protein_name
stringlengths 7
11
| species
stringclasses 238
values | sequence
stringlengths 2
34.4k
| annotation
stringlengths 6
11.5k
⌀ |
---|---|---|---|
RIPK3_HUMAN | Homo sapiens | MSCVKLWPSGAPAPLVSIEELENQELVGKGGFGTVFRAQHRKWGYDVAVKIVNSKAISREVKAMASLDNEFVLRLEGVIEKVNWDQDPKPALVTKFMENGSLSGLLQSQCPRPWPLLCRLLKEVVLGMFYLHDQNPVLLHRDLKPSNVLLDPELHVKLADFGLSTFQGGSQSGTGSGEPGGTLGYLAPELFVNVNRKASTASDVYSFGILMWAVLAGREVELPTEPSLVYEAVCNRQNRPSLAELPQAGPETPGLEGLKELMQLCWSSEPKDRPSFQECLPKTDEVFQMVENNMNAAVSTVKDFLSQLRSSNRRFSIPESGQGGTEMDGFRRTIENQHSRNDVMVSEWLNKLNLEEPPSSVPKKCPSLTKRSRAQEEQVPQAWTAGTSSDSMAQPPQTPETSTFRNQMPSPTSTGTPSPGPRGNQGAERQGMNWSCRTPEPNPVTGRPLVNIYNCSGVQVGDNNYLTMQQTTALPTWGLAPSGKGRGLQHPPPVGSQEGPKDPEAWSRPQGWYNHSGK | Serine/threonine-protein kinase that activates necroptosis and apoptosis, two parallel forms of cell death ( ). Necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members, is triggered by RIPK3 following activation by ZBP1 ( ). Activated RIPK3 forms a necrosis-inducing complex and mediates phosphorylation of MLKL, promoting MLKL localization to the plasma membrane and execution of programmed necrosis characterized by calcium influx and plasma membrane damage ( ). In addition to TNF-induced necroptosis, necroptosis can also take place in the nucleus in response to orthomyxoviruses infection: following ZBP1 activation, which senses double-stranded Z-RNA structures, nuclear RIPK3 catalyzes phosphorylation and activation of MLKL, promoting disruption of the nuclear envelope and leakage of cellular DNA into the cytosol (By similarity). Also regulates apoptosis: apoptosis depends on RIPK1, FADD and CASP8, and is independent of MLKL and RIPK3 kinase activity (By similarity). Phosphorylates RIPK1: RIPK1 and RIPK3 undergo reciprocal auto- and trans-phosphorylation . In some cell types, also able to restrict viral replication by promoting cell death-independent responses (By similarity). In response to Zika virus infection in neurons, promotes a cell death-independent pathway that restricts viral replication: together with ZBP1, promotes a death-independent transcriptional program that modifies the cellular metabolism via up-regulation expression of the enzyme ACOD1/IRG1 and production of the metabolite itaconate (By similarity). Itaconate inhibits the activity of succinate dehydrogenase, generating a metabolic state in neurons that suppresses replication of viral genomes (By similarity). RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL . These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production .
(Microbial infection) In case of herpes simplex virus 1/HHV-1 infection, forms heteromeric amyloid structures with HHV-1 protein RIR1/ICP6 which may inhibit RIPK3-mediated necroptosis, thereby preventing host cell death pathway and allowing viral evasion.
Subcellular locations: Cytoplasm, Cytosol, Nucleus
Mainly cytoplasmic. Present in the nucleus in response to influenza A virus (IAV) infection.
Highly expressed in the pancreas. Detected at lower levels in heart, placenta, lung and kidney.
Expression is significantly increased in colon and lung cancers. |
RIPK4_HUMAN | Homo sapiens | MEGDGGTPWALALLRTFDAGEFTGWEKVGSGGFGQVYKVRHVHWKTWLAIKCSPSLHVDDRERMELLEEAKKMEMAKFRYILPVYGICREPVGLVMEYMETGSLEKLLASEPLPWDLRFRIIHETAVGMNFLHCMAPPLLHLDLKPANILLDAHYHVKISDFGLAKCNGLSHSHDLSMDGLFGTIAYLPPERIREKSRLFDTKHDVYSFAIVIWGVLTQKKPFADEKNILHIMVKVVKGHRPELPPVCRARPRACSHLIRLMQRCWQGDPRVRPTFQGNGLNGELIRQVLAALLPVTGRWRSPGEGFRLESEVIIRVTCPLSSPQEITSETEDLCEKPDDEVKETAHDLDVKSPPEPRSEVVPARLKRASAPTFDNDYSLSELLSQLDSGVSQAVEGPEELSRSSSESKLPSSGSGKRLSGVSSVDSAFSSRGSLSLSFEREPSTSDLGTTDVQKKKLVDAIVSGDTSKLMKILQPQDVDLALDSGASLLHLAVEAGQEECAKWLLLNNANPNLSNRRGSTPLHMAVERRVRGVVELLLARKISVNAKDEDQWTALHFAAQNGDESSTRLLLEKNASVNEVDFEGRTPMHVACQHGQENIVRILLRRGVDVSLQGKDAWLPLHYAAWQGHLPIVKLLAKQPGVSVNAQTLDGRTPLHLAAQRGHYRVARILIDLCSDVNVCSLLAQTPLHVAAETGHTSTARLLLHRGAGKEAMTSDGYTALHLAARNGHLATVKLLVEEKADVLARGPLNQTALHLAAAHGHSEVVEELVSADVIDLFDEQGLSALHLAAQGRHAQTVETLLRHGAHINLQSLKFQGGHGPAATLLRRSKT | Involved in stratified epithelial development. It is a direct transcriptional target of TP63. Plays a role in NF-kappa-B activation.
Subcellular locations: Cytoplasm, Membrane
Expressed in hair follicles and skin. |
RL10L_HUMAN | Homo sapiens | MGRRPARCYRYCKNKPYPKSRFCRGVPDAKIRIFDLGRKKAKVDEFPLGGHMVSDEYEQLSSEALEAARICANKYMVKSCGRDGFHMRVRLHPFHVIRINKMLSCAGADRLQTGMRGAFGKPQGTVARVHIGQVIMSIRTKLQNEEHVIEALRRAKFKFPGRQKIHISKKWGFTKFNADEFEDMVAKKCLIPDGCGVKYVPSHGPLDKWRVLHS | Testis-specific component of the ribosome, which is required for the transition from prophase to metaphase in male meiosis I (By similarity). Compensates for the inactivated X-linked RPL10 paralog during spermatogenesis . The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell ( ). The male germ cell-specific ribosome displays a ribosomal polypeptide exit tunnel of distinct size and charge states compared with the classical ribosome (By similarity). It is responsible for regulating the biosynthesis and folding of a subset of male germ-cell-specific proteins that are essential for the formation of sperm (By similarity).
Subcellular locations: Cytoplasm
Almost testis-specific ( ). Also expressed in pre- and postmenopausal ovary . |
RL10L_MACFA | Macaca fascicularis | MGRRPARCYRYCKNKPYPKSRFCRGVPDAKIRIFDLGRKKAKVDEFPLCGHMVSDEYEQLSSEALEAARICANKYMVKSCGRDGFHMRVRLHPFHVIRINKMLSCAGADRLQTGMRGAFGKPQGTVARVHIGQVIMSIRTKLQNKEHVIEALRRAKFKFPGRQKIHISKKWGFTKFNADEFEDMVAKKRLIPDGCGVKYVPSHGPLDKWRVLHS | Testis-specific component of the ribosome, which is required for the transition from prophase to metaphase in male meiosis I (By similarity). Compensates for the inactivated X-linked RPL10 paralog during spermatogenesis. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl-transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome through a tunnel in the LSU and interact with protein factors that function in enzymatic processing, targeting, and the membrane insertion of nascent chains at the exit of the ribosomal tunnel (By similarity).
Subcellular locations: Cytoplasm |
RL10_PAPAN | Papio anubis | MGRRPARCYRYCKNKPYPKSRFCRGVPDAKIRIFDLGRKKAKVDEFPLCGHMVSDEYEQLSSEALEAARICANKYMVKSCGKDGFHIRVRLHPFHVIRINKMLSCAGADRLQTGMRGAFGKPQGTVARVHIGQVIMSIRTKLQNKEHVIEALRRAKFKFPGRQKIHISKKWGFTKFNADEFEDMVAEKRLIPDGCGVKYIPNRGPLDKWRALHS | Component of the large ribosomal subunit. Plays a role in the formation of actively translating ribosomes. May play a role in the embryonic brain development.
Subcellular locations: Cytoplasm |
RL13A_MACFA | Macaca fascicularis | MAEVQVLVLDGRGHLLGRLAAIVAKQVLLGRKVVVVRCEGINISGNFYRNKLKYLAFLRKRMNTNPSRGPYHFRAPSRIFWRTVRGMLPHKTKRGQAALDRLKVFDGIPPPYDKKKRMVVPAALKVVRLKPTRKFAYLGRLAHEVGWKYQAVTTTLEEKRKEKAKIHYRKKKQLMRLRKQAEKNVEKKIDKYTQVLKTHGLLV | Associated with ribosomes but is not required for canonical ribosome function and has extra-ribosomal functions. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the ribosome and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation. In the GAIT complex interacts with m7G cap-bound eIF4G at or near the eIF3-binding site and blocks the recruitment of the 43S ribosomal complex. Involved in methylation of rRNA.
Subcellular locations: Cytoplasm |
RL13A_PONAB | Pongo abelii | MAEVQVLVLDGRGHLLGRLAAIVAKQVLLGRKVVVVRCEGINISGNFYRNKLKYLAFLRKRMNTSPSRGPYHFRAPSRIFWRTVRGMLPHKTKRGQAALDRLKVFDGIPPPYDKKKRMVVPAALKVVRLKPTRKFAYLGRLAHEVGWKYQAVTATLEEKRKEKAKIHYRKKKQLVRLRKQAEKNVEKKIDKYTEVLKTHGLLV | Associated with ribosomes but is not required for canonical ribosome function and has extra-ribosomal functions. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the ribosome and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppresses their translation. In the GAIT complex interacts with m7G cap-bound eIF4G at or near the eIF3-binding site and blocks the recruitment of the 43S ribosomal complex. Involved in methylation of rRNA.
Subcellular locations: Cytoplasm |
RL15_PONAB | Pongo abelii | MGAYKYIQELWRKKQSDVMRFLLRVRCWQYRQLSALHRAPRPTRPDKARRLGYKAKQGYVIYRIRVRRGGRKRPVPKGATYGKPVHHGVNQLKFARSLQSVAEERAGRHCGALRVLNSYWVGEDSTYKFFEVILIDPFHKAIRRNPDTQWITKPVHKHREMRGLTSAGRKSRGLGKGHKFHHTIGGSRRAAWRRRNTLQLHRYR | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL22_MACFA | Macaca fascicularis | MAPVKKLVAKGGKKKKQVLKFTLDCTHPVEDGIMDAANFEQFLQERIKVNGKAGNLGGGVVTIERSKSKITVTSEVPFSKRYLKYLTKKYLKKNNLRDWLRVVANSKESYELRYFQINQDEEEEEDED | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL27_MACFA | Macaca fascicularis | MGKFMKPGKVVLVLAGRYSGRKAVIVKNIDDGTSDRPYSHALVAGIDRYPRKVTAAMGKKKIAKRSKIKSFVKVYNYNHLMPTRYSVDIPLDKTVVNKDVFRDPALKRKARREAKVKFEERYKTGKNKWFFQKLRF | Component of the large ribosomal subunit (By similarity). Required for proper rRNA processing and maturation of 28S and 5.8S rRNAs (By similarity).
Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Rough endoplasmic reticulum
Detected on cytosolic polysomes (By similarity). Detected in ribosomes that are associated with the rough endoplasmic reticulum (By similarity). |
RL32_MACFA | Macaca fascicularis | MAALRPLVKPKIVKKRTKKFIRHQSDRYVKIKRNWRKPRGIDNRVRRRFKGQILMPNIGYGSNKKTKHMLPSGFRKFLVHNVKELEVLLMCNKSYCAEIAHNVSSKNRKAIVERAAQLAIRVTNPNARLRSEENE | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL38_HUMAN | Homo sapiens | MPRKIEEIKDFLLTARRKDAKSVKIKKNKDNVKFKVRCSRYLYTLVITDKEKAEKLKQSLPPGLAVKELK | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL38_MACFA | Macaca fascicularis | MPRKIEEIKDFLLTARRKDAKSVKIKKNKDNVKFKVRCSRYLYTLVITDKEKAEKLKQSLPPGLAVKEPK | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL4_MACFA | Macaca fascicularis | MACARPLISVYSEKGESSGKNVTLPAVFKAPIRPDIVNFVHTNLRKNNRQPYAVSELAGHQTSAESWGTGRAVARIPRVRGGGTHRSGQGAFGNMCRGGRMFAPTKTWRRWHRRVNTTQKRYAICSALAASALPALVMSKGHSIEEVPELPLVVEDKVEGYKKTKEAVLLLKKLKAWNDIKKVYASQRMRAGKGKMRNRRRIQRRGPCIIYNEDNGIIKAFRNIPGITLLNVSKLNILKLAPGGHVGRFCIWTESAFRKLDELYGTWRKAASLKSNYNLPMHKMINTDLSRILKSPEIQRALRAPRKKIHRRVLKKNPLKNLRIMLKLNPYAKTMRWNTILRQARNHKLRVDKAAAAAAALEAKSDEKAAVAGKKPVVGKKGKKVAVGVKKQKKPLVGKKAAATKKPAPEKKSTEKKPTTEEKKPAA | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell.
Subcellular locations: Cytoplasm |
RL6_HUMAN | Homo sapiens | MAGEKVEKPDTKEKKPEAKKVDAGGKVKKGNLKAKKPKKGKPHCSRNPVLVRGIGRYSRSAMYSRKAMYKRKYSAAKSKVEKKKKEKVLATVTKPVGGDKNGGTRVVKLRKMPRYYPTEDVPRKLLSHGKKPFSQHVRKLRASITPGTILIILTGRHRGKRVVFLKQLASGLLLVTGPLVLNRVPLRRTHQKFVIATSTKIDISNVKIPKHLTDAYFKKKKLRKPRHQEGEIFDTEKEKYEITEQRKIDQKAVDSQILPKIKAIPQLQGYLRSVFALTNGIYPHKLVF | Component of the large ribosomal subunit ( ). The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell ( ).
(Microbial infection) Specifically binds to domain C of the Tax-responsive enhancer element in the long terminal repeat of HTLV-I .
Subcellular locations: Cytoplasm, Cytosol, Cytoplasm, Rough endoplasmic reticulum
Detected on cytosolic polysomes . Detected in ribosomes that are associated with the rough endoplasmic reticulum (By similarity). |
RL7_PONAB | Pongo abelii | MEGVEEKKKVPAVPETLKKKRRNFAELKIKRLRKKFAQKMLRKARRKLIYEKAKHYHKEYRQMYRTEIRMARMARKAGNFYVPAEPKLAFVIRIRGINGVSPKVRKVLQLLRLRQIFNGTFVKLNKASINMLRIVEPYIAWGYPNLKSVNELIYKRGYGKINKKRIALTDNALIARSLGKYGIICMEDLIHEIYTVGKRFKEANNFLWPFKLSSPRGGMKKKTTHFVEGGDAGNREDQINRLIRRMN | Component of the large ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Binds to G-rich structures in 28S rRNA and in mRNAs. Plays a regulatory role in the translation apparatus; inhibits cell-free translation of mRNAs.
Subcellular locations: Cytoplasm |
RM02_HUMAN | Homo sapiens | MALCALTRALRSLNLAPPTVAAPAPSLFPAAQMMNNGLLQQPSALMLLPCRPVLTSVALNANFVSWKSRTKYTITPVKMRKSGGRDHTGRIRVHGIGGGHKQRYRMIDFLRFRPEETKSGPFEEKVIQVRYDPCRSADIALVAGGSRKRWIIATENMQAGDTILNSNHIGRMAVAAREGDAHPLGALPVGTLINNVESEPGRGAQYIRAAGTCGVLLRKVNGTAIIQLPSKRQMQVLETCVATVGRVSNVDHNKRVIGKAGRNRWLGKRPNSGRWHRKGGWAGRKIRPLPPMKSYVKLPSASAQS | Subcellular locations: Mitochondrion |
RM28_HUMAN | Homo sapiens | MPLHKYPVWLWKRLQLREGICSRLPGHYLRSLEEERTPTPVHYRPHGAKFKINPKNGQRERVEDVPIPIYFPPESQRGLWGGEGWILGQIYANNDKLSKRLKKVWKPQLFEREFYSEILDKKFTVTVTMRTLDLIDEAYGLDFYILKTPKEDLCSKFGMDLKRGMLLRLARQDPQLHPEDPERRAAIYDKYKEFAIPEEEAEWVGLTLEEAIEKQRLLEEKDPVPLFKIYVAELIQQLQQQALSEPAVVQKRASGQ | Subcellular locations: Mitochondrion
Found in a variety of normal tissues including spleen, testes, thymus, liver, kidney, brain, adrenal, lung and retinal tissue. |
RM30_HUMAN | Homo sapiens | MAGILRLVVQWPPGRLQTVTKGVESLICTDWIRHKFTRSRIPEKVFQASPEDHEKYGGDPQNPHKLHIVTRIKSTRRRPYWEKDIIKMLGLEKAHTPQVHKNIPSVNAKLKVVKHLIRIKPLKLPQGLPAEENMSNTCLKSTGELVVQWHLKPVEQKAHES | Subcellular locations: Mitochondrion |
RM30_MACFA | Macaca fascicularis | MAGILRLVVQRPPGGLQTVTKGVESLIGTDWIRHKFTKSRIPDKVFQASPEDHEKYGGDPQNPHKLHIVTRIKSTRRRPYWEKDIIKMLGLEKSHTPQVHKNIPSVNSKLKVVKHLIRIQPLKLPQGLPTEENMSNMYLKSTGELVVQWHLKPVEQKTHES | Subcellular locations: Mitochondrion |
RMC1_HUMAN | Homo sapiens | MGEEDYYLELCERPVQFEKANPVNCVFFDEANKQVFAVRSGGATGVVVKGPDDRNPISFRMDDKGEVKCIKFSLENKILAVQRTSKTVDFCNFIPDNSQLEYTQECKTKNANILGFCWTSSTEIVFITDQGIEFYQVLPEKRSLKLLKSHNLNVNWYMYCPESAVILLSTTVLENVLQPFHFRAGTMSKLPKFEIELPAAPKSTKPSLSERDIAMATIYGQLYVLFLRHHSRTSNSTGAEVVLYHLPREGACKKMHILKLNRTGKFALNVVDNLVVVHHQDTETSVIFDIKLRGEFDGSVTFHHPVLPARSIQPYQIPITGPAAVTSQSPVPCKLYSSSWIVFQPDIIISASQGYLWNLQVKLEPIVNLLPDKGRLMDFLLQRKECKMVILSVCSQMLSESDRASLPVIATVFDKLNHEYKKYLDAEQSYAMAVEAGQSRSSPLLKRPVRTQAVLDQSDVYTHVLSAFVEKKEMPHKFVIAVLMEYIRSLNQFQIAVQHYLHELVIKTLVQHNLFYMLHQFLQYHVLSDSKPLACLLLSLESFYPPAHQLSLDMLKRLSTANDEIVEVLLSKHQVLAALRFIRGIGGHDNISARKFLDAAKQTEDNMLFYTIFRFFEQRNQRLRGSPNFTPGEHCEEHVAFFKQIFGDQALMRPTTF | Componement of the CCZ1-MON1 RAB7A guanine exchange factor (GEF). Acts as a positive regulator of CCZ1-MON1A/B function necessary for endosomal/autophagic flux and efficient RAB7A localization .
Subcellular locations: Lysosome membrane, Late endosome membrane |
RMD1_HUMAN | Homo sapiens | MALAARLWRLLPFRRGAAPGSRLPAGTSGSRGHCGPCRFRGFEVMGNPGTFKRGLLLSALSYLGFETYQVISQAAVVHATAKVEEILEQADYLYESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKLLVYEALEYAKRALEKNESSFASHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELNPKDATSIHLMGIWCYTFAEMPWYQRRIAKMLFATPPSSTYEKALGYFHRAEQVDPNFYSKNLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN | Subcellular locations: Cytoplasm, Cytoplasm, Cytoskeleton, Spindle, Cytoplasm, Cytoskeleton, Spindle pole
In interphase localizes in the cytoplasm, and during mitosis localizes to the spindle microtubules and spindle poles. |
RMD1_PONAB | Pongo abelii | MALAARLWRFLPFRRGAAPGSLLSAGTSGSRGHCGPCRLRGFEVMGNPGTFKRGLLLSALSYLGFETYQVISQAAVVHATAKVEEILEQADYLCESGETEKLYQLLTQYKESEDAELLWRLARASRDVAQLSRTSEEEKKLLVYEALEYAKRALEKNESSFAAHKWYAICLSDVGDYEGIKAKIANAYIIKEHFEKAIELNPKDATSIHLMGIWCYTFAEMPWYQRRIAKMLFATPPSSTYEKALSYFHRAEQVDPNFYSKNLLLLGKTYLKLHNKKLAAFWLMKAKDYPAHTEEDKQIQTEAAQLLTSFSEKN | Subcellular locations: Cytoplasm, Cytoplasm, Cytoskeleton, Spindle, Cytoplasm, Cytoskeleton, Spindle pole
In interphase localizes in the cytoplasm, and during mitosis localizes to the spindle microtubules and spindle poles. |
RN151_HUMAN | Homo sapiens | MGGGYDLNLFASPPDSNFVCSVCHGVLKRPARLPCSHIFCKKCILRWLARQKTCPCCRKEVKRKKVVHMNKLRKTIGRLEVKCKNADAGCIVTCPLAHRKGHQDSCPFELTACPNEGCTSQVPRGTLAEHRQHCQQGSQQRCPLGCGATLDPAERARHNCYRELHNAWSVRQERRRPLLLSLLRRVRWLDQATSVVRRELAELSNFLEEDTALLEGAPQEEAEAAPEGNVGAEVVGEPRANIPCK | May be involved in acrosome formation of spermatids.
Subcellular locations: Cytoplasm, Nucleus |
RN152_HUMAN | Homo sapiens | METLSQDSLLECQICFNYYSPRRRPKLLDCKHTCCSVCLQQMRTSQKDVRCPWCRGVTKLPPGFSVSQLPDDPEVLAVIAIPHTSEHTPVFIKLPSNGCYMLPLPISKERALLPGDMGCRLLPGSQQKSVTVVTIPAEQQPLQGGAPQEAVEEEQDRRGVVKSSTWSGVCTVILVACVLVFLLGIVLHNMSCISKRFTVISCG | E3 ubiquitin-protein ligase that acts as a negative regulator of mTORC1 signaling by mediating ubiquitination of RagA/RRAGA and RHEB (, ). Catalyzes 'Lys-63'-linked polyubiquitination of RagA/RRAGA in response to amino acid starvation, thereby regulating mTORC1 signaling . Also mediates monoubiquitination of RHEB, promoting its association with the TSC-TBC complex and subsequent inhibition . Also mediates 'Lys-48'-linked polyubiquitination of target proteins and their subsequent targeting to the proteasome for degradation . Induces apoptosis when overexpressed .
Subcellular locations: Lysosome membrane
Widely expressed. |
RN157_HUMAN | Homo sapiens | MGALTSRQHAGVEEVDIPSNSVYRYPPKSGSYFASHFIMGGEKFDSTHPEGYLFGENSDLNFLGNRPVVFPYAAPPPQEPVKTLRSLVNIRKDTLRLVKCAEEVKSPGEEASKAKVHYNVEFTFDTDARVAITIYYQATEEFQNGIASYIPKDNSLQSETVQYKRGVCQQFCLPSHTVDPSEWAEEELGFDLDREVYPLVVHAVVDEGDEYFGHCHVLLGTFEKHTDGTFCVKPLKQKQVVDGVSYLLQEIYGIENKYNTQDSKVAEDEVSDNSAECVVCLSDVRDTLILPCRHLCLCNTCADTLRYQANNCPICRLPFRALLQIRAMRKKLGPLSPTSFNPIISSQTSDSEEHPSSENIPPGYEVVSLLEALNGPLTPSPAVPPLHVLGDGHLSGMLPSYGSDGHLPPVRTISPLDRLSDSSSQGLKLKKSLSKSTSQNSSVLHEEEDEHSCSESETQLSQRPSVQHLGEECGVTPESENLTLSSSGAIDQSSCTGTPLSSTISSPEGPASSSLAQSVMSMASSQISTDTVSSMSGSYIAPGTEEEGEALSSPQPASRAPSEEGEGLPAESPDSNFAGLPAGEQDAEGNDVIEEEDGSPTQEGQRTCAFLGMECDNNNDFDIASVKALDNKLCSEVCLPGAWQADDNAVSRNAQRRRLSSSSLEDSETRPCVWGPLAV | E3 ubiquitin ligase that ubiquitinates APBB1 for its degradation by the proteasome and thus prevents apoptosis and promotes survival of neurons . Has a dual role in neurons as it is also required for dendrite growth and maintenance for which its ligase activity is not critical . May act as a scaffold molecule to regulate this process . Acts as a downstream effector of the interconnected PI3K and MAPK signaling pathways and thus participates in the regulation of the cell cycle .
Subcellular locations: Cytoplasm |
RN166_HUMAN | Homo sapiens | MAMFRSLVASAQQRQPPAGPAGGDSGLEAQYTCPICLEVYHRPVAIGSCGHTFCGECLQPCLQVPSPLCPLCRLPFDPKKVDKATHVEKQLSSYKAPCRGCNKKVTLAKMRVHISSCLKVQEQMANCPKFVPVVPTSQPIPSNIPNRSTFACPYCGARNLDQQELVKHCVESHRSDPNRVVCPICSAMPWGDPSYKSANFLQHLLHRHKFSYDTFVDYSIDEEAAFQAALALSLSEN | E3 ubiquitin-protein ligase that promotes the ubiquitination of different substrates . In turn, participates in different biological processes including interferon production or autophagy (, ). Plays a role in the activation of RNA virus-induced interferon-beta production by promoting the ubiquitination of TRAF3 and TRAF6 . Also plays a role in the early recruitment of autophagy adapters to bacteria . Mediates 'Lys-29' and 'Lys-33'-linked ubiquitination of SQSTM1 leading to xenophagic targeting of bacteria and inhibition of their replication .
Subcellular locations: Cytoplasm |
RN167_HUMAN | Homo sapiens | MHPAAFPLPVVVAAVLWGAAPTRGLIRATSDHNASMDFADLPALFGATLSQEGLQGFLVEAHPDNACSPIAPPPPAPVNGSVFIALLRRFDCNFDLKVLNAQKAGYGAAVVHNVNSNELLNMVWNSEEIQQQIWIPSVFIGERSSEYLRALFVYEKGARVLLVPDNTFPLGYYLIPFTGIVGLLVLAMGAVMIARCIQHRKRLQRNRLTKEQLKQIPTHDYQKGDQYDVCAICLDEYEDGDKLRVLPCAHAYHSRCVDPWLTQTRKTCPICKQPVHRGPGDEDQEEETQGQEEGDEGEPRDHPASERTPLLGSSPTLPTSFGSLAPAPLVFPGPSTDPPLSPPSSPVILV | E3 ubiquitin-protein ligase that acts as a regulator of the TORC1 signaling pathway (, ). Positively regulates the TORC1 signaling pathway independently of arginine levels: acts by catalyzing 'Lys-29'-polyubiquitination and degradation of CASTOR1, releasing the GATOR2 complex from CASTOR1 . Also negatively regulates the TORC1 signaling pathway in response to leucine deprivation: acts by mediating 'Lys-63'-linked polyubiquitination of SESN2, promoting SESN2-interaction with the GATOR2 complex . Also involved in protein trafficking and localization ( ). Acts as a regulator of synaptic transmission by mediating ubiquitination and degradation of AMPAR receptor GluA2/GRIA2 (, ). Does not catalyze ubiquitination of GluA1/GRIA1 . Also acts as a regulator of the recycling endosome pathway by mediating ubiquitination of VAMP3 . Regulates lysosome positioning by catalyzing ubiquitination and degradation of ARL8B . Plays a role in growth regulation involved in G1/S transition by mediating, possibly by mediating ubiquitination of SLC22A18 . Acts with a limited set of E2 enzymes, such as UBE2D1 and UBE2N .
Subcellular locations: Lysosome membrane, Endosome membrane, Endomembrane system, Cell membrane
Targeted to cytoplasmic membranes; mainly localizes to lysosomal membrane (, ). A subpopulation localizes to the cell membrane of neurons .
Subcellular locations: Lysosome membrane
Subcellular locations: Cytoplasm, Cytosol
Widely expressed . Strongly expressed in the kidney, pancreas, testis and liver (at protein level) (, ). |
RNAS1_CHLAE | Chlorocebus aethiops | MALDKSVILLPLLVLVLLVLGCLGRESRAKKFQRQHMDSGSSPSSNSTYCNQMMKRRSMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTCKNGQTNCFKSKSSMHITDCRLTNGSRYPNCAYRTSPKERRIIVACEGSPYVPVHFDASVEDST | Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single-stranded and double-stranded RNA (By similarity).
Subcellular locations: Secreted |
RNAS1_GORGO | Gorilla gorilla gorilla | MALEKSLVLLPLLVLILLVLGWVQPSLGKESRAKKFQRQHMDSDSSPSSNSTYCNQMMRRRNMTQGRCKPVNTFVHEPLVDVQNVCFQEKVTCKNGQGNCYKSNSSMHITDCRLTNGSRYPNCAYRTSPKERHIIVACEGNPYVPVHFDASVEDST | Endonuclease that catalyzes the cleavage of RNA on the 3' side of pyrimidine nucleotides. Acts on single-stranded and double-stranded RNA (By similarity).
Subcellular locations: Secreted |
RNFT1_HUMAN | Homo sapiens | MPLFLLSLPTPPSASGHERRQRPEAKTSGSEKKYLRAMQANRSQLHSPPGTGSSEDASTPQCVHTRLTGEGSCPHSGDVHIQINSIPKECAENASSRNIRSGVHSCAHGCVHSRLRGHSHSEARLTDDTAAESGDHGSSSFSEFRYLFKWLQKSLPYILILSVKLVMQHITGISLGIGLLTTFMYANKSIVNQVFLRERSSKIQCAWLLVFLAGSSVLLYYTFHSQSLYYSLIFLNPTLDHLSFWEVFWIVGITDFILKFFFMGLKCLILLVPSFIMPFKSKGYWYMLLEELCQYYRTFVPIPVWFRYLISYGEFGNVTRWSLGILLALLYLILKLLEFFGHLRTFRQVLRIFFTQPSYGVAASKRQCSDVDDICSICQAEFQKPILLICQHIFCEECMTLWFNREKTCPLCRTVISDHINKWKDGATSSHLQIY | E3 ubiquitin-protein ligase that acts in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway, which targets misfolded proteins that accumulate in the endoplasmic reticulum (ER) for ubiquitination and subsequent proteasome-mediated degradation. Protects cells from ER stress-induced apoptosis.
Subcellular locations: Endoplasmic reticulum membrane
Expressed at highest levels in testis, lower levels in heart, liver, lung, and kidney . Not detected in brain, ovary, and uterus . Down-regulated in testis from patients with maturation arrest (MA) or Sertoli cell-only syndrome (SCOS) . Ubiquitously expressed with high expression in testis . |
RNFT2_HUMAN | Homo sapiens | MWLFTVNQVLRKMQRRHSSNTDNIPPERNRSQALSSEASVDEGGVFESLKAEAASPPALFSGLSGSLPTSSFPSSLVLGSSAGGGDVFIQMPASREEGGGRGEGGAYHHRQPHHHFHHGGHRGGSLLQHVGGDHRGHSEEGGDEQPGTPAPALSELKAVICWLQKGLPFILILLAKLCFQHKLGIAVCIGMASTFAYANSTLREQVSLKEKRSVLVILWILAFLAGNTLYVLYTFSSQQLYNSLIFLKPNLEMLDFFDLLWIVGIADFVLKYITIALKCLIVALPKIILAVKSKGKFYLVIEELSQLFRSLVPIQLWYKYIMGDDSSNSYFLGGVLIVLYSLCKSFDICGRVGGVRKALKLLCTSQNYGVRATGQQCTEAGDICAICQAEFREPLILLCQHVFCEECLCLWLDRERTCPLCRSVAVDTLRCWKDGATSAHFQVY | E3 ubiquitin-protein ligase that negatively regulates IL3-dependent cellular responses through IL3RA ubiquitination and degradation by the proteasome, having an anti-inflammatory effect.
Subcellular locations: Membrane |
RNFT2_PONAB | Pongo abelii | MWLFTVNQVLRKMQRRHSSNTDNIPPERNRSQALSSEASVDEGGVFESLKAEAASPPALFSGLSGSLPTSSFPSSLVLGSSAGGGDVFIQMPASREEGGGRGEGGAYHHRQPHHHFHHGGHRGGSLLQHVGGDHRGHSEEGGDEQPGTPAPALSELKAVICWLQKGLPFILILLAKLCFQHKLGIAVCIGMASTFAYANSTLREQVSLKEKRSVLVILWILAFLAGNTLYVLYTFSSQQLYNSLIFLKPNLETLDFFDLLWIVGIADFVLKYITIALKCLIVALPKIILAVKSKGKFYLVIEELSQLFRSLVPIQLWYKYIMGDDSSNSYFLGGVLIVLYSLCKSFDICGRVGGVRKALKLLCTSQNYGVRATGQQCTEAGDICAICQAEFREPLILLCQHVFCEECLCLWLDRERTCPLSRSVAVDTLRCWKDGATSAHFQVY | E3 ubiquitin-protein ligase that negatively regulates IL3-dependent cellular responses through IL3RA ubiquitination and degradation by the proteasome, having an anti-inflammatory effect.
Subcellular locations: Membrane |
RNLS_HUMAN | Homo sapiens | MAQVLIVGAGMTGSLCAALLRRQTSGPLYLAVWDKAEDSGGRMTTACSPHNPQCTADLGAQYITCTPHYAKKHQRFYDELLAYGVLRPLSSPIEGMVMKEGDCNFVAPQGISSIIKHYLKESGAEVYFRHRVTQINLRDDKWEVSKQTGSPEQFDLIVLTMPVPEILQLQGDITTLISECQRQQLEAVSYSSRYALGLFYEAGTKIDVPWAGQYITSNPCIRFVSIDNKKRNIESSEIGPSLVIHTTVPFGVTYLEHSIEDVQELVFQQLENILPGLPQPIATKCQKWRHSQVTNAAANCPGQMTLHHKPFLACGGDGFTQSNFDGCITSALCVLEALKNYI | Catalyzes the oxidation of the less abundant 1,2-dihydro-beta-NAD(P) and 1,6-dihydro-beta-NAD(P) to form beta-NAD(P)(+). The enzyme hormone is secreted by the kidney, and circulates in blood and modulates cardiac function and systemic blood pressure. Lowers blood pressure in vivo by decreasing cardiac contractility and heart rate and preventing a compensatory increase in peripheral vascular tone, suggesting a causal link to the increased plasma catecholamine and heightened cardiovascular risk. High concentrations of catecholamines activate plasma renalase and promotes its secretion and synthesis.
Subcellular locations: Secreted
Secreted into the blood by the kidney. Highly expressed in the kidney, expressed at lower level in heart, skeletal muscle and small intestine. Its plasma concentration is markedly reduced in patients with end-stage renal disease, as compared with healthy subjects. |
RNPL1_HUMAN | Homo sapiens | MAAQCCCRQAPGAEAAPVRPPPEPPPALDVASASSAQLFRLRHLQLGLELRPEARELAGCLVLELCALRPAPRALVLDAHPALRLHSAAFRRAPAAAAETPCAFAFSAPGPGPAPPPPLPAFPEAPGSEPACCPLAFRVDPFTDYGSSLTVTLPPELQAHQPFQVILRYTSTDAPAIWWLDPELTYGCAKPFVFTQGHSVCNRSFFPCFDTPAVKCTYSAVVKAPSGVQVLMSATRSAYMEEEGVFHFHMEHPVPAYLVALVAGDLKPADIGPRSRVWAEPCLLPTATSKLSGAVEQWLSAAERLYGPYMWGRYDIVFLPPSFPIVAMENPCLTFIISSILESDEFLVIDVIHEVAHSWFGNAVTNATWEEMWLSEGLATYAQRRITTETYGAAFTCLETAFRLDALHRQMKLLGEDSPVSKLQVKLEPGVNPSHLMNLFTYEKGYCFVYYLSQLCGDPQRFDDFLRAYVEKYKFTSVVAQDLLDSFLSFFPELKEQSVDCRAGLEFERWLNATGPPLAEPDLSQGSSLTRPVEALFQLWTAEPLDQAAASASAIDISKWRTFQTALFLDRLLDGSPLPQEVVMSLSKCYSSLLDSMNAEIRIRWLQIVVRNDYYPDLHRVRRFLESQMSRMYTIPLYEDLCTGALKSFALEVFYQTQGRLHPNLRRAIQQILSQGLGSSTEPASEPSTELGKAEADTDSDAQALLLGDEAPSSAISLRDVNVSA | Broad specificity aminopeptidase which preferentially hydrolyzes an N-terminal methionine, citrulline or glutamine.
Ubiquitously expressed. Expressed at relatively higher levels in heart and skeletal muscle. |
ROBO2_HUMAN | Homo sapiens | MSLLMFTQLLLCGFLYVRVDGSRLRQEDFPPRIVEHPSDVIVSKGEPTTLNCKAEGRPTPTIEWYKDGERVETDKDDPRSHRMLLPSGSLFFLRIVHGRRSKPDEGSYVCVARNYLGEAVSRNASLEVALLRDDFRQNPTDVVVAAGEPAILECQPPRGHPEPTIYWKKDKVRIDDKEERISIRGGKLMISNTRKSDAGMYTCVGTNMVGERDSDPAELTVFERPTFLRRPINQVVLEEEAVEFRCQVQGDPQPTVRWKKDDADLPRGRYDIKDDYTLRIKKTMSTDEGTYMCIAENRVGKMEASATLTVRAPPQFVVRPRDQIVAQGRTVTFPCETKGNPQPAVFWQKEGSQNLLFPNQPQQPNSRCSVSPTGDLTITNIQRSDAGYYICQALTVAGSILAKAQLEVTDVLTDRPPPIILQGPANQTLAVDGTALLKCKATGDPLPVISWLKEGFTFPGRDPRATIQEQGTLQIKNLRISDTGTYTCVATSSSGETSWSAVLDVTESGATISKNYDLSDLPGPPSKPQVTDVTKNSVTLSWQPGTPGTLPASAYIIEAFSQSVSNSWQTVANHVKTTLYTVRGLRPNTIYLFMVRAINPQGLSDPSPMSDPVRTQDISPPAQGVDHRQVQKELGDVLVRLHNPVVLTPTTVQVTWTVDRQPQFIQGYRVMYRQTSGLQATSSWQNLDAKVPTERSAVLVNLKKGVTYEIKVRPYFNEFQGMDSESKTVRTTEEAPSAPPQSVTVLTVGSYNSTSISVSWDPPPPDHQNGIIQEYKIWCLGNETRFHINKTVDAAIRSVIIGGLFPGIQYRVEVAASTSAGVGVKSEPQPIIIGRRNEVVITENNNSITEQITDVVKQPAFIAGIGGACWVILMGFSIWLYWRRKKRKGLSNYAVTFQRGDGGLMSNGSRPGLLNAGDPSYPWLADSWPATSLPVNNSNSGPNEIGNFGRGDVLPPVPGQGDKTATMLSDGAIYSSIDFTTKTSYNSSSQITQATPYATTQILHSNSIHELAVDLPDPQWKSSIQQKTDLMGFGYSLPDQNKGNNGGKGGKKKKNKNSSKPQKNNGSTWANVPLPPPPVQPLPGTELEHYAVEQQENGYDSDSWCPPLPVQTYLHQGLEDELEEDDDRVPTPPVRGVASSPAISFGQQSTATLTPSPREEMQPMLQAHLDELTRAYQFDIAKQTWHIQSNNQPPQPPVPPLGYVSGALISDLETDVADDDADDEEEALEIPRPLRALDQTPGSSMDNLDSSVTGKAFTSSQRPRPTSPFSTDSNTSAALSQSQRPRPTKKHKGGRMDQQPALPHRREGMTDEEALVPYSKPSFPSPGGHSSSGTASSKGSTGPRKTEVLRAGHQRNASDLLDIGYMGSNSQGQFTGEL | Receptor for SLIT2, and probably SLIT1, which are thought to act as molecular guidance cue in cellular migration, including axonal navigation at the ventral midline of the neural tube and projection of axons to different regions during neuronal development.
Subcellular locations: Membrane |
ROBO3_HUMAN | Homo sapiens | MLRYLLKTLLQMNLFADSLAGDISNSSELLLGFNSSLAALNHTLLPPGDPSLNGSRVGPEDAMPRIVEQPPDLLVSRGEPATLPCRAEGRPRPNIEWYKNGARVATVREDPRAHRLLLPSGALFFPRIVHGRRARPDEGVYTCVARNYLGAAASRNASLEVAVLRDDFRQSPGNVVVAVGEPAVLECVPPRGHPEPSVSWRKDGARLKEEEGRITIRGGKLMMSHTLKSDAGMYVCVASNMAGERESAAAEVMVLERPSFLRRPVNQVVLADAPVTFLCEVKGDPPPRLRWRKEDGELPTGRYEIRSDHSLWIGHVSAEDEGTYTCVAENSVGRAEASGSLSVHVPPQLVTQPQDQMAAPGESVAFQCETKGNPPPAIFWQKEGSQVLLFPSQSLQPTGRFSVSPRGQLNITAVQRGDAGYYVCQAVSVAGSILAKALLEIKGASLDGLPPVILQGPANQTLVLGSSVWLPCRVTGNPQPSVRWKKDGQWLQGDDLQFKTMANGTLYIANVQEMDMGFYSCVAKSSTGEATWSGWLKMREDWGVSPDPPTEPSSPPGAPSQPVVTEITKNSITLTWKPNPQTGAAVTSYVIEAFSPAAGNTWRTVADGVQLETHTVSGLQPNTIYLFLVRAVGAWGLSEPSPVSEPVRTQDSSPSRPVEDPWRGQQGLAEVAVRLQEPIVLGPRTLQVSWTVDGPVQLVQGFRVSWRVAGPEGGSWTMLDLQSPSQQSTVLRGLPPGTQIQIKVQAQGQEGLGAESLSVTRSIPEEAPSGPPQGVAVALGGDGNSSITVSWEPPLPSQQNGVITEYQIWCLGNESRFHLNRSAAGWARSAMLRGLVPGLLYRTLVAAATSAGVGVPSAPVLVQLPSPPDLEPGLEVGAGLAVRLARVLREPAFLAGSGAACGALLLGLCAALYWRRKQRKELSHYTASFAYTPAVSFPHSEGLSGASSRPPMGLGPAPYSWLADSWPHPSRSPSAQEPRGSCCPSNPDPDDRYYNEAGISLYLAQTARGTAAPGEGPVYSTIDPAGEELQTFHGGFPQHPSGDLGPWSQYAPPEWSQGDSGAKGGKVKLLGKPVQMPSLNWPEALPPPPPSCELSCLEGPEEELEGSSEPEEWCPPMPERSHLTEPSSSGGCLVTPSRRETPSPTPSYGQQSTATLTPSPPDPPQPPTDMPHLHQMPRRVPLGPSSPLSVSQPMLGIREARPAGLGAGPAASPHLSPSPAPSTASSAPGRTWQGNGEMTPPLQGPRARFRKKPKALPYRRENSPGDLPPPPLPPPEEEASWALELRAAGSMSSLERERSGERKAVQAVPLAAQRVLHPDEEAWLPYSRPSFLSRGQGTSTCSTAGSNSSRGSSSSRGSRGPGRSRSRSQSRSQSQRPGQKRREEPR | Receptor involved in axon guidance during development . Acts as a multifunctional regulator of pathfinding that simultaneously mediates NELL2 repulsion, inhibits SLIT repulsion, and facilitates Netrin-1/NTN1 attraction. In spinal cord development plays a role in guiding commissural axons probably by preventing premature sensitivity to Slit proteins thus inhibiting Slit signaling through ROBO1/ROBO2. Binding OF NELL2 to the receptor ROBO3 promotes oligomerization of ROBO3, resulting in the repulsion of commissural axons in the midline. ROBO3 also indirectly boosts axon attraction to NTN1 without interacting with NTN1 itself (By similarity).
Subcellular locations: Membrane |
ROBO4_HUMAN | Homo sapiens | MGSGGDSLLGGRGSLPLLLLLIMGGMAQDSPPQILVHPQDQLFQGPGPARMSCQASGQPPPTIRWLLNGQPLSMVPPDPHHLLPDGTLLLLQPPARGHAHDGQALSTDLGVYTCEASNRLGTAVSRGARLSVAVLREDFQIQPRDMVAVVGEQFTLECGPPWGHPEPTVSWWKDGKPLALQPGRHTVSGGSLLMARAEKSDEGTYMCVATNSAGHRESRAARVSIQEPQDYTEPVELLAVRIQLENVTLLNPDPAEGPKPRPAVWLSWKVSGPAAPAQSYTALFRTQTAPGGQGAPWAEELLAGWQSAELGGLHWGQDYEFKVRPSSGRARGPDSNVLLLRLPEKVPSAPPQEVTLKPGNGTVFVSWVPPPAENHNGIIRGYQVWSLGNTSLPPANWTVVGEQTQLEIATHMPGSYCVQVAAVTGAGAGEPSRPVCLLLEQAMERATQEPSEHGPWTLEQLRATLKRPEVIATCGVALWLLLLGTAVCIHRRRRARVHLGPGLYRYTSEDAILKHRMDHSDSQWLADTWRSTSGSRDLSSSSSLSSRLGADARDPLDCRRSLLSWDSRSPGVPLLPDTSTFYGSLIAELPSSTPARPSPQVPAVRRLPPQLAQLSSPCSSSDSLCSRRGLSSPRLSLAPAEAWKAKKKQELQHANSSPLLRGSHSLELRACELGNRGSKNLSQSPGAVPQALVAWRALGPKLLSSSNELVTRHLPPAPLFPHETPPTQSQQTQPPVAPQAPSSILLPAAPIPILSPCSPPSPQASSLSGPSPASSRLSSSSLSSLGEDQDSVLTPEEVALCLELSEGEETPRNSVSPMPRAPSPPTTYGYISVPTASEFTDMGRTGGGVGPKGGVLLCPPRPCLTPTPSEGSLANGWGSASEDNAASARASLVSSSDGSFLADAHFARALAVAVDSFGFGLEPREADCVFIDASSPPSPRDEIFLTPNLSLPLWEWRPDWLEDMEVSHTQRLGRGMPPWPPDSQISSQRSQLHCRMPKAGASPVDYS | Receptor for Slit proteins, at least for SLIT2, and seems to be involved in angiogenesis and vascular patterning. May mediate the inhibition of primary endothelial cell migration by Slit proteins (By similarity). Involved in the maintenance of endothelial barrier organization and function .
Specifically expressed in endothelial cells. Expressed in endothelial and intimal cells of the ascending aorta . |
ROM1_HUMAN | Homo sapiens | MAPVLPLVLPLQPRIRLAQGLWLLSWLLALAGGVILLCSGHLLVQLRHLGTFLAPSCQFPVLPQAALAAGAVALGTGLVGVGASRASLNAALYPPWRGVLGPLLVAGTAGGGGLLVVGLGLALALPGSLDEALEEGLVTALAHYKDTEVPGHCQAKRLVDELQLRYHCCGRHGYKDWFGVQWVSSRYLDPGDRDVADRIQSNVEGLYLTDGVPFSCCNPHSPRPCLQNRLSDSYAHPLFDPRQPNQNLWAQGCHEVLLEHLQDLAGTLGSMLAVTFLLQALVLLGLRYLQTALEGLGGVIDAGGETQGYLFPSGLKDMLKTAWLQGGVACRPAPEEAPPGEAPPKEDLSEA | Plays a role in rod outer segment (ROS) morphogenesis (By similarity). May play a role with PRPH2 in the maintenance of the structure of ROS curved disks (By similarity). Plays a role in the organization of the ROS and maintenance of ROS disk diameter (By similarity). Involved in the maintenance of the retina outer nuclear layer (By similarity).
Subcellular locations: Photoreceptor inner segment membrane, Photoreceptor outer segment membrane
Retina photoreceptors (at protein level) (, ). In rim region of ROS disks . |
RPB11_HUMAN | Homo sapiens | MNAPPAFESFLLFEGEKKITINKDTKVPNACLFTINKEDHTLGNIIKSQLLKDPQVLFAGYKVPHPLEHKIIIRVQTTPDYSPQEAFTNAITDLISELSLLEERFRVAIKDKQEGIE | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity).
Subcellular locations: Nucleus
Ubiquitously expressed. High expression was found in heart and skeletal muscle. |
RPB1B_HUMAN | Homo sapiens | MNAPPAFESFLLFEGEKITINKDTKVPKACLFTINKEDHTLGNIIKSQLLKDPQVLFAGYKVPHPLEHKIIIRVQTTPDYSPQEAFTNAITDLISELSLLEERFRTCLLPLRLLP | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity).
Subcellular locations: Nucleus
Ubiquitously expressed. |
RPB1C_HUMAN | Homo sapiens | MNAPPAFESFLLFEGEKITINKDTKVPNACLFTINKEDHTLGNIIKSQLLKDPQVLFAGYKVPHPLEHKIIIRVQTTPDYSPQEAFTNAITDLISELSLLEERFRTCLLPLRLLP | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity).
Subcellular locations: Nucleus |
RPC1_HUMAN | Homo sapiens | MVKEQFRETDVAKKISHICFGMKSPEEMRQQAHIQVVSKNLYSQDNQHAPLLYGVLDHRMGTSEKDRPCETCGKNLADCLGHYGYIDLELPCFHVGYFRAVIGILQMICKTCCHIMLSQEEKKQFLDYLKRPGLTYLQKRGLKKKISDKCRKKNICHHCGAFNGTVKKCGLLKIIHEKYKTNKKVVDPIVSNFLQSFETAIEHNKEVEPLLGRAQENLNPLVVLNLFKRIPAEDVPLLLMNPEAGKPSDLILTRLLVPPLCIRPSVVSDLKSGTNEDDLTMKLTEIIFLNDVIKKHRISGAKTQMIMEDWDFLQLQCALYINSELSGIPLNMAPKKWTRGFVQRLKGKQGRFRGNLSGKRVDFSGRTVISPDPNLRIDEVAVPVHVAKILTFPEKVNKANINFLRKLVQNGPEVHPGANFIQQRHTQMKRFLKYGNREKMAQELKYGDIVERHLIDGDVVLFNRQPSLHKLSIMAHLARVKPHRTFRFNECVCTPYNADFDGDEMNLHLPQTEEAKAEALVLMGTKANLVTPRNGEPLIAAIQDFLTGAYLLTLKDTFFDRAKACQIIASILVGKDEKIKVRLPPPTILKPVTLWTGKQIFSVILRPSDDNPVRANLRTKGKQYCGKGEDLCANDSYVTIQNSELMSGSMDKGTLGSGSKNNIFYILLRDWGQNEAADAMSRLARLAPVYLSNRGFSIGIGDVTPGQGLLKAKYELLNAGYKKCDEYIEALNTGKLQQQPGCTAEETLEALILKELSVIRDHAGSACLRELDKSNSPLTMALCGSKGSFINISQMIACVGQQAISGSRVPDGFENRSLPHFEKHSKLPAAKGFVANSFYSGLTPTEFFFHTMAGREGLVDTAVKTAETGYMQRRLVKSLEDLCSQYDLTVRSSTGDIIQFIYGGDGLDPAAMEGKDEPLEFKRVLDNIKAVFPCPSEPALSKNELILTTESIMKKSEFLCCQDSFLQEIKKFIKGVSEKIKKTRDKYGINDNGTTEPRVLYQLDRITPTQVEKFLETCRDKYMRAQMEPGSAVGALCAQSIGEPGTQMTLKTFHFAGVASMNITLGVPRIKEIINASKAISTPIITAQLDKDDDADYARLVKGRIEKTLLGEISEYIEEVFLPDDCFILVKLSLERIRLLRLEVNAETVRYSICTSKLRVKPGDVAVHGEAVVCVTPRENSKSSMYYVLQFLKEDLPKVVVQGIPEVSRAVIHIDEQSGKEKYKLLVEGDNLRAVMATHGVKGTRTTSNNTYEVEKTLGIEAARTTIINEIQYTMVNHGMSIDRRHVMLLSDLMTYKGEVLGITRFGLAKMKESVLMLASFEKTADHLFDAAYFGQKDSVCGVSECIIMGIPMNIGTGLFKLLHKADRDPNPPKRPLIFDTNEFHIPLVT | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates ( ). Largest and catalytic core component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci ( , ). Pol III-mediated transcription proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA ( , ). Forms Pol III active center together with the second largest subunit POLR3B/RPC2. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. A bridging helix emanates from POLR3A/RPC1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol III by acting as a ratchet that moves the DNA-RNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 providing lysine residues involved in catalysis. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphoester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate ( ). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway.
Subcellular locations: Nucleus, Cytoplasm, Cytosol
Expressed in the brain, in the cortex and the white matter (at protein level). |
RPC22_HUMAN | Homo sapiens | MEEDQELERKAIEELLKEAKRGKTRAETMGPMGWMKCPLASTNKRFLINTIKNTLPSHKEQDHEQKEGDKEPAKSQAQKEENPKKHRSHPYKHSFRARGSASYSPPRKRSSQDKYEKRSNRR | null |
RPC2_HUMAN | Homo sapiens | MDVLAEEFGNLTPEQLAAPIPTVEEKWRLLPAFLKVKGLVKQHIDSFNYFINVEIKKIMKANEKVTSDADPMWYLKYLNIYVGLPDVEESFNVTRPVSPHECRLRDMTYSAPITVDIEYTRGSQRIIRNALPIGRMPIMLRSSNCVLTGKTPAEFAKLNECPLDPGGYFIVKGVEKVILIQEQLSKNRIIVEADRKGAVGASVTSSTHEKKSRTNMAVKQGRFYLRHNTLSEDIPIVIIFKAMGVESDQEIVQMIGTEEHVMAAFGPSLEECQKAQIFTQMQALKYIGNKVRRQRMWGGGPKKTKIEEARELLASTILTHVPVKEFNFRAKCIYTAVMVRRVILAQGDNKVDDRDYYGNKRLELAGQLLSLLFEDLFKKFNSEMKKIADQVIPKQRAAQFDVVKHMRQDQITNGMVNAISTGNWSLKRFKMDRQGVTQVLSRLSYISALGMMTRISSQFEKTRKVSGPRSLQPSQWGMLCPSDTPEGEACGLVKNLALMTHITTDMEDGPIVKLASNLGVEDVNLLCGEELSYPNVFLVFLNGNILGVIRDHKKLVNTFRLMRRAGYINEFVSISTNLTDRCVYISSDGGRLCRPYIIVKKQKPAVTNKHMEELAQGYRNFEDFLHESLVEYLDVNEENDCNIALYEHTINKDTTHLEIEPFTLLGVCAGLIPYPHHNQSPRNTYQCAMGKQAMGTIGYNQRNRIDTLMYLLAYPQKPMVKTKTIELIEFEKLPAGQNATVAVMSYSGYDIEDALVLNKASLDRGFGRCLVYKNAKCTLKRYTNQTFDKVMGPMLDAATRKPIWRHEILDADGICSPGEKVENKQVLVNKSMPTVTQIPLEGSNVPQQPQYKDVPITYKGATDSYIEKVMISSNAEDAFLIKMLLRQTRRPEIGDKFSSRHGQKGVCGLIVPQEDMPFCDSGICPDIIMNPHGFPSRMTVGKLIELLAGKAGVLDGRFHYGTAFGGSKVKDVCEDLVRHGYNYLGKDYVTSGITGEPLEAYIYFGPVYYQKLKHMVLDKMHARARGPRAVLTRQPTEGRSRDGGLRLGEMERDCLIGYGASMLLLERLMISSDAFEVDVCGQCGLLGYSGWCHYCKSSCHVSSLRIPYACKLLFQELQSMNIIPRLKLSKYNE | DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase III (Pol III) which synthesizes small non-coding RNAs including 5S rRNA, snRNAs, tRNAs and miRNAs from at least 500 distinct genomic loci (, ). Pol III-mediated transcription proceeds through transcription initiation, transcription elongation and transcription termination stages. During transcription initiation, Pol III is recruited to DNA promoters type I, II or III with the help of general transcription factors and other specific initiation factors. Once the polymerase has escaped from the promoter it enters the elongation phase during which RNA is actively polymerized, based on complementarity with the template DNA strand. Transcription termination involves the release of the RNA transcript and polymerase from the DNA ( , ). Forms Pol III active center together with the largest subunit POLR3A/RPC1. A single-stranded DNA template strand of the promoter is positioned within the central active site cleft of Pol III. A bridging helix emanates from POLR3A/RPC1 and crosses the cleft near the catalytic site and is thought to promote translocation of Pol III by acting as a ratchet that moves the DNA-RNA hybrid through the active site by switching from straight to bent conformations at each step of nucleotide addition. Appends one nucleotide at a time to the 3' end of the nascent RNA, with POLR3A/RPC1 most likely contributing a Mg(2+)-coordinating DxDGD motif, and POLR3B/RPC2 providing lysine residues involved in catalysis. Typically, Mg(2+) ions direct a 5' nucleoside triphosphate to form a phosphoester bond with the 3' hydroxyl of the preceding nucleotide of the nascent RNA, with the elimination of pyrophosphate ( , ). Pol III plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as a nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus-encoded RNAs (EBERs) induce type I interferon and NF-kappa-B through the RIG-I pathway.
Subcellular locations: Nucleus, Cytoplasm, Cytosol |
RPH3L_HUMAN | Homo sapiens | MADTIFGSGNDQWVCPNDRQLALRAKLQTGWSVHTYQTEKQRRKQHLSPAEVEAILQVIQRAERLDVLEQQRIGRLVERLETMRRNVMGNGLSQCLLCGEVLGFLGSSSVFCKDCRKKVCTKCGIEASPGQKRPLWLCKICSEQREVWKRSGAWFYKGLPKYILPLKTPGRADDPHFRPLPTEPAEREPRSSETSRIYTWARGRVVSSDSDSDSDLSSSSLEDRLPSTGVRDRKGDKPWKESGGSVEAPRMGFTHPPGHLSGCQSSLASGETGTGSADPPGGPRPGLTRRAPVKDTPGRAPAADAAPAGPSSCLG | Rab GTPase effector involved in the late steps of regulated exocytosis, both in endocrine and exocrine cells (By similarity). Acts as a potential RAB3B effector protein in epithelial cells.
Subcellular locations: Cytoplasm, Cytoplasmic vesicle, Secretory vesicle membrane
Recruited to the vesicle membrane in a GTP- and RAB3B-dependent manner in epithelial cells.
Moderate to high levels of expression in thyroid, ovary, stomach, heart, pancreas, skeletal muscle, kidney and liver. Also detected in epithelial cells. |
RPN1_HUMAN | Homo sapiens | MEAPAAGLFLLLLLGTWAPAPGSASSEAPPLINEDVKRTVDLSSHLAKVTAEVVLAHLGGGSTSRATSFLLALEPELEARLAHLGVQVKGEDEEENNLEVRETKIKGKSGRFFTVKLPVALDPGAKISVIVETVYTHVLHPYPTQITQSEKQFVVFEGNHYFYSPYPTKTQTMRVKLASRNVESYTKLGNPTRSEDLLDYGPFRDVPAYSQDTFKVHYENNSPFLTITSMTRVIEVSHWGNIAVEENVDLKHTGAVLKGPFSRYDYQRQPDSGISSIRSFKTILPAAAQDVYYRDEIGNVSTSHLLILDDSVEMEIRPRFPLFGGWKTHYIVGYNLPSYEYLYNLGDQYALKMRFVDHVFDEQVIDSLTVKIILPEGAKNIEIDSPYEISRAPDELHYTYLDTFGRPVIVAYKKNLVEQHIQDIVVHYTFNKVLMLQEPLLVVAAFYILFFTVIIYVRLDFSITKDPAAEARMKVACITEQVLTLVNKRIGLYRHFDETVNRYKQSRDISTLNSGKKSLETEHKALTSEIALLQSRLKTEGSDLCDRVSEMQKLDAQVKELVLKSAVEAERLVAGKLKKDTYIENEKLISGKRQELVTKIDHILDAL | Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation . N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.
Subcellular locations: Endoplasmic reticulum, Endoplasmic reticulum membrane, Melanosome
Identified by mass spectrometry in melanosome fractions from stage I to stage IV.
Expressed in all tissues tested. |
RPN1_MACFA | Macaca fascicularis | MEAPVARLFLLLLLGSWTPAPGSASSEAPPLINEDVKRTVDLSSHLAKVTAEVVLAHLGGSSTSRATSFLLALEPELEARLAHLGVQVKGEDEEDNNLEVRETKIKGKSGRFFIVKLPVALDPGAKISVIVETVYTHVLQPYPTQITQSEKQFVVFEGNHYFYSPYPTKTQTMRVKLASRNVESYTKLGNPTRSEDLLDYGPFRDVPAYSQDTFKVHYENNSPFLTITSMTRVIEVSHWGNIAVEENVDLKHTGAVLKGPFSRYDYQRQPDSGISSIRSFKTILPAAAQDVYYRDEIGNVSTSHLLILDDSVEMEIRPRFPLFGGWKTHYIVGYNLPSYEYLYNLGDQYALKMRFVDHVFDEQVIDSLTVKIILPEGAKNIEIDSPYEISRAPDELHYTYLDTFGRPVIVAYKKNLVEQHIQDIVVHYTFNKVLMLQEPLLVVAAFYILFFTVIIYVRLDFSITKDPAAEARMKVACITEQVLTLVNKRIGLYRHFDETVNRYKQSRDISTLNSGKKSLETEHKALTSEIALLQSRLKTEGSDLCDRVSEMQKLDAQVKELVLKSAVEAERLVAGKLKKDTYIENEKLISGKRQELVTKIDHILDAL | Subunit of the oligosaccharyl transferase (OST) complex that catalyzes the initial transfer of a defined glycan (Glc(3)Man(9)GlcNAc(2) in eukaryotes) from the lipid carrier dolichol-pyrophosphate to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains, the first step in protein N-glycosylation. N-glycosylation occurs cotranslationally and the complex associates with the Sec61 complex at the channel-forming translocon complex that mediates protein translocation across the endoplasmic reticulum (ER). All subunits are required for a maximal enzyme activity.
Subcellular locations: Endoplasmic reticulum, Endoplasmic reticulum membrane, Melanosome |
RRF2M_HUMAN | Homo sapiens | MLTNLRIFAMSHQTIPSVYINNICCYKIRASLKRLKPHVPLGRNCSSLPGLIGNDIKSLHSIINPPIAKIRNIGIMAHIDAGKTTTTERILYYSGYTRSLGDVDDGDTVTDFMAQERERGITIQSAAVTFDWKGYRVNLIDTPGHVDFTLEVERCLRVLDGAVAVFDASAGVEAQTLTVWRQADKHNIPRICFLNKMDKTGASFKYAVESIREKLKAKPLLLQLPIGEAKTFKGVVDVVMKEKLLWNCNSNDGKDFERKPLLEMNDPELLKETTEARNALIEQVADLDDEFADLVLEEFSENFDLLPAEKLQTAIHRVTLAQTAVPVLCGSALKNKGIQPLLDAVTMYLPSPEERNYEFLQWYKDDLCALAFKVLHDKQRGPLVFMRIYSGTIKPQLAIHNINGNCTERISRLLLPFADQHVEIPSLTAGNIALTVGLKHTATGDTIVSSKSSALAAARRAEREGEKKHRQNNEAERLLLAGVEIPEPVFFCTIEPPSLSKQPDLEHALKCLQREDPSLKVRLDPDSGQTVLCGMGELHIEIIHDRIKREYGLETYLGPLQVAYRETILNSVRATDTLDRTLGDKRHLVTVEVEARPIETSSVMPVIEFEYAESINEGLLKVSQEAIENGIHSACLQGPLLGSPIQDVAITLHSLTIHPGTSTTMISACVSRCVQKALKKADKQVLEPLMNLEVTVARDYLSPVLADLAQRRGNIQEIQTRQDNKVVIGFVPLAEIMGYSTVLRTLTSGSATFALELSTYQAMNPQDQNTLLNRRSGLT | Mitochondrial GTPase that mediates the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis (, ). Acts in collaboration with MRRF (, ). Promotes mitochondrial ribosome recycling by dissolution of intersubunit contacts . GTP hydrolysis follows the ribosome disassembly and probably occurs on the ribosome large subunit . Not involved in the GTP-dependent ribosomal translocation step during translation elongation .
Subcellular locations: Mitochondrion
Widely expressed. |
RRF2M_PONAB | Pongo abelii | MLTNLRIFAMSHQTIPSVCINNICCYKIRASLKRLKPHVPLGRNCSSLPGLIGNDIKSLHSIINPPIAKIRNIGIMAHIDAGKTTTTERILYYSGYTRSLGDVDDGDTVTDFMAQERERGITIQSAAVTFDWKGYRVNLIDTPGHVDFTLEVERCLRVLDGAVAVFDASAGVEAQTLTVWRQADKHNIPRICFLNKMDKTGASFKYAVESIREKLKAKPLLLQLPIGEAKTFKGVVDVVTKEKLLWNCNSNDGKDFERKPLLEMNDPELLKETTEARNALIEQVADLDDEFADLVLEEFSENFDLLPAEKLQTAIHRVTLAQTAVPVLCGSALKNKGIQPLLDAVTMYLPSPEECNCEFLQWYKDDLCALAFKVLHDKQRGPLVFMRIYSGTIKPQLAIHNINGNCTERISRLLLPFADQHVEIPSLTAGNIALTVGLKHTATGDTIVSSKSSALAAARRAEREGEKKHRQNSEAERLVLAGVEIPEPVFFCTIEPPSVSKQPDLEHALKCLQREDPSLKVRLDPDSGQTVLCGMGELHIEIIHDRIKREYGLEAYLGPLQVAYRETILNSVRATDTLDRTLGDKRHLVTVEVEARPTETTSVMPVIEYAESIHEGLLKVSQEAIENGIYSACLQGPLLGSPIQDVAITLHSLTIHPGTSTTMISACVSRCVQKALKKADKQVLEPLMNLEVTVARDYLSPVLADLAQRRGNIQEIQTRQDNKVVIGFVPLAEIMGYSTVLRTLTSGSATFALELSTNQAMNPQDQNTLLNRRSGLT | Mitochondrial GTPase that mediates the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis. Acts in collaboration with MRRF. GTP hydrolysis follows the ribosome disassembly and probably occurs on the ribosome large subunit. Not involved in the GTP-dependent ribosomal translocation step during translation elongation.
Subcellular locations: Mitochondrion |
RRP36_HUMAN | Homo sapiens | MPGANYRAGAGAGAGARRPRGARDREEDGGGLEPAAVARDLLRGTSNMSFEELLELQSQVGTKTYKQLVAGNSPKKQASRPPIQNACVADKHRPLEMSAKIRVPFLRQVVPISKKVARDPRFDDLSGEYNPEVFDKTYQFLNDIRAKEKELVKKQLKKHLSGEEHEKLQQLLQRMEQQEMAQQERKQQQELHLALKQERRAQAQQGHRPYFLKKSEQRQLALAEKFKELKRSKKLENFLSRKRRRNAGKDRRHLPLSKE | Involved in the early processing steps of the pre-rRNA in the maturation pathway leading to the 18S rRNA.
Subcellular locations: Nucleus, Nucleolus
Concentrated in the fibrillar region of the nucleolus. |
RS11_HUMAN | Homo sapiens | MADIQTERAYQKQPTIFQNKKRVLLGETGKEKLPRYYKNIGLGFKTPKEAIEGTYIDKKCPFTGNVSIRGRILSGVVTKMKMQRTIVIRRDYLHYIRKYNRFEKRHKNMSVHLSPCFRDVQIGDIVTVGECRPLSKTVRFNVLKVTKAAGTKKQFQKF | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome .
Subcellular locations: Cytoplasm, Nucleus, Nucleolus |
RS16_HUMAN | Homo sapiens | MPSKGPLQSVQVFGRKKTATAVAHCKRGNGLIKVNGRPLEMIEPRTLQYKLLEPVLLLGKERFAGVDIRVRVKGGGHVAQIYAIRQSISKALVAYYQKYVDEASKKEIKDILIQYDRTLLVADPRRCESKKFGGPGARARYQKSYR | Component of the small ribosomal subunit . The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell . Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome .
Subcellular locations: Cytoplasm, Nucleus, Nucleolus |
RS19_PONAB | Pongo abelii | MPGVTVKDVNQQEFVRALAAFLKKSGKLKVPEWVDTVKLAKHKELAPYDENWFYTRAASTARHLYLRGGAGVGSMTKIYGGRQRNGVMPSHFSRGSKSVARRVLQALEGLKMVEKDQDGGRKLTPQGQRDLDRIAGQVAAANKKH | Component of the small ribosomal subunit. The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Required for pre-rRNA processing and maturation of 40S ribosomal subunits. Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome (By similarity).
Subcellular locations: Cytoplasm, Nucleus, Nucleolus |
RS5_HUMAN | Homo sapiens | MTEWETAAPAVAETPDIKLFGKWSTDDVQINDISLQDYIAVKEKYAKYLPHSAGRYAAKRFRKAQCPIVERLTNSMMMHGRNNGKKLMTVRIVKHAFEIIHLLTGENPLQVLVNAIINSGPREDSTRIGRAGTVRRQAVDVSPLRRVNQAIWLLCTGAREAAFRNIKTIAECLADELINAAKGSSNSYAIKKKDELERVAKSNR | Component of the small ribosomal subunit . The ribosome is a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell . Part of the small subunit (SSU) processome, first precursor of the small eukaryotic ribosomal subunit. During the assembly of the SSU processome in the nucleolus, many ribosome biogenesis factors, an RNA chaperone and ribosomal proteins associate with the nascent pre-rRNA and work in concert to generate RNA folding, modifications, rearrangements and cleavage as well as targeted degradation of pre-ribosomal RNA by the RNA exosome .
Subcellular locations: Cytoplasm, Nucleus, Nucleolus |
RSH4A_HUMAN | Homo sapiens | MEDSTSPKQEKENQEELGETRRPWEGKTAASPQYSEPESSEPLEAKQGPETGRQSRSSRPWSPQSRAKTPLGGPAGPETSSPAPVSPREPSSSPSPLAPARQDLAAPPQSDRTTSVIPEAGTPYPDPLEQSSDKRESTPHHTSQSEGNTFQQSQQPKPHLCGRRDVSYNNAKQKELRFDVFQEEDSNSDYDLQQPAPGGSEVAPSMLEITIQNAKAYLLKTSSNSGFNLYDHLSNMLTKILNERPENAVDIFENISQDVKMAHFSKKFDALQNENELLPTYEIAEKQKALFLQGHLEGVDQELEDEIAENALPNVMESAFYFEQAGVGLGTDETYRIFLALKQLTDTHPIQRCRFWGKILGLEMNYIVAEVEFREGEDEEEVEEEDVAEERDNGESEAHEDEEDELPKSFYKAPQAIPKEESRTGANKYVYFVCNEPGRPWVKLPPVIPAQIVIARKIKKFFTGRLDAPIISYPPFPGNESNYLRAQIARISAGTHVSPLGFYQFGEEEGEEEEEAEGGRNSFEENPDFEGIQVIDLVESLSNWVHHVQHILSQGRCNWFNSIQKNEEEEEEEDEEKDDSDYIEQEVGLPLLTPISEDLEIQNIPPWTTRLSSNLIPQYAIAVLQSNLWPGAYAFSNGKKFENFYIGWGHKYSPDNYTPPVPPPVYQEYPSGPEITEMDDPSVEEEQAFRAAQEAVLLAAENEESEEDEDEEDDYD | Component of the axonemal radial spoke head which plays an important role in ciliary motility . Essential for triplet radial spokes (RS1, RS2 and RS3) head assembly in the motile cilia (By similarity).
Subcellular locations: Cytoplasm, Cytoskeleton, Cilium axoneme, Cell projection, Cilium
Expressed in trachea, lungs, and testes . Very strong expression is detected in nasal brushings . |
RSH6A_HUMAN | Homo sapiens | MGDLPPYPERPAQQPPGRRTSQASQRRHSRDQAQALAADPEERQQIPPDAQRNAPGWSQRGSLSQQENLLMPQVFQAEEARLGGMEYPSVNTGFPSEFQPQPYSDESRMQVAELTTSLMLQRLQQGQSSLFQQLDPTFQEPPVNPLGQFNLYQTDQFSEGAQHGPYIRDDPALQFLPSELGFPHYSAQVPEPEPLELAVQNAKAYLLQTSINCDLSLYEHLVNLLTKILNQRPEDPLSVLESLNRTTQWEWFHPKLDTLRDDPEMQPTYKMAEKQKALFTRSGGGTEGEQEMEEEVGETPVPNIMETAFYFEQAGVGLSSDESFRIFLAMKQLVEQQPIHTCRFWGKILGIKRSYLVAEVEFREGEEEAEEEEVEEMTEGGEVMEAHGEEEGEEDEEKAVDIVPKSVWKPPPVIPKEESRSGANKYLYFVCNEPGLPWTRLPHVTPAQIVNARKIKKFFTGYLDTPVVSYPPFPGNEANYLRAQIARISAATQVSPLGFYQFSEEEGDEEEEGGAGRDSYEENPDFEGIPVLELVDSMANWVHHTQHILPQGRCTWVNPLQKTEEEEDLGEEEEKADEGPEEVEQEVGPPLLTPLSEDAEIMHLAPWTTRLSCSLCPQYSVAVVRSNLWPGAYAYASGKKFENIYIGWGHKYSPESFNPALPAPIQQEYPSGPEIMEMSDPTVEEEQALKAAQEQALGATEEEEEGEEEEEGEETDD | Functions as part of radial spoke complexes in the axoneme of sperm flagella that play an important part in motility. The triple radial spokes (RS1, RS2 and RS3) are required to modulate beating of the sperm flagellum.
Subcellular locations: Cytoplasm, Cytoskeleton, Flagellum axoneme |
RT05_HUMAN | Homo sapiens | MATAVRAVGCLPVLCSGTAGHLLGRQCSLNTLPAASILAWKSVLGNGHLSSLGTRDTHPYASLSRALQTQCCISSPSHLMSQQYRPYSFFTKLTADELWKGALAETGAGAKKGRGKRTKKKKRKDLNRGQIIGEGRYGFLWPGLNVPLMKNGAVQTIAQRSKEEQEKVEADMIQQREEWDRKKKMKVKRERGWSGNSWGGISLGPPDPGPCGETYEDFDTRILEVRNVFTMTAKEGRKKSIRVLVAVGNGKGAAGFSIGKATDRMDAFRKAKNRAVHHLHYIERYEDHTIFHDISLRFKRTHIKMKKQPKGYGLRCHRAIITICRLIGIKDMYAKVSGSINMLSLTQGLFRGLSRQETHQQLADKKGLHVVEIREECGPLPIVVASPRGPLRKDPEPEDEVPDVKLDWEDVKTAQGMKRSVWSNLKRAAT | Subcellular locations: Mitochondrion |
RT05_PONAB | Pongo abelii | MATAVRAVGCLPVLCSGTAGHLLRRQHSLNTLPAASILAWKSVLSNGHLSSLGTRDTHPYASLSRALQTQCCISSPSHLMSQQYRPYSFFTKLTADELWKGALAETGAGAKKGRGKRTKKKKRKDLNRGQIIGEGRYGFLWPGLNVPVMKNGTVQTIAQRSKEEQEKVEADVIQQREEWERKKKMKVKRERGWSGNSWGGLSLGPPDPGPSGETYEDFDTRILEVRNVFTMTAKEGRRKSIRVLVAVGNGKGAAGFAIGKATDRMDAFRKAKNRAVHHLYYIERYEDHTIFHDISLRFKRTHIKMKKQPKGYGLRCHRAIITICRLIGIKDMYAKVSGSTNMLSLTQGLFHGLSRQETHQQLADKKGLHVVEIREECGPLPIVVASPRGALRKDPEPDEVPDIKLDWEDVKTAQGMKRCVWSNLKRAAT | Subcellular locations: Mitochondrion |
RT06_HUMAN | Homo sapiens | MPRYELALILKAMQRPETAATLKRTIEALMDRGAIVRDLENLGERALPYRISAHSQQHNRGGYFLVDFYAPTAAVESMVEHLSRDIDVIRGNIVKHPLTQELKECEGIVPVPLAEKLYSTKKRKK | Subcellular locations: Mitochondrion |
RT26_HUMAN | Homo sapiens | MLRALSRLGAGTPCRPRAPLVLPARGRKTRHDPLAKSKIERVNMPPAVDPAEFFVLMERYQHYRQTVRALRMEFVSEVQRKVHEARAGVLAERKALKDAAEHRELMAWNQAENRRLHELRIARLRQEEREQEQRQALEQARKAEEVQAWAQRKEREVLQLQEEVKNFITRENLEARVEAALDSRKNYNWAITREGLVVRPQRRDS | Subcellular locations: Mitochondrion |
RTCB_PAPAN | Papio anubis | MSRNYNDELQFLEKISKNCWRIKKGFVPNMQVEGVFYVNDALEKLMFEELRNACRGGGVGGFLPAMKQIGNVAALPGIVHRSIGLPDVHSGYGFAIGNMAAFDMNDSEAVVSPGGVGFDINCGVRLLRTNLDESDVQPVKEQLAQAMFDHIPVGVGSKGVIPMNAKDLEEALEMGVDWSLREGYAWAEDKEHCEEYGRMLQADPNKVSARAKKRGLPQLGTLGAGNHYAEIQVVDEIFNEYAAKKMGIDHKGQVCVMIHSGSRGLGHQVATDALVAMEKAMKRDKIIVNDRQLACARIASPEGQDYLKGMAAAGNYAWVNRSSMTFLTRQAFAKVFNTTPDDLDLHVIYDVSHNIAKVEQHVVDGKERTLLVHRKGSTRAFPPHHPLIAVDYQLTGQPVLIGGTMGTCSYVLTGTEQGMTETFGTTCHGAGRALSRAKSRRNLDFQDVLDKLADMGIAIRVASPKLVMEEAPESYKNVTDVVNTCHDAGISKKAIKLRPIAVIKG | Catalytic subunit of the tRNA-splicing ligase complex that acts by directly joining spliced tRNA halves to mature-sized tRNAs by incorporating the precursor-derived splice junction phosphate into the mature tRNA as a canonical 3',5'-phosphodiester. May act as an RNA ligase with broad substrate specificity, and may function toward other RNAs.
Subcellular locations: Nucleus, Cytoplasm
Enters into the nucleus in case of active transcription while it accumulates in cytosol when transcription level is low. |
RTP2_HUMAN | Homo sapiens | MCTSLTTCEWKKVFYEKMEVAKPADSWELIIDPNLKPSELAPGWKQYLEQHASGRFHCSWCWHTWQSAHVVILFHMFLDRAQRAGSVRMRVFKQLCYECGTARLDESSMLEENIEGLVDNLITSLREQCYEEDGGQYRIHVASRPDSGPHRAEFCEACQEGIVHWKPSEKLLEEEVTTYTSEASKPRAQAGSGYNFLSLRWCLFWASLCLLVVYLQFSFLSPAFF | Specifically promotes functional cell surface expression of olfactory receptors, but not of other GPCRs.
Subcellular locations: Cell membrane
Effective cell surface expression depends upon interaction with olfactory receptors.
Expressed in circumvallate papillae and testis. |
RTP3_HUMAN | Homo sapiens | MAGDTEVWKQMFQELMREVKPWHRWTLRPDKGLLPNVLKPGWMQYQQWTFARFQCSSCSRNWASAQVLVLFHMNWSEEKSRGQVKMRVFTQRCKKCPQPLFEDPEFTQENISRILKNLVFRILKKCYRGRFQLIEEVPMIKDISLEGPHNSDNCEACLQGFCAGPIQVTSLPPSQTPRVHSIYKVEEVVKPWASGENVYSYACQNHICRNLSIFCCCVILIVIVVIVVKTAI | Promotes functional cell surface expression of the bitter taste receptors TAS2R16 and TAS2R43.
Subcellular locations: Membrane
Expressed predominantly in adult liver (, ). Expressed in testis (, ). Also expressed in kidney, lung and fetal liver . Low levels in heart, thyroid, adrenal gland, pancreas, ovary, prostate, skin, plasma leukocytes, bone marrow and fetal brain . Not detected in brain, spleen, colon, small intestine, skeletal muscle, stomach, placenta, salivary gland and uterus . |
RTP4_HUMAN | Homo sapiens | MVVDFWTWEQTFQELIQEAKPRATWTLKLDGNLQLDCLAQGWKQYQQRAFGWFRCSSCQRSWASAQVQILCHTYWEHWTSQGQVRMRLFGQRCQKCSWSQYEMPEFSSDSTMRILSNLVQHILKKYYGNGTRKSPEMPVILEVSLEGSHDTANCEACTLGICGQGLKSCMTKPSKSLLPHLKTGNSSPGIGAVYLANQAKNQSAEAKEAKGSGYEKLGPSRDPDPLNICVFILLLVFIVVKCFTSE | Probable chaperone protein which facilitates trafficking and functional cell surface expression of some G-protein coupled receptors (GPCRs). Promotes functional expression of the bitter taste receptor TAS2R16 . Also promotes functional expression of the opioid receptor heterodimer OPRD1-OPRM1 (By similarity).
Subcellular locations: Membrane
Expressed in circumvallate papillae and testis. |
RTP5_HUMAN | Homo sapiens | MDRAGADMWASTFTLAMAERKPQDVWVLLPEHSLVPGCLDGGGVQYLLVGLSRLQCGHCPGTWDSAHVHVLFHLWWDRASHRGLVKMRIWGQRCRLCPAPGDCQVRPPGEQPFLSRLVLHILQDCYGDGPGPARHPREAYEGCCEACELGVCFLQKAPDPAWSANATKGNFPATAWGGTGTVSRGKPLSTPGDDLGKGGVVIAIPFSLVGTSNDQVPIAEGPAPPAGASLPVTGSCEALVIGQGSIFLSGDSVAMPGGKGFPVAIGDPLFHGPGLLGSSIQTFELKGFLFKGRGSLCSPVGVAQGWGPISLNNGLVPVGKHTPTVFYCVGLSASGEGSLTFPSSLTSIFTNTLSEPTDGPVATKEASITFPFIFTDVKDAVAEVAEGNGKEGGGQGLVPVGHDALPETNAGGLPSQVKGSLALPFPADVQGKDAFTDITEGKEKEGGLVTAGHDAPLEANAEGPITVSEGCITIPFAVFDVIKRKGGGHVAYGPQGNGCFSQGYYQKRQLRSRFHKARCGCRREEDERPGRACRRPHAEPYEDFWIWVSMTVCVFWLMCMCRLNPGIYPQQV | Subcellular locations: Membrane |
RWD2A_HUMAN | Homo sapiens | MSASVKESLQLQLLEMEMLFSMFPNQGEVKLEDVNALTNIKRYLEGTREALPPKIEFVITLQIEEPKVKIDLQVTMPHSYPYVALQLFGRSSELDRHQQLLLNKGLTSYIGTFDPGELCVCAAIQWLQDNSASYFLNRKLVYEPSTQAKPVKNTFLRMWIYSHHIYQQDLRKKILDVGKRLDVTGFCMTGKPGIICVEGFKEHCEEFWHTIRYPNWKHISCKHAESVETEGNGEDLRLFHSFEELLLEAHGDYGLRNDYHMNLGQFLEFLKKHKSEHVFQILFGIESKSSDS | null |
RWD2A_MACFA | Macaca fascicularis | MSASVKESLQLQLLEMEMLFSMFPNQGEVKLEDVNALTNIKRYLEGTREALPPKIEFVITLQIEEPKVKIDLQVTMPHSYPYVALQLFGRSSELDRHQQLLLNKGLTSYIGTFDPGELCVCAAIQWLQDNSASYFLSRKLVYEPSTQAKPVKNTFLRMWIYSHHIYQQDLRKKILDVGKRLDVTGFCMTGKPGIICVEGFKEHCEEFWHTIRYPNWKHISCKHAESVETEGNGEDLRLFHSFEELLLEAHGDYGLRNDYHMNLGQFLEFLKKHKSEHVFQILFGIESKSSDS | null |
RWD2B_HUMAN | Homo sapiens | MKIELSMQPWNPGYSSEGATAQETYTCPKMIEMEQAEAQLAELDLLASMFPGENELIVNDQLAVAELKDCIEKKTMEGRSSKVYFTINMNLDVSDEKMAMFSLACILPFKYPAVLPEITVRSVLLSRSQQTQLNTDLTAFLQKHCHGDVCILNATEWVREHASGYVSRDTSSSPTTGSTVQSVDLIFTRLWIYSHHIYNKCKRKNILEWAKELSLSGFSMPGKPGVVCVEGPQSACEEFWSRLRKLNWKRILIRHREDIPFDGTNDETERQRKFSIFEEKVFSVNGARGNHMDFGQLYQFLNTKGCGDVFQMFFGVEGQ | Ubiquitous. |
RWD2B_PONAB | Pongo abelii | MKIELSVQPWDPGYSSEGATAQETYTCPKMIEIEQAEAQLSELDLLASMFPGENELIVNDQLAVAELKDCIEKKTMEGRSSKVYFTINMNLDVSEEKMAMFSLACILPFKYPAVLPEITVRSALLSRSQQTQLNTDLTAFLQKHCHGDVCILNATEWVREHASGYVSRDTSSSPTTGNTVQSVDLIFTRLWIYSHHIYNKCKRKNILEWAKELSLSGFSMPGKPGVVCVEGPQSACEEFWSRLRKLNWKRILIRHQEDIPFDGTNDEMERQRKFSIFEEKVFIVNGARGNHMDFGQLYQFLNTKGCGDVFQMFFGVEGQ | null |
RWDD1_HUMAN | Homo sapiens | MTDYGEEQRNELEALESIYPDSFTVLSENPPSFTITVTSEAGENDETVQTTLKFTYSEKYPDEAPLYEIFSQENLEDNDVSDILKLLALQAEENLGMVMIFTLVTAVQEKLNEIVDQIKTRREEEKKQKEKEAEEAEKQLFHGTPVTIENFLNWKAKFDAELLEIKKKRMKEEEQAGKNKLSGKQLFETDHNLDTSDIQFLEDAGNNVEVDESLFQEMDDLELEDDEDDPDYNPADPESDSAD | Protects DRG2 from proteolytic degradation. |
RWDD3_HUMAN | Homo sapiens | MAEPVQEELSVLAAIFCRPHEWEVLSRSETDGTVFRIHTKAEGFMDVDIPLELVFHLPVNYPSCLPGISINSEQLTRAQCVTVKENLLEQAESLLSEPMVHELVLWIQQNLRHILSQPETGSGSEKCTFSTSTTMDDGLWITLLHLDHMRAKTKYVKIVEKWASDLRLTGRLMFMGKIILILLQGDRNNLKEYLILQKTSKVDVDSSGKKCKEKMISVLFETKVQTEHKRFLAFEVKEYSALDELQKEFETAGLKKLFSEFVLALVK | Enhancer of SUMO conjugation. Via its interaction with UBE2I/UBC9, increases SUMO conjugation to proteins by promoting the binding of E1 and E2 enzymes, thioester linkage between SUMO and UBE2I/UBC9 and transfer of SUMO to specific target proteins which include HIF1A, PIAS, NFKBIA, NR3C1 and TOP1. Isoform 1 and isoform 2 positively regulate the NF-kappa-B signaling pathway by enhancing the sumoylation of NF-kappa-B inhibitor alpha (NFKBIA), promoting its stabilization which consequently leads to an increased inhibition of NF-kappa-B transcriptional activity. Isoform 1 and isoform 2 negatively regulate the hypoxia-inducible factor-1 alpha (HIF1A) signaling pathway by increasing the sumoylation of HIF1A, promoting its stabilization, transcriptional activity and the expression of its target gene VEGFA during hypoxia. Isoform 2 promotes the sumoylation and transcriptional activity of the glucocorticoid receptor NR3C1 and enhances the interaction of SUMO1 and NR3C1 with UBE2I/UBC9. Has no effect on ubiquitination.
Subcellular locations: Nucleus, Cytoplasm
Colocalizes with UBC9/UBE2I in nuclear spots.
Isoform 1 and isoform 2 are expressed in glioma tumors (at protein level). Expressed in a wide number of tissues with highest expression in cerebellum, pituitary, heart, kidney, liver, stomach, pancreas, prostate and spleen. Low levels in thalamus, spinal cord, esophagus, thymus, lung and peripheral blood leukocytes. A higher level expression seen in pituitary tumors as compared to the pituitary gland. |
RWDD3_PONAB | Pongo abelii | MAEPVQEELSALAAIFCGPHEWEVLSRSETDGTVFRIHTKAEGFMDADIPLESVFHLPVNYPSCLPGISINSEQLTRAQCVTVKEKLLEQAESLLSEPMVHELVLWIQQNLRHILNQPETGSGYEKCTFSTSTTVDDGLWITLLHLDHMRAKTKYVKTVEKWASDLRLTGRLMFMGKIILILLQGDRNNLKEYLILQKTSKVDVDSSGKKCKEKMISVLFETKVQTEHKRFLAFEVKEYSALDELQKEFETAGLKKLFSEFVLALVK | Enhancer of SUMO conjugation. Via its interaction with UBE2I/UBC9, increases SUMO conjugation to proteins by promoting the: binding of E1 and E2 enzymes, thioester linkage between SUMO and UBE2I/UBC9 and transfer of SUMO to specific target proteins which include HIF1A, PIAS, NFKBIA, NR3C1 and TOP1. Positively regulates the NF-kappa-B signaling pathway by enhancing the sumoylation of NF-kappa-B inhibitor alpha (NFKBIA), promoting its stabilization which consequently leads to an increased inhibition of NF-kappa-B transcriptional activity. Negatively regulates the hypoxia-inducible factor-1 alpha (HIF1A) signaling pathway by increasing the sumoylation of HIF1A, promoting its stabilization, transcriptional activity and the expression of its target gene VEGFA during hypoxia. Has no effect on ubiquitination (By similarity).
Subcellular locations: Nucleus, Cytoplasm
Colocalizes with UBC9/UBE2I in nuclear spots. |
RWDD4_HUMAN | Homo sapiens | MSANEDQEMELEALRSIYEGDESFRELSPVSFQYRIGENGDPKAFLIEISWTETYPQTPPILSMNAFFNNTISSAVKQSILAKLQEAVEANLGTAMTYTLFEYAKDNKEQFMENHNPINSATSISNIISIETPNTAPSSKKKDKKEQLSKAQKRKLADKTDHKGELPRGWNWVDVVKHLSKTGSKDDE | null |
S10A4_HUMAN | Homo sapiens | MACPLEKALDVMVSTFHKYSGKEGDKFKLNKSELKELLTRELPSFLGKRTDEAAFQKLMSNLDSNRDNEVDFQEYCVFLSCIAMMCNEFFEGFPDKQPRKK | Calcium-binding protein that plays a role in various cellular processes including motility, angiogenesis, cell differentiation, apoptosis, and autophagy ( ). Increases cell motility and invasiveness by interacting with non-muscle myosin heavy chain (NMMHC) IIA/MYH9 . Mechanistically, promotes filament depolymerization and increases the amount of soluble myosin-IIA, resulting in the formation of stable protrusions facilitating chemotaxis (By similarity). Modulates also the pro-apoptotic function of TP53 by binding to its C-terminal transactivation domain within the nucleus and reducing its protein levels . Within the extracellular space, stimulates cytokine production including granulocyte colony-stimulating factor and CCL24 from T-lymphocytes (By similarity). In addition, stimulates T-lymphocyte chemotaxis by acting as a chemoattractant complex with PGLYRP1 that promotes lymphocyte migration via CCR5 and CXCR3 receptors (, ).
Subcellular locations: Secreted, Nucleus, Cytoplasm
Ubiquitously expressed. |
S10A5_HUMAN | Homo sapiens | METPLEKALTTMVTTFHKYSGREGSKLTLSRKELKELIKKELCLGEMKESSIDDLMKSLDKNSDQEIDFKEYSVFLTMLCMAYNDFFLEDNK | Binds calcium, zinc and copper. One subunit can simultaneously bind 2 calcium ions or 2 copper ions plus 1 zinc ion. Calcium and copper ions compete for the same binding sites. |
S10A6_HUMAN | Homo sapiens | MACPLDQAIGLLVAIFHKYSGREGDKHTLSKKELKELIQKELTIGSKLQDAEIARLMEDLDRNKDQEVNFQEYVTFLGALALIYNEALKG | May function as calcium sensor and modulator, contributing to cellular calcium signaling. May function by interacting with other proteins, such as TPR-containing proteins, and indirectly play a role in many physiological processes such as the reorganization of the actin cytoskeleton and in cell motility. Binds 2 calcium ions. Calcium binding is cooperative.
Subcellular locations: Nucleus envelope, Cytoplasm, Cell membrane |
S10A7_HUMAN | Homo sapiens | MSNTQAERSIIGMIDMFHKYTRRDDKIEKPSLLTMMKENFPNFLSACDKKGTNYLADVFEKKDKNEDKKIDFSEFLSLLGDIATDYHKQSHGAAPCSGGSQ | Subcellular locations: Cytoplasm, Secreted
Secreted by a non-classical secretory pathway.
Fetal ear, skin, and tongue and human cell lines. Highly up-regulated in psoriatic epidermis. Also highly expressed in the urine of bladder squamous cell carcinoma (SCC) bearing patients. |
S10A8_HUMAN | Homo sapiens | MLTELEKALNSIIDVYHKYSLIKGNFHAVYRDDLKKLLETECPQYIRKKGADVWFKELDINTDGAVNFQEFLILVIKMGVAAHKKSHEESHKE | S100A8 is a calcium- and zinc-binding protein which plays a prominent role in the regulation of inflammatory processes and immune response. It can induce neutrophil chemotaxis and adhesion. Predominantly found as calprotectin (S100A8/A9) which has a wide plethora of intra- and extracellular functions. The intracellular functions include: facilitating leukocyte arachidonic acid trafficking and metabolism, modulation of the tubulin-dependent cytoskeleton during migration of phagocytes and activation of the neutrophilic NADPH-oxidase. Activates NADPH-oxidase by facilitating the enzyme complex assembly at the cell membrane, transferring arachidonic acid, an essential cofactor, to the enzyme complex and S100A8 contributes to the enzyme assembly by directly binding to NCF2/P67PHOX. The extracellular functions involve pro-inflammatory, antimicrobial, oxidant-scavenging and apoptosis-inducing activities. Its pro-inflammatory activity includes recruitment of leukocytes, promotion of cytokine and chemokine production, and regulation of leukocyte adhesion and migration. Acts as an alarmin or a danger associated molecular pattern (DAMP) molecule and stimulates innate immune cells via binding to pattern recognition receptors such as Toll-like receptor 4 (TLR4) and receptor for advanced glycation endproducts (AGER). Binding to TLR4 and AGER activates the MAP-kinase and NF-kappa-B signaling pathways resulting in the amplification of the pro-inflammatory cascade. Has antimicrobial activity towards bacteria and fungi and exerts its antimicrobial activity probably via chelation of Zn(2+) which is essential for microbial growth. Can induce cell death via autophagy and apoptosis and this occurs through the cross-talk of mitochondria and lysosomes via reactive oxygen species (ROS) and the process involves BNIP3. Can regulate neutrophil number and apoptosis by an anti-apoptotic effect; regulates cell survival via ITGAM/ITGB and TLR4 and a signaling mechanism involving MEK-ERK. Its role as an oxidant scavenger has a protective role in preventing exaggerated tissue damage by scavenging oxidants. Can act as a potent amplifier of inflammation in autoimmunity as well as in cancer development and tumor spread. The iNOS-S100A8/A9 transnitrosylase complex directs selective inflammatory stimulus-dependent S-nitrosylation of GAPDH and probably multiple targets such as ANXA5, EZR, MSN and VIM by recognizing a [IL]-x-C-x-x-[DE] motif; S100A8 seems to contribute to S-nitrosylation site selectivity.
(Microbial infection) Upon infection by human coronavirus SARS-CoV-2, may induce expansion of aberrant immature neutrophils in a TLR4-dependent manner.
Subcellular locations: Secreted, Cytoplasm, Cytoplasm, Cytoskeleton, Cell membrane
Predominantly localized in the cytoplasm. Upon elevation of the intracellular calcium level, translocated from the cytoplasm to the cytoskeleton and the cell membrane. Upon neutrophil activation or endothelial adhesion of monocytes, is secreted via a microtubule-mediated, alternative pathway.
Calprotectin (S100A8/9) is predominantly expressed in myeloid cells. Except for inflammatory conditions, the expression is restricted to a specific stage of myeloid differentiation since both proteins are expressed in circulating neutrophils and monocytes but are absent in normal tissue macrophages and lymphocytes. Under chronic inflammatory conditions, such as psoriasis and malignant disorders, also expressed in the epidermis. Found in high concentrations at local sites of inflammation or in the serum of patients with inflammatory diseases such as rheumatoid, cystic fibrosis, inflammatory bowel disease, Crohn's disease, giant cell arteritis, cystic fibrosis, Sjogren's syndrome, systemic lupus erythematosus, and progressive systemic sclerosis. Involved in the formation and deposition of amyloids in the aging prostate known as corpora amylacea inclusions. Strongly up-regulated in many tumors, including gastric, esophageal, colon, pancreatic, bladder, ovarian, thyroid, breast and skin cancers. |
S20A1_HUMAN | Homo sapiens | MATLITSTTAATAASGPLVDYLWMLILGFIIAFVLAFSVGANDVANSFGTAVGSGVVTLKQACILASIFETVGSVLLGAKVSETIRKGLIDVEMYNSTQGLLMAGSVSAMFGSAVWQLVASFLKLPISGTHCIVGATIGFSLVAKGQEGVKWSELIKIVMSWFVSPLLSGIMSGILFFLVRAFILHKADPVPNGLRALPVFYACTVGINLFSIMYTGAPLLGFDKLPLWGTILISVGCAVFCALIVWFFVCPRMKRKIEREIKCSPSESPLMEKKNSLKEDHEETKLSVGDIENKHPVSEVGPATVPLQAVVEERTVSFKLGDLEEAPERERLPSVDLKEETSIDSTVNGAVQLPNGNLVQFSQAVSNQINSSGHYQYHTVHKDSGLYKELLHKLHLAKVGDCMGDSGDKPLRRNNSYTSYTMAICGMPLDSFRAKEGEQKGEEMEKLTWPNADSKKRIRMDSYTSYCNAVSDLHSASEIDMSVKAEMGLGDRKGSNGSLEEWYDQDKPEVSLLFQFLQILTACFGSFAHGGNDVSNAIGPLVALYLVYDTGDVSSKVATPIWLLLYGGVGICVGLWVWGRRVIQTMGKDLTPITPSSGFSIELASALTVVIASNIGLPISTTHCKVGSVVSVGWLRSKKAVDWRLFRNIFMAWFVTVPISGVISAAIMAIFRYVILRM | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion ( , ). May play a role in extracellular matrix and cartilage calcification as well as in vascular calcification . Essential for cell proliferation but this function is independent of its phosphate transporter activity .
(Microbial infection) May function as a retroviral receptor as it confers human cells susceptibility to infection to Gibbon Ape Leukemia Virus (GaLV), Simian sarcoma-associated virus (SSAV) and Feline leukemia virus subgroup B (FeLV-B) as well as 10A1 murine leukemia virus (10A1 MLV).
Subcellular locations: Cell membrane
Ubiquitously expressed. |
S20A1_PONAB | Pongo abelii | MAALITSTTAATAASGPLVDYLWMLILGFIIAFVLAFSVGANDVANSFGTAVGSGVVTLKQACILASIFETVGSVLLGAKVSETIRKGLIDVEMYNSTQGLLMAGSVSAMFGSAVWQLVASFLKLPISGTHCIVGATIGFSLVAKGQEGVKWSELIKIVMSWFVSPLLSGIMSGILFFLVRAFILHKADPVPNGLRALPVFYACTVGINLFSIMYTGAPLLGFDKLPLWGTILISVGCAVFCALIVWFFVCPRMKRKIEREIKCSPSESPLMEKKNSLKEDHEETKLSVSDIENRNPVSEVGPATVPLQAVVEERTVSFKLGDLEEAPERERLPSVDLKEETSIDSTVNGAVQLPNGNLVQFSQAVSNQINSSGHYQYHTVHKDSGLYKELLHKLHLAKVGDCMGDSGDKPLRRNNSYTSYTMAICGMPLDSFRAKEGEQKGEEVEKLTWPNADSKKRIRMDSYTSYCNAVSDLHSASEIDMSVKAEMGLGDRKGSNGSLEEWYDQDKPEVSLLFQFLQILTACFGSFAHGGNDVSNAIGPLVALYLVYDTGDVSSKVATPIWLLLYGGVGICIGLWVWGRRVIQTMGKDLTPITPSSGFSIELASALTVVIASNIGLPISTTHCKVGSVVSVGWLRSKKAVDWRLFRNIFMAWFVTVPISGVISAAIMAIFRYVILRM | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion. May play a role in extracellular matrix and cartilage calcification as well as in vascular calcification (By similarity). Essential for cell proliferation but this function is independent of its phosphate transporter activity (By similarity).
Subcellular locations: Cell membrane |
S20A2_HUMAN | Homo sapiens | MAMDEYLWMVILGFIIAFILAFSVGANDVANSFGTAVGSGVVTLRQACILASIFETTGSVLLGAKVGETIRKGIIDVNLYNETVETLMAGEVSAMVGSAVWQLIASFLRLPISGTHCIVGSTIGFSLVAIGTKGVQWMELVKIVASWFISPLLSGFMSGLLFVLIRIFILKKEDPVPNGLRALPVFYAATIAINVFSIMYTGAPVLGLVLPMWAIALISFGVALLFAFFVWLFVCPWMRRKITGKLQKEGALSRVSDESLSKVQEAESPVFKELPGAKANDDSTIPLTGAAGETLGTSEGTSAGSHPRAAYGRALSMTHGSVKSPISNGTFGFDGHTRSDGHVYHTVHKDSGLYKDLLHKIHIDRGPEEKPAQESNYRLLRRNNSYTCYTAAICGLPVHATFRAADSSAPEDSEKLVGDTVSYSKKRLRYDSYSSYCNAVAEAEIEAEEGGVEMKLASELADPDQPREDPAEEEKEEKDAPEVHLLFHFLQVLTACFGSFAHGGNDVSNAIGPLVALWLIYKQGGVTQEAATPVWLLFYGGVGICTGLWVWGRRVIQTMGKDLTPITPSSGFTIELASAFTVVIASNIGLPVSTTHCKVGSVVAVGWIRSRKAVDWRLFRNIFVAWFVTVPVAGLFSAAVMALLMYGILPYV | Sodium-phosphate symporter which preferentially transports the monovalent form of phosphate with a stoichiometry of two sodium ions per phosphate ion ( ). Plays a critical role in the determination of bone quality and strength by providing phosphate for bone mineralization (By similarity). Required to maintain normal cerebrospinal fluid phosphate levels (By similarity). Mediates phosphate-induced calcification of vascular smooth muscle cells (VCMCs) and can functionally compensate for loss of SLC20A1 in VCMCs (By similarity).
(Microbial infection) Functions as a retroviral receptor and confers human cells susceptibility to infection to amphotropic murine leukemia virus (A-MuLV), 10A1 murine leukemia virus (10A1 MLV) and some feline leukemia virus subgroup B (FeLV-B) variants.
Subcellular locations: Cell membrane, Apical cell membrane
Ubiquitously expressed. |
S2529_HUMAN | Homo sapiens | MALDFLAGCAGGVAGVLVGHPFDTVKVRLQVQSVEKPQYRGTLHCFKSIIKQESVLGLYKGLGSPLMGLTFINALVFGVQGNTLRALGHDSPLNQFLAGAAAGAIQCVICCPMELAKTRLQLQDAGPARTYKGSLDCLAQIYGHEGLRGVNRGMVSTLLRETPSFGVYFLTYDALTRALGCEPGDRLLVPKLLLAGGTSGIVSWLSTYPVDVVKSRLQADGLRGAPRYRGILDCVHQSYRAEGWRVFTRGLASTLLRAFPVNAATFATVTVVLTYARGEEAGPEGEAVPAAPAGPALAQPSSL | Mitochondrial transporter of arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine (, ). Does not transport carnitine nor acylcarnitines . Functions by both counter-exchange and uniport mechanisms . Plays a physiolocical role in the import of basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation (, ).
Subcellular locations: Mitochondrion inner membrane |
S2532_HUMAN | Homo sapiens | MTGQGQSASGSSAWSTVFRHVRYENLIAGVSGGVLSNLALHPLDLVKIRFAVSDGLELRPKYNGILHCLTTIWKLDGLRGLYQGVTPNIWGAGLSWGLYFFFYNAIKSYKTEGRAERLEATEYLVSAAEAGAMTLCITNPLWVTKTRLMLQYDAVVNSPHRQYKGMFDTLVKIYKYEGVRGLYKGFVPGLFGTSHGALQFMAYELLKLKYNQHINRLPEAQLSTVEYISVAALSKIFAVAATYPYQVVRARLQDQHMFYSGVIDVITKTWRKEGVGGFYKGIAPNLIRVTPACCITFVVYENVSHFLLDLREKRK | Facilitates flavin adenine dinucleotide (FAD) translocation across the mitochondrial inner membrane into the mitochondrial matrix where it acts as a redox cofactor to assist flavoenzyme activities in fundamental metabolic processes including fatty acid beta-oxidation, amino acid and choline metabolism as well as mitochondrial electron transportation. In particular, provides FAD to DLD dehydrogenase of the glycine cleavage system, part of mitochondrial one-carbon metabolic pathway involved in neural tube closure in early embryogenesis.
Subcellular locations: Mitochondrion inner membrane
Ubiquitous. |
S2532_MACFA | Macaca fascicularis | MTGQGHSASGSSAWSTVFRHVRYENLVAGVSGGVLSNLALHPLDLVKIRFAVSDGLELRPKYNGILHCLTTIWKLDGLRGLYQGVTPNVWGAGLSWGLYFFFYNAIKSYKTEGRAERLEATEYLVSAAEAGAMTLCITNPLWVTKTRLMLQYDAVINSPHRQYKGMFDTLVKIYKYEGVRGLYKGFVPGLFGTSHGALQFMAYELLKLKYNQHINRLPEAQLSTVEYISVAALSKIFAVAATYPYQVVRARLQDQHMFYSGVIDVITKTWRKEGIGGFYKGIAPNLIRVTPACCITFVVYENVSHFLLDLREKRK | Facilitates flavin adenine dinucleotide (FAD) translocation across the mitochondrial inner membrane into the mitochondrial matrix where it acts as a redox cofactor to assist flavoenzyme activities in fundamental metabolic processes including fatty acid beta-oxidation, amino acid and choline metabolism as well as mitochondrial electron transportation. In particular, provides FAD to DLD dehydrogenase of the glycine cleavage system, part of mitochondrial one-carbon metabolic pathway involved in neural tube closure in early embryogenesis.
Subcellular locations: Mitochondrion inner membrane |
S2533_HUMAN | Homo sapiens | MATGGQQKENTLLHLFAGGCGGTVGAIFTCPLEVIKTRLQSSRLALRTVYYPQVHLGTISGAGMVRPTSVTPGLFQVLKSILEKEGPKSLFRGLGPNLVGVAPSRAVYFACYSKAKEQFNGIFVPNSNIVHIFSAGSAAFITNSLMNPIWMVKTRMQLEQKVRGSKQMNTLQCARYVYQTEGIRGFYRGLTASYAGISETIICFAIYESLKKYLKEAPLASSANGTEKNSTSFFGLMAAAALSKGCASCIAYPHEVIRTRLREEGTKYKSFVQTARLVFREEGYLAFYRGLFAQLIRQIPNTAIVLSTYELIVYLLEDRTQ | Mitochondrial transporter that imports/exports pyrimidine nucleotides into and from mitochondria. Selectively transports uridine, thymidine, guanosine, cytosine and inosine (deoxy)nucleoside di- and triphosphates by an antiport mechanism . May import (deoxy)nucleoside triphosphates in exchange for intramitochondrial (deoxy)nucleoside diphosphates, thus providing precursors necessary for de novo synthesis of mitochondrial DNA and RNA while exporting products of their catabolism . Participates in mitochondrial genome maintenance, regulation of mitochondrial membrane potential and mitochondrial respiration . Upon INS or IGF1 stimulation regulates cell growth and proliferation by controlling mitochondrial DNA replication and transcription, the ratio of mitochondria-to nuclear-encoded components of the electron transport chain resulting in control of mitochondrial ROS production (, ). Participates in dendritic cell endocytosis and may associate with mitochondrial oxidative phosphorylation .
Subcellular locations: Mitochondrion inner membrane
Expressed in the central nervous system. Also expressed in testis and skeletal muscle. Weakly expressed in heart, liver, kidney, prostate, colon and peripheral blood leukocytes. |
S2534_HUMAN | Homo sapiens | METVPPAVDLVLGASACCLACVFTNPLEVVKTRLQLQGELQARGTYPRPYHGFIASVAAVARADGLWGLQKGLAAGLLYQGLMNGVRFYCYSLACQAGLTQQPGGTVVAGAVAGALGAFVGSPAYLIKTQLQAQTVAAVAVGHQHNHQTVLGALETIWRQQGLLGLWQGVGGAVPRVMVGSAAQLATFASAKAWVQKQQWLPEDSWLVALAGGMISSIAVVVVMTPFDVVSTRLYNQPVDTAGRGQLYGGLTDCMVKIWRQEGPLALYKGLGPAYLRLGPHTILSMLFWDELRKLAGRAQHKGT | Putative antiporter that exchanges dicarboxylates and sulfur oxoanions across the inner membrane of mitochondria.
Subcellular locations: Mitochondrion inner membrane |
S2535_HUMAN | Homo sapiens | MDFLMSGLAACGACVFTNPLEVVKTRMQLQGELQAPGTYQRHYRNVFHAFITIGKVDGLAALQKGLAPALLYQFLMNGIRLGTYGLAEAGGYLHTAEGTHSPARSAAAGAMAGVMGAYLGSPIYMVKTHLQAQAASEIAVGHQYKHQGMFQALTEIGQKHGLVGLWRGALGGLPRVIVGSSTQLCTFSSTKDLLSQWEIFPPQSWKLALVAAMMSGIAVVLAMAPFDVACTRLYNQPTDAQGKGLMYRGILDALLQTARTEGIFGMYKGIGASYFRLGPHTILSLFFWDQLRSLYYTDTK | Putative antiporter that exchanges dicarboxylates and sulfur oxoanions across the inner membrane of mitochondria.
Subcellular locations: Mitochondrion inner membrane |
S27A1_HUMAN | Homo sapiens | MRAPGAGAASVVSLALLWLLGLPWTWSAAAALGVYVGSGGWRFLRIVCKTARRDLFGLSVLIRVRLELRRHQRAGHTIPRIFQAVVQRQPERLALVDAGTGECWTFAQLDAYSNAVANLFRQLGFAPGDVVAIFLEGRPEFVGLWLGLAKAGMEAALLNVNLRREPLAFCLGTSGAKALIFGGEMVAAVAEVSGHLGKSLIKFCSGDLGPEGILPDTHLLDPLLKEASTAPLAQIPSKGMDDRLFYIYTSGTTGLPKAAIVVHSRYYRMAAFGHHAYRMQAADVLYDCLPLYHSAGNIIGVGQCLIYGLTVVLRKKFSASRFWDDCIKYNCTVVQYIGEICRYLLKQPVREAERRHRVRLAVGNGLRPAIWEEFTERFGVRQIGEFYGATECNCSIANMDGKVGSCGFNSRILPHVYPIRLVKVNEDTMELLRDAQGLCIPCQAGEPGLLVGQINQQDPLRRFDGYVSESATSKKIAHSVFSKGDSAYLSGDVLVMDELGYMYFRDRSGDTFRWRGENVSTTEVEGVLSRLLGQTDVAVYGVAVPGVEGKAGMAAVADPHSLLDPNAIYQELQKVLAPYARPIFLRLLPQVDTTGTFKIQKTRLQREGFDPRQTSDRLFFLDLKQGHYLPLNEAVYTRICSGAFAL | Mediates the import of long-chain fatty acids (LCFA) into the cell by facilitating their transport at the plasma membrane ( , ). Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake. May act directly as a bona fide transporter, or alternatively, in a cytoplasmic or membrane-associated multimeric protein complex to trap and draw fatty acids towards accumulation. Plays a pivotal role in regulating available LCFA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis. May be involved in regulation of cholesterol metabolism (By similarity). Probably involved in fatty acid transport across the blood barrier .
Subcellular locations: Cell membrane, Endomembrane system, Cytoplasm
Plasma membrane and intracellular membranes, at least in adipocytes. In adipocytes, but not myocytes, insulin via the mTORC1 signaling pathway induces a rapid translocation of SLC27A1 from intracellular compartments to the plasma membrane, paralleled by increased LCFA uptake. Insulin-dependent translocation from the cytoplasm to the cell membrane is regulated by EPRS1. Predominantly cytoplasmic in myocytes.
Highest levels of expression are detected in muscle and adipose tissue small, intermediate levels in small intestine, and barely detectable in liver (, ). Expressed in brain gray matter . |
S27A2_HUMAN | Homo sapiens | MLSAIYTVLAGLLFLPLLVNLCCPYFFQDIGYFLKVAAVGRRVRSYGKRRPARTILRAFLEKARQTPHKPFLLFRDETLTYAQVDRRSNQVARALHDHLGLRQGDCVALLMGNEPAYVWLWLGLVKLGCAMACLNYNIRAKSLLHCFQCCGAKVLLVSPELQAAVEEILPSLKKDDVSIYYVSRTSNTDGIDSFLDKVDEVSTEPIPESWRSEVTFSTPALYIYTSGTTGLPKAAMITHQRIWYGTGLTFVSGLKADDVIYITLPFYHSAALLIGIHGCIVAGATLALRTKFSASQFWDDCRKYNVTVIQYIGELLRYLCNSPQKPNDRDHKVRLALGNGLRGDVWRQFVKRFGDICIYEFYAATEGNIGFMNYARKVGAVGRVNYLQKKIITYDLIKYDVEKDEPVRDENGYCVRVPKGEVGLLVCKITQLTPFNGYAGAKAQTEKKKLRDVFKKGDLYFNSGDLLMVDHENFIYFHDRVGDTFRWKGENVATTEVADTVGLVDFVQEVNVYGVHVPDHEGRIGMASIKMKENHEFDGKKLFQHIADYLPSYARPRFLRIQDTIEITGTFKHRKMTLVEEGFNPAVIKDALYFLDDTAKMYVPMTEDIYNAISAKTLKL | Mediates the import of long-chain fatty acids (LCFA) into the cell by facilitating their transport across cell membranes, playing an important role in hepatic fatty acid uptake ( , ). Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake ( , ). Plays a pivotal role in regulating available LCFA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation or triglyceride synthesis . Can also activate branched-chain fatty acids such as phytanic acid and pristanic acid . May contribute to the synthesis of sphingosine-1-phosphate . Does not activate C24 bile acids, cholate and chenodeoxycholate . In vitro, activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate (THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol . However, it is not critical for THCA activation and bile synthesis in vivo .
Exhibits both long-chain fatty acids (LCFA) transport activity and acyl CoA synthetase towards very long-chain fatty acids (, ). Shows a preference for generating CoA derivatives of n-3 fatty acids, which are preferentially trafficked into phosphatidylinositol .
Exhibits long-chain fatty acids (LCFA) transport activity but lacks acyl CoA synthetase towards very long-chain fatty acids.
Subcellular locations: Endoplasmic reticulum membrane, Peroxisome membrane, Cell membrane, Microsome
Expressed in liver, kidney, placenta, intestine, brain, heart, and colon ( ). Predominantly expressed in liver .
Expressed in liver, placenta, and intestine, but much lower relative to isoform 1. |
S27A3_HUMAN | Homo sapiens | MAALLLLPLLLLLPLLLLKLHLWPQLRWLPADLAFAVRALCCKRALRARALAAAAADPEGPEGGCSLAWRLAELAQQRAAHTFLIHGSRRFSYSEAERESNRAARAFLRALGWDWGPDGGDSGEGSAGEGERAAPGAGDAAAGSGAEFAGGDGAARGGGAAAPLSPGATVALLLPAGPEFLWLWFGLAKAGLRTAFVPTALRRGPLLHCLRSCGARALVLAPEFLESLEPDLPALRAMGLHLWAAGPGTHPAGISDLLAEVSAEVDGPVPGYLSSPQSITDTCLYIFTSGTTGLPKAARISHLKILQCQGFYQLCGVHQEDVIYLALPLYHMSGSLLGIVGCMGIGATVVLKSKFSAGQFWEDCQQHRVTVFQYIGELCRYLVNQPPSKAERGHKVRLAVGSGLRPDTWERFVRRFGPLQVLETYGLTEGNVATINYTGQRGAVGRASWLYKHIFPFSLIRYDVTTGEPIRDPQGHCMATSPGEPGLLVAPVSQQSPFLGYAGGPELAQGKLLKDVFRPGDVFFNTGDLLVCDDQGFLRFHDRTGDTFRWKGENVATTEVAEVFEALDFLQEVNVYGVTVPGHEGRAGMAALVLRPPHALDLMQLYTHVSENLPPYARPRFLRLQESLATTETFKQQKVRMANEGFDPSTLSDPLYVLDQAVGAYLPLTTARYSALLAGNLRI | Mainly functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates . Can mediate the levels of long-chain fatty acids (LCFA) in the cell by facilitating their transport across membranes (By similarity).
Subcellular locations: Mitochondrion membrane
Expressed in bronchial and bronchiolar epithelial cells (at protein level). |
S27A4_HUMAN | Homo sapiens | MLLGASLVGVLLFSKLVLKLPWTQVGFSLLFLYLGSGGWRFIRVFIKTIRRDIFGGLVLLKVKAKVRQCLQERRTVPILFASTVRRHPDKTALIFEGTDTHWTFRQLDEYSSSVANFLQARGLASGDVAAIFMENRNEFVGLWLGMAKLGVEAALINTNLRRDALLHCLTTSRARALVFGSEMASAICEVHASLDPSLSLFCSGSWEPGAVPPSTEHLDPLLKDAPKHLPSCPDKGFTDKLFYIYTSGTTGLPKAAIVVHSRYYRMAALVYYGFRMRPNDIVYDCLPLYHSAGNIVGIGQCLLHGMTVVIRKKFSASRFWDDCIKYNCTIVQYIGELCRYLLNQPPREAENQHQVRMALGNGLRQSIWTNFSSRFHIPQVAEFYGATECNCSLGNFDSQVGACGFNSRILSFVYPIRLVRVNEDTMELIRGPDGVCIPCQPGEPGQLVGRIIQKDPLRRFDGYLNQGANNKKIAKDVFKKGDQAYLTGDVLVMDELGYLYFRDRTGDTFRWKGENVSTTEVEGTLSRLLDMADVAVYGVEVPGTEGRAGMAAVASPTGNCDLERFAQVLEKELPLYARPIFLRLLPELHKTGTYKFQKTELRKEGFDPAIVKDPLFYLDAQKGRYVPLDQEAYSRIQAGEEKL | Mediates the levels of long-chain fatty acids (LCFA) in the cell by facilitating their transport across cell membranes ( ). Appears to be the principal fatty acid transporter in small intestinal enterocytes . Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake (, ). Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis (By similarity). Probably involved in fatty acid transport across the blood barrier . Indirectly inhibits RPE65 via substrate competition and via production of VLCFA derivatives like lignoceroyl-CoA. Prevents light-induced degeneration of rods and cones (By similarity).
Subcellular locations: Endoplasmic reticulum membrane
Expressed at highest levels in brain, testis, colon and kidney. Expressed at medium levels in heart and liver, small intestine and stomach. Expressed at low levels in peripheral leukocytes, bone marrow, skeletal muscle and aorta. Expressed in adipose tissue (, ). Expressed in brain gray matter . |
S27A4_MACFA | Macaca fascicularis | MLLGASLVGVLLFSKLVLKLPWTQVGFSLLFLYLGSGGWRFIRVFIKTIRRDIFGGLVLLKVKAKVRQCLRERRTVPILFASTVRRHPDKTALIFEGTDTHWTFRQLDEYSSSVANFLQARGLASGDVAAIFMENRNEFVGLWLGMAKLGVEAALINTNLRRDALLHCLTTSRARALVFGSEMASAICEIHASLDPSLSLFCSGSWEPNAVPTSTEHLDPLLEDAPKHLPSCPDKGFTDKLFYIYTSGTTGLPKAAIVVHSRYYRMAALVYYGFRMRPNDIIYDCLPLYHSAGNIVGIGQCLLHGMTVVIRKKFSASRFWDDCIKYKCTIVQYIGELCRYLLNQPPREAENQHQVRMALGNGLRQSIWTNFSSRFHIPQVAEFYGATECNCSLGNFDSQVGACGFNSRILSFVYPIRLVRVNEDTMELIRGPDGICIPCQPGEPGQLVGRIIQKDPLRRFDGYLNQGANNKKIAKDVFKKGDQAYLTGDVLVMDELGYLYFRDRTGDTFRWKGENVSTTEVEGTLSRLLDMADVAVYGVEVPGTEGRAGMAAGASPTGNCDLERFAQDLEKELPLYARPIFLRILPELHKTGTYKLQKTELRKEGFDPAIVKDPLFYLDARKGRYVLLDQEAYSRIQAGEEKL | Mediates the import of long-chain fatty acids (LCFA) into the cell by facilitating their transport across cell membranes. Appears to be the principal fatty acid transporter in small intestinal enterocytes. Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake (By similarity). Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis (By similarity). Probably involved in fatty acid transport across the blood barrier (By similarity). Indirectly inhibits RPE65 via substrate competition and via production of VLCFA derivatives like lignoceroyl-CoA. Prevents light-induced degeneration of rods and cones (By similarity).
Subcellular locations: Endoplasmic reticulum membrane |
S27A4_PONAB | Pongo abelii | MLLGASLVGVLLFSKLVLKLPWTQVGFSLLFLYLGSGGWRFIRVFIKTIRRDIFGGLVLLKVKAKVRQCLRERRTVPILFASTVRRHPDKTALIFEGTDTLWTFRQLDEYSSSVANFLQARGLASGDVAAIFMENRNEFVGLWLGMAKLGVEAALINTNLRRDAQLHCLTTSRARALVFGSEMASAICEIHASLDPSLSLFCSGSWEPNAVPTSTEHLDPLLKDAPKHLPICPDKGFTDKLFYIYTSGTTGLPKAAIVVHSRYYRMAALVYYGFRMRPNDIVYDCLPLYHSAGNIVGIGQCLLHGMTVVIRKKFSASRFWDDCIKYNCTIVQYIGELCRYLLNQPPREAENQHQVRMALGNGLRQSIWTNFSSRFHIPQVAEFYGATECNCSLGNFDSQVGACGFNSRILSFVYPIRLVRVNEDTMELIRGPDGICIPCQPGEPGQLVGRIIQKDPLRRFDGYLNQGANDKKIAKDVFKKGDQAYLTGDVLVMDELGYLYFRDRTGDTFRWKGENVSTTEVEGTLSRLLDMADVAVYGVEVPGTEGRAGMAAVASPTGNCDLERFAQVLEKELPLYARPIFLRLLPELHKTGTYKFQKTELRKEGFDPAIVKDPLFYLDARKGRYVPLDQEAYSRIQAGEEKL | Mediates the import of long-chain fatty acids (LCFA) into the cell by facilitating their transport across cell membranes. Appears to be the principal fatty acid transporter in small intestinal enterocytes. Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates, which prevents fatty acid efflux from cells and might drive more fatty acid uptake (By similarity). Plays a role in the formation of the epidermal barrier. Required for fat absorption in early embryogenesis (By similarity). Probably involved in fatty acid transport across the blood barrier (By similarity). Indirectly inhibits RPE65 via substrate competition and via production of VLCFA derivatives like lignoceroyl-CoA. Prevents light-induced degeneration of rods and cones (By similarity).
Subcellular locations: Endoplasmic reticulum membrane |
S27A5_HUMAN | Homo sapiens | MGVRQQLALLLLLLLLLWGLGQPVWPVAVALTLRWLLGDPTCCVLLGLAMLARPWLGPWVPHGLSLAAAALALTLLPARLPPGLRWLPADVIFLAKILHLGLKIRGCLSRQPPDTFVDAFERRARAQPGRALLVWTGPGAGSVTFGELDARACQAAWALKAELGDPASLCAGEPTALLVLASQAVPALCMWLGLAKLGCPTAWINPHGRGMPLAHSVLSSGARVLVVDPDLRESLEEILPKLQAENIRCFYLSHTSPTPGVGALGAALDAAPSHPVPADLRAGITWRSPALFIYTSGTTGLPKPAILTHERVLQMSKMLSLSGATADDVVYTVLPLYHVMGLVVGILGCLDLGATCVLAPKFSTSCFWDDCRQHGVTVILYVGELLRYLCNIPQQPEDRTHTVRLAMGNGLRADVWETFQQRFGPIRIWEVYGSTEGNMGLVNYVGRCGALGKMSCLLRMLSPFELVQFDMEAAEPVRDNQGFCIPVGLGEPGLLLTKVVSQQPFVGYRGPRELSERKLVRNVRQSGDVYYNTGDVLAMDREGFLYFRDRLGDTFRWKGENVSTHEVEGVLSQVDFLQQVNVYGVCVPGCEGKVGMAAVQLAPGQTFDGEKLYQHVRAWLPAYATPHFIRIQDAMEVTSTFKLMKTRLVREGFNVGIVVDPLFVLDNRAQSFRPLTAEMYQAVCEGTWRL | May mediate the import of long-chain fatty acids (LCFA) by facilitating their transport across cell membranes (, ). Also catalyzes the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates . Mainly functions as a bile acyl-CoA synthetase catalyzing the activation of bile acids via ATP-dependent formation of bile acid CoA thioesters which is necessary for their subsequent conjugation with glycine or taurine (, ). Both primary bile acids (cholic acid and chenodeoxycholic acid) and secondary bile acids (deoxycholic acid and lithocholic acid) are the principal substrates (, ). In vitro, activates 3-alpha,7-alpha,12-alpha-trihydroxy-5-beta-cholestanate ((25R)-3alpha,7alpha,12alpha-trihydroxy-5beta-cholestan-26-oate or THCA), the C27 precursor of cholic acid deriving from the de novo synthesis from cholesterol . Plays an important role in hepatic fatty acid uptake and bile acid reconjugation and recycling but not in de novo synthesis of bile acids (By similarity).
Subcellular locations: Endoplasmic reticulum membrane, Microsome, Cell membrane
Predominantly expressed in liver. |
S27A6_HUMAN | Homo sapiens | MLLSWLTVLGAGMVVLHFLQKLLFPYFWDDFWFVLKVVLIIIRLKKYEKRGELVTVLDKFLSHAKRQPRKPFIIYEGDIYTYQDVDKRSSRVAHVFLNHSSLKKGDTVALLMSNEPDFVHVWFGLAKLGCVVAFLNTNIRSNSLLNCIRACGPRALVVGADLLGTVEEILPSLSENISVWGMKDSVPQGVISLKEKLSTSPDEPVPRSHHVVSLLKSTCLYIFTSGTTGLPKAAVISQLQVLRGSAVLWAFGCTAHDIVYITLPLYHSSAAILGISGCVELGATCVLKKKFSASQFWSDCKKYDVTVFQYIGELCRYLCKQSKREGEKDHKVRLAIGNGIRSDVWREFLDRFGNIKVCELYAATESSISFMNYTGRIGAIGRTNLFYKLLSTFDLIKYDFQKDEPMRNEQGWCIHVKKGEPGLLISRVNAKNPFFGYAGPYKHTKDKLLCDVFKKGDVYLNTGDLIVQDQDNFLYFWDRTGDTFRWKGENVATTEVADVIGMLDFIQEANVYGVAISGYEGRAGMASIILKPNTSLDLEKVYEQVVTFLPAYACPRFLRIQEKMEATGTFKLLKHQLVEDGFNPLKISEPLYFMDNLKKSYVLLTRELYDQIMLGEIKL | Mediates the import of long-chain fatty acids (LCFA) into the cell by facilitating their transport at the plasma membrane . Also functions as an acyl-CoA ligase catalyzing the ATP-dependent formation of fatty acyl-CoA using LCFA and very-long-chain fatty acids (VLCFA) as substrates (By similarity). Plays a pivotal role in regulating available LCFA substrates from exogenous sources in tissues undergoing high levels of beta-oxidation such as the heart .
Subcellular locations: Cell membrane, Sarcolemma, Cell membrane
In heart is exclusively located on the sarcolemma in areas juxtaposed with small blood vessels where it colocalizes CD36.
Strongly expressed in heart and localizes to cardiac myocytes . Expressed at moderate levels in placenta, testis, and adrenal glands. Expressed at very low levels in kidney, bladder and uterus. |
S28A1_HUMAN | Homo sapiens | MENDPSRRRESISLTPVAKGLENMGADFLESLEEGQLPRSDLSPAEIRSSWSEAAPKPFSRWRNLQPALRARSFCREHMQLFRWIGTGLLCTGLSAFLLVACLLDFQRALALFVLTCVVLTFLGHRLLKRLLGPKLRRFLKPQGHPRLLLWFKRGLALAAFLGLVLWLSLDTSQRPEQLVSFAGICVFVALLFACSKHHCAVSWRAVSWGLGLQFVLGLLVIRTEPGFIAFEWLGEQIRIFLSYTKAGSSFVFGEALVKDVFAFQVLPIIVFFSCVISVLYHVGLMQWVILKIAWLMQVTMGTTATETLSVAGNIFVSQTEAPLLIRPYLADMTLSEVHVVMTGGYATIAGSLLGAYISFGIDATSLIAASVMAAPCALALSKLVYPEVEESKFRREEGVKLTYGDAQNLIEAASTGAAISVKVVANIAANLIAFLAVLDFINAALSWLGDMVDIQGLSFQLICSYILRPVAFLMGVAWEDCPVVAELLGIKLFLNEFVAYQDLSKYKQRRLAGAEEWVGDRKQWISVRAEVLTTFALCGFANFSSIGIMLGGLTSMVPQRKSDFSQIVLRALFTGACVSLVNACMAGILYMPRGAEVDCMSLLNTTLSSSSFEIYQCCREAFQSVNPEFSPEALDNCCRFYNHTICAQ | Sodium and pyrimidine nucleoside symporter of the plasma membrane that imports uridine, thymidine and cytidine into cells by coupling their transport to the transmembrane sodium electrochemical gradient. Also transports adenosine, an atypical substrate transported with high apparent affinity, but low maximum velocity. Therefore, exhibits the transport characteristics of the nucleoside transport system cit or N2 subtype (N2/cit) ( , ). Involved in renal nucleoside (re)absorption .
Subcellular locations: Cell membrane, Apical cell membrane
Expressed in kidney. |
S39A5_HUMAN | Homo sapiens | MMGSPVSHLLAGFCVWVVLGWVGGSVPNLGPAEQEQNHYLAQLFGLYGENGTLTAGGLARLLHSLGLGRVQGLRLGQHGPLTGRAASPAADNSTHRPQNPELSVDVWAGMPLGPSGWGDLEESKAPHLPRGPAPSGLDLLHRLLLLDHSLADHLNEDCLNGSQLLVNFGLSPAAPLTPRQFALLCPALLYQIDSRVCIGAPAPAPPGDLLSALLQSALAVLLLSLPSPLSLLLLRLLGPRLLRPLLGFLGALAVGTLCGDALLHLLPHAQEGRHAGPGGLPEKDLGPGLSVLGGLFLLFVLENMLGLLRHRGLRPRCCRRKRRNLETRNLDPENGSGMALQPLQAAPEPGAQGQREKNSQHPPALAPPGHQGHSHGHQGGTDITWMVLLGDGLHNLTDGLAIGAAFSDGFSSGLSTTLAVFCHELPHELGDFAMLLQSGLSFRRLLLLSLVSGALGLGGAVLGVGLSLGPVPLTPWVFGVTAGVFLYVALVDMLPALLRPPEPLPTPHVLLQGLGLLLGGGLMLAITLLEERLLPVTTEG | Uniporter that transports zinc(2+) into polarized cells of enterocytes, pancreatic acinar and endoderm cells across the basolateral membrane and participates, notably, in zinc excretion from the intestine by the uptake of zinc from the blood into the intestine (By similarity). The transport mechanism is temperature- and concentration-dependent and saturable (By similarity). In addition, is also a high affinity copper transporter in vitro . Also may regulate glucose-stimulated insulin secretion (GSIS) in islets primarily through the zinc-activated SIRT1-PPARGC1A axis (By similarity). Could regulate the BMP/TGF-beta (bone morphogenetic protein/transforming growth factor-beta) signaling pathway and modulates extracellular matrix (ECM) proteins of the sclera . Plays a role in eye development .
Subcellular locations: Basolateral cell membrane
Localized to the basolateral surfaces of enterocytes, pancreatic acinar and endoderm cells. During zinc deficiency diet, the basolateral cell membrane localization is lost in the intestine, the visceral yolk sac and acinar cell. During zinc repletion, is relocalized to the basolateral membrane of enterocytes, visceral endoderm cells and pancreatic acinar cells. Zinc can regulate the turnover of protein at the membrane. During zinc deficiency, is internalized and degraded in enterocytes, acinar cells and endoderm cells. Endocytosed through the endolysosomal degradation pathway RAB5A pathway.
Expressed in liver, kidney, pancreas, small intestine, colon, spleen, fetal liver and fetal kidney. |
S39A6_HUMAN | Homo sapiens | MARKLSVILILTFALSVTNPLHELKAAAFPQTTEKISPNWESGINVDLAISTRQYHLQQLFYRYGENNSLSVEGFRKLLQNIGIDKIKRIHIHHDHDHHSDHEHHSDHERHSDHEHHSEHEHHSDHDHHSHHNHAASGKNKRKALCPDHDSDSSGKDPRNSQGKGAHRPEHASGRRNVKDSVSASEVTSTVYNTVSEGTHFLETIETPRPGKLFPKDVSSSTPPSVTSKSRVSRLAGRKTNESVSEPRKGFMYSRNTNENPQECFNASKLLTSHGMGIQVPLNATEFNYLCPAIINQIDARSCLIHTSEKKAEIPPKTYSLQIAWVGGFIAISIISFLSLLGVILVPLMNRVFFKFLLSFLVALAVGTLSGDAFLHLLPHSHASHHHSHSHEEPAMEMKRGPLFSHLSSQNIEESAYFDSTWKGLTALGGLYFMFLVEHVLTLIKQFKDKKKKNQKKPENDDDVEIKKQLSKYESQLSTNEEKVDTDDRTEGYLRADSQEPSHFDSQQPAVLEEEEVMIAHAHPQEVYNEYVPRGCKNKCHSHFHDTLGQSDDLIHHHHDYHHILHHHHHQNHHPHSHSQRYSREELKDAGVATLAWMVIMGDGLHNFSDGLAIGAAFTEGLSSGLSTSVAVFCHELPHELGDFAVLLKAGMTVKQAVLYNALSAMLAYLGMATGIFIGHYAENVSMWIFALTAGLFMYVALVDMVPEMLHNDASDHGCSRWGYFFLQNAGMLLGFGIMLLISIFEHKIVFRINF | Zinc-influx transporter which plays a role in zinc homeostasis and in the induction of epithelial-to-mesenchymal transition (EMT) ( , ). When associated with SLC39A10, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial- to-mesenchymal transition (EMT) . The SLC39A10-SLC39A6 heterodimer also controls NCAM1 phosphorylation and its integration into focal adhesion complexes during EMT (By similarity). Zinc influx inactivates GSK3B, enabling unphosphorylated SNAI1 in the nucleus to down-regulate adherence genes such as CDH1, causing loss of cell adherence . In addition, the SLC39A10-SLC39A6 heterodimer plays an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis . Participates in the T-cell receptor signaling regulation by mediating cellular zinc uptake into activated lymphocytes ( ). Regulates the zinc influx necessary for proper meiotic progression to metaphase II (MII) that allows the oocyte-to-egg transition .
Subcellular locations: Cell membrane, Cell projection, Lamellipodium membrane, Membrane raft, Apical cell membrane
Localizes to lipid rafts in T cells and is recruited into the immunological synapse in response to TCR stimulation . In the choroid plexus is limited to the apical membrane in epithelial cells (By similarity).
Highly expressed in the breast, prostate, placenta, kidney, pituitary and corpus callosum . Weakly expressed in heart and intestine. Also highly expressed in cells derived from an adenocarcinoma of the cervix and lung carcinoma . |
S39A6_PONAB | Pongo abelii | MARKLSVILILTFALSVTNPLHELKAAAFPQTTEKISPNWESGINVDLAITTRQYHLQQLFYRYGENNSLSVEGFRKLLQNIGIDKIKRIHIHHDHEHHSDHEHHSDHEHHSDHEHHSHRNHAASGKNKRKALCPDHDSDSSGKDPRNSQGKGAHRSEHASGRRNVKDSVSASEVTSTVYNTVSEGTHFLETIETPRPGKLFPKDVSSSTPPSVTEKSRGSRLAGRKTNESVSEPRKGFMYSRNTNENPQECFNASKLLTSHGMGIQVPLNATEFNYLCPAIINQIDARSCLIHTSEKKAEIPPKTYSLQIAWVGGFIAISIISFLSLLGVILVPLMNRVFFKFLLSFLVALAVGTLSGDAFLHLLPHSHASHHHSHSHEEPAMEMKRGPLFSHLSSQNIEESAYFDSTWKGLTALGGLYFMFLVEHVLTLIKQFKDKKKKNQKKPENDDDVEIKKQLSKYESQLSTNEEKVDTDDRTEGYLRADSQEPSHFDSQQPAILEEEEVMIAHAHPQEVYNEYVPRGCKNKCHSHFHDTLGQSDDLIHHHHDYHHILHHHHHQNHHPHSHSQRYSREELKDAGIATLAWMVIMGDGLHNFSDGLAIGAAFTEGLSSGLSTSVAVFCHELPHELGDFAVLLKAGMTVKQAVLYNALSAMLAYLGMATGIFIGHYAENVSMWIFALTAGLFMYVALVDMVPEMLHNDASDHGCSRWGYFFLQNAGMLLGFGIMLLISIFEHKIVFRINF | Zinc-influx transporter which plays a role in zinc homeostasis and in the induction of epithelial-to-mesenchymal transition (EMT). When associated with SLC39A10, the heterodimer formed by SLC39A10 and SLC39A6 mediates cellular zinc uptake to trigger cells to undergo epithelial- to-mesenchymal transition (EMT) (By similarity). The SLC39A10-SLC39A6 heterodimer also controls NCAM1 phosphorylation and its integration into focal adhesion complexes during EMT (By similarity). Zinc influx inactivates GSK3B, enabling unphosphorylated SNAI1 in the nucleus to down-regulate adherence genes such as CDH1, causing loss of cell adherence. In addition, the SLC39A10-SLC39A6 heterodimer plays an essentiel role in initiating mitosis by importing zinc into cells to initiate a pathway resulting in the onset of mitosis. Participates in the T-cell receptor signaling regulation by mediating cellular zinc uptake into activated lymphocytes. Regulates the zinc influx necessary for proper meiotic progression to metaphase II (MII) that allows the oocyte-to-egg transition (By similarity).
Subcellular locations: Cell membrane, Cell projection, Lamellipodium membrane, Membrane raft, Apical cell membrane
Localizes to lipid rafts in T cells and is recruited into the immunological synapse in response to TCR stimulation (By similarity). In the choroid plexus is limited to the apical membrane in epithelial cells (By similarity). |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.