary":
182
+ data.drop("slope_of_peak_exercise", axis="columns", inplace=True)
183
+ data.drop("number_of_major_vessels_colored_by_flourosopy", axis="columns", inplace=True)
184
+ data.drop("thal", axis="columns", inplace=True)
185
 
186
+ data = data[data.serum_cholesterol != "?"]
187
+
188
+ data = data.infer_objects()
189
 
190
+ return data
191
 
192
  def encode(self, feature, value):
193
  if feature in _ENCODING_DICS: