admin commited on
Commit
680fb78
·
1 Parent(s): f903536

try add in1k_v2

Browse files
Files changed (1) hide show
  1. vi_backbones.py +39 -17
vi_backbones.py CHANGED
@@ -2,7 +2,7 @@ import os
2
  import re
3
  import requests
4
  import datasets
5
- import pandas as pd
6
  from bs4 import BeautifulSoup
7
 
8
 
@@ -12,10 +12,10 @@ _HOMEPAGE = "https://huggingface.co/datasets/george-chou/" + _DBNAME
12
 
13
  _URL = 'https://pytorch.org/vision/main/_modules/'
14
 
15
- _TYPES = pd.read_csv(_HOMEPAGE + '/resolve/main/data/backbone.csv',
16
- index_col='ver').to_dict()['type']
17
 
18
- _NAMES = sorted(list(set(_TYPES.values())))
19
 
20
 
21
  class vi_backbones(datasets.GeneratorBasedBuilder):
@@ -27,8 +27,8 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
27
  "ver": datasets.Value("string"),
28
  "type": datasets.Value("string"),
29
  # "type": datasets.features.ClassLabel(names=_NAMES),
30
- "input_size": datasets.Value("int32"),
31
- "output_size": datasets.Value("int32"),
32
  "url": datasets.Value("string"),
33
  }
34
  ),
@@ -43,50 +43,72 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
43
  return BeautifulSoup(html, 'html.parser')
44
 
45
  def _generate_dataset(self, url):
 
46
  torch_page = self._parse_url(url)
47
  article = torch_page.find('article', {'id': 'pytorch-article'})
48
  ul = article.find('ul').find('ul')
49
- dataset = []
 
50
  for li in ul.find_all('li'):
51
  name = str(li.text)
52
  if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
53
  if name.__contains__('_api') or name.__contains__('feature_extraction'):
54
  continue
 
55
  href = li.find('a').get('href')
56
  model_page = self._parse_url(url + href)
57
  divs = model_page.select('div.viewcode-block')
 
58
  for div in divs:
59
  div_id = str(div['id'])
60
  if div_id.__contains__('_Weights'):
61
  m_ver = div_id.split('_Weight')[0].lower()
62
  m_type = re.search('[a-zA-Z]+', m_ver).group(0)
63
- input_size = int(
64
- div.find('span', {'class': 'mi'}).text)
65
- m_url = str(div.find('span', {'class': 's2'}).text)
 
 
66
  m_dict = {
67
  'ver': m_ver,
68
  'type': m_type,
69
  'input_size': input_size,
 
70
  'url': m_url
71
  }
72
- print('Adding ' + m_ver)
73
- dataset.append(m_dict)
74
- return dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  def _split_generators(self, dl_manager):
77
- dataset = self._generate_dataset(_URL)
78
 
79
  return [
80
  datasets.SplitGenerator(
81
  name="IMAGENET1K_V1",
82
  gen_kwargs={
83
- "files": dataset,
84
  },
85
  ),
86
  datasets.SplitGenerator(
87
  name="IMAGENET1K_V2",
88
  gen_kwargs={
89
- "files": dataset,
90
  },
91
  ),
92
  ]
@@ -97,6 +119,6 @@ class vi_backbones(datasets.GeneratorBasedBuilder):
97
  "ver": model['ver'],
98
  "type": model['type'],
99
  "input_size": model['input_size'],
100
- "output_size": 9216,
101
  "url": model['url'],
102
  }
 
2
  import re
3
  import requests
4
  import datasets
5
+ # import pandas as pd
6
  from bs4 import BeautifulSoup
7
 
8
 
 
12
 
13
  _URL = 'https://pytorch.org/vision/main/_modules/'
14
 
15
+ # _TYPES = pd.read_csv(_HOMEPAGE + '/resolve/main/data/backbone.csv',
16
+ # index_col='ver').to_dict()['type']
17
 
18
+ # _NAMES = sorted(list(set(_TYPES.values())))
19
 
20
 
21
  class vi_backbones(datasets.GeneratorBasedBuilder):
 
27
  "ver": datasets.Value("string"),
28
  "type": datasets.Value("string"),
29
  # "type": datasets.features.ClassLabel(names=_NAMES),
30
+ "input_size": datasets.Value("int16"),
31
+ "num_params": datasets.Value("int32"),
32
  "url": datasets.Value("string"),
33
  }
34
  ),
 
43
  return BeautifulSoup(html, 'html.parser')
44
 
45
  def _generate_dataset(self, url):
46
+
47
  torch_page = self._parse_url(url)
48
  article = torch_page.find('article', {'id': 'pytorch-article'})
49
  ul = article.find('ul').find('ul')
50
+ in1k_v1, in1k_v2 = [], []
51
+
52
  for li in ul.find_all('li'):
53
  name = str(li.text)
54
  if name.__contains__('torchvision.models.') and len(name.split('.')) == 3:
55
  if name.__contains__('_api') or name.__contains__('feature_extraction'):
56
  continue
57
+
58
  href = li.find('a').get('href')
59
  model_page = self._parse_url(url + href)
60
  divs = model_page.select('div.viewcode-block')
61
+
62
  for div in divs:
63
  div_id = str(div['id'])
64
  if div_id.__contains__('_Weights'):
65
  m_ver = div_id.split('_Weight')[0].lower()
66
  m_type = re.search('[a-zA-Z]+', m_ver).group(0)
67
+ ints = div.find_all('span', {'class': 'mi'})
68
+ m_urls = div.find_all('span', {'class': 's2'})
69
+ input_size = int(ints[0].text)
70
+ num_params = int(ints[1].text)
71
+ m_url = m_urls[0].text
72
  m_dict = {
73
  'ver': m_ver,
74
  'type': m_type,
75
  'input_size': input_size,
76
+ 'num_params': num_params,
77
  'url': m_url
78
  }
79
+ # print('Adding ' + m_ver + ' on IMAGENET1K_V1')
80
+ in1k_v1.append(m_dict)
81
+
82
+ if len(ints) > 2 and len(m_urls) > 1:
83
+ input_size = int(ints[2].text)
84
+ num_params = int(ints[3].text)
85
+ m_url = m_urls[1].text
86
+ m_dict = {
87
+ 'ver': m_ver,
88
+ 'type': m_type,
89
+ 'input_size': input_size,
90
+ 'num_params': num_params,
91
+ 'url': m_url
92
+ }
93
+ # print('Adding ' + m_ver + ' on IMAGENET1K_V2')
94
+ in1k_v2.append(m_dict)
95
+
96
+ return in1k_v1, in1k_v2
97
 
98
  def _split_generators(self, dl_manager):
99
+ in1k_v1, in1k_v2 = self._generate_dataset(_URL)
100
 
101
  return [
102
  datasets.SplitGenerator(
103
  name="IMAGENET1K_V1",
104
  gen_kwargs={
105
+ "files": in1k_v1,
106
  },
107
  ),
108
  datasets.SplitGenerator(
109
  name="IMAGENET1K_V2",
110
  gen_kwargs={
111
+ "files": in1k_v2,
112
  },
113
  ),
114
  ]
 
119
  "ver": model['ver'],
120
  "type": model['type'],
121
  "input_size": model['input_size'],
122
+ "num_params": model['num_params'],
123
  "url": model['url'],
124
  }