protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
NBPFK_HUMAN | Homo sapiens | MFRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRIGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQTPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRSYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQTPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLDRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRTKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKKRRRGRKEGEEDQNPPCPRLNGVLMEVEEPEVLQDSLDGCYSTPSMYFELPDSFQHYRSVFYSFEEQHISFALYVDNRFFTLTVTSLHLVFQMGVIFPQ | Subcellular locations: Cytoplasm |
NBPFP_HUMAN | Homo sapiens | MLRNERQFKEEKLAEQLKQAEELRQYKVLVHAQERELTQLREKLREGRDASRSLNEHLQALLTPDEPDKSQGQDLQEQLAEGCRLAQHLVQKLSPENDNDDDEDVQVEVAEKVQKSSAPREMQKAEEKEVPEDSLEECAITCSNSHGPYDCNQPHRKTKITFEEDKVDSTLIGSSSHVEWEDAVHIIPENESDDEEEEEKGPVSPRNLQESEEEEVPQESWDEGYSTLSIPPEMLASYKSYSSTFHSLEEQQVCMAVDIGRHRWDQVKKEDHEATGPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYVLEQQRVGLAVDMDEIEKYQEVEEDQNPPCPRLSRELLDEKGPEVLQDSLDRCYSTPSGCLELTDSCQPYRSAFYILEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSGELLDEKEPEVLQESLDRCYSTPSGCLELTDSCQPYRSAFYILEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSGELLDEKEPEVLQESLDRCYSTPSGCLELTDSCQPYRSAFYILEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSGELLDEKEPEVLQESLDRCYSTPSGCLELTDSCQPYRSAFYILEQQRVGLAVDMDEIEKYQEVEEDQDPSCPRLSRELLDEKEPEVLQDSLGRCYSTPSGYLELPDLGQPYSSAVYSLEEQYLGLALDVDRIKKDQEEEEDQGPPCPRLSRELLEVVEPEVLQDSLDRCYSTPSSCLEQPDSCQPYGSSFYALEEKHVGFSLDVGEIEKKGKGKKRRGRRSKKERRRGRKEGEEDQNPPCPRLNSMLMEVEEPEVLQDSLDICYSTPSMYFELPDSFQHYRSVFYSFEEEHISFALYVDNRFFTLTVTSLHLVFQMGVIFPQ | Subcellular locations: Cytoplasm |
NBR1_HUMAN | Homo sapiens | MEPQVTLNVTFKNEIQSFLVSDPENTTWADIEAMVKVSFDLNTIQIKYLDEENEEVSINSQGEYEEALKMAVKQGNQLQMQVHEGHHVVDEAPPPVVGAKRLAARAGKKPLAHYSSLVRVLGSDMKTPEDPAVQSFPLVPCDTDQPQDKPPDWFTSYLETFREQVVNETVEKLEQKLHEKLVLQNPSLGSCPSEVSMPTSEETLFLPENQFSWHIACNNCQRRIVGVRYQCSLCPSYNICEDCEAGPYGHDTNHVLLKLRRPVVGSSEPFCHSKYSTPRLPAALEQVRLQKQVDKNFLKAEKQRLRAEKKQRKAEVKELKKQLKLHRKIHLWNSIHGLQSPKSPLGRPESLLQSNTLMLPLQPCTSVMPMLSAAFVDENLPDGTHLQPGTKFIKHWRMKNTGNVKWSADTKLKFMWGNLTLASTEKKDVLVPCLKAGHVGVVSVEFIAPALEGTYTSHWRLSHKGQQFGPRVWCSIIVDPFPSEESPDNIEKGMISSSKTDDLTCQQEETFLLAKEERQLGEVTEQTEGTAACIPQKAKNVASERELYIPSVDLLTAQDLLSFELLDINIVQELERVPHNTPVDVTPCMSPLPHDSPLIEKPGLGQIEEENEGAGFKALPDSMVSVKRKAENIASVEEAEEDLSGTQFVCETVIRSLTLDAAPDHNPPCRQKSLQMTFALPEGPLGNEKEEIIHIAEEEAVMEEEEDEEDEEEEDELKDEVQSQSSASSEDYIIILPECFDTSRPLGDSMYSSALSQPGLERGAEGKPGVEAGQEPAEAGERLPGGENQPQEHSISDILTTSQTLETVPLIPEVVELPPSLPRSSPCVHHHGSPGVDLPVTIPEVSSVPDQIRGEPRGSSGLVNSRQKSYDHSRHHHGSSIAGGLVKGALSVAASAYKALFAGPPVTAQPIISEDQTAALMAHLFEMGFCDRQLNLRLLKKHNYNILQVVTELLQLNNNDWYSQRY | Ubiquitin-binding autophagy adapter that participates in different processes including host defense or intracellular homeostasis (, ). Possesses a double function during the selective autophagy by acting as a shuttle bringing ubiquitinated proteins to autophagosomes and also by participating in the formation of protein aggregates (, ). Plays a role in the regulation of the innate immune response by modulating type I interferon production and targeting ubiquitinated IRF3 for autophagic degradation . In response to oxidative stress, promotes an increase in SQSTM1 levels, phosphorylation, and body formation by preventing its autophagic degradation (By similarity). In turn, activates the KEAP1-NRF2/NFE2L2 antioxidant pathway (By similarity). Plays also non-autophagy role by mediating the shuttle of IL-12 to late endosome for subsequent secretion (By similarity).
Subcellular locations: Cytoplasm, Cytoplasmic vesicle, Autophagosome, Lysosome, Cytoplasm, Myofibril, Sarcomere, M line
In cardiac muscles localizes to the sarcomeric M line (By similarity). Is targeted to lysosomes for degradation . |
NBR1_PONAB | Pongo abelii | MEPQVTLNVTFKNEIQSFLVSDPENTTWADIEAMVKVSFDLNTIQIKYLDEENEEVSINSQGEYEEALKMAVKQGNQLQMQVHEGHHVVDEAPPPVVGAKRLAARAGKKPLAHYSSLVRVLGSDMKTPEDSAVQSFPLATCDTDQPQDKPPDWFTSYLETFREQVVKETVEKLEQKLHEKLVLQNPSLGSCPSEVSMPTSEETLFLPENQFSWHIACNNCQRRIVGVRYQCSLCPSYNICEDCEAGPYGHDTNHVLLKLRRPVVGSSEPFCHSKYSTPRLPAALEQVRLPLQPCTPVMPTLSAAFVDENLPDGTHLQPGTKFIKHWRMKNTGNVKWSADTKLKFMWGNLTLASTEKKDVLVPCLKAGHVGVVSVEFIAPALEGTYTSHWRLSHKGQQFGPRVWCSIIVDPFPSEESPDNIEKGMISSSKTDDLTCQQEETFLLAKEERQLGEVTEQTEGTAACIPQKAKNVASERELYIPSVDLLTAQDLLSFELLDINIVQELERVPHNTPVDMTPCMSPLPHDSPLIEKPGLGQIQEENEGAGFKALPDSMVSVKRKAENIASVEEAEEDLSGTQFVCETVIRSLTLDAAPDHNPPCRQKSLQMKFALPEEGPLGNEREEIVHIAEEEAVMEEEEDEEEEDELKDEVQSQSSASSEDYIIILPECFDTSRPLGDSMYSSALSQPGLERGAEGEPGVEAGQEPAEAGERLPGGENQPQEHSISDIFTTSQTLETVPLIPEVVELPPPLPRSSPCVHHHGSPGVDLPVTIPEVSSVPDQIRGEPRGSSGLVNSRQKSYDHSRHHHGSSIAGGLVKGALSVAASAYKALFAGPPVTAQPIVSEDQTAALMAHLFEMGFCDRQLNLQLLKKHNYNILQVVTELLQLNNNDWYSQRY | Acts probably as a receptor for selective autophagosomal degradation of ubiquitinated targets.
Subcellular locations: Cytoplasm, Cytoplasmic vesicle, Autophagosome, Lysosome, Cytoplasm, Myofibril, Sarcomere, M line
In cardiac muscles localizes to the sarcomeric M line (By similarity). Is targeted to lysosomes for degradation (By similarity). |
NCBP2_HUMAN | Homo sapiens | MSGGLLKALRSDSYVELSQYRDQHFRGDNEEQEKLLKKSCTLYVGNLSFYTTEEQIYELFSKSGDIKKIIMGLDKMKKTACGFCFVEYYSRADAENAMRYINGTRLDDRIIRTDWDAGFKEGRQYGRGRSGGQVRDEYRQDYDAGRGGYGKLAQNQ | Component of the cap-binding complex (CBC), which binds co-transcriptionally to the 5' cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5' end of mRNA and to mRNA export in a 5' to 3' direction through the nuclear pore. The CBC complex is also involved in mediating U snRNA and intronless mRNAs export from the nucleus. The CBC complex is essential for a pioneer round of mRNA translation, before steady state translation when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. The pioneer round of mRNA translation mediated by the CBC complex plays a central role in nonsense-mediated mRNA decay (NMD), NMD only taking place in mRNAs bound to the CBC complex, but not on eIF4E-bound mRNAs. The CBC complex enhances NMD in mRNAs containing at least one exon-junction complex (EJC) via its interaction with UPF1, promoting the interaction between UPF1 and UPF2. The CBC complex is also involved in 'failsafe' NMD, which is independent of the EJC complex, while it does not participate in Staufen-mediated mRNA decay (SMD). During cell proliferation, the CBC complex is also involved in microRNAs (miRNAs) biogenesis via its interaction with SRRT/ARS2, thereby being required for miRNA-mediated RNA interference. The CBC complex also acts as a negative regulator of PARN, thereby acting as an inhibitor of mRNA deadenylation. In the CBC complex, NCBP2/CBP20 recognizes and binds capped RNAs (m7GpppG-capped RNA) but requires NCBP1/CBP80 to stabilize the movement of its N-terminal loop and lock the CBC into a high affinity cap-binding state with the cap structure. The conventional cap-binding complex with NCBP2 binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus .
Subcellular locations: Nucleus, Cytoplasm |
NCPR_HUMAN | Homo sapiens | MGDSHVDTSSTVSEAVAEEVSLFSMTDMILFSLIVGLLTYWFLFRKKKEEVPEFTKIQTLTSSVRESSFVEKMKKTGRNIIVFYGSQTGTAEEFANRLSKDAHRYGMRGMSADPEEYDLADLSSLPEIDNALVVFCMATYGEGDPTDNAQDFYDWLQETDVDLSGVKFAVFGLGNKTYEHFNAMGKYVDKRLEQLGAQRIFELGLGDDDGNLEEDFITWREQFWPAVCEHFGVEATGEESSIRQYELVVHTDIDAAKVYMGEMGRLKSYENQKPPFDAKNPFLAAVTTNRKLNQGTERHLMHLELDISDSKIRYESGDHVAVYPANDSALVNQLGKILGADLDVVMSLNNLDEESNKKHPFPCPTSYRTALTYYLDITNPPRTNVLYELAQYASEPSEQELLRKMASSSGEGKELYLSWVVEARRHILAILQDCPSLRPPIDHLCELLPRLQARYYSIASSSKVHPNSVHICAVVVEYETKAGRINKGVATNWLRAKEPAGENGGRALVPMFVRKSQFRLPFKATTPVIMVGPGTGVAPFIGFIQERAWLRQQGKEVGETLLYYGCRRSDEDYLYREELAQFHRDGALTQLNVAFSREQSHKVYVQHLLKQDREHLWKLIEGGAHIYVCGDARNMARDVQNTFYDIVAELGAMEHAQAVDYIKKLMTKGRYSLDVWS | This enzyme is required for electron transfer from NADP to cytochrome P450 in microsomes. It can also provide electron transfer to heme oxygenase and cytochrome B5.
Subcellular locations: Endoplasmic reticulum membrane |
NDC80_HUMAN | Homo sapiens | MKRSSVSSGGAGRLSMQELRSQDVNKQGLYTPQTKEKPTFGKLSINKPTSERKVSLFGKRTSGHGSRNSQLGIFSSSEKIKDPRPLNDKAFIQQCIRQLCEFLTENGYAHNVSMKSLQAPSVKDFLKIFTFLYGFLCPSYELPDTKFEEEVPRIFKDLGYPFALSKSSMYTVGAPHTWPHIVAALVWLIDCIKIHTAMKESSPLFDDGQPWGEETEDGIMHNKLFLDYTIKCYESFMSGADSFDEMNAELQSKLKDLFNVDAFKLESLEAKNRALNEQIARLEQEREKEPNRLESLRKLKASLQGDVQKYQAYMSNLESHSAILDQKLNGLNEEIARVELECETIKQENTRLQNIIDNQKYSVADIERINHERNELQQTINKLTKDLEAEQQKLWNEELKYARGKEAIETQLAEYHKLARKLKLIPKGAENSKGYDFEIKFNPEAGANCLVKYRAQVYVPLKELLNETEEEINKALNKKMGLEDTLEQLNAMITESKRSVRTLKEEVQKLDDLYQQKIKEAEEEDEKCASELESLEKHKHLLESTVNQGLSEAMNELDAVQREYQLVVQTTTEERRKVGNNLQRLLEMVATHVGSVEKHLEEQIAKVDREYEECMSEDLSENIKEIRDKYEKKATLIKSSEE | Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity ( , ). Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore (, ). The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules . Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules (, ).
Subcellular locations: Nucleus, Chromosome, Centromere, Kinetochore
Localizes to kinetochores from late prophase to anaphase . Localizes specifically to the outer plate of the kinetochore . |
NDC80_MACFA | Macaca fascicularis | MKRSSVSTGGAGRLSMQELRSQDVNKQGLYTPQTKERPTFGKLSINKPTSERKVSLFGKRTSGHGSRNSQLGIFSSSEKIKDPRPLNDKAFIQQCIRQLCEFLTENGYAHNVSMKSLQAPSVKDFLKIFTFLYGFLCPSYELPDTKFEEEVPRIFKDLGYPFALSKSSMYTVGAPHTWPHIVAALVWLIDCIKIHTAMKESSPLFDDGQPWGEETEDGIMHNKLFLDYTIKCYESFMSGADSFDEMNAELQSKLKDLFNVDAFKLESLEAKNRALNEQIARLEQEREKEPNRLESLRKLKASLQGDVQKYQAYMSNLESHSAILDQKLNGLNEEIARVELECETIKQENTRLQNIIDNQKYSVADIERINHERNELQQTINKLTKDLEAEQQKLWNEELKYARGKEAIETQLAEYHKLARKLKLIPKGAENSKGYDFEIKFNPEAGANCLVKYRAQVYVPLKELLNETEEEINKARNKKMGLEDTLEQLNAMITESKRSVRTLKEEVQKLDDLYQQKIKEAEEEDEKCASELESLEKHKHLLESTVNQGLSEAMNELDAVQREYQLVVQTTTEERRKVGNNLQRLLEMVATHVGSVEKHLEEQIAKADREYEECMSEDLSENIKEIRDKYEKKAALIKSSGE | Acts as a component of the essential kinetochore-associated NDC80 complex, which is required for chromosome segregation and spindle checkpoint activity. Required for kinetochore integrity and the organization of stable microtubule binding sites in the outer plate of the kinetochore. The NDC80 complex synergistically enhances the affinity of the SKA1 complex for microtubules and may allow the NDC80 complex to track depolymerizing microtubules. Plays a role in chromosome congression and is essential for the end-on attachment of the kinetochores to spindle microtubules.
Subcellular locations: Nucleus, Chromosome, Centromere, Kinetochore
Localizes to kinetochores from late prophase to anaphase. Localizes specifically to the outer plate of the kinetochore. |
NDKA_HUMAN | Homo sapiens | MANCERTFIAIKPDGVQRGLVGEIIKRFEQKGFRLVGLKFMQASEDLLKEHYVDLKDRPFFAGLVKYMHSGPVVAMVWEGLNVVKTGRVMLGETNPADSKPGTIRGDFCIQVGRNIIHGSDSVESAEKEIGLWFHPEELVDYTSCAQNWIYE | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination. During GZMA-mediated cell death, works in concert with TREX1. NME1 nicks one strand of DNA and TREX1 removes bases from the free 3' end to enhance DNA damage and prevent DNA end reannealing and rapid repair.
Subcellular locations: Cytoplasm, Nucleus
Cell-cycle dependent nuclear localization which can be induced by interaction with Epstein-barr viral proteins or by degradation of the SET complex by GzmA.
Isoform 1 is expressed in heart, brain, placenta, lung, liver, skeletal muscle, pancreas, spleen and thymus. Expressed in lung carcinoma cell lines but not in normal lung tissues. Isoform 2 is ubiquitously expressed and its expression is also related to tumor differentiation. |
NDKA_PONAB | Pongo abelii | MANCERTFIAIKPDGVQRGLVGEIIKRFEQKGFRLVGLKFMQASEDLLKEHYVDLKDRPFFAGLVKYMHSGPVVAMVWEGLNVVKTGRVMLGETNPADSKPGTIRGDFCIQVGRNIIHGSDSVESAEKEIGLWFHPEELVDYTSCAQNWIYE | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate. Possesses nucleoside-diphosphate kinase, serine/threonine-specific protein kinase, geranyl and farnesyl pyrophosphate kinase, histidine protein kinase and 3'-5' exonuclease activities. Involved in cell proliferation, differentiation and development, signal transduction, G protein-coupled receptor endocytosis, and gene expression. Required for neural development including neural patterning and cell fate determination. During GZMA-mediated cell death, works in concert with TREX1. NME1 nicks one strand of DNA and TREX1 removes bases from the free 3' end to enhance DNA damage and prevent DNA end reannealing and rapid repair (By similarity).
Subcellular locations: Cytoplasm, Nucleus |
NDKB_HUMAN | Homo sapiens | MANLERTFIAIKPDGVQRGLVGEIIKRFEQKGFRLVAMKFLRASEEHLKQHYIDLKDRPFFPGLVKYMNSGPVVAMVWEGLNVVKTGRVMLGETNPADSKPGTIRGDFCIQVGRNIIHGSDSVKSAEKEISLWFKPEELVDYKSCAHDWVYE | Major role in the synthesis of nucleoside triphosphates other than ATP. The ATP gamma phosphate is transferred to the NDP beta phosphate via a ping-pong mechanism, using a phosphorylated active-site intermediate (By similarity). Negatively regulates Rho activity by interacting with AKAP13/LBC . Acts as a transcriptional activator of the MYC gene; binds DNA non-specifically (, ). Binds to both single-stranded guanine- and cytosine-rich strands within the nuclease hypersensitive element (NHE) III(1) region of the MYC gene promoter. Does not bind to duplex NHE III(1) . Has G-quadruplex (G4) DNA-binding activity, which is independent of its nucleotide-binding and kinase activity. Binds both folded and unfolded G4 with similar low nanomolar affinities. Stabilizes folded G4s regardless of whether they are prefolded or not . Exhibits histidine protein kinase activity .
Subcellular locations: Cytoplasm, Cell projection, Lamellipodium, Cell projection, Ruffle
Colocalizes with ITGB1 and ITGB1BP1 at the edge or peripheral ruffles and lamellipodia during the early stages of cell spreading on fibronectin or collagen but not on vitronectin or laminin substrates.
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Nucleus
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Nucleus
Ubiquitously expressed.
Ubiquitously expressed. |
NDRG2_HUMAN | Homo sapiens | MAELQEVQITEEKPLLPGQTPEAAKEAELAARILLDQGQTHSVETPYGSVTFTVYGTPKPKRPAILTYHDVGLNYKSCFQPLFQFEDMQEIIQNFVRVHVDAPGMEEGAPVFPLGYQYPSLDQLADMIPCVLQYLNFSTIIGVGVGAGAYILARYALNHPDTVEGLVLINIDPNAKGWMDWAAHKLTGLTSSIPEMILGHLFSQEELSGNSELIQKYRNIITHAPNLDNIELYWNSYNNRRDLNFERGGDITLRCPVMLVVGDQAPHEDAVVECNSKLDPTQTSFLKMADSGGQPQLTQPGKLTEAFKYFLQGMGYMASSCMTRLSRSRTASLTSAASVDGNRSRSRTLSQSSESGTLSSGPPGHTMEVSC | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation.
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Cell projection, Growth cone
In neurons, seems to concentrate at axonal growth cone. Perinuclear in neurons (By similarity).
Highly expressed in brain, heart, skeletal muscle and salivary gland, and moderately in kidney and liver. Expressed in dendritic cells, but not in other blood cells. Expression levels are low in pancreatic and liver cancer tissues; absent in meningioma. Expressed in low-grade gliomas but present at low levels in glioblastoma. Isoform 1 and isoform 2 are present in brain neurons and up-regulated in Alzheimer disease (at protein level). |
NDRG2_MACFA | Macaca fascicularis | MAELQEVQITEEKPLLPGQTPEAAKIHSVETPYGSVTFTVYGTPKPKRPAILTYHDVGLNYKSCFQPLFQFGDMQEIIQNFVRVHVDAPGMEEGAPVFPLGYQYPSLDQLADMIPCVLQYLNFSTVIGVGVGAGAYILSRYALNHPDTVEGLVLINIDPNAKGWMDWAAHKLTGLTSSIPEMILGHLFSQEELSGNSELIQKYRNIITHAPNLDNIELYWNSYNNRRDLNFERGGDITLKCPVMLVVGDQAPHEDAVVECNSKLDPTQTSSLKMADSGGQPQLTQPGKLTEAFKYFLQGMGYMASSCMTRLSRSRTASLTSAASIDGNRSRSRTLSQSSESGTLSSGPPGHTMEVSC | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation (By similarity).
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Cell projection, Growth cone
In neurons, seems to concentrate at axonal growth cone. Perinuclear in neurons (By similarity). |
NDRG2_PANTR | Pan troglodytes | MAELQEVQITEEKPLLPGQTPEAAKTHSVETPYGSVTFTVYGTPKPKRPAILTYHDVGLNYKSCFQPLFQFEDMQEIIQNFVRVHVDAPGMEEGAPVFPLGYQYPSLDQLADMIPCVLQYLNFSTIIGVGVGAGAYILARYALNHPDTVEGLVLINIDPNAKRWMDWAAHKLTGLTSSIPEMILGHLFSQEELSGNSELIQKYRNIITHAPNLDNIELYWNSYNNRRDLNFERGGDITLKCPVMLVVGDQAPHEDAVVECNSKLDPTQTSFLKMADSGGQPQLTQPGKLTEAFKYFLQGMGYMASSCMTRLSRSRTASLTSAASVDGNRSRSRTLSQSSESGTLSSGPPGHTMEVSC | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation (By similarity).
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Cell projection, Growth cone
In neurons, seems to concentrate at axonal growth cone. Perinuclear in neurons (By similarity). |
NDRG2_PONAB | Pongo abelii | MAELQEVQITEEKPLLPGQTPEAAKEAELAARILLDQGQTHSVETPYGSVTFTVYGTPKPKRPAILTYHDVGLNYKSCFQPLFQFEDMQEIIQNFVRVHVDAPGMEEGAPVFPLGYQYPSLDQLADMIPCVLQYLNFSTIIGVGVGAGAYILARYALNHPDTVEGLVLINIDPNAKGWMDWAAHKLTGLTSSIPEMILGHLFSQEELSGNSELIQKYRNIITHAPNLDNIELYWNSYNNRRDLNFERGGDITLKCPVMLVVGDQAPHEDAVVECNSKLDPTQTSFLKMADSGGQPQLTQPGKLTEAFKYFLQGMGYMASSCMTRLSRSRTASLTSAASVDGNRSRSRTLSQSSESGTLSSGPPGHTMEVSC | Contributes to the regulation of the Wnt signaling pathway. Down-regulates CTNNB1-mediated transcriptional activation of target genes, such as CCND1, and may thereby act as tumor suppressor. May be involved in dendritic cell and neuron differentiation (By similarity).
Subcellular locations: Cytoplasm, Cytoplasm, Perinuclear region, Cell projection, Growth cone
In neurons, seems to concentrate at axonal growth cone. Perinuclear in neurons (By similarity). |
NDRG3_HUMAN | Homo sapiens | MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQEHDIETTHGVVHVTIRGLPKGNRPVILTYHDIGLNHKSCFNAFFNFEDMQEITQHFAVCHVDAPGQQEGAPSFPTGYQYPTMDELAEMLPPVLTHLSLKSIIGIGVGAGAYILSRFALNHPELVEGLVLINVDPCAKGWIDWAASKLSGLTTNVVDIILAHHFGQEELQANLDLIQTYRMHIAQDINQDNLQLFLNSYNGRRDLEIERPILGQNDNKSKTLKCSTLLVVGDNSPAVEAVVECNSRLNPINTTLLKMADCGGLPQVVQPGKLTEAFKYFLQGMGYIPSASMTRLARSRTHSTSSSLGSGESPFSRSVTSNQSDGTQESCESPDVLDRHQTMEVSC | Ubiquitous. Highly expressed in brain. |
NDRG3_PONAB | Pongo abelii | MDELQDVQLTEIKPLLNDKNGTRNFQDFDCQEHDIETTHGMVHVTIRGLPKGNRPVILTYHDIGLNHKSCFNAFFNFEDMQEITQHFAVCHVDAPGQQEGAPSFPTGYQYPTMDELAEMLPPVLTHLSLKSIIGIGVGAGAYILSRFALNHPELVEGLVLINVDPCAKGWIDWAASKLSGLTTNVVDIILAHHFGQEELQANPDLIQTYRMHIAQDINQDNLQLFLNSYNGRRDLEIERPILGQNDNKSKTLKCSTLLVVGDNSPAVEAVVECNSRLNPINTTLLKMADCGGLPQVVQPGKLTEAFKYFLQGMGYIPSASMTRLARSRTHSTSSSLGSGESPFSRSVTSNQSDGTQESCESPDVLDRHQTMEVSC | null |
NDRG4_HUMAN | Homo sapiens | MPECWDGEHDIETPYGLLHVVIRGSPKGNRPAILTYHDVGLNHKLCFNTFFNFEDMQEITKHFVVCHVDAPGQQVGASQFPQGYQFPSMEQLAAMLPSVVQHFGFKYVIGIGVGAGAYVLAKFALIFPDLVEGLVLVNIDPNGKGWIDWAATKLSGLTSTLPDTVLSHLFSQEELVNNTELVQSYRQQIGNVVNQANLQLFWNMYNSRRDLDINRPGTVPNAKTLRCPVMLVVGDNAPAEDGVVECNSKLDPTTTTFLKMADSGGLPQVTQPGKLTEAFKYFLQGMGYIAYLKDRRLSGGAVPSASMTRLARSRTASLTSASSVDGSRPQACTHSESSEGLGQVNHTMEVSC | Contributes to the maintenance of intracerebral BDNF levels within the normal range, which is necessary for the preservation of spatial learning and the resistance to neuronal cell death caused by ischemic stress (By similarity). May enhance growth factor-induced ERK1 and ERK2 phosphorylation, including that induced by PDGF and FGF. May attenuate NGF-promoted ELK1 phosphorylation in a microtubule-dependent manner.
Subcellular locations: Cytoplasm, Cytosol
Expressed predominantly in brain and heart (at protein level). In the brain, detected in astrocytes. Isoform 1 and isoform 2 are only expressed in brain. Isoform 3 is expressed in both heart and brain. Up-regulated in glioblastoma multiforme cells. |
NDUB7_GORGO | Gorilla gorilla gorilla | MGAHLVRRYLGDASVEPDPLQMPTFPPDYGFPERKEREMVATQQEMMDAQLRLQLRDYCAHYLIRLLKCKRDSFPNFLACKQERHDWDYCEHRDYVMRMKEFERERRLLQRKKRREKKAAELAKGQGPGEVDPKVAL | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space |
NDUB7_HUMAN | Homo sapiens | MGAHLVRRYLGDASVEPDPLQMPTFPPDYGFPERKEREMVATQQEMMDAQLRLQLRDYCAHHLIRLLKCKRDSFPNFLACKQERHDWDYCEHRDYVMRMKEFERERRLLQRKKRREKKAAELAKGQGPGEVDPKVAL | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space |
NDUB7_PANTR | Pan troglodytes | MGAHLVRRYLGDASVEPDPLQMPTFPPDYGFPERKEREMVATQQEMMDAQLRLQLRDYCAHYLIRLLKCKRDSFPNFXACKQERHDWDYCEHRDYVMRMKEFERERRLLQRKKRREKKAAELAKGQGPGEVDPKVAL | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space |
NDUB7_PONPY | Pongo pygmaeus | MGAHLVRRYLGDASVEPDPLQMPTFPPDYGFPERKEREMVATQQEMMDAQLRLQLRDYCAHYLIRLLKCKRDSFPNFLACKQERHDWDYCEHRDYVMRMKEFERERRLLQRKKRREKKAAELAKGQGPGEVDPKVAL | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space |
NDUB8_GORGO | Gorilla gorilla gorilla | MAVARARVLGVQWLQRASRNVMPLGARTASHMTKDMFPGPYPRTPEERAAAAKKYNMRVEDYEPYPDDGMGYGDYPKLPDRSQHERDPWYSWDQPGLRLNWGEPMHWHLDMYNRNRVDTSPTPISWHVMCMQLFGFLAFMIFMCWVGDVYPVYQPVGPKQYPYNNLYLERGGDPSKEPERVVHYEI | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB8_HUMAN | Homo sapiens | MAVARAGVLGVQWLQRASRNVMPLGARTASHMTKDMFPGPYPRTPEERAAAAKKYNMRVEDYEPYPDDGMGYGDYPKLPDRSQHERDPWYSWDQPGLRLNWGEPMHWHLDMYNRNRVDTSPTPVSWHVMCMQLFGFLAFMIFMCWVGDVYPVYQPVGPKQYPYNNLYLERGGDPSKEPERVVHYEI | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB8_PANTR | Pan troglodytes | MAVARAGVLGVQWLQRASRNVMPLGARTASHMTKDMFPGPYPRTPEERAAAAKKYNMRVEDYEPYPDDGMGYGDYPKLPDRSQHERDPWYSWDQPGLRLNWGEPMHWHLDMYNRNRVDTSPTPLSWHVMCMQLFGFLAFMIFMCWVGDVYPVYQPVGPKQYPYNNLYLERGGDPSKEPERVVHYEI | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB8_PONAB | Pongo abelii | MAVARAGVLGVQWLQRASWNVMPLGARTASHMTKDMFPGPYPRTPEERAAAAKKYNMRVEDYEPYPDDGMGYGDYPKLPDRSQHERDPWYSWDQPDLRLNWGEPMHWHLDMFNRNRVDTSPILVSWNVMCMQLFGFLAFMIFMCWVGEVYPVYQPVGPKQYPYNNLYLERGGDPSKEPERVVHYEI | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB8_PONPY | Pongo pygmaeus | MAVARTGVLGVQWLQRASWNMMPLGARTASHMTKDMFPGPYPRTPEERAAAAKKYNMRVEDYEPYPDDGMGYGDYPKLPDRSQHERDPWYSWDQPDLRLNWGEPMHWHLDMFNRNRVDTSPIPVSWNVMCMQLFGFLAFMIFMCWVGEVYPVYQPVGPKQYPYNNLYLERGGDPSKEPERVVHYEI | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB9_GORGO | Gorilla gorilla gorilla | MAFLASGRYLTHQQKVLRLYKRALRHLESWCVQRDKYRYFACLMRARFEEHKNEKDMAKATQLLKEAEEEFWYRQHPQPYIFPDSPGGTSYERYDCYKVPEWCLDDWHPSEKAMYPDYFAKREQWKKLRRESWEREVKQLQEETPPGGPLTEALPPARKEGDLPPLWWYIVTRPRERPM | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NDUB9_HUMAN | Homo sapiens | MAFLASGPYLTHQQKVLRLYKRALRHLESWCVQRDKYRYFACLMRARFEEHKNEKDMAKATQLLKEAEEEFWYRQHPQPYIFPDSPGGTSYERYDCYKVPEWCLDDWHPSEKAMYPDYFAKREQWKKLRRESWEREVKQLQEETPPGGPLTEALPPARKEGDLPPLWWYIVTRPRERPM | Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone.
Subcellular locations: Mitochondrion inner membrane |
NEB2_HUMAN | Homo sapiens | MMKTEPRGPGGPLRSASPHRSAYEAGIQALKPPDAPGPDEAPKGAHHKKYGSNVHRIKSMFLQMGTTAGPSGEAGGGAGLAEAPRASERGVRLSLPRASSLNENVDHSALLKLGTSVSERVSRFDSKPAPSAQPAPPPHPPSRLQETRKLFERSAPAAAGGDKEAAARRLLRQERAGLQDRKLDVVVRFNGSTEALDKLDADAVSPTVSQLSAVFEKADSRTGLHRGPGLPRAAGVPQVNSKLVSKRSRVFQPPPPPPPAPSGDAPAEKERCPAGQQPPQHRVAPARPPPKPREVRKIKPVEVEESGESEAESAPGEVIQAEVTVHAALENGSTVATAASPAPEEPKAQAAPEKEAAAVAPPERGVGNGRAPDVAPEEVDESKKEDFSEADLVDVSAYSGLGEDSAGSALEEDDEDDEEDGEPPYEPESGCVEIPGLSEEEDPAPSRKIHFSTAPIQVFSTYSNEDYDRRNEDVDPMAASAEYELEKRVERLELFPVELEKDSEGLGISIIGMGAGADMGLEKLGIFVKTVTEGGAAHRDGRIQVNDLLVEVDGTSLVGVTQSFAASVLRNTKGRVRFMIGRERPGEQSEVAQLIQQTLEQERWQREMMEQRYAQYGEDDEETGEYATDEDEELSPTFPGGEMAIEVFELAENEDALSPVDMEPEKLVHKFKELQIKHAVTEAEIQQLKRKLQSLEQEKGRWRVEKAQLEQSVEENKERMEKLEGYWGEAQSLCQAVDEHLRETQAQYQALERKYSKAKRLIKDYQQKEIEFLKKETAQRRVLEESELARKEEMDKLLDKISELEGNLQTLRNSNST | Seems to act as a scaffold protein in multiple signaling pathways. Modulates excitatory synaptic transmission and dendritic spine morphology. Binds to actin filaments (F-actin) and shows cross-linking activity. Binds along the sides of the F-actin. May play an important role in linking the actin cytoskeleton to the plasma membrane at the synaptic junction. Believed to target protein phosphatase 1/PP1 to dendritic spines, which are rich in F-actin, and regulates its specificity toward ion channels and other substrates, such as AMPA-type and NMDA-type glutamate receptors. Plays a role in regulation of G-protein coupled receptor signaling, including dopamine D2 receptors and alpha-adrenergic receptors. May establish a signaling complex for dopaminergic neurotransmission through D2 receptors by linking receptors downstream signaling molecules and the actin cytoskeleton. Binds to ADRA1B and RGS2 and mediates regulation of ADRA1B signaling. May confer to Rac signaling specificity by binding to both, RacGEFs and Rac effector proteins. Probably regulates p70 S6 kinase activity by forming a complex with TIAM1 (By similarity). Required for hepatocyte growth factor (HGF)-induced cell migration.
Subcellular locations: Cytoplasm, Cytoskeleton, Nucleus, Cell projection, Dendritic spine, Postsynaptic density, Synapse, Cell junction, Adherens junction, Cytoplasm, Cell membrane, Cell projection, Lamellipodium, Cell projection, Filopodium, Cell projection, Ruffle membrane
Enriched at synapse and cadherin-based cell-cell adhesion sites. In neurons, both cytosolic and membrane-associated, and highly enriched in the postsynaptic density apposed to exitatory synapses. Colocalizes with PPP1R2 at actin-rich adherens junctions in epithelial cells and in dendritic spines (By similarity). Accumulates in the lamellipodium, filopodium and ruffle membrane in response to hepatocyte growth factor (HGF) treatment. |
NEBL_HUMAN | Homo sapiens | MRVPVFEDIKDETEEEKIGEEENEEDQVFYKPVIEDLSMELARKCTELISDIRYKEEFKKSKDKCTFVTDSPMLNHVKNIGAFISEAKYKGTIKADLSNSLYKRMPATIDSVFAGEVTQLQSEVAYKQKHDAAKGFSDYAHMKEPPEVKHAMEVNKHQSNISYRKDVQDTHTYSAELDRPDIKMATQISKIISNAEYKKGQGIMNKEPAVIGRPDFEHAVEASKLSSQIKYKEKFDNEMKDKKHHYNPLESASFRQNQLAATLASNVKYKKDIQNMHDPVSDLPNLLFLDHVLKASKMLSGREYKKLFEENKGMYHFDADAVEHLHHKGNAVLQSQVKYKEEYEKNKGKPMLEFVETPSYQASKEAQKMQSEKVYKEDFEKEIKGRSSLDLDKTPEFLHVKYITNLLREKEYKKDLENEIKGKGMELNSEVLDIQRAKRASEMASEKEYKKDLESIIKGKGMQAGTDTLEMQHAKKAAEIASEKDYKRDLETEIKGKGMQVSTDTLDVQRAKKASEMASQKQYKKDLENEIKGKGMQVSMDIPDILRAKRTSEIYSQRKYKDEAEKMLSNYSTIADTPEIQRIKTTQQNISAVFYKKEVGAGTAVKDSPEIERVKKNQQNISSVKYKEEIKHATAISDPPELKRVKENQKNISNLQYKEQNYKATPVSMTPEIERVRRNQEQLSAVKYKGELQRGTAISDPPELKRAKENQKNISNVYYRGQLGRATTLSVTPEMERVKKNQENISSVKYTQDHKQMKGRPSLILDTPAMRHVKEAQNHISMVKYHEDFEKTKGRGFTPVVDDPVTERVRKNTQVVSDAAYKGVHPHIVEMDRRPGIIVDLKVWRTDPGSIFDLDPLEDNIQSRSLHMLSEKASHYRRHWSRSHSSSTFGTGLGDDRSEISEIYPSFSCCSEVTRPSDEGAPVLPGAYQQSHSQGYGYMHQTSVSSMRSMQHSPNLRTYRAMYDYSAQDEDEVSFRDGDYIVNVQPIDDGWMYGTVQRTGRTGMLPANYIEFVN | Binds to actin and plays an important role in the assembly of the Z-disk. May functionally link sarcomeric actin to the desmin intermediate filaments in the heart muscle sarcomeres . Isoform 2 might play a role in the assembly of focal adhesion .
Subcellular locations: Cytoplasm
Abundantly expressed in cardiac muscle, but not in skeletal or smooth muscle. Localized to Z-lines in cardiac cells and to dense bodies in nonmuscle cells. Isoform 2 is expressed in non-muscle cells such as in fibroblasts. |
NEBU_HUMAN | Homo sapiens | MADDEDYEEVVEYYTEEVVYEEVPGETITKIYETTTTRTSDYEQSETSKPALAQPALAQPASAKPVERRKVIRKKVDPSKFMTPYIAHSQKMQDLFSPNKYKEKFEKTKGQPYASTTDTPELRRIKKVQDQLSEVKYRMDGDVAKTICHVDEKAKDIEHAKKVSQQVSKVLYKQNWEDTKDKYLLPPDAPELVQAVKNTAMFSKKLYTEDWEADKSLFYPYNDSPELRRVAQAQKALSDVAYKKGLAEQQAQFTPLADPPDIEFAKKVTNQVSKQKYKEDYENKIKGKWSETPCFEVANARMNADNISTRKYQEDFENMKDQIYFMQTETPEYKMNKKAGVAASKVKYKEDYEKNKGKADYNVLPASENPQLRQLKAAGDALSDKLYKENYEKTKAKSINYCETPKFKLDTVLQNFSSDKKYKDSYLKDILGHYVGSFEDPYHSHCMKVTAQNSDKNYKAEYEEDRGKGFFPQTITQEYEAIKKLDQCKDHTYKVHPDKTKFTQVTDSPVLLQAQVNSKQLSDLNYKAKHESEKFKCHIPPDTPAFIQHKVNAYNLSDNLYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKDYEKNKGKMIGVLSINDDPKMLHSLKVAKNQSDRLYKENYEKTKAKSMNYCETPKYQLDTQLKNFSEARYKDLYVKDVLGHYVGSMEDPYHTHCMKVAAQNSDKSYKAEYEEDKGKCYFPQTITQEYEAIKKLDQCKDHTYKVHPDKTKFTAVTDSPVLLQAQLNTKQLSDLNYKAKHEGEKFKCHIPADAPQFIQHRVNAYNLSDNVYKQDWEKSKAKKFDIKVDAIPLLAAKANTKNTSDVMYKKDYEKSKGKMIGALSINDDPKMLHSLKTAKNQSDREYRKDYEKSKTIYTAPLDMLQVTQAKKSQAIASDVDYKHILHSYSYPPDSINVDLAKKAYALQSDVEYKADYNSWMKGCGWVPFGSLEMEKAKRASDILNEKKYRQHPDTLKFTSIEDAPITVQSKINQAQRSDIAYKAKGEEIIHKYNLPPDLPQFIQAKVNAYNISENMYKADLKDLSKKGYDLRTDAIPIRAAKAARQAASDVQYKKDYEKAKGKMVGFQSLQDDPKLVHYMNVAKIQSDREYKKDYEKTKSKYNTPHDMFNVVAAKKAQDVVSNVNYKHSLHHYTYLPDAMDLELSKNMMQIQSDNVYKEDYNNWMKGIGWIPIGSLDVEKVKKAGDALNEKKYRQHPDTLKFTSIVDSPVMVQAKQNTKQVSDILYKAKGEDVKHKYTMSPDLPQFLQAKCNAYNISDVCYKRDWYDLIAKGNNVLGDAIPITAAKASRNIASDYKYKEAYEKSKGKHVGFRSLQDDPKLVHYMNVAKLQSDREYKKNYENTKTSYHTPGDMVSITAAKMAQDVATNVNYKQPLHHYTYLPDAMSLEHTRNVNQIQSDNVYKDEYNSFLKGIGWIPIGSLEVEKVKKAGDALNERKYRQHPDTVKFTSVPDSMGMVLAQHNTKQLSDLNYKVEGEKLKHKYTIDPELPQFIQAKVNALNMSDAHYKADWKKTIAKGYDLRPDAIPIVAAKSSRNIASDCKYKEAYEKAKGKQVGFLSLQDDPKLVHYMNVAKIQSDREYKKGYEASKTKYHTPLDMVSVTAAKKSQEVATNANYRQSYHHYTLLPDALNVEHSRNAMQIQSDNLYKSDFTNWMKGIGWVPIESLEVEKAKKAGEILSEKKYRQHPEKLKFTYAMDTMEQALNKSNKLNMDKRLYTEKWNKDKTTIHVMPDTPDILLSRVNQITMSDKLYKAGWEEEKKKGYDLRPDAIAIKAARASRDIASDYKYKKAYEQAKGKHIGFRSLEDDPKLVHFMQVAKMQSDREYKKGYEKSKTSFHTPVDMLSVVAAKKSQEVATNANYRNVIHTYNMLPDAMSFELAKNMMQIQSDNQYKADYADFMKGIGWLPLGSLEAEKNKKAMEIISEKKYRQHPDTLKYSTLMDSMNMVLAQNNAKIMNEHLYKQAWEADKTKVHIMPDIPQIILAKANAINMSDKLYKLSLEESKKKGYDLRPDAIPIKAAKASRDIASDYKYKYNYEKGKGKMVGFRSLEDDPKLVHSMQVAKMQSDREYKKNYENTKTSYHTPADMLSVTAAKDAQANITNTNYKHLIHKYILLPDAMNIELTRNMNRIQSDNEYKQDYNEWYKGLGWSPAGSLEVEKAKKATEYASDQKYRQHPSNFQFKKLTDSMDMVLAKQNAHTMNKHLYTIDWNKDKTKIHVMPDTPDILQAKQNQTLYSQKLYKLGWEEALKKGYDLPVDAISVQLAKASRDIASDYKYKQGYRKQLGHHVGFRSLQDDPKLVLSMNVAKMQSEREYKKDFEKWKTKFSSPVDMLGVVLAKKCQELVSDVDYKNYLHQWTCLPDQNDVVQAKKVYELQSENLYKSDLEWLRGIGWSPLGSLEAEKNKRASEIISEKKYRQPPDRNKFTSIPDAMDIVLAKTNAKNRSDRLYREAWDKDKTQIHIMPDTPDIVLAKANLINTSDKLYRMGYEELKRKGYDLPVDAIPIKAAKASREIASEYKYKEGFRKQLGHHIGARNIEDDPKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDVIHARQAYDLQSDNLYKSDLQWLKGIGWMTSGSLEDEKNKRATQILSDHVYRQHPDQFKFSSLMDSIPMVLAKNNAITMNHRLYTEAWDKDKTTVHIMPDTPEVLLAKQNKVNYSEKLYKLGLEEAKRKGYDMRVDAIPIKAAKASRDIASEFKYKEGYRKQLGHHIGARAIRDDPKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHQWTCLPDQSDVIHARQAYDLQSDNMYKSDLQWMRGIGWVSIGSLDVEKCKRATEILSDKIYRQPPDRFKFTSVTDSLEQVLAKNNAITMNKRLYTEAWDKDKTQIHIMPDTPEIMLARQNKINYSETLYKLANEEAKKKGYDLRSDAIPIVAAKASRDVISDYKYKDGYRKQLGHHIGARNIEDDPKMMWSMHVAKIQSDREYKKDFEKWKTKFSSPVDMLGVVLAKKCQTLVSDVDYKNYLHEWTCLPDQNDVIHARQAYDLQSDNIYKSDLQWLRGIGWVPIGSMDVVKCKRAAEILSDNIYRQPPDKLKFTSVTDSLEQVLAKNNALNMNKRLYTEAWDKDKTQVHIMPDTPEIMLARQNKINYSESLYRQAMEEAKKEGYDLRSDAIPIVAAKASRDIASDYKYKEAYRKQLGHHIGARAVHDDPKIMWSLHIAKVQSDREYKKDFEKYKTRYSSPVDMLGIVLAKKCQTLVSDVDYKHPLHEWICLPDQNDIIHARKAYDLQSDNLYKSDLEWMKGIGWVPIDSLEVVRAKRAGELLSDTIYRQRPETLKFTSITDTPEQVLAKNNALNMNKRLYTEAWDNDKKTIHVMPDTPEIMLAKLNRINYSDKLYKLALEESKKEGYDLRLDAIPIQAAKASRDIASDYKYKEGYRKQLGHHIGARNIKDDPKMMWSIHVAKIQSDREYKKEFEKWKTKFSSPVDMLGVVLAKKCQILVSDIDYKHPLHEWTCLPDQNDVIQARKAYDLQSDAIYKSDLEWLRGIGWVPIGSVEVEKVKRAGEILSDRKYRQPADQLKFTCITDTPEIVLAKNNALTMSKHLYTEAWDADKTSIHVMPDTPDILLAKSNSANISQKLYTKGWDESKMKDYDLRADAISIKSAKASRDIASDYKYKEAYEKQKGHHIGAQSIEDDPKIMCAIHAGKIQSEREYKKEFQKWKTKFSSPVDMLSILLAKKCQTLVTDIDYRNYLHEWTCMPDQNDIIQAKKAYDLQSDALYKADLEWLRGIGWMPQGSPEVLRVKNAQNIFCDSVYRTPVVNLKYTSIVDTPEVVLAKSNAENISIPKYREVWDKDKTSIHIMPDTPEINLARANALNVSNKLYREGWDEMKAGCDVRLDAIPIQAAKASREIASDYKYKLDHEKQKGHYVGTLTARDDNKIRWALIADKLQNEREYRLDWAKWKAKIQSPVDMLSILHSKNSQALVSDMDYRNYLHQWTCMPDQNDVIQAKKAYELQSDNVYKADLEWLRGIGWMPNDSVSVNHAKHAADIFSEKKYRTKIETLNFTPVDDRVDYVTAKQSGEILDDIKYRKDWNATKSKYTLTETPLLHTAQEAARILDQYLYKEGWERQKATGYILPPDAVPFVHAHHCNDVQSELKYKAEHVKQKGHYVGVPTMRDDPKLVWFEHAGQIQNERLYKEDYHKTKAKINIPADMVSVLAAKQGQTLVSDIDYRNYLHQWMCHPDQNDVIQARKAYDLQSDNVYRADLEWLRGIGWIPLDSVDHVRVTKNQEMMSQIKYKKNALENYPNFRSVVDPPEIVLAKINSVNQSDVKYKETFNKAKGKYTFSPDTPHISHSKDMGKLYSTILYKGAWEGTKAYGYTLDERYIPIVGAKHADLVNSELKYKETYEKQKGHYLAGKVIGEFPGVVHCLDFQKMRSALNYRKHYEDTKANVHIPNDMMNHVLAKRCQYILSDLEYRHYFHQWTSLLEEPNVIRVRNAQEILSDNVYKDDLNWLKGIGCYVWDTPQILHAKKSYDLQSQLQYTAAGKENLQNYNLVTDTPLYVTAVQSGINASEVKYKENYHQIKDKYTTVLETVDYDRTRNLKNLYSSNLYKEAWDRVKATSYILPSSTLSLTHAKNQKHLASHIKYREEYEKFKALYTLPRSVDDDPNTARCLRVGKLNIDRLYRSVYEKNKMKIHIVPDMVEMVTAKDSQKKVSEIDYRLRLHEWICHPDLQVNDHVRKVTDQISDIVYKDDLNWLKGIGCYVWDTPEILHAKHAYDLRDDIKYKAHMLKTRNDYKLVTDTPVYVQAVKSGKQLSDAVYHYDYVHSVRGKVAPTTKTVDLDRALHAYKLQSSNLYKTSLRTLPTGYRLPGDTPHFKHIKDTRYMSSYFKYKEAYEHTKAYGYTLGPKDVPFVHVRRVNNVTSERLYRELYHKLKDKIHTTPDTPEIRQVKKTQEAVSELIYKSDFFKMQGHMISLPYTPQVIHCRYVGDITSDIKYKEDLQVLKGFGCFLYDTPDMVRSRHLRKLWSNYLYTDKARKMRDKYKVVLDTPEYRKVQELKTHLSELVYRAAGKKQKSIFTSVPDTPDLLRAKRGQKLQSQYLYVELATKERPHHHAGNQTTALKHAKDVKDMVSEKKYKIQYEKMKDKYTPVPDTPILIRAKRAYWNASDLRYKETFQKTKGKYHTVKDALDIVYHRKVTDDISKIKYKENYMSQLGIWRSIPDRPEHFHHRAVTDTVSDVKYKEDLTWLKGIGCYAYDTPDFTLAEKNKTLYSKYKYKEVFERTKSDFKYVADSPINRHFKYATQLMNEKKYRADYEQRKDKYHLVVDEPRHLLAKTAGDQISQIKYRKNYEKSKDKFTSIVDTPEHLRTTKVNKQISDILYKLEYNKAKPRGYTTIHDTPMLLHVRKVKDEVSDLKYKEVYQRNKSNCTIEPDAVHIKAAKDAYKVNTNLDYKKQYEANKAHWKWTPDRPDFLQAAKSSLQQSDFEYKLDREFLKGCKLSVTDDKNTVLALRNTLIESDLKYKEKHVKERGTCHAVPDTPQILLAKTVSNLVSENKYKDHVKKHLAQGSYTTLPETRDTVHVKEVTKHVSDTNYKKKFVKEKGKSNYSIMLEPPEVKHAMEVAKKQSDVAYRKDAKENLHYTTVADRPDIKKATQAAKQASEVEYRAKHRKEGSHGLSMLGRPDIEMAKKAAKLSSQVKYRENFDKEKGKTPKYNPKDSQLYKVMKDANNLASEVKYKADLKKLHKPVTDMKESLIMNHVLNTSQLASSYQYKKKYEKSKGHYHTIPDNLEQLHLKEATELQSIVKYKEKYEKERGKPMLDFETPTYITAKESQQMQSGKEYRKDYEESIKGRNLTGLEVTPALLHVKYATKIASEKEYRKDLEESIRGKGLTEMEDTPDMLRAKNATQILNEKEYKRDLELEVKGRGLNAMANETPDFMRARNATDIASQIKYKQSAEMEKANFTSVVDTPEIIHAQQVKNLSSQKKYKEDAEKSMSYYETVLDTPEIQRVRENQKNFSLLQYQCDLKNSKGKITVVQDTPEILRVKENQKNFSSVLYKEDVSPGTAIGKTPEMMRVKQTQDHISSVKYKEAIGQGTPIPDLPEVKRVKETQKHISSVMYKENLGTGIPTTVTPEIERVKRNQENFSSVLYKENLGKGIPTPITPEMERVKRNQENFSSVLYKENMGKGTPLAVTPEMERVKHNQENISSVLYKENVGKATATPVTPEMQRVKRNQENISSVLYKENLGKATPTPFTPEMERVKRNQENFSSVLYKENMRKATPTPVTPEMERAKRNQENISSVLYSDSFRKQIQGKAAYVLDTPEMRRVRETQRHISTVKYHEDFEKHKGCFTPVVTDPITERVKKNMQDFSDINYRGIQRKVVEMEQKRNDQDQETITGLRVWRTNPGSVFDYDPAEDNIQSRSLHMINVQAQRRSREQSRSASALSISGGEEKSEHSEAPDHHLSTYSDGGVFAVSTAYKHAKTTELPQQRSSSVATQQTTVSSIPSHPSTAGKIFRAMYDYMAADADEVSFKDGDAIINVQAIDEGWMYGTVQRTGRTGMLPANYVEAI | This giant muscle protein may be involved in maintaining the structural integrity of sarcomeres and the membrane system associated with the myofibrils. Binds and stabilize F-actin.
Subcellular locations: Cytoplasm, Myofibril, Sarcomere, Cytoplasm, Cytoskeleton
Muscle specific. Located in the thin filament of striated muscle. |
NEK3_HUMAN | Homo sapiens | MDDYMVLRMIGEGSFGRALLVQHESSNQMFAMKEIRLPKSFSNTQNSRKEAVLLAKMKHPNIVAFKESFEAEGHLYIVMEYCDGGDLMQKIKQQKGKLFPEDMILNWFTQMCLGVNHIHKKRVLHRDIKSKNIFLTQNGKVKLGDFGSARLLSNPMAFACTYVGTPYYVPPEIWENLPYNNKSDIWSLGCILYELCTLKHPFQANSWKNLILKVCQGCISPLPSHYSYELQFLVKQMFKRNPSHRPSATTLLSRGIVARLVQKCLPPEIIMEYGEEVLEEIKNSKHNTPRKKTNPSRIRIALGNEASTVQEEEQDRKGSHTDLESINENLVESALRRVNREEKGNKSVHLRKASSPNLHRRQWEKNVPNTALTALENASILTSSLTAEDDRGGSVIKYSKNTTRKQWLKETPDTLLNILKNADLSLAFQTYTIYRPGSEGFLKGPLSEETEASDSVDGGHDSVILDPERLEPGLDEEDTDFEEEDDNPDWVSELKKRAGWQGLCDR | Protein kinase which influences neuronal morphogenesis and polarity through effects on microtubules. Regulates microtubule acetylation in neurons. Contributes to prolactin-mediated phosphorylation of PXN and VAV2. Implicated in prolactin-mediated cytoskeletal reorganization and motility of breast cancer cells through mechanisms involving RAC1 activation and phosphorylation of PXN and VAV2.
Subcellular locations: Cytoplasm, Cell projection, Axon
Up-regulated in malignant versus normal breast tissue. Isoform 2 shows a high level of expression in testis, ovary and brain. |
NEK4_HUMAN | Homo sapiens | MPLAAYCYLRVVGKGSYGEVTLVKHRRDGKQYVIKKLNLRNASSRERRAAEQEAQLLSQLKHPNIVTYKESWEGGDGLLYIVMGFCEGGDLYRKLKEQKGQLLPENQVVEWFVQIAMALQYLHEKHILHRDLKTQNVFLTRTNIIKVGDLGIARVLENHCDMASTLIGTPYYMSPELFSNKPYNYKSDVWALGCCVYEMATLKHAFNAKDMNSLVYRIIEGKLPPMPRDYSPELAELIRTMLSKRPEERPSVRSILRQPYIKRQISFFLEATKIKTSKNNIKNGDSQSKPFATVVSGEAESNHEVIHPQPLSSEGSQTYIMGEGKCLSQEKPRASGLLKSPASLKAHTCKQDLSNTTELATISSVNIDILPAKGRDSVSDGFVQENQPRYLDASNELGGICSISQVEEEMLQDNTKSSAQPENLIPMWSSDIVTGEKNEPVKPLQPLIKEQKPKDQSLALSPKLECSGTILAHSNLRLLGSSDSPASASRVAGITGVCHHAQDQVAGECIIEKQGRIHPDLQPHNSGSEPSLSRQRRQKRREQTEHRGEKRQVRRDLFAFQESPPRFLPSHPIVGKVDVTSTQKEAENQRRVVTGSVSSSRSSEMSSSKDRPLSARERRRLKQSQEEMSSSGPSVRKASLSVAGPGKPQEEDQPLPARRLSSDCSVTQERKQIHCLSEDELSSSTSSTDKSDGDYGEGKGQTNEINALVQLMTQTLKLDSKESCEDVPVANPVSEFKLHRKYRDTLILHGKVAEEAEEIHFKELPSAIMPGSEKIRRLVEVLRTDVIRGLGVQLLEQVYDLLEEEDEFDREVRLREHMGEKYTTYSVKARQLKFFEENMNF | Protein kinase that seems to act exclusively upon threonine residues (By similarity). Required for normal entry into proliferative arrest after a limited number of cell divisions, also called replicative senescence. Required for normal cell cycle arrest in response to double-stranded DNA damage.
Subcellular locations: Cell projection, Cilium, Cytoplasm
Highest expression in adult heart, followed by pancreas, skeletal muscle, brain, testis, retina, liver, kidney, lung and placenta. Present in most primary carcinomas. |
NEK5_HUMAN | Homo sapiens | MDKYDVIKAIGQGAFGKAYLAKGKSDSKHCVIKEINFEKMPIQEKEASKKEVILLEKMKHPNIVAFFNSFQENGRLFIVMEYCDGGDLMKRINRQRGVLFSEDQILGWFVQISLGLKHIHDRKILHRDIKAQNIFLSKNGMVAKLGDFGIARVLNNSMELARTCIGTPYYLSPEICQNKPYNNKTDIWSLGCVLYELCTLKHPFEGNNLQQLVLKICQAHFAPISPGFSRELHSLISQLFQVSPRDRPSINSILKRPFLENLIPKYLTPEVIQEEFSHMLICRAGAPASRHAGKVVQKCKIQKVRFQGKCPPRSRISVPIKRNAILHRNEWRPPAGAQKARSIKMIERPKIAAVCGHYDYYYAQLDMLRRRAHKPSYHPIPQENTGVEDYGQETRHGPSPSQWPAEYLQRKFEAQQYKLKVEKQLGLRPSSAEPNYNQRQELRSNGEEPRFQELPFRKNEMKEQEYWKQLEEIRQQYHNDMKEIRKKMGREPEENSKISHKTYLVKKSNLPVHQDASEGEAPVQMEFRSCCPGWSAMARSWLTATSASQDIEKDLKQMRLQNTKESKNPEQKYKAKKGVKFEINLDKCISDENILQEEEAMDIPNETLTFEDGMKFKEYECVKEHGDYTDKAFEKLHCPEAGFSTQTVAAVGNRRQWDGGAPQTLLQMMAVADITSTCPTGPDSESVLSVSRQEGKTKDPYSPVLILM | null |
NEK6_HUMAN | Homo sapiens | MAGQPGHMPHGGSSNNLCHTLGPVHPPDPQRHPNTLSFRCSLADFQIEKKIGRGQFSEVYKATCLLDRKTVALKKVQIFEMMDAKARQDCVKEIGLLKQLNHPNIIKYLDSFIEDNELNIVLELADAGDLSQMIKYFKKQKRLIPERTVWKYFVQLCSAVEHMHSRRVMHRDIKPANVFITATGVVKLGDLGLGRFFSSETTAAHSLVGTPYYMSPERIHENGYNFKSDIWSLGCLLYEMAALQSPFYGDKMNLFSLCQKIEQCDYPPLPGEHYSEKLRELVSMCICPDPHQRPDIGYVHQVAKQMHIWMSST | Protein kinase which plays an important role in mitotic cell cycle progression (, ). Required for chromosome segregation at metaphase-anaphase transition, robust mitotic spindle formation and cytokinesis . Phosphorylates ATF4, CIR1, PTN, RAD26L, RBBP6, RPS7, RPS6KB1, TRIP4, STAT3 and histones H1 and H3 (, ). Phosphorylates KIF11 to promote mitotic spindle formation . Involved in G2/M phase cell cycle arrest induced by DNA damage . Inhibition of activity results in apoptosis. May contribute to tumorigenesis by suppressing p53/TP53-induced cancer cell senescence . Phosphorylates EML4 at 'Ser-144', promoting its dissociation from microtubules during mitosis which is required for efficient chromosome congression .
Subcellular locations: Cytoplasm, Nucleus, Nucleus speckle, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Cytoplasm, Cytoskeleton, Spindle pole
Colocalizes with APBB1 at the nuclear speckles. Colocalizes with PIN1 in the nucleus. Colocalizes with ATF4, CIR1, ARHGAP33, ANKRA2, CDC42, NEK9, RAD26L, RBBP6, RPS7, TRIP4, RELB and PHF1 in the centrosome. Localizes to spindle microtubules in metaphase and anaphase and to the midbody during cytokinesis.
Ubiquitous, with highest expression in heart and skeletal muscle. |
NEK7_HUMAN | Homo sapiens | MDEQSQGMQGPPVPQFQPQKALRPDMGYNTLANFRIEKKIGRGQFSEVYRAACLLDGVPVALKKVQIFDLMDAKARADCIKEIDLLKQLNHPNVIKYYASFIEDNELNIVLELADAGDLSRMIKHFKKQKRLIPERTVWKYFVQLCSALEHMHSRRVMHRDIKPANVFITATGVVKLGDLGLGRFFSSKTTAAHSLVGTPYYMSPERIHENGYNFKSDIWSLGCLLYEMAALQSPFYGDKMNLYSLCKKIEQCDYPPLPSDHYSEELRQLVNMCINPDPEKRPDVTYVYDVAKRMHACTASS | Protein kinase which plays an important role in mitotic cell cycle progression ( ). Required for microtubule nucleation activity of the centrosome, robust mitotic spindle formation and cytokinesis ( ). Phosphorylates EML4 at 'Ser-146', promoting its dissociation from microtubules during mitosis which is required for efficient chromosome congression . Phosphorylates RPS6KB1 (By similarity). Acts as an essential activator of the NLRP3 inflammasome assembly independently of its kinase activity (, ). Acts by unlocking NLRP3 following NLRP3 tranlocation into the microtubule organizing center (MTOC), relieving NLRP3 autoinhibition and promoting formation of the NLRP3:PYCARD complex, and activation of CASP1 ( ). Serves as a cellular switch that enforces mutual exclusivity of the inflammasome response and cell division: interaction with NEK9 prevents interaction with NLRP3 and activation of the inflammasome during mitosis (, ).
Subcellular locations: Nucleus, Cytoplasm, Cytoplasm, Cytoskeleton, Spindle pole, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome
Present at centrosome throughout the cell cycle . Also detected at spindle midzone of the anaphase cells and eventually concentrates at the midbody . Interaction with ANKS3 prevents its translocation to the nucleus (By similarity).
Highly expressed in lung, muscle, testis, brain, heart, liver, leukocyte and spleen. Lower expression in ovary, prostate and kidney. No expression seen in small intestine. |
NEUG_HUMAN | Homo sapiens | MDCCTENACSKPDDDILDIPLDDPGANAAAAKIQASFRGHMARKKIKSGERGRKGPGPGGPGGAGVARGGAGGGPSGD | Acts as a 'third messenger' substrate of protein kinase C-mediated molecular cascades during synaptic development and remodeling. Binds to calmodulin in the absence of calcium (By similarity).
In the cerebral cortex, found in the cell bodies of neurons in layers II-VI, and in apical and basal dendrites of pyramidal neurons. Is not found in the dendrites in patients with Alzheimer disease. |
NEUL1_HUMAN | Homo sapiens | MGNNFSSIPSLPRGNPSRAPRGHPQNLKDSIGGPFPVTSHRCHHKQKHCPAVLPSGGLPATPLLFHPHTKGSQILMDLSHKAVKRQASFCNAITFSNRPVLIYEQVRLKITKKQCCWSGALRLGFTSKDPSRIHPDSLPKYACPDLVSQSGFWAKALPEEFANEGNIIAFWVDKKGRVFHRINDSAVMLFFSGVRTADPLWALVDVYGLTRGVQLLDSELVLPDCLRPRSFTALRRPSLRREADDARLSVSLCDLNVPGADGDEAAPAAGCPIPQNSLNSQHSRALPAQLDGDLRFHALRAGAHVRILDEQTVARVEHGRDERALVFTSRPVRVAETIFVKVTRSGGARPGALSFGVTTCDPGTLRPADLPFSPEALVDRKEFWAVCRVPGPLHSGDILGLVVNADGELHLSHNGAAAGMQLCVDASQPLWMLFGLHGTITQIRILGSTILAERGIPSLPCSPASTPTSPSALGSRLSDPLLSTCSSGPLGSSAGGTAPNSPVSLPESPVTPGLGQWSDECTICYEHAVDTVIYTCGHMCLCYACGLRLKKALHACCPICRRPIKDIIKTYRSS | Plays a role in hippocampal-dependent synaptic plasticity, learning and memory. Involved in the formation of spines and functional synaptic contacts by modulating the translational activity of the cytoplasmic polyadenylation element-binding protein CPEB3. Promotes ubiquitination of CPEB3, and hence induces CPEB3-dependent mRNA translation activation of glutamate receptor GRIA1 and GRIA2. Can function as an E3 ubiquitin-protein ligase to activate monoubiquitination of JAG1 (in vitro), thereby regulating the Notch pathway. Acts as a tumor suppressor; inhibits malignant cell transformation of medulloblastoma (MB) cells by inhibiting the Notch signaling pathway.
Subcellular locations: Cytoplasm, Perinuclear region, Cell membrane, Perikaryon, Cell projection, Dendrite, Postsynaptic density
Localized in the cell bodies of the pyramidal neurons and distributed along their apical dendrites. Colocalized with PSD95 in postsynaptic sites. Colocalized with CPEB3 at apical dendrites of CA1 neurons (By similarity). Colocalized with JAG1 at the cell surface.
Expressed in brain, testis, pituitary gland, pancreas and bone marrow. Also poorly expressed in malignant astrocytomas and several neuroectodermal tumor cell lines. Weakly expressed in medulloblastoma (MB) compared with normal cerebellar tissues. |
NEUL2_HUMAN | Homo sapiens | MAAASEPVDSGALWGLERPEPPPTRFHRVHGANIRVDPSGTRATRVESFAHGVCFSREPLAPGQVFLVEIEEKELGWCGHLRLGLTALDPASLAPVPEFSLPDLVNLGHTWVFAITRHHNRVPREGRPEAEAAAPSRPPTLLVEPYLRIEQFRIPRDRLVGRSRPGLYSHLLDQLYELNVLPPTARRSRLGVLFCPRPDGTADMHIIINGEDMGPSARGLPAAQPLYAVVDVFASTKSVRLVQLEYGLPSLQTLCRLVIQRSMVHRLAIDGLHLPKELKDFCKYE | Plays an important role in the process of myofiber differentiation and maturation. Probable substrate-recognition component of a SCF-like ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex, which mediates the ubiquitination of proteins. Probably contributes to catalysis through recognition and positioning of the substrate and the ubiquitin-conjugating enzyme. During myogenesis, controls the ubiquitination and degradation of the specific pool of CTNNB1/beta-catenin located at the sarcolemma (By similarity).
Subcellular locations: Cytoplasm
Expressed specifically in skeletal and cardiac muscles. |
NEUL3_HUMAN | Homo sapiens | MGAQLCFEANAKAPREALRFHAEAKGAQVRLDTRGCIAHRRTTFHDGIVFSQRPVRLGERVALRVLREESGWCGGLRVGFTRLDPACVSVPSLPPFLCPDLEEQSPTWAAVLPEGCALTGDLVRFWVDRRGCLFAKVNAGCRLLLREGVPVGAPLWAVMDVYGTTKAIELLDPTASRLPTPMPWDLSNKAVPEPKATPGEECAICFYHAANTRLVPCGHTYFCRYCAWRVFSDTAKCPVCRWQIEAVAPAQGPPALRVEEGS | E3 ubiquitin-protein ligase that plays a role in various biological processes such as lung development or innate immunity . Seems to utilize UBE2E1. Promotes innate antiviral response by catalyzing 'Lys-63'-linked ubiquitination of IRF7 . Inhibits also hepatitis C virus assembly by directly binding to viral E1 envelope glycoprotein to disrupt its interaction with E2 .
Subcellular locations: Cytoplasm |
NEUL4_HUMAN | Homo sapiens | MAAGSGGSGGSGGGPGPGPGGGGGPSGSGSGPGSNGGLGSGGELHPRTGRLVSLSACGRTARRQQPGQEFNHGLVLSREPLRDGRVFTVRIDRKVNSWSGSIEIGVTALDPSVLDFPSSATGLKGGSWVVSGCSVLRDGRSVLEEYGQDLDQLGEGDRVGVERTVAGELRLWVNGRDCGVAATGLPPRVWAVVDLYGKCTQITVLPPEPGFSPPTPIPTPPLEPLAPTEDSALAEQGTSADEAFMVSPAQARPETFPNSLESHNDFANMELSEVVSNTILSAYNGGLLNVNLSSPPAGEGLGSSGAATSPILTSNDALLFHEKCGTLIKLSNNNKTAERRRPLDEFNNGVVMTNRPLRDNEMFEIRIDKLVDKWSGSIEIGVTTHNPNSLEYPATMTNLQSGTIMMSGCGILTNGKGTRREYCEFSLDELQEGDHIGLTRKSNSALHFFINGIDQGVATPLTPPVVYGVVDLYGMAVKVTIVHNNNHSDRLRRNNAILRALSPEGALRRAAPAAQAEPERLLFHPNCGQKAAITHEGRTALRPHATDDFNHGVVLSSRALRDGEVFQVRIDKMVDKWAGSIEIGVTTHNPAYLQLPSTMTNLRSGTWMMTGNGVMHNGTTILDEYGHNLDRLKAGDTVGVVRREDGTLHFFVNGMTQGPAAWNVPPGVYAVVDLYGQAAQATIVDDVEVAPVPEPLPEGNNQVSPSSPSSGAGGSDLRFHQLHGSNAVITNGGRTALRHNCRSEFNDAIVISNRALRDGELFEIVIQKMVDRWSGSIEAGVTAIRPEDLEFPNTMTDIDYDTWMLSGTAIMQDGNTMRNNYGCDLDALGTGARIGMMRTAKGDLHYFINGQDQGAACSGLPPGKEVYAVVDLYGQCVQVSITNATGPMDNSLATSNTATEKSFPLHSPVAGVAHRFHSTCGKNVTLEEDGTRAVRAAGYAHGLVFSTKELRAEEVFEVKVEELDEKWAGSLRLGLTTLAPGEMGPGAGGGGPGLPPSLPELRTKTTWMVSSCEVRRDGQLQRMNYGRNLERLGVGSRVGVRRGADDTMHILVDGEDMGPAATGIAKNVWAVLDLYGPVRGVSIVSSTRLEESEGTQPPSPSSDTGSEGEEDDEGEEHGLGGQNEVGIIPTTLEFLENHGKNILLSNGNRTATRVASYNQGIVVINQPLVPQLLVQVRIDFLNRQWTSSLVLGVITCAPERLNFPASACALKRAAWLLRGRGVFHNGLKICEKFGPNLDTCPEGTILGLRLDSSGGLHLHVNGVDQGVAVPDVPQPCHALVDLYGQCEQVTIVNPEPGAASGKSAGTQGDMEKADMVDGIKESVCWGPPPAASPLKSCEYHALCSRFQELLLLPEDYFMPPPKRSLCYCESCRKLRGDEAHRRRGEPPREYALPFGWCRFNLRVNPRLEAGTLTKKWHMAYHGSNVAAVRRVLDRGELGAGTASILSCRPLKGEPGVGFEEPGENCAPPREEQPPPVLLSPSLQYAGAETLASKVQFRDPKSQRTHQAQVAFQVCVRPGSYTPGPPSAALGEPPDPHFSPAELEWVTKEKGATLLCALLVRVE | Promotes CCP110 ubiquitination and proteasome-dependent degradation. By counteracting accumulation of CP110, maintains normal centriolar homeostasis and preventing formation of ectopic microtubular organizing centers.
Subcellular locations: Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome, Centriole
Localizes to procentriole and daughter centriole in growing and quiescent cells . May loose association with centrosomes during mitosis .
Widely expressed at high levels (including brain). |
NFH_HUMAN | Homo sapiens | MMSFGGADALLGAPFAPLHGGGSLHYALARKGGAGGTRSAAGSSSGFHSWTRTSVSSVSASPSRFRGAGAASSTDSLDTLSNGPEGCMVAVATSRSEKEQLQALNDRFAGYIDKVRQLEAHNRSLEGEAAALRQQQAGRSAMGELYEREVREMRGAVLRLGAARGQLRLEQEHLLEDIAHVRQRLDDEARQREEAEAAARALARFAQEAEAARVDLQKKAQALQEECGYLRRHHQEEVGELLGQIQGSGAAQAQMQAETRDALKCDVTSALREIRAQLEGHAVQSTLQSEEWFRVRLDRLSEAAKVNTDAMRSAQEEITEYRRQLQARTTELEALKSTKDSLERQRSELEDRHQADIASYQEAIQQLDAELRNTKWEMAAQLREYQDLLNVKMALDIEIAAYRKLLEGEECRIGFGPIPFSLPEGLPKIPSVSTHIKVKSEEKIKVVEKSEKETVIVEEQTEETQVTEEVTEEEEKEAKEEEGKEEEGGEEEEAEGGEEETKSPPAEEAASPEKEAKSPVKEEAKSPAEAKSPEKEEAKSPAEVKSPEKAKSPAKEEAKSPPEAKSPEKEEAKSPAEVKSPEKAKSPAKEEAKSPAEAKSPEKAKSPVKEEAKSPAEAKSPVKEEAKSPAEVKSPEKAKSPTKEEAKSPEKAKSPEKAKSPEKEEAKSPEKAKSPVKAEAKSPEKAKSPVKAEAKSPEKAKSPVKEEAKSPEKAKSPVKEEAKSPEKAKSPVKEEAKTPEKAKSPVKEEAKSPEKAKSPEKAKTLDVKSPEAKTPAKEEARSPADKFPEKAKSPVKEEVKSPEKAKSPLKEDAKAPEKEIPKKEEVKSPVKEEEKPQEVKVKEPPKKAEEEKAPATPKTEEKKDSKKEEAPKKEAPKPKVEEKKEPAVEKPKESKVEAKKEEAEDKKKVPTPEKEAPAKVEVKEDAKPKEKTEVAKKEPDDAKAKEPSKPAEKKEAAPEKKDTKEEKAKKPEEKPKTEAKAKEDDKTLSKEPSKPKAEKAEKSSSTDQKDSKPPEKATEDKAAKGK | Neurofilaments usually contain three intermediate filament proteins: NEFL, NEFM, and NEFH which are involved in the maintenance of neuronal caliber. NEFH has an important function in mature axons that is not subserved by the two smaller NF proteins. May additionally cooperate with the neuronal intermediate filament proteins PRPH and INA to form neuronal filamentous networks (By similarity).
Subcellular locations: Cytoplasm, Cytoskeleton, Cell projection, Axon |
NFIA_HUMAN | Homo sapiens | MYSPLCLTQDEFHPFIEALLPHVRAFAYTWFNLQARKRKYFKKHEKRMSKEEERAVKDELLSEKPEVKQKWASRLLAKLRKDIRPEYREDFVLTVTGKKPPCCVLSNPDQKGKMRRIDCLRQADKVWRLDLVMVILFKGIPLESTDGERLVKSPQCSNPGLCVQPHHIGVSVKELDLYLAYFVHAADSSQSESPSQPSDADIKDQPENGHLGFQDSFVTSGVFSVTELVRVSQTPIAAGTGPNFSLSDLESSSYYSMSPGAMRRSLPSTSSTSSTKRLKSVEDEMDSPGEEPFYTGQGRSPGSGSQSSGWHEVEPGMPSPTTLKKSEKSGFSSPSPSQTSSLGTAFTQHHRPVITGPRASPHATPSTLHFPTSPIIQQPGPYFSHPAIRYHPQETLKEFVQLVCPDAGQQAGQVGFLNPNGSSQGKVHNPFLPTPMLPPPPPPPMARPVPLPVPDTKPPTTSTEGGAASPTSPTYSTPSTSPANRFVSVGPRDPSFVNIPQQTQSWYLG | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
Subcellular locations: Nucleus |
NFIB_HUMAN | Homo sapiens | MMYSPICLTQDEFHPFIEALLPHVRAIAYTWFNLQARKRKYFKKHEKRMSKDEERAVKDELLSEKPEIKQKWASRLLAKLRKDIRQEYREDFVLTVTGKKHPCCVLSNPDQKGKIRRIDCLRQADKVWRLDLVMVILFKGIPLESTDGERLMKSPHCTNPALCVQPHHITVSVKELDLFLAYYVQEQDSGQSGSPSHNDPAKNPPGYLEDSFVKSGVFNVSELVRVSRTPITQGTGVNFPIGEIPSQPYYHDMNSGVNLQRSLSSPPSSKRPKTISIDENMEPSPTGDFYPSPSSPAAGSRTWHERDQDMSSPTTMKKPEKPLFSSASPQDSSPRLSTFPQHHHPGIPGVAHSVISTRTPPPPSPLPFPTQAILPPAPSSYFSHPTIRYPPHLNPQDTLKNYVPSYDPSSPQTSQSWYLG | Transcriptional activator of GFAP, essential for proper brain development . Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
Subcellular locations: Nucleus |
NFIC_HUMAN | Homo sapiens | MYSSPLCLTQDEFHPFIEALLPHVRAFAYTWFNLQARKRKYFKKHEKRMSKDEERAVKDELLGEKPEVKQKWASRLLAKLRKDIRPECREDFVLSITGKKAPGCVLSNPDQKGKMRRIDCLRQADKVWRLDLVMVILFKGIPLESTDGERLVKAAQCGHPVLCVQPHHIGVAVKELDLYLAYFVRERDAEQSGSPRTGMGSDQEDSKPITLDTTDFQESFVTSGVFSVTELIQVSRTPVVTGTGPNFSLGELQGHLAYDLNPASTGLRRTLPSTSSSGSKRHKSGSMEEDVDTSPGGDYYTSPSSPTSSSRNWTEDMEGGISSPVKKTEMDKSPFNSPSPQDSPRLSSFTQHHRPVIAVHSGIARSPHPSSALHFPTTSILPQTASTYFPHTAIRYPPHLNPQDPLKDLVSLACDPASQQPGPLNGSGQLKMPSHCLSAQMLAPPPPGLPRLALPPATKPATTSEGGATSPTSPSYSPPDTSPANRSFVGLGPRDPAGIYQAQSWYLG | Recognizes and binds the palindromic sequence 5'-TTGGCNNNNNGCCAA-3' present in viral and cellular promoters and in the origin of replication of adenovirus type 2. These proteins are individually capable of activating transcription and replication.
Subcellular locations: Nucleus |
NFU1_HUMAN | Homo sapiens | MAATARRGWGAAAVAAGLRRRFCHMLKNPYTIKKQPLHQFVQRPLFPLPAAFYHPVRYMFIQTQDTPNPNSLKFIPGKPVLETRTMDFPTPAAAFRSPLARQLFRIEGVKSVFFGPDFITVTKENEELDWNLLKPDIYATIMDFFASGLPLVTEETPSGEAGSEEDDEVVAMIKELLDTRIRPTVQEDGGDVIYKGFEDGIVQLKLQGSCTSCPSSIITLKNGIQNMLQFYIPEVEGVEQVMDDESDEKEANSP | Iron-sulfur cluster scaffold protein which can assemble [4Fe-4S] clusters and deliver them to target proteins.
Subcellular locations: Mitochondrion, Cytoplasm, Cytosol
Ubiquitous. Expression in adult lung is weak compared to fetal lung. |
NFXL1_HUMAN | Homo sapiens | MEASWRQVAGGRGRSRGRATAAPSGNGVHLRGAGGGREKGSVGAVPSGTSPGGVATTAAAGSRHSPAGSQALQTTAASELMSQKKFEEIKKANQAAARKLVEEQFSSSSEEGDEDFEGKQGKILANTFITYTTQTDGDTRELERTKQYVNEAFQAGAMTCLICIASVKRNQAVWSCSGCFCIFHMPCIQKWAKDSQFLVSSVTDDDFGKKDCPWPCPKCRFEYKRSETPSRYYCYCGKVEDPPLDPWLVPHSCGQVCEREFKPPCGHKCLLLCHPGPCPPCPKMVTTTCYCKKAKPIPRRCSAKEWSCQLPCGQKLLCGQHKCENPCHAGSCQPCPRVSRQKCVCGKKVAERSCASPLWHCDQVCGKTLPCGNHTCEQVCHVGACGECPRSGKRFCPCQKSKFSLPCTEDVPTCGDSCDKVLECGIHRCSQRCHRGPCETCRQEVEKHCRCGKHTKRMPCHKPYLCETKCVKMRDCQKHQCRRKCCPGNCPPCDQNCGRTLGCRNHKCPSVCHRGSCYPCPETVDVKCNCGNTKVTVPCGRERTTRPPKCKEQCSRPPTCHHTSQEKHRCHFGSCPPCHQPCQKVLEKCGHLCPAPCHDQALIKQTGRHQPTGPWEQPSEPAFIQTALPCPPCQVPIPMECLGKHEVSPLPCHAVGPYSCKRVCGRILDCQNHTCMKECHKVTKTDGCTGKNKAGPECLHCEEGCSKSRPLGCLHPCILRCHPGECPPCVQMLRIKCHCKITSLYVECRKITTADVNEKNLLSCCKNQCPKELPCGHRCKEMCHPGECPFNCNQKVKLRCPCKRIKKELQCNKVRENQVSIECDTTCKEMKRKASEIKEAEAKAALEEEKRRQQAELEAFENRLKGRRKKNRKRDEVAVELSLWQKHKYYLISVCGVVVVVFAWYITHDVN | Subcellular locations: Membrane |
NFYA_HUMAN | Homo sapiens | MEQYTANSNSSTEQIVVQAGQIQQQQQGGVTAVQLQTEAQVASASGQQVQTLQVVQGQPLMVQVSGGQLITSTGQPIMVQAVPGGQGQTIMQVPVSGTQGLQQIQLVPPGQIQIQGGQAVQVQGQQGQTQQIIIQQPQTAVTAGQTQTQQQIAVQGQQVAQTAEGQTIVYQPVNADGTILQQVTVPVSGMITIPAASLAGAQIVQTGANTNTTSSGQGTVTVTLPVAGNVVNSGGMVMMVPGAGSVPAIQRIPLPGAEMLEEEPLYVNAKQYHRILKRRQARAKLEAEGKIPKERRKYLHESRHRHAMARKRGEGGRFFSPKEKDSPHMQDPNQADEEAMTQIIRVS | Component of the sequence-specific heterotrimeric transcription factor (NF-Y) which specifically recognizes a 5'-CCAAT-3' box motif found in the promoters of its target genes. NF-Y can function as both an activator and a repressor, depending on its interacting cofactors. NF-YA positively regulates the transcription of the core clock component BMAL1.
Subcellular locations: Nucleus |
NH2L1_HUMAN | Homo sapiens | MTEADVNPKAYPLADAHLTKKLLDLVQQSCNYKQLRKGANEATKTLNRGISEFIVMAADAEPLEIILHLPLLCEDKNVPYVFVRSKQALGRACGVSRPVIACSVTIKEGSQLKQQIQSIQQSIERLLV | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome . Involved in pre-mRNA splicing as component of the spliceosome . Binds to the 5'-stem-loop of U4 snRNA and thereby contributes to spliceosome assembly (, ). The protein undergoes a conformational change upon RNA-binding ( ).
Subcellular locations: Nucleus, Nucleus, Nucleolus
Concentrated in the dense fibrillar component of the nucleolus.
Ubiquitous. |
NH2L1_MACFA | Macaca fascicularis | MTEADVNPKAYPLADAHLTKKLLDLVQQSCNYKQLRKGANEATKTLNRGISEFIVMAADAEPLEIILHLPLLCEDKNVPYVFVRSKQALGRACGVSRPVIACSVTIKEGSQLKQQIQSIQQSIERLLV | Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Involved in pre-mRNA splicing as component of the spliceosome. Binds to the 5'-stem-loop of U4 snRNA and thereby contributes to spliceosome assembly. The protein undergoes a conformational change upon RNA-binding.
Subcellular locations: Nucleus, Nucleus, Nucleolus
Concentrated in the dense fibrillar component of the nucleolus. |
NICA_HUMAN | Homo sapiens | MATAGGGSGADPGSRGLLRLLSFCVLLAGLCRGNSVERKIYIPLNKTAPCVRLLNATHQIGCQSSISGDTGVIHVVEKEEDLQWVLTDGPNPPYMVLLESKHFTRDLMEKLKGRTSRIAGLAVSLTKPSPASGFSPSVQCPNDGFGVYSNSYGPEFAHCREIQWNSLGNGLAYEDFSFPIFLLEDENETKVIKQCYQDHNLSQNGSAPTFPLCAMQLFSHMHAVISTATCMRRSSIQSTFSINPEIVCDPLSDYNVWSMLKPINTTGTLKPDDRVVVAATRLDSRSFFWNVAPGAESAVASFVTQLAAAEALQKAPDVTTLPRNVMFVFFQGETFDYIGSSRMVYDMEKGKFPVQLENVDSFVELGQVALRTSLELWMHTDPVSQKNESVRNQVEDLLATLEKSGAGVPAVILRRPNQSQPLPPSSLQRFLRARNISGVVLADHSGAFHNKYYQSIYDTAENINVSYPEWLSPEEDLNFVTDTAKALADVATVLGRALYELAGGTNFSDTVQADPQTVTRLLYGFLIKANNSWFQSILRQDLRSYLGDGPLQHYIAVSSPTNTTYVVQYALANLTGTVVNLTREQCQDPSKVPSENKDLYEYSWVQGPLHSNETDRLPRCVRSTARLARALSPAFELSQWSSTEYSTWTESRWKDIRARIFLIASKELELITLTVGFGILIFSLIVTYCINAKADVLFIAPREPGAVSY | Essential subunit of the gamma-secretase complex, an endoprotease complex that catalyzes the intramembrane cleavage of integral membrane proteins such as Notch receptors and APP (amyloid-beta precursor protein) ( , ). The gamma-secretase complex plays a role in Notch and Wnt signaling cascades and regulation of downstream processes via its role in processing key regulatory proteins, and by regulating cytosolic CTNNB1 levels.
Subcellular locations: Membrane, Cytoplasmic vesicle membrane, Melanosome
Identified by mass spectrometry in melanosome fractions from stage I to stage IV.
Detected in brain (at protein level) . Widely expressed . |
NIM1_HUMAN | Homo sapiens | MTAVYMNGGGLVNPHYARWDRRDSVESGCQTESSKEGEEGQPRQLTPFEKLTQDMSQDEKVVREITLGKRIGFYRIRGEIGSGNFSQVKLGIHSLTKEKVAIKILDKTKLDQKTQRLLSREISSMEKLHHPNIIRLYEVVETLSKLHLVMEYAGGGELFGKISTEGKLSEPESKLIFSQIVSAVKHMHENQIIHRDLKAENVFYTSNTCVKVGDFGFSTVSKKGEMLNTFCGSPPYAAPELFRDEHYIGIYVDIWALGVLLYFMVTGTMPFRAETVAKLKKSILEGTYSVPPHVSEPCHRLIRGVLQQIPTERYGIDCIMNDEWMQGVPYPTPLEPFQLDPKHLSETSTLKEEENEVKSTLEHLGITEEHIRNNQGRDARSSITGVYRIILHRVQRKKALESVPVMMLPDPKERDLKKGSRVYRGIRHTSKFCSIL | null |
NJMU_HUMAN | Homo sapiens | MLPSLQESMDGDEKELESSEEGGSAEERRLEPPSSSHYCLYSYRGSRLAQQRGDSEDGSPSGTNAETPSGDDFSLSLADTNLPSEVEPELRSFIAKRLSRGAVFEGLGNVASVELKIPGYRVGCYYCLFQNEKLLPETVTIDSERNPSEYVVCFLGGSEKGLELFRLELDKYIQGLKNNMNCEARGLESHIKSYLSSWFEDVVCPIQRVVLLFQEKLTFLLHAALSYTPVEVKESDEKTKRDINRFLSVASLQGLIHEGTMTSLCMAMTEEQHKSVVIDCSSSQPQFCNAGSNRFCEDWMQAFLNGAKGGNPFLFRQVLENFKLKAIQDTNNLKRFIRQAEMNHYALFKCYMFLKNCGSGDILLKIVKVEHEEMPEAKNVIAVLEEFMKEALDQSF | As component of the WDR11 complex acts together with TBC1D23 to facilitate the golgin-mediated capture of vesicles generated using AP-1 . May have a role in spermatogenesis.
Subcellular locations: Golgi apparatus, Trans-Golgi network, Cytoplasmic vesicle
Highly expressed in testis and also expressed in fetal testis. |
NK1R_HUMAN | Homo sapiens | MDNVLPVDSDLSPNISTNTSEPNQFVQPAWQIVLWAAAYTVIVVTSVVGNVVVMWIILAHKRMRTVTNYFLVNLAFAEASMAAFNTVVNFTYAVHNEWYYGLFYCKFHNFFPIAAVFASIYSMTAVAFDRYMAIIHPLQPRLSATATKVVICVIWVLALLLAFPQGYYSTTETMPSRVVCMIEWPEHPNKIYEKVYHICVTVLIYFLPLLVIGYAYTVVGITLWASEIPGDSSDRYHEQVSAKRKVVKMMIVVVCTFAICWLPFHIFFLLPYINPDLYLKKFIQQVYLAIMWLAMSSTMYNPIIYCCLNDRFRLGFKHAFRCCPFISAGDYEGLEMKSTRYLQTQGSVYKVSRLETTISTVVGAHEEEPEDGPKATPSSLDLTSNCSSRSDSKTMTESFSFSSNVLS | This is a receptor for the tachykinin neuropeptide substance P. It is probably associated with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of affinity of this receptor to tachykinins is: substance P > substance K > neuromedin-K.
Subcellular locations: Cell membrane |
NK2R_HUMAN | Homo sapiens | MGTCDIVTEANISSGPESNTTGITAFSMPSWQLALWATAYLALVLVAVTGNAIVIWIILAHRRMRTVTNYFIVNLALADLCMAAFNAAFNFVYASHNIWYFGRAFCYFQNLFPITAMFVSIYSMTAIAADRYMAIVHPFQPRLSAPSTKAVIAGIWLVALALASPQCFYSTVTMDQGATKCVVAWPEDSGGKTLLLYHLVVIALIYFLPLAVMFVAYSVIGLTLWRRAVPGHQAHGANLRHLQAMKKFVKTMVLVVLTFAICWLPYHLYFILGSFQEDIYCHKFIQQVYLALFWLAMSSTMYNPIIYCCLNHRFRSGFRLAFRCCPWVTPTKEDKLELTPTTSLSTRVNRCHTKETLFMAGDTAPSEATSGEAGRPQDGSGLWFGYGLLAPTKTHVEI | This is a receptor for the tachykinin neuropeptide substance K (neurokinin A). It is associated with G proteins that activate a phosphatidylinositol-calcium second messenger system. The rank order of affinity of this receptor to tachykinins is: substance K > neuromedin-K > substance P.
Subcellular locations: Cell membrane |
NMBR_HUMAN | Homo sapiens | MPSKSLSNLSVTTGANESGSVPEGWERDFLPASDGTTTELVIRCVIPSLYLLIITVGLLGNIMLVKIFITNSAMRSVPNIFISNLAAGDLLLLLTCVPVDASRYFFDEWMFGKVGCKLIPVIQLTSVGVSVFTLTALSADRYRAIVNPMDMQTSGALLRTCVKAMGIWVVSVLLAVPEAVFSEVARISSLDNSSFTACIPYPQTDELHPKIHSVLIFLVYFLIPLAIISIYYYHIAKTLIKSAHNLPGEYNEHTKKQMETRKRLAKIVLVFVGCFIFCWFPNHILYMYRSFNYNEIDPSLGHMIVTLVARVLSFGNSCVNPFALYLLSESFRRHFNSQLCCGRKSYQERGTSYLLSSSAVRMTSLKSNAKNMVTNSVLLNGHSMKQEMAL | Receptor for neuromedin-B . Contributes to the maintenance of basal sigh rate through signaling in the pre-Botzinger complex, a cluster of several thousand neurons in the ventrolateral medulla responsible for inspiration during respiratory activity (By similarity). Contributes to the induction of sneezing following exposure to chemical irritants or allergens which causes release of NMB by nasal sensory neurons and activation of NMBR-expressing neurons in the sneeze-evoking region of the brainstem (By similarity). These in turn activate neurons of the caudal ventral respiratory group, giving rise to the sneezing response (By similarity). Contributes to induction of acute itch, possibly through its activation on dorsal root ganglion neurons by the NMB peptide (By similarity). Plays a role in the innate immune response to influenza A virus infection by enhancing interferon alpha expression and reducing expression of IL6 . Plays a role in CSF1-induced proliferation of osteoclast precursors by contributing to the positive regulation of the expression of the CSF1 receptor CSF1R (By similarity).
Subcellular locations: Cell membrane
Expressed in epididymis (at protein level). |
NMB_HUMAN | Homo sapiens | MARRAGGARMFGSLLLFALLAAGVAPLSWDLPEPRSRASKIRVHSRGNLWATGHFMGKKSLEPSSPSPLGTAPHTSLRDQRLQLSHDLLGILLLKKALGVSLSRPAPQIQYRRLLVQILQK | Stimulates smooth muscle contraction (By similarity). Induces sighing by acting directly on the pre-Botzinger complex, a cluster of several thousand neurons in the ventrolateral medulla responsible for inspiration during respiratory activity (By similarity). Contributes to the induction of sneezing following exposure to chemical irritants or allergens which causes release of NMB by nasal sensory neurons and activation of NMBR-expressing neurons in the sneeze-evoking region of the brainstem (By similarity). These in turn activate neurons of the caudal ventral respiratory group, giving rise to the sneezing response (By similarity). Contributes to induction of acute itch, possibly through activation of the NMBR receptor on dorsal root ganglion neurons (By similarity). Increases expression of NMBR and steroidogenic mediators STAR, CYP11A1 and HSD3B1 in Leydig cells, induces secretion of testosterone by Leydig cells and also promotes Leydig cell proliferation (By similarity). Plays a role in the innate immune response to influenza A virus infection by enhancing interferon alpha expression and reducing expression of IL6 . Plays a role in CSF1-induced proliferation of osteoclast precursors by contributing to the positive regulation of the expression of the CSF1 receptor CSF1R (By similarity).
Subcellular locations: Secreted, Cell projection, Neuron projection
In neurons of the retrotrapezoid nucleus//parafacial respiratory group, expressed on neuron projections which project into the pre-Botzinger complex. |
NMT2_HUMAN | Homo sapiens | MAEDSESAASQQSLELDDQDTCGIDGDNEEETEHAKGSPGGYLGAKKKKKKQKRKKEKPNSGGTKSDSASDSQEIKIQQPSKNPSVPMQKLQDIQRAMELLSACQGPARNIDEAAKHRYQFWDTQPVPKLDEVITSHGAIEPDKDNVRQEPYSLPQGFMWDTLDLSDAEVLKELYTLLNENYVEDDDNMFRFDYSPEFLLWALRPPGWLLQWHCGVRVSSNKKLVGFISAIPANIRIYDSVKKMVEINFLCVHKKLRSKRVAPVLIREITRRVNLEGIFQAVYTAGVVLPKPIATCRYWHRSLNPRKLVEVKFSHLSRNMTLQRTMKLYRLPDVTKTSGLRPMEPKDIKSVRELINTYLKQFHLAPVMDEEEVAHWFLPREHIIDTFVVESPNGKLTDFLSFYTLPSTVMHHPAHKSLKAAYSFYNIHTETPLLDLMSDALILAKSKGFDVFNALDLMENKTFLEKLKFGIGDGNLQYYLYNWRCPGTDSEKVGLVLQ | Adds a myristoyl group to the N-terminal glycine residue of certain cellular and viral proteins (, ). Also able to mediate N-terminal lysine myristoylation of proteins: catalyzes myristoylation of ARF6 on both 'Gly-2' and 'Lys-3' . Lysine myristoylation is required to maintain ARF6 on membranes during the GTPase cycle .
Subcellular locations: Cytoplasm, Membrane |
NNRD_HUMAN | Homo sapiens | MVTRAGAGTAVAGAVVVALLSAALALYGPPLDAVLERAFSLRKAHSIKDMENTLQLVRNIIPPLSSTKHKGQDGRIGVVGGCQEYTGAPYFAAISALKVGADLSHVFCASAAAPVIKAYSPELIVHPVLDSPNAVHEVEKWLPRLHALVVGPGLGRDDALLRNVQGILEVSKARDIPVVIDADGLWLVAQQPALIHGYRKAVLTPNHVEFSRLYDAVLRGPMDSDDSHGSVLRLSQALGNVTVVQKGERDILSNGQQVLVCSQEGSSRRCGGQGDLLSGSLGVLVHWALLAGPQKTNGSSPLLVAAFGACSLTRQCNHQAFQKHGRSTTTSDMIAEVGAAFSKLFET | Catalyzes the dehydration of the S-form of NAD(P)HX at the expense of ATP, which is converted to ADP. Together with NAD(P)HX epimerase, which catalyzes the epimerization of the S- and R-forms, the enzyme allows the repair of both epimers of NAD(P)HX, a damaged form of NAD(P)H that is a result of enzymatic or heat-dependent hydration.
Subcellular locations: Mitochondrion |
NOD1_HUMAN | Homo sapiens | MEEQGHSEMEIIPSESHPHIQLLKSNRELLVTHIRNTQCLVDNLLKNDYFSAEDAEIVCACPTQPDKVRKILDLVQSKGEEVSEFFLYLLQQLADAYVDLRPWLLEIGFSPSLLTQSKVVVNTDPVSRYTQQLRHHLGRDSKFVLCYAQKEELLLEEIYMDTIMELVGFSNESLGSLNSLACLLDHTTGILNEQGETIFILGDAGVGKSMLLQRLQSLWATGRLDAGVKFFFHFRCRMFSCFKESDRLCLQDLLFKHYCYPERDPEEVFAFLLRFPHVALFTFDGLDELHSDLDLSRVPDSSCPWEPAHPLVLLANLLSGKLLKGASKLLTARTGIEVPRQFLRKKVLLRGFSPSHLRAYARRMFPERALQDRLLSQLEANPNLCSLCSVPLFCWIIFRCFQHFRAAFEGSPQLPDCTMTLTDVFLLVTEVHLNRMQPSSLVQRNTRSPVETLHAGRDTLCSLGQVAHRGMEKSLFVFTQEEVQASGLQERDMQLGFLRALPELGPGGDQQSYEFFHLTLQAFFTAFFLVLDDRVGTQELLRFFQEWMPPAGAATTSCYPPFLPFQCLQGSGPAREDLFKNKDHFQFTNLFLCGLLSKAKQKLLRHLVPAAALRRKRKALWAHLFSSLRGYLKSLPRVQVESFNQVQAMPTFIWMLRCIYETQSQKVGQLAARGICANYLKLTYCNACSADCSALSFVLHHFPKRLALDLDNNNLNDYGVRELQPCFSRLTVLRLSVNQITDGGVKVLSEELTKYKIVTYLGLYNNQITDVGARYVTKILDECKGLTHLKLGKNKITSEGGKYLALAVKNSKSISEVGMWGNQVGDEGAKAFAEALRNHPSLTTLSLASNGISTEGGKSLARALQQNTSLEILWLTQNELNDEVAESLAEMLKVNQTLKHLWLIQNQITAKGTAQLADALQSNTGITEICLNGNLIKPEEAKVYEDEKRIICF | Pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals and thus participates in both innate and adaptive immune responses ( , ). Specifically recognizes and binds gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP), a dipeptide present in peptidoglycan of Gram-negative bacteria ( ). Preferentially binds iE-DAP in tripeptide-containing muropeptides (MurNAc-TriDAP or TriDAP) . Ligand binding triggers oligomerization that facilitates the binding and subsequent activation of the proximal adapter receptor-interacting RIPK2 ( ). Following recruitment, RIPK2 undergoes 'Met-1'- (linear) and 'Lys-63'-linked polyubiquitination by E3 ubiquitin-protein ligases XIAP, BIRC2, BIRC3 and the LUBAC complex, becoming a scaffolding protein for downstream effectors, triggering activation of the NF-kappa-B and MAP kinases signaling ( ). This in turn leads to the transcriptional activation of hundreds of genes involved in immune response (, ). Also acts as a regulator of antiviral response elicited by dsRNA and the expression of RLR pathway members by targeting IFIH1 and TRAF3 to modulate the formation of IFIH1-MAVS and TRAF3-MAVS complexes leading to increased transcription of type I IFNs . Also acts as a regulator of autophagy via its interaction with ATG16L1, possibly by recruiting ATG16L1 at the site of bacterial entry (By similarity). Besides recognizing pathogens, also involved in the endoplasmic reticulum stress response: acts by sensing and binding to the cytosolic metabolite sphingosine-1-phosphate generated in response to endoplasmic reticulum stress, initiating an inflammation process that leads to activation of the NF-kappa-B and MAP kinases signaling (, ). In addition, plays a role in insulin trafficking in beta cells in a cell-autonomous manner (By similarity). Mechanistically, upon recognizing cognate ligands, NOD1 and RIPK2 localize to insulin vesicles where they recruit RAB1A to direct insulin trafficking through the cytoplasm (By similarity).
In contrast to isoform 1, does not efficiently recognize and bind gamma-D-glutamyl-meso-diaminopimelic acid (iE-DAP) ligand.
Subcellular locations: Cell membrane, Apical cell membrane, Basolateral cell membrane, Cytoplasm
Detected in the cytoplasm and at the cell membrane . Following bacterial infection, localizes to bacterial entry sites in the cell membrane . Recruited to the basolateral and apical membranes in polarized epithelial cells .
Highly expressed in adult heart, skeletal muscle, pancreas, spleen and ovary . Also detected in placenta, lung, liver, kidney, thymus, testis, small intestine and colon . |
NOD2_HUMAN | Homo sapiens | MGEEGGSASHDEEERASVLLGHSPGCEMCSQEAFQAQRSQLVELLVSGSLEGFESVLDWLLSWEVLSWEDYEGFHLLGQPLSHLARRLLDTVWNKGTWACQKLIAAAQEAQADSQSPKLHGCWDPHSLHPARDLQSHRPAIVRRLHSHVENMLDLAWERGFVSQYECDEIRLPIFTPSQRARRLLDLATVKANGLAAFLLQHVQELPVPLALPLEAATCKKYMAKLRTTVSAQSRFLSTYDGAETLCLEDIYTENVLEVWADVGMAGPPQKSPATLGLEELFSTPGHLNDDADTVLVVGEAGSGKSTLLQRLHLLWAAGQDFQEFLFVFPFSCRQLQCMAKPLSVRTLLFEHCCWPDVGQEDIFQLLLDHPDRVLLTFDGFDEFKFRFTDRERHCSPTDPTSVQTLLFNLLQGNLLKNARKVVTSRPAAVSAFLRKYIRTEFNLKGFSEQGIELYLRKRHHEPGVADRLIRLLQETSALHGLCHLPVFSWMVSKCHQELLLQEGGSPKTTTDMYLLILQHFLLHATPPDSASQGLGPSLLRGRLPTLLHLGRLALWGLGMCCYVFSAQQLQAAQVSPDDISLGFLVRAKGVVPGSTAPLEFLHITFQCFFAAFYLALSADVPPALLRHLFNCGRPGNSPMARLLPTMCIQASEGKDSSVAALLQKAEPHNLQITAAFLAGLLSREHWGLLAECQTSEKALLRRQACARWCLARSLRKHFHSIPPAAPGEAKSVHAMPGFIWLIRSLYEMQEERLARKAARGLNVGHLKLTFCSVGPTECAALAFVLQHLRRPVALQLDYNSVGDIGVEQLLPCLGVCKALYLRDNNISDRGICKLIECALHCEQLQKLALFNNKLTDGCAHSMAKLLACRQNFLALRLGNNYITAAGAQVLAEGLRGNTSLQFLGFWGNRVGDEGAQALAEALGDHQSLRWLSLVGNNIGSVGAQALALMLAKNVMLEELCLEENHLQDEGVCSLAEGLKKNSSLKILKLSNNCITYLGAEALLQALERNDTILEVWLRGNTFSLEEVDKLGCRDTRLLL | Pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals and plays an important role in gastrointestinal immunity ( , ). Specifically activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan found in every bacterial peptidoglycan type ( ). NOD2 specifically recognizes and binds 6-O-phospho-MDP, the phosphorylated form of MDP, which is generated by NAGK . 6-O-phospho-MDP-binding triggers oligomerization that facilitates the binding and subsequent activation of the proximal adapter receptor-interacting RIPK2 ( ). Following recruitment, RIPK2 undergoes 'Met-1'- (linear) and 'Lys-63'-linked polyubiquitination by E3 ubiquitin-protein ligases XIAP, BIRC2, BIRC3 and the LUBAC complex, becoming a scaffolding protein for downstream effectors, triggering activation of the NF-kappa-B and MAP kinases signaling ( , ). This in turn leads to the transcriptional activation of hundreds of genes involved in immune response . Its ability to detect bacterial MDP plays a central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation (By similarity). An imbalance in this relationship results in dysbiosis, whereby pathogenic bacteria prevail on commensals, causing damage in the intestinal epithelial barrier as well as allowing bacterial invasion and inflammation (By similarity). Acts as a regulator of appetite by sensing MDP in a subset of brain neurons: microbiota-derived MDP reach the brain, where they bind and activate NOD2 in inhibitory hypothalamic neurons, decreasing neuronal activity, thereby regulating satiety and body temperature (By similarity). NOD2-dependent MDP-sensing of bacterial cell walls in the intestinal epithelial compartment contributes to sustained postnatal growth upon undernutrition (By similarity). Also plays a role in antiviral response by acting as a sensor of single-stranded RNA (ssRNA) from viruses: upon ssRNA-binding, interacts with MAVS, leading to activation of interferon regulatory factor-3/IRF3 and expression of type I interferon . Also acts as a regulator of autophagy in dendritic cells via its interaction with ATG16L1, possibly by recruiting ATG16L1 at the site of bacterial entry . NOD2 activation in the small intestine crypt also contributes to intestinal stem cells survival and function: acts by promoting mitophagy via its association with ATG16L1 (By similarity). In addition to its main role in innate immunity, also regulates the adaptive immune system by acting as regulator of helper T-cell and regulatory T-cells (Tregs) (By similarity). Besides recognizing pathogens, also involved in the endoplasmic reticulum stress response: acts by sensing and binding to the cytosolic metabolite sphingosine-1-phosphate generated in response to endoplasmic reticulum stress, initiating an inflammation process that leads to activation of the NF-kappa-B and MAP kinases signaling (, ). May also be involved in NLRP1 activation following activation by MDP, leading to CASP1 activation and IL1B release in macrophages .
Acts as a pattern recognition receptor (PRR); able to activate NF-kappa-B.
Can activate NF-kappa-B in a muramyl dipeptide (MDP)-independent manner.
Subcellular locations: Cell membrane, Basolateral cell membrane, Cytoplasm, Mitochondrion
Palmitoylation promotes localization to the cell membrane, where it detects bacterial invasion at the point of entry.
Subcellular locations: Cytoplasm
Expressed in monocytes, macrophages, dendritic cells, hepatocytes, preadipocytes, epithelial cells of oral cavity, lung and intestine, with higher expression in ileal Paneth cells and in intestinal stem cells.
Expressed at higher level in leukocytes. |
NOD2_HYLLA | Hylobates lar | MGEEGGSVSHDEEERASVLLGQYLGCEMCSQEAFQAQRSQLVELLVSGSLEGFESVLDWLLSWEVLSWEDYEGFHLLGQPLSHLARRLLDTVWNKGTWACQKLIAAAQEAQADSQSPKLHGCWDPHSLHPARDLQSHRPAIVRRLHSHVEGVLDLAWERGFVSQYECDEIRLPIFTPSQRARRLLDLATVKANGLAAFLLQHVQELPVPLALPLEAATCRKYMAKLRTTVSAQSRFLSTYDGAETLCLEDIYTENVLEVWADVGTAGPPPKSPATLGLEELFSTPGHLNDDADTVLVVGEAGSGKSTLLQRLHLLWAAGRDFQEFLFVFPFSCRQLQCMAKPLSVRTLLFEHCCWPDVGQEDIFQLLLDHPDRVLLTFDGFDEFKFRFTDRERHCSPTDPTSVQTLLFNLLQGNLLKNARKVVTSRPAAVSAFLRKYIRTEFNLKGFSEQGIELYLRKRHREPGVADRLIRLLQATSALHGLCHLPVFSWMVSKCHQELLLQEGGSPKTTTDMYLLILQHFLLHAIPPDSASQGLGPSLLRGRLPTLLHLGRLALWGLGMCCYVFSAQQLQAAQVSPDDISLGFLVRAKGVVPGSTAPLEFLHITFQCFFAAFYLALSADVPPALLRHLFNCGRPGNSPVARLLPTLCIQGSEGKDSSVAALLQKAEPHNLQITAAFLAGLLSREHWGLLAECQTSEKALLRRQACARWCLARSLRKHFHSIPPAAPGEAKSMHAMPGFIWLIRSLYEMQEERLARKAARGLNVGHLKLTFCSVGPAECAALAFVLQHLRRPVALQLDYNSVGDIGVEQLLPCLGVCKALYLRDNNISDRGICKLIECALHCEQLQKLVLFNNKLTDGCAHSMAKLLACRQNFLALRLGNNHITPAGAQVLAEGLRGNTSLQFLGFWGNRVGDEGAQALAEALGDHQSLRWLSLVGNNIGSVGAQALALMLAKNVMLEELCLEENHIQDEGVCSLAEGLKKNSSLKILKLSNNCITYLGAKALLQALERNDTILEVWLRGNIFSLEEVDKLGCRDIRLLL | Pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals and plays an important role in gastrointestinal immunity. Specifically activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan found in every bacterial peptidoglycan type. NOD2 specifically recognizes and binds 6-O-phospho-MDP, the phosphorylated form of MDP, which is generated by NAGK. 6-O-phospho-MDP-binding triggers oligomerization that facilitates the binding and subsequent activation of the proximal adapter receptor-interacting RIPK2. Following recruitment, RIPK2 undergoes 'Met-1'- (linear) and 'Lys-63'-linked polyubiquitination by E3 ubiquitin-protein ligases XIAP, BIRC2, BIRC3 and the LUBAC complex, becoming a scaffolding protein for downstream effectors, triggering activation of the NF-kappa-B and MAP kinases signaling. This in turn leads to the transcriptional activation of hundreds of genes involved in immune response (By similarity). Its ability to detect bacterial MDP plays a central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. An imbalance in this relationship results in dysbiosis, whereby pathogenic bacteria prevail on commensals, causing damage in the intestinal epithelial barrier as well as allowing bacterial invasion and inflammation. Acts as a regulator of appetite by sensing MDP in a subset of brain neurons: microbiota-derived MDP reach the brain, where they bind and activate NOD2 in inhibitory hypothalamic neurons, decreasing neuronal activity, thereby regulating satiety and body temperature. NOD2-dependent MDP-sensing of bacterial cell walls in the intestinal epithelial compartment contributes to sustained postnatal growth upon undernutrition (By similarity). Also plays a role in antiviral response by acting as a sensor of single-stranded RNA (ssRNA) from viruses: upon ssRNA-binding, interacts with MAVS, leading to activation of interferon regulatory factor-3/IRF3 and expression of type I interferon. Also acts as a regulator of autophagy in dendritic cells via its interaction with ATG16L1, possibly by recruiting ATG16L1 at the site of bacterial entry (By similarity). NOD2 activation in the small intestine crypt also contributes to intestinal stem cells survival and function: acts by promoting mitophagy via its association with ATG16L1. In addition to its main role in innate immunity, also regulates the adaptive immune system by acting as regulator of helper T-cell and regulatory T-cells (Tregs) (By similarity). Besides recognizing pathogens, also involved in the endoplasmic reticulum stress response: acts by sensing and binding to the cytosolic metabolite sphingosine-1-phosphate generated in response to endoplasmic reticulum stress, initiating an inflammation process that leads to activation of the NF-kappa-B and MAP kinases signaling. May also be involved in NLRP1 activation following activation by MDP, leading to CASP1 activation and IL1B release in macrophages (By similarity).
Subcellular locations: Cell membrane, Basolateral cell membrane, Cytoplasm, Mitochondrion
Palmitoylation promotes localization to the cell membrane, where it detects bacterial invasion at the point of entry. |
NOD2_PANTR | Pan troglodytes | MGEEGGSVSHDEEERASVLLGHSLGCEMCSQEAFQAQRSQLVELLVSGSLEGFESVLDWLLSWEVLSWEDYEGFHLLGQPLSHLARRLLDTVWNKGTWACQKLIAAAQEAQADSQSPKLHGCWDPHSLHPARDLQSHRPAIVRRLHNHVENMLDLAWERGFVSQYECDEIRLPIFTPSQRARRLLDLATVKANGLAAFLLQHVQELPVPLALPLEAATCKKYMAKLRTTVSAQSRFLSTYDGAETLCLEDIYTENVLEVWADVGMAGPPQKSPATLGLEELFSTPGHLNDDADTVLVVGEAGSGKSTLLQRLHLLWAAGRDFQEFLFVFPFSCRQLQCMAKPLSVRTLLFEHCCWPDVGQEDIFQLLLDHPDRVLLTFDGFDEFKFRFTDRERHCSPTDPTSVQTLLFNLLQGNLLKNARKVVTSRPAAVSAFLRKYIRTEFNLKGFSEQGIELYLRKRHREPGVADRLIRLLQATSALHGLCHLPVFSWMVSKCHQELLLQEGGSPKTTTDMYLLILQHFLLHATPPDSASQGLGPSLLRGRLPTLLHLGRLALWGLGMCCYVFSAQQLQAAQVSPDDISLGFLVRAKGVVPGSTAPLEFLHITFQCFFAAFYLALSADVPPALLRHLFNCGRPGNSPMARLLPTMCIQGSEGKDSSVAALLQKAEPHNLQITAAFLAGLLSREHWGLLAECQTSEKALLRRQACARWCLARSLRKHFHSIPPAAPGEAKSVHAMPGFIWLIRSLYEMQEERLARKAARGLNVGHLKLTFCSVGPAECAALAFVLQHLRRPVALQLDYNSVGDIGVEQLLPCLGVCKALYLRDNNISDRGICKLIECALHCEQLQKLALFNNKLTDGCAHSMAKLLACRQNFLALRLGNNYITAAGAQVLAQGLRGNTSLQFLGFWGNRVGDEGAQALAEALGDHQSLRWLSLVGNNIGSVGAQALALMLAKNVMLEELCLEENHLQDEGVCSLAEGLKKNSSLKILKLSNNCITYLGAEALLQALERNDTILEVWLRGNTFSLEEVDKLGCRDTRLLL | Pattern recognition receptor (PRR) that detects bacterial peptidoglycan fragments and other danger signals and plays an important role in gastrointestinal immunity. Specifically activated by muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan found in every bacterial peptidoglycan type. NOD2 specifically recognizes and binds 6-O-phospho-MDP, the phosphorylated form of MDP, which is generated by NAGK. 6-O-phospho-MDP-binding triggers oligomerization that facilitates the binding and subsequent activation of the proximal adapter receptor-interacting RIPK2. Following recruitment, RIPK2 undergoes 'Met-1'- (linear) and 'Lys-63'-linked polyubiquitination by E3 ubiquitin-protein ligases XIAP, BIRC2, BIRC3 and the LUBAC complex, becoming a scaffolding protein for downstream effectors, triggering activation of the NF-kappa-B and MAP kinases signaling. This in turn leads to the transcriptional activation of hundreds of genes involved in immune response (By similarity). Its ability to detect bacterial MDP plays a central role in maintaining the equilibrium between intestinal microbiota and host immune responses to control inflammation. An imbalance in this relationship results in dysbiosis, whereby pathogenic bacteria prevail on commensals, causing damage in the intestinal epithelial barrier as well as allowing bacterial invasion and inflammation. Acts as a regulator of appetite by sensing MDP in a subset of brain neurons: microbiota-derived MDP reach the brain, where they bind and activate NOD2 in inhibitory hypothalamic neurons, decreasing neuronal activity, thereby regulating satiety and body temperature. NOD2-dependent MDP-sensing of bacterial cell walls in the intestinal epithelial compartment contributes to sustained postnatal growth upon undernutrition (By similarity). Also plays a role in antiviral response by acting as a sensor of single-stranded RNA (ssRNA) from viruses: upon ssRNA-binding, interacts with MAVS, leading to activation of interferon regulatory factor-3/IRF3 and expression of type I interferon. Also acts as a regulator of autophagy in dendritic cells via its interaction with ATG16L1, possibly by recruiting ATG16L1 at the site of bacterial entry (By similarity). NOD2 activation in the small intestine crypt also contributes to intestinal stem cells survival and function: acts by promoting mitophagy via its association with ATG16L1. In addition to its main role in innate immunity, also regulates the adaptive immune system by acting as regulator of helper T-cell and regulatory T-cells (Tregs) (By similarity). Besides recognizing pathogens, also involved in the endoplasmic reticulum stress response: acts by sensing and binding to the cytosolic metabolite sphingosine-1-phosphate generated in response to endoplasmic reticulum stress, initiating an inflammation process that leads to activation of the NF-kappa-B and MAP kinases signaling. May also be involved in NLRP1 activation following activation by MDP, leading to CASP1 activation and IL1B release in macrophages (By similarity).
Subcellular locations: Cell membrane, Basolateral cell membrane, Cytoplasm, Mitochondrion
Palmitoylation promotes localization to the cell membrane, where it detects bacterial invasion at the point of entry. |
NOP14_HUMAN | Homo sapiens | MAKAKKVGARRKASGAPAGARGGPAKANSNPFEVKVNRQKFQILGRKTRHDVGLPGVSRARALRKRTQTLLKEYKERDKSNVFRDKRFGEYNSNMSPEEKMMKRFALEQQRHHEKKSIYNLNEDEELTHYGQSLADIEKHNDIVDSDSDAEDRGTLSAELTAAHFGGGGGLLHKKTQQEGEEREKPKSRKELIEELIAKSKQEKRERQAQREDALELTEKLDQDWKEIQTLLSHKTPKSENRDKKEKPKPDAYDMMVRELGFEMKAQPSNRMKTEAELAKEEQEHLRKLEAERLRRMLGKDEDENVKKPKHMSADDLNDGFVLDKDDRRLLSYKDGKMNVEEDVQEEQSKEASDPESNEEEGDSSGGEDTEESDSPDSHLDLESNVESEEENEKPAKEQRQTPGKGLISGKERAGKATRDELPYTFAAPESYEELRSLLLGRSMEEQLLVVERIQKCNHPSLAEGNKAKLEKLFGFLLEYVGDLATDDPPDLTVIDKLVVHLYHLCQMFPESASDAIKFVLRDAMHEMEEMIETKGRAALPGLDVLIYLKITGLLFPTSDFWHPVVTPALVCLSQLLTKCPILSLQDVVKGLFVCCLFLEYVALSQRFIPELINFLLGILYIATPNKASQGSTLVHPFRALGKNSELLVVSAREDVATWQQSSLSLRWASRLRAPTSTEANHIRLSCLAVGLALLKRCVLMYGSLPSFHAIMGPLQALLTDHLADCSHPQELQELCQSTLTEMESQKQLCRPLTCEKSKPVPLKLFTPRLVKVLEFGRKQGSSKEEQERKRLIHKHKREFKGAVREIRKDNQFLARMQLSEIMERDAERKRKVKQLFNSLATQEGEWKALKRKKFKK | Involved in nucleolar processing of pre-18S ribosomal RNA. Has a role in the nuclear export of 40S pre-ribosomal subunit to the cytoplasm (By similarity).
Subcellular locations: Nucleus, Nucleolus |
NOPC1_HUMAN | Homo sapiens | MEVHGKPKASPSCSSPTRDSSGVPVSKELLTAGSDGRGGIWDRLLINSQPKSRKTSTLQTVRIERSPLLDQVQTFLPQMARANEKLRKEMAAAPPGRFNIENIDGPHSKVIQMDVALFEMNQSDSKEVDSSEESSQDSSENSSESEDEDDSIPSEVTIDNIKLPNSEGGKGKIEVLDSPASKKKK | Client-loading PAQosome/R2TP complex cofactor that selects NOP58 to promote box C/D small nucleolar ribonucleoprotein (snoRNP) assembly. Acts as a bridge between NOP58 and the R2TP complex via RUVBL1:RUVBL2.
Subcellular locations: Nucleus |
NPAS2_HUMAN | Homo sapiens | MDEDEKDRAKRASRNKSEKKRRDQFNVLIKELSSMLPGNTRKMDKTTVLEKVIGFLQKHNEVSAQTEICDIQQDWKPSFLSNEEFTQLMLEALDGFIIAVTTDGSIIYVSDSITPLLGHLPSDVMDQNLLNFLPEQEHSEVYKILSSHMLVTDSPSPEYLKSDSDLEFYCHLLRGSLNPKEFPTYEYIKFVGNFRSYNNVPSPSCNGFDNTLSRPCRVPLGKEVCFIATVRLATPQFLKEMCIVDEPLEEFTSRHSLEWKFLFLDHRAPPIIGYLPFEVLGTSGYDYYHIDDLELLARCHQHLMQFGKGKSCCYRFLTKGQQWIWLQTHYYITYHQWNSKPEFIVCTHSVVSYADVRVERRQELALEDPPSEALHSSALKDKGSSLEPRQHFNTLDVGASGLNTSHSPSASSRSSHKSSHTAMSEPTSTPTKLMAEASTPALPRSATLPQELPVPGLSQAATMPAPLPSPSSCDLTQQLLPQTVLQSTPAPMAQFSAQFSMFQTIKDQLEQRTRILQANIRWQQEELHKIQEQLCLVQDSNVQMFLQQPAVSLSFSSTQRPEAQQQLQQRSAAVTQPQLGAGPQLPGQISSAQVTSQHLLRESSVISTQGPKPMRSSQLMQSSGRSGSSLVSPFSSATAALPPSLNLTTPASTSQDASQCQPSPDFSHDRQLRLLLSQPIQPMMPGSCDARQPSEVSRTGRQVKYAQSQTVFQNPDAHPANSSSAPMPVLLMGQAVLHPSFPASQPSPLQPAQARQQPPQHYLQVQAPTSLHSEQQDSLLLSTYSQQPGTLGYPQPPPAQPQPLRPPRRVSSLSESSGLQQPPR | Transcriptional activator which forms a core component of the circadian clock. The circadian clock, an internal time-keeping system, regulates various physiological processes through the generation of approximately 24 hour circadian rhythms in gene expression, which are translated into rhythms in metabolism and behavior. It is derived from the Latin roots 'circa' (about) and 'diem' (day) and acts as an important regulator of a wide array of physiological functions including metabolism, sleep, body temperature, blood pressure, endocrine, immune, cardiovascular, and renal function. Consists of two major components: the central clock, residing in the suprachiasmatic nucleus (SCN) of the brain, and the peripheral clocks that are present in nearly every tissue and organ system. Both the central and peripheral clocks can be reset by environmental cues, also known as Zeitgebers (German for 'timegivers'). The predominant Zeitgeber for the central clock is light, which is sensed by retina and signals directly to the SCN. The central clock entrains the peripheral clocks through neuronal and hormonal signals, body temperature and feeding-related cues, aligning all clocks with the external light/dark cycle. Circadian rhythms allow an organism to achieve temporal homeostasis with its environment at the molecular level by regulating gene expression to create a peak of protein expression once every 24 hours to control when a particular physiological process is most active with respect to the solar day. Transcription and translation of core clock components (CLOCK, NPAS2, BMAL1, BMAL2, PER1, PER2, PER3, CRY1 and CRY2) plays a critical role in rhythm generation, whereas delays imposed by post-translational modifications (PTMs) are important for determining the period (tau) of the rhythms (tau refers to the period of a rhythm and is the length, in time, of one complete cycle). A diurnal rhythm is synchronized with the day/night cycle, while the ultradian and infradian rhythms have a period shorter and longer than 24 hours, respectively. Disruptions in the circadian rhythms contribute to the pathology of cardiovascular diseases, cancer, metabolic syndromes and aging. A transcription/translation feedback loop (TTFL) forms the core of the molecular circadian clock mechanism. Transcription factors, CLOCK or NPAS2 and BMAL1 or BMAL2, form the positive limb of the feedback loop, act in the form of a heterodimer and activate the transcription of core clock genes and clock-controlled genes (involved in key metabolic processes), harboring E-box elements (5'-CACGTG-3') within their promoters. The core clock genes: PER1/2/3 and CRY1/2 which are transcriptional repressors form the negative limb of the feedback loop and interact with the CLOCK|NPAS2-BMAL1|BMAL2 heterodimer inhibiting its activity and thereby negatively regulating their own expression. This heterodimer also activates nuclear receptors NR1D1/2 and RORA/B/G, which form a second feedback loop and which activate and repress BMAL1 transcription, respectively. The NPAS2-BMAL1 heterodimer positively regulates the expression of MAOA, F7 and LDHA and modulates the circadian rhythm of daytime contrast sensitivity by regulating the rhythmic expression of adenylate cyclase type 1 (ADCY1) in the retina. NPAS2 plays an important role in sleep homeostasis and in maintaining circadian behaviors in normal light/dark and feeding conditions and in the effective synchronization of feeding behavior with scheduled food availability. Regulates the gene transcription of key metabolic pathways in the liver and is involved in DNA damage response by regulating several cell cycle and DNA repair genes. Controls the circadian rhythm of NR0B2 expression by binding rhythmically to its promoter (By similarity). Mediates the diurnal variation in the expression of GABARA1 receptor in the brain and contributes to the regulation of anxiety-like behaviors and GABAergic neurotransmission in the ventral striatum (By similarity).
Subcellular locations: Nucleus |
NPAS3_HUMAN | Homo sapiens | MAPTKPSFQQDPSRRERITAQHPLPNQSECRKIYRYDGIYCESTYQNLQALRKEKSRDAARSRRGKENFEFYELAKLLPLPAAITSQLDKASIIRLTISYLKMRDFANQGDPPWNLRMEGPPPNTSVKVIGAQRRRSPSALAIEVFEAHLGSHILQSLDGFVFALNQEGKFLYISETVSIYLGLSQVELTGSSVFDYVHPGDHVEMAEQLGMKLPPGRGLLSQGTAEDGASSASSSSQSETPEPVESTSPSLLTTDNTLERSFFIRMKSTLTKRGVHIKSSGYKVIHITGRLRLRVSLSHGRTVPSQIMGLVVVAHALPPPTINEVRIDCHMFVTRVNMDLNIIYCENRISDYMDLTPVDIVGKRCYHFIHAEDVEGIRHSHLDLLNKGQCVTKYYRWMQKNGGYIWIQSSATIAINAKNANEKNIIWVNYLLSNPEYKDTPMDIAQLPHLPEKTSESSETSDSESDSKDTSGITEDNENSKSDEKGNQSENSEDPEPDRKKSGNACDNDMNCNDDGHSSSNPDSRDSDDSFEHSDFENPKAGEDGFGALGAMQIKVERYVESESDLRLQNCESLTSDSAKDSDSAGEAGAQASSKHQKRKKRRKRQKGGSASRRRLSSASSPGGLDAGLVEPPRLLSSPNSASVLKIKTEISEPINFDNDSSIWNYPPNREISRNESPYSMTKPPSSEHFPSPQGGGGGGGGGGGLHVAIPDSVLTPPGADGAAARKTQFGASATAALAPVASDPLSPPLSASPRDKHPGNGGGGGGGGGGAGGGGPSASNSLLYTGDLEALQRLQAGNVVLPLVHRVTGTLAATSTAAQRVYTTGTIRYAPAEVTLAMQSNLLPNAHAVNFVDVNSPGFGLDPKTPMEMLYHHVHRLNMSGPFGGAVSAASLTQMPAGNVFTTAEGLFSTLPFPVYSNGIHAAQTLERKED | May play a broad role in neurogenesis. May control regulatory pathways relevant to schizophrenia and to psychotic illness (By similarity).
Subcellular locations: Nucleus
Ubiquitously expressed in the adult brain. |
NPAS4_HUMAN | Homo sapiens | MYRSTKGASKARRDQINAEIRNLKELLPLAEADKVRLSYLHIMSLACIYTRKGVFFAGGTPLAGPTGLLSAQELEDIVAALPGFLLVFTAEGKLLYLSESVSEHLGHSMVDLVAQGDSIYDIIDPADHLTVRQQLTLPSALDTDRLFRCRFNTSKSLRRQSAGNKLVLIRGRFHAHPPGAYWAGNPVFTAFCAPLEPRPRPGPGPGPGPASLFLAMFQSRHAKDLALLDISESVLIYLGFERSELLCKSWYGLLHPEDLAHASAQHYRLLAESGDIQAEMVVRLQAKTGGWAWIYCLLYSEGPEGPITANNYPISDMEAWSLRQQLNSEDTQAAYVLGTPTMLPSFPENILSQEECSSTNPLFTAALGAPRSTSFPSAPELSVVSASEELPRPSKELDFSYLTFPSGPEPSLQAELSKDLVCTPPYTPHQPGGCAFLFSLHEPFQTHLPTPSSTLQEQLTPSTATFSDQLTPSSATFPDPLTSPLQGQLTETSVRSYEDQLTPCTSTFPDQLLPSTATFPEPLGSPAHEQLTPPSTAFQAHLDSPSQTFPEQLSPNPTKTYFAQEGCSFLYEKLPPSPSSPGNGDCTLLALAQLRGPLSVDVPLVPEGLLTPEASPVKQSFFHYSEKEQNEIDRLIQQISQLAQGMDRPFSAEAGTGGLEPLGGLEPLDSNLSLSGAGPPVLSLDLKPWKCQELDFLADPDNMFLEETPVEDIFMDLSTPDPSEEWGSGDPEAEGPGGAPSPCNNLSPEDHSFLEDLATYETAFETGVSAFPYDGFTDELHQLQSQVQDSFHEDGSGGEPTF | Transcription factor expressed in neurons of the brain that regulates the excitatory-inhibitory balance within neural circuits and is required for contextual memory in the hippocampus (By similarity). Plays a key role in the structural and functional plasticity of neurons (By similarity). Acts as an early-response transcription factor in both excitatory and inhibitory neurons, where it induces distinct but overlapping sets of late-response genes in these two types of neurons, allowing the synapses that form on inhibitory and excitatory neurons to be modified by neuronal activity in a manner specific to their function within a circuit, thereby facilitating appropriate circuit responses to sensory experience (By similarity). In excitatory neurons, activates transcription of BDNF, which in turn controls the number of GABA-releasing synapses that form on excitatory neurons, thereby promoting an increased number of inhibitory synapses on excitatory neurons (By similarity). In inhibitory neurons, regulates a distinct set of target genes that serve to increase excitatory input onto somatostatin neurons, probably resulting in enhanced feedback inhibition within cortical circuits (By similarity). The excitatory and inhibitory balance in neurons affects a number of processes, such as short-term and long-term memory, acquisition of experience, fear memory, response to stress and social behavior (By similarity). Acts as a regulator of dendritic spine development in olfactory bulb granule cells in a sensory-experience-dependent manner by regulating expression of MDM2 (By similarity). Efficient DNA binding requires dimerization with another bHLH protein, such as ARNT, ARNT2 or BMAL1 . Can activate the CME (CNS midline enhancer) element .
Subcellular locations: Nucleus
Brain. |
NPAT_HUMAN | Homo sapiens | MLLPSDVARLVLGYLQQENLISTCQTFILESSDLKEYAEHCTDEGFIPACLLSLFGKNLTTILNEYVAMKTKETSNNVPAIMSSLWKKLDHTLSQIRSMQSSPRFAGSQRARTRTGIAEIKRQRKLASQTAPASAELLTLPYLSGQFTTPPSTGTQVTRPSGQISDPSRSYFVVVNHSQSQDTVTTGEALNVIPGAQEKKAHASLMSPGRRKSESQRKSTTLSGPHSTIRNFQDPNAFAVEKQMVIENAREKILSNKSLQEKLAENINKFLTSDNNIAQVPKQTDNNPTEPETSIDEFLGLPSEIHMSEEAIQDILEQTESDPAFQALFDLFDYGKTKNNKNISQSISSQPMESNPSIVLADETNLAVKGSFETEESDGQSGQPAFCTSYQNDDPLNALKNSNNHDVLRQEDQENFSQISTSIQKKAFKTAVPTEQKCDIDITFESVPNLNDFNQRGNSNAECNPHCAELYTNQMSTETEMAIGIEKNSLSSNVPSESQLQPDQPDIPITSFVSLGCEANNENLILSGKSSQLLSQDTSLTGKPSKKSQFCENSNDTVKLKINFHGSKSSDSSEVHKSKIEINVLEPVMSQLSNCQDNSCLQSEILPVSVESSHLNVSGQVEIHLGDSLSSTKQPSNDSASVELNHTENEAQASKSENSQEPSSSVKEENTIFLSLGGNANCEKVALTPPEGTPVENSHSLPPESVCSSVGDSHPESQNTDDKPSSNNSAEIDASNIVSLKVIISDDPFVSSDTELTSAVSSINGENLPTIILSSPTKSPTKNAELVKCLSSEETVGAVVYAEVGDSASMEQSLLTFKSEDSAVNNTQNEDGIAFSANVTPCVSKDGGYIQLMPATSTAFGNSNNILIATCVTDPTALGTSVSQSNVVVLPGNSAPMTAQPLPPQLQTPPRSNSVFAVNQAVSPNFSQGSAIIIASPVQPVLQGMVGMIPVSVVGQNGNNFSTPPRQVLHMPLTAPVCNRSIPQFPVPPKSQKAQGLRNKPCIGKQVNNLVDSSGHSVGCHAQKTEVSDKSIATDLGKKSEETTVPFPEESIVPAAKPCHRRVLCFDSTTAPVANTQGPNHKMVSQNKERNAVSFPNLDSPNVSSTLKPPSNNAIKREKEKPPLPKILSKSESAISRHTTIRETQSEKKVSPTEIVLESFHKATANKENELCSDVERQKNPENSKLSIGQQNGGLRSEKSIASLQEMTKKQGTSSNNKNVLSVGTAVKDLKQEQTKSASSLITTEMLQDIQRHSSVSRLADSSDLPVPRTPGSGAGEKHKEEPIDIIKAPSSRRFSEDSSTSKVMVPPVTPDLPACSPASETGSENSVNMAAHTLMILSRAAISRTTSATPLKDNTQQFRASSRSTTKKRKIEELDERERNSRPSSKNLTNSSIPMKKKKIKKKKLPSSFPAGMDVDKFLLSLHYDE | Required for progression through the G1 and S phases of the cell cycle and for S phase entry. Activates transcription of the histone H2A, histone H2B, histone H3 and histone H4 genes in conjunction with MIZF. Also positively regulates the ATM, MIZF and PRKDC promoters. Transcriptional activation may be accomplished at least in part by the recruitment of the NuA4 histone acetyltransferase (HAT) complex to target gene promoters.
Subcellular locations: Nucleus, Nucleus, Cajal body
Concentrates in two Cajal bodies tethered to histone gene clusters at chromosome 6p21 during G1, S and G2 phases. Also concentrates in two additional Cajal bodies tethered to histone gene clusters at chromosome 1q21 specifically during S and G2 phases.
Ubiquitously expressed. |
NPB11_HUMAN | Homo sapiens | MVKLSIVLTPQFLSHDQGQLTKELQQHVKSVTCPCEYLRKVINTLADHHHRGTDFGGSPWLHIIIAFPTSYKVVITLWIVYLWVSLLKTIFWSRNGHDGSTDVQQRAWRSNRRRQEGLRSICMHTKKRVSSFRGNKIGLKDVITLRRHVETKVRAKIRKRKVTTKINRHDKINGKRKTARKQKMFQRAQELRRRAEDYHKCKIPPSARKALCNWVRMAAAEHRHSSGLPYWPYLTAETLKNRMGHQPPPPTQQHCITDNSLSLKTPLECLLTPLPPSADDNLKTPPECLLTPLPPSADDNLKTPPECLLTPLPPSAPPSAPPSADDNLKTRAECLLHPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTTAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAEHLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAEHLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTTAEHLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAEHLQFRFHPQRMIISRDLPSVSSLPFHPQLHPQQMIISRYLLSICGFRFHRQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGERLWVPLPPSADDNLKTPSKRQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSKRQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPTSADDNIKTPAERLRGPLPPSADDNLKTPPLATQEAEAEKPRKPKRQRAAEMEPPPEPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRLS | Subcellular locations: Membrane |
NPB12_HUMAN | Homo sapiens | MVKLSIVLTPQFLSHDQGQLTKELQQHVKSVTCPCEYLRKVINTLADHHHRGTDFGGSPWLHVIIAFPTSYKVVITLWIVYLWVSLLKTIFWSRNGHDGSTDVQQRAWRSNRRRQEGLRSICMHTKKRVSSFRGNKIGLKDVITLRRHVETKVRAKIRKRKVTTKINHHDKINGKRKTARKQKMFQRAQELRRRAEDYHKCKIPPSARKALCNWVRMAAAEHRHSSGLPYWPYLTAETLKNRMGHQPPPPTQQHSITDNSLSLKTPPECVLTPLPPSADDNLKTPPECVLTPLPPSADDNLKTPPECLLTPLPPSADDNLKTPPECLLTPLPPSADDNLKTPPECLLTPLPPSAPPSAPPSADDNLKTRAECLLHPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAFHPQRMIISRHLPSVSSLPFHPQLHSQQMIISRYLLSVCGFRFHHQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPPLATQEAEAEKPRKPKRQRAAEMEPPPEPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRVGDVEPSRKPKRRRAADVEPSLPEPKRRRLS | Subcellular locations: Membrane |
NPB13_HUMAN | Homo sapiens | MVKLSIVLTPQFLSHDQGQLTKELQQHVKSVTCPCEYLRKVINTLADHHHRGTDFGGSPWLHVIIAFPTSYKVVITLWIVYLWVSLLKTIFWSRNGHDGSTDVQQRAWRSNRRRQEGLRSICMHTKKRVSSFRGNKIGLKDVITLRRHVETKVRAKIRKRKVTTKINHHDKINGKRKTARKQKMFQRAQELRRRAEDYHKCKIPPSARKALCNWVRMAAAEHRHSSGLPYWPYLTAETLKNRMGHQPPPPTQQHSITDNSLSLKTPPECVLTPLPPSADDNLKTPPECVLTPLPPSADDNLKTPPECLLTPLPPSADDNLKTPPECLLTPLPPSADDNLKTPPECLLTPLPPSAPPSAPPSADDNLKTRAECLLHPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAFHPQRMIISRHLPSVSSLPFHPQLHSQQMIISRYLLSVCGFRFHHQPMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGGRFHPQRMIISRHLPSVSSLPFHPQLHPQQMIISRHLPSVCGERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRRPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPSERQLTPLPPSAPPSADDNIKTPAERLRGPLPPSADDNLKTPPLATQEAEAEKPRKPKRQRAAEMEPPPEPKRRRVGDVEPSRKPKRRRAADVEPSSPKPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRVGDVEPSRKPKRRRAADVEPSSPEPKRRRLS | Subcellular locations: Membrane |
NPB15_HUMAN | Homo sapiens | MRLRFWLLIWLLLGFISHQPTPVINSLAVYRHRETDFGVGVRDHPGQHGKTPSPQKLDNLIIIIIGFLRRDTFTILFCTSYLCVSFLKTIFWSRNGHDGSTDVQQRAWRSNRSRQKGLRSICMHTKKRVSSFRGNKIGLKDVITLRRHVETKVRAKIRKRKVTTKINRHDKINGKRKTARKQKMFQRAQELRRRAEDYHKCKIPPSARKPLCNWVRMAAAEHRHSSGLPCWPYLTAEALKNRMGRQPPPPTQQHSITDNSLSLKTPPECLLHPLPPSVDDNIKECPLAPLPPSVDDNLKEYLLVPLPPSPLPPSVDDNLKDCLFVPLPPSPLPPSVDDNLKTPPLATQEAEAEKPPKPKRWRVDEVEQSPKPKRRRADEVEQSPKPKRQREAEAQQLPKPKRRRLSKLRTRHCTQAWAIRINPWVEKKKKIKKQNKTHAPKTN | Subcellular locations: Secreted |
NPBW1_HUMAN | Homo sapiens | MDNASFSEPWPANASGPDPALSCSNASTLAPLPAPLAVAVPVVYAVICAVGLAGNSAVLYVLLRAPRMKTVTNLFILNLAIADELFTLVLPINIADFLLRQWPFGELMCKLIVAIDQYNTFSSLYFLTVMSADRYLVVLATAESRRVAGRTYSAARAVSLAVWGIVTLVVLPFAVFARLDDEQGRRQCVLVFPQPEAFWWRASRLYTLVLGFAIPVSTICVLYTTLLCRLHAMRLDSHAKALERAKKRVTFLVVAILAVCLLCWTPYHLSTVVALTTDLPQTPLVIAISYFITSLSYANSCLNPFLYAFLDASFRRNLRQLITCRAAA | Interacts specifically with a number of opioid ligands. Receptor for neuropeptides B and W, which may be involved in neuroendocrine system regulation, food intake and the organization of other signals. Has a higher affinity for neuropeptide B.
Subcellular locations: Cell membrane
Found in cerebellum and frontal cortex. Detected at high levels in hippocampus, amygdala and trachea; at moderate levels in fetal brain, pituitary gland and prostate. Not in caudate, accumbens, kidney or liver. Also detected at high levels in lung carcinoma. |
NPFF_HUMAN | Homo sapiens | MDSRQAAALLVLLLLIDGGCAEGPGGQQEDQLSAEEDSEPLPPQDAQTSGSLLHYLLQAMERPGRSQAFLFQPQRFGRNTQGSWRNEWLSPRAGEGLNSQFWSLAAPQRFGKK | Morphine modulating peptides. Have wide-ranging physiologic effects, including the modulation of morphine-induced analgesia, elevation of arterial blood pressure, and increased somatostatin secretion from the pancreas. Neuropeptide FF potentiates and sensitizes ASIC1 and ASIC3 channels.
Subcellular locations: Secreted |
NPY2R_HUMAN | Homo sapiens | MGPIGAEADENQTVEEMKVEQYGPQTTPRGELVPDPEPELIDSTKLIEVQVVLILAYCSIILLGVIGNSLVIHVVIKFKSMRTVTNFFIANLAVADLLVNTLCLPFTLTYTLMGEWKMGPVLCHLVPYAQGLAVQVSTITLTVIALDRHRCIVYHLESKISKRISFLIIGLAWGISALLASPLAIFREYSLIEIIPDFEIVACTEKWPGEEKSIYGTVYSLSSLLILYVLPLGIISFSYTRIWSKLKNHVSPGAANDHYHQRRQKTTKMLVCVVVVFAVSWLPLHAFQLAVDIDSQVLDLKEYKLIFTVFHIIAMCSTFANPLLYGWMNSNYRKAFLSAFRCEQRLDAIHSEVSVTFKAKKNLEVRKNSGPNDSFTEATNV | Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is PYY > NPY > PYY (3-36) > NPY (2-36) > [Ile-31, Gln-34] PP > [Leu-31, Pro-34] NPY > PP, [Pro-34] PYY and NPY free acid.
Subcellular locations: Cell membrane
High levels in amygdala, corpus callosum, hippocampus and subthalamic nucleus. Also detectable in caudate nucleus, hypothalamus and substantia nigra. |
NPY2R_MACMU | Macaca mulatta | MGPIGTEADENQTVEEMKVEQYGPQTTPRGELVPDPEPELIDSTKLIEVQVVLILAYCSIILLGVIGNSLVIHVVIKFKSMRTVTNFFIANLAVADLVVNTLCLPFTLTYTLMGEWKMGPVLCHLVPYAQGLAVQVSTITLTVIALDRHRCIVYHLESKISKRISFLIIGLAWGISALLASPLAIFREYSLIEIIPDFEIVACTEKWPGEEKSIYGTVYSLSSLLILYVLPLGIISFSYTRIWSKLKSHVSPGAANDHYHQRRQKTTKMLVCVVVVFAVSWLPLHAFQLAVDIDSHVLDLKEYKLIFTVFHIIAMCSTFANPLLYGWMNSNYRKAFLSAFRCEQRLDAIHSEVSVTFKAKKNLEVRKNSGPNDSFTEATNV | Receptor for neuropeptide Y and peptide YY.
Subcellular locations: Cell membrane |
NPY2R_PANTR | Pan troglodytes | MGPIGAEADENQTVEEMKVEQYGPQTTPRGELVPDPEPELIDSTKLIEVQVVLILAYCSIILLGVIGNSLVIHVVIKFKSMRTVTNFFIANLAVADLLVNTLCLPFTLTYTLMGEWKMGPVLCHLVPYAQGLAVQVSTITLTVIALDRHRCIVYHLESKISKRISFLIIGLAWGISALLASPLAIFREYSLIEIIPDFEIVACTEKWPGEEKSIYGTVYSLSSLLILYVLPLGIISFSYTRIWSKLKNHVSPGAANDHYHQRRQKTTKMLVCVVVVFAVSWLPLHAFQLAVDIDSQVLDLKEYKLIFTVFHIIAMCSTFANPLLYGWMNSNYRKAFLSAFRCEQRLDAIHSEVSVTFKAKKNLEVRKNSGPNDSFTEATNV | Receptor for neuropeptide Y and peptide YY.
Subcellular locations: Cell membrane |
NPY42_HUMAN | Homo sapiens | MNTSHLLALLLPKSPQGENRSKPLGTPYNFSEHCQDSVDVMVFIVTSYSIETVVGVLGNLCLMCVTVRQKEKANVTNLLIANLAFSDFLMCLLCQPLTAVYTIMDYWIFGETLCKMSAFIQCMSVTVSILSLVLVALERHQLIINPTGWKPSISQAYLGIVLIWVIACVLSLPFLANSILENVFHKNHSKALEFLADKVVCTESWPLAHHRTIYTTFLLLFQYCLPLGFILVCYARIYRRLQRQGRVFHKGTYSLRAGHMKQVNVVLVVMVVAFAVLWLPLHVFNSLEDWHHEAIPICHGNLIFLVCHLLAMASTCVNPFIYGFLNTNFKKEIKALVLTCQQSAPLEESEHLPLSTVHTEVSKGSLRLSGRSNPI | G protein-coupled receptor for PPY/pancreatic polypeptide/PP, NPY/neuropeptide Y and PYY/peptide YY that is negatively coupled to cAMP. The rank order of affinity for these polypeptides and their derivatives is PP, PP (2-36) and [Ile-31, Gln-34] PP > [Pro-34] PYY > PYY and [Leu-31, Pro-34] NPY > NPY > PYY (3-36) and NPY (2-36) > PP (13-36) > PP (31-36) > NPY free acid.
Subcellular locations: Cell membrane |
NPY4R_HUMAN | Homo sapiens | MNTSHLLALLLPKSPQGENRSKPLGTPYNFSEHCQDSVDVMVFIVTSYSIETVVGVLGNLCLMCVTVRQKEKANVTNLLIANLAFSDFLMCLLCQPLTAVYTIMDYWIFGETLCKMSAFIQCMSVTVSILSLVLVALERHQLIINPTGWKPSISQAYLGIVLIWVIACVLSLPFLANSILENVFHKNHSKALEFLADKVVCTESWPLAHHRTIYTTFLLLFQYCLPLGFILVCYARIYRCLQRQGRVFHKGTYSLRAGHMKQVNVVLVVMVVAFAVLWLPLHVFNSLEDWHHEAIPICHGNLIFLVCHLLAMASTCVNPFIYGFLNTNFKKEIKALVLTCQQSAPLEESEHLPLSTVHTEVSKGSLRLSGRSNPI | G protein-coupled receptor for PPY/pancreatic polypeptide/PP, NPY/neuropeptide Y and PYY/peptide YY that is negatively coupled to cAMP (, ). The rank order of affinity for these polypeptides and their derivatives is PP, PP (2-36) and [Ile-31, Gln-34] PP > [Pro-34] PYY > PYY and [Leu-31, Pro-34] NPY > NPY > PYY (3-36) and NPY (2-36) > PP (13-36) > PP (31-36) > NPY free acid.
Subcellular locations: Cell membrane
Highest levels found in brain, coronary artery and ileum. Low levels in pancreas and kidney. Detected in colon and small intestine. |
NR1D1_HUMAN | Homo sapiens | MTTLDSNNNTGGVITYIGSSGSSPSRTSPESLYSDNSNGSFQSLTQGCPTYFPPSPTGSLTQDPARSFGSIPPSLSDDGSPSSSSSSSSSSSSFYNGSPPGSLQVAMEDSSRVSPSKSTSNITKLNGMVLLCKVCGDVASGFHYGVHACEGCKGFFRRSIQQNIQYKRCLKNENCSIVRINRNRCQQCRFKKCLSVGMSRDAVRFGRIPKREKQRMLAEMQSAMNLANNQLSSQCPLETSPTQHPTPGPMGPSPPPAPVPSPLVGFSQFPQQLTPPRSPSPEPTVEDVISQVARAHREIFTYAHDKLGSSPGNFNANHASGSPPATTPHRWENQGCPPAPNDNNTLAAQRHNEALNGLRQAPSSYPPTWPPGPAHHSCHQSNSNGHRLCPTHVYAAPEGKAPANSPRQGNSKNVLLACPMNMYPHGRSGRTVQEIWEDFSMSFTPAVREVVEFAKHIPGFRDLSQHDQVTLLKAGTFEVLMVRFASLFNVKDQTVMFLSRTTYSLQELGAMGMGDLLSAMFDFSEKLNSLALTEEELGLFTAVVLVSADRSGMENSASVEQLQETLLRALRALVLKNRPLETSRFTKLLLKLPDLRTLNNMHSEKLLSFRVDAQ | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1, CLOCK and CRY1. Also regulates genes involved in metabolic functions, including lipid and bile acid metabolism, adipogenesis, gluconeogenesis and the macrophage inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nucleotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and regulates the levels of its ligand heme by repressing the expression of PPARGC1A, a potent inducer of heme synthesis. Regulates lipid metabolism by repressing the expression of APOC3 and by influencing the activity of sterol response element binding proteins (SREBPs); represses INSIG2 which interferes with the proteolytic activation of SREBPs which in turn govern the rhythmic expression of enzymes with key functions in sterol and fatty acid synthesis. Regulates gluconeogenesis via repression of G6PC1 and PEPCK and adipocyte differentiation via repression of PPARG. Regulates glucagon release in pancreatic alpha-cells via the AMPK-NAMPT-SIRT1 pathway and the proliferation, glucose-induced insulin secretion and expression of key lipogenic genes in pancreatic-beta cells. Positively regulates bile acid synthesis by increasing hepatic expression of CYP7A1 via repression of NR0B2 and NFIL3 which are negative regulators of CYP7A1. Modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy; controls mitochondrial biogenesis and respiration by interfering with the STK11-PRKAA1/2-SIRT1-PPARGC1A signaling pathway. Represses the expression of SERPINE1/PAI1, an important modulator of cardiovascular disease and the expression of inflammatory cytokines and chemokines in macrophages. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). Plays a role in the circadian regulation of body temperature and negatively regulates thermogenic transcriptional programs in brown adipose tissue (BAT); imposes a circadian oscillation in BAT activity, increasing body temperature when awake and depressing thermogenesis during sleep. In concert with NR2E3, regulates transcriptional networks critical for photoreceptor development and function. In addition to its activity as a repressor, can also act as a transcriptional activator. In the ovarian granulosa cells acts as a transcriptional activator of STAR which plays a role in steroid biosynthesis. In collaboration with SP1, activates GJA1 transcription in a heme-independent manner. Represses the transcription of CYP2B10, CYP4A10 and CYP4A14 (By similarity). Represses the transcription of CES2 (By similarity). Represses and regulates the circadian expression of TSHB in a NCOR1-dependent manner (By similarity). Negatively regulates the protein stability of NR3C1 and influences the time-dependent subcellular distribution of NR3C1, thereby affecting its transcriptional regulatory activity (By similarity). Plays a critical role in the circadian control of neutrophilic inflammation in the lung; under resting, non-stress conditions, acts as a rhythmic repressor to limit inflammatory activity whereas in the presence of inflammatory triggers undergoes ubiquitin-mediated degradation thereby relieving inhibition of the inflammatory response (By similarity). Plays a key role in the circadian regulation of microglial activation and neuroinflammation; suppresses microglial activation through the NF-kappaB pathway in the central nervous system (By similarity). Plays a role in the regulation of the diurnal rhythms of lipid and protein metabolism in the skeletal muscle via transcriptional repression of genes controlling lipid and amino acid metabolism in the muscle (By similarity).
Subcellular locations: Nucleus, Cytoplasm, Cell projection, Dendrite, Cell projection, Dendritic spine
Localizes to the cytoplasm, dendrites and dendritic spine in the presence of OPHN1. Localizes predominantly to the nucleus at ZT8 whereas it is cytoplasmic at ZT20. Phosphorylation by CSNK1E enhances its cytoplasmic localization.
Widely expressed. Expressed at high levels in the liver, adipose tissue, skeletal muscle and brain. Also expressed in endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and macrophages. Expression oscillates diurnally in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as in peripheral tissues. Expression increases during the differentiation of pre-adipocytes into mature adipocytes. Expressed at high levels in some squamous carcinoma cell lines. |
NR1D2_HUMAN | Homo sapiens | MEVNAGGVIAYISSSSSASSPASCHSEGSENSFQSSSSSVPSSPNSSNSDTNGNPKNGDLANIEGILKNDRIDCSMKTSKSSAPGMTKSHSGVTKFSGMVLLCKVCGDVASGFHYGVHACEGCKGFFRRSIQQNIQYKKCLKNENCSIMRMNRNRCQQCRFKKCLSVGMSRDAVRFGRIPKREKQRMLIEMQSAMKTMMNSQFSGHLQNDTLVEHHEQTALPAQEQLRPKPQLEQENIKSSSPPSSDFAKEEVIGMVTRAHKDTFMYNQEQQENSAESMQPQRGERIPKNMEQYNLNHDHCGNGLSSHFPCSESQQHLNGQFKGRNIMHYPNGHAICIANGHCMNFSNAYTQRVCDRVPIDGFSQNENKNSYLCNTGGRMHLVCPMSKSPYVDPHKSGHEIWEEFSMSFTPAVKEVVEFAKRIPGFRDLSQHDQVNLLKAGTFEVLMVRFASLFDAKERTVTFLSGKKYSVDDLHSMGAGDLLNSMFEFSEKLNALQLSDEEMSLFTAVVLVSADRSGIENVNSVEALQETLIRALRTLIMKNHPNEASIFTKLLLKLPDLRSLNNMHSEELLAFKVHP | Transcriptional repressor which coordinates circadian rhythm and metabolic pathways in a heme-dependent manner. Integral component of the complex transcription machinery that governs circadian rhythmicity and forms a critical negative limb of the circadian clock by directly repressing the expression of core clock components BMAL1 and CLOCK. Also regulates genes involved in metabolic functions, including lipid metabolism and the inflammatory response. Acts as a receptor for heme which stimulates its interaction with the NCOR1/HDAC3 corepressor complex, enhancing transcriptional repression. Recognizes two classes of DNA response elements within the promoter of its target genes and can bind to DNA as either monomers or homodimers, depending on the nature of the response element. Binds as a monomer to a response element composed of the consensus half-site motif 5'-[A/G]GGTCA-3' preceded by an A/T-rich 5' sequence (RevRE), or as a homodimer to a direct repeat of the core motif spaced by two nuclegotides (RevDR-2). Acts as a potent competitive repressor of ROR alpha (RORA) function and also negatively regulates the expression of NR1D1. Regulates lipid and energy homeostasis in the skeletal muscle via repression of genes involved in lipid metabolism and myogenesis including: CD36, FABP3, FABP4, UCP3, SCD1 and MSTN. Regulates hepatic lipid metabolism via the repression of APOC3. Represses gene expression at a distance in macrophages by inhibiting the transcription of enhancer-derived RNAs (eRNAs). In addition to its activity as a repressor, can also act as a transcriptional activator. Acts as a transcriptional activator of the sterol regulatory element-binding protein 1 (SREBF1) and the inflammatory mediator interleukin-6 (IL6) in the skeletal muscle (By similarity). Plays a role in the regulation of circadian sleep/wake cycle; essential for maintaining wakefulness during the dark phase or active period (By similarity). Key regulator of skeletal muscle mitochondrial function; negatively regulates the skeletal muscle expression of core clock genes and genes involved in mitochondrial biogenesis, fatty acid beta-oxidation and lipid metabolism (By similarity). May play a role in the circadian control of neutrophilic inflammation in the lung (By similarity).
Subcellular locations: Nucleus, Cytoplasm
Phosphorylation by CSNK1E enhances its cytoplasmic localization.
Widely expressed. Expressed at high levels in the liver, adipose tissue, skeletal muscle and brain. Expression oscillates diurnally in the suprachiasmatic nucleus (SCN) of the hypothalamus as well as in peripheral tissues. |
NR1H2_HUMAN | Homo sapiens | MSSPTTSSLDTPLPGNGPPQPGAPSSSPTVKEEGPEPWPGGPDPDVPGTDEASSACSTDWVIPDPEEEPERKRKKGPAPKMLGHELCRVCGDKASGFHYNVLSCEGCKGFFRRSVVRGGARRYACRGGGTCQMDAFMRRKCQQCRLRKCKEAGMREQCVLSEEQIRKKKIRKQQQESQSQSQSPVGPQGSSSSASGPGASPGGSEAGSQGSGEGEGVQLTAAQELMIQQLVAAQLQCNKRSFSDQPKVTPWPLGADPQSRDARQQRFAHFTELAIISVQEIVDFAKQVPGFLQLGREDQIALLKASTIEIMLLETARRYNHETECITFLKDFTYSKDDFHRAGLQVEFINPIFEFSRAMRRLGLDDAEYALLIAINIFSADRPNVQEPGRVEALQQPYVEALLSYTRIKRPQDQLRFPRMLMKLVSLRTLSSVHSEQVFALRLQDKKLPPLLSEIWDVHE | Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity . Binds preferentially to double-stranded oligonucleotide direct repeats having the consensus half-site sequence 5'-AGGTCA-3' and 4-nt spacing (DR-4). Regulates cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8; DLDLR and LRP8. Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles (By similarity). Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity). Plays an anti-inflammatory role during the hepatic acute phase response by acting as a corepressor: inhibits the hepatic acute phase response by preventing dissociation of the N-Cor corepressor complex .
Subcellular locations: Nucleus
Ubiquitous. |
NR1H3_HUMAN | Homo sapiens | MSLWLGAPVPDIPPDSAVELWKPGAQDASSQAQGGSSCILREEARMPHSAGGTAGVGLEAAEPTALLTRAEPPSEPTEIRPQKRKKGPAPKMLGNELCSVCGDKASGFHYNVLSCEGCKGFFRRSVIKGAHYICHSGGHCPMDTYMRRKCQECRLRKCRQAGMREECVLSEEQIRLKKLKRQEEEQAHATSLPPRASSPPQILPQLSPEQLGMIEKLVAAQQQCNRRSFSDRLRVTPWPMAPDPHSREARQQRFAHFTELAIVSVQEIVDFAKQLPGFLQLSREDQIALLKTSAIEVMLLETSRRYNPGSESITFLKDFSYNREDFAKAGLQVEFINPIFEFSRAMNELQLNDAEFALLIAISIFSADRPNVQDQLQVERLQHTYVEALHAYVSIHHPHDRLMFPRMLMKLVSLRTLSSVHSEQVFALRLQDKKLPPLLSEIWDVHE | Nuclear receptor that exhibits a ligand-dependent transcriptional activation activity (, ). Interaction with retinoic acid receptor (RXR) shifts RXR from its role as a silent DNA-binding partner to an active ligand-binding subunit in mediating retinoid responses through target genes defined by LXRES (By similarity). LXRES are DR4-type response elements characterized by direct repeats of two similar hexanuclotide half-sites spaced by four nucleotides (By similarity). Plays an important role in the regulation of cholesterol homeostasis, regulating cholesterol uptake through MYLIP-dependent ubiquitination of LDLR, VLDLR and LRP8 . Interplays functionally with RORA for the regulation of genes involved in liver metabolism (By similarity). Induces LPCAT3-dependent phospholipid remodeling in endoplasmic reticulum (ER) membranes of hepatocytes, driving SREBF1 processing and lipogenesis (By similarity). Via LPCAT3, triggers the incorporation of arachidonate into phosphatidylcholines of ER membranes, increasing membrane dynamics and enabling triacylglycerols transfer to nascent very low-density lipoprotein (VLDL) particles. Via LPCAT3 also counteracts lipid-induced ER stress response and inflammation, likely by modulating SRC kinase membrane compartmentalization and limiting the synthesis of lipid inflammatory mediators (By similarity).
Subcellular locations: Nucleus, Cytoplasm
Visceral organs specific expression. Strong expression was found in liver, kidney and intestine followed by spleen and to a lesser extent the adrenals. |
NRARP_HUMAN | Homo sapiens | MSQAELSTCSAPQTQRIFQEAVRKGNTQELQSLLQNMTNCEFNVNSFGPEGQTALHQSVIDGNLELVKLLVKFGADIRLANRDGWSALHIAAFGGHQDIVLYLITKAKYAASGR | Downstream effector of Notch signaling. Involved in the regulation of liver cancer cells self-renewal . Involved in angiogenesis acting downstream of Notch at branch points to regulate vascular density. Proposed to integrate endothelial Notch and Wnt signaling to control stalk cell proliferation and to stablilize new endothelial connections during angiogenesis . During somitogenesis involved in maintenance of proper somite segmentation and proper numbers of somites and vertebrae. Required for proper anterior-posterior somite patterning. Proposed to function in a negative feedback loop to destabilize Notch 1 intracellular domain (NICD) and down-regulate the Notch signal, preventing expansion of the Notch signal into the anterior somite domain (By similarity). |
NRBF2_HUMAN | Homo sapiens | MEVMEGPLNLAHQQSRRADRLLAAGKYEEAISCHKKAAAYLSEAMKLTQSEQAHLSLELQRDSHMKQLLLIQERWKRAQREERLKAQQNTDKDAAAHLQTSHKPSAEDAEGQSPLSQKYSPSTEKCLPEIQGIFDRDPDTLLYLLQQKSEPAEPCIGSKAPKDDKTIIEEQATKIADLKRHVEFLVAENERLRKENKQLKAEKARLLKGPIEKELDVDADFVETSELWSLPPHAETATASSTWQKFAANTGKAKDIPIPNLPPLDFPSPELPLMELSEDILKGFMNN | May modulate transcriptional activation by target nuclear receptors. Can act as transcriptional activator (in vitro).
Involved in starvation-induced autophagy probably by its association with PI3K complex I (PI3KC3-C1). However, effects has been described variably. Involved in the induction of starvation-induced autophagy . Stabilzes PI3KC3-C1 assembly and enhances ATG14-linked lipid kinase activity of PIK3C3 (By similarity). Proposed to negatively regulate basal and starvation-induced autophagy and to inhibit PIK3C3 activity by modulating interactions in PI3KC3-C1 . May be involved in autophagosome biogenesis . May play a role in neural progenitor cell survival during differentiation (By similarity).
Subcellular locations: Nucleus, Cytoplasm, Cytoplasmic vesicle, Cytoplasmic vesicle, Autophagosome
Detected in keratinocytes, liver and placenta . Expressed in a subset of cells in pediatric medulloblastoma . |
NRBF2_PONAB | Pongo abelii | MEVMEGPLNLAHQQSRRADRLLAAGKYEEAISCHKKAAAYLSEAMKLTQSEQAHLSLELQRDSHMKQLLLIQERWKRAQREERLKAQQNTDKDVAAHLQTSHKPSAEDAEGQSPLSQKYSPSTEKCLPEIQGIFDRDPDTLLYLLQQKSEPAEPCIGSKAPKDDKTIIEEQATKIADLKRHVEFLVAENERLRKENKQLKAEKARLLKGPIEKELDVDADFVETSELWSLPPHSETATASSTWQKFAANTGKAKDIPIPNLPPLDFPSPELPLMELSEDILKGFMNN | May modulate transcriptional activation by target nuclear receptors. Can act as transcriptional activator (in vitro) (By similarity).
Involved in starvation-induced autophagy probably by its association with PI3K complex I (PI3KC3-C1). However, effects has been described variably. Involved in the induction of starvation-induced autophagy. Stabilzes PI3KC3-C1 assembly and enhances ATG14-linked lipid kinase activity of PIK3C3. Proposed to negatively regulate basal and starvation-induced autophagy and to inhibit PIK3C3 activity by modulating interactions in PI3KC3-C1. May be involved in autophagosome biogenesis. May play a role in neural progenitor cell survival during differentiation (By similarity).
Subcellular locations: Nucleus, Cytoplasm, Cytoplasmic vesicle, Autophagosome |
NRBP2_HUMAN | Homo sapiens | MAAPEPAPRRAREREREREDESEDESDILEESPCGRWQKRREQVNQGNMPGLQSTFLAMDTEEGVEVVWNELHFGDRKAFAAHEEKIQTVFEQLVLVDHPNIVKLHKYWLDTSEACARVIFITEYVSSGSLKQFLKKTKKNHKAMNARAWKRWCTQILSALSFLHACSPPIIHGNLTSDTIFIQHNGLIKIGSVWHRIFSNALPDDLRSPIRAEREELRNLHFFPPEYGEVADGTAVDIFSFGMCALEMAVLEIQTNGDTRVTEEAIARARHSLSDPNMREFILCCLARDPARRPSAHSLLFHRVLFEVHSLKLLAAHCFIQHQYLMPENVVEEKTKAMDLHAVLAELPRPRRPPLQWRYSEVSFMELDKFLEDVRNGIYPLMNFAATRPLGLPRVLAPPPEEVQKAKTPTPEPFDSETRKVIQMQCNLERSEDKARWHLTLLLVLEDRLHRQLTYDLLPTDSAQDLASELVHYGFLHEDDRMKLAAFLESTFLKYRGTQA | May regulate apoptosis of neural progenitor cells during their differentiation.
Subcellular locations: Cytoplasm |
NRBP_HUMAN | Homo sapiens | MSEGESQTVLSSGSDPKVESSSSAPGLTSVSPPVTSTTSAASPEEEEESEDESEILEESPCGRWQKRREEVNQRNVPGIDSAYLAMDTEEGVEVVWNEVQFSERKNYKLQEEKVRAVFDNLIQLEHLNIVKFHKYWADIKENKARVIFITEYMSSGSLKQFLKKTKKNHKTMNEKAWKRWCTQILSALSYLHSCDPPIIHGNLTCDTIFIQHNGLIKIGSVAPDTINNHVKTCREEQKNLHFFAPEYGEVTNVTTAVDIYSFGMCALEMAVLEIQGNGESSYVPQEAISSAIQLLEDPLQREFIQKCLQSEPARRPTARELLFHPALFEVPSLKLLAAHCIVGHQHMIPENALEEITKNMDTSAVLAEIPAGPGREPVQTLYSQSPALELDKFLEDVRNGIYPLTAFGLPRPQQPQQEEVTSPVVPPSVKTPTPEPAEVETRKVVLMQCNIESVEEGVKHHLTLLLKLEDKLNRHLSCDLMPNENIPELAAELVQLGFISEADQSRLTSLLEETLNKFNFARNSTLNSAAVTVSS | Required for embryonic development (By similarity). Plays a role in intestinal epithelial cell fate and proliferation, thereby involved in the architectural development of the intestine potentially via the regulation of Wnt-responsive genes (By similarity). May play a role in subcellular trafficking between the endoplasmic reticulum and Golgi apparatus through interactions with the Rho-type GTPases . Binding to the NS3 protein of dengue virus type 2 appears to subvert this activity into the alteration of the intracellular membrane structure associated with flaviviral replication .
Subcellular locations: Cytoplasm, Cell cortex, Endomembrane system, Cell projection, Lamellipodium
Colocalizes with activated RAC3 to endomembranes and at the cell periphery in lamellipodia.
Ubiquitously expressed in all tissues examined with high levels in the testis. |
NRBP_MACFA | Macaca fascicularis | MSEGESQTVLSSGSDPKVESSSSAPGLTSVSPPVTSTTSAASPEEEEESEDESEILEESPCGRWQKRREEVNQRNVPGIDSAYLAMDTEEGVEVVWNEVQFSERKNYKLQEEKVRAVFDNLIQLEHLNIVKFHKYWADIKENKARVIFITEYMSSGSLKQFLKKTKKNHKTMNEKAWKRWCTQILSALSYLHSCDPPIIHGNLTCDTIFIQHNGLIKIGSVAPDTINNHVKTCREEQKNLHFFAPEYGEVTNVTTAVDIYSFGMCALEMAVLEIQGNGESSYVPQEAISSAIQLLEDPLQREFIQKCLQSEPARRPTARELLFHPALFEVPSLKLLAAHCIVGHQHMIPENALEEITKNMDTSAVLAEIPAGPGREPVQTLYSQSPALELDKFLEDVRNGIYPLTAFGLPRPQQPQQEEVTSPVVPPSVKTPTPEPAEVETRKVVLMQCNIESVEEGVKHHLTLLLKLEDKLNRHLSCDLMPNENIPELAAELVQLGFISEADQSRLTSLLEETLNKFNFARNSTLNSAAVTVSS | Required for embryonic development (By similarity). Plays a role in intestinal epithelial cell fate and proliferation, thereby involved in the architectural development of the intestine potentially via the regulation of Wnt-responsive genes (By similarity). May play a role in subcellular trafficking between the endoplasmic reticulum and Golgi apparatus through interactions with the Rho-type GTPases (By similarity).
Subcellular locations: Cytoplasm, Cell cortex, Endomembrane system, Cell projection, Lamellipodium
Colocalizes with activated RAC3 to endomembranes and at the cell periphery in lamellipodia. |
NRBP_PONAB | Pongo abelii | MSEGESQTVLSSGSDPKVESSSSAPGLTSVSPPVTSTTSAASPEEEEESEDESEILEESPCGRWQKRREEVNQRNVPGIDSAYLAMDTEEGVEVVWNEVQFSERKNYKLQEEKVRAVFDNLIQLEHLNIVKFHKYWADIKENKARVIFITEYMSSGSLKQFLKKTKKNHKTMNEKAWKRWCTQILSALSYLHSCDPPIIHGNLTCDTIFIQHNGLIKIGSVAPDTINNHVKTCREEQKNLHFFAPEYGEVTNVTTAVDIYSFGMCALEMAVLEIQGNGESSYVPQEAISSAIQLLEDPLQREFIQKCLQSEPARRPTARELLFHPALFEVPSLKLLAAHCIVGHQHMIPENALEEITKNMDTSAVLAEIPAGPGREPVQTLYSQSPALELDKFLEDVRNGIYPLTAFGLPRPQQPQQEEVTSPVVPPSVKTPTPEPAEVETRKVVLMQCNIESVEEGVKHHLTLLLKLEDKLNRHLSCDLMPNENIPELAAELVQLGFISEADQSRLTSLLEETLNKFNFARSSTLNSAAVTVSS | Required for embryonic development (By similarity). Plays a role in intestinal epithelial cell fate and proliferation, thereby involved in the architectural development of the intestine potentially via the regulation of Wnt-responsive genes (By similarity). May play a role in subcellular trafficking between the endoplasmic reticulum and Golgi apparatus through interactions with the Rho-type GTPases (By similarity).
Subcellular locations: Cytoplasm, Cell cortex, Endomembrane system, Cell projection, Lamellipodium
Colocalizes with activated RAC3 to endomembranes and at the cell periphery in lamellipodia. |
NRCAM_HUMAN | Homo sapiens | MQLKIMPKKKRLSAGRVPLILFLCQMISALEVPLDPKLLEDLVQPPTITQQSPKDYIIDPRENIVIQCEAKGKPPPSFSWTRNGTHFDIDKDPLVTMKPGTGTLIINIMSEGKAETYEGVYQCTARNERGAAVSNNIVVRPSRSPLWTKEKLEPITLQSGQSLVLPCRPPIGLPPPIIFWMDNSFQRLPQSERVSQGLNGDLYFSNVLPEDTREDYICYARFNHTQTIQQKQPISVKVISVDELNDTIAANLSDTEFYGAKSSRERPPTFLTPEGNASNKEELRGNVLSLECIAEGLPTPIIYWAKEDGMLPKNRTVYKNFEKTLQIIHVSEADSGNYQCIAKNALGAIHHTISVRVKAAPYWITAPQNLVLSPGEDGTLICRANGNPKPRISWLTNGVPIEIAPDDPSRKIDGDTIIFSNVQERSSAVYQCNASNEYGYLLANAFVNVLAEPPRILTPANTLYQVIANRPALLDCAFFGSPLPTIEWFKGAKGSALHEDIYVLHENGTLEIPVAQKDSTGTYTCVARNKLGMAKNEVHLEIKDPTWIVKQPEYAVVQRGSMVSFECKVKHDHTLSLTVLWLKDNRELPSDERFTVDKDHLVVADVSDDDSGTYTCVANTTLDSVSASAVLSVVAPTPTPAPVYDVPNPPFDLELTDQLDKSVQLSWTPGDDNNSPITKFIIEYEDAMHKPGLWHHQTEVSGTQTTAQLKLSPYVNYSFRVMAVNSIGKSLPSEASEQYLTKASEPDKNPTAVEGLGSEPDNLVITWKPLNGFESNGPGLQYKVSWRQKDGDDEWTSVVVANVSKYIVSGTPTFVPYLIKVQALNDMGFAPEPAVVMGHSGEDLPMVAPGNVRVNVVNSTLAEVHWDPVPLKSIRGHLQGYRIYYWKTQSSSKRNRRHIEKKILTFQGSKTHGMLPGLEPFSHYTLNVRVVNGKGEGPASPDRVFNTPEGVPSAPSSLKIVNPTLDSLTLEWDPPSHPNGILTEYTLKYQPINSTHELGPLVDLKIPANKTRWTLKNLNFSTRYKFYFYAQTSAGSGSQITEEAVTTVDEAGILPPDVGAGKVQAVNPRISNLTAAAAETYANISWEYEGPEHVNFYVEYGVAGSKEEWRKEIVNGSRSFFGLKGLMPGTAYKVRVGAVGDSGFVSSEDVFETGPAMASRQVDIATQGWFIGLMCAVALLILILLIVCFIRRNKGGKYPVKEKEDAHADPEIQPMKEDDGTFGEYSDAEDHKPLKKGSRTPSDRTVKKEDSDDSLVDYGEGVNGQFNEDGSFIGQYSGKKEKEPAEGNESSEAPSPVNAMNSFV | Cell adhesion protein that is required for normal responses to cell-cell contacts in brain and in the peripheral nervous system. Plays a role in neurite outgrowth in response to contactin binding. Plays a role in mediating cell-cell contacts between Schwann cells and axons. Plays a role in the formation and maintenance of the nodes of Ranvier on myelinated axons. Nodes of Ranvier contain clustered sodium channels that are crucial for the saltatory propagation of action potentials along myelinated axons. During development, nodes of Ranvier are formed by the fusion of two heminodes. Required for normal clustering of sodium channels at heminodes; not required for the formation of mature nodes with normal sodium channel clusters. Required, together with GLDN, for maintaining NFASC and sodium channel clusters at mature nodes of Ranvier.
Subcellular locations: Cell membrane, Cell projection, Axon, Secreted
Detected at nodes of Ranvier.
Detected in all the examined tissues. In the brain it was detected in the amygdala, caudate nucleus, corpus callosum, hippocampus, hypothalamus, substantia nigra, subthalamic nucleus and thalamus. |
NSA2_HUMAN | Homo sapiens | MPQNEYIELHRKRYGYRLDYHEKKRKKESREAHERSKKAKKMIGLKAKLYHKQRHAEKIQMKKTIKMHEKRNTKQKNDEKTPQGAVPAYLLDREGQSRAKVLSNMIKQKRKEKAGKWEVPLPKVRAQGETEVLKVIRTGKRKKKAWKRMVTKVCFVGDGFTRKPPKYERFIRPMGLRFKKAHVTHPELKATFCLPILGVKKNPSSPLYTTLGVITKGTVIEVNVSELGLVTQGGKVIWGKYAQVTNNPENDGCINAVLLV | Involved in the biogenesis of the 60S ribosomal subunit. May play a part in the quality control of pre-60S particles (By similarity).
Subcellular locations: Nucleus, Nucleolus |
NSRP1_HUMAN | Homo sapiens | MAIPGRQYGLILPKKTQQLHPVLQKPSVFGNDSDDDDETSVSESLQREAAKKQAMKQTKLEIQKALAEDATVYEYDSIYDEMQKKKEENNPKLLLGKDRKPKYIHNLLKAVEIRKKEQEKRMEKKIQREREMEKGEFDDKEAFVTSAYKKKLQERAEEEEREKRAAALEACLDVTKQKDLSGFYRHLLNQAVGEEEVPKCSFREARSGIKEEKSRGFSNEVSSKNRIPQEKCILQTDVKVEENPDADSDFDAKSSADDEIEETRVNCRREKVIETPENDFKHHRSQNHSRSPSEERGHSTRHHTKGSRTSRGHEKREDQHQQKQSRDQENHYTDRDYRKERDSHRHREASHRDSHWKRHEQEDKPRARDQRERSDRVWKREKDREKYSQREQERDRQQNDQNRPSEKGEKEEKSKAKEEHMKVRKERYENNDKYRDREKREVGVQSSERNQDRKESSPNSRAKDKFLDQERSNKMRNMAKDKERNQEKPSNSESSLGAKHRLTEEGQEKGKEQERPPEAVSKFAKRNNEETVMSARDRYLARQMARVNAKTYIEKEDD | RNA-binding protein that mediates pre-mRNA alternative splicing regulation.
Subcellular locations: Nucleus, Nucleus speckle
Colocalizes with splicing factors SRSF1 and SRSF2 in speckles.
Expressed in dendritic cells, T-cells, B-cells and natural killer cells. Expressed in secondary lymphoid organs such as spleen and mesenteric, axillary and brachial lymph nodes. |
NTCP7_HUMAN | Homo sapiens | MRLLERMRKDWFMVGIVLAIAGAKLEPSIGVNGGPLKPEITVSYIAVATIFFNSGLSLKTEELTSALVHLKLHLFIQIFTLAFFPATIWLFLQLLSITPINEWLLKGLQTVGCMPPPVSSAVILTKAVGGNEAAAIFNSAFGSFLGIVITPLLLLLFLGSSSSVPFTSIFSQLFMTVVVPLIIGQIVRRYIKDWLERKKPPFGAISSSVLLMIIYTTFCDTFSNPNIDLDKFSLVLILFIIFSIQLSFMLLTFIFSTRNNSGFTPADTVAIIFCSTHKSLTLGIPMLKIVFAGHEHLSLISVPLLIYHPAQILLGSVLVPTIKSWMVSRQKGVKLTRPTV | Involved in teeth and skeletal development. Has an essential role in the biosynthesis and trafficking of glycosaminoglycans and glycoproteins, to produce a proper functioning extracellular matrix. Required for extracellular matrix mineralization (, ). Also involved in the regulation of cellular calcium homeostasis (, ). Does not show transport activity towards bile acids or steroid sulfates (including taurocholate, cholate, chenodeoxycholate, estrone-3-sulfate, dehydroepiandrosterone sulfate (DHEAS) and pregnenolone sulfate).
Subcellular locations: Cell membrane, Endoplasmic reticulum membrane, Golgi apparatus membrane
Widely expressed (, ). Expressed at high levels in liver and at lower levels in prostate, placenta, kidney, heart, lung, thymus and spleen (, ). Strongly expressed in testis and also detected in brain, ovary, colon and small intestine . Weakly expressed in testis and not detected in brain, ovary, colon or small intestine . Isoform 1: Expressed in liver, testis and placenta . Isoform 4: Expressed in liver, testis and placenta . |
NTCP_HUMAN | Homo sapiens | MEAHNASAPFNFTLPPNFGKRPTDLALSVILVFMLFFIMLSLGCTMEFSKIKAHLWKPKGLAIALVAQYGIMPLTAFVLGKVFRLKNIEALAILVCGCSPGGNLSNVFSLAMKGDMNLSIVMTTCSTFCALGMMPLLLYIYSRGIYDGDLKDKVPYKGIVISLVLVLIPCTIGIVLKSKRPQYMRYVIKGGMIIILLCSVAVTVLSAINVGKSIMFAMTPLLIATSSLMPFIGFLLGYVLSALFCLNGRCRRTVSMETGCQNVQLCSTILNVAFPPEVIGPLFFFPLLYMIFQLGEGLLLIAIFWCYEKFKTPKDKTKMIYTAATTEETIPGALGNGTYKGEDCSPCTA | As a major transporter of conjugated bile salts from plasma into the hepatocyte, it plays a key role in the enterohepatic circulation of bile salts necessary for the solubilization and absorption of dietary fat and fat-soluble vitamins ( , ). It is strictly dependent on the extracellular presence of sodium ( , ). It exhibits broad substrate specificity and transports various bile acids, such as taurocholate, cholate, as well as non-bile acid organic compounds, such as estrone sulfate (, ). Works collaboratively with the ileal transporter (NTCP2), the organic solute transporter (OST), and the bile salt export pump (BSEP), to ensure efficacious biological recycling of bile acids during enterohepatic circulation .
(Microbial infection) Acts as a receptor for hepatitis B virus.
Subcellular locations: Cell membrane
Expressed in liver (, ). Expressed in placental trophoblasts . |
NTR1_HUMAN | Homo sapiens | MRLNSSAPGTPGTPAADPFQRAQAGLEEALLAPGFGNASGNASERVLAAPSSELDVNTDIYSKVLVTAVYLALFVVGTVGNTVTAFTLARKKSLQSLQSTVHYHLGSLALSDLLTLLLAMPVELYNFIWVHHPWAFGDAGCRGYYFLRDACTYATALNVASLSVERYLAICHPFKAKTLMSRSRTKKFISAIWLASALLAVPMLFTMGEQNRSADGQHAGGLVCTPTIHTATVKVVIQVNTFMSFIFPMVVISVLNTIIANKLTVMVRQAAEQGQVCTVGGEHSTFSMAIEPGRVQALRHGVRVLRAVVIAFVVCWLPYHVRRLMFCYISDEQWTPFLYDFYHYFYMVTNALFYVSSTINPILYNLVSANFRHIFLATLACLCPVWRRRRKRPAFSRKADSVSSNHTLSSNATRETLY | G-protein coupled receptor for the tridecapeptide neurotensin (NTS) ( ). Signaling is effected via G proteins that activate a phosphatidylinositol-calcium second messenger system. Signaling leads to the activation of downstream MAP kinases and protects cells against apoptosis .
Subcellular locations: Cell membrane, Membrane raft
Palmitoylation is required for localization at CAV1-enriched membrane rafts.
Expressed in prostate (at protein level). Detected in colon and peripheral blood mononuclear cells. Detected at very low levels in brain. |
NTR2_HUMAN | Homo sapiens | METSSPRPPRPSSNPGLSLDARLGVDTRLWAKVLFTALYALIWALGAAGNALSAHVVLKARAGRAGRLRHHVLSLALAGLLLLLVGVPVELYSFVWFHYPWVFGDLGCRGYYFVHELCAYATVLSVAGLSAERCLAVCQPLRARSLLTPRRTRWLVALSWAASLGLALPMAVIMGQKHELETADGEPEPASRVCTVLVSRTALQVFIQVNVLVSFVLPLALTAFLNGVTVSHLLALCSQVPSTSTPGSSTPSRLELLSEEGLLSFIVWKKTFIQGGQVSLVRHKDVRRIRSLQRSVQVLRAIVVMYVICWLPYHARRLMYCYVPDDAWTDPLYNFYHYFYMVTNTLFYVSSAVTPLLYNAVSSSFRKLFLEAVSSLCGEHHPMKRLPPKPQSPTLMDTASGFGDPPETRT | Receptor for the tridecapeptide neurotensin. It is associated with G proteins that activate a phosphatidylinositol-calcium second messenger system.
Subcellular locations: Cell membrane
Expressed in prostate (at protein level). |
NU1M_HUMAN | Homo sapiens | MPMANLLLLIVPILIAMAFLMLTERKILGYMQLRKGPNVVGPYGLLQPFADAMKLFTKEPLKPATSTITLYITAPTLALTIALLLWTPLPMPNPLVNLNLGLLFILATSSLAVYSILWSGWASNSNYALIGALRAVAQTISYEVTLAIILLSTLLMSGSFNLSTLITTQEHLWLLLPSWPLAMMWFISTLAETNRTPFDLAEGESELVSGFNIEYAAGPFALFFMAEYTNIIMMNTLTTTIFLGTTYDALSPELYTTYFVTKTLLLTSLFLWIRTAYPRFRYDQLMHLLWKNFLPLTLALLMWYVSMPITISSIPPQT | Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor . Essential for the catalytic activity and assembly of complex I (, ).
Subcellular locations: Mitochondrion inner membrane |
Subsets and Splits