protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
SYCY1_GORGO | Gorilla gorilla gorilla | MALPYHILLFTVLLPSFTLTAPPPCRCMTSSSPYQEFLWRMRRPGNIDAPSHRSFSKGTPTFTAHTHMPRNCYNSATLCMHANTHYWTGKMINPSCPGGLGVTVCWTYFTHTGMSDGGGVQDQAREKHVKEVISQLTRVHSTSSPYKGLDLSKLHETLRTHTRLVSLFNTTLTGLHEVSAQNPTNCWICLPLDFRPYVSIPVPEEWNNFSTEINTTSVLVGPLVSNLEITHTSNLTCVKFSNTIDTTNSQCIRWVTPPTQIVCLPSGIFFVCGTSAYRCLNGSSESMCFLSFLVPPMTIYTEQDLYNYVVSKPRNKRVPILPFVIGAGVLGALGTGIGGITTSTQFYYKLSQELNGDMERVADSLVTLQDQLNSLAAVVLQNRRALDLLTAERGGTCLFLGEECCYYVNQSGIVTEKVKEIRDRIQRRAEELRNTGPWGLLSQWMPWILPFLGPLAAIILLLLFGPCIFNLLVNFVSSRIEAVKLQMEPKMQSKTKIYRRPLDRPASPRSDVNDIKCTPPEEISTAQPLLRPNSAGSS | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May recognize and induce fusion through binding of SLC1A4 and SLC1A5 (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes (By similarity).
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Subcellular locations: Virion |
SYCY1_HUMAN | Homo sapiens | MALPYHIFLFTVLLPSFTLTAPPPCRCMTSSSPYQEFLWRMQRPGNIDAPSYRSLSKGTPTFTAHTHMPRNCYHSATLCMHANTHYWTGKMINPSCPGGLGVTVCWTYFTQTGMSDGGGVQDQAREKHVKEVISQLTRVHGTSSPYKGLDLSKLHETLRTHTRLVSLFNTTLTGLHEVSAQNPTNCWICLPLNFRPYVSIPVPEQWNNFSTEINTTSVLVGPLVSNLEITHTSNLTCVKFSNTTYTTNSQCIRWVTPPTQIVCLPSGIFFVCGTSAYRCLNGSSESMCFLSFLVPPMTIYTEQDLYSYVISKPRNKRVPILPFVIGAGVLGALGTGIGGITTSTQFYYKLSQELNGDMERVADSLVTLQDQLNSLAAVVLQNRRALDLLTAERGGTCLFLGEECCYYVNQSGIVTEKVKEIRDRIQRRAEELRNTGPWGLLSQWMPWILPFLGPLAAIILLLLFGPCIFNLLVNFVSSRIEAVKLQMEPKMQSKTKIYRRPLDRPASPRSDVNDIKGTPPEEISAAQPLLRPNSAGSS | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May induce fusion through binding of SLC1A4 and SLC1A5 ( ).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes.
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Subcellular locations: Virion
Expressed at higher level in placental syncytiotrophoblast. Expressed at intermediate level in testis. Seems also to be found at low level in adrenal tissue, bone marrow, breast, colon, kidney, ovary, prostate, skin, spleen, thymus, thyroid, brain and trachea. Both mRNA and protein levels are significantly increased in the brain of individuals with multiple sclerosis, particularly in astrocytes and microglia. |
SYCY1_HYLPI | Hylobates pileatus | MALPYHIFLFTVLLPSFTLTAPPPCRCMTSSSPYQEFLWRTQRPGNIDAPLYRSFSKGSPTFTAHTYMPRTCYNSATLCMHANTQYWTGKMINPSCPGGLGVTVCWTYFTHTGMSDGGGVQDQAREKHVKEVISQLTQVHSTSSPYKGLDLSKLHETLRTHTRLVSLFNTTLTGLHEVSAQNPTNCWMCLPLDFRPYVSIPVPEQWNNFSTEINTTSVLVGPLVSNLEITHTSNLTCVKFSNTTDTTNSQCIRWVTPPTRIFCLPSGIFFVCGTSAYRCLNGSSESMCFLSFLVPPMTIYTEQDLYNYVVSKPRNKRVPILPFVMGAGVLGALGTGIGSITTSTQFYYKLSRELNGDMERVADSLVTLQDQLNSLAAVVLQNRRALDLLTAERGGTCLFLGEECCYYVNQSGIVTEKVKEIRDRIQRRAEELRNIGPWGLLSQWMPWILPFLGPLAAIILLLLFGPCIFNLLVNFVSSRIEAIKLQMEPKMESKTKNYRRSLDWPASPRSDVNDIKGIPPEEISTAQPLLRPNSAGSS | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May recognize and induce fusion through binding of SLC1A4 and SLC1A5 (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes (By similarity).
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Subcellular locations: Virion |
SYCY1_PANTR | Pan troglodytes | MALPYHIFLFTVLLPSFTLTAPPPCRCMTSSSPYQEFLWRMQRPGNIDAPSYRSFSKGTPTFTAHTHMPRNCYHSATLCMHANTHYWTGKIINPSCPGGLGVTVCWTYFTHTGMSDGGGVQDQAREKHVKEVISQLTRVHSASRPYKGLDLSKLHETLRTHTRLVSLFNTTLTGLHEVSAQNPTNCWICLPLNFRPYVSIPVPEQWNNFSTEINTTSVLVGPLVSNLEITHTSNLTCVKFSNTTDTTNSQCIRWVTPPTQIVCLPSGIFFVCGTSAYRCLNGSSESMCFLSFLVPPMTIYTEQDLYNYVVSKPRNKRVPILPFVIGAGVLGALGTGIGGITTSTQFYYKLSQELNGDMERVADSLVTLQDQLNSLAAVVLQNRRALDLLTAERGGTCLFLGEECCYYVNQSGIVTEKVKEIRDRIQRRAEELRNTGPWGLLSQWMPWILPFLGPLAAIILLLLFGPCIFNLLVNFVSSRIEAVKLQMEPKMQSKTKIYRRPLDRPASPRSDVNDIKGTPPEEILTAQPLLRPNSAGSS | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May recognize and induce fusion through binding of SLC1A4 and SLC1A5 (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes (By similarity).
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Subcellular locations: Virion |
SYCY1_PONPY | Pongo pygmaeus | MALPYHIFLFTVLLPSFTLTAPPPCRCMTSSSPYQEFLWRMHHPGNIDAPSYRSFSKGTPTFTAHTHMPRNCYNSATLCMHGNTHYWTGKMINPSCPGGLGVTVCWTYFTHTGMSDGGGVQDEAREKHVKEVISQLTQVHSTSSPYKGLDLSKLHETLRTHTRLVSLFNTTLTGLHEVSAQNPTNCWMCLPLAFRPYVSIPVPEQWNNFSTEINTTSVLVGPLVSNLEITHTSNLTCVKFSNTTNTTNSQCIRWVTPPTQVVCLPSGIFFVCGTSAYRCLNGSSESMCFLSFLVPPMTIYTEQDLYNYVVSKPRNKRVPILPFVMAAGVLGALGTGIGGITTSTQFYYKLSQELNGDMERVADSLVTLQDQLNSIAAVVLQNRRALDLLTAERGGTCLFLGEECCYYVNQSGIVTEKVKEIRDRIQRRAEELRNIGPWGLFSQWMPWILPFLGPLAAIILLLLFGPCIFNLLVNFVSSRIEAVKLQMEPKMQSKTKIYHRPLDWPASPRSDVNDIKGTPPEEISTAQPLLRPNSAGSS | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. May recognize and induce fusion through binding of SLC1A4 and SLC1A5 (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein (SU) mediates receptor recognition, while the transmembrane protein (TM) acts as a class I viral fusion protein. The protein may have at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of membranes (By similarity).
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Subcellular locations: Virion |
SYCY2_CALJA | Callithrix jacchus | MGLLLLLLILTPLLAAYCHPDFRLLEKAQQLLQSTGSPYSTNCWLCTSSSSKTPGRAYPASSREWTTIEAELHISYQWDPNLKGLIRLANSLLSKVKQDFPDIRKEPPIFGPIFTNVNLIGIAPICVTAKRKDGTNVGTLPSTVCNVTLTVDPNQQTYQKYAHNQFHHQPRFPKPPNITFPQGTLLDKSTRFCQGRPSSCSTRNFWFQPADYNQCLQIPNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLSTSAVSEFSGTSVTSLFSFHISTCLKTQGAFYICGQSIHQCLPTNWTGTCTIGYVSPDIFIAPGNLSLPIPIYGNFHFPRVKRAIHLIPLLVGLGIVGSAGTGIAGIAKASFTYSQLSKEIANNIEAMAKTLTTVQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNRASTLQEQATQGWLNWEGTWKWFSWVLPFTGPLVSLLLLLLFGPCLLNLITQFVSSRLQATKLQMKLNKRVHPRNSQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane |
SYCY2_GORGO | Gorilla gorilla gorilla | MGLLLLVLILTPSLAAYRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYRWDPNLKGLMRPANSLLSTVKQDFPDIRQKPPIFGPIFTNINLMGIAPICVTAKRKNGTNVGTLPSTVCNVTFTVDSNQQTYQTYTHNQFRHQPRFPKPPNITFPQGTLLDKSSRFCQGRPSSCSTRNFWFRPADYNQCLQISNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLGISAVSEFFGTSLTPLFHFHISTCLKTQGAFYICGQLIHQCLPSNWTGTCTIGYVTPDIFIAPGNLSLPIPIYGNSQLPRVRRAIHFIPLLAGLGILAGTGTGIAGITKASLTYSQLSKEIANNIDTMAKALTTMQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPLTGPLVSLLLLLLFGPCLLNLITQFVSSRLQAIKLQTNLSAGRRPRNIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM. |
SYCY2_HUMAN | Homo sapiens | MGLLLLVLILTPSLAAYRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYRWDPNLKGLMRPANSLLSTVKQDFPDIRQKPPIFGPIFTNINLMGIAPICVMAKRKNGTNVGTLPSTVCNVTFTVDSNQQTYQTYTHNQFRHQPRFPKPPNITFPQGTLLDKSSRFCQGRPSSCSTRNFWFRPADYNQCLQISNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLGISAVSEFFGTSLTPLFHFHISTCLKTQGAFYICGQSIHQCLPSNWTGTCTIGYVTPDIFIAPGNLSLPIPIYGNSPLPRVRRAIHFIPLLAGLGILAGTGTGIAGITKASLTYSQLSKEIANNIDTMAKALTTMQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPLTGPLVSLLLLLLFGPCLLNLITQFVSSRLQAIKLQTNLSAGRHPRNIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process .
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane
Expressed at higher level in placenta. Expressed at lower level in adrenal, bone marrow, brain, breast, colon, kidney, lung, ovary, peripheral blood lymphocytes, prostate, skin, spleen, testis, thymus, thyroid, trachea. |
SYCY2_HYLML | Hylobates moloch | MGLLLLVLILTPLLAAYRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYQWDPNLKGLMRPANSLLSTVKQDFPDIRQKPPIFGPIFTNINLMGIAPICVTAKRKNGTNVGTLPSTVCNVTFTVDPNQQTYQTYTHNQFRHQPRFPKPPNITFPQGTLLDKSTRFCQGRPSSCSTRNFWFRPADYNQCLQISNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLGISAVSEFFGNSLTPLFHFHISTCLKTQGAFYICGQSIHQCLPSNWTGTCTIGYVTPDIFIAPGNLSLPIPIYGKSQLPRVRRAIHFIPLLAGLGILAGTGTGIAGITKASLTYSQLSKEIANNIDTMAKTLTTVQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPFIGPFVSLLLLLLFGPCLLNLITQFVSSRLQAIKLQTNLSAGRRPRTIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution and this one is unable to confer infectivity.
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane |
SYCY2_MACFA | Macaca fascicularis | MGLLLLVLILTPLLAAYRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYQWDPNLKGLMTPANSLLSTVKQDFPDIRQKPPIFGPIFTNINLMGKAPICVTAKRKNGTNVGTLPSTVCNVTFTVDPNQQTYQTYTHNQFRHQPRFPKPPNITFPQGTLLDKSTQFCQGRPSSCRTRNFWFRPADYNQCLQIPNLSSPAEWVLLDQTRNSLFWENKTKGANQSQTPCIQVLAGMTIATSYLGISPVSEFFGTSLTPLFHFHISTCLKTQGAFYICGQSIHQCLPTNWTGTCTIGYVTPDIFIAPGNLSLPIPIYGNSQLPRARRAIHFIPLLAGLGILAGTGTGIAGITKASFTYSQLSKEIAKNIDTMAKTLTTVQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPFIGPLVSLLLLLLFGPCLLNLITQFVSSRLQAIKLQTNGAGCRPRNIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane |
SYCY2_PANTR | Pan troglodytes | MGLLLLVLILTPSLAAYRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYRWDPNLKGLMRPANSLLSMVKQDFPDIRQKPPIFGPIFTNINLMGIAPICVMAKRKNGTNVGTLPSTVCNVTFTVDSNQQTYQTYTHNQFRHQPRFPKPPNITFPQGTLLDKSSRFCQGRPSSCSTRNFWFRPADYNQCLQISNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLGISAVSEFFGTSLTPLFHFHISTCLKTQGAFYICGQSIHQCLPSNWTGTCTIGYVTPDIFIAPGNLSLPIPIYGNSQLPRVRRAIHFIPLLAGLGILAGTGTGIAGITKASLTYSQLSKEIANNIDTMAKALTTMQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPLTGPLVSLLLLLLFGPCLLNLITQFVSSRLQAIKLQTNLSAGRHPRNIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane |
SYCY2_PONPY | Pongo pygmaeus | MGLLLLVLILTPLLAAHRHPDFPLLEKAQQLLQSTGSPYSTNCWLCTSSSTETPGTAYPASPREWTSIEAELHISYHWDPNLKGLMRPANSLLSTVKQDFPDIRQKPPIFGPIFTNINLMGIAPICVTAKRKNGTNVGTLPSTVCNVTFTVDPNQQTYQTYTHKQFLHQPRFPKPPNITFPQGTLLDKSTRFCQGRPSSCSTRNFWFRPADYNQCLQISNLSSTAEWVLLDQTRNSLFWENKTKGANQSQTPCVQVLAGMTIATSYLGISAVSEFFGTSLTPLFHFHISTCLKTQGAFYICGQSIHQCLPSNWTGTCTIGYVTPDIFIAPGNISLPIPIYGNSQLPRVRRAIHFIPLLAGLGIIAGTGTGIAGITKASLTYSQLSKEIAKNIDTMAKALTTVQEQIDSLAAVVLQNRRGLDMLTAAQGGICLALDEKCCFWVNQSGKVQDNIRQLLNQASSLRERATQGWLNWEGTWKWFSWVLPFTGPLVSLLLLLLFGPCLLNLITQFVLSRLQAIKLQTNLSAGCRPHNIQESPF | This endogenous retroviral envelope protein has retained its original fusogenic properties and participates in trophoblast fusion and the formation of a syncytium during placenta morphogenesis. The interaction with MFSD2A is apparently important for this process (By similarity).
Endogenous envelope proteins may have kept, lost or modified their original function during evolution but this one can still make pseudotypes with MLV, HIV-1 or SIV-1 virions and confer infectivity. Retroviral envelope proteins mediate receptor recognition and membrane fusion during early infection. The surface protein mediates receptor recognition, while the transmembrane protein anchors the envelope heterodimer to the viral membrane through one transmembrane domain. The other hydrophobic domain, called fusion peptide, mediates fusion of the viral membrane with the target cell membrane .
Subcellular locations: Virion
Subcellular locations: Cell membrane
The surface protein is not anchored to the membrane, but localizes to the extracellular surface through its binding to TM.
Subcellular locations: Cell membrane |
SYF2_HUMAN | Homo sapiens | MAAIAASEVLVDSAEEGSLAAAAELAAQKREQRLRKFRELHLMRNEARKLNHQEVVEEDKRLKLPANWEAKKARLEWELKEEEKKKECAARGEDYEKVKLLEISAEDAERWERKKKRKNPDLGFSDYAAAQLRQYHRLTKQIKPDMETYERLREKHGEEFFPTSNSLLHGTHVPSTEEIDRMVIDLEKQIEKRDKYSRRRPYNDDADIDYINERNAKFNKKAERFYGKYTAEIKQNLERGTAV | Involved in pre-mRNA splicing as component of the spliceosome ( ).
Subcellular locations: Nucleus
Abundantly expressed in the heart, skeletal muscle and kidney. Expressed at lower level other tissues. |
SYGP1_HUMAN | Homo sapiens | MSRSRASIHRGSIPAMSYAPFRDVRGPSMHRTQYVHSPYDRPGWNPRFCIISGNQLLMLDEDEIHPLLIRDRRSESSRNKLLRRTVSVPVEGRPHGEHEYHLGRSRRKSVPGGKQYSMEGAPAAPFRPSQGFLSRRLKSSIKRTKSQPKLDRTSSFRQILPRFRSADHDRARLMQSFKESHSHESLLSPSSAAEALELNLDEDSIIKPVHSSILGQEFCFEVTTSSGTKCFACRSAAERDKWIENLQRAVKPNKDNSRRVDNVLKLWIIEARELPPKKRYYCELCLDDMLYARTTSKPRSASGDTVFWGEHFEFNNLPAVRALRLHLYRDSDKKRKKDKAGYVGLVTVPVATLAGRHFTEQWYPVTLPTGSGGSGGMGSGGGGGSGGGSGGKGKGGCPAVRLKARYQTMSILPMELYKEFAEYVTNHYRMLCAVLEPALNVKGKEEVASALVHILQSTGKAKDFLSDMAMSEVDRFMEREHLIFRENTLATKAIEEYMRLIGQKYLKDAIGEFIRALYESEENCEVDPIKCTASSLAEHQANLRMCCELALCKVVNSHCVFPRELKEVFASWRLRCAERGREDIADRLISASLFLRFLCPAIMSPSLFGLMQEYPDEQTSRTLTLIAKVIQNLANFSKFTSKEDFLGFMNEFLELEWGSMQQFLYEISNLDTLTNSSSFEGYIDLGRELSTLHALLWEVLPQLSKEALLKLGPLPRLLNDISTALRNPNIQRQPSRQSERPRPQPVVLRGPSAEMQGYMMRDLNSSIDLQSFMARGLNSSMDMARLPSPTKEKPPPPPPGGGKDLFYVSRPPLARSSPAYCTSSSDITEPEQKMLSVNKSVSMLDLQGDGPGGRLNSSSVSNLAAVGDLLHSSQASLTAALGLRPAPAGRLSQGSGSSITAAGMRLSQMGVTTDGVPAQQLRIPLSFQNPLFHMAADGPGPPGGHGGGGGHGPPSSHHHHHHHHHHRGGEPPGDTFAPFHGYSKSEDLSSGVPKPPAASILHSHSYSDEFGPSGTDFTRRQLSLQDNLQHMLSPPQITIGPQRPAPSGPGGGSGGGSGGGGGGQPPPLQRGKSQQLTVSAAQKPRPSSGNLLQSPEPSYGPARPRQQSLSKEGSIGGSGGSGGGGGGGLKPSITKQHSQTPSTLNPTMPASERTVAWVSNMPHLSADIESAHIEREEYKLKEYSKSMDESRLDRVKEYEEEIHSLKERLHMSNRKLEEYERRLLSQEEQTSKILMQYQARLEQSEKRLRQQQAEKDSQIKSIIGRLMLVEEELRRDHPAMAEPLPEPKKRLLDAQERQLPPLGPTNPRVTLAPPWNGLAPPAPPPPPRLQITENGEFRNTADH | Major constituent of the PSD essential for postsynaptic signaling. Inhibitory regulator of the Ras-cAMP pathway. Member of the NMDAR signaling complex in excitatory synapses, it may play a role in NMDAR-dependent control of AMPAR potentiation, AMPAR membrane trafficking and synaptic plasticity. Regulates AMPAR-mediated miniature excitatory postsynaptic currents. Exhibits dual GTPase-activating specificity for Ras and Rap. May be involved in certain forms of brain injury, leading to long-term learning and memory deficits (By similarity). |
SYK_HUMAN | Homo sapiens | MAAVQAAEVKVDGSEPKLSKNELKRRLKAEKKVAEKEAKQKELSEKQLSQATAAATNHTTDNGVGPEEESVDPNQYYKIRSQAIHQLKVNGEDPYPHKFHVDISLTDFIQKYSHLQPGDHLTDITLKVAGRIHAKRASGGKLIFYDLRGEGVKLQVMANSRNYKSEEEFIHINNKLRRGDIIGVQGNPGKTKKGELSIIPYEITLLSPCLHMLPHLHFGLKDKETRYRQRYLDLILNDFVRQKFIIRSKIITYIRSFLDELGFLEIETPMMNIIPGGAVAKPFITYHNELDMNLYMRIAPELYHKMLVVGGIDRVYEIGRQFRNEGIDLTHNPEFTTCEFYMAYADYHDLMEITEKMVSGMVKHITGSYKVTYHPDGPEGQAYDVDFTPPFRRINMVEELEKALGMKLPETNLFETEETRKILDDICVAKAVECPPPRTTARLLDKLVGEFLEVTCINPTFICDHPQIMSPLAKWHRSKEGLTERFELFVMKKEICNAYTELNDPMRQRQLFEEQAKAKAAGDDEAMFIDENFCTALEYGLPPTAGWGMGIDRVAMFLTDSNNIKEVLLFPAMKPEDKKENVATTDTLESTTVGTSV | Catalyzes the specific attachment of an amino acid to its cognate tRNA in a 2 step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA ( ). When secreted, acts as a signaling molecule that induces immune response through the activation of monocyte/macrophages . Catalyzes the synthesis of the signaling molecule diadenosine tetraphosphate (Ap4A), and thereby mediates disruption of the complex between HINT1 and MITF and the concomitant activation of MITF transcriptional activity ( , ).
(Microbial infection) Interacts with HIV-1 virus GAG protein, facilitating the selective packaging of tRNA(3)(Lys), the primer for reverse transcription initiation.
Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Nucleus, Cell membrane, Secreted
Secretion is induced by TNF-alpha . Cytosolic in quiescent mast cells. Translocates into the nucleus in response to mast cell activation by immunoglobulin E .
Subcellular locations: Mitochondrion |
SYPH_HUMAN | Homo sapiens | MLLLADMDVVNQLVAGGQFRVVKEPLGFVKVLQWVFAIFAFATCGSYSGELQLSVDCANKTESDLSIEVEFEYPFRLHQVYFDAPTCRGGTTKVFLVGDYSSSAEFFVTVAVFAFLYSMGALATYIFLQNKYRENNKGPMLDFLATAVFAFMWLVSSSAWAKGLSDVKMATDPENIIKEMPVCRQTGNTCKELRDPVTSGLNTSVVFGFLNLVLWVGNLWFVFKETGWAAPFLRAPPGAPEKQPAPGDAYGDAGYGQGPGGYGPQDSYGPQGGYQPDYGQPAGSGGSGYGPQGDYGQQGYGPQGAPTSFSNQM | Possibly involved in structural functions as organizing other membrane components or in targeting the vesicles to the plasma membrane. Involved in the regulation of short-term and long-term synaptic plasticity (By similarity).
Subcellular locations: Cytoplasmic vesicle, Secretory vesicle, Synaptic vesicle membrane, Synapse, Synaptosome
Expressed in the brain, with expression in the hippocampus, the neuropil in the dentate gyrus, where expression is higher in the outer half of the molecular layer than in the inner half, and in the neuropil of CA4 and CA3 . Expressed in the putamen (at protein level) . |
SYPL1_HUMAN | Homo sapiens | MAPNIYLVRQRISRLGQRMSGFQINLNPLKEPLGFIKVLEWIASIFAFATCGGFKGQTEIQVNCPPAVTENKTVTATFGYPFRLNEASFQPPPGVNICDVNWKDYVLIGDYSSSAQFYVTFAVFVFLYCIAALLLYVGYTSLYLDSRKLPMIDFVVTLVATFLWLVSTSAWAKALTDIKIATGHNIIDELPPCKKKAVLCYFGSVTSMGSLNVSVIFGFLNMILWGGNAWFVYKETSLHSPSNTSAPHSQGGIPPPTGI | Subcellular locations: Cytoplasmic vesicle membrane, Melanosome
Cytoplasmic transport vesicles (By similarity). Identified by mass spectrometry in melanosome fractions from stage I to stage IV. |
SYPL2_HUMAN | Homo sapiens | MSSTESAGRTADKSPRQQVDRLLVGLRWRRLEEPLGFIKVLQWLFAIFAFGSCGSYSGETGAMVRCNNEAKDVSSIIVAFGYPFRLHRIQYEMPLCDEESSSKTMHLMGDFSAPAEFFVTLGIFSFFYTMAALVIYLRFHNLYTENKRFPLVDFCVTVSFTFFWLVAAAAWGKGLTDVKGATRPSSLTAAMSVCHGEEAVCSAGATPSMGLANISVLFGFINFFLWAGNCWFVFKETPWHGQGQGQDQDQDQDQGQGPSQESAAEQGAVEKQ | Involved in communication between the T-tubular and junctional sarcoplasmic reticulum (SR) membranes.
Subcellular locations: Membrane
Triad junction, the junctional complex between the transverse tubule and the sarcoplasmic reticulum. |
SYVM_HUMAN | Homo sapiens | MPHLPLASFRPPFWGLRHSRGLPRFHSVSTQSEPHGSPISRRNREAKQKRLREKQATLEAEIAGESKSPAESIKAWRPKELVLYEIPTKPGEKKDVSGPLPPAYSPRYVEAAWYPWWVREGFFKPEYQARLPQATGETFSMCIPPPNVTGSLHIGHALTVAIQDALVRWHRMRGDQVLWVPGSDHAGIATQAVVEKQLWKERGVRRHELSREAFLREVWQWKEAKGGEICEQLRALGASLDWDRECFTMDVGSSVAVTEAFVRLYKAGLLYRNHQLVNWSCALRSAISDIEVENRPLPGHTQLRLPGCPTPVSFGLLFSVAFPVDGEPDAEVVVGTTRPETLPGDVAVAVHPDDSRYTHLHGRQLRHPLMGQPLPLITDYAVQPHVGTGAVKVTPAHSPADAEMGARHGLSPLNVIAEDGTMTSLCGDWLQGLHRFVAREKIMSVLSEWGLFRGLQNHPMVLPICSRSGDVIEYLLKNQWFVRCQEMGARAAKAVESGALELSPSFHQKNWQHWFSHIGDWCVSRQLWWGHQIPAYLVVEDHAQGEEDCWVVGRSEAEAREVAAELTGRPGAELTLERDPDVLDTWFSSALFPFSALGWPQETPDLARFYPLSLLETGSDLLLFWVGRMVMLGTQLTGQLPFSKVLLHPMVRDRQGRKMSKSLGNVLDPRDIISGVEMQVLQEKLRSGNLDPAELAIVAAAQKKDFPHGIPECGTDALRFTLCSHGVQAGDLHLSVSEVQSCRHFCNKIWNALRFILNALGEKFVPQPAEELSPSSPMDAWILSRLALAAQECERGFLTRELSLVTHALHHFWLHNLCDVYLEAVKPVLWHSPRPLGPPQVLFSCADLGLRLLAPLMPFLAEELWQRLPPRPGCPPAPSISVAPYPSACSLEHWRQPELERRFSRVQEVVQVLRALRATYQLTKARPRVLLQSSEPGDQGLFEAFLEPLGTLGYCGAVGLLPPGAAAPSGWAQAPLSDTAQVYMELQGLVDPQIQLPLLAARRYKLQKQLDSLTARTPSEGEAGTQRQQKLSSLQLELSKLDKAASHLRQLMDEPPAPGSPEL | Catalyzes the attachment of valine to tRNA(Val) in a two-step reaction: valine is first activated by ATP to form Val-AMP and then transferred to the acceptor end of tRNA(Val).
Subcellular locations: Mitochondrion |
SYVM_MACMU | Macaca mulatta | MPHLPLASFRPPFWGLRHSRGLPRFHSVSTQSEPHGSPISRRNREAKQKRLREKQATLETDIAGESKSPAESIKAWSPKEVVLYEIPTKPGEKKDVSGPLPPAYSPRYVEAAWYPWWVREGFFKPEYQARLPQATGETFSMCIPPPNVTGSLHIGHALTVAIQDALVRWHRMRGDQVLWVPGSDHAGIATQAVVEKQLWKEQGVRRHELSREAFLREVWQWKEAKGGEICEQLRALGASLDWDRECFTMDVGSSVAVTEAFVRLYKAGLLYRNRRLGRWMSCPLTQLSRRFQVENRPLPGRTQLRLPGCPTPVSFGLLFSVAFPVDGEPDAEVVVGTTRPETLPGDVAVAVHPDDSRYTHLHGRQLRHPLMGQPLPLITDYAVQPHVGTGAVKVTPAHSPADAEMGARHGLSPLNVIAEDGTMTSLCGDWLQGLHRFVAREKIVSVLSERGLFRGLQNHPMVLPICSRSGDVIEYLLKSQWFVRCQEMGARAAQAVESGALELSPSFHQKNWQHWFSHIGDWCVSRQLWWGHQIPAYLVVEDHAQGEEDCWVVGRSEAEAREVAAELTGRPGAELALERDPDVLDTWFSSALFPFSALGWPQETPDLARFYPLSLLETGSDLLLFWVGRMVMLGTQLTGRLPFSKVLLHPMVRDRQGRKMSKSLGNVLDPRHIISGAEMQVLQEKLRSGNLDPAELAIVAAAQKKDFPHGIPECGTDALRFTLCSHGVQGGDLCLSVSEVQSCRHFCNKIWNALRFILNALGEKFVPQPAKELSPSCHMDAWILSRLALTARECERGFLTRELSLVTHALHHFWLHNLCDVYLEAVKPVLRHSPCPPGPPQVLFSCADIGLRLLAPLMPFLAEELWQRLPPRPGCPPAPSISVAPYPSPCSLEHWRQPELERRFSRVQEVVQVLRALRATYQLTKARPRVLLQSSEPGDQGLFEAFLEPLGTLSHCGAVGLLPPGAAAPSGWAQAPLSDTVQVYMELQGLVDPQIQLPLLAARRSKLQKQLDGLMARTPSEGEAGTQRQQRLSSLQLELSKLDKAASHLRQLMDEPPAPGSPEL | Catalyzes the attachment of valine to tRNA(Val) in a two-step reaction: valine is first activated by ATP to form Val-AMP and then transferred to the acceptor end of tRNA(Val).
Subcellular locations: Mitochondrion |
SYVN1_HUMAN | Homo sapiens | MFRTAVMMAASLALTGAVVAHAYYLKHQFYPTVVYLTKSSPSMAVLYIQAFVLVFLLGKVMGKVFFGQLRAAEMEHLLERSWYAVTETCLAFTVFRDDFSPRFVALFTLLLFLKCFHWLAEDRVDFMERSPNISWLFHCRIVSLMFLLGILDFLFVSHAYHSILTRGASVQLVFGFEYAILMTMVLTIFIKYVLHSVDLQSENPWDNKAVYMLYTELFTGFIKVLLYMAFMTIMIKVHTFPLFAIRPMYLAMRQFKKAVTDAIMSRRAIRNMNTLYPDATPEELQAMDNVCIICREEMVTGAKRLPCNHIFHTSCLRSWFQRQQTCPTCRMDVLRASLPAQSPPPPEPADQGPPPAPHPPPLLPQPPNFPQGLLPPFPPGMFPLWPPMGPFPPVPPPPSSGEAVAPPSTSAAALSRPSGAATTTAAGTSATAASATASGPGSGSAPEAGPAPGFPFPPPWMGMPLPPPFAFPPMPVPPAGFAGLTPEELRALEGHERQHLEARLQSLRNIHTLLDAAMLQINQYLTVLASLGPPRPATSVNSTEETATTVVAAASSTSIPSSEATTPTPGASPPAPEMERPPAPESVGTEEMPEDGEPDAAELRRRRLQKLESPVAH | E3 ubiquitin-protein ligase which accepts ubiquitin specifically from endoplasmic reticulum-associated UBC7 E2 ligase and transfers it to substrates, promoting their degradation ( , ). Component of the endoplasmic reticulum quality control (ERQC) system also called ER-associated degradation (ERAD) involved in ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins ( , ). Also promotes the degradation of normal but naturally short-lived proteins such as SGK. Protects cells from ER stress-induced apoptosis. Protects neurons from apoptosis induced by polyglutamine-expanded huntingtin (HTT) or unfolded GPR37 by promoting their degradation . Sequesters p53/TP53 in the cytoplasm and promotes its degradation, thereby negatively regulating its biological function in transcription, cell cycle regulation and apoptosis . Mediates the ubiquitination and subsequent degradation of cytoplasmic NFE2L1 (By similarity). During the early stage of B cell development, required for degradation of the pre-B cell receptor (pre-BCR) complex, hence supporting further differentiation into mature B cells (By similarity).
Subcellular locations: Endoplasmic reticulum membrane
Ubiquitously expressed, with highest levels in liver and kidney (at protein level). Up-regulated in synovial tissues from patients with rheumatoid arthritis (at protein level). |
T170B_HUMAN | Homo sapiens | MKAEGGDHSMINLSVQQVLSLWAHGTVLRNLTEMWYWIFLWALFSSLFVHGAAGVLMFVMLQRHRQGRVISVIAVSIGFLASVTGAMITSAAVAGIYRVAGKNMAPLEALVWGVGQTVLTLIISFSRILATL | Negatively regulates the canonical Wnt signaling in breast cancer cells. Exerts an inhibitory effect on breast cancer growth by inhibiting CTNNB1 stabilization and nucleus translocation, which reduces the activity of Wnt targets .
Subcellular locations: Cell membrane
Expressed in normal breast tissues. Down-regulated in breast cancer cells (at protein level) . |
T176A_HUMAN | Homo sapiens | MGTADSDEMAPEAPQHTHIDVHIHQESALAKLLLTCCSALRPRATQARGSSRLLVASWVMQIVLGILSAVLGGFFYIRDYTLLVTSGAAIWTGAVAVLAGAAAFIYEKRGGTYWALLRTLLTLAAFSTAIAALKLWNEDFRYGYSYYNSACRISSSSDWNTPAPTQSPEEVRRLHLCTSFMDMLKALFRTLQAMLLGVWILLLLASLTPLWLYCWRMFPTKGKRDQKEMLEVSGI | Subcellular locations: Membrane |
T176B_HUMAN | Homo sapiens | MTQNTVIVNGVAMASRPSQPTHVNVHIHQESALTQLLKAGGSLKKFLFHPGDTVPSTARIGYEQLALGVTQILLGVVSCVLGVCLSLGPWTVLSASGCAFWAGSVVIAAGAGAIVHEKHPGKLAGYISSLLTLAGFATAMAAVVLCVNSFIWQTEPFLYIDTVCDRSDPVFPTTGYRWMRRSQENQWQKEECRAYMQMLRKLFTAIRALFLAVCVLKVIVSLVSLGVGLRNLCGQSSQPLNEEGSEKRLLGENSVPPSPSREQTSTAIVL | May play a role in the process of maturation of dendritic cells. Required for the development of cerebellar granule cells (By similarity).
Subcellular locations: Nucleus membrane
Expressed in lung and dermal fibroblasts. |
T176B_PONAB | Pongo abelii | MTQNTVIVNGVAMDSRPSQPTHINVHIHQESALTQLLKAGGSLKKFLFHPGDTVPSTARIGYEQLALGVTQILLGVLSCALGVCLSLGPWTVLRASGCAFWAGSVAIAAGAGAIVHEKYPGKLAGYVSSLLTLAGFATVMAAVVLCVNSFIWQTEPFLYIDTVCDRSDPVIPTTGYGWMWRSEEIQRQKEECRAYMQMLRKLFTAIRALFLAVCVLKVIVSLASLGVGLRNLCGQSSQPLNEEGSEKRLLGENSVPPSPSREQTSTAIVL | May play a role in the process of maturation of dendritic cells. Required for the development of cerebellar granule cells (By similarity).
Subcellular locations: Nucleus membrane |
T178A_HUMAN | Homo sapiens | MEPRALVTALSLGLSLCSLGLLVTAIFTDHWYETDPRRHKESCERSRAGADPPDQKNRLMPLSHLPLRDSPPLGRRLLPGGPGRADPESWRSLLGLGGLDAECGRPLFATYSGLWRKCYFLGIDRDIDTLILKGIAQRCTAIKYHFSQPIRLRNIPFNLTKTIQQDEWHLLHLRRITAGFLGMAVAVLLCGCIVATVSFFWEESLTQHVAGLLFLMTGIFCTISLCTYAASISYDLNRLPKLIYSLPADVEHGYSWSIFCAWCSLGFIVAAGGLCIAYPFISRTKIAQLKSGRDSTV | Acts as a negative regulator of osteoclast differentiation in basal and inflammatory conditions by regulating TNFSF11-induced Ca (2+) fluxes, thereby controlling the induction of NFATC1.
Subcellular locations: Endoplasmic reticulum membrane |
T178B_HUMAN | Homo sapiens | MAAGRLLLYTGLSLALCALGMLAVAICSDHWYETDARKHRDRCKAFNTRRVDPGFIYNNNNNLPLRASRSRLDRWEGKLLRARNRRQLFAMSPADECSRQYNSTNMGLWRKCHRQGFDPEIAALIRKGEIERCTYIKYHYSSATIPRNLTFNITKTIRQDEWHALHLRRMTAGFMGMAVAIILFGWIIGVLGCCWDRGLMQYVAGLLFLMGGTFCIISLCTCVAGINFELSRYPRYLYGLPDDISHGYGWSMFCAWGGLGLTLISGFFCTLAPSVQPVPRTNYPKSRPENGTVC | Subcellular locations: Membrane |
T2FA_HUMAN | Homo sapiens | MAALGPSSQNVTEYVVRVPKNTTKKYNIMAFNAADKVNFATWNQARLERDLSNKKIYQEEEMPESGAGSEFNRKLREEARRKKYGIVLKEFRPEDQPWLLRVNGKSGRKFKGIKKGGVTENTSYYIFTQCPDGAFEAFPVHNWYNFTPLARHRTLTAEEAEEEWERRNKVLNHFSIMQQRRLKDQDQDEDEEEKEKRGRRKASELRIHDLEDDLEMSSDASDASGEEGGRVPKAKKKAPLAKGGRKKKKKKGSDDEAFEDSDDGDFEGQEVDYMSDGSSSSQEEPESKAKAPQQEEGPKGVDEQSDSSEESEEEKPPEEDKEEEEEKKAPTPQEKKRRKDSSEESDSSEESDIDSEASSALFMAKKKTPPKRERKPSGGSSRGNSRPGTPSAEGGSTSSTLRAAASKLEQGKRVSEMPAAKRLRLDTGPQSLSGKSTPQPPSGKTTPNSGDVQVTEDAVRRYLTRKPMTTKDLLKKFQTKKTGLSSEQTVNVLAQILKRLNPERKMINDKMHFSLKE | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB. It promotes transcription elongation.
Subcellular locations: Nucleus |
T2FB_HUMAN | Homo sapiens | MAERGELDLTGAKQNTGVWLVKVPKYLSQQWAKASGRGEVGKLRIAKTQGRTEVSFTLNEDLANIHDIGGKPASVSAPREHPFVLQSVGGQTLTVFTESSSDKLSLEGIVVQRAECRPAASENYMRLKRLQIEESSKPVRLSQQLDKVVTTNYKPVANHQYNIEYERKKKEDGKRARADKQHVLDMLFSAFEKHQYYNLKDLVDITKQPVVYLKEILKEIGVQNVKGIHKNTWELKPEYRHYQGEEKSD | TFIIF is a general transcription initiation factor that binds to RNA polymerase II and helps to recruit it to the initiation complex in collaboration with TFIIB.
Subcellular locations: Nucleus |
TA2R1_CHLAE | Chlorocebus aethiops | MLESHLIIYFLLAVIQFLLGTFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYINVVVIFLIEFITCSASCAFLVFVNELELWLATWLGVFYCAKVASVLHPLFIWLKMRISKSVPWMILGSLLYVSMICIFHIKYTGFMVPYFLRNLFFQNATIQTEVKQAIQIFSFVAELLVPLLIFLVAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAHISALLSILSFLILYISHYLIKTFLSSLKFHVKRFVFLFCILVIGTYPSGHSLILILGNPKLKQNTKKFLCHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R1_GORGO | Gorilla gorilla gorilla | MLESHLIIYFLLAVIQFLLGIFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYVNVIVIFFIEFIMCSANCAILLFINELELWLATWLGVFYCAKVASVRHPLFXWLKMRISKLVPWMILGSLLYVSMICVFHSKYAGFMVPYFLRNFFSQNTTIQKEDTLAIQIFSFVAEFSVPLLIFLVAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAPISALLSILSFLILYFSHCMIKVFLSSLKFHIRRFIFLFFILVIGIYPSGHSLILILGNPKLKQNAKKFLLHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R1_HUMAN | Homo sapiens | MLESHLIIYFLLAVIQFLLGIFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYVNVIVIFFIEFIMCSANCAILLFINELELWLATWLGVFYCAKVASVRHPLFIWLKMRISKLVPWMILGSLLYVSMICVFHSKYAGFMVPYFLRKFFSQNATIQKEDTLAIQIFSFVAEFSVPLLIFLFAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAPISALLSILSFLILYFSHCMIKVFLSSLKFHIRRFIFLFFILVIGIYPSGHSLILILGNPKLKQNAKKFLLHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5.
Subcellular locations: Membrane
Expressed in subsets of taste receptor cells of the tongue and palate epithelium and exclusively in gustducin-positive cells. |
TA2R1_PANPA | Pan paniscus | MLESHLIIYFLLAVIQFLLGIFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYVNVIVIFFIEFIMCSANCAILLFVNELELWLATWLGVFYCAKVASVRHPLFIWLKMRISKLVPWMILGSLLYVSMICVFHSKYAGFMVPHFLRNFFSQNATIQKEDTLAIQIFSFVAEFSVPLLIFLVAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAPISALLSILSFLILYFSHCMIKVFLSSLKFHVRRFIFLFFILVIGIYPSGHSLILILGNPKLKQNAKKFLLHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R1_PANTR | Pan troglodytes | MLESHLIIYFLLAVIQFLLGIFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYVNVIVIFFIEFIMCSANCAILLFVNELELWLATWLGVFYCAKVASVRHPLFIWLKMRISKLVPWMILGSLLYVSMICVFHSKYAGFMVPHFLRNFFSQNATIQKEDTLAIQIFSFVAEFSVPLLIFLVAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAPISALLSILSFLILYFSHCMIKVFLSSLKFHVRRFIFLFFILVIGIYPSGHSLILILGNPKLKQNAKKFLLHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R1_PONPY | Pongo pygmaeus | MLESHLIIHFLLAVIQFLLGTFTNGIIVVVNGIDLIKHRKMAPLDLLLSCLAVSRIFLQLFIFYVNVIVIFFIEFIMCSENCAILLFINELELWLATWLGVFYCAKVASVPHPLFIWLKMKISKLVPWMILGSLLYVSMTCVFHSKYAGFMVPYFLRNFFSQNATIQKEDTPAIQIFSFVAEFLVPLLIFLVAVLLLIFSLGRHTRQMRNTVAGSRVPGRGAPISALLSILSFVILYFSHCMIKVFLSSLKFHVRSFILPFFILVIGIYPSGHSLILILGNXKLKQNAKKFLLHSKCCQ | Receptor that may play a role in the perception of bitterness and is gustducin-linked. May play a role in sensing the chemical composition of the gastrointestinal content. The activity of this receptor may stimulate alpha gustducin, mediate PLC-beta-2 activation and lead to the gating of TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R3_GORGO | Gorilla gorilla gorilla | MGLTEGVFLILSGTQFTLGILVNCFIELVNGSSWFKTKRMSLSDFIITTLALLRIILLCIILTDSFLIEFSPNTHDSGIIMQIIDVSWTFTNHLSIWLATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVFRGIEATRNVTEHFRKKRSEYYLIHVLGTLWYLPPLIVSLASYSLLIFSLGRHTRQMLQNGTSSRDPTTEAHKRAIRIILSFFFLFLLYFLAFLIASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVVMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R3_HUMAN | Homo sapiens | MMGLTEGVFLILSGTQFTLGILVNCFIELVNGSSWFKTKRMSLSDFIITTLALLRIILLCIILTDSFLIEFSPNTHDSGIIMQIIDVSWTFTNHLSIWLATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVFRGIEATRNVTEHFRKKRSEYYLIHVLGTLWYLPPLIVSLASYSLLIFSLGRHTRQMLQNGTSSRDPTTEAHKRAIRIILSFFFLFLLYFLAFLIASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVVMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5.
Subcellular locations: Membrane
Expressed in subsets of taste receptor cells of the tongue and palate epithelium and exclusively in gustducin-positive cells. Expressed in the antrum and fundus (part of the stomach), duodenum and in gastric endocrine cells. |
TA2R3_PANPA | Pan paniscus | MGLTEGVFLILSGTQFTLGILVNCFIELVNGSSWFKTKRMSLSDFIITTLALLRIILLCIILTDSFLIEFSPNTHDSGIIMQIIDVSWTFTNHLSIWLATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVFRGIEATRNVTEHFRKKRSEYYLIHVLGTLWYLPPLIVSLASYSLLIFSLGRHTRQMLQNGTSSRDPTTEAHKRAIRIILSFFFLFLLYFLAFLIASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVVMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R3_PANTR | Pan troglodytes | MGLTEGVFLILSGTQFTLGILVNCFIELVNGSSWFKTKRMSLSDFIITTLALLRIILLCIILTDSFLIEFSPNTHDSGIIMQIIDVSWTFTNHLSIWLATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVFRGIEATRNVTEHFRKKRSEYYLIHVLGTLWYLPPLIVSLASYSLLIFSLGRHTRQMLQNGTSSRDPTTEAHKRAIRIILSFFFLFLLYFLAFLIASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVVMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R3_PAPHA | Papio hamadryas | MGLTDGVFLIVCGAQFTLGILXNGFIGLVNGRSWFKTKRMSLSDFIIATLALSRIILLCIILTDSFLIVFSVKEHDSGIIMQLIDVFWTFTNHLSIWFATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGALLLSCGSTASLINEFKLYSVLRGIEATRNVTEHFRKKRNEYYLIHVLGTLWYLPPLVVSLASYFLLIFSLGRHTRQMLQNSTSSRDPSTEAHKRAIRIILSFFFLFLLYFLAFLIASFGNFLPETKMAKMIGEVMTMFYPAGHSFIVILGNSKLKQTFVEMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R3_PONPY | Pongo pygmaeus | MGLTEGLFLILSGTQFALGILVNCFIGLVNGSSWFKTKRMSLSDFIITTLAFLRIILLCIILTDSFLIEFSPNAHDSGVIMQIIDVSWTFTNHLSIWLATCLGVLYCLKIASFSHPTFLWLKWRVSRVMVWMLLGVLLLSCGSTASLINEFKLYSVFRGIEATXNVTEHFRKKRSEYYLIHVLGTLWYLPPLIVSLAAYFLLIFSLGRHTRQMLQNGTSSRDPSTEAHKRAIRIILSSFFLFLLYFLAFLIASFGNFLPKTKMAKMIGEVMTMFYPAGHSFILILGNSKLKQTFVEMLRCESGHLKPGSKGPIFS | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity).
Subcellular locations: Membrane |
TA2R4_GORGO | Gorilla gorilla gorilla | MLRLFYFSAVIASVILNFVGIIMNLFITVVNCKTWVKSHRISSSDRILFSLGITRFLMLGLFLVNTIYFVSSNMERSVYLSAFFVLCFMFLDSSSLWFVTLLNILYCVKITNFQHSVFLLLKRSISPKIPRLLLAFVLISAFTTCLYITLSQASPFPELVTTRNNTSFNISEGILSLVVSLVLSSSLQFIINVTSASLLIHSLRRHIQKMQKNATGFWNPQMEAHVGAMKLMVYFLILYIPYSVATLVQYLPFYAGMDMGTKSICLIFATLYSPGHSVLIIITHPKLKTTAKKILCFKK | Gustducin-coupled receptor implicated in the perception of bitter compounds in the oral cavity and the gastrointestinal tract. Signals through PLCB2 and the calcium-regulated cation channel TRPM5 (By similarity). In airway epithelial cells, binding of denatonium increases the intracellular calcium ion concentration and stimulates ciliary beat frequency (By similarity).
Subcellular locations: Membrane, Cell projection, Cilium membrane
In airway epithelial cells, localizes to motile cilia. |
TAAR6_HUMAN | Homo sapiens | MSSNSSLLVAVQLCYANVNGSCVKIPFSPGSRVILYIVFGFGAVLAVFGNLLVMISILHFKQLHSPTNFLVASLACADFLVGVTVMPFSMVRTVESCWYFGRSFCTFHTCCDVAFCYSSLFHLCFISIDRYIAVTDPLVYPTKFTVSVSGICISVSWILPLMYSGAVFYTGVYDDGLEELSDALNCIGGCQTVVNQNWVLTDFLSFFIPTFIMIILYGNIFLVARRQAKKIENTGSKTESSSESYKARVARRERKAAKTLGVTVVAFMISWLPYSIDSLIDAFMGFITPACIYEICCWCAYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNLFSEHI | Orphan receptor. Could be a receptor for trace amines. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Trace amines are likely to be involved in a variety of physiological functions that have yet to be fully understood.
Subcellular locations: Cell membrane
Expressed at low abundance in various brain tissues, as well as in fetal liver, but not in the cerebellum or placenta. In the brain, comparable levels of expression in basal ganglia, frontal cortex, substantia nigra, amygdala and hippocampus, highest expression in hippocampus and lowest expression in basal ganglia. |
TAAR6_PANTR | Pan troglodytes | MSSNSSLLVAVQLCYPNVNGSCVETLYSPGSRVILYIVFGFGAVLAVFGNLLVMISILHFKQLHSPTNFLVASLACADFLVGVTVMPFSMVRTVESCWYFGRSFCTFHTCCDVAFCYSSLFHLCFISIDRYIAVTDPLVYPTKFTVSVSGICISVSWILPLMYSGAVFYTGVYDDGLEELSDALNCIGGCQTVVNQNWVLIDCLSFFIPTFIMIILYGNIFLVARRQAKKIENTGSKTESSSESYKARVARRERKAAKTLGVTVVAFMISWLPYSIDSLIDAFMGFITPAYIYEICCWCAYYNSAMNPLIYALFYPWFRKAIKVIVTGQVLKNSSATMNLFSEHI | Orphan receptor. Could be a receptor for trace amines. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Trace amines are likely to be involved in a variety of physiological functions that have yet to be fully understood (By similarity).
Subcellular locations: Cell membrane |
TAAR8_HUMAN | Homo sapiens | MTSNFSQPVVQLCYEDVNGSCIETPYSPGSRVILYTAFSFGSLLAVFGNLLVMTSVLHFKQLHSPTNFLIASLACADFLVGVTVMLFSMVRTVESCWYFGAKFCTLHSCCDVAFCYSSVLHLCFICIDRYIVVTDPLVYATKFTVSVSGICISVSWILPLTYSGAVFYTGVNDDGLEELVSALNCVGGCQIIVSQGWVLIDFLLFFIPTLVMIILYSKIFLIAKQQAIKIETTSSKVESSSESYKIRVAKRERKAAKTLGVTVLAFVISWLPYTVDILIDAFMGFLTPAYIYEICCWSAYYNSAMNPLIYALFYPWFRKAIKLILSGDVLKASSSTISLFLE | Orphan receptor. Could be a receptor for trace amines. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Trace amines are likely to be involved in a variety of physiological functions that have yet to be fully understood.
Subcellular locations: Cell membrane
Expressed in kidney and amygdala. Not expressed in other tissues or brain regions tested. |
TAAR9_HUMAN | Homo sapiens | MVNNFSQAEAVELCYKNVNESCIKTPYSPGPRSILYAVLGFGAVLAAFGNLLVMIAILHFKQLHTPTNFLIASLACADFLVGVTVMPFSTVRSVESCWYFGDSYCKFHTCFDTSFCFASLFHLCCISVDRYIAVTDPLTYPTKFTVSVSGICIVLSWFFSVTYSFSIFYTGANEEGIEELVVALTCVGGCQAPLNQNWVLLCFLLFFIPNVAMVFIYSKIFLVAKHQARKIESTASQAQSSSESYKERVAKRERKAAKTLGIAMAAFLVSWLPYLVDAVIDAYMNFITPPYVYEILVWCVYYNSAMNPLIYAFFYQWFGKAIKLIVSGKVLRTDSSTTNLFSEEVETD | Orphan receptor. Could be a receptor for trace amines. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained speculative. Trace amines are likely to be involved in a variety of physiological functions that have yet to be fully understood.
Subcellular locations: Cell membrane |
TAB1_HUMAN | Homo sapiens | MAAQRRSLLQSEQQPSWTDDLPLCHLSGVGSASNRSYSADGKGTESHPPEDSWLKFRSENNCFLYGVFNGYDGNRVTNFVAQRLSAELLLGQLNAEHAEADVRRVLLQAFDVVERSFLESIDDALAEKASLQSQLPEGVPQHQLPPQYQKILERLKTLEREISGGAMAVVAVLLNNKLYVANVGTNRALLCKSTVDGLQVTQLNVDHTTENEDELFRLSQLGLDAGKIKQVGIICGQESTRRIGDYKVKYGYTDIDLLSAAKSKPIIAEPEIHGAQPLDGVTGFLVLMSEGLYKALEAAHGPGQANQEIAAMIDTEFAKQTSLDAVAQAVVDRVKRIHSDTFASGGERARFCPRHEDMTLLVRNFGYPLGEMSQPTPSPAPAAGGRVYPVSVPYSSAQSTSKTSVTLSLVMPSQGQMVNGAHSASTLDEATPTLTNQSPTLTLQSTNTHTQSSSSSSDGGLFRSRPAHSLPPGEDGRVEPYVDFAEFYRLWSVDHGEQSVVTAP | Key adapter protein that plays an essential role in JNK and NF-kappa-B activation and proinflammatory cytokines production in response to stimulation with TLRs and cytokines (, ). Mechanistically, associates with the catalytic domain of MAP3K7/TAK1 to trigger MAP3K7/TAK1 autophosphorylation leading to its full activation (, ). Similarly, associates with MAPK14 and triggers its autophosphorylation and subsequent activation (, ). In turn, MAPK14 phosphorylates TAB1 and inhibits MAP3K7/TAK1 activation in a feedback control mechanism . Plays also a role in recruiting MAPK14 to the TAK1 complex for the phosphorylation of the TAB2 and TAB3 regulatory subunits .
Ubiquitous. |
TAB2_HUMAN | Homo sapiens | MAQGSHQIDFQVLHDLRQKFPEVPEVVVSRCMLQNNNNLDACCAVLSQESTRYLYGEGDLNFSDDSGISGLRNHMTSLNLDLQSQNIYHHGREGSRMNGSRTLTHSISDGQLQGGQSNSELFQQEPQTAPAQVPQGFNVFGMSSSSGASNSAPHLGFHLGSKGTSSLSQQTPRFNPIMVTLAPNIQTGRNTPTSLHIHGVPPPVLNSPQGNSIYIRPYITTPGGTTRQTQQHSGWVSQFNPMNPQQVYQPSQPGPWTTCPASNPLSHTSSQQPNQQGHQTSHVYMPISSPTTSQPPTIHSSGSSQSSAHSQYNIQNISTGPRKNQIEIKLEPPQRNNSSKLRSSGPRTSSTSSSVNSQTLNRNQPTVYIAASPPNTDELMSRSQPKVYISANAATGDEQVMRNQPTLFISTNSGASAASRNMSGQVSMGPAFIHHHPPKSRAIGNNSATSPRVVVTQPNTKYTFKITVSPNKPPAVSPGVVSPTFELTNLLNHPDHYVETENIQHLTDPTLAHVDRISETRKLSMGSDDAAYTQALLVHQKARMERLQRELEIQKKKLDKLKSEVNEMENNLTRRRLKRSNSISQIPSLEEMQQLRSCNRQLQIDIDCLTKEIDLFQARGPHFNPSAIHNFYDNIGFVGPVPPKPKDQRSIIKTPKTQDTEDDEGAQWNCTACTFLNHPALIRCEQCEMPRHF | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) ( , ). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains ( , ). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 ( ). Regulates the IL1-mediated translocation of NCOR1 out of the nucleus (By similarity). Involved in heart development .
Subcellular locations: Membrane, Endosome membrane, Lysosome membrane, Cytoplasm, Cytosol
Following IL1 stimulation, translocation occurs from the membrane to cytosol . Interaction with TRIM38 promotes translocation from cytosol to endosome and lysosome .
Widely expressed. In the embryo, expressed in the ventricular trabeculae, endothelial cells of the conotruncal cushions of the outflow tract and in the endothelial cells lining the developing aortic valves. |
TAB3_HUMAN | Homo sapiens | MAQSSPQLDIQVLHDLRQRFPEIPEGVVSQCMLQNNNNLEACCRALSQESSKYLYMEYHSPDDNRMNRNRLLHINLGIHSPSSYHPGDGAQLNGGRTLVHSSSDGHIDPQHAAGKQLICLVQEPHSAPAVVAATPNYNPFFMNEQNRSAATPPSQPPQQPSSMQTGMNPSAMQGPSPPPPPPSYMHIPRYSTNPITVTVSQNLPSGQTVPRALQILPQIPSNLYGSPGSIYIRQTSQSSSGRQTPQSTPWQSSPQGPVPHYSQRPLPVYPHQQNYQPSQYSPKQQQIPQSAYHSPPPSQCPSPFSSPQHQVQPSQLGHIFMPPSPSTTPPHPYQQGPPSYQKQGSHSVAYLPYTASSLSKGSMKKIEITVEPSQRPGTAINRSPSPISNQPSPRNQHSLYTATTPPSSSPSRGISSQPKPPFSVNPVYITYTQPTGPSCTPSPSPRVIPNPTTVFKITVGRATTENLLNLVDQEERSAAPEPIQPISVIPGSGGEKGSHKYQRSSSSGSDDYAYTQALLLHQRARMERLAKQLKLEKEELERLKSEVNGMEHDLMQRRLRRVSCTTAIPTPEEMTRLRSMNRQLQINVDCTLKEVDLLQSRGNFDPKAMNNFYDNIEPGPVVPPKPSKKDSSDPCTIERKARRISVTSKVQADIHDTQAAAADEHRTGSTQSPRTQPRDEDYEGAPWNCDSCTFLNHPALNRCEQCEMPRYT | Adapter required to activate the JNK and NF-kappa-B signaling pathways through the specific recognition of 'Lys-63'-linked polyubiquitin chains by its RanBP2-type zinc finger (NZF) ( , ). Acts as an adapter linking MAP3K7/TAK1 and TRAF6 to 'Lys-63'-linked polyubiquitin chains ( ). The RanBP2-type zinc finger (NZF) specifically recognizes Lys-63'-linked polyubiquitin chains unanchored or anchored to the substrate proteins such as RIPK1/RIP1 and RIPK2: this acts as a scaffold to organize a large signaling complex to promote autophosphorylation of MAP3K7/TAK1, and subsequent activation of I-kappa-B-kinase (IKK) core complex by MAP3K7/TAK1 ( ).
May be an oncogenic factor.
Widely expressed. Constitutively overexpressed in certain tumor tissues.
Major transcript.
Minor transcript. |
TAF6_HUMAN | Homo sapiens | MAEEKKLKLSNTVLPSESMKVVAESMGIAQIQEETCQLLTDEVSYRIKEIAQDALKFMHMGKRQKLTTSDIDYALKLKNVEPLYGFHAQEFIPFRFASGGGRELYFYEEKEVDLSDIINTPLPRVPLDVCLKAHWLSIEGCQPAIPENPPPAPKEQQKAEATEPLKSAKPGQEEDGPLKGKGQGATTADGKGKEKKAPPLLEGAPLRLKPRSIHELSVEQQLYYKEITEACVGSCEAKRAEALQSIATDPGLYQMLPRFSTFISEGVRVNVVQNNLALLIYLMRMVKALMDNPTLYLEKYVHELIPAVMTCIVSRQLCLRPDVDNHWALRDFAARLVAQICKHFSTTTNNIQSRITKTFTKSWVDEKTPWTTRYGSIAGLAELGHDVIKTLILPRLQQEGERIRSVLDGPVLSNIDRIGADHVQSLLLKHCAPVLAKLRPPPDNQDAYRAEFGSLGPLLCSQVVKARAQAALQAQQVNRTTLTITQPRPTLTLSQAPQPGPRTPGLLKVPGSIALPVQTLVSARAAAPPQPSPPPTKFIVMSSSSSAPSTQQVLSLSTSAPGSGSTTTSPVTTTVPSVQPIVKLVSTATTAPPSTAPSGPGSVQKYIVVSLPPTGEGKGGPTSHPSPVPPPASSPSPLSGSALCGGKQEAGDSPPPAPGTPKANGSQPNSGSPQPAP | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription . TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) . The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 . The TFIID complex structure can be divided into 3 modules TFIID-A, TFIID-B, and TFIID-C . TAF6 homodimer connects TFIID modules, forming a rigid core .
Transcriptional regulator which acts primarily as a positive regulator of transcription (, ). Recruited to the promoters of a number of genes including GADD45A and CDKN1A/p21, leading to transcriptional up-regulation and subsequent induction of apoptosis . Also up-regulates expression of other genes including GCNA/ACRC, HES1 and IFFO1 . In contrast, down-regulates transcription of MDM2 . Acts as a transcriptional coactivator to enhance transcription of TP53/p53-responsive genes such as DUSP1 . Can also activate transcription and apoptosis independently of TP53 . Drives apoptosis via the intrinsic apoptotic pathway by up-regulating apoptosis effectors such as BCL2L11/BIM and PMAIP1/NOXA .
Subcellular locations: Nucleus
Subcellular locations: Nucleus |
TAF7L_HUMAN | Homo sapiens | MECPEGQLPISSENDSTPTVSTSEVTSQQEPQILVDRGSETTYESSADIAGDEGTQIPADEDTQTDADSSAQAAAQAPENFQEGKDMSESQDEVPDEVENQFILRLPLEHACTVRNLARSQSVKMKDKLKIDLLPDGRHAVVEVEDVPLAAKLVDLPCVIESLRTLDKKTFYKTADISQMLVCTADGDIHLSPEEPAASTDPNIVRKKERGREEKCVWKHGITPPLKNVRKKRFRKTQKKVPDVKEMEKSSFTEYIESPDVENEVKRLLRSDAEAVSTRWEVIAEDGTKEIESQGSIPGFLISSGMSSHKQGHTSSEYDMLREMFSDSRSNNDDDEDEDDEDEDEDEDEDEDEDKEEEEEDCSEEYLERQLQAEFIESGQYRANEGTSSIVMEIQKQIEKKEKKLHKIQNKAQRQKDLIMKVENLTLKNHFQSVLEQLELQEKQKNEKLISLQEQLQRFLKK | Probably functions as a spermatogenesis-specific component of the DNA-binding general transcription factor complex TFIID, a multimeric protein complex that plays a central role in mediating promoter responses to various activators and repressors. May play a role in spermatogenesis (By similarity).
Subcellular locations: Nucleus, Cytoplasm
Cytoplasmic in spermatogonia and early spermatocytes (preleptotene, leptotene, and zygotene); translocates into the nuclei of pachytene spermatocytes and round spermatids.
Testis-specific. |
TAF7_HUMAN | Homo sapiens | MSKSKDDAPHELESQFILRLPPEYASTVRRAVQSGHVNLKDRLTIELHPDGRHGIVRVDRVPLASKLVDLPCVMESLKTIDKKTFYKTADICQMLVSTVDGDLYPPVEEPVASTDPKASKKKDKDKEKKFIWNHGITLPLKNVRKRRFRKTAKKKYIESPDVEKEVKRLLSTDAEAVSTRWEIIAEDETKEAENQGLDISSPGMSGHRQGHDSLEHDELREIFNDLSSSSEDEDETQHQDEEDINIIDTEEDLERQLQDKLNESDEQHQENEGTNQLVMGIQKQIDNMKGKLQETQDRAKRQEDLIMKVENLALKNRFQAVLDELKQKEDREKEQLSSLQEELESLLEK | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription . TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC) . The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13 (, ). TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2 . Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta) .
Subcellular locations: Nucleus
Ubiquitous. |
TAF7_MACFA | Macaca fascicularis | MSKSKDDAPHELESQFILRLPPEYASTVRRAVQSGHVNLKDRLTIELHPDGRHGIVRVDRVPLASKLVDLPCVMESLKTIDKKTFYKTADICQMLVSTVDGDLYPPVEEPVASTDPKASKKKDKDKEKKFIWNHGITLPLKNVRKRRFRKTAKKKYIESPDVEKEVKRLLSTDAEAVSTRWEIIAEDETKEAENQGLDISSPGMSGHRQGHDSLEHDELREIFNDLSSSSEDEDETQHQDEEDINIIDTEEDLERQLQDKLNESDEQHQENEGTNQLVMGIQKQIDNMKGKLQETQDRAKRQEDLIMKVENLALKNRFQAVLDELKQKEDREKEQLSSLQEELESLLEK | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription. TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13. TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2. Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta).
Subcellular locations: Nucleus |
TAF7_PONAB | Pongo abelii | MSKSKDDAPHELESQFILRLPPEYASTVRRAVQSGHVNLKDRLTIELHPDGRHGIVRVDRVPLASKLVDLPCVMESLKTIDKKTFYKTADICQMLVSTVDGDLYPPVEEPVASTDPKASKKKDKDKEKKFIWNHGITLPLKNVRKRRFRKTAKKKYIESPDVEKEVKRLLSTDAEAVSTRWEIIAEDETKEAENQGLDISSPGMSGHRQGHDSLEHDELREIFNDLSSSSEDEDETQHQDEEDINIIDTEEDLERQLQDKLNESDEQHQENEGTNQLVMGIQKQIDNMKGKLQETQDRAKRQEDLIMKVENLALKNRFQAVLDELKQKEDREKEQLSSLQEELESLLEK | The TFIID basal transcription factor complex plays a major role in the initiation of RNA polymerase II (Pol II)-dependent transcription. TFIID recognizes and binds promoters with or without a TATA box via its subunit TBP, a TATA-box-binding protein, and promotes assembly of the pre-initiation complex (PIC). The TFIID complex consists of TBP and TBP-associated factors (TAFs), including TAF1, TAF2, TAF3, TAF4, TAF5, TAF6, TAF7, TAF8, TAF9, TAF10, TAF11, TAF12 and TAF13. TAF7 forms a promoter DNA binding subcomplex of TFIID, together with TAF1 and TAF2. Part of a TFIID complex containing TAF10 (TFIID alpha) and a TFIID complex lacking TAF10 (TFIID beta).
Subcellular locations: Nucleus |
TAZ_ERYPA | Erythrocebus patas | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFIQEEFQRLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TAZ_GORGO | Gorilla gorilla gorilla | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFIQEEFQRLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TAZ_HUMAN | Homo sapiens | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNREVLYELIEKRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFIQEEFQHLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function ( ). Its role in cellular physiology is to improve mitochondrial performance . CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy . Required to ensure progression of spermatocytes through meiosis (By similarity). Exon 7 of human tafazzin is essential for catalysis .
Catalyzes the transacylation between lysophosphatidate (such as 1-acyl-sn-glycero-3-phosphate) and phosphatidylglycerol (1,2-diacyl-sn-glycero-3-phospho-(1'-sn-glycerol)) . Contributes to cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL) remodeling (, ).
Catalyzes the transacylation between lysophospholipids and phospholipids, and plays a fundamental role in cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL) metabolism and remodeling.
Catalytically inactive.
Catalytically inactive.
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane
Subcellular locations: Mitochondrion membrane
Subcellular locations: Cytoplasm
Subcellular locations: Mitochondrion membrane
Subcellular locations: Mitochondrion membrane
Subcellular locations: Cytoplasm
Subcellular locations: Mitochondrion membrane
Subcellular locations: Cytoplasm
Subcellular locations: Cytoplasm
High levels in cardiac and skeletal muscle. Up to 10 isoforms can be present in different amounts in different tissues. Most isoforms are ubiquitous. Isoforms that lack the N-terminus are found in leukocytes and fibroblasts, but not in heart and skeletal muscle. Some forms appear restricted to cardiac and skeletal muscle or to leukocytes. |
TAZ_MACMU | Macaca mulatta | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPILERLRAENKSAVEMRKALTDFIQEEFQRLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). RCL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TAZ_PANTR | Pan troglodytes | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFIQEEFQHLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TAZ_PONPY | Pongo pygmaeus | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKVLTDFIQEEFQRLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TAZ_SAISC | Saimiri sciureus | MPLHVKWPFPAVPPLTWTLASSVVMGLVGTYSCFWTKYMNHLTVHNKEVLYELIENRGPATPLITVSNHQSCMDDPHLWGILKLRHIWNLKLMRWTPAAADICFTKELHSHFFSLGKCVPVCRGDGVYQKGMDFILEKLNHGDWVHIFPEGKVNMSSEFLRFKWGIGRLIAECHLNPIILPLWHVGMNDVLPNSPPYFPRFGQKITVLIGKPFSALPVLERLRAENKSAVEMRKALTDFIQEEFQRLKTQAEQLHNHLQPGR | Acyltransferase required to remodel newly synthesized phospholipid cardiolipin (1',3'-bis-[1,2-diacyl-sn-glycero-3-phospho]-glycerol or CL), a key component of the mitochondrial inner membrane, with tissue specific acyl chains necessary for adequate mitochondrial function (By similarity). Its role in cellular physiology is to improve mitochondrial performance (By similarity). CL is critical for the coassembly of lipids and proteins in mitochondrial membranes, for instance, remodeling of the acyl groups of CL in the mitochondrial inner membrane affects the assembly and stability of respiratory chain complex IV and its supercomplex forms (By similarity). Catalyzes the transacylation between phospholipids and lysophospholipids, with the highest rate being between phosphatidylcholine (1,2-diacyl-sn-glycero-3-phosphocholine or PC) and CL. Catalyzes both 1-acyl-sn-glycero-3-phosphocholine (lysophosphatidylcholine or LPC) reacylation and PC-CL transacylation, that means, it exchanges acyl groups between CL and PC by a combination of forward and reverse transacylations. Also catalyzes transacylations between other phospholipids such as phosphatidylethanolamine (1,2-diacyl-sn-glycero-3-phosphoethanolamine or PE) and CL, between PC and PE, and between PC and phosphatidate (1,2-diacyl-sn-glycero-3-phosphate or PA), although at lower rate. Not regiospecific, it transfers acyl groups into any of the sn-1 and sn-2 positions of the monolysocardiolipin (MLCL), which is an important prerequisite for uniformity and symmetry in CL acyl distribution. Cannot transacylate dilysocardiolipin (DLCL), thus, the role of MLCL is limited to that of an acyl acceptor. CoA-independent, it can reshuffle molecular species within a single phospholipid class. Redistributes fatty acids between MLCL, CL, and other lipids, which prolongs the half-life of CL. Its action is completely reversible, which allows for cyclic changes, such as fission and fusion or bending and flattening of the membrane. Hence, by contributing to the flexibility of the lipid composition, it plays an important role in the dynamics of mitochondria membranes. Essential for the final stage of spermatogenesis, spermatid individualization (By similarity). Required for the initiation of mitophagy (By similarity). Required to ensure progression of spermatocytes through meiosis (By similarity).
Subcellular locations: Mitochondrion outer membrane, Mitochondrion inner membrane |
TBC31_HUMAN | Homo sapiens | MQSTDLGNKESGKIWHRKPSPATRDGIIVNIIHNTSDYHPKVLRFLNVAFDGTGDCLIAGDHQGNIYVFDLHGNRFNLVQRTAQACTALAFNLRRKSEFLVALADYSIKCFDTVTKELVSWMRGHESSVFSISVHASGKYAITTSSDTAQLWDLDTFQRKRKLNIRQSVGIQKVFFLPLSNTILSCFKDNSIFAWECDTLFCKYQLPAPPESSSILYKVFAVTRDGRILAAGGKSNHLHLWCLEARQLFRIIQMPTKVRAIRHLEFLPDSFDAGSNQVLGVLSQDGIMRFINMQTCKLLFEIGSLDEGISSSAISPHGRYIASIMENGSLNIYSVQALTQEINKPPPPLVKVIEDLPKNKLSSSDLKMKVTSGRVQQPAKSRESKMQTRILKQDLTGDFESKKNELPDGLNKKRLQILLKGYGEYPTKYRMFIWRSLLQLPENHTAFSTLIDKGTHVAFLNLQKKYPIKSRKLLRVLQRTLSALAHWSVIFSDTPYLPLLAFPFVKLFQNNQLICFEVIATLIINWCQHWFEYFPNPPINILSMIENVLAFHDKELLQHFIDHDITSQLYAWPLLETVFSEVLTREEWLKLFDNIFSNHPSFLLMTVVAYNICSRTPLLSCNLKDDFEFFFHHRNNLDINVVIRQVYHLMETTPTDIHPDSMLNVFVALTKGQYPVFNQYPKFIVDYQTQERERIRNDELDYLRERQTVEDMQAKVDQQRVEDEAWYQKQELLRKAEETRREMLLQEEEKMIQQRQRLAAVKRELKVKEMHLQDAARRRFLKLQQDQQEMELRRLDDEIGRKVYMRDREIAATARDLEMRQLELESQKRLYEKNLTENQEALAKEMRADADAYRRKVDLEEHMFHKLIEAGETQSQKTQKVIKENLAKAEQACLNTDWQIQSLHKQKCDDLQRNKCYQEVAKLLRENRRKEIEIINAMVEEEAKKWKEAEGKEFRLRSAKKASALSDASRKWFLKQEINAAVEHAENPCHKEEPRFQNEQDSSCLPRTSQLNDSSEMDPSTQISLNRRAVEWDTTGQNLIKKVRNLRQRLTARARHRCQTPHLLAA | Molecular adapter which is involved in cilium biogenesis. Part of a functional complex including OFD1 a centriolar protein involved in cilium assembly. Could regulate the cAMP-dependent phosphorylation of OFD1, and its subsequent ubiquitination by PJA2 which ultimately leads to its proteasomal degradation.
Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriolar satellite, Cytoplasm, Cytoskeleton, Cilium basal body |
TBC31_PONAB | Pongo abelii | MFLTCMETVTKELVSWMRGHESSVFSISVHASGKYAITTSSDTAQLWDLDTFQRKRRLNIRQSVGIQKVFFLPLSNTILSCFKDNSIFAWECDTLFCKYQLPAPPESSSILYKVFAVTRDGRILAAGGKSNHLHLWCLEARQLFRIIQMPTKVRAIRHLEFLPDSFDAGSNQVLGVLSQDGIMRFINIQTCKLLFEIGSLDEGISSSAISPHGRYIASIMEDGSLNIYSVQALTQEVNKPPPPLVKVIEDLPKNKLSSSDLKRKVTSGRVQQPAKSRESKIQTRILKQDLTGDFESKKNELPDGLNKERLQILLKGYGEYPTKYSTLIDKGTHVAFLNLQKKYPIKSRKLLRVLQRTLSALAHWSVIFSDTPYLPLLAFPFVKLFQNNQLICFEVIATLIINWCQHWFEYFPNPPINILSMIENVLAFHDTELLQHFIDHDITSQLYAWPLLETVFSEVLTREEWLKLFDNIFSNHPSFLLMTVVAYNMCSRVPLLNCNLKDDFEFFFHHRNNLDINVVIRQVYHLMETTPTDIHPDSMLNVFVALTKGQHPVFNQYPKFIVDYQTQERERIGNDELDYLRERQTVEDMQAKVDQQRVEDEAWYQKQELLRKAEETRREMLLQEEEKMIQQRQRLAAVKRELKVKEMHLQDAARRRFLKLQQDQQEMELRRLDDEIGRKVYMRDREIAATARELEMRQLELESQKRLYEKNLTENQEAVAKEMRADADAYRQKVDLEEHMFHKLIEAGETQSQKTQKVIKENLAKAEQACLNTDWQIQSLHKQKCDDLQRNKCYQEVAKLLRENRRKEIEIINAMVEEEAKKWKEAEGKEFCLRSAKKASALSDASRKWFLKQEINAAVEHAENPCHKEEPRFQNEQEDSSCLPRTSQLNDSSEMDPSTQISLNRRAVEWDTTGQYLIKKVRNLRQRLAAQARHRCQTAHLLAA | Molecular adapter which is involved in cilium biogenesis. Part of a functional complex including OFD1 a centriolar protein involved in cilium assembly. Could regulate the cAMP-dependent phosphorylation of OFD1, and its subsequent ubiquitination by PJA2 which ultimately leads to its proteasomal degradation.
Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriolar satellite, Cytoplasm, Cytoskeleton, Cilium basal body |
TBC3A_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKKGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11.
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in liver, skeletal muscle, kidney, pancreas, spleen, testis, ovary, small intestine and peripheral blood leukocytes. Overexpressed in prostate cancers. |
TBC3B_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNIEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDISGTLRKHMFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQSKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLPPPAKPEQGSSASRPVPASRGRKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts. |
TBC3C_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKKGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in pancreas, thymus and testis. |
TBC3D_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in pancreas, thymus and testis. |
TBC3E_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDQAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKKSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKKGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in pancreas, thymus and testis. |
TBC3F_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNIEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKKGDVPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in most tissues including pancreas, thymus and testis. |
TBC3G_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNIEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDISGTLRKHMFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts. |
TBC3H_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDISGTLRKHMFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts.
Expressed in heart. |
TBC3I_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKMKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts. |
TBC3K_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNIEEMKLKNPGRYQIMKEKGKKSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKKGDLPPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQQCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts. |
TBC3L_HUMAN | Homo sapiens | MDVVEVAGSWWAQEREDIIMKYEKGHRAGLPEDKGPKPFRSYNNNVDHLGIVHETELPPLTAREAKQIRREISRKSKWVDMLGDWEKYKSSRKLIDRAYKGMPMNIRGPMWSVLLNTEEMKLKNPGRYQIMKEKGKRSSEHIQRIDRDVSGTLRKHIFFRDRYGTKQRELLHILLAYEEYNPEVGYCRDLSHIAALFLLYLPEEDAFWALVQLLASERHSLQGFHSPNGGTVQGLQDQQEHVVATSQPKTMGHQDKKDLCGQCSPLGCLIRILIDGISLGLTLRLWDVYLVEGEQALMPITRIAFKVQQKRLTKTSRCGPWARFCNRFVDTWARDEDTVLKHLRASMKKLTRKQGDLQPPAKPEQGSSASRPVPASRGGKTLCKGDRQAPPGPPARFPRPIWSASPPRAPRSSTPCPGGAVREDTYPVGTQGVPSPALAQGGPQGSWRFLQWNSMPRLPTDLDVEGPWFRHYDFRQSCWVRAISQEDQLAPCWQAEHPAERVRSAFAAPSTDSDQGTPFRARDEQPCAPTSGPCLCGLHLESSQFPPGF | Acts as a GTPase activating protein for RAB5. Does not act on RAB4 or RAB11 (By similarity).
Subcellular locations: Cell membrane
Associated with lipid rafts. |
TBL1R_HUMAN | Homo sapiens | MSISSDEVNFLVYRYLQESGFSHSAFTFGIESHISQSNINGALVPPAALISIIQKGLQYVEAEVSINEDGTLFDGRPIESLSLIDAVMPDVVQTRQQAYRDKLAQQQAAAAAAAAAAASQQGSAKNGENTANGEENGAHTIANNHTDMMEVDGDVEIPPNKAVVLRGHESEVFICAWNPVSDLLASGSGDSTARIWNLSENSTSGSTQLVLRHCIREGGQDVPSNKDVTSLDWNSEGTLLATGSYDGFARIWTKDGNLASTLGQHKGPIFALKWNKKGNFILSAGVDKTTIIWDAHTGEAKQQFPFHSAPALDVDWQSNNTFASCSTDMCIHVCKLGQDRPIKTFQGHTNEVNAIKWDPTGNLLASCSDDMTLKIWSMKQDNCVHDLQAHNKEIYTIKWSPTGPGTNNPNANLMLASASFDSTVRLWDVDRGICIHTLTKHQEPVYSVAFSPDGRYLASGSFDKCVHIWNTQTGALVHSYRGTGGIFEVCWNAAGDKVGASASDGSVCVLDLRK | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of the N-Cor corepressor complex that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of N-Cor complex, thereby allowing cofactor exchange, and transcription activation.
Subcellular locations: Nucleus
Widely expressed including the pituitary, hypothalamus, white and brown adipose tissue, muscle and liver. |
TBL1X_HUMAN | Homo sapiens | MTELAGASSSCCHRPAGRGAMQSVLHHFQRLRGREGGSHFINTSSPRGEAKMSITSDEVNFLVYRYLQESGFSHSAFTFGIESHISQSNINGTLVPPAALISILQKGLQYVEAEISINEDGTVFDGRPIESLSLIDAVMPDVVQTRQQAFREKLAQQQASAAAAAAAATAAATAATTTSAGVSHQNPSKNREATVNGEENRAHSVNNHAKPMEIDGEVEIPSSKATVLRGHESEVFICAWNPVSDLLASGSGDSTARIWNLNENSNGGSTQLVLRHCIREGGHDVPSNKDVTSLDWNTNGTLLATGSYDGFARIWTEDGNLASTLGQHKGPIFALKWNRKGNYILSAGVDKTTIIWDAHTGEAKQQFPFHSAPALDVDWQNNTTFASCSTDMCIHVCRLGCDRPVKTFQGHTNEVNAIKWDPSGMLLASCSDDMTLKIWSMKQEVCIHDLQAHNKEIYTIKWSPTGPATSNPNSNIMLASASFDSTVRLWDIERGVCTHTLTKHQEPVYSVAFSPDGKYLASGSFDKCVHIWNTQSGNLVHSYRGTGGIFEVCWNARGDKVGASASDGSVCVLDLRK | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units . Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange .
Subcellular locations: Nucleus
Colocalized with MECP2 to the heterochromatin foci.
Ubiquitous. |
TBL1X_MACFA | Macaca fascicularis | MTELAGASSSCCHRPAGRGAMQSVLHHFQRLRGREGGSHFINTSSPRGEAKMSITSDEVNFLVYRYLQESGFSHSAFTFGIESHISQSNINGTLVPPAALISILQKGLQYVEAEISINEDGTVFDGRPIESLSLIDAVMPDVVQTRQRAFREKLAQQQASAAAAAAAATTSASVSQQNPSKNREATVNGEENRAHSVNNHAKPMEIDGEVDIPSSKATVLRGHESEVFICAWNPVSDLLASGSGDSTARIWNLNENSNGGSTQLVLRHCIREGGHDVPSNKDVTSLDWNTNGTLLATGSYDGFARIWTEDGNLASTLGQHKGPIFALKWNRKGNYILSAGVDKTTIIWDAHTGEAKQQFPFHSAPALDVDWQNNMTFASCSTDMCIHVCRLGCDRPVKTFQGHTNEVNAIKWDPSGMLLASCSDDMTLKIWSMKQEVCIHDLQAHNKEIYTIKWSPTGPATSNPNSNIMLASASFDSTVRLWDIERGVCTHTLTKHQEPVYSVAFSPDGRYLASGSFDKCVHIWNTQSGNLVHSYRGTGGIFEVCWNARGDKVGASASDGSVCVLDLRK | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange.
Subcellular locations: Nucleus
Colocalized with MECP2 to the heterochromatin foci. |
TBL1Y_HUMAN | Homo sapiens | MSITSDEVNFLVYRYLQESGFSHSAFTFGIESHISQSNINGTLVPPSALISILQKGLQYVEAEISINKDGTVFDSRPIESLSLIVAVIPDVVQMRQQAFGEKLTQQQASAAATEASAMAKAATMTPAAISQQNPPKNREATVNGEENGAHEINNHSKPMEIDGDVEIPPNKATVLRGHESEVFICAWNPVSDLLASGSGDSTARIWNLNENSNGGSTQLVLRHCIREGGHDVPSNKDVTSLDWNSDGTLLAMGSYDGFARIWTENGNLASTLGQHKGPIFALKWNKKGNYVLSAGVDKTTIIWDAHTGEAKQQFPFHSAPALDVDWQNNMTFASCSTDMCIHVCRLGCDHPVKTFQGHTNEVNAIKWDPSGMLLASCSDDMTLKIWSMKQDACVHDLQAHSKEIYTIKWSPTGPATSNPNSSIMLASASFDSTVRLWDVEQGVCTHTLMKHQEPVYSVAFSPDGKYLASGSFDKYVHIWNTQSGSLVHSYQGTGGIFEVCWNARGDKVGASASDGSVCVLDL | F-box-like protein involved in the recruitment of the ubiquitin/19S proteasome complex to nuclear receptor-regulated transcription units. Plays an essential role in transcription activation mediated by nuclear receptors. Probably acts as integral component of corepressor complexes that mediates the recruitment of the 19S proteasome complex, leading to the subsequent proteasomal degradation of transcription repressor complexes, thereby allowing cofactor exchange (By similarity).
Subcellular locations: Nucleus
Fetal brain and prostate. Expressed in the cochlear spiral ganglion neurons, and in outer and inner hair cells . |
TCAIM_HUMAN | Homo sapiens | MFCHLRPMRRLCLEKIFPHWFPFSRALSGAEAVNALRPFYFAVHPDFFGQHPVEREINENSLKRLSVYLENLQKPGFKSLKPTQLTFYVRETDQSSSDGQEPFSTSGFRAVKFTLHTRDLLSTVLYILNSCSLSVEHIQSLNTNMHTQPLKEAKRMPDRPIKWDKSYYSFTGFKDPDEDLEQVSRVETTLTSWLDNNGKSAVKKLKNSLPLRKELDRLKDELSHQLQLSDIRWQRSWGIAHRCSQLHSLSRLAQQNLETLKKAKGCTIIFTDRSGMSAVGHVMLGTMDVHHHWTKLFERLPSYFDLQRRLMILEDQISYLLGGIQVVYIEELQPVLTLEEYYSLLDVFYNRLLKSRILFHPRSLRGLQMILNSDRYAPSLHELGHFNIPTLCDPANLQWFILTKAQQARENMKRKEELKVIENELIQASTKKFSLEKLYKEPSISSIQMVDCCKRLLEQSLPYLHGMHLCISHFYSVMQDGDLCIPWNWKNGEAIK | May regulate T-cell apoptosis.
Subcellular locations: Mitochondrion |
TCAL1_ATEGE | Ateles geoffroyi | MDKPRKENEEEPQSAPKTDEERPPVEHSPEKQSLEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQEGLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFRGDIHGRNLSNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. Does not bind DNA directly (By similarity).
Subcellular locations: Nucleus |
TCAL1_GORGO | Gorilla gorilla gorilla | MDKPRKENEEEPQSAPKTDEERPPVEHSPEKQSPEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQEGLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFKGDIHGRNLSNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. Does not bind DNA directly (By similarity).
Subcellular locations: Nucleus |
TCAL1_HUMAN | Homo sapiens | MDKPRKENEEEPQSAPKTDEERPPVEHSPEKQSPEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQEGLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFRGDIHGRNLSNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. For example, transcription from the FOS promoter is increased, while Rous sarcoma virus (RSV) long terminal repeat (LTR) promoter activity is repressed. Does not bind DNA directly.
Subcellular locations: Nucleus
Expressed in all tissues examined. Highly expressed in heart, ovary, prostate and skeletal muscle. Moderately expressed in brain, placenta, testis and small intestine. Weakly expressed in lung, liver and spleen. Expressed in several cancer cell lines. |
TCAL1_LAGLA | Lagothrix lagotricha | MDKPRQENEEEPQSAPKTNEERPSVEHSPEKQSPEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQERLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFRGDIHGRNLTNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. Does not bind DNA directly (By similarity).
Subcellular locations: Nucleus |
TCAL1_MACMU | Macaca mulatta | MDKPRKENEEEPQSAPKTDEERPPVEHSPEKQSLEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQEGLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFRGDIHGRNLSNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. Does not bind DNA directly (By similarity).
Subcellular locations: Nucleus |
TCAL1_MACNE | Macaca nemestrina | MDKPRKENEEEPQSAPKTDEERPPVEHSPEKQSLEEQSSEEQSSEEEFFPEELLPELLPEMLLSEERPPQEGLSRKDLFEGRPPMEQPPCGVGKHKLEEGSFKERLARSRPQFRGDIHGRNLSNEEMIQAADELEEMKRVRNKLMIMHWKAKRSRPYPI | May be involved in transcriptional regulation. Modulates various viral and cellular promoters in a promoter context-dependent manner. Does not bind DNA directly (By similarity).
Subcellular locations: Nucleus |
TCAL2_HUMAN | Homo sapiens | MEKLFNENEGMPSNQGKIDNEEQPPHEGKPEVACILEDKKLENEGNTENTGKRVEEPLKDKEKPESAGKAKGEGKSERKGKSEMQGGSKTEGKPERGGRAEGEGEPDSEREPESEGEPESETRAAGKRPAEDDIPRKAKRKTNKGLAQYLKQYKEAIHDMNFSNEDMIREFDNMARVEDKRRKSKQKLGAFLWMQRNLQDPFYPRGPREFRGGCRAPRRDTEDIPYV | May be involved in transcriptional regulation.
Subcellular locations: Nucleus |
TCAL3_HUMAN | Homo sapiens | MEKPYNKNEGNLENEGKPEDEVEPDDEGKSDEEEKPDVEGKTECEGKREDEGEPGDEGQLEDEGSQEKQGRSEGEGKPQGEGKPASQAKPESQPRAAEKRPAEDYVPRKAKRKTDRGTDDSPKDSQEDLQERHLSSEEMMRECGDVSRAQEELRKKQKMGGFHWMQRDVQDPFAPRGQRGVRGVRGGGRGQRGLHDIPYL | May be involved in transcriptional regulation.
Subcellular locations: Nucleus |
TCO2_PONAB | Pongo abelii | MRHLGALLFLLGVLGALAEICEIPEVDSHLVEKLGQHLLPWMDRLSLEHLNPSIYVDLRLSSLQAGTKEELYLHSLKLGYQQCLLGSAFSEDDGDCQGKPSMGQLALYLLALRANCEFVRGHKGDKLVSQLKRFLEDEKRAIGHDHKGHPHTSYYQYGLGILALCLHQKRVHDSVVDKLLYALEPFHQGHHSVDTAAMAGLAFTCLKRSNFNPGRRQRITMAVRTVREKILKAQTPEGHFGNVYSTPLALQFLMTSPMPGAELGTACLKARVALFASLQDGAFQNALMISQLLPVLNHKTYIDLIFPDCLAPRVMLEPAAETIPQAQEIISVTLQVLSLLPPYRQSISVLAGSTVEDVLKKAHELGGFTYETQASLSGPYLISVMGKAAGEREFWQLLRDPNTPLLQGIADYRPKDGETIELRLVSW | Primary vitamin B12-binding and transport protein. Delivers cobalamin to cells.
Subcellular locations: Secreted |
TCOF_HUMAN | Homo sapiens | MAEARKRRELLPLIYHHLLRAGYVRAAREVKEQSGQKCFLAQPVTLLDIYTHWQQTSELGRKRKAEEDAALQAKKTRVSDPISTSESSEEEEEAEAETAKATPRLASTNSSVLGADLPSSMKEKAKAETEKAGKTGNSMPHPATGKTVANLLSGKSPRKSAEPSANTTLVSETEEEGSVPAFGAAAKPGMVSAGQADSSSEDTSSSSDETDVEGKPSVKPAQVKASSVSTKESPARKAAPAPGKVGDVTPQVKGGALPPAKRAKKPEEESESSEEGSESEEEAPAGTRSQVKASEKILQVRAASAPAKGTPGKGATPAPPGKAGAVASQTKAGKPEEDSESSSEESSDSEEETPAAKALLQAKASGKTSQVGAASAPAKESPRKGAAPAPPGKTGPAVAKAQAGKREEDSQSSSEESDSEEEAPAQAKPSGKAPQVRAASAPAKESPRKGAAPAPPRKTGPAAAQVQVGKQEEDSRSSSEESDSDREALAAMNAAQVKPLGKSPQVKPASTMGMGPLGKGAGPVPPGKVGPATPSAQVGKWEEDSESSSEESSDSSDGEVPTAVAPAQEKSLGNILQAKPTSSPAKGPPQKAGPVAVQVKAEKPMDNSESSEESSDSADSEEAPAAMTAAQAKPALKIPQTKACPKKTNTTASAKVAPVRVGTQAPRKAGTATSPAGSSPAVAGGTQRPAEDSSSSEESDSEEEKTGLAVTVGQAKSVGKGLQVKAASVPVKGSLGQGTAPVLPGKTGPTVTQVKAEKQEDSESSEEESDSEEAAASPAQVKTSVKKTQAKANPAAARAPSAKGTISAPGKVVTAAAQAKQRSPSKVKPPVRNPQNSTVLARGPASVPSVGKAVATAAQAQTGPEEDSGSSEEESDSEEEAETLAQVKPSGKTHQIRAALAPAKESPRKGAAPTPPGKTGPSAAQAGKQDDSGSSSEESDSDGEAPAAVTSAQVIKPPLIFVDPNRSPAGPAATPAQAQAASTPRKARASESTARSSSSESEDEDVIPATQCLTPGIRTNVVTMPTAHPRIAPKASMAGASSSKESSRISDGKKQEGPATQVSKKNPASLPLTQAALKVLAQKASEAQPPVARTQPSSGVDSAVGTLPATSPQSTSVQAKGTNKLRKPKLPEVQQATKAPESSDDSEDSSDSSSGSEEDGEGPQGAKSAHTLGPTPSRTETLVEETAAESSEDDVVAPSQSLLSGYMTPGLTPANSQASKATPKLDSSPSVSSTLAAKDDPDGKQEAKPQQAAGMLSPKTGGKEAASGTTPQKSRKPKKGAGNPQASTLALQSNITQCLLGQPWPLNEAQVQASVVKVLTELLEQERKKVVDTTKESSRKGWESRKRKLSGDQPAARTPRSKKKKKLGAGEGGEASVSPEKTSTTSKGKAKRDKASGDVKEKKGKGSLGSQGAKDEPEEELQKGMGTVEGGDQSNPKSKKEKKKSDKRKKDKEKKEKKKKAKKASTKDSESPSQKKKKKKKKTAEQTV | Nucleolar protein that acts as a regulator of RNA polymerase I by connecting RNA polymerase I with enzymes responsible for ribosomal processing and modification (, ). Required for neural crest specification: following monoubiquitination by the BCR(KBTBD8) complex, associates with NOLC1 and acts as a platform to connect RNA polymerase I with enzymes responsible for ribosomal processing and modification, leading to remodel the translational program of differentiating cells in favor of neural crest specification .
Subcellular locations: Nucleus, Nucleolus |
TCP11_HUMAN | Homo sapiens | MPDVKESVPPKYPGDSEGRSCKPETSGPPQEDKSGSEDPPPFLSVTGLTETVNEVSKLSNKIGMNCDYYMEEKVLPPSSLEGKVKETVHNAFWDHLKEQLSATPPDFSCALELLKEIKEILLSLLLPRQNRLRIEIEEALDMDLLKQEAEHGALKVLYLSKYVLNMMALLCAPVRDEAVQKLENITDPVWLLRGIFQVLGRMKMDMVNYTIQSLQPHLQEHSIQYERAKFQELLNKQPSLLNHTTKWLTQAAGDLTMSPPTCPDTSDSSSVAGPSPNEAANNPEPLSPTMVLCQGFLNLLLWDLENEEFPETLLMDRTRLQELKSQLHQLTVMASVLLVASSFSGSVLFGSPQFVDKLKRITKSLLEDFHSRPEEAILTVSEQVSQEIHQSLKNMGLVALSSDNTASLMGQLQNIAKKENCVCSVIDQRIHLFLKCCLVLGVQRSLLDLPGGLTLIEAELAELGQKFVNLTHHNQQVFGPYYTEILKTLISPAQALETKVESV | Plays a role in the process of sperm capacitation and acrosome reactions. Probable receptor for the putative fertilization-promoting peptide (FPP) at the sperm membrane that may modulate the activity of the adenylyl cyclase cAMP pathway.
Subcellular locations: Membrane, Cell projection, Cilium, Flagellum, Cytoplasmic vesicle, Secretory vesicle, Acrosome
Localizes on the acrosomal cap region of acrosome-intact, but not acrosome-reacted sperm. Colocalizes with MROH2B and PRKACA on the acrosome and tail regions in round spermatids and spermatozoa regardless of the capacitation status of the sperm.
Isoform 2 and isoform 3 are expressed in sperm. Isoform 1 is not detected in sperm (at protein level) . Testis-specific . Isoform 1, isoform 2 and isoform 3 are expressed in sperm . |
TDGF1_HUMAN | Homo sapiens | MDCRKMARFSYSVIWIMAISKVFELGLVAGLGHQEFARPSRGYLAFRDDSIWPQEEPAIRPRSSQRVPPMGIQHSKELNRTCCLNGGTCMLGSFCACPPSFYGRNCEHDVRKENCGSVPHDTWLPKKCSLCKCWHGQLRCFPQAFLPGCDGLVMDEHLVASRTPELPPSARTTTFMLVGICLSIQSYY | GPI-anchored cell membrane protein involved in Nodal signaling. Cell-associated CRIPTO acts as a Nodal coreceptor in cis. Shedding of CRIPTO by TMEM8A modulates Nodal signaling by allowing soluble CRIPTO to act as a Nodal coreceptor on other cells . Could play a role in the determination of the epiblastic cells that subsequently give rise to the mesoderm .
Subcellular locations: Cell membrane, Secreted
Released from the cell membrane by GPI cleavage.
Preferentially expressed in gastric and colorectal carcinomas than in their normal counterparts. Expressed in breast and lung. |
TDGF3_HUMAN | Homo sapiens | MDCRKMVRFSYSVIWIMAISKAFELGLVAGLGHQEFARPSRGDLAFRDDSIWPQEEPAIRPRSSQRVLPMGIQHSKELNRTCCLNGGTCMLESFCACPPSFYGRNCEHDVRKENCGSVPHDTWLPKKCSLCKCWHGQLRCFPQAFLPGCDGLVMDEHLVASRTPELPPSARTTTFMLAGICLSIQSYY | Could play a role in the determination of the epiblastic cells that subsequently give rise to the mesoderm. Activates the Nodal-dependent signaling pathway.
Subcellular locations: Cell membrane
Expressed weakly in lung, colon and breast. Expressed also strongly in primary cancer tissues; lung and colon cancers. |
TDG_HUMAN | Homo sapiens | MEAENAGSYSLQQAQAFYTFPFQQLMAEAPNMAVVNEQQMPEEVPAPAPAQEPVQEAPKGRKRKPRTTEPKQPVEPKKPVESKKSGKSAKSKEKQEKITDTFKVKRKVDRFNGVSEAELLTKTLPDILTFNLDIVIIGINPGLMAAYKGHHYPGPGNHFWKCLFMSGLSEVQLNHMDDHTLPGKYGIGFTNMVERTTPGSKDLSSKEFREGGRILVQKLQKYQPRIAVFNGKCIYEIFSKEVFGVKVKNLEFGLQPHKIPDTETLCYVMPSSSARCAQFPRAQDKVHYYIKLKDLRDQLKGIERNMDVQEVQYTFDLQLAQEDAKKMAVKEEKYDPGYEAAYGGAYGENPCSSEPCGFSSNGLIESVELRGESAFSGIPNGQWMTQSFTDQIPSFSNHCGTQEQEEESHA | DNA glycosylase that plays a key role in active DNA demethylation: specifically recognizes and binds 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in the context of CpG sites and mediates their excision through base-excision repair (BER) to install an unmethylated cytosine. Cannot remove 5-hydroxymethylcytosine (5hmC). According to an alternative model, involved in DNA demethylation by mediating DNA glycolase activity toward 5-hydroxymethyluracil (5hmU) produced by deamination of 5hmC. Also involved in DNA repair by acting as a thymine-DNA glycosylase that mediates correction of G/T mispairs to G/C pairs: in the DNA of higher eukaryotes, hydrolytic deamination of 5-methylcytosine to thymine leads to the formation of G/T mismatches. Its role in the repair of canonical base damage is however minor compared to its role in DNA demethylation. It is capable of hydrolyzing the carbon-nitrogen bond between the sugar-phosphate backbone of the DNA and a mispaired thymine. In addition to the G/T, it can remove thymine also from C/T and T/T mispairs in the order G/T >> C/T > T/T. It has no detectable activity on apyrimidinic sites and does not catalyze the removal of thymine from A/T pairs or from single-stranded DNA. It can also remove uracil and 5-bromouracil from mispairs with guanine.
Subcellular locations: Nucleus |
TDR10_HUMAN | Homo sapiens | MSWNISHPQLSDKLFGKNGVLEEQKSPGFKKRETEVYVGNLPLDISKEEILYLLKDFNPLDVHKIQNGCKCFAFVDLGSMQKVTLAIQELNGKLFHKRKLFVNTSKRPPKRTPDMIQQPRAPLVLEKASGEGFGKTAAIIQLAPKAPVDLCETEKLRAAFFAVPLEMRGSFLVLLLRECFRDLSWLALIHSVRGEAGLLVTSIVPKTPFFWAMHVTEALHQNMQALFSTLAQAEEQQPYLEGSTVMRGTRCLAEYHLGDYGHAWNRCWVLDRVDTWAVVMFIDFGQLATIPVQSLRSLDSDDFWTIPPLTQPFMLEKDILSSYEVVHRILKGKITGALNSAVTAPASNLAVVPPLLPLGCLQQAAA | null |
TDR12_HUMAN | Homo sapiens | MLQLLVLKIEDPGCFWVIIKGCSPFLDHDVDYQKLNSAMNDFYNSTCQDIEIKPLTLEEGQVCVVYCEELKCWCRAIVKSITSSADQYLAECFLVDFAKNIPVKSKNIRVVVESFMQLPYRAKKFSLYCTKPVTLHIDFCRDSTDIVPAKKWDNAAIQYFQNLLKATTQVEARLCAVEEDTFEVYLYVTIKDEKVCVNDDLVAKNYACYMSPTKNKNLDYLEKPRLNIKSAPSFNKLNPALTLWPMFLQGKDVQGMEDSHGVNFPAQSLQHTWCKGIVGDLRPTATAQDKAVKCNMDSLRDSPKDKSEKKHHCISLKDTNKRVESSVYWPAKRGITIYADPDVPEASALSQKSNEKPLRLTEKKEYDEKNSCVKLLQFLNPDPLRADGISDLQQLQKLKGLQPPVVVLRNKIKPCLTIDSSPLSADLKKALQRNKFPGPSHTESYSWPPIARGCDVVVISHCESNPLLYLLPVLTVLQTGACYKSLPSRNGPLAVIVCPGWKKAQFIFELLGEYSMSSRPLHPVLLTIGLHKEEAKNTKLPRGCDVIVTTPYSLLRLLACQSLLFLRLCHLILDEVEVLFLEANEQMFAILDNFKKNIEVEERESAPHQIVAVGVHWNKHIEHLIKEFMNDPYIVITAMEEAALYGNVQQVVHLCLECEKTSSLLQALDFIPSQAQKTLIFTCSVAETEIVCKVVESSSIFCLKMHKEMIFNLQNVLEQWKKKLSSGSQIILALTDDCVPLLAITDATCVIHFSFPASPKVFGGRLYCMSDHFHAEQGSPAEQGDKKAKSVLLLTEKDASHAVGVLRYLERADAKVPAELYEFTAGVLEAKEDKKAGRPLCPYLKAFGFCKDKRICPDRHRINPETDLPRKLSSQALPSFGYIKIIPFYILNATNYFGRIVDKHMDLYATLNAEMNEYFKDSNKTTVEKVEKFGLYGLAEKTLFHRVQVLEVNQKEDAWALDDILVEFIDEGRTGLVTRDQLLHLPEHFHTLPPQAVEFIVCRVKPADNEIEWNPKVTRYIHHKIVGKLHDAKVILALGNTVWIDPMVHITNLSSLKTSVIDYNVRAEILSMGMGIDNPEHIEQLKKLREDAKIPACEESLSQTPPRVTGTSPAQDQDHPSEEQGGQGTPPAEDAACLQSPQPEDTGAEGGAESKTSSENQKPGGYLVFKRWLSSNR | Probable ATP-binding RNA helicase required during spermatogenesis to repress transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Involved in the secondary piRNAs metabolic process. Acts via the PET complex, a multiprotein complex required during the secondary piRNAs metabolic process for the PIWIL2 slicing-triggered loading of PIWIL4 piRNAs. |
TDR15_HUMAN | Homo sapiens | MDSTSFLPTFLDVDLTISHIKCLPKDILVKFQGIKSNECEFDYHVLQREIQHTPKVKNNVEIDEFCLVEERVSGEWQRGRVMEKKNELYTVLLIDRGEELRVAGPQIASACGNLFELPPRVVFGIFANILPVGEKWSPKALNYFKSLVGIQVKGYVQAILPLQMFLFEVPKIISQALELQLGRLVDGDSFRLIVEMLEEFPQQMPDLLQHKRPELSLGNKDTSLDIQHVLDKLQPSLSVGSTESVKVSSALSPSKFYCQLIKWTPELENLTAHMTLHYDTVCQETSPTCDNFGLLCVARRRNGQWHRGILQQLLPPNQVKIWFMDYGSSEAIPSIYVKKLKQDFILVPLFSFPCSLTCLHSPDRDARIFQLSIFKQALLGQVVYAHIDWFNKDECLYYVTLQTQESTVNSKCLLKTVGTQVLCPMSDSKISNILSETSVSDVNSFAVESFMGNIEWSIDSLNKKGILKVGFPIKTVQMEIEAAYIAFIAYVLNPSNFWVRTNDHRNEFQEIMKNINKFYDLCENDEMILRKPEPGLFCCARYSKDRRFYRAVITEINGYKINVYFLDYGNTDSIPFFDVKILLPEFCELPALAMCCSLAHIFPVEDLWTKAAIDYFKKLVLNKAILLQVIAKKDDKYTVNIQSVEASENIDVISLMLQAGYAEYFQVELEYFPKSVSEYSMLNSESKNKVNIKKVISALLEGPKSKKYHSNNLVENNLSLPKSLAVNISEFKNPFTLSVGPESSWPYKEYIFRPGTVLEVKCSCYYGPGDFSCQLQCKSEDLKLLMEQIQNYYSIHSDPYEIGQTACVAKYSGKWCRAAVLTQVSKEVDIVFVDYGYQKRVLIEDLCAINPRFLLLESQAFRCCLNHFIEPVSCKLFSWTRKAFRDLWNFISSSRGLLTCIIYALVIIHPNHLYNLVDLQSSFTSAKEFLMNRGSAQYITLSETFPSLFSLYSYCYSSFNIQIGSEEEVYISHIYSPQKFYCQLGRNNKDLEMIETKITESVNLQNFPKYDSNKMRVCISKYVEDGLSYRALAIPTDSSSEFQVYFVDFGNKQLVGENMLRAISAQFPELLFTPMQAIKCFLSDLRDVDIPAEISSWFKDNFLGRSLKAIILSQESDGQLGIELYDGSQYINEKIKVLLHAYGKRHCDQACCMEKSNKINENKRFTTSLKGKTGNNYRHNVINKPSPVTYSERKIDQLMHPKNIHARFLKPSVCYKMEPVSKNKMKTSLNDGLKGIKIVPGAAHILENRRVGQKSVKVVSQSFIRALNQTTSQNPYDLIRPQIKDLPQPQIYLNAKVKGYVSNISNPANFHIQLAENESVIIRLADALNATARRLRERKSVKPLVGDLVVAEYSGDNAIYRAVIKKILPGNSFEVEFIDYGNSAIVNTSKIYELQREFLTVPQLGIHAFLSGVKWNEPDEIWDDKTVDYFTSKVHNKTVYCEFLKKHDQKWEVNMICDEKCVINELLKWKACSKLQKSALQMPQVLSQKVRPGDNEMKKGKSNESEGSMNSNQQLFKIPLEEFKLGQLEKAEMLNVSKSGRFYVKLSKNKKILSDLIVLITKEEKKSPFLSMESIEKGLECLAKSKNTLKWHRSKVEEKYVDDKVLVFLVDCGIYEIVPVCNTKLLSNEIRNIPRQAVPCKWIWFENSKNISFECLFADLEINILFLKYLDAVWEVEILVDDLLLLEYLNLNTVPVEENKLRLAEIVYNIESKTPVSSCTIKSFTWVQFQNDRQYSGIATAVSDPSDFSIQLEDFFDIMKYLFMLLSDLPETLQTLPQEFIIPGSSCLFKYKSEDQWNRVEISEVSPQSLCLVLVDYGFSFYIRYSEIINLKVVPEELLNLPRLSYPCILYGILPAKGKHWSEEAKIFFRDFLSKPDLVFQFREYHSETKLKVDVIHEKNNLADILVASGLATYSKDSPHLDAITATESAKNPI | null |
TDRD1_HUMAN | Homo sapiens | MSVKSPFNVMSRNNLEAPPCKMTEPFNFEKNENKLPPHESLRSPGTLPNHPNFRLKSSENGNKKNNFLLCEQTKQYLASQEDNSVSSNPNGINGEVVGSKGDRKKLPAGNSVSPPSAESNSPPKEVNIKPGNNVRPAKSKKLNKLVENSLSISNPGLFTSLGPPLRSTTCHRCGLFGSLRCSQCKQTYYCSTACQRRDWSAHSIVCRPVQPNFHKLENKSSIETKDVEVNNKSDCPLGVTKEIAIWAERIMFSDLRSLQLKKTMEIKGTVTEFKHPGDFYVQLYSSEVLEYMNQLSASLKETYANVHEKDYIPVKGEVCIAKYTVDQTWNRAIIQNVDVQQKKAHVLYIDYGNEEIIPLNRIYHLNRNIDLFPPCAIKCFVANVIPAEGNWSSDCIKATKPLLMEQYCSIKIVDILEEEVVTFAVEVELPNSGKLLDHVLIEMGYGLKPSGQDSKKENADQSDPEDVGKMTTENNIVVDKSDLIPKVLTLNVGDEFCGVVAHIQTPEDFFCQQLQSGRKLAELQASLSKYCDQLPPRSDFYPAIGDICCAQFSEDDQWYRASVLAYASEESVLVGYVDYGNFEILSLMRLCPIIPKLLELPMQAIKCVLAGVKPSLGIWTPEAICLMKKLVQNKIITVKVVDKLENSSLVELIDKSETPHVSVSKVLLDAGFAVGEQSMVTDKPSDVKETSVPLGVEGKVNPLEWTWVELGVDQTVDVVVCVIYSPGEFYCHVLKEDALKKLNDLNKSLAEHCQQKLPNGFKAEIGQPCCAFFAGDGSWYRALVKEILPNGHVKVHFVDYGNIEEVTADELRMISSTFLNLPFQGIRCQLADIQSRNKHWSEEAITRFQMCVAGIKLQARVVEVTENGIGVELTDLSTCYPRIISDVLIDEHLVLKSASPHKDLPNDRLVNKHELQVHVQGLQATSSAEQWKTIELPVDKTIQANVLEIISPNLFYALPKGMPENQEKLCMLTAELLEYCNAPKSRPPYRPRIGDACCAKYTSDDFWYRAVVLGTSDTDVEVLYADYGNIETLPLCRVQPITSSHLALPFQIIRCSLEGLMELNGSSSQLIIMLLKNFMLNQNVMLSVKGITKNVHTVSVEKCSENGTVDVADKLVTFGLAKNITPQRQSALNTEKMYRMNCCCTELQKQVEKHEHILLFLLNNSTNQNKFIEMKKLLKS | Plays a central role during spermatogenesis by participating in the repression transposable elements and preventing their mobilization, which is essential for the germline integrity. Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons. Required for the localization of Piwi proteins to the meiotic nuage. Involved in the piRNA metabolic process by ensuring the entry of correct transcripts into the normal piRNA pool and limiting the entry of cellular transcripts into the piRNA pathway. May act by allowing the recruitment of piRNA biogenesis or loading factors that ensure the correct entry of transcripts and piRNAs into Piwi proteins (By similarity).
Subcellular locations: Cytoplasm
Component of the meiotic nuage, also named P granule, a germ-cell-specific organelle required to repress transposon activity during meiosis. Also present in chromatoid body (By similarity).
Testis and ovary specific. Also expressed in several cancers. |
TELT_HUMAN | Homo sapiens | MATSELSCEVSEENCERREAFWAEWKDLTLSTRPEEGCSLHEEDTQRHETYHQQGQCQVLVQRSPWLMMRMGILGRGLQEYQLPYQRVLPLPIFTPAKMGATKEEREDTPIQLQELLALETALGGQCVDRQEVAEITKQLPPVVPVSKPGALRRSLSRSMSQEAQRG | Muscle assembly regulating factor. Mediates the antiparallel assembly of titin (TTN) molecules at the sarcomeric Z-disk.
Subcellular locations: Cytoplasm, Myofibril, Sarcomere
Heart and skeletal muscle. |
TEN1L_HUMAN | Homo sapiens | MMLPKPGTYYLPWEVSAGQVPDGSTLRTFGRLCLYDMIQSRVTLMAQHGSDQHQVLVCTKLVEPFHAQVGSLYIVLGELQHQQDRGSVVKARVLTCVEGMNLPLLEQAIREQRLYKQERGGSQ | Component of the CST complex proposed to act as a specialized replication factor promoting DNA replication under conditions of replication stress or natural replication barriers such as the telomere duplex. The CST complex binds single-stranded DNA with high affinity in a sequence-independent manner, while isolated subunits bind DNA with low affinity by themselves. Initially the CST complex has been proposed to protect telomeres from DNA degradation . However, the CST complex has been shown to be involved in several aspects of telomere replication. The CST complex inhibits telomerase and is involved in telomere length homeostasis; it is proposed to bind to newly telomerase-synthesized 3' overhangs and to terminate telomerase action implicating the association with the ACD:POT1 complex thus interfering with its telomerase stimulation activity. The CST complex is also proposed to be involved in fill-in synthesis of the telomeric C-strand probably implicating recruitment and activation of DNA polymerase alpha . The CST complex facilitates recovery from many forms of exogenous DNA damage; seems to be involved in the re-initiation of DNA replication at repaired forks and/or dormant origins .
Subcellular locations: Nucleus, Chromosome, Telomere |
TEN1_HUMAN | Homo sapiens | MEQTDCKPYQPLPKVKHEMDLAYTSSSDESEDGRKPRQSYNSRETLHEYNQELRMNYNSQSRKRKEVEKSTQEMEFCETSHTLCSGYQTDMHSVSRHGYQLEMGSDVDTETEGAASPDHALRMWIRGMKSEHSSCLSSRANSALSLTDTDHERKSDGENGFKFSPVCCDMEAQAGSTQDVQSSPHNQFTFRPLPPPPPPPHACTCARKPPPAADSLQRRSMTTRSQPSPAAPAPPTSTQDSVHLHNSWVLNSNIPLETRHFLFKHGSGSSAIFSAASQNYPLTSNTVYSPPPRPLPRSTFSRPAFTFNKPYRCCNWKCTALSATAITVTLALLLAYVIAVHLFGLTWQLQPVEGELYANGVSKGNRGTESMDTTYSPIGGKVSDKSEKKVFQKGRAIDTGEVDIGAQVMQTIPPGLFWRFQITIHHPIYLKFNISLAKDSLLGIYGRRNIPPTHTQFDFVKLMDGKQLVKQDSKGSDDTQHSPRNLILTSLQETGFIEYMDQGPWYLAFYNDGKKMEQVFVLTTAIEIMDDCSTNCNGNGECISGHCHCFPGFLGPDCARDSCPVLCGGNGEYEKGHCVCRHGWKGPECDVPEEQCIDPTCFGHGTCIMGVCICVPGYKGEICEEEDCLDPMCSNHGICVKGECHCSTGWGGVNCETPLPVCQEQCSGHGTFLLDAGVCSCDPKWTGSDCSTELCTMECGSHGVCSRGICQCEEGWVGPTCEERSCHSHCTEHGQCKDGKCECSPGWEGDHCTIAHYLDAVRDGCPGLCFGNGRCTLDQNGWHCVCQVGWSGTGCNVVMEMLCGDNLDNDGDGLTDCVDPDCCQQSNCYISPLCQGSPDPLDLIQQSQTLFSQHTSRLFYDRIKFLIGKDSTHVIPPEVSFDSRRACVIRGQVVAIDGTPLVGVNVSFLHHSDYGFTISRQDGSFDLVAIGGISVILIFDRSPFLPEKRTLWLPWNQFIVVEKVTMQRVVSDPPSCDISNFISPNPIVLPSPLTSFGGSCPERGTIVPELQVVQEEIPIPSSFVRLSYLSSRTPGYKTLLRILLTHSTIPVGMIKVHLTVAVEGRLTQKWFPAAINLVYTFAWNKTDIYGQKVWGLAEALVSVGYEYETCPDFILWEQRTVVLQGFEMDASNLGGWSLNKHHILNPQSGIIHKGNGENMFISQQPPVISTIMGNGHQRSVACTNCNGPAHNNKLFAPVALASGPDGSVYVGDFNFVRRIFPSGNSVSILELSTSPAHKYYLAMDPVSESLYLSDTNTRKVYKLKSLVETKDLSKNFEVVAGTGDQCLPFDQSHCGDGGRASEASLNSPRGITVDRHGFIYFVDGTMIRKIDENAVITTVIGSNGLTSTQPLSCDSGMDITQVRLEWPTDLAVNPMDNSLYVLDNNIVLQISENRRVRIIAGRPIHCQVPGIDHFLVSKVAIHSTLESARAISVSHSGLLFIAETDERKVNRIQQVTTNGEIYIIAGAPTDCDCKIDPNCDCFSGDGGYAKDAKMKAPSSLAVSPDGTLYVADLGNVRIRTISRNQAHLNDMNIYEIASPADQELYQFTVNGTHLHTLNLITRDYVYNFTYNSEGDLGAITSSNGNSVHIRRDAGGMPLWLVVPGGQVYWLTISSNGVLKRVSAQGYNLALMTYPGNTGLLATKSNENGWTTVYEYDPEGHLTNATFPTGEVSSFHSDLEKLTKVELDTSNRENVLMSTNLTATSTIYILKQENTQSTYRVNPDGSLRVTFASGMEIGLSSEPHILAGAVNPTLGKCNISLPGEHNANLIEWRQRKEQNKGNVSAFERRLRAHNRNLLSIDFDHITRTGKIYDDHRKFTLRILYDQTGRPILWSPVSRYNEVNITYSPSGLVTFIQRGTWNEKMEYDQSGKIISRTWADGKIWSYTYLEKSVMLLLHSQRRYIFEYDQPDCLLSVTMPSMVRHSLQTMLSVGYYRNIYTPPDSSTSFIQDYSRDGRLLQTLHLGTGRRVLYKYTKQARLSEVLYDTTQVTLTYEESSGVIKTIHLMHDGFICTIRYRQTGPLIGRQIFRFSEEGLVNARFDYSYNNFRVTSMQAVINETPLPIDLYRYVDVSGRTEQFGKFSVINYDLNQVITTTVMKHTKIFSANGQVIEVQYEILKAIAYWMTIQYDNVGRMVICDIRVGVDANITRYFYEYDADGQLQTVSVNDKTQWRYSYDLNGNINLLSHGKSARLTPLRYDLRDRITRLGEIQYKMDEDGFLRQRGNDIFEYNSNGLLQKAYNKASGWTVQYYYDGLGRRVASKSSLGQHLQFFYADLTNPIRVTHLYNHTSSEITSLYYDLQGHLIAMELSSGEEYYVACDNTGTPLAVFSSRGQVIKEILYTPYGDIYHDTYPDFQVIIGFHGGLYDFLTKLVHLGQRDYDVVAGRWTTPNHHIWKQLNLLPKPFNLYSFENNYPVGKIQDVAKYTTDIRSWLELFGFQLHNVLPGFPKPELENLELTYELLRLQTKTQEWDPGKTILGIQCELQKQLRNFISLDQLPMTPRYNDGRCLEGGKQPRFAAVPSVFGKGIKFAIKDGIVTADIIGVANEDSRRLAAILNNAHYLENLHFTIEGRDTHYFIKLGSLEEDLVLIGNTGGRRILENGVNVTVSQMTSVLNGRTRRFADIQLQHGALCFNIRYGTTVEEEKNHVLEIARQRAVAQAWTKEQRRLQEGEEGIRAWTEGEKQQLLSTGRVQGYDGYFVLSVEQYLELSDSANNIHFMRQSEIGRR | Involved in neural development, regulating the establishment of proper connectivity within the nervous system. May function as a cellular signal transducer (By similarity).
Plays a role in the regulation of neuroplasticity in the limbic system. Mediates a rapid reorganization of actin- and tubulin-based cytoskeleton elements with an increase in dendritic arborization and spine density formation of neurons in the hippocampus and amygdala. Induces BDNF transcription inhibition in neurons. Activates the mitogen-activated protein (MAP) kinase 2 (MEK2) and extracellular signal-regulated kinase (ERK) cascade. Acts also as a bioactive neuroprotective peptide on limbic neurons of the brain and regulates stress-induced behavior: attenuates alkalosis-associated necrotic cell death and the effects of corticotropin-releasing factor (CRF) on c-fos/FOS induction and on the reinstatement of cocaine seeking (By similarity).
Induces gene transcription activation.
Subcellular locations: Cell membrane
Subcellular locations: Nucleus, Nucleus speckle, Nucleus matrix, Cytoplasm, Cytoskeleton
Subcellular locations: Nucleus, Cytoplasm, Cell membrane
Colocalizes with the dystroglycan complex at the cell membrane in hippocampal cells. Binds hippocampal cell membranes and is incorporated in the cytoplasm by endocytosis in a caveoli-dependent manner. Upon cell internalization is transported arround and in the nucleus (By similarity).
Expressed in fetal brain. |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.