File size: 14,685 Bytes
a793576
 
 
02a0db9
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269fb9b
a793576
 
269fb9b
a793576
 
 
269fb9b
 
a793576
 
 
15c8495
a793576
 
 
 
15c8495
a793576
 
0e47990
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e47990
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db620ea
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e61bfb
 
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269fb9b
 
a793576
 
 
 
 
 
 
 
 
 
 
dcc574c
a793576
 
 
0b05462
a793576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
"""Compas Dataset"""

from typing import List
import datetime

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_ORIGINAL_FEATURE_NAMES = [
    "id",
    "name",
    "first",
    "last",
    "compas_screening_date",
    "sex",
    "dob",
    "age",
    "age_cat",
    "race",
    "juv_fel_count",
    "decile_score",
    "juv_misd_count",
    "juv_other_count",
    "priors_count",
    "days_b_screening_arrest",
    "c_jail_in",
    "c_jail_out",
    "c_case_number",
    "c_offense_date",
    "c_arrest_date",
    "c_days_from_compas",
    "c_charge_degree",
    "c_charge_desc",
    "is_recid",
    "r_case_number",
    "r_charge_degree",
    "r_days_from_arrest",
    "r_offense_date",
    "r_charge_desc",
    "r_jail_in",
    "r_jail_out",
    "violent_recid",
    "is_violent_recid",
    "vr_case_number",
    "vr_charge_degree",
    "vr_offense_date",
    "vr_charge_desc",
    "type_of_assessment",
    "decile_score",
    "score_text",
    "screening_date",
    "v_type_of_assessment",
    "v_decile_score",
    "v_score_text",
    "v_screening_date",
    "in_custody",
    "out_custody",
    "priors_count",
    "start",
    "end",
    "event",
    "two_year_recid",
    "two_year_recid"
]
_BASE_FEATURE_NAMES = [
    "sex", 
    "age",
    "race",
    "number_of_juvenile_fellonies",
    "decile_score",
    "number_of_juvenile_misdemeanors",
    "number_of_other_juvenile_offenses",
    "number_of_prior_offenses",
    "days_before_screening_arrest",
    "is_recidivous",
    # "days_in_jail_before_recidividity",
    "days_of_recidividity_after_arrest",
    "is_violent_recidivous",
    "violence_decile_score",
    "two_year_recidivous",
    "days_in_custody",
]
DESCRIPTION = "COMPAS dataset for recidivism prediction."
_HOMEPAGE = "https://github.com/propublica/compas-analysis"
_URLS = ("https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv")
_CITATION = """"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/compas/raw/main/compas-scores-two-years-violent.csv",
}
features_types_per_config = {
    "two-years-recidividity": {
        "sex": datasets.Value("int64"),
        "age": datasets.Value("int64"),
        "race": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_priors_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("int64"),
        "days_of_recidividity_after_arrest": datasets.Value("int64"),
        "days_in_jail_before_recidividity": datasets.Value("int64"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("int64"),
        "violence_decile_score": datasets.Value("int64"),
        "priors_count": datasets.Value("int64"),
        "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    },
    
    "two-years-recidividity-no-race": {
        "sex": datasets.Value("int64"),
        "age": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_priors_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("int64"),
        "days_of_recidividity_after_arrest": datasets.Value("int64"),
        "days_in_jail_before_recidividity": datasets.Value("int64"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("int64"),
        "violence_decile_score": datasets.Value("int64"),
        "priors_count": datasets.Value("int64"),
        "two_year_recidivous": datasets.ClassLabel(num_classes=2, names=("no", "yes")),
    },
    
    "priors-prediction": {
        "sex": datasets.Value("int64"),
        "age": datasets.Value("int64"),
        "race": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_priors_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("int64"),
        "days_of_recidividity_after_arrest": datasets.Value("int64"),
        "days_in_jail_before_recidividity": datasets.Value("int64"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("int64"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.Value("int64"),
        "priors_count": datasets.Value("int64")
    },
    
    "priors-prediction-no-race": {
        "sex": datasets.Value("int64"),
        "age": datasets.Value("int64"),
        "number_of_juvenile_fellonies": datasets.Value("int64"),
        "decile_score": datasets.Value("int64"),
        "number_of_juvenile_misdemeanors": datasets.Value("int64"),
        "number_of_other_juvenile_offenses": datasets.Value("int64"),
        "number_of_priors_offenses": datasets.Value("int64"),
        "days_before_screening_arrest": datasets.Value("int64"),
        "is_recidivous": datasets.Value("int64"),
        "days_of_recidividity_after_arrest": datasets.Value("int64"),
        "days_in_jail_before_recidividity": datasets.Value("int64"),
        "days_in_custody": datasets.Value("int64"),
        "is_violent_recidivous": datasets.Value("int64"),
        "violence_decile_score": datasets.Value("int64"),
        "two_year_recidivous": datasets.Value("int64"),
        "priors_count": datasets.Value("int64")
    },
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class CompasConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(CompasConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Compas(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "two-years-recidividity"
    BUILDER_CONFIGS = [
        CompasConfig(name="two-years-recidividity",
                    description="Compas binary classification for two-year recidividity."),
        CompasConfig(name="two-years-recidividity-no-race",
                     description="Compas binary classification for two-year recidividity. Race excluded from features."),
        CompasConfig(name="priors-prediction",
                     description="Compas regression task for estimating number of prior offenses of defendant."),
        CompasConfig(name="priors-prediction-no-race",
                     description="Compas regression task for estimating number of prior offenses of defendant. Race excluded from features."),
    ]


    def _info(self):
        if self.config.name not in features_per_config:
            raise ValueError(f"Unknown configuration: {self.config.name}")
        
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath)
        print("preprocessing...")
        data = self.preprocess(data, config=self.config.name)
        print("done!")

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = "income") -> pandas.DataFrame:
        print("dropping columns...")
        data.drop("id", axis="columns", inplace=True)
        data.drop("name", axis="columns", inplace=True)
        data.drop("first", axis="columns", inplace=True)
        data.drop("last", axis="columns", inplace=True)
        data.drop("dob", axis="columns", inplace=True)
        data.drop("age_cat", axis="columns", inplace=True)
        data.drop("c_offense_date", axis="columns", inplace=True)
        data.drop("c_jail_in", axis="columns", inplace=True)
        data.drop("c_jail_out", axis="columns", inplace=True)
        data.drop("c_arrest_date", axis="columns", inplace=True)
        data.drop("c_charge_degree", axis="columns", inplace=True)
        data.drop("c_charge_desc", axis="columns", inplace=True)
        data.drop("r_case_number", axis="columns", inplace=True)
        data.drop("r_charge_degree", axis="columns", inplace=True)
        data.drop("r_offense_date", axis="columns", inplace=True)
        data.drop("r_charge_desc", axis="columns", inplace=True)
        data.drop("violent_recid", axis="columns", inplace=True)
        data.drop("vr_case_number", axis="columns", inplace=True)
        data.drop("vr_charge_degree", axis="columns", inplace=True)
        data.drop("vr_offense_date", axis="columns", inplace=True)
        data.drop("vr_charge_desc", axis="columns", inplace=True)
        data.drop("type_of_assessment", axis="columns", inplace=True)
        data.drop("score_text", axis="columns", inplace=True)
        data.drop("v_score_text", axis="columns", inplace=True)
        data.drop("v_screening_date", axis="columns", inplace=True)
        data.drop("screening_date", axis="columns", inplace=True)
        data.drop("start", axis="columns", inplace=True)
        data.drop("end", axis="columns", inplace=True)
        data.drop("event", axis="columns", inplace=True)
        data.drop("two_year_recid.1", axis="columns", inplace=True)
        data.drop("r_jail_in", axis="columns", inplace=True)
        data.drop("r_jail_out", axis="columns", inplace=True)
        data.drop("v_type_of_assessment", axis="columns", inplace=True)
        data.drop("compas_screening_date", axis="columns", inplace=True)
        data.drop("decile_score.1", axis="columns", inplace=True)
        data.drop("priors_count.1", axis="columns", inplace=True)
        data.drop("c_case_number", axis="columns", inplace=True)
        data.drop("c_days_from_compas", axis="columns", inplace=True)

        # drop nan values
        data = data[~data.days_b_screening_arrest.isna()]
        data = data[~data.c_days_from_compas.isna()]
        data = data[~data.r_days_from_arrest.isna()]

        # transform columns into intervals
        data = data[(~data.in_custody.isna()) & (~data.out_custody.isna())]
        in_dates = data.in_custody.apply(datetime.date.fromisoformat)
        out_dates = data.out_custody.apply(datetime.date.fromisoformat)
        days_in_custody = [delta.days for delta in out_dates - in_dates]
        data.loc[:, "days_in_custody"] = days_in_custody
        data.drop("in_custody", axis="columns", inplace=True)
        data.drop("out_custody", axis="columns", inplace=True)

        print(data.columns)
        data = data[["sex",
                     "age",
                     "race",
                     "juv_fel_count",
                     "decile_score",
                     "juv_misd_count",
                     "juv_other_count",
                     "priors_count",
                     "days_b_screening_arrest",
                     "is_recid",
                     "r_days_from_arrest",
                     "days_in_custody",
                     "is_violent_recid",
                     "v_decile_score",
                     "two_year_recid"]]

        data.columns = _BASE_FEATURE_NAMES

        # binarize features
        data.loc[:, "sex"] = data.sex.apply(self.encode_sex)
        
        if config == "two-years-recidividity":
            return self.two_years_recidividity_preprocessing(data)
        elif config == "two-years-recidividity-no-race":
            return self.two_years_recidividity_no_race_preprocessing(data)
        elif config == "priors-prediction":
            return self.priors_prediction_preprocessing(data)
        elif config == "priors-prediction-no-race":
            return self.priors_prediction_no_race_preprocessing(data)
        else:
            raise ValueError(f"Unknown config: {config}")


    def two_years_recidividity_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
        # categorize features
        data.loc[:, "race"] = data.race.apply(self.encode_race(race))

        return data
        
    def two_years_recidividity_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
        # categorize features
        data.drop("race", axis="columns", inplace=True)

        return data

    def priors_prediction_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
        # categorize features
        data.loc[:, "race"] = data.race.apply(self.encode_race(race))

        return data
        
    def priors_prediction_no_race_preprocessing(self, data: pandas.DataFrame) -> pandas.DataFrame:
        # categorize features
        data.drop("race", axis="columns", inplace=True)

        return data

    def encode_race(self, race):
        return self.race_encoding_dic()[race]

    def decode_race(self, code):
        return self.race_decoding_dic()[code]
    
    def race_decoding_dic(self):
        return {
            0: "Caucasian",
            1: "African-American",
            2: "Hispanic",
            3: "Asian",
            4: "Other",
            5: "Native American",
        }

    def race_encoding_dic(self):
        return {
            "Caucasian": 0,
            "African-American": 1,
            "Hispanic": 2,
            "Asian": 3,
            "Other": 4,
            "Native American": 5,
        }

    def encode_sex(self, sex):
        return self.sex_encoding_dic()[sex]

    def decode_sex(self, code):
        return self.sex_decoding_dic()[code]

    def sex_encoding_dic(self):
        return {
            "Male": 0,
            "Female": 1
        }
    
    def sex_decoding_dic(self):
        return {
            0: "Male",
            1: "Female"
        }