File size: 6,568 Bytes
d66d498
 
 
 
 
bf69b71
d66d498
 
 
 
 
 
 
 
 
 
 
 
bf69b71
d66d498
bf69b71
5edfd91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf69b71
d66d498
 
 
 
 
 
 
 
 
 
 
 
5edfd91
 
 
 
d66d498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f65b472
d66d498
 
 
 
 
 
 
5edfd91
 
 
 
 
d66d498
 
 
 
 
 
 
5edfd91
d66d498
 
 
 
 
 
 
 
5edfd91
 
 
d66d498
 
 
 
5edfd91
 
d66d498
 
 
5edfd91
 
d66d498
 
5edfd91
 
ebba65b
 
5edfd91
 
ebba65b
5edfd91
 
4627a84
5edfd91
 
d30520a
5edfd91
 
d66d498
5edfd91
 
d66d498
 
5edfd91
 
d66d498
5edfd91
 
 
 
 
bf69b71
d66d498
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import List

import datasets

import pandas
import gzip


VERSION = datasets.Version("1.0.0")


DESCRIPTION = "Covertype dataset from the UCI ML repository."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/31/covertype"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/31/covertype")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz"
}
_BASE_FEATURE_NAMES = [
        "elevation",
		"aspect",
		"slope",
		"horizontal_distance_to_hydrology",
		"vertical_distance_to_hydrology",
		"horizontal_distance_to_roadways",
		"hillshade_9am",
		"hillshade_noon",
		"hillshade_3pm",
		"horizontal_distance_to_fire_points",
		"wilderness_area_id_0",
        "wilderness_area_id_1",
        "wilderness_area_id_2",
        "wilderness_area_id_3",
		"soil_type_id_0",
		"soil_type_id_1",
		"soil_type_id_2",
		"soil_type_id_3",
		"soil_type_id_4",
		"soil_type_id_5",
		"soil_type_id_6",
		"soil_type_id_7",
		"soil_type_id_8",
		"soil_type_id_9",
		"soil_type_id_10",
		"soil_type_id_11",
		"soil_type_id_12",
		"soil_type_id_13",
		"soil_type_id_14",
		"soil_type_id_15",
		"soil_type_id_16",
		"soil_type_id_17",
		"soil_type_id_18",
		"soil_type_id_19",
		"soil_type_id_20",
		"soil_type_id_21",
		"soil_type_id_22",
		"soil_type_id_23",
		"soil_type_id_24",
		"soil_type_id_25",
		"soil_type_id_26",
		"soil_type_id_27",
		"soil_type_id_28",
		"soil_type_id_29",
		"soil_type_id_30",
		"soil_type_id_31",
		"soil_type_id_32",
		"soil_type_id_33",
		"soil_type_id_34",
		"soil_type_id_35",
		"soil_type_id_36",
		"soil_type_id_37",
		"soil_type_id_38",
		"soil_type_id_39",
		"cover_type"
]
features_types_per_config = {
    "covertype": {
        "elevation": datasets.Value("float32"),
		"aspect": datasets.Value("float32"),
		"slope": datasets.Value("float32"),
		"horizontal_distance_to_hydrology": datasets.Value("float32"),
		"vertical_distance_to_hydrology": datasets.Value("float32"),
		"horizontal_distance_to_roadways": datasets.Value("float32"),
		"hillshade_9am": datasets.Value("float32"),
		"hillshade_noon": datasets.Value("float32"),
		"hillshade_3pm": datasets.Value("float32"),
		"horizontal_distance_to_fire_points": datasets.Value("float32"),
        "wilderness_area_id_0": datasets.Value("bool"),
        "wilderness_area_id_1": datasets.Value("bool"),
        "wilderness_area_id_2": datasets.Value("bool"),
        "wilderness_area_id_3": datasets.Value("bool"),
		"soil_type_id_0": datasets.Value("bool"),
		"soil_type_id_1": datasets.Value("bool"),
		"soil_type_id_2": datasets.Value("bool"),
		"soil_type_id_3": datasets.Value("bool"),
		"soil_type_id_4": datasets.Value("bool"),
		"soil_type_id_5": datasets.Value("bool"),
		"soil_type_id_6": datasets.Value("bool"),
		"soil_type_id_7": datasets.Value("bool"),
		"soil_type_id_8": datasets.Value("bool"),
		"soil_type_id_9": datasets.Value("bool"),
		"soil_type_id_10": datasets.Value("bool"),
		"soil_type_id_11": datasets.Value("bool"),
		"soil_type_id_12": datasets.Value("bool"),
		"soil_type_id_13": datasets.Value("bool"),
		"soil_type_id_14": datasets.Value("bool"),
		"soil_type_id_15": datasets.Value("bool"),
		"soil_type_id_16": datasets.Value("bool"),
		"soil_type_id_17": datasets.Value("bool"),
		"soil_type_id_18": datasets.Value("bool"),
		"soil_type_id_19": datasets.Value("bool"),
		"soil_type_id_20": datasets.Value("bool"),
		"soil_type_id_21": datasets.Value("bool"),
		"soil_type_id_22": datasets.Value("bool"),
		"soil_type_id_23": datasets.Value("bool"),
		"soil_type_id_24": datasets.Value("bool"),
		"soil_type_id_25": datasets.Value("bool"),
		"soil_type_id_26": datasets.Value("bool"),
		"soil_type_id_27": datasets.Value("bool"),
		"soil_type_id_28": datasets.Value("bool"),
		"soil_type_id_29": datasets.Value("bool"),
		"soil_type_id_30": datasets.Value("bool"),
		"soil_type_id_31": datasets.Value("bool"),
		"soil_type_id_32": datasets.Value("bool"),
		"soil_type_id_33": datasets.Value("bool"),
		"soil_type_id_34": datasets.Value("bool"),
		"soil_type_id_35": datasets.Value("bool"),
		"soil_type_id_36": datasets.Value("bool"),
		"soil_type_id_37": datasets.Value("bool"),
		"soil_type_id_38": datasets.Value("bool"),
		"soil_type_id_39": datasets.Value("bool"),
        "soil_type": datasets.Value("string"),
		"cover_type": datasets.ClassLabel(num_classes=7)
    }
}

features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class CovertypeConfig(datasets.BuilderConfig):
    def __init__(self",
		" **kwargs):
        super(CovertypeConfig",
		" self).__init__(version=VERSION",
		" **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Covertype(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "covertype"
    BUILDER_CONFIGS = [
        CovertypeConfig(name="covertype"",
                    description="Covertype for multiclass classification.")
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION",
		" citation=_CITATION",
		" homepage=_HOMEPAGE",
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self",
		" dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN",
		" gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self",
		" filepath: str):
            # try:
            #     with gzip.open(filepath) as log:
            #         data = pandas.read_csv(log",
		" header=None)
            # except gzip.BadGzipFile:
            data = pandas.read_csv(filepath",
		" header=None)
            print(data.columns)
            print(data.shape[1]",
		" len(_BASE_FEATURE_NAMES))
            data.columns = _BASE_FEATURE_NAMES
            data = self.preprocess(data",
		" config=self.config.name)

            for row_id",
		" row in data.iterrows():
                data_row = dict(row)

                yield row_id",
		" data_row

    def preprocess(self",
		" data: pandas.DataFrame",
		" config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
        data.loc[:",
		" "cover_type"] = data["cover_type"].apply(lambda x: x - 1)
        
        return data