protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
CN183_HUMAN | Homo sapiens | MEVLGFSNSKMDVRAKRQLEIWMEMAPSKPEPQGKAQQSQPTSVLSAANAAQRGKCCCCREGHSPEDYGRQWAENVENHPEVAAHTSCLQSITPHFIAGEMGCTAKESQEQVPASITQILRNPWFSRLDSPRSRCLHLASSVDPIPGLQFFIVIVSDHQKVDREEEWKQGKIRKEIHWIPLFTMWSWLQCVEDRSIAGIPKLEHGDSHQTESLLDVLVGGFWGVPHTAPPRLQEAGGPTGGCGVGGQPLGGRGQWVGEETGPVGGPHAWWVPPTAPGTSLVLLVLLAQPFQSSEWMPVSSHTPPGTQTNTAALLNVCTSYSEYV | null |
CN37_HUMAN | Homo sapiens | MNRGFSRKSHTFLPKIFFRKMSSSGAKDKPELQFPFLQDEDTVATLLECKTLFILRGLPGSGKSTLARVIVDKYRDGTKMVSADAYKITPGARGAFSEEYKRLDEDLAAYCRRRDIRILVLDDTNHERERLEQLFEMADQYQYQVVLVEPKTAWRLDCAQLKEKNQWQLSADDLKKLKPGLEKDFLPLYFGWFLTKKSSETLRKAGQVFLEELGNHKAFKKELRQFVPGDEPREKMDLVTYFGKRPPGVLHCTTKFCDYGKAPGAEEYAQQDVLKKSYSKAFTLTISALFVTPKTTGARVELSEQQLQLWPSDVDKLSPTDNLPRGSRAHITLGCAADVEAVQTGLDLLEILRQEKGGSRGEEVGELSRGKLYSLGNGRWMLTLAKNMEVRAIFTGYYGKGKPVPTQGSRKGGALQSCTII | Catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates (By similarity). May participate in RNA metabolism in the myelinating cell, CNP is the third most abundant protein in central nervous system myelin (By similarity).
Subcellular locations: Membrane, Melanosome
Firmly bound to membrane structures of brain white matter. |
CN37_PONAB | Pongo abelii | MNRGFSRKSHTFLPKIFFRKMSSSGTKDKPELQFPFLQDEDTVATLQECKTLFILRGLPGSGKSTLARVIVDKYRDGTKMVSADAYKITPGARGAFSEEYKRLDEDLAAYCRRRDIRILVLDDTNHERERLEQLFEMADQYQYQVVLVEPKTAWRLGCAQLKEKNQWQLSADDLKKLKPGLEKDFLPLYFGWFLTKKSSETLRKAGQVFLEELGNHKAFKKELRQFIPGDEPREKMDLVTYFGKRPPGVLHCTTKFCDYGKAPGAEEYAQQDVLKKSYSKAFTLTISALFVTPKTTGARVELSEQQLQLWPSDVDKLSPTDNLPRGSRAHITLGCAADVEAVQTGLDLLEILRQEKGGSRGEEVGELSRGKLYSLGNGRWMLTLAKNMEVRAIFTGYYGKGKPVPTQGSRKGGALQSCTII | Catalyzes the formation of 2'-nucleotide products from 2',3'-cyclic substrates (By similarity). May participate in RNA metabolism in the myelinating cell, CNP is the third most abundant protein in central nervous system myelin (By similarity).
Subcellular locations: Membrane, Melanosome
Firmly bound to membrane structures of brain white matter. |
CNIH3_HUMAN | Homo sapiens | MAFTFAAFCYMLSLVLCAALIFFAIWHIIAFDELRTDFKSPIDQCNPVHARERLRNIERICFLLRKLVLPEYSIHSLFCIMFLCAQEWLTLGLNVPLLFYHFWRYFHCPADSSELAYDPPVVMNADTLSYCQKEAWCKLAFYLLSFFYYLYCMIYTLVSS | Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by regulating their rates of activation, deactivation and desensitization.
Subcellular locations: Postsynaptic cell membrane
Also localizes to the cell membrane of extrasynaptic sites (dendritic shafts, spines of pyramidal cells).
Expression is up-regulated in dorsolateral prefrontal cortex of patients with schizophrenia (postmortem brain study). |
CNIH4_HUMAN | Homo sapiens | MEAVVFVFSLLDCCALIFLSVYFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLMSLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQLKSHMKEAMIKLGFHLLCFFMYLYSMILALIND | Involved in G protein-coupled receptors (GPCRs) trafficking from the endoplasmic reticulum to the cell surface; it promotes the exit of GPCRs from the early secretory pathway, likely through interaction with the COPII machinery .
Subcellular locations: Membrane, Endoplasmic reticulum, Endoplasmic reticulum-Golgi intermediate compartment |
CNIH4_PONAB | Pongo abelii | MEAVVFVFSLLDCCALIFLSVYFIITLSDLECDYINARSCCSKLNKWVIPELIGHTIVTVLLLMSLHWFIFLLNLPVATWNIYRYIMVPSGNMGVFDPTEIHNRGQLKSHMKEAMIKLGFHLLCFFMYLYSMILALIND | Involved in G protein-coupled receptors (GPCRs) trafficking from the endoplasmic reticulum to the cell surface; it promotes the exit of GPCRs from the early secretory pathway, likely through interaction with the COPII machinery.
Subcellular locations: Membrane, Endoplasmic reticulum, Endoplasmic reticulum-Golgi intermediate compartment |
CNIPF_HUMAN | Homo sapiens | MEPVTKWSPKQVVDWTRGLDDCLQQYVHKFEREKINGEQLLQISHQDLEELGVTRIGHQELVLEAVDLLCALNYGLETDNMKNLVLKLRASSHNLQNYISSRRKSPAYDGNTSRKAPNEFLTSVVELIGAAKALLAWLDRAPFTGITDFSVTKNKIIQLCLDLTTTVQKDCFVAEMEDKVLTVVKVLNGICDKTIRSTTDPVMSQCACLEEVHLPNIKPGEGLGMYIKSTYDGLHVITGTTENSPADRSQKIHAGDEVIQVNQQTVVGWQLKNLVKKLRENPTGVVLLLKKRPTGSFNFTPAPLKNLRWKPPLVQTSPPPATTQSPESTMDTSLKKEKSAILDLYIPPPPAVPYSPRDENGSFVYGGSSKCKQPLPGPKGSESPNSFLDQESRRRRFTIADSDQLPGYSVETNILPTKMREKTPSYGKPRPLSMPADGNWMGIVDPFARPRGHGRKAFVSTKMTSYMAIDGSALVPLRQKPRRKTQGFLTMSRRRISCKDLGHADCQGWLYKKKEKGSFLSNKWKKFWVILKGSSLYWYSNQMAEKADGFVNLPDFTVERASECKKKHAFKISHPQIKTFYFAAENVQEMNVWLNKLGSAVIHQESTTKDEECYSESEQEDPEIAAETPPPPHASQTQSLTAQQASSSSPSLSGTSYSFSSLENTVKTPSSFPSSLSKERQSLPDTVNSLSAAEDEGQPITFAVQVHSPVPSEAGIHKALENSFVTSESGFLNSLSSDDTSSLSSNHDHLTVPDKPAGSKIMDKEETKVSEDDEMEKLYKSLEQASLSPLGDRRPSTKKELRKSFVKRCKNPSINEKLHKIRTLNSTLKCKEHDLAMINQLLDDPKLTARKYREWKVMNTLLIQDIYQQQRASPAPDDTDDTPQELKKSPSSPSVENSI | Required for hepatocyte growth factor (HGF)-dependent activation of Arf6 and HGF-stimulated cell migration. |
CNKR1_HUMAN | Homo sapiens | MEPVETWTPGKVATWLRGLDDSLQDYPFEDWQLPGKNLLQLCPQSLEALAVRSLGHQELILGGVEQLQALSSRLQTENLQSLTEGLLGATHDFQSIVQGCLGDCAKTPIDVLCAAVELLHEADALLFWLSRYLFSHLNDFSACQEIRDLLEELSQVLHEDGPAAEKEGTVLRICSHVAGICHNILVCCPKELLEQKAVLEQVQLDSPLGLEIHTTSNCQHFVSQVDTQVPTDSRLQIQPGDEVVQINEQVVVREERDMVGWPRKNMVRELLREPAGLSLVLKKIPIPETPPQTPPQVLDSPHQRSPSLSLAPLSPRAPSEDVFAFDLSSNPSPGPSPAWTDSASLGPEPLPIPPEPPAILPAGVAGTPGLPESPDKSPVGRKKSKGLATRLSRRRVSCRELGRPDCDGWLLLRKAPGGFMGPRWRRRWFVLKGHTLYWYRQPQDEKAEGLINVSNYSLESGHDQKKKYVFQLTHDVYKPFIFAADTLTDLSMWVRHLITCISKYQSPGRAPPPREEDCYSETEAEDPDDEAGSHSASPSPAQAGSPLHGDTSPAATPTQRSPRTSFGSLTDSSEEALEGMVRGLRQGGVSLLGQPQPLTQEQWRSSFMRRNRDPQLNERVHRVRALQSTLKAKLQELQVLEEVLGDPELTGEKFRQWKEQNRELYSEGLGAWGVAQAEGSSHILTSDSTEQSPHSLPSDPEEHSHLCPLTSESSLRPPDL | May function as an adapter protein or regulator of Ras signaling pathways.
Subcellular locations: Cytoplasm, Membrane |
CNKR2_HUMAN | Homo sapiens | MALIMEPVSKWSPSQVVDWMKGLDDCLQQYIKNFEREKISGDQLLRITHQELEDLGVSRIGHQELILEAVDLLCALNYGLETENLKTLSHKLNASAKNLQNFITGRRRSGHYDGRTSRKLPNDFLTSVVDLIGAAKSLLAWLDRSPFAAVTDYSVTRNNVIQLCLELTTIVQQDCTVYETENKILHVCKTLSGVCDHIISLSSDPLVSQSAHLEVIQLANIKPSEGLGMYIKSTYDGLHVITGTTENSPADRCKKIHAGDEVIQVNHQTVVGWQLKNLVNALREDPSGVILTLKKRPQSMLTSAPALLKNMRWKPLALQPLIPRSPTSSVATPSSTISTPTKRDSSALQDLYIPPPPAEPYIPRDEKGNLPCEDLRGHMVGKPVHKGSESPNSFLDQEYRKRFNIVEEDTVLYCYEYEKGRSSSQGRRESTPTYGKLRPISMPVEYNWVGDYEDPNKMKRDSRRENSLLRYMSNEKIAQEEYMFQRNSKKDTGKKSKKKGDKSNSPTHYSLLPSLQMDALRQDIMGTPVPETTLYHTFQQSSLQHKSKKKNKGPIAGKSKRRISCKDLGRGDCEGWLWKKKDAKSYFSQKWKKYWFVLKDASLYWYINEEDEKAEGFISLPEFKIDRASECRKKYAFKACHPKIKSFYFAAEHLDDMNRWLNRINMLTAGYAERERIKQEQDYWSESDKEEADTPSTPKQDSPPPPYDTYPRPPSMSCASPYVEAKHSRLSSTETSQSQSSHEEFRQEVTGSSAVSPIRKTASQRRSWQDLIETPLTSSGLHYLQTLPLEDSVFSDSAAISPEHRRQSTLPTQKCHLQDHYGPYPLAESERMQVLNGNGGKPRSFTLPRDSGFNHCCLNAPVSACDPQDDVQPPEVEEEEEEEEEEGEAAGENIGEKSESREEKLGDSLQDLYRALEQASLSPLGEHRISTKMEYKLSFIKRCNDPVMNEKLHRLRILKSTLKAREGEVAIIDKVLDNPDLTSKEFQQWKQMYLDLFLDICQNTTSNDPLSISSEVDVITSSLAHTHSYIETHV | May function as an adapter protein or regulator of Ras signaling pathways.
Subcellular locations: Cytoplasm, Membrane |
CNPY4_HUMAN | Homo sapiens | MGPVRLGILLFLFLAVHEAWAGMLKEEDDDTERLPSKCEVCKLLSTELQAELSRTGRSREVLELGQVLDTGKRKRHVPYSVSETRLEEALENLCERILDYSVHAERKGSLRYAKGQSQTMATLKGLVQKGVKVDLGIPLELWDEPSVEVTYLKKQCETMLEEFEDIVGDWYFHHQEQPLQNFLCEGHVLPAAETACLQETWTGKEITDGEEKTEGEEEQEEEEEEEEEEGGDKMTKTGSHPKLDREDL | Plays a role in the regulation of the cell surface expression of TLR4.
Subcellular locations: Secreted |
CNR1_HUMAN | Homo sapiens | MKSILDGLADTTFRTITTDLLYVGSNDIQYEDIKGDMASKLGYFPQKFPLTSFRGSPFQEKMTAGDNPQLVPADQVNITEFYNKSLSSFKENEENIQCGENFMDIECFMVLNPSQQLAIAVLSLTLGTFTVLENLLVLCVILHSRSLRCRPSYHFIGSLAVADLLGSVIFVYSFIDFHVFHRKDSRNVFLFKLGGVTASFTASVGSLFLTAIDRYISIHRPLAYKRIVTRPKAVVAFCLMWTIAIVIAVLPLLGWNCEKLQSVCSDIFPHIDETYLMFWIGVTSVLLLFIVYAYMYILWKAHSHAVRMIQRGTQKSIIIHTSEDGKVQVTRPDQARMDIRLAKTLVLILVVLIICWGPLLAIMVYDVFGKMNKLIKTVFAFCSMLCLLNSTVNPIIYALRSKDLRHAFRSMFPSCEGTAQPLDNSMGDSDCLHKHANNAASVHRAAESCIKSTVKIAKVTMSVSTDTSAEAL | G-protein coupled receptor for endogenous cannabinoids (eCBs), including N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG), as well as phytocannabinoids, such as delta(9)-tetrahydrocannabinol (THC) ( ). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP ( ). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner . In cerebral vascular smooth muscle cells, cannabinoid-induced inhibition of voltage-gated Ca(2+) channels leads to vasodilation and decreased vascular tone (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes (By similarity). In the liver, activation by endocannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism (By similarity). In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism (By similarity). In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity). In macrophages infiltrating pancreatic islets, this process may participate in the progression of type-2 diabetes and associated loss of pancreatic beta-cells .
Binds both 2-arachidonoylglycerol (2-AG) and anandamide.
Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 2 in assays measuring GTP binding to membranes.
Only binds 2-arachidonoylglycerol (2-AG) with high affinity. Contrary to its effect on isoform 1, 2-AG behaves as an inverse agonist on isoform 3 in assays measuring GTP binding to membranes.
Subcellular locations: Cell membrane, Membrane raft, Mitochondrion outer membrane, Cell projection, Axon, Presynapse
Unexpectedly, in the mitochondria, the C-terminus is located in the mitochondrial intermembrane space, a compartment topologically considered as extracellular. In canonical seven-transmembrane G-protein coupled receptors, the C-terminus is cytosolic (By similarity). Found on presynaptic axon terminals in some GABAergic neurons in the somatosensory cortex (By similarity).
Widely expressed, with highest levels in fetal and adult brain. Expression levels of isoform 2 and isoform 3 are much lower than those of isoform 1. |
CNR1_MACMU | Macaca mulatta | MKSILDGLADTTFRTITTDLLYVGSNDIQYEDIKGDMASKLGYFPQKFPLTSFRGSPFQEKMTAGDNPQLVPADQVNITEFYNKSLSSFKENEENIQCGENFMDIECFMVLNPSQQLAIAVLSLTLGTFTVLENLLVLCVILHSRSLRCRPSYHFIGSLAVADLLGSVIFVYSFIDFHVFHRKDSRNVFLFKLGGVTASFTASVGSLFLTAIDRYISIHRPLAYKRIVTRPKAVVAFCLMWTIAIVIAVLPLLGWNCEKLQSVCSDIFPHIDETYLMFWIGVTSVLLLFIVYAYMYILWKAHSHAVRMIQRGTQKSIIIHTSEDGKVQVTRPDQARMDIRLAKTLVLILVVLIICWGPLLAIMVYDVFGKMNKLIKTVFAFCSMLCLLNSTVNPIIYALRSKDLRHAFRSMFPSCEGTAQPLDNSMGDSDCLHKHANNAASVHRAAESCIKSTVKIAKVTMSVSTDTSAEAL | G-protein coupled receptor for cannabinoids, including endocannabinoids (eCBs), such as N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP (By similarity). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes. In the liver, activation by cannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism. In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism. In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity).
Subcellular locations: Cell membrane, Mitochondrion outer membrane, Cell projection, Axon, Presynapse
Unexpectedly, in the mitochondria, the C-terminus is located in the mitochondrial intermembrane space, a compartment topologically considered as extracellular. In canonical seven-transmembrane G-protein coupled receptors, the C-terminus is cytosolic (By similarity). Found on presynaptic axon terminals in some GABAergic neurons in the somatosensory cortex (By similarity). |
CNR1_PANTR | Pan troglodytes | MKSILDGLADTTFRTITTDLLYVGSNDIQYEDIKGDMASKLGYFPQKFPLTSFRGSPFQEKMTAGDNPQLVPADQVNITEFYNKSLSSFKENEENIQCGENFMDIECFMVLNPSQQLAIAVLSLTLGTFTVLENLLVLCVILHSRSLRCRPSYHFIGSLAVADLLGSVIFVYSFIDFHVFHRKDSRNVFLFKLGGVTASFTASVGSLFLTAIDRYISIHRPLAYKRIVTRPKAVVAFCLMWTIAIVIAVLPLLGWNCEKLQSVCSDIFPHIDETYLMFWIGVTSVLLLFIVYAYMYILWKAHSHAVRMIQRGTQKSIIIHTSEDGKVQVTRPDQARMDIRLAKTLVLILVVLIICWGPLLAIMVYDVFGKMNKLIKTVFAFCSMLCLLNSTVNPIIYALRSKDLRHAFRSMFPSCEGTAQPLDNSMGDSDCLHKHANNAASVHRAAESCIKSTVKIAKVTMSVSTDTSAEAL | G-protein coupled receptor for cannabinoids, including endocannabinoids (eCBs), such as N-arachidonoylethanolamide (also called anandamide or AEA) and 2-arachidonoylglycerol (2-AG). Mediates many cannabinoid-induced effects, acting, among others, on food intake, memory loss, gastrointestinal motility, catalepsy, ambulatory activity, anxiety, chronic pain. Signaling typically involves reduction in cyclic AMP (By similarity). In the hypothalamus, may have a dual effect on mitochondrial respiration depending upon the agonist dose and possibly upon the cell type. Increases respiration at low doses, while decreases respiration at high doses. At high doses, CNR1 signal transduction involves G-protein alpha-i protein activation and subsequent inhibition of mitochondrial soluble adenylate cyclase, decrease in cyclic AMP concentration, inhibition of protein kinase A (PKA)-dependent phosphorylation of specific subunits of the mitochondrial electron transport system, including NDUFS2. In the hypothalamus, inhibits leptin-induced reactive oxygen species (ROS) formation and mediates cannabinoid-induced increase in SREBF1 and FASN gene expression. In response to cannabinoids, drives the release of orexigenic beta-endorphin, but not that of melanocyte-stimulating hormone alpha/alpha-MSH, from hypothalamic POMC neurons, hence promoting food intake. In the hippocampus, regulates cellular respiration and energy production in response to cannabinoids. Involved in cannabinoid-dependent depolarization-induced suppression of inhibition (DSI), a process in which depolarization of CA1 postsynaptic pyramidal neurons mobilizes eCBs, which retrogradely activate presynaptic CB1 receptors, transiently decreasing GABAergic inhibitory neurotransmission. Also reduces excitatory synaptic transmission (By similarity). In superior cervical ganglions and cerebral vascular smooth muscle cells, inhibits voltage-gated Ca(2+) channels in a constitutive, as well as agonist-dependent manner (By similarity). Induces leptin production in adipocytes and reduces LRP2-mediated leptin clearance in the kidney, hence participating in hyperleptinemia. In adipose tissue, CNR1 signaling leads to increased expression of SREBF1, ACACA and FASN genes. In the liver, activation by cannabinoids leads to increased de novo lipogenesis and reduced fatty acid catabolism, associated with increased expression of SREBF1/SREBP-1, GCK, ACACA, ACACB and FASN genes. May also affect de novo cholesterol synthesis and HDL-cholesteryl ether uptake. Peripherally modulates energy metabolism. In high carbohydrate diet-induced obesity, may decrease the expression of mitochondrial dihydrolipoyl dehydrogenase/DLD in striated muscles, as well as that of selected glucose/ pyruvate metabolic enzymes, hence affecting energy expenditure through mitochondrial metabolism. In response to cannabinoid anandamide, elicits a pro-inflammatory response in macrophages, which involves NLRP3 inflammasome activation and IL1B and IL18 secretion (By similarity).
Subcellular locations: Cell membrane, Mitochondrion outer membrane, Cell projection, Axon, Presynapse
Unexpectedly, in the mitochondria, the C-terminus is located in the mitochondrial intermembrane space, a compartment topologically considered as extracellular. In canonical seven-transmembrane G-protein coupled receptors, the C-terminus is cytosolic (By similarity). Found on presynaptic axon terminals in some GABAergic neurons in the somatosensory cortex (By similarity). |
CO8G_HUMAN | Homo sapiens | MLPPGTATLLTLLLAAGSLGQKPQRPRRPASPISTIQPKANFDAQQFAGTWLLVAVGSACRFLQEQGHRAEATTLHVAPQGTAMAVSTFRKLDGICWQVRQLYGDTGVLGRFLLQARDARGAVHVVVAETDYQSFAVLYLERAGQLSVKLYARSLPVSDSVLSGFEQRVQEAHLTEDQIFYFPKYGFCEAADQFHVLDEVRR | C8 is a constituent of the membrane attack complex. C8 binds to the C5B-7 complex, forming the C5B-8 complex. C5-B8 binds C9 and acts as a catalyst in the polymerization of C9. The gamma subunit seems to be able to bind retinol.
Subcellular locations: Secreted |
CO9A1_HUMAN | Homo sapiens | MKTCWKIPVFFFVCSFLEPWASAAVKRRPRFPVNSNSNGGNELCPKIRIGQDDLPGFDLISQFQVDKAASRRAIQRVVGSATLQVAYKLGNNVDFRIPTRNLYPSGLPEEYSFLTTFRMTGSTLKKNWNIWQIQDSSGKEQVGIKINGQTQSVVFSYKGLDGSLQTAAFSNLSSLFDSQWHKIMIGVERSSATLFVDCNRIESLPIKPRGPIDIDGFAVLGKLADNPQVSVPFELQWMLIHCDPLRPRRETCHELPARITPSQTTDERGPPGEQGPPGPPGPPGVPGIDGIDGDRGPKGPPGPPGPAGEPGKPGAPGKPGTPGADGLTGPDGSPGSIGSKGQKGEPGVPGSRGFPGRGIPGPPGPPGTAGLPGELGRVGPVGDPGRRGPPGPPGPPGPRGTIGFHDGDPLCPNACPPGRSGYPGLPGMRGHKGAKGEIGEPGRQGHKGEEGDQGELGEVGAQGPPGAQGLRGITGIVGDKGEKGARGLDGEPGPQGLPGAPGDQGQRGPPGEAGPKGDRGAEGARGIPGLPGPKGDTGLPGVDGRDGIPGMPGTKGEPGKPGPPGDAGLQGLPGVPGIPGAKGVAGEKGSTGAPGKPGQMGNSGKPGQQGPPGEVGPRGPQGLPGSRGELGPVGSPGLPGKLGSLGSPGLPGLPGPPGLPGMKGDRGVVGEPGPKGEQGASGEEGEAGERGELGDIGLPGPKGSAGNPGEPGLRGPEGSRGLPGVEGPRGPPGPRGVQGEQGATGLPGVQGPPGRAPTDQHIKQVCMRVIQEHFAEMAASLKRPDSGATGLPGRPGPPGPPGPPGENGFPGQMGIRGLPGIKGPPGALGLRGPKGDLGEKGERGPPGRGPNGLPGAIGLPGDPGPASYGRNGRDGERGPPGVAGIPGVPGPPGPPGLPGFCEPASCTMQAGQRAFNKGPDP | Structural component of hyaline cartilage and vitreous of the eye.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix |
CO9A2_HUMAN | Homo sapiens | MAAATASPRSLLVLLQVVVLALAQIRGPPGERGPPGPPGPPGVPGSDGIDGDNGPPGKAGPPGPKGEPGKAGPDGPDGKPGIDGLTGAKGEPGPMGIPGVKGQPGLPGPPGLPGPGFAGPPGPPGPVGLPGEIGIRGPKGDPGPDGPSGPPGPPGKPGRPGTIQGLEGSADFLCPTNCPPGMKGPPGLQGVKGHAGKRGILGDPGHQGKPGPKGDVGASGEQGIPGPPGPQGIRGYPGMAGPKGETGPHGYKGMVGAIGATGPPGEEGPRGPPGRAGEKGDEGSPGIRGPQGITGPKGATGPPGINGKDGTPGTPGMKGSAGQAGQPGSPGHQGLAGVPGQPGTKGGPGDQGEPGPQGLPGFSGPPGKEGEPGPRGEIGPQGIMGQKGDQGERGPVGQPGPQGRQGPKGEQGPPGIPGPQGLPGVKGDKGSPGKTGPRGKVGDPGVAGLPGEKGEKGESGEPGPKGQQGVRGEPGYPGPSGDAGAPGVQGYPGPPGPRGLAGNRGVPGQPGRQGVEGRDATDQHIVDVALKMLQEQLAEVAVSAKREALGAVGMMGPPGPPGPPGYPGKQGPHGHPGPRGVPGIVGAVGQIGNTGPKGKRGEKGDPGEVGRGHPGMPGPPGIPGLPGRPGQAINGKDGDRGSPGAPGEAGRPGLPGPVGLPGFCEPAACLGASAYASARLTEPGSIKGP | Structural component of hyaline cartilage and vitreous of the eye.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix |
CO9A3_HUMAN | Homo sapiens | MAGPRACAPLLLLLLLGELLAAAGAQRVGLPGPPGPPGPPGKPGQDGIDGEAGPPGLPGPPGPKGAPGKPGKPGEAGLPGLPGVDGLTGRDGPPGPKGAPGERGSLGPPGPPGLGGKGLPGPPGEAGVSGPPGGIGLRGPPGPSGLPGLPGPPGPPGPPGHPGVLPEGATDLQCPSICPPGPPGPPGMPGFKGPTGYKGEQGEVGKDGEKGDPGPPGPAGLPGSVGLQGPRGLRGLPGPLGPPGDRGPIGFRGPPGIPGAPGKAGDRGERGPEGFRGPKGDLGRPGPKGTPGVAGPSGEPGMPGKDGQNGVPGLDGQKGEAGRNGAPGEKGPNGLPGLPGRAGSKGEKGERGRAGELGEAGPSGEPGVPGDAGMPGERGEAGHRGSAGALGPQGPPGAPGVRGFQGQKGSMGDPGLPGPQGLRGDVGDRGPGGAAGPKGDQGIAGSDGLPGDKGELGPSGLVGPKGESGSRGELGPKGTQGPNGTSGVQGVPGPPGPLGLQGVPGVPGITGKPGVPGKEASEQRIRELCGGMISEQIAQLAAHLRKPLAPGSIGRPGPAGPPGPPGPPGSIGHPGARGPPGYRGPTGELGDPGPRGNQGDRGDKGAAGAGLDGPEGDQGPQGPQGVPGTSKDGQDGAPGEPGPPGDPGLPGAIGAQGTPGICDTSACQGAVLGGVGEKSGSRSS | Structural component of hyaline cartilage and vitreous of the eye.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix |
CO9_HUMAN | Homo sapiens | MSACRSFAVAICILEISILTAQYTTSYDPELTESSGSASHIDCRMSPWSEWSQCDPCLRQMFRSRSIEVFGQFNGKRCTDAVGDRRQCVPTEPCEDAEDDCGNDFQCSTGRCIKMRLRCNGDNDCGDFSDEDDCESEPRPPCRDRVVEESELARTAGYGINILGMDPLSTPFDNEFYNGLCNRDRDGNTLTYYRRPWNVASLIYETKGEKNFRTEHYEEQIEAFKSIIQEKTSNFNAAISLKFTPTETNKAEQCCEETASSISLHGKGSFRFSYSKNETYQLFLSYSSKKEKMFLHVKGEIHLGRFVMRNRDVVLTTTFVDDIKALPTTYEKGEYFAFLETYGTHYSSSGSLGGLYELIYVLDKASMKRKGVELKDIKRCLGYHLDVSLAFSEISVGAEFNKDDCVKRGEGRAVNITSENLIDDVVSLIRGGTRKYAFELKEKLLRGTVIDVTDFVNWASSINDAPVLISQKLSPIYNLVPVKMKNAHLKKQNLERAIEDYINEFSVRKCHTCQNGGTVILMDGKCLCACPFKFEGIACEISKQKISEGLPALEFPNEK | Constituent of the membrane attack complex (MAC) that plays a key role in the innate and adaptive immune response by forming pores in the plasma membrane of target cells ( ). C9 is the pore-forming subunit of the MAC ( ).
Subcellular locations: Secreted, Target cell membrane
Secreted as soluble monomer. Oligomerizes at target membranes, forming a pre-pore. A conformation change then leads to the formation of a 100 Angstrom diameter pore.
Plasma (at protein level). |
COCH_HUMAN | Homo sapiens | MSAAWIPALGLGVCLLLLPGPAGSEGAAPIAITCFTRGLDIRKEKADVLCPGGCPLEEFSVYGNIVYASVSSICGAAVHRGVISNSGGPVRVYSLPGRENYSSVDANGIQSQMLSRWSASFTVTKGKSSTQEATGQAVSTAHPPTGKRLKKTPEKKTGNKDCKADIAFLIDGSFNIGQRRFNLQKNFVGKVALMLGIGTEGPHVGLVQASEHPKIEFYLKNFTSAKDVLFAIKEVGFRGGNSNTGKALKHTAQKFFTVDAGVRKGIPKVVVVFIDGWPSDDIEEAGIVAREFGVNVFIVSVAKPIPEELGMVQDVTFVDKAVCRNNGFFSYHMPNWFGTTKYVKPLVQKLCTHEQMMCSKTCYNSVNIAFLIDGSSSVGDSNFRLMLEFVSNIAKTFEISDIGAKIAAVQFTYDQRTEFSFTDYSTKENVLAVIRNIRYMSGGTATGDAISFTVRNVFGPIRESPNKNFLVIVTDGQSYDDVQGPAAAAHDAGITIFSVGVAWAPLDDLKDMASKPKESHAFFTREFTGLEPIVSDVIRGICRDFLESQQ | Plays a role in the control of cell shape and motility in the trabecular meshwork.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix
Expressed in inner ear structures; the cochlea and the vestibule. |
CODA1_HUMAN | Homo sapiens | MVAERTHKAAATGARGPGELGAPGTVALVAARAERGARLPSPGSCGLLTLALCSLALSLLAHFRTAELQARVLRLEAERGEQQMETAILGRVNQLLDEKWKLHSRRRREAPKTSPGCNCPPGPPGPTGRPGLPGDKGAIGMPGRVGSPGDAGLSIIGPRGPPGQPGTRGFPGFPGPIGLDGKPGHPGPKGDMGLTGPPGQPGPQGQKGEKGQCGEYPHRECLSSMPAALRSSQIIALKLLPLLNSVRLAPPPVIKRRTFQGEQSQASIQGPPGPPGPPGPSGPLGHPGLPGPMGPPGLPGPPGPKGDPGIQGYHGRKGERGMPGMPGKHGAKGAPGIAVAGMKGEPGIPGTKGEKGAEGSPGLPGLLGQKGEKGDAGNSIGGGRGEPGPPGLPGPPGPKGEAGVDGQVGPPGQPGDKGERGAAGEQGPDGPKGSKGEPGKGEMVDYNGNINEALQEIRTLALMGPPGLPGQIGPPGAPGIPGQKGEIGLPGPPGHDGEKGPRGKPGDMGPPGPQGPPGKDGPPGVKGENGHPGSPGEKGEKGETGQAGSPGEKGEAGEKGNPGAEVPGLPGPEGPPGPPGLQGVPGPKGEAGLDGAKGEKGFQGEKGDRGPLGLPGASGLDGRPGPPGTPGPIGVPGPAGPKGERGSKGDPGMTGPTGAAGLPGLHGPPGDKGNRGERGKKGSRGPKGDKGDQGAPGLDAPCPLGEDGLPVQGCWNK | Involved in cell-matrix and cell-cell adhesion interactions that are required for normal development. May participate in the linkage between muscle fiber and basement membrane. May play a role in endochondral ossification of bone and branching morphogenesis of lung. Binds heparin. At neuromuscular junctions, may play a role in acetylcholine receptor clustering .
Subcellular locations: Cell membrane, Postsynaptic cell membrane
Widely expressed in both fetal and adult ocular tissues (at protein level). In the eye, expression is accentuated in the ciliary muscle, optic nerve and the neural retina. In early placenta, localized to fibroblastoid stromal cells of the placental villi, to endothelial cells of developing capillaries and to cells of the cytotrophoblastic columns. Also detected in large decidual cells of the decidual membrane and to stromal cells of the gestational endometrium, but not in the epithelial cells in the endometrial glands. Isoform 10: Expressed in muscle . |
COHA1_HUMAN | Homo sapiens | MDVTKKNKRDGTEVTERIVTETVTTRLTSLPPKGGTSNGYAKTASLGGGSRLEKQSLTHGSSGYINSTGSTRGHASTSSYRRAHSPASTLPNSPGSTFERKTHVTRHAYEGSSSGNSSPEYPRKEFASSSTRGRSQTRESEIRVRLQSASPSTRWTELDDVKRLLKGSRSASVSPTRNSSNTLPIPKKGTVETKIVTASSQSVSGTYDATILDANLPSHVWSSTLPAGSSMGTYHNNMTTQSSSLLNTNAYSAGSVFGVPNNMASCSPTLHPGLSTSSSVFGMQNNLAPSLTTLSHGTTTTSTAYGVKKNMPQSPAAVNTGVSTSAACTTSVQSDDLLHKDCKFLILEKDNTPAKKEMELLIMTKDSGKVFTASPASIAATSFSEDTLKKEKQAAYNADSGLKAEANGDLKTVSTKGKTTTADIHSYGSSGGGGSGGGGGVGGAGGGPWGPAPAWCPCGSCCSWWKWLLGLLLTWLLLLGLLFGLIALAEEVRKLKARVDELERIRRSILPYGDSMDRIEKDRLQGMAPAAGADLDKIGLHSDSQEELWMFVRKKLMMEQENGNLRGSPGPKGDMGSPGPKGDRGFPGTPGIPGPLGHPGPQGPKGQKGSVGDPGMEGPMGQRGREGPMGPRGEAGPPGSGEKGERGAAGEPGPHGPPGVPGSVGPKGSSGSPGPQGPPGPVGLQGLRGEVGLPGVKGDKGPMGPPGPKGDQGEKGPRGLTGEPGMRGLPGAVGEPGAKGAMGPAGPDGHQGPRGEQGLTGMPGIRGPPGPSGDPGKPGLTGPQGPQGLPGTPGRPGIKGEPGAPGKIVTSEGSSMLTVPGPPGPPGAMGPPGPPGAPGPAGPAGLPGHQEVLNLQGPPGPPGPRGPPGPSIPGPPGPRGPPGEGLPGPPGPPGSFLSNSETFLSGPPGPPGPPGPKGDQGPPGPRGHQGEQGLPGFSTSGSSSFGLNLQGPPGPPGPQGPKGDKGDPGVPGALGIPSGPSEGGSSSTMYVSGPPGPPGPPGPPGSISSSGQEIQQYISEYMQSDSIRSYLSGVQGPPGPPGPPGPVTTITGETFDYSELASHVVSYLRTSGYGVSLFSSSISSEDILAVLQRDDVRQYLRQYLMGPRGPPGPPGASGDGSLLSLDYAELSSRILSYMSSSGISIGLPGPPGPPGLPGTSYEELLSLLRGSEFRGIVGPPGPPGPPGIPGNVWSSISVEDLSSYLHTAGLSFIPGPPGPPGPPGPRGPPGVSGALATYAAENSDSFRSELISYLTSPDVRSFIVGPPGPPGPQGPPGDSRLLSTDASHSRGSSSSSHSSSVRRGSSYSSSMSTGGGGAGSLGAGGAFGEAAGDRGPYGTDIGPGGGYGAAAEGGMYAGNGGLLGADFAGDLDYNELAVRVSESMQRQGLLQGMAYTVQGPPGQPGPQGPPGISKVFSAYSNVTADLMDFFQTYGAIQGPPGQKGEMGTPGPKGDRGPAGPPGHPGPPGPRGHKGEKGDKGDQVYAGRRRRRSIAVKP | May play a role in the integrity of hemidesmosome and the attachment of basal keratinocytes to the underlying basement membrane.
The 120 kDa linear IgA disease antigen is an anchoring filament component involved in dermal-epidermal cohesion. Is the target of linear IgA bullous dermatosis autoantibodies.
Subcellular locations: Cell junction, Hemidesmosome, Membrane
Localized along the plasma membrane of the hemidesmosome.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Basement membrane
Exclusively localized to anchoring filaments. Localized to the epidermal side of split skin.
Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Basement membrane
Localized in the lamina lucida beneath the hemidesmosomes.
Detected in skin . In the cornea, it is detected in the epithelial basement membrane, the epithelial cells, and at a lower level in stromal cells (at protein level) . Stratified squamous epithelia. Found in hemidesmosomes. Expressed in cornea, oral mucosa, esophagus, intestine, kidney collecting ducts, ureter, bladder, urethra and thymus but is absent in lung, blood vessels, skeletal muscle and nerves. |
COIA1_HUMAN | Homo sapiens | MAPYPCGCHILLLLFCCLAAARANLLNLNWLWFNNEDTSHAATTIPEPQGPLPVQPTADTTTHVTPRNGSTEPATAPGSPEPPSELLEDGQDTPTSAESPDAPEENIAGVGAEILNVAKGIRSFVQLWNDTVPTESLARAETLVLETPVGPLALAGPSSTPQENGTTLWPSRGIPSSPGAHTTEAGTLPAPTPSPPSLGRPWAPLTGPSVPPPSSGRASLSSLLGGAPPWGSLQDPDSQGLSPAAAAPSQQLQRPDVRLRTPLLHPLVMGSLGKHAAPSAFSSGLPGALSQVAVTTLTRDSGAWVSHVANSVGPGLANNSALLGADPEAPAGRCLPLPPSLPVCGHLGISRFWLPNHLHHESGEQVRAGARAWGGLLQTHCHPFLAWFFCLLLVPPCGSVPPPAPPPCCQFCEALQDACWSRLGGGRLPVACASLPTQEDGYCVLIGPAAERISEEVGLLQLLGDPPPQQVTQTDDPDVGLAYVFGPDANSGQVARYHFPSLFFRDFSLLFHIRPATEGPGVLFAITDSAQAMVLLGVKLSGVQDGHQDISLLYTEPGAGQTHTAASFRLPAFVGQWTHLALSVAGGFVALYVDCEEFQRMPLARSSRGLELEPGAGLFVAQAGGADPDKFQGVIAELKVRRDPQVSPMHCLDEEGDDSDGASGDSGSGLGDARELLREETGAALKPRLPAPPPVTTPPLAGGSSTEDSRSEEVEEQTTVASLGAQTLPGSDSVSTWDGSVRTPGGRVKEGGLKGQKGEPGVPGPPGRAGPPGSPCLPGPPGLPCPVSPLGPAGPALQTVPGPQGPPGPPGRDGTPGRDGEPGDPGEDGKPGDTGPQGFPGTPGDVGPKGDKGDPGVGERGPPGPQGPPGPPGPSFRHDKLTFIDMEGSGFGGDLEALRGPRGFPGPPGPPGVPGLPGEPGRFGVNSSDVPGPAGLPGVPGREGPPGFPGLPGPPGPPGREGPPGRTGQKGSLGEAGAPGHKGSKGAPGPAGARGESGLAGAPGPAGPPGPPGPPGPPGPGLPAGFDDMEGSGGPFWSTARSADGPQGPPGLPGLKGDPGVPGLPGAKGEVGADGVPGFPGLPGREGIAGPQGPKGDRGSRGEKGDPGKDGVGQPGLPGPPGPPGPVVYVSEQDGSVLSVPGPEGRPGFAGFPGPAGPKGNLGSKGERGSPGPKGEKGEPGSIFSPDGGALGPAQKGAKGEPGFRGPPGPYGRPGYKGEIGFPGRPGRPGMNGLKGEKGEPGDASLGFGMRGMPGPPGPPGPPGPPGTPVYDSNVFAESSRPGPPGLPGNQGPPGPKGAKGEVGPPGPPGQFPFDFLQLEAEMKGEKGDRGDAGQKGERGEPGGGGFFGSSLPGPPGPPGPPGPRGYPGIPGPKGESIRGQPGPPGPQGPPGIGYEGRQGPPGPPGPPGPPSFPGPHRQTISVPGPPGPPGPPGPPGTMGASSGVRLWATRQAMLGQVHEVPEGWLIFVAEQEELYVRVQNGFRKVQLEARTPLPRGTDNEVAALQPPVVQLHDSNPYPRREHPHPTARPWRADDILASPPRLPEPQPYPGAPHHSSYVHLRPARPTSPPAHSHRDFQPVLHLVALNSPLSGGMRGIRGADFQCFQQARAVGLAGTFRAFLSSRLQDLYSIVRRADRAAVPIVNLKDELLFPSWEALFSGSEGPLKPGARIFSFDGKDVLRHPTWPQKSVWHGSDPNGRRLTESYCETWRTEAPSATGQASSLLGGRLLGQSAASCHHAYIVLCIENSFMTASK | Probably plays a major role in determining the retinal structure as well as in the closure of the neural tube.
May regulate extracellular matrix-dependent motility and morphogenesis of endothelial and non-endothelial cells; the function requires homotrimerization and implicates MAPK signaling.
Potently inhibits endothelial cell proliferation and angiogenesis . May inhibit angiogenesis by binding to the heparan sulfate proteoglycans involved in growth factor signaling (By similarity). Inhibits VEGFA-induced endothelial cell proliferation and migration. Seems to inhibit VEGFA-mediated signaling by blocking the interaction of VEGFA to its receptor KDR/VEGFR2. Modulates endothelial cell migration in an integrin-dependent manner implicating integrin ITGA5:ITGB1 and to a lesser extent ITGAV:ITGB3 and ITGAV:ITGB5 (By similarity). May negatively regulate the activity of homotrimeric non-collagenous domain 1 .
Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Secreted, Extracellular space, Extracellular matrix, Basement membrane
Subcellular locations: Secreted, Extracellular space, Extracellular matrix, Basement membrane, Secreted
Subcellular locations: Secreted, Secreted, Extracellular space, Extracellular matrix, Basement membrane
Detected in placenta (at protein level) . Present in multiple organs with highest levels in liver, lung and kidney. |
COIL_HUMAN | Homo sapiens | MAASETVRLRLQFDYPPPATPHCTAFWLLVDLNRCRVVTDLISLIRQRFGFSSGAFLGLYLEGGLLPPAESARLVRDNDCLRVKLEERGVAENSVVISNGDINLSLRKAKKRAFQLEEGEETEPDCKYSKKHWKSRENNNNNEKVLDLEPKAVTDQTVSKKNKRKNKATCGTVGDDNEEAKRKSPKKKEKCEYKKKAKNPKSPKVQAVKDWANQRCSSPKGSARNSLVKAKRKGSVSVCSKESPSSSSESESCDESISDGPSKVTLEARNSSEKLPTELSKEEPSTKNTTADKLAIKLGFSLTPSKGKTSGTTSSSSDSSAESDDQCLMSSSTPECAAGFLKTVGLFAGRGRPGPGLSSQTAGAAGWRRSGSNGGGQAPGASPSVSLPASLGRGWGREENLFSWKGAKGRGMRGRGRGRGHPVSCVVNRSTDNQRQQQLNDVVKNSSTIIQNPVETPKKDYSLLPLLAAAPQVGEKIAFKLLELTSSYSPDVSDYKEGRILSHNPETQQVDIEILSSLPALREPGKFDLVYHNENGAEVVEYAVTQESKITVFWKELIDPRLIIESPSNTSSTEPA | Component of nuclear coiled bodies, also known as Cajal bodies or CBs, which are involved in the modification and assembly of nucleoplasmic snRNPs.
Subcellular locations: Nucleus, Nucleus, Cajal body
Found in all the cell types examined. |
COPT1_HUMAN | Homo sapiens | MDHSHHMGMSYMDSNSTMQPSHHHPTTSASHSHGGGDSSMMMMPMTFYFGFKNVELLFSGLVINTAGEMAGAFVAVFLLAMFYEGLKIARESLLRKSQVSIRYNSMPVPGPNGTILMETHKTVGQQMLSFPHLLQTVLHIIQVVISYFLMLIFMTYNGYLCIAVAAGAGTGYFLFSWKKAVVVDITEHCH | Uniporter that mediates the transport of copper(1+) from the extracellular space to the cytoplasm, across the plasma membrane ( ) and delivers directly copper(1+) to specific chaperone such as ATOX1, via a copper(1+)- mediated transient interaction between the C-terminal domain and a copper(1+) chaperone, thus controlling intracellular copper(1+) levels ( , ). May function in copper(1+) import from the apical membrane thus may drive intestinal copper absorption (By similarity). The copper(1+) transport mechanism is sodium-independent, saturable and of high-affinity . Also mediates the uptake of silver(1+) . May function in the influx of the platinum-containing chemotherapeutic agents (, ). The platinum-containing chemotherapeutic agents uptake is saturable (By similarity). In vitro, mediates the transport of cadmium(2+) into cells . Also participates in the first step of copper(2+) acquisition by cells through a direct transfer of copper(2+) from copper(2+) carriers in blood, such as ALB to the N-terminal domain of SLC31A1, leading to copper(2+) reduction and probably followed by copper(1+) stabilization . In addition, functions as a redox sensor to promote angiogenesis in endothelial cells, in a copper(1+) transport independent manner, by transmitting the VEGF-induced ROS signal through a sulfenylation at Cys-189 leadin g to a subsequent disulfide bond formation between SLC31A1 and KDR . The SLC31A1-KDR complex is then co-internalized to early endosomes, driving a sustained VEGFR2 signaling .
Mobilizes copper(1+) out of the endosomal compartment, making copper(1+) available for export out of the cells.
Subcellular locations: Cell membrane, Early endosome membrane, Recycling endosome membrane, Apical cell membrane, Late endosome membrane, Basolateral cell membrane
The localization is controlled by the intra and extra-cellular copper concentration ( ). Under conditions of elevated extracellular copper concentrations, it is rapidly internalized by endocytosis from the plasma membrane by a clathrin- and dynamin-mediated process and degradated in order to prevent intracellular copper accumulation and to reduce the transport of the copper across the membrane ( ). The internalized SLC31A1 is then localized in early endosomes, and, upon a low extracellular copper concentrations, it is transported back to the plasma membrane in a RAB11A-dependent recycling pathway . Localizes to the apical membrane in intestinal epithelial cells (By similarity). Mainly localized on the basolateral side of renal tubular cells (By similarity). Localizes to the neuronal cell body plasma membranes (By similarity). |
COPT1_PONAB | Pongo abelii | MDHSHHMGMSYMDSNSTMQPSHHHPTTSASHSRGGGDSSMMMMPMTFYFGFKNVELLFSGLVINTAGEMAGAFVAVFLLAMFYEGLKIARESLLRKSQVSIRYNSMPVPGPNGTILMETHKTVGQQMLSFPHLLQTVLHIIQVVISYFLMLIFMTYNGYLCIAVAAGAGTGYFLFSWKKAVVVDITEHCH | Uniporter that mediates the transport of copper(1+) from the extracellular space to the cytoplasm, across the plasma membrane and delivers directly copper(1+) to specific chaperone such as ATOX1, via a copper(1+)- mediated transient interaction between the C-terminal domain and a copper(1+) chaperone, thus controlling intracellular copper(1+) levels (By similarity). May function in copper(1+) import from the apical membrane thus may drive intestinal copper absorption (By similarity). The copper(1+) transport mechanism is sodium-independent, saturable and of high-affinity. Also mediates the uptake of silver(1+). May function in the influx of the platinum-containing chemotherapeutic agents (By similarity). The platinum-containing chemotherapeutic agents uptake is saturable (By similarity). In vitro, mediates the transport of cadmium(2+) into cells. Also participates in the first step of copper(2+) acquisition by cells through a direct transfer of copper(2+) from copper(2+) carriers in blood, such as ALB to the N-terminal domain of SLC31A1, leading to copper(2+) reduction and probably followed by copper(1+) stabilization. In addition, functions as a redox sensor to promote angiogenesis in endothelial cells, in a copper(1+) transport independent manner, by transmitting the VEGF-induced ROS signal through a sulfenylation at Cys-189 leadin g to a subsequent disulfide bond formation between SLC31A1 and KDR. The SLC31A1-KDR complex is then co-internalized to early endosomes, driving a sustained VEGFR2 signaling (By similarity).
Mobilizes copper(1+) out of the endosomal compartment, making copper(1+) available for export out of the cells.
Subcellular locations: Cell membrane, Early endosome membrane, Recycling endosome membrane, Apical cell membrane, Late endosome membrane, Basolateral cell membrane
The localization is controlled by the intra and extra-cellular copper concentration. Under conditions of elevated extracellular copper concentrations, it is rapidly internalized by endocytosis from the plasma membrane by a clathrin- and dynamin-mediated process and degradated in order to prevent intracellular copper accumulation and to reduce the transport of the copper across the membrane. The internalized SLC31A1 is then localized in early endosomes, and, upon a low extracellular copper concentrations, it is transported back to the plasma membrane in a RAB11A-dependent recycling pathway (By similarity). Localizes to the neuronal cell body plasma membranes (By similarity). Localizes to the apical membrane in intestinal epithelial cells (By similarity). Mainly localized on the basolateral side of renal tubular cells (By similarity). |
COPT2_HUMAN | Homo sapiens | MAMHFIFSDTAVLLFDFWSVHSPAGMALSVLVLLLLAVLYEGIKVGKAKLLNQVLVNLPTSISQQTIAETDGDSAGSDSFPVGRTHHRWYLCHFGQSLIHVIQVVIGYFIMLAVMSYNTWIFLGVVLGSAVGYYLAYPLLSTA | Does not function as a copper(1+) importer in vivo (By similarity). However, in vitro functions as a low-affinity copper(1+) importer (, ). Regulator of SLC31A1 which facilitates the cleavage of the SLC31A1 ecto-domain or which stabilizes the truncated form of SLC31A1 (Truncated CTR1 form), thereby drives the SLC31A1 truncated form-dependent endosomal copper export and modulates the copper and cisplatin accumulation via SLC31A1 (By similarity).
Subcellular locations: Membrane, Cytoplasmic vesicle membrane, Late endosome membrane, Lysosome membrane
Plasma membrane localization is partial.
Ubiquitous with high expression in placenta and heart. |
COQ8A_HUMAN | Homo sapiens | MAAILGDTIMVAKGLVKLTQAAVETHLQHLGIGGELIMAARALQSTAVEQIGMFLGKVQGQDKHEEYFAENFGGPEGEFHFSVPHAAGASTDFSSASAPDQSAPPSLGHAHSEGPAPAYVASGPFREAGFPGQASSPLGRANGRLFANPRDSFSAMGFQRRFFHQDQSPVGGLTAEDIEKARQAKARPENKQHKQTLSEHARERKVPVTRIGRLANFGGLAVGLGFGALAEVAKKSLRSEDPSGKKAVLGSSPFLSEANAERIVRTLCKVRGAALKLGQMLSIQDDAFINPHLAKIFERVRQSADFMPLKQMMKTLNNDLGPNWRDKLEYFEERPFAAASIGQVHLARMKGGREVAMKIQYPGVAQSINSDVNNLMAVLNMSNMLPEGLFPEHLIDVLRRELALECDYQREAACARKFRDLLKGHPFFYVPEIVDELCSPHVLTTELVSGFPLDQAEGLSQEIRNEICYNILVLCLRELFEFHFMQTDPNWSNFFYDPQQHKVALLDFGATREYDRSFTDLYIQIIRAAADRDRETVRAKSIEMKFLTGYEVKVMEDAHLDAILILGEAFASDEPFDFGTQSTTEKIHNLIPVMLRHRLVPPPEETYSLHRKMGGSFLICSKLKARFPCKAMFEEAYSNYCKRQAQQ | Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration ( , ). Its substrate specificity is unclear: does not show any protein kinase activity (, ). Probably acts as a small molecule kinase, possibly a lipid kinase that phosphorylates a prenyl lipid in the ubiquinone biosynthesis pathway, as suggested by its ability to bind coenzyme Q lipid intermediates (, ). Shows an unusual selectivity for binding ADP over ATP .
Subcellular locations: Mitochondrion, Membrane
Widely expressed, with highest levels in adrenal gland, heart, pancreas, nasal mucosa, stomach, uterus and skeletal muscle. |
COQ8B_HUMAN | Homo sapiens | MWLKVGGLLRGTGGQLGQTVGWPCGALGPGPHRWGPCGGSWAQKFYQDGPGRGLGEEDIRRAREARPRKTPRPQLSDRSRERKVPASRISRLANFGGLAVGLGLGVLAEMAKKSMPGGRLQSEGGSGLDSSPFLSEANAERIVQTLCTVRGAALKVGQMLSIQDNSFISPQLQHIFERVRQSADFMPRWQMLRVLEEELGRDWQAKVASLEEVPFAAASIGQVHQGLLRDGTEVAVKIQYPGIAQSIQSDVQNLLAVLKMSAALPAGLFAEQSLQALQQELAWECDYRREAACAQNFRQLLANDPFFRVPAVVKELCTTRVLGMELAGGVPLDQCQGLSQDLRNQICFQLLTLCLRELFEFRFMQTDPNWANFLYDASSHQVTLLDFGASREFGTEFTDHYIEVVKAAADGDRDCVLQKSRDLKFLTGFETKAFSDAHVEAVMILGEPFATQGPYDFGSGETARRIQDLIPVLLRHRLCPPPEETYALHRKLAGAFLACAHLRAHIACRDLFQDTYHRYWASRQPDAATAGSLPTKGDSWVDPS | Atypical kinase involved in the biosynthesis of coenzyme Q, also named ubiquinone, an essential lipid-soluble electron transporter for aerobic cellular respiration . Its substrate specificity is unclear: does not show any protein kinase activity. Probably acts as a small molecule kinase, possibly a lipid kinase that phosphorylates a prenyl lipid in the ubiquinone biosynthesis pathway. Required for podocyte migration .
Subcellular locations: Mitochondrion membrane, Cytoplasm, Cytosol, Cell membrane
Widely expressed, including renal podocytes. |
COX2_HUMAN | Homo sapiens | MAHAAQVGLQDATSPIMEELITFHDHALMIIFLICFLVLYALFLTLTTKLTNTNISDAQEMETVWTILPAIILVLIALPSLRILYMTDEVNDPSLTIKSIGHQWYWTYEYTDYGGLIFNSYMLPPLFLEPGDLRLLDVDNRVVLPIEAPIRMMITSQDVLHSWAVPTLGLKTDAIPGRLNQTTFTATRPGVYYGQCSEICGANHSFMPIVLELIPLKIFEMGPVFTL | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX2_HYLLA | Hylobates lar | MAHATQVGLQDATSPIMEELISFHDHALMIIFLISFLVLYALFLTLTTKLTNTNITDAQEMETVWTILPAIILVLIALPSLRILYLTDEINDPSFTIKAIGHQWYWAYEYTDYGGLIFNSYMLPPLFLEPGDLRLLEVDNRVVLPIEAPVRMMITSQDVLHSWTVPSLGLKTDAIPGRLNQTTFTATRPGVYYGQCSEICGANHSFMPIVLELIPLKIFEMGPVFTL | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX2_LAGLA | Lagothrix lagotricha | MAHPAQLGLQNATSPIMEELIAFHDHALMIIFLISSLVLYIISLMLTTKLTHTSTMNAQEIEMVWTILPAIILIMIALPSLRILYMTDEFNKPYLTLKAIGHQWYWSYEYSDYVDLAFDYYITPTYFLEPGEFRLLEVDNRTTLPMEADIRMLISSQDVLHSWAVPSLGVKTDAIPGRLNQAMLASMRPGLFYGQCSEICGSNHSFMPIVLEFIYFQDFEVWASYLYIVSL | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX2_LEMCA | Lemur catta | MAYPVQLGFQDAASPIMEELLYFHDHTLMIMFLISSLVLYIISLMLTTELMHTNTMDAQEVETVWTILPAAILILIALPSLRILYMMDEITTPSLTLKTMGHQWYWSYEYTDYEDLCFDSYMTPSSDLKPGELRLLEVDNRVVLPTELAVRMLISSEDVLHSWTVPSLGVKTDAIPGRLNQATLMASRPGVYYGQCSEICGANHSFMPIVLELVPLKHFEEWLLSML | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX3_GORGO | Gorilla gorilla gorilla | MIHQSHAYHMVKPSPWPLTGALSALLMTSGLAMWFHFHSTTLLMLGLLTNMLTMYQWWRDVMRESTYQGHHTLPVQKGLRYGMILFITSEVFFFAGFFWAFYHSSLAPTPQLGAHWPPTGITPLNPLEVPLLNTSVLLASGVSITWAHHSLMENNRNQMIQALLITILLGLYFTLLQASEYFEAPFTISDGIYGSTFFVATGFHGLHVIIGSTFLTICLIRQLMFHFTSKHHFGFEAAAWYWHFVDVVWLFLYVSIYWWGS | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX3_HUMAN | Homo sapiens | MTHQSHAYHMVKPSPWPLTGALSALLMTSGLAMWFHFHSMTLLMLGLLTNTLTMYQWWRDVTRESTYQGHHTPPVQKGLRYGMILFITSEVFFFAGFFWAFYHSSLAPTPQLGGHWPPTGITPLNPLEVPLLNTSVLLASGVSITWAHHSLMENNRNQMIQALLITILLGLYFTLLQASEYFESPFTISDGIYGSTFFVATGFHGLHVIIGSTFLTICFIRQLMFHFTSKHHFGFEAAAWYWHFVDVVWLFLYVSIYWWGS | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX3_HYLLA | Hylobates lar | MTHQSHAYHMVKPSPWPLTGALSALLLTSGLAMWFHFHSTTLLTLSMLTNALTMFQWWRDVVREGTYQGHHTMPVQKGLRYGMVLFITSEIFFFAGFFWAFYHSSLAPTPQLGGHWPPTGITPLNPLEVPLLNTSVLLASGVSITWAHHSLMENNRNQMIQALLITILLGIYFTLLQISEYFEAPFTISDGIYGSTFFVATGFHGLHVIIGSTFLTICLIRQLLFHFTSKHHFGFEAAAWYWHFVDVVWLFLYVSIYWWGS | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_MACSL | Macaca silenus | MAPEVLPKPQMRGLLARRLRFHMVTGFVLSLGVAALYKVGVADKRKKAYADFYRNYDAMKDFEEMRKAGIFQSVK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_NYCCO | Nycticebus coucang | MASSALAKPQMRGLLARRLRIHIVGAFVVSLGVAAFYKYAVAEPRKKAYADFYRNYDSVKYFEEMRKAGVFQSVK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_PLEDO | Plecturocebus donacophilus | MASEVLVKPQMRGLLARRLRIHMVGAFLVSLGVAALYKFGVAEPRKKAYADFYKNYSAEKDFEEMKKAGLFRSIK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_PONPY | Pongo pygmaeus | MAPEVLPKPRMRGLLARRLRNHMAVAFVLSLGVAALYKFRVADRRKKAYADFYRNYDVMKDFEEMRKAGIFQSVK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_SAISC | Saimiri sciureus | MASEVLAKPQMRGLLARRLRIHMVGAFLISLGVAALYKFGVAEPRKKAYADFYKNYSPEKDFEEMKKAGVFRSIK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX6C_TRACR | Trachypithecus cristatus | MAPEVLPKPQMRGLLAKRLRFHMVTAFVLSLGVAALYKFRVADKRKKAYADFYRNYDAMKDFEEMRKAGIFQSVK | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix.
Subcellular locations: Mitochondrion inner membrane |
COX7B_HUMAN | Homo sapiens | MFPLVKSALNRLQVRSIQQTMARQSHQKRTPDFHDKYGNAVLASGATFCIVTWTYVATQVGIEWNLSPVGRVTPKEWRNQ | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix (By similarity). Plays a role in proper central nervous system (CNS) development in vertebrates .
Subcellular locations: Mitochondrion inner membrane |
COX7B_PONAB | Pongo abelii | MFPLVKNALNRLQVRSIQQTMARQSHQKRTPDFHDKYGNAVLASGATFCIVTWTYVATQVGIEWNLSPVGRVTPKEWRNQ | Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Electrons originating from reduced cytochrome c in the intermembrane space (IMS) are transferred via the dinuclear copper A center (CU(A)) of subunit 2 and heme A of subunit 1 to the active site in subunit 1, a binuclear center (BNC) formed by heme A3 and copper B (CU(B)). The BNC reduces molecular oxygen to 2 water molecules using 4 electrons from cytochrome c in the IMS and 4 protons from the mitochondrial matrix (By similarity). Plays a role in proper central nervous system (CNS) development in vertebrates (By similarity).
Subcellular locations: Mitochondrion inner membrane |
CP17A_PANTR | Pan troglodytes | MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQMATLDIASNNRKGIAFADSGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQSIDISFPVFVAVTNVISLICFNTSYKNGDPELNIIQNYNEGIIDNLSKDSLVDLVPWLKIFPNKTLEKLKSHVKIRNDLLNKILENYKEKFRSDSITNMLDTLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWTLAFLLHNPQVKKKLYEEIDQNVGFSRTPTISDRNRLLLLEATIREVLRLRPVAPMLIPHKANVDSSIGEFAVDKGTQVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSVSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGIPKVVFLIDSFKVKIKVRQAWREAQAEGST | A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione. Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA. Also 16-alpha hydroxylates androgens, relevant for estriol synthesis. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase).
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP17A_PAPCY | Papio cynocephalus | MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQVTTLDILSNNRKGIAFADYGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQTIDISFPVFVAITNVISLICFNISYKNGDPELKIVHNYNEGIIDSLGKESLVDLFPWLKVFPNKTLEKLKRHVKTRNDLLTKIFENYKEKFRSDSITNMLDVLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWIVAFLLHNPQVKKKLYEEIDQNVGFSRTPTISDRNRLLLLEATIREVLRIRPVAPMLIPHKANVDSSIGEFAVDKGTHVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSLSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGNPKVVFLIDSFKVKIKVRQAWREAQAEGST | A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways. A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Hydroxylates steroid hormones, pregnenolone and progesterone to form 17-alpha hydroxy metabolites, followed by the cleavage of the C17-C20 bond to form C19 steroids, dehydroepiandrosterone (DHEA) and androstenedione. Has 16-alpha hydroxylase activity. Catalyzes 16-alpha hydroxylation of 17-alpha hydroxy pregnenolone, followed by the cleavage of the C17-C20 bond to form 16-alpha-hydroxy DHEA. Also 16-alpha hydroxylates androgens, relevant for estriol synthesis. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase).
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP17A_PAPHU | Papio hamadryas ursinus | MWELVALLLLTLAYLFWPKRRCPGAKYPKSLLSLPLVGSLPFLPRHGHMHNNFFKLQKKYGPIYSVRMGTKTTVIVGHHQLAKEVLIKKGKDFSGRPQVTTLDILSNNRKGIAFADYGAHWQLHRRLAMATFALFKDGDQKLEKIICQEISTLCDMLATHNGQTIDISFPVFVAITNVISLICFNISYKNGDPELKIVHNYNEGIIDSLGKESLVDLFPWLKVFPNKTLEKLKRHVKTRNDLLTKIFENYKEKFRSDSITNMLDVLMQAKMNSDNGNAGPDQDSELLSDNHILTTIGDIFGAGVETTTSVVKWIVAFLLHNPQVKKKLYEGIDQNVGFSRTPTISDRNRLLLLEATIREVLRIRPVAPMLIPHKANVDSSIGEFAVDKGTHVIINLWALHHNEKEWHQPDQFMPERFLNPAGTQLISPSLSYLPFGAGPRSCIGEILARQELFLIMAWLLQRFDLEVPDDGQLPSLEGNPKVVFLIDSFKVKIKVRQAWREAQAEGST | A cytochrome P450 monooxygenase involved in corticoid and androgen biosynthesis. Catalyzes 17-alpha hydroxylation of C21 steroids, which is common for both pathways . A second oxidative step, required only for androgen synthesis, involves an acyl-carbon cleavage. Hydroxylates pregnenolone to form 17-alpha pregnenolone, followed by the cleavage of the C17-C20 bond to form dehydroepiandrosterone (DHEA) . Has 17-alpha hydroxylase activity toward progesterone . The 17-alpha hydroxy intermediates, as part of adrenal glucocorticoids biosynthesis pathway, are precursors of cortisol. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) (By similarity).
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP2CI_HUMAN | Homo sapiens | MDPAVALVLCLSCLFLLSLWRQSSGRGRLPSGPTPLPIIGNILQLDVKDMSKSLTNFSKVYGPVFTVYFGLKPIVVLHGYEAVKEALIDHGEEFSGRGSFPVAEKVNKGLGILFSNGKRWKEIRRFCLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTNASPCDPTFILGCAPCNVICSVIFHDRFDYKDQRFLNLMEKFNENLRILSSPWIQVCNNFPALIDYLPGSHNKIAENFAYIKSYVLERIKEHQESLDMNSARDFIDCFLIKMEQEKHNQQSEFTVESLIATVTDMFGAGTETTSTTLRYGLLLLLKYPEVTAKVQEEIECVVGRNRSPCMQDRSHMPYTDAVVHEIQRYIDLLPTNLPHAVTCDVKFKNYLIPKGTTIITSLTSVLHNDKEFPNPEMFDPGHFLDKSGNFKKSDYFMPFSAGKRMCMGEGLARMELFLFLTTILQNFNLKSQVDPKDIDITPIANAFGRVPPLYQLCFIPV | A cytochrome P450 monooxygenase involved in retinoid metabolism. Hydroxylates all trans-retinoic acid (atRA) to 4-hydroxyretinoate and may modulate atRA signaling and clearance. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase).
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP2CJ_HUMAN | Homo sapiens | MDPFVVLVLCLSCLLLLSIWRQSSGRGKLPPGPTPLPVIGNILQIDIKDVSKSLTNLSKIYGPVFTLYFGLERMVVLHGYEVVKEALIDLGEEFSGRGHFPLAERANRGFGIVFSNGKRWKEIRRFSLMTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSIIFQKRFDYKDQQFLNLMEKLNENIRIVSTPWIQICNNFPTIIDYFPGTHNKLLKNLAFMESDILEKVKEHQESMDINNPRDFIDCFLIKMEKEKQNQQSEFTIENLVITAADLLGAGTETTSTTLRYALLLLLKHPEVTAKVQEEIERVIGRNRSPCMQDRGHMPYTDAVVHEVQRYIDLIPTSLPHAVTCDVKFRNYLIPKGTTILTSLTSVLHDNKEFPNPEMFDPRHFLDEGGNFKKSNYFMPFSAGKRICVGEGLARMELFLFLTFILQNFNLKSLIDPKDLDTTPVVNGFASVPPFYQLCFIPV | A cytochrome P450 monooxygenase involved in the metabolism of polyunsaturated fatty acids (PUFA) ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) ( ). Catalyzes the hydroxylation of carbon-hydrogen bonds. Hydroxylates PUFA specifically at the omega-1 position . Catalyzes the epoxidation of double bonds of PUFA (, ). Also metabolizes plant monoterpenes such as limonene. Oxygenates (R)- and (S)-limonene to produce carveol and perillyl alcohol . Responsible for the metabolism of a number of therapeutic agents such as the anticonvulsant drug S-mephenytoin, omeprazole, proguanil, certain barbiturates, diazepam, propranolol, citalopram and imipramine. Hydroxylates fenbendazole at the 4' position .
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP2CK_MACFA | Macaca fascicularis | MDPFVVLVLCLSFVLLFSLWRQSSGRRKLPPGPTPLPIIGNILQIDVKDICKSFSNFSKVYGPVFTVYFGMNPVVVLHGYETVKEALIDNAEEFSGRGILPISERITNGLGIISSNGKRWKETRRFSLTTLRNFGMGKRSIEDRVQEEARCLVEELRKTKASPCDPTFILGCAPCNVICSVVFQKRFDYKDENFLTLIKRFTVNFRILTSPWIQVCNNFPLLIDCFPGTHNKLLKNVALTKSYIREKVKEHQATLDVNNPRDFIDCFLIKMEQEKDNQQSEFTIENLVGTVADLFVAGTETTSTTLRYGLLLLLKHPEVTAKVQEEIDHVIGRHRSPCMQDRSHMPYTDAVIHEIQRYIDLVPTGVPHAVTTDIKFRNYLIPKGTIIITLLTSVLHDDKEFPNPKIFDPGHFLDENGNFKKSDYFMPFSAGKRICAGEGLARMELFLFLTTILQNFNLKSVADLKNLNTTSATRGIISLPPSYQICFIPV | Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics.
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP2D6_HUMAN | Homo sapiens | MGLEALVPLAVIVAIFLLLVDLMHRRQRWAARYPPGPLPLPGLGNLLHVDFQNTPYCFDQLRRRFGDVFSLQLAWTPVVVLNGLAAVREALVTHGEDTADRPPVPITQILGFGPRSQGVFLARYGPAWREQRRFSVSTLRNLGLGKKSLEQWVTEEAACLCAAFANHSGRPFRPNGLLDKAVSNVIASLTCGRRFEYDDPRFLRLLDLAQEGLKEESGFLREVLNAVPVLLHIPALAGKVLRFQKAFLTQLDELLTEHRMTWDPAQPPRDLTEAFLAEMEKAKGNPESSFNDENLRIVVADLFSAGMVTTSTTLAWGLLLMILHPDVQRRVQQEIDDVIGQVRRPEMGDQAHMPYTTAVIHEVQRFGDIVPLGVTHMTSRDIEVQGFRIPKGTTLITNLSSVLKDEAVWEKPFRFHPEHFLDAQGHFVKPEAFLPFSAGRRACLGEPLARMELFLFFTSLLQHFSFSVPTGQPRPSHHGVFAFLVSPSPYELCAVPR | A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) ( ). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (, ). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (, ). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis . Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid . Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP2D6_PANPA | Pan paniscus | MGLEALVPLAVIVTIFLLLVDLMHRRQRWAARYPPGPLPLPGLGNLLHVDFQNTPYCFDQLRRRFGDVFSLQLAWTPVVVLNGLAAVREALVTHGEDTADRPPVPITQILGFGPRSQGVFLARYGPAWREQRRFSVSTLRNLGLGKKSLEQWVTEEAACLCAAFANHSGRPFRPNGLLDKAVSNVIASLTCGRRFEYDDPRFLRLLDLAQEGLKEESGFLREVLNAVPVLLHIPALAGKVLRFQKAFLTQLDELLTEHRMTWDPAQPPRDLTEAFLAEMEKAKGNPESSFNDENLRIVVADLFSAGMVTTSTTLAWGLLLMILHPDVQRRVQQEIDDVIGQVRRPEMGDQARMPYTTAVIHEVQRFGDIVPLGVTHMTSRDIEVQGFRIPKGTTLFTNLSSVLKDEAVWEKPFRFHPEHFLDAQGHFVKPEAFLPFSAGRRACLGEPLARMELFLFFTSLLQHFSFSVPTGQPRPSHHGVFAFLVTPSPYELCAVPR | A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling. Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis. Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid. Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants.
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane |
CP4F2_HUMAN | Homo sapiens | MSQLSLSWLGLWPVAASPWLLLLLVGASWLLAHVLAWTYAFYDNCRRLRCFPQPPRRNWFWGHQGMVNPTEEGMRVLTQLVATYPQGFKVWMGPISPLLSLCHPDIIRSVINASAAIAPKDKFFYSFLEPWLGDGLLLSAGDKWSRHRRMLTPAFHFNILKPYMKIFNESVNIMHAKWQLLASEGSACLDMFEHISLMTLDSLQKCVFSFDSHCQEKPSEYIAAILELSALVSKRHHEILLHIDFLYYLTPDGQRFRRACRLVHDFTDAVIQERRRTLPSQGVDDFLQAKAKSKTLDFIDVLLLSKDEDGKKLSDEDIRAEADTFMFEGHDTTASGLSWVLYHLAKHPEYQERCRQEVQELLKDREPKEIEWDDLAHLPFLTMCMKESLRLHPPVPVISRHVTQDIVLPDGRVIPKGIICLISVFGTHHNPAVWPDPEVYDPFRFDPENIKERSPLAFIPFSAGPRNCIGQTFAMAEMKVVLALTLLRFRVLPDHTEPRRKPELVLRAEGGLWLRVEPLS | A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, eicosanoids and vitamins ( , ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Catalyzes predominantly the oxidation of the terminal carbon (omega-oxidation) of long- and very long-chain fatty acids. Displays high omega-hydroxylase activity toward polyunsaturated fatty acids (PUFAs) . Participates in the conversion of arachidonic acid to omega-hydroxyeicosatetraenoic acid (20-HETE), a signaling molecule acting both as vasoconstrictive and natriuretic with overall effect on arterial blood pressure ( ). Plays a role in the oxidative inactivation of eicosanoids, including both pro-inflammatory and anti-inflammatory mediators such as leukotriene B4 (LTB4), lipoxin A4 (LXA4), and several HETEs ( ). Catalyzes omega-hydroxylation of 3-hydroxy fatty acids . Converts monoepoxides of linoleic acid leukotoxin and isoleukotoxin to omega-hydroxylated metabolites . Contributes to the degradation of very long-chain fatty acids (VLCFAs) by catalyzing successive omega-oxidations and chain shortening (, ). Plays an important role in vitamin metabolism by chain shortening. Catalyzes omega-hydroxylation of the phytyl chain of tocopherols (forms of vitamin E), with preference for gamma-tocopherols over alpha-tocopherols, thus promoting retention of alpha-tocopherols in tissues . Omega-hydroxylates and inactivates phylloquinone (vitamin K1), and menaquinone-4 (MK-4, a form of vitamin K2), both acting as cofactors in blood coagulation (, ).
Subcellular locations: Microsome membrane, Endoplasmic reticulum membrane
Liver. Also present in kidney: specifically expressed in the S2 and S3 segments of proximal tubules in cortex and outer medulla . |
CP4F3_HUMAN | Homo sapiens | MPQLSLSSLGLWPMAASPWLLLLLVGASWLLARILAWTYTFYDNCCRLRCFPQPPKRNWFLGHLGLIHSSEEGLLYTQSLACTFGDMCCWWVGPWHAIVRIFHPTYIKPVLFAPAAIVPKDKVFYSFLKPWLGDGLLLSAGEKWSRHRRMLTPAFHFNILKPYMKIFNESVNIMHAKWQLLASEGSARLDMFEHISLMTLDSLQKCVFSFDSHCQEKPSEYIAAILELSALVTKRHQQILLYIDFLYYLTPDGQRFRRACRLVHDFTDAVIQERRRTLPSQGVDDFLQAKAKSKTLDFIDVLLLSKDEDGKKLSDEDIRAEADTFMFEGHDTTASGLSWVLYHLAKHPEYQERCRQEVQELLKDREPKEIEWDDLAQLPFLTMCIKESLRLHPPVPAVSRCCTQDIVLPDGRVIPKGIICLISVFGTHHNPAVWPDPEVYDPFRFDPKNIKERSPLAFIPFSAGPRNCIGQAFAMAEMKVVLGLTLLRFRVLPDHTEPRRKPELVLRAEGGLWLRVEPLS | A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and their oxygenated derivatives (oxylipins) ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) . May play a role in inactivation of pro-inflammatory and anti-inflammatory oxylipins during the resolution of inflammation ( , ).
Catalyzes predominantly the oxidation of the terminal carbon (omega-oxidation) of oxylipins in myeloid cells, displaying higher affinity for arachidonate metabolite leukotriene B4 (LTB4) ( , ). Inactivates LTB4 via three successive oxidative transformations to 20-hydroxy-LTB4, then to 20-oxo-LTB4 and to 20-carboxy-LTB4 . Has omega-hydroxylase activity toward long-chain fatty acid epoxides with preference for 8,9-epoxy-(5Z,11Z,14Z)-eicosatrienoate (EET) and 9,10-epoxyoctadecanoate . Omega-hydroxylates monohydroxy polyunsaturated fatty acids (PUFAs), including hydroxyeicosatetraenoates (HETEs) and hydroxyeicosapentaenoates (HEPEs), to dihydroxy compounds (, ). Contributes to the degradation of saturated very long-chain fatty acids (VLCFAs) such as docosanoic acid, by catalyzing successive omega-oxidations to the corresponding dicarboxylic acid, thereby initiating chain shortening . Has low hydroxylase activity toward PUFAs (, ).
Catalyzes predominantly the oxidation of the terminal carbon (omega-oxidation) of polyunsaturated fatty acids (PUFAs) ( ). Participates in the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a signaling molecule acting both as vasoconstrictive and natriuretic with overall effect on arterial blood pressure ( ). Has high omega-hydroxylase activity toward other PUFAs, including eicosatrienoic acid (ETA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (, ). Can also catalyze the oxidation of the penultimate carbon (omega-1 oxidation) of PUFAs with lower efficiency . Contributes to the degradation of saturated very long-chain fatty acids (VLCFAs) such as docosanoic acid and hexacosanoic acid, by catalyzing successive omega-oxidations to the corresponding dicarboxylic acids, thereby initiating chain shortening (, ). Omega-hydroxylates long-chain 3-hydroxy fatty acids, likely initiating the oxidative conversion to the corresponding 3-hydroxydicarboxylic fatty acids . Has omega-hydroxylase activity toward long-chain fatty acid epoxides with preference for 8,9-epoxy-(5Z,11Z,14Z)-eicosatrienoate (EET) and 9,10-epoxyoctadecanoate .
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
Selectively expressed in blood neutrophils and bone marrow cells. Coexpressed with CYP4F3B in prostate, ileum and trachea.
Selectively expressed in liver and kidney. It is also the predominant CYP4F isoform in trachea and tissues of the gastrointestinal tract. |
CP4F8_HUMAN | Homo sapiens | MSLLSLSWLGLRPVAASPWLLLLVVGASWLLARILAWTYAFYHNGRRLRCFPQPRKQNWFLGHLGLVTPTEEGLRVLTQLVATYPQGFVRWLGPITPIINLCHPDIVRSVINTSDAITDKDIVFYKTLKPWLGDGLLLSVGDKWRHHRRLLTPAFHFNILKPYIKIFSKSANIMHAKWQRLAMEGSTCLDVFEHISLMTLDSLQKCIFSFDSNCQEKPSEYITAIMELSALVVKRNNQFFRYKDFLYFLTPCGRRFHRACRLVHDFTDAVIQERRRTLTSQGVDDFLQAKAKSKTLDFIDVLLLSEDKNGKELSDEDIRAEADTFMFGGHDTTASGLSWVLYNLARHPEYQERCRQEVQELLKDREPKEIEWDDLAQLPFLTMCLKESLRLHPPIPTFARGCTQDVVLPDSRVIPKGNVCNINIFAIHHNPSVWPDPEVYDPFRFDPENAQKRSPMAFIPFSAGPRNCIGQKFAMAEMKVVLALTLLRFRILPDHREPRRTPEIVLRAEDGLWLRVEPLG | A cytochrome P450 monooxygenase involved in the metabolism of endogenous polyunsaturated fatty acids (PUFAs) and their oxygenated derivatives (oxylipins). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Catalyzes the hydroxylation of carbon hydrogen bonds, with preference for omega-1 and omega-2 positions ( ). Hydroxylates (5Z,8Z,11Z,14Z)-eicosatetraenoic acid (arachidonate) predominantly at omega-2 position to form (18R)-hydroxyeicosatetraenoic acid (18R-HETE) . Exhibits omega-1 hydroxylase activity toward prostaglandin (PG) H1, PGH2 and PGI2 (, ). Catalyzes the epoxidation of double bonds of PUFAs, including docosahexaenoic and docosapentaenoic acids . Shows little activity against PGD2, PGE1, PGE2, PGF2alpha, and leukotriene B4.
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
Expressed in the epithelium of seminal vesicles, in renal cortex, in adult and fetal liver, in epidermis, in corneal epithelium, in sweat glands, hair follicles, epithelial linings of the ampulla of vas deferens and of the stomach and small intestine, as well as in the transitional epithelium of the bladder and ureter (at protein level). In the epidermis, expressed from the basal cell to the granular cell layers. In the corneal epithelium, expressed in all cell layers. Also detected in prostate. Up-regulated in the epidermis of psoriatic lesions. |
CP4FB_HUMAN | Homo sapiens | MPQLSLSWLGLGPVAASPWLLLLLVGGSWLLARVLAWTYTFYDNCRRLQCFPQPPKQNWFWGHQGLVTPTEEGMKTLTQLVTTYPQGFKLWLGPTFPLLILCHPDIIRPITSASAAVAPKDMIFYGFLKPWLGDGLLLSGGDKWSRHRRMLTPAFHFNILKPYMKIFNKSVNIMHDKWQRLASEGSARLDMFEHISLMTLDSLQKCVFSFESNCQEKPSEYIAAILELSAFVEKRNQQILLHTDFLYYLTPDGQRFRRACHLVHDFTDAVIQERRCTLPTQGIDDFLKNKAKSKTLDFIDVLLLSKDEDGKELSDEDIRAEADTFMFEGHDTTASGLSWVLYHLAKHPEYQEQCRQEVQELLKDREPIEIEWDDLAQLPFLTMCIKESLRLHPPVPVISRCCTQDFVLPDGRVIPKGIVCLINIIGIHYNPTVWPDPEVYDPFRFDQENIKERSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALTLLHFRILPTHTEPRRKPELILRAEGGLWLRVEPLGANSQ | A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids and their oxygenated derivatives (oxylipins) ( ). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase) ( ). Catalyzes with high efficiency the oxidation of the terminal carbon (omega-oxidation) of 3-hydroxy fatty acids, such as 3-hydroxyhexadecanoic and 3-hydroxyoctadecanoic acids, likely participating in the biosynthesis of long-chain 3-hydroxydicarboxylic acids (, ). Omega-hydroxylates and inactivates phylloquinone (vitamin K1), and menaquinone-4 (MK-4, a form of vitamin K2), both acting as cofactors in blood coagulation . Metabolizes with low efficiciency fatty acids, including (5Z,8Z,11Z,14Z)-eicosatetraenoic acid (arachidonate) and its oxygenated metabolite 8-hydroxyeicosatetraenoic acid (8-HETE) (, ). Catalyzes N- and O-demethylation of drugs such as erythromycin, benzphetamine, ethylmorphine, chlorpromazine, imipramine and verapamil . Catalyzes the oxidation of dialkylresorcinol 2 .
Subcellular locations: Endoplasmic reticulum membrane, Microsome membrane
Expressed mainly in human liver, followed by kidney, heart, and skeletal muscle. |
CPNE3_PONAB | Pongo abelii | MAAQCVTKVALNVSCANLLDKDIGSKSDPLCVLFLNTSGQQWYEVERTERIKNCLNPQFSKTFIIDYYFEVVQKLKFGVYDIDNKTIELSDDDFLGECECTLGQVVSSKKLTRPLVMKNGRPAGKGSITISAEEIKDNRVVLFEMEARKPDNKDLFGKSDPYLEFHKQTSDGNWLMVHRTEVVKNNLNPVWRPFKISLNSLCYGDMDKTIKVECYDYDNDGSHDLIGTFQTTMTKLKEASRCSPVEFECINEKKRQKKKSYKNSGVISVKQCEITVECTFLDYIMGGCQLNFTVGVDFTGSNDDPRSPDSLHYISPNGVNEYLTALWSVGLVIQDYDADKMFPAFGFGAQIPPQWQVSHEFPMNFNPSNPYCNGIQGIVEAYRSCLPQIKLYGPTNFSPIINHVARFAAAAAQQQTASQYFVLLIITDGVITDLDETRQAIVNASRLPMSIIIVGVGGADFSAMEFLDGDGGGLRSPSGEVAIRDIVQFVPFRQFQNAPKEALAQCVLAEIPQQVVGYFNTYKLLPPKNPATKQQKQ | Calcium-dependent phospholipid-binding protein that plays a role in ERBB2-mediated tumor cell migration in response to growth factor heregulin stimulation.
Subcellular locations: Nucleus, Cytoplasm, Cell membrane, Cell junction, Cell junction, Focal adhesion
Associates to the membrane in a calcium-dependent manner. Translocates to the cell membrane and the nucleus in a calcium- or growth factor heregulin-dependent manner. Colocalizes with the tyrosine phosphorylated ERBB2 form at cell membrane and focal adhesions in a calcium- or growth factor heregulin-dependent manner. |
CPNE4_HUMAN | Homo sapiens | MKKMSNIYESAANTLGIFNSPCLTKVELRVACKGISDRDALSKPDPCVILKMQSHGQWFEVDRTEVIRTCINPVYSKLFTVDFYFEEVQRLRFEVHDISSNHNGLKEADFLGGMECTLGQIVSQRKLSKSLLKHGNTAGKSSITVIAEELSGNDDYVELAFNARKLDDKDFFSKSDPFLEIFRMNDDATQQLVHRTEVVMNNLSPAWKSFKVSVNSLCSGDPDRRLKCIVWDWDSNGKHDFIGEFTSTFKEMRGAMEGKQVQWECINPKYKAKKKNYKNSGTVILNLCKIHKMHSFLDYIMGGCQIQFTVAIDFTASNGDPRNSCSLHYIHPYQPNEYLKALVAVGEICQDYDSDKMFPAFGFGARIPPEYTVSHDFAINFNEDNPECAGIQGVVEAYQSCLPKLQLYGPTNIAPIIQKVAKSASEETNTKEASQYFILLILTDGVITDMADTREAIVHASHLPMSVIIVGVGNADFSDMQMLDGDDGILRSPKGEPVLRDIVQFVPFRNFKHASPAALAKSVLAEVPNQVVDYYNGKGIKPKCSSEMYESSRTLAP | Probable calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes.
Widely expressed (, ). Expressed strongly in the brain, heart and prostate (, ). Expressed strongly in peripheral blood leukocytes . |
CPNE5_HUMAN | Homo sapiens | MEQPEDMASLSEFDSLAGSIPATKVEITVSCRNLLDKDMFSKSDPLCVMYTQGMENKQWREFGRTEVIDNTLNPDFVRKFIVDYFFEEKQNLRFDLYDVDSKSPDLSKHDFLGQAFCTLGEIVGSPGSRLEKPLTIGAFSLNSRTGKPMPAVSNGGVPGKKCGTIILSAEELSNCRDVATMQFCANKLDKKDFFGKSDPFLVFYRSNEDGTFTICHKTEVMKNTLNPVWQTFSIPVRALCNGDYDRTIKVEVYDWDRDGSHDFIGEFTTSYRELARGQSQFNIYEVVNPKKKMKKKKYVNSGTVTLLSFAVESECTFLDYIKGGTQINFTVAIDFTASNGNPSQSTSLHYMSPYQLNAYALALTAVGEIIQHYDSDKMFPALGFGAKLPPDGRVSHEFPLNGNQENPSCCGIDGILEAYHRSLRTVQLYGPTNFAPVVTHVARNAAAVQDGSQYSVLLIITDGVISDMAQTKEAIVNAAKLPMSIIIVGVGQAEFDAMVELDGDDVRISSRGKLAERDIVQFVPFRDYVDRTGNHVLSMARLARDVLAEIPDQLVSYMKAQGIRPRPPPAAPTHSPSQSPARTPPASPLHTHI | Probable calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes (By similarity). Plays a role in dendrite formation by melanocytes .
Subcellular locations: Perikaryon, Cell projection
Expressed in the brain, heart, stomach, spleen, lymph node and testis . Expressed in melanocytes . |
CPNE6_HUMAN | Homo sapiens | MSDPEMGWVPEPPTMTLGASRVELRVSCHGLLDRDTLTKPHPCVLLKLYSDEQWVEVERTEVLRSCSSPVFSRVLALEYFFEEKQPLQFHVFDAEDGATSPRNDTFLGSTECTLGQIVSQTKVTKPLLLKNGKTAGKSTITIVAEEVSGTNDYVQLTFRAYKLDNKDLFSKSDPFMEIYKTNEDQSDQLVWRTEVVKNNLNPSWEPFRLSLHSLCSCDVHRPLKFLVYDYDSSGKHDFIGEFTSTFQEMQEGTANPGQEMQWDCINPKYRDKKKNYKSSGTVVLAQCTVEKVHTFLDYIMGGCQISFTVAIDFTASNGDPRSSQSLHCLSPRQPNHYLQALRAVGGICQDYDSDKRFPAFGFGARIPPNFEVSHDFAINFDPENPECEEISGVIASYRRCLPQIQLYGPTNVAPIINRVAEPAQREQSTGQATKYSVLLVLTDGVVSDMAETRTAIVRASRLPMSIIIVGVGNADFSDMRLLDGDDGPLRCPRGVPAARDIVQFVPFRDFKDAAPSALAKCVLAEVPRQVVEYYASQGISPGAPRPCTLATTPSPSP | Calcium-dependent phospholipid-binding protein that plays a role in calcium-mediated intracellular processes. Binds phospholipid membranes in a calcium-dependent manner (By similarity). Plays a role in dendrite formation by melanocytes .
Subcellular locations: Cytoplasm, Cell membrane, Endosome, Cytoplasmic vesicle, Clathrin-coated vesicle, Perikaryon, Cell projection, Dendrite
Mainly cytoplasmic in absence of calcium. Associated predominantly with membranes in presence of calcium. Translocates to the cell membrane in a calcium-dependent manner. Colocalized with transferrin in intracellular clathrin-coated membrane vesicles in a calcium-dependent manner.
Widely expressed in the brain ( ). Expressed weakly in the kidney, liver and fetal heart . Expressed in melanocytes . |
CPNE6_PONAB | Pongo abelii | MSDPEMGWVPEPPTMTLGASRVELRVSCHGLLDRDTLTKPHPCVLLKLYSDEQWVEVERTEVLRSCSSPVFSRVLALEYFFEEKQPLQFHVFDAEDGATSPRNDTFLGSTECTLGQIVSQTKVTKPLLLKNGKTAGKSTITIVAEEVSGTNDYVQLTFRAYKLDNKDPFSKSDPFMEIYKTNEDQSDQLVWRTEVVKNNLNPSWEPFRLSLHSLCSCDVHRPLKFLVYDYDSSGKHDFIGEFTSTFQEMQEGTANPGQEMQWDCINPKYRDKKKNYKSSGTVVLAQCTVEKVHTFLDYIMGGCQISFTVAIDFTASNGDPRSSQSLHCLSPRQPNHYLQALRAVGGICQDYDSDKRFPAFGFGARIPPNFEVSHDFAINFDPENPECEEISGVIASYRRCLPQIQLYGPTNVAPIINRVAEPAQREQSTGQATKYSVLLVLTDGVVSDMAETRTAIVRASRLPMSIIIVGVGNADFSDMRLLDGDDGPLRCPRGVPAARDIVQFVPFRDFKDAAPSALAKRVLAEVPRQVVEYYASQGISPGAPRPCTLATTPSPSP | Calcium-dependent phospholipid-binding protein that plays a role in calcium-mediated intracellular processes. Binds phospholipid membranes in a calcium-dependent manner (By similarity). Plays a role in dendrite formation by melanocytes (By similarity).
Subcellular locations: Cytoplasm, Cell membrane, Endosome, Cytoplasmic vesicle, Clathrin-coated vesicle, Perikaryon, Cell projection, Dendrite
Mainly cytoplasmic in absence of calcium. Associated predominantly with membranes in presence of calcium. Translocates to the cell membrane in a calcium-dependent manner. Colocalized with transferrin in intracellular clathrin-coated membrane vesicles in a calcium-dependent manner. |
CPNE7_HUMAN | Homo sapiens | MSAGSERGAAATPGGLPAPCASKVELRLSCRHLLDRDPLTKSDPSVALLQQAQGQWVQVGRTEVVRSSLHPVFSKVFTVDYYFEEVQRLRFEVYDTHGPSGFSCQEDDFLGGMECTLGQPAQKWLLQVVMRVSVDVLGPAGHCAKHFLCCTESSHLARTGPSFLLRYDDLCLPWATAGAVRWWTCRGGHTQGWQIVAQKKVTRPLLLKFGRNAGKSTITVIAEDISGNNGYVELSFRARKLDDKDLFSKSDPFLELYRVNDDQGLQLVYRTEVVKNNLNPVWEAFKVSLSSLCSCEETRPLKCLVWDYDSRGKHDFIGEFSTTFEEMQKAFEEGQAQWDCVNPKYKQKRRSYKNSGVVVLADLKFHRVYSFLDYIMGGCQIHFTVAIDFTASNGDPRNSCSLHYINPYQPNEYLKALVSVGEICQDYDSDKRFSALGFGARIPPKYEVSHDFAINFNPEDDECEGIQGVVEAYQNCLPRVQLYGPTNVAPIISKVARVAAAEESTGKASQYYILLILTDGVVTDMADTREAIVRASRLPMSIIIVGVGNADFTDMQVLDGDDGVLRSPRGEPALRDIVQFVPFRELKNASPAALAKCVLAEVPKQVVEYYSHRGLPPRSLGVPAGEASPGCTP | Calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes.
Subcellular locations: Cytoplasm, Nucleus, Cell membrane
Translocates to the cell membrane in a calcium-dependent manner .
Expressed in the brain, testis, thymus and small intestine (, ). |
CPNE8_HUMAN | Homo sapiens | MDSRYNSTAGIGDLNQLSAAIPATRVEVSVSCRNLLDRDTFSKSDPICVLYVQGVGNKEWREFGRTEVIDNTLNPDFVRKFILDYFFEERENLRFDLYDVDSKSPNLSKHDFLGQVFCTLGEIVGSQGSRLEKPIVGIPGKKCGTIILTAEELNCCRDAVLMQFCANKLDKKDFFGKSDPFLVFYRSNEDGSFTICHKTEVVKNTLNPVWQAFKISVRALCNGDYDRTIKVEVYDWDRDGSHDFIGEFTTSYRELSRGQSQFNVYEVVNPKKKGKKKKYTNSGTVTLLSFLVETEVSFLDYIKGGTQINFTVAIDFTASNGNPAQPTSLHYMNPYQLNAYGMALKAVGEIVQDYDSDKMFPALGFGAKLPPDGRISHEFALNGNPQNPYCDGIEGVMEAYYRSLKSVQLYGPTNFAPVINHVARYASSVKDGSQYFVLLIVTDGVISDMAQTKESIVNASKLPMSIIIVGVGPAEFDAMVELDGDDVRVSSRGKYAERDIVQFVPFRDYIDRSGNHILSMARLAKDVLAEIPEQFLSYMRARGIKPSPAPPPYTPPTHVLQTQI | Probable calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes. |
CPNE9_HUMAN | Homo sapiens | MSLGGASERSVPATKIEITVSCRNLLDLDTFSKSDPMVVLYTQSRASQEWREFGRTEVIDNTLNPDFVRKFVLDYFFEEKQNLRFDVYNVDSKTNISKPKDFLGQAFLALGEVIGGQGSRVERTLTGVPGKKCGTILLTAEELSNCRDIATMQLCANKLDKKDFFGKSDPFLVFYRSNEDGTFTICHKTEVVKNTLNPVWQPFSIPVRALCNGDYDRTVKIDVYDWDRDGSHDFIGEFTTSYRELSKAQNQFTVYEVLNPRKKCKKKKYVNSGTVTLLSFSVDSEFTFVDYIKGGTQLNFTVAIDFTASNGNPLQPTSLHYMSPYQLSAYAMALKAVGEIIQDYDSDKLFPAYGFGAKLPPEGRISHQFPLNNNDEDPNCAGIEGVLESYFQSLRTVQLYGPTYFAPVINQVARAAAKISDGSQYYVLLIITDGVISDMTQTKEAIVSASSLPMSIIIVGVGPAMFEAMEELDGDDVRVSSRGRYAERDIVQFVPFRDYVDRSGNQVLSMARLAKDVLAEIPEQLLSYMRTRDIQPRPPPPANPSPIPAPEQP | Probable calcium-dependent phospholipid-binding protein that may play a role in calcium-mediated intracellular processes (By similarity). Plays a role in dendrite formation by melanocytes .
Expressed in melanocytes . |
CQ091_HUMAN | Homo sapiens | MGWEGPNSRVDDTFWASWRAFAQIGPARSGFRLETLAGLRSRRLKQPKAFCLRDVAP | null |
CQ100_HUMAN | Homo sapiens | MASARGAKQSSPRVGTTRYTETSTVRVETSSHRVETSSRRVETSQRRSEGPSLSPSGKRLPRILEASSRHVESSSQRTETTSRHVRASSLRVETSLHCAESPTPRAKPAARQNEKTAR | null |
CQ102_HUMAN | Homo sapiens | MFDFSFPTPASAGTRMGPASCGGRSLHLPQLRFSRVDATAVTDVPFQRMHAPHRAPEVFCSRSSRGAGRGHPTPTPRVRWALAGNQPRCCAQLLSGRGGSGAQLRAGWVRGAAVGNLFILLLGKEDGEEEGTVLSYSSMVHISNITGIVGTTVSRTKPALVLMELTF | null |
CQ107_HUMAN | Homo sapiens | MKGTPSSLDTLMWIYHFHSSTEVALQPPLLSSLELSVAAAHEYLEQRFRELKSLEPPEPKMQGMLPAPKPTLGLVLREATASLVSFGTTLLEISALWLQQEARRLDGSAGPAPDGRDPGAALSRVAQAAGQGVRQAGAAVGASARLLVQGAWLCLCGRGLQGSASFLRQSQQQLGLGIPGEPVSSGHGVS | null |
CQ10A_HUMAN | Homo sapiens | MAWAGSRRVPAGTRAAAERCCRLSLSPGAQPAPPPGPLPPPRPMRFLTSCSLLLPRAAQILAAEAGLPSSRSFMGFAAPFTNKRKAYSERRIMGYSMQEMYEVVSNVQEYREFVPWCKKSLVVSSRKGHLKAQLEVGFPPVMERYTSAVSMVKPHMVKAVCTDGKLFNHLETIWRFSPGIPAYPRTCTVDFSISFEFRSLLHSQLATMFFDEVVKQNVAAFERRAATKFGPETAIPRELMFHEVHQT | Required for the function of coenzyme Q in the respiratory chain. May serve as a chaperone or may be involved in the transport of Q6 from its site of synthesis to the catalytic sites of the respiratory complexes (Probable).
Subcellular locations: Mitochondrion inner membrane |
CQ10B_HUMAN | Homo sapiens | MAARTGHTALRRVVSGCRPKSATAAGAQAPVRNGRYLASCGILMSRTLPLHTSILPKEICARTFFKITAPLINKRKEYSERRILGYSMQEMYDVVSGVEDYKHFVPWCKKSDVISKRSGYCKTRLEIGFPPVLERYTSVVTLVKPHLVKASCTDGRLFNHLETIWRFSPGLPGYPRTCTLDFSISFEFRSLLHSQLATLFFDEVVKQMVAAFERRACKLYGPETNIPRELMLHEVHHT | Required for the function of coenzyme Q in the respiratory chain. May serve as a chaperone or may be involved in the transport of Q6 from its site of synthesis to the catalytic sites of the respiratory complexes (By similarity).
Subcellular locations: Mitochondrion inner membrane |
CQ10B_PONAB | Pongo abelii | MAARTGHTSLRRVVSGCRPKSATAAGAQAPVRNGRYLASCGILMSRTLPLHTSILPKEICARTFFKITAPLINKRKEYSERRILGYSMQEMYDVVSGVEDYKHFVPWCKKSDVISKRSGYCKTRLEIGFPPVLERYTSVVTLVKPHLVKASCTDGRLFNHLETIWRFSPGLPGYPRTCTLDFSISFEFRSLLHSQLATLFFDEVVKQMVAAFERRACKLYGPETNIPRELMLHEVHHT | Required for the function of coenzyme Q in the respiratory chain. May serve as a chaperone or may be involved in the transport of Q6 from its site of synthesis to the catalytic sites of the respiratory complexes (By similarity).
Subcellular locations: Mitochondrion inner membrane |
CQ112_HUMAN | Homo sapiens | MYTSLKSTFVAFADGRGTTESMPSPPLANSNHESPVNQLGNMQNMRLGPSFILTGIFLGNGRTEASPFFTDEFALSKIFPEYKRNLFGKFQTNMAFSLELDPPSLLLSVVLFMF | null |
CQ113_HUMAN | Homo sapiens | MVPPGKKPAGEASNSNKKCKRYFNEHWKEEFTWLDFDYERKLMFCLECRQALVRNKHGKAENAFTVGTDNFQRHALLRHVTSGAHRQALAVNQGQPPFEGQAEGGGACPGLATTPASRGVKVELDPAKVAVLTTVYCMAKEDVPNDRCSALLELQRFNLCQALLGTEHGDYYSPRRVRDMQVAIASVLHTEACQRLKASPYVGLVLDETRDWPESHSLALFATSVSPCDGQPATTFLGSVELQEGEATAGQLLDILQAFGVSAPKLAWLSSSLPSERLGSVGPQLRATCPLLAELHCLPGRTDPEPPAYLGQYESILDALFRLHGGPSSHLVPELRAALDLAAIDLAGPRPVPWASLLPVVEAVAEAWPGLVPTLEAAALASPVAGSLALALRQFTFVAFTHLLLDALPSVQKLSLVLQAEEPDLALLQPLVMAAAASLQAQRGSGGARLQGFLQELASMDPDASSGRCTYRGVELLGYSEAAVRGLEWLRGSFLDSMRKGLQDSYPGPSLDAVAAFAAIFDPRRYPQAPEELGTHGEGALRVLLRGFAPAVVRQRALGDFALFKRVVFGLGRLGPRALCTQLACAHSELHELFPDFAALAALALALPAGAGLLDKVGRSRELRWWGQSGAGEGRGGHMVKIAVDGPPLHEFDFGLAVEFLESGWGEGFLGSQLT | null |
CQ114_HUMAN | Homo sapiens | MGLKGAWCFPWCGCRRQRGTERGAGLSPAAPPDPSPAIAPTMAEGGVPSPGPGAYFSRKARLSFRHQLHDIASANDSTI | null |
CR1L_HUMAN | Homo sapiens | MAPPVRLERPFPSRRFPGLLLAALVLLLSSFSDQCNVPEWLPFARPTNLTDDFEFPIGTYLNYECRPGYSGRPFSIICLKNSVWTSAKDKCKRKSCRNPPDPVNGMAHVIKDIQFRSQIKYSCPKGYRLIGSSSATCIISGNTVIWDNKTPVCDRIICGLPPTIANGDFTSISREYFHYGSVVTYHCNLGSRGKKVFELVGEPSIYCTSKDDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGFGMKGPSHVKCQALNKWEPELPSCSRVCQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGSTYLHCTPQGDWSPAAPRCEVKSCDDFLGQLPNGHVLFPLNLQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCERKSCETPPVPVNGMVHVITDIHVGSRINYSCTTGHRLIGHSSAECILSGNTAHWSMKPPICQQIFCPNPPAILNGRHTGTPLGDIPYGKEVSYTCDPHPDRGMTFNLIGESTIRRTSEPHGNGVWSSPAPRCELPVGAGSHDALIVGKFYEVFAEEFCHL | Subcellular locations: Cytoplasm, Membrane, Secreted
Predominantly found in association with the membrane fraction, but also located in the cytoplasm and in the supernatant.
Expressed in fetal liver and to a lesser extent in fetal spleen and thymus. Expression appears to be limited to hematopoietic and fetal lymphoid tissue. |
CR1_HUMAN | Homo sapiens | MGASSPRSPEPVGPPAPGLPFCCGGSLLAVVVLLALPVAWGQCNAPEWLPFARPTNLTDEFEFPIGTYLNYECRPGYSGRPFSIICLKNSVWTGAKDRCRRKSCRNPPDPVNGMVHVIKGIQFGSQIKYSCTKGYRLIGSSSATCIISGDTVIWDNETPICDRIPCGLPPTITNGDFISTNRENFHYGSVVTYRCNPGSGGRKVFELVGEPSIYCTSNDDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGAASMRCTPQGDWSPAAPTCEVKSCDDFMGQLLNGRVLFPVNLQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIFCPSPPVIPNGRHTGKPLEVFPFGKTVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGNGVWSSPAPRCGILGHCQAPDHFLFAKLKTQTNASDFPIGTSLKYECRPEYYGRPFSITCLDNLVWSSPKDVCKRKSCKTPPDPVNGMVHVITDIQVGSRINYSCTTGHRLIGHSSAECILSGNAAHWSTKPPICQRIPCGLPPTIANGDFISTNRENFHYGSVVTYRCNPGSGGRKVFELVGEPSIYCTSNDDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPPPDVLHAERTQRDKDNFSPGQEVFYSCEPGYDLRGAASMRCTPQGDWSPAAPTCEVKSCDDFMGQLLNGRVLFPVNLQLGAKVDFVCDEGFQLKGSSASYCVLAGMESLWNSSVPVCEQIFCPSPPVIPNGRHTGKPLEVFPFGKAVNYTCDPHPDRGTSFDLIGESTIRCTSDPQGNGVWSSPAPRCGILGHCQAPDHFLFAKLKTQTNASDFPIGTSLKYECRPEYYGRPFSITCLDNLVWSSPKDVCKRKSCKTPPDPVNGMVHVITDIQVGSRINYSCTTGHRLIGHSSAECILSGNTAHWSTKPPICQRIPCGLPPTIANGDFISTNRENFHYGSVVTYRCNLGSRGRKVFELVGEPSIYCTSNDDQVGIWSGPAPQCIIPNKCTPPNVENGILVSDNRSLFSLNEVVEFRCQPGFVMKGPRRVKCQALNKWEPELPSCSRVCQPPPEILHGEHTPSHQDNFSPGQEVFYSCEPGYDLRGAASLHCTPQGDWSPEAPRCAVKSCDDFLGQLPHGRVLFPLNLQLGAKVSFVCDEGFRLKGSSVSHCVLVGMRSLWNNSVPVCEHIFCPNPPAILNGRHTGTPSGDIPYGKEISYTCDPHPDRGMTFNLIGESTIRCTSDPHGNGVWSSPAPRCELSVRAGHCKTPEQFPFASPTIPINDFEFPVGTSLNYECRPGYFGKMFSISCLENLVWSSVEDNCRRKSCGPPPEPFNGMVHINTDTQFGSTVNYSCNEGFRLIGSPSTTCLVSGNNVTWDKKAPICEIISCEPPPTISNGDFYSNNRTSFHNGTVVTYQCHTGPDGEQLFELVGERSIYCTSKDDQVGVWSSPPPRCISTNKCTAPEVENAIRVPGNRSFFSLTEIIRFRCQPGFVMVGSHTVQCQTNGRWGPKLPHCSRVCQPPPEILHGEHTLSHQDNFSPGQEVFYSCEPSYDLRGAASLHCTPQGDWSPEAPRCTVKSCDDFLGQLPHGRVLLPLNLQLGAKVSFVCDEGFRLKGRSASHCVLAGMKALWNSSVPVCEQIFCPNPPAILNGRHTGTPFGDIPYGKEISYACDTHPDRGMTFNLIGESSIRCTSDPQGNGVWSSPAPRCELSVPAACPHPPKIQNGHYIGGHVSLYLPGMTISYICDPGYLLVGKGFIFCTDQGIWSQLDHYCKEVNCSFPLFMNGISKELEMKKVYHYGDYVTLKCEDGYTLEGSPWSQCQADDRWDPPLAKCTSRTHDALIVGTLSGTIFFILLIIFLSWIILKHRKGNNAHENPKEVAIHLHSQGGSSVHPRTLQTNEENSRVLP | Membrane immune adherence receptor that plays a critical role in the capture and clearance of complement-opsonized pathogens by erythrocytes and monocytes/macrophages . Mediates the binding by these cells of particles and immune complexes that have activated complement to eliminate them from the circulation . Acts also in the inhibition of spontaneous complement activation by impairing the formation and function of the alternative and classical pathway C3/C5 convertases, and by serving as a cofactor for the cleavage by factor I of C3b to iC3b, C3c and C3d,g, and of C4b to C4c and C4d (, ). Also plays a role in immune regulation by contributing, upon ligand binding, to the generation of regulatory T cells from activated helper T cells .
(Microbial infection) Acts as a receptor for Epstein-Barr virus.
Subcellular locations: Membrane
Present on erythrocytes, a subset of T cells, mature B cells, follicular dendritic cells, monocytes and granulocytes. |
CRERF_HUMAN | Homo sapiens | MPQPSVSGMDPPFGDAFRSHTFSEQTLMSTDLLANSSDPDFMYELDREMNYQQNPRDNFLSLEDCKDIENLESFTDVLDNEGALTSNWEQWDTYCEDLTKYTKLTSCDIWGTKEVDYLGLDDFSSPYQDEEVISKTPTLAQLNSEDSQSVSDSLYYPDSLFSVKQNPLPSSFPGKKITSRAAAPVCSSKTLQAEVPLSDCVQKASKPTSSTQIMVKTNMYHNEKVNFHVECKDYVKKAKVKINPVQQSRPLLSQIHTDAAKENTCYCGAVAKRQEKKGMEPLQGHATPALPFKETQELLLSPLPQEGPGSLAAGESSSLSASTSVSDSSQKKEEHNYSLFVSDNLGEQPTKCSPEEDEEDEEDVDDEDHDEGFGSEHELSENEEEEEEEEDYEDDKDDDISDTFSEPGYENDSVEDLKEVTSISSRKRGKRRYFWEYSEQLTPSQQERMLRPSEWNRDTLPSNMYQKNGLHHGKYAVKKSRRTDVEDLTPNPKKLLQIGNELRKLNKVISDLTPVSELPLTARPRSRKEKNKLASRACRLKKKAQYEANKVKLWGLNTEYDNLLFVINSIKQEIVNRVQNPRDERGPNMGQKLEILIKDTLGLPVAGQTSEFVNQVLEKTAEGNPTGGLVGLRIPTSKV | Acts as a negative regulator of the endoplasmic reticulum stress response or unfolded protein response (UPR). Represses the transcriptional activity of CREB3 during the UPR. Recruits CREB3 into nuclear foci.
Subcellular locations: Nucleus
Colocalizes with CREB3 in nuclear foci. |
CREST_HUMAN | Homo sapiens | MSVAFASARPRGKGEVTQQTIQKMLDENHHLIQCILEYQSKGKTAECTQYQQILHRNLVYLATIADSNQNMQSLLPAPPTQNMNLGPGALTQSGSSQGLHSQGSLSDAISTGLPPSSLLQGQIGNGPSHVSMQQTAPNTLPTTSMSISGPGYSHAGPASQGVPMQGQGTIGNYVSRTNINMQSNPVSMMQQQAATSHYSSAQGGSQHYQGQSSIAMMGQGSQGSSMMGQRPMAPYRPSQQGSSQQYLGQEEYYGEQYSHSQGAAEPMGQQYYPDGHGDYAYQQSSYTEQSYDRSFEESTQHYYEGGNSQYSQQQAGYQQGAAQQQTYSQQQYPSQQSYPGQQQGYGSAQGAPSQYPGYQQGQGQQYGSYRAPQTAPSAQQQRPYGYEQGQYGNYQQ | Transcriptional activator which is required for calcium-dependent dendritic growth and branching in cortical neurons. Recruits CREB-binding protein (CREBBP) to nuclear bodies. Component of the CREST-BRG1 complex, a multiprotein complex that regulates promoter activation by orchestrating a calcium-dependent release of a repressor complex and a recruitment of an activator complex. In resting neurons, transcription of the c-FOS promoter is inhibited by BRG1-dependent recruitment of a phospho-RB1-HDAC1 repressor complex. Upon calcium influx, RB1 is dephosphorylated by calcineurin, which leads to release of the repressor complex. At the same time, there is increased recruitment of CREBBP to the promoter by a CREST-dependent mechanism, which leads to transcriptional activation. The CREST-BRG1 complex also binds to the NR2B promoter, and activity-dependent induction of NR2B expression involves a release of HDAC1 and recruitment of CREBBP (By similarity).
Subcellular locations: Nucleus, Chromosome, Centromere, Kinetochore
Localizes to nuclear bodies. Colocalizes with SGO1 at kinetochore (By similarity).
Ubiquitous; with lowest levels in spleen. |
CRIS2_HUMAN | Homo sapiens | MALLPVLFLVTVLLPSLPAEGKDPAFTALLTTQLQVQREIVNKHNELRKAVSPPASNMLKMEWSREVTTNAQRWANKCTLQHSDPEDRKTSTRCGENLYMSSDPTSWSSAIQSWYDEILDFVYGVGPKSPNAVVGHYTQLVWYSTYQVGCGIAYCPNQDSLKYYYVCQYCPAGNNMNRKNTPYQQGTPCAGCPDDCDKGLCTNSCQYQDLLSNCDSLKNTAGCEHELLKEKCKATCLCENKIY | May regulate some ion channels' activity and therebye regulate calcium fluxes during sperm capacitation.
Subcellular locations: Secreted
Testis and epididymis. |
CRIS3_HUMAN | Homo sapiens | MTLFPVLLFLVAGLLPSFPANEDKDPAFTALLTTQTQVQREIVNKHNELRRAVSPPARNMLKMEWNKEAAANAQKWANQCNYRHSNPKDRMTSLKCGENLYMSSASSSWSQAIQSWFDEYNDFDFGVGPKTPNAVVGHYTQVVWYSSYLVGCGNAYCPNQKVLKYYYVCQYCPAGNWANRLYVPYEQGAPCASCPDNCDDGLCTNGCKYEDLYSNCKSLKLTLTCKHQLVRDSCKASCNCSNSIY | Subcellular locations: Secreted
In neutrophils, localized in specific granules.
Salivary gland, pancreas and prostate > epididymis, ovary, thymus and colon. |
CRNL1_HUMAN | Homo sapiens | MTATVENLTFQKDTLGNAVDKNTSRLELRSYSLAGRHGSTEPLVLAWSSQFRRLTWGCALDALHRSPCVAASQHGVTHLIRSSRTPHSTRCRKEDAQPGHHGNGAASVTAQARGQRSVLQVPLPVPRSCLFSESFVVSVSSQSRFLASVPGTGVQRSTAADMAASTAAGKQRIPKVAKVKNKAPAEVQITAEQLLREAKERELELLPPPPQQKITDEEELNDYKLRKRKTFEDNIRKNRTVISNWIKYAQWEESLKEIQRARSIYERALDVDYRNITLWLKYAEMEMKNRQVNHARNIWDRAITTLPRVNQFWYKYTYMEEMLGNVAGARQVFERWMEWQPEEQAWHSYINFELRYKEVDRARTIYERFVLVHPDVKNWIKYARFEEKHAYFAHARKVYERAVEFFGDEHMDEHLYVAFAKFEENQKEFERVRVIYKYALDRISKQDAQELFKNYTIFEKKFGDRRGIEDIIVSKRRFQYEEEVKANPHNYDAWFDYLRLVESDAEAEAVREVYERAIANVPPIQEKRHWKRYIYLWINYALYEELEAKDPERTRQVYQASLELIPHKKFTFAKMWILYAQFEIRQKNLSLARRALGTSIGKCPKNKLFKVYIELELQLREFDRCRKLYEKFLEFGPENCTSWIKFAELETILGDIDRARAIYELAISQPRLDMPEVLWKSYIDFEIEQEETERTRNLYRRLLQRTQHVKVWISFAQFELSSGKEGSLTKCRQIYEEANKTMRNCEEKEERLMLLESWRSFEEEFGTASDKERVDKLMPEKVKKRRKVQTDDGSDAGWEEYFDYIFPEDAANQPNLKLLAMAKLWKKQQQEKEDAEHHPDEDVDESES | Involved in pre-mRNA splicing process ( , ). As a component of the minor spliceosome, involved in the splicing of U12-type introns in pre-mRNAs (Probable).
Subcellular locations: Nucleus, Nucleus speckle
Colocalizes with core spliceosomal snRNP proteins .
Widely expressed . Highly expressed in testis . Not detected in brain and lung . |
CRNN_HUMAN | Homo sapiens | MPQLLQNINGIIEAFRRYARTEGNCTALTRGELKRLLEQEFADVIVKPHDPATVDEVLRLLDEDHTGTVEFKEFLVLVFKVAQACFKTLSESAEGACGSQESGSLHSGASQELGEGQRSGTEVGRAGKGQHYEGSSHRQSQQGSRGQNRPGVQTQGQATGSAWVSSYDRQAESQSQERISPQIQLSGQTEQTQKAGEGKRNQTTEMRPERQPQTREQDRAHQTGETVTGSGTQTQAGATQTVEQDSSHQTGRTSKQTQEATNDQNRGTETHGQGRSQTSQAVTGGHAQIQAGTHTQTPTQTVEQDSSHQTGSTSTQTQESTNGQNRGTEIHGQGRSQTSQAVTGGHTQIQAGSHTETVEQDRSQTVSHGGAREQGQTQTQPGSGQRWMQVSNPEAGETVPGGQAQTGASTESGRQEWSSTHPRRCVTEGQGDRQPTVVGEEWVDDHSRETVILRLDQGNLHTSVSSAQGQDAAQSEEKRGITARELYSYLRSTKP | Promotes cell proliferation, G1/S cell cycle progression and induces expression of the cell cycle regulator CCND1 . Regulates proliferation induced by pro-inflammatory cytokine response via activation of NFKB1 and PI3K/AKT signaling pathways .
Subcellular locations: Cytoplasm
Does not colocalize with TGM1.
Expressed in the basal skin layer (at protein level) . Squamous epithelia cell-specific. Expressed in the esophagus (periphery of the cells of the granular and the upper spinous layers), foreskin (granular and lower cornified cells), scalp skin (granular layer), inner root sheath of the hair follicle and in primary keratinocytes (at protein level). Expressed in the squamous epithelium of the cervix, esophagus, foreskin and larynx. Expressed in the fetal bladder and scalp skin. Expressed at very low levels in the lung, kidney, uterus, skeletal muscle, heart and fetal brain. Undetectable or barely detectable in esophageal and oral squamous cell carcinoma compared with the matched adjacent normal esophageal mucosa. Undetectable or barely detectable in larynx and esophagus from patients with pH-documented laryngopharyngeal reflux (LPR). |
CRNS1_HUMAN | Homo sapiens | MLLCLSPAWLMKVPAPGQPGEAALLVSKAVSFHPGGLTFLDDFVPPRRATYFLAGLGLGPGRGREAAELARDLTCPTGASAELARLLEDRLLTRQLLAQQGGVAVPATLAFTYKPPGLLRGGDASLGLRLVELSGKEGQETLVKEEVEAFLRSEALGDILQVAVKLSGWRWRGRQAWRLHPRAELGAVVDTVLALLEKLEEEESVLVEAVYPPAQLPCSDGPSPGPGLAVRICAVVCRTQGDRPLLSKVVCGVGRGDRPLRHHNSLPRTLEVALAQCGLGEEAQVAAVRQRVKAAAEAALAAVLALEAGLSAEQRGGRRAHTDFLGVDFALTAAGGVLTPVALELNGGLCLEACGALEGLWAAPRLGPAADEAVAAPLVETMLRRSARCLMEGKQLLVVGAGGVSKKFVWEAARDYGLQLHLVESDPNHFASQLVQTFIHFDMTEHRRDEENARLLAELVRARGLKLDGCFSYWDDCLVLTALLCQELGLPCSSPAAMRLAKQKSLTQLHLLHHHGPPWPAPSLHAVPCCPLESEADVERAVHQVPLPGVMKLEFGAGAVGVRLVEDAPQCHEHFSRITRDLQGEADHPGIGLGWGNAMLLMEFVEGTEHDVDLVLFGGRLLAAFVSDNGPTRLPGFTETAACMPTGLAPEQEAQMVQAAFRCCLGCGLLDGVFNVELKLTGAGPRLIEINPRMGGFYLRDWILELYGVDLLLAAVMVACGLRPALPTRPRARGHLVGVMCLVSQHLQALSSTASRETLQALHDRGLLRLNLLEEALVPGEYEEPYCSVACAGPSPTEARLRLLGLCQGLGIDGPSYPVAHFLSHFK | Catalyzes the synthesis of carnosine and homocarnosine. Carnosine is synthesized more efficiently than homocarnosine. |
CRTP1_HUMAN | Homo sapiens | MDPQEMVVKNPYAHISIPRAHLRPDLGQQLEVASTCSSSSEMQPLPVGPCAPEPTHLLQPTEVPGPKGAKGNQGAAPIQNQQAWQQPGNPYSSSQRQAGLTYAGPPPAGRGDDIAHHCCCCPCCHCCHCPPFCRCHSCCCCVIS | Component of the stratum corneum that may contribute to epidermal antimicrobial host defenses.
Subcellular locations: Cornified envelope
Expressed in the stratum granulosum, in skin and oral epithelia (at protein level). |
CRYAB_HUMAN | Homo sapiens | MDIAIHHPWIRRPFFPFHSPSRLFDQFFGEHLLESDLFPTSTSLSPFYLRPPSFLRAPSWFDTGLSEMRLEKDRFSVNLDVKHFSPEELKVKVLGDVIEVHGKHEERQDEHGFISREFHRKYRIPADVDPLTITSSLSSDGVLTVNGPRKQVSGPERTIPITREEKPAVTAAPKK | May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity).
Subcellular locations: Cytoplasm, Nucleus, Secreted, Lysosome
Translocates to the nucleus during heat shock and resides in sub-nuclear structures known as SC35 speckles or nuclear splicing speckles . Localizes at the Z-bands and the intercalated disk in cardiomyocytes . Can be secreted; the secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10; it results in protein translocation from the cytoplasm into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) followed by vesicle entry and secretion .
Lens as well as other tissues (, ). Expressed in myocardial tissue . |
CRYAB_MACFA | Macaca fascicularis | MDIAIHHPWIRRPFFPFHSPSRLFDQFFGEHLLESDLFPTSTSLSPFYLRPPSFLRAPSWFDTGLSEMRLEKDRFSVNLDVKHFSPEELKVKVLGDVIEVHGKHEERQDEHGFISREFHRKYRVPADVDPLTITSSLSSDGVLTVNGPRKQVSGPERTIPITREEKPAVTAAPKK | May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity).
Subcellular locations: Cytoplasm, Nucleus, Secreted, Lysosome
Translocates to the nucleus during heat shock and resides in sub-nuclear structures known as SC35 speckles or nuclear splicing speckles. Localizes at the Z-bands and the intercalated disk in cardiomyocytes. Can be secreted; the secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10; it results in protein translocation from the cytoplasm into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) followed by vesicle entry and secretion. |
CRYAB_PONAB | Pongo abelii | MDIAIHHPWIRRPFFPFHSPSRLFDQFFGEHLLESDLFPTSTSLSPFYLRPPSFLRAPSWFDTGLSEMRLEKDRFSVNLDVKHFSPEELKVKVLGDVIEVHGKHEERQDEHGFISREFHRKYRIPADVDPLTITSSLSSDGVLTVNGPRKQVSGPERTIPITREEKPAVTAAPKK | May contribute to the transparency and refractive index of the lens. Has chaperone-like activity, preventing aggregation of various proteins under a wide range of stress conditions. In lens epithelial cells, stabilizes the ATP6V1A protein, preventing its degradation by the proteasome (By similarity).
Subcellular locations: Cytoplasm, Nucleus, Secreted, Lysosome
Translocates to the nucleus during heat shock and resides in sub-nuclear structures known as SC35 speckles or nuclear splicing speckles. Localizes at the Z-bands and the intercalated disk in cardiomyocytes. Can be secreted; the secretion is dependent on protein unfolding and facilitated by the cargo receptor TMED10; it results in protein translocation from the cytoplasm into the ERGIC (endoplasmic reticulum-Golgi intermediate compartment) followed by vesicle entry and secretion. |
CSAD_HUMAN | Homo sapiens | MADSEALPSLAGDPVAVEALLRAVFGVVVDEAIQKGTSVSQKVCEWKEPEELKQLLDLELRSQGESQKQILERCRAVIRYSVKTGHPRFFNQLFSGLDPHALAGRIITESLNTSQYTYEIAPVFVLMEEEVLRKLRALVGWSSGDGIFCPGGSISNMYAVNLARYQRYPDCKQRGLRTLPPLALFTSKECHYSIQKGAAFLGLGTDSVRVVKADERGKMVPEDLERQIGMAEAEGAVPFLVSATSGTTVLGAFDPLEAIADVCQRHGLWLHVDAAWGGSVLLSQTHRHLLDGIQRADSVAWNPHKLLAAGLQCSALLLQDTSNLLKRCHGSQASYLFQQDKFYDVALDTGDKVVQCGRRVDCLKLWLMWKAQGDQGLERRIDQAFVLARYLVEEMKKREGFELVMEPEFVNVCFWFVPPSLRGKQESPDYHERLSKVAPVLKERMVKEGSMMIGYQPHGTRGNFFRVVVANSALTCADMDFLLNELERLGQDL | Catalyzes the decarboxylation of L-aspartate, 3-sulfino-L-alanine (cysteine sulfinic acid), and L-cysteate to beta-alanine, hypotaurine and taurine, respectively. The preferred substrate is 3-sulfino-L-alanine. Does not exhibit any decarboxylation activity toward glutamate.
Expressed in liver and brain. Also expressed in both astrocytes and neurons, but lower levels are expressed in astrocytes. |
CSAG1_HUMAN | Homo sapiens | MSATTACWPAFTVLGEARGDQVDWSRLYRDTGLVKMSRKPRASSPFSNNHPSTPKRFPRQPRREKGPVKEVPGTKGSP | May play an important role in maintaining centrosome integrity during mitosis.
Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Spindle pole
Localizes at spindle poles and/or centrosomes in both mitotic and interphase cells . Spindle pole localization is more pronounced during mitosis . Centrosomal localization culminates at prophase .
Expressed in chondrosarcoma, melanoma, cartilage and testis, but not in other normal tissues. |
CSAG2_HUMAN | Homo sapiens | MWMGLIQLVEGVKRKDQGFLEKEFYHKTNIKMRCEFLACWPAFTVLGEAWRDQVDWSRLLRDAGLVKMSRKPRASSPLSNNHPPTPKRRGSGRHPLNPGPEALSKFPRQPGREKGPIKEVPGTKGSP | Drug-resistance related protein, its expression is associated with the chemotherapy resistant and neoplastic phenotype. May also be linked to the malignant phenotype.
Weakly expressed in kidney. Expressed in various tumor cell lines including carcinomas, myeloid and lymphoid malignancies, melanomas and prostate cancer. Overexpressed in taxol-resistant breast cancer line MDA 435TR and the doxorubicin-resistant multiple myelanoma lines RPMI-8226/Dox40 and RPMI-8226/MDR10V. |
CSAS1_HUMAN | Homo sapiens | MAPEVIRQDFQAGEVAFRRTGYLRGRSVLTQTKHSLAGNGRHPVALRTRLGSLALGAVPTWTKLWAQSTTWQTRNHTRTGHAYPRFTRPSFPSCNRNGKRRKLRLGLPY | null |
CSN1_HUMAN | Homo sapiens | MPLPVQVFNLQGAVEPMQIDVDPQEDPQNAPDVNYVVENPSLDLEQYAASYSGLMRIERLQFIADHCPTLRVEALKMALSFVQRTFNVDMYEEIHRKLSEATRSSLRELQNAPDAIPESGVEPPALDTAWVEATRKKALLKLEKLDTDLKNYKGNSIKESIRRGHDDLGDHYLDCGDLSNALKCYSRARDYCTSAKHVINMCLNVIKVSVYLQNWSHVLSYVSKAESTPEIAEQRGERDSQTQAILTKLKCAAGLAELAARKYKQAAKCLLLASFDHCDFPELLSPSNVAIYGGLCALATFDRQELQRNVISSSSFKLFLELEPQVRDIIFKFYESKYASCLKMLDEMKDNLLLDMYLAPHVRTLYTQIRNRALIQYFSPYVSADMHRMAAAFNTTVAALEDELTQLILEGLISARVDSHSKILYARDVDQRSTTFEKSLLMGKEFQRRAKAMMLRAAVLRNQIHVKSPPREGSQGELTPANSQSRMSTNM | Essential component of the COP9 signalosome complex (CSN), a complex involved in various cellular and developmental processes. The CSN complex is an essential regulator of the ubiquitin (Ubl) conjugation pathway by mediating the deneddylation of the cullin subunits of SCF-type E3 ligase complexes, leading to decrease the Ubl ligase activity of SCF-type complexes such as SCF, CSA or DDB2. The complex is also involved in phosphorylation of p53/TP53, c-jun/JUN, IkappaBalpha/NFKBIA, ITPK1 and IRF8/ICSBP, possibly via its association with CK2 and PKD kinases. CSN-dependent phosphorylation of TP53 and JUN promotes and protects degradation by the Ubl system, respectively. Suppresses G-protein- and mitogen-activated protein kinase-mediated signal transduction.
Subcellular locations: Cytoplasm, Nucleus
Widely expressed. |
CT2NL_HUMAN | Homo sapiens | MNLEKLSKPELLTLFSILEGELEARDLVIEALKAQHRDTFIEERYGKYNISDPLMALQRDFETLKEKNDGEKQPVCTNPLSILKVVMKQCKNMQERMLSQLAAAESRHRKVILDLEEERQRHAQDTAEGDDVTYMLEKERERLTQQLEFEKSQVKKFEKEQKKLSSQLEEERSRHKQLSSMLVLECKKATNKAAEEGQKAGELSLKLEKEKSRVSKLEEELAAERKRGLQTEAQVEKQLSEFDIEREQLRAKLNREENRTKTLKEEMESLKKIVKDLEASHQHSSPNEQLKKPVTVSKGTATEPLMLMSVFCQTESFPAERTHGSNIAKMTNTGLPGPATPAYSYAKTNGHCDPEIQTTRELTAGNNVENQVPPREKSVALAQEKPVENGGCPVGIETPVPMPSPLSSSGSSLSPSSTASSSLTSSPCSSPVLTKRLLGSSASSPGYQSSYQVGINQRFHAARHKFQSQADQDQQASGLQSPPSRDLSPTLIDNSAAKQLARNTVTQVLSRFTSQQGPIKPVSPNSSPFGTDYRNLANTANPRGDTSHSPTPGKVSSPLSPLSPGIKSPTIPRAERGNPPPIPPKKPGLTPSPSATTPLTKTHSQAASLTTAEDLASSCSSNTVVANGKDVELLLPTSS | Regulates lamellipodial actin dynamics in a CTTN-dependent manner.
Subcellular locations: Cell projection, Lamellipodium, Cytoplasm, Cytoskeleton, Stress fiber |
CT2NL_PONAB | Pongo abelii | MNLEKLSKPELLTLFSILEGELEARDLVIEALKAQHRDTFIEERYGKYNISDPLMALQRDFETLKEKNDGEKQPVCTNPLSILKVVMKQCKNMQERMLSQLAAAESRHRKVILDLEEERQRHAQDTAEGDDVTYMLEKERERLTQQLEFEKSQVKKFEKEQKKLSSQLEEERSRHKQLSSMLVLECKKATNKAAEEGQKAGELSLKLEKEKSRVSKLEEELAAERKRGLQTEAQVEKQLSEFDIEREQLRAKLNREENRTKTLKEEMESLKKIVKDLEASHQHSSPNEQLKKPVTVSKGTATEPLMLMSVFCQTESFPAERTHGSNIAKMTNTGLPGPATPAYSYAKTNGHCDPEIQTTRELTAGNNVENQVPPREKSVALAQEKPVENGGCPVGIETPVPMPSPLPSSGSSLSPSSTASSSLTSSPCSSPVLTKRLLGSSASSPGYQSSYQVGINQRFHAARHKFQSQADQDQQASGLQSPPSRDLSPTLIDNSAAKQLARNTVTQVLSRFTSQQGPIKPVSPNSSPFGTDYRNLANTANPRGDTSHSPTPGKVSSPLSPLSPGIKSPTIPRAERGNPPPIPPKKPGLTPSPSATTPLTKTHSQAASLTTAEDLASSCSSNTVVANGKDVELLLPTSS | Regulates lamellipodial actin dynamics in a CTTN-dependent manner.
Subcellular locations: Cell projection, Lamellipodium, Cytoplasm, Cytoskeleton, Stress fiber |
CT451_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKAKKLMTGHAIPPSQLDSQIDDFTGFSKDRMMQKPGSNAPVGGNVTSSFSGDDLECRETASSPKSQREINADIKRKLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | Testis specific. Expressed in cancer cell lines. |
CT452_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDRMMQKPGSNAPVGGNVTSSFSGDDLECRETAFSPKSQQEINADIKRQLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | Testis specific. Expressed in cancer cell lines. |
CT453_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDRMMQKPGSNAPVGGNVTSSFSGDDLECRETASSPKSQREINADIKRKLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | Testis specific. Expressed in cancer cell lines. |
CT455_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDGMMQKPGSNAPVGGNVTSSFSGDDLECRETASSPKSQREINADIKRKLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | Testis specific. Expressed in cancer cell lines. |
CT456_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDGMMQKPGSNAPVGGNVTSSFSGDDLECRETASSPKSQREINADIKRKLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | Testis specific. Expressed in cancer cell lines. |
CT457_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDGMMQKPGSNAPVGGNVTSSFSGDDLECRETASSPKSQREINADIKRKLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | null |
CT458_HUMAN | Homo sapiens | MTDKTEKVAVDPETVFKRPRECDSPSYQKRQRMALLARKQGAGDSLIAGSAMSKEKKLMTGHAIPPSQLDSQIDDFTGFSKDRMMQKPGSNAPVGGNVTSSFSGDDLECRETAFSPKSQQEINADIKRQLVKELRCVGQKYEKIFEMLEGVQGPTAVRKRFFESIIKEAARCMRRDFVKHLKKKLKRMI | null |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.