mstz commited on
Commit
bf69b71
·
1 Parent(s): 9372495

Upload covertype.py

Browse files
Files changed (1) hide show
  1. covertype.py +60 -4
covertype.py CHANGED
@@ -3,6 +3,7 @@ from typing import List
3
  import datasets
4
 
5
  import pandas
 
6
 
7
 
8
  VERSION = datasets.Version("1.0.0")
@@ -15,8 +16,63 @@ _CITATION = """"""
15
 
16
  # Dataset info
17
  urls_per_split = {
18
- "train": "https://huggingface.co/datasets/mstz/covertype/raw/main/covtype.data"
19
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
  features_types_per_config = {
21
  "covertype": {
22
  "elevation": datasets.Value("float32"),
@@ -110,7 +166,8 @@ class Covertype(datasets.GeneratorBasedBuilder):
110
  ]
111
 
112
  def _generate_examples(self, filepath: str):
113
- data = pandas.read_csv(filepath)
 
114
  data = self.preprocess(data, config=self.config.name)
115
 
116
  for row_id, row in data.iterrows():
@@ -119,7 +176,6 @@ class Covertype(datasets.GeneratorBasedBuilder):
119
  yield row_id, data_row
120
 
121
  def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
122
- print(data.columns)
123
- print(data.cover_type)
124
  data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
 
125
  return data
 
3
  import datasets
4
 
5
  import pandas
6
+ import gzip
7
 
8
 
9
  VERSION = datasets.Version("1.0.0")
 
16
 
17
  # Dataset info
18
  urls_per_split = {
19
+ "train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
20
  }
21
+ _BASE_FEATURE_NAMES = [
22
+ "elevation",
23
+ "aspect",
24
+ "slope",
25
+ "horizontal_distance_to_hydrology",
26
+ "vertical_distance_to_hydrology",
27
+ "horizontal_distance_to_roadways",
28
+ "hillshade_9am",
29
+ "hillshade_noon",
30
+ "hillshade_3pm",
31
+ "horizontal_distance_to_fire_points",
32
+ "is_a_wilderness_area",
33
+ "soil_type_id_0",
34
+ "soil_type_id_1",
35
+ "soil_type_id_2",
36
+ "soil_type_id_3",
37
+ "soil_type_id_4",
38
+ "soil_type_id_5",
39
+ "soil_type_id_6",
40
+ "soil_type_id_7",
41
+ "soil_type_id_8",
42
+ "soil_type_id_9",
43
+ "soil_type_id_10",
44
+ "soil_type_id_11",
45
+ "soil_type_id_12",
46
+ "soil_type_id_13",
47
+ "soil_type_id_14",
48
+ "soil_type_id_15",
49
+ "soil_type_id_16",
50
+ "soil_type_id_17",
51
+ "soil_type_id_18",
52
+ "soil_type_id_19",
53
+ "soil_type_id_20",
54
+ "soil_type_id_21",
55
+ "soil_type_id_22",
56
+ "soil_type_id_23",
57
+ "soil_type_id_24",
58
+ "soil_type_id_25",
59
+ "soil_type_id_26",
60
+ "soil_type_id_27",
61
+ "soil_type_id_28",
62
+ "soil_type_id_29",
63
+ "soil_type_id_30",
64
+ "soil_type_id_31",
65
+ "soil_type_id_32",
66
+ "soil_type_id_33",
67
+ "soil_type_id_34",
68
+ "soil_type_id_35",
69
+ "soil_type_id_36",
70
+ "soil_type_id_37",
71
+ "soil_type_id_38",
72
+ "soil_type_id_39",
73
+ "soil_type",
74
+ "cover_type"
75
+ ]
76
  features_types_per_config = {
77
  "covertype": {
78
  "elevation": datasets.Value("float32"),
 
166
  ]
167
 
168
  def _generate_examples(self, filepath: str):
169
+ with gzip.open(filepath) as log:
170
+ data = pandas.read_csv(log, header=_BASE_FEATURE_NAMES)
171
  data = self.preprocess(data, config=self.config.name)
172
 
173
  for row_id, row in data.iterrows():
 
176
  yield row_id, data_row
177
 
178
  def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
 
 
179
  data.loc[:, "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
180
+
181
  return data