File size: 5,742 Bytes
2334ed3
 
d24adcc
2334ed3
 
0acb356
c693f0b
2334ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
680fb78
72ad8e8
2334ed3
72ad8e8
2334ed3
 
 
 
 
 
9d28e90
d24adcc
 
9d28e90
d24adcc
9d28e90
 
d24adcc
 
 
 
 
9d28e90
 
 
d24adcc
9d28e90
 
d24adcc
9d28e90
 
2334ed3
 
 
 
 
 
0acb356
 
 
 
 
 
 
 
 
 
 
 
d7c586c
 
 
0acb356
60bf99f
d7c586c
 
 
 
 
 
 
4fed6f6
d7c586c
2334ed3
 
 
 
680fb78
 
2334ed3
 
 
a9b40cc
2334ed3
 
680fb78
2334ed3
 
 
680fb78
6830819
 
 
 
a9b40cc
0acb356
 
 
6830819
a9b40cc
87d37ae
a9b40cc
 
 
 
87d37ae
 
 
 
4fed6f6
a9b40cc
 
 
 
6830819
599a4c4
4fed6f6
a9b40cc
 
 
 
87d37ae
6830819
 
a9b40cc
 
 
 
6830819
680fb78
 
2334ed3
a7bb4e7
680fb78
2334ed3
 
 
 
 
a7bb4e7
2334ed3
 
 
 
 
a7bb4e7
2334ed3
 
 
 
a7bb4e7
 
2334ed3
 
 
 
72ad8e8
2334ed3
72ad8e8
2334ed3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import re
import hashlib
import requests
import datasets
import torchvision.models as models
from bs4 import BeautifulSoup


_DBNAME = os.path.basename(__file__).split('.')[0]

_HOMEPAGE = "https://huggingface.co/datasets/george-chou/" + _DBNAME

_URL = 'https://pytorch.org/vision/main/_modules/'


class vi_backbones(datasets.GeneratorBasedBuilder):

    def _info(self):
        return datasets.DatasetInfo(
            features=datasets.Features(
                {
                    "ver": datasets.Value("string"),
                    "type": datasets.Value("string"),
                    "input_size": datasets.Value("int16"),
                    "output_size": datasets.Value("int64"),
                    "url": datasets.Value("string"),
                    # "md5": datasets.Value("string"),
                }
            ),
            supervised_keys=("ver", "type"),
            homepage=_HOMEPAGE,
            license="mit"
        )

    def _get_file_md5(self, url):
        """
        Calculate the MD5 hash value of a file using its URL

        :param url: the URL address of the file
        :return: the MD5 hash value in string format
        """
        try:
            response = requests.get(url, stream=True)
            if response.status_code == 200:
                md5obj = hashlib.md5()
                for chunk in response.iter_content(chunk_size=1024*1024):
                    md5obj.update(chunk)
                return md5obj.hexdigest()
            else:
                raise ValueError(
                    f"Error downloading file from {url}. Status code: {response.status_code}")
        except Exception as e:
            raise ValueError(
                f"Error calculating MD5 of file at {url}: {str(e)}")

    def _parse_url(self, url):
        response = requests.get(url)
        html = response.text
        return BeautifulSoup(html, 'html.parser')

    def _special_type(self, m_type):
        if m_type == 'wide' or m_type == 'resnext':
            return 'resnet'

        if m_type == 'swin':
            return 'swin_transformer'

        if m_type == 'inception':
            return 'googlenet'

        return m_type

    def _info_on_dataset(self, m_ver, m_type, in1k_span):
        url_span = in1k_span.find_next_sibling('span', {'class': 's2'})
        size_span = url_span.find_next_sibling('span', {'class': 'mi'})
        m_type = self._special_type(m_type)
        m_url = str(url_span.text[1:-1])
        input_size = int(size_span.text)
        m_dict = {
            'ver': m_ver,
            'type': m_type,
            'input_size': input_size,
            'url': m_url
        }
        return m_dict, size_span

    def _generate_dataset(self, url):
        torch_page = self._parse_url(url)
        article = torch_page.find('article', {'id': 'pytorch-article'})
        ul = article.find('ul').find('ul')
        in1k_v1, in1k_v2 = [], []

        for li in ul.find_all('li'):
            name = str(li.text)
            if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:

                if name.__contains__('_api') or name.__contains__('feature_extraction'):
                    continue

                href = li.find('a').get('href')
                model_page = self._parse_url(url + href)
                divs = model_page.select('div.viewcode-block')

                for div in divs:
                    div_id = str(div['id'])
                    if div_id.__contains__('_Weights'):
                        m_ver = div_id.split('_Weight')[0].lower()

                        if not hasattr(models, m_ver):
                            continue

                        m_type = re.search('[a-zA-Z]+', m_ver).group(0)

                        in1k_v1_span = div.find(
                            name='span',
                            attrs={'class': 'n'},
                            string='IMAGENET1K_V1'
                        )

                        if in1k_v1_span == None:
                            continue

                        m_dict, size_span = self._info_on_dataset(
                            m_ver,
                            m_type,
                            in1k_v1_span
                        )
                        in1k_v1.append(m_dict)

                        in1k_v2_span = size_span.find_next_sibling(
                            name='span',
                            attrs={'class': 'n'},
                            string='IMAGENET1K_V2'
                        )

                        if in1k_v2_span != None:
                            m_dict, _ = self._info_on_dataset(
                                m_ver,
                                m_type,
                                in1k_v2_span
                            )
                            in1k_v2.append(m_dict)

        return in1k_v1, in1k_v2

    def _split_generators(self, _):
        in1k_v1, in1k_v2 = self._generate_dataset(_URL)

        return [
            datasets.SplitGenerator(
                name="IMAGENET1K_V1",
                gen_kwargs={
                    "subset": in1k_v1,
                },
            ),
            datasets.SplitGenerator(
                name="IMAGENET1K_V2",
                gen_kwargs={
                    "subset": in1k_v2,
                },
            ),
        ]

    def _generate_examples(self, subset):
        for i, model in enumerate(subset):
            yield i, {
                "ver": model['ver'],
                "type": model['type'],
                "input_size": model['input_size'],
                "output_size": 1234,
                "url": model['url'],
                # "md5": self._get_file_md5(model['url']),
            }