Datasets:
File size: 6,075 Bytes
d66d498 bf69b71 d66d498 bf69b71 d66d498 bf69b71 d66d498 f65b472 d66d498 bf69b71 d66d498 f65b472 bf69b71 d66d498 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
from typing import List
import datasets
import pandas
import gzip
VERSION = datasets.Version("1.0.0")
DESCRIPTION = "Covertype dataset from the UCI ML repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/31/covertype"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/31/covertype")
_CITATION = """"""
# Dataset info
urls_per_split = {
"train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
}
_BASE_FEATURE_NAMES = [
"elevation",
"aspect",
"slope",
"horizontal_distance_to_hydrology",
"vertical_distance_to_hydrology",
"horizontal_distance_to_roadways",
"hillshade_9am",
"hillshade_noon",
"hillshade_3pm",
"horizontal_distance_to_fire_points",
"is_a_wilderness_area",
"soil_type_id_0",
"soil_type_id_1",
"soil_type_id_2",
"soil_type_id_3",
"soil_type_id_4",
"soil_type_id_5",
"soil_type_id_6",
"soil_type_id_7",
"soil_type_id_8",
"soil_type_id_9",
"soil_type_id_10",
"soil_type_id_11",
"soil_type_id_12",
"soil_type_id_13",
"soil_type_id_14",
"soil_type_id_15",
"soil_type_id_16",
"soil_type_id_17",
"soil_type_id_18",
"soil_type_id_19",
"soil_type_id_20",
"soil_type_id_21",
"soil_type_id_22",
"soil_type_id_23",
"soil_type_id_24",
"soil_type_id_25",
"soil_type_id_26",
"soil_type_id_27",
"soil_type_id_28",
"soil_type_id_29",
"soil_type_id_30",
"soil_type_id_31",
"soil_type_id_32",
"soil_type_id_33",
"soil_type_id_34",
"soil_type_id_35",
"soil_type_id_36",
"soil_type_id_37",
"soil_type_id_38",
"soil_type_id_39",
"soil_type",
"cover_type"
]
features_types_per_config = {
"covertype": {
"elevation": datasets.Value("float32"),
"aspect": datasets.Value("float32"),
"slope": datasets.Value("float32"),
"horizontal_distance_to_hydrology": datasets.Value("float32"),
"vertical_distance_to_hydrology": datasets.Value("float32"),
"horizontal_distance_to_roadways": datasets.Value("float32"),
"hillshade_9am": datasets.Value("float32"),
"hillshade_noon": datasets.Value("float32"),
"hillshade_3pm": datasets.Value("float32"),
"horizontal_distance_to_fire_points": datasets.Value("float32"),
"is_a_wilderness_area": datasets.Value("bool"),
"soil_type_id_0": datasets.Value("bool"),
"soil_type_id_1": datasets.Value("bool"),
"soil_type_id_2": datasets.Value("bool"),
"soil_type_id_3": datasets.Value("bool"),
"soil_type_id_4": datasets.Value("bool"),
"soil_type_id_5": datasets.Value("bool"),
"soil_type_id_6": datasets.Value("bool"),
"soil_type_id_7": datasets.Value("bool"),
"soil_type_id_8": datasets.Value("bool"),
"soil_type_id_9": datasets.Value("bool"),
"soil_type_id_10": datasets.Value("bool"),
"soil_type_id_11": datasets.Value("bool"),
"soil_type_id_12": datasets.Value("bool"),
"soil_type_id_13": datasets.Value("bool"),
"soil_type_id_14": datasets.Value("bool"),
"soil_type_id_15": datasets.Value("bool"),
"soil_type_id_16": datasets.Value("bool"),
"soil_type_id_17": datasets.Value("bool"),
"soil_type_id_18": datasets.Value("bool"),
"soil_type_id_19": datasets.Value("bool"),
"soil_type_id_20": datasets.Value("bool"),
"soil_type_id_21": datasets.Value("bool"),
"soil_type_id_22": datasets.Value("bool"),
"soil_type_id_23": datasets.Value("bool"),
"soil_type_id_24": datasets.Value("bool"),
"soil_type_id_25": datasets.Value("bool"),
"soil_type_id_26": datasets.Value("bool"),
"soil_type_id_27": datasets.Value("bool"),
"soil_type_id_28": datasets.Value("bool"),
"soil_type_id_29": datasets.Value("bool"),
"soil_type_id_30": datasets.Value("bool"),
"soil_type_id_31": datasets.Value("bool"),
"soil_type_id_32": datasets.Value("bool"),
"soil_type_id_33": datasets.Value("bool"),
"soil_type_id_34": datasets.Value("bool"),
"soil_type_id_35": datasets.Value("bool"),
"soil_type_id_36": datasets.Value("bool"),
"soil_type_id_37": datasets.Value("bool"),
"soil_type_id_38": datasets.Value("bool"),
"soil_type_id_39": datasets.Value("bool"),
"soil_type": datasets.Value("string"),
"cover_type": datasets.ClassLabel(num_classes=7)
}
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class CovertypeConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(CovertypeConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Covertype(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "covertype"
BUILDER_CONFIGS = [
CovertypeConfig(name="covertype",
description="Covertype for multiclass classification.")
]
def _info(self):
if self.config.name not in features_per_config:
raise ValueError(f"Unknown configuration: {self.config.name}")
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
]
def _generate_examples(self, filepath: str):
with gzip.open(filepath) as log:
data = pandas.read_csv(log, header=_BASE_FEATURE_NAMES)
data = self.preprocess(data, config=self.config.name)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
return data
|