protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
AATC_PANTR
Pan troglodytes
MAPPSVFAEVPQAQPVLVFKLTADFREDPDPRKVNLGVGAYRTDDCHPWVLPVVKKVEQKIANDNSLNHEYLPILGLAEFRSCASRLALGDDSPALKEKRVGGVQSLGGTGALRIGADFLARWYNGTNNKNTPVYVSSPTWENHNAVFSAAGFKDIRSYRYWDAEKRGLDLQGFLNDLENAPEFSIVVLHACAHNPTGIDPTPEQWKQIASVMKHRFLFPFFDSAYQGFASGNLERDAWAIRYFVSEGFEFFCAQSFSKNFGLYNERVGNLTVVGKEPESILQVLSQMEKIVRITWSNPPAQGARIVASTLSNPELFEEWTGNVKTMADRILSMRSELRARLEALKTPGTWNHITDQIGMFSFTGLNPKQVEYLVNEKHIYLLPSGRINVSGLTTKNLDYVATSIHEAVTKIQ
Biosynthesis of L-glutamate from L-aspartate or L-cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. Subcellular locations: Cytoplasm
AATC_PONAB
Pongo abelii
MAPPSVFAEVPQAQPVLVFKLTADFREDPDPRKVNLGVGAYRTDDCHPWVLPVVKKVEQKIANDNSLNHEYLPILGLAEFRSCASRLALGDDSPALKEKRVGGVQSLGGTGALRIGADFLARWYNGTNNKNTPVYVSSPTWENHNAVFSAAGFKDIRSYRYWDAEKRGLDLQGLLNDLENAPEFSIVVLHACAHNPTGTDPTPEQWKQIASVMKHRFLFPFFDSAYQGFASGNLERDAWAIRYFVSEGFEFFCAQSFSKNFGLYNERVGNLTVVGKEPEGILRVLSQMEKIVRITWSNPPAQGARIVASTLSNPELFEEWTGNVKTMADRILTMRSELRARLEALKTPGTWNHITDQIGMFSFTGLNPKQVEYLINEKHIYLLPSGRINVSGLTTKNLDYVATSIHEAVTKIQ
Biosynthesis of L-glutamate from L-aspartate or L-cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain. Subcellular locations: Cytoplasm
AATF_HUMAN
Homo sapiens
MAGPQPLALQLEQLLNPRPSEADPEADPEEATAARVIDRFDEGEDGEGDFLVVGSIRKLASASLLDTDKRYCGKTTSRKAWNEDHWEQTLPGSSDEEISDEEGSGDEDSEGLGLEEYDEDDLGAAEEQECGDHRESKKSRSHSAKTPGFSVQSISDFEKFTKGMDDLGSSEEEEDEESGMEEGDDAEDSQGESEEDRAGDRNSEDDGVVMTFSSVKVSEEVEKGRAVKNQIALWDQLLEGRIKLQKALLTTNQLPQPDVFPLFKDKGGPEFSSALKNSHKALKALLRSLVGLQEELLFQYPDTRYLVDGTKPNAGSEEISSEDDELVEEKKQQRRRVPAKRKLEMEDYPSFMAKRFADFTVYRNRTLQKWHDKTKLASGKLGKGFGAFERSILTQIDHILMDKERLLRRTQTKRSVYRVLGKPEPAAQPVPESLPGEPEILPQAPANAHLKDLDEEIFDDDDFYHQLLRELIERKTSSLDPNDQVAMGRQWLAIQKLRSKIHKKVDRKASKGRKLRFHVLSKLLSFMAPIDHTTMNDDARTELYRSLFGQLHPPDEGHGD
Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome . May function as a general inhibitor of the histone deacetylase HDAC1. Binding to the pocket region of RB1 may displace HDAC1 from RB1/E2F complexes, leading to activation of E2F target genes and cell cycle progression. Conversely, displacement of HDAC1 from SP1 bound to the CDKN1A promoter leads to increased expression of this CDK inhibitor and blocks cell cycle progression. Also antagonizes PAWR mediated induction of aberrant amyloid peptide production in Alzheimer disease (presenile and senile dementia), although the molecular basis for this phenomenon has not been described to date. Subcellular locations: Nucleus, Nucleolus Ubiquitously expressed. Expressed at high levels in brain, heart, kidney, placenta and thymus.
ABCB5_HUMAN
Homo sapiens
MENSERAEEMQENYQRNGTAEEQPKLRKEAVGSIEIFRFADGLDITLMILGILASLVNGACLPLMPLVLGEMSDNLISGCLVQTNTTNYQNCTQSQEKLNEDMTLLTLYYVGIGVAALIFGYIQISLWIITAARQTKRIRKQFFHSVLAQDIGWFDSCDIGELNTRMTDDIDKISDGIGDKIALLFQNMSTFSIGLAVGLVKGWKLTLVTLSTSPLIMASAAACSRMVISLTSKELSAYSKAGAVAEEVLSSIRTVIAFRAQEKELQRYTQNLKDAKDFGIKRTIASKVSLGAVYFFMNGTYGLAFWYGTSLILNGEPGYTIGTVLAVFFSVIHSSYCIGAAVPHFETFAIARGAAFHIFQVIDKKPSIDNFSTAGYKPESIEGTVEFKNVSFNYPSRPSIKILKGLNLRIKSGETVALVGLNGSGKSTVVQLLQRLYDPDDGFIMVDENDIRALNVRHYRDHIGVVSQEPVLFGTTISNNIKYGRDDVTDEEMERAAREANAYDFIMEFPNKFNTLVGEKGAQMSGGQKQRIAIARALVRNPKILILDEATSALDSESKSAVQAALEKASKGRTTIVVAHRLSTIRSADLIVTLKDGMLAEKGAHAELMAKRGLYYSLVMSQDIKKADEQMESMTYSTERKTNSLPLHSVKSIKSDFIDKAEESTQSKEISLPEVSLLKILKLNKPEWPFVVLGTLASVLNGTVHPVFSIIFAKIITMFGNNDKTTLKHDAEIYSMIFVILGVICFVSYFMQGLFYGRAGEILTMRLRHLAFKAMLYQDIAWFDEKENSTGGLTTILAIDIAQIQGATGSRIGVLTQNATNMGLSVIISFIYGWEMTFLILSIAPVLAVTGMIETAAMTGFANKDKQELKHAGKIATEALENIRTIVSLTREKAFEQMYEEMLQTQHRNTSKKAQIIGSCYAFSHAFIYFAYAAGFRFGAYLIQAGRMTPEGMFIVFTAIAYGAMAIGETLVLAPEYSKAKSGAAHLFALLEKKPNIDSRSQEGKKPDTCEGNLEFREVSFFYPCRPDVFILRGLSLSIERGKTVAFVGSSGCGKSTSVQLLQRLYDPVQGQVLFDGVDAKELNVQWLRSQIAIVPQEPVLFNCSIAENIAYGDNSRVVPLDEIKEAANAANIHSFIEGLPEKYNTQVGLKGAQLSGGQKQRLAIARALLQKPKILLLDEATSALDNDSEKVVQHALDKARTGRTCLVVTHRLSAIQNADLIVVLHNGKIKEQGTHQELLRNRDIYFKLVNAQSVQ
Energy-dependent efflux transporter responsible for decreased drug accumulation in multidrug-resistant cells ( , ). Specifically present in limbal stem cells, where it plays a key role in corneal development and repair (By similarity). Subcellular locations: Cell membrane Expressed by CD133-expressing progenitor cells among epidermal melanocytes (at protein level). Widely expressed with specific expression in pigment cells. Highly expressed in several malignant tissues: highly expressed in clinical melanomas, with low expression in normal skin. In melanoma, marks malignant melanoma-initiating cells (MMIC), in which clinical virulence resides as a consequence of unlimited self-renewal capacity, resulting in inexorable tumor progression and metastasis. Also highly expressed in a number of leukemia cells. Expressed in basal limbal epithelium.
ABCB6_HUMAN
Homo sapiens
MVTVGNYCEAEGPVGPAWMQDGLSPCFFFTLVPSTRMALGTLALVLALPCRRRERPAGADSLSWGAGPRISPYVLQLLLATLQAALPLAGLAGRVGTARGAPLPSYLLLASVLESLAGACGLWLLVVERSQARQRLAMGIWIKFRHSPGLLLLWTVAFAAENLALVSWNSPQWWWARADLGQQVQFSLWVLRYVVSGGLFVLGLWAPGLRPQSYTLQVHEEDQDVERSQVRSAAQQSTWRDFGRKLRLLSGYLWPRGSPALQLVVLICLGLMGLERALNVLVPIFYRNIVNLLTEKAPWNSLAWTVTSYVFLKFLQGGGTGSTGFVSNLRTFLWIRVQQFTSRRVELLIFSHLHELSLRWHLGRRTGEVLRIADRGTSSVTGLLSYLVFNVIPTLADIIIGIIYFSMFFNAWFGLIVFLCMSLYLTLTIVVTEWRTKFRRAMNTQENATRARAVDSLLNFETVKYYNAESYEVERYREAIIKYQGLEWKSSASLVLLNQTQNLVIGLGLLAGSLLCAYFVTEQKLQVGDYVLFGTYIIQLYMPLNWFGTYYRMIQTNFIDMENMFDLLKEETEVKDLPGAGPLRFQKGRIEFENVHFSYADGRETLQDVSFTVMPGQTLALVGPSGAGKSTILRLLFRFYDISSGCIRIDGQDISQVTQASLRSHIGVVPQDTVLFNDTIADNIRYGRVTAGNDEVEAAAQAAGIHDAIMAFPEGYRTQVGERGLKLSGGEKQRVAIARTILKAPGIILLDEATSALDTSNERAIQASLAKVCANRTTIVVAHRLSTVVNADQILVIKDGCIVERGRHEALLSRGGVYADMWQLQQGQEETSEDTKPQTMER
ATP-dependent transporter that catalyzes the transport of a broad-spectrum of porphyrins from the cytoplasm to the extracellular space through the plasma membrane or into the vesicle lumen ( , ). May also function as an ATP-dependent importer of porphyrins from the cytoplasm into the mitochondria, in turn may participate in the de novo heme biosynthesis regulation and in the coordination of heme and iron homeostasis during phenylhydrazine stress ( , ). May also play a key role in the early steps of melanogenesis producing PMEL amyloid fibrils . In vitro, it confers to cells a resistance to toxic metal such as arsenic and cadmium and against chemotherapeutics agent such as 5-fluorouracil, SN-38 and vincristin ( ). In addition may play a role in the transition metal homeostasis (By similarity). Subcellular locations: Cell membrane, Mitochondrion outer membrane, Endoplasmic reticulum membrane, Golgi apparatus membrane, Endosome membrane, Lysosome membrane, Late endosome membrane, Early endosome membrane, Secreted, Extracellular exosome, Mitochondrion, Endosome, Multivesicular body membrane, Melanosome membrane Present in the membrane of mature erythrocytes and in exosomes released from reticulocytes during the final steps of erythroid maturation . Traffics from endoplasmic reticulum to Golgi during its glycans's maturation, therefrom is first targeted to the plasma membrane, and is rapidly internalized through endocytosis to be distributed to the limiting membrane of multivesicular bodies and lysosomes ( ). Localized on the limiting membrane of early melanosomes of pigment cells . Targeted to the endolysosomal compartment (By similarity). Widely expressed. High expression is detected in the retinal epithelium (, ). Expressed in mature erythrocytes .
ABCB7_HUMAN
Homo sapiens
MALLAMHSWRWAAAAAAFEKRRHSAILIRPLVSVSGSGPQWRPHQLGALGTARAYQIPESLKSITWQRLGKGNSGQFLDAAKALQVWPLIEKRTCWHGHAGGGLHTDPKEGLKDVDTRKIIKAMLSYVWPKDRPDLRARVAISLGFLGGAKAMNIVVPFMFKYAVDSLNQMSGNMLNLSDAPNTVATMATAVLIGYGVSRAGAAFFNEVRNAVFGKVAQNSIRRIAKNVFLHLHNLDLGFHLSRQTGALSKAIDRGTRGISFVLSALVFNLLPIMFEVMLVSGVLYYKCGAQFALVTLGTLGTYTAFTVAVTRWRTRFRIEMNKADNDAGNAAIDSLLNYETVKYFNNERYEAQRYDGFLKTYETASLKSTSTLAMLNFGQSAIFSVGLTAIMVLASQGIVAGTLTVGDLVMVNGLLFQLSLPLNFLGTVYRETRQALIDMNTLFTLLKVDTQIKDKVMASPLQITPQTATVAFDNVHFEYIEGQKVLSGISFEVPAGKKVAIVGGSGSGKSTIVRLLFRFYEPQKGSIYLAGQNIQDVSLESLRRAVGVVPQDAVLFHNTIYYNLLYGNISASPEEVYAVAKLAGLHDAILRMPHGYDTQVGERGLKLSGGEKQRVAIARAILKDPPVILYDEATSSLDSITEETILGAMKDVVKHRTSIFIAHRLSTVVDADEIIVLDQGKVAERGTHHGLLANPHSIYSEMWHTQSSRVQNHDNPKWEAKKENISKEEERKKLQEEIVNSVKGCGNCSC
Exports glutathione-coordinated iron-sulfur clusters such as [2Fe-2S]-(GS)4 cluster from the mitochondria to the cytosol in an ATP-dependent manner allowing the assembly of the cytosolic iron-sulfur (Fe/S) cluster-containing proteins and participates in iron homeostasis ( ). Moreover, through a functional complex formed of ABCB7, FECH and ABCB10, also plays a role in the cellular iron homeostasis, mitochondrial function and heme biosynthesis . In cardiomyocytes, regulates cellular iron homeostasis and cellular reactive oxygen species (ROS) levels through its interaction with COX4I1 (By similarity). May also play a role in hematopoiesis (By similarity). Subcellular locations: Mitochondrion inner membrane
ABCB9_HUMAN
Homo sapiens
MRLWKAVVVTLAFMSVDICVTTAIYVFSHLDRSLLEDIRHFNIFDSVLDLWAACLYRSCLLLGATIGVAKNSALGPRRLRASWLVITLVCLFVGIYAMVKLLLFSEVRRPIRDPWFWALFVWTYISLGASFLLWWLLSTVRPGTQALEPGAATEAEGFPGSGRPPPEQASGATLQKLLSYTKPDVAFLVAASFFLIVAALGETFLPYYTGRAIDGIVIQKSMDQFSTAVVIVCLLAIGSSFAAGIRGGIFTLIFARLNIRLRNCLFRSLVSQETSFFDENRTGDLISRLTSDTTMVSDLVSQNINVFLRNTVKVTGVVVFMFSLSWQLSLVTFMGFPIIMMVSNIYGKYYKRLSKEVQNALARASNTAEETISAMKTVRSFANEEEEAEVYLRKLQQVYKLNRKEAAAYMYYVWGSGLTLLVVQVSILYYGGHLVISGQMTSGNLIAFIIYEFVLGDCMESVGSVYSGLMQGVGAAEKVFEFIDRQPTMVHDGSLAPDHLEGRVDFENVTFTYRTRPHTQVLQNVSFSLSPGKVTALVGPSGSGKSSCVNILENFYPLEGGRVLLDGKPISAYDHKYLHRVISLVSQEPVLFARSITDNISYGLPTVPFEMVVEAAQKANAHGFIMELQDGYSTETGEKGAQLSGGQKQRVAMARALVRNPPVLILDEATSALDAESEYLIQQAIHGNLQKHTVLIIAHRLSTVEHAHLIVVLDKGRVVQQGTHQQLLAQGGLYAKLVQRQMLGLQPAADFTAGHNEPVANGSHKA
ATP-dependent low-affinity peptide transporter which translocates a broad spectrum of peptides from the cytosol to the lysosomal lumen for degradation ( , ). Displays a broad peptide length specificity from 6-mer up to at least 59-mer peptides with an optimum of 23-mers (, ). Binds and transports smaller and larger peptides with the same affinity . Favors positively charged, aromatic or hydrophobic residues in the N- and C-terminal positions whereas negatively charged residues as well as asparagine and methionine are not favored ( ). Subcellular locations: Lysosome membrane May be located in membrane rafts. Takes an intracellular route from the endoplasmic reticulum (ER), via Golgi and early endosomes to late endosomal and lysosomal compartments . Highly expressed in testis, and at moderate levels in brain, spinal cord, and thyroid. Not expressed in monocytes but strongly expressed during differentiation of monocytes to dendritic cells and macrophages.
ABH15_HUMAN
Homo sapiens
MPPWGAALALILAVLALLGLLGPRLRGPWGRAVGERTLPGAQDRDDGEEADGGGPADQFSDGREPLPGGCSLVCKPSALAQCLLRALRRSEALEAGPRSWFSGPHLQTLCHFVLPVAPGPELAREYLQLADDGLVALDWVVGPCVRGRRITSAGGLPAVLLVIPNAWGRLTRNVLGLCLLALERGYYPVIFHRRGHHGCPLVSPRLQPFGDPSDLKEAVTYIRFRHPAAPLFAVSEGSGSALLLSYLGECGSSSYVTGAACISPVLRCREWFEAGLPWPYERGFLLHQKIALSRYATALEDTVDTSRLFRSRSLREFEEALFCHTKSFPISWDTYWDRNDPLRDVDEAAVPVLCICSADDPVCGPPDHTLTTELFHSNPYFFLLLSRHGGHCGFLRQEPLPAWSHEVILESFRALTEFFRTEERIKGLSRHRASFLGGRRRGGALQRREVSSSSNLEEIFNWKRSYTR
May regulate adipocyte lipolysis and liver lipid accumulation. Subcellular locations: Secreted
ABHD1_HUMAN
Homo sapiens
MLSSFLSPQNGTWADTFSLLLALAVALYLGYYWACVLQRPRLVAGPQFLAFLEPHCSITTETFYPTLWCFEGRLQSIFQVLLQSQPLVLYQSDILQTPDGGQLLLDWAKQPDSSQDPDPTTQPIVLLLPGITGSSQETYVLHLVNQALRDGYQAVVFNNRGCRGEELRTHRAFCASNTEDLETVVNHIKHRYPQAPLLAVGISFGGILVLNHLAQARQAAGLVAALTLSACWDSFETTRSLETPLNSLLFNQPLTAGLCQLVERNRKVIEKVVDIDFVLQARTIRQFDERYTSVAFGYQDCVTYYKAASPRTKIDAIRIPVLYLSAADDPFSPVCALPIQAAQHSPYVALLITARGGHIGFLEGLLPWQHWYMSRLLHQYAKAIFQDPEGLPDLRALLPSEDRNS
Subcellular locations: Membrane Ubiquitously expressed.
ABHD2_HUMAN
Homo sapiens
MNAMLETPELPAVFDGVKLAAVAAVLYVIVRCLNLKSPTAPPDLYFQDSGLSRFLLKSCPLLTKEYIPPLIWGKSGHIQTALYGKMGRVRSPHPYGHRKFITMSDGATSTFDLFEPLAEHCVGDDITMVICPGIANHSEKQYIRTFVDYAQKNGYRCAVLNHLGALPNIELTSPRMFTYGCTWEFGAMVNYIKKTYPLTQLVVVGFSLGGNIVCKYLGETQANQEKVLCCVSVCQGYSALRAQETFMQWDQCRRFYNFLMADNMKKIILSHRQALFGDHVKKPQSLEDTDLSRLYTATSLMQIDDNVMRKFHGYNSLKEYYEEESCMRYLHRIYVPLMLVNAADDPLVHESLLTIPKSLSEKRENVMFVLPLHGGHLGFFEGSVLFPEPLTWMDKLVVEYANAICQWERNKLQCSDTEQVEADLE
Progesterone-dependent acylglycerol lipase that catalyzes hydrolysis of endocannabinoid arachidonoylglycerol (AG) from cell membrane . Acts as a progesterone receptor: progesterone-binding activates the acylglycerol lipase activity, mediating degradation of 1-arachidonoylglycerol (1AG) and 2-arachidonoylglycerol (2AG) to glycerol and arachidonic acid (AA) . Also displays an ester hydrolase activity against acetyl ester, butanoate ester and hexadecanoate ester . Plays a key role in sperm capacitation in response to progesterone by mediating degradation of 2AG, an inhibitor of the sperm calcium channel CatSper, leading to calcium influx via CatSper and sperm activation . May also play a role in smooth muscle cells migration (By similarity). Subcellular locations: Cell projection, Cilium, Flagellum membrane, Cell membrane Present in sperm (at protein level).
ABHD2_MACFA
Macaca fascicularis
MNAMLETPELPAVFDGVKLAAVAAVLYVIVRCLNLKSPTAPPDLYFQDSGLSRFLLKSCPLLTKEYIPPLIWGKSGHIQTALYGKMGRVRSPHPYGHRKFITMSDGATSTFDLFEPLAEHCVGDDITMVICPGIANHSEKQYIRTFVDYAQKNGYRCAVLNHLGALPNIELTSPRMFTYGCTWEFGAMVNYIKKTYPLTQLVVVGFSLGGNIVCKYLGETQANQEKVLCCVSVCQGYSALRAQETFMQWDQCRRFYNFLMADNMKKIILSHRQALFGDHVKKPQSLEDTDLSRLYTATSLMQIDDNVMRKFHGYNSLKEYYEEESCMRYLHRIYVPLMLVNAADDPLVHESLLTIPKSLSEKRENVMFVLPLHGGHLGFFEGSVLFPEPLTWMDKLVVEYANAICQWERNKSQCSDTEQVEADLE
Progesterone-dependent acylglycerol lipase that catalyzes hydrolysis of endocannabinoid arachidonoylglycerol (AG) from cell membrane. Acts as a progesterone receptor: progesterone-binding activates the acylglycerol lipase activity, mediating degradation of 1-arachidonoylglycerol (1AG) and 2-arachidonoylglycerol (2AG) to glycerol and arachidonic acid (AA). Also displays an ester hydrolase activity against acetyl ester, butanoate ester and hexadecanoate ester. Plays a key role in sperm capacitation in response to progesterone by mediating degradation of 2AG, an inhibitor of the sperm calcium channel CatSper, leading to calcium influx via CatSper and sperm activation (By similarity). May also play a role in smooth muscle cells migration (By similarity). Subcellular locations: Cell membrane
ABRAL_HUMAN
Homo sapiens
MNVDHEVNLLVEEIHRLGSKNADGKLSVKFGVLFRDDKCANLFEALVGTLKAAKRRKIVTYPGELLLQGVHDDVDIILLQD
null
ABRA_HUMAN
Homo sapiens
MAPGEKESGEGPAKSALRKIRTATLVISLARGWQQWANENSIRQAQEPTGWLPGGTQDSPQAPKPITPPTSHQKAQSAPKSPPRLPEGHGDGQSSEKAPEVSHIKKKEVSKTVVSKTYERGGDVSHLSHRYERDAGVLEPGQPENDIDRILHSHGSPTRRRKCANLVSELTKGWRVMEQEEPTWRSDSVDTEDSGYGGEAEERPEQDGVQVAVVRIKRPLPSQVNRFTEKLNCKAQQKYSPVGNLKGRWQQWADEHIQSQKLNPFSEEFDYELAMSTRLHKGDEGYGRPKEGTKTAERAKRAEEHIYREMMDMCFIICTMARHRRDGKIQVTFGDLFDRYVRISDKVVGILMRARKHGLVDFEGEMLWQGRDDHVVITLLK
Acts as an activator of serum response factor (SRF)-dependent transcription possibly by inducing nuclear translocation of MKL1 or MKL2 and through a mechanism requiring Rho-actin signaling. Subcellular locations: Cytoplasm, Myofibril, Sarcomere, Cytoplasm, Cytoskeleton Localized to the I-band of the sarcomere and to a lesser extent to the sarcomeric structure between Z-lines.
ACD_HUMAN
Homo sapiens
MAGSGRLVLRPWIRELILGSETPSSPRAGQLLEVLQDAEAAVAGPSHAPDTSDVGATLLVSDGTHSVRCLVTREALDTSDWEEKEFGFRGTEGRLLLLQDCGVHVQVAEGGAPAEFYLQVDRFSLLPTEQPRLRVPGCNQDLDVQKKLYDCLEEHLSESTSSNAGLSLSQLLDEMREDQEHQGALVCLAESCLTLEGPCTAPPVTHWAASRCKATGEAVYTVPSSMLCISENDQLILSSLGPCQRTQGPELPPPDPALQDLSLTLIASPPSSPSSSGTPALPGHMSSEESGTSISLLPALSLAAPDPGQRSSSQPSPAICSAPATLTPRSPHASRTPSSPLQSCTPSLSPRSHVPSPHQALVTRPQKPSLEFKEFVGLPCKNRPPFPRTGATRGAQEPCSVWEPPKRHRDGSAFQYEYEPPCTSLCARVQAVRLPPQLMAWALHFLMDAQPGSEPTPM
Component of the shelterin complex (telosome) that is involved in the regulation of telomere length and protection. Shelterin associates with arrays of double-stranded TTAGGG repeats added by telomerase and protects chromosome ends. Without its protective activity, telomeres are no longer hidden from the DNA damage surveillance and chromosome ends are inappropriately processed by DNA repair pathways. Promotes binding of POT1 to single-stranded telomeric DNA. Modulates the inhibitory effects of POT1 on telomere elongation. The ACD-POT1 heterodimer enhances telomere elongation by recruiting telomerase to telomeres and increasing its processivity. May play a role in organogenesis. Subcellular locations: Nucleus, Chromosome, Telomere
ACE2_HUMAN
Homo sapiens
MSSSSWLLLSLVAVTAAQSTIEEQAKTFLDKFNHEAEDLFYQSSLASWNYNTNITEENVQNMNNAGDKWSAFLKEQSTLAQMYPLQEIQNLTVKLQLQALQQNGSSVLSEDKSKRLNTILNTMSTIYSTGKVCNPDNPQECLLLEPGLNEIMANSLDYNERLWAWESWRSEVGKQLRPLYEEYVVLKNEMARANHYEDYGDYWRGDYEVNGVDGYDYSRGQLIEDVEHTFEEIKPLYEHLHAYVRAKLMNAYPSYISPIGCLPAHLLGDMWGRFWTNLYSLTVPFGQKPNIDVTDAMVDQAWDAQRIFKEAEKFFVSVGLPNMTQGFWENSMLTDPGNVQKAVCHPTAWDLGKGDFRILMCTKVTMDDFLTAHHEMGHIQYDMAYAAQPFLLRNGANEGFHEAVGEIMSLSAATPKHLKSIGLLSPDFQEDNETEINFLLKQALTIVGTLPFTYMLEKWRWMVFKGEIPKDQWMKKWWEMKREIVGVVEPVPHDETYCDPASLFHVSNDYSFIRYYTRTLYQFQFQEALCQAAKHEGPLHKCDISNSTEAGQKLFNMLRLGKSEPWTLALENVVGAKNMNVRPLLNYFEPLFTWLKDQNKNSFVGWSTDWSPYADQSIKVRISLKSALGDKAYEWNDNEMYLFRSSVAYAMRQYFLKVKNQMILFGEEDVRVANLKPRISFNFFVTAPKNVSDIIPRTEVEKAIRMSRSRINDAFRLNDNSLEFLGIQPTLGPPNQPPVSIWLIVFGVVMGVIVVGIVILIFTGIRDRKKKNKARSGENPYASIDISKGENNPGFQNTDDVQTSF
Essential counter-regulatory carboxypeptidase of the renin-angiotensin hormone system that is a critical regulator of blood volume, systemic vascular resistance, and thus cardiovascular homeostasis . Converts angiotensin I to angiotensin 1-9, a nine-amino acid peptide with anti-hypertrophic effects in cardiomyocytes, and angiotensin II to angiotensin 1-7, which then acts as a beneficial vasodilator and anti-proliferation agent, counterbalancing the actions of the vasoconstrictor angiotensin II ( ). Also removes the C-terminal residue from three other vasoactive peptides, neurotensin, kinetensin, and des-Arg bradykinin, but is not active on bradykinin (, ). Also cleaves other biological peptides, such as apelins (apelin-13, [Pyr1]apelin-13, apelin-17, apelin-36), casomorphins (beta-casomorphin-7, neocasomorphin) and dynorphin A with high efficiency ( ). In addition, ACE2 C-terminus is homologous to collectrin and is responsible for the trafficking of the neutral amino acid transporter SL6A19 to the plasma membrane of gut epithelial cells via direct interaction, regulating its expression on the cell surface and its catalytic activity (, ). (Microbial infection) Acts as a receptor for human coronaviruses SARS-CoV and SARS-CoV-2, as well as human coronavirus NL63/HCoV-NL63. Non-functional as a carboxypeptidase. (Microbial infection) Non-functional as a receptor for human coronavirus SARS-CoV-2. Subcellular locations: Secreted Subcellular locations: Cell membrane, Cytoplasm, Cell projection, Cilium, Apical cell membrane Detected in both cell membrane and cytoplasm in neurons. Subcellular locations: Apical cell membrane Expressed in endothelial cells from small and large arteries, and in arterial smooth muscle cells (at protein level) . Expressed in enterocytes of the small intestine, Leydig cells and Sertoli cells (at protein level) . Expressed in the renal proximal tubule and the small intestine (at protein level) . Expressed in heart, kidney, testis, and gastrointestinal system (at protein level) ( ). In lung, expressed at low levels in some alveolar type 2 cells, the expression seems to be individual-specific (at protein level) ( ). Expressed in nasal epithelial cells (at protein level) (, ). Coexpressed with TMPRSS2 within some lung alveolar type 2 cells, ileal absorptive enterocytes, intestinal epithelial cells, cornea, gallbladder and nasal goblet secretory cells ( ). Coexpressed with TMPRSS4 within mature enterocytes . Expressed in nasal and bronchial epithelial cells (at protein level).
ACHE_HUMAN
Homo sapiens
MARAPLGVLLLLGLLGRGVGKNEELRLYHHLFNNYDPGSRPVREPEDTVTISLKVTLTNLISLNEKEETLTTSVWIGIDWQDYRLNYSKDDFGGIETLRVPSELVWLPEIVLENNIDGQFGVAYDANVLVYEGGSVTWLPPAIYRSVCAVEVTYFPFDWQNCSLIFRSQTYNAEEVEFTFAVDNDGKTINKIDIDTEAYTENGEWAIDFCPGVIRRHHGGATDGPGETDVIYSLIIRRKPLFYVINIIVPCVLISGLVLLAYFLPAQAGGQKCTVSINVLLAQTVFLFLIAQKIPETSLSVPLLGRFLIFVMVVATLIVMNCVIVLNVSQRTPTTHAMSPRLRHVLLELLPRLLGSPPPPEAPRAASPPRRASSVGLLLRAEELILKKPRSELVFEGQRHRQGTWTAAFCQSLGAAAPEVRCCVDAVNFVAESTRDQEATGEEVSDWVRMGNALDNICFWAALVLFSVGSSLIFLGAYFNRVPDLPYAPCIQP
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Subcellular locations: Postsynaptic cell membrane, Cell membrane
ACHG_HUMAN
Homo sapiens
MHGGQGPLLLLLLLAVCLGAQGRNQEERLLADLMQNYDPNLRPAERDSDVVNVSLKLTLTNLISLNEREEALTTNVWIEMQWCDYRLRWDPRDYEGLWVLRVPSTMVWRPDIVLENNVDGVFEVALYCNVLVSPDGCIYWLPPAIFRSACSISVTYFPFDWQNCSLIFQSQTYSTNEIDLQLSQEDGQTIEWIFIDPEAFTENGEWAIQHRPAKMLLDPAAPAQEAGHQKVVFYLLIQRKPLFYVINIIAPCVLISSVAILIHFLPAKAGGQKCTVAINVLLAQTVFLFLVAKKVPETSQAVPLISKYLTFLLVVTILIVVNAVVVLNVSLRSPHTHSMARGVRKVFLRLLPQLLRMHVRPLAPAAVQDTQSRLQNGSSGWSITTGEEVALCLPRSELLFQQWQRQGLVAAALEKLEKGPELGLSQFCGSLKQAAPAIQACVEACNLIACARHQQSHFDNGNEEWFLVGRVLDRVCFLAMLSLFICGTAGIFLMAHYNRVPALPFPGDPRPYLPSPD
After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Subcellular locations: Postsynaptic cell membrane, Cell membrane
ACKR3_HUMAN
Homo sapiens
MDLHLFDYSEPGNFSDISWPCNSSDCIVVDTVMCPNMPNKSVLLYTLSFIYIFIFVIGMIANSVVVWVNIQAKTTGYDTHCYILNLAIADLWVVLTIPVWVVSLVQHNQWPMGELTCKVTHLIFSINLFGSIFFLTCMSVDRYLSITYFTNTPSSRKKMVRRVVCILVWLLAFCVSLPDTYYLKTVTSASNNETYCRSFYPEHSIKEWLIGMELVSVVLGFAVPFSIIAVFYFLLARAISASSDQEKHSSRKIIFSYVVVFLVCWLPYHVAVLLDIFSILHYIPFTCRLEHALFTALHVTQCLSLVHCCVNPVLYSFINRNYRYELMKAFIFKYSAKTGLTKLIDASRVSETEYSALEQSTK
Atypical chemokine receptor that controls chemokine levels and localization via high-affinity chemokine binding that is uncoupled from classic ligand-driven signal transduction cascades, resulting instead in chemokine sequestration, degradation, or transcytosis. Also known as interceptor (internalizing receptor) or chemokine-scavenging receptor or chemokine decoy receptor. Acts as a receptor for chemokines CXCL11 and CXCL12/SDF1 ( ). Chemokine binding does not activate G-protein-mediated signal transduction but instead induces beta-arrestin recruitment, leading to ligand internalization and activation of MAPK signaling pathway ( ). Required for regulation of CXCR4 protein levels in migrating interneurons, thereby adapting their chemokine responsiveness (, ). In glioma cells, transduces signals via MEK/ERK pathway, mediating resistance to apoptosis. Promotes cell growth and survival (, ). Not involved in cell migration, adhesion or proliferation of normal hematopoietic progenitors but activated by CXCL11 in malignant hemapoietic cells, leading to phosphorylation of ERK1/2 (MAPK3/MAPK1) and enhanced cell adhesion and migration ( , ). Plays a regulatory role in CXCR4-mediated activation of cell surface integrins by CXCL12 . Required for heart valve development . Regulates axon guidance in the oculomotor system through the regulation of CXCL12 levels . (Microbial infection) Acts as a coreceptor with CXCR4 for a restricted number of HIV isolates. Subcellular locations: Cell membrane, Early endosome, Recycling endosome Predominantly localizes to endocytic vesicles, and upon stimulation by the ligand is internalized via clathrin-coated pits in a beta-arrestin-dependent manner. Once internalized, the ligand dissociates from the receptor, and is targeted to degradation while the receptor is recycled back to the cell membrane. Expressed in monocytes, basophils, B-cells, umbilical vein endothelial cells (HUVEC) and B-lymphoblastoid cells. Lower expression detected in CD4+ T-lymphocytes and natural killer cells. In the brain, detected in endothelial cells and capillaries, and in mature neurons of the frontal cortex and hippocampus. Expressed in tubular formation in the kidney. Highly expressed in astroglial tumor endothelial, microglial and glioma cells. Expressed at low levels in normal CD34+ progenitor cells, but at very high levels in several myeloid malignant cell lines. Expressed in breast carcinomas but not in normal breast tissue (at protein level).
ACKR4_HUMAN
Homo sapiens
MALEQNQSTDYYYEENEMNGTYDYSQYELICIKEDVREFAKVFLPVFLTIVFVIGLAGNSMVVAIYAYYKKQRTKTDVYILNLAVADLLLLFTLPFWAVNAVHGWVLGKIMCKITSALYTLNFVSGMQFLACISIDRYVAVTKVPSQSGVGKPCWIICFCVWMAAILLSIPQLVFYTVNDNARCIPIFPRYLGTSMKALIQMLEICIGFVVPFLIMGVCYFITARTLMKMPNIKISRPLKVLLTVVIVFIVTQLPYNIVKFCRAIDIIYSLITSCNMSKRMDIAIQVTESIALFHSCLNPILYVFMGASFKNYVMKVAKKYGSWRRQRQSVEEFPFDSEGPTEPTSTFSI
Atypical chemokine receptor that controls chemokine levels and localization via high-affinity chemokine binding that is uncoupled from classic ligand-driven signal transduction cascades, resulting instead in chemokine sequestration, degradation, or transcytosis. Also known as interceptor (internalizing receptor) or chemokine-scavenging receptor or chemokine decoy receptor. Acts as a receptor for chemokines CCL2, CCL8, CCL13, CCL19, CCL21 and CCL25. Chemokine-binding does not activate G-protein-mediated signal transduction but instead induces beta-arrestin recruitment, leading to ligand internalization. Plays an important role in controlling the migration of immune and cancer cells that express chemokine receptors CCR7 and CCR9, by reducing the availability of CCL19, CCL21, and CCL25 through internalization. Negatively regulates CXCR3-induced chemotaxis. Regulates T-cell development in the thymus. Subcellular locations: Early endosome, Recycling endosome, Cell membrane Predominantly localizes to endocytic vesicles, and upon stimulation by the ligand is internalized via caveolae. Once internalized, the ligand dissociates from the receptor, and is targeted to degradation while the receptor is recycled back to the cell membrane. Predominantly expressed in heart. Lower expression in lung, pancreas, spleen, colon, skeletal muscle and small intestine.
ACL10_HUMAN
Homo sapiens
MASTALLALCSTGAFSGLAVEAGAGVCHATPIYAGHSWHQATFRLNVAGSTLSRYLRDLLVAANPDLLQQALPRKAITHLKKRSCYVSLDFEGDLRDPARHHPASFSVGNGCCVCLSSERFRCPEPIFQPGLLGQAEQGLPALAFRALQKMPKTLRTRLADTVVLAGGSTLFPGFAERLDKELEAQCRRHGYAALRPHLVAKHGRGMAVWTGGSMVASLHSFQRRWITRAMYQECGSRLLYDVFN
null
ACL6A_HUMAN
Homo sapiens
MSGGVYGGDEVGALVFDIGSYTVRAGYAGEDCPKVDFPTAIGMVVERDDGSTLMEIDGDKGKQGGPTYYIDTNALRVPRENMEAISPLKNGMVEDWDSFQAILDHTYKMHVKSEASLHPVLMSEAPWNTRAKREKLTELMFEHYNIPAFFLCKTAVLTAFANGRSTGLILDSGATHTTAIPVHDGYVLQQGIVKSPLAGDFITMQCRELFQEMNIELVPPYMIASKEAVREGSPANWKRKEKLPQVTRSWHNYMCNCVIQDFQASVLQVSDSTYDEQVAAQMPTVHYEFPNGYNCDFGAERLKIPEGLFDPSNVKGLSGNTMLGVSHVVTTSVGMCDIDIRPGLYGSVIVAGGNTLIQSFTDRLNRELSQKTPPSMRLKLIANNTTVERRFSSWIGGSILASLGTFQQMWISKQEYEEGGKQCVERKCP
Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Subcellular locations: Nucleus
ACL6A_MACFA
Macaca fascicularis
MSGGVYGGDEVGALVFDIGSYTVRAGYAGEDCPKVDFPTAIGMVVERDDGSTLMEIDGDKGKQGGPTYYIATNALRVPRENMEAISPLKNGMVEDWDSFQAILDHTYKMHVKSEASLHPVLMSEAPWNTRAKREKLTELMFEHYNIPAFFLCKTAVLTAFANGRSTGLILDSGATHTTAIPVHDGYVLQQGIVKSPLAGDFITMQCRELFQEMNIELVPPYMIASKEAVREGSPANWKRKEKLPQVTRSWHNYMCNCVIQDFQASVLQVSDSTYDEQVAAQMPTVHYEFPNGYNCDFGAERLKIPEGLFDPSNVKGLSGNTMLGVSHVVTTSVGMCDIDIRPGLYGSVIVAGGNTLIQSFTDRLNRELSQKTPPSMRLKLIANNTTVERRFSSWIGGSILASLGTFQQMWISKQEYEEGGKQCVERKCP
Involved in transcriptional activation and repression of select genes by chromatin remodeling (alteration of DNA-nucleosome topology). Component of SWI/SNF chromatin remodeling complexes that carry out key enzymatic activities, changing chromatin structure by altering DNA-histone contacts within a nucleosome in an ATP-dependent manner. Required for maximal ATPase activity of SMARCA4/BRG1/BAF190A and for association of the SMARCA4/BRG1/BAF190A containing remodeling complex BAF with chromatin/nuclear matrix. Belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a postmitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to postmitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth (By similarity). Component of the NuA4 histone acetyltransferase (HAT) complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome - DNA interactions and promote interaction of the modified histones with other proteins which positively regulate transcription. This complex may be required for the activation of transcriptional programs associated with oncogene and proto-oncogene mediated growth induction, tumor suppressor mediated growth arrest and replicative senescence, apoptosis, and DNA repair. NuA4 may also play a direct role in DNA repair when recruited to sites of DNA damage. Putative core component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair (By similarity). Subcellular locations: Nucleus
ACS2A_HUMAN
Homo sapiens
MHWLRKVQGLCTLWGTQMSSRTLYINSRQLVSLQWGHQEVPAKFNFASDVLDHWADMEKAGKRLPSPALWWVNGKGKELMWNFRELSENSQQAANVLSGACGLQRGDRVAVVLPRVPEWWLVILGCIRAGLIFMPGTIQMKSTDILYRLQMSKAKAIVAGDEVIQEVDTVASECPSLRIKLLVSEKSCDGWLNFKKLLNEASTTHHCVETGSQEASAIYFTSGTSGLPKMAEHSYSSLGLKAKMDAGWTGLQASDIMWTISDTGWILNILCSLMEPWALGACTFVHLLPKFDPLVILKTLSSYPIKSMMGAPIVYRMLLQQDLSSYKFPHLQNCVTVGESLLPETLENWRAQTGLDIRESYGQTETGLTCMVSKTMKIKPGYMGTAASCYDVQIIDDKGNVLPPGTEGDIGIRVKPIRPIGIFSGYVDNPDKTAANIRGDFWLLGDRGIKDEDGYFQFMGRANDIINSSGYRIGPSEVENALMEHPAVVETAVISSPDPVRGEVVKAFVVLASQFLSHDPEQLTKELQQHVKSVTAPYKYPRKIEFVLNLPKTVTGKIQRAKLRDKEWKMSGKARAQ
Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism (By similarity). Capable of activating medium-chain fatty acids (e.g. butyric (C4) to decanoic (C10) acids), and certain carboxylate-containing xenobiotics, e.g. benzoate (By similarity). Subcellular locations: Mitochondrion
ACS2B_HUMAN
Homo sapiens
MHWLRKVQGLCTLWGTQMSSRTLYINSRQLVSLQWGHQEVPAKFNFASDVLDHWADMEKAGKRLPSPALWWVNGKGKELMWNFRELSENSQQAANILSGACGLQRGDRVAVMLPRVPEWWLVILGCIRAGLIFMPGTIQMKSTDILYRLQMSKAKAIVAGDEVIQEVDTVASECPSLRIKLLVSEKSCDGWLNFKKLLNEASTTHHCVETGSQEASAIYFTSGTSGLPKMAEHSYSSLGLKAKMDAGWTGLQASDIMWTISDTGWILNILGSLLESWTLGACTFVHLLPKFDPLVILKTLSSYPIKSMMGAPIVYRMLLQQDLSSYKFPHLQNCLAGGESLLPETLENWRAQTGLDIREFYGQTETGLTCMVSKTMKIKPGYMGTAASCYDVQVIDDKGNVLPPGTEGDIGIRVKPIRPIGIFSGYVENPDKTAANIRGDFWLLGDRGIKDEDGYFQFMGRADDIINSSGYRIGPSEVENALMKHPAVVETAVISSPDPVRGEVVKAFVILASQFLSHDPEQLTKELQQHVKSVTAPYKYPRKIEFVLNLPKTVTGKIQRTKLRDKEWKMSGKARAQ
Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism (, ). Capable of activating medium-chain fatty acids (e.g. butyric (C4) to decanoic (C10) acids), and certain carboxylate-containing xenobiotics, e.g. benzoate (, ). Subcellular locations: Mitochondrion Detected in liver.
ACS2L_HUMAN
Homo sapiens
MAARTLGRGVGRLLGSLRGLSGQPARPPCGVSAPRRAASGPSGSAPAVAAAAAQPGSYPALSAQAAREPAAFWGPLARDTLVWDTPYHTVWDCDFSTGKIGWFLGGQLNVSVNCLDQHVRKSPESVALIWERDEPGTEVRITYRELLETTCRLANTLKRHGVHRGDRVAIYMPVSPLAVAAMLACARIGAVHTVIFAGFSAESLAGRINDAKCKVVITFNQGLRGGRVVELKKIVDEAVKHCPTVQHVLVAHRTDNKVHMGDLDVPLEQEMAKEDPVCAPESMGSEDMLFMLYTSGSTGMPKGIVHTQAGYLLYAALTHKLVFDHQPGDIFGCVADIGWITGHSYVVYGPLCNGATSVLFESTPVYPNAGRYWETVERLKINQFYGAPTAVRLLLKYGDAWVKKYDRSSLRTLGSVGEPINCEAWEWLHRVVGDSRCTLVDTWWQTETGGICIAPRPSEEGAEILPAMAMRPFFGIVPVLMDEKGSVVEGSNVSGALCISQAWPGMARTIYGDHQRFVDAYFKAYPGYYFTGDGAYRTEGGYYQITGRMDDVINISGHRLGTAEIEDAIADHPAVPESAVIGYPHDIKGEAAFAFIVVKDSAGDSDVVVQELKSMVATKIAKYAVPDEILVVKRLPKTRSGKVMRRLLRKIITSEAQELGDTTTLEDPSIIAEILSVYQKCKDKQAAAK
Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids . Acetate is the preferred substrate . Can also utilize propionate with a much lower affinity (By similarity). Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions (By similarity). Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient (By similarity). Subcellular locations: Mitochondrion matrix
ACTB_CHLAE
Chlorocebus aethiops
MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCF
Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ACTB_CHLPG
Chlorocebus pygerythrus
MCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIVYNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANLEKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERYGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCF
Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ACTB_HUMAN
Homo sapiens
MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCF
Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells . Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction . In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA . Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ACTB_MACFA
Macaca fascicularis
MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCF
Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ACTB_PANTR
Pan troglodytes
MDDDIAALVVDNGSGMCKAGFAGDDAPRAVFPSIVGRPRHQGVMVGMGQKDSYVGDEAQSKRGILTLKYPIEHGIVTNWDDMEKIWHHTFYNELRVAPEEHPVLLTEAPLNPKANREKMTQIMFETFNTPAMYVAIQAVLSLYASGRTTGIVMDSGDGVTHTVPIYEGYALPHAILRLDLAGRDLTDYLMKILTERGYSFTTTAEREIVRDIKEKLCYVALDFEQEMATAASSSSLEKSYELPDGQVITIGNERFRCPEALFQPSFLGMESCGIHETTFNSIMKCDVDIRKDLYANTVLSGGTTMYPGIADRMQKEITALAPSTMKIKIIAPPERKYSVWIGGSILASLSTFQQMWISKQEYDESGPSIVHRKCF
Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules (By similarity). Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
ACTT3_HUMAN
Homo sapiens
MNHCQLPVVIDNGSGMIKAGVAGCREPQFIYPNIIGRAKGQSRAAQGGLELCVGDQAQDWRSSLFISYPVERGLITSWEDMEIMWKHIYDYNLKLKPCDGPVLITEPALNPLANRQQITEMFFEHLGVPAFYMSIQAVLALFAAGFTTGLVLNSGAGVTQSVPIFEGYCLPHGVQQLDLAGLDLTNYLMVLMKNHGIMLLSASDRKIVEDIKESFCYVAMNYEEEMAKKPDCLEKVYQLPDGKVIQLHDQLFSCPEALFSPCHMNLEAPGIDKICFSSIMKCDTGLRNSFFSNIILAGGSTSFPGLDKRLVKDIAKVAPANTAVQVIAPPERKISVWMGGSILASLSAFQDMWITAAEFKEVGPNIVHQRCF
Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Nucleus Ubiquitously expressed.
ACTY_HUMAN
Homo sapiens
MESYDIIANQPVVIDNGSGVIKAGFAGDQIPKYCFPNYVGRPKHMRVMAGALEGDLFIGPKAEEHRGLLTIRYPMEHGVVRDWNDMERIWQYVYSKDQLQTFSEEHPVLLTEAPLNPSKNREKAAEVFFETFNVPALFISMQAVLSLYATGRTTGVVLDSGDGVTHAVPIYEGFAMPHSIMRVDIAGRDVSRYLRLLLRKEGVDFHTSAEFEVVRTIKERACYLSINPQKDEALETEKVQYTLPDGSTLDVGPARFRAPELLFQPDLVGDESEGLHEVVAFAIHKSDMDLRRTLFANIVLSGGSTLFKGFGDRLLSEVKKLAPKDIKIKISAPQERLYSTWIGGSILASLDTFKKMWVSKKEYEEDGSRAIHRKTF
Component of a multi-subunit complex involved in microtubule based vesicle motility. It is associated with the centrosome. Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome
ACTZ_HUMAN
Homo sapiens
MESYDVIANQPVVIDNGSGVIKAGFAGDQIPKYCFPNYVGRPKHVRVMAGALEGDIFIGPKAEEHRGLLSIRYPMEHGIVKDWNDMERIWQYVYSKDQLQTFSEEHPVLLTEAPLNPRKNRERAAEVFFETFNVPALFISMQAVLSLYATGRTTGVVLDSGDGVTHAVPIYEGFAMPHSIMRIDIAGRDVSRFLRLYLRKEGYDFHSSSEFEIVKAIKERACYLSINPQKDETLETEKAQYYLPDGSTIEIGPSRFRAPELLFRPDLIGEESEGIHEVLVFAIQKSDMDLRRTLFSNIVLSGGSTLFKGFGDRLLSEVKKLAPKDVKIRISAPQERLYSTWIGGSILASLDTFKKMWVSKKEYEEDGARSIHRKTF
Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules. Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cell cortex
ACTZ_MACFA
Macaca fascicularis
MESYDVIANQPVVIDNGSGVIKAGFAGDQIPKYCFPNYVGRPKHVRVMAGALEGDIFIGPKAEEHRGLLSIRYPMEHGIVKDWNDMERIWQYVYSKDQLQTFSEEHPVLLTEAPLNPRKNRERAAEVFFETFNVPALFISMQAVLSLYATGRTTGVVLDSGDGVTHAVPIYEGFAMPHSIMRIDIAGRDVSRFLRLYLRKEGYDFHSSSEFEIVKAIKERACYLSINPQKDETLETEKAQYYLPDGSTIEIGPSRFRAPELLFRPDLIGEESEGIHEVLVFAIQKSDMDLRRTLFSNIVLSGGSTLFKGFGDRLLSEVKKLAPKDVKIRISAPQERLYSTWIGGSILASLDTFKKMWVSKKEYEEDGARSIHRKTF
Part of the ACTR1A/ACTB filament around which the dynactin complex is built. The dynactin multiprotein complex activates the molecular motor dynein for ultra-processive transport along microtubules. Subcellular locations: Cytoplasm, Cytoskeleton, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cell cortex
ACYP2_HUMAN
Homo sapiens
MSTAQSLKSVDYEVFGRVQGVCFRMYTEDEARKIGVVGWVKNTSKGTVTGQVQGPEDKVNSMKSWLSKVGSPSSRIDRTNFSNEKTISKLEYSNFSIRY
Its physiological role is not yet clear.
ADA2A_HUMAN
Homo sapiens
MFRQEQPLAEGSFAPMGSLQPDAGNASWNGTEAPGGGARATPYSLQVTLTLVCLAGLLMLLTVFGNVLVIIAVFTSRALKAPQNLFLVSLASADILVATLVIPFSLANEVMGYWYFGKAWCEIYLALDVLFCTSSIVHLCAISLDRYWSITQAIEYNLKRTPRRIKAIIITVWVISAVISFPPLISIEKKGGGGGPQPAEPRCEINDQKWYVISSCIGSFFAPCLIMILVYVRIYQIAKRRTRVPPSRRGPDAVAAPPGGTERRPNGLGPERSAGPGGAEAEPLPTQLNGAPGEPAPAGPRDTDALDLEESSSSDHAERPPGPRRPERGPRGKGKARASQVKPGDSLPRRGPGATGIGTPAAGPGEERVGAAKASRWRGRQNREKRFTFVLAVVIGVFVVCWFPFFFTYTLTAVGCSVPRTLFKFFFWFGYCNSSLNPVIYTIFNHDFRRAFKKILCRGDRKRIV
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol. Subcellular locations: Cell membrane
ADA2B_HUMAN
Homo sapiens
MDHQDPYSVQATAAIAAAITFLILFTIFGNALVILAVLTSRSLRAPQNLFLVSLAAADILVATLIIPFSLANELLGYWYFRRTWCEVYLALDVLFCTSSIVHLCAISLDRYWAVSRALEYNSKRTPRRIKCIILTVWLIAAVISLPPLIYKGDQGPQPRGRPQCKLNQEAWYILASSIGSFFAPCLIMILVYLRIYLIAKRSNRRGPRAKGGPGQGESKQPRPDHGGALASAKLPALASVASAREVNGHSKSTGEKEEGETPEDTGTRALPPSWAALPNSGQGQKEGVCGASPEDEAEEEEEEEEEEEECEPQAVPVSPASACSPPLQQPQGSRVLATLRGQVLLGRGVGAIGGQWWRRRAQLTREKRFTFVLAVVIGVFVLCWFPFFFSYSLGAICPKHCKVPHGLFQFFFWIGYCNSSLNPVIYTIFNQDFRRAFRRILCRPWTQTAW
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is clonidine > norepinephrine > epinephrine = oxymetazoline > dopamine > p-tyramine = phenylephrine > serotonin > p-synephrine / p-octopamine. For antagonists, the rank order is yohimbine > chlorpromazine > phentolamine > mianserine > spiperone > prazosin > alprenolol > propanolol > pindolol. Subcellular locations: Cell membrane Interaction with RAB26, GGA1, GGA2 and GGA3 mediates transport from the Golgi to the cell membrane.
ADCK1_HUMAN
Homo sapiens
MARKALKLASWTSMALAASGIYFYSNKYLDPNDFGAVRVGRAVATTAVISYDYLTSLKSVPYGSEEYLQLRSKSWPVFLQVHLRSARRLCELCCANRGTFIKVGQHLGALDYLLPEEYTSTLKVLHSQAPQSSMQEIRQVIREDLGKEIHDLFQSFDDTPLGTASLAQVHKAVLHDGRTVAVKVQHPKVRAQSSKDILLMEVLVLAVKQLFPEFEFMWLVDEAKKNLPLELDFLNEGRNAEKVSQMLRHFDFLKVPRIHWDLSTERVLLMEFVDGGQVNDRDYMERNKIDVNEISRHLGKMYSEMIFVNGFVHCDPHPGNVLVRKHPGTGKAEIVLLDHGLYQMLTEEFRLNYCHLWQSLIWTDMKRVKEYSQRLGAGDLYPLFACMLTARSWDSVNRGISQAPVTATEDLEIRNNAANYLPQISHLLNHVPRQMLLILKTNDLLRGIEAALGTRASASSFLNMSRCCIRALAEHKKKNTCSFFRRTQISFSEAFNLWQINLHELILRVKGLKLADRVLALICWLFPAPL
Appears to be essential for maintaining mitochondrial cristae formation and mitochondrial function by acting via YME1L1 in a kinase-independent manner to regulate essential mitochondrial structural proteins OPA1 and IMMT . The action of this enzyme is not yet clear (Probable). It is not known if it has protein kinase activity and what type of substrate it would phosphorylate (Ser, Thr or Tyr) (Probable). Subcellular locations: Mitochondrion
ADCK2_HUMAN
Homo sapiens
MVAPWRVSVRVCLSHLRCFELRQGLSLLRPSECPRDARLCWLLLGTLPKVVSLCGDVGEGAPDVLSRRRVRCSGAAGAGPAESLPRAGPLGGVFLHLRLWLRAGALLVKFFPLLLLYPLTYLAPSVSTLWLHLLLKATETSGPTYIKLGQWASTRRDLFSEAFCAQFSKLHVRVTPHPWTHTERFLRQAFGDDWGSILSFENREPVGSGCVAQVYKAYANTAFLETDSVQRLGRASCLPPFSHTGAVGGLRELFGYLGNGRKPPENLADQSFLERLLLPKADLVGSNAGVSRAQVPGHQPEATNLISVAVKVLHPGLLAQVHMDLLLMKIGSRVLGVLPGIKWLSLPEIVEEFEKLMVQQIDLRYEAQNLEHFQVNFRNVKAVKFPTPLRPFVTREVLVETYEESVPVSSYQQAGIPVDLKRKIARLGINMLLKMIFVDNFVHADLHPGNILVQGANGLSSSQEAQLQQADICDTLVVAVPSSLCPLRLVLLDAGIVAELQAPDLRNFRAVFMAVVMGQGQRVAELILHHARASECRDVEGFKTEMAMLVTQARKNTITLEKLHVSSLLSSVFKLLMTHKVKLESNFASIVFAIMVLEGLGRSLDPKLDILEAARPFLLTGPVCPP
The function of this protein is not yet clear. It is not known if it has protein kinase activity and what type of substrate it would phosphorylate (Ser, Thr or Tyr) (Probable). Involved in the mitochondrial import of CoQ precursors, plays a role in muscle mitochondrial function and fatty acid beta-oxidation . Subcellular locations: Mitochondrion, Membrane
ADCK5_HUMAN
Homo sapiens
MWRPVQLCHFHSALLHSRQKPWPSPAVFFRRNVRGLPPRFSSPTPLWRKVLSTAVVGAPLLLGARYVMAEAREKRRMRLVVDGMGRFGRSLKVGLQISLDYWWCTNVVLRGVEENSPGYLEVMSACHQRAADALVAGAISNGGLYVKLGQGLCSFNHLLPPEYTRTLRVLEDRALKRGFQEVDELFLEDFQALPHELFQEFDYQPIAAASLAQVHRAKLHDGTSVAVKVQYIDLRDRFDGDIHTLELLLRLVEVMHPSFGFSWVLQDLKGTLAQELDFENEGRNAERCARELAHFPYVVVPRVHWDKSSKRVLTADFCAGCKVNDVEAIRSQGLAVHDIAEKLIKAFAEQIFYTGFIHSDPHPGNVLVRKGPDGKAELVLLDHGLYQFLEEKDRAALCQLWRAIILRDDAAMRAHAAALGVQDYLLFAEMLMQRPVRLGQLWGSHLLSREEAAYMVDMARERFEAVMAVLRELPRPMLLVLRNINTVRAINVALGAPVDRYFLMAKRAVRGWSRLAGATYRGVYGTSLLRHAKVVWEMLKFEVALRLETLAMRLTALLARALVHLSLVPPAEELYQYLET
The function of this protein is not yet clear. It is not known if it has protein kinase activity and what type of substrate it would phosphorylate (Ser, Thr or Tyr). Subcellular locations: Membrane
ADEC1_HUMAN
Homo sapiens
MLRGISQLPAVATMSWVLLPVLWLIVQTQAIAIKQTPELTLHEIVCPKKLHILHKREIKNNQTEKHGKEERYEPEVQYQMILNGEEIILSLQKTKHLLGPDYTETLYSPRGEEITTKPENMEHCYYKGNILNEKNSVASISTCDGLRGYFTHHHQRYQIKPLKSTDEKEHAVFTSNQEEQDPANHTCGVKSTDGKQGPIRISRSLKSPEKEDFLRAQKYIDLYLVLDNAFYKNYNENLTLIRSFVFDVMNLLNVIYNTIDVQVALVGMEIWSDGDKIKVVPSASTTFDNFLRWHSSNLGKKIHDHAQLLSGISFNNRRVGLAASNSLCSPSSVAVIEAKKKNNVALVGVMSHELGHVLGMPDVPFNTKCPSGSCVMNQYLSSKFPKDFSTSCRAHFERYLLSQKPKCLLQAPIPTNIMTTPVCGNHLLEVGEDCDCGSPKECTNLCCEALTCKLKPGTDCGGDAPNHTTE
May play an important role in the control of the immune response and during pregnancy. Subcellular locations: Secreted Expressed highly in the small intestine and appendix, moderately in lymph node, mucosal lining of the colon, thymus, spleen and very weakly in the bone marrow. Predominantly expressed in dendritic cells (DC) of the germinal center. Weakly expressed in monocyte and highly expressed in macrophage. Absent in immature DC.
ADH6_HUMAN
Homo sapiens
MSTTGQVIRCKAAILWKPGAPFSIEEVEVAPPKAKEVRIKVVATGLCGTEMKVLGSKHLDLLYPTILGHEGAGIVESIGEGVSTVKPGDKVITLFLPQCGECTSCLNSEGNFCIQFKQSKTQLMSDGTSRFTCKGKSIYHFGNTSTFCEYTVIKEISVAKIDAVAPLEKVCLISCGFSTGFGAAINTAKVTPGSTCAVFGLGGVGLSVVMGCKAAGAARIIGVDVNKEKFKKAQELGATECLNPQDLKKPIQEVLFDMTDAGIDFCFEAIGNLDVLAAALASCNESYGVCVVVGVLPASVQLKISGQLFFSGRSLKGSVFGGWKSRQHIPKLVADYMAEKLNLDPLITHTLNLDKINEAVELMKTGKW
Alcohol dehydrogenase . Catalyzes the NAD-dependent oxidation of primary alcohols to the corresponding aldehydes . Oxidizes secondary alcohols to the corresponding ketones (By similarity). Subcellular locations: Cytoplasm Stomach and liver.
ADH6_PONAB
Pongo abelii
MSTTGQVIRCKAAILWKPGAPFSIEEVEVAPPKAKEVRIKVVATGLCGTEMKVLGSKHLDLLYPTILGHEGAGIVESIGEGVSTVKPGDKVITLFLPQCGECTSCLNSEGNFCIQFKQSETQLMSDGTSRFTCKGKSIYHFGNTSTFCEYTVIKEISVAKIDAVAPLEKVCLISCGFSTGFGAAINTAKVTPGSTCAVFGLGGVGSSVVMGCKAAGATRIIGVDVNKEKFKKARELGATECLNPQDLKKPIQEVLFDMTDAGIDFCFEAIGNLDVLAAALASCNESYGVCVVVGLLPASVQLKISGQLFFSGRSLKGSVFGGWKSRQHIPKLVADYMAKKLNLDPLITHTLNLDKINEAVELMKTGKCIRCILLL
Alcohol dehydrogenase (By similarity). Catalyzes the NAD-dependent oxidation of primary alcohols to the corresponding aldehydes (By similarity). Oxidizes secondary alcohols to the corresponding ketones (By similarity). Subcellular locations: Cytoplasm
ADH7_HUMAN
Homo sapiens
MFAEIQIQDKDRMGTAGKVIKCKAAVLWEQKQPFSIEEIEVAPPKTKEVRIKILATGICRTDDHVIKGTMVSKFPVIVGHEATGIVESIGEGVTTVKPGDKVIPLFLPQCRECNACRNPDGNLCIRSDITGRGVLADGTTRFTCKGKPVHHFMNTSTFTEYTVVDESSVAKIDDAAPPEKVCLIGCGFSTGYGAAVKTGKVKPGSTCVVFGLGGVGLSVIMGCKSAGASRIIGIDLNKDKFEKAMAVGATECISPKDSTKPISEVLSEMTGNNVGYTFEVIGHLETMIDALASCHMNYGTSVVVGVPPSAKMLTYDPMLLFTGRTWKGCVFGGLKSRDDVPKLVTEFLAKKFDLDQLITHVLPFKKISEGFELLNSGQSIRTVLTF
Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, and omega-hydroxy fatty acids and their derivatives ( ). Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis-retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid ( ). In vitro can also catalyzes the NADH-dependent reduction of all-trans-retinal and aldehydes and their derivatives ( ). Reduces preferentially all trans-retinal, all-trans-4-oxoretinal and hexanal (, ). Catalyzes in the oxidative direction with higher efficiency (, ). Therefore may participate in retinoid metabolism, fatty acid omega-oxidation, and elimination of cytotoxic aldehydes produced by lipid peroxidation ( ). Subcellular locations: Cytoplasm Preferentially expressed in stomach.
ADPGK_HUMAN
Homo sapiens
MALWRGSAYAGFLALAVGCVFLLEPELPGSALRSLWSSLCLGPAPAPPGPVSPEGRLAAAWDALIVRPVRRWRRVAVGVNACVDVVLSGVKLLQALGLSPGNGKDHSILHSRNDLEEAFIHFMGKGAAAERFFSDKETFHDIAQVASEFPGAQHYVGGNAALIGQKFAANSDLKVLLCGPVGPKLHELLDDNVFVPPESLQEVDEFHLILEYQAGEEWGQLKAPHANRFIFSHDLSNGAMNMLEVFVSSLEEFQPDLVVLSGLHMMEGQSKELQRKRLLEVVTSISDIPTGIPVHLELASMTNRELMSSIVHQQVFPAVTSLGLNEQELLFLTQSASGPHSSLSSWNGVPDVGMVSDILFWILKEHGRSKSRASDLTRIHFHTLVYHILATVDGHWANQLAAVAAGARVAGTQACATETIDTSRVSLRAPQEFMTSHSEAGSRIVLNPNKPVVEWHREGISFHFTPVLVCKDPIRTVGLGDAISAEGLFYSEVHPHY
Catalyzes the phosphorylation of D-glucose to D-glucose 6-phosphate using ADP as the phosphate donor. GDP and CDP can replace ADP, but with reduced efficiency (By similarity). Subcellular locations: Secreted
ADT4_MACFA
Macaca fascicularis
MHREPPKKKAEKRLFDASSFGKDLLAGGVAAAVSKTAVAPIERVKLLLQVQASSKQISPEARYKGMVDCLVRIPREQGFFSFWRGNLANVIRYFPTQALNFAFKDKYKQLFMSGVNKEKQFWRWFLANLASGGAAGATSLCVVYPLDFARTRLGVDIGKGPEERQFKGLGDCIMKIAKSDGIAGLYQGFGVSVQGIIVYRASYFGAYDTVKGLLPKPKKTPFLVSFFIAQVVTTCSGILSYPFDTVRRRMMMQSGEAKRQYKGTLDCFVKIYQHEGINSFFRGAFSNVLRGTGGALVLVLYDKIKEFFHIDIGGR
ADP:ATP antiporter that mediates import of ADP into the mitochondrial matrix for ATP synthesis, and export of ATP out to fuel the cell (By similarity). Cycles between the cytoplasmic-open state (c-state) and the matrix-open state (m-state): operates by the alternating access mechanism with a single substrate-binding site intermittently exposed to either the cytosolic (c-state) or matrix (m-state) side of the inner mitochondrial membrane (By similarity). Specifically required during spermatogenesis, probably to mediate ADP:ATP exchange in spermatocytes. Large ATP supplies from mitochondria may be critical for normal progression of spermatogenesis during early stages of meiotic prophase I, including DNA double-strand break repair and chromosomal synapsis. In addition to its ADP:ATP antiporter activity, also involved in mitochondrial uncoupling and mitochondrial permeability transition pore (mPTP) activity (By similarity). Plays a role in mitochondrial uncoupling by acting as a proton transporter: proton transport uncouples the proton flows via the electron transport chain and ATP synthase to reduce the efficiency of ATP production and cause mitochondrial thermogenesis. Proton transporter activity is inhibited by ADP:ATP antiporter activity, suggesting that SLC25A31/ANT4 acts as a master regulator of mitochondrial energy output by maintaining a delicate balance between ATP production (ADP:ATP antiporter activity) and thermogenesis (proton transporter activity). Proton transporter activity requires free fatty acids as cofactor, but does not transport it (By similarity). Among nucleotides, may also exchange ADP for dATP and dADP (By similarity). Also plays a key role in mPTP opening, a non-specific pore that enables free passage of the mitochondrial membranes to solutes of up to 1.5 kDa, and which contributes to cell death. It is however unclear if SLC25A31/ANT4 constitutes a pore-forming component of mPTP or regulates it (By similarity). Subcellular locations: Mitochondrion inner membrane, Membrane, Cell projection, Cilium, Flagellum membrane In sperm flagellum this protein is located in the fibrous sheath, a non-mitochondrial region (By similarity). May localize to non-mitochondrial membranes (By similarity).
ADTRP_HUMAN
Homo sapiens
MTKTSTCIYHFLVLSWYTFLNYYISQEGKDEVKPKILANGARWKYMTLLNLLLQTIFYGVTCLDDVLKRTKGGKDIKFLTAFRDLLFTTLAFPVSTFVFLAFWILFLYNRDLIYPKVLDTVIPVWLNHAMHTFIFPITLAEVVLRPHSYPSKKTGLTLLAAASIAYISRILWLYFETGTWVYPVFAKLSLLGLAAFFSLSYVFIASIYLLGEKLNHWKWGDMRQPRKKRK
Hydrolyzes bioactive fatty-acid esters of hydroxy-fatty acids (FAHFAs), but not other major classes of lipids . Show a preference for FAHFAs with branching distal from the carboxylate head group of the lipids . Regulates the expression and the cell-associated anticoagulant activity of the inhibitor TFPI in endothelial cells (in vitro) . Subcellular locations: Cell membrane Colocalized with TFPI and CAV1 in lipid rafts. Expressed in cultured endothelial cells and in placenta.
AFAD_HUMAN
Homo sapiens
MSAGGRDEERRKLADIIHHWNANRLDLFEISQPTEDLEFHGVMRFYFQDKAAGNFATKCIRVSSTATTQDVIETLAEKFRPDMRMLSSPKYSLYEVHVSGERRLDIDEKPLVVQLNWNKDDREGRFVLKNENDAIPPKKAQSNGPEKQEKEGVIQNFKRTLSKKEKKEKKKREKEALRQASDKDDRPFQGEDVENSRLAAEVYKDMPETSFTRTISNPEVVMKRRRQQKLEKRMQEFRSSDGRPDSGGTLRIYADSLKPNIPYKTILLSTTDPADFAVAEALEKYGLEKENPKDYCIARVMLPPGAQHSDEKGAKEIILDDDECPLQIFREWPSDKGILVFQLKRRPPDHIPKKTKKHLEGKTPKGKERADGSGYGSTLPPEKLPYLVELSPGRRNHFAYYNYHTYEDGSDSRDKPKLYRLQLSVTEVGTEKLDDNSIQLFGPGIQPHHCDLTNMDGVVTVTPRSMDAETYVEGQRISETTMLQSGMKVQFGASHVFKFVDPSQDHALAKRSVDGGLMVKGPRHKPGIVQETTFDLGGDIHSGTALPTSKSTTRLDSDRVSSASSTAERGMVKPMIRVEQQPDYRRQESRTQDASGPELILPASIEFRESSEDSFLSAIINYTNSSTVHFKLSPTYVLYMACRYVLSNQYRPDISPTERTHKVIAVVNKMVSMMEGVIQKQKNIAGALAFWMANASELLNFIKQDRDLSRITLDAQDVLAHLVQMAFKYLVHCLQSELNNYMPAFLDDPEENSLQRPKIDDVLHTLTGAMSLLRRCRVNAALTIQLFSQLFHFINMWLFNRLVTDPDSGLCSHYWGAIIRQQLGHIEAWAEKQGLELAADCHLSRIVQATTLLTMDKYAPDDIPNINSTCFKLNSLQLQALLQNYHCAPDEPFIPTDLIENVVTVAENTADELARSDGREVQLEEDPDLQLPFLLPEDGYSCDVVRNIPNGLQEFLDPLCQRGFCRLIPHTRSPGTWTIYFEGADYESHLLRENTELAQPLRKEPEIITVTLKKQNGMGLSIVAAKGAGQDKLGIYVKSVVKGGAADVDGRLAAGDQLLSVDGRSLVGLSQERAAELMTRTSSVVTLEVAKQGAIYHGLATLLNQPSPMMQRISDRRGSGKPRPKSEGFELYNNSTQNGSPESPQLPWAEYSEPKKLPGDDRLMKNRADHRSSPNVANQPPSPGGKSAYASGTTAKITSVSTGNLCTEEQTPPPRPEAYPIPTQTYTREYFTFPASKSQDRMAPPQNQWPNYEEKPHMHTDSNHSSIAIQRVTRSQEELREDKAYQLERHRIEAAMDRKSDSDMWINQSSSLDSSTSSQEHLNHSSKSVTPASTLTKSGPGRWKTPAAIPATPVAVSQPIRTDLPPPPPPPPVHYAGDFDGMSMDLPLPPPPSANQIGLPSAQVAAAERRKREEHQRWYEKEKARLEEERERKRREQERKLGQMRTQSLNPAPFSPLTAQQMKPEKPSTLQRPQETVIRELQPQQQPRTIERRDLQYITVSKEELSSGDSLSPDPWKRDAKEKLEKQQQMHIVDMLSKEIQELQSKPDRSAEESDRLRKLMLEWQFQKRLQESKQKDEDDEEEEDDDVDTMLIMQRLEAERRARLQDEERRRQQQLEEMRKREAEDRARQEEERRRQEEERTKRDAEEKRRQEEGYYSRLEAERRRQHDEAARRLLEPEAPGLCRPPLPRDYEPPSPSPAPGAPPPPPQRNASYLKTQVLSPDSLFTAKFVAYNEEEEEEDCSLAGPNSYPGSTGAAVGAHDACRDAKEKRSKSQDADSPGSSGAPENLTFKERQRLFSQGQDVSNKVKASRKLTELENELNTK
Belongs to an adhesion system, probably together with the E-cadherin-catenin system, which plays a role in the organization of homotypic, interneuronal and heterotypic cell-cell adherens junctions (AJs) (By similarity). Nectin- and actin-filament-binding protein that connects nectin to the actin cytoskeleton . May play a key role in the organization of epithelial structures of the embryonic ectoderm (By similarity). Essential for the organization of adherens junctions . Subcellular locations: Cell junction, Adherens junction Not found at cell-matrix AJs.
AFAM_HUMAN
Homo sapiens
MKLLKLTGFIFFLFFLTESLTLPTQPRDIENFNSTQKFIEDNIEYITIIAFAQYVQEATFEEMEKLVKDMVEYKDRCMADKTLPECSKLPNNVLQEKICAMEGLPQKHNFSHCCSKVDAQRRLCFFYNKKSDVGFLPPFPTLDPEEKCQAYESNRESLLNHFLYEVARRNPFVFAPTLLTVAVHFEEVAKSCCEEQNKVNCLQTRAIPVTQYLKAFSSYQKHVCGALLKFGTKVVHFIYIAILSQKFPKIEFKELISLVEDVSSNYDGCCEGDVVQCIRDTSKVMNHICSKQDSISSKIKECCEKKIPERGQCIINSNKDDRPKDLSLREGKFTDSENVCQERDADPDTFFAKFTFEYSRRHPDLSIPELLRIVQIYKDLLRNCCNTENPPGCYRYAEDKFNETTEKSLKMVQQECKHFQNLGKDGLKYHYLIRLTKIAPQLSTEELVSLGEKMVTAFTTCCTLSEEFACVDNLADLVFGELCGVNENRTINPAVDHCCKTNFAFRRPCFESLKADKTYVPPPFSQDLFTFHADMCQSQNEELQRKTDRFLVNLVKLKHELTDEELQSLFTNFANVVDKCCKAESPEVCFNEESPKIGN
Functions as a carrier for hydrophobic molecules in body fluids (Probable). Essential for the solubility and activity of lipidated Wnt family members, including WNT1, WNT2B, WNT3, WNT3A, WNT5A, WNT7A, WNT7B, WNT8, WNT9A, WNT9B, WNT10A and WNT10B . Binds vitamin E (, ). May transport vitamin E in body fluids under conditions where the lipoprotein system is not sufficient . May be involved in the transport of vitamin E across the blood-brain barrier . Subcellular locations: Secreted High level detected in plasma but also in extravascular fluids such as follicular and cerebrospinal fluids (at protein level).
AFAP1_HUMAN
Homo sapiens
MEELIVELRLFLELLDHEYLTSTVREKKAVITNILLRIQSSKGFDVKDHAQKQETANSLPAPPQMPLPEIPQPWLPPDSGPPPLPTSSLPEGYYEEAVPLSPGKAPEYITSNYDSDAMSSSYESYDEEEEDGKGKKTRHQWPSEEASMDLVKDAKICAFLLRKKRFGQWTKLLCVIKDTKLLCYKSSKDQQPQMELPLQGCNITYIPKDSKKKKHELKITQQGTDPLVLAVQSKEQAEQWLKVIKEAYSGCSGPVDSECPPPPSSPVHKAELEKKLSSERPSSDGEGVVENGITTCNGKEQVKRKKSSKSEAKGTVSKVTGKKITKIISLGKKKPSTDEQTSSAEEDVPTCGYLNVLSNSRWRERWCRVKDNKLIFHKDRTDLKTHIVSIPLRGCEVIPGLDSKHPLTFRLLRNGQEVAVLEASSSEDMGRWIGILLAETGSSTDPEALHYDYIDVEMSASVIQTAKQTFCFMNRRVISANPYLGGTSNGYAHPSGTALHYDDVPCINGSLKGKKPPVASNGVTGKGKTLSSQPKKADPAAVVKRTGSNAAQYKYGKNRVEADAKRLQTKEEELLKRKEALRNRLAQLRKERKDLRAAIEVNAGRKPQAILEEKLKQLEEECRQKEAERVSLELELTEVKESLKKALAGGVTLGLAIEPKSGTSSPQSPVFRHRTLENSPISSCDTSDTEGPVPVNSAAVLKKSQAAPGSSPCRGHVLRKAKEWELKNGT
Can cross-link actin filaments into both network and bundle structures (By similarity). May modulate changes in actin filament integrity and induce lamellipodia formation. May function as an adapter molecule that links other proteins, such as SRC and PKC to the actin cytoskeleton. Seems to play a role in the development and progression of prostate adenocarcinoma by regulating cell-matrix adhesions and migration in the cancer cells. Subcellular locations: Cytoplasm, Cytoskeleton, Stress fiber Low expression in normal breast epithelial cell line MCF-10A and in tumorigenic breast cancer cell lines MCF-7, T-47D and ZR-75-1. Highly expressed in the invasive breast cancer cell lines MDA-MB-231 and MDA-MB-435. Overexpressed in prostate carcinoma.
AGAL_HUMAN
Homo sapiens
MQLRNPELHLGCALALRFLALVSWDIPGARALDNGLARTPTMGWLHWERFMCNLDCQEEPDSCISEKLFMEMAELMVSEGWKDAGYEYLCIDDCWMAPQRDSEGRLQADPQRFPHGIRQLANYVHSKGLKLGIYADVGNKTCAGFPGSFGYYDIDAQTFADWGVDLLKFDGCYCDSLENLADGYKHMSLALNRTGRSIVYSCEWPLYMWPFQKPNYTEIRQYCNHWRNFADIDDSWKSIKSILDWTSFNQERIVDVAGPGGWNDPDMLVIGNFGLSWNQQVTQMALWAIMAAPLFMSNDLRHISPQAKALLQDKDVIAINQDPLGKQGYQLRQGDNFEVWERPLSGLAWAVAMINRQEIGGPRSYTIAVASLGKGVACNPACFITQLLPVKRKLGFYEWTSRLRSHINPTGTVLLQLENTMQMSLKDLL
Catalyzes the hydrolysis of glycosphingolipids and participates in their degradation in the lysosome. Subcellular locations: Lysosome
AGAP1_HUMAN
Homo sapiens
MNYQQQLANSAAIRAEIQRFESVHPNIYSIYELLERVEEPVLQNQIREHVIAIEDAFVNSQEWTLSRSVPELKVGIVGNLASGKSALVHRYLTGTYVQEESPEGGRFKKEIVVDGQSYLLLIRDEGGPPEAQFAMWVDAVIFVFSLEDEISFQTVYHYYSRMANYRNTSEIPLVLVGTQDAISSANPRVIDDARARKLSNDLKRCTYYETCATYGLNVERVFQDVAQKIVATRKKQQLSIGPCKSLPNSPSHSSVCSAQVSAVHISQTSNGGGSLSDYSSSVPSTPSTSQKELRIDVPPTANTPTPVRKQSKRRSNLFTSRKGSDPDKEKKGLESRADSIGSGRAIPIKQGMLLKRSGKSLNKEWKKKYVTLCDNGVLTYHPSLHDYMQNVHGKEIDLLRTTVKVPGKRPPRATSACAPISSPKTNGLSKDMSSLHISPNSGNVTSASGSQMASGISLVSFNSRPDGMHQRSYSVSSADQWSEATVIANSAISSDTGLGDSVCSSPSISSTTSPKLDPPPSPHANRKKHRRKKSTSNFKADGLSGTAEEQEENFEFIIVSLTGQTWHFEATTYEERDAWVQAIESQILASLQSCESSKNKSRLTSQSEAMALQSIRNMRGNSHCVDCETQNPNWASLNLGALMCIECSGIHRNLGTHLSRVRSLDLDDWPVELIKVMSSIGNELANSVWEESSQGRTKPSVDSTREEKERWIRAKYEQKLFLAPLPCTELSLGQHLLRATADEDLRTAILLLAHGSRDEVNETCGEGDGRTALHLACRKGNVVLAQLLIWYGVDVTARDAHGNTALAYARQASSQECIDVLLQYGCPDERFVLMATPNLSRRNNNRNNSSGRVPTII
GTPase-activating protein for ARF1 and, to a lesser extent, ARF5. Directly and specifically regulates the adapter protein 3 (AP-3)-dependent trafficking of proteins in the endosomal-lysosomal system. Subcellular locations: Cytoplasm Associates with the endocytic compartment. Widely expressed.
AGAP2_HUMAN
Homo sapiens
MSRGAGALQRRTTTYLISLTLVKLESVPPPPPSPSAAAVGAPGARGSEPRDPGSPRGAEEPGKKRHERLFHRQDALWISTSSAGAGGAEPPALSPAPASPARPVSPAPGRRLSLWAAPPGPPLSGGLSPDSKPGGAPSSSRRPLLSSPSWGGPEPEGRTGGGVPGSSSPHPGTGSRRLKVAPPPPAPKPCKTVTTSGAKAGGGKGAGSRLSWPESEGKPRVKGSKSSAGTGASVSAAATAAAAGGGGSTASTSGGVGAGAGARGKLSPRKGKSKTLDNSDLHPGPPAGSPPPLTLPPTPSPATAVTAASAQPPGPAPPITLEPPAPGLKRGREGGRASTRDRKMLKFISGIFTKSTGGPPGSGPLPGPPSLSSGSGSRELLGAELRASPKAVINSQEWTLSRSIPELRLGVLGDARSGKSSLIHRFLTGSYQVLEKTESEQYKKEMLVDGQTHLVLIREEAGAPDAKFSGWADAVIFVFSLEDENSFQAVSRLHGQLSSLRGEGRGGLALALVGTQDRISASSPRVVGDARARALCADMKRCSYYETCATYGLNVDRVFQEVAQKVVTLRKQQQLLAACKSLPSSPSHSAASTPVAGQASNGGHTSDYSSSLPSSPNVGHRELRAEAAAVAGLSTPGSLHRAAKRRTSLFANRRGSDSEKRSLDSRGETTGSGRAIPIKQSFLLKRSGNSLNKEWKKKYVTLSSNGFLLYHPSINDYIHSTHGKEMDLLRTTVKVPGKRPPRAISAFGPSASINGLVKDMSTVQMGEGLEATTPMPSPSPSPSSLQPPPDQTSKHLLKPDRNLARALSTDCTPSGDLSPLSREPPPSPMVKKQRRKKLTTPSKTEGSAGQAEAKRKMWKLKSFGSLRNIYKAEENFEFLIVSSTGQTWHFEAASFEERDAWVQAIESQILASLQCCESSKVKLRTDSQSEAVAIQAIRNAKGNSICVDCGAPNPTWASLNLGALICIECSGIHRNLGTHLSRVRSLDLDDWPRELTLVLTAIGNDTANRVWESDTRGRAKPSRDSSREERESWIRAKYEQLLFLAPLSTSEEPLGRQLWAAVQAQDVATVLLLLAHARHGPLDTSVEDPQLRSPLHLAAELAHVVITQLLLWYGADVAARDAQGRTALFYARQAGSQLCADILLQHGCPGEGGSAATTPSAATTPSITATPSPRRRSSAASVGRADAPVALV
GTPase-activating protein (GAP) for ARF1 and ARF5, which also shows strong GTPase activity. Isoform 1 participates in the prevention of neuronal apoptosis by enhancing PI3 kinase activity. It aids the coupling of metabotropic glutamate receptor 1 (GRM1) to cytoplasmic PI3 kinase by interacting with Homer scaffolding proteins, and also seems to mediate anti-apoptotic effects of NGF by activating nuclear PI3 kinase. Isoform 2 does not stimulate PI3 kinase but may protect cells from apoptosis by stimulating Akt. It also regulates the adapter protein 1 (AP-1)-dependent trafficking of proteins in the endosomal system. It seems to be oncogenic. It is overexpressed in cancer cells, prevents apoptosis and promotes cancer cell invasion. Subcellular locations: Cytoplasm, Nucleus Subcellular locations: Cytoplasm Isoform 1 is brain-specific. Isoform 2 is ubiquitously expressed, with highest levels in brain and heart.
AGAP3_HUMAN
Homo sapiens
MNFQAGGGQSPQQQQQLAGGPPQQFALSNSAAIRAEIQRFESVHPNIYAIYDLIERIEDLALQNQIREHVISIEDSFVNSQEWTLSRSVPELKVGIVGNLSSGKSALVHRYLTGTYVQEESPEGGRFKKEIVVDGQSYLLLIRDEGGPPELQFAAWVDAVVFVFSLEDEISFQTVYNYFLRLCSFRNASEVPMVLVGTQDAISAANPRVIDDSRARKLSTDLKRCTYYETCATYGLNVERVFQDVAQKVVALRKKQQLAIGPCKSLPNSPSHSAVSAASIPAVHINQATNGGGSAFSDYSSSVPSTPSISQRELRIETIAASSTPTPIRKQSKRRSNIFTSRKGADLDREKKAAECKVDSIGSGRAIPIKQGILLKRSGKSLNKEWKKKYVTLCDNGLLTYHPSLHDYMQNIHGKEIDLLRTTVKVPGKRLPRATPATAPGTSPRANGLSVERSNTQLGGGTGAPHSASSASLHSERPLSSSAWAGPRPEGLHQRSCSVSSADQWSEATTSLPPGMQHPASGPAEVLSSSPKLDPPPSPHSNRKKHRRKKSTGTPRPDGPSSATEEAEESFEFVVVSLTGQTWHFEASTAEERELWVQSVQAQILASLQGCRSAKDKTRLGNQNAALAVQAVRTVRGNSFCIDCDAPNPDWASLNLGALMCIECSGIHRHLGAHLSRVRSLDLDDWPPELLAVMTAMGNALANSVWEGALGGYSKPGPDACREEKERWIRAKYEQKLFLAPLPSSDVPLGQQLLRAVVEDDLRLLVMLLAHGSKEEVNETYGDGDGRTALHLSSAMANVVFTQLLIWYGVDVRSRDARGLTPLAYARRAGSQECADILIQHGCPGEGCGLAPTPNREPANGTNPSAELHRSPSLL
GTPase-activating protein for the ADP ribosylation factor family (Potential). GTPase which may be involved in the degradation of expanded polyglutamine proteins through the ubiquitin-proteasome pathway. Subcellular locations: Cytoplasm In cells upon oxidative stress or in brains of Machado-Joseph disease patients, translocates to PML nuclear bodies. Widely expressed.
AGAP4_HUMAN
Homo sapiens
MGNILTCRVHPSVSLEFDQQQGSVCPSESEIYEAGAGDRMAGAPMAAAVQPAEVTVEVGEDLHMHHVRDREMPEALEFNPSANPEASTIFQRNSQTDVVEIRRSNCTNHVSTVRFSQQYSLCSTIFLDDSTAIQHYLTMTIISVTLEIPHHITQRDADRSLSIPDEQLHSFAVSTVHIMKKRNGGGSLNNYSSSIPSTPSTSQEDPQFSVPPTANTPTPVCKRSMRWSNLFTSEKGSDPDKERKAPENHADTIGSGRAIPIKQGMLLKRSGKWLKTWKKKYVTLCSNGVLTYYSSLGDYMKNIHKKEIDLQTSTIKVPGKWPSLATSACTPISTSKSNGLSKDMDTGLGDSICFSPSISSTTSPKLNPPPSPHANKKKHLKKKSTNNFMIVSATGQTWHFEATTYEERDAWVQAIQSQILASLQSCESSKSKSQLTSQSKAMALQSIQNMRGNAHCVDCETQNPKWASLNLGVLMCIECSGIHRSLGTRLSRVRSLELDDWPVELRKVMSSIGNDLANSIWEGSSQGQTKPSEKSTREEKERWIRSKYEEKLFLAPLPCTELSLGQQLLRATADEDLQTAILLLAHGSREEVNETCGEGDGCTALHLACRKGNVVLAQLLIWYGVDVMARDAHGNTALTYARQASSQECINVLLQYGCPDKCV
Putative GTPase-activating protein.
AGR2_HUMAN
Homo sapiens
MEKIPVSAFLLLVALSYTLARDTTVKPGAKKDTKDSRPKLPQTLSRGWGDQLIWTQTYEEALYKSKTSNKPLMIIHHLDECPHSQALKKVFAENKEIQKLAEQFVLLNLVYETTDKHLSPDGQYVPRIMFVDPSLTVRADITGRYSNRLYAYEPADTALLLDNMKKALKLLKTEL
Required for MUC2 post-transcriptional synthesis and secretion. May play a role in the production of mucus by intestinal cells (By similarity). Proto-oncogene that may play a role in cell migration, cell differentiation and cell growth. Promotes cell adhesion . Subcellular locations: Secreted, Endoplasmic reticulum Expressed strongly in trachea, lung, stomach, colon, prostate and small intestine. Expressed weakly in pituitary gland, salivary gland, mammary gland, bladder, appendix, ovary, fetal lung, uterus, pancreas, kidney, fetal kidney, testis, placenta, thyroid gland and in estrogen receptor (ER)-positive breast cancer cell lines.
AGR2_PONAB
Pongo abelii
MEKISVSAFLLLVALSYTLARDTTVKPAAKKDTKDSRPKLPQTLSRGWGDQLIWTQTYEEALYKSKTSNKPLMIIHHLDECPHSQALKKVFAENKEIQKLAEQFVLLNLVYETTDKHLSPDGQYVPRIMFVDPSLTVRADITGRYSNRLYAYEPTDTALLLDNMKKALKLLKTEL
Required for MUC2 post-transcriptional synthesis and secretion. May play a role in the production of mucus by intestinal cells. Proto-oncogene that may play a role in cell migration, cell differentiation and cell growth (By similarity). Promotes cell adhesion (By similarity). Subcellular locations: Secreted, Endoplasmic reticulum
AGR3_HUMAN
Homo sapiens
MMLHSALGLCLLLVTVSSNLAIAIKKEKRPPQTLSRGWGDDITWVQTYEEGLFYAQKSKKPLMVIHHLEDCQYSQALKKVFAQNEEIQEMAQNKFIMLNLMHETTDKNLSPDGQYVPRIMFVDPSLTVRADIAGRYSNRLYTYEPRDLPLLIENMKKALRLIQSEL
Required for calcium-mediated regulation of ciliary beat frequency and mucociliary clearance in the airway. Might be involved in the regulation of intracellular calcium in tracheal epithelial cells. Subcellular locations: Endoplasmic reticulum Found in the cytoplasm, which could include the endoplasmic reticulum. Expressed in the lung, in the ciliated cells of the airway epithelium . Expression increased with differentiation of airway epithelial cells . Not detected in the mucous cells . Expressed in ciliated cells in the oviduct . Also detected in stomach, colon, prostate and liver . Expressed in breast, ovary, prostate and liver cancer . Expression is associated with the level of differentiation of breast cancer (at protein level) .
AGRA1_HUMAN
Homo sapiens
MDLKTVLSLPRYPGEFLHPVVYACTAVMLLCLLASFVTYIVHQSAIRISRKGRHTLLNFCFHAALTFTVFAGGINRTKYPILCQAVGIVLHYSTLSTMLWIGVTARNIYKQVTKKAPLCLDTDQPPYPRQPLLRFYLVSGGVPFIICGVTAATNIRNYGTEDEDTAYCWMAWEPSLGAFYGPAAIITLVTCVYFLGTYVQLRRHPGRRYELRTQPEEQRRLATPEGGRGIRPGTPPAHDAPGASVLQNEHSFQAQLRAAAFTLFLFTATWAFGALAVSQGHFLDMVFSCLYGAFCVTLGLFVLIHHCAKREDVWQCWWACCPPRKDAHPALDANGAALGRAACLHSPGLGQPRGFAHPPGPCKMTNLQAAQGHASCLSPATPCCAKMHCEPLTADEAHVHLQEEGAFGHDPHLHGCLQGRTKPPYFSRHPAEEPEYAYHIPSSLDGSPRSSRTDSPPSSLDGPAGTHTLACCTQGDPFPMVTQPEGSDGSPALYSCPTQPGREAALGPGHLEMLRRTQSLPFGGPSQNGLPKGKLLEGLPFGTDGTGNIRTGPWKNETTV
Orphan receptor. Subcellular locations: Membrane
AGRD1_HUMAN
Homo sapiens
MEKLLRLCCWYSWLLLFYYNFQVRGVYSRSQDHPGFQVLASASHYWPLENVDGIHELQDTTGDIVEGKVNKGIYLKEEKGVTLLYYGRYNSSCISKPEQCGPEGVTFSFFWKTQGEQSRPIPSAYGGQVISNGFKVCSSGGRGSVELYTRDNSMTWEASFSPPGPYWTHVLFTWKSKEGLKVYVNGTLSTSDPSGKVSRDYGESNVNLVIGSEQDQAKCYENGAFDEFIIWERALTPDEIAMYFTAAIGKHALLSSTLPSLFMTSTASPVMPTDAYHPIITNLTEERKTFQSPGVILSYLQNVSLSLPSKSLSEQTALNLTKTFLKAVGEILLLPGWIALSEDSAVVLSLIDTIDTVMGHVSSNLHGSTPQVTVEGSSAMAEFSVAKILPKTVNSSHYRFPAHGQSFIQIPHEAFHRHAWSTVVGLLYHSMHYYLNNIWPAHTKIAEAMHHQDCLLFATSHLISLEVSPPPTLSQNLSGSPLITVHLKHRLTRKQHSEATNSSNRVFVYCAFLDFSSGEGVWSNHGCALTRGNLTYSVCRCTHLTNFAILMQVVPLELARGHQVALSSISYVGCSLSVLCLVATLVTFAVLSSVSTIRNQRYHIHANLSFAVLVAQVLLLISFRLEPGTTPCQVMAVLLHYFFLSAFAWMLVEGLHLYSMVIKVFGSEDSKHRYYYGMGWGFPLLICIISLSFAMDSYGTSNNCWLSLASGAIWAFVAPALFVIVVNIGILIAVTRVISQISADNYKIHGDPSAFKLTAKAVAVLLPILGTSWVFGVLAVNGCAVVFQYMFATLNSLQGLFIFLFHCLLNSEVRAAFKHKTKVWSLTSSSARTSNAKPFHSDLMNGTRPGMASTKLSPWDKSSHSAHRVDLSAV
Orphan receptor. Signals via G(s)-alpha family of G-proteins (, ). Has protumorigenic function especially in glioblastoma . Subcellular locations: Cell membrane Up-regulated in CD133(+) cell population of glioblastoma.
AGRD2_HUMAN
Homo sapiens
MDAPWGAGERWLHGAAVDRSGVSLGPPPTPQVNQGTLGPQVAPVAAGEVVKTAGGVCKFSGQRLSWWQAQESCEQQFGHLALQPPDGVLASRLRDPVWVGQREAPLRRPPQRRARTTAVLVFDERTADRAARLRSPLPELAALTACTHVQWDCASPDPAALFSVAAPALPNALQLRAFAEPGGVVRAALVVRGQHAPFLAAFRADGRWHHVCATWEQRGGRWALFSDGRRRAGARGLGAGHPVPSGGILVLGQDQDSLGGGFSVRHALSGNLTDFHLWARALSPAQLHRARACAPPSEGLLFRWDPGALDVTPSLLPTVWVRLLCPVPSEECPTWNPGPRSEGSELCLEPQPFLCCYRTEPYRRLQDAQSWPGQDVISRVNALANDIVLLPDPLSEVHGALSPAEASSFLGLLEHVLAMEMAPLGPAALLAVVRFLKRVVALGAGDPELLLTGPWEQLSQGVVSVASLVLEEQVADTWLSLREVIGGPMALVASVQRLAPLLSTSMTSERPRMRIQHRHAGLSGVTVIHSWFTSRVFQHTLEGPDLEPQAPASSEEANRVQRFLSTQVGSAIISSEVWDVTGEVNVAMTFHLQHRAQSPLFPPHPPSPYTGGAWATTGCSVAALYLDSTACFCNHSTSFAILLQIYEVQRGPEEESLLRTLSFVGCGVSFCALTTTFLLFLVAGVPKSERTTVHKNLTFSLASAEGFLMTSEWAKANEVACVAVTVAMHFLFLVAFSWMLVEGLLLWRKVVAVSMHPGPGMRLYHATGWGVPVGIVAVTLAMLPHDYVAPGHCWLNVHTNAIWAFVGPVLFVLTANTCILARVVMITVSSARRRARMLSPQPCLQQQIWTQIWATVKPVLVLLPVLGLTWLAGILVHLSPAWAYAAVGLNSIQGLYIFLVYAACNEEVRSALQRMAEKKVAEVLRALGVWGGAAKEHSLPFSVLPLFLPPKPSTPRHPLKAPA
Orphan receptor. Subcellular locations: Membrane
AGRE1_HUMAN
Homo sapiens
MRGFNLLLFWGCCVMHSWEGHIRPTRKPNTKGNNCRDSTLCPAYATCTNTVDSYYCACKQGFLSSNGQNHFKDPGVRCKDIDECSQSPQPCGPNSSCKNLSGRYKCSCLDGFSSPTGNDWVPGKPGNFSCTDINECLTSSVCPEHSDCVNSMGSYSCSCQVGFISRNSTCEDVDECADPRACPEHATCNNTVGNYSCFCNPGFESSSGHLSFQGLKASCEDIDECTEMCPINSTCTNTPGSYFCTCHPGFAPSNGQLNFTDQGVECRDIDECRQDPSTCGPNSICTNALGSYSCGCIAGFHPNPEGSQKDGNFSCQRVLFKCKEDVIPDNKQIQQCQEGTAVKPAYVSFCAQINNIFSVLDKVCENKTTVVSLKNTTESFVPVLKQISTWTKFTKEETSSLATVFLESVESMTLASFWKPSANITPAVRTEYLDIESKVINKECSEENVTLDLVAKGDKMKIGCSTIEESESTETTGVAFVSFVGMESVLNERFFKDHQAPLTTSEIKLKMNSRVVGGIMTGEKKDGFSDPIIYTLENIQPKQKFERPICVSWSTDVKGGRWTSFGCVILEASETYTICSCNQMANLAVIMASGELTMDFSLYIISHVGIIISLVCLVLAIATFLLCRSIRNHNTYLHLHLCVCLLLAKTLFLAGIHKTDNKMGCAIIAGFLHYLFLACFFWMLVEAVILFLMVRNLKVVNYFSSRNIKMLHICAFGYGLPMLVVVISASVQPQGYGMHNRCWLNTETGFIWSFLGPVCTVIVINSLLLTWTLWILRQRLSSVNAEVSTLKDTRLLTFKAFAQLFILGCSWVLGIFQIGPVAGVMAYLFTIINSLQGAFIFLIHCLLNGQVREEYKRWITGKTKPSSQSQTSRILLSSMPSASKTG
Orphan receptor involved in cell adhesion and probably in cell-cell interactions specifically involving cells of the immune system. May play a role in regulatory T-cells (Treg) development. Subcellular locations: Cell membrane Expression is restricted to eosinophils.
AGRE2_HUMAN
Homo sapiens
MGGRVFLVFLAFCVWLTLPGAETQDSRGCARWCPQDSSCVNATACRCNPGFSSFSEIITTPMETCDDINECATLSKVSCGKFSDCWNTEGSYDCVCSPGYEPVSGAKTFKNESENTCQDVDECQQNPRLCKSYGTCVNTLGSYTCQCLPGFKLKPEDPKLCTDVNECTSGQNPCHSSTHCLNNVGSYQCRCRPGWQPIPGSPNGPNNTVCEDVDECSSGQHQCDSSTVCFNTVGSYSCRCRPGWKPRHGIPNNQKDTVCEDMTFSTWTPPPGVHSQTLSRFFDKVQDLGRDYKPGLANNTIQSILQALDELLEAPGDLETLPRLQQHCVASHLLDGLEDVLRGLSKNLSNGLLNFSYPAGTELSLEVQKQVDRSVTLRQNQAVMQLDWNQAQKSGDPGPSVVGLVSIPGMGKLLAEAPLVLEPEKQMLLHETHQGLLQDGSPILLSDVISAFLSNNDTQNLSSPVTFTFSHRSVIPRQKVLCVFWEHGQNGCGHWATTGCSTIGTRDTSTICRCTHLSSFAVLMAHYDVQEEDPVLTVITYMGLSVSLLCLLLAALTFLLCKAIQNTSTSLHLQLSLCLFLAHLLFLVAIDQTGHKVLCSIIAGTLHYLYLATLTWMLLEALYLFLTARNLTVVNYSSINRFMKKLMFPVGYGVPAVTVAISAASRPHLYGTPSRCWLQPEKGFIWGFLGPVCAIFSVNLVLFLVTLWILKNRLSSLNSEVSTLRNTRMLAFKATAQLFILGCTWCLGILQVGPAARVMAYLFTIINSLQGVFIFLVYCLLSQQVREQYGKWSKGIRKLKTESEMHTLSSSAKADTSKPSTVN
Cell surface receptor that binds to the chondroitin sulfate moiety of glycosaminoglycan chains and promotes cell attachment. Promotes granulocyte chemotaxis, degranulation and adhesion. In macrophages, promotes the release of inflammatory cytokines, including IL8 and TNF. Signals probably through G-proteins. Is a regulator of mast cell degranulation . Subcellular locations: Cell membrane, Cell projection, Ruffle membrane Localized at the leading edge of migrating cells. Expression is restricted to myeloid cells. Highest expression was found in peripheral blood leukocytes, followed by spleen and lymph nodes, with intermediate to low levels in thymus, bone marrow, fetal liver, placenta, and lung, and no expression in heart, brain, skeletal muscle, kidney, or pancreas. Expression is also detected in monocyte/macrophage and Jurkat cell lines but not in other cell lines tested. High expression in mast cells .
AGRE2_MACMU
Macaca mulatta
MGGRVFLAFCVWLTLLGAETQDSRDCARWCPENSSCVNATACRCNPGFSSSSEIFTSPTEICDDINECVPPSKVSCGKSSDCRNTEGSYDCVCNPGYELVSGAKTFKNESENTCQDVDECQQNPRLCKSYGTCVNTLGSFTCQCLPGFKFKPEDPKLCTDVNECTSGQNPCHSSTHCLNNVGSYQCRCRPGWQPIPGSPNGPNNTICEDVDECSSGLHQCDNSTVCFNTVGSYTCRCRPGWEPKHGIPNNQKDTVCKDMNFPTWTLPPGVHSQTLSQFFNKVQDLDRDFKTSSAKVTIQSILKELDELLEAPGDLETLPRFQQHCVATHLLDGLEDVLRGLSKNPSIGLLNFSYPAGTEFSLEVQKQVDRNVTLRQNQATMQLHWNLAQKSGDPGPSVVGLVSVPGMGKLLAEAPLVSEPENQVVRNETHQGLLPILLSDVISAFLSNNDTQNLSSPVTFIFSHRSVIPRRKVLCVFWEHGQNGCGHWATTGCSTMDTRDTSTICRCTHLSSFAVLMAPYDVQEEDPVLTVITYMGLSLSLLCLLLAALTFLLCKAIQNISTSLHLQLSLCLLLAHLLFLVAIDRTEHEVLCAIIASALHYLYLAAFTWMLLEALYLFLTARNLMVVNYSSINRFTKKLMFPVAYGVPAVTVAISAASRPHLYGTPSRCWLQPEKGFIWGFLGPVCAIFSVNLALLLVTLWILKNRLSSLNNEVSTLQNTRMLAFKATAQLFILGCTWCLGILQVGPAARVMAYLFTIINSLQGVFIFLVYCLLSQQVREQYRKWSKGFRKLRTESEMHTLSSSAKRDTPKPSTPGLLGLQS
Cell surface receptor that binds to the chondroitin sulfate moiety of glycosaminoglycan chains and promotes cell attachment. Promotes granulocyte chemotaxis, degranulation and adhesion. In macrophages, promotes the release of inflammatory cytokines, including IL8 and TNF. Signals probably through G-proteins. Subcellular locations: Cell membrane, Cell projection, Ruffle membrane Localized at the leading edge of migrating cells.
AGRE3_HUMAN
Homo sapiens
MQGPLLLPGLCFLLSLFGAVTQKTKTSCAKCPPNASCVNNTHCTCNHGYTSGSGQKLFTFPLETCNDINECTPPYSVYCGFNAVCYNVEGSFYCQCVPGYRLHSGNEQFSNSNENTCQDTTSSKTTEGRKELQKIVDKFESLLTNQTLWRTEGRQEISSTATTILRDVESKVLETALKDPEQKVLKIQNDSVAIETQAITDNCSEERKTFNLNVQMNSMDIRCSDIIQGDTQGPSAIAFISYSSLGNIINATFFEEMDKKDQVYLNSQVVSAAIGPKRNVSLSKSVTLTFQHVKMTPSTKKVFCVYWKSTGQGSQWSRDGCFLIHVNKSHTMCNCSHLSSFAVLMALTSQEEDPVLTVITYVGLSVSLLCLLLAALTFLLCKAIRNTSTSLHLQLSLCLFLAHLLFLVGIDRTEPKVLCSIIAGALHYLYLAAFTWMLLEGVHLFLTARNLTVVNYSSINRLMKWIMFPVGYGVPAVTVAISAASWPHLYGTADRCWLHLDQGFMWSFLGPVCAIFSANLVLFILVFWILKRKLSSLNSEVSTIQNTRMLAFKATAQLFILGCTWCLGLLQVGPAAQVMAYLFTIINSLQGFFIFLVYCLLSQQVQKQYQKWFREIVKSKSESETYTLSSKMGPDSKPSEGDVFPGQVKRKY
Orphan receptor that may play a role myeloid-myeloid interactions during immune and inflammatory responses. A ligand for the soluble form of this receptor is present at the surface of monocytes-derived macrophages and activated neutrophils. Subcellular locations: Cell membrane Subcellular locations: Secreted Displays a predominantly leukocyte-restricted expression, with highest levels in neutrophils, monocytes and macrophages.
AGRE4_HUMAN
Homo sapiens
MGSRFLLVLLSGASCPPCPKYASCHNSTHCTCEDGFRARSGRTYFHDSSEKCEDINECETGLAKCKYKAYCRNKVGGYICSCLVKYTLFNFLAGIIDYDHPDCYENNSQGTTQSNVDIWVSGVKPGFGKQLPGDKRTKHICVYWEGSEGGWSTEGCSHVHSNGSYTKCKCFHLSSFAVLVALAPKEDPVLTVITQVGLTISLLCLFLAILTFLLCRPIQNTSTSLHLELSLCLFLAHLLFLTGINRTEPEVLCSIIAGLLHFLYLACFTWMLLEGLHLFLTVRNLKVANYTSTGRFKKRFMYPVGYGIPAVIIAVSAIVGPQNYGTFTCWLKLDKGFIWSFMGPVAVIILINLVFYFQVLWILRSKLSSLNKEVSTIQDTRVMTFKAISQLFILGCSWGLGFFMVEEVGKTIGSIIAYSFTIINTLQGVLLFVVHCLLNRQVRLIILSVISLVPKSN
May mediate the cellular interaction between myeloid cells and B-cells. Subcellular locations: Cell membrane Subcellular locations: Secreted
AGRE5_HUMAN
Homo sapiens
MGGRVFLAFCVWLTLPGAETQDSRGCARWCPQNSSCVNATACRCNPGFSSFSEIITTPTETCDDINECATPSKVSCGKFSDCWNTEGSYDCVCSPGYEPVSGAKTFKNESENTCQDVDECQQNPRLCKSYGTCVNTLGSYTCQCLPGFKFIPEDPKVCTDVNECTSGQNPCHSSTHCLNNVGSYQCRCRPGWQPIPGSPNGPNNTVCEDVDECSSGQHQCDSSTVCFNTVGSYSCRCRPGWKPRHGIPNNQKDTVCEDMTFSTWTPPPGVHSQTLSRFFDKVQDLGRDSKTSSAEVTIQNVIKLVDELMEAPGDVEALAPPVRHLIATQLLSNLEDIMRILAKSLPKGPFTYISPSNTELTLMIQERGDKNVTMGQSSARMKLNWAVAAGAEDPGPAVAGILSIQNMTTLLANASLNLHSKKQAELEEIYESSIRGVQLRRLSAVNSIFLSHNNTKELNSPILFAFSHLESSDGEAGRDPPAKDVMPGPRQELLCAFWKSDSDRGGHWATEGCQVLGSKNGSTTCQCSHLSSFAILMAHYDVEDWKLTLITRVGLALSLFCLLLCILTFLLVRPIQGSRTTIHLHLCICLFVGSTIFLAGIENEGGQVGLRCRLVAGLLHYCFLAAFCWMSLEGLELYFLVVRVFQGQGLSTRWLCLIGYGVPLLIVGVSAAIYSKGYGRPRYCWLDFEQGFLWSFLGPVTFIILCNAVIFVTTVWKLTQKFSEINPDMKKLKKARALTITAIAQLFLLGCTWVFGLFIFDDRSLVLTYVFTILNCLQGAFLYLLHCLLNKKVREEYRKWACLVAGGSKYSEFTSTTSGTGHNQTRALRASESGI
Receptor potentially involved in both adhesion and signaling processes early after leukocyte activation. Plays an essential role in leukocyte migration. Subcellular locations: Cell membrane Subcellular locations: Secreted, Extracellular space Broadly expressed, found on most hematopoietic cells, including activated lymphocytes, monocytes, macrophages, dendritic cells, and granulocytes. Expressed also abundantly by smooth muscle cells. Expressed in thyroid, colorectal, gastric, esophageal and pancreatic carcinomas too. Expression are increased under inflammatory conditions in the CNS of multiple sclerosis and in synovial tissue of patients with rheumatoid arthritis. Increased expression of CD97 in the synovium is accompanied by detectable levels of soluble CD97 in the synovial fluid.
AGRF1_HUMAN
Homo sapiens
MKVGVLWLISFFTFTDGHGGFLGKNDGIKTKKELIVNKKKHLGPVEEYQLLLQVTYRDSKEKRDLRNFLKLLKPPLLWSHGLIRIIRAKATTDCNSLNGVLQCTCEDSYTWFPPSCLDPQNCYLHTAGALPSCECHLNNLSQSVNFCERTKIWGTFKINERFTNDLLNSSSAIYSKYANGIEIQLKKAYERIQGFESVQVTQFRNGSIVAGYEVVGSSSASELLSAIEHVAEKAKTALHKLFPLEDGSFRVFGKAQCNDIVFGFGSKDDEYTLPCSSGYRGNITAKCESSGWQVIRETCVLSLLEELNKNFSMIVGNATEAAVSSFVQNLSVIIRQNPSTTVGNLASVVSILSNISSLSLASHFRVSNSTMEDVISIADNILNSASVTNWTVLLREEKYASSRLLETLENISTLVPPTALPLNFSRKFIDWKGIPVNKSQLKRGYSYQIKMCPQNTSIPIRGRVLIGSDQFQRSLPETIISMASLTLGNILPVSKNGNAQVNGPVISTVIQNYSINEVFLFFSKIESNLSQPHCVFWDFSHLQWNDAGCHLVNETQDIVTCQCTHLTSFSILMSPFVPSTIFPVVKWITYVGLGISIGSLILCLIIEALFWKQIKKSQTSHTRRICMVNIALSLLIADVWFIVGATVDTTVNPSGVCTAAVFFTHFFYLSLFFWMLMLGILLAYRIILVFHHMAQHLMMAVGFCLGYGCPLIISVITIAVTQPSNTYKRKDVCWLNWSNGSKPLLAFVVPALAIVAVNFVVVLLVLTKLWRPTVGERLSRDDKATIIRVGKSLLILTPLLGLTWGFGIGTIVDSQNLAWHVIFALLNAFQGFFILCFGILLDSKLRQLLFNKLSALSSWKQTEKQNSSDLSAKPKFSKPFNPLQNKGHYAFSHTGDSSDNIMLTQFVSNE
Orphan receptor. Subcellular locations: Cell membrane Subcellular locations: Secreted Mainly expressed in the kidney. Up-regulated in lung adenocarcinomas and prostate cancers.
AGRF2_HUMAN
Homo sapiens
MGLTAYGNRRVQPGELPFGANLTLIHTRAQPVICSKLLLTKRVSPISFFLSKFQNSWGEDGWVQLDQLPSPNAVSSDQVHCSAGCTHRKCGWAASKSKEKVPARPHGVCDGVCTDYSQCTQPCPPDTQGNMGFSCRQKTWHKITDTCQTLNALNIFEEDSRLVQPFEDNIKISVYTGKSETITDMLLQKCPTDLSCVIRNIQQSPWIPGNIAVIVQLLHNISTAIWTGVDEAKMQSYSTIANHILNSKSISNWTFIPDRNSSYILLHSVNSFARRLFIDKHPVDISDVFIHTMGTTISGDNIGKNFTFSMRINDTSNEVTGRVLISRDELRKVPSPSQVISIAFPTIGAILEASLLENVTVNGLVLSAILPKELKRISLIFEKISKSEERRTQCVGWHSVENRWDQQACKMIQENSQQAVCKCRPSKLFTSFSILMSPHILESLILTYITYVGLGISICSLILCLSIEVLVWSQVTKTEITYLRHVCIVNIAATLLMADVWFIVASFLSGPITHHKGCVAATFFVHFFYLSVFFWMLAKALLILYGIMIVFHTLPKSVLVASLFSVGYGCPLAIAAITVAATEPGKGYLRPEICWLNWDMTKALLAFVIPALAIVVVNLITVTLVIVKTQRAAIGNSMFQEVRAIVRISKNIAILTPLLGLTWGFGVATVIDDRSLAFHIIFSLLNAFQVSPDASDQVQSERIHEDVL
Orphan receptor. Subcellular locations: Membrane High expression in kidney. Up-regulated in lung adenocarcinomas and prostate cancers.
AK1BA_HUMAN
Homo sapiens
MATFVELSTKAKMPIVGLGTWKSPLGKVKEAVKVAIDAGYRHIDCAYVYQNEHEVGEAIQEKIQEKAVKREDLFIVSKLWPTFFERPLVRKAFEKTLKDLKLSYLDVYLIHWPQGFKSGDDLFPKDDKGNAIGGKATFLDAWEAMEELVDEGLVKALGVSNFSHFQIEKLLNKPGLKYKPVTNQVECHPYLTQEKLIQYCHSKGITVTAYSPLGSPDRPWAKPEDPSLLEDPKIKEIAAKHKKTAAQVLIRFHIQRNVIVIPKSVTPARIVENIQVFDFKLSDEEMATILSFNRNWRACNVLQSSHLEDYPFNAEY
Catalyzes the NADPH-dependent reduction of a wide variety of carbonyl-containing compounds to their corresponding alcohols ( ). Displays strong enzymatic activity toward all-trans-retinal, 9-cis-retinal, and 13-cis-retinal (, ). Plays a critical role in detoxifying dietary and lipid-derived unsaturated carbonyls, such as crotonaldehyde, 4-hydroxynonenal, trans-2-hexenal, trans-2,4-hexadienal and their glutathione-conjugates carbonyls (GS-carbonyls) (, ). Displays no reductase activity towards glucose . Subcellular locations: Lysosome, Secreted Secreted through a lysosome-mediated non-classical pathway. Found in many tissues. Highly expressed in small intestine, colon and adrenal gland.
AK1BF_HUMAN
Homo sapiens
MATFVELSTKAKMPIVGLGTWRSLLGKVKEAVKVAIDAEYRHIDCAYFYENQHEVGEAIQEKIQEKAVMREDLFIVSKVWPTFFERPLVRKAFEKTLKDLKLSYLDVYLIHWPQGFKTGDDFFPKDDKGNMISGKGTFLDAWEAMEELVDEGLVKALGVSNFNHFQIERLLNKPGLKYKPVTNQVECHPYLTQEKLIQYCHSKGITVTAYSPLGSPDRPWAKPEDPSLLEDPKIKEIAAKHKKTTAQVLIRFHIQRNVTVIPKSMTPAHIVENIQVFDFKLSDEEMATILSFNRNWRAFDFKEFSHLEDFPFDAEY
Catalyzes the NADPH-dependent reduction of a variety of carbonyl substrates, like aromatic aldehydes, alkenals, ketones and alpha-dicarbonyl compounds (, ). In addition, catalyzes the reduction of androgens and estrogens with high positional selectivity (shows 17-beta-hydroxysteroid dehydrogenase activity) as well as 3-keto-acyl-CoAs . Displays strong enzymatic activity toward all-trans-retinal and 9-cis-retinal . May play a physiological role in retinoid metabolism . No oxidoreductase activity observed with the tested substrates. Subcellular locations: Mitochondrion Subcellular locations: Cytoplasm, Cytosol Widely expressed. Expressed at highest levels in steroid-sensitive tissues, such as placenta, testis and adipose tissue.
AK1C1_HUMAN
Homo sapiens
MDSKYQCVKLNDGHFMPVLGFGTYAPAEVPKSKALEATKLAIEAGFRHIDSAHLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWCNSHRPELVRPALERSLKNLQLDYVDLYLIHFPVSVKPGEEVIPKDENGKILFDTVDLCATWEAVEKCKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYFNQRKLLDFCKSKDIVLVAYSALGSHREEPWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRQNVQVFEFQLTSEEMKAIDGLNRNVRYLTLDIFAGPPNYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids . Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH . Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens . May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate . Displays affinity for bile acids . Subcellular locations: Cytoplasm, Cytosol Expressed in all tissues tested including liver, prostate, testis, adrenal gland, brain, uterus, mammary gland and keratinocytes. Highest levels found in liver, mammary gland and brain.
AK1C1_MACFA
Macaca fascicularis
MDSKHQCVKLNDGHFMPVLGFGTYAPAEVPKNKALEATKLAIEAGFRHIDSAHLYNNEEYVGLAIRSKIADGTVKREDIFYTSKLWCNSHRPEFVRPALERSLKNLQLDYVDLYLIHFPVSLKPGEELIPKDENGKLLFDTVDLCATWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYLNQRKLLDFCKSKDIVLVAFSALGSHREKPWVDQNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRENMKVFEFQLTSEDMKAIDGLDRNIRYLTLDIFAGPPNYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids . Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH (By similarity). Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens . May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate. Displays affinity for bile acids (By similarity). Can also act on non-steroidal substrates such as S-indan-1-ol, S-tetralol and 4-chromanol . Subcellular locations: Cytoplasm, Cytosol
AK1C1_MACFU
Macaca fuscata fuscata
MDSKHQCVKLNDGHFMPVLGFGTYAPAEVPKNKAIEATKLAIEAGFRHIDSAHLYNNEEYVGLAIRSKIADGTVKREDIFYTSKLWCNSHRPEFVRPALERSLKNLQLDYVDLYLIHFPVSLKPGEELIPKDENGKLLFDTVDLCATWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYLNQRKLLDFCKSKDIVLVAYSALGSHREKPWVDQNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRENMKVFEFQLTSEDMKAIDGLDRNIRYLTLDIFAGPPNYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH. Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens. May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate. Displays affinity for bile acids. Subcellular locations: Cytoplasm, Cytosol Expressed in liver, adrenal gland, intestine and kidney.
AK1C1_PONAB
Pongo abelii
MDSKYQCVKLNDSHFMPVLGFGTYAPPEVPKSKALEATKLAIEAGFRHIDSAHLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWCNSHRPELVRPALERSLKNLQLDYVDLYLVHFPVSVKPGEEVIPKDENGKILFDTVDLCATWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYFNQRKLLDFCKSKDIVLVAYSALGSHREEKWVDPNSPVLLEDPVLCALAKKHKQTPALIALRYQLQRGVVVLAKSYNEQRIRQNMQVFDFQLTSEDMKTIDGLNRNMRYLTLDIFAGPPNYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH. Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens. May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate. Displays affinity for bile acids. Subcellular locations: Cytoplasm, Cytosol
AK1C2_HUMAN
Homo sapiens
MDSKYQCVKLNDGHFMPVLGFGTYAPAEVPKSKALEAVKLAIEAGFHHIDSAHVYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWSNSHRPELVRPALERSLKNLQLDYVDLYLIHFPVSVKPGEEVIPKDENGKILFDTVDLCATWEAMEKCKDAGLAKSIGVSNFNHRLLEMILNKPGLKYKPVCNQVECHPYFNQRKLLDFCKSKDIVLVAYSALGSHREEPWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRQNVQVFEFQLTSEEMKAIDGLNRNVRYLTLDIFAGPPNYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids . Most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentrations of NADPH . Displays a broad positional specificity acting on positions 3, 17 and 20 of steroids and regulates the metabolism of hormones like estrogens and androgens . Works in concert with the 5-alpha/5-beta-steroid reductases to convert steroid hormones into the 3-alpha/5-alpha and 3-alpha/5-beta-tetrahydrosteroids. Catalyzes the inactivation of the most potent androgen 5-alpha-dihydrotestosterone (5-alpha-DHT) to 5-alpha-androstane-3-alpha,17-beta-diol (3-alpha-diol) ( , ). Also specifically able to produce 17beta-hydroxy-5alpha-androstan-3-one/5alphaDHT . May also reduce conjugated steroids such as 5alpha-dihydrotestosterone sulfate . Displays affinity for bile acids . Subcellular locations: Cytoplasm, Cytosol Expressed in fetal testes. Expressed in fetal and adult adrenal glands.
AK1C3_HUMAN
Homo sapiens
MDSKHQCVKLNDGHFMPVLGFGTYAPPEVPRSKALEVTKLAIEAGFRHIDSAHLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWSTFHRPELVRPALENSLKKAQLDYVDLYLIHSPMSLKPGEELSPTDENGKVIFDIVDLCTTWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYFNRSKLLDFCKSKDIVLVAYSALGSQRDKRWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRQNVQVFEFQLTAEDMKAIDGLDRNLHYFNSDSFASHPNYPYSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone ( ). Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH (, ). Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone . Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol ( , ). Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol) ( , ). Also displays retinaldehyde reductase activity toward 9-cis-retinal . Subcellular locations: Cytoplasm Expressed in many tissues including adrenal gland, brain, kidney, liver, lung, mammary gland, placenta, small intestine, colon, spleen, prostate and testis. High expression in prostate and mammary gland. In the prostate, higher levels in epithelial cells than in stromal cells. In the brain, expressed in medulla, spinal cord, frontotemporal lobes, thalamus, subthalamic nuclei and amygdala. Weaker expression in the hippocampus, substantia nigra and caudate.
AK1C3_PONAB
Pongo abelii
MDSKHQCVKLNDGHFMPVLGFGTYAPPEVPRSKALEVTKLAIEAGFRHIDSAHLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWSTFHRPELVRPALENSLKKAQLDYVDLYLIHSPMSLKPGEELSPTDENGKVIFDIVDLCTTWEAMEECKDAGLAKSIGVSNFNRRQLEMILNKPGLKYKPVCNQVECHPYFNRSKLLDFCKSKDIVLVAYSALGSQRDKRWVDPNSPVLLEDPVLCALAKKHKRTPALIALRYQLQRGVVVLAKSYNEQRIRENVQVFEFQLTAEDMRAIDGLNRNLHYFNSDSLASHPNYPYSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Acts as a NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain and regulates the metabolism of androgens, estrogens and progesterone. Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH. Acts preferentially as a 17-ketosteroid reductase and has the highest catalytic efficiency of the AKR1C enzyme for the reduction of delta4-androstenedione to form testosterone. Reduces prostaglandin (PG) D2 to 11beta-prostaglandin F2, progesterone to 20alpha-hydroxyprogesterone and estrone to 17beta-estradiol. Catalyzes the transformation of the potent androgen dihydrotestosterone (DHT) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol). Also displays retinaldehyde reductase activity toward 9-cis-retinal. Subcellular locations: Cytoplasm
AK1C4_HUMAN
Homo sapiens
MDPKYQRVELNDGHFMPVLGFGTYAPPEVPRNRAVEVTKLAIEAGFRHIDSAYLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWCTFFQPQMVQPALESSLKKLQLDYVDLYLLHFPMALKPGETPLPKDENGKVIFDTVDLSATWEVMEKCKDAGLAKSIGVSNFNCRQLEMILNKPGLKYKPVCNQVECHPYLNQSKLLDFCKSKDIVLVAHSALGTQRHKLWVDPNSPVLLEDPVLCALAKKHKQTPALIALRYQLQRGVVVLAKSYNEQRIRENIQVFEFQLTSEDMKVLDGLNRNYRYVVMDFLMDHPDYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Liver specific enzyme that acts as an NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain ( ). Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH . Acts preferentially as a 3-alpha-hydroxysteroid dehydrogenase (HSD) with a subsidiary 3-beta-HSD activity . Catalyzes efficiently the transformation of the potent androgen 5-alpha-dihydrotestosterone (5alpha-DHT or 17beta-hydroxy-5alpha-androstan-3-one) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol) ( ). Catalyzes the reduction of estrone into 17beta-estradiol but with low efficiency . Metabolizes a broad spectrum of natural and synthetic therapeutic steroid and plays an important role in metabolism of androgens, estrogens, progestereone and conjugated steroids ( ). Catalyzes the biotransformation of the pesticide chlordecone (kepone) to its corresponding alcohol leading to increased biliary excretion of the pesticide and concomitant reduction of its neurotoxicity since bile is the major excretory route . Subcellular locations: Cytoplasm, Cytosol Liver specific.
AK1C4_MACFA
Macaca fascicularis
MDPKYQRVALNDGHFMPVLGFGTYAPPEVPRNRVVEVTKLAIEAGFRHIDSAYLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWCTFFRPQLVQPALESSLKKLQLDYVDLYLIHFPMALKPGETPLPKDENGKVMFDTVDLCAIWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNNPGLKYKPVCNQVECHPYLNQSKLLDFCKSKDIVLVAHSALGTQRHKLWVDQNSPALLEDPVLCALAKKHKRSPALIALRYQLQRGVVVLAKSYNEQRIRENVQVFEFQLTSEDMKVLDDLNRNFRYVVMDFLVDHPDYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Liver specific enzyme that acts as an NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain. Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH. Acts preferentially as a 3-alpha-hydroxysteroid dehydrogenase (HSD) with a subsidiary 3-beta-HSD activity. Catalyzes efficiently the transformation of the potent androgen 5-alpha-dihydrotestosterone (5alpha-DHT or 17beta-hydroxy-5alpha-androstan-3-one) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol). Catalyzes the reduction of estrone into 17beta-estradiol but with low efficiency. Metabolizes a broad spectrum of natural and synthetic therapeutic steroid and plays an important role in metabolism of androgens, estrogens, progestereone and conjugated steroids. Catalyzes the biotransformation of the pesticide chlordecone (kepone) to its corresponding alcohol leading to increased biliary excretion of the pesticide and concomitant reduction of its neurotoxicity since bile is the major excretory route. Subcellular locations: Cytoplasm, Cytosol
AK1C4_MACFU
Macaca fuscata fuscata
MDPKYQRVALNDGHFMPVLGFGSYAPPEVPRNRVVEVTKLAIEAGFRHIDSAYLYNNEEQVGLAIRSKIADGSVKREDIFYTSKLWCTFFRPQLVQPALESSLKKLQLDYVDLYLIHFPMALKPGETPLPKDENGKVMFDTVDLCAIWEAMEKCKDAGLAKSIGVSNFNRRQLEMILNNPGLKYKPVCNQVECHPYLNQSKLLDFCKSKDIVLVAHSALGTQRHKLWVDQNSPALLEDPVLCALAKKHKRSPALIALRYQLQRGVVVLAKSYNEQRIRENVQVFEFQLTSEDMKVLDDLNRNFRYVVMDFLVDHPDYPFSDEY
Cytosolic aldo-keto reductase that catalyzes the NADH and NADPH-dependent reduction of ketosteroids to hydroxysteroids. Liver specific enzyme that acts as an NAD(P)(H)-dependent 3-, 17- and 20-ketosteroid reductase on the steroid nucleus and side chain . Displays the ability to catalyze both oxidation and reduction in vitro, but most probably acts as a reductase in vivo since the oxidase activity measured in vitro is inhibited by physiological concentration of NADPH (By similarity). Acts preferentially as a 3-alpha-hydroxysteroid dehydrogenase (HSD) with a subsidiary 3-beta-HSD activity . Catalyzes efficiently the transformation of the potent androgen 5-alpha-dihydrotestosterone (5alpha-DHT or 17beta-hydroxy-5alpha-androstan-3-one) into the less active form, 5-alpha-androstan-3-alpha,17-beta-diol (3-alpha-diol). Catalyzes the reduction of estrone into 17beta-estradiol but with low efficiency. Metabolizes a broad spectrum of natural and synthetic therapeutic steroid and plays an important role in metabolism of androgens, estrogens, progestereone and conjugated steroids. Catalyzes the biotransformation of the pesticide chlordecone (kepone) to its corresponding alcohol leading to increased biliary excretion of the pesticide and concomitant reduction of its neurotoxicity since bile is the major excretory route (By similarity). Subcellular locations: Cytoplasm, Cytosol High expression in liver. Also expressed in kidney.
AL3A2_HUMAN
Homo sapiens
MELEVRRVRQAFLSGRSRPLRFRLQQLEALRRMVQEREKDILTAIAADLCKSEFNVYSQEVITVLGEIDFMLENLPEWVTAKPVKKNVLTMLDEAYIQPQPLGVVLIIGAWNYPFVLTIQPLIGAIAAGNAVIIKPSELSENTAKILAKLLPQYLDQDLYIVINGGVEETTELLKQRFDHIFYTGNTAVGKIVMEAAAKHLTPVTLELGGKSPCYIDKDCDLDIVCRRITWGKYMNCGQTCIAPDYILCEASLQNQIVWKIKETVKEFYGENIKESPDYERIINLRHFKRILSLLEGQKIAFGGETDEATRYIAPTVLTDVDPKTKVMQEEIFGPILPIVPVKNVDEAINFINEREKPLALYVFSHNHKLIKRMIDETSSGGVTGNDVIMHFTLNSFPFGGVGSSGMGAYHGKHSFDTFSHQRPCLLKSLKREGANKLRYPPNSQSKVDWGKFFLLKRFNKEKLGLLLLTFLGIVAAVLVKAEYY
Catalyzes the oxidation of medium and long chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length ( , ). Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid . Subcellular locations: Microsome membrane, Endoplasmic reticulum membrane Detected in liver (at protein level).
AL3A2_MACFA
Macaca fascicularis
MEREVQRVRQAFLSGRSRPLRFRLQQLEALRRMVQEREKDILAAIAADLCKSELNAYSQEVITVLGEIDFMLENLPEWVTAKPVKKNLLTMMDEAYIQPQPLGVVLIIGAWNYPFVLIIQPLIGAIAAGNAVIIKPSELSENTAKIVAKLLPQYLDQDLYVVINGGVEETTELLKQRFDHIFYTGNTAVGKIVMEAAAKHLTPVTLELGGKSPCYIDKDCDLDIVCRRITWGKYMNCGQTCIAPDYILCEASLQSQIVWKIKETVKEFYGENIKESPDYERIINLRHFKRILSLLEGQKIALGGETDEATRYIAPTVLTDVDPKTKVMQEEIFGPVLPIVPVKNVDEATDFINEREKPLALYVFSHNHKLIKRMIDETSSGGVTGNDVIMHFTLNSFPFGGVGSSGMGAYHGKHSFDTFSHQRPCLLKSLKREGANKLRYPPNSQSKVDWGKFFLLRRFNKEKLGLLVLTFLGIVAAVLVNAGYY
Catalyzes the oxidation of medium and long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid. Subcellular locations: Microsome membrane, Endoplasmic reticulum membrane
AL3A2_PONAB
Pongo abelii
MELEVRRVRQAFLSGRSRPLRFRLQQLEALRRMVQEREKDILAAIAADLCKSEFNVYSQEVITVLGEIDFMLENLPEWVTAKPVKKNVLTMLDEAYIQPQPLGVVLIIGAWNYPFVLTIQPLIGAIAAGNAVIIKPSELSENTAKMLAKLLPQYLDQDLYIVINGGVEETTELLKQRFDHIFYTGNTAVGKIVMEAAAKHLTPVTLELGGKSPCYIDKDCDLDIVCRRITWGKYMNCGQTCIAPDYILCEASLQNQIVWKIKETVKEFYGENIKESPDYERIINLRHFKRILSLLEGQKIAFGGETDEATRYIAPTVLTDVDPKTKVMQEEIFGPILPIVPVKNVDEAINFINEREKPLALYVFSHNHKLIKRMIDETSSGGVTGNDVIMHFMLNSFPFGGVGSSGMGAYHGKHSFDTFSHQRPCLLKSLKREGANKLRYPPNSQSKVDWGKFFLLKRFNKEKLGLLLLTFLGIVAAVLVKAEYY
Catalyzes the oxidation of medium and long-chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid. Subcellular locations: Microsome membrane, Endoplasmic reticulum membrane
AL3B1_HUMAN
Homo sapiens
MDPLGDTLRRLREAFHAGRTRPAEFRAAQLQGLGRFLQENKQLLHDALAQDLHKSAFESEVSEVAISQGEVTLALRNLRAWMKDERVPKNLATQLDSAFIRKEPFGLVLIIAPWNYPLNLTLVPLVGALAAGNCVVLKPSEISKNVEKILAEVLPQYVDQSCFAVVLGGPQETGQLLEHRFDYIFFTGSPRVGKIVMTAAAKHLTPVTLELGGKNPCYVDDNCDPQTVANRVAWFRYFNAGQTCVAPDYVLCSPEMQERLLPALQSTITRFYGDDPQSSPNLGRIINQKQFQRLRALLGCGRVAIGGQSDESDRYIAPTVLVDVQEMEPVMQEEIFGPILPIVNVQSLDEAIEFINRREKPLALYAFSNSSQVVKRVLTQTSSGGFCGNDGFMHMTLASLPFGGVGASGMGRYHGKFSFDTFSHHRACLLRSPGMEKLNALRYPPQSPRRLRMLLVAMEAQGCSCTLL
Oxidizes medium and long chain saturated and unsaturated aldehydes (, ). Metabolizes also benzaldehyde . Low activity towards acetaldehyde and 3,4-dihydroxyphenylacetaldehyde (, ). May not metabolize short chain aldehydes. Can use both NADP(+) and NAD(+) as electron acceptor . May have a protective role against the cytotoxicity induced by lipid peroxidation . Subcellular locations: Cell membrane Primarily in the plasma membrane as well as in some punctate structures in the cytoplasm. Highest expression in kidney and lung.
AL3B2_HUMAN
Homo sapiens
MKDEPRSTNLFMKLDSVFIWKEPFGLVLIIAPWNYPLNLTLVLLVGALAAGSCVVLKPSEISQGTEKVLAEVLPQYLDQSCFAVVLGGPQETGQLLEHKLDYIFFTGSPRVGKIVMTAATKHLTPVTLELGGKNPCYVDDNCDPQTVANRVAWFCYFNAGQTCVAPDYVLCSPEMQERLLPALQSTITRFYGDDPQSSPNLGHIINQKQFQRLRALLGCSRVAIGGQSNESDRYIAPTVLVDVQETEPVMQEEIFGPILPIVNVQSVDEAIKFINRQEKPLALYAFSNSSQVVNQMLERTSSGSFGGNEGFTYISLLSVPFGGVGHSGMGRYHGKFTFDTFSHHRTCLLAPSGLEKLKEIHYPPYTDWNQQLLRWGMGSQSCTLL
Oxidizes medium and long chain aldehydes into non-toxic fatty acids. Subcellular locations: Lipid droplet Salivary gland.
AL4A1_HUMAN
Homo sapiens
MLLPAPALRRALLSRPWTGAGLRWKHTSSLKVANEPVLAFTQGSPERDALQKALKDLKGRMEAIPCVVGDEEVWTSDVQYQVSPFNHGHKVAKFCYADKSLLNKAIEAALAARKEWDLKPIADRAQIFLKAADMLSGPRRAEILAKTMVGQGKTVIQAEIDAAAELIDFFRFNAKYAVELEGQQPISVPPSTNSTVYRGLEGFVAAISPFNFTAIGGNLAGAPALMGNVVLWKPSDTAMLASYAVYRILREAGLPPNIIQFVPADGPLFGDTVTSSEHLCGINFTGSVPTFKHLWKQVAQNLDRFHTFPRLAGECGGKNFHFVHRSADVESVVSGTLRSAFEYGGQKCSACSRLYVPHSLWPQIKGRLLEEHSRIKVGDPAEDFGTFFSAVIDAKSFARIKKWLEHARSSPSLTILAGGKCDDSVGYFVEPCIVESKDPQEPIMKEEIFGPVLSVYVYPDDKYKETLQLVDSTTSYGLTGAVFSQDKDVVQEATKVLRNAAGNFYINDKSTGSIVGQQPFGGARASGTNDKPGGPHYILRWTSPQVIKETHKPLGDWSYAYMQ
Irreversible conversion of delta-1-pyrroline-5-carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma-semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes. Subcellular locations: Mitochondrion matrix Highest expression is found in liver followed by skeletal muscle, kidney, heart, brain, placenta, lung and pancreas.
ALDH2_HUMAN
Homo sapiens
MLRAAARFGPRLGRRLLSAAATQAVPAPNQQPEVFCNQIFINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDASHRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGKTIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTALYVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNLKRVTLELGGKSPNIIMSDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGGIAADRGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDLDKANYLSQALQAGTVWVNCYDVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKVPQKNS
Required for clearance of cellular formaldehyde, a cytotoxic and carcinogenic metabolite that induces DNA damage. Subcellular locations: Mitochondrion matrix
ALDH2_PONAB
Pongo abelii
MLRAAARFGPRLGRRLLSAAATQAVPAPNQQPEVFCNQIFINNEWHDAVSRKTFPTVNPSTGEVICQVAEGDKEDVDKAVKAARAAFQLGSPWRRMDASHRGRLLNRLADLIERDRTYLAALETLDNGKPYVISYLVDLDMVLKCLRYYAGWADKYHGKTIPIDGDFFSYTRHEPVGVCGQIIPWNFPLLMQAWKLGPALATGNVVVMKVAEQTPLTALYVANLIKEAGFPPGVVNIVPGFGPTAGAAIASHEDVDKVAFTGSTEIGRVIQVAAGSSNLKRVTLELGGKSPNIIMSDADMDWAVEQAHFALFFNQGQCCCAGSRTFVQEDIYDEFVERSVARAKSRVVGNPFDSKTEQGPQVDETQFKKILGYINTGKQEGAKLLCGGGIAADRGYFIQPTVFGDVQDGMTIAKEEIFGPVMQILKFKTIEEVVGRANNSTYGLAAAVFTKDLDKANYLSQALQAGTVWVNCYNVFGAQSPFGGYKMSGSGRELGEYGLQAYTEVKTVTVKVPQKNS
Required for clearance of cellular formaldehyde, a cytotoxic and carcinogenic metabolite that induces DNA damage. Subcellular locations: Mitochondrion matrix
AMD_HUMAN
Homo sapiens
MAGRVPSLLVLLVFPSSCLAFRSPLSVFKRFKETTRPFSNECLGTTRPVVPIDSSDFALDIRMPGVTPKQSDTYFCMSMRIPVDEEAFVIDFKPRASMDTVHHMLLFGCNMPSSTGSYWFCDEGTCTDKANILYAWARNAPPTRLPKGVGFRVGGETGSKYFVLQVHYGDISAFRDNNKDCSGVSLHLTRLPQPLIAGMYLMMSVDTVIPAGEKVVNSDISCHYKNYPMHVFAYRVHTHHLGKVVSGYRVRNGQWTLIGRQSPQLPQAFYPVGHPVDVSFGDLLAARCVFTGEGRTEATHIGGTSSDEMCNLYIMYYMEAKHAVSFMTCTQNVAPDMFRTIPPEANIPIPVKSDMVMMHEHHKETEYKDKIPLLQQPKREEEEVLDQGDFYSLLSKLLGEREDVVHVHKYNPTEKAESESDLVAEIANVVQKKDLGRSDAREGAEHERGNAILVRDRIHKFHRLVSTLRPPESRVFSLQQPPPGEGTWEPEHTGDFHMEEALDWPGVYLLPGQVSGVALDPKNNLVIFHRGDHVWDGNSFDSKFVYQQIGLGPIEEDTILVIDPNNAAVLQSSGKNLFYLPHGLSIDKDGNYWVTDVALHQVFKLDPNNKEGPVLILGRSMQPGSDQNHFCQPTDVAVDPGTGAIYVSDGYCNSRIVQFSPSGKFITQWGEESSGSSPLPGQFTVPHSLALVPLLGQLCVADRENGRIQCFKTDTKEFVREIKHSSFGRNVFAISYIPGLLFAVNGKPHFGDQEPVQGFVMNFSNGEIIDIFKPVRKHFDMPHDIVASEDGTVYIGDAHTNTVWKFTLTEKLEHRSVKKAGIEVQEIKEAEAVVETKMENKPTSSELQKMQEKQKLIKEPGSGVPVVLITTLLVIPVVVLLAIAIFIRWKKSRAFGDSEHKLETSSGRVLGRFRGKGSGGLNLGNFFASRKGYSRKGFDRLSTEGSDQEKEDDGSESEEEYSAPLPALAPSSS
Bifunctional enzyme that catalyzes the post-translational modification of inactive peptidylglycine precursors to the corresponding bioactive alpha-amidated peptides, a terminal modification in biosynthesis of many neural and endocrine peptides . Alpha-amidation involves two sequential reactions, both of which are catalyzed by separate catalytic domains of the enzyme. The first step, catalyzed by peptidyl alpha-hydroxylating monooxygenase (PHM) domain, is the copper-, ascorbate-, and O2- dependent stereospecific hydroxylation (with S stereochemistry) at the alpha-carbon (C-alpha) of the C-terminal glycine of the peptidylglycine substrate . The second step, catalyzed by the peptidylglycine amidoglycolate lyase (PAL) domain, is the zinc-dependent cleavage of the N-C-alpha bond, producing the alpha-amidated peptide and glyoxylate . Similarly, catalyzes the two-step conversion of an N-fatty acylglycine to a primary fatty acid amide and glyoxylate (By similarity). Subcellular locations: Cytoplasmic vesicle, Secretory vesicle membrane Secretory granules. Subcellular locations: Membrane Subcellular locations: Membrane Subcellular locations: Secreted Secreted from secretory granules. Subcellular locations: Secreted Secreted from secretory granules.
AMELX_HUMAN
Homo sapiens
MGTWILFACLLGAAFAMPLPPHPGHPGYINFSYEVLTPLKWYQSIRPPYPSYGYEPMGGWLHHQIIPVLSQQHPPTHTLQPHHHIPVVPAQQPVIPQQPMMPVPGQHSMTPIQHHQPNLPPPAQQPYQPQPVQPQPHQPMQPQPPVHPMQPLPPQPPLPPMFPMQPLPPMLPDLTLEAWPSTDKTKREEVD
Plays a role in biomineralization. Seems to regulate the formation of crystallites during the secretory stage of tooth enamel development. Thought to play a major role in the structural organization and mineralization of developing enamel. Subcellular locations: Secreted, Extracellular space, Extracellular matrix
AMELY_HUMAN
Homo sapiens
MGTWILFACLVGAAFAMPLPPHPGHPGYINFSYENSHSQAINVDRIALVLTPLKWYQSMIRPPYSSYGYEPMGGWLHHQIIPVVSQQHPLTHTLQSHHHIPVVPAQQPRVRQQALMPVPGQQSMTPTQHHQPNLPLPAQQPFQPQPVQPQPHQPMQPQPPVQPMQPLLPQPPLPPMFPLRPLPPILPDLHLEAWPATDKTKQEEVD
Plays a role in biomineralization. Seems to regulate the formation of crystallites during the secretory stage of tooth enamel development. Thought to play a major role in the structural organization and mineralization of developing enamel. Subcellular locations: Secreted, Extracellular space, Extracellular matrix
AMELY_PANTR
Pan troglodytes
MGTWILFACLVGAAFAMPLPPHPGHPGYINFSYENSHSQAINVDRIALVLTPLKWYQSMIRPPYSSYGYEPMGGWLHHQIIPVVSQQHPLTHTLQSHHHIPVVPAQQPRVPQQAMMPVPGQQSMTPTQHHQPNLPLPAQQPFQPQPVQPLPHQPMQPQPPVQPMQPLLPQPPLPPMFPMRPLPPILPDLHLEAWPATDKTKRE
Plays a role in biomineralization. Seems to regulate the formation of crystallites during the secretory stage of tooth enamel development. Thought to play a major role in the structural organization and mineralization of developing enamel (By similarity). Subcellular locations: Secreted, Extracellular space, Extracellular matrix
AMZ1_HUMAN
Homo sapiens
MLQCRPAQEFSFGPRALKDALVSTDAALQQLYVSAFSPAERLFLAEAYNPQRTLFCTLLIRTGFDWLLSRPEAPEDFQTFHASLQHRKPRLARKHIYLQPIDLSEEPVGSSLLHQLCSCTEAFFLGLRVKCLPSVAAASIRCSSRPSRDSDRLQLHTDGILSFLKNNKPGDALCVLGLTLSDLYPHEAWSFTFSKFLPGHEVGVCSFARFSGEFPKSGPSAPDLALVEAAADGPEAPLQDRGWALCFSALGMVQCCKVTCHELCHLLGLGNCRWLRCLMQGALSLDEALRRPLDLCPICLRKLQHVLGFRLIERYQRLYTWTQAVVGTWPSQEAGEPSVWEDTPPASADSGMCCESDSEPGTSVSEPLTPDAGSHTFASGPEEGLSYLAASEAPLPPGGPAEAIKEHERWLAMCIQALQREVAEEDLVQVDRAVDALDRWEMFTGQLPATRQDPPSSRDSVGLRKVLGDKFSSLRRKLSARKLARAESAPRPWDGEES
Probable zinc metalloprotease.
AMZ2_HUMAN
Homo sapiens
MQIIRHSEQTLKTALISKNPVLVSQYEKLNAGEQRLMNEAFQPASDLFGPITLHSPSDWITSHPEAPQDFEQFFSDPYRKTPSPNKRSIYIQSIGSLGNTRIISEEYIKWLTGYCKAYFYGLRVKLLEPVPVSVTRCSFRVNENTHNLQIHAGDILKFLKKKKPEDAFCVVGITMIDLYPRDSWNFVFGQASLTDGVGIFSFARYGSDFYSMHYKGKVKKLKKTSSSDYSIFDNYYIPEITSVLLLRSCKTLTHEIGHIFGLRHCQWLACLMQGSNHLEEADRRPLNLCPICLHKLQCAVGFSIVERYKALVRWIDDESSDTPGATPEHSHEDNGNLPKPVEAFKEWKEWIIKCLAVLQK
Probable zinc metalloprotease. Down-regulated in testis from patients with maturation arrest (MA) or Sertoli cell-only syndrome (SCOS).
AMZ2_MACFA
Macaca fascicularis
MQIIRHSEQTLKTALISKNPVLVSQYEKLDAGEQRLMNEAFQPASDLFGPITLHSPSDWITSHPEAPQDFEQFFSDPYRKTPSPDKRSVYIQAIGSLGNTRIISEEYIKWLTGYCKAYFYGLRVKLLEPVPVSATRCSFRVNENTQNLQIHAGDILKFLKKKKPEDAFCIVGITMIDLYPRDSWNFVFGQASLTDGVGIFSFARYGSDFYSMRYEGKVKKLKKTSSSDYSIFNNYYIPEITSVLLLRSCKTLTHEIGHIFGLRHCQWLACLMQGSNHLEESDRRPLNLCPICLRKLQCAVGFSIVERYKALVRWIDDESSGTPGATPEHSREGNGNLPKPVEAFKEWKEWIIKCLAVLQK
Probable zinc metalloprotease.
AMZ2_PONAB
Pongo abelii
MQIIRHSEQTLKTALISKNPVLVSQYEKLDAGEQRLMNEAFQPASDLFGPITLHSPSDWITSHPEAPQDFEQFFSDPYRKTPSPNKRSIYIQSIGSLGNTRIISEEYIKWVTGYCKAYFYGLRVKLLEPVPVSATRCSFRVNENTHNLQIHAGDILKFLKKKKPEDAFCVVGITMIDLYPRDSWNFVFGQASLTDGVGIFSFARYGSDFYSMRYEGKVKKLKKTSSSDYSIFDNYYIPEITSVLLLRSCKTLTHEIGHIFGLRHCQWLACLMQGSNHLEEADRRPLNLCPICLRKLQCAIGFSTVERYKALVRWIDDESSDTPGATPEHSCEDNGNLPKPVEAFKEWKEWIIKCLAVLQK
Probable zinc metalloprotease.
ANFB_HUMAN
Homo sapiens
MDPQTAPSRALLLLLFLHLAFLGGRSHPLGSPGSASDLETSGLQEQRNHLQGKLSELQVEQTSLEPLQESPRPTGVWKSREVATEGIRGHRKMVLYTLRAPRSPKMVQGSGCFGRKMDRISSSSGLGCKVLRRH
Cardiac hormone that plays a key role in mediating cardio-renal homeostasis ( , ). May also function as a paracrine antifibrotic factor in the heart (By similarity). Acts by specifically binding and stimulating NPR1 to produce cGMP, which in turn activates effector proteins that drive various biological responses ( , ). Involved in regulating the extracellular fluid volume and maintaining the fluid-electrolyte balance through natriuresis, diuresis, vasorelaxation, and inhibition of renin and aldosterone secretion (, ). Binds the clearance receptor NPR3 . May affect cardio-renal homeostasis . Able to promote the production of cGMP although its potency is very low compared to brain natriuretic peptide 32 . May have a role in cardio-renal homeostasis . Able to promote the production of cGMP . Subcellular locations: Secreted Detected in blood. Subcellular locations: Secreted Detected in blood. Subcellular locations: Secreted Detected in blood. Subcellular locations: Secreted Detected in blood. Detected in the cardiac atria (at protein level) (, ). Detected in the kidney distal tubular cells (at protein level) .
ANKH_HUMAN
Homo sapiens
MVKFPALTHYWPLIRFLVPLGITNIAIDFGEQALNRGIAAVKEDAVEMLASYGLAYSLMKFFTGPMSDFKNVGLVFVNSKRDRTKAVLCMVVAGAIAAVFHTLIAYSDLGYYIINKLHHVDESVGSKTRRAFLYLAAFPFMDAMAWTHAGILLKHKYSFLVGCASISDVIAQVVFVAILLHSHLECREPLLIPILSLYMGALVRCTTLCLGYYKNIHDIIPDRSGPELGGDATIRKMLSFWWPLALILATQRISRPIVNLFVSRDLGGSSAATEAVAILTATYPVGHMPYGWLTEIRAVYPAFDKNNPSNKLVSTSNTVTAAHIKKFTFVCMALSLTLCFVMFWTPNVSEKILIDIIGVDFAFAELCVVPLRIFSFFPVPVTVRAHLTGWLMTLKKTFVLAPSSVLRIIVLIASLVVLPYLGVHGATLGVGSLLAGFVGESTMVAIAACYVYRKQKKKMENESATEGEDSAMTDMPPTEEVTDIVEMREENE
Transports adenosine triphosphate (ATP) and possibly other nucleoside triphosphates (NTPs) from cytosol to the extracellular space. Mainly regulates their levels locally in peripheral tissues while playing a minor systemic role. Prevents abnormal ectopic mineralization of the joints by regulating the extracellular levels of the calcification inhibitor inorganic pyrophosphate (PPi), which originates from the conversion of extracellular NTPs to NMPs and PPis by ENPP1 ( ). Regulates the release of the TCA cycle intermediates to the extracellular space, in particular citrate, succinate and malate. Extracellular citrate mostly present in bone tissue is required for osteogenic differentiation of mesenchymal stem cells, stabilization of hydroxyapatite structure and overall bone strength . The transport mechanism remains to be elucidated (Probable). Subcellular locations: Cell membrane Found in osteoblasts from mandibular bone and from iliac bone; not detected in osteoclastic cells.
ANKK1_HUMAN
Homo sapiens
MAADPTELRLGSLPVFTRDDFEGDWRLVASGGFSQVFQARHRRWRTEYAIKCAPCLPPDAASSDVNYLIEEAAKMKKIKFQHIVSIYGVCKQPLGIVMEFMANGSLEKVLSTHSLCWKLRFRIIHETSLAMNFLHSIKPPLLHLDLKPGNILLDSNMHVKISDFGLSKWMEQSTRMQYIERSALRGMLSYIPPEMFLESNKAPGPKYDVYSFAIVIWELLTQKKPYSGFNMMMIIIRVAAGMRPSLQPVSDQWPSEAQQMVDLMKRCWDQDPKKRPCFLDITIETDILLSLLQSRVAVPESKALARKVSCKLSLRQPGEVNEDISQELMDSDSGNYLKRALQLSDRKNLVPRDEELCIYENKVTPLHFLVAQGSVEQVRLLLAHEVDVDCQTASGYTPLLIAAQDQQPDLCALLLAHGADANRVDEDGWAPLHFAAQNGDDGTARLLLDHGACVDAQEREGWTPLHLAAQNNFENVARLLVSRQADPNLHEAEGKTPLHVAAYFGHVSLVKLLTSQGAELDAQQRNLRTPLHLAVERGKVRAIQHLLKSGAVPDALDQSGYGPLHTAAARGKYLICKMLLRYGASLELPTHQGWTPLHLAAYKGHLEIIHLLAESHANMGALGAVNWTPLHLAARHGEEAVVSALLQCGADPNAAEQSGWTPLHLAVQRSTFLSVINLLEHHANVHARNKVGWTPAHLAALKGNTAILKVLVEAGAQLDVQDGVSCTPLQLALRSRKQGIMSFLEGKEPSVATLGGSKPGAEMEI
Highly expressed in brain and weakly expressed in placenta and spinal cord.