protein_name
stringlengths
7
11
species
stringclasses
238 values
sequence
stringlengths
2
34.4k
annotation
stringlengths
6
11.5k
NAT16_HUMAN
Homo sapiens
MKLEASCGTATSEVPKPEKKTARDAEPSSETRPQEVEAEPRSGSGPEAEAEPLDFVVATEREFEEVLAISGGIYGGLDYLPSRYHSWLRDPDRTVVLAKRNGGVIALESVNVIDAGETVLVEGLRVAPWERGKGVAGLLQRFCSQLVKRQHPGVKVARLTRDDQLGPRELKKYRLITKQGILLVRFNASALLAGLGARLAALRTSGTFSPLPTEAVSEAGGDVARLLLSPSVQRDVLPGGTIIQDWQPYRPSESNLRLLAAKGLEWRVDSRARPRVLTLCTRPFPIPHGGDGTWRYLNIDAFGSDGAQVQSQLLWHLQRQAPRLVGLNVMCQLFLEPQLWSQLADFCQVGLGLELVKGYTEQYLLEADI
Probable N-acetyltransferase. Shows only trace activity toward L-His and no N-acetyltransferase activity toward other amino acids. The physiological substrate of this enzyme is unknown.
NAT8B_HUMAN
Homo sapiens
MAPYHIRKYQESDRKSVVGLLSGGMAEHAPATFRRLLKLPRTLILLLGGALALLLVSGSWILALVFSLSLLPALWFLAKKPWTRYVDIALRTDMSDITKSYLSECGSCFWVAESEEKVVGTVGALPVDDPTLREKRLQLFHLSVDNEHRGQGIAKALVRTVLQFARDQGYSEVVLDTSNIQLSAMGLYQSLGFKKTGQSFFHVWARLVDLHTVHFIYHLPSAQAGRL
Lysine N-acetyltransferase catalyzing peptidyl-lysine N6-acetylation of various proteins, including PROM1/CD133. Thereby, may regulate apoptosis through the acetylation and the regulation of the expression of PROM1 . Acetylates and stabilizes BACE1 immature protein, leading to increased steady-state levels in neurons. By acting on BACE1 expression, may regulate amyloid beta-peptide formation . May play a role in regulation of gastrulation (By similarity). Subcellular locations: Endoplasmic reticulum-Golgi intermediate compartment membrane, Endoplasmic reticulum membrane Enriched in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC).
NCBP1_HUMAN
Homo sapiens
MSRRRHSDENDGGQPHKRRKTSDANETEDHLESLICKVGEKSACSLESNLEGLAGVLEADLPNYKSKILRLLCTVARLLPEKLTIYTTLVGLLNARNYNFGGEFVEAMIRQLKESLKANNYNEAVYLVRFLSDLVNCHVIAAPSMVAMFENFVSVTQEEDVPQVRRDWYVYAFLSSLPWVGKELYEKKDAEMDRIFANTESYLKRRQKTHVPMLQVWTADKPHPQEEYLDCLWAQIQKLKKDRWQERHILRPYLAFDSILCEALQHNLPPFTPPPHTEDSVYPMPRVIFRMFDYTDDPEGPVMPGSHSVERFVIEENLHCIIKSHWKERKTCAAQLVSYPGKNKIPLNYHIVEVIFAELFQLPAPPHIDVMYTTLLIELCKLQPGSLPQVLAQATEMLYMRLDTMNTTCVDRFINWFSHHLSNFQFRWSWEDWSDCLSQDPESPKPKFVREVLEKCMRLSYHQRILDIVPPTFSALCPANPTCIYKYGDESSNSLPGHSVALCLAVAFKSKATNDEIFSILKDVPNPNQDDDDDEGFSFNPLKIEVFVQTLLHLAAKSFSHSFSALAKFHEVFKTLAESDEGKLHVLRVMFEVWRNHPQMIAVLVDKMIRTQIVDCAAVANWIFSSELSRDFTRLFVWEILHSTIRKMNKHVLKIQKELEEAKEKLARQHKRRSDDDDRSSDRKDGVLEEQIERLQEKVESAQSEQKNLFLVIFQRFIMILTEHLVRCETDGTSVLTPWYKNCIERLQQIFLQHHQIIQQYMVTLENLLFTAELDPHILAVFQQFCALQA
Component of the cap-binding complex (CBC), which binds cotranscriptionally to the 5'-cap of pre-mRNAs and is involved in various processes such as pre-mRNA splicing, translation regulation, nonsense-mediated mRNA decay, RNA-mediated gene silencing (RNAi) by microRNAs (miRNAs) and mRNA export. The CBC complex is involved in mRNA export from the nucleus via its interaction with ALYREF/THOC4/ALY, leading to the recruitment of the mRNA export machinery to the 5'-end of mRNA and to mRNA export in a 5' to 3' direction through the nuclear pore. The CBC complex is also involved in mediating U snRNA and intronless mRNAs export from the nucleus. The CBC complex is essential for a pioneer round of mRNA translation, before steady state translation when the CBC complex is replaced by cytoplasmic cap-binding protein eIF4E. The pioneer round of mRNA translation mediated by the CBC complex plays a central role in nonsense-mediated mRNA decay (NMD), NMD only taking place in mRNAs bound to the CBC complex, but not on eIF4E-bound mRNAs. The CBC complex enhances NMD in mRNAs containing at least one exon-junction complex (EJC) via its interaction with UPF1, promoting the interaction between UPF1 and UPF2. The CBC complex is also involved in 'failsafe' NMD, which is independent of the EJC complex, while it does not participate in Staufen-mediated mRNA decay (SMD). During cell proliferation, the CBC complex is also involved in microRNAs (miRNAs) biogenesis via its interaction with SRRT/ARS2 and is required for miRNA-mediated RNA interference. The CBC complex also acts as a negative regulator of PARN, thereby acting as an inhibitor of mRNA deadenylation. In the CBC complex, NCBP1/CBP80 does not bind directly capped RNAs (m7GpppG-capped RNA) but is required to stabilize the movement of the N-terminal loop of NCBP2/CBP20 and lock the CBC into a high affinity cap-binding state with the cap structure. Associates with NCBP3 to form an alternative cap-binding complex (CBC) which plays a key role in mRNA export and is particularly important in cellular stress situations such as virus infections. The conventional CBC with NCBP2 binds both small nuclear RNA (snRNA) and messenger (mRNA) and is involved in their export from the nucleus whereas the alternative CBC with NCBP3 does not bind snRNA and associates only with mRNA thereby playing a role only in mRNA export. NCBP1/CBP80 is required for cell growth and viability . Subcellular locations: Nucleus, Cytoplasm Localized in cytoplasmic mRNP granules containing untranslated mRNAs.
NDF6_HUMAN
Homo sapiens
MLTLPFDESVVMPESQMCRKFSRECEDQKQIKKPESFSKQIVLRGKSIKRAPGEETEKEEEEEDREEEDENGLPRRRGLRKKKTTKLRLERVKFRRQEANARERNRMHGLNDALDNLRKVVPCYSKTQKLSKIETLRLAKNYIWALSEILRIGKRPDLLTFVQNLCKGLSQPTTNLVAGCLQLNARSFLMGQGGEAAHHTRSPYSTFYPPYHSPELTTPPGHGTLDNSKSMKPYNYCSAYESFYESTSPECASPQFEGPLSPPPINYNGIFSLKQEETLDYGKNYNYGMHYCAVPPRGPLGQGAMFRLPTDSHFPYDLHLRSQSLTMQDELNAVFHN
Activates E box-dependent transcription in collaboration with TCF3/E47. May be a trans-acting factor involved in the development and maintenance of the mammalian nervous system. Transactivates the promoter of its own gene (By similarity). Subcellular locations: Nucleus
NDF6_MACFA
Macaca fascicularis
MLTLPFDESVVMPESQMCRKFSRECEDQKQIKKPESFSKQIVLRGKSIKRAPGEETEKEEEEEDREEEDENGLPRRRGLRKKKTTKLRLERVKFRRQEANARERNRMHGLNDALDNLRKVVPCYSKTQKLSKIETLRLAKNYIWALSEILRIGKRPDLLTFVQNLCKGLSQPTTNLVAGCLQLNARSFLMGQGGEAAHHTRSPYSTFYPPYHSPELTTPPGHGTLDNSKSMKPYNYCSAYESFYESTSPECASPQFEGPLSPPPINYNGIFSLKQEETLDYGKNYNYGMHYCAVPPRGPLGQGAMFRLPTDSHFPYDLHLRSQSLTMQDELNAVFHN
Activates E box-dependent transcription in collaboration with TCF3/E47. May be a trans-acting factor involved in the development and maintenance of the mammalian nervous system. Transactivates the promoter of its own gene (By similarity). Subcellular locations: Nucleus
NDUA6_GORGO
Gorilla gorilla gorilla
MAGSGVRQATSTASTFVKPIFSRDMNEAKRRVRELYRAWYREVPNTVHQFQLDITVKMGRDKVREMFMKNAHVTDPRVVDLLVIKGKIELEETIKVWKQRTHVMRFFHETEAPRPKDFLSKFYVGHDP
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA6_HUMAN
Homo sapiens
MAGSGVRQATSTASTFVKPIFSRDMNEAKRRVRELYRAWYREVPNTVHQFQLDITVKMGRDKVREMFMKNAHVTDPRVVDLLVIKGKIELEETIKVWKQRTHVMRFFHETEAPRPKDFLSKFYVGHDP
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly . Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA6_PANTR
Pan troglodytes
MAGSGVRQATSTASTFVKPIFSRDMNEAKRRVRELYRAWYREVPNTVHQFQLDITVKMGRDKVREMFMKNAHVTDPRVVDLLVIKGKIELEETIKVWKQRTHVMRFFHETEAPRPKDFLSKFYVGHDP
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA6_PONPY
Pongo pygmaeus
MAGSGVRQAASTASTFVKPIFSRDMNEAKRRVRELYRAWYREVPNTVHQFQLDITVKMGRDKVREMFMKNAHVTDPRVVDLLVIKGKIELEETINVWKQQTHVMRFFHETEAPRPKDFLSKFYVGHDP
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA7_GORGO
Gorilla gorilla gorilla
MASATRLIQRLRNWASGHDLQAKLQLRYQEISKRTQPPPKLPVGPSHKLSNNYYCTRDGRRESVPPSIIMSSQKALVSGKPAESSAVAATEKKAVTPAPPIKRWELSSDQPYL
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA7_HUMAN
Homo sapiens
MASATRLIQRLRNWASGHDLQGKLQLRYQEISKRTQPPPKLPVGPSHKLSNNYYCTRDGRRESVPPSIIMSSQKALVSGKPAESSAVAATEKKAVTPAPPIKRWELSSDQPYL
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA7_PANTR
Pan troglodytes
MASATRLIQRLRNWASGHDLQGKLQLRYQEISKRTQPPPKLPVGPSHKLSNNYYCTRDGRRESVPPSIIMSSQKALVSGKPAESSAVAATEKKAVTPAPPIKRWELSSDQPYL
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA7_PONPY
Pongo pygmaeus
MASATRLIQRLRNWASGQDLQAKLQLRYQEISKRTQPPPKLPVGPSHKLSNNYYCTRDGRRESVPPSIIMSSQKALVSGKPAESSAVAATEKKAVTPAPPIKRWELSSDQPYL
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUA8_GORGO
Gorilla gorilla gorilla
MPGIVELPTLEELKVDEVKISSAVLKAAAHHYGAQCDKPNKEFMLCRWEEKDPRRCLEEGKLVNKCALDFFRQIKRHCAEPFTEYWTCIDYTGQQLFRHCRKQQAKFDECVLDKLGWVRPDLGELSKVTKVKTDRPLPENPYHSRPRPDPSPEIEGDLQPATHGSRFYFWTK
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space, Mitochondrion
NDUA8_HUMAN
Homo sapiens
MPGIVELPTLEELKVDEVKISSAVLKAAAHHYGAQCDKPNKEFMLCRWEEKDPRRCLEEGKLVNKCALDFFRQIKRHCAEPFTEYWTCIDYTGQQLFRHCRKQQAKFDECVLDKLGWVRPDLGELSKVTKVKTDRPLPENPYHSRPRPDPSPEIEGDLQPATHGSRFYFWTK
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis ( ). Complex I functions in the transfer of electrons from NADH to the respiratory chain . The immediate electron acceptor for the enzyme is believed to be ubiquinone . Subcellular locations: Mitochondrion inner membrane, Mitochondrion intermembrane space, Mitochondrion
NDUB9_PANTR
Pan troglodytes
MAFLASGPYLTHQQKVLRLYKRALRHLESWCVQRDKYRYFACLMRARFEEHKNEKDMAKATQLLKEAEEEFWYRQHPQPYIFPDSPGGTSYERYDCYKVPEWCLDDWHPSEKAMYPDYFAKREKWKKLRRESWEREVKQLQEETPPGGPLTEALPPARKEGDLPPLWWYIVTRPRERPM
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUB9_PONAB
Pongo abelii
MAFLASGAYLTHRQKVLRLYKRALRHLESWCVQRDKYRYFACLMRARFEEHKNEKDMVRATQLLKEAEEEFWYRQHPQPYIFPDSPGGTSYERYDCYKVPEWCLDDWHPSEKAMYPDYFAKREQWKKLQRESWEREVKQLQEETPPGGPLTEALPPARKEGDLPPLWWYIVTRPRERPM
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUBA_GORGO
Gorilla gorilla gorilla
MPDSWDKDVYPEPPRRTPVLPNPIVYMMKAFDLIVDRPVTLVREFIERQHAKNRYYYYHRQYRRVPDITECKEEDIMCVYEAEMQWRRDYKVDQEIINIMQDRLKACQQREGQNYQQNCIKEVEQFTQVAKAYQDRYQDLGAYYSARKCLAKQRQRMLQERKAAKEAAAATS
Accessory subunit that is involved in the functional assembly of the mitochondrial respiratory chain complex I. Complex I has an NADH dehydrogenase activity with ubiquinone as an immediate electron acceptor and mediates the transfer of electrons from NADH to the respiratory chain. Subcellular locations: Mitochondrion inner membrane
NDUBA_HUMAN
Homo sapiens
MPDSWDKDVYPEPPRRTPVQPNPIVYMMKAFDLIVDRPVTLVREFIERQHAKNRYYYYHRQYRRVPDITECKEEDIMCMYEAEMQWKRDYKVDQEIINIMQDRLKACQQREGQNYQQNCIKEVEQFTQVAKAYQDRYQDLGAYSSARKCLAKQRQRMLQERKAAKEAAAATS
Accessory subunit that is involved in the functional assembly of the mitochondrial respiratory chain complex I. Complex I has an NADH dehydrogenase activity with ubiquinone as an immediate electron acceptor and mediates the transfer of electrons from NADH to the respiratory chain. Subcellular locations: Mitochondrion inner membrane
NDUBA_PANTR
Pan troglodytes
MPDSWDKDVYPEPPRRTPVQPNLIVYMMKAFDLIVDRPVTLVREFIERQHAKNRYYYYHRQYRRVPDITECKEEDIMCMYEAEMQWRRDYKVDQEIINIMQDRLKACQQREGQNYQQNCIKEVEQFTQVAKAYQDRYQDLGAYSSARKCLAKQRQRMLQERKAAKEAAAATS
Accessory subunit that is involved in the functional assembly of the mitochondrial respiratory chain complex I. Complex I has an NADH dehydrogenase activity with ubiquinone as an immediate electron acceptor and mediates the transfer of electrons from NADH to the respiratory chain. Subcellular locations: Mitochondrion inner membrane
NDUBA_PONAB
Pongo abelii
MPDSWDKDVYPEPPRRTPVLPNPIVYMMKAFDLIVDRPVTLAREFVERQHAKNRYYYYHRQYRRVPDITECKEEDIMCMYEAEMQWRRDYKVDQEIINIMQDRLKACQVREGESYQQNCAKEVEQFTQVAKAYQDRYQDLGVYYSARKCLAKQKQRMLQERKAAREAAAATS
Accessory subunit that is involved in the functional assembly of the mitochondrial respiratory chain complex I. Complex I has an NADH dehydrogenase activity with ubiquinone as an immediate electron acceptor and mediates the transfer of electrons from NADH to the respiratory chain. Subcellular locations: Mitochondrion inner membrane
NDUBA_PONPY
Pongo pygmaeus
MPDSWDKDVYPEPPRRTPVLPNPIVYMMKAFDLIVDRPVTLVREFIERQHAKNRYYYYHRQYRRVPDITECKEEDIMCVYEAEMQWRRDYKVDQEIINIMQDRLKACQQREGQNYQQNCIKEVEQFTQVAKAYQDRYQDLGAYYSARKCLAKQRQRMLQERKAAKEAAAATS
Accessory subunit that is involved in the functional assembly of the mitochondrial respiratory chain complex I. Complex I has an NADH dehydrogenase activity with ubiquinone as an immediate electron acceptor and mediates the transfer of electrons from NADH to the respiratory chain. Subcellular locations: Mitochondrion inner membrane
NDUBB_GORGO
Gorilla gorilla gorilla
MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTQWQEDPEPEDENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIELPEDE
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane The interaction with BCAP31 mediates mitochondria localization.
NDUBB_HUMAN
Homo sapiens
MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTPWQEDPEPEDENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIQLPEDE
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane The interaction with BCAP31 mediates mitochondria localization. Ubiquitous.
NDUBB_PANTR
Pan troglodytes
MAAGLFGLSARLLLAAAATRGLPAARVRWESSFSRTVVAPSAVAGKRPPEPTTQWQEDPEPEDENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIQLPEDE
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane The interaction with BCAP31 mediates mitochondria localization.
NDUBB_PONPY
Pongo pygmaeus
MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPSAVARKRLPEPTTQWQEDLDPEDENLYEKNPDSHGYDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIQLPEDE
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane The interaction with BCAP31 mediates mitochondria localization.
NDUC1_GORGO
Gorilla gorilla gorilla
MAPSALLRPLSRLLAPARLPSGPSVRSKFYVREPPNAKPDWLKVGFTLGTTVFLWVYLIKQHNEDILEYKRRNGLE
Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Subcellular locations: Mitochondrion inner membrane
NDUS7_GORGO
Gorilla gorilla gorilla
MAALSAPGLCGFRILGLRSSVGTAVQARGVHQSVATDGPSSTQPALPKARAVAPKPSSRGEYVVAKLDDLVNWARRSSLWPMTFGLACCAVEMMHMAAPRYDMDRFGVVFRASPRQSDVMIVAGTLTNKMAPALRKVYDQMPEPRYVVSMGSCANGGGYYHYSYSVVRGCDRIVPVDIYIPGCPPTAEALLYGILQLQRKIKRERRLQIWYRR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I. Subcellular locations: Mitochondrion inner membrane
NDUS7_HUMAN
Homo sapiens
MAVLSAPGLRGFRILGLRSSVGPAVQARGVHQSVATDGPSSTQPALPKARAVAPKPSSRGEYVVAKLDDLVNWARRSSLWPMTFGLACCAVEMMHMAAPRYDMDRFGVVFRASPRQSDVMIVAGTLTNKMAPALRKVYDQMPEPRYVVSMGSCANGGGYYHYSYSVVRGCDRIVPVDIYIPGCPPTAEALLYGILQLQRKIKRERRLQIWYRR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor . Essential for the catalytic activity of complex I . Subcellular locations: Mitochondrion inner membrane
NDUS7_PANTR
Pan troglodytes
MAVLSAPGLRGFRILGLRSSVGPAVQARSVHQSVATDGPSSTQPALPKARAVAPKPSSRGEYVVAKLDDLVNWARRSSLWPMTFGLACCAVEMMHMAAPRYDMDRFGVVFRASPRQSDVMIVAGTLTNKMAPALRKVYDQMPEPRYVVSMGSCANGGGYYHYSYSVVRGCDRIVPVDIYIPGCPPTAEALLYGILQLQRKIKRERRLQIWYRR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I. Subcellular locations: Mitochondrion inner membrane
NDUS7_PONAB
Pongo abelii
MAALSAPGLRSFWILGLRSSVGTAVQAQGVHQSVATDGPSSTQPALPKARAVAPKPSSRGEYVVAKLDDLINWARRSSLWPMTFGLACCAVEMMHMAAPRYDMDRFGVVFRASPRQSDVMIVAGTLTNKMAPALRKVYDQMPEPRYVVSMGSCANGGGYYHYSYSVVRGCDRIVPVDIYIPGCPPTAEALLYGILQLQRKIKRERRLQIWYRR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I. Subcellular locations: Mitochondrion inner membrane
NDUS7_PONPY
Pongo pygmaeus
MAALSAPGLCGFRILGLRSSVGTAVQARGVHQSVATDGPSSTQPALPKARAVAPKPSSRGEYVVAKLDDLVNWARRSSLWPMTFGLACCAVEMMHMAAPRYDMDRFGVVFRASPRQSDVMIVAGTLTNKMAPALRKVYDQMPEPRYVVSMGSCANGGGYYHYSYSVVRGCDRIVPVDIYIPGCPPTAEALLYGILQLQRKIKRERRLQIWYRR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor. Essential for the catalytic activity of complex I. Subcellular locations: Mitochondrion inner membrane
NDUS8_GORGO
Gorilla gorilla gorilla
MRCLTTPVLLRALAQAARAGPPGGRSLHSSAVAATYKYVNMQDPEMDMKSVTDRAARTLLWTELFRGLGMTLSYLFREPATINYPFEKGPLSPRFRGEHALRRYPSGEERCIACKLCEAICPAQAITIEAEPRADGSRRTTRYDIDMTKCIYCGFCQEACPVDAIVEGPNFEFSTETHEELLYNKEKLLNNGDKWEAEITANIQADYLYR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor (By similarity). Essential for the catalytic activity and assembly of complex I (By similarity). Subcellular locations: Mitochondrion inner membrane
NDUS8_HUMAN
Homo sapiens
MRCLTTPMLLRALAQAARAGPPGGRSLHSSAVAATYKYVNMQDPEMDMKSVTDRAARTLLWTELFRGLGMTLSYLFREPATINYPFEKGPLSPRFRGEHALRRYPSGEERCIACKLCEAICPAQAITIEAEPRADGSRRTTRYDIDMTKCIYCGFCQEACPVDAIVEGPNFEFSTETHEELLYNKEKLLNNGDKWEAEIAANIQADYLYR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor . Essential for the catalytic activity and assembly of complex I . Subcellular locations: Mitochondrion inner membrane Expressed in all tissues with the highest level in heart and skeletal muscle and the lowest level in lung.
NDUS8_MACFA
Macaca fascicularis
MRCLTMPTLLRALAQAAHTGPPGGRTLHSSAVAATYKYVNMQESKTDMKSVTDRAARTLLWTELFRGLGMTLSYLFREPATINYPFEKGPLSPRFRGEHALRRYPSGEERCIACKLCEAVCPAQAITIEAEPRADGSRRTTRYDIDMTKCIYCGFCQEACPVDAIVEGPNFEFSTETHEELLYNKEKLLNNGDKWEAEIAANIQADYLYR
Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) which catalyzes electron transfer from NADH through the respiratory chain, using ubiquinone as an electron acceptor (By similarity). Essential for the catalytic activity and assembly of complex I (By similarity). Subcellular locations: Mitochondrion inner membrane
NEDD8_HUMAN
Homo sapiens
MLIKVKTLTGKEIEIDIEPTDKVERIKERVEEKEGIPPQQQRLIYSGKQMNDEKTAADYKILGGSVLHLVLALRGGGGLRQ
Ubiquitin-like protein which plays an important role in cell cycle control and embryogenesis via its conjugation to a limited number of cellular proteins, such as cullins or p53/TP53 ( , ). Attachment of NEDD8 to cullins is critical for the recruitment of E2 to the cullin-RING-based E3 ubiquitin-protein ligase complex, thus facilitating polyubiquitination and proteasomal degradation of cyclins and other regulatory proteins ( ). Attachment of NEDD8 to p53/TP53 inhibits p53/TP53 transcriptional activity . Covalent attachment to its substrates requires prior activation by the E1 complex UBE1C-APPBP1 and linkage to the E2 enzyme UBE2M . Subcellular locations: Nucleus Mainly nuclear. Highly expressed in heart, skeletal muscle, spleen, thymus, prostate, testis, ovary, colon and leukocytes.
NEUA_HUMAN
Homo sapiens
MDSVEKGAATSVSNPRGRPSRGRPPKLQRNSRGGQGRGVEKPPHLAALILARGGSKGIPLKNIKHLAGVPLIGWVLRAALDSGAFQSVWVSTDHDEIENVAKQFGAQVHRRSSEVSKDSSTSLDAIIEFLNYHNEVDIVGNIQATSPCLHPTDLQKVAEMIREEGYDSVFSVVRRHQFRWSEIQKGVREVTEPLNLNPAKRPRRQDWDGELYENGSFYFAKRHLIEMGYLQGGKMAYYEMRAEHSVDIDVDIDWPIAEQRVLRYGYFGKEKLKEIKLLVCNIDGCLTNGHIYVSGDQKEIISYDVKDAIGISLLKKSGIEVRLISERACSKQTLSSLKLDCKMEVSVSDKLAVVDEWRKEMGLCWKEVAYLGNEVSDEECLKRVGLSGAPADACSTAQKAVGYICKCNGGRGAIREFAEHICLLMEKVNNSCQK
Catalyzes the activation of N-acetylneuraminic acid (NeuNAc) to cytidine 5'-monophosphate N-acetylneuraminic acid (CMP-NeuNAc), a substrate required for the addition of sialic acid. Has some activity toward NeuNAc, N-glycolylneuraminic acid (Neu5Gc) or 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (KDN). Subcellular locations: Nucleus Ubiquitously expressed. Expressed in pancreas, kidney, liver, skeletal muscle, lung, placenta, brain, heart, colon, PBL, small intestine, ovary, testis, prostate, thymus and spleen.
NF2L2_HUMAN
Homo sapiens
MMDLELPPPGLPSQQDMDLIDILWRQDIDLGVSREVFDFSQRRKEYELEKQKKLEKERQEQLQKEQEKAFFAQLQLDEETGEFLPIQPAQHIQSETSGSANYSQVAHIPKSDALYFDDCMQLLAQTFPFVDDNEVSSATFQSLVPDIPGHIESPVFIATNQAQSPETSVAQVAPVDLDGMQQDIEQVWEELLSIPELQCLNIENDKLVETTMVPSPEAKLTEVDNYHFYSSIPSMEKEVGNCSPHFLNAFEDSFSSILSTEDPNQLTVNSLNSDATVNTDFGDEFYSAFIAEPSISNSMPSPATLSHSLSELLNGPIDVSDLSLCKAFNQNHPESTAEFNDSDSGISLNTSPSVASPEHSVESSSYGDTLLGLSDSEVEELDSAPGSVKQNGPKTPVHSSGDMVQPLSPSQGQSTHVHDAQCENTPEKELPVSPGHRKTPFTKDKHSSRLEAHLTRDELRAKALHIPFPVEKIINLPVVDFNEMMSKEQFNEAQLALIRDIRRRGKNKVAAQNCRKRKLENIVELEQDLDHLKDEKEKLLKEKGENDKSLHLLKKQLSTLYLEVFSMLRDEDGKPYSPSEYSLQQTRDGNVFLVPKSKKPDVKKN
Transcription factor that plays a key role in the response to oxidative stress: binds to antioxidant response (ARE) elements present in the promoter region of many cytoprotective genes, such as phase 2 detoxifying enzymes, and promotes their expression, thereby neutralizing reactive electrophiles ( , ). In normal conditions, ubiquitinated and degraded in the cytoplasm by the BCR(KEAP1) complex ( ). In response to oxidative stress, electrophile metabolites inhibit activity of the BCR(KEAP1) complex, promoting nuclear accumulation of NFE2L2/NRF2, heterodimerization with one of the small Maf proteins and binding to ARE elements of cytoprotective target genes (, ). The NFE2L2/NRF2 pathway is also activated in response to selective autophagy: autophagy promotes interaction between KEAP1 and SQSTM1/p62 and subsequent inactivation of the BCR(KEAP1) complex, leading to NFE2L2/NRF2 nuclear accumulation and expression of cytoprotective genes . May also be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region . Also plays an important role in the regulation of the innate immune response and antiviral cytosolic DNA sensing. It is a critical regulator of the innate immune response and survival during sepsis by maintaining redox homeostasis and restraint of the dysregulation of pro-inflammatory signaling pathways like MyD88-dependent and -independent and TNF-alpha signaling (By similarity). Suppresses macrophage inflammatory response by blocking pro-inflammatory cytokine transcription and the induction of IL6 (By similarity). Binds to the proximity of pro-inflammatory genes in macrophages and inhibits RNA Pol II recruitment. The inhibition is independent of the NRF2-binding motif and reactive oxygen species level (By similarity). Represses antiviral cytosolic DNA sensing by suppressing the expression of the adapter protein STING1 and decreasing responsiveness to STING1 agonists while increasing susceptibility to infection with DNA viruses . Once activated, limits the release of pro-inflammatory cytokines in response to human coronavirus SARS-CoV-2 infection and to virus-derived ligands through a mechanism that involves inhibition of IRF3 dimerization. Also inhibits both SARS-CoV-2 replication, as well as the replication of several other pathogenic viruses including Herpes Simplex Virus-1 and-2, Vaccinia virus, and Zika virus through a type I interferon (IFN)-independent mechanism . Subcellular locations: Cytoplasm, Cytosol, Nucleus Cytosolic under unstressed conditions: ubiquitinated and degraded by the BCR(KEAP1) E3 ubiquitin ligase complex (, ). Translocates into the nucleus upon induction by electrophilic agents that inactivate the BCR(KEAP1) E3 ubiquitin ligase complex . Widely expressed. Highest expression in adult muscle, kidney, lung, liver and in fetal muscle.
NF2L3_HUMAN
Homo sapiens
MKHLKRWWSAGGGLLHLTLLLSLAGLRVDLDLYLLLPPPTLLQDELLFLGGPASSAYALSPFSASGGWGRAGHLHPKGRELDPAAPPEGQLLREVRALGVPFVPRTSVDAWLVHSVAAGSADEAHGLLGAAAASSTGGAGASVDGGSQAVQGGGGDPRAARSGPLDAGEEEKAPAEPTAQVPDAGGCASEENGVLREKHEAVDHSSQHEENEERVSAQKENSLQQNDDDENKIAEKPDWEAEKTTESRNERHLNGTDTSFSLEDLFQLLSSQPENSLEGISLGDIPLPGSISDGMNSSAHYHVNFSQAISQDVNLHEAILLCPNNTFRRDPTARTSQSQEPFLQLNSHTTNPEQTLPGTNLTGFLSPVDNHMRNLTSQDLLYDLDINIFDEINLMSLATEDNFDPIDVSQLFDEPDSDSGLSLDSSHNNTSVIKSNSSHSVCDEGAIGYCTDHESSSHHDLEGAVGGYYPEPSKLCHLDQSDSDFHGDLTFQHVFHNHTYHLQPTAPESTSEPFPWPGKSQKIRSRYLEDTDRNLSRDEQRAKALHIPFSVDEIVGMPVDSFNSMLSRYYLTDLQVSLIRDIRRRGKNKVAAQNCRKRKLDIILNLEDDVCNLQAKKETLKREQAQCNKAINIMKQKLHDLYHDIFSRLRDDQGRPVNPNHYALQCTHDGSILIVPKELVASGHKKETQKGKRK
Activates erythroid-specific, globin gene expression. Subcellular locations: Nucleus Highly expressed in human placenta and also in B-cell and monocyte cell lines. Low expression in heart, brain, lung, skeletal muscle, kidney and pancreas.
NFRKB_HUMAN
Homo sapiens
MDSLDHMLTDPLELGPCGDGHGTRIMEDCLLGGTRVSLPEDLLEDPEIFFDVVSLSTWQEVLSDSQREHLQQFLPQFPEDSAEQQNELILALFSGENFRFGNPLHIAQKLFRDGHFNPEVVKYRQLCFKSQYKRYLNSQQQYFHRLLKQILASRSDLLEMARRSGPALPFRQKRPSPSRTPEEREWRTQQRYLKVLREVKEECGDTALSSDEEDLSSWLPSSPARSPSPAVPLRVVPTLSTTDMKTADKVELGDSDLKIMLKKHHEKRKHQPDHPDLLTGDLTLNDIMTRVNAGRKGSLAALYDLAVLKKKVKEKEEKKKKKIKTIKSEAEDLAEPLSSTEGVAPLSQAPSPLAIPAIKEEPLEDLKPCLGINEISSSFFSLLLEILLLESQASLPMLEERVLDWQSSPASSLNSWFSAAPNWAELVLPALQYLAGESRAVPSSFSPFVEFKEKTQQWKLLGQSQDNEKELAALFQLWLETKDQAFCKQENEDSSDATTPVPRVRTDYVVRPSTGEEKRVFQEQERYRYSQPHKAFTFRMHGFESVVGPVKGVFDKETSLNKAREHSLLRSDRPAYVTILSLVRDAAARLPNGEGTRAEICELLKDSQFLAPDVTSTQVNTVVSGALDRLHYEKDPCVKYDIGRKLWIYLHRDRSEEEFERIHQAQAAAAKARKALQQKPKPPSKVKSSSKESSIKVLSSGPSEQSQMSLSDSSMPPTPVTPVTPTTPALPAIPISPPPVSAVNKSGPSTVSEPAKSSSGVLLVSSPTMPHLGTMLSPASSQTAPSSQAAARVVSHSGSAGLSQVRVVAQPSLPAVPQQSGGPAQTLPQMPAGPQIRVPATATQTKVVPQTVMATVPVKAQTTAATVQRPGPGQTGLTVTSLPATASPVSKPATSSPGTSAPSASTAAVIQNVTGQNIIKQVAITGQLGVKPQTGNSIPLTATNFRIQGKDVLRLPPSSITTDAKGQTVLRITPDMMATLAKSQVTTVKLTQDLFGTGGNTTGKGISATLHVTSNPVHAADSPAKASSASAPSSTPTGTTVVKVTPDLKPTEASSSAFRLMPALGVSVADQKGKSTVASSEAKPAATIRIVQGLGVMPPKAGQTITVATHAKQGASVASGSGTVHTSAVSLPSMNAAVSKTVAVASGAASTPISISTGAPTVRQVPVSTTVVSTSQAGKLPTRITVPLSVISQPMKGKSVVTAPIIKGNLGANLSGLGRNIILTTMPAGTKLIAGNKPVSFLTAQQLQQLQQQGQATQVRIQTVPASHLQQGTASGSSKAVSTVVVTTAPSPKQAPEQQ
Binds to the DNA consensus sequence 5'-GGGGAATCTCC-3'. Putative regulatory component of the chromatin remodeling INO80 complex which is involved in transcriptional regulation, DNA replication and probably DNA repair. Modulates the deubiquitinase activity of UCHL5 in the INO80 complex. Subcellular locations: Nucleus Expressed in thymus, brain, testes, spleen and liver.
NFS1_HUMAN
Homo sapiens
MLLRAAWRRAAVAVTAAPGPKPAAPTRGLRLRVGDRAPQSAVPADTAAAPEVGPVLRPLYMDVQATTPLDPRVLDAMLPYLINYYGNPHSRTHAYGWESEAAMERARQQVASLIGADPREIIFTSGATESNNIAIKGVARFYRSRKKHLITTQTEHKCVLDSCRSLEAEGFQVTYLPVQKSGIIDLKELEAAIQPDTSLVSVMTVNNEIGVKQPIAEIGRICSSRKVYFHTDAAQAVGKIPLDVNDMKIDLMSISGHKIYGPKGVGAIYIRRRPRVRVEALQSGGGQERGMRSGTVPTPLVVGLGAACEVAQQEMEYDHKRISKLSERLIQNIMKSLPDVVMNGDPKHHYPGCINLSFAYVEGESLLMALKDVALSSGSACTSASLEPSYVLRAIGTDEDLAHSSIRFGIGRFTTEEEVDYTVEKCIQHVKRLREMSPLWEMVQDGIDLKSIKWTQH
Cysteine desulfurase, of the core iron-sulfur cluster (ISC) assembly complex, that catalyzes the desulfuration of L-cysteine to L-alanine, as component of the cysteine desulfurase complex, leading to the formation of a cysteine persulfide intermediate at the active site cysteine residue and participates in the [2Fe-2S] clusters assembly on the scaffolding protein ISCU ( ). The persulfide is then transferred on the flexible Cys loop from the catalytic site of NFS1 to the surface of NFS1 . After the NFS1-linked persulfide sulfur is transferred to one of the conserved Cys residues of the scaffold, a reaction assisted by FXN (By similarity). The core iron-sulfur cluster (ISC) assembly complex is involved in the de novo synthesis of a [2Fe-2S] cluster, the first step of the mitochondrial iron-sulfur protein biogenesis. This process is initiated by the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1) that produces persulfide which is delivered on the scaffold protein ISCU in a FXN-dependent manner. Then this complex is stabilized by FDX2 which provides reducing equivalents to accomplish the [2Fe-2S] cluster assembly. Finally, the [2Fe-2S] cluster is transferred from ISCU to chaperone proteins, including HSCB, HSPA9 and GLRX5 (By similarity). May catalyze the desulfuration of L-cysteine to L-alanine as component of the cysteine desulfurase complex (NFS1:LYRM4), leading to the formation of a cysteine persulfide intermediate (, ). Acts as a sulfur donor for MOCS3 by transferring the sulfur of the cysteine persulfide intermediate on MOCS3 (, ). Subcellular locations: Mitochondrion Subcellular locations: Cytoplasm, Nucleus, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome Predominantly expressed in heart and skeletal muscle. Also found in brain, liver and pancreas.
NFS1_PONAB
Pongo abelii
MLLRAAWRRAAVAVTAAPGPKPAAPTRGLRLRVGDHAPQSAVPADTAAAPEAGPVLRPLYMDVQATTPLDPRVLDAMLPYLINYYGNPHSRTHAYGWESEAAMERARQQVASLIGADPREIIFTSGATESNNIAIKGVARFYRSRKKHLITTQTEHKCVLDSCRSLEAEGFQVTYLPVQKSGIIDLKELEAAIQPDTSLVSVMTVNNEIGVKQPIAEIGRICSSRKVYFHTDAAQAVGKIPLDVNDMKIDLMSISGHKIYGPKGVGAIYIRRRPRVRVEALQSGGGQERGMRSGTVPTPLVVGLGAACEVAQQEMEYDHKRISKLSERLIQNIMKSLPDVVMNGDPEHHYPGCINLSFAYVEGESLLMALKDVALSSGSACTSASLEPSYVLRAIGTDEDLAHSSIRFGVGRFTTEEEVDYTVEKCIQHVKRLREMSPLWEMVQDGIDLKSIKWTQH
Cysteine desulfurase, of the core iron-sulfur cluster (ISC) assembly complex, that catalyzes the desulfuration of L-cysteine to L-alanine, as component of the cysteine desulfurase complex leading to the formation of a cysteine persulfide intermediate at the active site cysteine residue and participates in the [2Fe-2S] clusters assembly on the scaffolding protein ISCU. The persulfide is then transferred on the flexible Cys loop from the catalytic site of NFS1 to the surface of NFS1 (By similarity). After the NFS1-linked persulfide sulfur is transferred to one of the conserved Cys residues of the scaffold, a reaction assisted by FXN (By similarity). The core iron-sulfur cluster (ISC) assembly complex is involved in the de novo synthesis of a [2Fe-2S] cluster, the first step of the mitochondrial iron-sulfur protein biogenesis. This process is initiated by the cysteine desulfurase complex (NFS1:LYRM4:NDUFAB1) that produces persulfide which is delivered on the scaffold protein ISCU in a FXN-dependent manner. Then this complex is stabilized by FDX2 which provides reducing equivalents to accomplish the [2Fe-2S] cluster assembly. Finally, the [2Fe-2S] cluster is transferred from ISCU to chaperone proteins, including HSCB, HSPA9 and GLRX5 (By similarity). May catalyze the desulfuration of L-cysteine to L-alanine as component of the cysteine desulfurase complex (NFS1:LYRM4), leading to the formation of a cysteine persulfide intermediate. Acts as a sulfur donor for MOCS3 by transferring the sulfur of the cysteine persulfide intermediate on MOCS3. Subcellular locations: Mitochondrion Subcellular locations: Cytoplasm, Nucleus, Cytoplasm, Cytoskeleton, Microtubule organizing center, Centrosome
NGF_PANTR
Pan troglodytes
MSMLFYTLITAFLIGTQAEPHSESNVPAGHTIPQAHWTKLQHSLDTALRRARSAPAAAIAARVAGQTRNITVDPRLFKKRRLRSPRVLFSTQPPPEAADTQDLDFEVGGAAPFNRTHRSKRSSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA
Nerve growth factor is important for the development and maintenance of the sympathetic and sensory nervous systems. Extracellular ligand for the NTRK1 and NGFR receptors, activates cellular signaling cascades to regulate neuronal proliferation, differentiation and survival (By similarity). The immature NGF precursor (proNGF) functions as a ligand for the heterodimeric receptor formed by SORCS2 and NGFR, and activates cellular signaling cascades that lead to inactivation of RAC1 and/or RAC2, reorganization of the actin cytoskeleton and neuronal growth cone collapse. In contrast to mature NGF, the precursor form (proNGF) promotes neuronal apoptosis (in vitro) (By similarity). Inhibits metalloproteinase-dependent proteolysis of platelet glycoprotein VI (By similarity). Binds lysophosphatidylinositol and lysophosphatidylserine between the two chains of the homodimer. The lipid-bound form promotes histamine relase from mast cells, contrary to the lipid-free form (By similarity). Subcellular locations: Secreted, Endosome lumen ProNGF is endocytosed after binding to the cell surface receptor formed by SORT1 and NGFR.
NGF_PONPY
Pongo pygmaeus
MSMLFYTLITAFLIGIQAEPHSESNVPAGHTIPQAHWTKLQHSLDTALRRARSTPAAAIAARVAGQTCNITVDPRLFKKRRLRSPRVLFSTQPPPEAADTQDLDFEVGGAAPFNRTHRSKRSSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKAVRRA
Nerve growth factor is important for the development and maintenance of the sympathetic and sensory nervous systems. Extracellular ligand for the NTRK1 and NGFR receptors, activates cellular signaling cascades through those receptor tyrosine kinase to regulate neuronal proliferation, differentiation and survival. Inhibits metalloproteinase dependent proteolysis of platelet glycoprotein VI. Subcellular locations: Secreted
NGF_SAIBB
Saimiri boliviensis boliviensis
MSMLFYTLITAFLIGIQAEPHSESNVPAGHTIPQAHWTKLQHSLDTALRRARSAPAGPIAARVAGQTRNITVDPKLFKKRRLRSPRVLFSTQPPPEAADTQDLDFEVAGAAPVNRTHRSKRSSSHPIFHRGEFSVCDSVSVWVGDKTTATDIKGKEVMVLGEVNINNSVFKQYFFETKCRDPNPVDSGCRGIDSKHWNSYCTTTHTFVKALTMDGKQAAWRFIRIDTACVCVLSRKASRRA
Nerve growth factor is important for the development and maintenance of the sympathetic and sensory nervous systems. Extracellular ligand for the NTRK1 and NGFR receptors, activates cellular signaling cascades through those receptor tyrosine kinase to regulate neuronal proliferation, differentiation and survival. Inhibits metalloproteinase dependent proteolysis of platelet glycoprotein VI. Subcellular locations: Secreted
NIP7_PONAB
Pongo abelii
MRPLTEEETRVMFEKIAKYIGENLQLLVDRPDGTYCFRLHNDRVYYVSEKIMKLAANISGDKLVSLGTCFGKFTKTHKFRLHVTALDYLAPYAKYKVWIKPGAEQSFLYGNHVLKSGLGRITENTSQYQGVVVYSMADIPLGFGVAAKSTQDCRKVDPMAIVVFHQADIGEYVRHEETLT
Required for proper 34S pre-rRNA processing and 60S ribosome subunit assembly. Subcellular locations: Nucleus, Nucleolus
NIPA1_HUMAN
Homo sapiens
MGTAAAAAAAAAAAAAGEGARSPSPAAVSLGLGVAVVSSLVNGSTFVLQKKGIVRAKRRGTSYLTDIVWWAGTIAMAVGQIGNFLAYTAVPTVLVTPLGALGVPFGSILASYLLKEKLNILGKLGCLLSCAGSVVLIIHSPKSESVTTQAELEEKLTNPVFVGYLCIVLLMLLLLIFWIAPAHGPTNIMVYISICSLLGSFTVPSTKGIGLAAQDILHNNPSSQRALCLCLVLLAVLGCSIIVQFRYINKALECFDSSVFGAIYYVVFTTLVLLASAILFREWSNVGLVDFLGMACGFTTVSVGIVLIQVFKEFNFNLGEMNKSNMKTD
Acts as a Mg(2+) transporter. Can also transport other divalent cations such as Fe(2+), Sr(2+), Ba(2+), Zn(2+) and Co(2+) but to a much less extent than Mg(2+) (By similarity). Subcellular locations: Cell membrane, Early endosome Recruited to the cell membrane in response to low extracellular magnesium. Widely expressed with highest levels in neuronal tissues.
NIPA2_HUMAN
Homo sapiens
MSQGRGKYDFYIGLGLAMSSSIFIGGSFILKKKGLLRLARKGSMRAGQGGHAYLKEWLWWAGLLSMGAGEVANFAAYAFAPATLVTPLGALSVLVSAILSSYFLNERLNLHGKIGCLLSILGSTVMVIHAPKEEEIETLNEMSHKLGDPGFVVFATLVVIVALILIFVVGPRHGQTNILVYITICSVIGAFSVSCVKGLGIAIKELFAGKPVLRHPLAWILLLSLIVCVSTQINYLNRALDIFNTSIVTPIYYVFFTTSVLTCSAILFKEWQDMPVDDVIGTLSGFFTIIVGIFLLHAFKDVSFSLASLPVSFRKDEKAMNGNLSNMYEVLNNNEESLTCGIEQHTGENVSRRNGNLTAF
Acts as a selective Mg(2+) transporter. Subcellular locations: Cell membrane, Early endosome Recruited to the cell membrane in response to low extracellular magnesium. Widely expressed.
NIPA2_PONAB
Pongo abelii
MSQGRGKYDFYIGLGLAMSSSIFIGGSFILKKKGLLRLARKGSMRAGQGGHAYLKEWLWWAGLLSMGAGEVANFAAYAFAPATLVTPLGALSVLVSAILSSYFLNERLNLHGKIGCLLSILGSTVMVIHAPKEEEIETLNEMSHKLGDPGFVVFATLVVIVALILIFVVGPRHGQTNILVYITICSVIGAFSVSCVKGLGIAIKELFAGKPVLRHPLAWILLLSLIVCVSTQINYLNRALDIFNTSIVTPIYYVFFTTSVLTCSAILFKEWQDMPVDDVIGTLSGFFTIIVGIFLLHAFKDVSFSLASLPVSFRKDEKAMNGNLSNMYEVLNNNEESLTCGIEQHTGENVSRRNGNLTAF
Acts as a selective Mg(2+) transporter. Subcellular locations: Cell membrane, Early endosome Recruited to the cell membrane in response to low extracellular magnesium.
NIPA3_HUMAN
Homo sapiens
MGAQVRLPPGEPCREGYVLSLVCPNSSQAWCEITNVSQLLASPVLYTDLNYSINNLSISANVENKYSLYVGLVLAVSSSIFIGSSFILKKKGLLQLASKGFTRAGQGGHSYLKEWLWWVGLLSMGAGEAANFAAYAFAPATLVTPLGALSVLISAILSSYFLNEHLNIHGKIGCILSILGSTVMVIHAPQEEEVTSLHEMEMKLRDPGFISFAVIITVISLVLILIVAPKKGQTNILVYISICSLIGAFSVSSVKGLGIAIKELIEWKPVYKHPLVFVLLAVLVLSVTTQINYLNKALDTFNTSLVTPIYYVFFTSMVVTCSAILFQEWYGMTAGDIIGTLSGFFTIIIGIFLLHAFKNTDITWSELTSTAKKEAVSLNVNENNYVLLENLECSAPGYNDDVTLFSRTDD
Acts as a Mg(2+) transporter. Can also transport other divalent cations such as Fe(2+), Sr(2+), Ba(2+), Mn(2+), Cu(2+) and Co(2+) but to a much less extent than Mg(2+) (By similarity). Subcellular locations: Golgi apparatus membrane Expressed in the pancreatic islets.
NKAP1_HUMAN
Homo sapiens
MSRIPLGKVLLRNVIRHTDAHNKIQEESDMWKIRELEKQMEDAYRGTKRKMLPSSSSRMRSDGFDEESQRYYWRPKNEISGTLEDDFLKAKSWNKKFYDYEANMPDRWGHSGYKELYPEEFETDSDQQDITNGKKTSPQVKSSTHESRKHKKSKKSHKKKQKKRSHKKQKKSKKEATDITADSSSEFSEETGASGTRKGKQPHKRKKKSRKKSLKKPALFLEAESNTSHSDDSASSSSEESEERDTKKTKRKKREKKAHTSVANNEIQERTNKRTNWKVATDERSAESSEDD
null
NKAPL_HUMAN
Homo sapiens
MPPVSRSSYSEDIVGSRRRRRSSSGSPPSPQSRCSSWDGCSRSHSRGREGLRPPWSELDVGALYPFSRSGSRGRLPRFRNYAFASSWSTSYSGYRYHRHCYAEERQSAEDYEKEESHRQRRLKERERIGELGAPEVWGPSPKFPQLDSDEHTPVEDEEEVTHQKSSSSDSNSEEHRKKKTSRSRNKKKRKNKSSKRKHRKYSDSDSNSESDTNSDSDDDKKRVKAKKKKKKKKHKTKKKKNKKTKKESSDSSCKDSEEDLSEATWMEQPNVADTMDLIGPEAPIIHTSQDEKPLKYGHALLPGEGAAMAEYVKAGKRIPRRGEIGLTSEEIGSFECSGYVMSGSRHRRMEAVRLRKENQIYSADEKRALASFNQEERRKRESKILASFREMVHKKTKEKDDK
Transcriptional repressor of Notch-mediated signaling. Required for spermatogenesis. Subcellular locations: Nucleus
NKAP_HUMAN
Homo sapiens
MAPVSGSRSPDREASGSGGRRRSSSKSPKPSKSARSPRGRRSRSHSCSRSGDRNGLTHQLGGLSQGSRNQSYRSRSRSRSRERPSAPRGIPFASASSSVYYGSYSRPYGSDKPWPSLLDKEREESLRQKRLSERERIGELGAPEVWGLSPKNPEPDSDEHTPVEDEEPKKSTTSASTSEEEKKKKSSRSKERSKKRRKKKSSKRKHKKYSEDSDSDSDSETDSSDEDNKRRAKKAKKKEKKKKHRSKKYKKKRSKKSRKESSDSSSKESQEEFLENPWKDRTKAEEPSDLIGPEAPKTLTSQDDKPLNYGHALLPGEGAAMAEYVKAGKRIPRRGEIGLTSEEIASFECSGYVMSGSRHRRMEAVRLRKENQIYSADEKRALASFNQEERRKRENKILASFREMVYRKTKGKDDK
Acts as a transcriptional repressor ( ). Plays a role as a transcriptional corepressor of the Notch-mediated signaling required for T-cell development . Also involved in the TNF and IL-1 induced NF-kappa-B activation. Associates with chromatin at the Notch-regulated SKP2 promoter. Subcellular locations: Nucleus
NKD1_HUMAN
Homo sapiens
MGKLHSKPAAVCKRRESPEGDSFAVSAAWARKGIEEWIGRQRCPGGVSGPRQLRLAGTIGRSTRELVGDVLRDTLSEEEEDDFRLEVALPPEKTDGLGSGDEKKMERVSEPCPGSKKQLKFEELQCDVSMEEDSRQEWTFTLYDFDNNGKVTREDITSLLHTIYEVVDSSVNHSPTSSKMLRVKLTVAPDGSQSKRSVLVNQADLQSARPRAETKPTEDLRSWEKKQRAPLRFQGDSRLEQSGCYHHCVDENIERRNHYLDLAGIENYTSQFGPGSPSVAQKSELPPRTSNPTRSRSHEPEAIHIPHRKPQGVDPASFHFLDTPIAKVSELQQRLRGTQDGSKHFVRSPKAQGKSVGVGHVARGARNKPPLGPAIPAVSPSAHLAASPALLPSLAPLGHKKHKHRAKESQQGCRGLQAPLASGGPVLGREHLRELPALVVYESQAGQPVQRHEHHHHHEHHHHYHHFYQT
Cell autonomous antagonist of the canonical Wnt signaling pathway. May activate a second Wnt signaling pathway that controls planar cell polarity. Subcellular locations: Cell membrane, Cytoplasm Expressed in colon, heart, kidney, leukocyte, liver, lung, ovary, pancreas, placenta, prostate, skeletal muscle, small intestine and spleen.
NKD2_HUMAN
Homo sapiens
MGKLQSKHAAAARKRRESPEGDSFVASAYASGRKGAEEAERRARDKQELPNGDPKEGPFREDQCPLQVALPAEKAEGREHPGQLLSADDGERAANREGPRGPGGQRLNIDALQCDVSVEEDDRQEWTFTLYDFDNCGKVTREDMSSLMHTIYEVVDASVNHSSGSSKTLRVKLTVSPEPSSKRKEGPPAGQDREPTRCRMEGELAEEPRVADRRLSAHVRRPSTDPQPCSERGPYCVDENTERRNHYLDLAGIENYTSRFGPGSPPVQAKQEPQGRASHLQARSRSQEPDTHAVHHRRSQVLVEHVVPASEPAARALDTQPRPKGPEKQFLKSPKGSGKPPGVPASSKSGKAFSYYLPAVLPPQAPQDGHHLPQPPPPPYGHKRYRQKGREGHSPLKAPHAQPATVEHEVVRDLPPTPAGEGYAVPVIQRHEHHHHHEHHHHHHHHHFHPS
Cell autonomous antagonist of the canonical Wnt signaling pathway. May activate a second Wnt signaling pathway that controls planar cell polarity (By similarity). Required for processing of TGFA and for targeting of TGFA to the basolateral membrane of polarized epithelial cells. Subcellular locations: Cell membrane, Cytoplasm, Cytoplasmic vesicle Expressed in kidney, lung, pancreas and spleen.
NMI_HUMAN
Homo sapiens
MEADKDDTQQILKEHSPDEFIKDEQNKGLIDEITKKNIQLKKEIQKLETELQEATKEFQIKEDIPETKMKFLSVETPENDSQLSNISCSFQVSSKVPYEIQKGQALITFEKEEVAQNVVSMSKHHVQIKDVNLEVTAKPVPLNSGVRFQVYVEVSKMKINVTEIPDTLREDQMRDKLELSFSKSRNGGGEVDRVDYDRQSGSAVITFVEIGVADKILKKKEYPLYINQTCHRVTVSPYTEIHLKKYQIFSGTSKRTVLLTGMEGIQMDEEIVEDLINIHFQRAKNGGGEVDVVKCSLGQPHIAYFEE
Acts as a signaling pathway regulator involved in innate immune system response ( , ). In response to interleukin 2/IL2 and interferon IFN-gamma/IFNG, interacts with signal transducer and activator of transcription/STAT which activate the transcription of downstream genes involved in a multitude of signals for development and homeostasis (, ). Enhances the recruitment of CBP/p300 coactivators to STAT1 and STAT5, resulting in increased STAT1- and STAT5-dependent transcription . In response to interferon IFN-alpha, associates in a complex with signaling pathway regulator IFI35 to regulate immune response; the complex formation prevents proteasome-mediated degradation of IFI35 (, ). In complex with IFI35, inhibits virus-triggered type I IFN-beta production when ubiquitinated by ubiquitin-protein ligase TRIM21 . In complex with IFI35, negatively regulates nuclear factor NF-kappa-B signaling by inhibiting the nuclear translocation, activation and transcription of NF-kappa-B subunit p65/RELA, resulting in the inhibition of endothelial cell proliferation, migration and re-endothelialization of injured arteries . Negatively regulates virus-triggered type I interferon/IFN production by inducing proteosome-dependent degradation of IRF7, a transcriptional regulator of type I IFN, thereby interfering with cellular antiviral responses (By similarity). Beside its role as an intracellular signaling pathway regulator, also functions extracellularly as damage-associated molecular patterns (DAMPs) to promote inflammation, when actively released by macrophage to the extracellular space during cell injury or pathogen invasion . Macrophage-secreted NMI activates NF-kappa-B signaling in adjacent macrophages through Toll-like receptor 4/TLR4 binding and activation, thereby inducing NF-kappa-B translocation from the cytoplasm into the nucleus which promotes the release of pro-inflammatory cytokines . Subcellular locations: Cytoplasm, Nucleus, Secreted Cytoplasmic NMI localizes in punctate granular structures (, ). Nuclear localization increased following IFN-alpha treatment (, ). Extracelullar following secretion by macrophage . Expressed in adult spleen, liver, and kidney . Expressed in fetal thymus, liver, placenta, spleen, lung, and kidney but not brain . Expressed in macrophages .
NMNA1_HUMAN
Homo sapiens
MENSEKTEVVLLACGSFNPITNMHLRLFELAKDYMNGTGRYTVVKGIISPVGDAYKKKGLIPAYHRVIMAELATKNSKWVEVDTWESLQKEWKETLKVLRHHQEKLEASDCDHQQNSPTLERPGRKRKWTETQDSSQKKSLEPKTKAVPKVKLLCGADLLESFAVPNLWKSEDITQIVANYGLICVTRAGNDAQKFIYESDVLWKHRSNIHVVNEWIANDISSTKIRRALRRGQSIRYLVPDLVQEYIEKHNLYSSESEDRNAGVILAPLQRNTAEAKT
Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP . Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency . Can use triazofurin monophosphate (TrMP) as substrate . Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+) . For the pyrophosphorolytic activity, prefers NAD(+) and NaAD as substrates and degrades NADH, nicotinic acid adenine dinucleotide phosphate (NHD) and nicotinamide guanine dinucleotide (NGD) less effectively . Involved in the synthesis of ATP in the nucleus, together with PARP1, PARG and NUDT5 . Nuclear ATP generation is required for extensive chromatin remodeling events that are energy-consuming . Also acts as a cofactor for glutamate and aspartate ADP-ribosylation by directing PARP1 catalytic activity to glutamate and aspartate residues on histones (By similarity). Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+) . Protects against axonal degeneration following mechanical or toxic insults (By similarity). Subcellular locations: Nucleus Widely expressed with highest levels in skeletal muscle, heart and kidney. Also expressed in the liver pancreas and placenta. Widely expressed throughout the brain.
NMNA2_HUMAN
Homo sapiens
MTETTKTHVILLACGSFNPITKGHIQMFERARDYLHKTGRFIVIGGIVSPVHDSYGKQGLVSSRHRLIMCQLAVQNSDWIRVDPWECYQDTWQTTCSVLEHHRDLMKRVTGCILSNVNTPSMTPVIGQPQNETPQPIYQNSNVATKPTAAKILGKVGESLSRICCVRPPVERFTFVDENANLGTVMRYEEIELRILLLCGSDLLESFCIPGLWNEADMEVIVGDFGIVVVPRDAADTDRIMNHSSILRKYKNNIMVVKDDINHPMSVVSSTKSRLALQHGDGHVVDYLSQPVIDYILKSQLYINASG
Nicotinamide/nicotinate-nucleotide adenylyltransferase that acts as an axon maintenance factor (By similarity). Axon survival factor required for the maintenance of healthy axons: acts by delaying Wallerian axon degeneration, an evolutionarily conserved process that drives the loss of damaged axons (By similarity). Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP (, ). Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate but with a lower efficiency (, ). Cannot use triazofurin monophosphate (TrMP) as substrate (, ). Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+) (, ). For the pyrophosphorolytic activity prefers NAD(+), NADH and NaAD as substrates and degrades nicotinic acid adenine dinucleotide phosphate (NHD) less effectively (, ). Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+) (, ). Also acts as an activator of ADP-ribosylation by supporting the catalytic activity of PARP16 and promoting mono-ADP-ribosylation of ribosomes by PARP16 . Subcellular locations: Golgi apparatus membrane, Cytoplasmic vesicle membrane, Cytoplasm, Cell projection, Axon Delivered to axons with Golgi-derived cytoplasmic vesicles. Highly expressed in brain, in particular in cerebrum, cerebellum, occipital lobe, frontal lobe, temporal lobe and putamen. Also found in the heart, skeletal muscle, pancreas and islets of Langerhans.
NMNA2_PONAB
Pongo abelii
MTETTKTHVILLACGSFNPITKGHIQMFERARDYLHKTGRFIVIGGIVSPVHDSYGKQGLVSSRHRLIMCQLAVQNSDWIRVDPWECYQDTWQTTCSVLEHHRDLMKRVTGCILSNVNTPSMTPVIGQPQNETPQPIYQNSNVPTKPTAAKILGKVGESLSRICCVRPPVERFTFVDENANLGTVMRYEEIELRILLLCGSDLLESFCIPGLWNEADMEVIVGDFGIVVVPRDAADTDRIMNHSSILRKYKNNIMVVKDDINHPMSVVSSTKSRLALQHGDGHVVDYLSQPVIDYILKSQLYINASG
Nicotinamide/nicotinate-nucleotide adenylyltransferase that acts as an axon maintenance factor (By similarity). Axon survival factor required for the maintenance of healthy axons: acts by delaying Wallerian axon degeneration, an evolutionarily conserved process that drives the loss of damaged axons (By similarity). Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate but with a lower efficiency. Cannot use triazofurin monophosphate (TrMP) as substrate. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity prefers NAD(+), NADH and NaAD as substrates and degrades nicotinic acid adenine dinucleotide phosphate (NHD) less effectively. Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+). Also acts as an activator of ADP-ribosylation by supporting the catalytic activity of PARP16 and promoting mono-ADP-ribosylation of ribosomes by PARP16 (By similarity). Subcellular locations: Golgi apparatus membrane, Cytoplasmic vesicle membrane, Cytoplasm, Cell projection, Axon Delivered to axons with Golgi-derived cytoplasmic vesicles.
NMNA3_HUMAN
Homo sapiens
MKSRIPVVLLACGSFNPITNMHLRMFEVARDHLHQTGMYQVIQGIISPVNDTYGKKDLAASHHRVAMARLALQTSDWIRVDPWESEQAQWMETVKVLRHHHSKLLRSPPQMEGPDHGKALFSTPAAVPELKLLCGADVLKTFQTPNLWKDAHIQEIVEKFGLVCVGRVGHDPKGYIAESPILRMHQHNIHLAKEPVQNEISATYIRRALGQGQSVKYLIPDAVITYIKDHGLYTKGSTWKGKSTQSTEGKTS
Catalyzes the formation of NAD(+) from nicotinamide mononucleotide (NMN) and ATP. Can also use the deamidated form; nicotinic acid mononucleotide (NaMN) as substrate with the same efficiency. Can use triazofurin monophosphate (TrMP) as substrate. Can also use GTP and ITP as nucleotide donors. Also catalyzes the reverse reaction, i.e. the pyrophosphorolytic cleavage of NAD(+). For the pyrophosphorolytic activity, can use NAD(+), NADH, NaAD, nicotinic acid adenine dinucleotide phosphate (NHD), nicotinamide guanine dinucleotide (NGD) as substrates. Fails to cleave phosphorylated dinucleotides NADP(+), NADPH and NaADP(+). Protects against axonal degeneration following injury. Subcellular locations: Mitochondrion Expressed in lung and spleen with lower levels in placenta and kidney.
NOBOX_HUMAN
Homo sapiens
MALLLTLTSPDLEGTWDTRDKDGFKAQEGPPLAVPEFPVCGLYRIYGVCGSFSSFFIIRCSLCALETLKSPQHDPLEIPEQSLKLIPLVSGKRELTRGQKAGEKPLAAGPGEEELLRGSAPHAQDTQSEELPPSCTISGEKKPPAVSGEATGADAGRLCPPPRSRAPHKDRTLARSRPQTQGEDCSLPVGEVKIGKRSYSPAPGKQKKPNAMGLAPTSSPGAPNSARATHNPVPCGSGRGPCHLANLLSTLAQSNQNRDHKQGPPEVTCQIRKKTRTLYRSDQLEELEKIFQEDHYPDSDKRREIAQTVGVTPQRIMVKGAGSLVAGWSGGGPTIETLELQSERSAVAWVWFQNRRAKWRKMEKLNGKESKDNPAAPGPASSQCSSAAEILPAVPMEPKPDPFPQESPLDTFPEPPMLLTSDQTLAPTQPSEGAQRVVTPPLFSPPPVRRADLPFPLGPVHTPQLMPLLMDVAGSDSSHKDGPCGSWGTSITLPPPCSYLEELEPQDYQQSNQPGPFQFSQAPQPPLFQSPQPKLPYLPTFPFSMPSSLTLPPPEDSLFMFPCGPSGGTSQGYCPGASSGQILMQPPAGNIGTASWSDPCLPELPFPGPFCPQALGHPPGGDGYFPDLFPTPCPQALGRQPSSALSWMPEGARPGTGPLLSKAKEEPPAASLDQPSALEEARGDDKNSHVP
Transcription factor which may play a role in oogenesis. Binds preferentially to the DNA sequences 5'-TAATTG-3', 5'-TAGTTG-3' and 5'-TAATTA-3'. Subcellular locations: Nucleus Expressed in ovaries, testes and pancreas. Expressed within all stages of the adult female germline, from primordial follicles through to MII oocytes.
NOC2L_HUMAN
Homo sapiens
MAAAGSRKRRLAELTVDEFLASGFDSESESESENSPQAETREAREAARSPDKPGGSPSASRRKGRASEHKDQLSRLKDRDPEFYKFLQENDQSLLNFSDSDSSEEEEGPFHSLPDVLEEASEEEDGAEEGEDGDRVPRGLKGKKNSVPVTVAMVERWKQAAKQRLTPKLFHEVVQAFRAAVATTRGDQESAEANKFQVTDSAAFNALVTFCIRDLIGCLQKLLFGKVAKDSSRMLQPSSSPLWGKLRVDIKAYLGSAIQLVSCLSETTVLAAVLRHISVLVPCFLTFPKQCRMLLKRMVIVWSTGEESLRVLAFLVLSRVCRHKKDTFLGPVLKQMYITYVRNCKFTSPGALPFISFMQWTLTELLALEPGVAYQHAFLYIRQLAIHLRNAMTTRKKETYQSVYNWQYVHCLFLWCRVLSTAGPSEALQPLVYPLAQVIIGCIKLIPTARFYPLRMHCIRALTLLSGSSGAFIPVLPFILEMFQQVDFNRKPGRMSSKPINFSVILKLSNVNLQEKAYRDGLVEQLYDLTLEYLHSQAHCIGFPELVLPVVLQLKSFLRECKVANYCRQVQQLLGKVQENSAYICSRRQRVSFGVSEQQAVEAWEKLTREEGTPLTLYYSHWRKLRDREIQLEISGKERLEDLNFPEIKRRKMADRKDEDRKQFKDLFDLNSSEEDDTEGFSERGILRPLSTRHGVEDDEEDEEEGEEDSSNSEDGDPDAEAGLAPGELQQLAQGPEDELEDLQLSEDD
Acts as an inhibitor of histone acetyltransferase activity; prevents acetylation of all core histones by the EP300/p300 histone acetyltransferase at p53/TP53-regulated target promoters in a histone deacetylases (HDAC)-independent manner. Acts as a transcription corepressor of p53/TP53- and TP63-mediated transactivation of the p21/CDKN1A promoter. Involved in the regulation of p53/TP53-dependent apoptosis. Associates together with TP63 isoform TA*-gamma to the p21/CDKN1A promoter. Subcellular locations: Nucleus, Nucleoplasm, Nucleus, Nucleolus Translocates from the nucleoli to the nucleoplasm in presence of several stressors like ultraviolet irradiation and actinomycin-D. Predominantly detected in the nucleoli in non-mitotic cells. Predominantly detected in nucleoplasma in cells undergoing mitosis.
NOC3L_HUMAN
Homo sapiens
MKARRNKKQIPSFRKLIKTSKVKLENKLKNKQFKQQSTLKKYRKEQRKLRQAVKDAVSKKPIPLENPKEKRPGKRIEREEEEEEEALPLDMMDEDDLQLMKDLGQRVSFLTRDLSSSEPVHAKKRKHERIIDKYEKIPRTLQTAPEKELIHLLPIKDKSGIIPQTREKPVTDSNKDEEDQEEERELEEEIIEDPIQELTIEEHLIERKKKLQEKKMHIAALASAILSDPENNIKKLKELRSMLMEQDPDVAVTVRKLVIVSLMELFKDITPSYKIRPLTEAEKSTKTRKETQKLREFEEGLVSQYKFYLENLEQMVKDWKQRKLKKSNVVSLKAYKGLAEVAVKSLCELLVALPHFNFHNNIIVLIVPLMNDMSKLISEMCCEAVKKLFKQDKLGQASLGVIKVISGFVKGRNYEVRPEMLKTFLCLRIKEVEVKKDTEDINKPKKFMTFKEKRKSLSRMQRKWKKAEEKLERELREAEASESTEKKLKLHTETLNIVFVTYFRILKKAQRSPLLPAVLEGLAKFAHLINVEFFDDLLVVLHTLIESGDLSYQESLHCVQTAFHILSGQGDVLNIDPLKFYTHLYKTLFKLHAGATNEGVEIVLQCLDVMLTKRRKQVSQQRALAFIKRLCTLALHVLPNSSIGILATTRILMHTFPKTDLLLDSESQGSGVFLPELDEPEYCNAQNTALWELHALRRHYHPIVQRFAAHLIAGAPSEGSGALKPELSRRSATELFEAYSMAEMTFNPPVESSNPKIKGKFLQGDSFLNEDLNQLIKRYSSEVATESPLDFTKYLKTSLH
May be required for adipogenesis. Subcellular locations: Nucleus, Nucleolus, Nucleus speckle Expressed in colon, heart, kidney, liver, lung, placenta, skeletal muscle, small intestine, spleen and thymus.
NOE2_HUMAN
Homo sapiens
MWPLTVPPPLLLLLCSGLAGQTLFQNPEEGWQLYTSAQAPDGKCICTAVIPAQSTCSRDGRSRELRQLMEKVQNVSQSMEVLELRTYRDLQYVRGMETLMRSLDARLRAADGSLSAKSFQELKDRMTELLPLSSVLEQYKADTRTIVRLREEVRNLSGSLAAIQEEMGAYGYEDLQQRVMALEARLHACAQKLGCGKLTGVSNPITVRAMGSRFGSWMTDTMAPSADSRVWYMDGYYKGRRVLEFRTLGDFIKGQNFIQHLLPQPWAGTGHVVYNGSLFYNKYQSNVVVKYHFRSRSVLVQRSLPGAGYNNTFPYSWGGFSDMDFMVDESGLWAVYTTNQNAGNIVVSRLDPHTLEVMRSWDTGYPKRSAGEAFMICGVLYVTNSHLAGAKVYFAYFTNTSSYEYTDVPFHNQYSHISMLDYNPRERALYTWNNGHQVLYNVTLFHVISTSGDP
Involved in transforming growth factor beta (TGF-beta)-induced smooth muscle differentiation. TGF-beta induces expression and translocation of OLFM2 to the nucleus where it binds to SRF, causing its dissociation from the transcriptional repressor HEY2/HERP1 and facilitating binding of SRF to target genes . Plays a role in AMPAR complex organization (By similarity). Is a regulator of vascular smooth-muscle cell (SMC) phenotypic switching, that acts by promoting RUNX2 and inhibiting MYOCD binding to SRF. SMC phenotypic switching is the process through which vascular SMCs undergo transition between a quiescent contractile phenotype and a proliferative synthetic phenotype in response to pathological stimuli. SMC phenotypic plasticity is essential for vascular development and remodeling (By similarity). Subcellular locations: Secreted, Synapse, Membrane, Nucleus, Cytoplasm Nuclear localization is induced by TGF-beta. Expressed in aortic smooth muscle (at protein level) . In the fetus, expressed in the brain and ocular tissues including lens vesicle and optic cup .
NOE3_HUMAN
Homo sapiens
MSPPLLKLGAVLSTMAMISNWMSQTLPSLVGLNTTRLSTPDTLTQISPKEGWQVYSSAQDPDGRCICTVVAPEQNLCSRDAKSRQLRQLLEKVQNMSQSIEVLNLRTQRDFQYVLKMETQMKGLKAKFRQIEDDRKTLMTKHFQELKEKMDELLPLIPVLEQYKTDAKLITQFKEEIRNLSAVLTGIQEEIGAYDYEELHQRVLSLETRLRDCMKKLTCGKLMKITGPVTVKTSGTRFGAWMTDPLASEKNNRVWYMDSYTNNKIVREYKSIADFVSGAESRTYNLPFKWAGTNHVVYNGSLYFNKYQSNIIIKYSFDMGRVLAQRSLEYAGFHNVYPYTWGGFSDIDLMADEIGLWAVYATNQNAGNIVISQLNQDTLEVMKSWSTGYPKRSAGESFMICGTLYVTNSHLTGAKVYYSYSTKTSTYEYTDIPFHNQYFHISMLDYNARDRALYAWNNGHQVLFNVTLFHIIKTEDDT
Subcellular locations: Secreted, Synapse In the eye, expressed in trabecular meshwork and neural retina; in non-ocular tissues, expressed in brain and lung.
NOP56_HUMAN
Homo sapiens
MVLLHVLFEHAVGYALLALKEVEEISLLQPQVEESVLNLGKFHSIVRLVAFCPFASSQVALENANAVSEGVVHEDLRLLLETHLPSKKKKVLLGVGDPKIGAAIQEELGYNCQTGGVIAEILRGVRLHFHNLVKGLTDLSACKAQLGLGHSYSRAKVKFNVNRVDNMIIQSISLLDQLDKDINTFSMRVREWYGYHFPELVKIINDNATYCRLAQFIGNRRELNEDKLEKLEELTMDGAKAKAILDASRSSMGMDISAIDLINIESFSSRVVSLSEYRQSLHTYLRSKMSQVAPSLSALIGEAVGARLIAHAGSLTNLAKYPASTVQILGAEKALFRALKTRGNTPKYGLIFHSTFIGRAAAKNKGRISRYLANKCSIASRIDCFSEVPTSVFGEKLREQVEERLSFYETGEIPRKNLDVMKEAMVQAEEAAAEITRKLEKQEKKRLKKEKKRLAALALASSENSSSTPEECEEMSEKPKKKKKQKPQEVPQENGMEDPSISFSKPKKKKSFSKEELMSSDLEETAGSTSIPKRKKSTPKEETVNDPEEAGHRSGSKKKRKFSKEEPVSSGPEEAVGKSSSKKKKKFHKASQED
Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) particles. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs (, ). Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome . Subcellular locations: Nucleus, Nucleolus, Cytoplasm, Nucleus, Nucleoplasm
NOP56_MACFA
Macaca fascicularis
MVLLHVLFEHAVGYALLALKEVEEISLLQPQVEESVLNLGKFHNIVRLVAFCPFASSQVALENANAVSEGVVHEDLRLLLETHLPSKKKKVLLGVGDPKIGAAIQEELGYNCQTGGVIAEILRGVRLHFHNLVKGLTDLSACKAQLGLGHSYSRAKVKFNVNRVDNMIIQSISLLDQLDKDINTFSMRVREWYGYHFPELVKIINDNATYCRLAQFIGNRRELNEEKLEKLEELTMDGAKAKAILDASRSSMGMDISAIDLINIESFSSRVVSLSEYRQSLHTYLRSKMSQVAPSLSALIGEAVGARLIAHAGSLTNLAKYPASTVQILGAEKALFRALKTRGNTPKYGLIFHSTFIGRAAAKNKGRISRYLANKCSIASRIDCFSEVPTSVFGEKLREQVEERLSFYETGEIPRKNLDVMKEAMVQAEEAAAEITRKLEKQEKKRLKKEKKRLAALALASSENSSSTPEECEETSEKPKKKKKQKPQEVPQENGMEDPSIPFSKPKKKKSFSKEELMSSDLEETAGSTSLPKRKKSSPKEETVNDPEEAGHRSGSKKKRKFSKEEPVSSGPEEAAGKSSSKKKKKFHKASQED
Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) particles. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Subcellular locations: Nucleus, Nucleolus, Cytoplasm, Nucleus, Nucleoplasm
NOP56_PONAB
Pongo abelii
MVLLHVLFEHAVGYALLALKEVEEISLLQPQVEESVLNLGKFHNIVRLVAFCPFASSQVALENANAVSEGVVHEDLRLLLETHLPSKKKRVLLGVGDPKIGAAIQEELGYNCQTGGVIAEILRGVRLHFHNLVKGLTDLSACKAQLGLGHSYSRTKVKFNVNRVDNMIIQSISLLDQLDKDINTFSMRVREWYGYHFPELVKIINDNATYCRLAQFIGNRRELNEDKLEKLEELTMDGAKAKAILDASRSSMGMDISAIDLINIESFSSRVVSLSEYRQSLHTYLRSKMSQVAPSLSALIGEAVGARLIAHAGSLTNLAKYPASTVQILGAEKALFRALKTRGNTPKYGLIFHSTFIGRAAAKNKGRISRYLANKCSIASRIDCFSEVPTSVFGEKLREQVEERLSFYETGEIPRKNLDVMKEAMVQAEEAAAEITRKLEKQEKKRLKKEKKRLAALALASSENSSSTPEECEETSEKPKKKKKQKPQEVPQENGMEDPSISFSKPKKKKSFSKEELMSSDPEETAGSTSIPKKKKSSPKGETVNDPEEAGHRSGSKKKRKFSKEEPVSSGPEEAAGKSSSKKKKKFHKASQED
Involved in the early to middle stages of 60S ribosomal subunit biogenesis. Core component of box C/D small nucleolar ribonucleoprotein (snoRNP) particles. Required for the biogenesis of box C/D snoRNAs such U3, U8 and U14 snoRNAs. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome. Subcellular locations: Nucleus, Nucleolus, Cytoplasm, Nucleus, Nucleoplasm
NP10_HUMAN
Homo sapiens
MNPSEMQRKGPPRRWCLQVYPTAPKRQRPSRTGHDDDGGFVEKKRGKCGEKQERSNCYCVCVERSRHRRLHFVMC
May possess a function in tumorigenesis. Subcellular locations: Nucleus When overexpressed.
NP1L1_HUMAN
Homo sapiens
MADIDNKEQSELDQDLDDVEEVEEEETGEETKLKARQLTVQMMQNPQILAALQERLDGLVETPTGYIESLPRVVKRRVNALKNLQVKCAQIEAKFYEEVHDLERKYAVLYQPLFDKRFEIINAIYEPTEEECEWKPDEEDEISEELKEKAKIEDEKKDEEKEDPKGIPEFWLTVFKNVDLLSDMVQEHDEPILKHLKDIKVKFSDAGQPMSFVLEFHFEPNEYFTNEVLTKTYRMRSEPDDSDPFSFDGPEIMGCTGCQIDWKKGKNVTLKTIKKKQKHKGRGTVRTVTKTVSNDSFFNFFAPPEVPESGDLDDDAEAILAADFEIGHFLRERIIPRSVLYFTGEAIEDDDDDYDEEGEEADEEGEEEGDEENDPDYDPKKDQNPAECKQQ
Histone chaperone that plays a role in the nuclear import of H2A-H2B and nucleosome assembly ( ). Participates also in several important DNA repair mechanisms: greatly enhances ERCC6-mediated chromatin remodeling which is essential for transcription-coupled nucleotide excision DNA repair . Stimulates also homologous recombination (HR) by RAD51 and RAD54 which is essential in mitotic DNA double strand break (DSB) repair . Plays a key role in the regulation of embryonic neurogenesis (By similarity). Promotes the proliferation of neural progenitors and inhibits neuronal differentiation during cortical development (By similarity). Regulates neurogenesis via the modulation of RASSF10; regulates RASSF10 expression by promoting SETD1A-mediated H3K4 methylation at the RASSF10 promoter (By similarity). (Microbial infection) Positively regulates Epstein-Barr virus reactivation in epithelial cells through the induction of viral BZLF1 expression. (Microbial infection) Together with human herpesvirus 8 protein LANA1, assists the proper assembly of the nucleosome on the replicated viral DNA. Subcellular locations: Nucleus, Melanosome, Cytoplasm Identified by mass spectrometry in melanosome fractions from stage I to stage IV. Ubiquitously expressed.
NP1L1_PONAB
Pongo abelii
MADIDNKEQSELDQDLDDVEEVEEEETGEETKIKARQLTVQMMQNPQILAALQERLDGLVETPTGYIESLPRVVKRRVNALKNLQVKCAQIEAKFYEEVHDLERKYAVLYQPLFDKRFEIINAIYEPTEEECEWKPDEEDEISEELKEKAKIEDEKKDEEKEDPKGIPEFWLTVFKNVDLLSDMVQEHDEPILKHLKDIKVKFSGAGQPMSFVLEFHFEPNEYFTNEVLTKTYRMRSEPDDSDPFSFDGPEIMGCTGCQIDWKKGKNVTLKTIKKKQKHKGRGTVRTVTKTVSNDSFFNFFAPPEVPESGDLDDDAEAILAADFEIGHFLRERIIPRSVLYFTGEAIEDDDDDYDEEGEEADEEGEEEGDEENDPDYDPKKDQNPAECKQQ
Histone chaperone that plays a role in the nuclear import of H2A-H2B and nucleosome assembly. Participates also in several important DNA repair mechanisms: greatly enhances ERCC6-mediated chromatin remodeling which is essential for transcription-coupled nucleotide excision DNA repair. Stimulates also homologous recombination (HR) by RAD51 and RAD54 which is essential in mitotic DNA double strand break (DSB) repair (By similarity). Plays a key role in the regulation of embryonic neurogenesis (By similarity). Promotes the proliferation of neural progenitors and inhibits neuronal differentiation during cortical development (By similarity). Regulates neurogenesis via the modulation of RASSF10; regulates RASSF10 expression by promoting SETD1A-mediated H3K4 methylation at the RASSF10 promoter (By similarity). Subcellular locations: Nucleus, Melanosome, Cytoplasm
NP1L2_HUMAN
Homo sapiens
MAESENRKELSESSQEEAGNQIMVEGLGEHLERGEDAAAGLGDDGKCGEEAAAGLGEEGENGEDTAAGSGEDGKKGGDTDEDSEADRPKGLIGYVLDTDFVESLPVKVKYRVLALKKLQTRAANLESKFLREFHDIERKFAEMYQPLLEKRRQIINAIYEPTEEECEYKSDSEDCDDEEMCHEEMYGNEEGMVHEYVDEDDGYEDYYYDYAVEEEEEEEEEDDIEATGEENKEEEDPKGIPDFWLTVLKNVDTLTPLIKKYDEPILKLLTDIKVKLSDPGEPLSFTLEFHFKPNEYFKNELLTKTYVLKSKLAYYDPHPYRGTAIEYSTGCEIDWNEGKNVTLKTIKKKQKHRIWGTIRTVTEDFPKDSFFNFFSPHGITSNGRDGNDDFLLGHNLRTYIIPRSVLFFSGDALESQQEGVVREVNDAIYDKIIYDNWMAAIEEVKACCKNLEALVEDIDR
Acidic protein which may be involved in interactions with other proteins or DNA. Subcellular locations: Nucleus
NP1L3_HUMAN
Homo sapiens
MAEADFKMVSEPVAHGVAEEEMASSTSDSGEESDSSSSSSSTSDSSSSSSTSGSSSGSGSSSSSSGSTSSRSRLYRKKRVPEPSRRARRAPLGTNFVDRLPQAVRNRVQALRNIQDECDKVDTLFLKAIHDLERKYAELNKPLYDRRFQIINAEYEPTEEECEWNSEDEEFSSDEEVQDNTPSEMPPLEGEEEENPKENPEVKAEEKEVPKEIPEVKDEEKEVPKEIPEVKAEEKADSKDCMEATPEVKEDPKEVPQVKADDKEQPKATEAKARAAVRETHKRVPEERLQDSVDLKRARKGKPKREDPKGIPDYWLIVLKNVDKLGPMIQKYDEPILKFLSDVSLKFSKPGQPVSYTFEFHFLPNPYFRNEVLVKTYIIKAKPDHNDPFFSWGWEIEDCKGCKIDWRRGKDVTVTTTQSRTTATGEIEIQPRVVPNASFFNFFSPPEIPMIGKLEPREDAILDEDFEIGQILHDNVILKSIYYYTGEVNGTYYQFGKHYGNKKYRK
Subcellular locations: Nucleus
NPL4_HUMAN
Homo sapiens
MAESIIIRVQSPDGVKRITATKRETAATFLKKVAKEFGFQNNGFSVYINRNKTGEITASSNKSLNLLKIKHGDLLFLFPSSLAGPSSEMETSVPPGFKVFGAPNVVEDEIDQYLSKQDGKIYRSRDPQLCRHGPLGKCVHCVPLEPFDEDYLNHLEPPVKHMSFHAYIRKLTGGADKGKFVALENISCKIKSGCEGHLPWPNGICTKCQPSAITLNRQKYRHVDNIMFENHTVADRFLDFWRKTGNQHFGYLYGRYTEHKDIPLGIRAEVAAIYEPPQIGTQNSLELLEDPKAEVVDEIAAKLGLRKVGWIFTDLVSEDTRKGTVRYSRNKDTYFLSSEECITAGDFQNKHPNMCRLSPDGHFGSKFVTAVATGGPDNQVHFEGYQVSNQCMALVRDECLLPCKDAPELGYAKESSSEQYVPDVFYKDVDKFGNEITQLARPLPVEYLIIDITTTFPKDPVYTFSISQNPFPIENRDVLGETQDFHSLATYLSQNTSSVFLDTISDFHLLLFLVTNEVMPLQDSISLLLEAVRTRNEELAQTWKRSEQWATIEQLCSTVGGQLPGLHEYGAVGGSTHTATAAMWACQHCTFMNQPGTGHCEMCSLPRT
The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is necessary for the export of misfolded proteins from the ER to the cytoplasm, where they are degraded by the proteasome. The NPLOC4-UFD1-VCP complex regulates spindle disassembly at the end of mitosis and is necessary for the formation of a closed nuclear envelope (By similarity). Acts as a negative regulator of type I interferon production via the complex formed with VCP and UFD1, which binds to RIGI and recruits RNF125 to promote ubiquitination and degradation of RIGI . Subcellular locations: Cytoplasm, Cytosol, Endoplasmic reticulum, Nucleus Associated with the endoplasmic reticulum and nuclear. Expressed at highest levels in brain, heart, skeletal muscle, kidney and fetal liver.
NPS_HUMAN
Homo sapiens
MISSVKLNLILVLSLSTMHVFWCYPVPSSKVSGKSDYFLILLNSCPTRLDRSKELAFLKPILEKMFVKRSFRNGVGTGMKKTSFQRAKS
Modulates arousal and anxiety. May play an important anorexigenic role (By similarity). Binds to its receptor NPSR1 with nanomolar affinity to increase intracellular calcium concentrations (, ). Subcellular locations: Secreted
NPT1_HUMAN
Homo sapiens
MQMDNRLPPKKVPGFCSFRYGLSFLVHCCNVIITAQRACLNLTMVVMVNSTDPHGLPNTSTKKLLDNIKNPMYNWSPDIQGIILSSTSYGVIIIQVPVGYFSGIYSTKKMIGFALCLSSVLSLLIPPAAGIGVAWVVVCRAVQGAAQGIVATAQFEIYVKWAPPLERGRLTSMSTSGFLLGPFIVLLVTGVICESLGWPMVFYIFGACGCAVCLLWFVLFYDDPKDHPCISISEKEYITSSLVQQVSSSRQSLPIKAILKSLPVWAISTGSFTFFWSHNIMTLYTPMFINSMLHVNIKENGFLSSLPYLFAWICGNLAGQLSDFFLTRNILSVIAVRKLFTAAGFLLPAIFGVCLPYLSSTFYSIVIFLILAGATGSFCLGGVFINGLDIAPRYFGFIKACSTLTGMIGGLIASTLTGLILKQDPESAWFKTFILMAAINVTGLIFYLIVATAEIQDWAKEKQHTRL
Important for the resorption of phosphate by the kidney . May be involved in actively transporting phosphate into cells via Na(+) cotransport in the renal brush border membrane . Plays a role in urate transport in the kidney (, ). Subcellular locations: Apical cell membrane Expressed in kidney cortex, liver and brain but not in other tissues.
NPT2A_HUMAN
Homo sapiens
MLSYGERLGSPAVSPLPVRGGHVMRGTAFAYVPSPQVLHRIPGTSAYAFPSLGPVALAEHTCPCGEVLERHEPLPAKLALEEEQKPESRLVPKLRQAGAMLLKVPLMLTFLYLFVCSLDMLSSAFQLAGGKVAGDIFKDNAILSNPVAGLVVGILVTVLVQSSSTSTSIIVSMVSSGLLEVSSAIPIIMGSNIGTSVTNTIVALMQAGDRTDFRRAFAGATVHDCFNWLSVLVLLPLEAATGYLHHITRLVVASFNIHGGRDAPDLLKIITEPFTKLIIQLDESVITSIATGDESLRNHSLIQIWCHPDSLQAPTSMSRAEANSSQTLGNATMEKCNHIFVDTGLPDLAVGLILLAGSLVLLCTCLILLVKMLNSLLKGQVAKVIQKVINTDFPAPFTWVTGYFAMVVGASMTFVVQSSSVFTSAITPLIGLGVISIERAYPLTLGSNIGTTTTAILAALASPREKLSSAFQIALCHFFFNISGILLWYPVPCTRLPIRMAKALGKRTAKYRWFAVLYLLVCFLLLPSLVFGISMAGWQVMVGVGTPFGALLAFVVLINVLQSRSPGHLPKWLQTWDFLPRWMHSLKPLDHLITRATLCCARPEPRSPPLPPRVFLEELPPATPSPRLALPAHHNATRL
Involved in actively transporting phosphate into cells via Na(+) cotransport in the renal brush border membrane ( , ). The cotransport has a Na(+):Pi stoichiometry of 3:1 and is electrogenic (By similarity). Subcellular locations: Apical cell membrane, Cell membrane Localized at the brush border membranes of the proximal tubules. Internalized from the cell surface upon PTH stimulation. Kidney and lung.
NPT2B_HUMAN
Homo sapiens
MAPWPELGDAQPNPDKYLEGAAGQQPTAPDKSKETNKTDNTEAPVTKIELLPSYSTATLIDEPTEVDDPWNLPTLQDSGIKWSERDTKGKILCFFQGIGRLILLLGFLYFFVCSLDILSSAFQLVGGKMAGQFFSNSSIMSNPLLGLVIGVLVTVLVQSSSTSTSIVVSMVSSSLLTVRAAIPIIMGANIGTSITNTIVALMQVGDRSEFRRAFAGATVHDFFNWLSVLVLLPVEVATHYLEIITQLIVESFHFKNGEDAPDLLKVITKPFTKLIVQLDKKVISQIAMNDEKAKNKSLVKIWCKTFTNKTQINVTVPSTANCTSPSLCWTDGIQNWTMKNVTYKENIAKCQHIFVNFHLPDLAVGTILLILSLLVLCGCLIMIVKILGSVLKGQVATVIKKTINTDFPFPFAWLTGYLAILVGAGMTFIVQSSSVFTSALTPLIGIGVITIERAYPLTLGSNIGTTTTAILAALASPGNALRSSLQIALCHFFFNISGILLWYPIPFTRLPIRMAKGLGNISAKYRWFAVFYLIIFFFLIPLTVFGLSLAGWRVLVGVGVPVVFIIILVLCLRLLQSRCPRVLPKKLQNWNFLPLWMRSLKPWDAVVSKFTGCFQMRCCCCCRVCCRACCLLCDCPKCCRCSKCCEDLEEAQEGQDVPVKAPETFDNITISREAQGEVPASDSKTECTAL
Involved in actively transporting phosphate into cells via Na(+) cotransport. Subcellular locations: Apical cell membrane Localized at the brush border membranes of enterocytes. Highly expressed in lung. Also detected in pancreas, kidney, small intestine, ovary, testis, prostate and mammary gland. In lung, it is found in alveolar type II cells but not in bronchiolar epithelium.
NPT2B_PONAB
Pongo abelii
MAPWPELGDAQPNPDKYLEGAAGQQPTAPDKSKETNKNNTEAPVTKIELLPTYSTATLIDEPTEVDDPWNIPTLQDSGIKWSERDTKGKILCVFQGIGRLILLLGFLYFFVCSLDILSSAFQLVGGKMAGQFFSNSSIMSNPLLGLVIGVLVTVLVQSSSTSTSIVVSMVSSSLLTVRAAIPIIMGANIGTSITNTIVALMQVGDRSEFRRAFAGATVHDFFNWLSVLVLLPVEVATHYLEIITQLIVDSFHSKNGEDAPDLLKVITKPFTKLIVQLDKKIISQIAMNDEKAKNKSLVKIWCKTFTNKTQVNVTVPSTANCTSPSLCWTDGIQTWTMKNVTYKENIAKCQHIFVNFHLPDLAVGTILLILSLLVLCGCLIMIVKILGSVLKGQVATVIKKTINTDFPFPFAWLTGYLAILVGAGMTFIVQSSSVFTSALTPLIGIGVITIERAYPLTLGSNIGTTTTAILAALASPGNALRSSLQIALCHFFFNISGILLWYPIPFTRLPIRMAKGLGNISAKYRWFAVFYLIIFFFLIPLTVFGLSLAGWRVLVGVGVPVVFIIILVLCLRLLQSRCPRVLPKKLQNWNFLPLWMRSLKPWDAVFSKFTGCFQMRCCCCCRVCCRACCLLCGCPKCCRCSKCCEDLEEAHEGQDVPVKAPDTFDNITISREAQGEVPASDSKTECTAL
Involved in actively transporting phosphate into cells via Na(+) cotransport. Subcellular locations: Apical cell membrane Localized at the brush border membranes of enterocytes.
NR1H4_HUMAN
Homo sapiens
MVMQFQGLENPIQISPHCSCTPSGFFMEMMSMKPAKGVLTEQVAGPLGQNLEVEPYSQYSNVQFPQVQPQISSSSYYSNLGFYPQQPEEWYSPGIYELRRMPAETLYQGETEVAEMPVTKKPRMGASAGRIKGDELCVVCGDRASGYHYNALTCEGCKGFFRRSITKNAVYKCKNGGNCVMDMYMRRKCQECRLRKCKEMGMLAECMYTGLLTEIQCKSKRLRKNVKQHADQTVNEDSEGRDLRQVTSTTKSCREKTELTPDQQTLLHFIMDSYNKQRMPQEITNKILKEEFSAEENFLILTEMATNHVQVLVEFTKKLPGFQTLDHEDQIALLKGSAVEAMFLRSAEIFNKKLPSGHSDLLEERIRNSGISDEYITPMFSFYKSIGELKMTQEEYALLTAIVILSPDRQYIKDREAVEKLQEPLLDVLQKLCKIHQPENPQHFACLLGRLTELRTFNHHHAEMLMSWRVNDHKFTPLLCEIWDVQ
Ligand-activated transcription factor. Receptor for bile acids (BAs) such as chenodeoxycholic acid (CDCA), lithocholic acid, deoxycholic acid (DCA) and allocholic acid (ACA). Plays a essential role in BA homeostasis through the regulation of genes involved in BA synthesis, conjugation and enterohepatic circulation. Also regulates lipid and glucose homeostasis and is involved innate immune response ( , ). The FXR-RXR heterodimer binds predominantly to farnesoid X receptor response elements (FXREs) containing two inverted repeats of the consensus sequence 5'-AGGTCA-3' in which the monomers are spaced by 1 nucleotide (IR-1) but also to tandem repeat DR1 sites with lower affinity, and can be activated by either FXR or RXR-specific ligands. It is proposed that monomeric nuclear receptors such as NR5A2/LRH-1 bound to coregulatory nuclear responsive element (NRE) halfsites located in close proximity to FXREs modulate transcriptional activity (By similarity). In the liver activates transcription of the corepressor NR0B2 thereby indirectly inhibiting CYP7A1 and CYP8B1 (involved in BA synthesis) implicating at least in part histone demethylase KDM1A resulting in epigenomic repression, and SLC10A1/NTCP (involved in hepatic uptake of conjugated BAs). Activates transcription of the repressor MAFG (involved in regulation of BA synthesis) (By similarity). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) ( ). Activates transcription of SLC27A5/BACS and BAAT (involved in BA conjugation), ABCB11/BSEP (involved in bile salt export) by directly recruiting histone methyltransferase CARM1, and ABCC2/MRP2 (involved in secretion of conjugated BAs) and ABCB4 (involved in secretion of phosphatidylcholine in the small intestine) ( ). In the intestine activates FGF19 expression and secretion leading to hepatic CYP7A1 repression (, ). The function also involves the coordinated induction of hepatic KLB/beta-klotho expression (By similarity). Regulates transcription of liver UGT2B4 and SULT2A1 involved in BA detoxification; binding to the UGT2B4 promoter seems to imply a monomeric transactivation independent of RXRA (, ). Modulates lipid homeostasis by activating liver NR0B2/SHP-mediated repression of SREBF1 (involved in de novo lipogenesis), expression of PLTP (involved in HDL formation), SCARB1 (involved in HDL hepatic uptake), APOE, APOC1, APOC4, PPARA (involved in beta-oxidation of fatty acids), VLDLR and SDC1 (involved in the hepatic uptake of LDL and IDL remnants), and inhibiting expression of MTTP (involved in VLDL assembly ( ). Increases expression of APOC2 (promoting lipoprotein lipase activity implicated in triglyceride clearance) . Transrepresses APOA1 involving a monomeric competition with NR2A1 for binding to a DR1 element (, ). Also reduces triglyceride clearance by inhibiting expression of ANGPTL3 and APOC3 (both involved in inhibition of lipoprotein lipase) . Involved in glucose homeostasis by modulating hepatic gluconeogenesis through activation of NR0B2/SHP-mediated repression of respective genes. Modulates glycogen synthesis (inducing phosphorylation of glycogen synthase kinase-3) (By similarity). Modulates glucose-stimulated insulin secretion and is involved in insulin resistance . Involved in intestinal innate immunity. Plays a role in protecting the distal small intestine against bacterial overgrowth and preservation of the epithelial barrier (By similarity). Down-regulates inflammatory cytokine expression in several types of immune cells including macrophages and mononuclear cells . Mediates trans-repression of TLR4-induced cytokine expression; the function seems to require its sumoylation and prevents N-CoR nuclear receptor corepressor clearance from target genes such as IL1B and NOS2 . Involved in the TLR9-mediated protective mechanism in intestinal inflammation. Plays an anti-inflammatory role in liver inflammation; proposed to inhibit pro-inflammatory (but not antiapoptotic) NF-kappa-B signaling) (By similarity). Promotes transcriptional activation of target genes NR0B2/SHP (inducible by unconjugated CDCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; low activity for ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA); not inducible by taurine- and glycine-amidated CDCA. Promotes transcriptional activation of target genes ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA), NR0B2/SHP (inducible by unconjugated CDCA DCA and ACA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; not inducible by taurine- and glycine-amidated CDCA. Promotes transcriptional activation of target genes NR0B2/SHP (inducible by unconjugated CDCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and IBAP; low activity for ABCB11/BSEP (inducible by unconjugated CDCA, DCA and ACA); not inducible by taurine- and glycine-amidated CDCA. Promotes transcriptional activation of target genes ABCB11/BSEP (inducible by unconjugated CDCA, ACA and DCA), NR0B2/SHP (inducible by unconjugated CDCA, ACA and DCA), SLC51B/OSTB (inducible by unconjugated CDCA and DCA) and FABP6/IBAP; most efficient isoform compared to isoforms 1 to 3; not inducible by taurine- and glycine-amidated CDCA. Subcellular locations: Nucleus Subcellular locations: Nucleus Subcellular locations: Nucleus Subcellular locations: Nucleus Subcellular locations: Nucleus Liver and hepatocyte-related cells express mainly FXRalpha1-type isoforms with isoform 3 and isoform 4 in approximately equal proportions. In intestine and kidney mainly FXRalpha2-type isoforms are expressed with isoform 1 and isoform 2 in approximately equal proportions. Expressed in pancreatic beta cells and macrophages.
NR1I2_HUMAN
Homo sapiens
MEVRPKESWNHADFVHCEDTESVPGKPSVNADEEVGGPQICRVCGDKATGYHFNVMTCEGCKGFFRRAMKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGMKKEMIMSDEAVEERRALIKRKKSERTGTQPLGVQGLTEEQRMMIRELMDAQMKTFDTTFSHFKNFRLPGVLSSGCELPESLQAPSREEAAKWSQVRKDLCSLKVSLQLRGEDGSVWNYKPPADSGGKEIFSLLPHMADMSTYMFKGIISFAKVISYFRDLPIEDQISLLKGAAFELCQLRFNTVFNAETGTWECGRLSYCLEDTAGGFQQLLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVLQHRVVDQLQEQFAITLKSYIECNRPQPAHRFLFLKIMAMLTELRSINAQHTQRLLRIQDIHPFATPLMQELFGITGS
Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes. Subcellular locations: Nucleus Expressed in liver, colon and small intestine.
NR1I2_MACMU
Macaca mulatta
MEVRPKEGWNHADFVYCEDTEFAPGKPTVNADEEVGGPQICRVCGDKATGYHFNVMTCEGCKGFFRRAMKRNARLRCPFRKGACEITRKTRRQCQACRLRKCLESGMKKEMIMSDAAVEERRALIKRKKRERIGTQPPGVQGLTEEQRMMIRELMDAQMKTFDTTFSHFKNFRLPGVLSSGCEMPESLQAPSREEAAKWNQVRKDLWSVKVSVQLRGEDGSVWNYKPPADNGGKEIFSLLPHMADMSTYMFKGIINFAKVISYFRDLPIEDQISLLKGATFELCQLRFNTVFNAETGTWECGRLSYCLEDPAGGFQQLLLEPMLKFHYMLKKLQLHEEEYVLMQAISLFSPDRPGVVQHRVVDQLQEQYAITLKSYIECNRPQPAHRFLFLKIMAMLTELRSINAQHTQRLLRIQDIHPFATPLMQELFGITGS
Nuclear receptor that binds and is activated by a variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, endogenous compounds and drugs. Response to specific ligands is species-specific, due to differences in the ligand-binding domain. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes (By similarity). Subcellular locations: Nucleus
NR1I3_HUMAN
Homo sapiens
MASREDELRNCVVCGDQATGYHFNALTCEGCKGFFRRTVSKSIGPTCPFAGSCEVSKTQRRHCPACRLQKCLDAGMRKDMILSAEALALRRAKQAQRRAQQTPVQLSKEQEELIRTLLGAHTRHMGTMFEQFVQFRPPAHLFIHHQPLPTLAPVLPLVTHFADINTFMVLQVIKFTKDLPVFRSLPIEDQISLLKGAAVEICHIVLNTTFCLQTQNFLCGPLRYTIEDGARVSPTVGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRDEIDQLQEEMALTLQSYIKGQQRRPRDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSAMMPLLQEICS
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element. Subcellular locations: Nucleus, Cytoplasm, Cytoplasm, Cytoskeleton Recruited to the cytoplasm by DNAJC7. Predominantly expressed in liver.
NR1I3_MACMU
Macaca mulatta
MASREDELRNCVVCGDQATGYHFNALTCEGCKGFFRRTVSKSIGPTCPFAGSCEVSKIQRRHCPACRLQKCLDAGMRKDMILSAEALALRRAKQAQRRAQQTPMQLSNEQEELIQTLLGAHTRHMGTMFEQFVQFRPPAHLFIHHQPLPTLAPVLPLVTHFADVNTFMVQQVIKFTKDLPVFRSLPIEDQISLLKGAAVEICHIVLNTTFCLQTQNFLCGPLRYTIEDAARVSPAVGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRHEIDQLQEEMALTLQSYIKGQQQRPRDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSAMMPLLQEICS
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element (By similarity). Subcellular locations: Nucleus, Cytoplasm, Cytoplasm, Cytoskeleton Recruited to the cytoplasm by DNAJC7.
NR1I3_PANTR
Pan troglodytes
MASREDELRNCVVCGDQATGYHFNALTCEGCKGFFRRTVSKSIGPTCPFAGSCEVSKTQRRHCPACRLQKCLDAGMRKDMILSAEALALRRAKQAQRRAQQTPVQLSKEQEELIRTLLGAHTRHMGTMFEQFVQFRPPAHLFIHHQPLPTLAPVLPLVTHFADINTFMVLQVIKFTKDLPVFRSLPIEDQISLLKGAAVEICHIVLNTTFCLQTQNFLCGPLRYTIEDGARVGFQVEFLELLFHFHGTLRKLQLQEPEYVLLAAMALFSPDRPGVTQRDEIDQLQEEMALTLQSYIKGQQRRPRDRFLYAKLLGLLAELRSINEAYGYQIQHIQGLSAMMPLLQEICS
Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element (By similarity). Subcellular locations: Nucleus, Cytoplasm, Cytoplasm, Cytoskeleton Recruited to the cytoplasm by DNAJC7.
NR2C1_HUMAN
Homo sapiens
MATIEEIAHQIIEQQMGEIVTEQQTGQKIQIVTALDHNTQGKQFILTNHDGSTPSKVILARQDSTPGKVFLTTPDAAGVNQLFFTTPDLSAQHLQLLTDNSPDQGPNKVFDLCVVCGDKASGRHYGAVTCEGCKGFFKRSIRKNLVYSCRGSKDCIINKHHRNRCQYCRLQRCIAFGMKQDSVQCERKPIEVSREKSSNCAASTEKIYIRKDLRSPLTATPTFVTDSESTRSTGLLDSGMFMNIHPSGVKTESAVLMTSDKAESCQGDLSTLANVVTSLANLGKTKDLSQNSNEMSMIESLSNDDTSLCEFQEMQTNGDVSRAFDTLAKALNPGESTACQSSVAGMEGSVHLITGDSSINYTEKEGPLLSDSHVAFRLTMPSPMPEYLNVHYIGESASRLLFLSMHWALSIPSFQALGQENSISLVKAYWNELFTLGLAQCWQVMNVATILATFVNCLHNSLQQDKMSTERRKLLMEHIFKLQEFCNSMVKLCIDGYEYAYLKAIVLFSPDHPSLENMEQIEKFQEKAYVEFQDYITKTYPDDTYRLSRLLLRLPALRLMNATITEELFFKGLIGNIRIDSVIPHILKMEPADYNSQIIGHSI
Orphan nuclear receptor. Binds the IR7 element in the promoter of its own gene in an autoregulatory negative feedback mechanism. Primarily repressor of a broad range of genes. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Together with NR2C2, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription. Also activator of OCT4 gene expression. May be involved in stem cell proliferation and differentiation. Mediator of retinoic acid-regulated preadipocyte proliferation. Subcellular locations: Nucleus, Nucleus, PML body Recruited by HDAC3, after all-trans retinoic acid stimulated MAPK1-mediated Thr-223 phosphorylation, to PML bodies for subsequent sumoylation.
NR2C1_MACFA
Macaca fascicularis
MATIEEIAHQIIEQQMGEIVTEQQTGQKIQIVTALDHNTQGKQFILTNHDGSTPSKVILARQDSTPGKVFLTPDAAGVNQLFFTTPDLSAQHLQLLTDNSSPDQGPNKVFDLCVVCGDKASGRHYGAVTCEGCKGFFKRSIRKNLVYSCRGSKDCIINKHHRNRCQYCRLQRCIAFGMKQDSVQCERKPIEVSREKSSNCAASTEKIYIRKDLRSPLTATPTFVTDSETTRSTGLLDSGMFVNIHPSGVKTESTVLMTSDKAESCQGDLSTLASVVTSLANLGKTKDLSQNSNEMSMIESLSNDDTSLCEFQEMQTNGDVSRAFDTLAKALNPGESTACQSSVAGMEGSVHLITGDSSINYTEKEGPLLSDSHVAFRLTMPSPMPEYLNVHYIGESASRLLFLSMHWALSIPSFQALGQENSISLVKAYWNELFTLGLAQCWQVMNVATILATFVNCLHNSLQQDKMSTERRKLLMEHIFKLQEFCNSMVKLCIDGYEYAYLKAIVLFSPDHPGLENMEQIEKFQEKAYVEFQDYITKTYPDDTYRLSRLLLRLPALRLMNATITEELFFKGLIGNIRIDSVIPHILKMEPADYNSQIIGHSI
Orphan nuclear receptor. Binds the IR7 element in the promoter of its own gene in an autoregulatory negative feedback mechanism. Primarily repressor of a broad range of genes. Binds to hormone response elements (HREs) consisting of two 5'-AGGTCA-3' half site direct repeat consensus sequences. Together with NR2C2, forms the core of the DRED (direct repeat erythroid-definitive) complex that represses embryonic and fetal globin transcription. Also activator of OCT4 gene expression. May be involved in stem cell proliferation and differentiation. Mediator of retinoic acid-regulated preadipocyte proliferation (By similarity). Subcellular locations: Nucleus, Nucleus, PML body Recruited by HDAC3, after all-trans retinoic acid stimulated MAPK1-mediated Thr-220 phosphorylation, to PML bodies for subsequent sumoylation.
NRAP_HUMAN
Homo sapiens
MNVQPCSRCGYGVYPAEKISCIDQIWHKACFHCEVCKMMLSVNNFVSHQKKPYCHAHNPKNNTFTSVYHTPLNLNVRTFPEAISGIHDQEDGEQCKSVFHWDMKSKDKEGAPNRQPLANERAYWTGYGEGNAWCPGALPDPEIVRMVEARKSLGEEYTEDYEQPRGKGSFPAMITPAYQRAKKANQLASQVEYKRGHDERISRFSTVVDTPELLRSKAGAQLQSDVRYTEDYEQQRGKGSFPAMITPAYQIAKRANELASDVRYHQQYQKEMRGMAGPAIGAEGILTRECADQYGQGYPEEYEEHRGKGSFPAMITPAYQNAKKAHELASDIKYRQDFNKMKGAAHYHSLPAQDNLVLKQAQSVNKLVSEVEYKKDLESSRGHSINYCETPQFRNVSKISKFTSDNKYKENYQNHMRGRYEGVGMDRRTLHAMKVGSLASNVAYKADYKHDIVDYNYPATLTPSYQTAMKLVPLKDANYRQSIDKLKYSSVTDTPQIVQAKINAQQLSHVNYRADYEKNKLNYTLPQDVPQLVKAKTNAKLFSEVKYKEGWEKTKGKGFEMKLDAMSLLAAKASGELASNIKYKEEYEKTKGKAMGTADSRLLHSLQIAKMSSEVEYKKGFEESKTRFHLPMDMVNIRHAKKAQTLASDLDYRKKLHEYTVLPEDMKTQWAKKAYGLQSELQYKADLAWMKGVGWLTEGSLNLEQAKKAGQLVSEKNYRQRVDELKFTSVTDSSQMEHAKKSQELQSGVAYKAGNEQSVHQYTISKDEPLFLQARANAANLSEKLYKSSWENQKAKGFELRLDSLTFLAAKAKRDLASEVKYKEDYERSRGKLIGAKDVQGDSQMSHSLQMSKLQSELEYKKGFEDTKSQCHVSLDMVHLVHARKAQHLATDVGYKTAEHHFTALPTDMKVEWAKKAYGLQSDNQYRADVKWMKGMGWVATGSLNVEQAKKAGELISEKKYRQHPDALKFTSIKDTPEMVQARISYTQAVDRLYREQGENIKHHYTPTADLPEVLLAKLNAMNISETRYKESWSKLRDGGYKLRLDALPFQAAKASGEIISDYKYKEAFEKMKGQMLGSRSLEDDISLAHSVYATSLQSDVNYKKGFEHSKAQFHLPLDMAALVHAKKAQTLASNQDYKHPLPQYTSLAEDLRLSCAKKAHKLQSENLYRSDLNFMRGVACVIPGTLEIEGRKKASELISESKYRQHPHSFKYTAVTDTPNLLHAKFSNQITNERLYKAAGEDARHEYTMTLGLPEFIRAKTNAANLSDARYKESWRNLRAQGYKLTIEALPFQAARASGDIASDFLYRHDFVKERGKLIGPQSVRDDPRIQHCRRMGQLQSELQYRRGATSSQAQFHLPMDMVHLVHAKNAQALASDHDYRTQYHKFTALPEDLKMAWAKKAHALQSELRYKSDLIGMKGIGWLALRSPQMESAKKAGELISETKYRKKPDSIKFTTVVDSPDLVHAKNSYMHCNERMYRSGDAESLHRYTLIPDHPDFTRARLNALHLSDKVYRNSWEQTRAGSYDFRLDAIPFQTARASREIASDFRYKEAFLRDRGLQIGYRSVDDDPRMKHFLNVGRLQSDNEYKKDFAKSRSQFHSSTDQPGLLQAKRSQQLASDVHYRQPLPQPTCDPEQLGLRHAQKAHQLQSDVKYKSDLNLTRGVGWTPPGSYKVEMARRAAELANARGLGLQGAYRGAEAVEAGDHQSGEVNPDATEILHVKKKKALLL
May be involved in anchoring the terminal actin filaments in the myofibril to the membrane and in transmitting tension from the myofibrils to the extracellular matrix. Localized at the myotendinous junction in skeletal muscle and at the intercalated disk in cardiac muscle. Expressed in cardiac and skeletal muscle.
NREP_HUMAN
Homo sapiens
MVYYPELFVWVSQEPFPNKDMEGRLPKGRLPVPKEVNRKKNDETNAASLTPLGSSELRSPRISYLHFF
May have roles in neural function. Ectopic expression augments motility of gliomas. Promotes also axonal regeneration (By similarity). May also have functions in cellular differentiation (By similarity). Induces differentiation of fibroblast into myofibroblast and myofibroblast ameboid migration. Increases retinoic-acid regulation of lipid-droplet biogenesis (By similarity). Down-regulates the expression of TGFB1 and TGFB2 but not of TGFB3 (By similarity). May play a role in the regulation of alveolar generation. Subcellular locations: Cytoplasm Expressed in lung (at protein level).
NREP_MACFA
Macaca fascicularis
MVYYPERFVWVSQEPFPNKNMEGRLPKGRLPVPKEVNRKKNDETNAASLTPLGSSELRSPRISYLHFF
May have roles in neural function and cellular differentiation. Ectopic expression promotes axonal regeneration, induces differentiation of fibroblast into myofibroblast, induces myofibroblast ameboid migration, augments motility of gliomas, and increases retinoic-acid regulation of lipid-droplet biogenesis. Down-regulates the expression of TGFB1 and TGFB2 but not of TGFB3. May play a role in the regulation of alveolar generation. Subcellular locations: Cytoplasm
NREP_PONAB
Pongo abelii
MVYYPELSVWVSQEPFPNKDMEGRLPKGRLPVPKEVNRKKNDETNAASLTPLGSSELRSPRISYLHSF
May have roles in neural function and cellular differentiation. Ectopic expression promotes axonal regeneration, induces differentiation of fibroblast into myofibroblast, induces myofibroblast ameboid migration, augments motility of gliomas, and increases retinoic-acid regulation of lipid-droplet biogenesis. Down-regulates the expression of TGFB1 and TGFB2 but not of TGFB3. May play a role in the regulation of alveolar generation. Subcellular locations: Cytoplasm
NRF1_HUMAN
Homo sapiens
MEEHGVTQTEHMATIEAHAVAQQVQQVHVATYTEHSMLSADEDSPSSPEDTSYDDSDILNSTAADEVTAHLAAAGPVGMAAAAAVATGKKRKRPHVFESNPSIRKRQQTRLLRKLRATLDEYTTRVGQQAIVLCISPSKPNPVFKVFGAAPLENVVRKYKSMILEDLESALAEHAPAPQEVNSELPPLTIDGIPVSVDKMTQAQLRAFIPEMLKYSTGRGKPGWGKESCKPIWWPEDIPWANVRSDVRTEEQKQRVSWTQALRTIVKNCYKQHGREDLLYAFEDQQTQTQATATHSIAHLVPSQTVVQTFSNPDGTVSLIQVGTGATVATLADASELPTTVTVAQVNYSAVADGEVEQNWATLQGGEMTIQTTQASEATQAVASLAEAAVAASQEMQQGATVTMALNSEAAAHAVATLAEATLQGGGQIVLSGETAAAVGALTGVQDANGLVQIPVSMYQTVVTSLAQGNGPVQVAMAPVTTRISDSAVTMDGQAVEVVTLEQ
Transcription factor that activates the expression of the EIF2S1 (EIF2-alpha) gene. Links the transcriptional modulation of key metabolic genes to cellular growth and development. Implicated in the control of nuclear genes required for respiration, heme biosynthesis, and mitochondrial DNA transcription and replication. Subcellular locations: Nucleus Ubiquitously expressed with strongest expression in skeletal muscle.
NRN1_HUMAN
Homo sapiens
MGLKLNGRYISLILAVQIAYLVQAVRAAGKCDAVFKGFSDCLLKLGDSMANYPQGLDDKTNIKTVCTYWEDFHSCTVTALTDCQEGAKDMWDKLRKESKNLNIQGSLFELCGSGNGAAGSLLPAFPVLLVSLSAALATWLSF
Promotes neurite outgrowth and especially branching of neuritic processes in primary hippocampal and cortical cells. Subcellular locations: Cell membrane, Synapse
NRP1_HUMAN
Homo sapiens
MERGLPLLCAVLALVLAPAGAFRNDKCGDTIKIESPGYLTSPGYPHSYHPSEKCEWLIQAPDPYQRIMINFNPHFDLEDRDCKYDYVEVFDGENENGHFRGKFCGKIAPPPVVSSGPFLFIKFVSDYETHGAGFSIRYEIFKRGPECSQNYTTPSGVIKSPGFPEKYPNSLECTYIVFVPKMSEIILEFESFDLEPDSNPPGGMFCRYDRLEIWDGFPDVGPHIGRYCGQKTPGRIRSSSGILSMVFYTDSAIAKEGFSANYSVLQSSVSEDFKCMEALGMESGEIHSDQITASSQYSTNWSAERSRLNYPENGWTPGEDSYREWIQVDLGLLRFVTAVGTQGAISKETKKKYYVKTYKIDVSSNGEDWITIKEGNKPVLFQGNTNPTDVVVAVFPKPLITRFVRIKPATWETGISMRFEVYGCKITDYPCSGMLGMVSGLISDSQITSSNQGDRNWMPENIRLVTSRSGWALPPAPHSYINEWLQIDLGEEKIVRGIIIQGGKHRENKVFMRKFKIGYSNNGSDWKMIMDDSKRKAKSFEGNNNYDTPELRTFPALSTRFIRIYPERATHGGLGLRMELLGCEVEAPTAGPTTPNGNLVDECDDDQANCHSGTGDDFQLTGGTTVLATEKPTVIDSTIQSEFPTYGFNCEFGWGSHKTFCHWEHDNHVQLKWSVLTSKTGPIQDHTGDGNFIYSQADENQKGKVARLVSPVVYSQNSAHCMTFWYHMSGSHVGTLRVKLRYQKPEEYDQLVWMAIGHQGDHWKEGRVLLHKSLKLYQVIFEGEIGKGNLGGIAVDDISINNHISQEDCAKPADLDKKNPEIKIDETGSTPGYEGEGEGDKNISRKPGNVLKTLDPILITIIAMSALGVLLGAVCGVVLYCACWHNGMSERNLSALENYNFELVDGVKLKKDKLNTQSTYSEA
Cell-surface receptor involved in the development of the cardiovascular system, in angiogenesis, in the formation of certain neuronal circuits and in organogenesis outside the nervous system. Mediates the chemorepulsant activity of semaphorins ( ). Recognizes a C-end rule (CendR) motif R/KXXR/K on its ligands which causes cellular internalization and vascular leakage . It binds to semaphorin 3A, the PLGF-2 isoform of PGF, the VEGF165 isoform of VEGFA and VEGFB ( , ). Coexpression with KDR results in increased VEGF165 binding to KDR as well as increased chemotaxis. Regulates VEGF-induced angiogenesis. Binding to VEGFA initiates a signaling pathway needed for motor neuron axon guidance and cell body migration, including for the caudal migration of facial motor neurons from rhombomere 4 to rhombomere 6 during embryonic development (By similarity). Regulates mitochondrial iron transport via interaction with ABCB8/MITOSUR . (Microbial infection) Acts as a host factor for human coronavirus SARS-CoV-2 infection. Recognizes and binds to CendR motif RRAR on SARS-CoV-2 spike protein S1 which enhances SARS-CoV-2 infection. Binds VEGF-165 and may inhibit its binding to cells (, ). May induce apoptosis by sequestering VEGF-165 . May bind as well various members of the semaphorin family. Its expression has an averse effect on blood vessel number and integrity. Subcellular locations: Secreted Subcellular locations: Mitochondrion membrane, Cell membrane, Cytoplasm The expression of isoforms 1 and 2 does not seem to overlap. Expressed in olfactory epithelium (at protein level) . Expressed in fibroblasts (at protein level) . Expressed by the blood vessels of different tissues. In the developing embryo it is found predominantly in the nervous system. In adult tissues, it is highly expressed in heart and placenta; moderately in lung, liver, skeletal muscle, kidney and pancreas; and low in adult brain (, ). Expressed in the central nervous system, including olfactory related regions such as the olfactory tubercles and paraolfactory gyri . The expression of isoforms 1 and 2 does not seem to overlap. Found in liver hepatocytes, kidney distal and proximal tubules.
NSE3_HUMAN
Homo sapiens
MLQKPRNRGRSGGQAERDRDWSHSGNPGASRAGEDARVLRDGFAEEAPSTSRGPGGSQGSQGPSPQGARRAQAAPAVGPRSQKQLELKVSELVQFLLIKDQKKIPIKRADILKHVIGDYKDIFPDLFKRAAERLQYVFGYKLVELEPKSNTYILINTLEPVEEDAEMRGDQGTPTTGLLMIVLGLIFMKGNTIKETEAWDFLRRLGVYPTKKHLIFGDPKKLITEDFVRQRYLEYRRIPHTDPVDYEFQWGPRTNLETSKMKVLKFVAKVHNQDPKDWPAQYCEALADEENRARPQPSGPAPSS
Component of the SMC5-SMC6 complex, a complex involved in repair of DNA double-strand breaks by homologous recombination (, ). The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). In vitro enhances ubiquitin ligase activity of NSMCE1. Proposed to act through recruitment and/or stabilization of the Ubl-conjugating enzyme (E2) at the E3:substrate complex . May be a growth suppressor that facilitates the entry of the cell into cell cycle arrest (By similarity). Subcellular locations: Cytoplasm, Nucleus, Chromosome, Telomere Ubiquitous.
NSE4A_HUMAN
Homo sapiens
MSGDSSGRGPEGRGRGRDPHRDRTRSRSRSRSPLSPRSRRGSARERREAPERPSLEDTEPSDSGDEMMDPASLEAEADQGLCRQIRHQYRALINSVQQNREDILNAGDKLTEVLEEANTLFNEVSRAREAVLDAHFLVLASDLGKEKAKQLRSDLSSFDMLRYVETLLTHMGVNPLEAEELIRDEDSPDFEFIVYDSWKITGRTAENTFNKTHTFHFLLGSIYGECPVPKPRVDRPRKVPVIQEERAMPAQLRRMEESHQEATEKEVERILGLLQTYFREDPDTPMSFFDFVVDPHSFPRTVENIFHVSFIIRDGFARIRLDQDRLPVIEPVSINEENEGFEHNTQVRNQGIIALSYRDWEEIVKTFEISEPVITPSQRQQKPSA
Component of the SMC5-SMC6 complex, a complex involved in DNA double-strand breaks by homologous recombination. The complex may promote sister chromatid homologous recombination by recruiting the SMC1-SMC3 cohesin complex to double-strand breaks. The complex is required for telomere maintenance via recombination in ALT (alternative lengthening of telomeres) cell lines and mediates sumoylation of shelterin complex (telosome) components which is proposed to lead to shelterin complex disassembly in ALT-associated PML bodies (APBs). Is involved in positive regulation of response to DNA damage stimulus. Subcellular locations: Nucleus, Chromosome, Telomere
NTM2A_HUMAN
Homo sapiens
MEVKGPSGRSFCCESEGQFKSCLKRHTPSLLLPSSWKGNSGSCLMAKALHRMSPTPNSCPLPLPLCRMSGVLCSRNLFTFKFSLFQLDSGASGEPGHSLGLTLGFSHCGNCQTAVVSAQPEGMASNGAYPALGPGVTANPGTSLSVFTALPFTTPAPGPAHGPLLVTAGAPPGGPLVLSTLPSTPLVTEQDGCGPSGAGASNVFVQMRTEVGPVKAAQAQTLVLTQAPLVWQAPGALCGGVVCPPPLLLAAAPVVPVMAAQVVGGTQACEGGWSQGLPLPPPPPPAAQLPPIVSQGNAGPWPQGAHGEGSLASSQAKAPPDDSCNPRSVYENFRLWQHYKPLARRHLPQSPDTEALSCFLIPVLRSLARRKPTMTLEEGLWRAMREWQHTSNFDRMIFYEMAEKFLEFEAEEEMQIQKSQWMKGPQCLPPPATPRLEPRGPPAPEVVKQPVYLPSKAGPKAPTACLPPPRPQRPVTKARRPPPRPHRRAETKARLPPPRPQRPAETKVPEEIPPEVVQEYVDIMEELLGPSLGATGEPEKQREEGEVKQPQEEDWTPPDPGLLSYTDKLCSQKDFVTKVEAVIHPQFLEELLSPDPQMDFLALSQELEQEEGLTLAQLVEKRLLPLKEKQHARAAPSRGTARLDSSSSKFAAGQGAERDVPVPQQGVGMETCPPQTTARDSQGRGRAHTGMARSKDSVVLLGCQDSPGLRAARPTSPPQDHRPTCPGVGTKDALDLPGGSPVRESHGLAQGSSEEEELPSLAFLLGSQHKLLPWWLPQSPVPASGLLSPEKWGPQGTHQFPSAERRGLNLAPSPANKAKKRPLFGSLSPAEKTPHPGPGLRVSGEQSLTWGLGGPSQSQKRKGDPLVSRKEKKQRCSQ
null
NTM2B_HUMAN
Homo sapiens
MEVKGPSGRSFCCESEGQFKSCLKRHTPSLLLPSSWKGNSGSCLMAEALHRTSPTPNSCPLPLPLCRMSGVLCSRNLFTFKFSLFQLDSGASGEPGHSLGLTLGFSYCGNCQTAVVSAQPEGMASNGAYPVLGPGVTANPGTSLSVFTALPFTTPAPGPAHGPLLVTAGAPPGGPLVLSTFPSTPLVTEQDGCGPSGAGASNVFVQMRTEVGPVKAAQAQTLVLTQAPLVWQAPGALCGGVVCPPPLLLAAAPVVPVMAAQVVGGTQACEGGWSQGLPLPPPPPPAAQLPPIVSQGNAGPWPQGAHGESSLASSQAKAPPDDSCNPRSVYENFRLWQHYKPLARRHLPQSPDTEALSCFLIPVLRSLARRKPTMTLEEGLWRAMREWQHTSNFDRMIFYEMAEKFLEFEAEEEMQIQKSQWMKGPQCLPPPATPRLEPRGPPAPEVVKQPVYLPSKAGPKAPTACLPPPRPQRPVTKARRPPPRPHRRAETKARLPPPRPQRPAETKVPEEIPPEVVQEYVDIMEELLGPSLGATGEPEKQREEGKVKQPQEEDWTPPDPGLLSYIDKLCSQKDFVTKVEAVIHPQFLEELLSPDPQMDFLALSQDLEQEEGLTLAQLVEKRLPPLKEKQHARAAPSRGTARLDSSSSKFAAGQGAERDVPDPQQGVGMETCPPQMTARDSQGRGRAHTGMARSEDSVVLLGCQDSPGLRAAWPTSPPQDHRPTCPGVGTKDALDLPGGSPVRESHGLAQGSSEEEELPSLAFLLGSQHKLLPWWLPQSPVPASGLLSPEKWGPQGTHQSPSAERRGLNLAPSPANKAKKRPLFGSLSPAEKTPYPGPGLRVSGEQSLTWGLGGPSQSQKRKGDPLVSRKEKKQHCSQ
null
NTM2D_HUMAN
Homo sapiens
MFQEPVYFQIFLFQLDSGASGEPGHSLGLTLGFSHCGNCQTAVVSAQPEGMASNGAYPALGPGVTANPGTSLSVFTALPFTTPAPGPAHGPLLVTAGAPPGGPLVLSNFPSTPLVTEQDGCGPSGAGASNVFVQMRTEVGPVKAAQAQTLVLTQTPLVWQAPGALCGGVVCPPPLLLAAAPVVPVMAAQVVGGTQACEGGWSQGLPLPPPPPPAAQLPPIVSQGNAGPWPQGAHGEGSLASSQAKAPPDDSCNPRSVYENFRLWQHYKPLARRHLPQSPDTEALSCFLIPVLRSLARRKPTMTLEEGLWRAMREWQHTSNFDRMIFYEMAEKFLEFEAEEEMQIQKSQWMKGPQCLPPPATPRLEPRGPPAPEVVKQPVYLPSKAGPKAPTACLPPPRPQRPVTKARRPPPRPHRRAETKARLPPPRPQRPAETKVPEEIPPEVVQEYVDIMEELLGPSLGATGEPEKQREEGEVKQPQEEDWTPPDPGLLSYTDKLCSQKDFVTKVEAVIHPQFLEELLSPDPQMDFLALSQELEQEEGLTLAQLVEKRLLPLKEKQHARAAPSRGTARLDSSSSKFAAGQGAERDVPDPQQGVGMETCPPQTTARDSQGRGRAHTGMARSKDSVVLLGCQDSPGLRAARPTSPPQDHRPTCPGVGTKDALDLPGGSPVRESHGLAQGSSEEEELPSLAFLLGSQHKLLPWWLPQSPVPASGLLSPEKWGPQGTHQSPSAERRGLNLAPSPANKAKKRPLFGSLSPAEKTPHPGPGLRVSGEQSLTWGLGGPSQSQKRKGDPLVSRKEKKQRCSQ
null
NTM2E_HUMAN
Homo sapiens
MEVKGPSGRSFCCESEGQFKSCLKRHTPSLLLPSSWKGNSGSCLMAEALHRTSPTPNSCPLPLPLCRMSGVLCSRNLFTFKFSLFQLDSGASGEPGHSLGLTLGFSYCGNCQTAVVSAQPEGMASNGAYPVLGPGVTANPGTSLSVFTALPFTTPAPGPAHGPLLVTAGAPPGGPLVLSTFPSTPLVTEQDGCSPSGAGASNVFVQMRTEVGPVKAAQAQTLVLTQAPLVWQAPGALCGGVVCPPPLLLAAAPVVPVMAAQVVGGTQACEGGWSQGLPLPPPPPPAAQLPPIVSQGNAGPWPQGAHGESSLASSQAKAPPDDSCNPRSVYENFRLWQHYKPLARRHLPQSPDTEALSCFLIPVLRSLARRKPTMTLEEGLWRAMREWQHTSNFDRMIFYEMAEKFLEFEAEEEMQIQKSQWMKGPQCLPPPATPRLEPRGPPAPEVVKQPVYLPSKAGPKAQTACLPPPRPQRPVTKARRPPPQPHRRAETKARLPPPRPQRPAETKVPEEIPPEVVQEYVDIMEELLGPSLGATGEPEKQREEGKVKQPQEEDWTPPDPGLLSYIDKLCSQKDFVTKVEAVIHPQFLEELLSPDPQMDFLALSQDLEQEEGLTLAQLVEKRLPPLKEKQHSRAAPSRGTARLDSSSSKFAAGQGAERDVPDPQEGVGMETCPPQTTARDSQGRGRAHTGMARSEDSVVLLGCQDSPGLRAARPTSPPQDHRPTCPGVGTKDALDLPGGSPVRESHGLAQGSSEEEELPSLAFLLGSQHKLLPWWLPQSPVPASGLLSPEKWGPQGTHQSPSAERRGLNLAPSPANKAKKQPLFGSLSPAEKTPHRGPGLRVSGEQSLTWGLGGPSQSQKRKGDPLVSRKEKKQHCSQ
null