kdoherty commited on
Commit
e3b81b6
·
verified ·
1 Parent(s): 6441b45

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +81 -21
README.md CHANGED
@@ -1,23 +1,83 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: image_t0
5
- dtype: image
6
- - name: image_t1
7
- dtype: image
8
- - name: image_t2
9
- dtype: image
10
- - name: idx
11
- dtype: string
12
- splits:
13
- - name: train
14
- num_bytes: 6673510618.0
15
- num_examples: 620
16
- download_size: 6673860222
17
- dataset_size: 6673510618.0
18
- configs:
19
- - config_name: default
20
- data_files:
21
- - split: train
22
- path: data/train-*
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: cc-by-4.0
3
+ task_categories:
4
+ - computer-vision
5
+ - feature-extraction
6
+ tags:
7
+ - remote-sensing
8
+ - aerial-imagery
9
+ - orthomosaic
10
+ - lighting-invariance
11
+ - semantic-stability
12
+ - vision-encoder
13
+ - time-series
14
+ size_categories:
15
+ - 1K<n<10K
16
+ language:
17
+ - en
18
+ pretty_name: Light Stable Semantics
 
 
 
 
19
  ---
20
+
21
+ # Light Stable Semantics Dataset
22
+
23
+ ## Dataset Description
24
+
25
+ This dataset contains aerial orthomosaic tiles captured at three different times of day (10:00, 12:00, and 15:00) to develop vision encoders that are semantically stable under varying lighting conditions. The dataset is designed for training computer vision models that can maintain consistent feature representations despite changes in illumination.
26
+
27
+ ### Dataset Summary
28
+
29
+ - **Purpose**: Training light-stable semantic vision encoders
30
+ - **Data Type**: Aerial orthomosaic tiles (RGBA, 1024x1024 pixels)
31
+ - **Time Points**: 3 captures per location (morning, noon, afternoon)
32
+ - **Coverage**: Lower Partridge area aerial survey
33
+ - **Date**: November 7, 2024 (241107)
34
+ - **Location**: MPG Ranch, Montana, USA
35
+
36
+ ### Data Structure
37
+
38
+ Each record contains:
39
+ - `image_t0`: Morning image (10:00, time=1000)
40
+ - `image_t1`: Noon image (12:00, time=1200)
41
+ - `image_t2`: Afternoon image (15:00, time=1500)
42
+ - `idx`: Tile identifier in format `{ROW}_{COL}`
43
+
44
+ ### Data Collection
45
+
46
+ The orthomosaics were captured using drone surveys with identical geographic bounds but at different times of day to capture varying lighting conditions. All tiles:
47
+ - Are 1024x1024 pixels of 1.2cm resolution
48
+ - Maintain spatial alignment across time points
49
+ - Use consistent geographic coordinates
50
+
51
+ ### Use Cases
52
+
53
+ This dataset is intended for:
54
+ - Training vision encoders robust to lighting changes
55
+ - Semantic stability research in computer vision
56
+ - Time-invariant feature learning
57
+ - Remote sensing applications requiring lighting robustness
58
+
59
+ ## Citation
60
+
61
+ If you use this dataset in your research, please cite:
62
+
63
+ ```bibtex
64
+ @dataset{mpg_ranch_light_stable_semantics_2024,
65
+ title={Light Stable Semantics Dataset},
66
+ author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
67
+ year={2024},
68
+ month={November},
69
+ url={https://huggingface.co/datasets/mpg-ranch/light-stable-semantics},
70
+ publisher={Hugging Face},
71
+ note={Aerial orthomosaic tiles captured at multiple times of day for light-stable semantic vision encoder training},
72
+ location={MPG Ranch, Montana, USA},
73
+ survey_date={2024-11-07},
74
+ organization={MPG Ranch}
75
+ }
76
+ ```
77
+
78
+ ## Licensing
79
+
80
+ This dataset is released under the [Creative Commons Attribution 4.0 International (CC BY 4.0)](https://creativecommons.org/licenses/by/4.0/) license.
81
+
82
+ Under the following terms:
83
+ - **Attribution** — You must give appropriate credit to MPG Ranch, provide a link to the license, and indicate if changes were made.