Datasets:
Tasks:
Feature Extraction
Formats:
parquet
Languages:
English
Size:
< 1K
Tags:
remote-sensing
aerial-imagery
orthomosaic
lighting-invariance
semantic-stability
vision-encoder
License:
Dataset Viewer
image_t0
imagewidth (px) 1.02k
1.02k
| image_t1
imagewidth (px) 1.02k
1.02k
| image_t2
imagewidth (px) 1.02k
1.02k
| idx
stringlengths 3
5
|
---|---|---|---|
5_4
|
|||
5_5
|
|||
16_19
|
|||
16_18
|
|||
8_26
|
|||
22_30
|
|||
16_2
|
|||
22_31
|
|||
16_3
|
|||
14_16
|
|||
2_2
|
|||
8_13
|
|||
2_3
|
|||
14_17
|
|||
8_12
|
|||
9_6
|
|||
9_7
|
|||
1_15
|
|||
17_25
|
|||
17_24
|
|||
1_14
|
|||
3_17
|
|||
9_22
|
|||
15_26
|
|||
3_16
|
|||
9_23
|
|||
11_9
|
|||
16_14
|
|||
20_6
|
|||
3_7
|
|||
11_8
|
|||
3_6
|
|||
16_15
|
|||
20_7
|
|||
17_7
|
|||
17_6
|
|||
17_28
|
|||
1_18
|
|||
19_31
|
|||
16_20
|
|||
19_30
|
|||
17_29
|
|||
16_21
|
|||
15_13
|
|||
10_1
|
|||
15_12
|
|||
2_8
|
|||
9_11
|
|||
15_14
|
|||
10_6
|
|||
8_19
|
|||
9_10
|
|||
2_9
|
|||
8_18
|
|||
15_15
|
|||
10_7
|
|||
4_6
|
|||
4_7
|
|||
16_27
|
|||
16_26
|
|||
3_1
|
|||
20_34
|
|||
2_18
|
|||
9_25
|
|||
2_19
|
|||
9_24
|
|||
14_29
|
|||
8_4
|
|||
8_5
|
|||
9_1
|
|||
17_22
|
|||
1_12
|
|||
18_33
|
|||
1_13
|
|||
17_23
|
|||
18_32
|
|||
16_5
|
|||
16_4
|
|||
15_19
|
|||
14_11
|
|||
15_18
|
|||
14_10
|
|||
21_5
|
|||
8_9
|
|||
8_8
|
|||
8_20
|
|||
2_15
|
|||
14_25
|
|||
8_21
|
|||
14_24
|
|||
2_14
|
|||
5_3
|
|||
5_2
|
|||
17_16
|
|||
11_3
|
|||
11_2
|
|||
17_17
|
|||
8_14
|
|||
2_5
|
|||
8_15
|
End of preview. Expand
in Data Studio
Light Stable Semantics Dataset
Dataset Description
This dataset contains aerial orthomosaic tiles captured at three different times of day (10:00, 12:00, and 15:00) to develop vision encoders that are semantically stable under varying lighting conditions. The dataset is designed for training computer vision models that can maintain consistent feature representations despite changes in illumination.
Dataset Summary
- Purpose: Training light-stable semantic vision encoders
- Data Type: Aerial orthomosaic tiles (RGBA, 1024x1024 pixels)
- Time Points: 3 captures per location (morning, noon, afternoon)
- Coverage: Lower Partridge area aerial survey
- Date: November 7, 2024 (241107)
- Location: MPG Ranch, Montana, USA
Data Structure
Each record contains:
image_t0
: Morning image (10:00, time=1000)image_t1
: Noon image (12:00, time=1200)image_t2
: Afternoon image (15:00, time=1500)idx
: Tile identifier in format{ROW}_{COL}
Data Collection
The orthomosaics were captured using drone surveys with identical geographic bounds but at different times of day to capture varying lighting conditions. All tiles:
- Are 1024x1024 pixels of 1.2cm resolution
- Maintain spatial alignment across time points
- Use consistent geographic coordinates
Use Cases
This dataset is intended for:
- Training vision encoders robust to lighting changes
- Semantic stability research in computer vision
- Time-invariant feature learning
- Remote sensing applications requiring lighting robustness
Citation
If you use this dataset in your research, please cite:
@dataset{mpg_ranch_light_stable_semantics_2024,
title={Light Stable Semantics Dataset},
author={Kyle Doherty and Erik Samose and Max Gurinas and Brandon Trabucco and Ruslan Salakhutdinov},
year={2024},
month={November},
url={https://huggingface.co/datasets/mpg-ranch/light-stable-semantics},
publisher={Hugging Face},
note={Aerial orthomosaic tiles captured at multiple times of day for light-stable semantic vision encoder training},
location={MPG Ranch, Montana, USA},
survey_date={2024-11-07},
organization={MPG Ranch}
}
Licensing
This dataset is released under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Under the following terms:
- Attribution — You must give appropriate credit to MPG Ranch, provide a link to the license, and indicate if changes were made.
- Downloads last month
- 243