metadata
license: mit
task_categories:
- image-classification
- feature-extraction
language:
- en
tags:
- code
pretty_name: Vi-Backbones
size_categories:
- n<1K
viewer: false
Dataset Card for "monet-joe/cv_backbones"
Viewer
https://huggingface.co/spaces/monet-joe/cv-backbones
Maintenance
git clone [email protected]:datasets/monet-joe/cv_backbones
Usage
from datasets import load_dataset
backbones = load_dataset("monet-joe/cv_backbones")
for weights in backbones["IMAGENET1K_V1"]:
print(weights)
for weights in backbones["IMAGENET1K_V2"]:
print(weights)
Param count
Backbone | Params(M) |
---|---|
SqueezeNet1_0_Weights.IMAGENET1K_V1 | 1.2 |
SqueezeNet1_1_Weights.IMAGENET1K_V1 | 1.2 |
ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1 | 1.4 |
MNASNet0_5_Weights.IMAGENET1K_V1 | 2.2 |
ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1 | 2.3 |
MobileNet_V3_Small_Weights.IMAGENET1K_V1 | 2.5 |
MNASNet0_75_Weights.IMAGENET1K_V1 | 3.2 |
MobileNet_V2_Weights.IMAGENET1K_V1 | 3.5 |
MobileNet_V2_Weights.IMAGENET1K_V2 | 3.5 |
ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1 | 3.5 |
RegNet_Y_400MF_Weights.IMAGENET1K_V1 | 4.3 |
RegNet_Y_400MF_Weights.IMAGENET1K_V2 | 4.3 |
MNASNet1_0_Weights.IMAGENET1K_V1 | 4.4 |
EfficientNet_B0_Weights.IMAGENET1K_V1 | 5.3 |
MobileNet_V3_Large_Weights.IMAGENET1K_V1 | 5.5 |
MobileNet_V3_Large_Weights.IMAGENET1K_V2 | 5.5 |
RegNet_X_400MF_Weights.IMAGENET1K_V1 | 5.5 |
RegNet_X_400MF_Weights.IMAGENET1K_V2 | 5.5 |
MNASNet1_3_Weights.IMAGENET1K_V1 | 6.3 |
RegNet_Y_800MF_Weights.IMAGENET1K_V1 | 6.4 |
RegNet_Y_800MF_Weights.IMAGENET1K_V2 | 6.4 |
GoogLeNet_Weights.IMAGENET1K_V1 | 6.6 |
RegNet_X_800MF_Weights.IMAGENET1K_V1 | 7.3 |
RegNet_X_800MF_Weights.IMAGENET1K_V2 | 7.3 |
ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1 | 7.4 |
EfficientNet_B1_Weights.IMAGENET1K_V1 | 7.8 |
EfficientNet_B1_Weights.IMAGENET1K_V2 | 7.8 |
DenseNet121_Weights.IMAGENET1K_V1 | 8 |
EfficientNet_B2_Weights.IMAGENET1K_V1 | 9.1 |
RegNet_X_1_6GF_Weights.IMAGENET1K_V1 | 9.2 |
RegNet_X_1_6GF_Weights.IMAGENET1K_V2 | 9.2 |
RegNet_Y_1_6GF_Weights.IMAGENET1K_V1 | 11.2 |
RegNet_Y_1_6GF_Weights.IMAGENET1K_V2 | 11.2 |
ResNet18_Weights.IMAGENET1K_V1 | 11.7 |
EfficientNet_B3_Weights.IMAGENET1K_V1 | 12.2 |
DenseNet169_Weights.IMAGENET1K_V1 | 14.1 |
RegNet_X_3_2GF_Weights.IMAGENET1K_V1 | 15.3 |
RegNet_X_3_2GF_Weights.IMAGENET1K_V2 | 15.3 |
EfficientNet_B4_Weights.IMAGENET1K_V1 | 19.3 |
RegNet_Y_3_2GF_Weights.IMAGENET1K_V1 | 19.4 |
RegNet_Y_3_2GF_Weights.IMAGENET1K_V2 | 19.4 |
DenseNet201_Weights.IMAGENET1K_V1 | 20 |
EfficientNet_V2_S_Weights.IMAGENET1K_V1 | 21.5 |
ResNet34_Weights.IMAGENET1K_V1 | 21.8 |
ResNeXt50_32X4D_Weights.IMAGENET1K_V1 | 25 |
ResNeXt50_32X4D_Weights.IMAGENET1K_V2 | 25 |
ResNet50_Weights.IMAGENET1K_V1 | 25.6 |
ResNet50_Weights.IMAGENET1K_V2 | 25.6 |
Inception_V3_Weights.IMAGENET1K_V1 | 27.2 |
Swin_T_Weights.IMAGENET1K_V1 | 28.3 |
Swin_V2_T_Weights.IMAGENET1K_V1 | 28.4 |
ConvNeXt_Tiny_Weights.IMAGENET1K_V1 | 28.6 |
DenseNet161_Weights.IMAGENET1K_V1 | 28.7 |
EfficientNet_B5_Weights.IMAGENET1K_V1 | 30.4 |
MaxVit_T_Weights.IMAGENET1K_V1 | 30.9 |
RegNet_Y_8GF_Weights.IMAGENET1K_V1 | 39.4 |
RegNet_Y_8GF_Weights.IMAGENET1K_V2 | 39.4 |
RegNet_X_8GF_Weights.IMAGENET1K_V1 | 39.6 |
RegNet_X_8GF_Weights.IMAGENET1K_V2 | 39.6 |
EfficientNet_B6_Weights.IMAGENET1K_V1 | 43 |
ResNet101_Weights.IMAGENET1K_V1 | 44.5 |
ResNet101_Weights.IMAGENET1K_V2 | 44.5 |
Swin_S_Weights.IMAGENET1K_V1 | 49.6 |
Swin_V2_S_Weights.IMAGENET1K_V1 | 49.7 |
ConvNeXt_Small_Weights.IMAGENET1K_V1 | 50.2 |
EfficientNet_V2_M_Weights.IMAGENET1K_V1 | 54.1 |
RegNet_X_16GF_Weights.IMAGENET1K_V1 | 54.3 |
RegNet_X_16GF_Weights.IMAGENET1K_V2 | 54.3 |
ResNet152_Weights.IMAGENET1K_V1 | 60.2 |
ResNet152_Weights.IMAGENET1K_V2 | 60.2 |
AlexNet_Weights.IMAGENET1K_V1 | 61.1 |
EfficientNet_B7_Weights.IMAGENET1K_V1 | 66.3 |
Wide_ResNet50_2_Weights.IMAGENET1K_V1 | 68.9 |
Wide_ResNet50_2_Weights.IMAGENET1K_V2 | 68.9 |
ResNeXt101_64X4D_Weights.IMAGENET1K_V1 | 83.5 |
RegNet_Y_16GF_Weights.IMAGENET1K_V1 | 83.6 |
RegNet_Y_16GF_Weights.IMAGENET1K_V2 | 83.6 |
RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 83.6 |
RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 83.6 |
ViT_B_16_Weights.IMAGENET1K_V1 | 86.6 |
ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 86.6 |
ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 86.9 |
Swin_B_Weights.IMAGENET1K_V1 | 87.8 |
Swin_V2_B_Weights.IMAGENET1K_V1 | 87.9 |
ViT_B_32_Weights.IMAGENET1K_V1 | 88.2 |
ConvNeXt_Base_Weights.IMAGENET1K_V1 | 88.6 |
ResNeXt101_32X8D_Weights.IMAGENET1K_V1 | 88.8 |
ResNeXt101_32X8D_Weights.IMAGENET1K_V2 | 88.8 |
RegNet_X_32GF_Weights.IMAGENET1K_V1 | 107.8 |
RegNet_X_32GF_Weights.IMAGENET1K_V2 | 107.8 |
EfficientNet_V2_L_Weights.IMAGENET1K_V1 | 118.5 |
Wide_ResNet101_2_Weights.IMAGENET1K_V1 | 126.9 |
Wide_ResNet101_2_Weights.IMAGENET1K_V2 | 126.9 |
VGG11_BN_Weights.IMAGENET1K_V1 | 132.9 |
VGG11_Weights.IMAGENET1K_V1 | 132.9 |
VGG13_Weights.IMAGENET1K_V1 | 133 |
VGG13_BN_Weights.IMAGENET1K_V1 | 133.1 |
VGG16_BN_Weights.IMAGENET1K_V1 | 138.4 |
VGG16_Weights.IMAGENET1K_V1 | 138.4 |
VGG16_Weights.IMAGENET1K_FEATURES | 138.4 |
VGG19_BN_Weights.IMAGENET1K_V1 | 143.7 |
VGG19_Weights.IMAGENET1K_V1 | 143.7 |
RegNet_Y_32GF_Weights.IMAGENET1K_V1 | 145 |
RegNet_Y_32GF_Weights.IMAGENET1K_V2 | 145 |
RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 145 |
RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 145 |
ConvNeXt_Large_Weights.IMAGENET1K_V1 | 197.8 |
ViT_L_16_Weights.IMAGENET1K_V1 | 304.3 |
ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 304.3 |
ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1 | 305.2 |
ViT_L_32_Weights.IMAGENET1K_V1 | 306.5 |
ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 632 |
ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1 | 633.5 |
RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1 | 644.8 |
RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1 | 644.8 |
Mirror
https://www.modelscope.cn/datasets/monetjoe/cv_backbones
Reference
[1] https://pytorch.org/vision/main/_modules
[2] https://pytorch.org/vision/main/models.html