protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
HEY2_HUMAN
Homo sapiens
MKRPCEETTSESDMDETIDVGSENNYSGQSTSSVIRLNSPTTTSQIMARKKRRGIIEKRRRDRINNSLSELRRLVPTAFEKQGSAKLEKAEILQMTVDHLKMLQATGGKGYFDAHALAMDFMSIGFRECLTEVARYLSSVEGLDSSDPLRVRLVSHLSTCATQREAAAMTSSMAHHHHPLHPHHWAAAFHHLPAALLQPNGLHASESTPCRLSTTSEVPPAHGSALLTATFAHADSALRMPSTGSVAPCVPPLSTSLLSLSATVHAAAAAATAAAHSFPLSFAGAFPMLPPNAAAAVAAATAISPPLSVSATSSPQQTSSGTNNKPYRPWGTEVGAF
Downstream effector of Notch signaling which may be required for cardiovascular development. Transcriptional repressor which binds preferentially to the canonical E box sequence 5'-CACGTG-3'. Represses transcription by the cardiac transcriptional activators GATA4 and GATA6. Subcellular locations: Nucleus
HEYL_HUMAN
Homo sapiens
MKRPKEPSGSDGESDGPIDVGQEGQLSQMARPLSTPSSSQMQARKKHRGIIEKRRRDRINSSLSELRRLVPTAFEKQGSSKLEKAEVLQMTVDHLKMLHATGGTGFFDARALAVDFRSIGFRECLTEVIRYLGVLEGPSSRADPVRIRLLSHLNSYAAEMEPSPTPTGPLAFPAWPWSFFHSCPGLPALSNQLAILGRVPSPVLPGVSSPAYPIPALRTAPLRRATGIILPARRNVLPSRGASSTRRARPLERPATPVPVAPSSRAARSSHIAPLLQSSSPTPPGPTGSAAYVAVPTPNSSSPGPAGRPAGAMLYHSWVSEITEIGAF
Downstream effector of Notch signaling which may be required for cardiovascular development (By similarity). Transcriptional repressor which binds preferentially to the canonical E box sequence 5'-CACGTG-3' (By similarity). Represses transcription by the cardiac transcriptional activators GATA4 and GATA6. Subcellular locations: Nucleus
HGD_PONAB
Pongo abelii
MAQLKYISGFGNECSSEDPRCPGSLPEGQNNPQVCPYNLYAEQLSGSAFTCPRSTNKRSWLYRIPPSVSHKPFESIDEGHVTHNWDEVDPDPNQLRWKPFEIPKVSQKKVDLVSGLHTLCGAGDIKSNNGLAIHIFLCNTSMENRCFYNSDGDFLIVPQKGNLLIYTEFGKMLVQPNEICVIQRGMRFSIDVFEETRGYILEVYGVHFELPDLGPIGANGLANPRDFLIPVAWYEDRQVPGGYTVIDKYQGKLFAAKQGVSPFNVVAWHGNYTPYKYNLKNFMVINSVAFDHADPSIFTVLTAKSVRPGVAIADFVIFPPRWGVADKTFRPPYYHRNCMSEFMGLIRGHYEAKQGGFLPGGGSLHSTMTPHGPDADCFEKASKAKLAPERIADGTMAFMFESSLSLAVTKWGLKASRCLDENYHKCWEPLKSHFTPNFRNPAEPN
Catalyzes the conversion of homogentisate to maleylacetoacetate.
HHEX_HUMAN
Homo sapiens
MQYPHPGPAAGAVGVPLYAPTPLLQPAHPTPFYIEDILGRGPAAPTPAPTLPSPNSSFTSLVSPYRTPVYEPTPIHPAFSHHSAAALAAAYGPGGFGGPLYPFPRTVNDYTHALLRHDPLGKPLLWSPFLQRPLHKRKGGQVRFSNDQTIELEKKFETQKYLSPPERKRLAKMLQLSERQVKTWFQNRRAKWRRLKQENPQSNKKEELESLDSSCDQRQDLPSEQNKGASLDSSQCSPSPASQEDLESEISEDSDQEVDIEGDKSYFNAG
Recognizes the DNA sequence 5'-ATTAA-3' (By similarity). Transcriptional repressor (By similarity). Activator of WNT-mediated transcription in conjunction with CTNNB1 . Establishes anterior identity at two levels; acts early to enhance canonical WNT-signaling by repressing expression of TLE4, and acts later to inhibit NODAL-signaling by directly targeting NODAL (By similarity). Inhibits EIF4E-mediated mRNA nuclear export . May play a role in hematopoietic differentiation . Subcellular locations: Nucleus, Nucleus, Nuclear body, Cytoplasm Liver and promyelocytic leukemia cell line HL-60.
HHIP_HUMAN
Homo sapiens
MLKMLSFKLLLLAVALGFFEGDAKFGERNEGSGARRRRCLNGNPPKRLKRRDRRMMSQLELLSGGEMLCGGFYPRLSCCLRSDSPGLGRLENKIFSVTNNTECGKLLEEIKCALCSPHSQSLFHSPEREVLERDLVLPLLCKDYCKEFFYTCRGHIPGFLQTTADEFCFYYARKDGGLCFPDFPRKQVRGPASNYLDQMEEYDKVEEISRKHKHNCFCIQEVVSGLRQPVGALHSGDGSQRLFILEKEGYVKILTPEGEIFKEPYLDIHKLVQSGIKGGDERGLLSLAFHPNYKKNGKLYVSYTTNQERWAIGPHDHILRVVEYTVSRKNPHQVDLRTARVFLEVAELHRKHLGGQLLFGPDGFLYIILGDGMITLDDMEEMDGLSDFTGSVLRLDVDTDMCNVPYSIPRSNPHFNSTNQPPEVFAHGLHDPGRCAVDRHPTDININLTILCSDSNGKNRSSARILQIIKGKDYESEPSLLEFKPFSNGPLVGGFVYRGCQSERLYGSYVFGDRNGNFLTLQQSPVTKQWQEKPLCLGTSGSCRGYFSGHILGFGEDELGEVYILSSSKSMTQTHNGKLYKIVDPKRPLMPEECRATVQPAQTLTSECSRLCRNGYCTPTGKCCCSPGWEGDFCRTAKCEPACRHGGVCVRPNKCLCKKGYLGPQCEQVDRNIRRVTRAGILDQIIDMTSYLLDLTSYIV
Modulates hedgehog signaling in several cell types including brain and lung through direct interaction with members of the hedgehog family. Subcellular locations: Cell membrane, Secreted The last 22 C-terminal amino acids may participate in cell membrane attachment. Subcellular locations: Cytoplasm Widely expressed in fetal and adult tissues. Highest expression in adult heart, liver and pancreas, and in fetal kidney.
HHLA1_HUMAN
Homo sapiens
MLGFLSRGPSMKLCMGLACVLSLWNTVSGIKGEAKKEKGMTFLPTTVSGLREEERKEKGVAFLATTELPARSIDLSALNLTELVNGMLSRALKDSKKFFSLLSVTSYSSFAFHKFSVAVYNISNLKTVDPAKFPTRYCYCLNNRTNDLSDFTALLVDIIGNSTSYLTEIFKSTSILSVNQSNESDCIFICVMTGKSGRNLSDFWEIEEKYPIINYTFTSGLSGVLGAATRGTARTSKPTTKSQKTLPSTSPGHWTQSTPWASALRSSPWTETAAPSETEETLNTGRPPELPARATATWFSASHTLPALATRRVARTQWLTADRQTWASISSVPWAQTISEKKPGGSLWETRSSPPTTAGTEEAMNTTSLLAPAAEIMATPGSPSQASPTLGAFTHGTQTPSPTKATAPRYPQTGDLSAEWPFTAGEEPVLVPRPHQVSRCPQPLFKVGAMAAAPLTLAIQRLNPCLMELCQFFQQCLCMSQRSPRTEDMRYCLEYYSWFLKNATYICQRVKRVSHSHTLKQKCLENICKSV
Subcellular locations: Secreted
HHLA2_HUMAN
Homo sapiens
MKAQTALSFFLILITSLSGSQGIFPLAFFIYVPMNEQIVIGRLDEDIILPSSFERGSEVVIHWKYQDSYKVHSYYKGSDHLESQDPRYANRTSLFYNEIQNGNASLFFRRVSLLDEGIYTCYVGTAIQVITNKVVLKVGVFLTPVMKYEKRNTNSFLICSVLSVYPRPIITWKMDNTPISENNMEETGSLDSFSINSPLNITGSNSSYECTIENSLLKQTWTGRWTMKDGLHKMQSEHVSLSCQPVNDYFSPNQDFKVTWSRMKSGTFSVLAYYLSSSQNTIINESRFSWNKELINQSDFSMNLMDLNLSDSGEYLCNISSDEYTLLTIHTVHVEPSQETASHNKGLWILVPSAILAAFLLIWSVKCCRAQLEARRSRHPADGAQQERCCVPPGERCPSAPDNGEENVPLSGKV
Through interaction with TMIGD2, costimulates T-cells in the context of TCR-mediated activation. Enhances T-cell proliferation and cytokine production via an AKT-dependent signaling cascade. Subcellular locations: Membrane Expressed at high levels in colon, kidney, testis, lung and pancreas, and at lower levels in small intestine, liver and skeletal muscle. In immune cells, highly expressed in B-cells, dendritic cells and macrophages. Not detected in T-cells.
HHLA3_HUMAN
Homo sapiens
MFGACYKQPLKPSGSEPPAEECRMTPRHAGCDVTEMQRILSQPTFTEHLLRAVCTKLANMYSTSTDCREHCRRGMKAKQLKAEAGRSCQRKGVPIQTPREHSWISCKKEFEANP
Expressed in kidney and liver.
HIP1R_HUMAN
Homo sapiens
MNSIKNVPARVLSRRPGHSLEAEREQFDKTQAISISKAINTQEAPVKEKHARRIILGTHHEKGAFTFWSYAIGLPLPSSSILSWKFCHVLHKVLRDGHPNVLHDCQRYRSNIREIGDLWGHLHDRYGQLVNVYTKLLLTKISFHLKHPQFPAGLEVTDEVLEKAAGTDVNNIFQLTVEMFDYMDCELKLSESVFRQLNTAIAVSQMSSGQCRLAPLIQVIQDCSHLYHYTVKLLFKLHSCLPADTLQGHRDRFHEQFHSLRNFFRRASDMLYFKRLIQIPRLPEGPPNFLRASALAEHIKPVVVIPEEAPEDEEPENLIEISTGPPAGEPVVVADLFDQTFGPPNGSVKDDRDLQIESLKREVEMLRSELEKIKLEAQRYIAQLKSQVNALEGELEEQRKQKQKALVDNEQLRHELAQLRAAQLEGERSQGLREEAERKASATEARYNKLKEKHSELVHVHAELLRKNADTAKQLTVTQQSQEEVARVKEQLAFQVEQVKRESELKLEEKSDQLEKLKRELEAKAGELARAQEALSHTEQSKSELSSRLDTLSAEKDALSGAVRQREADLLAAQSLVRETEAALSREQQRSSQEQGELQGRLAERESQEQGLRQRLLDEQFAVLRGAAAEAAGILQDAVSKLDDPLHLRCTSSPDYLVSRAQEALDAVSTLEEGHAQYLTSLADASALVAALTRFSHLAADTIINGGATSHLAPTDPADRLIDTCRECGARALELMGQLQDQQALRHMQASLVRTPLQGILQLGQELKPKSLDVRQEELGAVVDKEMAATSAAIEDAVRRIEDMMNQARHASSGVKLEVNERILNSCTDLMKAIRLLVTTSTSLQKEIVESGRGAATQQEFYAKNSRWTEGLISASKAVGWGATQLVEAADKVVLHTGKYEELIVCSHEIAASTAQLVAASKVKANKHSPHLSRLQECSRTVNERAANVVASTKSGQEQIEDRDTMDFSGLSLIKLKKQEMETQVRVLELEKTLEAERMRLGELRKQHYVLAGASGSPGEEVAIRPSTAPRSVTTKKPPLAQKPSVAPRQDHQLDKKDGIYPAQLVNY
Component of clathrin-coated pits and vesicles, that may link the endocytic machinery to the actin cytoskeleton. Binds 3-phosphoinositides (via ENTH domain). May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis. Subcellular locations: Cytoplasm, Perinuclear region, Endomembrane system, Cytoplasmic vesicle, Clathrin-coated vesicle membrane Membrane-associated protein, mainly localized at the endocytic compartments and in the perinuclear region. Brain, heart, kidney, pancreas, and liver, but not in lung or placenta.
HIP1_HUMAN
Homo sapiens
MDRMASSMKQVPNPLPKVLSRRGVGAGLEAAERESFERTQTVSINKAINTQEVAVKEKHARTCILGTHHEKGAQTFWSVVNRLPLSSNAVLCWKFCHVFHKLLRDGHPNVLKDSLRYRNELSDMSRMWGHLSEGYGQLCSIYLKLLRTKMEYHTKNPRFPGNLQMSDRQLDEAGESDVNNFFQLTVEMFDYLECELNLFQTVFNSLDMSRSVSVTAAGQCRLAPLIQVILDCSHLYDYTVKLLFKLHSCLPADTLQGHRDRFMEQFTKLKDLFYRSSNLQYFKRLIQIPQLPENPPNFLRASALSEHISPVVVIPAEASSPDSEPVLEKDDLMDMDASQQNLFDNKFDDIFGSSFSSDPFNFNSQNGVNKDEKDHLIERLYREISGLKAQLENMKTESQRVVLQLKGHVSELEADLAEQQHLRQQAADDCEFLRAELDELRRQREDTEKAQRSLSEIERKAQANEQRYSKLKEKYSELVQNHADLLRKNAEVTKQVSMARQAQVDLEREKKELEDSLERISDQGQRKTQEQLEVLESLKQELATSQRELQVLQGSLETSAQSEANWAAEFAELEKERDSLVSGAAHREEELSALRKELQDTQLKLASTEESMCQLAKDQRKMLLVGSRKAAEQVIQDALNQLEEPPLISCAGSADHLLSTVTSISSCIEQLEKSWSQYLACPEDISGLLHSITLLAHLTSDAIAHGATTCLRAPPEPADSLTEACKQYGRETLAYLASLEEEGSLENADSTAMRNCLSKIKAIGEELLPRGLDIKQEELGDLVDKEMAATSAAIETATARIEEMLSKSRAGDTGVKLEVNERILGCCTSLMQAIQVLIVASKDLQREIVESGRGTASPKEFYAKNSRWTEGLISASKAVGWGATVMVDAADLVVQGRGKFEELMVCSHEIAASTAQLVAASKVKADKDSPNLAQLQQASRGVNQATAGVVASTISGKSQIEETDNMDFSSMTLTQIKRQEMDSQVRVLELENELQKERQKLGELRKKHYELAGVAEGWEEGTEASPPTLQEVVTEKE
Plays a role in clathrin-mediated endocytosis and trafficking ( ). Involved in regulating AMPA receptor trafficking in the central nervous system in an NMDA-dependent manner (By similarity). Regulates presynaptic nerve terminal activity (By similarity). Enhances androgen receptor (AR)-mediated transcription . May act as a proapoptotic protein that induces cell death by acting through the intrinsic apoptosis pathway . Binds 3-phosphoinositides (via ENTH domain) . May act through the ENTH domain to promote cell survival by stabilizing receptor tyrosine kinases following ligand-induced endocytosis . May play a functional role in the cell filament networks . May be required for differentiation, proliferation, and/or survival of somatic and germline progenitors (, ). Subcellular locations: Cytoplasm, Nucleus, Endomembrane system, Cytoplasmic vesicle, Clathrin-coated vesicle membrane Shuttles between cytoplasm and nucleus. Nuclear translocation can be induced by AR. Ubiquitously expressed with the highest level in brain. Expression is up-regulated in prostate and colon cancer.
HLTF_HUMAN
Homo sapiens
MSWMFKRDPVWKYLQTVQYGVHGNFPRLSYPTFFPRFEFQDVIPPDDFLTSDEEVDSVLFGSLRGHVVGLRYYTGVVNNNEMVALQRDPNNPYDKNAIKVNNVNGNQVGHLKKELAGALAYIMDNKLAQIEGVVPFGANNAFTMPLHMTFWGKEENRKAVSDQLKKHGFKLGPAPKTLGFNLESGWGSGRAGPSYSMPVHAAVQMTTEQLKTEFDKLFEDLKEDDKTHEMEPAEAIETPLLPHQKQALAWMVSRENSKELPPFWEQRNDLYYNTITNFSEKDRPENVHGGILADDMGLGKTLTAIAVILTNFHDGRPLPIERVKKNLLKKEYNVNDDSMKLGGNNTSEKADGLSKDASRCSEQPSISDIKEKSKFRMSELSSSRPKRRKTAVQYIESSDSEEIETSELPQKMKGKLKNVQSETKGRAKAGSSKVIEDVAFACALTSSVPTTKKKMLKKGACAVEGSKKTDVEERPRTTLIICPLSVLSNWIDQFGQHIKSDVHLNFYVYYGPDRIREPALLSKQDIVLTTYNILTHDYGTKGDSPLHSIRWLRVILDEGHAIRNPNAQQTKAVLDLESERRWVLTGTPIQNSLKDLWSLLSFLKLKPFIDREWWHRTIQRPVTMGDEGGLRRLQSLIKNITLRRTKTSKIKGKPVLELPERKVFIQHITLSDEERKIYQSVKNEGRATIGRYFNEGTVLAHYADVLGLLLRLRQICCHTYLLTNAVSSNGPSGNDTPEELRKKLIRKMKLILSSGSDEECAICLDSLTVPVITHCAHVFCKPCICQVIQNEQPHAKCPLCRNDIHEDNLLECPPEELARDSEKKSDMEWTSSSKINALMHALTDLRKKNPNIKSLVVSQFTTFLSLIEIPLKASGFVFTRLDGSMAQKKRVESIQCFQNTEAGSPTIMLLSLKAGGVGLNLSAASRVFLMDPAWNPAAEDQCFDRCHRLGQKQEVIITKFIVKDSVEENMLKIQNKKRELAAGAFGTKKPNADEMKQAKINEIRTLIDL
Has both helicase and E3 ubiquitin ligase activities. Possesses intrinsic ATP-dependent nucleosome-remodeling activity; This activity may be required for transcriptional activation or repression of specific target promoters (By similarity). These may include the SERPINE1 and HIV-1 promoters and the SV40 enhancer, to which this protein can bind directly. Plays a role in error-free postreplication repair (PRR) of damaged DNA and maintains genomic stability through acting as a ubiquitin ligase for 'Lys-63'-linked polyubiquitination of chromatin-bound PCNA. Subcellular locations: Cytoplasm, Nucleus, Nucleus, Nucleolus, Nucleus, Nucleoplasm Nuclear localization is stimulated by progesterone. Expressed in brain, heart, kidney, liver, lung, pancreas, placenta and skeletal muscle.
HLX_HUMAN
Homo sapiens
MFAAGLAPFYASNFSLWSAAYCSSAGPGGCSFPLDPAAVKKPSFCIADILHAGVGDLGAAPEGLAGASAAALTAHLGSVHPHASFQAAARSPLRPTPVVAPSEVPAGFPQRLSPLSAAYHHHHPQQQQQQQQPQQQQPPPPPRAGALQPPASGTRVVPNPHHSGSAPAPSSKDLKFGIDRILSAEFDPKVKEGNTLRDLTSLLTGGRPAGVHLSGLQPSAGQFFASLDPINEASAILSPLNSNPRNSVQHQFQDTFPGPYAVLTKDTMPQTYKRKRSWSRAVFSNLQRKGLEKRFEIQKYVTKPDRKQLAAMLGLTDAQVKVWFQNRRMKWRHSKEAQAQKDKDKEAGEKPSGGAPAADGEQDERSPSRSEGEAESESSDSESLDMAPSDTERTEGSERSLHQTTVIKAPVTGALITASSAGSGGSSGGGGNSFSFSSASSLSSSSTSAGCASSLGGGGASELLPATQPTASSAPKSPEPAQGALGCL
Transcription factor required for TBX21/T-bet-dependent maturation of Th1 cells as well as maintenance of Th1-specific gene expression. Involved in embryogenesis and hematopoiesis (By similarity). Subcellular locations: Nucleus Low level in normal B and T-cells, high level in activated lymphocytes and monocytes. Also found in thymus, tonsil, bone marrow, developing vessels, and fetal brain.
HMCN1_HUMAN
Homo sapiens
MISWEVVHTVFLFALLYSSLAQDASPQSEIRAEEIPEGASTLAFVFDVTGSMYDDLVQVIEGASKILETSLKRPKRPLFNFALVPFHDPEIGPVTITTDPKKFQYELRELYVQGGGDCPEMSIGAIKIALEISLPGSFIYVFTDARSKDYRLTHEVLQLIQQKQSQVVFVLTGDCDDRTHIGYKVYEEIASTSSGQVFHLDKKQVNEVLKWVEEAVQASKVHLLSTDHLEQAVNTWRIPFDPSLKEVTVSLSGPSPMIEIRNPLGKLIKKGFGLHELLNIHNSAKVVNVKEPEAGMWTVKTSSSGRHSVRITGLSTIDFRAGFSRKPTLDFKKTVSRPVQGIPTYVLLNTSGISTPARIDLLELLSISGSSLKTIPVKYYPHRKPYGIWNISDFVPPNEAFFLKVTGYDKDDYLFQRVSSVSFSSIVPDAPKVTMPEKTPGYYLQPGQIPCSVDSLLPFTLSFVRNGVTLGVDQYLKESASVNLDIAKVTLSDEGFYECIAVSSAGTGRAQTFFDVSEPPPVIQVPNNVTVTPGERAVLTCLIISAVDYNLTWQRNDRDVRLAEPARIRTLANLSLELKSVKFNDAGEYHCMVSSEGGSSAASVFLTVQEPPKVTVMPKNQSFTGGSEVSIMCSATGYPKPKIAWTVNDMFIVGSHRYRMTSDGTLFIKNAAPKDAGIYGCLASNSAGTDKQNSTLRYIEAPKLMVVQSELLVALGDITVMECKTSGIPPPQVKWFKGDLELRPSTFLIIDPLLGLLKIQETQDLDAGDYTCVAINEAGRATGKITLDVGSPPVFIQEPADVSMEIGSNVTLPCYVQGYPEPTIKWRRLDNMPIFSRPFSVSSISQLRTGALFILNLWASDKGTYICEAENQFGKIQSETTVTVTGLVAPLIGISPSVANVIEGQQLTLPCTLLAGNPIPERRWIKNSAMLLQNPYITVRSDGSLHIERVQLQDGGEYTCVASNVAGTNNKTTSVVVHVLPTIQHGQQILSTIEGIPVTLPCKASGNPKPSVIWSKKGELISTSSAKFSAGADGSLYVVSPGGEESGEYVCTATNTAGYAKRKVQLTVYVRPRVFGDQRGLSQDKPVEISVLAGEEVTLPCEVKSLPPPIITWAKETQLISPFSPRHTFLPSGSMKITETRTSDSGMYLCVATNIAGNVTQAVKLNVHVPPKIQRGPKHLKVQVGQRVDIPCNAQGTPLPVITWSKGGSTMLVDGEHHVSNPDGTLSIDQATPSDAGIYTCVATNIAGTDETEITLHVQEPPTVEDLEPPYNTTFQERVANQRIEFPCPAKGTPKPTIKWLHNGRELTGREPGISILEDGTLLVIASVTPYDNGEYICVAVNEAGTTERKYNLKVHVPPVIKDKEQVTNVSVLLNQLTNLFCEVEGTPSPIIMWYKDNVQVTESSTIQTVNNGKILKLFRATPEDAGRYSCKAINIAGTSQKYFNIDVLVPPTIIGTNFPNEVSVVLNRDVALECQVKGTPFPDIHWFKDGKPLFLGDPNVELLDRGQVLHLKNARRNDKGRYQCTVSNAAGKQAKDIKLTIYIPPSIKGGNVTTDISVLINSLIKLECETRGLPMPAITWYKDGQPIMSSSQALYIDKGQYLHIPRAQVSDSATYTCHVANVAGTAEKSFHVDVYVPPMIEGNLATPLNKQVVIAHSLTLECKAAGNPSPILTWLKDGVPVKANDNIRIEAGGKKLEIMSAQEIDRGQYICVATSVAGEKEIKYEVDVLVPPAIEGGDETSYFIVMVNNLLELDCHVTGSPPPTIMWLKDGQLIDERDGFKILLNGRKLVIAQAQVSNTGLYRCMAANTAGDHKKEFEVTVHVPPTIKSSGLSERVVVKYKPVALQCIANGIPNPSITWLKDDQPVNTAQGNLKIQSSGRVLQIAKTLLEDAGRYTCVATNAAGETQQHIQLHVHEPPSLEDAGKMLNETVLVSNPVQLECKAAGNPVPVITWYKDNRLLSGSTSMTFLNRGQIIDIESAQISDAGIYKCVAINSAGATELFYSLQVHVAPSISGSNNMVAVVVNNPVRLECEARGIPAPSLTWLKDGSPVSSFSNGLQVLSGGRILALTSAQISDTGRYTCVAVNAAGEKQRDIDLRVYVPPNIMGEEQNVSVLISQAVELLCQSDAIPPPTLTWLKDGHPLLKKPGLSISENRSVLKIEDAQVQDTGRYTCEATNVAGKTEKNYNVNIWVPPNIGGSDELTQLTVIEGNLISLLCESSGIPPPNLIWKKKGSPVLTDSMGRVRILSGGRQLQISIAEKSDAALYSCVASNVAGTAKKEYNLQVYIRPTITNSGSHPTEIIVTRGKSISLECEVQGIPPPTVTWMKDGHPLIKAKGVEILDEGHILQLKNIHVSDTGRYVCVAVNVAGMTDKKYDLSVHAPPSIIGNHRSPENISVVEKNSVSLTCEASGIPLPSITWFKDGWPVSLSNSVRILSGGRMLRLMQTTMEDAGQYTCVVRNAAGEERKIFGLSVLVPPHIVGENTLEDVKVKEKQSVTLTCEVTGNPVPEITWHKDGQPLQEDEAHHIISGGRFLQITNVQVPHTGRYTCLASSPAGHKSRSFSLNVFVSPTIAGVGSDGNPEDVTVILNSPTSLVCEAYSYPPATITWFKDGTPLESNRNIRILPGGRTLQILNAQEDNAGRYSCVATNEAGEMIKHYEVKVYIPPIINKGDLWGPGLSPKEVKIKVNNTLTLECEAYAIPSASLSWYKDGQPLKSDDHVNIAANGHTLQIKEAQISDTGRYTCVASNIAGEDELDFDVNIQVPPSFQKLWEIGNMLDTGRNGEAKDVIINNPISLYCETNAAPPPTLTWYKDGHPLTSSDKVLILPGGRVLQIPRAKVEDAGRYTCVAVNEAGEDSLQYDVRVLVPPIIKGANSDLPEEVTVLVNKSALIECLSSGSPAPRNSWQKDGQPLLEDDHHKFLSNGRILQILNTQITDIGRYVCVAENTAGSAKKYFNLNVHVPPSVIGPKSENLTVVVNNFISLTCEVSGFPPPDLSWLKNEQPIKLNTNTLIVPGGRTLQIIRAKVSDGGEYTCIAINQAGESKKKFSLTVYVPPSIKDHDSESLSVVNVREGTSVSLECESNAVPPPVITWYKNGRMITESTHVEILADGQMLHIKKAEVSDTGQYVCRAINVAGRDDKNFHLNVYVPPSIEGPEREVIVETISNPVTLTCDATGIPPPTIAWLKNHKRIENSDSLEVRILSGGSKLQIARSQHSDSGNYTCIASNMEGKAQKYYFLSIQVPPSVAGAEIPSDVSVLLGENVELVCNANGIPTPLIQWLKDGKPIASGETERIRVSANGSTLNIYGALTSDTGKYTCVATNPAGEEDRIFNLNVYVTPTIRGNKDEAEKLMTLVDTSINIECRATGTPPPQINWLKNGLPLPLSSHIRLLAAGQVIRIVRAQVSDVAVYTCVASNRAGVDNKHYNLQVFAPPNMDNSMGTEEITVLKGSSTSMACITDGTPAPSMAWLRDGQPLGLDAHLTVSTHGMVLQLLKAETEDSGKYTCIASNEAGEVSKHFILKVLEPPHINGSEEHEEISVIVNNPLELTCIASGIPAPKMTWMKDGRPLPQTDQVQTLGGGEVLRISTAQVEDTGRYTCLASSPAGDDDKEYLVRVHVPPNIAGTDEPRDITVLRNRQVTLECKSDAVPPPVITWLRNGERLQATPRVRILSGGRYLQINNADLGDTANYTCVASNIAGKTTREFILTVNVPPNIKGGPQSLVILLNKSTVLECIAEGVPTPRITWRKDGAVLAGNHARYSILENGFLHIQSAHVTDTGRYLCMATNAAGTDRRRIDLQVHVPPSIAPGPTNMTVIVNVQTTLACEATGIPKPSINWRKNGHLLNVDQNQNSYRLLSSGSLVIISPSVDDTATYECTVTNGAGDDKRTVDLTVQVPPSIADEPTDFLVTKHAPAVITCTASGVPFPSIHWTKNGIRLLPRGDGYRILSSGAIEILATQLNHAGRYTCVARNAAGSAHRHVTLHVHEPPVIQPQPSELHVILNNPILLPCEATGTPSPFITWQKEGINVNTSGRNHAVLPSGGLQISRAVREDAGTYMCVAQNPAGTALGKIKLNVQVPPVISPHLKEYVIAVDKPITLSCEADGLPPPDITWHKDGRAIVESIRQRVLSSGSLQIAFVQPGDAGHYTCMAANVAGSSSTSTKLTVHVPPRIRSTEGHYTVNENSQAILPCVADGIPTPAINWKKDNVLLANLLGKYTAEPYGELILENVVLEDSGFYTCVANNAAGEDTHTVSLTVHVLPTFTELPGDVSLNKGEQLRLSCKATGIPLPKLTWTFNNNIIPAHFDSVNGHSELVIERVSKEDSGTYVCTAENSVGFVKAIGFVYVKEPPVFKGDYPSNWIEPLGGNAILNCEVKGDPTPTIQWNRKGVDIEISHRIRQLGNGSLAIYGTVNEDAGDYTCVATNEAGVVERSMSLTLQSPPIITLEPVETVINAGGKIILNCQATGEPQPTITWSRQGHSISWDDRVNVLSNNSLYIADAQKEDTSEFECVARNLMGSVLVRVPVIVQVHGGFSQWSAWRACSVTCGKGIQKRSRLCNQPLPANGGKPCQGSDLEMRNCQNKPCPVDGSWSEWSLWEECTRSCGRGNQTRTRTCNNPSVQHGGRPCEGNAVEIIMCNIRPCPVHGAWSAWQPWGTCSESCGKGTQTRARLCNNPPPAFGGSYCDGAETQMQVCNERNCPIHGKWATWASWSACSVSCGGGARQRTRGCSDPVPQYGGRKCEGSDVQSDFCNSDPCPTHGNWSPWSGWGTCSRTCNGGQMRRYRTCDNPPPSNGGRACGGPDSQIQRCNTDMCPVDGSWGSWHSWSQCSASCGGGEKTRKRLCDHPVPVKGGRPCPGDTTQVTRCNVQACPGGPQRARGSVIGNINDVEFGIAFLNATITDSPNSDTRIIRAKITNVPRSLGSAMRKIVSILNPIYWTTAKEIGEAVNGFTLTNAVFKRETQVEFATGEILQMSHIARGLDSDGSLLLDIVVSGYVLQLQSPAEVTVKDYTEDYIQTGPGQLYAYSTRLFTIDGISIPYTWNHTVFYDQAQGRMPFLVETLHASSVESDYNQIEETLGFKIHASISKGDRSNQCPSGFTLDSVGPFCADEDECAAGNPCSHSCHNAMGTYYCSCPKGLTIAADGRTCQDIDECALGRHTCHAGQDCDNTIGSYRCVVRCGSGFRRTSDGLSCQDINECQESSPCHQRCFNAIGSFHCGCEPGYQLKGRKCMDVNECRQNVCRPDQHCKNTRGGYKCIDLCPNGMTKAENGTCIDIDECKDGTHQCRYNQICENTRGSYRCVCPRGYRSQGVGRPCMDINECEQVPKPCAHQCSNTPGSFKCICPPGQHLLGDGKSCAGLERLPNYGTQYSSYNLARFSPVRNNYQPQQHYRQYSHLYSSYSEYRNSRTSLSRTRRTIRKTCPEGSEASHDTCVDIDECENTDACQHECKNTFGSYQCICPPGYQLTHNGKTCQDIDECLEQNVHCGPNRMCFNMRGSYQCIDTPCPPNYQRDPVSGFCLKNCPPNDLECALSPYALEYKLVSLPFGIATNQDLIRLVAYTQDGVMHPRTTFLMVDEEQTVPFALRDENLKGVVYTTRPLREAETYRMRVRASSYSANGTIEYQTTFIVYIAVSAYPY
Involved in transforming growth factor beta-mediated rearrangement of the podocyte cytoskeleton which includes reduction of F-actin fibers and broadening, flattening and elongation of podocytes . Plays a role in basement membrane organization (By similarity). May promote cleavage furrow maturation during cytokinesis in preimplantation embryos (By similarity). May play a role in the architecture of adhesive and flexible epithelial cell junctions (By similarity). May play a role during myocardial remodeling by imparting an effect on cardiac fibroblast migration (By similarity). Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Basement membrane, Cytoplasm, Cell junction, Cleavage furrow Has been detected in the glomerular basement membrane in one study. However, another study found expression in the glomerular mesangial matrix but not in the glomerular basement membrane. The antibody used to determine subcellular location does not distinguish between HMCN1 and HMCN2. Expressed in hair follicles and in the dermis (at protein level). Expressed in skin fibroblasts and retinal pigment epithelium (RPE) cells. Expressed in skin fibroblasts and retinal pigment epithelium (RPE) cells.
HMCN2_HUMAN
Homo sapiens
MMPGAPLLRLLTAVSAAVAVAVAGAPGTVMPPTTGDATLAFVFDVTGSMWDELMQVIDGASRILERSLSRRSQAIANYALVPFHDPDIGPVTLTADPTVFQRELRELYVQGGGDCPEMSVGAIKAAVEVANPGSFIYVFSDARAKDYHKKEELLRLLQLKQSQVVFVLTGDCGDRTHPGYLAYEEIAATSSGQVFHLDKQQVTEVLKWVESAIQASKVHLLSTDHEEEGEHTWRLPFDPSLKEVTISLSGPGPEIEVQDPLGRILQEDEGLNVLLNIPDSAKVVAFKPEHPGLWSIKVYSSGRHSVRITGVSNIDFRAGFSTQPLLDLNHTLEWPLQGVPISLVINSTGLKAPGRLDSVELAQSSGKPLLTLPTKPLSNGSTHQLWGGPPFHTPKERFYLKVKGKDHEGNPLLRVSGVSYSGVAPGAPLVSMAPRIHGYLHQPLLVSCSVHSALPFRLQLRRGEARLGEERHFQESGNSSWEILRASKAEEGTYECTAVSRAGTGRAKAQIVVTDPPPQLVPAPNVTVSPGETAVLSCRVLGEAPYNLTWVRDWRVLPASTGRVAQLADLSLEISGIIPTDGGRYQCVASNANGVTRASVWLLVREAPQVSIHTSSQHFSQGVEVKVSCSASGYPTPHISWSRESQALQEDSRIHVDAQGTLIIQGVAPEDAGNYSCQATNEVGTDQETVTLYYTDPPSVSAVNAVVLVAVGEEAVLVCEASGVPPPRVIWYRGGLEMILAPEGSSSGKLRIPAAQERDAGTYTCRAVNELGDASAEIQLAVGHAPQLTELPRDVTVELGRSALLACRATGRPPPTVTWRRGDGQPLGLRLGAGRGSRSRQPDSGVLFFESVAPEDQAPYVCEARNVFGKVQAEARLIVTGHAPPQIASSAPTVRVLEGQPVSLPCIVLAGRPLPERHWLKDGRPLPPGSRHSIRADGSLHLDRALQEHAGRYSCVATNTAGSQHRDVELVVQVPPRIHPTATHHITNEGVAASLPCVASGVPAPTITWTKETNALTSRGPHYNVSKEGTLLIAQPSAQDAGAYVCTATNTVGFSSQEMRLSVNTKPRIHMNGSRNADVPLQVTAKAGEEVTLDCEAKGSPPPLVTWTKDSRPVPPITNRYGLLPSGSLRLAQVQVGDSGHYECTASNPAGSASHRYVLGVQVPPQVQPGPRVLKVLVGEALDLNCVAEGNPEPQLSWSKDGVVLQGRGPQGSVHFAAIRTSDAGRYRCEASNSAGVDAWEVELRVLEPPHWGADETSGLLERVAGENASLPCPARGTPKPQVTWRKGPSSEPLHGQPGVAVLEEGSLFLASVSPADSGDYECQATNEVGSTSRRAKLVVYVPPSIREDGRKANVSGMAGQSLTLECDANGFPVPEIVWLKDAQLIPKVGGHRLLDEGQSLHFPRIQEGDSGLYSCRAENQAGTAQRDFHLLVLTPPSVLGAGAAQEVLGLAGADVELQCWTSGVPTPQVEWTKDRQPVLPGGPHLQVQEDGQVLRITGSHVGDEGRYQCVAFSPAGQQARDFQLRVHAPPTIWGSNETGEVAVMEDHLVQLLCEARGVPTPNITWFKDGALLPTSTKVVYTRGGRQLQLGRAQSSDAGVYTCKASNAVGAAEKATRLDVYVPPTIEGAGGRPYVVKAVAGRPVALECVARGHPSPTLSWHHEGLPVAESNESRLETDGSVLRLESPGEASSGLYSCVASSPAGEAVLQYSVEVQVPPQLLVAEGLGQVTTIVGQPLELPCQASGSPVPTIQWLQNGRPAEELAGVQVASQGTTLHIDHVELDHSGLFACQATNEAGTAGAEVEVSVHEFPSVSIIGGENITAPFLQPVTLQCIGDGVPTPSLRWWKDGVALAAFGGNLQIEKVDLRDEGIYTCAATNLAGESKREVALKVLVPPNIEPGPVNKAVLENASVTLECLASGVPPPDVSWFKGHQPVSSWMGVTVSVDGRVLRIEQAQLSDAGSYRCVASNVAGSTELRYGLRVNVPPRITLPPSLPGPVLVNTPVRLTCNATGAPSPTLMWLKDGNPVSPAGTPGLQVFPGGRVLTLASARASDSGRYSCVAVSAVGEDRQDVVLQVHMPPSILGEELNVSVVANESVALECQSHAMPPPVLSWWKDGRPLEPRPGVHLSADKALLQVDRADVWDAGHYTCEALNQAGHSEKHYNLNVWVAPVFPLRESHTLTVREGHPTRLSCECRGVPFPKISWRKDGQPLPGEGAGLQHVSAVGRLLYLGQAQLAQEGTYTCECSNVVGNSSQDLQLEVHVPPQIAGPREPPTQVSVVQDGVATLECNATGKPPPTVTWERDGQPVGAELGLQLQNQGQSLHVERAQAAHTGRYSCVAENLAGRAERKFELSVLVPPELIGDLDPLTNITAALHSPLTLLCEAMGIPPPAIRWFRGEEPVSPGEDTYLLAGGWMLKMTQTQEQDSGLYSCLASNEAGEARRNFSVEVLVPPSIENEDLEEVIKVLDGQTAHLMCNVTGHPQPKLTWFKDGRPLARGDAHHISPDGVLLQVLQANLSSAGHYSCIAANAVGEKTKHFQLSVLLAPTILGGAEDSADEEVTVTVNNPISLICEALAFPSPNITWMKDGAPFEASRNIQLLPGTHGLQILNAQKEDAGQYTCVVTNELGEAVKNYHVEVLIPPSISKDDPLAEVGVKEVKTKVNSTLTLECESWAVPPPTIRWYKDGQPVTPSSRLQVLGEGRLLQIQPTQVSDSGRYLCVATNVAGEDDQDFNVLIQVPPMFQKVGDFSAAFEILSREEEARGGVTEYREIVENNPAYLYCDTNAIPPPDLTWYREDQPLSAGDEVSVLQGGRVLQIPLVRAENAGRYSCKASNEVGEDWLHYELLVLTPPVILGDTEELVEEVTVNASSTVSLQCPALGNPVPTISWLQNGLPFSPSPRLQVLEDGQVLQVSTAEVADAASYMCVAENQAGSAEKLFTLRVQVPPRIAGLDLEQVTAILNSSVSLPCDVHAHPNPEVTWYKDSQALSLGEEVFLLPGTHTLQLGRARLSDSGMYTCEALNAAGRDQKLVQLSVLVPPAFRQAPRGPQDAVLVRVGDKAVLSCETDALPEPTVTWYKDGQPLVLAQRTQALRGGQRLEIQEAQVSDKGLYSCKVSNVAGEAVRTFTLTVQVPPTFENPKTETVSQVAGSPLVLTCDVSGVPAPTVTWLKDRMPVESSAVHGVVSRGGRLQLSRLQPAQAGTYTCVAENTQAEARKDFVVAVLVAPRIRSSGVAREHHVLEGQEVRLDCEADGQPPPDVAWLKDGSPLGQDMGPHLRFYLDGGSLVLKGLRASDAGAYTCVAHNPAGEDARLHTVNVLVPPTIKQGADGSGTLVSRPGELVTMVCPVRGSPPIHVSWLKDGLPLPLSQRTLLHGSGHTLRISKVQLADAGIFTCVAASPAGVADRNFTLQVQVPPVLEPVEFQNDVVVVRGSLVELPCEARGVPLPLVSWMKDGEPLLSQSLEQGPSLQLEAVGAGDSGTYSCVAVSEAGEARRHFQLTVMEPPHIEDSGQPTELSLTPGAPMELLCDAQGTPQPNITWHKDGQALTRLENNSRATRVLRVENVQVRDAGLYTCLAESPAGAIEKSFRVRVQAPPNIVGPRGPRFVVGLAPGQLVLECSVEAEPAPKITWHRDGIVLQEDAHTQFPERGRFLQLQALSTADSGDYSCTARNAAGSTSVAFRVEIHTVPTIRSGPPAVNVSVNQTALLPCQADGVPAPLVSWRKDRVPLDPRSPRFEILPEGSLRIQPVLAQDAGHYLCLASNSAGSDRQGRDLRVLEPPAIAPSPSNLTLTAHTPALLPCEASGSPKPLVVWWKDGQKLDFRLQQGAYRLLPSNALLLTAPGPQDSAQFECVVSNEVGEAHRLYQVTVHVPPTIADDQTDFTVTMMAPVVLTCHSTGIPAPTVSWSKAGAQLGARGSGYRVSPSGALEIGQALPIHAGRYTCSARNSAGVAHKHVFLTVQASPVVKPLPSVVRAVAEEEVLLPCEASGIPRPTITWQKEGLNVATGVSTQVLPGGQLRIAHASPEDAGNYLCIAKNSAGSAMGKTRLVVQVPPVIENGLPDLSTTEGSHAFLPCKARGSPEPNITWDKDGQPVSGAEGKFTIQPSGELLVKNLEGQDAGTYTCTAENAVGRARRRVHLTILVLPVFTTLPGDRSLRLGDRLWLRCAARGSPTPRIGWTVNDRPVTEGVSEQDGGSTLQRAAVSREDSGTYVCWAENRVGRTQAVSFVHVKEAPVLQGEAFSYLVEPVGGSIQLDCVVRGDPVPDIHWIKDGLPLRGSHLRHQLQNGSLTIRRTERDDAGRYQCLAENEMGVAKKVVILVLQSAPVFQVEPQDMTVRSGDDVALRCQATGEPTPTIEWLQAGQPLRASRRLRTLPDGSLWLENVETGDAGTYDCVAHNLLGSATARAFLVVRGEPQGSWGSMTGVINGRKFGVATLNTSVMQEAHSGVSSIHSSIRHVPANVGPLMRVLVVTIAPIYWALARESGEALNGHSLTGGRFRQESHVEFATGELLTMTQVARGLDPDGLLLLDVVVNGVVPESLADADLQVQDFEEHYVQTGPGQLFVGSTQRFFQGGLPSFLRCNHSIQYNAARGPQPQLVQHLRASAISSAFDPEAEALRFQLATALQAEENEVGCPEGFELDSQGAFCVDRDECSGGPSPCSHACLNAPGRFSCTCPTGFALAWDDRNCRDVDECAWDAHLCREGQRCVNLLGSYRCLPDCGPGFRVADGAGCEDVDECLEGLDDCHYNQLCENTPGGHRCSCPRGYRMQGPSLPCLDVNECLQLPKACAYQCHNLQGSYRCLCPPGQTLLRDGKACTSLERNGQNVTTVSHRGPLLPWLRPWASIPGTSYHAWVSLRPGPMALSSVGRAWCPPGFIRQNGVCTDLDECRVRNLCQHACRNTEGSYQCLCPAGYRLLPSGKNCQDINECEEESIECGPGQMCFNTRGSYQCVDTPCPATYRQGPSPGTCFRRCSQDCGTGGPSTLQYRLLPLPLGVRAHHDVARLTAFSEVGVPANRTELSMLEPDPRSPFALRPLRAGLGAVYTRRALTRAGLYRLTVRAAAPRHQSVFVLLIAVSPYPY
Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Cleavage furrow The antibody used to determine subcellular location does not distinguish between HMCN1 and HMCN2.
HMCS1_HUMAN
Homo sapiens
MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVDAGKYTIGLGQAKMGFCTDREDINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIHAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEH
Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is converted by HMG-CoA reductase (HMGCR) into mevalonate, a precursor for cholesterol synthesis. Subcellular locations: Cytoplasm
HMCS1_PONAB
Pongo abelii
MPGSLPLNAEACWPKDVGIVALEIYFPSQYVDQAELEKYDGVAAGKYTIGLGQAKMGFCTDREDINSLCMTVVQNLMERNNLSYDCIGRLEVGTETIIDKSKSVKTNLMQLFEESGNTDIEGIDTTNACYGGTAAVFNAVNWIESSSWDGRYALVVAGDIAVYATGNARPTGGVGAVALLIGPNAPLIFERGLRGTHMQHAYDFYKPDMLSEYPIVDGKLSIQCYLSALDRCYSVYCKKIRAQWQKEGNDKDFTLNDFGFMIFHSPYCKLVQKSLARMLLNDFLNDQNRDKNSIYSGLEAFGDVKLEDTYFDRDVEKAFMKASSELFSQKTKASLLVSNQNGNMYTSSVYGSLASVLAQYSPQQLAGKRIGVFSYGSGLAATLYSLKVTQDATPGSALDKITASLCDLKSRLDSRTGVAPDVFAENMKLREDTHHLVNYIPQGSIDSLFEGTWYLVRVDEKHRRTYARRPTPNDDTLDEGVGLVHSNIATEHIPSPAKKVPRLPATAAEPEAAVISNGEH
Catalyzes the condensation of acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is converted by HMG-CoA reductase (HMGCR) into mevalonate, a precursor for cholesterol synthesis. Subcellular locations: Cytoplasm
HMCS2_HUMAN
Homo sapiens
MQRLLTPVKRILQLTRAVQETSLTPARLLPVAHQRFSTASAVPLAKTDTWPKDVGILALEVYFPAQYVDQTDLEKYNNVEAGKYTVGLGQTRMGFCSVQEDINSLCLTVVQRLMERIQLPWDSVGRLEVGTETIIDKSKAVKTVLMELFQDSGNTDIEGIDTTNACYGGTASLFNAANWMESSSWDGRYAMVVCGDIAVYPSGNARPTGGAGAVAMLIGPKAPLALERGLRGTHMENVYDFYKPNLASEYPIVDGKLSIQCYLRALDRCYTSYRKKIQNQWKQAGSDRPFTLDDLQYMIFHTPFCKMVQKSLARLMFNDFLSASSDTQTSLYKGLEAFGGLKLEDTYTNKDLDKALLKASQDMFDKKTKASLYLSTHNGNMYTSSLYGCLASLLSHHSAQELAGSRIGAFSYGSGLAASFFSFRVSQDAAPGSPLDKLVSSTSDLPKRLASRKCVSPEEFTEIMNQREQFYHKVNFSPPGDTNSLFPGTWYLERVDEQHRRKYARRPV
Catalyzes the first irreversible step in ketogenesis, condensing acetyl-CoA to acetoacetyl-CoA to form HMG-CoA, which is converted by HMG-CoA reductase (HMGCR) into mevalonate. Subcellular locations: Mitochondrion Expression in liver is 200-fold higher than in any other tissue. Low expression in colon, kidney, testis, and pancreas. Very low expression in heart and skeletal muscle ( ). Not detected in brain . Highest expression detected in heart and skeletal muscle.
HOIL1_HUMAN
Homo sapiens
MDEKTKKAEEMALSLTRAVAGGDEQVAMKCAIWLAEQRVPLSVQLKPEVSPTQDIRLWVSVEDAQMHTVTIWLTVRPDMTVASLKDMVFLDYGFPPVLQQWVIGQRLARDQETLHSHGVRQNGDSAYLYLLSARNTSLNPQELQRERQLRMLEDLGFKDLTLQPRGPLEPGPPKPGVPQEPGRGQPDAVPEPPPVGWQCPGCTFINKPTRPGCEMCCRARPEAYQVPASYQPDEEERARLAGEEEALRQYQQRKQQQQEGNYLQHVQLDQRSLVLNTEPAECPVCYSVLAPGEAVVLRECLHTFCRECLQGTIRNSQEAEVSCPFIDNTYSCSGKLLEREIKALLTPEDYQRFLDLGISIAENRSAFSYHCKTPDCKGWCFFEDDVNEFTCPVCFHVNCLLCKAIHEQMNCKEYQEDLALRAQNDVAARQTTEMLKVMLQQGEAMRCPQCQIVVQKKDGCDWIRCTVCHTEICWVTKGPRWGPGGPGDTSGGCRCRVNGIPCHPSCQNCH
E3 ubiquitin-protein ligase, which accepts ubiquitin from specific E2 ubiquitin-conjugating enzymes, such as UBE2L3/UBCM4, and then transfers it to substrates ( ). Functions as an E3 ligase for oxidized IREB2 and both heme and oxygen are necessary for IREB2 ubiquitination . Promotes ubiquitination of TAB2 and IRF3 and their degradation by the proteasome (, ). Component of the LUBAC complex which conjugates linear ('Met-1'-linked) polyubiquitin chains to substrates and plays a key role in NF-kappa-B activation and regulation of inflammation ( ). LUBAC conjugates linear polyubiquitin to IKBKG and RIPK1 and is involved in activation of the canonical NF-kappa-B and the JNK signaling pathways ( ). Linear ubiquitination mediated by the LUBAC complex interferes with TNF-induced cell death and thereby prevents inflammation ( , ). LUBAC is recruited to the TNF-R1 signaling complex (TNF-RSC) following polyubiquitination of TNF-RSC components by BIRC2 and/or BIRC3 and to conjugate linear polyubiquitin to IKBKG and possibly other components contributing to the stability of the complex ( ). The LUBAC complex is also involved in innate immunity by conjugating linear polyubiquitin chains at the surface of bacteria invading the cytosol to form the ubiquitin coat surrounding bacteria . LUBAC is not able to initiate formation of the bacterial ubiquitin coat, and can only promote formation of linear polyubiquitins on pre-existing ubiquitin . The bacterial ubiquitin coat acts as an 'eat-me' signal for xenophagy and promotes NF-kappa-B activation . Together with OTULIN, the LUBAC complex regulates the canonical Wnt signaling during angiogenesis . Binds polyubiquitin of different linkage types (, ).
HPPD_HUMAN
Homo sapiens
MTTYSDKGAKPERGRFLHFHSVTFWVGNAKQAASFYCSKMGFEPLAYRGLETGSREVVSHVIKQGKIVFVLSSALNPWNKEMGDHLVKHGDGVKDIAFEVEDCDYIVQKARERGAKIMREPWVEQDKFGKVKFAVLQTYGDTTHTLVEKMNYIGQFLPGYEAPAFMDPLLPKLPKCSLEMIDHIVGNQPDQEMVSASEWYLKNLQFHRFWSVDDTQVHTEYSSLRSIVVANYEESIKMPINEPAPGKKKSQIQEYVDYNGGAGVQHIALKTEDIITAIRHLRERGLEFLSVPSTYYKQLREKLKTAKIKVKENIDALEELKILVDYDEKGYLLQIFTKPVQDRPTLFLEVIQRHNHQGFGAGNFNSLFKAFEEEQNLRGNLTNMETNGVVPGM
Catalyzes the conversion of 4-hydroxyphenylpyruvic acid to homogentisic acid, one of the steps in tyrosine catabolism. Subcellular locations: Cytoplasm, Endoplasmic reticulum membrane, Golgi apparatus membrane
HPTR_HUMAN
Homo sapiens
MSDLGAVISLLLWGRQLFALYSGNDVTDISDDRFPKPPEIANGYVEHLFRYQCKNYYRLRTEGDGVYTLNDKKQWINKAVGDKLPECEAVCGKPKNPANPVQRILGGHLDAKGSFPWQAKMVSHHNLTTGATLINEQWLLTTAKNLFLNHSENATAKDIAPTLTLYVGKKQLVEIEKVVLHPNYHQVDIGLIKLKQKVLVNERVMPICLPSKNYAEVGRVGYVSGWGQSDNFKLTDHLKYVMLPVADQYDCITHYEGSTCPKWKAPKSPVGVQPILNEHTFCVGMSKYQEDTCYGDAGSAFAVHDLEEDTWYAAGILSFDKSCAVAEYGVYVKVTSIQHWVQKTIAEN
Primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL). This HDL particle, termed trypanosome lytic factor-1 (TLF-1), mediates human innate immune protection against many species of African trypanosomes. Binds hemoglobin with high affinity and may contribute to the clearance of cell-free hemoglobin to allow hepatic recycling of heme iron. Subcellular locations: Secreted Secreted into blood plasma and associated with subtypes of high density lipoproteins (HDL). In adult liver the amount of HPR mRNA is at the lower limit of detection, therefore the extent of its expression is at most less than 1000-fold that of the HP1F gene. No HPR mRNA can be detected in fetal liver. Expressed in Hep-G2 and leukemia MOLT-4 cell lines.
HPTR_PANTR
Pan troglodytes
DLGAVIYLLLWGRQLFALYSSNDVTDISDDRFPKPPEIANGYVEHLFRYQRKNYYRLRTEGDGVYTLNDKKQWINKAVGDKLPECEAVCGKPKNPANPVQRILGGHLDAKGSFPWQAKMVSRHNLTTGATLINEQWLLTTAKNLFLSHSENATAKDSAPTLTLYVGKKQLVEIEKVVLHPNYHQVDIGLIKLKQKVLVNERVMPICLPSKNYAEVGRVGYVSGWGQSNNFKLTDHLKYVMLPVADQDQCIRHYEGSTVPEKKTPKSPVGVQPILNEHTFCAGMSKYQEDTCYGDAGSAFAVHDLEEDTWYAAGILSFDKSCAVAEYGVYVKVTSIHVWVQKTIAEN
Primate-specific plasma protein associated with apolipoprotein L-I (apoL-I)-containing high-density lipoprotein (HDL). Binds hemoglobin with high affinity and may contribute to the clearance of cell-free hemoglobin to allow hepatic recycling of heme iron. Subcellular locations: Secreted Secreted into blood plasma and associated with subtypes of high density lipoproteins (HDL).
HRK_HUMAN
Homo sapiens
MCPCPLHRGRGPPAVCACSAGRLGLRSSAAQLTAARLKALGDELHQRTMWRRRARSRRAPAPGALPTYWPWLCAAAQVAALAAWLLGRRNL
Promotes apoptosis. Subcellular locations: Membrane, Mitochondrion
HROB_HUMAN
Homo sapiens
MACSLQKLFAVEEEFEDEDFLSAVEDAENRFTGSLPVNAGRLRPVSSRPQETVQAQSSRLLLLHPTAPSEALGLPDLDLCLPASSTPSADSRPSCIGAAPLRPVSTSSSWIGNQRRVTVTEVLRETARPQSSALHPLLTFESQQQQVGGFEGPEQDEFDKVLASMELEEPGMELECGVSSEAIPILPAQQREGSVLAKKARVVDLSGSCQKGPVPAIHKAGIMSAQDESLDPVIQCRTPRPPLRPGAVGHLPVPTALTVPTQQLHWEVCPQRSPVQALQPLQAARGTIQSSPQNRFPCQPFQSPSSWLSGKAHLPRPRTPNSSCSTPSRTSSGLFPRIPLQPQAPVSSIGSPVGTPKGPQGALQTPIVTNHLVQLVTAASRTPQQPTHPSTRAKTRRFPGPAGILPHQQSGRSLEDIMVSAPQTPTHGALAKFQTEIVASSQASVEEDFGRGPWLTMKSTLGLDERDPSCFLCTYSIVMVLRKQAALKQLPRNKVPNMAVMIKSLTRSTMDASVVFKDPTGEMQGTVHRLLLETCQNELKPGSVLLLKQIGVFSPSLRNHYLNVTPNNLVHIYSPDSGDGSFLKPSQPFPKDSGSFQHDVAAKPEEGFRTAQNLEAEASPEEELPEADDLDGLLSELPEDFFCGTSS
DNA-binding protein involved in homologous recombination that acts by recruiting the MCM8-MCM9 helicase complex to sites of DNA damage to promote DNA repair synthesis. Subcellular locations: Nucleus, Chromosome Localized to the sites of DNA damage.
HS90B_HUMAN
Homo sapiens
MPEEVHHGEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNASDALDKIRYESLTDPSKLDSGKELKIDIIPNPQERTLTLVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVVVITKHNDDEQYAWESSAGGSFTVRADHGEPIGRGTKVILHLKEDQTEYLEERRVKEVVKKHSQFIGYPITLYLEKEREKEISDDEAEEEKGEKEEEDKDDEEKPKIEDVGSDEEDDSGKDKKKKTKKIKEKYIDQEELNKTKPIWTRNPDDITQEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFIPRRAPFDLFENKKKKNNIKLYVRRVFIMDSCDELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNIVKKCLELFSELAEDKENYKKFYEAFSKNLKLGIHEDSTNRRRLSELLRYHTSQSGDEMTSLSEYVSRMKETQKSIYYITGESKEQVANSAFVERVRKRGFEVVYMTEPIDEYCVQQLKEFDGKSLVSVTKEGLELPEDEEEKKKMEESKAKFENLCKLMKEILDKKVEKVTISNRLVSSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMMAKKHLEINPDHPIVETLRQKAEADKNDKAVKDLVVLLFETALLSSGFSLEDPQTHSNRIYRMIKLGLGIDEDEVAAEEPNAAVPDEIPPLEGDEDASRMEEVD
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function (, ). Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle (, ). Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression . Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation . Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery . Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription . Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10 . (Microbial infection) Binding to N.meningitidis NadA stimulates monocytes . Seems to interfere with N.meningitidis NadA-mediated invasion of human cells (Probable). Subcellular locations: Cytoplasm, Melanosome, Nucleus, Secreted, Cell membrane, Dynein axonemal particle, Cell surface Identified by mass spectrometry in melanosome fractions from stage I to stage IV . Translocates with BIRC2 from the nucleus to the cytoplasm during differentiation . Secreted when associated with TGFB1 processed form (LAP) .
HS90B_MACFA
Macaca fascicularis
MPEEVHHGEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNASDALDKIRYESLTDPSKLDSGKELKIDIIPNPQERTLTLVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVVVITKHNDDEQYAWESSAGGSFTVRADHGEPIGRGTKVILHLKEDQTEYLEERRVKEVVKKHSQFIGYPITLYLEKEREKEISDDEAEEEKGEKEEEDKDDEEKPKIEDVGSDEEDDSGKDKKKKTKKIKEKYIDQEELNKTKPIWTRNPDDITQEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFIPRRAPFDLFENKKKKNNIKLYVRRVFIMDSCDELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNIVKKCLELFSELAEDKENYKKFYEAFSKNLKLGIHEDSTNRRRLSELLRYHTSQSGDEMTSLSEYVSRMKETQKSIYYITGESKEQVANSAFVERVRKRGFEVVYMTEPIDEYCVQQLKEFDGKSLVSVTKEGLELPEDEEEKKKMEESKAKFENLCKLMKEILDKKVEKVTISNRLVSSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMMAKKHLEINPDHPIVETLRQKAEADKNDKAVKDLVVLLFETALLSSGFSLEDPQTHSNRIYRMIKLGLGIDEDEVAAEEPSAAVPDEIPPLEGDEDASRMEEVD
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery. Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription. Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10. Subcellular locations: Cytoplasm, Melanosome, Nucleus, Secreted, Cell membrane, Dynein axonemal particle Translocates with BIRC2 from the nucleus to the cytoplasm during differentiation. Secreted when associated with TGFB1 processed form (LAP).
HS90B_PONAB
Pongo abelii
MPEEVHHGEEEVETFAFQAEIAQLMSLIINTFYSNKEIFLRELISNASDALDKIRYESLTDPSKLDSGKELKIDIIPNPQERTLTLVDTGIGMTKADLINNLGTIAKSGTKAFMEALQAGADISMIGQFGVGFYSAYLVAEKVVVITKHNDDEQYAWESSAGGSFTVRADHGEPIGRGTKVILHLKEDQTEYLEERRVKEVVKKHSQFIGYPITLYLEKEREKEISDDEAEEEKGEKEEEDKDDEEKPKIEDVGSDEEDDSGKDKKKKTKKIKEKYIDQEELNKTKPIWTRNPDDITQEEYGEFYKSLTNDWEDHLAVKHFSVEGQLEFRALLFIPRRAPFDLFENKKKKNNIKLYVRRVFIMDSCDELIPEYLNFIRGVVDSEDLPLNISREMLQQSKILKVIRKNIVKKCLELFSELAEDKENYKKFYEAFSKNLKLGIHEDSTNRRRLSELLRYHTSQSGDEMTSLSEYVSRMKETQKSIYYITGESKEQVANSAFVERVRKRGFEVVYMTEPIDEYCVQQLKEFDGKSLVSVTKEGLELPEDEEEKKKMEESKAKFENLCKLMKEILDKKVEEVTISNRLVSSPCCIVTSTYGWTANMERIMKAQALRDNSTMGYMMAKKHLEINPDHPIVETLRQKAEADKNDKAVKDLVVLLFETALLSSGFSLEDPQTHSNRIYRMIKLGLGIDEDEVAAEEPSAAVPDEIPPLEGDEDASRMEEVD
Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interaction with various co-chaperone proteins or complexes, that act as adapters, simultaneously able to interact with the specific client and the central chaperone itself. Recruitment of ATP and co-chaperone followed by client protein forms a functional chaperone. After the completion of the chaperoning process, properly folded client protein and co-chaperone leave HSP90 in an ADP-bound partially open conformation and finally, ADP is released from HSP90 which acquires an open conformation for the next cycle. Apart from its chaperone activity, it also plays a role in the regulation of the transcription machinery. HSP90 and its co-chaperones modulate transcription at least at three different levels. They first alter the steady-state levels of certain transcription factors in response to various physiological cues. Second, they modulate the activity of certain epigenetic modifiers, such as histone deacetylases or DNA methyl transferases, and thereby respond to the change in the environment. Third, they participate in the eviction of histones from the promoter region of certain genes and thereby turn on gene expression. Antagonizes STUB1-mediated inhibition of TGF-beta signaling via inhibition of STUB1-mediated SMAD3 ubiquitination and degradation. Promotes cell differentiation by chaperoning BIRC2 and thereby protecting from auto-ubiquitination and degradation by the proteasomal machinery. Main chaperone involved in the phosphorylation/activation of the STAT1 by chaperoning both JAK2 and PRKCE under heat shock and in turn, activates its own transcription. Involved in the translocation into ERGIC (endoplasmic reticulum-Golgi intermediate compartment) of leaderless cargos (lacking the secretion signal sequence) such as the interleukin 1/IL-1; the translocation process is mediated by the cargo receptor TMED10. Subcellular locations: Cytoplasm, Melanosome, Nucleus, Secreted, Cell membrane, Dynein axonemal particle Translocates with BIRC2 from the nucleus to the cytoplasm during differentiation. Secreted when associated with TGFB1 processed form (LAP).
HSP1_GORGO
Gorilla gorilla gorilla
MARYRCCRSQSRSRCYRQRQTSRRRRRRSCQTQRRAMRCCRRRNRLRRRKH
Protamines substitute for histones in the chromatin of sperm during the haploid phase of spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive complex. Subcellular locations: Nucleus, Chromosome Testis.
HSP1_HUMAN
Homo sapiens
MARYRCCRSQSRSRYYRQRQRSRRRRRRSCQTRRRAMRCCRPRYRPRCRRH
Protamines substitute for histones in the chromatin of sperm during the haploid phase of spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive complex. Subcellular locations: Nucleus, Chromosome Testis.
HSP1_HYLLA
Hylobates lar
MARYRCCRSQSRSRCYRRGQRSRRRRRRSCQTRRRAMRCCRPRYRLRRRRH
Protamines substitute for histones in the chromatin of sperm during the haploid phase of spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive complex. Subcellular locations: Nucleus, Chromosome Testis.
HSP1_MACMU
Macaca mulatta
MARYRCCRSQSRSRCCRRRRRCRRRRRRRCRARRRAMRCCRRRYRLRCRRY
Protamines substitute for histones in the chromatin of sperm during the haploid phase of spermatogenesis. They compact sperm DNA into a highly condensed, stable and inactive complex (By similarity). Subcellular locations: Nucleus, Chromosome Testis.
HSP71_CHLAE
Chlorocebus aethiops
MAKAAAIGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDAAKNQVALNPQNTVFDAKRLIGRKFGDPVVQSDMKHWPFQVINDGDKPKVQVSYKGETKAFYPEEISSMVLTKMKEIAEADLGYPVTNAVITVPAYFNDSQRQATKDAGVIAGLNVLRIINEPTRTIAYALDRTGKGERNVLIFDLGGGTFDVSILTIDDGIFEVKATAGDTTWVEDFDNRLVNHFVEEFKRKHKKDISQNKRAVRRLRTACERAKRTLSSSTQASLEIDSLFEGIDFYTSITRARFEELCSDLFRSTLEPVEKALRDAKLDKAQIHDLVLVGGSTRIPKVQKLLQDFFNGRDLNKSINPDEAVAYGAAVQAAILMGDKSENVQDLLLLDVAPLSLGLETPGGVMTALIKRNSTIPTKQTQIFTTYSDNQPGVLIQVYEGERAMTKDNNLLGRFELSGIPPAPGVPQIEVTFEIDANGILNVTATDKSTGKANKITITNDKGRLSKEEIERMVQEAEKYKAEDEVQRERVSAKNALESYALNMKSAVEDEGLKGKISEADKKKVLDKCQEVISWLDANTLAEKDEFEHKRKELEQVCNPIISGLYQGGGGPGPGGFGAQGPKGGSGSGPTIEEVD
Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1. Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation. Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle. Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling. Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation. Subcellular locations: Cytoplasm, Nucleus, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
HSPB1_HUMAN
Homo sapiens
MTERRVPFSLLRGPSWDPFRDWYPHSRLFDQAFGLPRLPEEWSQWLGGSSWPGYVRPLPPAAIESPAVAAPAYSRALSRQLSSGVSEIRHTADRWRVSLDVNHFAPDELTVKTKDGVVEITGKHEERQDEHGYISRCFTRKYTLPPGVDPTQVSSSLSPEGTLTVEAPMPKLATQSNEITIPVTFESRAQLGGPEAAKSDETAAK
Small heat shock protein which functions as a molecular chaperone probably maintaining denatured proteins in a folding-competent state (, ). Plays a role in stress resistance and actin organization . Through its molecular chaperone activity may regulate numerous biological processes including the phosphorylation and the axonal transport of neurofilament proteins . Subcellular locations: Cytoplasm, Nucleus, Cytoplasm, Cytoskeleton, Spindle Cytoplasmic in interphase cells. Colocalizes with mitotic spindles in mitotic cells. Translocates to the nucleus during heat shock and resides in sub-nuclear structures known as SC35 speckles or nuclear splicing speckles. Detected in all tissues tested: skeletal muscle, heart, aorta, large intestine, small intestine, stomach, esophagus, bladder, adrenal gland, thyroid, pancreas, testis, adipose tissue, kidney, liver, spleen, cerebral cortex, blood serum and cerebrospinal fluid. Highest levels are found in the heart and in tissues composed of striated and smooth muscle.
HTF4_HUMAN
Homo sapiens
MNPQQQRMAAIGTDKELSDLLDFSAMFSPPVNSGKTRPTTLGSSQFSGSGIDERGGTTSWGTSGQPSPSYDSSRGFTDSPHYSDHLNDSRLGAHEGLSPTPFMNSNLMGKTSERGSFSLYSRDTGLPGCQSSLLRQDLGLGSPAQLSSSGKPGTAYYSFSATSSRRRPLHDSAALDPLQAKKVRKVPPGLPSSVYAPSPNSDDFNRESPSYPSPKPPTSMFASTFFMQDGTHNSSDLWSSSNGMSQPGFGGILGTSTSHMSQSSSYGNLHSHDRLSYPPHSVSPTDINTSLPPMSSFHRGSTSSSPYVAASHTPPINGSDSILGTRGNAAGSSQTGDALGKALASIYSPDHTSSSFPSNPSTPVGSPSPLTGTSQWPRPGGQAPSSPSYENSLHSLQSRMEDRLDRLDDAIHVLRNHAVGPSTSLPAGHSDIHSLLGPSHNAPIGSLNSNYGGSSLVASSRSASMVGTHREDSVSLNGNHSVLSSTVTTSSTDLNHKTQENYRGGLQSQSGTVVTTEIKTENKEKDENLHEPPSSDDMKSDDESSQKDIKVSSRGRTSSTNEDEDLNPEQKIEREKERRMANNARERLRVRDINEAFKELGRMCQLHLKSEKPQTKLLILHQAVAVILSLEQQVRERNLNPKAACLKRREEEKVSAVSAEPPTTLPGTHPGLSETTNPMGHM
Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis . Subcellular locations: Nucleus Expressed in several tissues and cell types including skeletal muscle, thymus, and a B-cell line.
HTF4_PAPHA
Papio hamadryas
NKEKDENLHEPPSSDDMKSDDESSQKDIKVSSRGRTSTNEDEDLNPEQKIEREKERRMANNARERLRVRDINEAFKELGRMCQLHLKSEKPQTKLLILHQAVAVILSLEQQVRERNLNPKAACLKRREEEKVSVVSAEPPTTLPGTHPGLSETTNPMGHM
Transcriptional regulator. Involved in the initiation of neuronal differentiation. Activates transcription by binding to the E box (5'-CANNTG-3') (By similarity). May be involved in the functional network that regulates the development of the GnRH axis (By similarity). Subcellular locations: Nucleus
HTR5A_HUMAN
Homo sapiens
MELAHSLLLNEEAYNQLGEVQKAEFIFEWLRYLEKLLLATSRNDVREKQKTLVEQLLSLLNSSPGPPTRKLLAKNLAILYSIGDTFSVHEAIDKCNDLIRSKDDSPSYLPTKLAAVVCLGSLYKKLGRILGNTFTDTVGNILKAMKSAESQGRYEIMLSLQNILNGLGAAAAPCHRDVYKAARSCLTDRSMAVRCAAAKNEAIFMWSTDLDSVATLCFKSFEGSNYDVRISVSKLLGIILAKAVISKHPGTAASRQSIRRVSLEEVLELLGTGFLRGSSGFLRASGDMLKGTSSVSRDVRVGVTQAYVVFVSTLGGAWLEKNFAAFFSHILSLASPSHPKATQTQIDAVCCRRCVSFILRTTIGGLLGEKAQLAAVKDICQAIWKLKKVMDAVMSDGNLETRLGSTDVAASQHMLVCALQELGNLIHNLGTTAAPLLQDSSTGLLDSILSVILHPSISVRLAAAWCLHCIAVALPSYLTPLLDRCLERLTGHKSSPEAVTGFSFAVAALLGAVKHCPLGIPHGKGKIIMTLAEDLLCSAAQNSRLSAQRTQAGWLLISALMTLGPAVVSHHLARVLLLWKCVFPASPKDLETEKSRGDSFTWQVTLEGRAGALCAIKSFVSHCGDLLTEEVTQRLLPPLPCAVDLLTQLSSILKMYGSPLKTPSVVYRQRLYELLILLPPETYEGNLCAILRELAADLTAPDIQVAASTFLLPPLCHQDDLLILSPFLQETDHRFIEEQLLLGNGVACGSLEYDPYSIYEKDVEGDSVPKPLPPALSVISSASKLFGVVCAHVGETQRLLILEQLLDSIKHTKGARQQVVQLHVVSSVSSFLKYVAGSKGCLGPEEMKRFALTLVMGALESPNPLLRCAAAESWARLAQVVDDGAFTAGLAQVSFDKLKSARDVVTRTGHSLALGSLHRYLGGISSSQHLNSCIGILYTLAQDSTSPDVQTWALHSLSLIIDSAGPLYYVHVEPTLSLIIMLLLNVPPTHAEVHQSLGRCLNALITTLGPELQGNSTSISTLRTSCLLGCAVMQDNPDCLVQAQAISCLQQLHMFAPRHVNLSSLVSCLCVNLCSPYLLLRRAVLACLRQLVQREAAEVSEHAVMLAKDSREELTPDANIREVGLEGALLILLDKETDERLCHDIKETLNYMLTSMAVEKLSLWLKLCKDVLAASADFTAVTCVDTMQEEEGDKGDDASVLTTRRDEKSHPFTNPRWATRVFAAECVCRIINQCENANSAHFDIALAQEMKKRDSRNDFLVLHLADLIRMAFMAATDHSDQLRLSGLEMLLVVIRRFATVPEPEFPGHVILEQYQANVGAALRPAFTSETPPDVTAKACQVCSAWIASGVVSDLNDLRRVHQLLVSSLTKIQAGKEALSHLYNESASTMEILAVLKAWAEVYIIAVQRHKNHRQPLKTTTCLEDGIRNGSCSSDGLLDLVYADLGTLSRLWLAALQDFALLTLPSEFASQLPAEGGAFYTAETSENAKLHYYNSWALILHATALWLTSTGFVVADPDEGASNLSRPVTPTSMCQGSSSGATIKSPEDVYTDRFHLILGISVEFLCSLRSDATMESITACLHALQALLDVPWPRSKIGSDQDLGIELLNVLHRVILTRESPSIQLASLEVVRQIICAAQEHVKEKRRSAEVDDGAAEKETLPEFGEGKDTGGLVPGKSLVFATLELCVCILVRQLPELNPKLTGSPGVKATKPQILLEDGSRLVSAALVILSELPAVCSPEGSISILPTILYLTIGVLRETAVKLPGGQLSSTVAASLQALKGILSSPMARAEKSRTAWTDLLRSALTTILDCWDPVDETHQELDEVSLLTAITVFILSTSPEVTTIPCLQKRCIDKFKATLEIKDPVVQIKTYQLLHSIFQYPNPAVSYPYIYSLASCIMEKLQEIDKRKPENTAELEIFQEGIKVLETLVTVAEEHHRAQLVACLLPILISFLLDENSLGSATSIMRNLHDFALQNLMQIGPQYSSVFKSLVASSPALKARLEAAIKGNQESVKVKIPTSKYTKSPGKNSSIQLKTSFL
null
HTR5B_HUMAN
Homo sapiens
MELAHSLLLNEEALAQITEAKRPVFIFEWLRFLDKVLVAANKTDVKEKQKKLVEQLTGLISSSPGPPTRKLLAKNLAALYSIGDTFTVFQTLDKCNDIIRNKDDTAAYLPTKLAAVACVGAFYEKMGRMLGSAFPETVNNLLKSLKSAESQGRSEILMSLQKVLSGLGGAAASSHRDIYKNARSLLTDRSMAVRCAVAKCLLELQNEAVFMWTAELENIATLCFKALENSNYGVRVAVSKLLGTVMATALMPKQATVMRQNVKRATFDEVLELMATGFLRGGSGFLKSGGEMLKVGGSVNREVRVGVTQAYVVFVTTLGGQWLERSFATFLSHVLDLVSHPRATQTHVEAVYSRRCVSFILRATVGSLLGEKAQIAAAKEICQAIGKQMKAVEAVVNDTSGENKSGAADIAASQHVMVCALQELGSLVQSLNATASPLIQEASIGLLEIVTSVLLHPSMAARLAAAWCLRCVAVALPFQLTPFLDRCAERLNNLKTSPEAVSGYSFAMAALLGGVHQCPLGIPHAKGKMVVSIAEDLLRTAAQNSRLSLQRTQAGWLLLGALMTLGPSVVRYHLPKMLLLWRNVFPRSLKELEAEKARGDSFTWQVTLEGRAGALCAMRSFVAHCPELLTEDVIRKLMTPIECAMTMMSHIPSVMKAHGAHLKASAAMVRLRLYDILALLPPKTYEGSFNALLRELVAEFTLTDNSANTTTSLLRSLCHYDDSVLLGSWLQETDHKSIEDQLQPNSASGSGALEHDPSSIYLRIPAGEAVPGPLPLGVSVIDASVALFGVVFPHVSYKHRLQMLDHFAECVKQAKGVRQQAVQLNIFTAVLSALKGLAENKSTLGPEEVRKSALTLVMGPLDNPNPILRCAAGEALGRMAQVVGEATFIARMAQYSFDKLKSARDVVSRTGHSLALGCLHRYVGGIGSGQHLKTSVSILLALAQDGTSPEVQTWSLHSLALIVDSSGPMYRGYVEPTLSLVLTLLLTVPPSHTEVHQCLGRCLGAIITTVGPELQGNGATTSTIRSSCLVGCAITQDHSDSLVQAAAISCLQQLHMFAPRHVNLSSLVPSLCVHLCSSHLLLRRAAVACLRQLAQREAAEVCEYAMSLAKNTGDKESSSANVSPFAPGVSSRTDIHCRHQGVNITETGLEGLLFGMLDRETDRKLCSDIHDTLGHMLSSLAVEKLSHWLMLCKDVLAASSDMSTATLLSSGKDEEAEKKDEMDDDTMFTTLGEEDKSKPFVAPRWATRVFAADCLCRIINLCENADQAHFDLALARSAKLRNPTNDLLVLHLSDLIRMAFMAATDHSNQLRMAGLQALEDIIKKFASVPEPEFPGHVILEQYQANVGAALRPAFSQDTPSDIIAKACQVCSTWIGSGVVSDLNDLRRVHNLLVSSLDKVQAGKGSSSQLYRESATTMEKLAVLKAWAEVYVVAMNIKKEAESKPKRAIKNTDDDDDDCGTIDELPPDSLITLVQPELPTLSRLWLAALKDYALLTLPAEFSSQLPPDGGAFYTPETIDTARLHYRNSWAPILHAVALWLNSTGFTCSESTEAAAISGLQKRSTSVNLNQASGAVGSAKSLPEINKDRMHLILGVSIQFLCSPRPEEPIEHVTACLQALHTLLDSPYARVHIAEDQLIGVELLSVLHRLLLTWNPSSVQLLVTGVVQQIVRAAQDYLQEKRNTLNEDDMEKEACTVLGEGGDSGGLIPGKSLVFATMELLMFILVRHMPHLSTKVSDSPSHIATKTRLSEESARLVAATVTILSDLPSLCSPAGCMTILPTILFLIARILKDTAIKSADNQVPPPVSAALQGIKSIVTLSMAKTEAGVQKQWTALIRSTLACILEYSQPEDSVPTPDEVSMLTAIALFLWSASNEIIGVQSLQNGCMNRFKNALNSCDPWVQAKCYQLLLSVFQHSNRALSTPYIHSLAPIVVEKLKAVERNRPASNIELLAVQEGIKVLETLVALGEEQNRVQLLALLVPTLISYLLDENSFASASSASKDLHEFALQNLMHIGPLYPHAFKTVMGAAPELKVRLETAVRASQASKAKAAARQPAPAIHSAPTIKLKTSFF
Component of clathrin-coated vesicles . Component of the aftiphilin/p200/gamma-synergin complex, which plays roles in AP1G1/AP-1-mediated protein trafficking including the trafficking of transferrin from early to recycling endosomes, and the membrane trafficking of furin and the lysosomal enzyme cathepsin D between the trans-Golgi network (TGN) and endosomes . Subcellular locations: Cytoplasm, Perinuclear region, Cytoplasmic vesicle, Clathrin-coated vesicle Localization at clathrin-coated vesicles depends on AFTPH/aftiphilin.
HUS1B_HUMAN
Homo sapiens
MKFRAKITGKGCLELFIHVSGTVARLAKVCVLRVRPDSLCFGPAGSGGLHEARLWCEVRQGAFQQFRMEGVSEDLDEIHLELTAEHLSRAARSAAGASSLKLQLTHKRRPSLTVAVELVSSLGRARSVVHDLPVRVLPRRVWRDCLPPSLRASDASIRLPRWRTLRSIVERMANVGSHVLVEANLSGRMTLSIETEVVSIQSYFKNLGNPPQSAVGVPENRDLESMVQVRVDNRKLLQFLEGQQIHPTTALCNIWDNTLLQLVLVQEDVSLQYFIPAL
Expressed strongly in testis, less in spleen, thymus, prostate, colon and leukocytes.
HUS1_HUMAN
Homo sapiens
MKFRAKIVDGACLNHFTRISNMIAKLAKTCTLRISPDKLNFILCDKLANGGVSMWCELEQENFFNEFQMEGVSAENNEIYLELTSENLSRALKTAQNARALKIKLTNKHFPCLTVSVELLSMSSSSRIVTHDIPIKVIPRKLWKDLQEPVVPDPDVSIYLPVLKTMKSVVEKMKNISNHLVIEANLDGELNLKIETELVCVTTHFKDLGNPPLASESTHEDRNVEHMAEVHIDIRKLLQFLAGQQVNPTKALCNIVNNKMVHFDLLHEDVSLQYFIPALS
Component of the 9-1-1 cell-cycle checkpoint response complex that plays a major role in DNA repair . The 9-1-1 complex is recruited to DNA lesion upon damage by the RAD17-replication factor C (RFC) clamp loader complex . Acts then as a sliding clamp platform on DNA for several proteins involved in long-patch base excision repair (LP-BER) . The 9-1-1 complex stimulates DNA polymerase beta (POLB) activity by increasing its affinity for the 3'-OH end of the primer-template and stabilizes POLB to those sites where LP-BER proceeds; endonuclease FEN1 cleavage activity on substrates with double, nick, or gap flaps of distinct sequences and lengths; and DNA ligase I (LIG1) on long-patch base excision repair substrates . The 9-1-1 complex is necessary for the recruitment of RHNO1 to sites of double-stranded breaks (DSB) occurring during the S phase . Subcellular locations: Nucleus, Cytoplasm, Cytosol In discrete nuclear foci upon DNA damage . According to , localized also in the cytoplasm . DNA damage induces its nuclear translocation . Shuttles between the nucleus and the cytoplasm . Ubiquitous.
HUTH_HUMAN
Homo sapiens
MPRYTVHVRGEWLAVPCQDAQLTVGWLGREAVRRYIKNKPDNGGFTSVDDAHFLVRRCKGLGLLDNEDRLEVALENNEFVEVVIEGDAMSPDFIPSQPEGVYLYSKYREPEKYIELDGDRLTTEDLVNLGKGRYKIKLTPTAEKRVQKSREVIDSIIKEKTVVYGITTGFGKFARTVIPINKLQELQVNLVRSHSSGVGKPLSPERCRMLLALRINVLAKGYSGISLETLKQVIEMFNASCLPYVPEKGTVGASGDLAPLSHLALGLVGEGKMWSPKSGWADAKYVLEAHGLKPVILKPKEGLALINGTQMITSLGCEAVERASAIARQADIVAALTLEVLKGTTKAFDTDIHALRPHRGQIEVAFRFRSLLDSDHHPSEIAESHRFCDRVQDAYTLRCCPQVHGVVNDTIAFVKNIITTELNSATDNPMVFANRGETVSGGNFHGEYPAKALDYLAIGIHELAAISERRIERLCNPSLSELPAFLVAEGGLNSGFMIAHCTAAALVSENKALCHPSSVDSLSTSAATEDHVSMGGWAARKALRVIEHVEQVLAIELLAACQGIEFLRPLKTTTPLEKVYDLVRSVVRPWIKDRFMAPDIEAAHRLLLEQKVWEVAAPYIEKYRMEHIPESRPLSPTAFSLQFLHKKSTKIPESEDL
null
HUTI_HUMAN
Homo sapiens
MASGHSLLLENAQQVVLVCARGERFLARDALRSLAVLEGASLVVGKDGFIKAIGPADVIQRQFSGETFEEIIDCSGKCILPGLVDAHTHPVWAGERVHEFAMKLAGATYMEIHQAGGGIHFTVERTRQATEEELFRSLQQRLQCMMRAGTTLVECKSGYGLDLETELKMLRVIERARRELDIGISATYCGAHSVPKGKTATEAADDIINNHLPKLKELGRNGEIHVDNIDVFCEKGVFDLDSTRRILQRGKDIGLQINFHGDELHPMKAAELGAELGAQAISHLEEVSDEGIVAMATARCSAILLPTTAYMLRLKQPRARKMLDEGVIVALGSDFNPNAYCFSMPMVMHLACVNMRMSMPEALAAATINAAYALGKSHTHGSLEVGKQGDLIIINSSRWEHLIYQFGGHHELIEYVIAKGKLIYKT
null
HV69D_HUMAN
Homo sapiens
MDWTWRFLFVVAAATGVQSQVQLVQSGAEVKKPGSSVKVSCKASGGTFSSYAISWVRQAPGQGLEWMGGIIPIFGTANYAQKFQGRVTITADESTSTAYMELSSLRSEDTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HV70D_HUMAN
Homo sapiens
MDILCSTLLLLTVPSWVLSQVTLKESGPALVKPTQTLTLTCTFSGFSLSTSGMRVSWIRQPPGKALEWLARIDWDDDKFYSTSLKTRLTISKDTSKNQVVLTMTNMDPVDTATYYCARI
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HV741_HUMAN
Homo sapiens
MDWTWRILFLVAAATGAHSQVQLVQSGSELKKPGASVKVSCKASGYTFTSYAMNWVRQAPGQGLEWMGWINTNTGNPTYAQGFTGRFVFSLDTSVSTAYLQICSLKAEDTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HV781_HUMAN
Homo sapiens
MDWTWSILFLVAAATGTYSQVQLVQSGHEVKQPGASVKVSCKASGYSFTTYGMNWVPQAPGQGLEWMGWFNTYTGNPTYAQGFTGRFVFSMDTSASTAYLQISSLKAEDMAMYYCAR
Probable non-functional open reading frame (ORF) of V region of the variable domain of immunoglobulin heavy chains . Non-functional ORF generally cannot participate in the synthesis of a productive immunoglobulin chain due to altered V-(D)-J or switch recombination and/or splicing site (at mRNA level) and/or conserved amino acid change (protein level) . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HVC05_HUMAN
Homo sapiens
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAK
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HVC33_HUMAN
Homo sapiens
MEFGLSWVFLVALLRGVQCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVAVISYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HVCN1_HUMAN
Homo sapiens
MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEEEEEEEEQPPPTPVSGEEGRAAAPDVAPAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVVLDALLVLAELILDLKIIQPDKNNYAAMVFHYMSITILVFFMMEIIFKLFVFRLEFFHHKFEILDAVVVVVSFILDIVLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSERQLLRLKQMNVQLAAKIQHLEFSCSEKEQEIERLNKLLRQHGLLGEVN
Mediates the voltage-dependent proton permeability of excitable membranes. Forms a proton-selective channel through which protons may pass in accordance with their electrochemical gradient. Proton efflux, accompanied by membrane depolarization, facilitates acute production of reactive oxygen species in phagocytosis. Subcellular locations: Membrane, Cell membrane Detected mainly at intracellular membranes upon overexpression in HeLa cells , but not in other cell types. Enriched in immune tissues, such as lymph nodes, B-lymphocytes, monocytes and spleen.
HVD34_HUMAN
Homo sapiens
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSQTLSLTCTVSGGSISSGDYYWSWIRQPPGKGLEWIGYIYYSGSTYYNPSLKSRVTISVDTSKNQFSLKLSSVTAADTAVYYCAR
V region of the variable domain of immunoglobulin heavy chains that participates in the antigen recognition . Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted, Cell membrane
HXB1_HUMAN
Homo sapiens
MDYNRMNSFLEYPLCNRGPSAYSAHSAPTSFPPSSAQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSTLGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPSSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKETPCPSEPNTPTARTFDWMKVKRNPPKTAKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREEGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures. Subcellular locations: Nucleus
HXB1_MACMU
Macaca mulatta
MDYNRMNSFLEYPLCNRGPSAYSAHSAHSAPTSFPPSSTQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSALGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPTSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKEAPCPSEPNTPTARTFDWMKVKRNPPKTGKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity). Subcellular locations: Nucleus
HXB1_MACNE
Macaca nemestrina
MDYNRMNSFLEYPLCNRGPSAYSAHSAHSAPTSFPPSSTQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSALGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPTSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKEAPCPSEPNTPTARTFDWMKVKRNPPKTGKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity). Subcellular locations: Nucleus
HXB1_PANPA
Pan paniscus
MDYNRMNSFLEYPLCNRGSSAYSAHSAPTSFPPSSAQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSTLGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPSSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKETPCPSEPNTPTXRTFDWMKVKRNPPKTAKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity). Subcellular locations: Nucleus
HXB1_PANTR
Pan troglodytes
MDYNRMNSFLEYPLCNRGSSAYSAHSAPTSFPPSSAQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQPPSTLGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPSSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKETPCPSEPNTPTARTFDWMKVKRNPPKTAKVSEPGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity). Subcellular locations: Nucleus
HXB1_PONPY
Pongo pygmaeus
MDYNRMNSFLEYPLCNRGPSAYSAHSAPTSFPPSSAQAVDSYASEGRYGGGLSSPAFQQNSGYPAQQQPSALGVPFPSSAPSGYAPAACSPSYGPSQYYPLGQSEGDGGYFHPSSYGAQLGGLSDGYGAGGAGPGPYPPQHPPYGNEQTASFAPAYADLLSEDKETPCPSEPNTPTARTFDWMKVKRNPPKTAKVSELGLGSPSGLRTNFTTRQLTELEKEFHFNKYLSRARRVEIAATLELNETQVKIWFQNRRMKQKKREREGGRVPPAPPGCPKEAAGDASDQSTCTSPEASPSSVTS
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Acts on the anterior body structures (By similarity). Subcellular locations: Nucleus
HXB2_HUMAN
Homo sapiens
MNFEFEREIGFINSQPSLAECLTSFPAVLETFQTSSIKESTLIPPPPPFEQTFPSLQPGASTLQRPRSQKRAEDGPALPPPPPPPLPAAPPAPEFPWMKEKKSAKKPSQSATSPSPAASAVPASGVGSPADGLGLPEAGGGGARRLRTAYTNTQLLELEKEFHFNKYLCRPRRVEIAALLDLTERQVKVWFQNRRMKHKRQTQHREPPDGEPACPGALEDICDPAEEPAASPGGPSASRAAWEACCHPPEVVPGALSADPRPLAVRLEGAGASSPGCALRGAGGLEPGPLPEDVFSGRQDSPFLPDLNFFAADSCLQLSGGLSPSLQGSLDSPVPFSEEELDFFTSTLCAIDLQFP
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Subcellular locations: Nucleus
HXB3_HUMAN
Homo sapiens
MQKATYYDNAAAALFGGYSSYPGSNGFGFDVPPQPPFQAATHLEGDYQRSACSLQSLGNAAPHAKSKELNGSCMRPGLAPEPLSAPPGSPPPSAAPTSATSNSSNGGGPSKSGPPKCGPGTNSTLTKQIFPWMKESRQTSKLKNNSPGTAEGCGGGGGGGGGGGSGGSGGGGGGGGGGDKSPPGSAASKRARTAYTSAQLVELEKEFHFNRYLCRPRRVEMANLLNLSERQIKIWFQNRRMKYKKDQKAKGLASSSGGPSPAGSPPQPMQSTAGFMNALHSMTPSYESPSPPAFGKAHQNAYALPSNYQPPLKGCGAPQKYPPTPAPEYEPHVLQANGGAYGTPTMQGSPVYVGGGGYADPLPPPAGPSLYGLNHLSHHPSGNLDYNGAPPMAPSQHHGPCEPHPTYTDLSSHHAPPPQGRIQEAPKLTHL
Sequence-specific transcription factor which is part of a developmental regulatory system that provides cells with specific positional identities on the anterior-posterior axis. Subcellular locations: Nucleus
HXK1_HUMAN
Homo sapiens
MIAAQLLAYYFTELKDDQVKKIDKYLYAMRLSDETLIDIMTRFRKEMKNGLSRDFNPTATVKMLPTFVRSIPDGSEKGDFIALDLGGSSFRILRVQVNHEKNQNVHMESEVYDTPENIVHGSGSQLFDHVAECLGDFMEKRKIKDKKLPVGFTFSFPCQQSKIDEAILITWTKRFKASGVEGADVVKLLNKAIKKRGDYDANIVAVVNDTVGTMMTCGYDDQHCEVGLIIGTGTNACYMEELRHIDLVEGDEGRMCINTEWGAFGDDGSLEDIRTEFDREIDRGSLNPGKQLFEKMVSGMYLGELVRLILVKMAKEGLLFEGRITPELLTRGKFNTSDVSAIEKNKEGLHNAKEILTRLGVEPSDDDCVSVQHVCTIVSFRSANLVAATLGAILNRLRDNKGTPRLRTTVGVDGSLYKTHPQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLTKDMLLEVKKRMRAEMELGLRKQTHNNAVVKMLPSFVRRTPDGTENGDFLALDLGGTNFRVLLVKIRSGKKRTVEMHNKIYAIPIEIMQGTGEELFDHIVSCISDFLDYMGIKGPRMPLGFTFSFPCQQTSLDAGILITWTKGFKATDCVGHDVVTLLRDAIKRREEFDLDVVAVVNDTVGTMMTCAYEEPTCEVGLIVGTGSNACYMEEMKNVEMVEGDQGQMCINMEWGAFGDNGCLDDIRTHYDRLVDEYSLNAGKQRYEKMISGMYLGEIVRNILIDFTKKGFLFRGQISETLKTRGIFETKFLSQIESDRLALLQVRAILQQLGLNSTCDDSILVKTVCGVVSRRAAQLCGAGMAAVVDKIRENRGLDRLNVTVGVDGTLYKLHPHFSRIMHQTVKELSPKCNVSFLLSEDGSGKGAALITAVGVRLRTEASS
Catalyzes the phosphorylation of various hexoses, such as D-glucose, D-glucosamine, D-fructose, D-mannose and 2-deoxy-D-glucose, to hexose 6-phosphate (D-glucose 6-phosphate, D-glucosamine 6-phosphate, D-fructose 6-phosphate, D-mannose 6-phosphate and 2-deoxy-D-glucose 6-phosphate, respectively) ( ). Does not phosphorylate N-acetyl-D-glucosamine . Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (By similarity). Involved in innate immunity and inflammation by acting as a pattern recognition receptor for bacterial peptidoglycan . When released in the cytosol, N-acetyl-D-glucosamine component of bacterial peptidoglycan inhibits the hexokinase activity of HK1 and causes its dissociation from mitochondrial outer membrane, thereby activating the NLRP3 inflammasome . Subcellular locations: Mitochondrion outer membrane, Cytoplasm, Cytosol The mitochondrial-binding peptide (MBP) region promotes association with the mitochondrial outer membrane (Probable). Dissociates from the mitochondrial outer membrane following inhibition by N-acetyl-D-glucosamine, leading to relocation to the cytosol . Isoform 2: Erythrocyte specific (Ref.6). Isoform 3: Testis-specific . Isoform 4: Testis-specific .
HXK1_PONAB
Pongo abelii
MIAAQLLAYYFTELKDDQVKKIDKYLYAMRLSDETLIDIMTRFRKEMKNGLSRDFNPTATVKMLPTFVRSIPDGSEKGDFIALDLGGSSFRILRVQVNHEKNQNVHMESEVYDTPENIVHGSGSQLFDHVAECLGDFMEKRKIKDKKSPVGFTFSFPCQQSKIDEAVLITWTKRFKASGVEGADVVKLLNKAIKKRGDYDANIVAVVNDTVGTMMTCGYDDQHCEVGLIIGTGTNACYMEELRHIDLVEGDEGRMCINTEWGAFGDDGSLEDIRTEFDREIDRGSLNPGKQLFEKMVSGMYLGELVRLILVKMAKEGLLFEGRITPELLTRGKFNTSDVSAIEKNKEGLHNAKEILTRLGVEPSDDDCVSVQHVCTIVSFRSANLVAATLGAILNRLRDNKGTPRLRTTVGVDGSLYKTHPQYSRRFHKTLRRLVPDSDVRFLLSESGSGKGAAMVTAVAYRLAEQHRQIEETLAHFHLTKDMLLEVKKRMRAEMELGLRKQTHNNAAVKMLPSFVRRTPDGTENGDFLALDLGGTNFRVLLVKIRSGKKRTVEMHNKIYAIPIEIMQGTGEELFDHIVSCISDFLDYMGIKGPRMPLGFTFSFPCKQTSLDAGILITWTKGFKATDCVGNDVATLLRDAIKRREEFDLDVVAVVNDTVGTMMTCAYEEPTCEVGLIVGTGSNACYMEEMKNVEMVEGDQGQMCINMEWGAFGDNGCLDDIRTHYDRLVDEYSLNAGKQRYEKMISGMYLGEIVRNILIDFTKKGFLFRGQISEPLKTRGIFETKFLSQIESDRLALLQVRAILQQLGLNSTCDDSILVKTVCGVVSRRAAQLCGAGMAAVVDKIRENRGLDRLNVTVGVDGTLYKLHPHFSRIMHQTVKELSPKCNVSFLLSEDGSGKGAALITAVGVRLRTEASS
Catalyzes the phosphorylation of various hexoses, such as D-glucose, D-glucosamine, D-fructose, D-mannose and 2-deoxy-D-glucose, to hexose 6-phosphate (D-glucose 6-phosphate, D-glucosamine 6-phosphate, D-fructose 6-phosphate, D-mannose 6-phosphate and 2-deoxy-D-glucose 6-phosphate, respectively). Does not phosphorylate N-acetyl-D-glucosamine (By similarity). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate (By similarity). Involved in innate immunity and inflammation by acting as a pattern recognition receptor for bacterial peptidoglycan. When released in the cytosol, N-acetyl-D-glucosamine component of bacterial peptidoglycan inhibits the hexokinase activity of HK1 and causes its dissociation from mitochondrial outer membrane, thereby activating the NLRP3 inflammasome (By similarity). Subcellular locations: Mitochondrion outer membrane, Cytoplasm, Cytosol The mitochondrial-binding peptide (MBP) region promotes association with the mitochondrial outer membrane. Dissociates from the mitochondrial outer membrane following inhibition by N-acetyl-D-glucosamine, leading to relocation to the cytosol.
HXK2_HUMAN
Homo sapiens
MIASHLLAYFFTELNHDQVQKVDQYLYHMRLSDETLLEISKRFRKEMEKGLGATTHPTAAVKMLPTFVRSTPDGTEHGEFLALDLGGTNFRVLWVKVTDNGLQKVEMENQIYAIPEDIMRGSGTQLFDHIAECLANFMDKLQIKDKKLPLGFTFSFPCHQTKLDESFLVSWTKGFKSSGVEGRDVVALIRKAIQRRGDFDIDIVAVVNDTVGTMMTCGYDDHNCEIGLIVGTGSNACYMEEMRHIDMVEGDEGRMCINMEWGAFGDDGSLNDIRTEFDQEIDMGSLNPGKQLFEKMISGMYMGELVRLILVKMAKEELLFGGKLSPELLNTGRFETKDISDIEGEKDGIRKAREVLMRLGLDPTQEDCVATHRICQIVSTRSASLCAATLAAVLQRIKENKGEERLRSTIGVDGSVYKKHPHFAKRLHKTVRRLVPGCDVRFLRSEDGSGKGAAMVTAVAYRLADQHRARQKTLEHLQLSHDQLLEVKRRMKVEMERGLSKETHASAPVKMLPTYVCATPDGTEKGDFLALDLGGTNFRVLLVRVRNGKWGGVEMHNKIYAIPQEVMHGTGDELFDHIVQCIADFLEYMGMKGVSLPLGFTFSFPCQQNSLDESILLKWTKGFKASGCEGEDVVTLLKEAIHRREEFDLDVVAVVNDTVGTMMTCGFEDPHCEVGLIVGTGSNACYMEEMRNVELVEGEEGRMCVNMEWGAFGDNGCLDDFRTEFDVAVDELSLNPGKQRFEKMISGMYLGEIVRNILIDFTKRGLLFRGRISERLKTRGIFETKFLSQIESDCLALLQVRAILQHLGLESTCDDSIIVKEVCTVVARRAAQLCGAGMAAVVDRIRENRGLDALKVTVGVDGTLYKLHPHFAKVMHETVKDLAPKCDVSFLQSEDGSGKGAALITAVACRIREAGQR
Catalyzes the phosphorylation of hexose, such as D-glucose and D-fructose, to hexose 6-phosphate (D-glucose 6-phosphate and D-fructose 6-phosphate, respectively) ( ). Mediates the initial step of glycolysis by catalyzing phosphorylation of D-glucose to D-glucose 6-phosphate . Plays a key role in maintaining the integrity of the outer mitochondrial membrane by preventing the release of apoptogenic molecules from the intermembrane space and subsequent apoptosis . Subcellular locations: Mitochondrion outer membrane, Cytoplasm, Cytosol The mitochondrial-binding peptide (MBP) region promotes association with the mitochondrial outer membrane . The interaction with the mitochondrial outer membrane via the mitochondrial-binding peptide (MBP) region promotes higher stability of the protein . Release from the mitochondrial outer membrane into the cytosol induces permeability transition pore (PTP) opening and apoptosis . Predominant hexokinase isozyme expressed in insulin-responsive tissues such as skeletal muscle.
I27L1_HUMAN
Homo sapiens
MGKESGWDSGRAAVAAVVGGVVAVGTVLVALSAMGFTSVGIAASSIAAKMMSTAAIANGGGVAAGSLVAILQSVGAAGLSVTSKVIGGFAGTALGAWLGSPPSS
Plays a role in the apoptotic process and has a pro-apoptotic activity. Subcellular locations: Membrane
I27L2_HUMAN
Homo sapiens
MMKRAAAAAVGGALAVGAVPVVLSAMGFTGAGIAASSIAAKMMSAAAIANGGGVSAGSLVATLQSVGAAGLSTSSNILLASVGSVLGACLGNSPSSSLPAEPEAKEDEARENVPQGEPPKPPLKSEKHEE
Plays a role in the apoptotic process and has a pro-apoptotic activity. Subcellular locations: Mitochondrion membrane
I27RA_HUMAN
Homo sapiens
MRGGRGAPFWLWPLPKLALLPLLWVLFQRTRPQGSAGPLQCYGVGPLGDLNCSWEPLGDLGAPSELHLQSQKYRSNKTQTVAVAAGRSWVAIPREQLTMSDKLLVWGTKAGQPLWPPVFVNLETQMKPNAPRLGPDVDFSEDDPLEATVHWAPPTWPSHKVLICQFHYRRCQEAAWTLLEPELKTIPLTPVEIQDLELATGYKVYGRCRMEKEEDLWGEWSPILSFQTPPSAPKDVWVSGNLCGTPGGEEPLLLWKAPGPCVQVSYKVWFWVGGRELSPEGITCCCSLIPSGAEWARVSAVNATSWEPLTNLSLVCLDSASAPRSVAVSSIAGSTELLVTWQPGPGEPLEHVVDWARDGDPLEKLNWVRLPPGNLSALLPGNFTVGVPYRITVTAVSASGLASASSVWGFREELAPLVGPTLWRLQDAPPGTPAIAWGEVPRHQLRGHLTHYTLCAQSGTSPSVCMNVSGNTQSVTLPDLPWGPCELWVTASTIAGQGPPGPILRLHLPDNTLRWKVLPGILFLWGLFLLGCGLSLATSGRCYHLRHKVLPRWVWEKVPDPANSSSGQPHMEQVPEAQPLGDLPILEVEEMEPPPVMESSQPAQATAPLDSGYEKHFLPTPEELGLLGPPRPQVLA
Receptor for IL27. Requires IL6ST/GP130 to mediate signal transduction in response to IL27. This signaling system acts through STAT3 and STAT1. Acts as a receptor for the neuroprotective peptide humanin as part of a complex with IL6ST/GP130 and CNTFR . Involved in the regulation of Th1-type immune responses. Also appears to be involved in innate defense mechanisms. Subcellular locations: Membrane Highly expressed in lymphoid tissues such as spleen, lymph nodes and peripheral blood leukocytes. Weakly expressed in other tissues examined including heart, brain, fetal and adult lung, liver, skeletal muscle, kidney, pancreas, prostate, testis, ovary, small intestine, kidney and colon. In the lymphoid system, higher level expression in CD4+ T-cell subsets than in CD8+ T-cell subsets. Also weaker expression in CD19+ B-cells and monocytes.
ICAM3_HUMAN
Homo sapiens
MATMVPSVLWPRACWTLLVCCLLTPGVQGQEFLLRVEPQNPVLSAGGSLFVNCSTDCPSSEKIALETSLSKELVASGMGWAAFNLSNVTGNSRILCSVYCNGSQITGSSNITVYRLPERVELAPLPPWQPVGQNFTLRCQVEDGSPRTSLTVVLLRWEEELSRQPAVEEPAEVTATVLASRDDHGAPFSCRTELDMQPQGLGLFVNTSAPRQLRTFVLPVTPPRLVAPRFLEVETSWPVDCTLDGLFPASEAQVYLALGDQMLNATVMNHGDTLTATATATARADQEGAREIVCNVTLGGERREARENLTVFSFLGPIVNLSEPTAHEGSTVTVSCMAGARVQVTLDGVPAAAPGQPAQLQLNATESDDGRSFFCSATLEVDGEFLHRNSSVQLRVLYGPKIDRATCPQHLKWKDKTRHVLQCQARGNPYPELRCLKEGSSREVPVGIPFFVNVTHNGTYQCQASSSRGKYTLVVVMDIEAGSSHFVPVFVAVLLTLGVVTIVLALMYVFREHQRSGSYHVREESTYLPLTSMQPTEAMGEEPSRAE
ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2) . ICAM3 is also a ligand for integrin alpha-D/beta-2. In association with integrin alpha-L/beta-2, contributes to apoptotic neutrophil phagocytosis by macrophages . Subcellular locations: Membrane Leukocytes.
ICAM3_PANTR
Pan troglodytes
MATMVPSVLWPRACWTLLVCCLLTPGVQGQEFLLRVEPQNPVLSAGGSLFVNCSTDCPSSEKIALETSLSKELVASGMGWAAFNLSNVTGNSRILCSVYCNGSQITGSSNITVYRLPERVELAPLPPWQRVGQNFTLRCQVEGGSPRTSLTVVLLRWEEELSRQPAVEEPAEVTATVLASRDDHGAPFSCRTELDMQPQGLGLFVNTSAPRQLRTFVLPVTPPRLVAPRFLEVETSWPVDCTLDGLFPASEAQVYLALGDQMLNATVMNHGDTLTATATATARADQEGAREIVCNVTLGGERREARENLTVFSFLGPTVNLSEPTAPEGSTVTVSCMAGARVQVTLDGVPAAAPGQPAQLQLNATESDDRRSFFCSATLEVDGEFLHRNSSVQLRVLYGPKIDRATCPQHLKWKDKTTHVLQCQARGNPYPELRCLKEGSSREVPVGIPFFVNVTHNGTYQCQASSSRGKYTLVVVMDIEAGSSHFVPVFVAVLLTLGVVTIVLALMYVFREHKRSGSYHVREESTYLPLTSMQPTQAMGEEPSRAE
ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). ICAM3 is also a ligand for integrin alpha-D/beta-2. In association with integrin alpha-L/beta-2, contributes to apoptotic neutrophil phagocytosis by macrophages. Subcellular locations: Membrane Leukocytes.
ICAM4_HUMAN
Homo sapiens
MGSLFPLSLLFFLAAAYPGVGSALGRRTKRAQSPKGSPLAPSGTSVPFWVRMSPEFVAVQPGKSVQLNCSNSCPQPQNSSLRTPLRQGKTLRGPGWVSYQLLDVRAWSSLAHCLVTCAGKTRWATSRITAYKPPHSVILEPPVLKGRKYTLRCHVTQVFPVGYLVVTLRHGSRVIYSESLERFTGLDLANVTLTYEFAAGPRDFWQPVICHARLNLDGLVVRNSSAPITLMLAWSPAPTALASGSIAALVGILLTVGAAYLCKCLAMKSQA
ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). ICAM4 is also a ligand for alpha-4/beta-1 and alpha-V integrins. Subcellular locations: Cell membrane Subcellular locations: Secreted Subcellular locations: Cell membrane Erythrocytes.
ICAM4_PANTR
Pan troglodytes
SLFPLSLLFFLAAAYPGVGSALGRRTKRAQSPKGSPLAPSGTSVPFWVRMSPEFVAVQPGKSVQLNCSNSCPQPQNSSLRTPLRQGKTLRGPGWVSYQLLDVRAWSSLAHCLVTCAGKTRWATSRITAYKPPHSVILEPPVLKGRKYTLRCHVTQVFPVGYLVVTLRHGSRVIYSESLERFTGLDLANVTLTYEFAAGPRDFWQPVICHARLNLDGLVVRNSSAPITLMLAWSSAPTALASVSIAALVGILLTVGAAYLCKCLAMKSQA
ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). ICAM4 is also a ligand for alpha-4/beta-1 and alpha-V integrins (By similarity). Subcellular locations: Cell membrane
ICAM5_HUMAN
Homo sapiens
MPGPSPGLRRALLGLWAALGLGLFGLSAVSQEPFWADLQPRVAFVERGGSLWLNCSTNCPRPERGGLETSLRRNGTQRGLRWLARQLVDIREPETQPVCFFRCARRTLQARGLIRTFQRPDRVELMPLPPWQPVGENFTLSCRVPGAGPRASLTLTLLRGAQELIRRSFAGEPPRARGAVLTATVLARREDHGANFSCRAELDLRPHGLGLFENSSAPRELRTFSLSPDAPRLAAPRLLEVGSERPVSCTLDGLFPASEARVYLALGDQNLSPDVTLEGDAFVATATATASAEQEGARQLVCNVTLGGENRETRENVTIYSFPAPLLTLSEPSVSEGQMVTVTCAAGAQALVTLEGVPAAVPGQPAQLQLNATENDDRRSFFCDATLDVDGETLIKNRSAELRVLYAPRLDDSDCPRSWTWPEGPEQTLRCEARGNPEPSVHCARSDGGAVLALGLLGPVTRALSGTYRCKAANDQGEAVKDVTLTVEYAPALDSVGCPERITWLEGTEASLSCVAHGVPPPDVICVRSGELGAVIEGLLRVAREHAGTYRCEATNPRGSAAKNVAVTVEYGPRFEEPSCPSNWTWVEGSGRLFSCEVDGKPQPSVKCVGSGGATEGVLLPLAPPDPSPRAPRIPRVLAPGIYVCNATNRHGSVAKTVVVSAESPPEMDESTCPSHQTWLEGAEASALACAARGRPSPGVRCSREGIPWPEQQRVSREDAGTYHCVATNAHGTDSRTVTVGVEYRPVVAELAASPPGGVRPGGNFTLTCRAEAWPPAQISWRAPPGALNIGLSSNNSTLSVAGAMGSHGGEYECAATNAHGRHARRITVRVAGPWLWVAVGGAAGGAALLAAGAGLAFYVQSTACKKGEYNVQEAESSGEAVCLNGAGGGAGGAAGAEGGPEAAGGAAESPAEGEVFAIQLTSA
ICAM proteins are ligands for the leukocyte adhesion protein LFA-1 (integrin alpha-L/beta-2). Subcellular locations: Membrane Expressed on neurons in the most rostral segment of the mammalian brain, the telencephalon.
IDH3A_HUMAN
Homo sapiens
MAGPAWISKVSRLLGAFHNPKQVTRGFTGGVQTVTLIPGDGIGPEISAAVMKIFDAAKAPIQWEERNVTAIQGPGGKWMIPSEAKESMDKNKMGLKGPLKTPIAAGHPSMNLLLRKTFDLYANVRPCVSIEGYKTPYTDVNIVTIRENTEGEYSGIEHVIVDGVVQSIKLITEGASKRIAEFAFEYARNNHRSNVTAVHKANIMRMSDGLFLQKCREVAESCKDIKFNEMYLDTVCLNMVQDPSQFDVLVMPNLYGDILSDLCAGLIGGLGVTPSGNIGANGVAIFESVHGTAPDIAGKDMANPTALLLSAVMMLRHMGLFDHAARIEAACFATIKDGKSLTKDLGGNAKCSDFTEEICRRVKDLD
Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3A_MACFA
Macaca fascicularis
QKQVTRGFTGGVQTVTLIPGDGIGPEISAAVMKIFDAAKAPIQWEERNVTAIQGPGGKWMIPSEAKESMDKNKMGLKGPLKTPIAAGHPSMNLLLRKTFDLYANVRPCVSIEGYKTPYTDVNIVTIRENTEGEYSGIEHVIVDGVVQSIKLITEGGSKRIAEFAFEYARNNHRSNVTAVHKANIMRMSDGLFLQKCREVAENCKDIKFNEMYLDTVCLNMVQDPSQFDVLVMPNLYGDILSDLCAGLIGGLGVTPSGNIGANGVAIFESVHGTAPDIAGKDMANPTALLLSAVMMLRHMGLFDHAARIEAACFATIKDGKSLTKDLGGNAKCSDFTEEICRRVKDLD
Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3A_PONAB
Pongo abelii
MAGPAWISKVSRLLGAFHNPKQVTRGFTGGVQTVTLIPGDGIGPEISAAVMKIFDAAKAPIQWEERNVTAIQGPGGKWMIPSEAKESMDKNKMGLKGPLKTPIAAGHPSMNLLLRKTFDLYANVRPCVSIEGYKTPYTDVNIVTIRENTEGEYSGIEHVIVDGVVQSIKLITEGASKRIAEFAFEYARNNHRSNVTAVHKANIMRMSDGLFLQKCREVAENCKDIKFNEMYLDTVCLNMVQDPSQFDVLVMPNLYGDILSDLCAGLIGGLGVTPSGNIGANGVAIFESVHGTAPDIAGKDMANPTALLLSAVMMLRHMGLFDHAARIEAACFATIKDGKSLTKDLGGNAKCSDFTEEICRRVKDLD
Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3B_HUMAN
Homo sapiens
MAALSGVRWLTRALVSAGNPGAWRGLSTSAAAHAASRSQAEDVRVEGSFPVTMLPGDGVGPELMHAVKEVFKAAAVPVEFQEHHLSEVQNMASEEKLEQVLSSMKENKVAIIGKIHTPMEYKGELASYDMRLRRKLDLFANVVHVKSLPGYMTRHNNLDLVIIREQTEGEYSSLEHESARGVIECLKIVTRAKSQRIAKFAFDYATKKGRGKVTAVHKANIMKLGDGLFLQCCEEVAELYPKIKFETMIIDNCCMQLVQNPYQFDVLVMPNLYGNIIDNLAAGLVGGAGVVPGESYSAEYAVFETGARHPFAQAVGRNIANPTAMLLSASNMLRHLNLEYHSSMIADAVKKVIKVGKVRTRDMGGYSTTTDFIKSVIGHLQTKGS
Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3B_MACFA
Macaca fascicularis
MAALSGVRWLTRALVSAGNPGAWRGLSTSAAAHAASRSQAEDVRVEGSFPVTMLPGDGVGPELMHAVKEVFKAAAVPVEFQEHHLSEVQNMASEEKLEQVLSSMKENKVAIIGKIHTPMEYKGELASYDMRLRRKLDLFANVVHVKSLPGYMTRHNNLDLVIIREQTEGEYSSLEHESARGVIECLKIVTRAKSQRIAKFAFDYATKKGRSKVTAVHKANIMKLGDGLFLQCCEEVAELYPKIKFETMIIDNCCMQLVQNPYQFDVLVMPNLYGNIIDNLAAGLVGGAGVVPGESYSAEYAVFETGARHPFAQAVGRNIANPTAMLLSASNMLRHLNLEYHSNMIADAVKKVIKVGKVRTRDMGGYSTTTDFIKSVIGHLHPHGS
Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3B_PONAB
Pongo abelii
MAAVSGVRWLTRALVSAGNPGAWRGLSTSAAAHAASRSQAEDVRVEGSFPVTMLPGDGVGPELMHAVKEVFKAAAVPVEFQEHHLSEVQNMASEEKLEQVLSSMKENKVAIIGKIHTPMEYKGELASYDMRLRRKLDLFANVVHVKSLPGYMTRHNNLDLVIIREQTEGECSSLEHESARGVIECLKIVTRAKSQRIAKFAFDYATKKGRSKVIAVHKANIMKLGDGLFLQCCEEVAELYPKIKFETMIIDNCCMQLVQNPYQFDVLVMPNLYGNIIDNLAAGLVGGAGVVPGESYSAEYAVFETGARHPFAQAVGRNIANPTAMLLSASNMLRHLNLEYHSSMIADAVKKVIKVGKVRTRDMGGYSTTTDFIKSVIGHLHPHGS
Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3G_HUMAN
Homo sapiens
MALKVATVAGSAAKAVLGPALLCRPWEVLGAHEVPSRNIFSEQTIPPSAKYGGRHTVTMIPGDGIGPELMLHVKSVFRHACVPVDFEEVHVSSNADEEDIRNAIMAIRRNRVALKGNIETNHNLPPSHKSRNNILRTSLDLYANVIHCKSLPGVVTRHKDIDILIVRENTEGEYSSLEHESVAGVVESLKIITKAKSLRIAEYAFKLAQESGRKKVTAVHKANIMKLGDGLFLQCCREVAARYPQITFENMIVDNTTMQLVSRPQQFDVMVMPNLYGNIVNNVCAGLVGGPGLVAGANYGHVYAVFETATRNTGKSIANKNIANPTATLLASCMMLDHLKLHSYATSIRKAVLASMDNENMHTPDIGGQGTTSEAIQDVIRHIRVINGRAVEA
Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDH3G_MACFA
Macaca fascicularis
ISSQQTIPPSAKYGGRHTVTMIPGDGIGPELMLHVKSVFRHACVPVDFEEVHVSSNADEEDIRNAIMAIRRNRVALKGNIETNHNLPPSHKSRNNILRTSLDLYANVIHCKSLPGVVTRHKDIDILIVRENTEGEYSSLEHESVAGVVESLKIITKAKSLRIAEYAFKLAQESGRKKVTAVHKANIMKLGDGLFLQCCREVAARYPQITFENMIVDNTTMQLVSRPQQFDVMVMPNLYGNIVNNVCAGLVGGPGLVAGANYGHVYAVFETATRNTGKSIANKNIANPTATLLASCMMLDHLKLHSYATSIRKAVLASMDNENMHTPDIGGQGTTSEAIQDIIRHIRVINGRAVEA
Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. Subcellular locations: Mitochondrion
IDS_HUMAN
Homo sapiens
MPPPRTGRGLLWLGLVLSSVCVALGSETQANSTTDALNVLLIIVDDLRPSLGCYGDKLVRSPNIDQLASHSLLFQNAFAQQAVCAPSRVSFLTGRRPDTTRLYDFNSYWRVHAGNFSTIPQYFKENGYVTMSVGKVFHPGISSNHTDDSPYSWSFPPYHPSSEKYENTKTCRGPDGELHANLLCPVDVLDVPEGTLPDKQSTEQAIQLLEKMKTSASPFFLAVGYHKPHIPFRYPKEFQKLYPLENITLAPDPEVPDGLPPVAYNPWMDIRQREDVQALNISVPYGPIPVDFQRKIRQSYFASVSYLDTQVGRLLSALDDLQLANSTIIAFTSDHGWALGEHGEWAKYSNFDVATHVPLIFYVPGRTASLPEAGEKLFPYLDPFDSASQLMEPGRQSMDLVELVSLFPTLAGLAGLQVPPRCPVPSFHVELCREGKNLLKHFRFRDLEEDPYLPGNPRELIAYSQYPRPSDIPQWNSDKPSLKDIKIMGYSIRTIDYRYTVWVGFNPDEFLANFSDIHAGELYFVDSDPLQDHNMYNDSQGGDLFQLLMP
Lysosomal enzyme involved in the degradation pathway of dermatan sulfate and heparan sulfate. Subcellular locations: Lysosome Liver, kidney, lung, and placenta.
IF2G_PONAB
Pongo abelii
MAGGEAGVTLGQPHLSRQDLTTLDVTKLTPLSHEVISRQATINIGTIGHVAHGKSTVVKAISGVHTVRFKNELERNITIKLGYANAKIYKLDDPSCPRPECYRSCGSSTPDEFPTDIPGTKGNFKLVRHVSFVDCPGHDILMATMLNGAAVMDAALLLIAGNESCPQPQTSEHLAAIEIMKLKHILILQNKIDLVKESQAKEQYEQILAFVQGTVAEGAPIIPISAQLKYNIEVVCEYIVKKIPVPPRDFTSEPRLIVIRSFDVNKPGCEVDDLKGGVAGGSILKGVLKVGQEIEVRPGIVSKDSEGKLMCKPIFSKIVSLFAEHNDLQYAAPGGLIGVGTKIDPTLCRADRMVGQVLGAVGALPEIFTELEISYFLLRRLLGVRTEGDKKAAKVQKLSKNEVLMVNIGPLSTGGRVSAVKADLGKIVLTNPVCTEVGEKIALSRRVEKHWRLIGWGQIRRGVTIKPTVDDD
Member of the eIF2 complex that functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form the 43S pre-initiation complex (43S PIC). Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF2 and release of an eIF2-GDP binary complex. In order for eIF2 to recycle and catalyze another round of initiation, the GDP bound to eIF2 must exchange with GTP by way of a reaction catalyzed by eIF-2B (By similarity). Subcellular locations: Cytoplasm, Cytosol
IF3M_HUMAN
Homo sapiens
MAALFLKRLTLQTVKSENSCIRCFGKHILQKTAPAQLSPIASAPRLSFLIHAKAFSTAEDTQNEGKKTKKNKTAFSNVGRKISQRVIHLFDEKGNDLGNMHRANVIRLMDERDLRLVQRNTSTEPAEYQLMTGLQILQERQRLREMEKANPKTGPTLRKELILSSNIGQHDLDTKTKQIQQWIKKKHLVQITIKKGKNVDVSENEMEEIFHQILQTMPGIATFSSRPQAVQGGKALMCVLRAFSKNEEKAYKETQETQERDTLNKDHGNDKESNVLHQ
IF-3 binds to the 28S ribosomal subunit and shifts the equilibrium between 55S ribosomes and their 39S and 28S subunits in favor of the free subunits, thus enhancing the availability of 28S subunits on which protein synthesis initiation begins. Subcellular locations: Mitochondrion
IF4A3_HUMAN
Homo sapiens
MATTATMATSGSARKRLLKEEDMTKVEFETSEEVDVTPTFDTMGLREDLLRGIYAYGFEKPSAIQQRAIKQIIKGRDVIAQSQSGTGKTATFSISVLQCLDIQVRETQALILAPTRELAVQIQKGLLALGDYMNVQCHACIGGTNVGEDIRKLDYGQHVVAGTPGRVFDMIRRRSLRTRAIKMLVLDEADEMLNKGFKEQIYDVYRYLPPATQVVLISATLPHEILEMTNKFMTDPIRILVKRDELTLEGIKQFFVAVEREEWKFDTLCDLYDTLTITQAVIFCNTKRKVDWLTEKMREANFTVSSMHGDMPQKERESIMKEFRSGASRVLISTDVWARGLDVPQVSLIINYDLPNNRELYIHRIGRSGRYGRKGVAINFVKNDDIRILRDIEQYYSTQIDEMPMNVADLI
ATP-dependent RNA helicase . Involved in pre-mRNA splicing as component of the spliceosome ( ). Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs ( ). The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms such as Bcl-X(S); the function is different from the established EJC assembly . Involved in craniofacial development . Subcellular locations: Nucleus, Nucleus speckle, Cytoplasm Nucleocytoplasmic shuttling protein. Travels to the cytoplasm as part of the exon junction complex (EJC) bound to mRNA. Detected in dendritic layer as well as the nuclear and cytoplasmic (somatic) compartments of neurons. Colocalizes with STAU1 and FMR1 in dendrites (By similarity). Ubiquitously expressed.
IF4A3_MACFA
Macaca fascicularis
MATTATMATSGSARKRLLKEEDMTKVEFETSEEVDVTPTFDTMGLREDLLRGIYAYGFEKPSAIQQRAIKQIIKGRDVIAQSQSGTGKTATFSISVLQCLDIQVRETQALILAPARELAVQIQKGLLTLGDYMNVQCHACIGGTNVGEDIRKLDYGQHVVAGTPGRVFDMIRRRSLRTRAIKMLVLDEADEMLNKGFKEQIYDVYRYLPPATQVVLISATLPHEILEMTNKFMTDPIRILVKRDELTLEGIKQFFVAVEREEWKFDTLCDLYDTLTITQAVIFCNTKRKVDWLTEKMREANFTVSSMHGDMPQKERESIMKEFRSGASRVLISTDVWARGLDVPQVSLIINYDLPNNRELYIHRIGRSGRYGRKGVAINFVKNDDIRILRDIEQYYSTQIDEMPMNVADLI
ATP-dependent RNA helicase. Involved in pre-mRNA splicing as component of the spliceosome. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all stages of mRNA metabolism thereby influencing downstream processes including nuclear mRNA export, subcellular mRNA localization, translation efficiency and nonsense-mediated mRNA decay (NMD). Its RNA-dependent ATPase and RNA-helicase activities are induced by CASC3, but abolished in presence of the MAGOH-RBM8A heterodimer, thereby trapping the ATP-bound EJC core onto spliced mRNA in a stable conformation. The inhibition of ATPase activity by the MAGOH-RBM8A heterodimer increases the RNA-binding affinity of the EJC. Involved in translational enhancement of spliced mRNAs after formation of the 80S ribosome complex. Binds spliced mRNA in sequence-independent manner, 20-24 nucleotides upstream of mRNA exon-exon junctions. Shows higher affinity for single-stranded RNA in an ATP-bound core EJC complex than after the ATP is hydrolyzed. Involved in the splicing modulation of BCL2L1/Bcl-X (and probably other apoptotic genes); specifically inhibits formation of proapoptotic isoforms; the function is different from the established EJC assembly. Involved in craniofacial development. Subcellular locations: Nucleus, Nucleus speckle, Cytoplasm Nucleocytoplasmic shuttling protein. Travels to the cytoplasm as part of the exon junction complex (EJC) bound to mRNA. Detected in dendritic layer as well as the nuclear and cytoplasmic (somatic) compartments of neurons. Colocalizes with STAU1 and FMR1 in dendrites.
IF5_PONAB
Pongo abelii
MSVNVNRSVSDQFYRYKMPRLIAKVEGKGNGIKTVIVNMVDVAKALNRPPTYPTKYFGCELGAQTQFDVKNDRYIVNGSHEANKLQDMLDGFIKKFVLCPECENPETDLHVNPKKQTIGNSCKACGYRGMLDTHHKLCTFILKNPPENSDSGTGKKEKEKKNRKGKDKENGSVSSSETPPPPPPPNEISPPPHTMEEEEDDDWGEDTTEEAQRRRMDEISDHAKVLTLSDDLERTIEERVNILFDFVKKKKEEGVIDSSDKEIVAEAERLDVKAMGPLVLTEVLFNEKIREQIKKYRRHFLRFCHNNKKAQRYLLHGLECVVAMHQAQLISKIPHILKEMYDADLLEEEVIISWSEKASKKYVSKELAKEIRVKAEPFIKWLKEAEEESSGGEEDDEDENIEVVYSKTASVPKVETVKSDNKDDDIDIDAI
Component of the 43S pre-initiation complex (43S PIC), which binds to the mRNA cap-proximal region, scans mRNA 5'-untranslated region, and locates the initiation codon. In this complex, acts as a GTPase-activating protein, by promoting GTP hydrolysis by eIF2G (EIF2S3). During scanning, interacts with both EIF1 (via its C-terminal domain (CTD)) and EIF1A (via its NTD). This interaction with EIF1A contributes to the maintenance of EIF1 within the open 43S PIC. When start codon is recognized, EIF5, via its NTD, induces eIF2G (EIF2S3) to hydrolyze the GTP. Start codon recognition also induces a conformational change of the PIC to a closed state. This change increases the affinity of EIF5-CTD for EIF2-beta (EIF2S2), which allows the release, by an indirect mechanism, of EIF1 from the PIC. Finally, EIF5 stabilizes the PIC in its closed conformation. Subcellular locations: Cytoplasm
IFNB_HUMAN
Homo sapiens
MTNKCLLQIALLLCFSTTALSMSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRLTGYLRN
Type I interferon cytokine that plays a key role in the innate immune response to infection, developing tumors and other inflammatory stimuli ( ). Signals via binding to high-affinity (IFNAR2) and low-affinity (IFNAR1) heterodimeric receptor, activating the canonical Jak-STAT signaling pathway resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response, such as antiviral proteins, regulators of cell proliferation and differentiation, and immunoregulatory proteins ( ). Signals mostly via binding to a IFNAR1-IFNAR2 heterodimeric receptor, but can also function with IFNAR1 alone and independently of Jak-STAT pathways (By similarity). Elicits a wide variety of responses, including antiviral and antibacterial activities, and can regulate the development of B-cells, myelopoiesis and lipopolysaccharide (LPS)-inducible production of tumor necrosis factor (By similarity). Plays a role in neuronal homeostasis by regulating dopamine turnover and protecting dopaminergic neurons: acts by promoting neuronal autophagy and alpha-synuclein clearance, thereby preventing dopaminergic neuron loss (By similarity). IFNB1 is more potent than interferon-alpha (IFN-alpha) in inducing the apoptotic and antiproliferative pathways required for control of tumor cell growth (By similarity). Subcellular locations: Secreted
IFNB_MACFA
Macaca fascicularis
MTNKCLLQIALLLCFSTTALSMSYNLLGFLQRSSSFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQPQQFQKEDAALTIYEMLQNIYAIFRQDLSSTGWNETIVENLLANVYHQIDHLKTILEEKLEKEDFTRGKFVSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFFFINKLTGYLRN
Type I interferon cytokine that plays a key role in the innate immune response to infection, developing tumors and other inflammatory stimuli. Signals via binding to high-affinity (IFNAR2) and low-affinity (IFNAR1) heterodimeric receptor, activating the canonical Jak-STAT signaling pathway resulting in transcriptional activation or repression of interferon-regulated genes that encode the effectors of the interferon response, such as antiviral proteins, regulators of cell proliferation and differentiation, and immunoregulatory proteins (By similarity). Signals mostly via binding to a IFNAR1-IFNAR2 heterodimeric receptor, but can also function with IFNAR1 alone and independently of Jak-STAT pathways. Elicits a wide variety of responses, including antiviral and antibacterial activities, and can regulate the development of B-cells, myelopoiesis and lipopolysaccharide (LPS)-inducible production of tumor necrosis factor. Plays a role in neuronal homeostasis by regulating dopamine turnover and protecting dopaminergic neurons: acts by promoting neuronal autophagy and alpha-synuclein clearance, thereby preventing dopaminergic neuron loss. IFNB1 is more potent than interferon-alpha (IFN-alpha) in inducing the apoptotic and antiproliferative pathways required for control of tumor cell growth (By similarity). Subcellular locations: Secreted
IFNE_HUMAN
Homo sapiens
MIIKHFFGTVLVLLASTTIFSLDLKLIIFQQRQVNQESLKLLNKLQTLSIQQCLPHRKNFLLPQKSLSPQQYQKGHTLAILHEMLQQIFSLFRANISLDGWEENHTEKFLIQLHQQLEYLEALMGLEAEKLSGTLGSDNLRLQVKMYFRRIHDYLENQDYSTCAWAIVQVEISRCLFFVFSLTEKLSKQGRPLNDMKQELTTEFRSPR
Type I interferon required for maintaining basal levels of IFN-regulated genes, including 2'-5'-oligoadenylate synthetase, IRF7 and ISG15, in the female reproductive tract. Directly mediates protection against viral and bacterial genital infections (By similarity). Subcellular locations: Secreted Endometrium-specific.
IFT1B_HUMAN
Homo sapiens
MSEESDGKLIEDSLIQLRCHFTWKLLIEAPEIPDLENRIWEEIQFLDTKYNVGIHNLLAYVKHLKGQNEEALVSLKKAEDLIQKEHANQADIRSLVTWGNFAWVYYHMGRLAEAQTYLDKVENTCKKFANPSRYRMECPEVDCEEGWALAKCGGKNYERAKTCFEKALEGNPENPEFNTGYAITVYRLDKFNTASGRNKAFSLHVLKRAVRLNPDDVYIRVLLALKLQDEGQEAEGEKYIEEALTSISSQAYVFQYAAKFYRRKGSVDKALELLKMALETTPTSAFLHHQMGLCYRAQMIQIKEATNWQPRGQDRETVDRLVQLAICKFEKTIMLKRTFEMAYVDLAETYAEIGHHRKAEEHFQKGLRMKIFEDQLKQEIHYHYGRFQEHHGKSQDKAITHYLKGLKIEKMSHSREKLLNALEKLAKRCIHQNVRVVESVSLLGLIHKLKGEVSDALLCYERALRLAADLNPIF
null
IFT20_HUMAN
Homo sapiens
MAKDILGEAGLHFDELNKLRVLDPEVTQQTIELKEECKDFVDKIGQFQKIVGGLIELVDQLAKEAENEKMKAIGARNLLKSIAKQREAQQQQLQALIAEKKMQLERYRVEYEALCKVEAEQNEFIDQFIFQK
Part of intraflagellar transport (IFT) particles involved in ciliary process assembly . May play a role in the trafficking of ciliary membrane proteins from the Golgi complex to the cilium . Regulates the platelet-derived growth factor receptor-alpha (PDGFRA) signaling pathway. Required for protein stability of E3 ubiquitin ligases CBL and CBLB that mediate ubiquitination and internalization of PDGFRA for proper feedback inhibition of PDGFRA signaling . Essential for male fertility. Plays an important role in spermatogenesis, particularly spermiogenesis, when germ cells form flagella. May play a role in the transport of flagellar proteins ODF2 and SPAG16 to build sperm flagella and in the removal of redundant sperm cytoplasm (By similarity). Also involved in autophagy since it is required for trafficking of ATG16L and the expansion of the autophagic compartment (By similarity). Subcellular locations: Golgi apparatus, Cis-Golgi network, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole, Cytoplasm, Cytoskeleton, Cilium basal body, Cell projection, Cilium, Cytoplasm, Cytoskeleton, Golgi apparatus, Cytoplasmic vesicle, Secretory vesicle, Acrosome, Cytoplasm Present at the centrosomes during the cell cycle and associated with the proximal portion of the mother centriole and the lateral aspect of the daughter centriole. Associated with basal body at the base of primary cilia. Detected in the Golgi apparatus of round spermatids and late spermatocytes. Also detected in the manchette of step 10-12 spermatids. In step 14 spermatids, found in the basal body of the sperm tail. Localization in the manchette of elongating spermatids is dependent on SPAG17. Expressed in almost all tissues.
IFT22_HUMAN
Homo sapiens
MLKAKILFVGPCESGKTVLANFLTESSDITEYSPTQGVRILEFENPHVTSNNKGTGCEFELWDCGGDAKFESCWPALMKDAHGVVIVFNADIPSHRKEMEMWYSCFVQQPSLQDTQCMLIAHHKPGSGDDKGSLSLSPPLNKLKLVHSNLEDDPEEIRMEFIKYLKSIINSMSESRDREEMSIMT
Small GTPase-like component of the intraflagellar transport (IFT) complex B. Subcellular locations: Cell projection, Cilium
IFT22_MACFA
Macaca fascicularis
MLKAKILFVGPCESGKTVLANFLTESSDITEYSPTQGVRILEFENPHVTSNNKGTGCEFELWDCGGDAKFESCWPALMKDAHGVVIVFNADIPSHRKEMEMWYSCFVQQQSLQDTQCMLIAHHKPGSGDDKGSLSLSPPLNKLKLVHSNLEDDPEEIRMEFIKYLKSIINSMSESRDREEMSIMT
Small GTPase-like component of the intraflagellar transport (IFT) complex B. Subcellular locations: Cell projection, Cilium
IGHE_HUMAN
Homo sapiens
ASTQSPSVFPLTRCCKNIPSNATSVTLGCLATGYFPEPVMVTWDTGSLNGTTMTLPATTLTLSGHYATISLLTVSGAWAKQMFTCRVAHTPSSTDWVDNKTFSVCSRDFTPPTVKILQSSCDGGGHFPPTIQLLCLVSGYTPGTINITWLEDGQVMDVDLSTASTTQEGELASTQSELTLSQKHWLSDRTYTCQVTYQGHTFEDSTKKCADSNPRGVSAYLSRPSPFDLFIRKSPTITCLVVDLAPSKGTVNLTWSRASGKPVNHSTRKEEKQRNGTLTVTSTLPVGTRDWIEGETYQCRVTHPHLPRALMRSTTKTSGPRAAPEVYAFATPEWPGSRDKRTLACLIQNFMPEDISVQWLHNEVQLPDARHSTTQPRKTKGSGFFVFSRLEVTRAEWEQKDEFICRAVHEAASPSQTVQRAVSVNPGLAGGSAQSQRAPDRVLCHSGQQQGLPRAAGGSVPHPRCHCGAGRADWPGPPELDVCVEEAEGEAPWTWTGLCIFAALFLLSVSYSAAITLLMVQRFLSATRQGRPQTSLDYTNVLQPHA
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Constant region of secreted IgE, also known as the Fc region of IgE antibody. Mediates IgE effector functions on myeloid and lymphoid cells primarily via two Fc receptors, the high-affinity IgE Fc receptor complex/FCER1A:MS4A2:FCGR1A and the low-affinity FCER2 receptor, which upon antigen/allergen cross-linking initiate signaling pathways that lead to immune cell activation and differentiation ( , ). Triggers the immediate hypersensitivity response to allergens as a host defense mechanism against helminth parasites, pathogenic bacteria and venom toxicity. When dysregulated, it can elicit harmful life-threatening allergic and anaphylactic reactions ( ). Stimulates the high-affinity IgE Fc receptor complex/FCER1A:MS4A2:FCGR1A on mast cells, basophils and eosinophils leading to secretion of vasoactive amines, lipid mediators and cytokines that contribute to inflammatory response, tissue remodeling and cytotoxicity against microbes ( ). On macrophages, cross-linking of FCER2 by IgE immune complexes induces intracellular killing of parasites through activation of L-Arginine-nitric oxide pathway . Activates macrophages to kill tumor cells via antigen-specific antibody-dependent cytotoxicity (ADCC). Triggers differentiation of quiescent M0 macrophages toward M1 state and reprograms M2 macrophages toward a proinflammatory state with antitumor functions . Stimulates FCER2 on B cells and initiates IgE-dependent antigen uptake and presentation to T cells . Constant region of membrane-bound IgE (long mIgE), part of the B cell receptor complex (BCR). Upon antigen cross-linking triggers quick BCR signaling, ensuring survival of IgE-switched B cells and differentiation into plasma cells, thus regulating both primary and memory IgE responses. Constant region of membrane-bound IgE (short mIgE), part of the B cell receptor complex (BCR). Upon antigen cross-linking initiates slower but sustained BCR signaling that negatively regulates mature B cell proliferation. Subcellular locations: Secreted Subcellular locations: Cell membrane Subcellular locations: Cell membrane Expressed in B lymphocytes stimulated with IL4 and CD40.
IGHG1_HUMAN
Homo sapiens
ASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPELQLEESCAEAQDGELDGLWTTITIFITLFLLSVCYSATVTFFKVKWIFSSVVDLKQTIIPDYRNMIGQGA
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Mediates IgG effector functions on monocytes triggering ADCC of virus-infected cells. Subcellular locations: Secreted Subcellular locations: Cell membrane
IGHG2_HUMAN
Homo sapiens
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDISVEWESNGQPENNYKTTPPMLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPELQLEESCAEAQDGELDGLWTTITIFITLFLLSVCYSATITFFKVKWIFSSVVDLKQTIVPDYRNMIRQGA
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted Subcellular locations: Cell membrane
IGHG3_HUMAN
Homo sapiens
ASTKGPSVFPLAPCSRSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYTCNVNHKPSNTKVDKRVELKTPLGDTTHTCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPEPKSCDTPPPCPRCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFKWYVDGVEVHNAKTKPREEQYNSTFRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESSGQPENNYNTTPPMLDSDGSFFLYSKLTVDKSRWQQGNIFSCSVMHEALHNRFTQKSLSLSPELQLEESCAEAQDGELDGLWTTITIFITLFLLSVCYSATVTFFKVKWIFSSVVDLKQTIIPDYRNMIGQGA
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted Subcellular locations: Cell membrane
IGHG4_HUMAN
Homo sapiens
ASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESKYGPPCPSCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLELQLEESCAEAQDGELDGLWTTITIFITLFLLSVCYSATVTFFKVKWIFSSVVDLKQTIVPDYRNMIRQGA
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Subcellular locations: Secreted Subcellular locations: Cell membrane
IGHM_HUMAN
Homo sapiens
GSASAPTLFPLVSCENSPSDTSSVAVGCLAQDFLPDSITFSWKYKNNSDISSTRGFPSVLRGGKYAATSQVLLPSKDVMQGTDEHVVCKVQHPNGNKEKNVPLPVIAELPPKVSVFVPPRDGFFGNPRKSKLICQATGFSPRQIQVSWLREGKQVGSGVTTDQVQAEAKESGPTTYKVTSTLTIKESDWLGQSMFTCRVDHRGLTFQQNASSMCVPDQDTAIRVFAIPPSFASIFLTKSTKLTCLVTDLTTYDSVTISWTRQNGEAVKTHTNISESHPNATFSAVGEASICEDDWNSGERFTCTVTHTDLPSPLKQTISRPKGVALHRPDVYLLPPAREQLNLRESATITCLVTGFSPADVFVQWMQRGQPLSPEKYVTSAPMPEPQAPGRYFAHSILTVSEEEWNTGETYTCVVAHEALPNRVTERTVDKSTEGEVSADEEGFENLWATASTFIVLFLLSLFYSTTVTLFKVK
Constant region of immunoglobulin heavy chains. Immunoglobulins, also known as antibodies, are membrane-bound or secreted glycoproteins produced by B lymphocytes. In the recognition phase of humoral immunity, the membrane-bound immunoglobulins serve as receptors which, upon binding of a specific antigen, trigger the clonal expansion and differentiation of B lymphocytes into immunoglobulins-secreting plasma cells. Secreted immunoglobulins mediate the effector phase of humoral immunity, which results in the elimination of bound antigens (, ). The antigen binding site is formed by the variable domain of one heavy chain, together with that of its associated light chain. Thus, each immunoglobulin has two antigen binding sites with remarkable affinity for a particular antigen. The variable domains are assembled by a process called V-(D)-J rearrangement and can then be subjected to somatic hypermutations which, after exposure to antigen and selection, allow affinity maturation for a particular antigen (, ). Constant region of secreted IgM (sIgM), also known as the Fc region of IgM antibody. Able to multimerize, forms high order polymers, mainly pentamers and occasionally hexamers, providing for multivalency and high avidity recognition of antigens (, ). Natural sIgM are polyreactive and recognize conserved self- and pathogen-derived structures, whereas immune sIgM are secreted only upon exposure to pathogens and are antigen-specific. Both natural and immune sIgM are required for an efficient humoral immune response to infection (By similarity). Mediates sIgM effector functions mostly via Fc receptors and the complement system. On lymphoid cells binds high-affinity Fc receptor FCMR and promotes induction of an efficient neutralizing IgG response while maintaining tolerance to self-antigens. Recruits C1q complement component to initiate the classical complement pathway, facilitating the recognition and neutralization of pathogens by the host. Together with C1q and mannose-binding lectin promotes the phagocytosis of apoptotic cells by macrophages, ensuring the clearance of potential autoimmune epitopes from tissues ( , ) (By similarity). Involved in mucosal immunity. It is transported by transcytosis across mucosal epithelium by PIGR and secreted on the apical side in complex with PIGR secretory component to scan mucosal lining for pathogens. IgM-antigen complexes undergo FCMR-mediated retrotranscytosis across mucosal M cells toward antigen-presenting cells in mucosal lymphoid tissues (By similarity). Constant region of membrane-bound IgM, part of the B cell receptor complex (BCR). IgM BCR provides constitutive tonic signaling for B cell survival. Mediates pre-BCR signaling that regulates B cell selection and rearrangement of Ig genes via allelic exclusion. Subcellular locations: Secreted During differentiation, B-lymphocytes switch from expression of membrane-bound IgM to secretion of IgM. Subcellular locations: Cell membrane
IL12A_HUMAN
Homo sapiens
MCPARSLLLVATLVLLDHLSLARNLPVATPDPGMFPCLHHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITKDKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRKTSFMMALCLSSIYEDLKMYQVEFKTMNAKLLMDPKRQIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAVTIDRVMSYLNAS
Heterodimerizes with IL12B to form the IL-12 cytokine or with EBI3/IL27B to form the IL-35 cytokine (, ). IL-12 is primarily produced by professional antigen-presenting cells (APCs) such as B-cells and dendritic cells (DCs) as well as macrophages and granulocytes and regulates T-cell and natural killer-cell responses, induces the production of interferon-gamma (IFN-gamma), favors the differentiation of T-helper 1 (Th1) cells and is an important link between innate resistance and adaptive immunity ( ). Mechanistically, exerts its biological effects through a receptor composed of IL12R1 and IL12R2 subunits . Binding to the receptor results in the rapid tyrosine phosphorylation of a number of cellular substrates including the JAK family kinases TYK2 and JAK2 . In turn, recruited STAT4 gets phosphorylated and translocates to the nucleus where it regulates cytokine/growth factor responsive genes . As part of IL-35, plays essential roles in maintaining the immune homeostasis of the liver microenvironment and functions also as an immune-suppressive cytokine (By similarity). Mediates biological events through unconventional receptors composed of IL12RB2 and gp130/IL6ST heterodimers or homodimers . Signaling requires the transcription factors STAT1 and STAT4, which form a unique heterodimer that binds to distinct DNA sites . Subcellular locations: Secreted
IL12A_MACMU
Macaca mulatta
MCPARSLLLVATLVLLDYLSLARNLSVATPGPEMFPCLHHSQNLLKAASNTLQKARQILEFYPCTSEEIDHEDITKDKTSTVEACLPLELIKNESCLNSRETSFITNGSCLASRKTSFMMALCLRSIYEDLKMYQVEFKTMNAKLLRDPKRQIFLDQNILGVIDELMQALNFNSETVPQKSSLEEPDFYKTKIKLCILLHAFRIRAVTIDRVMSYLNAS
Heterodimerizes with IL12B to form the IL-12 cytokine or with EBI3/IL27B to form the IL-35 cytokine. IL-12 is primarily produced by professional antigen-presenting cells (APCs) such as B-cells and dendritic cells (DCs) as well as macrophages and granulocytes and regulates T-cell and natural killer-cell responses, induces the production of interferon-gamma (IFN-gamma), favors the differentiation of T-helper 1 (Th1) cells and is an important link between innate resistance and adaptive immunity. Mechanistically, exerts its biological effects through a receptor composed of IL12R1 and IL12R2 subunits. Binding to the receptor results in the rapid tyrosine phosphorylation of a number of cellular substrates including the JAK family kinases TYK2 and JAK2. In turn, recruited STAT4 gets phosphorylated and translocates to the nucleus where it regulates cytokine/growth factor responsive genes (By similarity). As part of IL-35, plays essential roles in maintaining the immune homeostasis of the liver microenvironment and functions also as an immune-suppressive cytokine (By similarity). Mediates biological events through unconventional receptors composed of IL12RB2 and gp130/IL6ST heterodimers or homodimers. Signaling requires the transcription factors STAT1 and STAT4, which form a unique heterodimer that binds to distinct DNA sites (By similarity). Subcellular locations: Secreted
IL12A_PAPAN
Papio anubis
MCPARSLLLVATLVLLDYLSLARNLSVATPGPEMFPCLHHSQNLLKAASNTLQKARQILEFYPCTSEEIDHEDITKDKTSTVEACLPLELIKNESCLNSRETSVITKGSCLASRKTSFMMALCLRSIYEDLQIYQVEFKTMNAKLLMDPKRQIFLDQNILGVIDELMQALNFNSETVPQKSSLEEPDFYKTKIRLCILLHAFRIRAVTIDRVMSYLNAS
Heterodimerizes with IL12B to form the IL-12 cytokine or with EBI3/IL27B to form the IL-35 cytokine. IL-12 is primarily produced by professional antigen-presenting cells (APCs) such as B-cells and dendritic cells (DCs) as well as macrophages and granulocytes and regulates T-cell and natural killer-cell responses, induces the production of interferon-gamma (IFN-gamma), favors the differentiation of T-helper 1 (Th1) cells and is an important link between innate resistance and adaptive immunity. Mechanistically, exerts its biological effects through a receptor composed of IL12R1 and IL12R2 subunits. Binding to the receptor results in the rapid tyrosine phosphorylation of a number of cellular substrates including the JAK family kinases TYK2 and JAK2. In turn, recruited STAT4 gets phosphorylated and translocates to the nucleus where it regulates cytokine/growth factor responsive genes (By similarity). As part of IL-35, plays essential roles in maintaining the immune homeostasis of the liver microenvironment and functions also as an immune-suppressive cytokine (By similarity). Mediates biological events through unconventional receptors composed of IL12RB2 and gp130/IL6ST heterodimers or homodimers. Signaling requires the transcription factors STAT1 and STAT4, which form a unique heterodimer that binds to distinct DNA sites (By similarity). Subcellular locations: Secreted
IL12B_CERAT
Cercocebus atys
MCHQQLVISWFSLVFLASPLMAIWELKKDVYVVELDWYPDAPGEMVVLTCDTPEEDGITWTLDQSGEVLGSGKTLTIQVKEFGDAGQYTCHKGGEALSHSLLLPHKKEDGIWSTDILKDQKEPKNETFLRCEAKNYSGRITCWWLSTISTDLTFSIISSRGSSNPQGVTCGAATLSAERVRGDNKEYEYSVECQEDSACPAAEERLPIEVMVDAIHKLKYENYTSSFFIRDIIKPDPPKNLQLKPLKNSRQVEVSWEYPDTWSTPHSYFSLTFCIQVQGKSKREKKDRIFTDKTSATVICRKNASFSVQAQDRYYSSSWNEWTSVPCS
Cytokine that can act as a growth factor for activated T and NK cells, enhance the lytic activity of NK/lymphokine-activated killer cells, and stimulate the production of IFN-gamma by resting PBMC. Associates with IL23A to form the IL-23 interleukin, a heterodimeric cytokine which functions in innate and adaptive immunity. IL-23 may constitute with IL-17 an acute response to infection in peripheral tissues. IL-23 binds to a heterodimeric receptor complex composed of IL12RB1 and IL23R, activates the Jak-Stat signaling cascade, stimulates memory rather than naive T-cells and promotes production of pro-inflammatory cytokines. IL-23 induces autoimmune inflammation and thus may be responsible for autoimmune inflammatory diseases and may be important for tumorigenesis (By similarity). Subcellular locations: Secreted
IL1A_MACMU
Macaca mulatta
MAKVPDMFEDLKNCYSENEEDSSSIDHLSLNQKSFYDVSYGPLHEGCMDQSVSLSISEISKTSKLTFKQSMVVVSTNGKVLKKRRLSLSQSITDNNLEAIANDSEEEIIKPRSAPFSFLSNMTYHFIRIIKHEFILNDTLNQTIIRANDQHLTAAAIHNLDEAVKFDMGAYTSSKDDTKVPVILRISKTQLYVSAQDEDQPVLLKEMPEINKTITGSETNFLFFWETHGTKNYFISVAHPNLFIATKHDNWVCLAKGLPSITDFQILENQA
Cytokine constitutively present intracellularly in nearly all resting non-hematopoietic cells that plays an important role in inflammation and bridges the innate and adaptive immune systems. After binding to its receptor IL1R1 together with its accessory protein IL1RAP, forms the high affinity interleukin-1 receptor complex. Signaling involves the recruitment of adapter molecules such as MYD88, IRAK1 or IRAK4. In turn, mediates the activation of NF-kappa-B and the three MAPK pathways p38, p42/p44 and JNK pathways. Within the cell, acts as an alarmin and cell death results in its liberation in the extracellular space after disruption of the cell membrane to induce inflammation and alert the host to injury or damage. In addition to its role as a danger signal, which occurs when the cytokine is passively released by cell necrosis, directly senses DNA damage and acts as signal for genotoxic stress without loss of cell integrity. Subcellular locations: Nucleus, Cytoplasm, Secreted The lack of a specific hydrophobic segment in the precursor sequence suggests that IL-1 is released by damaged cells or is secreted by a mechanism differing from that used for other secretory proteins. The secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10; it results in protein translocation from the cytoplasm into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) followed by vesicle entry and secretion. Recruited to DNA damage sites and secreted after genotoxic stress.
IL1B_CERAT
Cercocebus atys
MAEVPELASEMMAYYSSNEDDLFFEVDGPKQMKCSFQDLDLCPLDGGIQLQISHEHYNKGFRQAVSVVVAMEKLRKMLVPCPQTFQDNDLSTLIPFIFEEEPVFLDTCNNDACVHDAPVRSLHCTLRDAQLKSLVMSGPYELKALHLQGQDVEQQVVFSMSFVQGEESNDKVPVALGLKAKNLYLSCVLKDDKPTLQLESVDPKNYPKKKMEKRFVFNKIEINNKLECESAQFPNWYISTSQAENMPVFLGGTRGGQDITDFTMQFVSS
Potent pro-inflammatory cytokine. Initially discovered as the major endogenous pyrogen, induces prostaglandin synthesis, neutrophil influx and activation, T-cell activation and cytokine production, B-cell activation and antibody production, and fibroblast proliferation and collagen production. Promotes Th17 differentiation of T-cells. Synergizes with IL12/interleukin-12 to induce IFNG synthesis from T-helper 1 (Th1) cells. Plays a role in angiogenesis by inducing VEGF production synergistically with TNF and IL6. Involved in transduction of inflammation downstream of pyroptosis: its mature form is specifically released in the extracellular milieu by passing through the gasdermin-D (GSDMD) pore. Subcellular locations: Cytoplasm, Cytosol, Secreted, Lysosome, Secreted, Extracellular exosome The precursor is cytosolic. In response to inflammasome-activating signals, such as ATP for NLRP3 inflammasome or bacterial flagellin for NLRC4 inflammasome, cleaved and secreted. Mature form is secreted and released in the extracellular milieu by passing through the gasdermin-D (GSDMD) pore. In contrast, the precursor form is not released, due to the presence of an acidic region that is proteolytically removed by CASP1 during maturation. The secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10.