|
--- |
|
license: mit |
|
task_categories: |
|
- image-classification |
|
- feature-extraction |
|
language: |
|
- en |
|
tags: |
|
- code |
|
pretty_name: Vi-Backbones |
|
size_categories: |
|
- n<1K |
|
viewer: false |
|
--- |
|
|
|
# Dataset Card for "monet-joe/cv_backbones" |
|
## Viewer |
|
<https://huggingface.co/spaces/monet-joe/cv-backbones> |
|
|
|
## Maintenance |
|
```bash |
|
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/monet-joe/cv_backbones |
|
``` |
|
|
|
## Usage |
|
```python |
|
from datasets import load_dataset |
|
|
|
backbones = load_dataset("monet-joe/cv_backbones") |
|
|
|
for weights in backbones["IMAGENET1K_V1"]: |
|
print(weights) |
|
|
|
for weights in backbones["IMAGENET1K_V2"]: |
|
print(weights) |
|
``` |
|
|
|
## Param count |
|
| Backbone | Params(M) | |
|
| :--: | :--: | |
|
| SqueezeNet1_0_Weights.IMAGENET1K_V1 | 1.2 | |
|
| SqueezeNet1_1_Weights.IMAGENET1K_V1 | 1.2 | |
|
| ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1 | 1.4 | |
|
| MNASNet0_5_Weights.IMAGENET1K_V1 | 2.2 | |
|
| ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1 | 2.3 | |
|
| MobileNet_V3_Small_Weights.IMAGENET1K_V1 | 2.5 | |
|
| MNASNet0_75_Weights.IMAGENET1K_V1 | 3.2 | |
|
| MobileNet_V2_Weights.IMAGENET1K_V1 | 3.5 | |
|
| MobileNet_V2_Weights.IMAGENET1K_V2 | 3.5 | |
|
| ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1 | 3.5 | |
|
| RegNet_Y_400MF_Weights.IMAGENET1K_V1 | 4.3 | |
|
| RegNet_Y_400MF_Weights.IMAGENET1K_V2 | 4.3 | |
|
| MNASNet1_0_Weights.IMAGENET1K_V1 | 4.4 | |
|
| EfficientNet_B0_Weights.IMAGENET1K_V1 | 5.3 | |
|
| MobileNet_V3_Large_Weights.IMAGENET1K_V1 | 5.5 | |
|
| MobileNet_V3_Large_Weights.IMAGENET1K_V2 | 5.5 | |
|
| RegNet_X_400MF_Weights.IMAGENET1K_V1 | 5.5 | |
|
| RegNet_X_400MF_Weights.IMAGENET1K_V2 | 5.5 | |
|
| MNASNet1_3_Weights.IMAGENET1K_V1 | 6.3 | |
|
| RegNet_Y_800MF_Weights.IMAGENET1K_V1 | 6.4 | |
|
| RegNet_Y_800MF_Weights.IMAGENET1K_V2 | 6.4 | |
|
| GoogLeNet_Weights.IMAGENET1K_V1 | 6.6 | |
|
| RegNet_X_800MF_Weights.IMAGENET1K_V1 | 7.3 | |
|
| RegNet_X_800MF_Weights.IMAGENET1K_V2 | 7.3 | |
|
| ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1 | 7.4 | |
|
| EfficientNet_B1_Weights.IMAGENET1K_V1 | 7.8 | |
|
| EfficientNet_B1_Weights.IMAGENET1K_V2 | 7.8 | |
|
| DenseNet121_Weights.IMAGENET1K_V1 | 8 | |
|
| EfficientNet_B2_Weights.IMAGENET1K_V1 | 9.1 | |
|
| RegNet_X_1_6GF_Weights.IMAGENET1K_V1 | 9.2 | |
|
| RegNet_X_1_6GF_Weights.IMAGENET1K_V2 | 9.2 | |
|
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V1 | 11.2 | |
|
| RegNet_Y_1_6GF_Weights.IMAGENET1K_V2 | 11.2 | |
|
| ResNet18_Weights.IMAGENET1K_V1 | 11.7 | |
|
| EfficientNet_B3_Weights.IMAGENET1K_V1 | 12.2 | |
|
| DenseNet169_Weights.IMAGENET1K_V1 | 14.1 | |
|
| RegNet_X_3_2GF_Weights.IMAGENET1K_V1 | 15.3 | |
|
| RegNet_X_3_2GF_Weights.IMAGENET1K_V2 | 15.3 | |
|
| EfficientNet_B4_Weights.IMAGENET1K_V1 | 19.3 | |
|
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V1 | 19.4 | |
|
| RegNet_Y_3_2GF_Weights.IMAGENET1K_V2 | 19.4 | |
|
| DenseNet201_Weights.IMAGENET1K_V1 | 20 | |
|
| EfficientNet_V2_S_Weights.IMAGENET1K_V1 | 21.5 | |
|
| ResNet34_Weights.IMAGENET1K_V1 | 21.8 | |
|
| ResNeXt50_32X4D_Weights.IMAGENET1K_V1 | 25 | |
|
| ResNeXt50_32X4D_Weights.IMAGENET1K_V2 | 25 | |
|
| ResNet50_Weights.IMAGENET1K_V1 | 25.6 | |
|
| ResNet50_Weights.IMAGENET1K_V2 | 25.6 | |
|
| Inception_V3_Weights.IMAGENET1K_V1 | 27.2 | |
|
| Swin_T_Weights.IMAGENET1K_V1 | 28.3 | |
|
| Swin_V2_T_Weights.IMAGENET1K_V1 | 28.4 | |
|
| ConvNeXt_Tiny_Weights.IMAGENET1K_V1 | 28.6 | |
|
| DenseNet161_Weights.IMAGENET1K_V1 | 28.7 | |
|
| EfficientNet_B5_Weights.IMAGENET1K_V1 | 30.4 | |
|
| MaxVit_T_Weights.IMAGENET1K_V1 | 30.9 | |
|
| RegNet_Y_8GF_Weights.IMAGENET1K_V1 | 39.4 | |
|
| RegNet_Y_8GF_Weights.IMAGENET1K_V2 | 39.4 | |
|
| RegNet_X_8GF_Weights.IMAGENET1K_V1 | 39.6 | |
|
| RegNet_X_8GF_Weights.IMAGENET1K_V2 | 39.6 | |
|
| EfficientNet_B6_Weights.IMAGENET1K_V1 | 43 | |
|
| ResNet101_Weights.IMAGENET1K_V1 | 44.5 | |
|
| ResNet101_Weights.IMAGENET1K_V2 | 44.5 | |
|
| Swin_S_Weights.IMAGENET1K_V1 | 49.6 | |
|
| Swin_V2_S_Weights.IMAGENET1K_V1 | 49.7 | |
|
| ConvNeXt_Small_Weights.IMAGENET1K_V1 | 50.2 | |
|
| EfficientNet_V2_M_Weights.IMAGENET1K_V1 | 54.1 | |
|
| RegNet_X_16GF_Weights.IMAGENET1K_V1 | 54.3 | |
|
| RegNet_X_16GF_Weights.IMAGENET1K_V2 | 54.3 | |
|
| ResNet152_Weights.IMAGENET1K_V1 | 60.2 | |
|
| ResNet152_Weights.IMAGENET1K_V2 | 60.2 | |
|
| AlexNet_Weights.IMAGENET1K_V1 | 61.1 | |
|
| EfficientNet_B7_Weights.IMAGENET1K_V1 | 66.3 | |
|
| Wide_ResNet50_2_Weights.IMAGENET1K_V1 | 68.9 | |
|
| Wide_ResNet50_2_Weights.IMAGENET1K_V2 | 68.9 | |
|
| ResNeXt101_64X4D_Weights.IMAGENET1K_V1 | 83.5 | |
|
| RegNet_Y_16GF_Weights.IMAGENET1K_V1 | 83.6 | |
|
| RegNet_Y_16GF_Weights.IMAGENET1K_V2 | 83.6 | |
|
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 83.6 | |
|
| RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 83.6 | |
|
| ViT_B_16_Weights.IMAGENET1K_V1 | 86.6 | |
|
| ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 86.6 | |
|
| ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 86.9 | |
|
| Swin_B_Weights.IMAGENET1K_V1 | 87.8 | |
|
| Swin_V2_B_Weights.IMAGENET1K_V1 | 87.9 | |
|
| ViT_B_32_Weights.IMAGENET1K_V1 | 88.2 | |
|
| ConvNeXt_Base_Weights.IMAGENET1K_V1 | 88.6 | |
|
| ResNeXt101_32X8D_Weights.IMAGENET1K_V1 | 88.8 | |
|
| ResNeXt101_32X8D_Weights.IMAGENET1K_V2 | 88.8 | |
|
| RegNet_X_32GF_Weights.IMAGENET1K_V1 | 107.8 | |
|
| RegNet_X_32GF_Weights.IMAGENET1K_V2 | 107.8 | |
|
| EfficientNet_V2_L_Weights.IMAGENET1K_V1 | 118.5 | |
|
| Wide_ResNet101_2_Weights.IMAGENET1K_V1 | 126.9 | |
|
| Wide_ResNet101_2_Weights.IMAGENET1K_V2 | 126.9 | |
|
| VGG11_BN_Weights.IMAGENET1K_V1 | 132.9 | |
|
| VGG11_Weights.IMAGENET1K_V1 | 132.9 | |
|
| VGG13_Weights.IMAGENET1K_V1 | 133 | |
|
| VGG13_BN_Weights.IMAGENET1K_V1 | 133.1 | |
|
| VGG16_BN_Weights.IMAGENET1K_V1 | 138.4 | |
|
| VGG16_Weights.IMAGENET1K_V1 | 138.4 | |
|
| VGG16_Weights.IMAGENET1K_FEATURES | 138.4 | |
|
| VGG19_BN_Weights.IMAGENET1K_V1 | 143.7 | |
|
| VGG19_Weights.IMAGENET1K_V1 | 143.7 | |
|
| RegNet_Y_32GF_Weights.IMAGENET1K_V1 | 145 | |
|
| RegNet_Y_32GF_Weights.IMAGENET1K_V2 | 145 | |
|
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 145 | |
|
| RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 145 | |
|
| ConvNeXt_Large_Weights.IMAGENET1K_V1 | 197.8 | |
|
| ViT_L_16_Weights.IMAGENET1K_V1 | 304.3 | |
|
| ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 304.3 | |
|
| ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 305.2 | |
|
| ViT_L_32_Weights.IMAGENET1K_V1 | 306.5 | |
|
| ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 632 | |
|
| ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1 | 633.5 | |
|
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 644.8 | |
|
| RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 | |
|
|
|
## Mirror |
|
<https://www.modelscope.cn/datasets/monetjoe/cv_backbones> |
|
|
|
## Reference |
|
<https://pytorch.org/vision/main/_modules> |