text
stringlengths 96
319k
| id
stringlengths 14
178
| metadata
dict |
---|---|---|
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""EfficientFormer model configuration"""
from typing import List
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
class EfficientFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`EfficientFormerModel`]. It is used to
instantiate an EfficientFormer model according to the specified arguments, defining the model architecture.
Instantiating a configuration with the defaults will yield a similar configuration to that of the EfficientFormer
[snap-research/efficientformer-l1](https://huggingface.co/snap-research/efficientformer-l1) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
depths (`List(int)`, *optional*, defaults to `[3, 2, 6, 4]`)
Depth of each stage.
hidden_sizes (`List(int)`, *optional*, defaults to `[48, 96, 224, 448]`)
Dimensionality of each stage.
downsamples (`List(bool)`, *optional*, defaults to `[True, True, True, True]`)
Whether or not to downsample inputs between two stages.
dim (`int`, *optional*, defaults to 448):
Number of channels in Meta3D layers
key_dim (`int`, *optional*, defaults to 32):
The size of the key in meta3D block.
attention_ratio (`int`, *optional*, defaults to 4):
Ratio of the dimension of the query and value to the dimension of the key in MSHA block
resolution (`int`, *optional*, defaults to 7)
Size of each patch
num_hidden_layers (`int`, *optional*, defaults to 5):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the 3D MetaBlock.
mlp_expansion_ratio (`int`, *optional*, defaults to 4):
Ratio of size of the hidden dimensionality of an MLP to the dimensionality of its input.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings and encoder.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
pool_size (`int`, *optional*, defaults to 3):
Kernel size of pooling layers.
downsample_patch_size (`int`, *optional*, defaults to 3):
The size of patches in downsampling layers.
downsample_stride (`int`, *optional*, defaults to 2):
The stride of convolution kernels in downsampling layers.
downsample_pad (`int`, *optional*, defaults to 1):
Padding in downsampling layers.
drop_path_rate (`int`, *optional*, defaults to 0):
Rate at which to increase dropout probability in DropPath.
num_meta3d_blocks (`int`, *optional*, defaults to 1):
The number of 3D MetaBlocks in the last stage.
distillation (`bool`, *optional*, defaults to `True`):
Whether to add a distillation head.
use_layer_scale (`bool`, *optional*, defaults to `True`):
Whether to scale outputs from token mixers.
layer_scale_init_value (`float`, *optional*, defaults to 1e-5):
Factor by which outputs from token mixers are scaled.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
image_size (`int`, *optional*, defaults to `224`):
The size (resolution) of each image.
Example:
```python
>>> from transformers import EfficientFormerConfig, EfficientFormerModel
>>> # Initializing a EfficientFormer efficientformer-l1 style configuration
>>> configuration = EfficientFormerConfig()
>>> # Initializing a EfficientFormerModel (with random weights) from the efficientformer-l3 style configuration
>>> model = EfficientFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "efficientformer"
def __init__(
self,
depths: List[int] = [3, 2, 6, 4],
hidden_sizes: List[int] = [48, 96, 224, 448],
downsamples: List[bool] = [True, True, True, True],
dim: int = 448,
key_dim: int = 32,
attention_ratio: int = 4,
resolution: int = 7,
num_hidden_layers: int = 5,
num_attention_heads: int = 8,
mlp_expansion_ratio: int = 4,
hidden_dropout_prob: float = 0.0,
patch_size: int = 16,
num_channels: int = 3,
pool_size: int = 3,
downsample_patch_size: int = 3,
downsample_stride: int = 2,
downsample_pad: int = 1,
drop_path_rate: float = 0.0,
num_meta3d_blocks: int = 1,
distillation: bool = True,
use_layer_scale: bool = True,
layer_scale_init_value: float = 1e-5,
hidden_act: str = "gelu",
initializer_range: float = 0.02,
layer_norm_eps: float = 1e-12,
image_size: int = 224,
batch_norm_eps: float = 1e-05,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.hidden_sizes = hidden_sizes
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.patch_size = patch_size
self.num_channels = num_channels
self.depths = depths
self.mlp_expansion_ratio = mlp_expansion_ratio
self.downsamples = downsamples
self.dim = dim
self.key_dim = key_dim
self.attention_ratio = attention_ratio
self.resolution = resolution
self.pool_size = pool_size
self.downsample_patch_size = downsample_patch_size
self.downsample_stride = downsample_stride
self.downsample_pad = downsample_pad
self.drop_path_rate = drop_path_rate
self.num_meta3d_blocks = num_meta3d_blocks
self.distillation = distillation
self.use_layer_scale = use_layer_scale
self.layer_scale_init_value = layer_scale_init_value
self.image_size = image_size
self.batch_norm_eps = batch_norm_eps
| transformers/src/transformers/models/deprecated/efficientformer/configuration_efficientformer.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/efficientformer/configuration_efficientformer.py",
"repo_id": "transformers",
"token_count": 2950
} |
# Copyright (c) Microsoft Corporation and HuggingFace
# Licensed under the MIT License.
from typing import Any, Dict, List, Mapping
import numpy as np
import torch
from ....utils import is_cython_available, requires_backends
if is_cython_available():
import pyximport
pyximport.install(setup_args={"include_dirs": np.get_include()})
from . import algos_graphormer # noqa E402
def convert_to_single_emb(x, offset: int = 512):
feature_num = x.shape[1] if len(x.shape) > 1 else 1
feature_offset = 1 + np.arange(0, feature_num * offset, offset, dtype=np.int64)
x = x + feature_offset
return x
def preprocess_item(item, keep_features=True):
requires_backends(preprocess_item, ["cython"])
if keep_features and "edge_attr" in item.keys(): # edge_attr
edge_attr = np.asarray(item["edge_attr"], dtype=np.int64)
else:
edge_attr = np.ones((len(item["edge_index"][0]), 1), dtype=np.int64) # same embedding for all
if keep_features and "node_feat" in item.keys(): # input_nodes
node_feature = np.asarray(item["node_feat"], dtype=np.int64)
else:
node_feature = np.ones((item["num_nodes"], 1), dtype=np.int64) # same embedding for all
edge_index = np.asarray(item["edge_index"], dtype=np.int64)
input_nodes = convert_to_single_emb(node_feature) + 1
num_nodes = item["num_nodes"]
if len(edge_attr.shape) == 1:
edge_attr = edge_attr[:, None]
attn_edge_type = np.zeros([num_nodes, num_nodes, edge_attr.shape[-1]], dtype=np.int64)
attn_edge_type[edge_index[0], edge_index[1]] = convert_to_single_emb(edge_attr) + 1
# node adj matrix [num_nodes, num_nodes] bool
adj = np.zeros([num_nodes, num_nodes], dtype=bool)
adj[edge_index[0], edge_index[1]] = True
shortest_path_result, path = algos_graphormer.floyd_warshall(adj)
max_dist = np.amax(shortest_path_result)
input_edges = algos_graphormer.gen_edge_input(max_dist, path, attn_edge_type)
attn_bias = np.zeros([num_nodes + 1, num_nodes + 1], dtype=np.single) # with graph token
# combine
item["input_nodes"] = input_nodes + 1 # we shift all indices by one for padding
item["attn_bias"] = attn_bias
item["attn_edge_type"] = attn_edge_type
item["spatial_pos"] = shortest_path_result.astype(np.int64) + 1 # we shift all indices by one for padding
item["in_degree"] = np.sum(adj, axis=1).reshape(-1) + 1 # we shift all indices by one for padding
item["out_degree"] = item["in_degree"] # for undirected graph
item["input_edges"] = input_edges + 1 # we shift all indices by one for padding
if "labels" not in item:
item["labels"] = item["y"]
return item
class GraphormerDataCollator:
def __init__(self, spatial_pos_max=20, on_the_fly_processing=False):
if not is_cython_available():
raise ImportError("Graphormer preprocessing needs Cython (pyximport)")
self.spatial_pos_max = spatial_pos_max
self.on_the_fly_processing = on_the_fly_processing
def __call__(self, features: List[dict]) -> Dict[str, Any]:
if self.on_the_fly_processing:
features = [preprocess_item(i) for i in features]
if not isinstance(features[0], Mapping):
features = [vars(f) for f in features]
batch = {}
max_node_num = max(len(i["input_nodes"]) for i in features)
node_feat_size = len(features[0]["input_nodes"][0])
edge_feat_size = len(features[0]["attn_edge_type"][0][0])
max_dist = max(len(i["input_edges"][0][0]) for i in features)
edge_input_size = len(features[0]["input_edges"][0][0][0])
batch_size = len(features)
batch["attn_bias"] = torch.zeros(batch_size, max_node_num + 1, max_node_num + 1, dtype=torch.float)
batch["attn_edge_type"] = torch.zeros(batch_size, max_node_num, max_node_num, edge_feat_size, dtype=torch.long)
batch["spatial_pos"] = torch.zeros(batch_size, max_node_num, max_node_num, dtype=torch.long)
batch["in_degree"] = torch.zeros(batch_size, max_node_num, dtype=torch.long)
batch["input_nodes"] = torch.zeros(batch_size, max_node_num, node_feat_size, dtype=torch.long)
batch["input_edges"] = torch.zeros(
batch_size, max_node_num, max_node_num, max_dist, edge_input_size, dtype=torch.long
)
for ix, f in enumerate(features):
for k in ["attn_bias", "attn_edge_type", "spatial_pos", "in_degree", "input_nodes", "input_edges"]:
f[k] = torch.tensor(f[k])
if len(f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max]) > 0:
f["attn_bias"][1:, 1:][f["spatial_pos"] >= self.spatial_pos_max] = float("-inf")
batch["attn_bias"][ix, : f["attn_bias"].shape[0], : f["attn_bias"].shape[1]] = f["attn_bias"]
batch["attn_edge_type"][ix, : f["attn_edge_type"].shape[0], : f["attn_edge_type"].shape[1], :] = f[
"attn_edge_type"
]
batch["spatial_pos"][ix, : f["spatial_pos"].shape[0], : f["spatial_pos"].shape[1]] = f["spatial_pos"]
batch["in_degree"][ix, : f["in_degree"].shape[0]] = f["in_degree"]
batch["input_nodes"][ix, : f["input_nodes"].shape[0], :] = f["input_nodes"]
batch["input_edges"][
ix, : f["input_edges"].shape[0], : f["input_edges"].shape[1], : f["input_edges"].shape[2], :
] = f["input_edges"]
batch["out_degree"] = batch["in_degree"]
sample = features[0]["labels"]
if len(sample) == 1: # one task
if isinstance(sample[0], float): # regression
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
else: # binary classification
batch["labels"] = torch.from_numpy(np.concatenate([i["labels"] for i in features]))
else: # multi task classification, left to float to keep the NaNs
batch["labels"] = torch.from_numpy(np.stack([i["labels"] for i in features], axis=0))
return batch
| transformers/src/transformers/models/deprecated/graphormer/collating_graphormer.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/graphormer/collating_graphormer.py",
"repo_id": "transformers",
"token_count": 2694
} |
# coding=utf-8
# Copyright 2023 The Mega Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MEGA model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ....activations import ACT2FN
from ....modeling_outputs import (
BaseModelOutputWithPoolingAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
MaskedLMOutput,
MultipleChoiceModelOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ....modeling_utils import PreTrainedModel
from ....pytorch_utils import ALL_LAYERNORM_LAYERS
from ....utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_mega import MegaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "mnaylor/mega-base-wikitext"
_CONFIG_FOR_DOC = "MegaConfig"
class MegaEmbeddings(nn.Module):
"""
Mega's basic implementation does not incorporate token type embeddings, so this is a stripped-down version of
RoBERTa's embeddings which optionally includes token types
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.use_token_types = config.add_token_type_embeddings
if self.use_token_types:
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# registering a buffer here allows model tracing when not passing optional token type IDs
# more info at transformers issue #5664
self.register_buffer(
"token_type_ids", torch.zeros(config.max_positions, dtype=torch.long).expand((1, -1)), persistent=False
)
self.padding_idx = config.pad_token_id
def forward(self, input_ids=None, token_type_ids=None, inputs_embeds=None):
if (input_ids is None) and (inputs_embeds is None):
raise ValueError("Must provide one of input_ids or inputs_embeds")
elif input_ids is not None:
input_shape = input_ids.size()
device = input_ids.device
# get the word embeddings if only IDs are provided
inputs_embeds = self.word_embeddings(input_ids)
else:
input_shape = inputs_embeds.size()[:-1]
device = inputs_embeds.device
# the original Mega implementation did not include token type embeddings, so we add
# an option to use them if desired; if embeddings are present and token type IDs are
# not provided, we will use a registered buffer (which helps with tracing)
if self.use_token_types:
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, : input_shape[1]]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], input_shape[1])
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
# access token type embeddings
token_type_embeddings = self.token_type_embeddings(token_type_ids)
# add the token type embeddings to the word embeddings
embeddings = inputs_embeds + token_type_embeddings
else:
embeddings = inputs_embeds
return embeddings
class MegaSimpleRelativePositionalBias(nn.Module):
"""
Simple relative positional embeddings copied from the Mega repo; renamed variables for better readability
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size
self.rel_pos_bias = nn.Parameter(torch.Tensor(2 * config.max_positions - 1))
def forward(self, seq_len):
if seq_len > self.max_positions:
raise ValueError("Sequence length {} going beyond max length {}".format(seq_len, self.max_positions))
# seq_len * 2 - 1
bias = self.rel_pos_bias[(self.max_positions - seq_len) : (self.max_positions + seq_len - 1)]
# seq_len * 3 - 1
tile = F.pad(bias, (0, seq_len))
# (seq_len * 3 - 1) * seq_len
tile = torch.tile(tile, (seq_len,))
tile = tile[:-seq_len]
# seq_len x (3 * seq_len - 2)
tile = tile.view(seq_len, 3 * seq_len - 2)
start = (2 * seq_len - 1) // 2
end = tile.size(1) - start
tile = tile[:, start:end]
return tile
class MegaRotaryRelativePositionalBias(nn.Module):
"""
Rotary relative bias for positional information; similar in concept to RoPE (i.e. RoFormer) but taken from the Mega
repo due to differences in implementation.
When initialized, produces a positional bias which ranges from position 0 to config.max_positions, but can
extrapolate to longer sequences. Can be indexed according to input position IDs
"""
def __init__(self, config: MegaConfig):
super().__init__()
if config.hidden_size % 2 != 0:
raise RuntimeError("Rotary positional bias requires `hidden_size` to be a multiple of 2")
self.config = config
self.embed_dim = config.shared_representation_size
self.max_positions = self.config.max_positions if self.config.chunk_size < 0 else self.config.chunk_size
self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(
config.max_positions, self.embed_dim
)
# alpha and beta parameters for the rotary bias; beta renamed to b_param to avoid clashes with tf/flax weight handling
# in loading pretrained weights
self.alpha = nn.Parameter(torch.Tensor(1, self.embed_dim))
self.b_param = nn.Parameter(torch.Tensor(1, self.embed_dim))
self.register_buffer("_float_tensor", torch.FloatTensor([0.0]))
@staticmethod
def get_sinusoid_embeddings(max_positions: int, embedding_dim: int):
half_dim = embedding_dim // 2
emb = math.log(10000) / half_dim
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(max_positions, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0)
return torch.sin(emb), torch.cos(emb)
def rotary(self, input):
seq_len, embed_dim = input.size()
chunk_1, chunk_2 = torch.chunk(input, 2, dim=-1)
if self.sine is None or seq_len > self.sine.size(0):
self.sine, self.cosine = MegaRotaryRelativePositionalBias.get_sinusoid_embeddings(seq_len, embed_dim)
self.max_positions = seq_len
self.sine = self.sine.to(self._float_tensor)
self.cosine = self.cosine.to(self._float_tensor)
sin = self.sine[:seq_len]
cos = self.cosine[:seq_len]
return torch.cat([chunk_1 * cos - chunk_2 * sin, chunk_2 * cos + chunk_1 * sin], dim=1)
def forward(self, seq_len):
rotary_alpha = self.rotary(self.alpha.expand(seq_len, self.embed_dim))
rotary_beta = self.rotary(self.b_param.expand(seq_len, self.embed_dim))
bias = torch.einsum("mk,nk->mn", rotary_alpha, rotary_beta)
return bias
class MegaDropout(nn.Module):
"""
A unified class for standard dropout functionality and featurewise dropout.
The original fairseq Mega repo used 2 classes for these, which included some unnecessary handling of training logic
and an unused `inplace` option. The original implementation used torch.nn.functional instead of submodules, which
is retained here as well.
"""
def __init__(self, dropout_probability, is_featurewise=False):
super().__init__()
self.dropout_probability = dropout_probability
self.is_featurewise = is_featurewise
def forward(self, input, batch_first: bool = False):
if self.is_featurewise:
if batch_first:
# (batch_size X sequence_length X feature_dimension)
# -> (batch_size X feature_dimension X sequence_length)
# -> (batch_size X sequence_length X feature_dimension)
return F.dropout2d(
input.transpose(-1, -2), p=self.dropout_probability, training=self.training
).transpose(-1, -2)
else:
if input.dim() != 3:
raise ValueError(
"Feature dropout inputs must be exactly 3-dimensional if inputs are ordered [sequence length, batch size, hidden dimension]"
)
# (sequence_length X batch_size X feature_dimension)
# -> (batch_size X feature_dimension X sequence_length)
# -> (sequence_length X batch_size X feature_dimension)
return F.dropout2d(input.permute(1, 2, 0), p=self.dropout_probability, training=self.training).permute(
2, 0, 1
)
else:
return F.dropout(input, p=self.dropout_probability, training=self.training)
class MegaRMSNorm(nn.Module):
"""
RMSNorm used in Mega implementation. Differs from T5's RMSNorm by applying the weight prior to taking the square
root (as opposed to after in T5)
"""
def __init__(self, number_features, eps=1e-6, affine=True):
super().__init__()
self.num_features = number_features
self.eps = eps
self.affine = affine
if affine:
self.weight = nn.Parameter(torch.Tensor(self.num_features))
else:
self.register_parameter("weight", None)
def forward(self, input):
mean_square = torch.mean(torch.square(input), dim=-1, keepdim=True)
if self.weight is not None:
input = input * self.weight
input * torch.rsqrt(mean_square + self.eps)
return input
def extra_repr(self):
return f"{self.num_features}, eps={self.eps}, affine={self.affine}"
class MegaScaleNorm(nn.Module):
"""
Scale normalization introduced in MEGA which is similar to RMSNorm, but uses a single parameter for scalar
multiplication instead of a vector, and applies over a specified dimension
"""
def __init__(self, dim, eps=1e-6, affine=True):
super().__init__()
self.dim = dim
self.eps = eps
self.affine = affine
if affine:
self.scalar = nn.Parameter(torch.Tensor(1))
else:
self.register_parameter("scalar", None)
def forward(self, input):
mean_square = torch.mean(torch.square(input), dim=self.dim, keepdim=True)
if self.scalar is not None:
input = self.scalar * input
output = input * torch.rsqrt(mean_square + self.eps)
return output
class MegaSequenceNorm(nn.Module):
"""
A wrapper class for various layer normalization options used in Mega. Used to handle differences in expectations on
input axis locations for different normalization methods.
"""
def __init__(self, norm_type, embedding_dim, eps=1e-5, affine=True, export=False):
super().__init__()
if norm_type == "layernorm":
self.norm = nn.LayerNorm(embedding_dim, eps, elementwise_affine=affine)
elif norm_type == "scalenorm":
self.norm = MegaScaleNorm(dim=-1, eps=eps, affine=affine)
elif norm_type == "rmsnorm":
self.norm = MegaRMSNorm(embedding_dim, eps=eps, affine=affine)
elif norm_type == "batchnorm":
self.norm = nn.BatchNorm1d(embedding_dim, eps=eps, affine=affine)
elif norm_type == "syncbatchnorm":
self.norm = nn.SyncBatchNorm(embedding_dim, eps=eps, affine=affine)
else:
raise ValueError("Unknown norm type: {}".format(norm_type))
def forward(self, input):
if isinstance(self.norm, nn.modules.batchnorm._BatchNorm):
if input.dim() != 3:
raise ValueError("BatchNorm inputs must be exactly 3-dimensional")
input = input.permute(1, 2, 0)
input = self.norm(input)
return input.permute(2, 0, 1)
else:
return self.norm(input)
# add this layernorm class to ALL_LAYERNORM_LAYERS
ALL_LAYERNORM_LAYERS.append(MegaSequenceNorm)
class MegaMultiDimensionDampedEma(nn.Module):
"""
Mega's Exponential Moving Average layer, largely left unmodified from the original repo with the exception of
variable names and moving away from the stateful representation of incremental decoding state. See
"https://arxiv.org/abs/2209.10655" for more details.
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.ndim = config.ema_projection_size
self.bidirectional = config.bidirectional
self.truncation = config.truncation
self.scale = math.sqrt(1.0 / self.ndim)
kernel_dim = 2 * config.hidden_size if self.bidirectional else config.hidden_size
# renamed delta (damping_factor) and alpha (decay_factor) to be more descriptive of what the parameters are doing
self.damping_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
self.decay_factor = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
# renamed gamma (kernel_projection_matrix) and beta (ema_expansion_matrix) respectively to avoid HF renaming
# things and align with the paper's description of these params' behavior
self.ema_expansion_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim, 1))
self.kernel_projection_matrix = nn.Parameter(torch.Tensor(kernel_dim, self.ndim))
# renamed omega to residual_weight to describe what it's doing
self.residual_weight = nn.Parameter(torch.Tensor(config.hidden_size))
self._kernel = None
self._coeffs = None
def _compute_ema_coefficients(self):
self._coeffs = None
# convert the alpha and delta parameters (kernel_dim x EMA projection size x 1) to [0, 1] with sigmoid
damping_factor = torch.sigmoid(self.damping_factor)
decay_factor = torch.sigmoid(self.decay_factor)
previous_timestep_weight = 1.0 - damping_factor * decay_factor
return damping_factor, previous_timestep_weight
def _compute_efficient_ema_kernel(self, length: int):
# computes the kernel used for efficient damped EMA applied via FFT convolution
self._kernel = None
# p and q have shape (kernel_dim x ema_projection_size x 1)
damping_factor, previous_timestep_weight = self._compute_ema_coefficients()
# extend the kernel to (kernel_dim X ema_projection_size X sequence_length) and
# multiply q by sequential ints up to the sequence length
vander = torch.arange(length).to(damping_factor).view(1, 1, length) * torch.log(previous_timestep_weight)
kernel = (damping_factor * self.ema_expansion_matrix) * torch.exp(vander)
# (kernel_dim X ema_projection_size X sequence_length) -> (kernel_dim, sequence_length)
return torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale)
def get_ema_coefficients(self):
if self.training:
return self._compute_ema_coefficients()
else:
if self._coeffs is None:
self._coeffs = self._compute_ema_coefficients()
return self._coeffs
def get_ema_kernel(self, length: int):
kernel_size = length if self.truncation is None else min(self.truncation, length)
if self.training:
return self._compute_efficient_ema_kernel(kernel_size)
else:
if self._kernel is None or self._kernel.size(-1) < kernel_size:
self._kernel = self._compute_efficient_ema_kernel(kernel_size)
return self._kernel[..., :kernel_size]
def fft_convolution(self, inputs, kernel, length):
# this is a wrapper for repeated use of EMA calculation via FFT (fast Fourier transform) convolution
inputs_fft = torch.fft.rfft(inputs.float(), n=2 * length)
kernel_fft = torch.fft.rfft(kernel.float(), n=2 * length)
convolved_sequence = torch.fft.irfft(inputs_fft * kernel_fft, n=2 * length)
return convolved_sequence
def ema_step(self, inputs, length, past_state=None):
if length == 1:
return self.one_ema_step(inputs, past_state=past_state)
# (kernel_dim X ema_projection_size X 1)
damping_factor, previous_timestep_weight = self.get_ema_coefficients()
# (kernel_dim X ema_projection_size X 1+sequence_length)
vander = torch.arange(length + 1).to(damping_factor).view(1, 1, length + 1) * torch.log(
previous_timestep_weight
)
vander = torch.exp(vander)
if past_state is not None:
# (kernel_dim X ema_projection_size X sequence_length) * (kernel_dim X ema_projection_size X 1)
# -> (kernel_dim X ema_projection_size X sequence_length)
past_ema_proj = vander[:, :, 1:] * (self.kernel_projection_matrix * self.scale).unsqueeze(-1)
# past_state will be (batch_size, kernel_dim, ema_projection_size)
past_ema_state = torch.einsum("bdn,dnl->bdl", past_state, past_ema_proj)
# (kernel_dim X ema_projection_size) * (batch_size X kernel_dim X ema_projection_size)
# -> (batch_size X kernel_dim X ema_projection_size)
past_vandermonde = vander[:, :, -1] * past_state
else:
past_ema_state = None
past_vandermonde = None
# (kernel_dim X ema_projection_size X sequence_length)
vander = vander[:, :, :-1]
kernel = (damping_factor * self.ema_expansion_matrix) * vander
kernel_proj = torch.einsum("dnl,dn->dl", kernel, self.kernel_projection_matrix * self.scale)
ema_output = self.fft_convolution(inputs, kernel_proj, length=length)[..., 0:length]
ema_output = ema_output.type_as(inputs)
if past_ema_state is not None:
ema_output = ema_output + past_ema_state
updated_hidden_state = torch.einsum("bdl,dnl->bdn", inputs, torch.flip(kernel, dims=[2]))
if past_vandermonde is not None:
updated_hidden_state = updated_hidden_state + past_vandermonde
# return a tuple:
# (sequence_length, batch_size, kernel_dim)
# (batch_size, kernel_dim, ema_projection_size)
return ema_output.permute(2, 0, 1), updated_hidden_state
def one_ema_step(self, inputs, past_state=None):
damping_factor, previous_timestep_weight = self.get_ema_coefficients()
# (kernel_dim X ema_projection_size) x (batch_size X kernel_dim X 1)
# -> (batch_size X kernel_dim X ema_projection_size)
updated_state = (damping_factor * self.ema_expansion_matrix).squeeze(-1) * inputs
if past_state is not None:
updated_state = updated_state + previous_timestep_weight.squeeze(-1) * past_state
# (batch_size X kernel_dim)
out = torch.einsum("bdn,dn->bd", updated_state, self.kernel_projection_matrix * self.scale)
# (1 X batch_size X kernel_dim), (batch_size X kernel_dim X ema_projection_size)
return out.unsqueeze(0), updated_state
def forward(
self,
inputs,
attention_mask: Optional[torch.Tensor] = None,
prev_state: Optional[torch.Tensor] = None,
use_cache: bool = False,
) -> torch.Tensor:
"""
Mega's exponential moving average (EMA) sub-layer applied prior to single-headed (traditional) self-attention
Args:
inputs (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`):
Hidden state / embedding input to update via EMA based on FFT convolution
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored (mostly due to padding), where elements are either 1 for *not
masked* or 0 for *masked*
prev_state (`torch.Tensor` of shape `(batch_size, config.ndim)`, *optional*):
The hidden state returned from the previous timestep during incremental decoding.
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the
updated EMA hidden state for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden
states updated by EMA, with same shapes as inputs
- **updated_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor of shape `(batch_size,
config.ndim)` -- The incremental EMA state for use in the next step of incremental decoding
"""
seq_len, bsz, embed_dim = inputs.size()
if embed_dim != self.embed_dim:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim}, model expects {self.embed_dim}"
)
# sequence_length X batch_size X hidden_size
residual = inputs * self.residual_weight
# (sequence_length x batch_size x hidden_size) -> (batch_size x hidden_size x sequence_length)
inputs = inputs.permute(1, 2, 0)
# mask the input: output is a tensor with 0 in the masked positions
if attention_mask is not None:
inputs = inputs * (attention_mask.unsqueeze(1).type_as(inputs))
if self.bidirectional and use_cache:
raise RuntimeError("Bidirectional EMA does not support incremental state")
if use_cache:
out, updated_state = self.ema_step(inputs, seq_len, past_state=prev_state)
# (batch_size X hidden_size) -> (1 x batch_size x hidden_size)
out = F.silu(out + residual)
# if incremental decoding, return the new state along with the output
return out, updated_state
else:
# (hidden_size x sequence_length)
kernel = self.get_ema_kernel(seq_len)
fft_len = seq_len
s_index = 0
kernel_size = kernel.size(1)
if self.bidirectional:
# split the kernel for each direction of EMA
k1, k2 = torch.split(kernel, [self.embed_dim, self.embed_dim], dim=0)
# (hidden_size X 2*sequence_length - 1)
kernel = F.pad(k1, (kernel_size - 1, 0)) + F.pad(k2.flip(-1), (0, kernel_size - 1))
inputs = F.pad(inputs, (kernel_size - 1, 0))
fft_len = fft_len + kernel_size - 1
s_index = 2 * kernel_size - 2
ema_output = self.fft_convolution(inputs, kernel, length=fft_len)[..., s_index : s_index + seq_len]
ema_output = ema_output.type_as(inputs)
# (batch_size X hidden_size X sequence_length) -> (sequence_length X batch_size X hidden_size)
gated_ema_output = F.silu(ema_output.permute(2, 0, 1) + residual)
return gated_ema_output, None
class MegaGatedCrossAttention(nn.Module):
"""
Gated Structured State Attention for use in encoder-decoder model. See Mega paper for more details. Only
modifications from original implementation are variable names, removing the unnecessary `before_attn_fn` and
`static_kv` arguments, and the stateful representation of incremental decoder state.
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.activation = ACT2FN[self.config.activation]
self.attention_activation = self.config.attention_activation
self.scaling = self.config.shared_representation_size**-0.5 if self.attention_activation == "softmax" else None
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
# Attention dropout is standard dropout
self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False)
self.prenorm = self.config.normalize_before_mega
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.k_proj = nn.Linear(self.config.hidden_size, self.config.shared_representation_size)
self.v_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size)
self.q_proj = nn.Linear(
self.config.hidden_size, 2 * self.config.hidden_size + self.config.shared_representation_size
)
self.h_proj = nn.Linear(self.config.hidden_size, self.config.hidden_size)
if self.config.relative_positional_bias == "simple":
self.rel_pos_bias = MegaSimpleRelativePositionalBias(config)
elif self.config.relative_positional_bias == "rotary":
self.rel_pos_bias = MegaRotaryRelativePositionalBias(config)
else:
raise ValueError("unknown relative position bias: {}".format(self.config.relative_positional_bias))
self.softmax = nn.Softmax(dim=-1)
def element_attention(self, query, key, key_padding_mask, pidx):
bsz, src_len, _ = key.size()
tgt_len = query.size(1) if pidx is None else pidx + 1
if key_padding_mask is not None:
# (batch_size X source_sequence_length) --> (batch_size X 1 X 1)
lengths = key_padding_mask.sum(dim=-1).view(bsz, 1, 1)
else:
lengths = src_len
# (target_sequence_length X source_sequence_length)
bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len]
if pidx is not None:
if query.size(1) != 1:
raise ValueError("Position offset provided with queries longer than 1 token")
# source_sequence_length
bias = bias[pidx]
else:
# (target_sequence_length X source_sequence_length)
bias = bias[:tgt_len]
# (batch_size X target_sequence_length X source_sequence_length)
qk = torch.bmm(query, key.transpose(1, 2)) / lengths + bias
attn_weights = ACT2FN[self.attention_activation](qk).type_as(qk)
if key_padding_mask is not None:
attn_weights = attn_weights * key_padding_mask.unsqueeze(1)
return attn_weights
def softmax_attention(self, query, key, key_padding_mask, pidx):
bsz, src_len, _ = key.size()
tgt_len = query.size(1) if pidx is None else pidx + 1
# (target_sequence_length X source_sequence_length)
bias = self.rel_pos_bias(max(tgt_len, src_len))[:, :src_len]
if pidx is not None:
if query.size(1) != 1:
raise ValueError("Position offset provided with queries longer than 1 token")
# source_sequence_length
bias = bias[pidx]
else:
# (target_sequence_length X source_sequence_length)
bias = bias[:tgt_len]
# scaled attention
query = query * self.scaling
# (batch_size X target_sequence_length X source_sequence_length)
qk = torch.bmm(query, key.transpose(1, 2)) + bias
if key_padding_mask is not None:
qk = qk.masked_fill((1 - key_padding_mask).unsqueeze(1).to(torch.bool), float("-inf"))
attn_weights = self.softmax(qk).type_as(qk)
return attn_weights
def forward(
self,
query,
key: Optional[torch.Tensor],
value: Optional[torch.Tensor],
key_padding_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""
Gated cross-attention used in Mega
Args:
query (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`):
The self (or target) sequence input used as query inputs for cross-attention
key (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`):
The cross (or source) sequence input with shape used as keys in cross-attention
value (`torch.Tensor` of shape `(source_sequence_length, batch_size, hidden_size)`):
The cross (or source) sequence input with shape used as values in cross-attention
key_padding_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*):
Padding mask corresponding to the source sequence, where entries are 1 for *not masked* and 0 for
*masked* tokens
past_key_values (`tuple(torch.FloatTensor)`, *optional*):
If provided, the hidden state returned from the previous timestep during incremental decoding; expects
that prior cross-attention keys and values will be the last two items in the tuple
output_attentions (`bool`, defaults to `False`):
Whether or not to return the cross-attention weights.
use_cache (`bool`, defaults to `False`):
Whether to perfom incremental decoding; uses `prev_state` as the prior timestep, and returns the
updated EMA hidden state for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) --
Hidden states from target sequence updated by gated cross-attention
- **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, source_sequence_length, target_sequence_length)` -- The pairwise cross-attention weights
corresponding to each token in the source and target sequences
- **cross_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
source_sequence_length, config.shared_representation_size)` -- The cross-attention key state for use in
the next step of incremental decoding
- **cross_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
source_sequence_length, config.hidden_size)` -- The cross-attention value state for use in the next step
of incremental decoding
"""
seq_len, bsz, embed_dim = query.size()
if embed_dim != self.config.hidden_size:
raise ValueError(
f"Unexpected embedding dimension received: input is {embed_dim} but expected {self.config.hidden_size}"
)
if past_key_values is not None:
# make sure the inputs only have a sequence length of 1 if we're doing incremental decoding
if seq_len != 1:
raise ValueError(f"Incremental decoding requested with self-sequence length > 1: {seq_len}")
# expect past_key_values to have (self_key, self_value, self_ema, cross_key, cross_value)
prev_cross_key, prev_cross_value = past_key_values[-2:]
key = value = None
# use the self-attention cache to get the position id of the current step
prev_self_key = past_key_values[0]
num_incremental_steps = prev_self_key.size(1) + 1
else:
prev_cross_key = prev_cross_value = None
# we still need the position id if we're doing incremental decoding (past_key_values will be None for the first step)
num_incremental_steps = 0 if use_cache and (seq_len == 1) else None
full_query = query
if self.prenorm:
full_query = self.norm(full_query)
# (target_sequence_length X batch_size X 2*hidden_size + shared_representation_size)
query_projected = self.q_proj(full_query)
# split the query projections into separate components
# - residual_weight is passed through sigmoid and sent through elementwise multiplication to the gated/weighted targets prior to being added to the query directly
# - target_gate is a silu-gated tensor that is multiplied by the attention-weighted target below prior to residual connection
# - attention_query is the part that is passed to the attention function
residual_weight, target_gate, attention_query = torch.split(
query_projected,
[self.config.hidden_size, self.config.hidden_size, self.config.shared_representation_size],
dim=-1,
)
# (target_sequence_length X batch_size X hidden_size)
residual_weight = torch.sigmoid(residual_weight)
target_gate = F.silu(target_gate)
if key is None:
if value is not None:
raise ValueError("Key and value must be `None` simultaneously")
projected_key = projected_value = None
else:
# (source_sequence_length X batch_size X shared_representation_size)
projected_key = self.k_proj(key)
# (source_sequence_length X batch_size X hidden_size)
projected_value = self.activation(self.v_proj(key))
# (target_sequence_length X batch_size X shared_representation_size)
# -> (batch_size X target_sequence_length X shared_representation_size)
attention_query = attention_query.transpose(0, 1)
if projected_key is not None:
projected_key = projected_key.transpose(0, 1)
if projected_value is not None:
projected_value = projected_value.transpose(0, 1)
# if we're doing incremental decoding, k and v are None and need to be overwritten with past values
if past_key_values is not None:
projected_key = prev_cross_key
projected_value = prev_cross_value
# if we're returning the cache for later use, store these now for later return (can be done without having past_key_values provided)
if use_cache:
updated_cross_key = projected_key
updated_cross_value = projected_value
ctx_len = projected_key.size(1)
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
if key_padding_mask.size(0) != bsz:
raise ValueError("Key padding mask does not align on the batch dimension")
if key_padding_mask.size(1) != ctx_len:
raise ValueError("Key padding mask does not align on the sequence length dimension")
if self.attention_activation == "softmax":
attn_weights = self.softmax_attention(
attention_query, projected_key, key_padding_mask, num_incremental_steps
)
else:
attn_weights = self.element_attention(
attention_query, projected_key, key_padding_mask, num_incremental_steps
)
projected_value = self.hidden_dropout(projected_value, batch_first=True)
kernel = self.attention_dropout(attn_weights)
# (batch_size X target_sequence_length X hidden_size)
# -> (target_sequence_length X batch_size X hidden_size)
weighted_targets = torch.bmm(kernel, projected_value).transpose(0, 1)
# (target_sequence_length X batch_size X hidden_size)
weighted_targets = self.activation(self.h_proj(weighted_targets * target_gate))
weighted_targets = self.dropout(weighted_targets)
out = torch.addcmul(query, residual_weight, weighted_targets - query)
if not self.prenorm:
out = self.norm(out)
outputs = (out, attn_weights) if output_attentions else (out,)
if use_cache:
outputs = outputs + (updated_cross_key, updated_cross_value)
return outputs
class MegaMovingAverageGatedAttention(nn.Module):
"""
Pure PyTorch implementation of Mega block; see https://arxiv.org/abs/2209.10655 and original fairseq implementation
at https://github.com/facebookresearch/mega (copyright Meta Research, licensed under MIT License)
Differences from original implementation include hidden state refactor and fixed inconsistency with additive /
multiplicative attention masks
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.activation = ACT2FN[self.config.activation]
self.scaling = (
self.config.shared_representation_size**-0.5 if self.config.attention_activation == "softmax" else None
)
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.hidden_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
# attention dropout is standard dropout
self.attention_dropout = MegaDropout(self.config.attention_probs_dropout_prob, is_featurewise=False)
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.ema_gate = MegaMultiDimensionDampedEma(config)
self.v_proj = nn.Linear(self.config.hidden_size, self.config.intermediate_size)
self.mx_proj = nn.Linear(
self.config.hidden_size,
self.config.shared_representation_size + self.config.intermediate_size + 2 * self.config.hidden_size,
)
self.h_proj = nn.Linear(self.config.intermediate_size, self.config.hidden_size)
self.qk_weight = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size))
self.qk_bias = nn.Parameter(torch.Tensor(2, self.config.shared_representation_size))
if self.config.relative_positional_bias == "simple":
self.rel_pos_bias = MegaSimpleRelativePositionalBias(config)
elif self.config.relative_positional_bias == "rotary":
self.rel_pos_bias = MegaRotaryRelativePositionalBias(config)
else:
raise ValueError(f"Unknown relative positional bias: {self.config.relative_positional_bias}")
self.softmax = nn.Softmax(dim=-1)
self.attention_function = (
self.softmax_attention if self.config.attention_activation == "softmax" else self.element_attention
)
def element_attention(self, query, key, padding_mask, causal_mask):
"""
Apply element-wise attention via relu^2 or laplace. Same as original implementation but with standardized
causal attention mask. Expects the Hugging Face standard attention mask paradigm: 1 for not masked, and 0 for
masked.
"""
seq_len = key.size(2)
if padding_mask is not None:
# (batch_size X number of chunks X 1)
lengths = padding_mask.sum(-1, keepdim=True)
# (batch_size X number of chunks X 1 X 1)
lengths = lengths.clamp(min=1.0).unsqueeze(-1)
else:
lengths = seq_len
if causal_mask is not None:
lengths = causal_mask.sum(dim=-1, keepdim=True)
# (sequence_length X sequence_length)
bias = self.rel_pos_bias(seq_len)
if seq_len != query.size(2):
if query.size(2) != 1:
raise ValueError("Size mismatch between Q and K in element attention")
# (1 X sequence_length)
bias = bias[-1:]
# (batch_size X number of chunks X sequence_length X sequence_length)
qk = torch.matmul(query, key.transpose(2, 3)) / lengths + bias
attn_weights = ACT2FN[self.config.attention_activation](qk).type_as(qk)
if padding_mask is not None:
attn_weights = attn_weights * padding_mask.unsqueeze(2)
if causal_mask is not None:
attn_weights = attn_weights * causal_mask
return attn_weights
def softmax_attention(self, query, key, padding_mask, causal_mask):
"Standard softmax self-attention, as in the original Transformer paper"
seq_len = key.size(2)
# (sequence_length X sequence_length)
bias = self.rel_pos_bias(seq_len)
if seq_len != query.size(2):
if query.size(2) != 1:
raise ValueError("Size mismatch between Q and K in softmax attention")
# (1 X sequence_length)
bias = bias[-1:]
# scaled attention
query = query * self.scaling
# (batch_size x number of chunks x chunk_size x chunk_size) if chunking
# (batch_size x 1 x sequence_length x sequence_length) otherwise
qk = torch.matmul(query, key.transpose(2, 3)) + bias
# apply causal mask (presumed to be 1/0 for not masked / masked)
# additive, but convert to 0/-inf (which is not explicitly in the Mega source code)
if causal_mask is not None:
additive_causal_mask = torch.zeros_like(causal_mask, dtype=qk.dtype)
additive_causal_mask = additive_causal_mask.masked_fill((1 - causal_mask).bool(), float("-inf"))
qk = qk + additive_causal_mask
if padding_mask is not None:
# 1 for tokens which are *not masked*
# 0 for tokens which are *masked*
# replace masked tokens with -inf to make softmax ignore them
# need to invert the padding mask to match what mega original did
padding_mask = 1 - padding_mask
padding_mask_all = padding_mask.all(dim=-1, keepdim=True)
padding_mask = torch.logical_and(padding_mask, ~padding_mask_all)
qk = qk.masked_fill(padding_mask.unsqueeze(2).to(torch.bool), float("-inf"))
attn_weights = self.softmax(qk).type_as(qk)
return attn_weights
def forward(
self,
input,
padding_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[torch.Tensor]] = None,
output_attentions=False,
use_cache=False,
):
"""
Mega's self-attention block, which combines multi-headed EMA with traditional self-attention
Args:
input (`torch.Tensor` of shape `(sequence_length, batch_size, hidden_size)`):
Hidden states to be updated by Mega's self-attention
padding_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to padding, where elements are either 1 for *not masked*
or 0 for *masked*
causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not
masked* or 0 for *masked*
past_key_values (`tuple(torch.Tensor)`, *optional*):
The hidden states returned from the previous timestep during incremental decoding; expects that
self-attention key, value, and EMA states are the first 3 entries in the tuple
output_attentions (`bool`, default `False`):
Whether to return self-attention weights
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `past_key_values` as prior state, and returns the updated
states for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(sequence_length, batch_size, hidden_size)`) -- Hidden
states from target sequence updated by Mega's self-attention
- **attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, 1, sequence_length, sequence_length)` -- The self-attention weights corresponding to how
each token in the input sequence attends to every other token
- **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next
step of incremental decoding
- **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of
incremental decoding
- **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape
`(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding.
"""
seq_len, bsz, embed_dim = input.size()
if embed_dim != self.config.hidden_size:
raise ValueError(f"Input embedding dimension should be {self.config.hidden_size}; received {embed_dim}")
# store inputs for residual connection and handle pre-norm if requested
residual = input
if self.config.normalize_before_mega:
input = self.norm(input)
# (sequence_length X batch_size X hidden_size) -> (sequence_length X batch_size X intermediate_size)
value = self.activation(self.v_proj(input))
# unpack the incremental state if provided
# assumed to be (self K, self V, self EMA state, cross K, cross V)
# also assumes that incremental decoding is working one token at a time, so input sequence length must be 1
if self.config.is_decoder and (past_key_values is not None):
if seq_len > 1:
raise ValueError(f"Incremental decoding only supports self sequence length of 1; received {seq_len}")
# the first 3 items in the saved states will be these regardless of whether cross-attention is present
prev_self_key, prev_self_value, prev_ema_state = past_key_values[0:3]
else:
prev_self_key = prev_self_value = prev_ema_state = None
# ema output is (sequence_length x batch_size x hidden_size)
# updated_ema_state will be None if use_cache=False; otherwise (batch_size, config.ndim)
ema_out, updated_ema_state = self.ema_gate(
input, attention_mask=padding_mask, prev_state=prev_ema_state, use_cache=use_cache
)
ema_out = self.dropout(ema_out)
# (sequence_length X batch_size X hidden_size)
# -> (sequence_length X batch_size X 2*hidden_size + config.shared_representation_size + config.intermediate_size)
# - residual_weight -> sigmoid -> applied to residual connection in torch.addcmul
# - query_key_gates -> split into two components: query_key becomes query and key for attention input, gates becomes gating for self-attention output
# - intermediate_state -> added to weighted attention output, sent through activation, and has inputs subtracted during
# torch.addcmul to create the final layer output
base = self.mx_proj(ema_out)
residual_weight, query_key_gates, intermediate_state = torch.split(
base,
[
self.config.hidden_size,
self.config.shared_representation_size + self.config.intermediate_size,
self.config.hidden_size,
],
dim=-1,
)
# (sequence_length X batch_size X hidden_size)
residual_weight = torch.sigmoid(residual_weight)
# (sequence_length X batch_size X shared_representation_size + intermediate_size)
query_key_gates = F.silu(query_key_gates)
# split into two different tensors: one for Q/K usage and the other for gating self-attention
query_key, attention_gate = torch.split(
query_key_gates, [self.config.shared_representation_size, self.config.intermediate_size], dim=-1
)
# (sequence_length X batch_size X shared_representation_size)
# -> (sequence_length X batch_size X 1 X shared_representation_size)
# -> (sequence_length X batch_size X 2 X shared_representation_size)
query_key = query_key.unsqueeze(2) * self.qk_weight + self.qk_bias
# (sequence_length X batch_size X 2 X shared_representation_size)
# -> 2 tensors of (sequence_length X batch_size X shared_representation_size)
query, key = torch.unbind(query_key, dim=2)
# (sequence_length X batch_size X dimension)
# -> (batch_size X sequence_length X dimension)
# where `dimension` is either shared_representation_size (queries and keys) or intermediate_size (values)
query = query.transpose(0, 1)
key = key.transpose(0, 1)
value = value.transpose(0, 1)
if self.config.is_decoder:
# combine history and current to save updated state (if history is provided)
# when chunking is applied, the past states will be None at the end of the chunk, in
# which case, proceed as if no K/V history had been provided
# saved states are stored with shape (batch_size X sequence_length X dimension)
if prev_self_key is not None:
key = torch.cat([prev_self_key, key], dim=1)
if prev_self_value is not None:
value = torch.cat([prev_self_value, value], dim=1)
# if not chunking, store as-is
if not self.config.use_chunking:
updated_self_key = key
updated_self_value = value
else:
curr_len = key.size(1) % self.config.chunk_size
if curr_len == 0:
# if we're chunking and have reached the end of a chunk, wipe out the saved state
updated_self_key = None
updated_self_value = None
else:
updated_self_key = key
updated_self_value = value
ctx_len = key.size(1) # potentially differs from seq_len because of incremental decoding
if not self.config.use_chunking:
# if we're not chunking, treat the entire sequence as one long chunk
# (batch_size X sequence_length X dimension) -> (batch_size X 1 X sequence_length X dimension)
query = query.unsqueeze(1)
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if padding_mask is not None:
# (batch_size X sequence_length) -> (batch_size X 1 X sequence_length)
padding_mask = padding_mask.unsqueeze(1)
else:
# otherwise, split the sequences in the batch into `n_chunks` chunks of size `chunk_size`
if seq_len < self.config.chunk_size:
query = query.unsqueeze(1)
else:
# (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension)
n_chunks = seq_len // self.config.chunk_size
query = query.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size)
if ctx_len < self.config.chunk_size:
key = key.unsqueeze(1)
value = value.unsqueeze(1)
if padding_mask is not None:
padding_mask = padding_mask.unsqueeze(1)
else:
# (batch_size X sequence_length X dimension) -> (batch_size X n_chunks X chunk_size X dimension)
n_chunks = ctx_len // self.config.chunk_size
key = key.reshape(bsz, n_chunks, self.config.chunk_size, self.config.shared_representation_size)
value = value.reshape(bsz, n_chunks, self.config.chunk_size, self.config.intermediate_size)
if padding_mask is not None:
padding_mask = padding_mask.view(bsz, n_chunks, self.config.chunk_size)
# this is in the original Mega implementation to work around fork/join parallelism not supporting optional types
if padding_mask is not None and padding_mask.dim() == 0:
padding_mask = None
attn_weights = self.attention_function(query, key, padding_mask=padding_mask, causal_mask=causal_mask)
value = self.hidden_dropout(value, batch_first=True)
kernel = self.attention_dropout(attn_weights)
# (batch_size x n_chunks x chunk_size x intermediate_size) -> (sequence_length X batch_size X intermediate_size)
weighted_self_output = (
torch.matmul(kernel, value).view(bsz, seq_len, self.config.intermediate_size).transpose(0, 1)
)
# (sequence_length X batch_size X intermediate_size) -> (sequence_length X batch_size X hidden_size)
weighted_self_output = self.activation(intermediate_state + self.h_proj(weighted_self_output * attention_gate))
weighted_self_output = self.dropout(weighted_self_output)
# (sequence_length X batch_size X hidden_size)
out = torch.addcmul(residual, residual_weight, weighted_self_output - residual)
if not self.config.normalize_before_mega:
out = self.norm(out)
return_values = (out, attn_weights) if output_attentions else (out,)
if self.config.is_decoder:
return_values = return_values + (updated_self_key, updated_self_value, updated_ema_state)
return return_values
class MegaNormalizedFeedForwardNetwork(nn.Module):
"""
Normalized feed-forward network used in Mega blocks. Left as-is from original Mega repo aside from retrieving args
from Hugging Face config
"""
def __init__(self, config: MegaConfig):
super().__init__()
self.config = config
self.hidden_dim = config.nffn_hidden_size
self.act_fn = config.activation
self.activation = ACT2FN[config.activation]
self.dropout = MegaDropout(self.config.dropout_prob, is_featurewise=self.config.use_feature_dropout)
self.hidden_dropout = MegaDropout(
self.config.nffn_activation_dropout_prob, is_featurewise=self.config.use_feature_dropout
)
self.prenorm = self.config.normalize_before_ffn
self.norm = MegaSequenceNorm(
self.config.normalization_type, self.config.hidden_size, affine=self.config.norm_affine
)
self.fc1 = nn.Linear(self.config.hidden_size, self.config.nffn_hidden_size)
self.fc2 = nn.Linear(self.config.nffn_hidden_size, self.config.hidden_size)
def forward(self, inputs):
residual = inputs
if self.prenorm:
inputs = self.norm(inputs)
hidden = self.activation(self.fc1(inputs))
hidden = self.hidden_dropout(hidden)
output = self.fc2(hidden)
output = self.dropout(output)
output = output + residual
if not self.prenorm:
output = self.norm(output)
return output
class MegaBlock(nn.Module):
def __init__(self, config: MegaConfig):
super().__init__()
self.seq_len_dim = 1
self.mega_layer = MegaMovingAverageGatedAttention(config)
self.nffn = MegaNormalizedFeedForwardNetwork(config) if config.use_normalized_ffn else None
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise ValueError(f"{self} should be used as a decoder model if cross attention is added")
self.cross_attn = MegaGatedCrossAttention(config)
else:
self.cross_attn = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.LongTensor] = None,
causal_mask: Optional[torch.LongTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[torch.FloatTensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor]:
"""
A single Mega layer: either encoder or decoder, with optional cross-attention and optional normalized
feed-forward layer
Args:
hidden_states (`torch.Tensor` of shape `(target_sequence_length, batch_size, hidden_size)`):
Hidden states to be updated by the Mega block
attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indicates which entries in the self/target sequence are to be ignored (mostly due to padding), where
elements are either 1 for *not masked* or 0 for *masked*. Causal attention is enforced internally.
causal_mask (`torch.LongTensor` of shape `(sequence_length, sequence_length)`, *optional*):
Indicates which inputs are to be ignored due to causal attention, where elements are either 1 for *not
masked* or 0 for *masked*
encoder_hidden_states (`torch.Tensor`, of shape `(source_sequence_length, batch_size, hidden_size)`, *optional*):
Encoder hidden states to be used for cross-attention (and required for encoder-decoder model setup)
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, source_sequence_length)`, *optional*):
Indicates which entries in the cross/source sequence are to be ignored (mostly due to padding), where
elements are either 1 for *not masked* or 0 for *masked*.
past_key_value (`tuple(torch.Tensor)`, *optional*):
The hidden states returned from the previous timestep during incremental decoding; expects that
self-attention key, value, and EMA states are the first 3 entries in the tuple, and (if doing
cross-attention) cross-attention key and value are the last 2 entries in the tuple
output_attentions (`bool`, default `False`):
Whether to return self-attention weights
use_cache (`bool`, default `False`):
Whether to perfom incremental decoding; uses `past_key_value` as prior state, and returns the updated
states for use in the next step
Returns:
`tuple(torch.FloatTensor)` containing various elements depending on configuration ([`MegaConfig`]) and
inputs:
- **hidden_states** (`torch.FloatTensor` of shape `(target_sequence_length, batch_size, hidden_size)`) --
Hidden states from target sequence updated by Mega
- **self_attn_weights** (*optional*, returned when `output_attentions=True`) `torch.FloatTensor` of shape
`(batch_size, 1, target_sequence_length, target_sequence_length)` -- The self-attention weights
corresponding to how each token in the input sequence attends to every other token
- **cross_attn_weights** (*optional*, returned when `output_attentions=True` and
`config.add_cross_attention=True`) `torch.FloatTensor` of shape `(batch_size, source_sequence_length,
target_sequence_length)` -- Pairwise cross-attention weights between every entry in the source sequence
and target sequence
- **self_key** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.shared_representation_size)` -- The self-attention key state for use in the next
step of incremental decoding
- **self_value** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape `(batch_size,
sequence_length, config.hidden_size)` -- The self-attention value state for use in the next step of
incremental decoding
- **self_ema_state** (*optional*, returned when `use_cache=True`) `torch.FloatTensor` of shape
`(batch_size, config.ndim)` The incremental EMA state for use in the next step of incremental decoding.
- **cross_key** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`)
`torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.shared_representation_size)` --
The cross-attention key state for use in the next step of incremental decoding
- **cross_value** (*optional*, returned when `use_cache=True` and `config.is_decoder=True`)
`torch.FloatTensor` of shape `(batch_size, source_sequence_length, config.hidden_size)` -- The
cross-attention value state for use in the next step of incremental decoding
"""
# incremental decoding in the MegaMultiDimensionDampedEma module requires that the attention mask has the same
# sequence length as the input tensor; if we're caching incremental states, we assume the input
# sequence length is 1 (Mega will break otherwise), so we take the padding mask for the final
# token in the input (mask is received as [batch X sequence length])
if use_cache and (past_key_value is not None) and (attention_mask is not None):
mega_padding_mask = attention_mask[:, -1].unsqueeze(-1)
else:
mega_padding_mask = attention_mask
mega_outputs = self.mega_layer(
input=hidden_states,
padding_mask=mega_padding_mask,
causal_mask=causal_mask,
past_key_values=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
new_hidden_states = mega_outputs[0]
self_key, self_value, self_ema_state = mega_outputs[-3:] if use_cache else (None, None, None)
self_attention_weights = mega_outputs[1] if output_attentions else None
# optional cross attention
if self.cross_attn is not None:
if encoder_hidden_states is None:
raise ValueError("Requested cross-attention without providing encoder hidden states")
cross_attn_outputs = self.cross_attn(
query=new_hidden_states,
key=encoder_hidden_states,
value=encoder_hidden_states,
key_padding_mask=encoder_attention_mask,
past_key_values=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
# update the hidden state from cross attention
new_hidden_states = cross_attn_outputs[0]
# store cross-attention k/v if caching
cross_key, cross_value = cross_attn_outputs[-2:] if use_cache else (None, None)
cross_attention_weights = cross_attn_outputs[1] if output_attentions else None
# optional NFFN follows cross attention
if self.nffn is not None:
new_hidden_states = self.nffn(new_hidden_states)
outs = (new_hidden_states,)
if output_attentions:
outs = outs + (self_attention_weights,)
if self.cross_attn is not None:
outs = outs + (cross_attention_weights,)
if use_cache:
new_key_values = (
self_key,
self_value,
self_ema_state,
)
if self.cross_attn is not None:
new_key_values = new_key_values + (cross_key, cross_value)
outs = outs + (new_key_values,)
return outs
# copied from transformers.models.roberta.modeling_roberta.RobertaPooler with Roberta->Mega
class MegaPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class MegaPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MegaConfig
base_model_prefix = "mega"
supports_gradient_checkpointing = False
_no_split_modules = ["MegaMovingAverageGatedAttention"]
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, MegaMultiDimensionDampedEma):
with torch.no_grad():
# delta & alpha
nn.init.normal_(module.damping_factor, mean=0.0, std=self.config.ema_delta_alpha_range)
nn.init.normal_(module.decay_factor, mean=0.0, std=self.config.ema_delta_alpha_range)
# beta [1, -1, 1, -1, ...] seems more stable.
val = torch.ones(self.config.ema_projection_size, 1)
if self.config.ema_projection_size > 1:
idx = torch.tensor(list(range(1, self.config.ema_projection_size, 2)))
val.index_fill_(0, idx, -1.0)
module.ema_expansion_matrix.normal_(mean=0.0, std=self.config.ema_beta_range).add_(val)
# gamma & omega
nn.init.normal_(module.kernel_projection_matrix, mean=0.0, std=self.config.ema_gamma_omega_range)
nn.init.normal_(module.residual_weight, mean=0.0, std=self.config.ema_gamma_omega_range)
elif isinstance(module, MegaSimpleRelativePositionalBias):
nn.init.normal_(module.rel_pos_bias, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, MegaRotaryRelativePositionalBias):
nn.init.normal_(module.alpha, mean=0.0, std=self.config.initializer_range)
nn.init.normal_(module.b_param, mean=0.0, std=self.config.initializer_range)
elif isinstance(module, MegaScaleNorm):
if self.config.norm_affine:
nn.init.constant_(module.scalar, 1.0)
elif isinstance(module, MegaRMSNorm):
if self.config.norm_affine:
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, MegaMovingAverageGatedAttention):
# linear layers covered separately by the generic nn.Linear init below
nn.init.normal_(module.qk_weight, mean=0.0, std=self.config.initializer_range)
nn.init.constant_(module.qk_bias, 0.0)
elif isinstance(module, nn.Linear):
# initializes all linear layers in the entire network
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
MEGA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MegaConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MEGA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
This parameter can only be used when the model is initialized with `add_token_type_embeddings` parameter
set to `True`. All the value in this tensor should be always < config.type_vocab_size.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MEGA Model transformer outputting raw hidden-states without any specific head on top.",
MEGA_START_DOCSTRING,
)
class MegaModel(MegaPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added after self-attention, following the architecture described in *Mega: Moving Average
Equipped Gated Attention*_ by Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham Neubig,
Jonathan May, and Luke Zettlemoyer
To behave as a decoder the model needs to be initialized with the `is_decoder` argument of the configuration set to
`True` and `bidirectional` set to `False`. To be used in a Seq2Seq model, the model needs to initialized with both
`is_decoder=True` and `bidirectional=False` argument as well as `add_cross_attention` set to `True`; an
`encoder_hidden_states` is then expected as an input to the forward pass.
.. _*Mega: Moving Average Equipped Gated Attention*: https://arxiv.org/abs/2209.10655
"""
def __init__(self, config: MegaConfig, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embedding_layer = MegaEmbeddings(config)
self.layers = nn.ModuleList([MegaBlock(config) for _ in range(config.num_hidden_layers)])
self.pooler = MegaPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing (retained from RoBERTa code)
self.post_init()
def get_input_embeddings(self):
return self.embedding_layer.word_embeddings
def set_input_embeddings(self, value):
self.embedding_layer.word_embeddings = value
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
device = input_ids.device
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
device = inputs_embeds.device
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if self.config.use_chunking:
input_shape = torch.tensor([input_shape[0], self.config.chunk_size])
batch_size, sequence_length = input_shape
if self.config.use_chunking and (sequence_length > self.config.chunk_size):
if sequence_length % self.config.chunk_size != 0:
raise ValueError(
f"config.use_chunking is activated; input sequence length must be shorter than or a multiple of config.chunk_size\nreceived sequence length of {sequence_length} with chunk size {self.config.chunk_size}"
)
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
# Mega expects the causal mask to be a 2D square matrix of (from) x (to) over the input sequence length
# the HF utility function generates a 3D causal mask which includes batch size, so we'll create a dummy
# mask with the correct device and all ones
temp_mask_for_extension = torch.ones((1, sequence_length), dtype=torch.long, device=device)
causal_mask = self.create_extended_attention_mask_for_decoder(input_shape, temp_mask_for_extension)
# get rid of batch dimension in the generated mask; result is (sequence_length X sequence_length)
causal_mask = causal_mask.squeeze(0)
else:
use_cache = False
causal_mask = None
# if using cache, make sure we have a tuple of tuples which matches the length of our hidden layers
if (past_key_values is not None) and (len(past_key_values) != self.config.num_hidden_layers):
raise ValueError(
f"Received past key/value cache with size mismatch; expected {self.config.num_hidden_layers}, received {len(past_key_values)}"
)
# get embeddings (batch X sequence length X embed dim)
embedding_output = self.embedding_layer(
input_ids=input_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
# transpose for Mega --> (seq len X batch X embed dim)
hidden_states = embedding_output.transpose(0, 1)
# we expect encoder hidden states to also have batch first in line
# with typical Hugging Face behavior (which is also how we return them)
# Mega expects sequence length first, so do the same transpose here
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.transpose(0, 1)
# pass through mega layers
all_hidden_states = (embedding_output,) if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, mega_layer in enumerate(self.layers):
current_decoder_cache = past_key_values[i] if past_key_values is not None else None
mega_outputs = mega_layer(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_mask=causal_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=current_decoder_cache,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = mega_outputs[0]
if output_hidden_states:
# store layer-wise hidden states in the way that the user expects
# (seq len X batch X embed dim) --> (batch X seq len X embed dim)
all_hidden_states += (hidden_states.transpose(0, 1),)
if output_attentions:
self_attn_weights = mega_outputs[1]
all_self_attentions += (self_attn_weights,)
if self.config.add_cross_attention:
cross_attn_weights = mega_outputs[2]
all_cross_attentions += (cross_attn_weights,)
if use_cache:
updated_cache = mega_outputs[-1]
next_decoder_cache += (updated_cache,)
# transpose final hidden states
hidden_states = hidden_states.transpose(0, 1)
# optional pooling layer
pooled_output = self.pooler(hidden_states) if self.pooler is not None else None
if not return_dict:
return (hidden_states, pooled_output) + (
all_hidden_states,
next_decoder_cache,
all_self_attentions,
all_cross_attentions,
)
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled_output,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"""MEGA Model with a `language modeling` head on top for CLM fine-tuning.""", MEGA_START_DOCSTRING
)
class MegaForCausalLM(MegaPreTrainedModel):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MegaConfig):
super().__init__(config)
if not config.is_decoder:
logger.warning("If you want to use `MegaForCausalLM` as a standalone, add `is_decoder=True.`")
self.mega = MegaModel(config, add_pooling_layer=False)
if config.add_lm_hidden_dense_layer:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_activation = nn.Tanh()
else:
self.dense = None
self.hidden_activation = None
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
past_key_values: Tuple[Tuple[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are
ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MegaForCausalLM, AutoConfig
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("mnaylor/mega-base-wikitext")
>>> config = AutoConfig.from_pretrained("mnaylor/mega-base-wikitext")
>>> config.is_decoder = True
>>> config.bidirectional = False
>>> model = MegaForCausalLM.from_pretrained(
... "mnaylor/mega-base-wikitext", config=config, ignore_mismatched_sizes=True
... )
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.dense is not None:
sequence_output = self.dense(sequence_output)
sequence_output = self.hidden_activation(sequence_output)
prediction_scores = self.lm_head(sequence_output)
lm_loss = None
if labels is not None:
# we are doing next-token prediction; shift prediction scores and input ids by one
shifted_prediction_scores = prediction_scores[:, :-1, :].contiguous()
labels = labels[:, 1:].contiguous()
loss_fct = CrossEntropyLoss()
lm_loss = loss_fct(shifted_prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, attention_mask=None, **model_kwargs):
input_shape = input_ids.shape
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
if attention_mask is None:
attention_mask = input_ids.new_ones(input_shape)
# cut decoder_input_ids if past is used
if past_key_values is not None:
input_ids = input_ids[:, -1:]
return {"input_ids": input_ids, "attention_mask": attention_mask, "past_key_values": past_key_values}
def _reorder_cache(self, past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
)
return reordered_past
@add_start_docstrings("""MEGA Model with a `language modeling` head on top.""", MEGA_START_DOCSTRING)
class MegaForMaskedLM(MegaPreTrainedModel):
_tied_weights_keys = ["mlm_head.weight"]
def __init__(self, config: MegaConfig):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `MegaForMaskedLM`, set `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.mega = MegaModel(config, add_pooling_layer=False)
if config.add_lm_hidden_dense_layer:
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.hidden_activation = nn.Tanh()
else:
self.dense = None
self.hidden_activation = None
self.mlm_head = nn.Linear(config.hidden_size, config.vocab_size)
self.dropout = nn.Dropout(config.dropout_prob)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.mlm_head
def set_output_embeddings(self, new_embeddings):
self.mlm_head = new_embeddings
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
expected_output="' Paris'",
expected_loss=0.1,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, optional, defaults to *{}*):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
if self.dense is not None:
sequence_output = self.dense(sequence_output)
sequence_output = self.hidden_activation(sequence_output)
prediction_scores = self.mlm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForSequenceClassification(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.mega = MegaModel(config, add_pooling_layer=False)
self.classifier = MegaClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForMultipleChoice(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.mega = MegaModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
flat_input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
flat_token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
flat_attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
flat_inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.mega(
flat_input_ids,
token_type_ids=flat_token_type_ids,
attention_mask=flat_attention_mask,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MEGA Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
MEGA_START_DOCSTRING,
)
class MegaForTokenClassification(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mega = MegaModel(config, add_pooling_layer=False)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# copied from transformers.models.roberta.modeling_roberta.RobertaClassificationHead with Roberta->Mega
class MegaClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
classifier_dropout = (
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
)
self.dropout = nn.Dropout(classifier_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
@add_start_docstrings(
"""
MEGA Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MEGA_START_DOCSTRING,
)
class MegaForQuestionAnswering(MegaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.mega = MegaModel(config, add_pooling_layer=False)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MEGA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.mega(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
| transformers/src/transformers/models/deprecated/mega/modeling_mega.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/mega/modeling_mega.py",
"repo_id": "transformers",
"token_count": 45860
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_realm": ["RealmConfig"],
"tokenization_realm": ["RealmTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_realm_fast"] = ["RealmTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_realm"] = [
"RealmEmbedder",
"RealmForOpenQA",
"RealmKnowledgeAugEncoder",
"RealmPreTrainedModel",
"RealmReader",
"RealmScorer",
"load_tf_weights_in_realm",
]
_import_structure["retrieval_realm"] = ["RealmRetriever"]
if TYPE_CHECKING:
from .configuration_realm import RealmConfig
from .tokenization_realm import RealmTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_realm import RealmTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_realm import (
RealmEmbedder,
RealmForOpenQA,
RealmKnowledgeAugEncoder,
RealmPreTrainedModel,
RealmReader,
RealmScorer,
load_tf_weights_in_realm,
)
from .retrieval_realm import RealmRetriever
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/deprecated/realm/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/realm/__init__.py",
"repo_id": "transformers",
"token_count": 948
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ....utils import _LazyModule
_import_structure = {"tokenization_tapex": ["TapexTokenizer"]}
if TYPE_CHECKING:
from .tokenization_tapex import TapexTokenizer
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| transformers/src/transformers/models/deprecated/tapex/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/tapex/__init__.py",
"repo_id": "transformers",
"token_count": 269
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Feature extractor class for TVLT."""
from math import ceil
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, spectrogram, window_function
from ....feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor
from ....utils import TensorType, logging
logger = logging.get_logger(__name__)
class TvltFeatureExtractor(SequenceFeatureExtractor):
r"""
Constructs a TVLT audio feature extractor. This feature extractor can be used to prepare audios for the model.
This feature extractor inherits from [`FeatureExtractionMixin`] which contains most of the main methods. Users
should refer to this superclass for more information regarding those methods.
Args:
spectrogram_length (`Dict[str, int]` *optional*, defaults to 2048):
The time length of each audio spectrogram.
num_channels (`int` *optional*, defaults to 1):
Number of audio channels.
patch_size (`List[int]` *optional*, defaults to `[16, 16]`):
The patch size of audio patch embedding.
feature_size (`int`, *optional*, defaults to 128):
The frequency length of audio spectrogram.
sampling_rate (`int`, *optional*, defaults to 44100):
The sampling rate at which the audio files should be digitalized expressed in Hertz (Hz).
hop_length_to_sampling_rate (`int`, *optional*, defaults to 86):
Hop length is length of the overlaping windows for the STFT used to obtain the Mel Frequency coefficients.
For example, with sampling rate 44100, the hop length is 512, with 44100 / 512 = 86
n_fft (`int`, *optional*, defaults to 2048):
Size of the Fourier transform.
padding_value (`float`, *optional*, defaults to 0.0):
Padding value used to pad the audio. Should correspond to silences.
"""
model_input_names = ["audio_values", "audio_mask"]
def __init__(
self,
spectrogram_length=2048,
num_channels=1,
patch_size=[16, 16],
feature_size=128,
sampling_rate=44100,
hop_length_to_sampling_rate=86,
n_fft=2048,
padding_value=0.0,
**kwargs,
):
super().__init__(
feature_size=feature_size,
sampling_rate=sampling_rate,
padding_value=padding_value,
**kwargs,
)
self.spectrogram_length = spectrogram_length
self.num_channels = num_channels
self.patch_size = patch_size
self.freq_len = feature_size // self.patch_size[1]
self.n_fft = n_fft
self.hop_length = sampling_rate // hop_length_to_sampling_rate
self.sampling_rate = sampling_rate
self.padding_value = padding_value
self.mel_filters = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2,
num_mel_filters=feature_size,
min_frequency=0.0,
max_frequency=22050.0,
sampling_rate=sampling_rate,
norm="slaney",
mel_scale="slaney",
).T
def _np_extract_fbank_features(self, waveform: np.array) -> np.ndarray:
"""
Compute the log-mel spectrogram of the provided audio, gives similar results to Whisper's original torch
implementation with 1e-5 tolerance.
"""
log_spec = spectrogram(
waveform,
window_function(self.n_fft, "hann"),
frame_length=self.n_fft,
hop_length=self.hop_length,
power=2.0,
mel_filters=self.mel_filters.T,
log_mel="dB",
db_range=80.0,
)
log_spec = log_spec[:, :-1]
log_spec = log_spec - 20.0
log_spec = np.clip(log_spec / 40.0, -2.0, 0.0) + 1.0
return log_spec
def __call__(
self,
raw_speech: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]],
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = True,
sampling_rate: Optional[int] = None,
resample: bool = False,
mask_audio: bool = False,
**kwargs,
) -> BatchFeature:
"""
Main method to prepare one or several audio(s) for the model.
Args:
raw_speech (`np.ndarray`, `List[float]`, `List[np.ndarray]`, `List[List[float]]`):
The sequence or batch of sequences to be padded. Each sequence can be a numpy array, a list of float
values, a list of numpy arrays or a list of list of float values. Must be mono channel audio, not
stereo, i.e. single float per timestep.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*, default to `True`):
Whether to return the attention mask. If left to the default, will return the attention mask according
to the specific feature_extractor's default. [What are attention masks?](../glossary#attention-mask)
<Tip>
For TvltTransformer models, `attention_mask` should alwys be passed for batched inference, to avoid
subtle bugs.
</Tip>
sampling_rate (`int`, *optional*):
The sampling rate at which the `raw_speech` input was sampled. It is strongly recommended to pass
`sampling_rate` at the forward call to prevent silent errors and allow automatic speech recognition
pipeline. Current model supports sampling rate 16000 and 44100.
resample (`bool`, *optional*, defaults to `False`):
If the sampling rate is not matched, resample the input audio to match.
mask_audio (`bool`, *optional*, defaults to `False`):
Whether or not to mask input audio for MAE task.
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **audio_values** -- Audio values to be fed to a model, of shape (batch_size, num_channels, height,
width).
- **audio_mask** -- Audio masks to be fed to a model, of shape (batch_size, num_audio_patches).
"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
"This feature extractor is set to support sampling rate"
f" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled"
f" with {self.sampling_rate} and not {sampling_rate}."
)
else:
logger.warning(
"It is strongly recommended to pass the `sampling_rate` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug."
)
is_batched_numpy = isinstance(raw_speech, np.ndarray) and len(raw_speech.shape) > 1
if is_batched_numpy and len(raw_speech.shape) > 2:
raise ValueError(f"Only mono-channel audio is supported for input to {self}")
is_batched = is_batched_numpy or (
isinstance(raw_speech, (list, tuple)) and (isinstance(raw_speech[0], (np.ndarray, tuple, list)))
)
if is_batched:
raw_speech = [np.asarray([speech], dtype=np.float32).T for speech in raw_speech]
elif not is_batched and not isinstance(raw_speech, np.ndarray):
raw_speech = np.asarray(raw_speech, dtype=np.float32)
elif isinstance(raw_speech, np.ndarray) and raw_speech.dtype is np.dtype(np.float64):
raw_speech = raw_speech.astype(np.float32)
# always return batch
if not is_batched:
raw_speech = [np.asarray([raw_speech]).T]
# Convert audio signals to log mel spectrograms, truncate by time axis
audio_features = [
self._np_extract_fbank_features(waveform.squeeze()).T[: self.spectrogram_length] for waveform in raw_speech
]
if isinstance(audio_features[0], List):
audio_features = [np.asarray(feature, dtype=np.float32) for feature in audio_features]
# Create audio attention mask
max_patch_len = max(
[ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len for feature in audio_features]
) # The maximum number of audio patches in a batch
if return_attention_mask:
audio_mask = [
(ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [1]
+ (max_patch_len - ceil(feature.shape[0] / self.patch_size[0]) * self.freq_len) * [0]
for feature in audio_features
]
audio_mask = np.array(audio_mask).astype(np.float32)
# convert into correct format for padding
max_time_len = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch
padded_audio_features = np.ones([len(audio_features), 1, max_time_len, self.feature_size]).astype(np.float32)
padded_audio_features = padded_audio_features * self.padding_value
for i in range(len(audio_features)):
feature = audio_features[i]
padded_audio_features[i, :, : feature.shape[0], :] = feature
# return as BatchFeature
if return_attention_mask:
data = {"audio_values": padded_audio_features, "audio_mask": audio_mask}
else:
data = {"audio_values": padded_audio_features}
encoded_inputs = BatchFeature(data=data, tensor_type=return_tensors)
return encoded_inputs
| transformers/src/transformers/models/deprecated/tvlt/feature_extraction_tvlt.py/0 | {
"file_path": "transformers/src/transformers/models/deprecated/tvlt/feature_extraction_tvlt.py",
"repo_id": "transformers",
"token_count": 4436
} |
# coding=utf-8
# Copyright 2024 weak-kajuma and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on Llama implementations in this library and Microsoft's
# Differential Transformer implementations.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DiffLlama model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class DiffLlamaConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DiffLlamaModel`]. It is used to instantiate an DiffLlama
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults
will yield a similar configuration to that of the [kajuma/DiffLlama-0.3B-handcut](https://huggingface.co/kajuma/DiffLlama-0.3B-handcut).
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the DiffLlama model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`DiffLlamaModel`]
hidden_size (`int`, *optional*, defaults to 2048):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 8192):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 16):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'diffllama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'diffllama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'diffllama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
lambda_std_dev (`float`, *optional*, defaults to 0.1):
The standard deviation for initialization of parameter lambda in attention layer.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_heads
```python
>>> from transformers import DiffLlamaModel, DiffLlamaConfig
>>> # Initializing a DiffLlama diffllama-7b style configuration
>>> configuration = DiffLlamaConfig()
>>> # Initializing a model from the diffllama-7b style configuration
>>> model = DiffLlamaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "diffllama"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=32000,
hidden_size=2048,
intermediate_size=8192,
num_hidden_layers=16,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-5,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
lambda_std_dev=0.1,
head_dim=None,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.lambda_std_dev = lambda_std_dev
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
__all__ = ["DiffLlamaConfig"]
| transformers/src/transformers/models/diffllama/configuration_diffllama.py/0 | {
"file_path": "transformers/src/transformers/models/diffllama/configuration_diffllama.py",
"repo_id": "transformers",
"token_count": 4201
} |
# coding=utf-8
# Copyright 2022 Intel Labs, OpenMMLab and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DPT (Dense Prediction Transformers) model.
This implementation is heavily inspired by OpenMMLab's implementation, found here:
https://github.com/open-mmlab/mmsegmentation/blob/master/mmseg/models/decode_heads/dpt_head.py.
"""
import collections.abc
import math
from dataclasses import dataclass
from typing import List, Optional, Set, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...file_utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput, SemanticSegmenterOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import ModelOutput, logging, torch_int
from ...utils.backbone_utils import load_backbone
from .configuration_dpt import DPTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DPTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "Intel/dpt-large"
_EXPECTED_OUTPUT_SHAPE = [1, 577, 1024]
@dataclass
class BaseModelOutputWithIntermediateActivations(ModelOutput):
"""
Base class for model's outputs that also contains intermediate activations that can be used at later stages. Useful
in the context of Vision models.:
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
"""
last_hidden_states: torch.FloatTensor = None
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class BaseModelOutputWithPoolingAndIntermediateActivations(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states as well as intermediate
activations that can be used by the model at later stages.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token) after further processing
through the layers used for the auxiliary pretraining task. E.g. for BERT-family of models, this returns
the classification token after processing through a linear layer and a tanh activation function. The linear
layer weights are trained from the next sentence prediction (classification) objective during pretraining.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
intermediate_activations (`tuple(torch.FloatTensor)`, *optional*):
Intermediate activations that can be used to compute hidden states of the model at various layers.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
intermediate_activations: Optional[Tuple[torch.FloatTensor, ...]] = None
class DPTViTHybridEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config, feature_size=None):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.backbone = load_backbone(config)
feature_dim = self.backbone.channels[-1]
if len(self.backbone.channels) != 3:
raise ValueError(f"Expected backbone to have 3 output features, got {len(self.backbone.channels)}")
self.residual_feature_map_index = [0, 1] # Always take the output of the first and second backbone stage
if feature_size is None:
feat_map_shape = config.backbone_featmap_shape
feature_size = feat_map_shape[-2:]
feature_dim = feat_map_shape[1]
else:
feature_size = (
feature_size if isinstance(feature_size, collections.abc.Iterable) else (feature_size, feature_size)
)
feature_dim = self.backbone.channels[-1]
self.image_size = image_size
self.patch_size = patch_size[0]
self.num_channels = num_channels
self.projection = nn.Conv2d(feature_dim, hidden_size, kernel_size=1)
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
posemb_tok = posemb[:, :start_index]
posemb_grid = posemb[0, start_index:]
old_grid_size = torch_int(len(posemb_grid) ** 0.5)
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward(
self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False, return_dict: bool = False
) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
position_embeddings = self._resize_pos_embed(
self.position_embeddings, height // self.patch_size, width // self.patch_size
)
backbone_output = self.backbone(pixel_values)
features = backbone_output.feature_maps[-1]
# Retrieve also the intermediate activations to use them at later stages
output_hidden_states = [backbone_output.feature_maps[index] for index in self.residual_feature_map_index]
embeddings = self.projection(features).flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + position_embeddings
if not return_dict:
return (embeddings, output_hidden_states)
# Return hidden states and intermediate activations
return BaseModelOutputWithIntermediateActivations(
last_hidden_states=embeddings,
intermediate_activations=output_hidden_states,
)
class DPTViTEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings.
"""
def __init__(self, config):
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
self.patch_embeddings = DPTViTPatchEmbeddings(config)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.config = config
def _resize_pos_embed(self, posemb, grid_size_height, grid_size_width, start_index=1):
posemb_tok = posemb[:, :start_index]
posemb_grid = posemb[0, start_index:]
old_grid_size = torch_int(posemb_grid.size(0) ** 0.5)
posemb_grid = posemb_grid.reshape(1, old_grid_size, old_grid_size, -1).permute(0, 3, 1, 2)
posemb_grid = nn.functional.interpolate(posemb_grid, size=(grid_size_height, grid_size_width), mode="bilinear")
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, grid_size_height * grid_size_width, -1)
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
return posemb
def forward(self, pixel_values, return_dict=False):
batch_size, num_channels, height, width = pixel_values.shape
# possibly interpolate position encodings to handle varying image sizes
patch_size = self.config.patch_size
position_embeddings = self._resize_pos_embed(
self.position_embeddings, height // patch_size, width // patch_size
)
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
# add the [CLS] token to the embedded patch tokens
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# add positional encoding to each token
embeddings = embeddings + position_embeddings
embeddings = self.dropout(embeddings)
if not return_dict:
return (embeddings,)
return BaseModelOutputWithIntermediateActivations(last_hidden_states=embeddings)
class DPTViTPatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values).flatten(2).transpose(1, 2)
return embeddings
# Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->DPT
class DPTViTSelfAttention(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size,} is not a multiple of the number of attention "
f"heads {config.num_attention_heads}."
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->DPT
class DPTViTSelfOutput(nn.Module):
"""
The residual connection is defined in DPTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class DPTViTAttention(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.attention = DPTViTSelfAttention(config)
self.output = DPTViTSelfOutput(config)
self.pruned_heads = set()
# Copied from transformers.models.vit.modeling_vit.ViTAttention.prune_heads
def prune_heads(self, heads: Set[int]) -> None:
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.attention.query = prune_linear_layer(self.attention.query, index)
self.attention.key = prune_linear_layer(self.attention.key, index)
self.attention.value = prune_linear_layer(self.attention.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads)
self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
# Copied from transformers.models.vit.modeling_vit.ViTAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, head_mask, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->DPT
class DPTViTIntermediate(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->DPT
class DPTViTOutput(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
# copied from transformers.models.vit.modeling_vit.ViTLayer with ViTConfig->DPTConfig, ViTAttention->DPTViTAttention, ViTIntermediate->DPTViTIntermediate, ViTOutput->DPTViTOutput
class DPTViTLayer(nn.Module):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = DPTViTAttention(config)
self.intermediate = DPTViTIntermediate(config)
self.output = DPTViTOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), # in ViT, layernorm is applied before self-attention
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection
hidden_states = attention_output + hidden_states
# in ViT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
# second residual connection is done here
layer_output = self.output(layer_output, hidden_states)
outputs = (layer_output,) + outputs
return outputs
# copied from transformers.models.vit.modeling_vit.ViTEncoder with ViTConfig -> DPTConfig, ViTLayer->DPTViTLayer
class DPTViTEncoder(nn.Module):
def __init__(self, config: DPTConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([DPTViTLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
layer_head_mask,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class DPTReassembleStage(nn.Module):
"""
This class reassembles the hidden states of the backbone into image-like feature representations at various
resolutions.
This happens in 3 stages:
1. Map the N + 1 tokens to a set of N tokens, by taking into account the readout ([CLS]) token according to
`config.readout_type`.
2. Project the channel dimension of the hidden states according to `config.neck_hidden_sizes`.
3. Resizing the spatial dimensions (height, width).
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.config = config
self.layers = nn.ModuleList()
if config.is_hybrid:
self._init_reassemble_dpt_hybrid(config)
else:
self._init_reassemble_dpt(config)
self.neck_ignore_stages = config.neck_ignore_stages
def _init_reassemble_dpt_hybrid(self, config):
r""" "
For DPT-Hybrid the first 2 reassemble layers are set to `nn.Identity()`, please check the official
implementation: https://github.com/isl-org/DPT/blob/f43ef9e08d70a752195028a51be5e1aff227b913/dpt/vit.py#L438
for more details.
"""
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
if i <= 1:
self.layers.append(nn.Identity())
elif i > 1:
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
if config.readout_type != "project":
raise ValueError(f"Readout type {config.readout_type} is not supported for DPT-Hybrid.")
# When using DPT-Hybrid the readout type is set to "project". The sanity check is done on the config file
self.readout_projects = nn.ModuleList()
hidden_size = _get_backbone_hidden_size(config)
for i in range(len(config.neck_hidden_sizes)):
if i <= 1:
self.readout_projects.append(nn.Sequential(nn.Identity()))
elif i > 1:
self.readout_projects.append(
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
)
def _init_reassemble_dpt(self, config):
for i, factor in zip(range(len(config.neck_hidden_sizes)), config.reassemble_factors):
self.layers.append(DPTReassembleLayer(config, channels=config.neck_hidden_sizes[i], factor=factor))
if config.readout_type == "project":
self.readout_projects = nn.ModuleList()
hidden_size = _get_backbone_hidden_size(config)
for _ in range(len(config.neck_hidden_sizes)):
self.readout_projects.append(
nn.Sequential(nn.Linear(2 * hidden_size, hidden_size), ACT2FN[config.hidden_act])
)
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length + 1, hidden_size)`):
List of hidden states from the backbone.
"""
out = []
for i, hidden_state in enumerate(hidden_states):
if i not in self.neck_ignore_stages:
# reshape to (batch_size, num_channels, height, width)
cls_token, hidden_state = hidden_state[:, 0], hidden_state[:, 1:]
batch_size, sequence_length, num_channels = hidden_state.shape
if patch_height is not None and patch_width is not None:
hidden_state = hidden_state.reshape(batch_size, patch_height, patch_width, num_channels)
else:
size = torch_int(sequence_length**0.5)
hidden_state = hidden_state.reshape(batch_size, size, size, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_shape = hidden_state.shape
if self.config.readout_type == "project":
# reshape to (batch_size, height*width, num_channels)
hidden_state = hidden_state.flatten(2).permute((0, 2, 1))
readout = cls_token.unsqueeze(1).expand_as(hidden_state)
# concatenate the readout token to the hidden states and project
hidden_state = self.readout_projects[i](torch.cat((hidden_state, readout), -1))
# reshape back to (batch_size, num_channels, height, width)
hidden_state = hidden_state.permute(0, 2, 1).reshape(feature_shape)
elif self.config.readout_type == "add":
hidden_state = hidden_state.flatten(2) + cls_token.unsqueeze(-1)
hidden_state = hidden_state.reshape(feature_shape)
hidden_state = self.layers[i](hidden_state)
out.append(hidden_state)
return out
def _get_backbone_hidden_size(config):
if config.backbone_config is not None and config.is_hybrid is False:
return config.backbone_config.hidden_size
else:
return config.hidden_size
class DPTReassembleLayer(nn.Module):
def __init__(self, config, channels, factor):
super().__init__()
# projection
hidden_size = _get_backbone_hidden_size(config)
self.projection = nn.Conv2d(in_channels=hidden_size, out_channels=channels, kernel_size=1)
# up/down sampling depending on factor
if factor > 1:
self.resize = nn.ConvTranspose2d(channels, channels, kernel_size=factor, stride=factor, padding=0)
elif factor == 1:
self.resize = nn.Identity()
elif factor < 1:
# so should downsample
self.resize = nn.Conv2d(channels, channels, kernel_size=3, stride=int(1 / factor), padding=1)
def forward(self, hidden_state):
hidden_state = self.projection(hidden_state)
hidden_state = self.resize(hidden_state)
return hidden_state
class DPTFeatureFusionStage(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(len(config.neck_hidden_sizes)):
self.layers.append(DPTFeatureFusionLayer(config))
def forward(self, hidden_states):
# reversing the hidden_states, we start from the last
hidden_states = hidden_states[::-1]
fused_hidden_states = []
fused_hidden_state = None
for hidden_state, layer in zip(hidden_states, self.layers):
if fused_hidden_state is None:
# first layer only uses the last hidden_state
fused_hidden_state = layer(hidden_state)
else:
fused_hidden_state = layer(fused_hidden_state, hidden_state)
fused_hidden_states.append(fused_hidden_state)
return fused_hidden_states
class DPTPreActResidualLayer(nn.Module):
"""
ResidualConvUnit, pre-activate residual unit.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
"""
def __init__(self, config):
super().__init__()
self.use_batch_norm = config.use_batch_norm_in_fusion_residual
use_bias_in_fusion_residual = (
config.use_bias_in_fusion_residual
if config.use_bias_in_fusion_residual is not None
else not self.use_batch_norm
)
self.activation1 = nn.ReLU()
self.convolution1 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias_in_fusion_residual,
)
self.activation2 = nn.ReLU()
self.convolution2 = nn.Conv2d(
config.fusion_hidden_size,
config.fusion_hidden_size,
kernel_size=3,
stride=1,
padding=1,
bias=use_bias_in_fusion_residual,
)
if self.use_batch_norm:
self.batch_norm1 = nn.BatchNorm2d(config.fusion_hidden_size)
self.batch_norm2 = nn.BatchNorm2d(config.fusion_hidden_size)
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
residual = hidden_state
hidden_state = self.activation1(hidden_state)
hidden_state = self.convolution1(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm1(hidden_state)
hidden_state = self.activation2(hidden_state)
hidden_state = self.convolution2(hidden_state)
if self.use_batch_norm:
hidden_state = self.batch_norm2(hidden_state)
return hidden_state + residual
class DPTFeatureFusionLayer(nn.Module):
"""Feature fusion layer, merges feature maps from different stages.
Args:
config (`[DPTConfig]`):
Model configuration class defining the model architecture.
align_corners (`bool`, *optional*, defaults to `True`):
The align_corner setting for bilinear upsample.
"""
def __init__(self, config, align_corners=True):
super().__init__()
self.align_corners = align_corners
self.projection = nn.Conv2d(config.fusion_hidden_size, config.fusion_hidden_size, kernel_size=1, bias=True)
self.residual_layer1 = DPTPreActResidualLayer(config)
self.residual_layer2 = DPTPreActResidualLayer(config)
def forward(self, hidden_state, residual=None):
if residual is not None:
if hidden_state.shape != residual.shape:
residual = nn.functional.interpolate(
residual, size=(hidden_state.shape[2], hidden_state.shape[3]), mode="bilinear", align_corners=False
)
hidden_state = hidden_state + self.residual_layer1(residual)
hidden_state = self.residual_layer2(hidden_state)
hidden_state = nn.functional.interpolate(
hidden_state, scale_factor=2, mode="bilinear", align_corners=self.align_corners
)
hidden_state = self.projection(hidden_state)
return hidden_state
class DPTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DPTConfig
base_model_prefix = "dpt"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DPT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`ViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DPT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`DPTImageProcessor.__call__`]
for details.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DPT Model transformer outputting raw hidden-states without any specific head on top.",
DPT_START_DOCSTRING,
)
class DPTModel(DPTPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
# vit encoder
if config.is_hybrid:
self.embeddings = DPTViTHybridEmbeddings(config)
else:
self.embeddings = DPTViTEmbeddings(config)
self.encoder = DPTViTEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pooler = DPTViTPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
if self.config.is_hybrid:
return self.embeddings
else:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndIntermediateActivations,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndIntermediateActivations]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(pixel_values, return_dict=return_dict)
embedding_last_hidden_states = embedding_output[0] if not return_dict else embedding_output.last_hidden_states
encoder_outputs = self.encoder(
embedding_last_hidden_states,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:] + embedding_output[1:]
return BaseModelOutputWithPoolingAndIntermediateActivations(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
intermediate_activations=embedding_output.intermediate_activations,
)
# Copied from transformers.models.vit.modeling_vit.ViTPooler with ViT->DPT
class DPTViTPooler(nn.Module):
def __init__(self, config: DPTConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class DPTNeck(nn.Module):
"""
DPTNeck. A neck is a module that is normally used between the backbone and the head. It takes a list of tensors as
input and produces another list of tensors as output. For DPT, it includes 2 stages:
* DPTReassembleStage
* DPTFeatureFusionStage.
Args:
config (dict): config dict.
"""
def __init__(self, config):
super().__init__()
self.config = config
# postprocessing: only required in case of a non-hierarchical backbone (e.g. ViT, BEiT)
if config.backbone_config is not None and config.backbone_config.model_type in ["swinv2"]:
self.reassemble_stage = None
else:
self.reassemble_stage = DPTReassembleStage(config)
self.convs = nn.ModuleList()
for channel in config.neck_hidden_sizes:
self.convs.append(nn.Conv2d(channel, config.fusion_hidden_size, kernel_size=3, padding=1, bias=False))
# fusion
self.fusion_stage = DPTFeatureFusionStage(config)
def forward(self, hidden_states: List[torch.Tensor], patch_height=None, patch_width=None) -> List[torch.Tensor]:
"""
Args:
hidden_states (`List[torch.FloatTensor]`, each of shape `(batch_size, sequence_length, hidden_size)` or `(batch_size, hidden_size, height, width)`):
List of hidden states from the backbone.
"""
if not isinstance(hidden_states, (tuple, list)):
raise TypeError("hidden_states should be a tuple or list of tensors")
if len(hidden_states) != len(self.config.neck_hidden_sizes):
raise ValueError("The number of hidden states should be equal to the number of neck hidden sizes.")
# postprocess hidden states
if self.reassemble_stage is not None:
hidden_states = self.reassemble_stage(hidden_states, patch_height, patch_width)
features = [self.convs[i](feature) for i, feature in enumerate(hidden_states)]
# fusion blocks
output = self.fusion_stage(features)
return output
class DPTDepthEstimationHead(nn.Module):
"""
Output head consisting of 3 convolutional layers. It progressively halves the feature dimension and upsamples
the predictions to the input resolution after the first convolutional layer (details can be found in the paper's
supplementary material).
"""
def __init__(self, config):
super().__init__()
self.config = config
self.projection = None
if config.add_projection:
self.projection = nn.Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
nn.ReLU(),
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
nn.ReLU(),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features
hidden_states = hidden_states[self.config.head_in_index]
if self.projection is not None:
hidden_states = self.projection(hidden_states)
hidden_states = nn.ReLU()(hidden_states)
predicted_depth = self.head(hidden_states)
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
@add_start_docstrings(
"""
DPT Model with a depth estimation head on top (consisting of 3 convolutional layers) e.g. for KITTI, NYUv2.
""",
DPT_START_DOCSTRING,
)
class DPTForDepthEstimation(DPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.backbone = None
if config.is_hybrid is False and (config.backbone_config is not None or config.backbone is not None):
self.backbone = load_backbone(config)
else:
self.dpt = DPTModel(config, add_pooling_layer=False)
# Neck
self.neck = DPTNeck(config)
# Depth estimation head
self.head = DPTDepthEstimationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DPTForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large")
>>> model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
```"""
loss = None
if labels is not None:
raise NotImplementedError("Training is not implemented yet")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
if self.backbone is not None:
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
hidden_states = outputs.feature_maps
else:
outputs = self.dpt(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features based on config.backbone_out_indices
# note that the hidden_states also include the initial embeddings
if not self.config.is_hybrid:
hidden_states = [
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
]
else:
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
backbone_hidden_states.extend(
feature
for idx, feature in enumerate(hidden_states[1:])
if idx in self.config.backbone_out_indices[2:]
)
hidden_states = backbone_hidden_states
patch_height, patch_width = None, None
if self.config.backbone_config is not None and self.config.is_hybrid is False:
_, _, height, width = pixel_values.shape
patch_size = self.config.backbone_config.patch_size
patch_height = height // patch_size
patch_width = width // patch_size
hidden_states = self.neck(hidden_states, patch_height, patch_width)
predicted_depth = self.head(hidden_states)
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
class DPTSemanticSegmentationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(),
nn.Dropout(config.semantic_classifier_dropout),
nn.Conv2d(features, config.num_labels, kernel_size=1),
nn.Upsample(scale_factor=2, mode="bilinear", align_corners=True),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features
hidden_states = hidden_states[self.config.head_in_index]
logits = self.head(hidden_states)
return logits
class DPTAuxiliaryHead(nn.Module):
def __init__(self, config):
super().__init__()
features = config.fusion_hidden_size
self.head = nn.Sequential(
nn.Conv2d(features, features, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(features),
nn.ReLU(),
nn.Dropout(0.1, False),
nn.Conv2d(features, config.num_labels, kernel_size=1),
)
def forward(self, hidden_states):
logits = self.head(hidden_states)
return logits
@add_start_docstrings(
"""
DPT Model with a semantic segmentation head on top e.g. for ADE20k, CityScapes.
""",
DPT_START_DOCSTRING,
)
class DPTForSemanticSegmentation(DPTPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.dpt = DPTModel(config, add_pooling_layer=False)
# Neck
self.neck = DPTNeck(config)
# Segmentation head(s)
self.head = DPTSemanticSegmentationHead(config)
self.auxiliary_head = DPTAuxiliaryHead(config) if config.use_auxiliary_head else None
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DPT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=SemanticSegmenterOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SemanticSegmenterOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth semantic segmentation maps for computing the loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1`, a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, DPTForSemanticSegmentation
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("Intel/dpt-large-ade")
>>> model = DPTForSemanticSegmentation.from_pretrained("Intel/dpt-large-ade")
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if labels is not None and self.config.num_labels == 1:
raise ValueError("The number of labels should be greater than one")
outputs = self.dpt(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
# only keep certain features based on config.backbone_out_indices
# note that the hidden_states also include the initial embeddings
if not self.config.is_hybrid:
hidden_states = [
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices
]
else:
backbone_hidden_states = outputs.intermediate_activations if return_dict else list(outputs[-1])
backbone_hidden_states.extend(
feature for idx, feature in enumerate(hidden_states[1:]) if idx in self.config.backbone_out_indices[2:]
)
hidden_states = backbone_hidden_states
hidden_states = self.neck(hidden_states=hidden_states)
logits = self.head(hidden_states)
auxiliary_logits = None
if self.auxiliary_head is not None:
auxiliary_logits = self.auxiliary_head(hidden_states[-1])
loss = None
if labels is not None:
# upsample logits to the images' original size
upsampled_logits = nn.functional.interpolate(
logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
if auxiliary_logits is not None:
upsampled_auxiliary_logits = nn.functional.interpolate(
auxiliary_logits, size=labels.shape[-2:], mode="bilinear", align_corners=False
)
# compute weighted loss
loss_fct = CrossEntropyLoss(ignore_index=self.config.semantic_loss_ignore_index)
main_loss = loss_fct(upsampled_logits, labels)
auxiliary_loss = loss_fct(upsampled_auxiliary_logits, labels)
loss = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss
if not return_dict:
if output_hidden_states:
output = (logits,) + outputs[1:]
else:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SemanticSegmenterOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel"]
| transformers/src/transformers/models/dpt/modeling_dpt.py/0 | {
"file_path": "transformers/src/transformers/models/dpt/modeling_dpt.py",
"repo_id": "transformers",
"token_count": 23936
} |
# Copyright 2024 The Emu team, BAAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
from typing import Dict, Optional
import requests
import torch
from accelerate import init_empty_weights
from PIL import Image
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
Emu3Config,
Emu3ForConditionalGeneration,
Emu3ImageProcessor,
Emu3Processor,
Emu3TextConfig,
GenerationConfig,
)
from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
"""
Sample usage:
```
python src/transformers/models/emu3/convert_emu3_weights_to_hf.py \
--vq_model_id BAAI/Emu3-VisionTokenizer --llm_model_id BAAI/Emu3-Chat --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import Emu3ForConditionalGeneration, Emu3Processor
model = Emu3ForConditionalGeneration.from_pretrained("/output/path")
processor = Emu3Processor.from_pretrained("/output/path")
```
"""
byte_encoder = bytes_to_unicode()
CHAT_TEMPLATE = "{% for message in messages %}{% if message['role'] != 'system' %}{{ message['role'].upper() + ': '}}{% endif %}{# Render all images first #}{% for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<image>' }}{% endfor %}{# Render all text next #}{% if message['role'] != 'assistant' %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{ content['text'] + ' '}}{% endfor %}{% else %}{% for content in message['content'] | selectattr('type', 'equalto', 'text') %}{% generation %}{{ content['text'] + ' '}}{% endgeneration %}{% endfor %}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ 'ASSISTANT:' }}{% endif %}"
# Tiktoken to HF conversion, thanks for Xenova
def token_bytes_to_string(b):
return "".join([byte_encoder[ord(char)] for char in b.decode("latin-1")])
# Adapted from https://github.com/openai/tiktoken/issues/60#issuecomment-1499977960
def bpe(mergeable_ranks: Dict[bytes, int], token: bytes, max_rank: Optional[int] = None):
parts = [bytes([b]) for b in token]
while True:
min_idx = None
min_rank = None
for i, pair in enumerate(zip(parts[:-1], parts[1:])):
rank = mergeable_ranks.get(pair[0] + pair[1])
if rank is not None and (min_rank is None or rank < min_rank):
min_idx = i
min_rank = rank
if min_rank is None or (max_rank is not None and min_rank >= max_rank):
break
assert min_idx is not None
parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2 :]
return parts
def generate_vocab_and_merges(encoder):
mergeable_ranks = encoder._mergeable_ranks
merges = []
vocab = {}
for token, rank in mergeable_ranks.items():
vocab[token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = tuple(bpe(mergeable_ranks, token, max_rank=rank))
assert len(merged) == 2
merges.append(" ".join(map(token_bytes_to_string, merged)))
# Also add special tokens
vocab.update(encoder._special_tokens)
return vocab, merges
def convert_tiktoken(tokenizer, output_dir):
encoder = tokenizer.tokenizer
vocab, merges = generate_vocab_and_merges(encoder)
added_tokens = [
{
"id": id,
"content": content,
"single_word": False,
"lstrip": False,
"rstrip": False,
"normalized": False,
"special": True,
}
for content, id in encoder._special_tokens.items()
if content != "<|extra_0|>"
]
# https://huggingface.co/Xenova/gpt2/raw/main/tokenizer_config.json
tokenizer_config_template = {
"add_prefix_space": False,
"bos_token": "<|extra_203|>",
"clean_up_tokenization_spaces": False,
"eos_token": "<|extra_204|>",
"pad_token": "<|endoftext|>",
}
tokenizer_config_template.update({"tokenizer_class": "GPT2Tokenizer"})
tokenizer_config_template = dict(sorted(tokenizer_config_template.items(), key=lambda x: x[0]))
# add placeholder image token by taking one of the reserved tokens
reserved_token_id = vocab["<|extra_0|>"]
vocab["<image>"] = reserved_token_id
del vocab["<|extra_0|>"]
added_tokens.append(
{
"id": reserved_token_id,
"content": "<image>",
"single_word": False,
"lstrip": False,
"rstrip": False,
"normalized": False,
"special": True,
}
)
os.makedirs(output_dir, exist_ok=True)
pre_tokenizer = {
"type": "ByteLevel",
"add_prefix_space": False,
"trim_offsets": True,
"use_regex": True,
}
# https://huggingface.co/Xenova/gpt2/raw/main/tokenizer.json
tokenizer_template = {
"version": "1.0",
"truncation": None,
"padding": None,
"added_tokens": added_tokens,
"normalizer": None,
"pre_tokenizer": pre_tokenizer,
"post_processor": None,
"decoder": {
"type": "ByteLevel",
"add_prefix_space": True,
"trim_offsets": True,
"use_regex": True,
},
"model": {
"type": "BPE",
"dropout": None,
"unk_token": None,
"continuing_subword_prefix": "",
"end_of_word_suffix": "",
"fuse_unk": False,
"byte_fallback": False,
"vocab": vocab,
"merges": merges,
},
}
# Save to files
with open(os.path.join(output_dir, "vocab.json"), "w", encoding="utf-8") as fp:
json.dump(vocab, fp, indent=2, ensure_ascii=False)
with open(os.path.join(output_dir, "tokenizer.json"), "w", encoding="utf-8") as fp:
json.dump(tokenizer_template, fp, indent=2, ensure_ascii=False)
with open(os.path.join(output_dir, "tokenizer_config.json"), "w", encoding="utf-8") as fp:
json.dump(tokenizer_config_template, fp, indent=2, ensure_ascii=False)
with open(os.path.join(output_dir, "special_tokens_map.json"), "w", encoding="utf-8") as fp:
json.dump(
{
"bos_token": "<|extra_203|>",
"eos_token": "<|extra_204|>",
"pad_token": "<|endoftext|>",
},
fp,
indent=2,
ensure_ascii=False,
)
with open(os.path.join(output_dir, "merges.txt"), "w", encoding="utf-8") as fp:
fp.write("#version: 0.2\n")
fp.write("\n".join(merges))
KEYS_TO_MODIFY_MAPPING = {
"^encoder": "model.vqmodel.encoder",
"^decoder": "model.vqmodel.decoder",
"^post_quant_conv": "model.vqmodel.post_quant_conv",
"^quant_conv": "model.vqmodel.quant_conv",
"^quantize": "model.vqmodel.quantize",
"^model": "text_model.model",
r"lm_head\.weight": "text_model.lm_head.weight",
r"^text_model\.model\.vqmodel": "vqmodel",
# rename QKV proj for the VQ-VAE model because we use SiglipAttention
r"\.q\.": ".q_proj.",
r"\.k\.": ".k_proj.",
r"\.v\.": ".v_proj.",
r"\.proj_out\.": ".out_proj.",
# move the attention norms outside of attention modules
r"mid\.attn_1\.norm\.": "mid.attn_norm.",
r"attn\.0\.norm\.": "attn_norms.0.",
r"attn\.1\.norm\.": "attn_norms.1.",
r"attn\.2\.norm\.": "attn_norms.2.",
r"attn\.3\.norm\.": "attn_norms.3.",
# isolate down/mid/up into separate classes for readability
r"\.down\.": ".down_block.down.",
r"\.up\.": ".up_block.up.",
r"\.mid\.": ".middle_block.",
}
def convert_state_dict_to_hf(old_state_dict, new_state_dict):
for key, value in old_state_dict.items():
# convert conv layers in attn to linear
if (
any(key.endswith(name) for name in ["q.weight", "k.weight", "v.weight", "proj_out.weight"])
and value.ndim == 4
):
value = value.squeeze()
for old_pattern, new_pattern in KEYS_TO_MODIFY_MAPPING.items():
key = re.sub(old_pattern, new_pattern, key)
new_state_dict[key] = value
return new_state_dict
def convert_model(vq_model_id, llm_model_id, output_dir, hub_model_id=None, test_inference=False):
os.makedirs(output_dir, exist_ok=True)
# Convert and save processor
tokenizer_tiktoken = AutoTokenizer.from_pretrained(llm_model_id, trust_remote_code=True)
convert_tiktoken(tokenizer_tiktoken, output_dir)
extra_special_tokens = extra_special_tokens = {
"image_token": "<image>",
"boi_token": "<|image start|>",
"eoi_token": "<|image end|>",
"image_wrapper_token": "<|image token|>",
"eof_token": "<|extra_201|>",
}
tokenizer_converted = AutoTokenizer.from_pretrained(output_dir, extra_special_tokens=extra_special_tokens)
tokenizer_converted.padding_side = "left"
image_processor = Emu3ImageProcessor.from_pretrained(vq_model_id)
processor = Emu3Processor(image_processor, tokenizer_converted, chat_template=CHAT_TEMPLATE)
processor.save_pretrained(output_dir)
# load models
model_llm = AutoModelForCausalLM.from_pretrained(
llm_model_id,
trust_remote_code=True,
)
model_vqgan = AutoModel.from_pretrained(vq_model_id, trust_remote_code=True)
with open(f"{output_dir}/tokenizer.json", "r") as file:
tokenizer_config = json.load(file)
vocabulary_map = tokenizer_config["model"]["vocab"]
text_config = Emu3TextConfig(
max_position_embeddings=model_llm.config.max_position_embeddings,
rope_scaling={"rope_type": "default"},
)
config = Emu3Config(text_config=text_config, vocabulary_map=vocabulary_map)
with init_empty_weights():
model = Emu3ForConditionalGeneration(config=config)
model.generation_config = GenerationConfig(
do_sample=True,
top_k=2048,
max_new_tokens=50_000,
pad_token_id=processor.tokenizer.pad_token_id,
eos_token_id=processor.tokenizer.eos_token_id,
)
state_dict = {}
state_dict = convert_state_dict_to_hf(model_llm.state_dict(), state_dict)
state_dict = convert_state_dict_to_hf(model_vqgan.state_dict(), state_dict)
model.load_state_dict(state_dict, assign=True, strict=True)
model.save_pretrained(output_dir, safe_serialization=True)
if hub_model_id is not None:
model.push_to_hub(hub_model_id)
processor.push_to_hub(hub_model_id)
if test_inference and llm_model_id.endswith("Chat"):
# Short inference on a few examples to check if generation makes sense
print("Loading the checkpoint in a Emu3 model...")
print("*" * 100)
model = Emu3ForConditionalGeneration.from_pretrained(output_dir, torch_dtype=torch.bfloat16, device_map="auto")
processor = Emu3Processor.from_pretrained(output_dir)
conversation = [
{
"role": "system",
"content": [
{"type": "text", "text": "You are a helpful assistant."},
],
},
{
"role": "user",
"content": [
{"type": "text", "text": "Please tell me about this art work and its artist."},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
image = Image.open(
requests.get(
"https://uploads4.wikiart.org/images/paul-klee/death-for-the-idea-1915.jpg!Large.jpg", stream=True
).raw
)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(model.device, torch.bfloat16)
length = inputs.input_ids.shape[1]
out = model.generate(**inputs, max_new_tokens=40, do_sample=False)
generated_text = processor.batch_decode(out[:, length:], skip_special_tokens=True)[0]
print(f"Generation for single-image: {generated_text}")
print("*" * 100)
elif test_inference and llm_model_id.endswith("Gen"):
processor = Emu3Processor.from_pretrained(output_dir)
model = Emu3ForConditionalGeneration.from_pretrained(output_dir, torch_dtype=torch.bfloat16, device_map="auto")
inputs = processor(
text=[
"a portrait of young girl. masterpiece, film grained, best quality.",
"a dog running under the rain",
],
padding=True,
return_tensors="pt",
return_for_image_generation=True,
)
inputs = inputs.to(device="cuda:0", dtype=torch.bfloat16)
neg_prompt = "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry."
neg_inputs = processor(text=[neg_prompt] * 2, return_tensors="pt").to(device="cuda:0")
image_sizes = inputs.pop("image_sizes")
HEIGHT, WIDTH = image_sizes[0]
VISUAL_TOKENS = model.vocabulary_mapping.image_tokens
def prefix_allowed_tokens_fn(batch_id, input_ids):
height, width = HEIGHT, WIDTH
visual_tokens = VISUAL_TOKENS
image_token_id = processor.tokenizer.encode("<|image token|>", return_tensors="pt")[0].to(model.device)
eoi_token_id = processor.tokenizer.encode("<|image end|>", return_tensors="pt")[0]
eos_token_id = processor.tokenizer.encode("<|extra_204|>", return_tensors="pt")[0]
pad_token_id = processor.tokenizer.encode("<|endoftext|>", return_tensors="pt")[0]
eol_token_id = processor.tokenizer.encode("<|extra_200|>", return_tensors="pt")[0]
eof_token_id = processor.tokenizer.encode("<|extra_201|>", return_tensors="pt")[0]
position = torch.nonzero(input_ids == image_token_id, as_tuple=True)[0][0]
offset = input_ids.shape[0] - position
if offset % (width + 1) == 0:
return (eol_token_id,)
elif offset == (width + 1) * height + 1:
return (eof_token_id,)
elif offset == (width + 1) * height + 2:
return (eoi_token_id,)
elif offset == (width + 1) * height + 3:
return (eos_token_id,)
elif offset > (width + 1) * height + 3:
return (pad_token_id,)
else:
return visual_tokens
out = model.generate(
**inputs,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
negative_prompt_ids=neg_inputs.input_ids,
negative_prompt_attention_mask=neg_inputs.attention_mask,
)
image = model.decode_image_tokens(out[:, inputs.input_ids.shape[1] :], height=HEIGHT, width=WIDTH)
images = processor.postprocess(
list(image.float()), return_tensors="PIL.Image.Image"
) # internally we convert to np but it's not supported in bf16 precision
for i, image in enumerate(images["pixel_values"]):
image.save(f"result_{i}.png")
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--vq_model_id",
help="Model ID of Emu3 VQ-VAE on the hub",
default="BAAI/Emu3-VisionTokenizer",
)
parser.add_argument(
"--llm_model_id",
help="Model ID of Emu3 bacbone LLM on the hub",
default="BAAI/Emu3-Chat",
)
parser.add_argument(
"--output_dir",
help="Location to write HF model",
)
parser.add_argument(
"--hub_model_id",
help="Model ID in the hub where to push the model.",
)
parser.add_argument(
"--test_inference",
action="store_true",
help="Whether to load the model for generation to test it's converted correctly.",
)
args = parser.parse_args()
convert_model(
vq_model_id=args.vq_model_id,
llm_model_id=args.llm_model_id,
output_dir=args.output_dir,
hub_model_id=args.hub_model_id,
test_inference=args.test_inference,
)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/emu3/convert_emu3_weights_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/emu3/convert_emu3_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 7618
} |
# coding=utf-8
# Copyright 2022 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ERNIE model configuration"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class ErnieConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`ErnieModel`] or a [`TFErnieModel`]. It is used to
instantiate a ERNIE model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the ERNIE
[nghuyong/ernie-3.0-base-zh](https://huggingface.co/nghuyong/ernie-3.0-base-zh) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the ERNIE model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed when calling [`ErnieModel`] or [`TFErnieModel`].
task_type_vocab_size (`int`, *optional*, defaults to 3):
The vocabulary size of the `task_type_ids` for ERNIE2.0/ERNIE3.0 model
use_task_id (`bool`, *optional*, defaults to `False`):
Whether or not the model support `task_type_ids`
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
classifier_dropout (`float`, *optional*):
The dropout ratio for the classification head.
Examples:
```python
>>> from transformers import ErnieConfig, ErnieModel
>>> # Initializing a ERNIE nghuyong/ernie-3.0-base-zh style configuration
>>> configuration = ErnieConfig()
>>> # Initializing a model (with random weights) from the nghuyong/ernie-3.0-base-zh style configuration
>>> model = ErnieModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "ernie"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
task_type_vocab_size=3,
use_task_id=False,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.task_type_vocab_size = task_type_vocab_size
self.use_task_id = use_task_id
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
class ErnieOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
else:
dynamic_axis = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
("token_type_ids", dynamic_axis),
("task_type_ids", dynamic_axis),
]
)
__all__ = ["ErnieConfig", "ErnieOnnxConfig"]
| transformers/src/transformers/models/ernie/configuration_ernie.py/0 | {
"file_path": "transformers/src/transformers/models/ernie/configuration_ernie.py",
"repo_id": "transformers",
"token_count": 2954
} |
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Any, Callable, Dict, List, Type, TypeVar, Union, overload
import torch
import torch.nn as nn
import torch.types
def add(m1: torch.Tensor, m2: torch.Tensor, inplace: bool) -> torch.Tensor:
# The first operation in a checkpoint can't be in-place, but it's
# nice to have in-place addition during inference. Thus...
if not inplace:
m1 = m1 + m2
else:
m1 += m2
return m1
def permute_final_dims(tensor: torch.Tensor, inds: List[int]) -> torch.Tensor:
zero_index = -1 * len(inds)
first_inds = list(range(len(tensor.shape[:zero_index])))
return tensor.permute(first_inds + [zero_index + i for i in inds])
def flatten_final_dims(t: torch.Tensor, no_dims: int) -> torch.Tensor:
return t.reshape(t.shape[:-no_dims] + (-1,))
def masked_mean(mask: torch.Tensor, value: torch.Tensor, dim: int, eps: float = 1e-4) -> torch.Tensor:
mask = mask.expand(*value.shape)
return torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim))
def pts_to_distogram(
pts: torch.Tensor, min_bin: torch.types.Number = 2.3125, max_bin: torch.types.Number = 21.6875, no_bins: int = 64
) -> torch.Tensor:
boundaries = torch.linspace(min_bin, max_bin, no_bins - 1, device=pts.device)
dists = torch.sqrt(torch.sum((pts.unsqueeze(-2) - pts.unsqueeze(-3)) ** 2, dim=-1))
return torch.bucketize(dists, boundaries)
def dict_multimap(fn: Callable[[list], Any], dicts: List[dict]) -> dict:
first = dicts[0]
new_dict = {}
for k, v in first.items():
all_v = [d[k] for d in dicts]
if isinstance(v, dict):
new_dict[k] = dict_multimap(fn, all_v)
else:
new_dict[k] = fn(all_v)
return new_dict
def one_hot(x: torch.Tensor, v_bins: torch.Tensor) -> torch.Tensor:
reshaped_bins = v_bins.view(((1,) * len(x.shape)) + (len(v_bins),))
diffs = x[..., None] - reshaped_bins
am = torch.argmin(torch.abs(diffs), dim=-1)
return nn.functional.one_hot(am, num_classes=len(v_bins)).float()
def batched_gather(data: torch.Tensor, inds: torch.Tensor, dim: int = 0, no_batch_dims: int = 0) -> torch.Tensor:
ranges: List[Union[slice, torch.Tensor]] = []
for i, s in enumerate(data.shape[:no_batch_dims]):
r = torch.arange(s)
r = r.view(*(*((1,) * i), -1, *((1,) * (len(inds.shape) - i - 1))))
ranges.append(r)
remaining_dims: List[Union[slice, torch.Tensor]] = [slice(None) for _ in range(len(data.shape) - no_batch_dims)]
remaining_dims[dim - no_batch_dims if dim >= 0 else dim] = inds
ranges.extend(remaining_dims)
# Matt note: Editing this to get around the behaviour of using a list as an array index changing
# in recent Numpy versions
return data[tuple(ranges)]
T = TypeVar("T")
# With tree_map, a poor man's JAX tree_map
def dict_map(
fn: Callable[[T], Any], dic: Dict[Any, Union[dict, list, tuple, T]], leaf_type: Type[T]
) -> Dict[Any, Union[dict, list, tuple, Any]]:
new_dict: Dict[Any, Union[dict, list, tuple, Any]] = {}
for k, v in dic.items():
if isinstance(v, dict):
new_dict[k] = dict_map(fn, v, leaf_type)
else:
new_dict[k] = tree_map(fn, v, leaf_type)
return new_dict
@overload
def tree_map(fn: Callable[[T], Any], tree: T, leaf_type: Type[T]) -> Any: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: dict, leaf_type: Type[T]) -> dict: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: list, leaf_type: Type[T]) -> list: ...
@overload
def tree_map(fn: Callable[[T], Any], tree: tuple, leaf_type: Type[T]) -> tuple: ...
def tree_map(fn, tree, leaf_type):
if isinstance(tree, dict):
return dict_map(fn, tree, leaf_type)
elif isinstance(tree, list):
return [tree_map(fn, x, leaf_type) for x in tree]
elif isinstance(tree, tuple):
return tuple(tree_map(fn, x, leaf_type) for x in tree)
elif isinstance(tree, leaf_type):
return fn(tree)
else:
print(type(tree))
raise TypeError("Not supported")
tensor_tree_map = partial(tree_map, leaf_type=torch.Tensor)
| transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py/0 | {
"file_path": "transformers/src/transformers/models/esm/openfold_utils/tensor_utils.py",
"repo_id": "transformers",
"token_count": 1930
} |
# coding=utf-8
# Copyright 2021 Google Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch FNet model."""
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...utils import is_scipy_available
if is_scipy_available():
from scipy import linalg
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPooling,
MaskedLMOutput,
ModelOutput,
MultipleChoiceModelOutput,
NextSentencePredictorOutput,
QuestionAnsweringModelOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import apply_chunking_to_forward
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_fnet import FNetConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "google/fnet-base"
_CONFIG_FOR_DOC = "FNetConfig"
# Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def _two_dim_matmul(x, matrix_dim_one, matrix_dim_two):
"""Applies 2D matrix multiplication to 3D input arrays."""
seq_length = x.shape[1]
matrix_dim_one = matrix_dim_one[:seq_length, :seq_length]
x = x.type(torch.complex64)
return torch.einsum("bij,jk,ni->bnk", x, matrix_dim_two, matrix_dim_one)
# # Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def two_dim_matmul(x, matrix_dim_one, matrix_dim_two):
return _two_dim_matmul(x, matrix_dim_one, matrix_dim_two)
# Adapted from https://github.com/google-research/google-research/blob/master/f_net/fourier.py
def fftn(x):
"""
Applies n-dimensional Fast Fourier Transform (FFT) to input array.
Args:
x: Input n-dimensional array.
Returns:
n-dimensional Fourier transform of input n-dimensional array.
"""
out = x
for axis in reversed(range(x.ndim)[1:]): # We don't need to apply FFT to last axis
out = torch.fft.fft(out, axis=axis)
return out
class FNetEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# NOTE: This is the project layer and will be needed. The original code allows for different embedding and different model dimensions.
self.projection = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.register_buffer(
"token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
# Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
# when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
# issue #5664
if token_type_ids is None:
if hasattr(self, "token_type_ids"):
buffered_token_type_ids = self.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + token_type_embeddings
position_embeddings = self.position_embeddings(position_ids)
embeddings += position_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.projection(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class FNetBasicFourierTransform(nn.Module):
def __init__(self, config):
super().__init__()
self._init_fourier_transform(config)
def _init_fourier_transform(self, config):
if not config.use_tpu_fourier_optimizations:
self.fourier_transform = partial(torch.fft.fftn, dim=(1, 2))
elif config.max_position_embeddings <= 4096:
if is_scipy_available():
self.register_buffer(
"dft_mat_hidden", torch.tensor(linalg.dft(config.hidden_size), dtype=torch.complex64)
)
self.register_buffer(
"dft_mat_seq", torch.tensor(linalg.dft(config.tpu_short_seq_length), dtype=torch.complex64)
)
self.fourier_transform = partial(
two_dim_matmul, matrix_dim_one=self.dft_mat_seq, matrix_dim_two=self.dft_mat_hidden
)
else:
logging.warning(
"SciPy is needed for DFT matrix calculation and is not found. Using TPU optimized fast fourier"
" transform instead."
)
self.fourier_transform = fftn
else:
self.fourier_transform = fftn
def forward(self, hidden_states):
# NOTE: We do not use torch.vmap as it is not integrated into PyTorch stable versions.
# Interested users can modify the code to use vmap from the nightly versions, getting the vmap from here:
# https://pytorch.org/docs/master/generated/torch.vmap.html. Note that fourier transform methods will need
# change accordingly.
outputs = self.fourier_transform(hidden_states).real
return (outputs,)
class FNetBasicOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, input_tensor):
hidden_states = self.LayerNorm(input_tensor + hidden_states)
return hidden_states
class FNetFourierTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.self = FNetBasicFourierTransform(config)
self.output = FNetBasicOutput(config)
def forward(self, hidden_states):
self_outputs = self.self(hidden_states)
fourier_output = self.output(self_outputs[0], hidden_states)
outputs = (fourier_output,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->FNet
class FNetIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_bert.BertOutput with Bert->FNet
class FNetOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class FNetLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1 # The dimension which has the sequence length
self.fourier = FNetFourierTransform(config)
self.intermediate = FNetIntermediate(config)
self.output = FNetOutput(config)
def forward(self, hidden_states):
self_fourier_outputs = self.fourier(hidden_states)
fourier_output = self_fourier_outputs[0]
layer_output = apply_chunking_to_forward(
self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, fourier_output
)
outputs = (layer_output,)
return outputs
def feed_forward_chunk(self, fourier_output):
intermediate_output = self.intermediate(fourier_output)
layer_output = self.output(intermediate_output, fourier_output)
return layer_output
class FNetEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([FNetLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(self, hidden_states, output_hidden_states=False, return_dict=True):
all_hidden_states = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(layer_module.__call__, hidden_states)
else:
layer_outputs = layer_module(hidden_states)
hidden_states = layer_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=all_hidden_states)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->FNet
class FNetPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->FNet
class FNetPredictionHeadTransform(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
if isinstance(config.hidden_act, str):
self.transform_act_fn = ACT2FN[config.hidden_act]
else:
self.transform_act_fn = config.hidden_act
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.transform_act_fn(hidden_states)
hidden_states = self.LayerNorm(hidden_states)
return hidden_states
class FNetLMPredictionHead(nn.Module):
def __init__(self, config):
super().__init__()
self.transform = FNetPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
def _tie_weights(self) -> None:
# For accelerate compatibility and to not break backward compatibility
if self.decoder.bias.device.type == "meta":
self.decoder.bias = self.bias
else:
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
class FNetOnlyMLMHead(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = FNetLMPredictionHead(config)
def forward(self, sequence_output):
prediction_scores = self.predictions(sequence_output)
return prediction_scores
# Copied from transformers.models.bert.modeling_bert.BertOnlyNSPHead with Bert->FNet
class FNetOnlyNSPHead(nn.Module):
def __init__(self, config):
super().__init__()
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, pooled_output):
seq_relationship_score = self.seq_relationship(pooled_output)
return seq_relationship_score
# Copied from transformers.models.bert.modeling_bert.BertPreTrainingHeads with Bert->FNet
class FNetPreTrainingHeads(nn.Module):
def __init__(self, config):
super().__init__()
self.predictions = FNetLMPredictionHead(config)
self.seq_relationship = nn.Linear(config.hidden_size, 2)
def forward(self, sequence_output, pooled_output):
prediction_scores = self.predictions(sequence_output)
seq_relationship_score = self.seq_relationship(pooled_output)
return prediction_scores, seq_relationship_score
class FNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FNetConfig
base_model_prefix = "fnet"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
# NOTE: Original code uses same initialization as weights for biases as well.
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@dataclass
class FNetForPreTrainingOutput(ModelOutput):
"""
Output type of [`FNetForPreTraining`].
Args:
loss (*optional*, returned when `labels` is provided, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the masked language modeling loss and the next sequence prediction
(classification) loss.
prediction_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
seq_relationship_logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation
before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
prediction_logits: torch.FloatTensor = None
seq_relationship_logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
FNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`FNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FNET_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
model's internal embedding lookup matrix.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare FNet Model transformer outputting raw hidden-states without any specific head on top.",
FNET_START_DOCSTRING,
)
class FNetModel(FNetPreTrainedModel):
"""
The model can behave as an encoder, following the architecture described in [FNet: Mixing Tokens with Fourier
Transforms](https://arxiv.org/abs/2105.03824) by James Lee-Thorp, Joshua Ainslie, Ilya Eckstein, Santiago Ontanon.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = FNetEmbeddings(config)
self.encoder = FNetEncoder(config)
self.pooler = FNetPooler(config) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
batch_size, seq_length = input_shape
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size, seq_length = input_shape
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if (
self.config.use_tpu_fourier_optimizations
and seq_length <= 4096
and self.config.tpu_short_seq_length != seq_length
):
raise ValueError(
"The `tpu_short_seq_length` in FNetConfig should be set equal to the sequence length being passed to"
" the model when using TPU optimizations."
)
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is None:
if hasattr(self.embeddings, "token_type_ids"):
buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
token_type_ids = buffered_token_type_ids_expanded
else:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooler_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooler_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
FNet Model with two heads on top as done during the pretraining: a `masked language modeling` head and a `next
sentence prediction (classification)` head.
""",
FNET_START_DOCSTRING,
)
class FNetForPreTraining(FNetPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetPreTrainingHeads(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=FNetForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
next_sentence_label: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, FNetForPreTrainingOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
next_sentence_label (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring) Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FNetForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForPreTraining.from_pretrained("google/fnet-base")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> prediction_logits = outputs.prediction_logits
>>> seq_relationship_logits = outputs.seq_relationship_logits
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output, pooled_output = outputs[:2]
prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)
total_loss = None
if labels is not None and next_sentence_label is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
total_loss = masked_lm_loss + next_sentence_loss
if not return_dict:
output = (prediction_scores, seq_relationship_score) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return FNetForPreTrainingOutput(
loss=total_loss,
prediction_logits=prediction_scores,
seq_relationship_logits=seq_relationship_score,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings("""FNet Model with a `language modeling` head on top.""", FNET_START_DOCSTRING)
class FNetForMaskedLM(FNetPreTrainedModel):
_tied_weights_keys = ["cls.predictions.decoder.bias", "cls.predictions.decoder.weight"]
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetOnlyMLMHead(config)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.cls.predictions.decoder
def set_output_embeddings(self, new_embeddings):
self.cls.predictions.decoder = new_embeddings
self.cls.predictions.bias = new_embeddings.bias
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss() # -100 index = padding token
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(loss=masked_lm_loss, logits=prediction_scores, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""FNet Model with a `next sentence prediction (classification)` head on top.""",
FNET_START_DOCSTRING,
)
class FNetForNextSentencePrediction(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.cls = FNetOnlyNSPHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=NextSentencePredictorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, NextSentencePredictorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair
(see `input_ids` docstring). Indices should be in `[0, 1]`:
- 0 indicates sequence B is a continuation of sequence A,
- 1 indicates sequence B is a random sequence.
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, FNetForNextSentencePrediction
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("google/fnet-base")
>>> model = FNetForNextSentencePrediction.from_pretrained("google/fnet-base")
>>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
>>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
>>> encoding = tokenizer(prompt, next_sentence, return_tensors="pt")
>>> outputs = model(**encoding, labels=torch.LongTensor([1]))
>>> logits = outputs.logits
>>> assert logits[0, 0] < logits[0, 1] # next sentence was random
```"""
if "next_sentence_label" in kwargs:
warnings.warn(
"The `next_sentence_label` argument is deprecated and will be removed in a future version, use"
" `labels` instead.",
FutureWarning,
)
labels = kwargs.pop("next_sentence_label")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
seq_relationship_scores = self.cls(pooled_output)
next_sentence_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
next_sentence_loss = loss_fct(seq_relationship_scores.view(-1, 2), labels.view(-1))
if not return_dict:
output = (seq_relationship_scores,) + outputs[2:]
return ((next_sentence_loss,) + output) if next_sentence_loss is not None else output
return NextSentencePredictorOutput(
loss=next_sentence_loss,
logits=seq_relationship_scores,
hidden_states=outputs.hidden_states,
)
@add_start_docstrings(
"""
FNet Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForSequenceClassification(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForMultipleChoice(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MultipleChoiceModelOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
`input_ids` above)
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
inputs_embeds = (
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
if inputs_embeds is not None
else None
)
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
reshaped_logits = logits.view(-1, num_choices)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(reshaped_logits, labels)
if not return_dict:
output = (reshaped_logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return MultipleChoiceModelOutput(loss=loss, logits=reshaped_logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FNET_START_DOCSTRING,
)
class FNetForTokenClassification(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
# Only keep active parts of the loss
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(loss=loss, logits=logits, hidden_states=outputs.hidden_states)
@add_start_docstrings(
"""
FNet Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FNET_START_DOCSTRING,
)
class FNetForQuestionAnswering(FNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.fnet = FNetModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FNET_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=QuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
start_positions: Optional[torch.Tensor] = None,
end_positions: Optional[torch.Tensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.fnet(
input_ids,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss, start_logits=start_logits, end_logits=end_logits, hidden_states=outputs.hidden_states
)
__all__ = [
"FNetForMaskedLM",
"FNetForMultipleChoice",
"FNetForNextSentencePrediction",
"FNetForPreTraining",
"FNetForQuestionAnswering",
"FNetForSequenceClassification",
"FNetForTokenClassification",
"FNetLayer",
"FNetModel",
"FNetPreTrainedModel",
]
| transformers/src/transformers/models/fnet/modeling_fnet.py/0 | {
"file_path": "transformers/src/transformers/models/fnet/modeling_fnet.py",
"repo_id": "transformers",
"token_count": 20553
} |
# coding=utf-8
# Copyright 2020-present Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Funnel model."""
from __future__ import annotations
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFMaskedLMOutput,
TFMultipleChoiceModelOutput,
TFQuestionAnsweringModelOutput,
TFSequenceClassifierOutput,
TFTokenClassifierOutput,
)
from ...modeling_tf_utils import (
TFMaskedLanguageModelingLoss,
TFModelInputType,
TFMultipleChoiceLoss,
TFPreTrainedModel,
TFQuestionAnsweringLoss,
TFSequenceClassificationLoss,
TFTokenClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_funnel import FunnelConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "FunnelConfig"
INF = 1e6
class TFFunnelEmbeddings(keras.layers.Layer):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.initializer_std = 1.0 if config.initializer_std is None else config.initializer_std
self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout)
def build(self, input_shape=None):
with tf.name_scope("word_embeddings"):
self.weight = self.add_weight(
name="weight",
shape=[self.config.vocab_size, self.hidden_size],
initializer=get_initializer(initializer_range=self.initializer_std),
)
if self.built:
return
self.built = True
if getattr(self, "LayerNorm", None) is not None:
with tf.name_scope(self.LayerNorm.name):
self.LayerNorm.build([None, None, self.config.d_model])
def call(self, input_ids=None, inputs_embeds=None, training=False):
"""
Applies embedding based on inputs tensor.
Returns:
final_embeddings (`tf.Tensor`): output embedding tensor.
"""
assert not (input_ids is None and inputs_embeds is None)
assert not (input_ids is not None and inputs_embeds is not None)
if input_ids is not None:
check_embeddings_within_bounds(input_ids, self.config.vocab_size)
inputs_embeds = tf.gather(self.weight, input_ids)
final_embeddings = self.LayerNorm(inputs=inputs_embeds)
final_embeddings = self.dropout(inputs=final_embeddings, training=training)
return final_embeddings
class TFFunnelAttentionStructure:
"""
Contains helpers for `TFFunnelRelMultiheadAttention `.
"""
cls_token_type_id: int = 2
def __init__(self, config):
self.d_model = config.d_model
self.attention_type = config.attention_type
self.num_blocks = config.num_blocks
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.pool_q_only = config.pool_q_only
self.pooling_type = config.pooling_type
self.sin_dropout = keras.layers.Dropout(config.hidden_dropout)
self.cos_dropout = keras.layers.Dropout(config.hidden_dropout)
# Track where we are at in terms of pooling from the original input, e.g., by how much the sequence length was
# divided.
self.pooling_mult = None
def init_attention_inputs(self, inputs_embeds, attention_mask=None, token_type_ids=None, training=False):
"""Returns the attention inputs associated to the inputs of the model."""
# inputs_embeds has shape batch_size x seq_len x d_model
# attention_mask and token_type_ids have shape batch_size x seq_len
self.pooling_mult = 1
self.seq_len = seq_len = shape_list(inputs_embeds)[1]
position_embeds = self.get_position_embeds(seq_len, training=training)
token_type_mat = self.token_type_ids_to_mat(token_type_ids) if token_type_ids is not None else None
cls_mask = (
tf.pad(tf.ones([seq_len - 1, seq_len - 1], dtype=inputs_embeds.dtype), [[1, 0], [1, 0]])
if self.separate_cls
else None
)
return (position_embeds, token_type_mat, attention_mask, cls_mask)
def token_type_ids_to_mat(self, token_type_ids):
"""Convert `token_type_ids` to `token_type_mat`."""
token_type_mat = tf.equal(tf.expand_dims(token_type_ids, -1), tf.expand_dims(token_type_ids, -2))
# Treat <cls> as in the same segment as both A & B
cls_ids = tf.equal(token_type_ids, tf.constant([self.cls_token_type_id], dtype=token_type_ids.dtype))
cls_mat = tf.logical_or(tf.expand_dims(cls_ids, -1), tf.expand_dims(cls_ids, -2))
return tf.logical_or(cls_mat, token_type_mat)
def get_position_embeds(self, seq_len, training=False):
"""
Create and cache inputs related to relative position encoding. Those are very different depending on whether we
are using the factorized or the relative shift attention:
For the factorized attention, it returns the matrices (phi, pi, psi, omega) used in the paper, appendix A.2.2,
final formula.
For the relative shift attention, it returns all possible vectors R used in the paper, appendix A.2.1, final
formula.
Paper link: https://arxiv.org/abs/2006.03236
"""
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula.
# We need to create and return the matrices phi, psi, pi and omega.
pos_seq = tf.range(0, seq_len, 1.0)
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
sinusoid = tf.einsum("i,d->id", pos_seq, inv_freq)
sin_embed = tf.sin(sinusoid)
sin_embed_d = self.sin_dropout(sin_embed, training=training)
cos_embed = tf.cos(sinusoid)
cos_embed_d = self.cos_dropout(cos_embed, training=training)
# This is different from the formula on the paper...
phi = tf.concat([sin_embed_d, sin_embed_d], axis=-1)
psi = tf.concat([cos_embed, sin_embed], axis=-1)
pi = tf.concat([cos_embed_d, cos_embed_d], axis=-1)
omega = tf.concat([-sin_embed, cos_embed], axis=-1)
return (phi, pi, psi, omega)
else:
# Notations from the paper, appending A.2.1, final formula.
# We need to create and return all the possible vectors R for all blocks and shifts.
freq_seq = tf.range(0, self.d_model // 2, 1.0)
inv_freq = 1 / (10000 ** (freq_seq / (self.d_model // 2)))
# Maximum relative positions for the first input
rel_pos_id = tf.range(-seq_len * 2, seq_len * 2, 1.0)
zero_offset = seq_len * tf.constant(2)
sinusoid = tf.einsum("i,d->id", rel_pos_id, inv_freq)
sin_embed = self.sin_dropout(tf.sin(sinusoid), training=training)
cos_embed = self.cos_dropout(tf.cos(sinusoid), training=training)
pos_embed = tf.concat([sin_embed, cos_embed], axis=-1)
pos = tf.range(0, seq_len)
pooled_pos = pos
position_embeds_list = []
for block_index in range(0, self.num_blocks):
# For each block with block_index > 0, we need two types position embeddings:
# - Attention(pooled-q, unpooled-kv)
# - Attention(pooled-q, pooled-kv)
# For block_index = 0 we only need the second one and leave the first one as None.
# First type
position_embeds_pooling = tf.fill([1], value=-1.0)
if block_index != 0:
pooled_pos = self.stride_pool_pos(pos, block_index)
# construct rel_pos_id
stride = 2 ** (block_index - 1)
rel_pos = self.relative_pos(pos, stride, pooled_pos, shift=2)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
position_embeds_pooling = tf.gather(pos_embed, rel_pos, axis=0)
# Second type
pos = pooled_pos
stride = 2**block_index
rel_pos = self.relative_pos(pos, stride)
# rel_pos = tf.expand_dims(rel_pos,1) + zero_offset
# rel_pos = tf.broadcast_to(rel_pos, (rel_pos.shape[0], self.d_model))
rel_pos = tf.cast(rel_pos, dtype=zero_offset.dtype)
rel_pos = rel_pos + zero_offset
tf.debugging.assert_less(rel_pos, tf.shape(pos_embed)[0])
position_embeds_no_pooling = tf.gather(pos_embed, rel_pos, axis=0)
position_embeds_list.append([position_embeds_no_pooling, position_embeds_pooling])
return position_embeds_list
def stride_pool_pos(self, pos_id, block_index):
"""
Pool `pos_id` while keeping the cls token separate (if `self.separate_cls=True`).
"""
if self.separate_cls:
# Under separate <cls>, we treat the <cls> as the first token in
# the previous block of the 1st real block. Since the 1st real
# block always has position 1, the position of the previous block
# will be at `1 - 2 ** block_index`.
cls_pos = tf.constant([-(2**block_index) + 1], dtype=pos_id.dtype)
pooled_pos_id = pos_id[1:-1] if self.truncate_seq else pos_id[1:]
return tf.concat([cls_pos, pooled_pos_id[::2]], 0)
else:
return pos_id[::2]
def relative_pos(self, pos, stride, pooled_pos=None, shift=1):
"""
Build the relative positional vector between `pos` and `pooled_pos`.
"""
if pooled_pos is None:
pooled_pos = pos
ref_point = pooled_pos[0] - pos[0]
num_remove = shift * shape_list(pooled_pos)[0]
max_dist = ref_point + num_remove * stride
min_dist = pooled_pos[0] - pos[-1]
return tf.range(max_dist, min_dist - 1, -stride)
def stride_pool(self, tensor, axis):
"""
Perform pooling by stride slicing the tensor along the given axis.
"""
if tensor is None:
return None
# Do the stride pool recursively if axis is a list or a tuple of ints.
if isinstance(axis, (list, tuple)):
for ax in axis:
tensor = self.stride_pool(tensor, ax)
return tensor
# Do the stride pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.stride_pool(x, axis) for x in tensor)
# Deal with negative axis
axis %= len(shape_list(tensor))
axis_slice = slice(None, -1, 2) if self.separate_cls and self.truncate_seq else slice(None, None, 2)
enc_slice = [slice(None)] * axis + [axis_slice]
if self.separate_cls:
cls_slice = [slice(None)] * axis + [slice(None, 1)]
tensor = tf.concat([tensor[cls_slice], tensor], axis)
return tensor[enc_slice]
def pool_tensor(self, tensor, mode="mean", stride=2):
"""Apply 1D pooling to a tensor of size [B x T (x H)]."""
if tensor is None:
return None
# Do the pool recursively if tensor is a list or tuple of tensors.
if isinstance(tensor, (tuple, list)):
return type(tensor)(self.pool_tensor(tensor, mode=mode, stride=stride) for x in tensor)
if self.separate_cls:
suffix = tensor[:, :-1] if self.truncate_seq else tensor
tensor = tf.concat([tensor[:, :1], suffix], axis=1)
ndim = len(shape_list(tensor))
if ndim == 2:
tensor = tensor[:, :, None]
if mode == "mean":
tensor = tf.nn.avg_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "max":
tensor = tf.nn.max_pool1d(tensor, stride, strides=stride, data_format="NWC", padding="SAME")
elif mode == "min":
tensor = -tf.nn.max_pool1d(-tensor, stride, strides=stride, data_format="NWC", padding="SAME")
else:
raise NotImplementedError("The supported modes are 'mean', 'max' and 'min'.")
return tf.squeeze(tensor, 2) if ndim == 2 else tensor
def pre_attention_pooling(self, output, attention_inputs):
"""Pool `output` and the proper parts of `attention_inputs` before the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds[:2], 0) + position_embeds[2:]
token_type_mat = self.stride_pool(token_type_mat, 1)
cls_mask = self.stride_pool(cls_mask, 0)
output = self.pool_tensor(output, mode=self.pooling_type)
else:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = self.stride_pool(position_embeds, 0)
token_type_mat = self.stride_pool(token_type_mat, [1, 2])
cls_mask = self.stride_pool(cls_mask, [1, 2])
attention_mask = self.pool_tensor(attention_mask, mode="min")
output = self.pool_tensor(output, mode=self.pooling_type)
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return output, attention_inputs
def post_attention_pooling(self, attention_inputs):
"""Pool the proper parts of `attention_inputs` after the attention layer."""
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
if self.pool_q_only:
self.pooling_mult *= 2
if self.attention_type == "factorized":
position_embeds = position_embeds[:2] + self.stride_pool(position_embeds[2:], 0)
token_type_mat = self.stride_pool(token_type_mat, 2)
cls_mask = self.stride_pool(cls_mask, 1)
attention_mask = self.pool_tensor(attention_mask, mode="min")
attention_inputs = (position_embeds, token_type_mat, attention_mask, cls_mask)
return attention_inputs
def _relative_shift_gather(positional_attn, context_len, shift):
batch_size, n_head, seq_len, max_rel_len = shape_list(positional_attn)
# max_rel_len = 2 * context_len + shift -1 is the numbers of possible relative positions i-j
# What's next is the same as doing the following gather in PyTorch, which might be clearer code but less efficient.
# idxs = context_len + torch.arange(0, context_len).unsqueeze(0) - torch.arange(0, seq_len).unsqueeze(1)
# # matrix of context_len + i-j
# return positional_attn.gather(3, idxs.expand([batch_size, n_head, context_len, context_len]))
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, max_rel_len, seq_len])
positional_attn = positional_attn[:, :, shift:, :]
positional_attn = tf.reshape(positional_attn, [batch_size, n_head, seq_len, max_rel_len - shift])
positional_attn = positional_attn[..., :context_len]
return positional_attn
class TFFunnelRelMultiheadAttention(keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention_type = config.attention_type
self.n_head = n_head = config.n_head
self.d_head = d_head = config.d_head
self.d_model = d_model = config.d_model
self.initializer_range = config.initializer_range
self.block_index = block_index
self.hidden_dropout = keras.layers.Dropout(config.hidden_dropout)
self.attention_dropout = keras.layers.Dropout(config.attention_dropout)
initializer = get_initializer(config.initializer_range)
self.q_head = keras.layers.Dense(
n_head * d_head, use_bias=False, kernel_initializer=initializer, name="q_head"
)
self.k_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="k_head")
self.v_head = keras.layers.Dense(n_head * d_head, kernel_initializer=initializer, name="v_head")
self.post_proj = keras.layers.Dense(d_model, kernel_initializer=initializer, name="post_proj")
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.scale = 1.0 / (d_head**0.5)
def build(self, input_shape=None):
n_head, d_head, d_model = self.n_head, self.d_head, self.d_model
initializer = get_initializer(self.initializer_range)
self.r_w_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_w_bias"
)
self.r_r_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_r_bias"
)
self.r_kernel = self.add_weight(
shape=(d_model, n_head, d_head), initializer=initializer, trainable=True, name="r_kernel"
)
self.r_s_bias = self.add_weight(
shape=(n_head, d_head), initializer=initializer, trainable=True, name="r_s_bias"
)
self.seg_embed = self.add_weight(
shape=(2, n_head, d_head), initializer=initializer, trainable=True, name="seg_embed"
)
if self.built:
return
self.built = True
if getattr(self, "q_head", None) is not None:
with tf.name_scope(self.q_head.name):
self.q_head.build([None, None, d_model])
if getattr(self, "k_head", None) is not None:
with tf.name_scope(self.k_head.name):
self.k_head.build([None, None, d_model])
if getattr(self, "v_head", None) is not None:
with tf.name_scope(self.v_head.name):
self.v_head.build([None, None, d_model])
if getattr(self, "post_proj", None) is not None:
with tf.name_scope(self.post_proj.name):
self.post_proj.build([None, None, n_head * d_head])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, d_model])
def relative_positional_attention(self, position_embeds, q_head, context_len, cls_mask=None):
"""Relative attention score for the positional encodings"""
# q_head has shape batch_size x sea_len x n_head x d_head
if self.attention_type == "factorized":
# Notations from the paper, appending A.2.2, final formula (https://arxiv.org/abs/2006.03236)
# phi and pi have shape seq_len x d_model, psi and omega have shape context_len x d_model
phi, pi, psi, omega = position_embeds
# Shape n_head x d_head
u = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape batch_size x sea_len x n_head x d_model
q_r_attention = tf.einsum("binh,dnh->bind", q_head + u, w_r)
q_r_attention_1 = q_r_attention * phi[:, None]
q_r_attention_2 = q_r_attention * pi[:, None]
# Shape batch_size x n_head x seq_len x context_len
positional_attn = tf.einsum("bind,jd->bnij", q_r_attention_1, psi) + tf.einsum(
"bind,jd->bnij", q_r_attention_2, omega
)
else:
# Notations from the paper, appending A.2.1, final formula (https://arxiv.org/abs/2006.03236)
# Grab the proper positional encoding, shape max_rel_len x d_model
if shape_list(q_head)[1] != context_len:
shift = 2
r = position_embeds[self.block_index][1]
else:
shift = 1
r = position_embeds[self.block_index][0]
# Shape n_head x d_head
v = self.r_r_bias * self.scale
# Shape d_model x n_head x d_head
w_r = self.r_kernel
# Shape max_rel_len x n_head x d_model
r_head = tf.einsum("td,dnh->tnh", r, w_r)
# Shape batch_size x n_head x seq_len x max_rel_len
positional_attn = tf.einsum("binh,tnh->bnit", q_head + v, r_head)
# Shape batch_size x n_head x seq_len x context_len
positional_attn = _relative_shift_gather(positional_attn, context_len, shift)
if cls_mask is not None:
positional_attn *= cls_mask
return positional_attn
def relative_token_type_attention(self, token_type_mat, q_head, cls_mask=None):
"""Relative attention score for the token_type_ids"""
if token_type_mat is None:
return 0
batch_size, seq_len, context_len = shape_list(token_type_mat)
# q_head has shape batch_size x seq_len x n_head x d_head
# Shape n_head x d_head
r_s_bias = self.r_s_bias * self.scale
# Shape batch_size x n_head x seq_len x 2
token_type_bias = tf.einsum("bind,snd->bnis", q_head + r_s_bias, self.seg_embed)
# Shape batch_size x n_head x seq_len x context_len
token_type_mat = tf.tile(token_type_mat[:, None], [1, shape_list(q_head)[2], 1, 1])
# token_type_mat = tf.broadcast_to(token_type_mat[:, None], new_shape)
# Shapes batch_size x n_head x seq_len
diff_token_type, same_token_type = tf.split(token_type_bias, 2, axis=-1)
# Shape batch_size x n_head x seq_len x context_len
token_type_attn = tf.where(
token_type_mat,
tf.tile(same_token_type, [1, 1, 1, context_len]),
tf.tile(diff_token_type, [1, 1, 1, context_len]),
)
if cls_mask is not None:
token_type_attn *= cls_mask
return token_type_attn
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
# query has shape batch_size x seq_len x d_model
# key and value have shapes batch_size x context_len x d_model
position_embeds, token_type_mat, attention_mask, cls_mask = attention_inputs
batch_size, seq_len, _ = shape_list(query)
context_len = shape_list(key)[1]
n_head, d_head = self.n_head, self.d_head
# Shape batch_size x seq_len x n_head x d_head
q_head = tf.reshape(self.q_head(query), [batch_size, seq_len, n_head, d_head])
# Shapes batch_size x context_len x n_head x d_head
k_head = tf.reshape(self.k_head(key), [batch_size, context_len, n_head, d_head])
v_head = tf.reshape(self.v_head(value), [batch_size, context_len, n_head, d_head])
q_head = q_head * self.scale
# Shape n_head x d_head
r_w_bias = self.r_w_bias * self.scale
# Shapes batch_size x n_head x seq_len x context_len
content_score = tf.einsum("bind,bjnd->bnij", q_head + r_w_bias, k_head)
positional_attn = self.relative_positional_attention(position_embeds, q_head, context_len, cls_mask)
token_type_attn = self.relative_token_type_attention(token_type_mat, q_head, cls_mask)
# merge attention scores
attn_score = content_score + positional_attn + token_type_attn
# perform masking
if attention_mask is not None:
attention_mask = tf.cast(attention_mask, dtype=attn_score.dtype)
attn_score = attn_score - (INF * (1 - attention_mask[:, None, None]))
# attention probability
attn_prob = stable_softmax(attn_score, axis=-1)
attn_prob = self.attention_dropout(attn_prob, training=training)
# attention output, shape batch_size x seq_len x n_head x d_head
attn_vec = tf.einsum("bnij,bjnd->bind", attn_prob, v_head)
# Shape shape batch_size x seq_len x d_model
attn_out = self.post_proj(tf.reshape(attn_vec, [batch_size, seq_len, n_head * d_head]))
attn_out = self.hidden_dropout(attn_out, training=training)
output = self.layer_norm(query + attn_out)
return (output, attn_prob) if output_attentions else (output,)
class TFFunnelPositionwiseFFN(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_1 = keras.layers.Dense(config.d_inner, kernel_initializer=initializer, name="linear_1")
self.activation_function = get_tf_activation(config.hidden_act)
self.activation_dropout = keras.layers.Dropout(config.activation_dropout)
self.linear_2 = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_2")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.layer_norm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm")
self.config = config
def call(self, hidden, training=False):
h = self.linear_1(hidden)
h = self.activation_function(h)
h = self.activation_dropout(h, training=training)
h = self.linear_2(h)
h = self.dropout(h, training=training)
return self.layer_norm(hidden + h)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_1", None) is not None:
with tf.name_scope(self.linear_1.name):
self.linear_1.build([None, None, self.config.d_model])
if getattr(self, "linear_2", None) is not None:
with tf.name_scope(self.linear_2.name):
self.linear_2.build([None, None, self.config.d_inner])
if getattr(self, "layer_norm", None) is not None:
with tf.name_scope(self.layer_norm.name):
self.layer_norm.build([None, None, self.config.d_model])
class TFFunnelLayer(keras.layers.Layer):
def __init__(self, config, block_index, **kwargs):
super().__init__(**kwargs)
self.attention = TFFunnelRelMultiheadAttention(config, block_index, name="attention")
self.ffn = TFFunnelPositionwiseFFN(config, name="ffn")
def call(self, query, key, value, attention_inputs, output_attentions=False, training=False):
attn = self.attention(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
output = self.ffn(attn[0], training=training)
return (output, attn[1]) if output_attentions else (output,)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "ffn", None) is not None:
with tf.name_scope(self.ffn.name):
self.ffn.build(None)
class TFFunnelEncoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.pool_q_only = config.pool_q_only
self.block_repeats = config.block_repeats
self.attention_structure = TFFunnelAttentionStructure(config)
self.blocks = [
[TFFunnelLayer(config, block_index, name=f"blocks_._{block_index}_._{i}") for i in range(block_size)]
for block_index, block_size in enumerate(config.block_sizes)
]
def call(
self,
inputs_embeds,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
# The pooling is not implemented on long tensors, so we convert this mask.
# attention_mask = tf.cast(attention_mask, inputs_embeds.dtype)
attention_inputs = self.attention_structure.init_attention_inputs(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
hidden = inputs_embeds
all_hidden_states = (inputs_embeds,) if output_hidden_states else None
all_attentions = () if output_attentions else None
for block_index, block in enumerate(self.blocks):
pooling_flag = shape_list(hidden)[1] > (2 if self.separate_cls else 1)
pooling_flag = pooling_flag and block_index > 0
pooled_hidden = tf.zeros(shape_list(hidden))
if pooling_flag:
pooled_hidden, attention_inputs = self.attention_structure.pre_attention_pooling(
hidden, attention_inputs
)
for layer_index, layer in enumerate(block):
for repeat_index in range(self.block_repeats[block_index]):
do_pooling = (repeat_index == 0) and (layer_index == 0) and pooling_flag
if do_pooling:
query = pooled_hidden
key = value = hidden if self.pool_q_only else pooled_hidden
else:
query = key = value = hidden
layer_output = layer(
query, key, value, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if do_pooling:
attention_inputs = self.attention_structure.post_attention_pooling(attention_inputs)
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
for block in self.blocks:
for layer in block:
with tf.name_scope(layer.name):
layer.build(None)
def upsample(x, stride, target_len, separate_cls=True, truncate_seq=False):
"""
Upsample tensor `x` to match `target_len` by repeating the tokens `stride` time on the sequence length dimension.
"""
if stride == 1:
return x
if separate_cls:
cls = x[:, :1]
x = x[:, 1:]
output = tf.repeat(x, repeats=stride, axis=1)
if separate_cls:
if truncate_seq:
output = tf.pad(output, [[0, 0], [0, stride - 1], [0, 0]])
output = output[:, : target_len - 1]
output = tf.concat([cls, output], axis=1)
else:
output = output[:, :target_len]
return output
class TFFunnelDecoder(keras.layers.Layer):
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.separate_cls = config.separate_cls
self.truncate_seq = config.truncate_seq
self.stride = 2 ** (len(config.block_sizes) - 1)
self.attention_structure = TFFunnelAttentionStructure(config)
self.layers = [TFFunnelLayer(config, 0, name=f"layers_._{i}") for i in range(config.num_decoder_layers)]
def call(
self,
final_hidden,
first_block_hidden,
attention_mask=None,
token_type_ids=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
training=False,
):
upsampled_hidden = upsample(
final_hidden,
stride=self.stride,
target_len=shape_list(first_block_hidden)[1],
separate_cls=self.separate_cls,
truncate_seq=self.truncate_seq,
)
hidden = upsampled_hidden + first_block_hidden
all_hidden_states = (hidden,) if output_hidden_states else None
all_attentions = () if output_attentions else None
attention_inputs = self.attention_structure.init_attention_inputs(
hidden,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
training=training,
)
for layer in self.layers:
layer_output = layer(
hidden, hidden, hidden, attention_inputs, output_attentions=output_attentions, training=training
)
hidden = layer_output[0]
if output_attentions:
all_attentions = all_attentions + layer_output[1:]
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden,)
if not return_dict:
return tuple(v for v in [hidden, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(last_hidden_state=hidden, hidden_states=all_hidden_states, attentions=all_attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFFunnelBaseLayer(keras.layers.Layer):
"""Base model without decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return encoder_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
@keras_serializable
class TFFunnelMainLayer(keras.layers.Layer):
"""Base model with decoder"""
config_class = FunnelConfig
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
self.config = config
self.block_sizes = config.block_sizes
self.output_attentions = config.output_attentions
self.output_hidden_states = config.output_hidden_states
self.return_dict = config.use_return_dict
self.embeddings = TFFunnelEmbeddings(config, name="embeddings")
self.encoder = TFFunnelEncoder(config, name="encoder")
self.decoder = TFFunnelDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, value):
self.embeddings.weight = value
self.embeddings.vocab_size = shape_list(value)[0]
def _prune_heads(self, heads_to_prune):
raise NotImplementedError # Not implemented yet in the library fr TF 2.0 models
@unpack_inputs
def call(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
training=False,
):
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if attention_mask is None:
attention_mask = tf.fill(input_shape, 1)
if token_type_ids is None:
token_type_ids = tf.fill(input_shape, 0)
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids, training=training)
encoder_outputs = self.encoder(
inputs_embeds,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
training=training,
)
decoder_outputs = self.decoder(
final_hidden=encoder_outputs[0],
first_block_hidden=encoder_outputs[1][self.block_sizes[0]],
attention_mask=attention_mask,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
idx = 0
outputs = (decoder_outputs[0],)
if output_hidden_states:
idx += 1
outputs = outputs + (encoder_outputs[1] + decoder_outputs[idx],)
if output_attentions:
idx += 1
outputs = outputs + (encoder_outputs[2] + decoder_outputs[idx],)
return outputs
return TFBaseModelOutput(
last_hidden_state=decoder_outputs[0],
hidden_states=(encoder_outputs.hidden_states + decoder_outputs.hidden_states)
if output_hidden_states
else None,
attentions=(encoder_outputs.attentions + decoder_outputs.attentions) if output_attentions else None,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
class TFFunnelDiscriminatorPredictions(keras.layers.Layer):
"""Prediction module for the discriminator, made up of two dense layers."""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.dense = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="dense")
self.activation_function = get_tf_activation(config.hidden_act)
self.dense_prediction = keras.layers.Dense(1, kernel_initializer=initializer, name="dense_prediction")
self.config = config
def call(self, discriminator_hidden_states):
hidden_states = self.dense(discriminator_hidden_states)
hidden_states = self.activation_function(hidden_states)
logits = tf.squeeze(self.dense_prediction(hidden_states))
return logits
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.d_model])
if getattr(self, "dense_prediction", None) is not None:
with tf.name_scope(self.dense_prediction.name):
self.dense_prediction.build([None, None, self.config.d_model])
class TFFunnelMaskedLMHead(keras.layers.Layer):
def __init__(self, config, input_embeddings, **kwargs):
super().__init__(**kwargs)
self.config = config
self.hidden_size = config.hidden_size
self.input_embeddings = input_embeddings
def build(self, input_shape):
self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias")
super().build(input_shape)
def get_output_embeddings(self):
return self.input_embeddings
def set_output_embeddings(self, value):
self.input_embeddings.weight = value
self.input_embeddings.vocab_size = shape_list(value)[0]
def get_bias(self):
return {"bias": self.bias}
def set_bias(self, value):
self.bias = value["bias"]
self.config.vocab_size = shape_list(value["bias"])[0]
def call(self, hidden_states, training=False):
seq_length = shape_list(tensor=hidden_states)[1]
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size])
hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True)
hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size])
hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias)
return hidden_states
class TFFunnelClassificationHead(keras.layers.Layer):
def __init__(self, config, n_labels, **kwargs):
super().__init__(**kwargs)
initializer = get_initializer(config.initializer_range)
self.linear_hidden = keras.layers.Dense(config.d_model, kernel_initializer=initializer, name="linear_hidden")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.linear_out = keras.layers.Dense(n_labels, kernel_initializer=initializer, name="linear_out")
self.config = config
def call(self, hidden, training=False):
hidden = self.linear_hidden(hidden)
hidden = keras.activations.tanh(hidden)
hidden = self.dropout(hidden, training=training)
return self.linear_out(hidden)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "linear_hidden", None) is not None:
with tf.name_scope(self.linear_hidden.name):
self.linear_hidden.build([None, None, self.config.d_model])
if getattr(self, "linear_out", None) is not None:
with tf.name_scope(self.linear_out.name):
self.linear_out.build([None, None, self.config.d_model])
class TFFunnelPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FunnelConfig
base_model_prefix = "funnel"
@property
def dummy_inputs(self):
# Funnel misbehaves with very small inputs, so we override and make them a bit bigger
return {"input_ids": tf.ones((1, 3), dtype=tf.int32)}
@dataclass
class TFFunnelForPreTrainingOutput(ModelOutput):
"""
Output type of [`FunnelForPreTraining`].
Args:
logits (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Prediction scores of the head (scores for each token before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
FUNNEL_START_DOCSTRING = r"""
The Funnel Transformer model was proposed in [Funnel-Transformer: Filtering out Sequential Redundancy for Efficient
Language Processing](https://arxiv.org/abs/2006.03236) by Zihang Dai, Guokun Lai, Yiming Yang, Quoc V. Le.
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Parameters:
config ([`XxxConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FUNNEL_INPUTS_DOCSTRING = r"""
Args:
input_ids (`Numpy array` or `tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
[`PreTrainedTokenizer.encode`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`Numpy array` or `tf.Tensor` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
inputs_embeds (`tf.Tensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@add_start_docstrings(
"""
The base Funnel Transformer Model transformer outputting raw hidden-states without upsampling head (also called
decoder) or any task-specific head on top.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelBaseModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"The bare Funnel Transformer Model transformer outputting raw hidden-states without any specific head on top.",
FUNNEL_START_DOCSTRING,
)
class TFFunnelModel(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFBaseModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFBaseModelOutput]:
return self.funnel(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFBaseModelOutput(
last_hidden_state=output.last_hidden_state,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
@add_start_docstrings(
"""
Funnel model with a binary classification head on top as used during pretraining for identifying generated tokens.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForPreTraining(TFFunnelPreTrainedModel):
def __init__(self, config: FunnelConfig, **kwargs) -> None:
super().__init__(config, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.discriminator_predictions = TFFunnelDiscriminatorPredictions(config, name="discriminator_predictions")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=TFFunnelForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
**kwargs,
) -> Union[Tuple[tf.Tensor], TFFunnelForPreTrainingOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, TFFunnelForPreTraining
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("funnel-transformer/small")
>>> model = TFFunnelForPreTraining.from_pretrained("funnel-transformer/small")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="tf")
>>> logits = model(inputs).logits
```"""
discriminator_hidden_states = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
discriminator_sequence_output = discriminator_hidden_states[0]
logits = self.discriminator_predictions(discriminator_sequence_output)
if not return_dict:
return (logits,) + discriminator_hidden_states[1:]
return TFFunnelForPreTrainingOutput(
logits=logits,
hidden_states=discriminator_hidden_states.hidden_states,
attentions=discriminator_hidden_states.attentions,
)
def serving_output(self, output):
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFFunnelForPreTrainingOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "discriminator_predictions", None) is not None:
with tf.name_scope(self.discriminator_predictions.name):
self.discriminator_predictions.build(None)
@add_start_docstrings("""Funnel Model with a `language modeling` head on top.""", FUNNEL_START_DOCSTRING)
class TFFunnelForMaskedLM(TFFunnelPreTrainedModel, TFMaskedLanguageModelingLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.lm_head = TFFunnelMaskedLMHead(config, self.funnel.embeddings, name="lm_head")
def get_lm_head(self) -> TFFunnelMaskedLMHead:
return self.lm_head
def get_prefix_bias_name(self) -> str:
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
return self.name + "/" + self.lm_head.name
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFMaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMaskedLMOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, prediction_scores)
if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMaskedLMOutput(
loss=loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMaskedLMOutput) -> TFMaskedLMOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMaskedLMOutput(logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "lm_head", None) is not None:
with tf.name_scope(self.lm_head.name):
self.lm_head.build(None)
@add_start_docstrings(
"""
Funnel Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForSequenceClassification(TFFunnelPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, config.num_labels, name="classifier")
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFSequenceClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFSequenceClassifierOutput) -> TFSequenceClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFSequenceClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
softmax) e.g. for RocStories/SWAG tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForMultipleChoice(TFFunnelPreTrainedModel, TFMultipleChoiceLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.funnel = TFFunnelBaseLayer(config, name="funnel")
self.classifier = TFFunnelClassificationHead(config, 1, name="classifier")
@property
def dummy_inputs(self):
return {"input_ids": tf.ones((3, 3, 4), dtype=tf.int32)}
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small-base",
output_type=TFMultipleChoiceModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFMultipleChoiceModelOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the multiple choice classification loss. Indices should be in `[0, ..., num_choices]`
where `num_choices` is the size of the second dimension of the input tensors. (See `input_ids` above)
"""
if input_ids is not None:
num_choices = shape_list(input_ids)[1]
seq_length = shape_list(input_ids)[2]
else:
num_choices = shape_list(inputs_embeds)[1]
seq_length = shape_list(inputs_embeds)[2]
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
flat_inputs_embeds = (
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
if inputs_embeds is not None
else None
)
outputs = self.funnel(
flat_input_ids,
attention_mask=flat_attention_mask,
token_type_ids=flat_token_type_ids,
inputs_embeds=flat_inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
last_hidden_state = outputs[0]
pooled_output = last_hidden_state[:, 0]
logits = self.classifier(pooled_output, training=training)
reshaped_logits = tf.reshape(logits, (-1, num_choices))
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
if not return_dict:
output = (reshaped_logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFMultipleChoiceModelOutput(
loss=loss,
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFMultipleChoiceModelOutput) -> TFMultipleChoiceModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFMultipleChoiceModelOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build(None)
@add_start_docstrings(
"""
Funnel Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForTokenClassification(TFFunnelPreTrainedModel, TFTokenClassificationLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.dropout = keras.layers.Dropout(config.hidden_dropout)
self.classifier = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFTokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFTokenClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output, training=training)
logits = self.classifier(sequence_output)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFTokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFTokenClassifierOutput) -> TFTokenClassifierOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFTokenClassifierOutput(
logits=output.logits, hidden_states=output.hidden_states, attentions=output.attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
Funnel Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FUNNEL_START_DOCSTRING,
)
class TFFunnelForQuestionAnswering(TFFunnelPreTrainedModel, TFQuestionAnsweringLoss):
def __init__(self, config: FunnelConfig, *inputs, **kwargs) -> None:
super().__init__(config, *inputs, **kwargs)
self.num_labels = config.num_labels
self.funnel = TFFunnelMainLayer(config, name="funnel")
self.qa_outputs = keras.layers.Dense(
config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(FUNNEL_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint="funnel-transformer/small",
output_type=TFQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
token_type_ids: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
start_positions: np.ndarray | tf.Tensor | None = None,
end_positions: np.ndarray | tf.Tensor | None = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor], TFQuestionAnsweringModelOutput]:
r"""
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
outputs = self.funnel(
input_ids,
attention_mask,
token_type_ids,
inputs_embeds,
output_attentions,
output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = tf.split(logits, 2, axis=-1)
start_logits = tf.squeeze(start_logits, axis=-1)
end_logits = tf.squeeze(end_logits, axis=-1)
loss = None
if start_positions is not None and end_positions is not None:
labels = {"start_position": start_positions, "end_position": end_positions}
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
if not return_dict:
output = (start_logits, end_logits) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFQuestionAnsweringModelOutput(
loss=loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output: TFQuestionAnsweringModelOutput) -> TFQuestionAnsweringModelOutput:
# hidden_states and attentions not converted to Tensor with tf.convert_to_tensor as they are all of
# different dimensions
return TFQuestionAnsweringModelOutput(
start_logits=output.start_logits,
end_logits=output.end_logits,
hidden_states=output.hidden_states,
attentions=output.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "funnel", None) is not None:
with tf.name_scope(self.funnel.name):
self.funnel.build(None)
if getattr(self, "qa_outputs", None) is not None:
with tf.name_scope(self.qa_outputs.name):
self.qa_outputs.build([None, None, self.config.hidden_size])
__all__ = [
"TFFunnelBaseModel",
"TFFunnelForMaskedLM",
"TFFunnelForMultipleChoice",
"TFFunnelForPreTraining",
"TFFunnelForQuestionAnswering",
"TFFunnelForSequenceClassification",
"TFFunnelForTokenClassification",
"TFFunnelModel",
"TFFunnelPreTrainedModel",
]
| transformers/src/transformers/models/funnel/modeling_tf_funnel.py/0 | {
"file_path": "transformers/src/transformers/models/funnel/modeling_tf_funnel.py",
"repo_id": "transformers",
"token_count": 35215
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Optional, Tuple
from tokenizers import processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
from ...utils.versions import require_version
require_version("tokenizers>=0.13.3")
if is_sentencepiece_available():
from .tokenization_gemma import GemmaTokenizer
else:
GemmaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
class GemmaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Gemma tokenizer fast. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no prefix space. Normalization is applied to replace `" "` with `"▁"`
```python
>>> from transformers import GemmaTokenizerFast
>>> tokenizer = GemmaTokenizerFast.from_pretrained("hf-internal-testing/dummy-gemma")
>>> tokenizer.encode("Hello this is a test")
[2, 4521, 736, 603, 476, 2121]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`bool`, *optional*, defaults to `False`):
Whether or not to cleanup spaces after decoding, cleanup consists in removing potential artifacts like
extra spaces.
unk_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<bos>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str` or `tokenizers.AddedToken`, *optional*, defaults to `"<eos>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The padding token
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether or not to add an `bos_token` at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether or not to add an `eos_token` at the end of sequences.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = GemmaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<bos>",
eos_token="<eos>",
pad_token="<pad>",
add_bos_token=True,
add_eos_token=False,
**kwargs,
):
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
output = bos_token_id + token_ids_0 + eos_token_id
if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id
return output
__all__ = ["GemmaTokenizerFast"]
| transformers/src/transformers/models/gemma/tokenization_gemma_fast.py/0 | {
"file_path": "transformers/src/transformers/models/gemma/tokenization_gemma_fast.py",
"repo_id": "transformers",
"token_count": 3351
} |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OpenAI GPT checkpoint."""
import argparse
import torch
from transformers import GPT2Config, GPT2Model, load_tf_weights_in_gpt2
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def convert_gpt2_checkpoint_to_pytorch(gpt2_checkpoint_path, gpt2_config_file, pytorch_dump_folder_path):
# Construct model
if gpt2_config_file == "":
config = GPT2Config()
else:
config = GPT2Config.from_json_file(gpt2_config_file)
model = GPT2Model(config)
# Load weights from numpy
load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path)
# Save pytorch-model
pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME
pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}")
torch.save(model.state_dict(), pytorch_weights_dump_path)
print(f"Save configuration file to {pytorch_config_dump_path}")
with open(pytorch_config_dump_path, "w", encoding="utf-8") as f:
f.write(config.to_json_string())
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
args = parser.parse_args()
convert_gpt2_checkpoint_to_pytorch(args.gpt2_checkpoint_path, args.gpt2_config_file, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/gpt2/convert_gpt2_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 937
} |
# coding=utf-8
# Copyright 2022 EleutherAI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GPTNeoX model configuration"""
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
from ...utils import logging
logger = logging.get_logger(__name__)
class GPTNeoXConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`GPTNeoXModel`]. It is used to instantiate an
GPTNeoX model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the GPTNeoX
[EleutherAI/gpt-neox-20b](https://huggingface.co/EleutherAI/gpt-neox-20b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50432):
Vocabulary size of the GPTNeoX model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`GPTNeoXModel`].
hidden_size (`int`, *optional*, defaults to 6144):
Dimension of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 44):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 64):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 24576):
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
rotary_pct (`float`, *optional*, defaults to 0.25):
percentage of hidden dimensions to allocate to rotary embeddings
rotary_emb_base (`int`, *optional*, defaults to 10000)
base for computing rotary embeddings frequency
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio probability of the attention score.
hidden_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio of (1) the word embeddings, (2) the post-attention hidden states, and (3) the post-mlp
hidden states.
classifier_dropout (`float`, *optional*, defaults to 0.1):
Argument used when doing token classification, used in the model [`GPTNeoXForTokenClassification`].
The dropout ratio for the hidden layer.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 1e-5):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
use_parallel_residual (`bool`, *optional*, defaults to `True`):
Whether to use a "parallel" formulation in each Transformer layer, which can provide a slight training
speedup at large scales (e.g. 20B).
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'llama3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `True`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
Example:
```python
>>> from transformers import GPTNeoXConfig, GPTNeoXModel
>>> # Initializing a GPTNeoX gpt-neox-20b style configuration
>>> configuration = GPTNeoXConfig()
>>> # Initializing a model (with random weights) from the gpt-neox-20b style configuration
>>> model = GPTNeoXModel(configuration) # doctest: +SKIP
>>> # Accessing the model configuration
>>> configuration = model.config # doctest: +SKIP
```"""
model_type = "gpt_neox"
keys_to_ignore_at_inference = ["past_key_values"]
base_model_tp_plan = {
"layers.*.attention.query_key_value": "colwise",
"layers.*.attention.dense": "rowwise",
"layers.*.mlp.dense_h_to_4h": "colwise",
"layers.*.mlp.dense_4h_to_h": "rowwise",
}
def __init__(
self,
vocab_size=50432,
hidden_size=6144,
num_hidden_layers=44,
num_attention_heads=64,
intermediate_size=24576,
hidden_act="gelu",
rotary_pct=0.25,
rotary_emb_base=10000,
attention_dropout=0.0,
hidden_dropout=0.0,
classifier_dropout=0.1,
max_position_embeddings=2048,
initializer_range=0.02,
layer_norm_eps=1e-5,
use_cache=True,
bos_token_id=0,
eos_token_id=2,
tie_word_embeddings=False,
use_parallel_residual=True,
rope_scaling=None,
attention_bias=True,
**kwargs,
):
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.rotary_pct = rotary_pct
self.partial_rotary_factor = rotary_pct
self.rotary_emb_base = rotary_emb_base
self.rope_theta = rotary_emb_base
self.attention_dropout = attention_dropout
self.hidden_dropout = hidden_dropout
self.classifier_dropout = classifier_dropout
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.use_cache = use_cache
self.tie_word_embeddings = tie_word_embeddings
self.use_parallel_residual = use_parallel_residual
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, move it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
"The hidden size is not divisble by the number of attention heads! Make sure to update them!"
)
__all__ = ["GPTNeoXConfig"]
| transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py/0 | {
"file_path": "transformers/src/transformers/models/gpt_neox/configuration_gpt_neox.py",
"repo_id": "transformers",
"token_count": 4262
} |
# coding=utf-8
# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GroupViT model."""
import collections.abc
from dataclasses import dataclass
from typing import Any, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
torch_int,
)
from .configuration_groupvit import GroupViTConfig, GroupViTTextConfig, GroupViTVisionConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "nvidia/groupvit-gcc-yfcc"
# contrastive loss function, adapted from
# https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss with clip->groupvit
def groupvit_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
def hard_softmax(logits: torch.Tensor, dim: int):
y_soft = logits.softmax(dim)
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
return ret
def gumbel_softmax(logits: torch.Tensor, tau: float = 1, hard: bool = False, dim: int = -1) -> torch.Tensor:
# more stable https://github.com/pytorch/pytorch/issues/41663
gumbel_dist = torch.distributions.gumbel.Gumbel(
torch.tensor(0.0, device=logits.device, dtype=logits.dtype),
torch.tensor(1.0, device=logits.device, dtype=logits.dtype),
)
gumbels = gumbel_dist.sample(logits.shape)
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
y_soft = gumbels.softmax(dim)
if hard:
# Straight through.
index = y_soft.max(dim, keepdim=True)[1]
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
ret = y_hard - y_soft.detach() + y_soft
else:
# Reparametrization trick.
ret = y_soft
return ret
def resize_attention_map(attentions, height, width, align_corners=False):
"""
Args:
attentions (`torch.Tensor`): attention map of shape [batch_size, groups, feat_height*feat_width]
height (`int`): height of the output attention map
width (`int`): width of the output attention map
align_corners (`bool`, *optional*): the `align_corner` argument for `nn.functional.interpolate`.
Returns:
`torch.Tensor`: resized attention map of shape [batch_size, groups, height, width]
"""
scale = (height * width // attentions.shape[2]) ** 0.5
if height > width:
feat_width = int(np.round(width / scale))
feat_height = attentions.shape[2] // feat_width
else:
feat_height = int(np.round(height / scale))
feat_width = attentions.shape[2] // feat_height
batch_size = attentions.shape[0]
groups = attentions.shape[1] # number of group token
# [batch_size, groups, height*width, groups] -> [batch_size, groups, height, width]
attentions = attentions.reshape(batch_size, groups, feat_height, feat_width)
attentions = nn.functional.interpolate(
attentions, size=(height, width), mode="bilinear", align_corners=align_corners
)
return attentions
def get_grouping_from_attentions(attentions, hw_shape):
"""
Args:
attentions (`tuple(torch.FloatTensor)`: tuple of attention maps returned by `GroupViTVisionTransformer`
hw_shape (`tuple(int)`): height and width of the output attention map
Returns:
`torch.Tensor`: the attention map of shape [batch_size, groups, height, width]
"""
attn_maps = []
with torch.no_grad():
prev_attn_masks = None
for attn_masks in attentions:
# [batch_size, num_groups, height x width] -> [batch_size, height x width, num_groups]
attn_masks = attn_masks.permute(0, 2, 1).contiguous()
if prev_attn_masks is None:
prev_attn_masks = attn_masks
else:
prev_attn_masks = prev_attn_masks @ attn_masks
# [batch_size, heightxwidth, num_groups] -> [batch_size, num_groups, heightxwidth] -> [batch_size, num_groups, height, width]
cur_attn_map = resize_attention_map(prev_attn_masks.permute(0, 2, 1).contiguous(), *hw_shape)
attn_maps.append(cur_attn_map)
# [batch_size, num_groups, height, width]
final_grouping = attn_maps[-1]
return final_grouping
class GroupViTCrossAttentionLayer(nn.Module):
def __init__(self, config: GroupViTVisionConfig):
super().__init__()
self.attn = GroupViTAttention(config)
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp = GroupViTMLP(config)
self.norm_post = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, query, key):
x = query
x = x + self.attn(query, encoder_hidden_states=key)[0]
x = x + self.mlp(self.norm2(x))
x = self.norm_post(x)
return x
class GroupViTAssignAttention(nn.Module):
def __init__(self, config: GroupViTVisionConfig):
super().__init__()
self.scale = config.hidden_size**-0.5
self.q_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.k_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.v_proj = nn.Linear(config.hidden_size, config.hidden_size)
self.proj = nn.Linear(config.hidden_size, config.hidden_size)
self.assign_eps = config.assign_eps
def get_attn(self, attn, gumbel=True, hard=True):
if gumbel and self.training:
attn = gumbel_softmax(attn, dim=-2, hard=hard)
else:
if hard:
attn = hard_softmax(attn, dim=-2)
else:
attn = nn.functional.softmax(attn, dim=-2)
return attn
def forward(self, query, key):
value = key
# [batch_size, query_length, channels]
query = self.q_proj(query)
# [batch_size, key_length, channels]
key = self.k_proj(key)
# [batch_size, key_length, channels]
value = self.v_proj(value)
# [batch_size, query_length, key_length]
raw_attn = (query @ key.transpose(-2, -1)) * self.scale
attn = self.get_attn(raw_attn)
soft_attn = self.get_attn(raw_attn, gumbel=False, hard=False)
attn = attn / (attn.sum(dim=-1, keepdim=True) + self.assign_eps)
out = attn @ value
out = self.proj(out)
return out, soft_attn
class GroupViTTokenAssign(nn.Module):
def __init__(self, config: GroupViTVisionConfig, num_group_token, num_output_group):
super().__init__()
self.num_output_group = num_output_group
# norm on group_tokens
self.norm_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
assign_mlp_ratio = (
config.assign_mlp_ratio
if isinstance(config.assign_mlp_ratio, collections.abc.Iterable)
else (config.assign_mlp_ratio, config.assign_mlp_ratio)
)
tokens_dim, channels_dim = [int(x * config.hidden_size) for x in assign_mlp_ratio]
self.mlp_inter = GroupViTMixerMLP(config, num_group_token, tokens_dim, num_output_group)
self.norm_post_tokens = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# norm on x
self.norm_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pre_assign_attn = GroupViTCrossAttentionLayer(config)
self.assign = GroupViTAssignAttention(config)
self.norm_new_x = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.mlp_channels = GroupViTMLP(config, config.hidden_size, channels_dim, config.hidden_size)
def project_group_token(self, group_tokens):
"""
Args:
group_tokens (torch.Tensor): group tokens, [batch_size, num_group_tokens, channels]
Returns:
projected_group_tokens (torch.Tensor): [batch_size, num_output_groups, channels]
"""
# [B, num_output_groups, C] <- [B, num_group_tokens, C]
projected_group_tokens = self.mlp_inter(group_tokens)
projected_group_tokens = self.norm_post_tokens(projected_group_tokens)
return projected_group_tokens
def forward(self, image_tokens, group_tokens):
"""
Args:
image_tokens (`torch.Tensor`): image tokens, of shape [batch_size, input_length, channels]
group_tokens (`torch.Tensor`): group tokens, [batch_size, num_group_tokens, channels]
"""
group_tokens = self.norm_tokens(group_tokens)
image_tokens = self.norm_x(image_tokens)
# [batch_size, num_output_groups, channels]
projected_group_tokens = self.project_group_token(group_tokens)
projected_group_tokens = self.pre_assign_attn(projected_group_tokens, image_tokens)
new_image_tokens, attention = self.assign(projected_group_tokens, image_tokens)
new_image_tokens += projected_group_tokens
new_image_tokens = new_image_tokens + self.mlp_channels(self.norm_new_x(new_image_tokens))
return new_image_tokens, attention
@dataclass
class GroupViTModelOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
segmentation_logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels, logits_height, logits_width)`):
Classification scores for each pixel.
<Tip warning={true}>
The logits returned do not necessarily have the same size as the `pixel_values` passed as inputs. This is
to avoid doing two interpolations and lose some quality when a user needs to resize the logits to the
original image size as post-processing. You should always check your logits shape and resize as needed.
</Tip>
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of
[`GroupViTTextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of
[`GroupViTVisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`GroupViTTextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`GroupViTVisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: torch.FloatTensor = None
logits_per_text: torch.FloatTensor = None
segmentation_logits: torch.FloatTensor = None
text_embeds: torch.FloatTensor = None
image_embeds: torch.FloatTensor = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> Tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
class GroupViTPatchEmbeddings(nn.Module):
"""
Image to Patch Embedding.
"""
def __init__(
self,
image_size: int = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
num_channels: int = 3,
embed_dim: int = 768,
):
super().__init__()
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(num_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size[0] or width != self.image_size[1]:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size[0]}*{self.image_size[1]})."
)
x = self.projection(pixel_values).flatten(2).transpose(1, 2)
return x
class GroupViTVisionEmbeddings(nn.Module):
def __init__(self, config: GroupViTVisionConfig):
super().__init__()
self.patch_embeddings = GroupViTPatchEmbeddings(
image_size=config.image_size,
patch_size=config.patch_size,
num_channels=config.num_channels,
embed_dim=config.hidden_size,
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches, config.hidden_size))
self.dropout = nn.Dropout(config.dropout)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.patch_size = config.patch_size
self.config = config
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing and no class embeddings.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1]
num_positions = self.position_embeddings.shape[1]
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
patch_pos_embed = self.position_embeddings
dim = embeddings.shape[-1]
new_height = height // self.patch_size
new_width = width // self.patch_size
sqrt_num_positions = torch_int(num_positions**0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return patch_pos_embed
def forward(self, pixel_values: torch.Tensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
embeddings = self.layernorm(embeddings)
batch_size, seq_len, _ = embeddings.size()
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPTextEmbeddings with CLIP->GroupViT
class GroupViTTextEmbeddings(nn.Module):
def __init__(self, config: GroupViTTextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
class GroupViTStage(nn.Module):
"""This corresponds to the `GroupingLayer` class in the GroupViT implementation."""
def __init__(
self,
config: GroupViTVisionConfig,
depth: int,
num_prev_group_token: int,
num_group_token: int,
num_output_group: int,
):
super().__init__()
self.depth = depth
self.num_group_token = num_group_token
if num_group_token > 0:
self.group_token = nn.Parameter(torch.zeros(1, num_group_token, config.hidden_size))
else:
self.group_token = None
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(depth)])
if num_group_token > 0:
self.downsample = GroupViTTokenAssign(
config=config,
num_group_token=num_group_token,
num_output_group=num_output_group,
)
else:
self.downsample = None
if num_prev_group_token > 0 and num_group_token > 0:
self.group_projector = nn.Sequential(
nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps),
GroupViTMixerMLP(config, num_prev_group_token, config.hidden_size // 2, num_group_token),
)
else:
self.group_projector = None
@property
def with_group_token(self):
return self.group_token is not None
def split_x(self, x):
if self.with_group_token:
return x[:, : -self.num_group_token], x[:, -self.num_group_token :]
else:
return x, None
def concat_x(self, x: torch.Tensor, group_token: Optional[torch.Tensor] = None) -> torch.Tensor:
if group_token is None:
return x
return torch.cat([x, group_token], dim=1)
def forward(
self,
hidden_states: torch.Tensor,
prev_group_token: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the grouping tensors of Grouping block.
"""
if self.with_group_token:
group_token = self.group_token.expand(hidden_states.size(0), -1, -1)
if self.group_projector is not None:
group_token = group_token + self.group_projector(prev_group_token)
else:
group_token = None
x = hidden_states
cat_x = self.concat_x(x, group_token)
for layer in self.layers:
layer_out = layer(cat_x, attention_mask=None, causal_attention_mask=None)
cat_x = layer_out[0]
x, group_token = self.split_x(cat_x)
attention = None
if self.downsample is not None:
x, attention = self.downsample(x, group_token)
outputs = (x, group_token)
if output_attentions:
outputs = outputs + (attention,)
return outputs
class GroupViTMLP(nn.Module):
def __init__(
self,
config: GroupViTVisionConfig,
hidden_size: Optional[int] = None,
intermediate_size: Optional[int] = None,
output_size: Optional[int] = None,
):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
intermediate_size = intermediate_size if intermediate_size is not None else config.intermediate_size
output_size = output_size if output_size is not None else hidden_size
self.fc1 = nn.Linear(hidden_size, intermediate_size)
self.fc2 = nn.Linear(intermediate_size, output_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class GroupViTMixerMLP(GroupViTMLP):
def forward(self, x):
x = super().forward(x.transpose(1, 2))
return x.transpose(1, 2)
class GroupViTAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
is_cross_attention = encoder_hidden_states is not None
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
if is_cross_attention:
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
else:
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->GroupViT
class GroupViTEncoderLayer(nn.Module):
def __init__(self, config: GroupViTConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = GroupViTAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = GroupViTMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class GroupViTPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GroupViTConfig
base_model_prefix = "groupvit"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
init_range = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=init_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
factor = self.config.initializer_factor
if isinstance(module, GroupViTTextEmbeddings):
module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
elif isinstance(module, GroupViTAttention):
factor = self.config.initializer_factor
in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
out_proj_std = (module.embed_dim**-0.5) * factor
nn.init.normal_(module.q_proj.weight, std=in_proj_std)
nn.init.normal_(module.k_proj.weight, std=in_proj_std)
nn.init.normal_(module.v_proj.weight, std=in_proj_std)
nn.init.normal_(module.out_proj.weight, std=out_proj_std)
elif isinstance(module, GroupViTMLP):
factor = self.config.initializer_factor
in_proj_std = (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
nn.init.normal_(module.fc1.weight, std=fc_std)
nn.init.normal_(module.fc2.weight, std=in_proj_std)
GROUPVIT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`GroupViTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GROUPVIT_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
GROUPVIT_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
GROUPVIT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`CLIPTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`CLIPImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class GroupViTVisionEncoder(nn.Module):
def __init__(self, config: GroupViTVisionConfig) -> None:
super().__init__()
self.config = config
self.stages = nn.ModuleList(
[
GroupViTStage(
config=config,
depth=config.depths[i],
num_group_token=config.num_group_tokens[i],
num_output_group=config.num_output_groups[i],
num_prev_group_token=config.num_output_groups[i - 1] if i > 0 else 0,
)
for i in range(len(config.depths))
]
)
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
all_hidden_states = () if output_hidden_states else None
all_groupings = () if output_attentions else None
group_tokens = None
for i, stage in enumerate(self.stages):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = stage(hidden_states, group_tokens, output_attentions)
hidden_states = layer_outputs[0]
group_tokens = layer_outputs[1]
if output_attentions and layer_outputs[2] is not None:
all_groupings = all_groupings + (layer_outputs[2],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_groupings] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_groupings
)
class GroupViTTextEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self-attention layers. Each layer is a
[`GroupViTEncoderLayer`].
Args:
config: GroupViTTextConfig
"""
def __init__(self, config: GroupViTTextConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([GroupViTEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class GroupViTTextTransformer(nn.Module):
def __init__(self, config: GroupViTTextConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = GroupViTTextEmbeddings(config)
self.encoder = GroupViTTextEncoder(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# For `pooled_output` computation
self.eos_token_id = config.eos_token_id
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is None:
raise ValueError("You have to specify input_ids")
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
# CLIP's text model uses causal mask, prepare it here.
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
causal_attention_mask = _create_4d_causal_attention_mask(
input_shape, hidden_states.dtype, device=hidden_states.device
)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, hidden_states.dtype)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.final_layer_norm(last_hidden_state)
if self.eos_token_id == 2:
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
# ------------------------------------------------------------
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
# take features from the eot embedding (eot_token is the highest number in each sequence)
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
]
else:
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
# Note: we assume each sequence (along batch dim.) contains an `eos_token_id` (e.g. prepared by the tokenizer)
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id)
.int()
.argmax(dim=-1),
]
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GroupViTTextModel(GroupViTPreTrainedModel):
config_class = GroupViTTextConfig
def __init__(self, config: GroupViTTextConfig):
super().__init__(config)
self.text_model = GroupViTTextTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.text_model.embeddings.token_embedding
def set_input_embeddings(self, value):
self.text_model.embeddings.token_embedding = value
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTTextConfig)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from transformers import CLIPTokenizer, GroupViTTextModel
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> model = GroupViTTextModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled (EOS token) states
```"""
return self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
class GroupViTVisionTransformer(nn.Module):
def __init__(self, config: GroupViTVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = GroupViTVisionEmbeddings(config)
self.encoder = GroupViTVisionEncoder(config)
self.layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
hidden_states=hidden_states,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
# normalize the last hidden state
last_hidden_state = self.layernorm(last_hidden_state)
pooled_output = last_hidden_state.mean(dim=1)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GroupViTVisionModel(GroupViTPreTrainedModel):
config_class = GroupViTVisionConfig
main_input_name = "pixel_values"
def __init__(self, config: GroupViTVisionConfig):
super().__init__(config)
self.vision_model = GroupViTVisionTransformer(config)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self) -> GroupViTPatchEmbeddings:
return self.vision_model.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=GroupViTVisionConfig)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GroupViTVisionModel
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> model = GroupViTVisionModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled CLS states
```"""
return self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
@add_start_docstrings(GROUPVIT_START_DOCSTRING)
class GroupViTModel(GroupViTPreTrainedModel):
config_class = GroupViTConfig
def __init__(self, config: GroupViTConfig):
super().__init__(config)
if not isinstance(config.text_config, GroupViTTextConfig):
raise TypeError(
"config.text_config is expected to be of type GroupViTTextConfig but is of type"
f" {type(config.text_config)}."
)
if not isinstance(config.vision_config, GroupViTVisionConfig):
raise TypeError(
"config.vision_config is expected to be of type GroupViTVisionConfig but is of type"
f" {type(config.vision_config)}."
)
text_config = config.text_config
vision_config = config.vision_config
self.projection_dim = config.projection_dim
self.projection_intermediate_dim = config.projection_intermediate_dim
self.text_embed_dim = text_config.hidden_size
self.vision_embed_dim = vision_config.hidden_size
self.text_model = GroupViTTextTransformer(text_config)
self.vision_model = GroupViTVisionTransformer(vision_config)
self.visual_projection = nn.Sequential(
nn.Linear(self.vision_embed_dim, self.projection_intermediate_dim, bias=True),
nn.BatchNorm1d(self.projection_intermediate_dim),
nn.ReLU(inplace=True),
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
)
self.text_projection = nn.Sequential(
nn.Linear(self.text_embed_dim, self.projection_intermediate_dim, bias=True),
nn.BatchNorm1d(self.projection_intermediate_dim),
nn.ReLU(inplace=True),
nn.Linear(self.projection_intermediate_dim, self.projection_dim, bias=True),
)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GROUPVIT_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`GroupViTTextModel`].
Examples:
```python
>>> from transformers import CLIPTokenizer, GroupViTModel
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> tokenizer = CLIPTokenizer.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(GROUPVIT_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`GroupViTVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GroupViTModel
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(GROUPVIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=GroupViTModelOutput, config_class=GroupViTConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_segmentation: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, GroupViTModelOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, GroupViTModel
>>> model = GroupViTModel.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> processor = AutoProcessor.from_pretrained("nvidia/groupvit-gcc-yfcc")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
# Use GROUPVIT model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_segmentation = (
output_segmentation if output_segmentation is not None else self.config.output_segmentation
)
if output_segmentation:
output_attentions = True
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1]
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1]
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.t()
seg_logits = None
if output_segmentation:
# grouped features
# [batch_size_image, num_group, hidden_size]
image_group_embeds = vision_outputs[0]
# [batch_size_image*num_group, hidden_size]
image_group_embeds = self.visual_projection(image_group_embeds.reshape(-1, image_group_embeds.shape[-1]))
if output_hidden_states:
attentions = vision_outputs[3]
else:
attentions = vision_outputs[2]
# [batch_size_image, num_group, height, width]
grouping = get_grouping_from_attentions(attentions, pixel_values.shape[2:])
# normalized features
image_group_embeds = image_group_embeds / image_group_embeds.norm(dim=-1, keepdim=True)
# [batch_size_image x num_group, batch_size_text]
logits_per_image_group = torch.matmul(image_group_embeds, text_embeds.t()) * logit_scale
# [batch_size_image, batch_size_text, num_group]
logits_per_image_group = logits_per_image_group.reshape(
image_embeds.shape[0], -1, text_embeds.shape[0]
).permute(0, 2, 1)
# [batch_size_image, batch_size_text, height x width]
flatten_grouping = grouping.reshape(grouping.shape[0], grouping.shape[1], -1)
# [batch_size_image, batch_size_text, height, width]
seg_logits = torch.matmul(logits_per_image_group, flatten_grouping) * logit_scale
seg_logits = seg_logits.reshape(
seg_logits.shape[0], seg_logits.shape[1], grouping.shape[2], grouping.shape[3]
)
loss = None
if return_loss:
loss = groupvit_loss(logits_per_text)
if not return_dict:
if seg_logits is not None:
output = (
logits_per_image,
logits_per_text,
seg_logits,
text_embeds,
image_embeds,
text_outputs,
vision_outputs,
)
else:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return GroupViTModelOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
segmentation_logits=seg_logits,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
__all__ = ["GroupViTModel", "GroupViTPreTrainedModel", "GroupViTTextModel", "GroupViTVisionModel"]
| transformers/src/transformers/models/groupvit/modeling_groupvit.py/0 | {
"file_path": "transformers/src/transformers/models/groupvit/modeling_groupvit.py",
"repo_id": "transformers",
"token_count": 29611
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Hubert checkpoint."""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
HubertConfig,
HubertForCTC,
HubertModel,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
logging,
)
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
MAPPING = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.batch_norm",
"encoder.pos_conv.1": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
def set_recursively(hf_pointer, key, value, full_name, weight_type):
for attribute in key.split("."):
hf_pointer = getattr(hf_pointer, attribute)
if weight_type is not None:
hf_shape = getattr(hf_pointer, weight_type).shape
else:
hf_shape = hf_pointer.shape
assert hf_shape == value.shape, (
f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be"
f" {value.shape} for {full_name}"
)
if weight_type == "weight":
hf_pointer.weight.data = value
elif weight_type == "weight_g":
hf_pointer.weight_g.data = value
elif weight_type == "weight_v":
hf_pointer.weight_v.data = value
elif weight_type == "bias":
hf_pointer.bias.data = value
elif weight_type == "running_mean":
hf_pointer.running_mean.data = value
elif weight_type == "running_var":
hf_pointer.running_var.data = value
elif weight_type == "num_batches_tracked":
hf_pointer.num_batches_tracked.data = value
else:
hf_pointer.data = value
logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.")
def recursively_load_weights(fairseq_model, hf_model, is_finetuned):
unused_weights = []
fairseq_dict = fairseq_model.state_dict()
feature_extractor = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor
for name, value in fairseq_dict.items():
is_used = False
if "conv_layers" in name:
load_conv_layer(
name,
value,
feature_extractor,
unused_weights,
hf_model.config.feat_extract_norm == "group",
)
is_used = True
else:
for key, mapped_key in MAPPING.items():
mapped_key = "hubert." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key
if key in name or (key.split("w2v_model.")[-1] == name.split(".")[0] and not is_finetuned):
is_used = True
if "*" in mapped_key:
layer_index = name.split(key)[0].split(".")[-2]
mapped_key = mapped_key.replace("*", layer_index)
if "weight_g" in name:
weight_type = "weight_g"
elif "weight_v" in name:
weight_type = "weight_v"
elif "weight" in name:
weight_type = "weight"
elif "bias" in name:
weight_type = "bias"
elif "running_mean" in name:
weight_type = "running_mean"
elif "running_var" in name:
weight_type = "running_var"
elif "num_batches_tracked" in name:
weight_type = "num_batches_tracked"
else:
weight_type = None
set_recursively(hf_model, mapped_key, value, name, weight_type)
continue
if not is_used:
unused_weights.append(name)
logger.warning(f"Unused weights: {unused_weights}")
def load_conv_layer(full_name, value, feature_extractor, unused_weights, use_group_norm):
name = full_name.split("conv_layers.")[-1]
items = name.split(".")
layer_id = int(items[0])
type_id = int(items[1])
if type_id == 0:
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.bias.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].conv.weight.data = value
logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}.")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, (
f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was"
" found."
)
feature_extractor.conv_layers[layer_id].layer_norm.bias.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
elif "weight" in name:
assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, (
f"{full_name} has size {value.shape}, but"
f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found."
)
feature_extractor.conv_layers[layer_id].layer_norm.weight.data = value
logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.")
else:
unused_weights.append(full_name)
@torch.no_grad()
def convert_hubert_checkpoint(
checkpoint_path, pytorch_dump_folder_path, config_path=None, dict_path=None, is_finetuned=True
):
"""
Copy/paste/tweak model's weights to transformers design.
"""
if config_path is not None:
config = HubertConfig.from_pretrained(config_path)
else:
config = HubertConfig()
if is_finetuned:
if dict_path:
target_dict = Dictionary.load(dict_path)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
config.bos_token_id = target_dict.pad_index
config.pad_token_id = target_dict.bos_index
config.eos_token_id = target_dict.eos_index
config.vocab_size = len(target_dict.symbols)
vocab_path = os.path.join(pytorch_dump_folder_path, "vocab.json")
if not os.path.isdir(pytorch_dump_folder_path):
logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(pytorch_dump_folder_path))
return
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
with open(vocab_path, "w", encoding="utf-8") as vocab_handle:
json.dump(target_dict.indices, vocab_handle)
tokenizer = Wav2Vec2CTCTokenizer(
vocab_path,
unk_token=target_dict.unk_word,
pad_token=target_dict.pad_word,
bos_token=target_dict.bos_word,
eos_token=target_dict.eos_word,
word_delimiter_token="|",
do_lower_case=False,
)
return_attention_mask = True if config.feat_extract_norm == "layer" else False
feature_extractor = Wav2Vec2FeatureExtractor(
feature_size=1,
sampling_rate=16000,
padding_value=0,
do_normalize=True,
return_attention_mask=return_attention_mask,
)
processor = Wav2Vec2Processor(feature_extractor=feature_extractor, tokenizer=tokenizer)
processor.save_pretrained(pytorch_dump_folder_path)
hf_wav2vec = HubertForCTC(config)
else:
hf_wav2vec = HubertModel(config)
if is_finetuned:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}
)
else:
model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path])
model = model[0].eval()
recursively_load_weights(model, hf_wav2vec, is_finetuned)
hf_wav2vec.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
args = parser.parse_args()
convert_hubert_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| transformers/src/transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/hubert/convert_hubert_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5066
} |
# coding=utf-8
# Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch IdeficsVision model: a copy of CLIPVisionModel using a simpler config object"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...utils import ModelOutput, logging
from .configuration_idefics import IdeficsVisionConfig
logger = logging.get_logger(__name__)
@dataclass
class IdeficsVisionModelOutput(ModelOutput):
"""
Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
Args:
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
The image embeddings obtained by applying the projection layer to the pooler_output.
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
image_embeds: Optional[torch.FloatTensor] = None
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionEmbeddings
class IdeficsVisionEmbeddings(nn.Module):
def __init__(self, config: IdeficsVisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.image_size = config.image_size
self.patch_size = config.patch_size
self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.embed_dim,
kernel_size=self.patch_size,
stride=self.patch_size,
bias=False,
)
self.num_patches = (self.image_size // self.patch_size) ** 2
self.num_positions = self.num_patches + 1
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent=False)
# Heavily inspired from https://github.com/huggingface/transformers/blob/v4.33.0/src/transformers/models/vit/modeling_vit.py#L82
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher
resolution images.
Source:
https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174
"""
num_patches = embeddings.shape[1] - 1
pos_embed = self.position_embedding(self.position_ids)
num_positions = pos_embed.shape[1] - 1
if num_patches == num_positions and height == width:
return pos_embed
class_pos_embed = pos_embed[:, 0]
patch_pos_embed = pos_embed[:, 1:]
embed_dim = embeddings.shape[-1]
num_h_patches = height // self.config.patch_size
num_w_patches = width // self.config.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
num_h_patches, num_w_patches = num_h_patches + 0.1, num_w_patches + 0.1
sqrt_num_positions = math.sqrt(num_positions)
patch_pos_embed = patch_pos_embed.reshape(1, int(sqrt_num_positions), int(sqrt_num_positions), embed_dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
fp32_upcasting = patch_pos_embed.dtype == torch.bfloat16
if fp32_upcasting:
logger.warning_once(
"Upcasting patch_pos_embed to fp32 for interpolation since `upsample_bicubic2d_out_frame` in nn.functional.interpolate "
"is not implemented for 'torch.bfloat16' dtype. This will result in a slight overhead."
)
patch_pos_embed = patch_pos_embed.to(torch.float)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
scale_factor=(num_h_patches / sqrt_num_positions, num_w_patches / sqrt_num_positions),
mode="bicubic",
align_corners=False,
)
if fp32_upcasting:
patch_pos_embed = patch_pos_embed.to(torch.bfloat16)
if int(num_h_patches) != patch_pos_embed.shape[-2] or int(num_w_patches) != patch_pos_embed.shape[-1]:
raise ValueError(
f"Number of patches for images ({int(num_h_patches), int(num_w_patches)}) don't match the "
f"shape of position embedding ({patch_pos_embed.shape[-2], patch_pos_embed.shape[-1]})"
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, embed_dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1)
def forward(self, pixel_values: torch.FloatTensor, interpolate_pos_encoding: bool = False) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if not interpolate_pos_encoding:
if height != self.image_size or width != self.image_size:
raise ValueError(
f"Input image size ({height}*{width}) doesn't match model"
f" ({self.image_size}*{self.image_size}). You should try to set `interpolate_pos_encoding=True`"
)
target_dtype = self.patch_embedding.weight.dtype
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
class_embeds = self.class_embedding.expand(batch_size, 1, -1)
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
# add positional encoding to each token
if interpolate_pos_encoding:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
else:
embeddings = embeddings + self.position_embedding(self.position_ids)
return embeddings
# Copied from transformers.models.clip.modeling_clip.CLIPAttention with CLIP->IdeficsVision
class IdeficsVisionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scale
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
# apply the causal_attention_mask first
if causal_attention_mask is not None:
if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {causal_attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit akward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->IdeficsVision
class IdeficsVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoderLayer with AltCLIP->IdeficsVision
class IdeficsVisionEncoderLayer(nn.Module):
def __init__(self, config: IdeficsVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.self_attn = IdeficsVisionAttention(config)
self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
self.mlp = IdeficsVisionMLP(config)
self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
causal_attention_mask: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.FloatTensor]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
`(config.encoder_attention_heads,)`.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.layer_norm1(hidden_states)
hidden_states, attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
causal_attention_mask=causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.layer_norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.altclip.modeling_altclip.AltCLIPEncoder with AltCLIP->IdeficsVision
class IdeficsVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`IdeficsVisionEncoderLayer`].
Args:
config: IdeficsVisionConfig
"""
def __init__(self, config: IdeficsVisionConfig):
super().__init__()
self.config = config
self.layers = nn.ModuleList([IdeficsVisionEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
causal_attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Causal mask for the text model. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
causal_attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer
class IdeficsVisionTransformer(nn.Module):
def __init__(self, config: IdeficsVisionConfig):
super().__init__()
self.config = config
embed_dim = config.hidden_size
self.embeddings = IdeficsVisionEmbeddings(config)
self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.encoder = IdeficsVisionEncoder(config)
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
# Adapted from transformers.models.clip.modeling_clip.CLIPVisionTransformer.forward
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: Optional[bool] = False,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPooling]:
r"""
Returns:
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
hidden_states = self.embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding)
hidden_states = self.pre_layrnorm(hidden_states)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs[0]
pooled_output = last_hidden_state[:, 0, :]
pooled_output = self.post_layernorm(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
| transformers/src/transformers/models/idefics/vision.py/0 | {
"file_path": "transformers/src/transformers/models/idefics/vision.py",
"repo_id": "transformers",
"token_count": 9625
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert IJEPA checkpoints from the original repository.
URL: https://github.com/facebookresearch/ijepa
"""
import argparse
import gc
import re
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
IJepaConfig,
IJepaModel,
ViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# fmt: off
ORIGINAL_TO_CONVERTED_KEY_MAPPING = {
# Projection layer + position embeddings
r"pos_embed": r"embeddings.position_embeddings",
r"patch_embed.proj.weight": r"embeddings.patch_embeddings.projection.weight",
r"patch_embed.proj.bias": r"embeddings.patch_embeddings.projection.bias",
# Encoder layers: Layernorms, Attention, Feedforward layers
r"blocks.(\d+).norm1.weight": r"encoder.layer.\1.layernorm_before.weight",
r"blocks.(\d+).norm1.bias": r"encoder.layer.\1.layernorm_before.bias",
r"blocks.(\d+).attn.proj.weight": r"encoder.layer.\1.attention.output.dense.weight",
r"blocks.(\d+).attn.proj.bias": r"encoder.layer.\1.attention.output.dense.bias",
r"blocks.(\d+).norm2.weight": r"encoder.layer.\1.layernorm_after.weight",
r"blocks.(\d+).norm2.bias": r"encoder.layer.\1.layernorm_after.bias",
r"blocks.(\d+).mlp.fc1.weight": r"encoder.layer.\1.intermediate.dense.weight",
r"blocks.(\d+).mlp.fc1.bias": r"encoder.layer.\1.intermediate.dense.bias",
r"blocks.(\d+).mlp.fc2.weight": r"encoder.layer.\1.output.dense.weight",
r"blocks.(\d+).mlp.fc2.bias": r"encoder.layer.\1.output.dense.bias",
# Layernorm + pooler
r"norm.weight": r"layernorm.weight",
r"norm.bias": r"layernorm.bias",
}
# fmt: on
def convert_old_keys_to_new_keys(state_dict_keys: dict = None):
"""
Converts old keys to new keys using the mapping and dynamically removes the 'ijepa.' prefix if necessary.
Args:
state_dict_keys (dict): The keys from the state_dict to convert.
Returns:
dict: A mapping from old keys to new keys.
"""
output_dict = {}
if state_dict_keys is not None:
old_text = "\n".join(state_dict_keys)
new_text = old_text
# Apply regex-based mapping
for pattern, replacement in ORIGINAL_TO_CONVERTED_KEY_MAPPING.items():
if replacement is None:
new_text = re.sub(pattern, "", new_text) # Skip the key
continue
new_text = re.sub(pattern, replacement, new_text)
output_dict = dict(zip(old_text.split("\n"), new_text.split("\n")))
return output_dict
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_q_k_v(state_dict, config):
for i in range(config.num_hidden_layers):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[: config.hidden_size, :]
state_dict[f"encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
state_dict[f"encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
state_dict[f"encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
state_dict[f"encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[-config.hidden_size :, :]
state_dict[f"encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
def get_ijepa_config(model_name):
patch_size = int(model_name.split("_")[1][4:])
config = IJepaConfig(patch_size=patch_size)
if "vith" in model_name:
config.hidden_size = 1280
config.num_hidden_layers = 32
config.num_attention_heads = 16
config.layer_norm_eps = 1e-6
config.mlp_ratio = 4
config.intermediate_size = 5120
if model_name == "ijepa_vith16_1k":
config.image_size = 448
elif "vitg" in model_name:
config.hidden_size = 1408
config.num_hidden_layers = 40
config.num_attention_heads = 16
config.layer_norm_eps = 1e-6
config.mlp_ratio = 48 / 11
config.intermediate_size = 6144
else:
raise ValueError("Model not supported, only supports huge and giant models.")
return config
@torch.no_grad()
def write_model(model_name, output_dir, safe_serialization, push_to_hub, verify_logits):
"""
Copy/paste/tweak model's weights to our IJEPA structure.
"""
# define default IJEPA configuration
config = get_ijepa_config(model_name)
checkpoint_mapping = {
"ijepa_vith14_1k": "https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.14-300e.pth.tar",
"ijepa_vith14_22k": "https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.h.14-900e.pth.tar",
"ijepa_vith16_1k": "https://dl.fbaipublicfiles.com/ijepa/IN1K-vit.h.16-448px-300e.pth.tar",
"ijepa_vitg16_22k": "https://dl.fbaipublicfiles.com/ijepa/IN22K-vit.g.16-600e.pth.tar",
}
# Load original checkpoint
checkpoint_url = checkpoint_mapping[model_name]
original_state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["encoder"]
original_state_dict = {k.replace("module.", ""): v for k, v in original_state_dict.items()}
# Rename keys
state_dict = original_state_dict.copy()
new_keys = convert_old_keys_to_new_keys(state_dict.keys())
for old_key, new_key in new_keys.items():
rename_key(state_dict, old_key, new_key)
read_in_q_k_v(state_dict, config)
# load HuggingFace model
model = IJepaModel(config, add_pooling_layer=False).eval()
model.load_state_dict(state_dict)
size = {"height": config.image_size, "width": config.image_size}
image_processor = ViTImageProcessor(size=size)
if verify_logits:
# Check outputs on an image, prepared by ViTImageProcessor
encoding = image_processor(images=prepare_img(), return_tensors="pt")
pixel_values = encoding["pixel_values"]
with torch.no_grad():
outputs = model(pixel_values)
expected_slices = {
"ijepa_vith14_1k": torch.Tensor(
[[-0.0621, -0.0054, -2.7513], [-0.1952, 0.0909, -3.9536], [0.0942, -0.0331, -1.2833]]
),
"ijepa_vith14_22k": torch.Tensor(
[[0.0358, -0.0045, -0.2154], [0.0418, -0.0246, 0.0108], [0.2529, -0.0345, -0.0246]]
),
"ijepa_vith16_1k": torch.Tensor(
[[0.5145, -0.1259, 0.0615], [0.1132, 0.0028, -0.0496], [1.1586, -0.0056, -0.0387]]
),
"ijepa_vitg16_22k": torch.Tensor(
[[0.0512, -0.0510, -0.0649], [0.1972, 0.0380, -0.0790], [0.1667, -0.0834, -0.1240]]
),
}
assert torch.allclose(
expected_slices[model_name],
outputs.last_hidden_state[0, :3, :3],
atol=1e-4,
)
if output_dir:
Path(output_dir).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {output_dir}")
image_processor.save_pretrained(output_dir, safe_serialization=safe_serialization)
model.save_pretrained(output_dir, safe_serialization=safe_serialization)
if push_to_hub:
image_processor.push_to_hub(repo_id=f"jmtzt/{model_name}", safe_serialization=safe_serialization)
model.push_to_hub(repo_id=f"jmtzt/{model_name}", safe_serialization=safe_serialization)
if output_dir:
del model, state_dict
gc.collect()
print("Reloading the model to check if it's saved correctly.")
IJepaModel.from_pretrained(output_dir, device_map="auto")
print("Model reloaded successfully.")
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ijepa_vith14_1k",
type=str,
choices=[
"ijepa_vith14_1k",
"ijepa_vith14_22k",
"ijepa_vith16_1k",
"ijepa_vitg16_22k",
],
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--safe_serialization", default=True, type=bool, help="Whether or not to save using `safetensors`."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the 🤗 Hub.",
)
parser.add_argument(
"--verify_logits", action="store_false", help="Whether or not to verify logits after conversion."
)
parser.set_defaults()
args = parser.parse_args()
write_model(args.model_name, args.output_dir, args.safe_serialization, args.push_to_hub, args.verify_logits)
if __name__ == "__main__":
main()
| transformers/src/transformers/models/ijepa/convert_ijepa_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/ijepa/convert_ijepa_to_hf.py",
"repo_id": "transformers",
"token_count": 4730
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for InstructBLIP. Largely copy of Blip2Processor with addition of a tokenizer for the Q-Former.
"""
import os
from typing import List, Union
from ...image_processing_utils import BatchFeature
from ...image_utils import ImageInput
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import (
AddedToken,
BatchEncoding,
PreTokenizedInput,
TextInput,
)
from ...utils import logging
from ..auto import AutoTokenizer
logger = logging.get_logger(__name__)
class InstructBlipProcessorKwargs(ProcessingKwargs, total=False):
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"stride": 0,
"return_overflowing_tokens": False,
"return_special_tokens_mask": False,
"return_offsets_mapping": False,
"return_token_type_ids": False,
"return_length": False,
"verbose": True,
},
"images_kwargs": {},
}
class InstructBlipProcessor(ProcessorMixin):
r"""
Constructs an InstructBLIP processor which wraps a BLIP image processor and a LLaMa/T5 tokenizer into a single
processor.
[`InstructBlipProcessor`] offers all the functionalities of [`BlipImageProcessor`] and [`AutoTokenizer`]. See the
docstring of [`~BlipProcessor.__call__`] and [`~BlipProcessor.decode`] for more information.
Args:
image_processor (`BlipImageProcessor`):
An instance of [`BlipImageProcessor`]. The image processor is a required input.
tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The tokenizer is a required input.
qformer_tokenizer (`AutoTokenizer`):
An instance of ['PreTrainedTokenizer`]. The Q-Former tokenizer is a required input.
num_query_tokens (`int`, *optional*):"
Number of tokens used by the Qformer as queries, should be same as in model's config.
"""
attributes = ["image_processor", "tokenizer", "qformer_tokenizer"]
valid_kwargs = ["num_query_tokens"]
image_processor_class = "BlipImageProcessor"
tokenizer_class = "AutoTokenizer"
qformer_tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer, qformer_tokenizer, num_query_tokens=None, **kwargs):
if not hasattr(tokenizer, "image_token"):
self.image_token = AddedToken("<image>", normalized=False, special=True)
tokenizer.add_tokens([self.image_token], special_tokens=True)
else:
self.image_token = tokenizer.image_token
self.num_query_tokens = num_query_tokens
super().__init__(image_processor, tokenizer, qformer_tokenizer)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos=None,
**kwargs: Unpack[InstructBlipProcessorKwargs],
) -> BatchFeature:
"""
This method uses [`BlipImageProcessor.__call__`] method to prepare image(s) for the model, and
[`BertTokenizerFast.__call__`] to prepare text for the model.
Please refer to the docstring of the above two methods for more information.
Args:
images (`ImageInput`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`TextInput`, `PreTokenizedInput`, `List[TextInput]`, `List[PreTokenizedInput]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
"""
if images is None and text is None:
raise ValueError("You have to specify at least images or text.")
output_kwargs = self._merge_kwargs(
InstructBlipProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
encoding = BatchFeature()
if text is not None:
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
# we have to concatenate lists - so we keep track of return_tensors here
return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
_text_encoding = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None)
output_kwargs["text_kwargs"]["return_tensors"] = return_tensors
# if we know how many query tokens, expand text inside processor. We need this hacky manipulation
# because BLIP expects image tokens to be at the beginning even before BOS token
if self.num_query_tokens is not None and images is not None:
text_encoding = {}
image_tokens = self.image_token.content * self.num_query_tokens
image_token_encoding = self.tokenizer(
[image_tokens] * len(text), add_special_tokens=False, return_tensors=None
)
for k in _text_encoding:
text_encoding[k] = [
img_encoding + txt_encoding
for img_encoding, txt_encoding in zip(image_token_encoding[k], _text_encoding[k])
]
else:
text_encoding = _text_encoding
if images is not None:
logger.warning_once(
"Expanding inputs for image tokens in InstructBLIP should be done in processing. "
"Please follow instruction here (https://gist.github.com/zucchini-nlp/e9f20b054fa322f84ac9311d9ab67042) to update your InstructBLIP model. "
"Using processors without these attributes in the config is deprecated and will throw an error in v4.50."
)
# cast to desired return tensors type after concatenating
text_encoding = BatchEncoding(text_encoding, tensor_type=return_tensors)
encoding.update(text_encoding)
qformer_text_encoding = self.qformer_tokenizer(text, **output_kwargs["text_kwargs"])
encoding["qformer_input_ids"] = qformer_text_encoding.pop("input_ids")
encoding["qformer_attention_mask"] = qformer_text_encoding.pop("attention_mask")
if images is not None:
image_encoding = self.image_processor(images, **output_kwargs["images_kwargs"])
encoding.update(image_encoding)
return encoding
# Copied from transformers.models.blip.processing_blip.BlipProcessor.batch_decode with BertTokenizerFast->PreTrainedTokenizer
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.blip.processing_blip.BlipProcessor.decode with BertTokenizerFast->PreTrainedTokenizer
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# overwrite to save the Q-Former tokenizer in a separate folder
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
qformer_tokenizer_path = os.path.join(save_directory, "qformer_tokenizer")
self.qformer_tokenizer.save_pretrained(qformer_tokenizer_path)
# We modify the attributes so that only the tokenizer and image processor are saved in the main folder
qformer_present = "qformer_tokenizer" in self.attributes
if qformer_present:
self.attributes.remove("qformer_tokenizer")
outputs = super().save_pretrained(save_directory, **kwargs)
if qformer_present:
self.attributes += ["qformer_tokenizer"]
return outputs
# overwrite to load the Q-Former tokenizer from a separate folder
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
qformer_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path, subfolder="qformer_tokenizer")
processor.qformer_tokenizer = qformer_tokenizer
return processor
__all__ = ["InstructBlipProcessor"]
| transformers/src/transformers/models/instructblip/processing_instructblip.py/0 | {
"file_path": "transformers/src/transformers/models/instructblip/processing_instructblip.py",
"repo_id": "transformers",
"token_count": 4154
} |
import argparse
from fairseq.checkpoint_utils import load_checkpoint_to_cpu
from transformers import Kosmos2Config, Kosmos2ForConditionalGeneration
KEYS_TO_MODIFY_MAPPING = {
"gpt_model.decoder.output_projection": "text_model.lm_head",
"gpt_model.decoder": "text_model.model",
"img_connector": "image_to_text_projection",
"img_model.visual.class_embedding": "vision_model.model.embeddings.class_embedding",
"img_model.visual.positional_embedding": "vision_model.model.embeddings.position_embedding.weight",
"img_model.visual.conv1": "vision_model.model.embeddings.patch_embedding",
"img_model.visual": "vision_model.model",
"ln_pre": "pre_layrnorm",
"ln_post": "post_layernorm",
"transformer.resblocks": "encoder.layers",
"ts_attn": "self_attn",
"ln_1": "layer_norm1",
"ln_2": "layer_norm2",
"c_fc": "fc1",
"c_proj": "fc2",
}
KEYS_TO_IGNORE = [
# this buffer in the original code is only used to send weights to the desired device
"gpt_model.decoder.embed_positions._float_tensor",
# this weight is never used in the forward in the original KOSMOS-2)
"gpt_model.decoder.self_attn_sope.scale",
]
def rename_key(key):
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
return key
def convert_kosmos2_checkpoint_to_pytorch(checkpoint_path, pytorch_dump_folder_path):
state = load_checkpoint_to_cpu(checkpoint_path)
state_dict = state["model"]
state_dict_keys = list(state_dict.keys())
config = Kosmos2Config()
# This is necessary to match the results given by the original demo
config.text_config.no_repeat_ngram_size = 3
model = Kosmos2ForConditionalGeneration(config)
# convert (by renaming keys)
converted_state_dict = {}
for key in state_dict_keys:
if key in KEYS_TO_IGNORE:
continue
renamed_key = rename_key(key)
converted_state_dict[renamed_key] = state_dict[key]
# check weight loading
model.load_state_dict(converted_state_dict, strict=True)
# save the result
model.save_pretrained(pytorch_dump_folder_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--kosmos2_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_kosmos2_checkpoint_to_pytorch(args.kosmos2_checkpoint_path, args.pytorch_dump_folder_path)
| transformers/src/transformers/models/kosmos2/convert_kosmos2_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/kosmos2/convert_kosmos2_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 1082
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fast tokenization class for LayoutLMv2. It overwrites 2 methods of the slow tokenizer class, namely _batch_encode_plus
and _encode_plus, in which the Rust tokenizer is used.
"""
import json
from typing import Dict, List, Optional, Tuple, Union
from tokenizers import normalizers
from ...tokenization_utils_base import (
BatchEncoding,
EncodedInput,
PaddingStrategy,
PreTokenizedInput,
TensorType,
TextInput,
TextInputPair,
TruncationStrategy,
)
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import add_end_docstrings, logging
from .tokenization_layoutlmv2 import (
LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING,
LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING,
LayoutLMv2Tokenizer,
)
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class LayoutLMv2TokenizerFast(PreTrainedTokenizerFast):
r"""
Construct a "fast" LayoutLMv2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on WordPiece.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
File containing the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
unk_token (`str`, *optional*, defaults to `"[UNK]"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
sep_token (`str`, *optional*, defaults to `"[SEP]"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
sequence classification or for a text and a question for question answering. It is also used as the last
token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"[PAD]"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"[CLS]"`):
The classifier token which is used when doing sequence classification (classification of the whole sequence
instead of per-token classification). It is the first token of the sequence when built with special tokens.
mask_token (`str`, *optional*, defaults to `"[MASK]"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [CLS] token.
sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`):
The bounding box to use for the special [SEP] token.
pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`):
The bounding box to use for the special [PAD] token.
pad_token_label (`int`, *optional*, defaults to -100):
The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's
CrossEntropyLoss.
only_label_first_subword (`bool`, *optional*, defaults to `True`):
Whether or not to only label the first subword, in case word labels are provided.
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see [this
issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original LayoutLMv2).
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = LayoutLMv2Tokenizer
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=True,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
cls_token_box=[0, 0, 0, 0],
sep_token_box=[1000, 1000, 1000, 1000],
pad_token_box=[0, 0, 0, 0],
pad_token_label=-100,
only_label_first_subword=True,
tokenize_chinese_chars=True,
strip_accents=None,
**kwargs,
):
super().__init__(
vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
cls_token_box=cls_token_box,
sep_token_box=sep_token_box,
pad_token_box=pad_token_box,
pad_token_label=pad_token_label,
only_label_first_subword=only_label_first_subword,
tokenize_chinese_chars=tokenize_chinese_chars,
strip_accents=strip_accents,
**kwargs,
)
pre_tok_state = json.loads(self.backend_tokenizer.normalizer.__getstate__())
if (
pre_tok_state.get("lowercase", do_lower_case) != do_lower_case
or pre_tok_state.get("strip_accents", strip_accents) != strip_accents
):
pre_tok_class = getattr(normalizers, pre_tok_state.pop("type"))
pre_tok_state["lowercase"] = do_lower_case
pre_tok_state["strip_accents"] = strip_accents
self.backend_tokenizer.normalizer = pre_tok_class(**pre_tok_state)
self.do_lower_case = do_lower_case
# additional properties
self.cls_token_box = cls_token_box
self.sep_token_box = sep_token_box
self.pad_token_box = pad_token_box
self.pad_token_label = pad_token_label
self.only_label_first_subword = only_label_first_subword
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def __call__(
self,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None,
boxes: Union[List[List[int]], List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of
sequences with word-level normalized bounding boxes and optional labels.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings
(words of a single example or questions of a batch of examples) or a list of list of strings (batch of
words).
text_pair (`List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence should be a list of strings
(pretokenized string).
boxes (`List[List[int]]`, `List[List[List[int]]]`):
Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale.
word_labels (`List[int]`, `List[List[int]]`, *optional*):
Word-level integer labels (for token classification tasks such as FUNSD, CORD).
"""
# Input type checking for clearer error
def _is_valid_text_input(t):
if isinstance(t, str):
# Strings are fine
return True
elif isinstance(t, (list, tuple)):
# List are fine as long as they are...
if len(t) == 0:
# ... empty
return True
elif isinstance(t[0], str):
# ... list of strings
return True
elif isinstance(t[0], (list, tuple)):
# ... list with an empty list or with a list of strings
return len(t[0]) == 0 or isinstance(t[0][0], str)
else:
return False
else:
return False
if text_pair is not None:
# in case text + text_pair are provided, text = questions, text_pair = words
if not _is_valid_text_input(text):
raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ")
if not isinstance(text_pair, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
else:
# in case only text is provided => must be words
if not isinstance(text, (list, tuple)):
raise ValueError(
"Words must be of type `List[str]` (single pretokenized example), "
"or `List[List[str]]` (batch of pretokenized examples)."
)
if text_pair is not None:
is_batched = isinstance(text, (list, tuple))
else:
is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple))
words = text if text_pair is None else text_pair
if boxes is None:
raise ValueError("You must provide corresponding bounding boxes")
if is_batched:
if len(words) != len(boxes):
raise ValueError("You must provide words and boxes for an equal amount of examples")
for words_example, boxes_example in zip(words, boxes):
if len(words_example) != len(boxes_example):
raise ValueError("You must provide as many words as there are bounding boxes")
else:
if len(words) != len(boxes):
raise ValueError("You must provide as many words as there are bounding boxes")
if is_batched:
if text_pair is not None and len(text) != len(text_pair):
raise ValueError(
f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:"
f" {len(text_pair)}."
)
batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text
is_pair = bool(text_pair is not None)
return self.batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
else:
return self.encode_plus(
text=text,
text_pair=text_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding=padding,
truncation=truncation,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[Union[List[int], List[List[int]]]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._batch_encode_plus(
batch_text_or_text_pairs=batch_text_or_text_pairs,
is_pair=is_pair,
boxes=boxes,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]:
batched_input = [(text, pair)] if pair else [text]
encodings = self._tokenizer.encode_batch(
batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs
)
return encodings[0].tokens
@add_end_docstrings(LAYOUTLMV2_ENCODE_KWARGS_DOCSTRING, LAYOUTLMV2_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING)
def encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding: Union[bool, str, PaddingStrategy] = False,
truncation: Union[bool, str, TruncationStrategy] = None,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
"""
Tokenize and prepare for the model a sequence or a pair of sequences. .. warning:: This method is deprecated,
`__call__` should be used instead.
Args:
text (`str`, `List[str]`, `List[List[str]]`):
The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings.
text_pair (`List[str]` or `List[int]`, *optional*):
Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a
list of list of strings (words of a batch of examples).
"""
# Backward compatibility for 'truncation_strategy', 'pad_to_max_length'
padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies(
padding=padding,
truncation=truncation,
max_length=max_length,
pad_to_multiple_of=pad_to_multiple_of,
verbose=verbose,
**kwargs,
)
return self._encode_plus(
text=text,
boxes=boxes,
text_pair=text_pair,
word_labels=word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
def _batch_encode_plus(
self,
batch_text_or_text_pairs: Union[
List[TextInput],
List[TextInputPair],
List[PreTokenizedInput],
],
is_pair: bool = None,
boxes: Optional[List[List[List[int]]]] = None,
word_labels: Optional[List[List[int]]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[str] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
) -> BatchEncoding:
if not isinstance(batch_text_or_text_pairs, list):
raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})")
# Set the truncation and padding strategy and restore the initial configuration
self.set_truncation_and_padding(
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
)
if is_pair:
batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs]
encodings = self._tokenizer.encode_batch(
batch_text_or_text_pairs,
add_special_tokens=add_special_tokens,
is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs
)
# Convert encoding to dict
# `Tokens` has type: Tuple[
# List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]],
# List[EncodingFast]
# ]
# with nested dimensions corresponding to batch, overflows, sequence length
tokens_and_encodings = [
self._convert_encoding(
encoding=encoding,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=True
if word_labels is not None
else return_offsets_mapping, # we use offsets to create the labels
return_length=return_length,
verbose=verbose,
)
for encoding in encodings
]
# Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension
# From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length)
# (we say ~ because the number of overflow varies with the example in the batch)
#
# To match each overflowing sample with the original sample in the batch
# we add an overflow_to_sample_mapping array (see below)
sanitized_tokens = {}
for key in tokens_and_encodings[0][0].keys():
stack = [e for item, _ in tokens_and_encodings for e in item[key]]
sanitized_tokens[key] = stack
sanitized_encodings = [e for _, item in tokens_and_encodings for e in item]
# If returning overflowing tokens, we need to return a mapping
# from the batch idx to the original sample
if return_overflowing_tokens:
overflow_to_sample_mapping = []
for i, (toks, _) in enumerate(tokens_and_encodings):
overflow_to_sample_mapping += [i] * len(toks["input_ids"])
sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping
for input_ids in sanitized_tokens["input_ids"]:
self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose)
# create the token boxes
token_boxes = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
token_boxes_example = []
for id, sequence_id, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_encodings[batch_index].sequence_ids,
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if is_pair and sequence_id == 0:
token_boxes_example.append(self.pad_token_box)
else:
token_boxes_example.append(boxes[original_index][word_id])
else:
if id == self.cls_token_id:
token_boxes_example.append(self.cls_token_box)
elif id == self.sep_token_id:
token_boxes_example.append(self.sep_token_box)
elif id == self.pad_token_id:
token_boxes_example.append(self.pad_token_box)
else:
raise ValueError("Id not recognized")
token_boxes.append(token_boxes_example)
sanitized_tokens["bbox"] = token_boxes
# optionally, create the labels
if word_labels is not None:
labels = []
for batch_index in range(len(sanitized_tokens["input_ids"])):
if return_overflowing_tokens:
original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index]
else:
original_index = batch_index
labels_example = []
for id, offset, word_id in zip(
sanitized_tokens["input_ids"][batch_index],
sanitized_tokens["offset_mapping"][batch_index],
sanitized_encodings[batch_index].word_ids,
):
if word_id is not None:
if self.only_label_first_subword:
if offset[0] == 0:
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
else:
labels_example.append(word_labels[original_index][word_id])
else:
labels_example.append(self.pad_token_label)
labels.append(labels_example)
sanitized_tokens["labels"] = labels
# finally, remove offsets if the user didn't want them
if not return_offsets_mapping:
del sanitized_tokens["offset_mapping"]
return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors)
def _encode_plus(
self,
text: Union[TextInput, PreTokenizedInput],
text_pair: Optional[PreTokenizedInput] = None,
boxes: Optional[List[List[int]]] = None,
word_labels: Optional[List[int]] = None,
add_special_tokens: bool = True,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
max_length: Optional[int] = None,
stride: int = 0,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_tensors: Optional[bool] = None,
return_token_type_ids: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
return_overflowing_tokens: bool = False,
return_special_tokens_mask: bool = False,
return_offsets_mapping: bool = False,
return_length: bool = False,
verbose: bool = True,
**kwargs,
) -> BatchEncoding:
# make it a batched input
# 2 options:
# 1) only text, in case text must be a list of str
# 2) text + text_pair, in which case text = str and text_pair a list of str
batched_input = [(text, text_pair)] if text_pair else [text]
batched_boxes = [boxes]
batched_word_labels = [word_labels] if word_labels is not None else None
batched_output = self._batch_encode_plus(
batched_input,
is_pair=bool(text_pair is not None),
boxes=batched_boxes,
word_labels=batched_word_labels,
add_special_tokens=add_special_tokens,
padding_strategy=padding_strategy,
truncation_strategy=truncation_strategy,
max_length=max_length,
stride=stride,
pad_to_multiple_of=pad_to_multiple_of,
padding_side=padding_side,
return_tensors=return_tensors,
return_token_type_ids=return_token_type_ids,
return_attention_mask=return_attention_mask,
return_overflowing_tokens=return_overflowing_tokens,
return_special_tokens_mask=return_special_tokens_mask,
return_offsets_mapping=return_offsets_mapping,
return_length=return_length,
verbose=verbose,
**kwargs,
)
# Return tensor is None, then we can remove the leading batch axis
# Overflowing tokens are returned as a batch of output so we keep them in this case
if return_tensors is None and not return_overflowing_tokens:
batched_output = BatchEncoding(
{
key: value[0] if len(value) > 0 and isinstance(value[0], list) else value
for key, value in batched_output.items()
},
batched_output.encodings,
)
self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose)
return batched_output
def _pad(
self,
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
max_length: Optional[int] = None,
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
pad_to_multiple_of: Optional[int] = None,
padding_side: Optional[bool] = None,
return_attention_mask: Optional[bool] = None,
) -> dict:
"""
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
Args:
encoded_inputs:
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
max_length: maximum length of the returned list and optionally padding length (see below).
Will truncate by taking into account the special tokens.
padding_strategy: PaddingStrategy to use for padding.
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
- PaddingStrategy.DO_NOT_PAD: Do not pad
The tokenizer padding sides are defined in self.padding_side:
- 'left': pads on the left of the sequences
- 'right': pads on the right of the sequences
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
`>= 7.5` (Volta).
padding_side:
The side on which the model should have padding applied. Should be selected between ['right', 'left'].
Default value is picked from the class attribute of the same name.
return_attention_mask:
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
"""
# Load from model defaults
if return_attention_mask is None:
return_attention_mask = "attention_mask" in self.model_input_names
required_input = encoded_inputs[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
max_length = len(required_input)
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
# Initialize attention mask if not present.
if return_attention_mask and "attention_mask" not in encoded_inputs:
encoded_inputs["attention_mask"] = [1] * len(required_input)
if needs_to_be_padded:
difference = max_length - len(required_input)
padding_side = padding_side if padding_side is not None else self.padding_side
if padding_side == "right":
if return_attention_mask:
encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = (
encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference
)
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference
if "labels" in encoded_inputs:
encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference
encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference
elif padding_side == "left":
if return_attention_mask:
encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"]
if "token_type_ids" in encoded_inputs:
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
"token_type_ids"
]
if "bbox" in encoded_inputs:
encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"]
if "labels" in encoded_inputs:
encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"]
if "special_tokens_mask" in encoded_inputs:
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
else:
raise ValueError("Invalid padding strategy:" + str(padding_side))
return encoded_inputs
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
output = [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
if token_ids_1:
output += token_ids_1 + [self.sep_token_id]
return output
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format: :: 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second
sequence | If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["LayoutLMv2TokenizerFast"]
| transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py/0 | {
"file_path": "transformers/src/transformers/models/layoutlmv2/tokenization_layoutlmv2_fast.py",
"repo_id": "transformers",
"token_count": 17690
} |
# coding=utf-8
# Copyright 2021 Iz Beltagy, Matthew E. Peters, Arman Cohan and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch LED model."""
import math
import warnings
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import _create_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_end_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_led import LEDConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "allenai/led-base-16384"
_CONFIG_FOR_DOC = "LEDConfig"
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _prepare_4d_attention_mask_inverted(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
bsz, src_len = mask.size()
tgt_len = tgt_len if tgt_len is not None else src_len
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
inverted_mask = 1.0 - expanded_mask
expanded_attention_mask = inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
# make sure that global_attn_mask is positive
expanded_attention_mask = expanded_attention_mask * inverted_mask
return expanded_attention_mask
class LEDLearnedPositionalEmbedding(nn.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int):
super().__init__(num_embeddings, embedding_dim)
def forward(self, input_ids_shape: torch.Size, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
bsz, seq_len = input_ids_shape[:2]
positions = torch.arange(
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
)
return super().forward(positions)
# Copied from transformers.models.longformer.modeling_longformer.LongformerSelfAttention with Longformer->LEDEncoder
class LEDEncoderSelfAttention(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_heads = config.num_attention_heads
self.head_dim = int(config.hidden_size / config.num_attention_heads)
self.embed_dim = config.hidden_size
self.query = nn.Linear(config.hidden_size, self.embed_dim)
self.key = nn.Linear(config.hidden_size, self.embed_dim)
self.value = nn.Linear(config.hidden_size, self.embed_dim)
# separate projection layers for tokens with global attention
self.query_global = nn.Linear(config.hidden_size, self.embed_dim)
self.key_global = nn.Linear(config.hidden_size, self.embed_dim)
self.value_global = nn.Linear(config.hidden_size, self.embed_dim)
self.dropout = config.attention_probs_dropout_prob
self.layer_id = layer_id
attention_window = config.attention_window[self.layer_id]
assert (
attention_window % 2 == 0
), f"`attention_window` for layer {self.layer_id} has to be an even value. Given {attention_window}"
assert (
attention_window > 0
), f"`attention_window` for layer {self.layer_id} has to be positive. Given {attention_window}"
self.one_sided_attn_window_size = attention_window // 2
self.config = config
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=False,
):
"""
[`LEDEncoderSelfAttention`] expects *len(hidden_states)* to be multiple of *attention_window*. Padding to
*attention_window* happens in [`LEDEncoderModel.forward`] to avoid redoing the padding on each layer.
The *attention_mask* is changed in [`LEDEncoderModel.forward`] from 0, 1, 2 to:
- -10000: no attention
- 0: local attention
- +10000: global attention
"""
hidden_states = hidden_states.transpose(0, 1)
# project hidden states
query_vectors = self.query(hidden_states)
key_vectors = self.key(hidden_states)
value_vectors = self.value(hidden_states)
seq_len, batch_size, embed_dim = hidden_states.size()
assert (
embed_dim == self.embed_dim
), f"hidden_states should have embed_dim = {self.embed_dim}, but has {embed_dim}"
# normalize query
query_vectors /= math.sqrt(self.head_dim)
query_vectors = query_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
key_vectors = key_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
attn_scores = self._sliding_chunks_query_key_matmul(
query_vectors, key_vectors, self.one_sided_attn_window_size
)
# values to pad for attention probs
remove_from_windowed_attention_mask = (attention_mask != 0)[:, :, None, None]
# cast to fp32/fp16 then replace 1's with -inf
float_mask = remove_from_windowed_attention_mask.type_as(query_vectors).masked_fill(
remove_from_windowed_attention_mask, torch.finfo(query_vectors.dtype).min
)
# diagonal mask with zeros everywhere and -inf inplace of padding
diagonal_mask = self._sliding_chunks_query_key_matmul(
float_mask.new_ones(size=float_mask.size()), float_mask, self.one_sided_attn_window_size
)
# pad local attention probs
attn_scores += diagonal_mask
assert list(attn_scores.size()) == [
batch_size,
seq_len,
self.num_heads,
self.one_sided_attn_window_size * 2 + 1,
], (
f"local_attn_probs should be of size ({batch_size}, {seq_len}, {self.num_heads},"
f" {self.one_sided_attn_window_size * 2 + 1}), but is of size {attn_scores.size()}"
)
# compute local attention probs from global attention keys and contact over window dim
if is_global_attn:
# compute global attn indices required through out forward fn
(
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
) = self._get_global_attn_indices(is_index_global_attn)
# calculate global attn probs from global key
global_key_attn_scores = self._concat_with_global_key_attn_probs(
query_vectors=query_vectors,
key_vectors=key_vectors,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
)
# concat to local_attn_probs
# (batch_size, seq_len, num_heads, extra attention count + 2*window+1)
attn_scores = torch.cat((global_key_attn_scores, attn_scores), dim=-1)
# free memory
del global_key_attn_scores
attn_probs = nn.functional.softmax(
attn_scores, dim=-1, dtype=torch.float32
) # use fp32 for numerical stability
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
attn_probs = layer_head_mask.view(1, 1, -1, 1) * attn_probs
# softmax sometimes inserts NaN if all positions are masked, replace them with 0
attn_probs = torch.masked_fill(attn_probs, is_index_masked[:, :, None, None], 0.0)
attn_probs = attn_probs.type_as(attn_scores)
# free memory
del attn_scores
# apply dropout
attn_probs = nn.functional.dropout(attn_probs, p=self.dropout, training=self.training)
value_vectors = value_vectors.view(seq_len, batch_size, self.num_heads, self.head_dim).transpose(0, 1)
# compute local attention output with global attention value and add
if is_global_attn:
# compute sum of global and local attn
attn_output = self._compute_attn_output_with_global_indices(
value_vectors=value_vectors,
attn_probs=attn_probs,
max_num_global_attn_indices=max_num_global_attn_indices,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
)
else:
# compute local attn only
attn_output = self._sliding_chunks_matmul_attn_probs_value(
attn_probs, value_vectors, self.one_sided_attn_window_size
)
assert attn_output.size() == (batch_size, seq_len, self.num_heads, self.head_dim), "Unexpected size"
attn_output = attn_output.transpose(0, 1).reshape(seq_len, batch_size, embed_dim).contiguous()
# compute value for global attention and overwrite to attention output
# TODO: remove the redundant computation
if is_global_attn:
global_attn_output, global_attn_probs = self._compute_global_attn_output_from_hidden(
hidden_states=hidden_states,
max_num_global_attn_indices=max_num_global_attn_indices,
layer_head_mask=layer_head_mask,
is_local_index_global_attn_nonzero=is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero=is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero=is_local_index_no_global_attn_nonzero,
is_index_masked=is_index_masked,
)
# get only non zero global attn output
nonzero_global_attn_output = global_attn_output[
is_local_index_global_attn_nonzero[0], :, is_local_index_global_attn_nonzero[1]
]
# overwrite values with global attention
attn_output[is_index_global_attn_nonzero[::-1]] = nonzero_global_attn_output.view(
len(is_local_index_global_attn_nonzero[0]), -1
)
# The attention weights for tokens with global attention are
# just filler values, they were never used to compute the output.
# Fill with 0 now, the correct values are in 'global_attn_probs'.
attn_probs[is_index_global_attn_nonzero] = 0
outputs = (attn_output.transpose(0, 1),)
if output_attentions:
outputs += (attn_probs,)
return outputs + (global_attn_probs,) if (is_global_attn and output_attentions) else outputs
@staticmethod
def _pad_and_transpose_last_two_dims(hidden_states_padded, padding):
"""pads rows and then flips rows and columns"""
hidden_states_padded = nn.functional.pad(
hidden_states_padded, padding
) # padding value is not important because it will be overwritten
hidden_states_padded = hidden_states_padded.view(
*hidden_states_padded.size()[:-2], hidden_states_padded.size(-1), hidden_states_padded.size(-2)
)
return hidden_states_padded
@staticmethod
def _pad_and_diagonalize(chunked_hidden_states):
"""
shift every row 1 step right, converting columns into diagonals.
Example:
```python
chunked_hidden_states: [
0.4983,
2.6918,
-0.0071,
1.0492,
-1.8348,
0.7672,
0.2986,
0.0285,
-0.7584,
0.4206,
-0.0405,
0.1599,
2.0514,
-1.1600,
0.5372,
0.2629,
]
window_overlap = num_rows = 4
```
(pad & diagonalize) => [ 0.4983, 2.6918, -0.0071, 1.0492, 0.0000, 0.0000, 0.0000
0.0000, -1.8348, 0.7672, 0.2986, 0.0285, 0.0000, 0.0000 0.0000, 0.0000, -0.7584, 0.4206,
-0.0405, 0.1599, 0.0000 0.0000, 0.0000, 0.0000, 2.0514, -1.1600, 0.5372, 0.2629 ]
"""
total_num_heads, num_chunks, window_overlap, hidden_dim = chunked_hidden_states.size()
chunked_hidden_states = nn.functional.pad(
chunked_hidden_states, (0, window_overlap + 1)
) # total_num_heads x num_chunks x window_overlap x (hidden_dim+window_overlap+1). Padding value is not important because it'll be overwritten
chunked_hidden_states = chunked_hidden_states.view(
total_num_heads, num_chunks, -1
) # total_num_heads x num_chunks x window_overlap*window_overlap+window_overlap
chunked_hidden_states = chunked_hidden_states[
:, :, :-window_overlap
] # total_num_heads x num_chunks x window_overlap*window_overlap
chunked_hidden_states = chunked_hidden_states.view(
total_num_heads, num_chunks, window_overlap, window_overlap + hidden_dim
)
chunked_hidden_states = chunked_hidden_states[:, :, :, :-1]
return chunked_hidden_states
@staticmethod
def _chunk(hidden_states, window_overlap, onnx_export: bool = False):
"""convert into overlapping chunks. Chunk size = 2w, overlap size = w"""
if not onnx_export:
# non-overlapping chunks of size = 2w
hidden_states = hidden_states.view(
hidden_states.size(0),
torch.div(hidden_states.size(1), (window_overlap * 2), rounding_mode="trunc"),
window_overlap * 2,
hidden_states.size(2),
)
# use `as_strided` to make the chunks overlap with an overlap size = window_overlap
chunk_size = list(hidden_states.size())
chunk_size[1] = chunk_size[1] * 2 - 1
chunk_stride = list(hidden_states.stride())
chunk_stride[1] = chunk_stride[1] // 2
return hidden_states.as_strided(size=chunk_size, stride=chunk_stride)
# When exporting to ONNX, use this separate logic
# have to use slow implementation since as_strided, unfold and 2d-tensor indexing aren't supported (yet) in ONNX export
# TODO replace this with
# > return hidden_states.unfold(dimension=1, size=window_overlap * 2, step=window_overlap).transpose(2, 3)
# once `unfold` is supported
# the case hidden_states.size(1) == window_overlap * 2 can also simply return hidden_states.unsqueeze(1), but that's control flow
chunk_size = [
hidden_states.size(0),
torch.div(hidden_states.size(1), window_overlap, rounding_mode="trunc") - 1,
window_overlap * 2,
hidden_states.size(2),
]
overlapping_chunks = torch.empty(chunk_size, device=hidden_states.device)
for chunk in range(chunk_size[1]):
overlapping_chunks[:, chunk, :, :] = hidden_states[
:, chunk * window_overlap : chunk * window_overlap + 2 * window_overlap, :
]
return overlapping_chunks
@staticmethod
def _mask_invalid_locations(input_tensor, affected_seq_len) -> torch.Tensor:
beginning_mask_2d = input_tensor.new_ones(affected_seq_len, affected_seq_len + 1).tril().flip(dims=[0])
beginning_mask = beginning_mask_2d[None, :, None, :]
ending_mask = beginning_mask.flip(dims=(1, 3))
beginning_input = input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1]
beginning_mask = beginning_mask.expand(beginning_input.size())
input_tensor[:, :affected_seq_len, :, : affected_seq_len + 1] = torch.full_like(
beginning_input, -float("inf")
).where(beginning_mask.bool(), beginning_input)
ending_input = input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :]
ending_mask = ending_mask.expand(ending_input.size())
input_tensor[:, -affected_seq_len:, :, -(affected_seq_len + 1) :] = torch.full_like(
ending_input, -float("inf")
).where(ending_mask.bool(), ending_input)
def _sliding_chunks_query_key_matmul(self, query: torch.Tensor, key: torch.Tensor, window_overlap: int):
"""
Matrix multiplication of query and key tensors using with a sliding window attention pattern. This
implementation splits the input into overlapping chunks of size 2w (e.g. 512 for pretrained LEDEncoder) with an
overlap of size window_overlap
"""
batch_size, seq_len, num_heads, head_dim = query.size()
assert (
seq_len % (window_overlap * 2) == 0
), f"Sequence length should be multiple of {window_overlap * 2}. Given {seq_len}"
assert query.size() == key.size()
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size window_overlap * 2
query = query.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
key = key.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
query = self._chunk(query, window_overlap, getattr(self.config, "onnx_export", False))
key = self._chunk(key, window_overlap, getattr(self.config, "onnx_export", False))
# matrix multiplication
# bcxd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcyd: batch_size * num_heads x chunks x 2window_overlap x head_dim
# bcxy: batch_size * num_heads x chunks x 2window_overlap x 2window_overlap
diagonal_chunked_attention_scores = torch.einsum("bcxd,bcyd->bcxy", (query, key)) # multiply
# convert diagonals into columns
diagonal_chunked_attention_scores = self._pad_and_transpose_last_two_dims(
diagonal_chunked_attention_scores, padding=(0, 0, 0, 1)
)
# allocate space for the overall attention matrix where the chunks are combined. The last dimension
# has (window_overlap * 2 + 1) columns. The first (window_overlap) columns are the window_overlap lower triangles (attention from a word to
# window_overlap previous words). The following column is attention score from each word to itself, then
# followed by window_overlap columns for the upper triangle.
diagonal_attention_scores = diagonal_chunked_attention_scores.new_zeros(
(batch_size * num_heads, chunks_count + 1, window_overlap, window_overlap * 2 + 1)
)
# copy parts from diagonal_chunked_attention_scores into the combined matrix of attentions
# - copying the main diagonal and the upper triangle
diagonal_attention_scores[:, :-1, :, window_overlap:] = diagonal_chunked_attention_scores[
:, :, :window_overlap, : window_overlap + 1
]
diagonal_attention_scores[:, -1, :, window_overlap:] = diagonal_chunked_attention_scores[
:, -1, window_overlap:, : window_overlap + 1
]
# - copying the lower triangle
diagonal_attention_scores[:, 1:, :, :window_overlap] = diagonal_chunked_attention_scores[
:, :, -(window_overlap + 1) : -1, window_overlap + 1 :
]
diagonal_attention_scores[:, 0, 1:window_overlap, 1:window_overlap] = diagonal_chunked_attention_scores[
:, 0, : window_overlap - 1, 1 - window_overlap :
]
# separate batch_size and num_heads dimensions again
diagonal_attention_scores = diagonal_attention_scores.view(
batch_size, num_heads, seq_len, 2 * window_overlap + 1
).transpose(2, 1)
self._mask_invalid_locations(diagonal_attention_scores, window_overlap)
return diagonal_attention_scores
def _sliding_chunks_matmul_attn_probs_value(
self, attn_probs: torch.Tensor, value: torch.Tensor, window_overlap: int
):
"""
Same as _sliding_chunks_query_key_matmul but for attn_probs and value tensors. Returned tensor will be of the
same shape as `attn_probs`
"""
batch_size, seq_len, num_heads, head_dim = value.size()
assert seq_len % (window_overlap * 2) == 0
assert attn_probs.size()[:3] == value.size()[:3]
assert attn_probs.size(3) == 2 * window_overlap + 1
chunks_count = torch.div(seq_len, window_overlap, rounding_mode="trunc") - 1
# group batch_size and num_heads dimensions into one, then chunk seq_len into chunks of size 2 window overlap
chunked_attn_probs = attn_probs.transpose(1, 2).reshape(
batch_size * num_heads,
torch.div(seq_len, window_overlap, rounding_mode="trunc"),
window_overlap,
2 * window_overlap + 1,
)
# group batch_size and num_heads dimensions into one
value = value.transpose(1, 2).reshape(batch_size * num_heads, seq_len, head_dim)
# pad seq_len with w at the beginning of the sequence and another window overlap at the end
padded_value = nn.functional.pad(value, (0, 0, window_overlap, window_overlap), value=-1)
# chunk padded_value into chunks of size 3 window overlap and an overlap of size window overlap
chunked_value_size = (batch_size * num_heads, chunks_count + 1, 3 * window_overlap, head_dim)
chunked_value_stride = padded_value.stride()
chunked_value_stride = (
chunked_value_stride[0],
window_overlap * chunked_value_stride[1],
chunked_value_stride[1],
chunked_value_stride[2],
)
chunked_value = padded_value.as_strided(size=chunked_value_size, stride=chunked_value_stride)
chunked_attn_probs = self._pad_and_diagonalize(chunked_attn_probs)
context = torch.einsum("bcwd,bcdh->bcwh", (chunked_attn_probs, chunked_value))
return context.view(batch_size, num_heads, seq_len, head_dim).transpose(1, 2)
@staticmethod
def _get_global_attn_indices(is_index_global_attn):
"""compute global attn indices required throughout forward pass"""
# helper variable
num_global_attn_indices = is_index_global_attn.long().sum(dim=1)
# max number of global attn indices in batch
max_num_global_attn_indices = num_global_attn_indices.max()
# indices of global attn
is_index_global_attn_nonzero = is_index_global_attn.nonzero(as_tuple=True)
# helper variable
is_local_index_global_attn = torch.arange(
max_num_global_attn_indices, device=is_index_global_attn.device
) < num_global_attn_indices.unsqueeze(dim=-1)
# location of the non-padding values within global attention indices
is_local_index_global_attn_nonzero = is_local_index_global_attn.nonzero(as_tuple=True)
# location of the padding values within global attention indices
is_local_index_no_global_attn_nonzero = (is_local_index_global_attn == 0).nonzero(as_tuple=True)
return (
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
)
def _concat_with_global_key_attn_probs(
self,
key_vectors,
query_vectors,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
):
batch_size = key_vectors.shape[0]
# create only global key vectors
key_vectors_only_global = key_vectors.new_zeros(
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
)
key_vectors_only_global[is_local_index_global_attn_nonzero] = key_vectors[is_index_global_attn_nonzero]
# (batch_size, seq_len, num_heads, max_num_global_attn_indices)
attn_probs_from_global_key = torch.einsum("blhd,bshd->blhs", (query_vectors, key_vectors_only_global))
# need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3)
attn_probs_from_global_key[
is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
] = torch.finfo(attn_probs_from_global_key.dtype).min
attn_probs_from_global_key = attn_probs_from_global_key.transpose(1, 3)
return attn_probs_from_global_key
def _compute_attn_output_with_global_indices(
self,
value_vectors,
attn_probs,
max_num_global_attn_indices,
is_index_global_attn_nonzero,
is_local_index_global_attn_nonzero,
):
batch_size = attn_probs.shape[0]
# cut local attn probs to global only
attn_probs_only_global = attn_probs.narrow(-1, 0, max_num_global_attn_indices)
# get value vectors for global only
value_vectors_only_global = value_vectors.new_zeros(
batch_size, max_num_global_attn_indices, self.num_heads, self.head_dim
)
value_vectors_only_global[is_local_index_global_attn_nonzero] = value_vectors[is_index_global_attn_nonzero]
# use `matmul` because `einsum` crashes sometimes with fp16
# attn = torch.einsum('blhs,bshd->blhd', (selected_attn_probs, selected_v))
# compute attn output only global
attn_output_only_global = torch.matmul(
attn_probs_only_global.transpose(1, 2).clone(), value_vectors_only_global.transpose(1, 2).clone()
).transpose(1, 2)
# reshape attn probs
attn_probs_without_global = attn_probs.narrow(
-1, max_num_global_attn_indices, attn_probs.size(-1) - max_num_global_attn_indices
).contiguous()
# compute attn output with global
attn_output_without_global = self._sliding_chunks_matmul_attn_probs_value(
attn_probs_without_global, value_vectors, self.one_sided_attn_window_size
)
return attn_output_only_global + attn_output_without_global
def _compute_global_attn_output_from_hidden(
self,
hidden_states,
max_num_global_attn_indices,
layer_head_mask,
is_local_index_global_attn_nonzero,
is_index_global_attn_nonzero,
is_local_index_no_global_attn_nonzero,
is_index_masked,
):
seq_len, batch_size = hidden_states.shape[:2]
# prepare global hidden states
global_attn_hidden_states = hidden_states.new_zeros(max_num_global_attn_indices, batch_size, self.embed_dim)
global_attn_hidden_states[is_local_index_global_attn_nonzero[::-1]] = hidden_states[
is_index_global_attn_nonzero[::-1]
]
# global key, query, value
global_query_vectors_only_global = self.query_global(global_attn_hidden_states)
global_key_vectors = self.key_global(hidden_states)
global_value_vectors = self.value_global(hidden_states)
# normalize
global_query_vectors_only_global /= math.sqrt(self.head_dim)
# reshape
global_query_vectors_only_global = (
global_query_vectors_only_global.contiguous()
.view(max_num_global_attn_indices, batch_size * self.num_heads, self.head_dim)
.transpose(0, 1)
) # (batch_size * self.num_heads, max_num_global_attn_indices, head_dim)
global_key_vectors = (
global_key_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
) # batch_size * self.num_heads, seq_len, head_dim)
global_value_vectors = (
global_value_vectors.contiguous().view(-1, batch_size * self.num_heads, self.head_dim).transpose(0, 1)
) # batch_size * self.num_heads, seq_len, head_dim)
# compute attn scores
global_attn_scores = torch.bmm(global_query_vectors_only_global, global_key_vectors.transpose(1, 2))
assert list(global_attn_scores.size()) == [
batch_size * self.num_heads,
max_num_global_attn_indices,
seq_len,
], (
"global_attn_scores have the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)}, but is"
f" {global_attn_scores.size()}."
)
global_attn_scores = global_attn_scores.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
# need to transpose since ONNX export only supports consecutive indexing: https://pytorch.org/docs/stable/onnx.html#writes-sets
global_attn_scores = global_attn_scores.transpose(1, 2)
global_attn_scores[
is_local_index_no_global_attn_nonzero[0], is_local_index_no_global_attn_nonzero[1], :, :
] = torch.finfo(global_attn_scores.dtype).min
global_attn_scores = global_attn_scores.transpose(1, 2)
global_attn_scores = global_attn_scores.masked_fill(
is_index_masked[:, None, None, :],
torch.finfo(global_attn_scores.dtype).min,
)
global_attn_scores = global_attn_scores.view(batch_size * self.num_heads, max_num_global_attn_indices, seq_len)
# compute global attn probs
global_attn_probs_float = nn.functional.softmax(
global_attn_scores, dim=-1, dtype=torch.float32
) # use fp32 for numerical stability
# apply layer head masking
if layer_head_mask is not None:
assert layer_head_mask.size() == (
self.num_heads,
), f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
global_attn_probs_float = layer_head_mask.view(1, -1, 1, 1) * global_attn_probs_float.view(
batch_size, self.num_heads, max_num_global_attn_indices, seq_len
)
global_attn_probs_float = global_attn_probs_float.view(
batch_size * self.num_heads, max_num_global_attn_indices, seq_len
)
global_attn_probs = nn.functional.dropout(
global_attn_probs_float.type_as(global_attn_scores), p=self.dropout, training=self.training
)
# global attn output
global_attn_output = torch.bmm(global_attn_probs, global_value_vectors)
assert list(global_attn_output.size()) == [
batch_size * self.num_heads,
max_num_global_attn_indices,
self.head_dim,
], (
"global_attn_output tensor has the wrong size. Size should be"
f" {(batch_size * self.num_heads, max_num_global_attn_indices, self.head_dim)}, but is"
f" {global_attn_output.size()}."
)
global_attn_probs = global_attn_probs.view(batch_size, self.num_heads, max_num_global_attn_indices, seq_len)
global_attn_output = global_attn_output.view(
batch_size, self.num_heads, max_num_global_attn_indices, self.head_dim
)
return global_attn_output, global_attn_probs
class LEDEncoderAttention(nn.Module):
def __init__(self, config, layer_id):
super().__init__()
self.longformer_self_attn = LEDEncoderSelfAttention(config, layer_id=layer_id)
self.output = nn.Linear(config.d_model, config.d_model)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
is_index_masked: Optional[torch.Tensor] = None,
is_index_global_attn: Optional[torch.Tensor] = None,
is_global_attn: Optional[bool] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
self_outputs = self.longformer_self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
attn_output = self.output(self_outputs[0])
outputs = (attn_output,) + self_outputs[1:]
return outputs
class LEDDecoderAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if self.head_dim * num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.view(*proj_shape)
value_states = value_states.view(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = (
attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
.transpose(1, 2)
.reshape(bsz, tgt_len, embed_dim)
)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
class LEDEncoderLayer(nn.Module):
def __init__(self, config: LEDConfig, layer_id: int):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = LEDEncoderAttention(config, layer_id)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
layer_head_mask: torch.Tensor,
is_index_masked=None,
is_index_global_attn=None,
is_global_attn=None,
output_attentions=False,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(encoder_attention_heads,)*.
"""
residual = hidden_states
attn_outputs = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
hidden_states = attn_outputs[0]
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
if hidden_states.dtype == torch.float16 and (
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
):
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
return (hidden_states,) + attn_outputs[1:]
class LEDDecoderLayer(nn.Module):
def __init__(self, config: LEDConfig):
super().__init__()
self.embed_dim = config.d_model
self.self_attn = LEDDecoderAttention(
embed_dim=self.embed_dim,
num_heads=config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.activation_dropout = config.activation_dropout
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.encoder_attn = LEDDecoderAttention(
self.embed_dim,
config.decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
):
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape *(batch, seq_len, embed_dim)*
attention_mask (`torch.FloatTensor`): attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape *(batch, seq_len, embed_dim)*
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
*(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values.
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
*(decoder_attention_heads,)*.
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for encoder attention heads in a given layer of
size *(decoder_attention_heads,)*.
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
output_attentions (`bool`): Whether the base model outputs attentions.
This requires the attentions tensor to be reshaped in this function.
"""
residual = hidden_states
# Self-Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
hidden_states=hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=cross_attn_past_key_value,
output_attentions=output_attentions,
)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.encoder_attn_layer_norm(hidden_states)
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value = present_key_value + cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.activation_fn(self.fc1(hidden_states))
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
hidden_states = self.fc2(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
hidden_states = residual + hidden_states
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
if use_cache:
outputs += (present_key_value,)
return outputs
class LEDClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim: int,
inner_dim: int,
num_classes: int,
pooler_dropout: float,
):
super().__init__()
self.dense = nn.Linear(input_dim, inner_dim)
self.dropout = nn.Dropout(p=pooler_dropout)
self.out_proj = nn.Linear(inner_dim, num_classes)
def forward(self, hidden_states: torch.Tensor):
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
class LEDPreTrainedModel(PreTrainedModel):
config_class = LEDConfig
base_model_prefix = "led"
supports_gradient_checkpointing = True
def _init_weights(self, module):
std = self.config.init_std
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
@property
def dummy_inputs(self):
pad_token = self.config.pad_token_id
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
dummy_inputs = {
"attention_mask": input_ids.ne(pad_token),
"input_ids": input_ids,
}
return dummy_inputs
@dataclass
# Copied from transformers.models.longformer.modeling_longformer.LongformerBaseModelOutput with Longformer->LEDEncoder
class LEDEncoderBaseModelOutput(ModelOutput):
"""
Base class for LEDEncoder's outputs, with potential hidden states, local and global attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x +
attention_window + 1)`, where `x` is the number of tokens with global attention mask.
Local attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token in the sequence to every token with
global attention (first `x` values) and to every token in the attention window (remaining `attention_window
+ 1` values). Note that the first `x` values refer to tokens with fixed positions in the text, but the
remaining `attention_window + 1` values refer to tokens with relative positions: the attention weight of a
token to itself is located at index `x + attention_window / 2` and the `attention_window / 2` preceding
(succeeding) values are the attention weights to the `attention_window / 2` preceding (succeeding) tokens.
If the attention window contains a token with global attention, the attention weight at the corresponding
index is set to 0; the value should be accessed from the first `x` attention weights. If a token has global
attention, the attention weights to all other tokens in `attentions` is set to 0, the values should be
accessed from `global_attentions`.
global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: torch.FloatTensor
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LEDSeq2SeqModelOutput(ModelOutput):
"""
Base class for model encoder's outputs that also contains : pre-computed hidden states that can speed up sequential
decoding.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the decoder of the model.
If `past_key_values` is used only the last hidden-state of the sequences of shape `(batch_size, 1,
hidden_size)` is output.
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
last_hidden_state: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LEDSeq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LEDSeq2SeqSequenceClassifierOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence sentence classification models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `label` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class LEDSeq2SeqQuestionAnsweringModelOutput(ModelOutput):
"""
Base class for outputs of sequence-to-sequence question answering models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
start_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-start scores (before SoftMax).
end_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Span-end scores (before SoftMax).
past_key_values (`List[torch.FloatTensor]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
List of `torch.FloatTensor` of length `config.n_layers`, with each tensor of shape `(2, batch_size,
num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see `past_key_values` input) to speed up sequential decoding.
decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the decoder's cross-attention layer, after the attention softmax, used to compute the
weighted average in the cross-attention heads.
encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_global_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, x)`,
where `x` is the number of tokens with global attention mask.
Global attentions weights after the attention softmax, used to compute the weighted average in the
self-attention heads. Those are the attention weights from every token with global attention to every token
in the sequence.
"""
loss: Optional[torch.FloatTensor] = None
start_logits: torch.FloatTensor = None
end_logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
cross_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
encoder_global_attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
LED_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. See the superclass documentation for the generic methods the library
implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for general usage and behavior.
Parameters:
config ([`LEDConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
LED_GENERATION_EXAMPLE = r"""
Summarization example:
```python
>>> import torch
>>> from transformers import AutoTokenizer, LEDForConditionalGeneration
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-large-16384-arxiv")
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-large-16384-arxiv")
>>> ARTICLE_TO_SUMMARIZE = '''Transformers (Vaswani et al., 2017) have achieved state-of-the-art
... results in a wide range of natural language tasks including generative language modeling
... (Dai et al., 2019; Radford et al., 2019) and discriminative ... language understanding (Devlin et al., 2019).
... This success is partly due to the self-attention component which enables the network to capture contextual
... information from the entire sequence. While powerful, the memory and computational requirements of
... self-attention grow quadratically with sequence length, making it infeasible (or very expensive) to
... process long sequences. To address this limitation, we present Longformer, a modified Transformer
... architecture with a self-attention operation that scales linearly with the sequence length, making it
... versatile for processing long documents (Fig 1). This is an advantage for natural language tasks such as
... long document classification, question answering (QA), and coreference resolution, where existing approaches
... partition or shorten the long context into smaller sequences that fall within the typical 512 token limit
... of BERT-style pretrained models. Such partitioning could potentially result in loss of important
... cross-partition information, and to mitigate this problem, existing methods often rely on complex
... architectures to address such interactions. On the other hand, our proposed Longformer is able to build
... contextual representations of the entire context using multiple layers of attention, reducing the need for
... task-specific architectures.'''
>>> inputs = tokenizer.encode(ARTICLE_TO_SUMMARIZE, return_tensors="pt")
>>> # Global attention on the first token (cf. Beltagy et al. 2020)
>>> global_attention_mask = torch.zeros_like(inputs)
>>> global_attention_mask[:, 0] = 1
>>> # Generate Summary
>>> summary_ids = model.generate(inputs, global_attention_mask=global_attention_mask, num_beams=3, max_length=32)
>>> print(tokenizer.decode(summary_ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=True))
```
"""
LED_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`LedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
LED uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_led._prepare_decoder_inputs`] and modify
to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more information on the
default strategy.
global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the task.
For example, for classification, the <s> token should be given global attention. For QA, all question
tokens should also have global attention. Please refer to the [Longformer
paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:
- 0 for local attention (a sliding window attention),
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class LEDEncoder(LEDPreTrainedModel):
"""
Transformer encoder consisting of *config.encoder_layers* self-attention layers. Each layer is a
[`LEDEncoderLayer`].
Args:
config: LEDConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_encoder_position_embeddings
if isinstance(config.attention_window, int):
if config.attention_window % 2 != 0:
raise ValueError("`config.attention_window` has to be an even value")
if config.attention_window <= 0:
raise ValueError("`config.attention_window` has to be positive")
config.attention_window = [config.attention_window] * config.num_hidden_layers # one value per layer
else:
if len(config.attention_window) != config.num_hidden_layers:
raise ValueError(
"`len(config.attention_window)` should equal `config.num_hidden_layers`. "
f"Expected {config.num_hidden_layers}, given {len(config.attention_window)}"
)
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = LEDLearnedPositionalEmbedding(
self.max_source_positions,
embed_dim,
)
self.layers = nn.ModuleList([LEDEncoderLayer(config, i) for i in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def _merge_to_attention_mask(self, attention_mask: torch.Tensor, global_attention_mask: torch.Tensor):
# longformer self-attention expects attention mask to have 0 (no attn), 1 (local attn), 2 (global attn)
# (global_attention_mask + 1) => 1 for local attention, 2 for global attention
# => final attention_mask => 0 for no attention, 1 for local attention 2 for global attention
if attention_mask is not None:
attention_mask = attention_mask * (global_attention_mask + 1)
else:
# simply use `global_attention_mask` as `attention_mask`
# if no `attention_mask` is given
attention_mask = global_attention_mask + 1
return attention_mask
def _pad_to_window_size(
self,
input_ids: torch.Tensor,
attention_mask: torch.Tensor,
inputs_embeds: torch.Tensor,
pad_token_id: int,
):
"""A helper function to pad tokens and mask to work with implementation of Longformer self-attention."""
# padding
attention_window = (
self.config.attention_window
if isinstance(self.config.attention_window, int)
else max(self.config.attention_window)
)
if attention_window % 2 != 0:
raise ValueError(f"`attention_window` should be an even value. Given {attention_window}")
input_shape = input_ids.shape if input_ids is not None else inputs_embeds.shape
batch_size, seq_len = input_shape[:2]
padding_len = (attention_window - seq_len % attention_window) % attention_window
if padding_len > 0:
logger.warning_once(
f"Input ids are automatically padded from {seq_len} to {seq_len + padding_len} to be a multiple of "
f"`config.attention_window`: {attention_window}"
)
if input_ids is not None:
input_ids = nn.functional.pad(input_ids, (0, padding_len), value=pad_token_id)
if inputs_embeds is not None:
input_ids_padding = inputs_embeds.new_full(
(batch_size, padding_len),
self.config.pad_token_id,
dtype=torch.long,
)
inputs_embeds_padding = self.embed_tokens(input_ids_padding)
inputs_embeds = torch.cat([inputs_embeds, inputs_embeds_padding], dim=-2)
attention_mask = nn.functional.pad(
attention_mask, (0, padding_len), value=False
) # no attention on the padding tokens
return padding_len, input_ids, attention_mask, inputs_embeds
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to decide the attention given on each token, local attention or global attention for the encoder.
Tokens with global attention attends to all other tokens, and all other tokens attend to them. This is
important for task-specific finetuning because it makes the model more flexible at representing the
task. For example, for classification, the <s> token should be given global attention. For QA, all
question tokens should also have global attention. Please refer to the [Longformer
paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:
- 0 for local attention (a sliding window attention),
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# check input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is None and inputs_embeds is None:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# create default attention_mask
if attention_mask is None:
attention_mask = torch.ones(inputs_embeds.size()[:-1], device=inputs_embeds.device, dtype=torch.long)
# merge `global_attention_mask` and `attention_mask`
if global_attention_mask is not None:
attention_mask = self._merge_to_attention_mask(attention_mask, global_attention_mask)
# pad input if necessary
padding_len, input_ids, attention_mask, inputs_embeds = self._pad_to_window_size(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
pad_token_id=self.config.pad_token_id,
)
# retrieve input_shape
if input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
# convert attention_mask to float
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, seq_len]; 1 -> 0.0; 0 -> "-inf"
attention_mask = _prepare_4d_attention_mask_inverted(attention_mask, inputs_embeds.dtype)[:, 0, 0, :]
# get masking tensors
is_index_masked = attention_mask < 0
is_index_global_attn = attention_mask > 0
is_global_attn = is_index_global_attn.flatten().any().item()
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_global_attentions = () if (output_attentions and is_global_attn) else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != len(self.layers):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
head_mask[idx] if head_mask is not None else None,
is_index_masked,
is_index_global_attn,
is_global_attn,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
is_index_masked=is_index_masked,
is_index_global_attn=is_index_global_attn,
is_global_attn=is_global_attn,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
# bzs x seq_len x num_attn_heads x (num_global_attn + attention_window_len + 1) => bzs x num_attn_heads x seq_len x (num_global_attn + attention_window_len + 1)
all_attentions = all_attentions + (layer_outputs[1].transpose(1, 2),)
if is_global_attn:
# bzs x num_attn_heads x num_global_attn x seq_len => bzs x num_attn_heads x seq_len x num_global_attn
all_global_attentions = all_global_attentions + (layer_outputs[2].transpose(2, 3),)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# undo padding
if padding_len > 0:
# unpad `hidden_states` because the calling function is expecting a length == input_ids.size(1)
hidden_states = hidden_states[:, :-padding_len]
if output_hidden_states:
encoder_states = tuple([state[:, :-padding_len] for state in encoder_states])
if output_attentions:
all_attentions = tuple([state[:, :, :-padding_len, :] for state in all_attentions])
if not return_dict:
return tuple(
v for v in [hidden_states, encoder_states, all_attentions, all_global_attentions] if v is not None
)
return LEDEncoderBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
global_attentions=all_global_attentions,
)
class LEDDecoder(LEDPreTrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`LEDDecoderLayer`]
Args:
config: LEDConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config: LEDConfig, embed_tokens: Optional[nn.Embedding] = None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_decoder_position_embeddings
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = LEDLearnedPositionalEmbedding(
self.max_target_positions,
config.d_model,
)
self.layers = nn.ModuleList([LEDDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
global_attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
global_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to decide the attention given on each token, local attention or global attention. Tokens with
global attention attends to all other tokens, and all other tokens attend to them. This is important
for task-specific finetuning because it makes the model more flexible at representing the task. For
example, for classification, the <s> token should be given global attention. For QA, all question
tokens should also have global attention. Please refer to the [Longformer
paper](https://arxiv.org/abs/2004.05150) for more details. Mask values selected in `[0, 1]`:
- 0 for local attention (a sliding window attention),
- 1 for global attention (tokens that attend to all other tokens, and all other tokens attend to them).
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
# create causal mask
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = None
if input_shape[-1] > 1:
combined_attention_mask = _create_4d_causal_attention_mask(
input_shape, inputs_embeds.dtype, inputs_embeds.device, past_key_values_length=past_key_values_length
)
if attention_mask is not None and combined_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
combined_attention_mask = combined_attention_mask + _prepare_4d_attention_mask_inverted(
attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask_inverted(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input_shape, past_key_values_length)
hidden_states = inputs_embeds + positions
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if output_attentions else None
next_decoder_cache = () if use_cache else None
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
if attn_mask is not None:
if attn_mask.size()[0] != len(self.layers):
raise ValueError(
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
f" {head_mask.size()[0]}."
)
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
combined_attention_mask,
encoder_hidden_states,
encoder_attention_mask,
head_mask[idx] if head_mask is not None else None,
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=combined_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
cross_attn_layer_head_mask=(
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
),
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
if output_attentions:
all_self_attns += (layer_outputs[1],)
all_cross_attentions += (layer_outputs[2],)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"The bare LED Model outputting raw hidden-states without any specific head on top.",
LED_START_DOCSTRING,
)
class LEDModel(LEDPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config: LEDConfig):
super().__init__(config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.encoder = LEDEncoder(config, self.shared)
self.decoder = LEDDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.shared
def set_input_embeddings(self, value):
self.shared = value
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
def get_encoder(self):
return self.encoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
global_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], LEDSeq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# Using this like Bart, as LED is derived from it. So far
# No checkpoint on the hub exists that uses that in practice.
# https://github.com/huggingface/transformers/blob/ac3cb660cad283163f7c73cad511124e845ca388/src/transformers/models/bart/modeling_bart.py#L1153
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a LEDEncoderBaseModelOutput when return_dict=False
elif return_dict and not isinstance(encoder_outputs, LEDEncoderBaseModelOutput):
encoder_outputs = LEDEncoderBaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
global_attentions=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return LEDSeq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
encoder_global_attentions=encoder_outputs.global_attentions,
)
@add_start_docstrings(
"The LED Model with a language modeling head. Can be used for summarization.", LED_START_DOCSTRING
)
class LEDForConditionalGeneration(LEDPreTrainedModel, GenerationMixin):
base_model_prefix = "led"
_keys_to_ignore_on_load_missing = ["final_logits_bias"]
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "lm_head.weight"]
def __init__(self, config: LEDConfig):
super().__init__(config)
self.led = LEDModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.led.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.led.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.led.get_encoder()
def get_decoder(self):
return self.led.get_decoder()
def resize_token_embeddings(
self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None, mean_resizing: bool = True
) -> nn.Embedding:
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of, mean_resizing)
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
return new_embeddings
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
old_num_tokens = self.final_logits_bias.shape[-1]
if new_num_tokens <= old_num_tokens:
new_bias = self.final_logits_bias[:, :new_num_tokens]
else:
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
self.register_buffer("final_logits_bias", new_bias)
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
@add_end_docstrings(LED_GENERATION_EXAMPLE)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
global_attention_mask: Optional[torch.FloatTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], LEDSeq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Returns:
Conditional generation example:
```python
>>> from transformers import AutoTokenizer, LEDForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("allenai/led-base-16384")
>>> TXT = "My friends are <mask> but they eat too many carbs."
>>> model = LEDForConditionalGeneration.from_pretrained("allenai/led-base-16384")
>>> input_ids = tokenizer([TXT], return_tensors="pt")["input_ids"]
>>> prediction = model.generate(input_ids)[0]
>>> print(tokenizer.decode(prediction, skip_special_tokens=True))
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
outputs = self.led(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return LEDSeq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
encoder_global_attentions=outputs.encoder_global_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
+ layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"""
LED model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
LED_START_DOCSTRING,
)
class LEDForSequenceClassification(LEDPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config: LEDConfig, **kwargs):
warnings.warn(
"The `transformers.LEDForSequenceClassification` class is deprecated and will be removed in version 5 of"
" Transformers. No actual method were provided in the original paper on how to perfom"
" sequence classification.",
FutureWarning,
)
super().__init__(config, **kwargs)
self.led = LEDModel(config)
self.classification_head = LEDClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqSequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
global_attention_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], LEDSeq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
outputs = self.led(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0] # last hidden state
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
:, -1, :
]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return LEDSeq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
encoder_global_attentions=outputs.encoder_global_attentions,
)
@add_start_docstrings(
"""
LED Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
LED_START_DOCSTRING,
)
class LEDForQuestionAnswering(LEDPreTrainedModel):
_tied_weights_keys = ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight"]
def __init__(self, config):
super().__init__(config)
config.num_labels = 2
self.num_labels = config.num_labels
self.led = LEDModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(LED_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Seq2SeqQuestionAnsweringModelOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
global_attention_mask: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], LEDSeq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if start_positions is not None and end_positions is not None:
use_cache = False
outputs = self.led(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
global_attention_mask=global_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (
start_logits,
end_logits,
) + outputs[1:]
return ((total_loss,) + output) if total_loss is not None else output
return LEDSeq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
encoder_global_attentions=outputs.encoder_global_attentions,
)
__all__ = [
"LEDForConditionalGeneration",
"LEDForQuestionAnswering",
"LEDForSequenceClassification",
"LEDModel",
"LEDPreTrainedModel",
]
| transformers/src/transformers/models/led/modeling_led.py/0 | {
"file_path": "transformers/src/transformers/models/led/modeling_led.py",
"repo_id": "transformers",
"token_count": 58957
} |
# coding=utf-8
# Copyright 2023 Meta AI, EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax LLaMA model."""
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_llama import LlamaConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlamaConfig"
_CHECKPOINT_FOR_DOC = "afmck/testing-llama-tiny"
_REAL_CHECKPOINT_FOR_DOC = "openlm-research/open_llama_3b_v2"
LLAMA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`LlamaConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16`, or
`jax.numpy.bfloat16`.
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
LLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
freqs = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
emb = np.concatenate((freqs, freqs), axis=-1)
out = np.concatenate((np.sin(emb)[:, None, :], np.cos(emb)[:, None, :]), axis=-1)
return jnp.array(out[:, :, :num_pos])
def rotate_half(tensor):
"""Rotates half the hidden dims of the input."""
rotate_half_tensor = jnp.concatenate(
(-tensor[..., tensor.shape[-1] // 2 :], tensor[..., : tensor.shape[-1] // 2]), axis=-1
)
return rotate_half_tensor
def apply_rotary_pos_emb(tensor, sin_pos, cos_pos):
return (tensor * cos_pos) + (rotate_half(tensor) * sin_pos)
class FlaxLlamaRMSNorm(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.epsilon = self.config.rms_norm_eps
self.weight = self.param("weight", lambda _, shape: jnp.ones(shape), self.config.hidden_size)
def __call__(self, hidden_states):
variance = jnp.asarray(hidden_states, dtype=jnp.float32)
variance = jnp.power(variance, 2)
variance = variance.mean(-1, keepdims=True)
# use `jax.numpy.sqrt` as `jax.lax.rsqrt` does not match `torch.rsqrt`
hidden_states = hidden_states / jnp.sqrt(variance + self.epsilon)
return self.weight * jnp.asarray(hidden_states, dtype=self.dtype)
class FlaxLlamaRotaryEmbedding(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
head_dim = self.config.hidden_size // self.config.num_attention_heads
self.sincos = create_sinusoidal_positions(self.config.max_position_embeddings, head_dim)
def __call__(self, key, query, position_ids):
sincos = self.sincos[position_ids]
sin_pos, cos_pos = jnp.split(sincos, 2, axis=-1)
key = apply_rotary_pos_emb(key, sin_pos, cos_pos)
query = apply_rotary_pos_emb(query, sin_pos, cos_pos)
key = jnp.asarray(key, dtype=self.dtype)
query = jnp.asarray(query, dtype=self.dtype)
return key, query
class FlaxLlamaAttention(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.attention_softmax_in_fp32 = self.dtype is not jnp.float32
dense = partial(
nn.Dense,
use_bias=config.attention_bias,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj = dense(self.num_heads * self.head_dim)
self.k_proj = dense(self.num_key_value_heads * self.head_dim)
self.v_proj = dense(self.num_key_value_heads * self.head_dim)
self.o_proj = dense(self.embed_dim)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
self.rotary_emb = FlaxLlamaRotaryEmbedding(config, dtype=self.dtype)
def _split_heads(self, hidden_states, num_heads):
return hidden_states.reshape(hidden_states.shape[:2] + (num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoSelfAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query, self.num_heads)
key = self._split_heads(key, self.num_key_value_heads)
value = self._split_heads(value, self.num_key_value_heads)
key, query = self.rotary_emb(key, query, position_ids)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attention_dropout > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
key = jnp.repeat(key, self.num_key_value_groups, axis=2)
value = jnp.repeat(value, self.num_key_value_groups, axis=2)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
# usual dot product attention
attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_dropout,
deterministic=deterministic,
dtype=attention_dtype,
)
if self.attention_softmax_in_fp32:
attn_weights = attn_weights.astype(self.dtype)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.o_proj(attn_output)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxLlamaMLP(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
inner_dim = self.config.intermediate_size if self.config.intermediate_size is not None else 4 * embed_dim
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.act = ACT2FN[self.config.hidden_act]
self.gate_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.down_proj = nn.Dense(embed_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
self.up_proj = nn.Dense(inner_dim, use_bias=False, dtype=self.dtype, kernel_init=kernel_init)
def __call__(self, hidden_states):
up_proj_states = self.up_proj(hidden_states)
gate_states = self.act(self.gate_proj(hidden_states))
hidden_states = self.down_proj(up_proj_states * gate_states)
return hidden_states
class FlaxLlamaDecoderLayer(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.input_layernorm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype)
self.self_attn = FlaxLlamaAttention(self.config, dtype=self.dtype)
self.post_attention_layernorm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype)
self.mlp = FlaxLlamaMLP(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
outputs = self.self_attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
# residual connection
attn_output = outputs[0]
hidden_states = residual + attn_output
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + hidden_states
return (hidden_states,) + outputs[1:]
# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoPreTrainedModel with GPTNeo->Llama, GPT_NEO->LLAMA, transformer->model
class FlaxLlamaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = LlamaConfig
base_model_prefix = "model"
module_class: nn.Module = None
def __init__(
self,
config: LlamaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
random_params = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(LLAMA_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxLlamaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxLlamaLayerCollection(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxLlamaDecoderLayer(self.config, dtype=self.dtype, name=str(i))
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = False,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxLlamaModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxLlamaModule(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.hidden_size = self.config.hidden_size
embedding_init = jax.nn.initializers.normal(stddev=self.config.initializer_range)
self.embed_tokens = nn.Embed(
self.config.vocab_size,
self.hidden_size,
embedding_init=embedding_init,
dtype=self.dtype,
)
self.layers = FlaxLlamaLayerCollection(self.config, dtype=self.dtype)
self.norm = FlaxLlamaRMSNorm(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.embed_tokens(input_ids.astype("i4"))
outputs = self.layers(
input_embeds,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare Llama Model transformer outputting raw hidden-states without any specific head on top.",
LLAMA_START_DOCSTRING,
)
class FlaxLlamaModel(FlaxLlamaPreTrainedModel):
module_class = FlaxLlamaModule
append_call_sample_docstring(
FlaxLlamaModel,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
class FlaxLlamaForCausalLMModule(nn.Module):
config: LlamaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.model = FlaxLlamaModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.model(
input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The Llama Model transformer with a language modeling head (linear layer) on top.
""",
LLAMA_START_DOCSTRING,
)
# Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJForCausalLM with GPTJ->Llama
class FlaxLlamaForCausalLM(FlaxLlamaPreTrainedModel):
module_class = FlaxLlamaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since Llama uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxLlamaForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
)
__all__ = ["FlaxLlamaForCausalLM", "FlaxLlamaModel", "FlaxLlamaPreTrainedModel"]
| transformers/src/transformers/models/llama/modeling_flax_llama.py/0 | {
"file_path": "transformers/src/transformers/models/llama/modeling_flax_llama.py",
"repo_id": "transformers",
"token_count": 13124
} |
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Llava-NeXT model."""
import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...image_processing_utils import select_best_resolution
from ...modeling_outputs import ModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ..auto import AutoModel, AutoModelForCausalLM
from .configuration_llava_next import LlavaNextConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "LlavaNextConfig"
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
"""
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
Args:
image_size (`tuple`):
The size of the input image in the format (width, height).
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
tuple: The shape of the image patch grid in the format (width, height).
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise TypeError(
f"image_size invalid type: {type(image_size)} not valid, should be either list, tuple, np.ndarray or tensor"
)
image_size = image_size.tolist()
height, width = select_best_resolution(image_size, grid_pinpoints)
return height // patch_size, width // patch_size
def image_size_to_num_patches(image_size, grid_pinpoints, patch_size: int):
"""
Calculate the number of patches after the preprocessing for images of any resolution.
Args:
image_size (`torch.LongTensor` or `np.ndarray` or `Tuple[int, int]`):
The size of the input image in the format (height, width). ?
grid_pinpoints (`List`):
A list containing possible resolutions. Each item in the list should be a tuple or list
of the form `(height, width)`.
patch_size (`int`):
The size of each image patch.
Returns:
int: the number of patches
"""
if not isinstance(grid_pinpoints, list):
raise TypeError("grid_pinpoints should be a list of tuples or lists")
# ! VERY IMPORTANT if image_size is tensor, must convert to into tuple, otherwise it will cause wrong calculate
if not isinstance(image_size, (list, tuple)):
if not isinstance(image_size, (torch.Tensor, np.ndarray)):
raise TypeError(f"image_size invalid type {type(image_size)} with value {image_size}")
image_size = image_size.tolist()
best_resolution = select_best_resolution(image_size, grid_pinpoints)
height, width = best_resolution
num_patches = 0
# consider change to ceil(height/patch_size)*ceil(width/patch_size) + 1
for i in range(0, height, patch_size):
for j in range(0, width, patch_size):
num_patches += 1
# add the base patch
num_patches += 1
return num_patches
def unpad_image(tensor, original_size):
"""
Unpads a PyTorch tensor of a padded and resized image.
Args:
tensor (`torch.Tensor`):
The image tensor, assumed to be of shape (num_channels, height, width).
original_size (`tuple`):
The original size of the image (height, width).
Returns:
`torch.Tensor`: The unpadded image tensor.
"""
if not isinstance(original_size, (list, tuple)):
if not isinstance(original_size, (torch.Tensor, np.ndarray)):
raise TypeError(
f"image_size invalid type: {type(original_size)} not valid, should be either list, tuple, np.ndarray or tensor"
)
original_size = original_size.tolist()
original_height, original_width = original_size
current_height, current_width = tensor.shape[1:]
original_aspect_ratio = original_width / original_height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
scale_factor = current_width / original_width
new_height = int(round(original_height * scale_factor, 7))
padding = (current_height - new_height) // 2
unpadded_tensor = tensor[:, padding : current_height - padding, :]
else:
scale_factor = current_height / original_height
new_width = int(round(original_width * scale_factor, 7))
padding = (current_width - new_width) // 2
unpadded_tensor = tensor[:, :, padding : current_width - padding]
return unpadded_tensor
@dataclass
class LlavaNextCausalLMOutputWithPast(ModelOutput):
"""
Base class for LlavaNext causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size (batch_size * num_patches, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
# Copied from transformers.models.llava.modeling_llava.LlavaMultiModalProjector with Llava->LlavaNext
class LlavaNextMultiModalProjector(nn.Module):
def __init__(self, config: LlavaNextConfig):
super().__init__()
# We have hidden_size * the number of vision feature layers
num_feature_layers = 1 if isinstance(config.vision_feature_layer, int) else len(config.vision_feature_layer)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * num_feature_layers,
config.text_config.hidden_size,
bias=config.multimodal_projector_bias,
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(
config.text_config.hidden_size, config.text_config.hidden_size, bias=config.multimodal_projector_bias
)
def forward(self, image_features):
hidden_states = self.linear_1(image_features)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
LLAVA_NEXT_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`LlavaNextConfig`] or [`LlavaNextVisionConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare LLaMA Model outputting raw hidden-states without any specific head on top.",
LLAVA_NEXT_START_DOCSTRING,
)
# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->LlavaNext,llava->llava_next
class LlavaNextPreTrainedModel(PreTrainedModel):
config_class = LlavaNextConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["LlavaNextVisionAttention"]
_skip_keys_device_placement = "past_key_values"
_supports_cache_class = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
# important: this ported version of LlavaNext isn't meant for training from scratch - only
# inference and fine-tuning - so the proper init weights code has been removed - the original codebase
# https://github.com/haotian-liu/LLaVA/tree/main/llava_next should serve for that purpose
std = (
self.config.initializer_range
if hasattr(self.config, "initializer_range")
else self.config.text_config.initializer_range
)
if hasattr(module, "class_embedding"):
module.class_embedding.data.normal_(mean=0.0, std=std)
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
LLAVA_NEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`LlavaNextImageProcessor.__call__`] for details. [`LlavaProcessor`] uses
[`LlavaNextImageProcessor`] for processing images.
image_sizes (`torch.LongTensor` of shape `(batch_size, 2)`, *optional*):
The sizes of the images in the batch, being (height, width) for each image.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
vision_feature_layer (`Union[int, List[int]], *optional*, defaults to -2`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`. If `"default"`, the CLS token is removed from the vision features.
If `"full"`, the full vision features are used.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The LLAVA-NeXT model which consists of a vision backbone and a language model.""",
LLAVA_NEXT_START_DOCSTRING,
)
class LlavaNextForConditionalGeneration(LlavaNextPreTrainedModel, GenerationMixin):
def __init__(self, config: LlavaNextConfig):
super().__init__(config)
self.vision_tower = AutoModel.from_config(config.vision_config)
self.multi_modal_projector = LlavaNextMultiModalProjector(config)
embed_std = 1 / math.sqrt(config.text_config.hidden_size)
self.image_newline = nn.Parameter(torch.randn(config.text_config.hidden_size, dtype=self.dtype) * embed_std)
self.vocab_size = config.text_config.vocab_size
self.language_model = AutoModelForCausalLM.from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self._padding_side = "left" # set it to left by default, user can use setter to change padding_sides
self.post_init()
@property
def padding_side(self):
return self._padding_side
@padding_side.setter
def padding_side(self, padding_side: str):
if padding_side not in ["left", "right"]:
raise ValueError(f"{padding_side} is not `left` or `right`.")
self._padding_side = padding_side
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.set_decoder
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration.get_decoder
def get_decoder(self):
return self.language_model.get_decoder()
def _merge_input_ids_with_image_features(
self,
image_features,
feature_lens,
inputs_embeds,
input_ids,
attention_mask,
position_ids=None,
labels=None,
image_token_index=None,
ignore_index=-100,
):
"""
Merge input_ids with with image features into final embeddings
Args:
image_features (`torch.Tensor` of shape `(all_feature_lens, embed_dim)`):
All vision vectors of all images in the batch
feature_lens (`torch.LongTensor` of shape `(num_images)`):
The length of visual embeddings of each image as stacked in `image_features`
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, embed_dim)`):
Token embeddings before merging with visual embeddings
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Input_ids of tokens, possibly filled with image token
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Mask to avoid performing attention on padding token indices.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*)
:abels need to be recalculated to support training (if provided)
image_token_index (`int`, *optional*)
Token id used to indicate the special "image" token. Defaults to `config.image_token_index`
ignore_index (`int`, *optional*)
Value that is used to pad `labels` and will be ignored when calculated loss. Default: -100.
Returns:
final_embedding, final_attention_mask, position_ids, final_labels
Explanation:
each image has variable length embeddings, with length specified by feature_lens
image_features is concatenation of all visual embed vectors
task: fill each <image> with the correct number of visual embeddings
Example:
X (5 patches), Y (3 patches), Z (8)
X, Y are in the same sequence (in-context learning)
if right padding
input_ids: [
a b c d e f X g h i j k Y l m
o p q r Z s t u v _ _ _ _ _ _
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
o p q r Z Z Z Z Z Z Z Z s t u v _ _ _ _ _
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
o p q r _ _ _ _ _ _ _ _ s t u v _ _ _ _ _
]
elif left padding
input_ids: [
a b c d e f X g h i j k Y l m
_ _ _ _ _ _ o p q r Z s t u v
]
input_ids should be: [
a b c d e f X X X X X g h i j k Y Y Y l m
_ _ _ _ _ o p q r Z Z Z Z Z Z Z Z s t u v
]
labels should be: [
a b c d e f _ _ _ _ _ g h i j k _ _ _ l m
_ _ _ _ _ o p q r _ _ _ _ _ _ _ _ s t u v
]
Edge cases:
* If tokens are same but image token sizes are different, then cannot infer left or right padding
```python
cat_img = Image.open(requests.get("http://images.cocodataset.org/val2017/000000039769.jpg", stream=True).raw)
chart_img = Image.open(requests.get("https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true", stream=True).raw)
prompts = [
"[INST] <image>\nWhat is shown in this image? [/INST]",
"[INST] <image>\nWhat is shown in this image? [/INST]",
]
inputs = processor(prompts, [chart_img, cat_img], return_tensors='pt', padding=True).to("cuda")
chart_img has 2634 tokens, while cat_img has 2340 tokens
```
input_ids: [
a b c d X g h
i j Y k l m n
]
where X is 3 tokens while Y is 5, this mean after merge
if left-padding (batched generation)
input_ids should be: [
_ _ a b c d X X X g h
i j Y Y Y Y Y k l m n
]
elif (right padding) (training)
input_ids should be: [
a b c d X X X g h _ _
i j Y Y Y Y Y k l m n
]
"""
image_token_index = image_token_index if image_token_index is not None else self.config.image_token_index
ignore_index = ignore_index if ignore_index is not None else self.config.ignore_index
if self.training and self.padding_side == "left":
logger.warning_once(
"Padding side is set to 'left' but the model is in training mode. For training "
"it is recommended to set `model.padding_side='right' and `processor.tokenizer.padding_side='right'`. "
"If that's intended, ignore this warning"
)
if not self.training and self.padding_side == "right":
logger.warning_once(
"Padding side is set to 'right' but the model is in inference mode. For correct "
"generation results, please set `model.padding_side='left'` and `processor.tokenizer.padding_side='left'`. "
"If that's intended, ignore this warning"
)
with torch.no_grad():
# ! in llava 1.6, number of patches is variable
num_images = feature_lens.size(0)
num_image_features, embed_dim = image_features.shape
if feature_lens.sum() != num_image_features:
raise ValueError(f"{feature_lens=} / {feature_lens.sum()} != {image_features.shape=}")
batch_size = input_ids.shape[0]
_left_padding = torch.any(attention_mask[:, 0] == 0)
_right_padding = torch.any(attention_mask[:, -1] == 0)
left_padding = self.padding_side == "left"
if batch_size > 1:
if _left_padding and _right_padding:
raise ValueError(f"both side of attention_mask has zero, invalid. {attention_mask}")
elif _right_padding and left_padding:
left_padding = False
elif _left_padding and not left_padding:
left_padding = True
# Whether to turn off right padding
# 1. Create a mask to know where special image tokens are
special_image_token_mask = input_ids == image_token_index
# special_image_token_mask: [bsz, seqlen]
num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1)
# num_special_image_tokens: [bsz]
# Reserve for padding of num_images
total_num_special_image_tokens = torch.sum(special_image_token_mask)
if total_num_special_image_tokens != num_images:
raise ValueError(
f"Number of image tokens in input_ids ({total_num_special_image_tokens}) different from num_images ({num_images})."
)
# Compute the maximum embed dimension
# max_image_feature_lens is max_feature_lens per batch
feature_lens = feature_lens.to(input_ids.device)
feature_lens_batch = feature_lens.split(num_special_image_tokens.tolist(), dim=0)
feature_lens_batch_sum = torch.tensor([x.sum() for x in feature_lens_batch], device=input_ids.device)
embed_sequence_lengths = (
(attention_mask == 1).long().sum(-1) - num_special_image_tokens + feature_lens_batch_sum
)
max_embed_dim = embed_sequence_lengths.max()
batch_indices, non_image_indices = torch.where((input_ids != image_token_index) & (attention_mask == 1))
# 2. Compute the positions where text should be written
# Calculate new positions for text tokens in merged image-text sequence.
# `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images` text tokens.
# `torch.cumsum` computes how each image token shifts subsequent text token positions.
# - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one.
# ! instead of special_image_token_mask * (num_image_patches - 1)
# special_image_token_mask * (num_feature_len - 1)
special_image_token_mask = special_image_token_mask.long()
special_image_token_mask[special_image_token_mask == 1] = feature_lens - 1
new_token_positions = torch.cumsum((special_image_token_mask + 1), -1) - 1
if left_padding:
# shift right token positions so that they are ending at the same number
# the below here was incorrect? new_token_positions += new_token_positions[:, -1].max() - new_token_positions[:, -1:]
new_token_positions += max_embed_dim - 1 - new_token_positions[:, -1:]
text_to_overwrite = new_token_positions[batch_indices, non_image_indices]
# 3. Create the full embedding, already padded to the maximum position
final_embedding = torch.zeros(
batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device
)
final_attention_mask = torch.zeros(
batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device
)
final_input_ids = torch.full(
(batch_size, max_embed_dim), self.pad_token_id, dtype=input_ids.dtype, device=inputs_embeds.device
)
# In case the Vision model or the Language model has been offloaded to CPU, we need to manually
# set the corresponding tensors into their correct target device.
target_device = inputs_embeds.device
batch_indices, non_image_indices, text_to_overwrite = (
batch_indices.to(target_device),
non_image_indices.to(target_device),
text_to_overwrite.to(target_device),
)
attention_mask = attention_mask.to(target_device)
input_ids = input_ids.to(target_device)
# 4. Fill the embeddings based on the mask. If we have ["hey" "<image>", "how", "are"]
# we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features
final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices]
final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices]
final_input_ids[batch_indices, text_to_overwrite] = input_ids[batch_indices, non_image_indices]
final_labels = None
if labels is not None:
labels = labels.to(target_device)
final_labels = torch.full_like(final_attention_mask, ignore_index).to(torch.long)
final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices]
# 5. Fill the embeddings corresponding to the images. Anything that is not `text_positions` needs filling (#29835)
with torch.no_grad():
image_to_overwrite = torch.full(
(batch_size, max_embed_dim), True, dtype=torch.bool, device=inputs_embeds.device
)
image_to_overwrite[batch_indices, text_to_overwrite] = False
embed_indices = torch.arange(max_embed_dim).unsqueeze(0).to(target_device)
embed_indices = embed_indices.expand(batch_size, max_embed_dim)
embed_seq_lens = embed_sequence_lengths[:, None].to(target_device)
if left_padding:
# exclude padding on the left
max_embed_dim = max_embed_dim.to(target_device)
val = (max_embed_dim - embed_indices) <= embed_seq_lens
else:
# exclude padding on the right
val = embed_indices < embed_seq_lens
image_to_overwrite &= val
if image_to_overwrite.sum() != num_image_features:
raise ValueError(
f"{image_to_overwrite.sum()=} != {num_image_features=} The input provided to the model are wrong. "
f"The number of image tokens is {torch.sum(special_image_token_mask)} while"
f" the number of image given to the model is {num_images}. "
f"This prevents correct indexing and breaks batch generation."
)
final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device)
final_attention_mask |= image_to_overwrite
position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1)
return final_embedding, final_attention_mask, position_ids, final_labels, final_input_ids
def pack_image_features(self, image_features, image_sizes, vision_feature_select_strategy, image_newline=None):
"""
Reshape, unpad and then pack each image_feature into a single image_features tensor containing all visual vectors.
Args:
image_features (`List[torch.Tensor]` of length num_images, each of shape `(num_patches, image_length, embed_dim)`)
List of image feature tensor, each contains all the visual feature of all patches.
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
Actual image size of each images (H, W).
vision_feature_select_strategy (`str`)
The feature selection strategy used to select the vision feature from the vision backbone.
image_newline (`torch.Tensor` of shape `(embed_dim)`)
New line embedding vector.
Returns:
image_features (`torch.Tensor` of shape `(all_feat_len, embed_dim)`)
feature_lens (`List[int]`)
token length of each image in image_features
"""
new_image_features = []
feature_lens = []
for image_idx, image_feature in enumerate(image_features):
if image_feature.shape[0] > 1:
base_image_feature = image_feature[0]
image_feature = image_feature[1:]
height = width = self.config.vision_config.image_size // self.config.vision_config.patch_size
num_patch_height, num_patch_width = get_anyres_image_grid_shape(
image_sizes[image_idx],
self.config.image_grid_pinpoints,
self.config.vision_config.image_size,
)
if (
np.prod(image_feature.shape) % (num_patch_height * num_patch_width * height * width) != 0
and vision_feature_select_strategy == "default"
):
logger.warning_once(
"Image feature shape does not line up with the provided patch size. "
"You may be using the `default` vision_feature_select_strategy with a"
" visual encoder that does not have CLS."
)
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous()
image_feature = image_feature.flatten(1, 2).flatten(2, 3)
image_feature = unpad_image(image_feature, image_sizes[image_idx])
if image_newline is not None:
image_feature = torch.cat(
(
image_feature,
image_newline[:, None, None]
.expand(*image_feature.shape[:-1], 1)
.to(image_feature.device, image_feature.dtype),
),
dim=-1,
)
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
else:
image_feature = image_feature[0]
if image_newline is not None:
image_feature = torch.cat((image_feature, image_newline[None].to(image_feature)), dim=0)
new_image_features.append(image_feature)
feature_lens.append(image_feature.size(0))
image_features = torch.cat(new_image_features, dim=0)
feature_lens = torch.tensor(feature_lens, dtype=torch.long, device=image_features.device)
return image_features, feature_lens
def get_image_features(
self,
pixel_values: torch.FloatTensor,
image_sizes: torch.Tensor,
vision_feature_layer: Union[int, List[int]],
vision_feature_select_strategy: str,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_patches, channels, height, width)`)
The tensors corresponding to the input images.
image_sizes (`torch.Tensor` of shape `(num_images, 2)`)
Actual image size of each images (H, W).
vision_feature_layer (`Union[int, List[int]]`):
The index of the layer to select the vision feature. If multiple indices are provided,
the vision feature of the corresponding indices will be concatenated to form the
vision features.
vision_feature_select_strategy (`str`):
The feature selection strategy used to select the vision feature from the vision backbone.
Can be one of `"default"` or `"full"`
Returns:
image_features (List[`torch.Tensor`]): List of image feature tensor, each contains all the visual feature of all patches
and are of shape `(num_patches, image_length, embed_dim)`).
"""
# ! infer image_num_patches from image_sizes
image_num_patches = [
image_size_to_num_patches(
image_size=imsize,
grid_pinpoints=self.config.image_grid_pinpoints,
patch_size=self.config.vision_config.image_size,
)
for imsize in image_sizes
]
if pixel_values.dim() == 5:
# stacked if input is (batch_size, num_patches, num_channels, height, width)
_pixel_values_list = [pix_val[:num_patch] for pix_val, num_patch in zip(pixel_values, image_num_patches)]
pixel_values = torch.cat(_pixel_values_list, dim=0)
elif pixel_values.dim() != 4:
# otherwise has to be stacked from list of (num_patches, num_channels, height, width)
raise ValueError(f"pixel_values of shape {pixel_values.shape}, expect to be of 4 or 5 dimensions")
image_features = self.vision_tower(pixel_values, output_hidden_states=True)
# If we have one vision feature layer, return the corresponding hidden states,
# otherwise, select the hidden states of each feature layer and concatenate them
if isinstance(vision_feature_layer, int):
selected_image_feature = image_features.hidden_states[vision_feature_layer]
else:
hs_pool = [image_features.hidden_states[layer_idx] for layer_idx in vision_feature_layer]
selected_image_feature = torch.cat(hs_pool, dim=-1)
if vision_feature_select_strategy == "default":
selected_image_feature = selected_image_feature[:, 1:]
elif vision_feature_select_strategy == "full":
selected_image_feature = selected_image_feature
image_features = self.multi_modal_projector(selected_image_feature)
image_features = torch.split(image_features, image_num_patches, dim=0)
return image_features
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(LLAVA_NEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=LlavaNextCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
image_sizes: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, List[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**lm_kwargs,
) -> Union[Tuple, LlavaNextCausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, LlavaNextForConditionalGeneration
>>> model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> processor = AutoProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
>>> prompt = "[INST] <image>\nWhat is shown in this image? [/INST]"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, text=prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(**inputs, max_length=30)
>>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"[INST] \nWhat is shown in this image? [/INST] The image appears to be a radar chart, which is a type of multi-dimensional plot (...)"
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None and pixel_values.size(0) > 0:
image_features = self.get_image_features(
pixel_values,
image_sizes,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
)
# NOTE we only support multimodal_patch_merge_type == "spatial_unpad"
image_features, feature_lens = self.pack_image_features(
image_features,
image_sizes,
vision_feature_select_strategy=vision_feature_select_strategy,
image_newline=self.image_newline,
)
n_image_tokens = (input_ids == self.config.image_token_index).sum().item()
n_image_features = image_features.shape[0]
if n_image_tokens != n_image_features:
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
special_image_mask = (input_ids == self.config.image_token_index).unsqueeze(-1)
special_image_mask = special_image_mask.expand_as(inputs_embeds).to(inputs_embeds.device)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**lm_kwargs,
)
logits = outputs[0]
loss = None
if labels is not None:
# Shift so that tokens < n predict n
if attention_mask is not None:
# we use the input attention mask to shift the logits and labels, because it is 2D.
# we also crop attn mask in case it is longer, which happens in PrefixTuning with peft
shift_attention_mask = attention_mask[:, -(logits.shape[1] - 1) :].to(logits.device)
shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous()
shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous()
else:
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device)
)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return LlavaNextCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
image_hidden_states=image_features if pixel_values is not None else None,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
image_sizes=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = self.language_model.prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
model_inputs["image_sizes"] = image_sizes
return model_inputs
__all__ = ["LlavaNextForConditionalGeneration", "LlavaNextPreTrainedModel"]
| transformers/src/transformers/models/llava_next/modeling_llava_next.py/0 | {
"file_path": "transformers/src/transformers/models/llava_next/modeling_llava_next.py",
"repo_id": "transformers",
"token_count": 21294
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for LLaVa-Onevision.
"""
import math
import os
from typing import Iterable, List, Union
import numpy as np
from ...feature_extraction_utils import BatchFeature
from ...image_processing_utils import select_best_resolution
from ...image_utils import ImageInput, VideoInput, get_image_size, to_numpy_array
from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import PreTokenizedInput, TextInput
from ...utils import logging
from ..auto import AutoImageProcessor
logger = logging.get_logger(__name__)
class LlavaOnevisionProcessorKwargs(ProcessingKwargs, total=False):
# see processing_utils.ProcessingKwargs documentation for usage.
_defaults = {
"text_kwargs": {
"padding": False,
},
"image_kwargs": {},
"video_kwargs": {},
}
class LlavaOnevisionProcessor(ProcessorMixin):
r"""
Constructs a LLaVa-Onevision processor which wraps a LLaVa-Onevision video processor, LLaVa-NeXT image processor and a LLaMa tokenizer into a single processor.
[`LlavaNextProcessor`] offers all the functionalities of [`LlavaOnevisionVideoProcessor`], [`LlavaOnevisionImageProcessor`] and [`LlamaTokenizerFast`]. See the
[`~LlavaOnevisionVideoProcessor.__call__`], [`~LlavaNextProcessor.__call__`] and [`~LlavaNextProcessor.decode`] for more information.
Args:
image_processor ([`LlavaOnevisionImageProcessor`], *optional*):
The image processor is a required input.
tokenizer ([`LlamaTokenizerFast`], *optional*):
The tokenizer is a required input.
video_processor ([`LlavaOnevisionVideoProcessor`], *optional*):
The video processor is a required input.
num_image_tokens (`int`, *optional*):
Number of image tokens for one imagethat will be returned by vision tower.
vision_feature_select_strategy (`str`, *optional*):
The feature selection strategy used to select the vision feature from the vision backbone.
Shoudl be same as in model's config
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
image_token (`str`, *optional*, defaults to `"<image>"`):
Special token used to denote image location.
video_token (`str`, *optional*, defaults to `"<video>"`):
Special token used to denote video location.
"""
attributes = ["image_processor", "tokenizer", "video_processor"]
valid_kwargs = [
"chat_template",
"num_image_tokens",
"vision_feature_select_strategy",
"image_token",
"video_token",
]
image_processor_class = "AutoImageProcessor"
tokenizer_class = "AutoTokenizer"
video_processor_class = "LlavaOnevisionVideoProcessor"
def __init__(
self,
image_processor=None,
tokenizer=None,
video_processor=None,
num_image_tokens=None,
vision_feature_select_strategy=None,
chat_template=None,
image_token="<image>",
video_token="<video>",
**kwargs,
):
self.num_image_tokens = num_image_tokens
self.vision_feature_select_strategy = vision_feature_select_strategy
self.image_token = tokenizer.image_token if hasattr(tokenizer, "image_token") else image_token
self.video_token = tokenizer.video_token if hasattr(tokenizer, "video_token") else video_token
super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template)
def __call__(
self,
images: ImageInput = None,
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
audio=None,
videos: VideoInput = None,
**kwargs: Unpack[LlavaOnevisionProcessorKwargs],
) -> BatchFeature:
"""
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
LlavaNextImageProcessor's [`~LlavaNextImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
of the above two methods for more information.
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. Both channels-first and channels-last formats are supported.
text (`str`, `List[str]`, `List[List[str]]`):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
videos (`np.ndarray`, `torch.Tensor`, `List[np.ndarray]`, `List[torch.Tensor]`):
The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
Returns:
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
`None`).
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
- **pixel_values_videos** -- Pixel values of a video input to be fed to a model. Returned when `videos` is not `None`.
- **image_sizes** -- Size of each image that will be used to unpad an image. Returned when `images` is not `None`.
"""
output_kwargs = self._merge_kwargs(
LlavaOnevisionProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
image_inputs = video_inputs = {}
if images is not None:
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
image_sizes = iter(image_inputs["image_sizes"])
height, width = get_image_size(
to_numpy_array(image_inputs["pixel_values"][0][0]),
channel_dim=output_kwargs["images_kwargs"].get("data_format"),
)
text = self._expand_image_tokens(text, image_sizes, height, width, self.image_token)
if videos is not None:
video_inputs = self.video_processor(videos, **output_kwargs["videos_kwargs"])
one_video = video_inputs.get("pixel_values_videos")[0]
if isinstance(video_inputs.get("pixel_values_videos")[0], (list, tuple)):
one_video = np.array(one_video)
else:
one_video = to_numpy_array(one_video)
height, width = get_image_size(one_video[0], channel_dim=output_kwargs["images_kwargs"].get("data_format"))
num_frames = one_video.shape[0] # frame dim is always after batch dim
patches_height_width = int(math.sqrt(self.num_image_tokens))
pooled_height_width = math.ceil(patches_height_width / 2)
num_video_tokens = (num_frames * pooled_height_width * pooled_height_width) + 1 # +1 for newline token
text = [sample.replace(self.video_token, self.video_token * num_video_tokens) for sample in text]
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
return BatchFeature(data={**text_inputs, **image_inputs, **video_inputs})
def _expand_image_tokens(
self,
text: List[TextInput],
image_sizes: Iterable[Union[List[int], int]],
height: int,
width: int,
special_token: str,
num_frames: int = 1,
):
prompt_strings = []
for sample in text:
while special_token in sample:
image_size_list = next(image_sizes)
original_size = image_size_list[0] if num_frames != 1 else image_size_list
if not isinstance(original_size, (list, tuple)):
# cast to list to avoid numerical precision errors when calculating unpadding
original_size = original_size.tolist()
orig_height, orig_width = original_size
num_image_tokens = self._get_number_of_features(orig_height, orig_width, height, width)
if self.vision_feature_select_strategy == "default":
num_image_tokens -= 1
sample = sample.replace(special_token, "<placeholder>" * num_image_tokens * num_frames, 1)
prompt_strings.append(sample)
text = [sample.replace("<placeholder>", special_token) for sample in prompt_strings]
return text
def _get_number_of_features(self, orig_height: int, orig_width: int, height: int, width: int) -> int:
image_grid_pinpoints = self.image_processor.image_grid_pinpoints
height_best_resolution, width_best_resolution = select_best_resolution(
[orig_height, orig_width], image_grid_pinpoints
)
scale_height, scale_width = height_best_resolution // height, width_best_resolution // width
patches_height = patches_width = int(math.sqrt(self.num_image_tokens))
unpadded_features, newline_features = self._get_unpadded_features(
orig_height, orig_width, patches_height, patches_width, scale_height, scale_width
)
# The base patch covers the entire image (no CLS for SigLIP)
base_features = self.num_image_tokens
num_image_tokens = unpadded_features + newline_features + base_features
return num_image_tokens
# Adapted from transformers.models.llava_next.processing_llava_next.LlavaNextProcessor._get_unpadded_features
def _get_unpadded_features(self, height, width, patches_height, patches_width, scale_height, scale_width):
"""
Get number of features for a given image with height/width. LLaVA-NeXT is different from LLaVA
because it divided each image into patches depending on its resolution. Therefore we need to calculate how many
patches an image is divided into and get the number of features from that.
"""
current_height = patches_height * scale_height
current_width = patches_width * scale_width
original_aspect_ratio = width / height
current_aspect_ratio = current_width / current_height
if original_aspect_ratio > current_aspect_ratio:
new_height = int(round(height * (current_width / width), 7))
padding = (current_height - new_height) // 2
current_height -= padding * 2
else:
new_width = int(round(width * (current_height / height), 7))
padding = (current_width - new_width) // 2
current_width -= padding * 2
unpadded_features = current_height * current_width
newline_features = current_height
ratio = math.sqrt(current_height * current_width / (9 * patches_height**2))
if ratio > 1.1:
unpadded_features = int(current_height // ratio) * int(current_width // ratio)
newline_features = int(current_height // ratio)
return (unpadded_features, newline_features)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@property
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
# override to save video-config in a separate config file
def save_pretrained(self, save_directory, **kwargs):
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
video_processor_path = os.path.join(save_directory, "video_processor")
self.video_processor.save_pretrained(video_processor_path)
video_processor_present = "video_processor" in self.attributes
if video_processor_present:
self.attributes.remove("video_processor")
outputs = super().save_pretrained(save_directory, **kwargs)
if video_processor_present:
self.attributes += ["video_processor"]
return outputs
# override to load video-config from a separate config file
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path, **kwargs):
processor = super().from_pretrained(pretrained_model_name_or_path, **kwargs)
# if return_unused_kwargs a tuple is returned where the second element is 'unused_kwargs'
if isinstance(processor, tuple):
processor = processor[0]
try:
video_processor = AutoImageProcessor.from_pretrained(
pretrained_model_name_or_path, subfolder="video_processor"
)
processor.video_processor = video_processor
except EnvironmentError:
# this means users are using prev version of saved processor where we had only one preprocessor_config.json
# for loading back that should work and load a LlavaOnevisionVideoProcessor class
logger.info(
"You are loading `LlavaOnevisionProcessor` but the indicated `path` doesn't contain a folder called "
"`video_processor`. It is strongly recommended to load and save the processor again so the video processor is saved "
"in a separate config."
)
return processor
__all__ = ["LlavaOnevisionProcessor"]
| transformers/src/transformers/models/llava_onevision/processing_llava_onevision.py/0 | {
"file_path": "transformers/src/transformers/models/llava_onevision/processing_llava_onevision.py",
"repo_id": "transformers",
"token_count": 6247
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert LUKE checkpoint."""
import argparse
import json
import os
import torch
from transformers import LukeConfig, LukeModel, LukeTokenizer, RobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def convert_luke_checkpoint(checkpoint_path, metadata_path, entity_vocab_path, pytorch_dump_folder_path, model_size):
# Load configuration defined in the metadata file
with open(metadata_path) as metadata_file:
metadata = json.load(metadata_file)
config = LukeConfig(use_entity_aware_attention=True, **metadata["model_config"])
# Load in the weights from the checkpoint_path
state_dict = torch.load(checkpoint_path, map_location="cpu")
# Load the entity vocab file
entity_vocab = load_entity_vocab(entity_vocab_path)
tokenizer = RobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"])
# Add special tokens to the token vocabulary for downstream tasks
entity_token_1 = AddedToken("<ent>", lstrip=False, rstrip=False)
entity_token_2 = AddedToken("<ent2>", lstrip=False, rstrip=False)
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_1, entity_token_2]})
config.vocab_size += 2
print(f"Saving tokenizer to {pytorch_dump_folder_path}")
tokenizer.save_pretrained(pytorch_dump_folder_path)
with open(os.path.join(pytorch_dump_folder_path, LukeTokenizer.vocab_files_names["entity_vocab_file"]), "w") as f:
json.dump(entity_vocab, f)
tokenizer = LukeTokenizer.from_pretrained(pytorch_dump_folder_path)
# Initialize the embeddings of the special tokens
word_emb = state_dict["embeddings.word_embeddings.weight"]
ent_emb = word_emb[tokenizer.convert_tokens_to_ids(["@"])[0]].unsqueeze(0)
ent2_emb = word_emb[tokenizer.convert_tokens_to_ids(["#"])[0]].unsqueeze(0)
state_dict["embeddings.word_embeddings.weight"] = torch.cat([word_emb, ent_emb, ent2_emb])
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers):
for matrix_name in ["query.weight", "query.bias"]:
prefix = f"encoder.layer.{layer_index}.attention.self."
state_dict[prefix + "w2e_" + matrix_name] = state_dict[prefix + matrix_name]
state_dict[prefix + "e2w_" + matrix_name] = state_dict[prefix + matrix_name]
state_dict[prefix + "e2e_" + matrix_name] = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
entity_emb = state_dict["entity_embeddings.entity_embeddings.weight"]
entity_emb[entity_vocab["[MASK2]"]] = entity_emb[entity_vocab["[MASK]"]]
model = LukeModel(config=config).eval()
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
if not (len(missing_keys) == 1 and missing_keys[0] == "embeddings.position_ids"):
raise ValueError(f"Missing keys {', '.join(missing_keys)}. Expected only missing embeddings.position_ids")
if not (all(key.startswith("entity_predictions") or key.startswith("lm_head") for key in unexpected_keys)):
raise ValueError(
"Unexpected keys"
f" {', '.join([key for key in unexpected_keys if not (key.startswith('entity_predictions') or key.startswith('lm_head'))])}"
)
# Check outputs
tokenizer = LukeTokenizer.from_pretrained(pytorch_dump_folder_path, task="entity_classification")
text = (
"Top seed Ana Ivanovic said on Thursday she could hardly believe her luck as a fortuitous netcord helped the"
" new world number one avoid a humiliating second- round exit at Wimbledon ."
)
span = (39, 42)
encoding = tokenizer(text, entity_spans=[span], add_prefix_space=True, return_tensors="pt")
outputs = model(**encoding)
# Verify word hidden states
if model_size == "large":
expected_shape = torch.Size((1, 42, 1024))
expected_slice = torch.tensor(
[[0.0133, 0.0865, 0.0095], [0.3093, -0.2576, -0.7418], [-0.1720, -0.2117, -0.2869]]
)
else: # base
expected_shape = torch.Size((1, 42, 768))
expected_slice = torch.tensor([[0.0037, 0.1368, -0.0091], [0.1099, 0.3329, -0.1095], [0.0765, 0.5335, 0.1179]])
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
f"Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}"
)
if not torch.allclose(outputs.last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
raise ValueError
# Verify entity hidden states
if model_size == "large":
expected_shape = torch.Size((1, 1, 1024))
expected_slice = torch.tensor([[0.0466, -0.0106, -0.0179]])
else: # base
expected_shape = torch.Size((1, 1, 768))
expected_slice = torch.tensor([[0.1457, 0.1044, 0.0174]])
if not (outputs.entity_last_hidden_state.shape != expected_shape):
raise ValueError(
f"Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is"
f" {expected_shape}"
)
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3], expected_slice, atol=1e-4):
raise ValueError
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(pytorch_dump_folder_path))
model.save_pretrained(pytorch_dump_folder_path)
def load_entity_vocab(entity_vocab_path):
entity_vocab = {}
with open(entity_vocab_path, "r", encoding="utf-8") as f:
for index, line in enumerate(f):
title, _ = line.rstrip().split("\t")
entity_vocab[title] = index
return entity_vocab
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.")
parser.add_argument(
"--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration."
)
parser.add_argument(
"--entity_vocab_path",
default=None,
type=str,
help="Path to an entity_vocab.tsv file, containing the entity vocabulary.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model."
)
parser.add_argument(
"--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted."
)
args = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| transformers/src/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/luke/convert_luke_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2877
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MAMBA configuration"""
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MambaConfig(PretrainedConfig):
"""
This is the configuration class to store the configuration of a [`MambaModel`]. It is used to instantiate a MAMBA
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MAMBA
[state-spaces/mamba-2.8b](https://huggingface.co/state-spaces/mamba-2.8b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50280):
Vocabulary size of the MAMBA model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MambaModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the embeddings and hidden states.
state_size (`int`, *optional*, defaults to 16): shape of the state space latents.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the model.
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
The epsilon to use in the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 0):
The id of the beginning of sentence token in the vocabulary.
eos_token_id (`int`, *optional*, defaults to 0):
The id of the end of sentence token in the vocabulary.
expand (`int`, *optional*, defaults to 2): Expanding factor used to determine the intermediate size.
conv_kernel (`int`, *optional*, defaults to 4): Size of the convolution kernel.
use_bias (`bool`, *optional*, defaults to `False`):
Whether or not to use bias in ["in_proj", "out_proj"] of the mixer block
use_conv_bias (`bool`, *optional*, defaults to `True`):
Whether or not to use bias in the convolution layer of the mixer block.
hidden_act (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
initializer_range (`float`, *optional*, defaults to 0.1):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
residual_in_fp32 (`bool`, *optional*, defaults to `True`):
Whether or not residuals should be in `float32`. If set to `False` residuals will keep the same `dtype` as the rest of the model
time_step_rank (`Union[int,str]`, *optional*, defaults to `"auto"`):
Rank of the discretization projection matrix. `"auto"` means that it will default to `math.ceil(self.hidden_size / 16)`
time_step_scale (`float`, *optional*, defaults to 1.0):
Scale used used to scale `dt_proj.bias`.
time_step_min (`float`, *optional*, defaults to 0.001):
Minimum `time_step` used to bound `dt_proj.bias`.
time_step_max (`float`, *optional*, defaults to 0.1):
Maximum `time_step` used to bound `dt_proj.bias`.
time_step_init_scheme (`float`, *optional*, defaults to `"random"`):
Init scheme used for `dt_proj.weight`. Should be one of `["random","uniform"]`
time_step_floor (`float`, *optional*, defaults to 0.0001):
Minimum clamping value of the `dt_proj.bias` layer initialization.
rescale_prenorm_residual (`bool`, *optional*, defaults to `False`):
Whether or not to rescale `out_proj` weights when initializing.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the cache should be used.
use_mambapy (`bool`, *optional*, defaults to `False`):
Determines the fallback strategy during training if the CUDA-based official implementation of Mamba is not avaiable. If `True`, the mamba.py implementation is used. If `False`, the naive and slower implementation is used. Consider switching to the naive version if memory is limited.
Example:
```python
>>> from transformers import MambaConfig, MambaModel
>>> # Initializing a Mamba configuration
>>> configuration = MambaConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = MambaModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mamba"
def __init__(
self,
vocab_size=50280,
hidden_size=768,
state_size=16,
num_hidden_layers=32,
layer_norm_epsilon=1e-5,
pad_token_id=0,
bos_token_id=0,
eos_token_id=0,
expand=2,
conv_kernel=4,
use_bias=False,
use_conv_bias=True,
hidden_act="silu",
initializer_range=0.1,
residual_in_fp32=True,
time_step_rank="auto",
time_step_scale=1.0,
time_step_min=0.001,
time_step_max=0.1,
time_step_init_scheme="random",
time_step_floor=1e-4,
rescale_prenorm_residual=False,
use_cache=True,
use_mambapy=False,
**kwargs,
):
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.state_size = state_size
self.num_hidden_layers = num_hidden_layers
self.layer_norm_epsilon = layer_norm_epsilon
self.conv_kernel = conv_kernel
self.expand = expand
self.intermediate_size = int(expand * self.hidden_size)
self.bos_token_id = bos_token_id
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.use_bias = use_bias
self.use_conv_bias = use_conv_bias
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.time_step_rank = math.ceil(self.hidden_size / 16) if time_step_rank == "auto" else time_step_rank
self.time_step_scale = time_step_scale
self.time_step_min = time_step_min
self.time_step_max = time_step_max
self.time_step_init_scheme = time_step_init_scheme
self.time_step_floor = time_step_floor
self.rescale_prenorm_residual = rescale_prenorm_residual
self.residual_in_fp32 = residual_in_fp32
self.use_cache = use_cache
self.use_mambapy = use_mambapy
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
__all__ = ["MambaConfig"]
| transformers/src/transformers/models/mamba/configuration_mamba.py/0 | {
"file_path": "transformers/src/transformers/models/mamba/configuration_mamba.py",
"repo_id": "transformers",
"token_count": 2897
} |
# coding=utf-8
# Copyright 2021, The Microsoft Research Asia MarkupLM Team authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MarkupLM model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MarkupLMConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MarkupLMModel`]. It is used to instantiate a
MarkupLM model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the MarkupLM
[microsoft/markuplm-base](https://huggingface.co/microsoft/markuplm-base) architecture.
Configuration objects inherit from [`BertConfig`] and can be used to control the model outputs. Read the
documentation from [`BertConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the MarkupLM model. Defines the different tokens that can be represented by the
*inputs_ids* passed to the forward method of [`MarkupLMModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_size (`int`, *optional*, defaults to 2):
The vocabulary size of the `token_type_ids` passed into [`MarkupLMModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
max_tree_id_unit_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the tree id unit embedding might ever use. Typically set this to something large
just in case (e.g., 1024).
max_xpath_tag_unit_embeddings (`int`, *optional*, defaults to 256):
The maximum value that the xpath tag unit embedding might ever use. Typically set this to something large
just in case (e.g., 256).
max_xpath_subs_unit_embeddings (`int`, *optional*, defaults to 1024):
The maximum value that the xpath subscript unit embedding might ever use. Typically set this to something
large just in case (e.g., 1024).
tag_pad_id (`int`, *optional*, defaults to 216):
The id of the padding token in the xpath tags.
subs_pad_id (`int`, *optional*, defaults to 1001):
The id of the padding token in the xpath subscripts.
xpath_tag_unit_hidden_size (`int`, *optional*, defaults to 32):
The hidden size of each tree id unit. One complete tree index will have
(50*xpath_tag_unit_hidden_size)-dim.
max_depth (`int`, *optional*, defaults to 50):
The maximum depth in xpath.
Examples:
```python
>>> from transformers import MarkupLMModel, MarkupLMConfig
>>> # Initializing a MarkupLM microsoft/markuplm-base style configuration
>>> configuration = MarkupLMConfig()
>>> # Initializing a model from the microsoft/markuplm-base style configuration
>>> model = MarkupLMModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "markuplm"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
bos_token_id=0,
eos_token_id=2,
max_xpath_tag_unit_embeddings=256,
max_xpath_subs_unit_embeddings=1024,
tag_pad_id=216,
subs_pad_id=1001,
xpath_unit_hidden_size=32,
max_depth=50,
position_embedding_type="absolute",
use_cache=True,
classifier_dropout=None,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
**kwargs,
)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.use_cache = use_cache
self.classifier_dropout = classifier_dropout
# additional properties
self.max_depth = max_depth
self.max_xpath_tag_unit_embeddings = max_xpath_tag_unit_embeddings
self.max_xpath_subs_unit_embeddings = max_xpath_subs_unit_embeddings
self.tag_pad_id = tag_pad_id
self.subs_pad_id = subs_pad_id
self.xpath_unit_hidden_size = xpath_unit_hidden_size
__all__ = ["MarkupLMConfig"]
| transformers/src/transformers/models/markuplm/configuration_markuplm.py/0 | {
"file_path": "transformers/src/transformers/models/markuplm/configuration_markuplm.py",
"repo_id": "transformers",
"token_count": 2845
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert MaskFormer checkpoints with Swin backbone from the original repository. URL:
https://github.com/facebookresearch/MaskFormer"""
import argparse
import json
import pickle
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_maskformer_config(model_name: str):
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224", out_features=["stage1", "stage2", "stage3", "stage4"]
)
config = MaskFormerConfig(backbone_config=backbone_config)
repo_id = "huggingface/label-files"
if "ade20k-full" in model_name:
# this should be ok
config.num_labels = 847
filename = "maskformer-ade20k-full-id2label.json"
elif "ade" in model_name:
# this should be ok
config.num_labels = 150
filename = "ade20k-id2label.json"
elif "coco-stuff" in model_name:
# this should be ok
config.num_labels = 171
filename = "maskformer-coco-stuff-id2label.json"
elif "coco" in model_name:
# TODO
config.num_labels = 133
filename = "coco-panoptic-id2label.json"
elif "cityscapes" in model_name:
# this should be ok
config.num_labels = 19
filename = "cityscapes-id2label.json"
elif "vistas" in model_name:
# this should be ok
config.num_labels = 65
filename = "mapillary-vistas-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
return config
def create_rename_keys(config):
rename_keys = []
# stem
# fmt: off
rename_keys.append(("backbone.patch_embed.proj.weight", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight"))
rename_keys.append(("backbone.patch_embed.proj.bias", "model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias"))
rename_keys.append(("backbone.patch_embed.norm.weight", "model.pixel_level_module.encoder.model.embeddings.norm.weight"))
rename_keys.append(("backbone.patch_embed.norm.bias", "model.pixel_level_module.encoder.model.embeddings.norm.bias"))
# stages
for i in range(len(config.backbone_config.depths)):
for j in range(config.backbone_config.depths[i]):
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.relative_position_index", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.attn.proj.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.norm2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc1.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight"))
rename_keys.append((f"backbone.layers.{i}.blocks.{j}.mlp.fc2.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias"))
if i < 3:
rename_keys.append((f"backbone.layers.{i}.downsample.reduction.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight"))
rename_keys.append((f"backbone.layers.{i}.downsample.norm.weight", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight"))
rename_keys.append((f"backbone.layers.{i}.downsample.norm.bias", f"model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias"))
rename_keys.append((f"backbone.norm{i}.weight", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.weight"))
rename_keys.append((f"backbone.norm{i}.bias", f"model.pixel_level_module.encoder.hidden_states_norms.{i}.bias"))
# FPN
rename_keys.append(("sem_seg_head.layer_4.weight", "model.pixel_level_module.decoder.fpn.stem.0.weight"))
rename_keys.append(("sem_seg_head.layer_4.norm.weight", "model.pixel_level_module.decoder.fpn.stem.1.weight"))
rename_keys.append(("sem_seg_head.layer_4.norm.bias", "model.pixel_level_module.decoder.fpn.stem.1.bias"))
for source_index, target_index in zip(range(3, 0, -1), range(0, 3)):
rename_keys.append((f"sem_seg_head.adapter_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight"))
rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight"))
rename_keys.append((f"sem_seg_head.adapter_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.weight", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight"))
rename_keys.append((f"sem_seg_head.layer_{source_index}.norm.bias", f"model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias"))
rename_keys.append(("sem_seg_head.mask_features.weight", "model.pixel_level_module.decoder.mask_projection.weight"))
rename_keys.append(("sem_seg_head.mask_features.bias", "model.pixel_level_module.decoder.mask_projection.bias"))
# Transformer decoder
for idx in range(config.decoder_config.decoder_layers):
# self-attention out projection
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias"))
# cross-attention out projection
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias"))
# MLP 1
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight", f"model.transformer_module.decoder.layers.{idx}.fc1.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias", f"model.transformer_module.decoder.layers.{idx}.fc1.bias"))
# MLP 2
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight", f"model.transformer_module.decoder.layers.{idx}.fc2.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias", f"model.transformer_module.decoder.layers.{idx}.fc2.bias"))
# layernorm 1 (self-attention layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias", f"model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias"))
# layernorm 2 (cross-attention layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias", f"model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias"))
# layernorm 3 (final layernorm)
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight"))
rename_keys.append((f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias", f"model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias"))
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.weight", "model.transformer_module.decoder.layernorm.weight"))
rename_keys.append(("sem_seg_head.predictor.transformer.decoder.norm.bias", "model.transformer_module.decoder.layernorm.bias"))
# heads on top
rename_keys.append(("sem_seg_head.predictor.query_embed.weight", "model.transformer_module.queries_embedder.weight"))
rename_keys.append(("sem_seg_head.predictor.input_proj.weight", "model.transformer_module.input_projection.weight"))
rename_keys.append(("sem_seg_head.predictor.input_proj.bias", "model.transformer_module.input_projection.bias"))
rename_keys.append(("sem_seg_head.predictor.class_embed.weight", "class_predictor.weight"))
rename_keys.append(("sem_seg_head.predictor.class_embed.bias", "class_predictor.bias"))
for i in range(3):
rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.weight", f"mask_embedder.{i}.0.weight"))
rename_keys.append((f"sem_seg_head.predictor.mask_embed.layers.{i}.bias", f"mask_embedder.{i}.0.bias"))
# fmt: on
return rename_keys
def rename_key(dct, old, new):
val = dct.pop(old)
dct[new] = val
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_swin_q_k_v(state_dict, backbone_config):
num_features = [int(backbone_config.embed_dim * 2**i) for i in range(len(backbone_config.depths))]
for i in range(len(backbone_config.depths)):
dim = num_features[i]
for j in range(backbone_config.depths[i]):
# fmt: off
# read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.weight")
in_proj_bias = state_dict.pop(f"backbone.layers.{i}.blocks.{j}.attn.qkv.bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.weight"] = in_proj_weight[:dim, :]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.query.bias"] = in_proj_bias[: dim]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.weight"] = in_proj_weight[
dim : dim * 2, :
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.key.bias"] = in_proj_bias[
dim : dim * 2
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.weight"] = in_proj_weight[
-dim :, :
]
state_dict[f"model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.value.bias"] = in_proj_bias[-dim :]
# fmt: on
# we split up the matrix of each encoder layer into queries, keys and values
def read_in_decoder_q_k_v(state_dict, config):
# fmt: off
hidden_size = config.decoder_config.hidden_size
for idx in range(config.decoder_config.decoder_layers):
# read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.self_attn.v_proj.bias"] = in_proj_bias[-hidden_size :]
# read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias)
in_proj_weight = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight")
in_proj_bias = state_dict.pop(f"sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias")
# next, add query, keys and values (in that order) to the state dict
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.weight"] = in_proj_weight[: hidden_size, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.q_proj.bias"] = in_proj_bias[:config.hidden_size]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.weight"] = in_proj_weight[hidden_size : hidden_size * 2, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.k_proj.bias"] = in_proj_bias[hidden_size : hidden_size * 2]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.weight"] = in_proj_weight[-hidden_size :, :]
state_dict[f"model.transformer_module.decoder.layers.{idx}.encoder_attn.v_proj.bias"] = in_proj_bias[-hidden_size :]
# fmt: on
# We will verify our results on an image of cute cats
def prepare_img() -> torch.Tensor:
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
@torch.no_grad()
def convert_maskformer_checkpoint(
model_name: str, checkpoint_path: str, pytorch_dump_folder_path: str, push_to_hub: bool = False
):
"""
Copy/paste/tweak model's weights to our MaskFormer structure.
"""
config = get_maskformer_config(model_name)
# load original state_dict
with open(checkpoint_path, "rb") as f:
data = pickle.load(f)
state_dict = data["model"]
# for name, param in state_dict.items():
# print(name, param.shape)
# rename keys
rename_keys = create_rename_keys(config)
for src, dest in rename_keys:
rename_key(state_dict, src, dest)
read_in_swin_q_k_v(state_dict, config.backbone_config)
read_in_decoder_q_k_v(state_dict, config)
# update to torch tensors
for key, value in state_dict.items():
state_dict[key] = torch.from_numpy(value)
# load 🤗 model
model = MaskFormerForInstanceSegmentation(config)
model.eval()
for name, param in model.named_parameters():
print(name, param.shape)
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
assert missing_keys == [
"model.pixel_level_module.encoder.model.layernorm.weight",
"model.pixel_level_module.encoder.model.layernorm.bias",
]
assert len(unexpected_keys) == 0, f"Unexpected keys: {unexpected_keys}"
# verify results
image = prepare_img()
if "vistas" in model_name:
ignore_index = 65
elif "cityscapes" in model_name:
ignore_index = 65535
else:
ignore_index = 255
do_reduce_labels = True if "ade" in model_name else False
image_processor = MaskFormerImageProcessor(ignore_index=ignore_index, do_reduce_labels=do_reduce_labels)
inputs = image_processor(image, return_tensors="pt")
outputs = model(**inputs)
print("Logits:", outputs.class_queries_logits[0, :3, :3])
if model_name == "maskformer-swin-tiny-ade":
expected_logits = torch.tensor(
[[3.6353, -4.4770, -2.6065], [0.5081, -4.2394, -3.5343], [2.1909, -5.0353, -1.9323]]
)
assert torch.allclose(outputs.class_queries_logits[0, :3, :3], expected_logits, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and image processor to {pytorch_dump_folder_path}")
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
image_processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing model and image processor to the hub...")
model.push_to_hub(f"nielsr/{model_name}")
image_processor.push_to_hub(f"nielsr/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="maskformer-swin-tiny-ade",
type=str,
help=("Name of the MaskFormer model you'd like to convert",),
)
parser.add_argument(
"--checkpoint_path",
default="/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl",
type=str,
help="Path to the original state dict (.pth file).\n"
"Given the files are in the pickle format, please be wary of passing it files you trust.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_maskformer_checkpoint(
args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/maskformer/convert_maskformer_swin_to_pytorch.py",
"repo_id": "transformers",
"token_count": 8512
} |
# Copyright 2023 Mistral AI and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
_import_structure = {
"configuration_mistral": ["MistralConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mistral"] = [
"MistralForCausalLM",
"MistralForQuestionAnswering",
"MistralModel",
"MistralPreTrainedModel",
"MistralForSequenceClassification",
"MistralForTokenClassification",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_flax_mistral"] = [
"FlaxMistralForCausalLM",
"FlaxMistralModel",
"FlaxMistralPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_mistral"] = [
"TFMistralModel",
"TFMistralForCausalLM",
"TFMistralForSequenceClassification",
"TFMistralPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_mistral import MistralConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mistral import (
MistralForCausalLM,
MistralForQuestionAnswering,
MistralForSequenceClassification,
MistralForTokenClassification,
MistralModel,
MistralPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_mistral import (
FlaxMistralForCausalLM,
FlaxMistralModel,
FlaxMistralPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_mistral import (
TFMistralForCausalLM,
TFMistralForSequenceClassification,
TFMistralModel,
TFMistralPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/mistral/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/mistral/__init__.py",
"repo_id": "transformers",
"token_count": 1318
} |
# coding=utf-8
# Copyright 2024 the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Mllama model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from ... import PreTrainedModel
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, CausalLMOutputWithPast
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_mllama import MllamaConfig, MllamaTextConfig, MllamaVisionConfig
logger = logging.get_logger(__name__)
def _prepare_cross_attention_mask(
cross_attention_mask: torch.Tensor,
num_vision_tokens: int,
dtype: str,
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape so it can be used by attn module
batch_size, text_total_length, *_ = cross_attention_mask.shape
cross_attention_mask = cross_attention_mask.repeat_interleave(num_vision_tokens, dim=3)
cross_attention_mask = cross_attention_mask.view(batch_size, text_total_length, -1)
cross_attention_mask = cross_attention_mask.unsqueeze(1)
# invert the mask
inverted_cross_attn_mask = (1.0 - cross_attention_mask).to(dtype)
cross_attention_mask = inverted_cross_attn_mask.masked_fill(
inverted_cross_attn_mask.to(torch.bool), torch.finfo(dtype).min
)
# apply full-row bias, which return 4D tensor of shape [B, H, S1, 1] where value is 0 if the a full row in cross attn mask's
# last dimension contains negative infinity values, otherwise it's 1
negative_inf_value = torch.finfo(dtype).min
full_text_row_masked_out_mask = (
(cross_attention_mask != negative_inf_value).any(dim=-1).type_as(cross_attention_mask)[..., None]
)
cross_attention_mask *= full_text_row_masked_out_mask
return cross_attention_mask, full_text_row_masked_out_mask
def _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask: torch.Tensor,
num_patches: int,
target_length: int,
dtype: torch.dtype,
) -> torch.Tensor:
# Expand aspect ratio mask to target_length
batch_size, max_num_tiles = aspect_ratio_mask.shape
attention_mask = aspect_ratio_mask.view(batch_size, max_num_tiles, 1, 1).to(dtype)
attention_mask = attention_mask.repeat(1, 1, target_length, 1)
# Mask padding patches
pad_patches = target_length - num_patches
attention_mask[:, :, -pad_patches:] = 0
# Invert the mask (0 -> 1, 1 -> 0)
attention_mask = 1 - attention_mask
# Reshape to 2D and create 4D attention mask
# (batch_size, 1, max_num_tiles * target_length, max_num_tiles * target_length)
attention_mask = attention_mask.reshape(batch_size, max_num_tiles * target_length, 1)
attention_mask = attention_mask @ attention_mask.transpose(-1, -2) * torch.finfo(dtype).min
attention_mask = attention_mask.unsqueeze(1)
return attention_mask
class MllamaPrecomputedAspectRatioEmbedding(nn.Module):
def __init__(self, config: MllamaVisionConfig, is_gated: bool = True):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.is_gated = is_gated
self.embedding = nn.Embedding(self.max_aspect_ratio_id + 1, self.max_num_tiles * self.hidden_size)
if is_gated:
self.gate = nn.Parameter(torch.zeros(1))
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
embeddings = self.embedding(aspect_ratio_ids)
embeddings = embeddings.reshape(-1, self.max_num_tiles, 1, self.hidden_size)
if self.is_gated:
embeddings = embeddings * self.gate.tanh()
hidden_state = hidden_state + embeddings
return hidden_state
class MllamaPrecomputedPositionEmbedding(nn.Module):
def __init__(self, config: MllamaVisionConfig):
super().__init__()
self.max_num_tiles = config.max_num_tiles
self.max_aspect_ratio_id = config.max_aspect_ratio_id
self.num_patches = (config.image_size // config.patch_size) ** 2 + 1
self.hidden_size = config.hidden_size
self.scale = config.hidden_size**-0.5
self.gate = nn.Parameter(torch.zeros(1))
# position embedding
position_embedding = torch.randn(self.num_patches, self.hidden_size)
self.embedding = nn.Parameter(self.scale * position_embedding)
# tile position embedding
self.tile_embedding = nn.Embedding(
self.max_aspect_ratio_id + 1, self.max_num_tiles * self.num_patches * self.hidden_size
)
def forward(self, hidden_state: torch.Tensor, aspect_ratio_ids: torch.Tensor) -> torch.Tensor:
# position embeddings
gated_position_embedding = (1 - self.gate.tanh()) * self.embedding
hidden_state = hidden_state + gated_position_embedding.view(1, 1, self.num_patches, self.hidden_size)
# precomputed tile position embeddings
tile_position_embedding = self.tile_embedding(aspect_ratio_ids)
batch_size = hidden_state.shape[0]
tile_position_embedding = tile_position_embedding.reshape(
batch_size, self.max_num_tiles, self.num_patches, self.hidden_size
)
gated_tile_position_embedding = self.gate.tanh() * tile_position_embedding
hidden_state = hidden_state + gated_tile_position_embedding
return hidden_state
# Copied from transformers.models.clip.modeling_clip.CLIPMLP with CLIP->MllamaVision
class MllamaVisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
class MllamaVisionAttention(nn.Module):
def __init__(self, config: MllamaVisionConfig):
super().__init__()
self.embed_dim = config.hidden_size
self.num_heads = config.attention_heads
self.head_dim = config.hidden_size // config.attention_heads
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.embed_dim, bias=False)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
) -> torch.Tensor:
query = self.q_proj(hidden_state)
key = self.k_proj(hidden_state)
value = self.v_proj(hidden_state)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attn_weights = torch.matmul(query, key.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return output, attn_weights
class MllamaVisionSdpaAttention(MllamaVisionAttention):
# Adapted from MllamaVisionAttention
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
) -> torch.Tensor:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
if output_attentions:
logger.warning_once(
"MllamaModel is using MllamaVisionSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_state=hidden_state,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
query = self.q_proj(hidden_state)
key = self.k_proj(hidden_state)
value = self.v_proj(hidden_state)
batch_size, q_seq_len, _ = query.shape
_, kv_seq_len, _ = key.shape
query = query.view(batch_size, q_seq_len, self.num_heads, self.head_dim)
key = key.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
value = value.view(batch_size, kv_seq_len, self.num_heads, self.head_dim)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
attn_output = F.scaled_dot_product_attention(query, key, value, attn_mask=attention_mask)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, q_seq_len, -1)
output = self.o_proj(attn_output)
return output, None
MLLAMA_VISION_ATTENTION_CLASSES = {"eager": MllamaVisionAttention, "sdpa": MllamaVisionSdpaAttention}
class MllamaVisionEncoderLayer(nn.Module):
def __init__(self, config: MllamaVisionConfig, is_gated: bool = False):
super().__init__()
self.hidden_size = config.hidden_size
self.num_attention_heads = config.attention_heads
self.is_gated = is_gated
self.intermediate_size = config.intermediate_size
self.self_attn = MLLAMA_VISION_ATTENTION_CLASSES[config._attn_implementation](config)
self.mlp = MllamaVisionMLP(config)
self.input_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps)
self.post_attention_layernorm = nn.LayerNorm(self.hidden_size, eps=config.norm_eps)
if is_gated:
self.gate_attn = nn.Parameter(torch.ones(1) * math.pi / 4)
self.gate_ffn = nn.Parameter(torch.ones(1) * math.pi / 4)
def forward(
self,
hidden_state: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = None,
):
# Self Attention
residual = hidden_state
hidden_state = self.input_layernorm(hidden_state)
hidden_state, attn_weights = self.self_attn(hidden_state, attention_mask=attention_mask)
if self.is_gated:
hidden_state = self.gate_attn.tanh() * hidden_state
hidden_state = residual + hidden_state
# Feed forward
residual = hidden_state
hidden_state = self.post_attention_layernorm(hidden_state)
hidden_state = self.mlp(hidden_state)
if self.is_gated:
hidden_state = self.gate_ffn.tanh() * hidden_state
hidden_state = residual + hidden_state
outputs = (hidden_state,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class MllamaVisionEncoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`MllamaEncoderLayer`].
Args:
config: MllamaConfig
"""
def __init__(self, config: MllamaVisionConfig, num_layers=32, is_gated=False):
super().__init__()
self.config = config
self.layers = nn.ModuleList([MllamaVisionEncoderLayer(config, is_gated) for _ in range(num_layers)])
self.gradient_checkpointing = False
self.config = config
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_state=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = layer_outputs[0]
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->MllamaText
class MllamaTextRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
MllamaTextRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class MllamaTextCrossAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
config: Optional[MllamaTextConfig] = None,
layer_idx: Optional[int] = None,
):
super().__init__()
self.config = config
self.num_heads = self.config.num_attention_heads
self.num_key_value_heads = self.config.num_key_value_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.head_dim = config.hidden_size // self.num_heads
self.layer_idx = layer_idx
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
self.q_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = MllamaTextRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: bool = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = self.q_norm(query_states)
if cross_attention_states is not None:
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_states = self.k_norm(key_states)
if past_key_value is not None:
# if we have a new image + new tokens, we only computed key_states on that new image
# we still update the cross key states, past_image, new_image. And use it!
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_value.key_cache[self.layer_idx],
past_key_value.value_cache[self.layer_idx],
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class MllamaTextCrossSdpaAttention(MllamaTextCrossAttention):
"""
Mllama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
`MllamaTextCrossAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
SDPA API.
"""
# Adapted from MllamaTextCrossAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
use_cache: bool = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MllamaModel is using MllamaTextCrossSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
cross_attention_states=cross_attention_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
query_states = self.q_norm(query_states)
if cross_attention_states is not None:
key_states = self.k_proj(cross_attention_states)
value_states = self.v_proj(cross_attention_states)
key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2)
if past_key_value is not None:
# if we have a new image + new tokens, we only computed key_states on that new image
# we still update the cross key states, past_image, new_image. And use it!
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
elif cache_position[0] != 0:
key_states, value_states = (
past_key_value.key_cache[self.layer_idx],
past_key_value.value_cache[self.layer_idx],
)
else:
raise ValueError(
"Cross attention layer can't find neither `cross_attn_states` nor cached values for key/values!"
)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
key_states = self.k_norm(key_states)
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and attention_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if attention_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class MllamaTextSelfAttention(nn.Module):
def __init__(self, config: MllamaTextConfig, layer_idx: int):
super().__init__()
self.config = config
self.num_heads = config.num_attention_heads
self.dropout = config.dropout
self.hidden_size = config.hidden_size
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // self.num_heads
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.rope_theta = config.rope_theta
self.layer_idx = layer_idx
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value=None,
cache_position=None,
**kwargs,
):
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class MllamaTextSelfSdpaAttention(MllamaTextSelfAttention):
# Adapted from MllamaTextSelfAttention
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
position_embeddings: torch.Tensor,
output_attentions: bool = False,
use_cache: bool = False,
past_key_value=None,
cache_position=None,
**kwargs,
):
if output_attentions:
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"MllamaModel is using MllamaTextSelfSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_embeddings=position_embeddings,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
causal_mask = attention_mask
if attention_mask is not None:
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
if query_states.device.type == "cuda" and causal_mask is not None:
query_states = query_states.contiguous()
key_states = key_states.contiguous()
value_states = value_states.contiguous()
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
is_causal = True if causal_mask is None and q_len > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=causal_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(bsz, q_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, None, past_key_value
MLLAMA_TEXT_CROSS_ATTENTION_CLASSES = {"eager": MllamaTextCrossAttention, "sdpa": MllamaTextCrossSdpaAttention}
MLLAMA_TEXT_ATTENTION_CLASSES = {"eager": MllamaTextSelfAttention, "sdpa": MllamaTextSelfSdpaAttention}
# Copied from transformers.models.gemma2.modeling_gemma2.Gemma2MLP with Gemma2->MllamaText
class MllamaTextMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
# Ignore copy
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer
class MllamaSelfAttentionDecoderLayer(nn.Module):
def __init__(self, config: MllamaTextConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = MLLAMA_TEXT_ATTENTION_CLASSES[config._attn_implementation](config=config, layer_idx=layer_idx)
self.mlp = MllamaTextMLP(config)
self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*):
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
query_sequence_length, key_sequence_length)` if default attention is used.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence
position_embeddings (`Tuple[torch.FloatTensor, torch.FloatTensor]`, *optional*):
Tuple containing the cosine and sine positional embeddings of shape `(batch_size, seq_len, head_dim)`,
with `head_dim` being the embedding dimension of each attention head.
kwargs (`dict`, *optional*):
Arbitrary kwargs to be ignored, used for FSDP and other methods that injects code
into the model
"""
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class MllamaCrossAttentionDecoderLayer(torch.nn.Module):
"""Cross-attention transformer block with tanh-gated attention and feedforward."""
def __init__(self, config: MllamaTextConfig, layer_idx: int) -> None:
super().__init__()
self.layer_idx = layer_idx
self.cross_attn = MLLAMA_TEXT_CROSS_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
self.input_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross_attn_attn_gate = torch.nn.Parameter(torch.zeros(1))
self.mlp = MllamaTextMLP(config)
self.post_attention_layernorm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.cross_attn_mlp_gate = torch.nn.Parameter(torch.zeros(1))
def forward(
self,
hidden_states: torch.Tensor,
cross_attention_states: torch.Tensor,
cross_attention_mask: torch.Tensor,
attention_mask: torch.Tensor,
full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor],
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, attn_weights, past_key_value = self.cross_attn(
hidden_states=hidden_states,
attention_mask=cross_attention_mask,
cross_attention_states=cross_attention_states,
past_key_value=past_key_value,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = residual + self.cross_attn_attn_gate.tanh() * hidden_states
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
if full_text_row_masked_out_mask is not None:
hidden_states = full_text_row_masked_out_mask[:, 0] * hidden_states # type: ignore
hidden_states = residual + self.cross_attn_mlp_gate.tanh() * hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
class MllamaRotaryEmbedding(nn.Module):
def __init__(self, config: MllamaTextConfig, device=None):
super().__init__()
self.rope_type = config.rope_scaling["rope_type"]
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(
self.config, device, seq_len=seq_len, **self.rope_kwargs
)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class MllamaPreTrainedModel(PreTrainedModel):
config_class = MllamaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = [
"MllamaVisionEncoderLayer",
"MllamaCrossAttentionDecoderLayer",
"MllamaSelfAttentionDecoderLayer",
]
_supports_cache_class = True
_supports_static_cache = False # static cache cannot have different shapes for each layer
_supports_sdpa = True
_supports_quantized_cache = True
def _init_weights(self, module):
std = self.config.get_text_config().initializer_range
if isinstance(module, (nn.Linear, nn.Conv2d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.Parameter):
module.data.normal_(mean=0.0, std=std)
elif isinstance(module, MllamaVisionModel):
nn.init.normal_(module.class_embedding.data, std=std)
elif isinstance(module, MllamaPrecomputedPositionEmbedding):
nn.init.normal_(module.embedding.data, std=std)
elif isinstance(module, MllamaVisionEncoderLayer) and module.is_gated:
nn.init.normal_(module.gate_attn.data, std=std)
nn.init.normal_(module.gate_ffn.data, std=std)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
MLLAMA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MllamaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MLLAMA_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`MllamaImageProcessor.__call__`] for details ([]`MllamaProcessor`] uses
[`MllamaImageProcessor`] for processing images).
aspect_ratio_mask (`torch.Tensor` of shape `(batch_size, max_num_images, max_num_tiles)`, *optional*):
Mask to avoid performing attention on padding tiles. Mask values selected in `[0, 1]`:
- 1 for tiles that are **not masked**,
- 0 for tiles that are **masked**.
aspect_ratio_ids (`torch.Tensor` of shape `(batch_size, max_num_images)`, *optional*):
Aspect ratio ids used to select the appropriate precomputed tile embeddings based on the aspect ratio of each input image.
These ids correspond to indices in the model's list of supported aspect ratios, offset by 1.
For example, if the model supports aspect ratios [[1, 1], [1, 2], [2, 1]]:
- An image with aspect ratio [1, 1] would have ID 1
- An image with aspect ratio [1, 2] would have ID 2
- An image with aspect ratio [2, 1] would have ID 3
The id 0 is reserved for padding (i.e., no image).
If an image has aspect ratio [1, 2], that means it was split into 2 tiles horizontally, and its `aspect_ratio_id` would be 2.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MLLAMA_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attention_mask (`torch.Tensor` of shape `(batch_size, seq_length, max_num_images, max_num_tiles)`, *optional*):
Cross-attention mask to control the interaction between text tokens and image tiles.
This 4D tensor defines which image tiles each text token should attend to.
For each text token (in seq_length):
- 1 indicates the token **should attend** to the corresponding image tile
- 0 indicates the token **should not attend** to the corresponding image tile
cross_attention_states (`torch.FloatTensor`, *optional*):
Output of the vision model, used for cross-attention. This tensor contains the processed image features that
the language model will attend to.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
MLLAMA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, max_num_images, max_num_tiles, channels, image_size, image_size)):
The tensors corresponding to the input images. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`MllamaImageProcessor.__call__`] for details ([]`MllamaProcessor`] uses
[`MllamaImageProcessor`] for processing images).
aspect_ratio_mask (`torch.Tensor` of shape `(batch_size, max_num_images, max_num_tiles)`, *optional*):
Mask to avoid performing attention on padding tiles. Mask values selected in `[0, 1]`:
- 1 for tiles that are **not masked**,
- 0 for tiles that are **masked**.
aspect_ratio_ids (`torch.Tensor` of shape `(batch_size, max_num_images)`, *optional*):
Aspect ratio ids used to select the appropriate precomputed tile embeddings based on the aspect ratio of each input image.
These ids correspond to indices in the model's list of supported aspect ratios, offset by 1.
For example, if the model supports aspect ratios [[1, 1], [1, 2], [2, 1]]:
- An image with aspect ratio [1, 1] would have ID 1
- An image with aspect ratio [1, 2] would have ID 2
- An image with aspect ratio [2, 1] would have ID 3
The id 0 is reserved for padding (i.e., no image).
If an image has aspect ratio [1, 2], that means it was split into 2 tiles horizontally, and its `aspect_ratio_id` would be 2.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attention_mask (`torch.Tensor` of shape `(batch_size, seq_length, max_num_images, max_num_tiles)`, *optional*):
Cross-attention mask to control the interaction between text tokens and image tiles.
This 4D tensor defines which image tiles each text token should attend to.
For each text token (in seq_length):
- 1 indicates the token **should attend** to the corresponding image tile
- 0 indicates the token **should not attend** to the corresponding image tile
cross_attention_states (`torch.FloatTensor`, *optional*):
Output of the vision model, used for cross-attention. This tensor contains the processed image features that
the language model will attend to.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"""The Mllama Vision Model which consists of two vision encoders.""",
MLLAMA_START_DOCSTRING,
)
class MllamaVisionModel(MllamaPreTrainedModel):
config_class = MllamaVisionConfig
base_model_prefix = "vision_model"
def __init__(self, config: MllamaVisionConfig):
super().__init__(config)
self.image_size = config.image_size
self.patch_size = config.patch_size
self.max_num_tiles = config.max_num_tiles
self.hidden_size = config.hidden_size
self.num_channels = config.num_channels
self.intermediate_layers_indices = config.intermediate_layers_indices
self.num_patches = (self.image_size // self.patch_size) ** 2 + 1
self.scale = config.hidden_size**-0.5
self.patch_embedding = nn.Conv2d(
in_channels=config.num_channels,
out_channels=self.hidden_size,
kernel_size=self.patch_size,
stride=self.patch_size,
padding="valid",
bias=False,
)
self.class_embedding = nn.Parameter(self.scale * torch.randn(self.hidden_size))
self.gated_positional_embedding = MllamaPrecomputedPositionEmbedding(config)
self.pre_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
self.post_tile_positional_embedding = MllamaPrecomputedAspectRatioEmbedding(config, is_gated=True)
# layer norms
self.layernorm_pre = nn.LayerNorm(self.hidden_size)
self.layernorm_post = nn.LayerNorm(self.hidden_size)
# encoders
self.transformer = MllamaVisionEncoder(config, config.num_hidden_layers, is_gated=False)
self.global_transformer = MllamaVisionEncoder(config, config.num_global_layers, is_gated=True)
self.post_init()
def get_input_embeddings(self):
"""
This function is used to fetch the first embedding layer to activate grads on inputs.
"""
return self.patch_embedding
def apply_class_embedding(self, hidden_state: torch.Tensor) -> torch.Tensor:
batch_size, _, hidden_size = hidden_state.shape
class_embedding = self.class_embedding.expand(batch_size, 1, hidden_size)
hidden_state = torch.cat([class_embedding, hidden_state], dim=1)
return hidden_state
@add_start_docstrings_to_model_forward(MLLAMA_VISION_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class="MllamaVisionConfig")
def forward(
self,
pixel_values: torch.Tensor,
aspect_ratio_ids: torch.Tensor,
aspect_ratio_mask: torch.Tensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[BaseModelOutput, Tuple[torch.Tensor, ...]]:
r"""
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MllamaVisionModel
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaVisionModel.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> output = model(**inputs)
>>> print(output.last_hidden_state.shape)
torch.Size([1, 1, 4, 1025, 7680])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, num_concurrent_media, num_tiles, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_concurrent_media * num_tiles, num_channels, height, width)
aspect_ratio_ids = aspect_ratio_ids.reshape(batch_size * num_concurrent_media, -1)
# Patch embedding
patch_embeds = self.patch_embedding(pixel_values.to(self.dtype).to(self.device))
hidden_state = patch_embeds.flatten(2).transpose(1, 2)
# Tile embeddings
_, num_patches, dim = hidden_state.shape
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, -1, dim)
hidden_state = self.pre_tile_positional_embedding(hidden_state, aspect_ratio_ids)
# Add cls token
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media * num_tiles, num_patches, dim)
hidden_state = self.apply_class_embedding(hidden_state)
num_patches += 1
# Position embeddings
hidden_state = hidden_state.reshape(batch_size * num_concurrent_media, num_tiles, num_patches, dim)
hidden_state = self.gated_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = self.layernorm_pre(hidden_state)
# Compute the number of tokens to pad
num_padding_patches = (8 - (hidden_state.shape[-2] % 8)) % 8
# Compute padding tuple for pad function
padding = (0, 0, 0, num_padding_patches) # (pad_left, pad_right, pad_left for dim -2, pad_right for dim -2)
# Pad the tensor
hidden_state = F.pad(hidden_state, padding, mode="constant", value=0)
slice_index = -num_padding_patches if num_padding_patches > 0 else None
# Prepare attention mask
attention_mask = aspect_ratio_mask.reshape(batch_size * num_concurrent_media, -1)
attention_mask = _prepare_aspect_ratio_attention_mask(
aspect_ratio_mask=attention_mask,
num_patches=self.num_patches,
target_length=hidden_state.shape[2],
dtype=self.dtype,
)
# Apply encoder
hidden_state = hidden_state.view(batch_size * num_concurrent_media, -1, dim)
output = self.transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=True,
output_attentions=output_attentions,
)
hidden_state = output[0]
hidden_state = self.layernorm_post(hidden_state)
# Apply global encoder
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = self.post_tile_positional_embedding(hidden_state, aspect_ratio_ids)
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles * (num_patches + num_padding_patches), dim
)
global_output = self.global_transformer(
hidden_state,
attention_mask=attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
hidden_state = global_output[0]
# Remove padding form hidden state
hidden_state = hidden_state.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, dim
)
hidden_state = hidden_state[:, :, :slice_index]
hidden_state = hidden_state.reshape(batch_size, num_concurrent_media, num_tiles, num_patches, dim)
# Collect intermediate layer outputs from encoder output
all_intermediate_hidden_states = [output[1][i] for i in self.intermediate_layers_indices]
intermediate_hidden_states = torch.stack(all_intermediate_hidden_states, dim=-1)
# Remove padding from intermediate hidden states
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size * num_concurrent_media, num_tiles, num_patches + num_padding_patches, -1
)
intermediate_hidden_states = intermediate_hidden_states[:, :, :slice_index]
intermediate_hidden_states = intermediate_hidden_states.reshape(
batch_size, num_concurrent_media, num_tiles, num_patches, -1
)
# Concatenate final hidden state and intermediate hidden states
hidden_state = torch.cat([hidden_state, intermediate_hidden_states], dim=-1)
if output_hidden_states:
hidden_states = tuple(all_intermediate_hidden_states) + tuple(global_output[1])
else:
hidden_states = None
if output_attentions:
# global transformer in contrast to `self.transformer` doesn't always return hidden states so we might go index out-of-range
global_attn = tuple(global_output[2]) if output_hidden_states else tuple(global_output[1])
attentions = tuple(output[2]) + global_attn
else:
attentions = None
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states, attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_state,
hidden_states=hidden_states,
attentions=attentions,
)
@add_start_docstrings(
"""The Mllama Text Model which consists of transformer with self and cross attention layers.""",
MLLAMA_START_DOCSTRING,
)
class MllamaTextModel(MllamaPreTrainedModel):
config_class = MllamaTextConfig
base_model_prefix = "language_model.model"
def __init__(self, config: MllamaTextConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size + 8, config.hidden_size, self.padding_idx)
self.cross_attention_layers = config.cross_attention_layers
layers = []
for layer_idx in range(config.num_hidden_layers):
if layer_idx in self.cross_attention_layers:
layers.append(MllamaCrossAttentionDecoderLayer(config, layer_idx))
else:
layers.append(MllamaSelfAttentionDecoderLayer(config, layer_idx))
self.layers = nn.ModuleList(layers)
self.norm = MllamaTextRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MllamaRotaryEmbedding(config=config)
self.gradient_checkpointing = False
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(MLLAMA_TEXT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPast, config_class="MllamaTextConfig")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.FloatTensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
"""
Returns:
Example:
```python
>>> from transformers import AutoProcessor, MllamaTextModel
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaTextModel.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> text = "<|image|>If I had to write a haiku for this one"
>>> inputs = processor(text=text, return_tensors="pt")
>>> output = model(**inputs)
>>> print(output.last_hidden_state.shape)
torch.Size([1, 13, 4096])
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
next_decoder_cache = None
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
# For text-only path we should skip cross attention layers.
# Let's check if the layer is cross attention layer and if we have cross attention states
# or cached cross attention states.
is_cross_attention_layer = idx in self.cross_attention_layers
is_cross_attention_cache_empty = past_key_values is None or (
past_key_values is not None and past_key_values.get_seq_length(idx) == 0
)
if is_cross_attention_layer and cross_attention_states is None and is_cross_attention_cache_empty:
continue
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
cross_attention_states,
cross_attention_mask,
causal_mask,
full_text_row_masked_out_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
position_embeddings,
)
else:
layer_outputs = decoder_layer(
hidden_states,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
attention_mask=causal_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
@add_start_docstrings(
"""The Mllama Text Model with a language modeling head on top.""",
MLLAMA_START_DOCSTRING,
)
class MllamaForCausalLM(MllamaPreTrainedModel, GenerationMixin):
config_class = MllamaTextConfig
_supports_static_cache = True # only the LLM without cross attn can do compile
base_model_prefix = "language_model"
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config):
super().__init__(config.get_text_config())
self.text_config = config.get_text_config()
self.vocab_size = self.text_config.vocab_size
self.model = MllamaTextModel._from_config(self.text_config)
self.lm_head = nn.Linear(self.text_config.hidden_size, self.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaTextConfig")
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
cross_attention_states: Optional[torch.LongTensor] = None,
cross_attention_mask: Optional[torch.LongTensor] = None,
full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MllamaForCausalLM
>>> model = MllamaForCausalLM.from_pretrained("Llama-3.2-11B-Vision")
>>> tokenizer = AutoTokenizer.from_pretrained("Llama-3.2-11B-Vision")
>>> prompt = "If I had to write a haiku, it would be:"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=40, do_sample=True, temperature=0.6)
>>> result = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
>>> print(result)
If I had to write a haiku, it would be: "Snowflakes gently fall" - simple, yet peaceful.
I love the idea of snowflakes gently falling, each one
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
cross_attention_states=cross_attention_states,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :]).float()
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""The Mllama model which consists of a vision encoder and a language model.""",
MLLAMA_START_DOCSTRING,
)
class MllamaForConditionalGeneration(MllamaPreTrainedModel, GenerationMixin):
_supports_quantized_cache = False # quant cache not supported in encoder-decoder setting
def __init__(self, config: MllamaConfig):
super().__init__(config)
self.vocab_size = config.text_config.vocab_size
self.hidden_size = config.text_config.hidden_size
self.max_num_tiles = config.vision_config.max_num_tiles
self.vision_output_dim = config.vision_config.vision_output_dim
self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1
self.vision_model = MllamaVisionModel._from_config(config.vision_config)
self.language_model = MllamaForCausalLM._from_config(config.text_config)
if self.language_model._tied_weights_keys is not None:
self._tied_weights_keys = [f"language_model.{k}" for k in self.language_model._tied_weights_keys]
self.multi_modal_projector = nn.Linear(
config.vision_config.vision_output_dim,
config.text_config.hidden_size,
bias=True,
)
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def get_output_embeddings(self):
return self.language_model.get_output_embeddings()
def set_output_embeddings(self, new_embeddings):
self.language_model.set_output_embeddings(new_embeddings)
def set_decoder(self, decoder):
self.language_model.set_decoder(decoder)
def get_decoder(self):
return self.language_model.get_decoder()
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(MLLAMA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class="MllamaConfig")
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
aspect_ratio_mask: Optional[torch.Tensor] = None,
aspect_ratio_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
cross_attention_mask: Optional[torch.Tensor] = None,
cross_attention_states: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, MllamaForConditionalGeneration
>>> checkpoint = "meta-llama/Llama-3.2-11B-Vision"
>>> model = MllamaForConditionalGeneration.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> prompt = "<|image|>If I had to write a haiku for this one"
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(text=prompt, images=image, return_tensors="pt")
>>> # Generate
>>> output = model.generate(**inputs, max_new_tokens=15)
>>> prompt_len = inputs.input_ids.shape[-1]
>>> generated_ids = output[:, prompt_len:]
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
>>> print(generated_text)
[', it would be:.\\nA stop sign in Chinatown.\\n']
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if pixel_values is not None and inputs_embeds is not None:
raise ValueError(
"You cannot specify both pixel_values and inputs_embeds at the same time, and must specify either one"
)
if pixel_values is not None and cross_attention_states is not None:
raise ValueError("`pixel_values` and `cross_attention_states` cannot be provided simultaneously")
if pixel_values is not None:
if aspect_ratio_ids is None:
raise ValueError("`aspect_ratio_ids` must be provided if `pixel_values` is provided")
# get vision tokens from vision model
vision_outputs = self.vision_model(
pixel_values=pixel_values,
aspect_ratio_ids=aspect_ratio_ids,
aspect_ratio_mask=aspect_ratio_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
)
cross_attention_states = vision_outputs[0]
cross_attention_states = self.multi_modal_projector(cross_attention_states).reshape(
-1, cross_attention_states.shape[-2], self.hidden_size
)
if cross_attention_mask is not None:
cross_attention_mask, full_text_row_masked_out_mask = _prepare_cross_attention_mask(
cross_attention_mask,
num_vision_tokens=self.vision_model.num_patches,
dtype=self.dtype,
)
else:
full_text_row_masked_out_mask = None
if cross_attention_mask is not None and cache_position is not None:
cross_attention_mask = cross_attention_mask[:, :, cache_position]
full_text_row_masked_out_mask = full_text_row_masked_out_mask[:, :, cache_position]
outputs = self.language_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
cross_attention_states=cross_attention_states,
cross_attention_mask=cross_attention_mask,
full_text_row_masked_out_mask=full_text_row_masked_out_mask,
past_key_values=past_key_values,
use_cache=use_cache,
inputs_embeds=inputs_embeds,
labels=labels,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
)
return outputs
def prepare_inputs_for_generation(
self,
input_ids=None,
inputs_embeds=None,
attention_mask=None,
position_ids=None,
pixel_values=None,
aspect_ratio_ids=None,
aspect_ratio_mask=None,
cross_attention_mask=None,
past_key_values=None,
use_cache=False,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if past_key_values is not None:
if (
inputs_embeds is not None # Exception 1
or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
# TODO: we have no attention_mask so this won't work, check if we really won't need attention mask and find another way
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if logits_to_keep is not None:
model_inputs["logits_to_keep"] = logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"cross_attention_mask": cross_attention_mask,
}
)
# If we're in pre-fill or cacheless decoding step, then we need pixel_values and aspect ratios
# to compute image hidden states, otherwise they are cached within each cross attn layer
if cache_position[0] == 0:
model_inputs["pixel_values"] = pixel_values
model_inputs["aspect_ratio_ids"] = aspect_ratio_ids
model_inputs["aspect_ratio_mask"] = aspect_ratio_mask
return model_inputs
def _update_model_kwargs_for_generation(self, outputs, model_kwargs, is_encoder_decoder, **kwargs):
cross_attention_mask_prev = model_kwargs.get("cross_attention_mask", None)
model_kwargs = super()._update_model_kwargs_for_generation(
outputs=outputs,
model_kwargs=model_kwargs,
is_encoder_decoder=is_encoder_decoder,
**kwargs,
)
# add cross-attn mask for new token
if cross_attention_mask_prev is not None:
model_kwargs["cross_attention_mask"] = torch.cat(
[cross_attention_mask_prev, cross_attention_mask_prev[:, -1:, ...]], dim=1
)
return model_kwargs
__all__ = [
"MllamaForConditionalGeneration",
"MllamaForCausalLM",
"MllamaTextModel",
"MllamaVisionModel",
"MllamaPreTrainedModel",
]
| transformers/src/transformers/models/mllama/modeling_mllama.py/0 | {
"file_path": "transformers/src/transformers/models/mllama/modeling_mllama.py",
"repo_id": "transformers",
"token_count": 45066
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MobileViTV2 model configuration"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MobileViTV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MobileViTV2Model`]. It is used to instantiate a
MobileViTV2 model according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the MobileViTV2
[apple/mobilevitv2-1.0](https://huggingface.co/apple/mobilevitv2-1.0) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
image_size (`int`, *optional*, defaults to 256):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 2):
The size (resolution) of each patch.
expand_ratio (`float`, *optional*, defaults to 2.0):
Expansion factor for the MobileNetv2 layers.
hidden_act (`str` or `function`, *optional*, defaults to `"swish"`):
The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
conv_kernel_size (`int`, *optional*, defaults to 3):
The size of the convolutional kernel in the MobileViTV2 layer.
output_stride (`int`, *optional*, defaults to 32):
The ratio of the spatial resolution of the output to the resolution of the input image.
classifier_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for attached classifiers.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
aspp_out_channels (`int`, *optional*, defaults to 512):
Number of output channels used in the ASPP layer for semantic segmentation.
atrous_rates (`List[int]`, *optional*, defaults to `[6, 12, 18]`):
Dilation (atrous) factors used in the ASPP layer for semantic segmentation.
aspp_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the ASPP layer for semantic segmentation.
semantic_loss_ignore_index (`int`, *optional*, defaults to 255):
The index that is ignored by the loss function of the semantic segmentation model.
n_attn_blocks (`List[int]`, *optional*, defaults to `[2, 4, 3]`):
The number of attention blocks in each MobileViTV2Layer
base_attn_unit_dims (`List[int]`, *optional*, defaults to `[128, 192, 256]`):
The base multiplier for dimensions of attention blocks in each MobileViTV2Layer
width_multiplier (`float`, *optional*, defaults to 1.0):
The width multiplier for MobileViTV2.
ffn_multiplier (`int`, *optional*, defaults to 2):
The FFN multiplier for MobileViTV2.
attn_dropout (`float`, *optional*, defaults to 0.0):
The dropout in the attention layer.
ffn_dropout (`float`, *optional*, defaults to 0.0):
The dropout between FFN layers.
Example:
```python
>>> from transformers import MobileViTV2Config, MobileViTV2Model
>>> # Initializing a mobilevitv2-small style configuration
>>> configuration = MobileViTV2Config()
>>> # Initializing a model from the mobilevitv2-small style configuration
>>> model = MobileViTV2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mobilevitv2"
def __init__(
self,
num_channels=3,
image_size=256,
patch_size=2,
expand_ratio=2.0,
hidden_act="swish",
conv_kernel_size=3,
output_stride=32,
classifier_dropout_prob=0.1,
initializer_range=0.02,
layer_norm_eps=1e-5,
aspp_out_channels=512,
atrous_rates=[6, 12, 18],
aspp_dropout_prob=0.1,
semantic_loss_ignore_index=255,
n_attn_blocks=[2, 4, 3],
base_attn_unit_dims=[128, 192, 256],
width_multiplier=1.0,
ffn_multiplier=2,
attn_dropout=0.0,
ffn_dropout=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.num_channels = num_channels
self.image_size = image_size
self.patch_size = patch_size
self.expand_ratio = expand_ratio
self.hidden_act = hidden_act
self.conv_kernel_size = conv_kernel_size
self.output_stride = output_stride
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.n_attn_blocks = n_attn_blocks
self.base_attn_unit_dims = base_attn_unit_dims
self.width_multiplier = width_multiplier
self.ffn_multiplier = ffn_multiplier
self.ffn_dropout = ffn_dropout
self.attn_dropout = attn_dropout
self.classifier_dropout_prob = classifier_dropout_prob
# decode head attributes for semantic segmentation
self.aspp_out_channels = aspp_out_channels
self.atrous_rates = atrous_rates
self.aspp_dropout_prob = aspp_dropout_prob
self.semantic_loss_ignore_index = semantic_loss_ignore_index
class MobileViTV2OnnxConfig(OnnxConfig):
torch_onnx_minimum_version = version.parse("1.11")
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict([("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"})])
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
if self.task == "image-classification":
return OrderedDict([("logits", {0: "batch"})])
else:
return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
@property
def atol_for_validation(self) -> float:
return 1e-4
__all__ = ["MobileViTV2Config", "MobileViTV2OnnxConfig"]
| transformers/src/transformers/models/mobilevitv2/configuration_mobilevitv2.py/0 | {
"file_path": "transformers/src/transformers/models/mobilevitv2/configuration_mobilevitv2.py",
"repo_id": "transformers",
"token_count": 2769
} |
# coding=utf-8
# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch mT5 model."""
import copy
import math
import os
import warnings
from typing import List, Optional, Tuple, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import AttentionMaskConverter
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Seq2SeqQuestionAnsweringModelOutput,
Seq2SeqSequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
DUMMY_INPUTS,
DUMMY_MASK,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torch_fx_proxy,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.model_parallel_utils import assert_device_map, get_device_map
from .configuration_mt5 import MT5Config
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "MT5Config"
_CHECKPOINT_FOR_DOC = "mt5-small"
####################################################
# This dict contains ids and associated url
# for the pretrained weights provided with the models
####################################################
PARALLELIZE_DOCSTRING = r"""
This is an experimental feature and is a subject to change at a moment's notice.
Uses a device map to distribute attention modules of the model across several devices. If no device map is given,
it will evenly distribute blocks across all devices.
Args:
device_map (`Dict[int, list]`, *optional*):
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
automatically mapped to the first device (for esoteric reasons). That means that the first device should
have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the
following number of attention modules:
- mt5-small: 6
- mt5-base: 12
- mt5-large: 24
- mt5-xl: 24
- mt5-xxl: 24
Example:
```python
# Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules:
model = MT5ForConditionalGeneration.from_pretrained("mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map)
```
"""
DEPARALLELIZE_DOCSTRING = r"""
Moves the model to cpu from a model parallel state.
Example:
```python
# On a 4 GPU machine with mt5-xl:
model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl")
device_map = {
0: [0, 1, 2],
1: [3, 4, 5, 6, 7, 8, 9],
2: [10, 11, 12, 13, 14, 15, 16],
3: [17, 18, 19, 20, 21, 22, 23],
}
model.parallelize(device_map) # Splits the model across several devices
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
```
"""
# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5
class MT5LayerNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Construct a layernorm module in the MT5 style. No bias and no subtraction of mean.
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
# MT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean
# Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated
# w/o mean and there is no bias. Additionally we want to make sure that the accumulation for
# half-precision inputs is done in fp32
variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
# convert into half-precision if necessary
if self.weight.dtype in [torch.float16, torch.bfloat16]:
hidden_states = hidden_states.to(self.weight.dtype)
return self.weight * hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->MT5
class MT5DenseActDense(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
self.wi = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_states = self.wi(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->MT5
class MT5DenseGatedActDense(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False)
self.wo = nn.Linear(config.d_ff, config.d_model, bias=False)
self.dropout = nn.Dropout(config.dropout_rate)
self.act = ACT2FN[config.dense_act_fn]
def forward(self, hidden_states):
hidden_gelu = self.act(self.wi_0(hidden_states))
hidden_linear = self.wi_1(hidden_states)
hidden_states = hidden_gelu * hidden_linear
hidden_states = self.dropout(hidden_states)
# To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32.
# See https://github.com/huggingface/transformers/issues/20287
# we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None``
if (
isinstance(self.wo.weight, torch.Tensor)
and hidden_states.dtype != self.wo.weight.dtype
and self.wo.weight.dtype != torch.int8
):
hidden_states = hidden_states.to(self.wo.weight.dtype)
hidden_states = self.wo(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->MT5
class MT5LayerFF(nn.Module):
def __init__(self, config: MT5Config):
super().__init__()
if config.is_gated_act:
self.DenseReluDense = MT5DenseGatedActDense(config)
else:
self.DenseReluDense = MT5DenseActDense(config)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, hidden_states):
forwarded_states = self.layer_norm(hidden_states)
forwarded_states = self.DenseReluDense(forwarded_states)
hidden_states = hidden_states + self.dropout(forwarded_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->MT5
class MT5Attention(nn.Module):
def __init__(
self,
config: MT5Config,
has_relative_attention_bias=False,
layer_idx: Optional[int] = None,
):
super().__init__()
self.is_decoder = config.is_decoder
self.has_relative_attention_bias = has_relative_attention_bias
self.relative_attention_num_buckets = config.relative_attention_num_buckets
self.relative_attention_max_distance = config.relative_attention_max_distance
self.d_model = config.d_model
self.key_value_proj_dim = config.d_kv
self.n_heads = config.num_heads
self.dropout = config.dropout_rate
self.inner_dim = self.n_heads * self.key_value_proj_dim
self.layer_idx = layer_idx
if layer_idx is None and self.is_decoder:
logger.warning_once(
f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and "
"will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
# Mesh TensorFlow initialization to avoid scaling before softmax
self.q = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.k = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.v = nn.Linear(self.d_model, self.inner_dim, bias=False)
self.o = nn.Linear(self.inner_dim, self.d_model, bias=False)
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
self.pruned_heads = set()
self.gradient_checkpointing = False
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads
)
# Prune linear layers
self.q = prune_linear_layer(self.q, index)
self.k = prune_linear_layer(self.k, index)
self.v = prune_linear_layer(self.v, index)
self.o = prune_linear_layer(self.o, index, dim=1)
# Update hyper params
self.n_heads = self.n_heads - len(heads)
self.inner_dim = self.key_value_proj_dim * self.n_heads
self.pruned_heads = self.pruned_heads.union(heads)
@staticmethod
def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
"""
Adapted from Mesh Tensorflow:
https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593
Translate relative position to a bucket number for relative attention. The relative position is defined as
memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to
position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for
small absolute relative_position and larger buckets for larger absolute relative_positions. All relative
positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket.
This should allow for more graceful generalization to longer sequences than the model has been trained on
Args:
relative_position: an int32 Tensor
bidirectional: a boolean - whether the attention is bidirectional
num_buckets: an integer
max_distance: an integer
Returns:
a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets)
"""
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += (relative_position > 0).to(torch.long) * num_buckets
relative_position = torch.abs(relative_position)
else:
relative_position = -torch.min(relative_position, torch.zeros_like(relative_position))
# now relative_position is in the range [0, inf)
# half of the buckets are for exact increments in positions
max_exact = num_buckets // 2
is_small = relative_position < max_exact
# The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
relative_position_if_large = max_exact + (
torch.log(relative_position.float() / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).to(torch.long)
relative_position_if_large = torch.min(
relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1)
)
relative_buckets += torch.where(is_small, relative_position, relative_position_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length, device=None, cache_position=None):
"""Compute binned relative position bias"""
if device is None:
device = self.relative_attention_bias.weight.device
if cache_position is None:
context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
else:
context_position = cache_position[:, None].to(device)
memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
relative_position = memory_position - context_position # shape (query_length, key_length)
relative_position_bucket = self._relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional=(not self.is_decoder),
num_buckets=self.relative_attention_num_buckets,
max_distance=self.relative_attention_max_distance,
)
values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads)
values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length)
return values
def forward(
self,
hidden_states,
mask=None,
key_value_states=None,
position_bias=None,
past_key_value=None,
layer_head_mask=None,
query_length=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
"""
Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
"""
# Input is (batch_size, seq_length, dim)
# Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder)
batch_size, seq_length = hidden_states.shape[:2]
# if key_value_states are provided this layer is used as a cross-attention layer for the decoder
is_cross_attention = key_value_states is not None
query_states = self.q(hidden_states)
query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
is_updated = past_key_value.is_updated.get(self.layer_idx)
if is_cross_attention:
# after the first generated id, we can subsequently re-use all key/value_states from cache
curr_past_key_value = past_key_value.cross_attention_cache
else:
curr_past_key_value = past_key_value.self_attention_cache
current_states = key_value_states if is_cross_attention else hidden_states
if is_cross_attention and past_key_value is not None and is_updated:
# reuse k,v, cross_attentions
key_states = curr_past_key_value.key_cache[self.layer_idx]
value_states = curr_past_key_value.value_cache[self.layer_idx]
else:
key_states = self.k(current_states)
value_states = self.v(current_states)
key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)
if past_key_value is not None:
# save all key/value_states to cache to be re-used for fast auto-regressive generation
cache_position = cache_position if not is_cross_attention else None
key_states, value_states = curr_past_key_value.update(
key_states, value_states, self.layer_idx, {"cache_position": cache_position}
)
# set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls
if is_cross_attention:
past_key_value.is_updated[self.layer_idx] = True
# compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9
scores = torch.matmul(query_states, key_states.transpose(3, 2))
if position_bias is None:
key_length = key_states.shape[-2]
# cache position is 0-indexed so we add 1 to get the real length of queries (aka with past)
real_seq_length = query_length if query_length is not None else cache_position[-1] + 1
if not self.has_relative_attention_bias:
position_bias = torch.zeros(
(1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype
)
if self.gradient_checkpointing and self.training:
position_bias.requires_grad = True
else:
position_bias = self.compute_bias(
real_seq_length, key_length, device=scores.device, cache_position=cache_position
)
position_bias = position_bias[:, :, -seq_length:, :]
if mask is not None:
causal_mask = mask[:, :, :, : key_states.shape[-2]]
position_bias = position_bias + causal_mask
if self.pruned_heads:
mask = torch.ones(position_bias.shape[1])
mask[list(self.pruned_heads)] = 0
position_bias_masked = position_bias[:, mask.bool()]
else:
position_bias_masked = position_bias
scores += position_bias_masked
# (batch_size, n_heads, seq_length, key_length)
attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores)
attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = attn_weights * layer_head_mask
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.view(batch_size, -1, self.inner_dim)
attn_output = self.o(attn_output)
outputs = (attn_output, past_key_value, position_bias)
if output_attentions:
outputs = outputs + (attn_weights,)
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->MT5
class MT5LayerSelfAttention(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.SelfAttention = MT5Attention(
config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx
)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.SelfAttention(
normed_hidden_states,
mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states = hidden_states + self.dropout(attention_output[0])
outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->MT5
class MT5LayerCrossAttention(nn.Module):
def __init__(self, config, layer_idx: Optional[int] = None):
super().__init__()
self.EncDecAttention = MT5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx)
self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
def forward(
self,
hidden_states,
key_value_states,
attention_mask=None,
position_bias=None,
layer_head_mask=None,
past_key_value=None,
use_cache=False,
query_length=None,
output_attentions=False,
cache_position=None,
):
normed_hidden_states = self.layer_norm(hidden_states)
attention_output = self.EncDecAttention(
normed_hidden_states,
mask=attention_mask,
key_value_states=key_value_states,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
query_length=query_length,
output_attentions=output_attentions,
cache_position=cache_position,
)
layer_output = hidden_states + self.dropout(attention_output[0])
outputs = (layer_output,) + attention_output[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.t5.modeling_t5.T5Block with T5->MT5
class MT5Block(nn.Module):
def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None):
super().__init__()
self.is_decoder = config.is_decoder
self.layer = nn.ModuleList()
self.layer.append(
MT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx)
)
if self.is_decoder:
self.layer.append(MT5LayerCrossAttention(config, layer_idx=layer_idx))
self.layer.append(MT5LayerFF(config))
def forward(
self,
hidden_states,
attention_mask=None,
position_bias=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
layer_head_mask=None,
cross_attn_layer_head_mask=None,
past_key_value=None,
use_cache=False,
output_attentions=False,
return_dict=True,
cache_position=None,
):
self_attention_outputs = self.layer[0](
hidden_states,
attention_mask=attention_mask,
position_bias=position_bias,
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
)
hidden_states, past_key_value = self_attention_outputs[:2]
attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
do_cross_attention = self.is_decoder and encoder_hidden_states is not None
if do_cross_attention:
cross_attention_outputs = self.layer[1](
hidden_states,
key_value_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
position_bias=encoder_decoder_position_bias,
layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_value,
query_length=cache_position[-1] + 1,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states, past_key_value = cross_attention_outputs[:2]
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
# Keep cross-attention outputs and relative position weights
attention_outputs = attention_outputs + cross_attention_outputs[2:]
# Apply Feed Forward layer
hidden_states = self.layer[-1](hidden_states)
# clamp inf values to enable fp16 training
if hidden_states.dtype == torch.float16:
clamp_value = torch.where(
torch.isinf(hidden_states).any(),
torch.finfo(hidden_states.dtype).max - 1000,
torch.finfo(hidden_states.dtype).max,
)
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
outputs = (hidden_states,)
if use_cache:
outputs = outputs + (past_key_value,) + attention_outputs
else:
outputs = outputs + attention_outputs
return outputs # hidden-states, past_key_value, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
def load_tf_weights_in_mt5(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
tf_weights = {}
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
tf_weights[name] = array
for txt_name in names:
name = txt_name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
if "_slot_" in name[-1]:
logger.info(f"Skipping {'/'.join(name)}")
tf_weights.pop(txt_name, None)
continue
pointer = model
array = tf_weights[txt_name]
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
elif scope_names[0] == "self_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[0]
elif scope_names[0] == "enc_dec_attention":
pointer = getattr(pointer, "layer")
pointer = pointer[1]
elif scope_names[0] == "dense_relu_dense":
pointer = getattr(pointer, "layer")
pointer = pointer[2]
elif scope_names[0] == "rms_norm":
if hasattr(pointer, "layer_norm"):
pointer = getattr(pointer, "layer_norm")
elif hasattr(pointer, "final_layer_norm"):
pointer = getattr(pointer, "final_layer_norm")
elif scope_names[0] == "scale":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
elif scope_names[0] == "decoder" and name[1] == "logits":
continue
elif scope_names[0] == "logits":
pointer = getattr(pointer, "lm_head")
elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit():
pointer = getattr(pointer, f"wi_{scope_names[1]}")
continue
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if scope_names[0] not in ["kernel", "scale", "embedding"]:
pointer = getattr(pointer, "weight")
if scope_names[0] != "embedding":
logger.info(f"Transposing numpy weight of shape {array.shape} for {name}")
array = np.transpose(array)
try:
assert (
pointer.shape == array.shape
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array.astype(np.float32))
tf_weights.pop(txt_name, None)
logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.")
return model
# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->MT5
class MT5ClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config: MT5Config):
super().__init__()
self.dense = nn.Linear(config.d_model, config.d_model)
self.dropout = nn.Dropout(p=config.classifier_dropout)
self.out_proj = nn.Linear(config.d_model, config.num_labels)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense(hidden_states)
hidden_states = torch.tanh(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.out_proj(hidden_states)
return hidden_states
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel with T5->MT5, t5->mt5
class MT5PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = MT5Config
load_tf_weights = load_tf_weights_in_mt5
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
_supports_quantized_cache = False # enc-dec models don't support yet
_supports_static_cache = True
_supports_cache_class = True
_no_split_modules = ["MT5Block"]
_keep_in_fp32_modules = ["wo"]
@property
def dummy_inputs(self):
input_ids = torch.tensor(DUMMY_INPUTS)
input_mask = torch.tensor(DUMMY_MASK)
dummy_inputs = {
"decoder_input_ids": input_ids,
"input_ids": input_ids,
"decoder_attention_mask": input_mask,
}
return dummy_inputs
def _init_weights(self, module):
"""Initialize the weights"""
factor = self.config.initializer_factor # Used for testing weights initialization
if isinstance(module, MT5LayerNorm):
module.weight.data.fill_(factor * 1.0)
elif isinstance(
module,
(MT5Model, MT5ForConditionalGeneration, MT5EncoderModel, MT5ForQuestionAnswering),
):
# Mesh TensorFlow embeddings initialization
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
if hasattr(module, "qa_outputs"):
module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
module.qa_outputs.bias.data.zero_()
elif isinstance(module, MT5ForTokenClassification):
if hasattr(module, "classifier"):
module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0)
module.classifier.bias.data.zero_()
elif isinstance(module, MT5ClassificationHead):
module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.dense, "bias") and module.dense.bias is not None:
module.dense.bias.data.zero_()
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None:
module.out_proj.bias.data.zero_()
elif isinstance(module, MT5DenseActDense):
# Mesh TensorFlow FF initialization
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi, "bias") and module.wi.bias is not None:
module.wi.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, MT5DenseGatedActDense):
module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None:
module.wi_0.bias.data.zero_()
module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None:
module.wi_1.bias.data.zero_()
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
if hasattr(module.wo, "bias") and module.wo.bias is not None:
module.wo.bias.data.zero_()
elif isinstance(module, MT5Attention):
# Mesh TensorFlow attention initialization to avoid scaling before softmax
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
d_model = self.config.d_model
key_value_proj_dim = self.config.d_kv
n_heads = self.config.num_heads
module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
if module.has_relative_attention_bias:
module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5))
def _shift_right(self, input_ids):
decoder_start_token_id = self.config.decoder_start_token_id
pad_token_id = self.config.pad_token_id
if decoder_start_token_id is None:
raise ValueError(
"self.model.config.decoder_start_token_id has to be defined. In MT5 it is usually set to the pad_token_id. "
"See MT5 docs for more information."
)
# shift inputs to the right
if is_torch_fx_proxy(input_ids):
# Item assignment is not supported natively for proxies.
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
else:
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
shifted_input_ids[..., 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
# Copied from transformers.models.t5.modeling_t5.T5Stack with T5->MT5
class MT5Stack(MT5PreTrainedModel):
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.embed_tokens = embed_tokens
self.is_decoder = config.is_decoder
self.block = nn.ModuleList(
[MT5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers)]
)
self.final_layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
@add_start_docstrings(PARALLELIZE_DOCSTRING)
def parallelize(self, device_map=None):
warnings.warn(
"`MT5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
# Check validity of device_map
self.device_map = (
get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map
)
assert_device_map(self.device_map, len(self.block))
self.model_parallel = True
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
self.last_device = "cuda:" + str(max(self.device_map.keys()))
# Load onto devices
for k, v in self.device_map.items():
for layer in v:
cuda_device = "cuda:" + str(k)
self.block[layer] = self.block[layer].to(cuda_device)
# Set embed_tokens to first layer
self.embed_tokens = self.embed_tokens.to(self.first_device)
# Set final layer norm to last device
self.final_layer_norm = self.final_layer_norm.to(self.last_device)
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.model_parallel = False
self.device_map = None
self.first_device = "cpu"
self.last_device = "cpu"
for i in range(len(self.block)):
self.block[i] = self.block[i].to("cpu")
self.embed_tokens = self.embed_tokens.to("cpu")
self.final_layer_norm = self.final_layer_norm.to("cpu")
torch.cuda.empty_cache()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
attention_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
inputs_embeds=None,
head_mask=None,
cross_attn_head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
cache_position=None,
):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(self.first_device)
self.embed_tokens = self.embed_tokens.to(self.first_device)
use_cache = use_cache if use_cache is not None else self.config.use_cache
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(
f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
)
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
err_msg_prefix = "decoder_" if self.is_decoder else ""
raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
if self.embed_tokens is None:
raise ValueError("You have to initialize the model with valid token embeddings")
inputs_embeds = self.embed_tokens(input_ids)
batch_size, seq_length = input_shape
if use_cache is True:
if not self.is_decoder:
raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")
# initialize past_key_values
return_legacy_cache = False
return_self_attention_cache = False
if self.is_decoder and (use_cache or past_key_values is not None):
if isinstance(past_key_values, Cache) and not isinstance(past_key_values, EncoderDecoderCache):
return_self_attention_cache = True
past_key_values = EncoderDecoderCache(past_key_values, DynamicCache())
elif not isinstance(past_key_values, EncoderDecoderCache):
return_legacy_cache = True
logger.warning_once(
"Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.48.0. "
"You should pass an instance of `EncoderDecoderCache` instead, e.g. "
"`past_key_values=EncoderDecoderCache.from_legacy_cache(past_key_values)`."
)
past_key_values = EncoderDecoderCache.from_legacy_cache(past_key_values)
elif past_key_values is None:
past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache())
elif not self.is_decoder:
# do not pass cache object down the line for encoder stack
# it messes indexing later in decoder-stack because cache object is modified in-place
past_key_values = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if attention_mask is None and not is_torchdynamo_compiling():
# required mask seq length can be calculated via length of past cache
mask_seq_length = past_key_values_length + seq_length
attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)
if self.config.is_decoder:
causal_mask = self._update_causal_mask(
attention_mask,
inputs_embeds,
cache_position,
past_key_values.self_attention_cache if past_key_values is not None else None,
output_attentions,
)
elif attention_mask is not None:
causal_mask = attention_mask[:, None, None, :]
causal_mask = causal_mask.to(dtype=inputs_embeds.dtype)
causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min
else:
causal_mask = None
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(
encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
position_bias = None
encoder_decoder_position_bias = None
hidden_states = self.dropout(inputs_embeds)
for i, layer_module in enumerate(self.block):
layer_head_mask = head_mask[i]
cross_attn_layer_head_mask = cross_attn_head_mask[i]
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure that attention_mask is always on the same device as hidden_states
if causal_mask is not None:
causal_mask = causal_mask.to(hidden_states.device)
if position_bias is not None:
position_bias = position_bias.to(hidden_states.device)
if encoder_hidden_states is not None:
encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
if encoder_extended_attention_mask is not None:
encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
if encoder_decoder_position_bias is not None:
encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
if layer_head_mask is not None:
layer_head_mask = layer_head_mask.to(hidden_states.device)
if cross_attn_layer_head_mask is not None:
cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.forward,
hidden_states,
causal_mask,
position_bias,
encoder_hidden_states,
encoder_extended_attention_mask,
encoder_decoder_position_bias,
layer_head_mask,
cross_attn_layer_head_mask,
None, # past_key_value is always None with gradient checkpointing
use_cache,
output_attentions,
return_dict,
cache_position,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask=causal_mask,
position_bias=position_bias,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
encoder_decoder_position_bias=encoder_decoder_position_bias,
layer_head_mask=layer_head_mask,
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
past_key_value=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
return_dict=return_dict,
cache_position=cache_position,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
if use_cache is False:
layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]
hidden_states, next_decoder_cache = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
# (cross-attention position bias), (cross-attention weights)
position_bias = layer_outputs[2]
if self.is_decoder and encoder_hidden_states is not None:
encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[3],)
if self.is_decoder:
all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_self_attention_cache:
next_cache = past_key_values.self_attention_cache
if return_legacy_cache:
next_cache = past_key_values.to_legacy_cache()
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_cache,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.llama.modeling_llama.LlamaModel._update_causal_mask
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and (attention_mask == 0.0).any():
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
min_dtype = torch.finfo(dtype).min
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
MT5_START_DOCSTRING = r"""
The MT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan
Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a
text-to-text denoising generative setting.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`MT5Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MT5_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
[What are input IDs?](../glossary#input-ids)
To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
MT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
To know more on how to prepare `decoder_input_ids` for pretraining take a look at [MT5
Training](./mt5#training).
decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0,
1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in
`[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at
the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
MT5_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you
should be able to pad the inputs on both the right and the left.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for detail.
To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training).
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""
@add_start_docstrings(
"The bare MT5 Model transformer outputting raw hidden-states without any specific head on top.",
MT5_START_DOCSTRING,
)
class MT5Model(MT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import MT5Model, AutoTokenizer
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, return_tensors="pt")
>>> labels = tokenizer(text_target=summary, return_tensors="pt")
>>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"])
>>> hidden_states = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5Model.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5Model.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model"
" with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':"
" 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5Model.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder
def get_decoder(self):
return self.decoder
# Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5Model.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.Tensor] = None,
decoder_inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MT5Model
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5Model.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model.
>>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg.
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
>>> # forward pass
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings("""MT5 Model with a `language modeling` head on top.""", MT5_START_DOCSTRING)
class MT5ForConditionalGeneration(MT5PreTrainedModel, GenerationMixin):
r"""
Examples:
```python
>>> from transformers import MT5ForConditionalGeneration, AutoTokenizer
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> summary = "Weiter Verhandlung in Syrien."
>>> inputs = tokenizer(article, text_target=summary, return_tensors="pt")
>>> outputs = model(**inputs)
>>> loss = outputs.loss
```"""
model_type = "mt5"
config_class = MT5Config
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you"
" should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also"
" provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance"
" {'encoder.block.0': 0, 'encoder.block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.decoder.parallelize(self.device_map)
self.lm_head = self.lm_head.to(self.decoder.first_device)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.decoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.decoder = self.decoder.to("cpu")
self.lm_head = self.lm_head.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings
def get_output_embeddings(self):
return self.lm_head
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
labels in `[0, ..., config.vocab_size]`
Returns:
Examples:
```python
>>> from transformers import AutoTokenizer, MT5ForConditionalGeneration
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small")
>>> # training
>>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
>>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
>>> outputs = model(input_ids=input_ids, labels=labels)
>>> loss = outputs.loss
>>> logits = outputs.logits
>>> # inference
>>> input_ids = tokenizer(
... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model.generate(input_ids)
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
>>> # studies have shown that owning a dog is good for you.
```"""
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
# Convert encoder inputs in embeddings if needed
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.decoder.first_device)
hidden_states = hidden_states.to(self.decoder.first_device)
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
if attention_mask is not None:
attention_mask = attention_mask.to(self.decoder.first_device)
if decoder_attention_mask is not None:
decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
sequence_output = decoder_outputs[0]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.encoder.first_device)
self.lm_head = self.lm_head.to(self.encoder.first_device)
sequence_output = sequence_output.to(self.lm_head.weight.device)
if self.config.tie_word_embeddings:
# Rescale output before projecting on vocab
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
sequence_output = sequence_output * (self.model_dim**-0.5)
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss(ignore_index=-100)
# move labels to correct device to enable PP
labels = labels.to(lm_logits.device)
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
# TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666
if not return_dict:
output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
return ((loss,) + output) if loss is not None else output
return Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return self._shift_right(labels)
# Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._reorder_cache
def _reorder_cache(self, past_key_values, beam_idx):
# if decoder past is not included in output
# speedy decoding is disabled and no need to reorder
if past_key_values is None:
logger.warning("You might want to consider setting `use_cache=True` to speed up decoding")
return past_key_values
reordered_decoder_past = ()
for layer_past_states in past_key_values:
# get the correct batch idx from layer past batch dim
# batch dim of `past` is at 2nd position
reordered_layer_past_states = ()
for layer_past_state in layer_past_states:
# need to set correct `past` for each of the four key / value states
reordered_layer_past_states = reordered_layer_past_states + (
layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)),
)
if reordered_layer_past_states[0].shape != layer_past_states[0].shape:
raise ValueError(
f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched"
)
if len(reordered_layer_past_states) != len(layer_past_states):
raise ValueError(
f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched"
)
reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,)
return reordered_decoder_past
@add_start_docstrings(
"The bare MT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.",
MT5_START_DOCSTRING,
)
class MT5EncoderModel(MT5PreTrainedModel):
r"""
Examples:
```python
>>> from transformers import MT5EncoderModel, AutoTokenizer
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien."
>>> input_ids = tokenizer(article, return_tensors="pt").input_ids
>>> outputs = model(input_ids)
>>> hidden_state = outputs.last_hidden_state
```"""
model_type = "mt5"
config_class = MT5Config
_tied_weights_keys = ["encoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
# Initialize weights and apply final processing
self.post_init()
# Model parallel
self.model_parallel = False
self.device_map = None
@add_start_docstrings(PARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.parallelize
def parallelize(self, device_map=None):
warnings.warn(
"`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0,"
" 'block.1': 1, ...}",
FutureWarning,
)
self.device_map = (
get_device_map(len(self.encoder.block), range(torch.cuda.device_count()))
if device_map is None
else device_map
)
assert_device_map(self.device_map, len(self.encoder.block))
self.encoder.parallelize(self.device_map)
self.model_parallel = True
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.deparallelize
def deparallelize(self):
warnings.warn(
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
FutureWarning,
)
self.encoder.deparallelize()
self.encoder = self.encoder.to("cpu")
self.model_parallel = False
self.device_map = None
torch.cuda.empty_cache()
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads)
@add_start_docstrings_to_model_forward(MT5_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with google-t5/->google/, T5->MT5, t5->mt5
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, MT5EncoderModel
>>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
>>> model = MT5EncoderModel.from_pretrained("google/mt5-small")
>>> input_ids = tokenizer(
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
... ).input_ids # Batch size 1
>>> outputs = model(input_ids=input_ids)
>>> last_hidden_states = outputs.last_hidden_state
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
return encoder_outputs
@add_start_docstrings(
"""
MT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
tasks.
""",
MT5_START_DOCSTRING,
)
class MT5ForSequenceClassification(MT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.transformer = MT5Model(config)
self.classification_head = MT5ClassificationHead(config)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.forward
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
decoder_head_mask: Optional[torch.Tensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
use_cache = False
if input_ids is None and inputs_embeds is not None:
raise NotImplementedError(
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
)
# Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates
# decoder_input_ids from input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
head_mask=head_mask,
decoder_head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
encoder_outputs=encoder_outputs,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device)
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
raise ValueError("All examples must have the same number of <eos> tokens.")
batch_size, _, hidden_size = sequence_output.shape
sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :]
logits = self.classification_head(sentence_representation)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.config.num_labels == 1:
self.config.problem_type = "regression"
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.config.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return Seq2SeqSequenceClassifierOutput(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
@add_start_docstrings(
"""
MT5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output)
e.g. for Named-Entity-Recognition (NER) tasks.
""",
MT5_START_DOCSTRING,
)
class MT5ForTokenClassification(MT5PreTrainedModel):
_tied_weights_keys = ["transformer.encoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = MT5EncoderModel(config)
self.dropout = nn.Dropout(config.classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.forward with T5->MT5
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits, outputs[2:-1])
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
MT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers
on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
MT5_START_DOCSTRING,
)
class MT5ForQuestionAnswering(MT5PreTrainedModel):
_keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"]
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.__init__ with T5->MT5
def __init__(self, config: MT5Config):
super().__init__(config)
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = MT5Stack(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
decoder_config.num_layers = config.num_decoder_layers
self.decoder = MT5Stack(decoder_config, self.shared)
self.num_labels = config.num_labels
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
self.model_parallel = False
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings
def get_input_embeddings(self):
return self.shared
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder
def get_encoder(self):
return self.encoder
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder
def get_decoder(self):
return self.decoder
@add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC)
# Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.forward
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.BoolTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
decoder_head_mask: Optional[torch.FloatTensor] = None,
cross_attn_head_mask: Optional[torch.Tensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
are not taken into account for computing the loss.
Returns:
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
use_cache = use_cache if use_cache is not None else self.config.use_cache
if start_positions is not None and end_positions is not None:
use_cache = False
# Copied from models.bart.modeling_bart.BartModel.forward
# different to other models, T5 automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
if input_ids is None:
raise ValueError(
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
"passed, `input_ids` cannot be `None`. Please pass either "
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
)
decoder_input_ids = self._shift_right(input_ids)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
if head_mask is not None and decoder_head_mask is None:
if self.config.num_layers == self.config.num_decoder_layers:
warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
decoder_head_mask = head_mask
# Encode if needed (training, first prediction pass)
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=None,
encoder_hidden_states=hidden_states,
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1).to(start_logits.device)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1).to(end_logits.device)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs
return ((total_loss,) + output) if total_loss is not None else output
return Seq2SeqQuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
__all__ = [
"MT5EncoderModel",
"MT5ForConditionalGeneration",
"MT5ForQuestionAnswering",
"MT5ForSequenceClassification",
"MT5ForTokenClassification",
"MT5Model",
"MT5PreTrainedModel",
"MT5Stack",
]
| transformers/src/transformers/models/mt5/modeling_mt5.py/0 | {
"file_path": "transformers/src/transformers/models/mt5/modeling_mt5.py",
"repo_id": "transformers",
"token_count": 52488
} |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""MVP model configuration"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class MvpConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 50267):
Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MvpModel`].
d_model (`int`, *optional*, defaults to 1024):
Dimensionality of the layers and the pooler layer.
encoder_layers (`int`, *optional*, defaults to 12):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 12):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
classifier_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for classifier.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
scale_embedding (`bool`, *optional*, defaults to `False`):
Scale embeddings by diving by sqrt(d_model).
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*, defaults to 2):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
use_prompt (`bool`, *optional*, defaults to `False`):
Whether or not to use prompt.
prompt_length (`int`, *optional*, defaults to 100):
The length of prompt.
prompt_mid_dim (`int`, *optional*, defaults to 800):
Dimensionality of the "intermediate" layer in prompt.
Example:
```python
>>> from transformers import MvpConfig, MvpModel
>>> # Initializing a MVP RUCAIBox/mvp style configuration
>>> configuration = MvpConfig()
>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
>>> model = MvpModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "mvp"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
vocab_size=50267,
max_position_embeddings=1024,
encoder_layers=12,
encoder_ffn_dim=4096,
encoder_attention_heads=16,
decoder_layers=12,
decoder_ffn_dim=4096,
decoder_attention_heads=16,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
activation_function="gelu",
d_model=1024,
dropout=0.1,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
classifier_dropout=0.0,
scale_embedding=False,
use_cache=True,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
is_encoder_decoder=True,
decoder_start_token_id=2,
forced_eos_token_id=2,
use_prompt=False,
prompt_length=100,
prompt_mid_dim=800,
**kwargs,
):
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.d_model = d_model
self.encoder_ffn_dim = encoder_ffn_dim
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.classifier_dropout = classifier_dropout
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.use_prompt = use_prompt
self.prompt_length = prompt_length
self.prompt_mid_dim = prompt_mid_dim
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
forced_eos_token_id=forced_eos_token_id,
**kwargs,
)
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
self.forced_bos_token_id = self.bos_token_id
warnings.warn(
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
"The config can simply be saved and uploaded again to be fixed."
)
__all__ = ["MvpConfig"]
| transformers/src/transformers/models/mvp/configuration_mvp.py/0 | {
"file_path": "transformers/src/transformers/models/mvp/configuration_mvp.py",
"repo_id": "transformers",
"token_count": 3339
} |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def remove_ignore_keys_(state_dict):
ignore_keys = [
"encoder.version",
"decoder.version",
"model.encoder.version",
"model.decoder.version",
"decoder.output_projection.weight",
"_float_tensor",
"encoder.embed_positions._float_tensor",
"decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
state_dict.pop(k, None)
def make_linear_from_emb(emb):
vocab_size, emb_size = emb.weight.shape
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
lin_layer.weight.data = emb.weight.data
return lin_layer
def rename_fairseq_keys(state_dict, expert_idx=None):
new_dict = {}
for old_key in state_dict.keys():
key = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
key = key.replace("moe_layer.experts.0", f"ffn.experts.expert_{expert_idx}")
else:
key = key.replace("moe_layer.experts.", "ffn.experts.expert_")
if "gate" in key:
key = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier")
if "fc2" and "experts" not in key:
key = key.replace(".fc2.", ".ffn.fc2.")
if "fc1" and "experts" not in key:
key = key.replace(".fc1.", ".ffn.fc1.")
if ".encoder_attn." in key:
key = key.replace(".encoder_attn.", ".cross_attention.")
if "encoder_attn_layer_norm" in key:
key = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm")
if "final_layer_norm" in key:
key = key.replace("final_layer_norm", "ff_layer_norm")
new_dict[key] = state_dict[old_key]
return new_dict
def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weights_name: str = WEIGHTS_NAME):
sharded_state_dicts = []
total_size = 0
os.makedirs(dump_path, exist_ok=True)
for expert in range(num_experts):
expert_path = switch_checkpoint_path + f"-rank-{expert}.pt"
if os.path.isfile(expert_path):
expert_state = torch.load(expert_path)["model"]
remove_ignore_keys_(expert_state)
expert_state = rename_fairseq_keys(expert_state, expert)
save_path = os.path.join(
dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")
)
torch.save(expert_state, save_path)
sharded_state_dicts.append(expert_state.keys())
total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size(
expert_state[list(expert_state)[0]].dtype
)
# Add the last block
save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin"))
shared_weights = torch.load(switch_checkpoint_path + "-shared.pt")["model"]
remove_ignore_keys_(shared_weights)
shared_weights = rename_fairseq_keys(shared_weights, None)
shared_weights["shared.weight"] = shared_weights["decoder.embed_tokens.weight"]
sharded_state_dicts.append(shared_weights.keys())
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(sharded_state_dicts) == 1:
save_path = os.path.join(dump_path, weights_name)
torch.save(shared_weights, save_path)
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(shared_weights, save_path)
# Otherwise, let's build the index
weight_map = {}
for idx, shard in enumerate(sharded_state_dicts):
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin"))
os.rename(temp_filename, os.path.join(dump_path, shard_file))
for key in shard:
weight_map[key] = shard_file
# Add the metadata
metadata = {"total_size": total_size}
index = {"metadata": metadata, "weight_map": weight_map}
with open(os.path.join(dump_path, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
f.write(content)
return metadata, index
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
args = parser.parse_args()
metadata, index = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
config = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
model = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| transformers/src/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 2756
} |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert OneFormer checkpoints from the original repository. URL: https://github.com/SHI-Labs/OneFormer"""
import os
import sys
from argparse import ArgumentParser
from dataclasses import dataclass
from pathlib import Path
from pprint import pformat
from typing import Any, Dict, Iterator, List, Set, Tuple
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from torch import Tensor, nn
try:
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.projects.deeplab import add_deeplab_config
except ImportError:
pass
from transformers import CLIPTokenizer, DinatConfig, SwinConfig
from transformers.models.oneformer.image_processing_oneformer import OneFormerImageProcessor
from transformers.models.oneformer.modeling_oneformer import (
OneFormerConfig,
OneFormerForUniversalSegmentation,
OneFormerForUniversalSegmentationOutput,
OneFormerModel,
OneFormerModelOutput,
)
from transformers.models.oneformer.processing_oneformer import OneFormerProcessor
from transformers.utils import logging
StateDict = Dict[str, Tensor]
logging.set_verbosity_info()
logger = logging.get_logger()
torch.manual_seed(0)
class TrackedStateDict:
def __init__(self, to_track: Dict):
"""This class "tracks" a python dictionary by keeping track of which item is accessed.
Args:
to_track (Dict): The dictionary we wish to track
"""
self.to_track = to_track
self._seen: Set[str] = set()
def __getitem__(self, key: str) -> Any:
return self.to_track[key]
def __setitem__(self, key: str, item: Any):
self._seen.add(key)
self.to_track[key] = item
def diff(self) -> List[str]:
"""This method returns a set difference between the keys in the tracked state dict and the one we have access so far.
This is an effective method to check if we have update all the keys
Returns:
List[str]: List of keys not yet updated
"""
return set(self.to_track.keys()) - self._seen
def copy(self) -> Dict:
# proxy the call to the internal dictionary
return self.to_track.copy()
# Image to verify the result
def prepare_img():
url = "https://praeclarumjj3.github.io/files/coco.jpeg"
img_data = requests.get(url, stream=True).raw
im = Image.open(img_data)
return im
@dataclass
class Args:
"""Fake command line arguments needed by oneformer/detectron2 implementation"""
config_file: str
def setup_cfg(args: Args):
# load config from file and command-line arguments
cfg = get_cfg()
add_deeplab_config(cfg)
add_common_config(cfg)
add_oneformer_config(cfg)
add_swin_config(cfg)
add_dinat_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.freeze()
return cfg
class OriginalOneFormerConfigToOursConverter:
def __call__(self, original_config: object, is_swin: bool) -> OneFormerConfig:
model = original_config.MODEL
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
id2label = dict(enumerate(dataset_catalog.stuff_classes))
label2id = {label: idx for idx, label in id2label.items()}
if is_swin:
if model.SWIN.EMBED_DIM == 96:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-tiny-patch4-window7-224",
drop_path_rate=model.SWIN.DROP_PATH_RATE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
elif model.SWIN.EMBED_DIM == 192:
backbone_config = SwinConfig.from_pretrained(
"microsoft/swin-large-patch4-window12-384",
drop_path_rate=model.SWIN.DROP_PATH_RATE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
else:
raise ValueError(f"embed dim {model.SWIN.EMBED_DIM} not supported for Swin!")
else:
backbone_config = DinatConfig.from_pretrained(
"shi-labs/dinat-large-11x11-in22k-in1k-384",
dilations=model.DiNAT.DILATIONS,
kernel_size=model.DiNAT.KERNEL_SIZE,
out_features=["stage1", "stage2", "stage3", "stage4"],
)
config: OneFormerConfig = OneFormerConfig(
backbone_config=backbone_config,
output_attentions=True,
output_hidden_states=True,
return_dict=True,
ignore_value=model.SEM_SEG_HEAD.IGNORE_VALUE,
num_classes=model.SEM_SEG_HEAD.NUM_CLASSES,
num_queries=model.ONE_FORMER.NUM_OBJECT_QUERIES,
no_object_weight=model.ONE_FORMER.NO_OBJECT_WEIGHT,
class_weight=model.ONE_FORMER.CLASS_WEIGHT,
mask_weight=model.ONE_FORMER.MASK_WEIGHT,
dice_weight=model.ONE_FORMER.DICE_WEIGHT,
contrastive_weight=model.ONE_FORMER.CONTRASTIVE_WEIGHT,
contrastive_temperature=model.ONE_FORMER.CONTRASTIVE_TEMPERATURE,
train_num_points=model.ONE_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=model.ONE_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=model.ONE_FORMER.IMPORTANCE_SAMPLE_RATIO,
init_std=0.02,
init_xavier_std=1.0,
layer_norm_eps=1e-05,
is_training=False,
use_auxiliary_loss=model.ONE_FORMER.DEEP_SUPERVISION,
output_auxiliary_logits=True,
strides=[4, 8, 16, 32],
task_seq_len=original_config.INPUT.TASK_SEQ_LEN,
max_seq_len=original_config.INPUT.MAX_SEQ_LEN,
text_encoder_width=model.TEXT_ENCODER.WIDTH,
text_encoder_context_length=model.TEXT_ENCODER.CONTEXT_LENGTH,
text_encoder_num_layers=model.TEXT_ENCODER.NUM_LAYERS,
text_encoder_vocab_size=model.TEXT_ENCODER.VOCAB_SIZE,
text_encoder_proj_layers=model.TEXT_ENCODER.PROJ_NUM_LAYERS,
text_encoder_n_ctx=model.TEXT_ENCODER.N_CTX,
conv_dim=model.SEM_SEG_HEAD.CONVS_DIM,
mask_dim=model.SEM_SEG_HEAD.MASK_DIM,
hidden_dim=model.ONE_FORMER.HIDDEN_DIM,
norm=model.SEM_SEG_HEAD.NORM,
encoder_layers=model.SEM_SEG_HEAD.TRANSFORMER_ENC_LAYERS,
encoder_feedforward_dim=1024,
decoder_layers=model.ONE_FORMER.DEC_LAYERS,
use_task_norm=model.ONE_FORMER.USE_TASK_NORM,
num_attention_heads=model.ONE_FORMER.NHEADS,
dropout=model.ONE_FORMER.DROPOUT,
dim_feedforward=model.ONE_FORMER.DIM_FEEDFORWARD,
pre_norm=model.ONE_FORMER.PRE_NORM,
enforce_input_proj=model.ONE_FORMER.ENFORCE_INPUT_PROJ,
query_dec_layers=model.ONE_FORMER.CLASS_DEC_LAYERS,
common_stride=model.SEM_SEG_HEAD.COMMON_STRIDE,
id2label=id2label,
label2id=label2id,
)
return config
class OriginalOneFormerConfigToProcessorConverter:
def __call__(self, original_config: object, model_repo: str) -> OneFormerProcessor:
model = original_config.MODEL
model_input = original_config.INPUT
dataset_catalog = MetadataCatalog.get(original_config.DATASETS.TEST_PANOPTIC[0])
if "ade20k" in model_repo:
class_info_file = "ade20k_panoptic.json"
elif "coco" in model_repo:
class_info_file = "coco_panoptic.json"
elif "cityscapes" in model_repo:
class_info_file = "cityscapes_panoptic.json"
else:
raise ValueError("Invalid Dataset!")
image_processor = OneFormerImageProcessor(
image_mean=(torch.tensor(model.PIXEL_MEAN) / 255).tolist(),
image_std=(torch.tensor(model.PIXEL_STD) / 255).tolist(),
size=model_input.MIN_SIZE_TEST,
max_size=model_input.MAX_SIZE_TEST,
num_labels=model.SEM_SEG_HEAD.NUM_CLASSES,
ignore_index=dataset_catalog.ignore_label,
class_info_file=class_info_file,
)
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
return OneFormerProcessor(
image_processor=image_processor,
tokenizer=tokenizer,
task_seq_length=original_config.INPUT.TASK_SEQ_LEN,
max_seq_length=original_config.INPUT.MAX_SEQ_LEN,
)
class OriginalOneFormerCheckpointToOursConverter:
def __init__(self, original_model: nn.Module, config: OneFormerConfig):
self.original_model = original_model
self.config = config
def pop_all(self, renamed_keys: List[Tuple[str, str]], dst_state_dict: StateDict, src_state_dict: StateDict):
for src_key, dst_key in renamed_keys:
dst_state_dict[dst_key] = src_state_dict.pop(src_key)
# Swin Backbone
def replace_swin_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
renamed_keys = [
(
f"{src_prefix}.patch_embed.proj.weight",
f"{dst_prefix}.embeddings.patch_embeddings.projection.weight",
),
(f"{src_prefix}.patch_embed.proj.bias", f"{dst_prefix}.embeddings.patch_embeddings.projection.bias"),
(f"{src_prefix}.patch_embed.norm.weight", f"{dst_prefix}.embeddings.norm.weight"),
(f"{src_prefix}.patch_embed.norm.bias", f"{dst_prefix}.embeddings.norm.bias"),
]
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_before.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_bias_table",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_bias_table",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.proj.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.output.dense.bias",
),
]
)
# second norm
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.norm2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.layernorm_after.bias",
),
]
)
# mlp
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc1.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.intermediate.dense.bias",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.mlp.fc2.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.output.dense.bias",
),
]
)
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.blocks.{block_idx}.attn.relative_position_index",
f"{dst_prefix}.encoder.layers.{layer_idx}.blocks.{block_idx}.attention.self.relative_position_index",
)
]
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.layers.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.layers.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.encoder.layers.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Dinat Backbone
def replace_dinat_backbone(self, dst_state_dict: StateDict, src_state_dict: StateDict, config: OneFormerConfig):
dst_prefix: str = "pixel_level_module.encoder"
src_prefix: str = "backbone"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = rename_keys_for_weight_bias(f"{src_prefix}.patch_embed.norm", f"{dst_prefix}.embeddings.norm")
for i in range(2):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.patch_embed.proj.{i}",
f"{dst_prefix}.embeddings.patch_embeddings.projection.{i}",
)
)
num_layers = len(config.backbone_config.depths)
for layer_idx in range(num_layers):
for block_idx in range(config.backbone_config.depths[layer_idx]):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm1",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_before",
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.norm2",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.layernorm_after",
)
)
renamed_keys.extend(
[ # src, dst
(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.rpb",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.rpb",
),
]
)
# now we need to handle the attentions
# read in weights + bias of input projection layer of cross-attention
src_att_weight = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight"]
src_att_bias = src_state_dict[f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias"]
size = src_att_weight.shape[0]
offset = size // 3
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.weight"
] = src_att_weight[:offset, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.query.bias"
] = src_att_bias[:offset]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.weight"
] = src_att_weight[offset : offset * 2, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.key.bias"
] = src_att_bias[offset : offset * 2]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.weight"
] = src_att_weight[-offset:, :]
dst_state_dict[
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.self.value.bias"
] = src_att_bias[-offset:]
# let's pop them
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.weight")
src_state_dict.pop(f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.qkv.bias")
# proj
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.attn.proj",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.attention.output.dense",
)
)
# mlp
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc1",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.intermediate.dense",
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.levels.{layer_idx}.blocks.{block_idx}.mlp.fc2",
f"{dst_prefix}.encoder.levels.{layer_idx}.layers.{block_idx}.output.dense",
)
)
if layer_idx < num_layers - 1:
# patch merging
renamed_keys.extend(
[
(
f"{src_prefix}.levels.{layer_idx}.downsample.reduction.weight",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.reduction.weight",
),
(
f"{src_prefix}.levels.{layer_idx}.downsample.norm.weight",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.weight",
),
(
f"{src_prefix}.levels.{layer_idx}.downsample.norm.bias",
f"{dst_prefix}.encoder.levels.{layer_idx}.downsample.norm.bias",
),
]
)
# hidden states norms
renamed_keys.extend(
[
(
f"{src_prefix}.norm{layer_idx}.weight",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.weight",
),
(
f"{src_prefix}.norm{layer_idx}.bias",
f"{dst_prefix}.hidden_states_norms.stage{layer_idx+1}.bias",
),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Backbone + Pixel Decoder
def replace_pixel_module(self, dst_state_dict: StateDict, src_state_dict: StateDict, is_swin: bool):
dst_prefix: str = "pixel_level_module.decoder"
src_prefix: str = "sem_seg_head.pixel_decoder"
if is_swin:
self.replace_swin_backbone(dst_state_dict, src_state_dict, self.config)
else:
self.replace_dinat_backbone(dst_state_dict, src_state_dict, self.config)
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
self_attn_keys = []
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.attention_weights", f"{dst_prefix}.attention_weights")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.output_proj", f"{dst_prefix}.output_proj")
)
self_attn_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.sampling_offsets", f"{dst_prefix}.sampling_offsets")
)
self_attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.value_proj", f"{dst_prefix}.value_proj"))
return self_attn_keys
def rename_keys_for_encoder_layer(src_prefix: str, dst_prefix: str):
encoder_keys = []
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.fc1"))
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.fc2"))
encoder_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.self_attn_layer_norm")
)
encoder_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.final_layer_norm"))
encoder_keys.extend(rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn"))
return encoder_keys
# convolution layer for final features
renamed_keys = [
(f"{src_prefix}.adapter_1.weight", f"{dst_prefix}.adapter_1.0.weight"),
(f"{src_prefix}.adapter_1.norm.weight", f"{dst_prefix}.adapter_1.1.weight"),
(f"{src_prefix}.adapter_1.norm.bias", f"{dst_prefix}.adapter_1.1.bias"),
]
renamed_keys.extend(
[
(f"{src_prefix}.layer_1.weight", f"{dst_prefix}.layer_1.0.weight"),
(f"{src_prefix}.layer_1.norm.weight", f"{dst_prefix}.layer_1.1.weight"),
(f"{src_prefix}.layer_1.norm.bias", f"{dst_prefix}.layer_1.1.bias"),
]
)
# proj layers
for i in range(3):
for j in range(2):
renamed_keys.extend(
[
(f"{src_prefix}.input_proj.{i}.{j}.weight", f"{dst_prefix}.input_projections.{i}.{j}.weight"),
(f"{src_prefix}.input_proj.{i}.{j}.bias", f"{dst_prefix}.input_projections.{i}.{j}.bias"),
]
)
renamed_keys.extend([(f"{src_prefix}.transformer.level_embed", f"{dst_prefix}.level_embed")])
# layers
for layer_idx in range(self.config.encoder_layers):
renamed_keys.extend(
rename_keys_for_encoder_layer(
f"{src_prefix}.transformer.encoder.layers.{layer_idx}", f"{dst_prefix}.encoder.layers.{layer_idx}"
)
)
# proj
renamed_keys.extend(
[
(f"{src_prefix}.mask_features.weight", f"{dst_prefix}.mask_projection.weight"),
(f"{src_prefix}.mask_features.bias", f"{dst_prefix}.mask_projection.bias"),
]
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
# Transformer Decoder
def replace_keys_qkv_transformer_decoder(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module.decoder.layers"
src_prefix: str = "sem_seg_head.predictor"
for i in range(self.config.decoder_layers - 1):
# read in weights + bias of input projection layer of self-attention
in_proj_weight = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_weight"
)
in_proj_bias = src_state_dict.pop(
f"{src_prefix}.transformer_self_attention_layers.{i}.self_attn.in_proj_bias"
)
# next, add query, keys and values (in that order) to the state dict
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.weight"] = in_proj_weight[:256, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.q_proj.bias"] = in_proj_bias[:256]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.weight"] = in_proj_weight[256:512, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.k_proj.bias"] = in_proj_bias[256:512]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.weight"] = in_proj_weight[-256:, :]
dst_state_dict[f"{dst_prefix}.{i}.self_attn.self_attn.v_proj.bias"] = in_proj_bias[-256:]
def replace_transformer_module(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "transformer_module"
src_prefix: str = "sem_seg_head.predictor"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
attn_keys = [
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
]
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_self_attn(src_prefix: str, dst_prefix: str):
attn_keys = []
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_query_transformer_layer(src_prefix: str, dst_prefix: str):
query_transformer_layer_keys = []
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm1", f"{dst_prefix}.norm1")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm2", f"{dst_prefix}.norm2")
)
query_transformer_layer_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.norm3", f"{dst_prefix}.norm3")
)
query_transformer_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
)
query_transformer_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
)
return query_transformer_layer_keys
def rename_keys_for_cross_attn_layer(src_prefix: str, dst_prefix: str):
cross_attn_layer_keys = []
cross_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
cross_attn_layer_keys.extend(
rename_keys_for_attn(f"{src_prefix}.multihead_attn", f"{dst_prefix}.multihead_attn")
)
return cross_attn_layer_keys
def rename_keys_for_self_attn_layer(src_prefix: str, dst_prefix: str):
self_attn_layer_keys = []
self_attn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
self_attn_layer_keys.extend(
rename_keys_for_self_attn(f"{src_prefix}.self_attn", f"{dst_prefix}.self_attn")
)
return self_attn_layer_keys
def rename_keys_for_ffn_layer(src_prefix: str, dst_prefix: str):
ffn_layer_keys = []
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear1", f"{dst_prefix}.linear1"))
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.linear2", f"{dst_prefix}.linear2"))
ffn_layer_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.norm", f"{dst_prefix}.norm"))
return ffn_layer_keys
def rename_keys_for_transformer_decoder_layer(src_prefix: str, dst_prefix: str, idx: int):
transformer_decoder_layer_keys = []
transformer_decoder_layer_keys.extend(
rename_keys_for_cross_attn_layer(
f"{src_prefix}.transformer_cross_attention_layers.{idx}", f"{dst_prefix}.{idx}.cross_attn"
)
)
transformer_decoder_layer_keys.extend(
rename_keys_for_self_attn_layer(
f"{src_prefix}.transformer_self_attention_layers.{idx}", f"{dst_prefix}.{idx}.self_attn"
)
)
transformer_decoder_layer_keys.extend(
rename_keys_for_ffn_layer(f"{src_prefix}.transformer_ffn_layers.{idx}", f"{dst_prefix}.{idx}.ffn")
)
return transformer_decoder_layer_keys
# positional embedding for object queries
renamed_keys = [
(f"{src_prefix}.query_embed.weight", f"{dst_prefix}.queries_embedder.weight"),
(f"{src_prefix}.level_embed.weight", f"{dst_prefix}.level_embed.weight"),
]
# norm
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.decoder_norm", f"{dst_prefix}.decoder.decoder_norm")
)
# proj
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.class_input_proj", f"{dst_prefix}.decoder.query_input_projection"
)
)
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.class_embed", f"{dst_prefix}.decoder.class_embed")
)
for i in range(3):
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.mask_embed.layers.{i}", f"{dst_prefix}.decoder.mask_embed.layers.{i}.0"
)
)
# norm
renamed_keys.extend(
rename_keys_for_weight_bias(
f"{src_prefix}.class_transformer.decoder.norm", f"{dst_prefix}.decoder.query_transformer.decoder.norm"
)
)
# transformer to update queries with task tokens
for i in range(self.config.query_dec_layers):
renamed_keys.extend(
rename_keys_for_query_transformer_layer(
f"{src_prefix}.class_transformer.decoder.layers.{i}",
f"{dst_prefix}.decoder.query_transformer.decoder.layers.{i}",
)
)
# decoder layers
for i in range(self.config.decoder_layers - 1):
renamed_keys.extend(
rename_keys_for_transformer_decoder_layer(
f"{src_prefix}",
f"{dst_prefix}.decoder.layers",
i,
)
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
self.replace_keys_qkv_transformer_decoder(dst_state_dict, src_state_dict)
def replace_task_mlp(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "task_encoder"
src_prefix: str = "task_mlp"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = []
for i in range(2):
renamed_keys.extend(
rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.task_mlp.layers.{i}.0")
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_text_projector(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "text_mapper.text_projector"
src_prefix: str = "text_projector"
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
renamed_keys = []
for i in range(self.config.text_encoder_config["text_encoder_proj_layers"]):
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.layers.{i}", f"{dst_prefix}.{i}.0"))
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def replace_text_mapper(self, dst_state_dict: StateDict, src_state_dict: StateDict):
dst_prefix: str = "text_mapper.text_encoder"
src_prefix: str = "text_encoder"
self.replace_text_projector(dst_state_dict, src_state_dict)
def rename_keys_for_weight_bias(src_prefix: str, dst_prefix: str):
return [
(f"{src_prefix}.weight", f"{dst_prefix}.weight"),
(f"{src_prefix}.bias", f"{dst_prefix}.bias"),
]
def rename_keys_for_attn(src_prefix: str, dst_prefix: str):
attn_keys = [
(f"{src_prefix}.in_proj_bias", f"{dst_prefix}.in_proj_bias"),
(f"{src_prefix}.in_proj_weight", f"{dst_prefix}.in_proj_weight"),
]
attn_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.out_proj", f"{dst_prefix}.out_proj"))
return attn_keys
def rename_keys_for_layer(src_prefix: str, dst_prefix: str):
resblock_keys = []
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_fc", f"{dst_prefix}.mlp.fc1"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.mlp.c_proj", f"{dst_prefix}.mlp.fc2"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_1", f"{dst_prefix}.layer_norm1"))
resblock_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_2", f"{dst_prefix}.layer_norm2"))
resblock_keys.extend(rename_keys_for_attn(f"{src_prefix}.attn", f"{dst_prefix}.self_attn"))
return resblock_keys
renamed_keys = [
("prompt_ctx.weight", "text_mapper.prompt_ctx.weight"),
]
renamed_keys.extend(
[
(f"{src_prefix}.positional_embedding", f"{dst_prefix}.positional_embedding"),
(f"{src_prefix}.token_embedding.weight", f"{dst_prefix}.token_embedding.weight"),
]
)
renamed_keys.extend(rename_keys_for_weight_bias(f"{src_prefix}.ln_final", f"{dst_prefix}.ln_final"))
for i in range(self.config.text_encoder_config["text_encoder_num_layers"]):
renamed_keys.extend(
rename_keys_for_layer(
f"{src_prefix}.transformer.resblocks.{i}", f"{dst_prefix}.transformer.layers.{i}"
)
)
self.pop_all(renamed_keys, dst_state_dict, src_state_dict)
def convert(self, oneformer: OneFormerModel, is_swin: bool) -> OneFormerModel:
dst_state_dict = TrackedStateDict(oneformer.state_dict())
src_state_dict = self.original_model.state_dict()
self.replace_pixel_module(dst_state_dict, src_state_dict, is_swin)
self.replace_transformer_module(dst_state_dict, src_state_dict)
self.replace_task_mlp(dst_state_dict, src_state_dict)
if self.config.is_training:
self.replace_text_mapper(dst_state_dict, src_state_dict)
logger.info(f"Missed keys are {pformat(dst_state_dict.diff())}")
logger.info(f"Not copied keys are {pformat(src_state_dict.keys())}")
logger.info("🙌 Done")
oneformer.load_state_dict(dst_state_dict)
return oneformer
@staticmethod
def using_dirs(checkpoints_dir: Path, config_dir: Path) -> Iterator[Tuple[object, Path, Path]]:
checkpoints: List[Path] = checkpoints_dir.glob("**/*.pth")
for checkpoint in checkpoints:
logger.info(f"💪 Converting {checkpoint.stem}")
# find associated config file
config: Path = config_dir / f"{checkpoint.stem}.yaml"
yield config, checkpoint
def post_process_sem_seg_output(outputs: OneFormerForUniversalSegmentationOutput, target_size: Tuple[int, int]):
# class_queries_logits has shape [BATCH, QUERIES, CLASSES + 1]
class_queries_logits = outputs.class_queries_logits
# masks_queries_logits has shape [BATCH, QUERIES, HEIGHT, WIDTH]
masks_queries_logits = outputs.masks_queries_logits
if target_size is not None:
masks_queries_logits = torch.nn.functional.interpolate(
masks_queries_logits,
size=target_size,
mode="bilinear",
align_corners=False,
)
# remove the null class `[..., :-1]`
masks_classes = class_queries_logits.softmax(dim=-1)[..., :-1]
# mask probs has shape [BATCH, QUERIES, HEIGHT, WIDTH]
masks_probs = masks_queries_logits.sigmoid()
# now we want to sum over the queries,
# $ out_{c,h,w} = \sum_q p_{q,c} * m_{q,h,w} $
# where $ softmax(p) \in R^{q, c} $ is the mask classes
# and $ sigmoid(m) \in R^{q, h, w}$ is the mask probabilities
# b(atch)q(uery)c(lasses), b(atch)q(uery)h(eight)w(idth)
segmentation = torch.einsum("bqc, bqhw -> bchw", masks_classes, masks_probs)
return segmentation
def test(
original_model,
our_model: OneFormerForUniversalSegmentation,
processor: OneFormerProcessor,
model_repo: str,
):
def _preprocess_text(text_list=None, max_length=77):
if text_list is None:
raise ValueError("tokens cannot be None.")
tokens = tokenizer(text_list, padding="max_length", max_length=max_length, truncation=True)
attention_masks, input_ids = tokens["attention_mask"], tokens["input_ids"]
token_inputs = []
for attn_mask, input_id in zip(attention_masks, input_ids):
token = torch.tensor(attn_mask) * torch.tensor(input_id)
token_inputs.append(token.unsqueeze(0))
token_inputs = torch.cat(token_inputs, dim=0)
return token_inputs
with torch.no_grad():
tokenizer = CLIPTokenizer.from_pretrained(model_repo)
original_model = original_model.eval()
our_model = our_model.eval()
im = prepare_img()
tr = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
T.Normalize(
mean=torch.tensor([123.675, 116.280, 103.530]) / 255.0,
std=torch.tensor([58.395, 57.120, 57.375]) / 255.0,
),
],
)
x = tr(im).unsqueeze(0)
task_input = ["the task is semantic"]
task_token = _preprocess_text(task_input, max_length=processor.task_seq_length)
original_model_backbone_features = original_model.backbone(x.clone())
our_model_output: OneFormerModelOutput = our_model.model(x.clone(), task_token, output_hidden_states=True)
for original_model_feature, our_model_feature in zip(
original_model_backbone_features.values(), our_model_output.encoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=3e-3
), "The backbone features are not the same."
mask_features, _, multi_scale_features, _, _ = original_model.sem_seg_head.pixel_decoder.forward_features(
original_model_backbone_features
)
original_pixel_decoder_features = []
original_pixel_decoder_features.append(mask_features)
for i in range(len(multi_scale_features)):
original_pixel_decoder_features.append(multi_scale_features[i])
for original_model_feature, our_model_feature in zip(
original_pixel_decoder_features, our_model_output.pixel_decoder_hidden_states
):
assert torch.allclose(
original_model_feature, our_model_feature, atol=3e-4
), "The pixel decoder feature are not the same"
tr_complete = T.Compose(
[
T.Resize((640, 640)),
T.ToTensor(),
],
)
y = (tr_complete(im) * 255.0).to(torch.int).float()
# let's test the full model
original_model_out = original_model([{"image": y.clone(), "task": "The task is semantic"}])
original_segmentation = original_model_out[0]["sem_seg"]
our_model_out: OneFormerForUniversalSegmentationOutput = our_model(
x.clone(), task_token, output_hidden_states=True
)
our_segmentation = post_process_sem_seg_output(our_model_out, target_size=(640, 640))[0]
assert torch.allclose(
original_segmentation, our_segmentation, atol=1e-3
), "The segmentation image is not the same."
logger.info("✅ Test passed!")
def get_name(checkpoint_file: Path):
model_name_raw: str = checkpoint_file.stem
backbone = "swin" if "swin" in model_name_raw else "dinat"
dataset = ""
if "coco" in model_name_raw:
dataset = "coco"
elif "ade20k" in model_name_raw:
dataset = "ade20k"
elif "cityscapes" in model_name_raw:
dataset = "cityscapes"
else:
raise ValueError(
f"{model_name_raw} must be wrong since we didn't find 'coco' or 'ade20k' or 'cityscapes' in it "
)
backbone_types = ["tiny", "large"]
backbone_type = list(filter(lambda x: x in model_name_raw, backbone_types))[0]
model_name = f"oneformer_{dataset}_{backbone}_{backbone_type}"
return model_name
if __name__ == "__main__":
parser = ArgumentParser(
description=(
"Command line to convert the original oneformer models (with swin backbone) to transformers"
" implementation."
)
)
parser.add_argument(
"--checkpoints_dir",
type=Path,
help=(
"A directory containing the model's checkpoints. The directory has to have the following structure:"
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.pth; where <CONFIG_NAME> name must follow the"
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
),
)
parser.add_argument(
"--configs_dir",
type=Path,
help=(
"A directory containing the model's configs, see detectron2 doc. The directory has to have the following"
" structure: <DIR_NAME>/<DATASET_NAME>/<CONFIG_NAME>.yaml; where <CONFIG_NAME> name must follow the"
" following nomenclature nomenclature: oneformer_<DATASET_NAME>_<BACKBONE>_<BACKBONE_TYPE>"
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
required=True,
type=Path,
help="Path to the folder to output PyTorch models.",
)
parser.add_argument(
"--oneformer_dir",
required=True,
type=Path,
help=(
"A path to OneFormer's original implementation directory. You can download from here: "
"https://github.com/SHI-Labs/OneFormer"
),
)
args = parser.parse_args()
checkpoints_dir: Path = args.checkpoints_dir
config_dir: Path = args.configs_dir
save_directory: Path = args.pytorch_dump_folder_path
oneformer_dir: Path = args.oneformer_dir
# append the path to the parents to oneformer dir
sys.path.append(str(oneformer_dir.parent))
# and import what's needed
from OneFormer.oneformer import add_common_config, add_dinat_config, add_oneformer_config, add_swin_config
from OneFormer.oneformer.oneformer_model import OneFormer as OriginalOneFormer
if not save_directory.exists():
save_directory.mkdir(parents=True)
for config_file, checkpoint_file in OriginalOneFormerCheckpointToOursConverter.using_dirs(
checkpoints_dir, config_dir
):
processor = OriginalOneFormerConfigToProcessorConverter()(
setup_cfg(Args(config_file=config_file)), os.path.join("shi-labs", config_file.stem)
)
original_config = setup_cfg(Args(config_file=config_file))
oneformer_kwargs = OriginalOneFormer.from_config(original_config)
original_model = OriginalOneFormer(**oneformer_kwargs).eval()
DetectionCheckpointer(original_model).load(str(checkpoint_file))
is_swin = "swin" in config_file.stem
config: OneFormerConfig = OriginalOneFormerConfigToOursConverter()(original_config, is_swin)
oneformer = OneFormerModel(config=config).eval()
converter = OriginalOneFormerCheckpointToOursConverter(original_model, config)
oneformer = converter.convert(oneformer, is_swin)
oneformer_for_universal_segmentation = OneFormerForUniversalSegmentation(config=config).eval()
oneformer_for_universal_segmentation.model = oneformer
test(
original_model,
oneformer_for_universal_segmentation,
processor,
os.path.join("shi-labs", config_file.stem),
)
model_name = get_name(checkpoint_file)
logger.info(f"🪄 Saving {model_name}")
processor.save_pretrained(save_directory / model_name)
oneformer_for_universal_segmentation.save_pretrained(save_directory / model_name)
processor.push_to_hub(
repo_id=os.path.join("shi-labs", config_file.stem),
commit_message="Add configs",
use_temp_dir=True,
)
oneformer_for_universal_segmentation.push_to_hub(
repo_id=os.path.join("shi-labs", config_file.stem),
commit_message="Add model",
use_temp_dir=True,
)
| transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py/0 | {
"file_path": "transformers/src/transformers/models/oneformer/convert_to_hf_oneformer.py",
"repo_id": "transformers",
"token_count": 26214
} |
# coding=utf-8
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 OPT model."""
from __future__ import annotations
from typing import Optional, Tuple, Union
import numpy as np
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import TFBaseModelOutputWithPast, TFCausalLMOutputWithPast
# Public API
from ...modeling_tf_utils import (
TFCausalLanguageModelingLoss,
TFModelInputType,
TFPreTrainedModel,
TFSharedEmbeddings,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_opt import OPTConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/opt-350m"
_CONFIG_FOR_DOC = "OPTConfig"
# Base model docstring
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
# Causal LM output
_CAUSAL_LM_EXPECTED_OUTPUT = (
"Hey, are you conscious? Can you talk to me?\nI'm not conscious. I'm just a little bit of a weirdo."
)
LARGE_NEGATIVE = -1e8
def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0):
"""
Make causal mask used for bi-directional self-attention.
"""
bsz = input_ids_shape[0]
tgt_len = input_ids_shape[1]
# We need triu with k = 1 but TF expects known compile-time dims for that, so we hack around it
mask = tf.fill((tgt_len, tgt_len), tf.cast(LARGE_NEGATIVE, tf.float32))
mask = tf.linalg.band_part(mask, 0, -1) - tf.linalg.band_part(mask, 0, 0)
if past_key_values_length > 0:
mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1)
return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1))
# Copied from transformers.models.bart.modeling_tf_bart._expand_mask
def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None):
"""
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
"""
src_len = shape_list(mask)[1]
tgt_len = tgt_len if tgt_len is not None else src_len
one_cst = tf.constant(1.0)
mask = tf.cast(mask, dtype=one_cst.dtype)
expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1))
return (one_cst - expanded_mask) * LARGE_NEGATIVE
class TFOPTLearnedPositionalEmbedding(keras.layers.Embedding):
"""
This module learns positional embeddings up to a fixed maximum size.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs):
# OPT is set up so that if padding_idx is specified then offset the embedding ids by 2
# and adjust num_embeddings appropriately. Other models don't have this hack
self.offset = 2
super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs)
def call(self, attention_mask, past_key_values_length: int = 0):
"""`input_ids_shape` is expected to be [bsz x seqlen]."""
attention_mask = tf.cast(attention_mask, tf.int64)
# create positions depending on attention_mask
positions = tf.math.cumsum(attention_mask, axis=1) * attention_mask - 1
# cut positions if `past_key_values_length` is > 0
positions = positions[:, past_key_values_length:]
return super().call(positions + self.offset)
# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->OPT
class TFOPTAttention(keras.layers.Layer):
"""Multi-headed attention from "Attention Is All You Need"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = keras.layers.Dropout(dropout)
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj")
self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj")
self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj")
self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj")
def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int):
return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
key_value_states: tf.Tensor | None = None,
past_key_value: Tuple[Tuple[tf.Tensor]] | None = None,
attention_mask: tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
training: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor | None]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, embed_dim = shape_list(hidden_states)
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = tf.concat([past_key_value[0], key_states], axis=2)
value_states = tf.concat([past_key_value[1], value_states], axis=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape)
key_states = tf.reshape(key_states, proj_shape)
value_states = tf.reshape(value_states, proj_shape)
src_len = shape_list(key_states)[1]
attn_weights = tf.matmul(query_states, key_states, transpose_b=True)
tf.debugging.assert_equal(
shape_list(attn_weights),
[bsz * self.num_heads, tgt_len, src_len],
message=(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {shape_list(attn_weights)}"
),
)
if attention_mask is not None:
tf.debugging.assert_equal(
shape_list(attention_mask),
[bsz, 1, tgt_len, src_len],
message=(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
f" {shape_list(attention_mask)}"
),
)
attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype)
attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_weights = stable_softmax(attn_weights, axis=-1)
if layer_head_mask is not None:
tf.debugging.assert_equal(
shape_list(layer_head_mask),
[self.num_heads],
message=(
f"Head mask for a single layer should be of size {(self.num_heads)}, but is"
f" {shape_list(layer_head_mask)}"
),
)
attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape(
attn_weights, (bsz, self.num_heads, tgt_len, src_len)
)
attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len))
attn_probs = self.dropout(attn_weights, training=training)
attn_output = tf.matmul(attn_probs, value_states)
tf.debugging.assert_equal(
shape_list(attn_output),
[bsz * self.num_heads, tgt_len, self.head_dim],
message=(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {shape_list(attn_output)}"
),
)
attn_output = tf.transpose(
tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3)
)
attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim))
attn_output = self.out_proj(attn_output)
attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len))
return attn_output, attn_weights, past_key_value
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "k_proj", None) is not None:
with tf.name_scope(self.k_proj.name):
self.k_proj.build([None, None, self.embed_dim])
if getattr(self, "q_proj", None) is not None:
with tf.name_scope(self.q_proj.name):
self.q_proj.build([None, None, self.embed_dim])
if getattr(self, "v_proj", None) is not None:
with tf.name_scope(self.v_proj.name):
self.v_proj.build([None, None, self.embed_dim])
if getattr(self, "out_proj", None) is not None:
with tf.name_scope(self.out_proj.name):
self.out_proj.build([None, None, self.embed_dim])
class TFOPTDecoderLayer(keras.layers.Layer):
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.do_layer_norm_before = config.do_layer_norm_before
self.embed_dim = config.hidden_size
self.self_attn = TFOPTAttention(
embed_dim=self.embed_dim,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
name="self_attn",
is_decoder=True,
)
self.dropout = keras.layers.Dropout(config.dropout)
self.activation_fn = get_tf_activation(config.activation_function)
self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm")
self.fc1 = keras.layers.Dense(config.ffn_dim, name="fc1")
self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2")
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
attention_mask: np.ndarray | tf.Tensor | None = None,
layer_head_mask: tf.Tensor | None = None,
past_key_value: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
training: Optional[bool] = False,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]:
"""
Args:
hidden_states (`tf.Tensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`tf.Tensor`, *optional*): attention mask of size
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
layer_head_mask (`tf.Tensor`, *optional*): mask for attention heads in a given layer of size
`(decoder_attention_heads,)`
past_key_value (`Tuple(tf.Tensor)`, *optional*): cached past key and value projection states
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.self_attn_layer_norm(hidden_states)
# Fully Connected
residual = hidden_states
# 125m, 1.7B, ..., 175B applies layer norm BEFORE attention
if self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
hidden_states = residual + hidden_states
# 350m applies layer norm AFTER attention
if not self.do_layer_norm_before:
hidden_states = self.final_layer_norm(hidden_states)
return (hidden_states, self_attn_weights, present_key_value)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attn", None) is not None:
with tf.name_scope(self.self_attn.name):
self.self_attn.build(None)
if getattr(self, "self_attn_layer_norm", None) is not None:
with tf.name_scope(self.self_attn_layer_norm.name):
self.self_attn_layer_norm.build([None, None, self.embed_dim])
if getattr(self, "fc1", None) is not None:
with tf.name_scope(self.fc1.name):
self.fc1.build([None, None, self.embed_dim])
if getattr(self, "fc2", None) is not None:
with tf.name_scope(self.fc2.name):
self.fc2.build([None, None, self.config.ffn_dim])
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.embed_dim])
OPT_START_DOCSTRING = r"""
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
behavior.
<Tip>
TensorFlow models and layers in `transformers` accept two formats as input:
- having all inputs as keyword arguments (like PyTorch models), or
- having all inputs as a list, tuple or dict in the first positional argument.
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
positional argument:
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
Note that when creating models and layers with
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
about any of this, as you can just pass inputs like you would to any other Python function!
</Tip>
Args:
config ([`OPTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
class TFOPTPreTrainedModel(TFPreTrainedModel):
"""
TFOPT Pretrained Model that inheritates from transformers.TFPreTrainedModel
Args:
config: OPTConfig
"""
config_class = OPTConfig
base_model_prefix = "model"
OPT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`tf.Tensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`)
contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*, defaults to `True`):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`). Set to `False` during training, `True` during generation
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
config will be used instead.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
used instead.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
eager mode, in graph mode the value will always be set to True.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
@keras_serializable
class TFOPTDecoder(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.padding_idx = config.pad_token_id
self.layerdrop = config.layerdrop
num_embeddings = config.max_position_embeddings
self.embed_tokens = TFSharedEmbeddings(
config.vocab_size, config.word_embed_proj_dim, config.pad_token_id, name="embed_tokens"
)
self.embed_positions = TFOPTLearnedPositionalEmbedding(
num_embeddings,
config.hidden_size,
name="embed_positions",
)
# Note that the only purpose of `config._remove_final_layer_norm` is to keep backward compatibility
# with checkpoints that have been fine-tuned before transformers v4.20.1
# see https://github.com/facebookresearch/metaseq/pull/164
if config.do_layer_norm_before and not config._remove_final_layer_norm:
self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm")
else:
self.final_layer_norm = None
if config.word_embed_proj_dim != config.hidden_size:
self.project_out = keras.layers.Dense(config.word_embed_proj_dim, name="project_out", use_bias=False)
self.project_in = keras.layers.Dense(config.hidden_size, name="project_in", use_bias=False)
else:
self.project_in = None
self.project_out = None
self.layers = [TFOPTDecoderLayer(config, name=f"layers.{i}") for i in range(config.num_hidden_layers)]
self.dropout = keras.layers.Dropout(config.dropout)
def get_embed_tokens(self):
return self.embed_tokens
def set_embed_tokens(self, embed_tokens):
self.embed_tokens = embed_tokens
def set_input_embeddings(self, new_embeddings):
self.embed_tokens.vocab_size = new_embeddings.shape[0]
self.embed_tokens.weight = new_embeddings
def get_input_embeddings(self):
return self.embed_tokens
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, past_key_values_length):
# create causal mask
# # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
_, seq_length = input_shape
tf.debugging.assert_equal(
seq_length + past_key_values_length,
shape_list(attention_mask)[1],
message="Attention mask shape should be (batch_size, seq_length + past_key_values_length)"
f" but is {shape_list(attention_mask)[1]} with input_ids shape {input_shape} and past length"
f" {past_key_values_length}.",
)
expanded_attn_mask = _expand_mask(attention_mask, tgt_len=input_shape[-1])
if seq_length > 1:
combined_attention_mask = (
_make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + expanded_attn_mask
)
else:
combined_attention_mask = expanded_attn_mask
return combined_attention_mask
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up
decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`tf.Tensor` of
shape `(batch_size, sequence_length, hidden_size)`, *optional*): Optionally, instead of passing
`input_ids` you can choose to directly pass an embedded representation. This is useful if you want more
control over how to convert `input_ids` indices into associated vectors than the model's internal
embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
training (`bool`, *optional*, defaults to `False`):
Whether or not to use the model in training mode (some modules like dropout modules have different
behaviors between training and evaluation).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input_shape = shape_list(input_ids)
elif inputs_embeds is not None:
input_shape = shape_list(inputs_embeds)[:-1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0
if inputs_embeds is None:
check_embeddings_within_bounds(input_ids, self.embed_tokens.vocab_size)
inputs_embeds = self.embed_tokens(input_ids)
if attention_mask is None:
attention_mask = tf.ones((input_shape[0], input_shape[1] + past_key_values_length), dtype=tf.bool)
else:
tf.debugging.assert_equal(
shape_list(attention_mask)[1],
past_key_values_length + input_shape[1],
message=(
f"The provided attention mask has length {tf.shape(attention_mask)[1]}, but its length should be "
f"{past_key_values_length + input_shape[1]} (sum of the lengths of current and past inputs)"
),
)
pos_embeds = self.embed_positions(attention_mask, past_key_values_length)
attention_mask = self._prepare_decoder_attention_mask(attention_mask, input_shape, past_key_values_length)
if self.project_in is not None:
inputs_embeds = self.project_in(inputs_embeds)
hidden_states = inputs_embeds + pos_embeds
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
present_key_values = () if use_cache else None
# check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired
for attn_mask_name, attn_mask in [("head_mask", head_mask)]:
if attn_mask is not None:
tf.debugging.assert_equal(
shape_list(attn_mask)[0],
len(self.layers),
message=(
f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for"
f" {shape_list(attn_mask)[0]}."
),
)
for idx, decoder_layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
past_key_value = past_key_values[idx] if past_key_values is not None else None
hidden_states, layer_self_attn, present_key_value = decoder_layer(
hidden_states,
attention_mask=attention_mask,
layer_head_mask=head_mask[idx] if head_mask is not None else None,
past_key_value=past_key_value,
)
if use_cache:
present_key_values += (present_key_value,)
if output_attentions:
all_self_attns += (layer_self_attn,)
if self.final_layer_norm is not None:
hidden_states = self.final_layer_norm(hidden_states)
if self.project_out is not None:
hidden_states = self.project_out(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if not return_dict:
return tuple(
v for v in [hidden_states, present_key_values, all_hidden_states, all_self_attns] if v is not None
)
else:
return TFBaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=present_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embed_tokens", None) is not None:
with tf.name_scope(self.embed_tokens.name):
self.embed_tokens.build(None)
if getattr(self, "embed_positions", None) is not None:
with tf.name_scope(self.embed_positions.name):
self.embed_positions.build(None)
if getattr(self, "final_layer_norm", None) is not None:
with tf.name_scope(self.final_layer_norm.name):
self.final_layer_norm.build([None, None, self.config.hidden_size])
if getattr(self, "project_out", None) is not None:
with tf.name_scope(self.project_out.name):
self.project_out.build([None, None, self.config.hidden_size])
if getattr(self, "project_in", None) is not None:
with tf.name_scope(self.project_in.name):
self.project_in.build([None, None, self.config.word_embed_proj_dim])
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFOPTMainLayer(keras.layers.Layer):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(**kwargs)
self.config = config
self.decoder = TFOPTDecoder(config, name="decoder")
def get_input_embeddings(self):
return self.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.decoder.set_input_embeddings(new_embeddings)
@unpack_inputs
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.decoder(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"The bare TF OPT Model outputting raw hidden-states without any specific head on top.",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTModel(TFOPTPreTrainedModel):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, new_embeddings):
self.model.set_input_embeddings(new_embeddings)
@unpack_inputs
@add_start_docstrings_to_model_forward(OPT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
input_ids: TFModelInputType | None = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
if not return_dict:
return outputs
return TFBaseModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFBaseModelOutputWithPast(
last_hidden_state=output.last_hidden_state,
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
@add_start_docstrings(
"""
The OPT Model transformer with a language modeling head on top.
""",
OPT_START_DOCSTRING,
)
@keras_serializable
class TFOPTForCausalLM(TFOPTPreTrainedModel, TFCausalLanguageModelingLoss):
config_class = OPTConfig
def __init__(self, config: OPTConfig, **kwargs):
super().__init__(config, **kwargs)
self.config = config
self.model = TFOPTMainLayer(config, name="model")
def get_output_embeddings(self):
return self.model.get_input_embeddings()
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
attention_mask = kwargs.get("attention_mask", None)
# only last token for inputs_ids if past is defined in kwargs
if past_key_values:
inputs = tf.expand_dims(inputs[:, -1], -1)
return {
"input_ids": inputs,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": use_cache,
}
@unpack_inputs
@replace_return_docstrings(output_type=TFCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFCausalLMOutputWithPast,
config_class=_CONFIG_FOR_DOC,
expected_output=_CAUSAL_LM_EXPECTED_OUTPUT,
)
def call(
self,
input_ids: TFModelInputType | None = None,
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
attention_mask: np.ndarray | tf.Tensor | None = None,
position_ids: np.ndarray | tf.Tensor | None = None,
head_mask: np.ndarray | tf.Tensor | None = None,
inputs_embeds: np.ndarray | tf.Tensor | None = None,
labels: np.ndarray | tf.Tensor | None = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: Optional[bool] = False,
**kwargs,
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.Tensor` of shape `(num_hidden_layers, num_attention_heads)`, *optional*):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.model(
input_ids=input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
logits = self.model.decoder.embed_tokens(outputs[0], mode="linear")
loss = None
if labels is not None:
# shift labels to the left and cut last logit token
shifted_logits = logits[:, :-1]
labels = labels[:, 1:]
loss = self.hf_compute_loss(labels, shifted_logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFCausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def serving_output(self, output):
pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None
hs = tf.convert_to_tensor(output.hidden_states) if self.config.output_hidden_states else None
attns = tf.convert_to_tensor(output.attentions) if self.config.output_attentions else None
return TFCausalLMOutputWithPast(
past_key_values=pkv,
hidden_states=hs,
attentions=attns,
loss=output.loss,
logits=output.logits,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "model", None) is not None:
with tf.name_scope(self.model.name):
self.model.build(None)
__all__ = ["TFOPTForCausalLM", "TFOPTModel", "TFOPTPreTrainedModel"]
| transformers/src/transformers/models/opt/modeling_tf_opt.py/0 | {
"file_path": "transformers/src/transformers/models/opt/modeling_tf_opt.py",
"repo_id": "transformers",
"token_count": 21516
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert PaliGemma2 checkpoints from the original repository."""
import argparse
import collections
import jax.numpy as jnp
import ml_dtypes
import numpy as np
import torch
from transformers import (
AutoTokenizer,
Gemma2Config,
PaliGemmaConfig,
PaliGemmaForConditionalGeneration,
PaliGemmaProcessor,
SiglipImageProcessor,
)
from transformers.tokenization_utils_base import AddedToken
from transformers.utils import logging
device = "cpu"
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
# TODO add sequence length variations here
PALIGEMMA2_VARIANTS = ["2b-224", "2b-448", "2b-896", "9b-224", "9b-448", "9b-896", "27b-224", "27b-448", "27b-896"]
VARIANT_CONFIGS = {
"2b": {
"num_positions": 256,
"hidden_size": 2304,
"num_hidden_layers": 26,
"intermediate_size": 9216,
"num_key_value_heads": 4,
"num_attention_heads": 8,
"head_dim": 256,
"query_pre_attn_scalar": 256,
},
"9b": {
"num_positions": 1024,
"hidden_size": 3584,
"num_hidden_layers": 42,
"intermediate_size": 14336,
"num_key_value_heads": 8,
"num_attention_heads": 16,
"head_dim": 256,
"query_pre_attn_scalar": 256,
},
"27b": {
"num_positions": 4096,
"hidden_size": 4608,
"num_hidden_layers": 46,
"intermediate_size": 36864,
"num_key_value_heads": 16,
"num_attention_heads": 32,
"head_dim": 128,
"query_pre_attn_scalar": 4608 // 32, # scaling is different for the 28b
},
}
DTYPES = {"float32": torch.float32, "bfloat16": torch.bfloat16, "float16": torch.float16}
def get_paligemma2_config(variant: str, precision: str):
config = {
"image_token_index": None,
"pad_token_id": 0,
"bos_token_id": 2,
"eos_token_id": 1,
}
base_variant = variant.split("-")[0]
if variant in PALIGEMMA2_VARIANTS:
image_size = int(variant.split("-")[1])
variant_config = VARIANT_CONFIGS[base_variant]
patch_size = 14
num_image_tokens = (image_size**2) // (patch_size**2)
config["projection_dim"] = variant_config["hidden_size"]
config["image_token_index"] = 257152
config["num_hidden_layers"] = variant_config["num_hidden_layers"] # For generate
text_config = Gemma2Config.from_pretrained("google/gemma-2-2b-it").to_dict()
sup_text_config = {
"model_type": "gemma2",
"vocab_size": 257152,
"num_hidden_layers": variant_config["num_hidden_layers"],
"num_key_value_heads": variant_config["num_key_value_heads"],
"head_dim": variant_config["head_dim"],
"torch_dtype": precision,
"hidden_size": variant_config["hidden_size"],
"hidden_activation": "gelu_pytorch_tanh",
"num_attention_heads": variant_config["num_attention_heads"],
"intermediate_size": variant_config["intermediate_size"],
"is_encoder_decoder": False,
"query_pre_attn_scalar": variant_config["query_pre_attn_scalar"],
}
text_config.update(sup_text_config)
vision_config = {
"num_positions": variant_config["num_positions"], # not useful, to remove
"torch_dtype": precision,
"image_size": image_size,
"patch_size": patch_size,
"num_image_tokens": num_image_tokens,
"hidden_size": 1152,
"intermediate_size": 4304,
"num_hidden_layers": 27,
"num_attention_heads": 16,
"projection_dim": variant_config["hidden_size"],
"hidden_act": "gelu_pytorch_tanh",
"vision_use_head": False,
}
final_config = PaliGemmaConfig(text_config=text_config, vision_config=vision_config, **config)
else:
raise ValueError(f"Identifier {variant} not supported. Available: {PALIGEMMA2_VARIANTS}")
return final_config
def slice_state_dict(state_dict, config):
# fmt: off
# patch embeddings
state_dict["vision_tower.vision_model.embeddings.patch_embedding.weight"] = state_dict.pop("img/embedding/kernel").transpose(
3, 2, 0, 1
)
state_dict["vision_tower.vision_model.embeddings.patch_embedding.bias"] = state_dict.pop("img/embedding/bias")
# positional embeddings
state_dict["vision_tower.vision_model.embeddings.position_embedding.weight"] = state_dict.pop("img/pos_embedding").reshape(
-1, config.vision_config.hidden_size
)
# extract vision layers to be sliced at index 0. There are 27 layers in the base model.
encoderblock_layernorm0_scale = state_dict.pop("img/Transformer/encoderblock/LayerNorm_0/scale")
encoderblock_layernorm0_bias = state_dict.pop("img/Transformer/encoderblock/LayerNorm_0/bias")
encoderblock_layernorm1_scale = state_dict.pop("img/Transformer/encoderblock/LayerNorm_1/scale")
encoderblock_layernorm1_bias = state_dict.pop("img/Transformer/encoderblock/LayerNorm_1/bias")
encoderblock_mlp_dense0_kernel= state_dict.pop("img/Transformer/encoderblock/MlpBlock_0/Dense_0/kernel")
encoderblock_mlp_dense0_bias= state_dict.pop("img/Transformer/encoderblock/MlpBlock_0/Dense_0/bias")
encoderblock_mlp_dense1_kernel= state_dict.pop("img/Transformer/encoderblock/MlpBlock_0/Dense_1/kernel")
encoderblock_mlp_dense1_bias= state_dict.pop("img/Transformer/encoderblock/MlpBlock_0/Dense_1/bias")
encoderblock_attention_0_key_kernel = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/key/kernel")
encoderblock_attention_0_key_bias = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/key/bias")
encoderblock_attention_0_value_kernel = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/value/kernel")
encoderblock_attention_0_value_bias = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/value/bias")
encoderblock_attention_0_query_kernel = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/query/kernel")
encoderblock_attention_0_query_bias = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/query/bias")
encoderblock_attention_0_out_kernel = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/out/kernel")
encoderblock_attention_0_out_bias = state_dict.pop("img/Transformer/encoderblock/MultiHeadDotProductAttention_0/out/bias")
for i in range(config.vision_config.num_hidden_layers):
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.layer_norm1.weight"] = encoderblock_layernorm0_scale[i].transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.layer_norm1.bias"] = encoderblock_layernorm0_bias[i]
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.layer_norm2.weight"] = encoderblock_layernorm1_scale[i].transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.layer_norm2.bias"] = encoderblock_layernorm1_bias[i]
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.mlp.fc1.weight"] = encoderblock_mlp_dense0_kernel[i].transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.mlp.fc1.bias"] = encoderblock_mlp_dense0_bias[i]
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.mlp.fc2.weight"] = encoderblock_mlp_dense1_kernel[i].transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.mlp.fc2.bias"] = encoderblock_mlp_dense1_bias[i]
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.k_proj.weight"] = encoderblock_attention_0_key_kernel[i].reshape(-1, config.vision_config.hidden_size).transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.k_proj.bias"] = encoderblock_attention_0_key_bias[i].reshape(-1, config.vision_config.hidden_size).reshape(-1)
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.v_proj.weight"] = encoderblock_attention_0_value_kernel[i].reshape(-1, config.vision_config.hidden_size).transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.v_proj.bias"] = encoderblock_attention_0_value_bias[i].reshape(-1, config.vision_config.hidden_size).reshape(-1)
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.q_proj.weight"] = encoderblock_attention_0_query_kernel[i].reshape(-1, config.vision_config.hidden_size).transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.q_proj.bias"] = encoderblock_attention_0_query_bias[i].reshape(-1, config.vision_config.hidden_size).reshape(-1)
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.out_proj.weight"] = encoderblock_attention_0_out_kernel[i].reshape(-1, config.vision_config.hidden_size).transpose()
state_dict[f"vision_tower.vision_model.encoder.layers.{i}.self_attn.out_proj.bias"] = encoderblock_attention_0_out_bias[i].reshape(-1, config.vision_config.hidden_size).reshape(-1)
state_dict["vision_tower.vision_model.post_layernorm.weight"] = state_dict.pop("img/Transformer/encoder_norm/scale").transpose()
state_dict["vision_tower.vision_model.post_layernorm.bias"] = state_dict.pop("img/Transformer/encoder_norm/bias")
# multimodal projector
state_dict['multi_modal_projector.linear.weight'] = state_dict.pop("img/head/kernel").transpose()
state_dict['multi_modal_projector.linear.bias'] = state_dict.pop("img/head/bias")
# text decoder (gemma)
embedding_vector = state_dict.pop("llm/embedder/input_embedding")
state_dict["language_model.model.embed_tokens.weight"] = embedding_vector
# pop the einsum attention + mlp representations. There are 26 layers in gemma2-2b.
llm_attention_attn_vec_einsum = state_dict.pop("llm/layers/attn/attn_vec_einsum/w")
# (26, 2, 4, 2304, 256) for 2b-224, 4 kv heads and 26 layers
llm_attention_kv_einsum = state_dict.pop("llm/layers/attn/kv_einsum/w")
llm_attention_q_einsum = state_dict.pop("llm/layers/attn/q_einsum/w")
llm_mlp_gating_einsum = state_dict.pop("llm/layers/mlp/gating_einsum")
llm_mlp_linear = state_dict.pop("llm/layers/mlp/linear")
# TODO verify correctness of layer norm loading
llm_input_layernorm = state_dict.pop("llm/layers/pre_attention_norm/scale")
llm_pre_feedforward_layernorm = state_dict.pop("llm/layers/pre_ffw_norm/scale")
llm_post_attention_layernorm = state_dict.pop("llm/layers/post_attention_norm/scale")
llm_post_feedforward_layernorm = state_dict.pop("llm/layers/post_ffw_norm/scale")
for i in range(config.text_config.num_hidden_layers):
# llm_attention_q_einsum[i].shape = (8, 2048, 256)
# q_proj_weight_reshaped = llm_attention_q_einsum[i].transpose(0, 2, 1).reshape(config.text_config.num_attention_heads * config.text_config.head_dim, config.text_config.hidden_size)
"""
q shape (8, 2304, 256)
k shape (4, 2304, 256)
v shape (4, 2304, 256)
o shape (8, 256, 2304)
"""
q_transpose = (0, 2, 1)
k_transpose = (0, 2, 1)
v_transpose = (0, 2, 1)
o_transpose = (2, 0, 1)
q_weight_matrices = llm_attention_q_einsum[i].transpose(*q_transpose)
q_proj_weight_reshaped = q_weight_matrices
q_proj_weight_reshaped = q_proj_weight_reshaped.reshape(config.text_config.num_attention_heads * config.text_config.head_dim, config.text_config.hidden_size)
state_dict[f"language_model.model.layers.{i}.self_attn.q_proj.weight"] = q_proj_weight_reshaped
# Shape: (4, 2304, 256)
k_weight_matrices = llm_attention_kv_einsum[i, 0].transpose(*k_transpose)
k_proj_weight_reshaped = k_weight_matrices.reshape(
config.text_config.num_key_value_heads * config.text_config.head_dim,
config.text_config.hidden_size
)
state_dict[f"language_model.model.layers.{i}.self_attn.k_proj.weight"] = k_proj_weight_reshaped
# llm_attention_kv_einsum[i, 1].shape = (num_key_value_heads, hidden_size, head_dim)
v_weight_matrices = llm_attention_kv_einsum[i, 1].transpose(*v_transpose) # Shape: (4, 2304, 256)
v_proj_weight_reshaped = v_weight_matrices.reshape(
config.text_config.num_key_value_heads * config.text_config.head_dim,
config.text_config.hidden_size
)
state_dict[f"language_model.model.layers.{i}.self_attn.v_proj.weight"] = v_proj_weight_reshaped
# output projection.
# llm_attention_attn_vec_einsum[i].shape = (8, 256, 2304)
o_proj_weight_reshaped = llm_attention_attn_vec_einsum[i].transpose(*o_transpose).reshape(config.text_config.hidden_size, config.text_config.num_attention_heads * config.text_config.head_dim)
state_dict[f"language_model.model.layers.{i}.self_attn.o_proj.weight"] = o_proj_weight_reshaped
# mlp layers
gate_proj_weight = llm_mlp_gating_einsum[i, 0]
state_dict[f"language_model.model.layers.{i}.mlp.gate_proj.weight"] = gate_proj_weight.transpose()
up_proj_weight = llm_mlp_gating_einsum[i, 1]
state_dict[f"language_model.model.layers.{i}.mlp.up_proj.weight"] = up_proj_weight.transpose()
state_dict[f"language_model.model.layers.{i}.mlp.down_proj.weight"] = llm_mlp_linear[i].transpose()
state_dict[f"language_model.model.layers.{i}.input_layernorm.weight"] = llm_input_layernorm[i]
state_dict[f"language_model.model.layers.{i}.post_attention_layernorm.weight"] = llm_post_attention_layernorm[i]
state_dict[f"language_model.model.layers.{i}.pre_feedforward_layernorm.weight"] = llm_pre_feedforward_layernorm[i]
state_dict[f"language_model.model.layers.{i}.post_feedforward_layernorm.weight"] = llm_post_feedforward_layernorm[i]
state_dict["language_model.model.norm.weight"] = state_dict.pop("llm/final_norm/scale")
state_dict["language_model.lm_head.weight"] = embedding_vector # weights are tied.
[k for k in state_dict.keys() if not k.startswith('vision') and not k.startswith('language')]
# fmt: on
for key, value in state_dict.items():
if not isinstance(value, torch.Tensor):
try:
if value.dtype == jnp.bfloat16:
value = jnp.array(value).astype(jnp.float32)
value = np.array(value)
state_dict[key] = torch.from_numpy(value).to(torch.bfloat16)
else:
state_dict[key] = torch.from_numpy(value)
except Exception as initial_exception:
raise ValueError(f"Conversion failed from jax weights with {initial_exception}. Check your inputs.")
return state_dict
def flatten_nested_dict(params, parent_key="", sep="/", precision: int = "float32"):
items = []
for k, v in params.items():
k = k.removeprefix("params/")
new_key = parent_key + sep + k if parent_key else k
if isinstance(v, collections.abc.MutableMapping):
items.extend(flatten_nested_dict(v, parent_key=new_key, sep=sep, precision=precision).items())
else:
if precision == "bfloat16":
try:
v = v.view(ml_dtypes.bfloat16)
except Exception as initial_exception:
raise ValueError(f"Conversion failed from bfloat16 with {initial_exception}, check your inputs.")
items.append((new_key, v))
return dict(items)
@torch.no_grad()
def convert_paligemma2_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
variant: str,
precision: str,
do_convert_weights=False,
):
"""
Read checkpoints from flax npz files, rename/reshape, send result to state dict and verify logits if needed.
"""
config = get_paligemma2_config(variant, precision=precision)
if do_convert_weights:
tokenizer_id = "google/paligemma-3b-pt-224" # same tokenizer as paligemma 1
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
image_token = AddedToken("<image>", normalized=False, special=True)
tokens_to_add = {"additional_special_tokens": [image_token]}
tokenizer.add_special_tokens(tokens_to_add)
# tokenizer.padding_side = 'right' # uncomment for testing purposes only.
image_processor = SiglipImageProcessor.from_pretrained("google/paligemma-3b-pt-224")
image_processor.size = {"width": config.vision_config.image_size, "height": config.vision_config.image_size}
image_processor.image_seq_length = config.vision_config.num_image_tokens
processor = PaliGemmaProcessor(image_processor=image_processor, tokenizer=tokenizer)
data = jnp.load(checkpoint_path)
state_dict = flatten_nested_dict(data, precision=precision)
del data
state_dict_transformers = slice_state_dict(state_dict, config)
del state_dict
del config.hidden_size # this key is unused
model = PaliGemmaForConditionalGeneration(config).to(device).eval()
model.load_state_dict(state_dict_transformers)
del state_dict_transformers
model.config.text_config._attn_implementation = "sdpa"
# model expansion to get random embeds of image tokens
pad_shape = 64 # for performance reasons
pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data
mu = torch.mean(pre_expansion_embeddings, dim=0).float()
n = pre_expansion_embeddings.size()[0]
sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n
dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma)
# We add an image token so we resize the model
model.resize_token_embeddings(config.text_config.vocab_size + 2, pad_shape)
model.language_model.model.embed_tokens.weight.data[257152:] = torch.stack(
tuple(
(dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[257152:].shape[0]))
),
dim=0,
)
model.language_model.lm_head.weight.data[257152:] = torch.stack(
tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[257152:].shape[0]))),
dim=0,
)
# convert to needed precision
model.to(DTYPES[precision])
model.save_pretrained(pytorch_dump_folder_path, safe_serialization=True)
processor.save_pretrained(pytorch_dump_folder_path)
else:
processor = PaliGemmaProcessor.from_pretrained(pytorch_dump_folder_path, do_rescale=False)
model = (
PaliGemmaForConditionalGeneration.from_pretrained(pytorch_dump_folder_path, attn_implementation="sdpa")
.to(device)
.eval()
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_path",
required=True,
type=str,
help="Path to the .npz checkpoint",
)
parser.add_argument(
"--pytorch_dump_folder_path",
required=True,
type=str,
help="Path to the output directory where model and processor will be saved.",
)
parser.add_argument(
"--precision",
choices=["float32", "bfloat16", "float16"],
type=str,
help="Precision identifier for model conversion - should match the base checkpoint precision.",
)
parser.add_argument(
"--variant",
default="2b-224",
choices=PALIGEMMA2_VARIANTS,
type=str,
help="String identifier of the paligemma2 variant to convert.",
)
parser.add_argument(
"--do_convert_weights", action="store_true", help="Whether or not to reload and convert the weights."
)
args = parser.parse_args()
convert_paligemma2_checkpoint(
checkpoint_path=args.checkpoint_path,
pytorch_dump_folder_path=args.pytorch_dump_folder_path,
variant=args.variant,
precision=args.precision,
do_convert_weights=args.do_convert_weights,
)
| transformers/src/transformers/models/paligemma/convert_paligemma2_weights_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/paligemma/convert_paligemma2_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 8998
} |
# coding=utf-8
# Copyright 2020 Google and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SPIECE_UNDERLINE = "▁"
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model"}
logger = logging.get_logger(__name__)
# TODO ArthurZ refactor this to only use the added_tokens_encoder
class PegasusTokenizer(PreTrainedTokenizer):
r"""
Construct a PEGASUS tokenizer. Based on [SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a *.spm* extension) that
contains the vocabulary necessary to instantiate a tokenizer.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
mask_token (`str`, *optional*, defaults to `"<mask_2>"`):
The token used for masking single token values. This is the token used when training this model with masked
language modeling (MLM). This is the token that the PEGASUS encoder will try to predict during pretraining.
It corresponds to *[MASK2]* in [PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive
Summarization](https://arxiv.org/pdf/1912.08777.pdf).
mask_token_sent (`str`, *optional*, defaults to `"<mask_1>"`):
The token used for masking whole target sentences. This is the token used when training this model with gap
sentences generation (GSG). This is the sentence that the PEGASUS decoder will try to predict during
pretraining. It corresponds to *[MASK1]* in [PEGASUS: Pre-training with Extracted Gap-sentences for
Abstractive Summarization](https://arxiv.org/pdf/1912.08777.pdf).
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer. If no additional_special_tokens are provided <mask_2> and
<unk_2, ..., unk_102> are used as additional special tokens corresponding to the [original PEGASUS
tokenizer](https://github.com/google-research/pegasus/blob/939830367bcf411193d2b5eca2f2f90f3f9260ca/pegasus/ops/pretrain_parsing_ops.cc#L66)
that uses the tokens 2 - 104 only for pretraining
sp_model_kwargs (`dict`, *optional*):
Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for
SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things,
to set:
- `enable_sampling`: Enable subword regularization.
- `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout.
- `nbest_size = {0,1}`: No sampling is performed.
- `nbest_size > 1`: samples from the nbest_size results.
- `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice)
using forward-filtering-and-backward-sampling algorithm.
- `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for
BPE-dropout.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
eos_token="</s>",
unk_token="<unk>",
mask_token="<mask_2>",
mask_token_sent="<mask_1>",
additional_special_tokens=None,
offset=103, # entries 2 - 104 are only used for pretraining
sp_model_kwargs: Optional[Dict[str, Any]] = None,
**kwargs,
) -> None:
self.offset = offset
if additional_special_tokens is not None:
if not isinstance(additional_special_tokens, list):
raise TypeError(
f"additional_special_tokens should be of type {type(list)}, but is"
f" {type(additional_special_tokens)}"
)
additional_special_tokens_extended = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"<unk_{i}>" for i in range(len(additional_special_tokens_extended), self.offset - 1)
]
if len(set(additional_special_tokens_extended)) != len(additional_special_tokens_extended):
raise ValueError(
"Please make sure that the provided additional_special_tokens do not contain an incorrectly"
f" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}."
)
additional_special_tokens = additional_special_tokens_extended
else:
additional_special_tokens_extended = []
additional_special_tokens = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"<unk_{i}>" for i in range(2, self.offset)]
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.mask_token_sent = mask_token_sent
self.vocab_file = vocab_file
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)
_added_tokens_decoder = {
0: AddedToken(str(pad_token), special=True),
1: AddedToken(str(eos_token), special=True),
}
if self.mask_token_sent is not None:
_added_tokens_decoder[2] = AddedToken(mask_token_sent, special=True)
_added_tokens_decoder[3] = AddedToken(str(mask_token), special=True)
for i in range(2, self.offset):
_added_tokens_decoder[len(_added_tokens_decoder)] = AddedToken(f"<unk_{i}>", special=True)
# Force update as we want to make sure vocab is enforced (same as fast)
self._added_tokens_decoder = kwargs.pop("added_tokens_decoder", {})
self._added_tokens_decoder.update(_added_tokens_decoder)
super().__init__(
eos_token=eos_token,
unk_token=unk_token,
mask_token=mask_token,
pad_token=pad_token,
mask_token_sent=mask_token_sent,
offset=offset,
additional_special_tokens=additional_special_tokens,
sp_model_kwargs=self.sp_model_kwargs,
**kwargs,
)
@property
def vocab_size(self) -> int:
return len(self.sp_model) + self.offset
def get_vocab(self) -> Dict[str, int]:
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state
def __setstate__(self, d):
self.__dict__ = d
# for backward compatibility
if not hasattr(self, "sp_model_kwargs"):
self.sp_model_kwargs = {}
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def _tokenize(self, text: str) -> List[str]:
"""Take as input a string and return a list of strings (tokens) for words/sub-words"""
return self.sp_model.encode(text, out_type=str)
def _convert_token_to_id(self, token: str) -> int:
"""Converts a token (str) to an id using the vocab."""
sp_id = self.sp_model.piece_to_id(token)
return sp_id + self.offset
def _convert_id_to_token(self, index: int) -> str:
"""Converts an index (integer) to a token (str) using the vocab."""
if index < self.offset:
return self.sp_model.IdToPiece(index)
token = self.sp_model.IdToPiece(index - self.offset)
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(current_sub_tokens) + token
current_sub_tokens = []
else:
current_sub_tokens.append(token)
out_string += self.sp_model.decode(current_sub_tokens)
return out_string.strip()
def num_special_tokens_to_add(self, pair=False):
"""Just EOS"""
return 1
def _special_token_mask(self, seq):
all_special_ids = set(self.all_special_ids) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self, token_ids_0: List, token_ids_1: Optional[List] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""Get list where entries are [1] if a token is [eos] or [pad] else 0."""
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [1]
else:
return self._special_token_mask(token_ids_0 + token_ids_1) + [1]
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequences for sequence classification tasks by concatenating
and adding special tokens. A PEGASUS sequence has the following format, where `X` represents the sequence:
- single sequence: `X </s>`
- pair of sequences: `A B </s>` (not intended use)
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)
return (out_vocab_file,)
__all__ = ["PegasusTokenizer"]
| transformers/src/transformers/models/pegasus/tokenization_pegasus.py/0 | {
"file_path": "transformers/src/transformers/models/pegasus/tokenization_pegasus.py",
"repo_id": "transformers",
"token_count": 5562
} |
# Copyright 2023 Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tokenizers_available,
is_torch_available,
)
_import_structure = {
"configuration_phi": ["PhiConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_phi"] = [
"PhiPreTrainedModel",
"PhiModel",
"PhiForCausalLM",
"PhiForSequenceClassification",
"PhiForTokenClassification",
]
if TYPE_CHECKING:
from .configuration_phi import PhiConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_phi import (
PhiForCausalLM,
PhiForSequenceClassification,
PhiForTokenClassification,
PhiModel,
PhiPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| transformers/src/transformers/models/phi/__init__.py/0 | {
"file_path": "transformers/src/transformers/models/phi/__init__.py",
"repo_id": "transformers",
"token_count": 667
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import re
import torch
from flax.traverse_util import flatten_dict
from t5x import checkpoints
from transformers import (
AutoTokenizer,
Pix2StructConfig,
Pix2StructForConditionalGeneration,
Pix2StructImageProcessor,
Pix2StructProcessor,
Pix2StructTextConfig,
Pix2StructVisionConfig,
)
def get_flax_param(t5x_checkpoint_path):
flax_params = checkpoints.load_t5x_checkpoint(t5x_checkpoint_path)
flax_params = flatten_dict(flax_params)
return flax_params
def rename_and_convert_flax_params(flax_dict):
converted_dict = {}
CONVERSION_MAPPING = {
"token_embedder": "embeddings",
"encoder_norm": "layernorm",
"kernel": "weight",
".out": ".output",
"scale": "weight",
"embedders_0.pos_embedding": "row_embedder.weight",
"embedders_1.pos_embedding": "column_embedder.weight",
}
DECODER_CONVERSION_MAPPING = {
"query": "attention.query",
"key": "attention.key",
"value": "attention.value",
"output.dense": "output",
"encoder_decoder_attention.o": "encoder_decoder_attention.attention.o",
"pre_self_attention_layer_norm": "self_attention.layer_norm",
"pre_cross_attention_layer_norm": "encoder_decoder_attention.layer_norm",
"mlp.": "mlp.DenseReluDense.",
"pre_mlp_layer_norm": "mlp.layer_norm",
"self_attention.o": "self_attention.attention.o",
"decoder.embeddings.embedding": "decoder.embed_tokens.weight",
"decoder.relpos_bias.rel_embedding": "decoder.layer.0.self_attention.attention.relative_attention_bias.weight",
"decoder.decoder_norm.weight": "decoder.final_layer_norm.weight",
"decoder.logits_dense.weight": "decoder.lm_head.weight",
}
for key in flax_dict.keys():
if "target" in key:
# remove the first prefix from the key
new_key = ".".join(key[1:])
# rename the key
for old, new in CONVERSION_MAPPING.items():
new_key = new_key.replace(old, new)
if "decoder" in new_key:
for old, new in DECODER_CONVERSION_MAPPING.items():
new_key = new_key.replace(old, new)
if "layers" in new_key and "decoder" not in new_key:
# use regex to replace the layer number
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
new_key = new_key.replace("encoder", "encoder.encoder")
elif "layers" in new_key and "decoder" in new_key:
# use regex to replace the layer number
new_key = re.sub(r"layers_(\d+)", r"layer.\1", new_key)
converted_dict[new_key] = flax_dict[key]
converted_torch_dict = {}
# convert converted_dict into torch format
for key in converted_dict.keys():
if ("embed_tokens" not in key) and ("embedder" not in key):
converted_torch_dict[key] = torch.from_numpy(converted_dict[key].T)
else:
converted_torch_dict[key] = torch.from_numpy(converted_dict[key])
return converted_torch_dict
def convert_pix2struct_original_pytorch_checkpoint_to_hf(
t5x_checkpoint_path, pytorch_dump_folder_path, use_large=False, is_vqa=False
):
flax_params = get_flax_param(t5x_checkpoint_path)
if not use_large:
encoder_config = Pix2StructVisionConfig()
decoder_config = Pix2StructTextConfig()
else:
encoder_config = Pix2StructVisionConfig(
hidden_size=1536, d_ff=3968, num_attention_heads=24, num_hidden_layers=18
)
decoder_config = Pix2StructTextConfig(hidden_size=1536, d_ff=3968, num_heads=24, num_layers=18)
config = Pix2StructConfig(
vision_config=encoder_config.to_dict(), text_config=decoder_config.to_dict(), is_vqa=is_vqa
)
model = Pix2StructForConditionalGeneration(config)
torch_params = rename_and_convert_flax_params(flax_params)
model.load_state_dict(torch_params)
tok = AutoTokenizer.from_pretrained("ybelkada/test-pix2struct-tokenizer")
image_processor = Pix2StructImageProcessor()
processor = Pix2StructProcessor(image_processor=image_processor, tokenizer=tok)
if use_large:
processor.image_processor.max_patches = 4096
processor.image_processor.is_vqa = True
# mkdir if needed
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
print("Model saved in {}".format(pytorch_dump_folder_path))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--t5x_checkpoint_path", default=None, type=str, help="Path to the original T5x checkpoint.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--use_large", action="store_true", help="Use large model.")
parser.add_argument("--is_vqa", action="store_true", help="Use large model.")
args = parser.parse_args()
convert_pix2struct_original_pytorch_checkpoint_to_hf(
args.t5x_checkpoint_path, args.pytorch_dump_folder_path, args.use_large
)
| transformers/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py/0 | {
"file_path": "transformers/src/transformers/models/pix2struct/convert_pix2struct_original_pytorch_to_hf.py",
"repo_id": "transformers",
"token_count": 2437
} |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for Qwen2."""
from typing import Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_qwen2 import Qwen2Tokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_file": "tokenizer.json",
}
MAX_MODEL_INPUT_SIZES = {"qwen/qwen-tokenizer": 32768}
class Qwen2TokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" Qwen2 tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
Same with GPT2Tokenizer, this tokenizer has been trained to treat spaces like parts of the tokens so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
```python
>>> from transformers import Qwen2TokenizerFast
>>> tokenizer = Qwen2TokenizerFast.from_pretrained("Qwen/Qwen-tokenizer")
>>> tokenizer("Hello world")["input_ids"]
[9707, 1879]
>>> tokenizer(" Hello world")["input_ids"]
[21927, 1879]
```
This is expected.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
Path to [tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead. Not applicable to this tokenizer.
bos_token (`str`, *optional*):
The beginning of sequence token. Not applicable for this tokenizer.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = Qwen2Tokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token=None,
eos_token="<|endoftext|>",
pad_token="<|endoftext|>",
**kwargs,
):
# We need to at least pass vocab_file and merges_file to base class
# in case a slow tokenizer needs to be initialized; other can be
# configured through files.
# following GPT2TokenizerFast, also adding unk_token, bos_token, and eos_token
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(unk_token, str)
else unk_token
)
pad_token = (
AddedToken(pad_token, lstrip=False, rstrip=False, special=True, normalized=False)
if isinstance(pad_token, str)
else pad_token
)
super().__init__(
vocab_file=vocab_file,
merges_file=merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
# Copied from transformers.models.gpt2.tokenization_gpt2_fast.GPT2TokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
| transformers/src/transformers/models/qwen2/tokenization_qwen2_fast.py/0 | {
"file_path": "transformers/src/transformers/models/qwen2/tokenization_qwen2_fast.py",
"repo_id": "transformers",
"token_count": 2020
} |
# coding=utf-8
# Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Image processor class for Qwen2-VL."""
import math
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import (
convert_to_rgb,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
VideoInput,
get_image_size,
infer_channel_dimension_format,
is_scaled_image,
make_batched_videos,
make_flat_list_of_images,
make_list_of_images,
to_numpy_array,
valid_images,
validate_preprocess_arguments,
)
from ...utils import TensorType, logging
logger = logging.get_logger(__name__)
def smart_resize(
height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if height < factor or width < factor:
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
elif max(height, width) / min(height, width) > 200:
raise ValueError(
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
)
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = math.floor(height / beta / factor) * factor
w_bar = math.floor(width / beta / factor) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
class Qwen2VLImageProcessor(BaseImageProcessor):
r"""
Constructs a Qwen2-VL image processor that dynamically resizes images based on the original images.
Args:
do_resize (`bool`, *optional*, defaults to `True`):
Whether to resize the image's (height, width) dimensions.
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
Resampling filter to use when resizing the image.
do_rescale (`bool`, *optional*, defaults to `True`):
Whether to rescale the image by the specified scale `rescale_factor`.
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
do_convert_rgb (`bool`, *optional*, defaults to `True`):
Whether to convert the image to RGB.
min_pixels (`int`, *optional*, defaults to `56 * 56`):
The min pixels of the image to resize the image.
max_pixels (`int`, *optional*, defaults to `28 * 28 * 1280`):
The max pixels of the image to resize the image.
patch_size (`int`, *optional*, defaults to 14):
The spacial patch size of the vision encoder.
temporal_patch_size (`int`, *optional*, defaults to 2):
The temporal patch size of the vision encoder.
merge_size (`int`, *optional*, defaults to 2):
The merge size of the vision encoder to llm encoder.
"""
model_input_names = ["pixel_values", "image_grid_thw", "pixel_values_videos", "video_grid_thw"]
def __init__(
self,
do_resize: bool = True,
resample: PILImageResampling = PILImageResampling.BICUBIC,
do_rescale: bool = True,
rescale_factor: Union[int, float] = 1 / 255,
do_normalize: bool = True,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = True,
min_pixels: int = 56 * 56,
max_pixels: int = 28 * 28 * 1280,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.do_resize = do_resize
self.resample = resample
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_normalize = do_normalize
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.merge_size = merge_size
self.size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
self.do_convert_rgb = do_convert_rgb
def _preprocess(
self,
images: Union[ImageInput, VideoInput],
do_resize: bool = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
Args:
images (`ImageInput`):
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
vision_info (`List[Dict]`, *optional*):
Optional list of dictionaries containing additional information about vision inputs.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Scale factor to use if rescaling the image.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
images = make_list_of_images(images)
if do_convert_rgb:
images = [convert_to_rgb(image) for image in images]
# All transformations expect numpy arrays.
images = [to_numpy_array(image) for image in images]
if do_rescale and is_scaled_image(images[0]):
logger.warning_once(
"It looks like you are trying to rescale already rescaled images. If the input"
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
)
if input_data_format is None:
# We assume that all images have the same channel dimension format.
input_data_format = infer_channel_dimension_format(images[0])
height, width = get_image_size(images[0], channel_dim=input_data_format)
resized_height, resized_width = height, width
processed_images = []
for image in images:
if do_resize:
resized_height, resized_width = smart_resize(
height,
width,
factor=self.patch_size * self.merge_size,
min_pixels=self.min_pixels,
max_pixels=self.max_pixels,
)
image = resize(
image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
)
if do_rescale:
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
if do_normalize:
image = self.normalize(
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
)
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
processed_images.append(image)
patches = np.array(processed_images)
if data_format == ChannelDimension.LAST:
patches = patches.transpose(0, 3, 1, 2)
if patches.shape[0] % self.temporal_patch_size != 0:
repeats = np.repeat(patches[-1][np.newaxis], self.temporal_patch_size - 1, axis=0)
patches = np.concatenate([patches, repeats], axis=0)
channel = patches.shape[1]
grid_t = patches.shape[0] // self.temporal_patch_size
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
patches = patches.reshape(
grid_t,
self.temporal_patch_size,
channel,
grid_h // self.merge_size,
self.merge_size,
self.patch_size,
grid_w // self.merge_size,
self.merge_size,
self.patch_size,
)
patches = patches.transpose(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w, channel * self.temporal_patch_size * self.patch_size * self.patch_size
)
return flatten_patches, (grid_t, grid_h, grid_w)
def preprocess(
self,
images: ImageInput,
videos: VideoInput = None,
do_resize: bool = None,
size: Dict[str, int] = None,
resample: PILImageResampling = None,
do_rescale: bool = None,
rescale_factor: float = None,
do_normalize: bool = None,
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
do_convert_rgb: bool = None,
return_tensors: Optional[Union[str, TensorType]] = None,
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
input_data_format: Optional[Union[str, ChannelDimension]] = None,
):
"""
Args:
images (`ImageInput`):
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
videos (`VideoInput`):
Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If
passing in videos with pixel values between 0 and 1, set `do_rescale=False`.
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
Whether to resize the image.
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
the longest edge resized to keep the input aspect ratio.
resample (`int`, *optional*, defaults to `self.resample`):
Resampling filter to use if resizing the image. This can be one of the enum `PILImageResampling`. Only
has an effect if `do_resize` is set to `True`.
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
Whether to rescale the image.
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
Whether to normalize the image.
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
Image mean to use for normalization. Only has an effect if `do_normalize` is set to `True`.
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
Image standard deviation to use for normalization. Only has an effect if `do_normalize` is set to
`True`.
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
Whether to convert the image to RGB.
return_tensors (`str` or `TensorType`, *optional*):
The type of tensors to return. Can be one of:
- Unset: Return a list of `np.ndarray`.
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
The channel dimension format for the output image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- Unset: Use the channel dimension format of the input image.
input_data_format (`ChannelDimension` or `str`, *optional*):
The channel dimension format for the input image. If unset, the channel dimension format is inferred
from the input image. Can be one of:
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
"""
do_resize = do_resize if do_resize is not None else self.do_resize
size = size if size is not None else self.size
resample = resample if resample is not None else self.resample
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
image_mean = image_mean if image_mean is not None else self.image_mean
image_std = image_std if image_std is not None else self.image_std
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
if images is not None:
images = make_flat_list_of_images(images)
if videos is not None:
videos = make_batched_videos(videos)
if images is not None and not valid_images(images):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray."
)
validate_preprocess_arguments(
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
do_resize=do_resize,
size=size,
resample=resample,
)
if images is not None:
pixel_values, vision_grid_thws = [], []
for image in images:
patches, image_grid_thw = self._preprocess(
image,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(image_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {"pixel_values": pixel_values, "image_grid_thw": vision_grid_thws}
if videos is not None:
pixel_values, vision_grid_thws = [], []
for images in videos:
patches, video_grid_thw = self._preprocess(
images,
do_resize=do_resize,
resample=resample,
do_rescale=do_rescale,
rescale_factor=rescale_factor,
do_normalize=do_normalize,
image_mean=image_mean,
image_std=image_std,
data_format=data_format,
do_convert_rgb=do_convert_rgb,
input_data_format=input_data_format,
)
pixel_values.extend(patches)
vision_grid_thws.append(video_grid_thw)
pixel_values = np.array(pixel_values)
vision_grid_thws = np.array(vision_grid_thws)
data = {"pixel_values_videos": pixel_values, "video_grid_thw": vision_grid_thws}
return BatchFeature(data=data, tensor_type=return_tensors)
__all__ = ["Qwen2VLImageProcessor"]
| transformers/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py/0 | {
"file_path": "transformers/src/transformers/models/qwen2_vl/image_processing_qwen2_vl.py",
"repo_id": "transformers",
"token_count": 9141
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Reformer checkpoint."""
import argparse
import pickle
import numpy as np
import torch
from torch import nn
from transformers import ReformerConfig, ReformerModelWithLMHead
from transformers.utils import logging
logging.set_verbosity_info()
def set_param(torch_layer, weight, bias=None):
# set parameter of one layer
assert torch_layer.weight.shape == weight.shape, f"{torch_layer} layer.weight does not match"
torch_layer.weight = nn.Parameter(weight)
if bias is not None:
assert torch_layer.bias.shape == bias.shape, f"{torch_layer} layer.bias does not match"
torch_layer.bias = nn.Parameter(bias)
def set_layer_weights_in_torch_lsh(weights, torch_layer, hidden_size):
# set torch weights for 1-to-1 comparison
np_query_key = np.asarray(weights[0])
np_value = np.asarray(weights[1])
np_dense = np.asarray(weights[2])
set_param(
torch_layer.self_attention.query_key,
torch.tensor(np_query_key).transpose(1, 2).contiguous().view(-1, hidden_size),
)
set_param(
torch_layer.self_attention.value,
torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
)
set_param(
torch_layer.output.dense,
torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
)
def set_layer_weights_in_torch_local(weights, torch_layer, hidden_size):
# set torch weights for 1-to-1 comparison
np_query = np.asarray(weights[0])
np_key = np.asarray(weights[1])
np_value = np.asarray(weights[2])
np_dense = np.asarray(weights[3])
set_param(
torch_layer.self_attention.query,
torch.tensor(np_query).transpose(1, 2).contiguous().view(-1, hidden_size),
)
set_param(
torch_layer.self_attention.key,
torch.tensor(np_key).transpose(1, 2).contiguous().view(-1, hidden_size),
)
set_param(
torch_layer.self_attention.value,
torch.tensor(np_value).transpose(1, 2).contiguous().view(-1, hidden_size),
)
set_param(
torch_layer.output.dense,
torch.tensor(np_dense).view(-1, hidden_size).contiguous().transpose(0, 1),
)
def set_block_weights_in_torch(weights, torch_block, hidden_size):
# layernorm 1
layer_norm_1 = weights[0][0][0]
layer_norm_1_weight = np.asarray(layer_norm_1[0])
layer_norm_1_bias = np.asarray(layer_norm_1[1])
set_param(
torch_block.attention.layer_norm,
torch.tensor(layer_norm_1_weight),
torch.tensor(layer_norm_1_bias),
)
# lsh weights + output
attn_weights = weights[0][1]
if len(attn_weights) < 4:
set_layer_weights_in_torch_lsh(attn_weights, torch_block.attention, hidden_size)
else:
set_layer_weights_in_torch_local(attn_weights, torch_block.attention, hidden_size)
# intermediate weighs
intermediate_weights = weights[2][0][1][2]
# Chunked Feed Forward
if len(intermediate_weights) == 4:
intermediate_weights = intermediate_weights[2]
# layernorm 2
layer_norm_2_weight = np.asarray(intermediate_weights[0][0])
layer_norm_2_bias = np.asarray(intermediate_weights[0][1])
set_param(
torch_block.feed_forward.layer_norm,
torch.tensor(layer_norm_2_weight),
torch.tensor(layer_norm_2_bias),
)
# intermediate dense
inter_dense_weight = np.asarray(intermediate_weights[1][0])
inter_dense_bias = np.asarray(intermediate_weights[1][1])
set_param(
torch_block.feed_forward.dense.dense,
torch.tensor(inter_dense_weight).transpose(0, 1).contiguous(),
torch.tensor(inter_dense_bias),
)
# intermediate out
out_dense_weight = np.asarray(intermediate_weights[4][0])
out_dense_bias = np.asarray(intermediate_weights[4][1])
set_param(
torch_block.feed_forward.output.dense,
torch.tensor(out_dense_weight).transpose(0, 1).contiguous(),
torch.tensor(out_dense_bias),
)
def set_model_weights_in_torch(weights, torch_model, hidden_size):
# reformer model
torch_model_reformer = torch_model.reformer
# word embeds
word_embeddings = np.asarray(weights[1])
set_param(
torch_model_reformer.embeddings.word_embeddings,
torch.tensor(word_embeddings),
)
if isinstance(weights[3], tuple):
position_embeddings = torch_model_reformer.embeddings.position_embeddings
for emb_idx in range(len(position_embeddings.weights)):
emb_weights = np.asarray(weights[3][emb_idx][0])
assert (
position_embeddings.weights[emb_idx].shape == emb_weights.shape
), f"{position_embeddings[emb_idx]} emb does not match"
position_embeddings.weights[emb_idx] = nn.Parameter(torch.tensor(emb_weights))
trax_layer_weights = weights[5]
assert len(torch_model_reformer.encoder.layers) * 4 == len(
trax_layer_weights
), "HF and trax model do not have the same number of layers"
for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers):
block_weights = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)]
set_block_weights_in_torch(block_weights, layer, hidden_size)
# output layer norm
layer_norm_out_weight = np.asarray(weights[7][0])
layer_norm_out_bias = np.asarray(weights[7][1])
set_param(
torch_model_reformer.encoder.layer_norm,
torch.tensor(layer_norm_out_weight),
torch.tensor(layer_norm_out_bias),
)
# output embeddings
output_embed_weights = np.asarray(weights[9][0])
output_embed_bias = np.asarray(weights[9][1])
set_param(
torch_model.lm_head.decoder,
torch.tensor(output_embed_weights).transpose(0, 1).contiguous(),
torch.tensor(output_embed_bias),
)
def convert_trax_checkpoint_to_pytorch(trax_model_pkl_path, config_file, pytorch_dump_path):
# Initialise PyTorch model
config = ReformerConfig.from_json_file(config_file)
print(f"Building PyTorch model from configuration: {config}")
model = ReformerModelWithLMHead(config)
with open(trax_model_pkl_path, "rb") as f:
model_weights = pickle.load(f)["weights"]
set_model_weights_in_torch(model_weights, model, config.hidden_size)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
torch.save(model.state_dict(), pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--trax_model_pkl_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint path.\n"
"Given the files are in the pickle format, please be wary of passing it files you trust.",
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained Reformer model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
| transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/reformer/convert_reformer_trax_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3277
} |
# coding=utf-8
# Copyright 2025 Baidu Inc and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import List, Optional
import torch
import torch.nn.functional as F
from torch import Tensor, nn
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import (
verify_backbone_config_arguments,
)
from ..auto import CONFIG_MAPPING
from ..rt_detr.modeling_rt_detr import (
RTDetrDecoder,
RTDetrDecoderLayer,
RTDetrForObjectDetection,
RTDetrMLPPredictionHead,
RTDetrModel,
RTDetrMultiscaleDeformableAttention,
RTDetrPreTrainedModel,
)
logger = logging.get_logger(__name__)
class RTDetrV2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`RTDetrV2Model`]. It is used to instantiate a
RT-DETR model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the RT-DETR architecture.
e.g. [PekingU/rtdetr_r18vd](https://huggingface.co/PekingU/rtdetr_r18vd)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
initializer_range (`float`, *optional*, defaults to 0.01):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_bias_prior_prob (`float`, *optional*):
The prior probability used by the bias initializer to initialize biases for `enc_score_head` and `class_embed`.
If `None`, `prior_prob` computed as `prior_prob = 1 / (num_labels + 1)` while initializing model weights.
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the layer normalization layers.
batch_norm_eps (`float`, *optional*, defaults to 1e-05):
The epsilon used by the batch normalization layers.
backbone_config (`Dict`, *optional*, defaults to `RTDetrV2ResNetConfig()`):
The configuration of the backbone model.
backbone (`str`, *optional*):
Name of backbone to use when `backbone_config` is `None`. If `use_pretrained_backbone` is `True`, this
will load the corresponding pretrained weights from the timm or transformers library. If `use_pretrained_backbone`
is `False`, this loads the backbone's config and uses that to initialize the backbone with random weights.
use_pretrained_backbone (`bool`, *optional*, defaults to `False`):
Whether to use pretrained weights for the backbone.
use_timm_backbone (`bool`, *optional*, defaults to `False`):
Whether to load `backbone` from the timm library. If `False`, the backbone is loaded from the transformers
library.
freeze_backbone_batch_norms (`bool`, *optional*, defaults to `True`):
Whether to freeze the batch normalization layers in the backbone.
backbone_kwargs (`dict`, *optional*):
Keyword arguments to be passed to AutoBackbone when loading from a checkpoint
e.g. `{'out_indices': (0, 1, 2, 3)}`. Cannot be specified if `backbone_config` is set.
encoder_hidden_dim (`int`, *optional*, defaults to 256):
Dimension of the layers in hybrid encoder.
encoder_in_channels (`list`, *optional*, defaults to `[512, 1024, 2048]`):
Multi level features input for encoder.
feat_strides (`List[int]`, *optional*, defaults to `[8, 16, 32]`):
Strides used in each feature map.
encoder_layers (`int`, *optional*, defaults to 1):
Total of layers to be used by the encoder.
encoder_ffn_dim (`int`, *optional*, defaults to 1024):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
encoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
dropout (`float`, *optional*, defaults to 0.0):
The ratio for all dropout layers.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
encode_proj_layers (`List[int]`, *optional*, defaults to `[2]`):
Indexes of the projected layers to be used in the encoder.
positional_encoding_temperature (`int`, *optional*, defaults to 10000):
The temperature parameter used to create the positional encodings.
encoder_activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
activation_function (`str`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the general layer. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
eval_size (`Tuple[int, int]`, *optional*):
Height and width used to compute the effective height and width of the position embeddings after taking
into account the stride.
normalize_before (`bool`, *optional*, defaults to `False`):
Determine whether to apply layer normalization in the transformer encoder layer before self-attention and
feed-forward modules.
hidden_expansion (`float`, *optional*, defaults to 1.0):
Expansion ratio to enlarge the dimension size of RepVGGBlock and CSPRepLayer.
d_model (`int`, *optional*, defaults to 256):
Dimension of the layers exclude hybrid encoder.
num_queries (`int`, *optional*, defaults to 300):
Number of object queries.
decoder_in_channels (`list`, *optional*, defaults to `[256, 256, 256]`):
Multi level features dimension for decoder
decoder_ffn_dim (`int`, *optional*, defaults to 1024):
Dimension of the "intermediate" (often named feed-forward) layer in decoder.
num_feature_levels (`int`, *optional*, defaults to 3):
The number of input feature levels.
decoder_n_points (`int`, *optional*, defaults to 4):
The number of sampled keys in each feature level for each attention head in the decoder.
decoder_layers (`int`, *optional*, defaults to 6):
Number of decoder layers.
decoder_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
decoder_activation_function (`str`, *optional*, defaults to `"relu"`):
The non-linear activation function (function or string) in the decoder. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
num_denoising (`int`, *optional*, defaults to 100):
The total number of denoising tasks or queries to be used for contrastive denoising.
label_noise_ratio (`float`, *optional*, defaults to 0.5):
The fraction of denoising labels to which random noise should be added.
box_noise_scale (`float`, *optional*, defaults to 1.0):
Scale or magnitude of noise to be added to the bounding boxes.
learn_initial_query (`bool`, *optional*, defaults to `False`):
Indicates whether the initial query embeddings for the decoder should be learned during training
anchor_image_size (`Tuple[int, int]`, *optional*):
Height and width of the input image used during evaluation to generate the bounding box anchors. If None, automatic generate anchor is applied.
disable_custom_kernels (`bool`, *optional*, defaults to `True`):
Whether to disable custom kernels.
with_box_refine (`bool`, *optional*, defaults to `True`):
Whether to apply iterative bounding box refinement, where each decoder layer refines the bounding boxes
based on the predictions from the previous layer.
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the architecture has an encoder decoder structure.
matcher_alpha (`float`, *optional*, defaults to 0.25):
Parameter alpha used by the Hungarian Matcher.
matcher_gamma (`float`, *optional*, defaults to 2.0):
Parameter gamma used by the Hungarian Matcher.
matcher_class_cost (`float`, *optional*, defaults to 2.0):
The relative weight of the class loss used by the Hungarian Matcher.
matcher_bbox_cost (`float`, *optional*, defaults to 5.0):
The relative weight of the bounding box loss used by the Hungarian Matcher.
matcher_giou_cost (`float`, *optional*, defaults to 2.0):
The relative weight of the giou loss of used by the Hungarian Matcher.
use_focal_loss (`bool`, *optional*, defaults to `True`):
Parameter informing if focal loss should be used.
auxiliary_loss (`bool`, *optional*, defaults to `True`):
Whether auxiliary decoding losses (loss at each decoder layer) are to be used.
focal_loss_alpha (`float`, *optional*, defaults to 0.75):
Parameter alpha used to compute the focal loss.
focal_loss_gamma (`float`, *optional*, defaults to 2.0):
Parameter gamma used to compute the focal loss.
weight_loss_vfl (`float`, *optional*, defaults to 1.0):
Relative weight of the varifocal loss in the object detection loss.
weight_loss_bbox (`float`, *optional*, defaults to 5.0):
Relative weight of the L1 bounding box loss in the object detection loss.
weight_loss_giou (`float`, *optional*, defaults to 2.0):
Relative weight of the generalized IoU loss in the object detection loss.
eos_coefficient (`float`, *optional*, defaults to 0.0001):
Relative classification weight of the 'no-object' class in the object detection loss.
decoder_n_levels (`int`, *optional*, defaults to 3):
The number of feature levels used by the decoder.
decoder_offset_scale (`float`, *optional*, defaults to 0.5):
Scaling factor applied to the attention offsets in the decoder.
decoder_method (`str`, *optional*, defaults to `"default"`):
The method to use for the decoder: `"default"` or `"discrete"`.
Examples:
```python
>>> from transformers import RTDetrV2Config, RTDetrV2Model
>>> # Initializing a RT-DETR configuration
>>> configuration = RTDetrV2Config()
>>> # Initializing a model (with random weights) from the configuration
>>> model = RTDetrV2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "rt_detr_v2"
layer_types = ["basic", "bottleneck"]
attribute_map = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__(
self,
initializer_range=0.01,
initializer_bias_prior_prob=None,
layer_norm_eps=1e-5,
batch_norm_eps=1e-5,
# backbone
backbone_config=None,
backbone=None,
use_pretrained_backbone=False,
use_timm_backbone=False,
freeze_backbone_batch_norms=True,
backbone_kwargs=None,
# encoder HybridEncoder
encoder_hidden_dim=256,
encoder_in_channels=[512, 1024, 2048],
feat_strides=[8, 16, 32],
encoder_layers=1,
encoder_ffn_dim=1024,
encoder_attention_heads=8,
dropout=0.0,
activation_dropout=0.0,
encode_proj_layers=[2],
positional_encoding_temperature=10000,
encoder_activation_function="gelu",
activation_function="silu",
eval_size=None,
normalize_before=False,
hidden_expansion=1.0,
# decoder RTDetrV2Transformer
d_model=256,
num_queries=300,
decoder_in_channels=[256, 256, 256],
decoder_ffn_dim=1024,
num_feature_levels=3,
decoder_n_points=4,
decoder_layers=6,
decoder_attention_heads=8,
decoder_activation_function="relu",
attention_dropout=0.0,
num_denoising=100,
label_noise_ratio=0.5,
box_noise_scale=1.0,
learn_initial_query=False,
anchor_image_size=None,
disable_custom_kernels=True,
with_box_refine=True,
is_encoder_decoder=True,
# Loss
matcher_alpha=0.25,
matcher_gamma=2.0,
matcher_class_cost=2.0,
matcher_bbox_cost=5.0,
matcher_giou_cost=2.0,
use_focal_loss=True,
auxiliary_loss=True,
focal_loss_alpha=0.75,
focal_loss_gamma=2.0,
weight_loss_vfl=1.0,
weight_loss_bbox=5.0,
weight_loss_giou=2.0,
eos_coefficient=1e-4,
decoder_n_levels=3, # default value
decoder_offset_scale=0.5, # default value
decoder_method="default",
**kwargs,
):
super().__init__(is_encoder_decoder=is_encoder_decoder, **kwargs)
self.initializer_range = initializer_range
self.initializer_bias_prior_prob = initializer_bias_prior_prob
self.layer_norm_eps = layer_norm_eps
self.batch_norm_eps = batch_norm_eps
# backbone
if backbone_config is None and backbone is None:
logger.info(
"`backbone_config` and `backbone` are `None`. Initializing the config with the default `RTDetrV2-ResNet` backbone."
)
backbone_model_type = "rt_detr_resnet"
config_class = CONFIG_MAPPING[backbone_model_type]
# this will map it to RTDetrResNetConfig
# note: we can instead create RTDetrV2ResNetConfig but it will be exactly the same as V1
# and we would need to create RTDetrV2ResNetModel
backbone_config = config_class(
num_channels=3,
embedding_size=64,
hidden_sizes=[256, 512, 1024, 2048],
depths=[3, 4, 6, 3],
layer_type="bottleneck",
hidden_act="relu",
downsample_in_first_stage=False,
downsample_in_bottleneck=False,
out_features=None,
out_indices=[2, 3, 4],
)
elif isinstance(backbone_config, dict):
backbone_model_type = backbone_config.pop("model_type")
config_class = CONFIG_MAPPING[backbone_model_type]
backbone_config = config_class.from_dict(backbone_config)
verify_backbone_config_arguments(
use_timm_backbone=use_timm_backbone,
use_pretrained_backbone=use_pretrained_backbone,
backbone=backbone,
backbone_config=backbone_config,
backbone_kwargs=backbone_kwargs,
)
self.backbone_config = backbone_config
self.backbone = backbone
self.use_pretrained_backbone = use_pretrained_backbone
self.use_timm_backbone = use_timm_backbone
self.freeze_backbone_batch_norms = freeze_backbone_batch_norms
self.backbone_kwargs = backbone_kwargs
# encoder
self.encoder_hidden_dim = encoder_hidden_dim
self.encoder_in_channels = encoder_in_channels
self.feat_strides = feat_strides
self.encoder_ffn_dim = encoder_ffn_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
self.encode_proj_layers = encode_proj_layers
self.encoder_layers = encoder_layers
self.positional_encoding_temperature = positional_encoding_temperature
self.eval_size = eval_size
self.normalize_before = normalize_before
self.encoder_activation_function = encoder_activation_function
self.activation_function = activation_function
self.hidden_expansion = hidden_expansion
self.num_queries = num_queries
self.decoder_ffn_dim = decoder_ffn_dim
self.decoder_in_channels = decoder_in_channels
self.num_feature_levels = num_feature_levels
self.decoder_n_points = decoder_n_points
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_activation_function = decoder_activation_function
self.attention_dropout = attention_dropout
self.num_denoising = num_denoising
self.label_noise_ratio = label_noise_ratio
self.box_noise_scale = box_noise_scale
self.learn_initial_query = learn_initial_query
self.anchor_image_size = anchor_image_size
self.auxiliary_loss = auxiliary_loss
self.disable_custom_kernels = disable_custom_kernels
self.with_box_refine = with_box_refine
# Loss
self.matcher_alpha = matcher_alpha
self.matcher_gamma = matcher_gamma
self.matcher_class_cost = matcher_class_cost
self.matcher_bbox_cost = matcher_bbox_cost
self.matcher_giou_cost = matcher_giou_cost
self.use_focal_loss = use_focal_loss
self.focal_loss_alpha = focal_loss_alpha
self.focal_loss_gamma = focal_loss_gamma
self.weight_loss_vfl = weight_loss_vfl
self.weight_loss_bbox = weight_loss_bbox
self.weight_loss_giou = weight_loss_giou
self.eos_coefficient = eos_coefficient
if not hasattr(self, "d_model"):
self.d_model = d_model
if not hasattr(self, "encoder_attention_heads"):
self.encoder_attention_heads = encoder_attention_heads
# add the new attributes with the given values or defaults
self.decoder_n_levels = decoder_n_levels
self.decoder_offset_scale = decoder_offset_scale
self.decoder_method = decoder_method
@classmethod
def from_backbone_configs(cls, backbone_config: PretrainedConfig, **kwargs):
"""Instantiate a [`RTDetrV2Config`] (or a derived class) from a pre-trained backbone model configuration and DETR model
configuration.
Args:
backbone_config ([`PretrainedConfig`]):
The backbone configuration.
Returns:
[`RTDetrV2Config`]: An instance of a configuration object
"""
return cls(
backbone_config=backbone_config,
**kwargs,
)
def multi_scale_deformable_attention_v2(
value: Tensor,
value_spatial_shapes: Tensor,
sampling_locations: Tensor,
attention_weights: Tensor,
num_points_list: List[int],
method="default",
) -> Tensor:
batch_size, _, num_heads, hidden_dim = value.shape
_, num_queries, num_heads, num_levels, num_points = sampling_locations.shape
value_list = (
value.permute(0, 2, 3, 1)
.flatten(0, 1)
.split([height.item() * width.item() for height, width in value_spatial_shapes], dim=-1)
)
# sampling_offsets [8, 480, 8, 12, 2]
if method == "default":
sampling_grids = 2 * sampling_locations - 1
elif method == "discrete":
sampling_grids = sampling_locations
sampling_grids = sampling_grids.permute(0, 2, 1, 3, 4).flatten(0, 1)
sampling_grids = sampling_grids.split(num_points_list, dim=-2)
sampling_value_list = []
for level_id, (height, width) in enumerate(value_spatial_shapes):
# batch_size, height*width, num_heads, hidden_dim
# -> batch_size, height*width, num_heads*hidden_dim
# -> batch_size, num_heads*hidden_dim, height*width
# -> batch_size*num_heads, hidden_dim, height, width
value_l_ = value_list[level_id].reshape(batch_size * num_heads, hidden_dim, height, width)
# batch_size, num_queries, num_heads, num_points, 2
# -> batch_size, num_heads, num_queries, num_points, 2
# -> batch_size*num_heads, num_queries, num_points, 2
sampling_grid_l_ = sampling_grids[level_id]
# batch_size*num_heads, hidden_dim, num_queries, num_points
if method == "default":
sampling_value_l_ = nn.functional.grid_sample(
value_l_, sampling_grid_l_, mode="bilinear", padding_mode="zeros", align_corners=False
)
elif method == "discrete":
sampling_coord = (sampling_grid_l_ * torch.tensor([[width, height]], device=value.device) + 0.5).to(
torch.int64
)
# Separate clamping for x and y coordinates
sampling_coord_x = sampling_coord[..., 0].clamp(0, width - 1)
sampling_coord_y = sampling_coord[..., 1].clamp(0, height - 1)
# Combine the clamped coordinates
sampling_coord = torch.stack([sampling_coord_x, sampling_coord_y], dim=-1)
sampling_coord = sampling_coord.reshape(batch_size * num_heads, num_queries * num_points_list[level_id], 2)
sampling_idx = (
torch.arange(sampling_coord.shape[0], device=value.device)
.unsqueeze(-1)
.repeat(1, sampling_coord.shape[1])
)
sampling_value_l_ = value_l_[sampling_idx, :, sampling_coord[..., 1], sampling_coord[..., 0]]
sampling_value_l_ = sampling_value_l_.permute(0, 2, 1).reshape(
batch_size * num_heads, hidden_dim, num_queries, num_points_list[level_id]
)
sampling_value_list.append(sampling_value_l_)
# (batch_size, num_queries, num_heads, num_levels, num_points)
# -> (batch_size, num_heads, num_queries, num_levels, num_points)
# -> (batch_size, num_heads, 1, num_queries, num_levels*num_points)
attention_weights = attention_weights.permute(0, 2, 1, 3).reshape(
batch_size * num_heads, 1, num_queries, sum(num_points_list)
)
output = (
(torch.concat(sampling_value_list, dim=-1) * attention_weights)
.sum(-1)
.view(batch_size, num_heads * hidden_dim, num_queries)
)
return output.transpose(1, 2).contiguous()
# the main change
class RTDetrV2MultiscaleDeformableAttention(RTDetrMultiscaleDeformableAttention):
"""
RTDetrV2 version of multiscale deformable attention, extending the base implementation
with improved offset handling and initialization.
"""
def __init__(self, config: RTDetrV2Config):
num_heads = config.decoder_attention_heads
n_points = config.decoder_n_points
# Initialize parent class with config parameters
super().__init__(config=config, num_heads=num_heads, n_points=n_points)
# V2-specific attributes
self.n_levels = config.decoder_n_levels
self.offset_scale = config.decoder_offset_scale
self.method = config.decoder_method
# Initialize n_points list and scale
n_points_list = [self.n_points for _ in range(self.n_levels)]
self.n_points_list = n_points_list
n_points_scale = [1 / n for n in n_points_list for _ in range(n)]
self.register_buffer("n_points_scale", torch.tensor(n_points_scale, dtype=torch.float32))
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states=None,
encoder_attention_mask=None,
position_embeddings: Optional[torch.Tensor] = None,
reference_points=None,
spatial_shapes=None,
level_start_index=None,
output_attentions: bool = False,
**kwargs,
):
# Process inputs up to sampling locations calculation using parent class logic
if position_embeddings is not None:
hidden_states = self.with_pos_embed(hidden_states, position_embeddings)
batch_size, num_queries, _ = hidden_states.shape
batch_size, sequence_length, _ = encoder_hidden_states.shape
if (spatial_shapes[:, 0] * spatial_shapes[:, 1]).sum() != sequence_length:
raise ValueError(
"Make sure to align the spatial shapes with the sequence length of the encoder hidden states"
)
value = self.value_proj(encoder_hidden_states)
if attention_mask is not None:
value = value.masked_fill(~attention_mask[..., None], float(0))
value = value.view(batch_size, sequence_length, self.n_heads, self.d_model // self.n_heads)
# V2-specific sampling offsets shape
sampling_offsets = self.sampling_offsets(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points, 2
)
attention_weights = self.attention_weights(hidden_states).view(
batch_size, num_queries, self.n_heads, self.n_levels * self.n_points
)
attention_weights = F.softmax(attention_weights, -1)
# V2-specific sampling locations calculation
if reference_points.shape[-1] == 2:
offset_normalizer = torch.stack([spatial_shapes[..., 1], spatial_shapes[..., 0]], -1)
sampling_locations = (
reference_points[:, :, None, :, None, :]
+ sampling_offsets / offset_normalizer[None, None, None, :, None, :]
)
elif reference_points.shape[-1] == 4:
n_points_scale = self.n_points_scale.to(dtype=hidden_states.dtype).unsqueeze(-1)
offset = sampling_offsets * n_points_scale * reference_points[:, :, None, :, 2:] * self.offset_scale
sampling_locations = reference_points[:, :, None, :, :2] + offset
else:
raise ValueError(f"Last dim of reference_points must be 2 or 4, but got {reference_points.shape[-1]}")
# V2-specific attention implementation choice
output = multi_scale_deformable_attention_v2(
value, spatial_shapes, sampling_locations, attention_weights, self.n_points_list, self.method
)
output = self.output_proj(output)
return output, attention_weights
class RTDetrV2DecoderLayer(RTDetrDecoderLayer):
def __init__(self, config: RTDetrV2Config):
# initialize parent class
super().__init__(config)
# override only the encoder attention module with v2 version
self.encoder_attn = RTDetrV2MultiscaleDeformableAttention(config)
class RTDetrV2PreTrainedModel(RTDetrPreTrainedModel):
pass
class RTDetrV2Decoder(RTDetrDecoder):
def __init__(self, config: RTDetrV2Config):
super().__init__(config)
self.layers = nn.ModuleList([RTDetrV2DecoderLayer(config) for _ in range(config.decoder_layers)])
class RTDetrV2Model(RTDetrModel):
def __init__(self, config: RTDetrV2Config):
super().__init__(config)
# decoder
self.decoder = RTDetrV2Decoder(config)
class RTDetrV2MLPPredictionHead(RTDetrMLPPredictionHead):
pass
class RTDetrV2ForObjectDetection(RTDetrForObjectDetection, RTDetrV2PreTrainedModel):
def __init__(self, config: RTDetrV2Config):
RTDetrV2PreTrainedModel.__init__(config)
# RTDETR encoder-decoder model
self.model = RTDetrV2Model(config)
# Detection heads on top
class_embed = partial(nn.Linear, config.d_model, config.num_labels)
bbox_embed = partial(RTDetrV2MLPPredictionHead, config, config.d_model, config.d_model, 4, num_layers=3)
self.class_embed = nn.ModuleList([class_embed() for _ in range(config.decoder_layers)])
self.bbox_embed = nn.ModuleList([bbox_embed() for _ in range(config.decoder_layers)])
self.model.decoder.class_embed = self.class_embed
self.model.decoder.bbox_embed = self.bbox_embed
# Initialize weights and apply final processing
self.post_init()
__all__ = [
"RTDetrV2Config",
"RTDetrV2Model",
"RTDetrV2PreTrainedModel",
"RTDetrV2ForObjectDetection",
]
| transformers/src/transformers/models/rt_detr_v2/modular_rt_detr_v2.py/0 | {
"file_path": "transformers/src/transformers/models/rt_detr_v2/modular_rt_detr_v2.py",
"repo_id": "transformers",
"token_count": 11884
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch SeamlessM4T model."""
import copy
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...integrations.fsdp import is_fsdp_managed_module
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
BaseModelOutputWithPastAndCrossAttentions,
Seq2SeqLMOutput,
Seq2SeqModelOutput,
Wav2Vec2BaseModelOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_seamless_m4t import SeamlessM4TConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/hf-seamless-m4t-medium"
_CONFIG_FOR_DOC = "SeamlessM4TConfig"
@dataclass
class SeamlessM4TGenerationOutput(ModelOutput):
"""
Class defining the generated outputs from [`SeamlessM4TModel`], [`SeamlessM4TForTextToText`],
[`SeamlessM4TForTextToSpeech`], [`SeamlessM4TForSpeechToSpeech`] and [`SeamlessM4TForTextToSpeech`].
Args:
waveform (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
The final audio waveform predicted by the model.
waveform_lengths (`torch.IntTensor` of shape `(batch_size,)`, *optional*):
The length in samples of each element in the `waveform` batch.
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The generated translated sequences. This is the output of the text-to-text or the speech-to-text models.
The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished
early due to the `eos_token_id`.
unit_sequences (`torch.LongTensor` of shape `(batch_size, unit_sequence_length)`, *optional*):
The generated translated unit sequences. This is the output of the text-to-units model. The second
dimension (unit_sequence_length) is either equal to `t2u_max_length` or shorter if all batches finished
early due to the `t2u_eos_token_id`.
"""
waveform: Optional[torch.FloatTensor] = None
waveform_lengths: Optional[torch.IntTensor] = None
sequences: Optional[Tuple[torch.FloatTensor]] = None
unit_sequences: Optional[Tuple[torch.FloatTensor]] = None
SEAMLESS_M4T_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~SeamlessM4TConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
"""
SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART = r"""
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Indices of decoder input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are decoder input IDs?](../glossary#decoder-input-ids)
Bart uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
For translation and summarization training, `decoder_input_ids` should be provided. If no
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
for denoising pre-training following the paper.
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
be used by default.
If you want to change padding behavior, you should read [`modeling_bart._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape`(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
input (see `past_key_values`). This is useful if you want more control over how to convert
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
of `inputs_embeds`.
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
M4T_MODEL_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_FIRST_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
M4T_TEXT_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_TEXT_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
M4T_SPEECH_INPUTS_DOCSTRING = SEAMLESS_M4T_INPUTS_DOCSTRING_SPEECH_PART + SEAMLESS_M4T_INPUTS_DOCSTRING_LAST_PART
############ UTILS ################
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
"""
Shift input ids one token to the right.
"""
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
shifted_input_ids[:, 0] = decoder_start_token_id
if pad_token_id is None:
raise ValueError("self.model.config.pad_token_id has to be defined.")
# replace possible -100 values in labels by `pad_token_id`
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
return shifted_input_ids
def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
"""
Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
stops at the corresponding element in `seq_lens`.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
seq_lens (`torch.Tensor` of shape `(batch)`:
Each element represents the length of the sequence at the same index in `hidden_states`
Returns:
`torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
"""
batch_size, mask_seq_len = hidden_states.shape[:2]
indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
mask = hidden_states.new_ones((batch_size, mask_seq_len))
mask = mask.masked_fill(bool_mask, 0)
return mask
def format_speech_generation_kwargs(kwargs):
"""
Format kwargs for SeamlessM4T models that generate speech, attribute kwargs to either the text generation or the
speech generation models.
Args:
kwargs (`dict`)`:
Keyword arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
"""
# attribute kwargs to models
kwargs_text = {}
kwargs_speech = {}
for key, value in kwargs.items():
if key.startswith("text_"):
key = key[len("text_") :]
kwargs_text[key] = value
elif key.startswith("speech_"):
key = key[len("speech_") :]
kwargs_speech[key] = value
elif key == "generation_config":
kwargs_text[key] = value
else:
# If the key is already in a specific config, then it's been set with a
# submodules specific value and we don't override
if key not in kwargs_text:
kwargs_text[key] = value
if key not in kwargs_speech:
kwargs_speech[key] = value
return kwargs_text, kwargs_speech
############ SPEECH ENCODER related code ################
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->SeamlessM4TConformer, feat_extract_activation->speech_encoder_hidden_act
class SeamlessM4TConformerPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
if hasattr(self.conv, "parametrizations"):
weight_g = self.conv.parametrizations.weight.original0
weight_v = self.conv.parametrizations.weight.original1
else:
weight_g = self.conv.weight_g
weight_v = self.conv.weight_v
deepspeed.zero.register_external_parameter(self, weight_v)
deepspeed.zero.register_external_parameter(self, weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = SeamlessM4TConformerSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.speech_encoder_hidden_act]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2->SeamlessM4T, num_attention_heads->speech_encoder_attention_heads
class SeamlessM4TConformerRotaryPositionalEmbedding(nn.Module):
"""Rotary positional embedding
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
"""
def __init__(self, config):
super().__init__()
dim = config.hidden_size // config.speech_encoder_attention_heads
base = config.rotary_embedding_base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.cached_sequence_length = None
self.cached_rotary_positional_embedding = None
def forward(self, hidden_states):
sequence_length = hidden_states.shape[1]
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
return self.cached_rotary_positional_embedding
self.cached_sequence_length = sequence_length
# Embeddings are computed in the dtype of the inv_freq constant
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
embeddings = torch.cat((freqs, freqs), dim=-1)
cos_embeddings = embeddings.cos()[:, None, None, :]
sin_embeddings = embeddings.sin()[:, None, None, :]
# Computed embeddings are cast to the dtype of the hidden state inputs
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
return self.cached_rotary_positional_embedding
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2->SeamlessM4T
class SeamlessM4TConformerRelPositionalEmbedding(nn.Module):
"""Relative positional encoding module."""
def __init__(self, config):
super().__init__()
self.max_len = config.max_source_positions
self.d_model = config.hidden_size
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
def extend_pe(self, x):
# Reset the positional encodings
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` is the position of query vector and `j` is the
# position of key vector. We use positive relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reverse the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, hidden_states: torch.Tensor):
self.extend_pe(hidden_states)
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
relative_position_embeddings = self.pe[:, start_idx:end_idx]
return relative_position_embeddings
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSamePadLayer with Wav2Vec2->SeamlessM4T
class SeamlessM4TConformerSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
class SeamlessM4TConformerFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class SeamlessM4TConformerFeedForward(nn.Module):
def __init__(self, config, act_fn=None, dropout=None):
super().__init__()
dropout = dropout if dropout is not None else config.speech_encoder_dropout
act_fn = act_fn if act_fn is not None else config.speech_encoder_hidden_act
self.intermediate_dropout = nn.Dropout(dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.speech_encoder_intermediate_size)
self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
self.output_dense = nn.Linear(config.speech_encoder_intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class SeamlessM4TConformerConvolutionModule(nn.Module):
"""Convolution block used in the conformer block"""
def __init__(self, config):
super().__init__()
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.pointwise_conv1 = nn.Conv1d(
config.hidden_size,
2 * config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.glu = nn.GLU(dim=1)
self.depthwise_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
config.conv_depthwise_kernel_size,
stride=1,
padding="same",
groups=config.hidden_size,
bias=False,
)
self.batch_norm = nn.BatchNorm1d(config.hidden_size)
self.activation = ACT2FN[config.speech_encoder_hidden_act]
self.pointwise_conv2 = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.dropout = nn.Dropout(config.speech_encoder_dropout)
def forward(self, hidden_states, attention_mask=None):
hidden_states = self.layer_norm(hidden_states)
# Ensure that we do not leak padded positions in depthwise convolution.
# Put 0 where necessary
if attention_mask is not None:
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism
# => (batch, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# => (batch, channel, dim)
hidden_states = self.glu(hidden_states)
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.batch_norm(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class SeamlessM4TConformerSelfAttention(nn.Module):
"""Construct a SeamlessM4TConformerSelfAttention object.
Can be enhanced with rotary or relative position embeddings.
"""
def __init__(self, config, use_position_embeddings=True):
super().__init__()
self.head_size = config.hidden_size // config.speech_encoder_attention_heads
self.num_heads = config.speech_encoder_attention_heads
self.position_embeddings_type = config.position_embeddings_type if use_position_embeddings else None
self.linear_q = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_k = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_v = nn.Linear(config.hidden_size, config.hidden_size)
self.linear_out = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(p=config.speech_encoder_dropout)
if self.position_embeddings_type == "relative":
# linear transformation for positional encoding
self.linear_pos = nn.Linear(config.hidden_size, config.hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention.forward
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# self-attention mechanism
batch_size, sequence_length, hidden_size = hidden_states.size()
# make sure query/key states can be != value states
query_key_states = hidden_states
value_states = hidden_states
if self.position_embeddings_type == "rotary":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
)
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
# project query_key_states and value_states
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.position_embeddings_type == "relative":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
" 'relative'"
)
# apply relative_position_embeddings to qk scores
# as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
scores = self._apply_relative_embeddings(
query=query, key=key, relative_position_embeddings=relative_position_embeddings
)
else:
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
# apply attention_mask if necessary
if attention_mask is not None:
scores = scores + attention_mask
# => (batch, head, time1, time2)
probs = torch.softmax(scores, dim=-1)
probs = self.dropout(probs)
# => (batch, head, time1, d_k)
hidden_states = torch.matmul(probs, value)
# => (batch, time1, hidden_size)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
hidden_states = self.linear_out(hidden_states)
return hidden_states, probs
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
batch_size, sequence_length, hidden_size = hidden_states.size()
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
cos = relative_position_embeddings[0, :sequence_length, ...]
sin = relative_position_embeddings[1, :sequence_length, ...]
# rotate hidden_states with rotary embeddings
hidden_states = hidden_states.transpose(0, 1)
rotated_states_begin = hidden_states[..., : self.head_size // 2]
rotated_states_end = hidden_states[..., self.head_size // 2 :]
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
hidden_states = (hidden_states * cos) + (rotated_states * sin)
hidden_states = hidden_states.transpose(0, 1)
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
# 1. project positional embeddings
# => (batch, head, 2*time1-1, d_k)
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
proj_relative_position_embeddings = proj_relative_position_embeddings.view(
relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
# 2. Add bias to query
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
# 3. attention score: first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# => (batch, head, time1, time2)
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
# 4. then compute matrix b and matrix d
# => (batch, head, time1, 2*time1-1)
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
# 5. shift matrix b and matrix d
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
# 6. sum matrices
# => (batch, head, time1, time2)
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
return scores
class SeamlessM4TConformerEncoderLayer(nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerEncoderLayer.__init__ with Wav2Vec2->SeamlessM4T, attention_dropout->speech_encoder_dropout, torch.nn->nn
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.speech_encoder_dropout
# Feed-forward 1
self.ffn1_layer_norm = nn.LayerNorm(embed_dim)
self.ffn1 = SeamlessM4TConformerFeedForward(config)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_dropout = nn.Dropout(dropout)
self.self_attn = SeamlessM4TConformerSelfAttention(config)
# Conformer Convolution
self.conv_module = SeamlessM4TConformerConvolutionModule(config)
# Feed-forward 2
self.ffn2_layer_norm = nn.LayerNorm(embed_dim)
self.ffn2 = SeamlessM4TConformerFeedForward(config)
self.final_layer_norm = nn.LayerNorm(embed_dim)
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
conv_attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = hidden_states
# 1. Feed-Forward 1 layer
residual = hidden_states
hidden_states = self.ffn1_layer_norm(hidden_states)
hidden_states = self.ffn1(hidden_states)
hidden_states = hidden_states * 0.5 + residual
residual = hidden_states
# 2. Self-Attention layer
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weigts = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
# 3. Convolutional Layer
residual = hidden_states
hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
hidden_states = residual + hidden_states
# 4. Feed-Forward 2 Layer
residual = hidden_states
hidden_states = self.ffn2_layer_norm(hidden_states)
hidden_states = self.ffn2(hidden_states)
hidden_states = hidden_states * 0.5 + residual
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, attn_weigts
class SeamlessM4TConformerEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.position_embeddings_type == "relative":
self.embed_positions = SeamlessM4TConformerRelPositionalEmbedding(config)
elif config.position_embeddings_type == "rotary":
self.embed_positions = SeamlessM4TConformerRotaryPositionalEmbedding(config)
else:
self.embed_positions = None
self.dropout = nn.Dropout(config.speech_encoder_dropout)
self.layers = nn.ModuleList(
[SeamlessM4TConformerEncoderLayer(config) for _ in range(config.speech_encoder_layers)]
)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = (
True if self.training and (dropout_probability < self.config.speech_encoder_layerdrop) else False
)
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
output_attentions,
conv_attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class SeamlessM4TConformerAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.adaptor_dropout
self.kernel_size = config.adaptor_kernel_size
self.stride = config.adaptor_stride
# 1. residual convolution
self.residual_layer_norm = nn.LayerNorm(embed_dim)
self.residual_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.activation = nn.GLU(dim=1)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim)
self.self_attn_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.self_attn = SeamlessM4TConformerSelfAttention(config, use_position_embeddings=False)
self.self_attn_dropout = nn.Dropout(dropout)
# Feed-forward
self.ffn_layer_norm = nn.LayerNorm(embed_dim)
self.ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=dropout)
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
pad = self.kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
return seq_lens.floor()
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
residual = self.residual_layer_norm(hidden_states)
# Apply pooling to the residual to match the sequence length of the
# multi-head attention output.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
residual = residual.transpose(1, 2)
residual = self.residual_conv(residual)
residual = self.activation(residual)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
residual = residual.transpose(1, 2)
hidden_states = self.self_attn_layer_norm(hidden_states)
# Apply pooling before feeding to the multihead-attention layer.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.self_attn_conv(hidden_states)
hidden_states = self.activation(hidden_states)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
hidden_states = hidden_states.transpose(1, 2)
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
hidden_states.device
)
attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
attention_mask = _prepare_4d_attention_mask(
attention_mask,
hidden_states.dtype,
)
# The rest of the computation is identical to a vanilla Transformer
# encoder layer.
hidden_states, attn_weigths = self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states) + residual
return hidden_states
class SeamlessM4TConformerAdapter(nn.Module):
def __init__(self, config):
super().__init__()
self.layers = nn.ModuleList(SeamlessM4TConformerAdapterLayer(config) for _ in range(config.num_adapter_layers))
def forward(self, hidden_states, attention_mask):
# down project hidden_states if necessary
for layer in self.layers:
hidden_states = layer(hidden_states, attention_mask)
return hidden_states
############ TEXT / UNITS related code ################
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100ScaledWordEmbedding with M2M100->SeamlessM4T
class SeamlessM4TScaledWordEmbedding(nn.Embedding):
"""
This module overrides nn.Embeddings' forward by multiplying with embeddings scale.
"""
def __init__(self, num_embeddings: int, embedding_dim: int, padding_idx: int, embed_scale: Optional[float] = 1.0):
super().__init__(num_embeddings, embedding_dim, padding_idx)
self.embed_scale = embed_scale
def forward(self, input_ids: torch.Tensor):
return super().forward(input_ids) * self.embed_scale
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
class SeamlessM4TSinusoidalPositionalEmbedding(nn.Module):
"""This module produces sinusoidal positional embeddings of any length."""
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
super().__init__()
self.offset = 2
self.embedding_dim = embedding_dim
self.padding_idx = padding_idx
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
if hasattr(self, "weights"):
# in forward put the weights on the correct dtype and device of the param
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
self.register_buffer("weights", emb_weights, persistent=False)
@staticmethod
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
"""
Build sinusoidal embeddings.
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
"Attention Is All You Need".
"""
half_dim = embedding_dim // 2
emb = math.log(10000) / (half_dim - 1)
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
if embedding_dim % 2 == 1:
# zero pad
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
if padding_idx is not None:
emb[padding_idx, :] = 0
return emb.to(torch.get_default_dtype())
@torch.no_grad()
def forward(
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
):
if input_ids is not None:
bsz, seq_len = input_ids.size()
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
input_ids.device
)
else:
bsz, seq_len = inputs_embeds.size()[:-1]
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
# expand embeddings if needed
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
if max_pos > self.weights.size(0):
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
class SeamlessM4TAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
# Copied from transformers.models.bart.modeling_bart.BartAttention.__init__ with Bart->SeamlessM4T
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[SeamlessM4TConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if encoder_hidden_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = encoder_hidden_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `encoder_hidden_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.nllb_moe.modeling_nllb_moe.NllbMoeDenseActDense with NllbMoe->SeamlessM4T,DenseActDense->FeedForwardNetwork, d_model->hidden_size
class SeamlessM4TFeedForwardNetwork(nn.Module):
def __init__(self, config: SeamlessM4TConfig, ffn_dim: int):
super().__init__()
self.fc1 = nn.Linear(config.hidden_size, ffn_dim)
self.fc2 = nn.Linear(ffn_dim, config.hidden_size)
self.dropout = nn.Dropout(config.activation_dropout)
self.act = ACT2FN[config.activation_function]
def forward(self, hidden_states):
hidden_states = self.fc1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.dropout(hidden_states)
if (
isinstance(self.fc2.weight, torch.Tensor)
and hidden_states.dtype != self.fc2.weight.dtype
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
):
hidden_states = hidden_states.to(self.fc2.weight.dtype)
hidden_states = self.fc2(hidden_states)
return hidden_states
class SeamlessM4TEncoderLayer(nn.Module):
def __init__(self, config: SeamlessM4TConfig, encoder_ffn_dim=None, encoder_attention_heads=None):
super().__init__()
encoder_ffn_dim = config.encoder_ffn_dim if encoder_ffn_dim is None else encoder_ffn_dim
encoder_attention_heads = (
config.encoder_attention_heads if encoder_attention_heads is None else encoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4TAttention(
embed_dim=self.embed_dim,
num_heads=encoder_attention_heads,
dropout=config.attention_dropout,
)
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=encoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: torch.Tensor,
output_attentions: bool = False,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
class SeamlessM4TDecoderLayer(nn.Module):
def __init__(self, config: SeamlessM4TConfig, decoder_ffn_dim=None, decoder_attention_heads=None):
super().__init__()
decoder_ffn_dim = config.decoder_ffn_dim if decoder_ffn_dim is None else decoder_ffn_dim
decoder_attention_heads = (
config.decoder_attention_heads if decoder_attention_heads is None else decoder_attention_heads
)
self.embed_dim = config.hidden_size
self.self_attn = SeamlessM4TAttention(
embed_dim=self.embed_dim,
num_heads=decoder_attention_heads,
dropout=config.attention_dropout,
is_decoder=True,
)
self.dropout = config.dropout
self.activation_fn = ACT2FN[config.activation_function]
self.attn_dropout = nn.Dropout(config.dropout)
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
self.cross_attention = SeamlessM4TAttention(
self.embed_dim, decoder_attention_heads, config.attention_dropout, is_decoder=True
)
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
self.ffn = SeamlessM4TFeedForwardNetwork(config, ffn_dim=decoder_ffn_dim)
self.ffn_layer_norm = nn.LayerNorm(config.hidden_size)
self.ffn_dropout = nn.Dropout(config.activation_dropout)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = True,
) -> torch.Tensor:
"""
Args:
hidden_states (`torch.FloatTensor`):
input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`):
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
large negative values.
encoder_hidden_states (`torch.FloatTensor`):
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
encoder_attention_mask (`torch.FloatTensor`):
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
very large negative values.
past_key_value (`Tuple(torch.FloatTensor)`):
cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
"""
residual = hidden_states
hidden_states = self.self_attn_layer_norm(hidden_states)
# Self Attention
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
# add present self-attn cache to positions 1,2 of present_key_value tuple
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
past_key_value=self_attn_past_key_value,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# Cross-Attention Block
cross_attn_present_key_value = None
cross_attn_weights = None
if encoder_hidden_states is not None:
residual = hidden_states
hidden_states = self.cross_attention_layer_norm(hidden_states)
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
hidden_states=hidden_states,
encoder_hidden_states=encoder_hidden_states,
past_key_value=cross_attn_past_key_value,
attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.attn_dropout(hidden_states)
hidden_states = residual + hidden_states
# add cross-attn to positions 3,4 of present_key_value tuple
present_key_value += cross_attn_present_key_value
# Fully Connected
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states)
hidden_states = self.ffn_dropout(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states, present_key_value)
if output_attentions:
outputs += (self_attn_weights, cross_attn_weights)
return outputs
############ SUB-MODELS related code ################
class SeamlessM4TPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SeamlessM4TConfig
base_model_prefix = "seamless_m4t"
supports_gradient_checkpointing = True
_no_split_modules = ["SeamlessM4TEncoderLayer", "SeamlessM4TDecoderLayer", "SeamlessM4TConformerEncoderLayer"]
def _init_weights(self, module):
"""Initialize the weights"""
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SeamlessM4TConformerSelfAttention):
if hasattr(module, "pos_bias_u"):
nn.init.xavier_uniform_(module.pos_bias_u)
if hasattr(module, "pos_bias_v"):
nn.init.xavier_uniform_(module.pos_bias_v)
elif isinstance(module, SeamlessM4TConformerPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, SeamlessM4TConformerFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _compute_sub_sample_lengths_from_attention_mask(self, attention_mask):
kernel_size, stride = self.config.adaptor_kernel_size, self.config.adaptor_stride
pad = kernel_size // 2
seq_lens = attention_mask.size(1) - (1 - attention_mask.int()).sum(1)
seq_lens = ((seq_lens + 2 * pad - kernel_size) / stride) + 1
return seq_lens.floor()
def compute_last_hidden_states_per_sample(
self,
hidden_states: Tuple[Tuple[torch.Tensor]],
beam_indices: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Computes the last hidden states.
Parameters:
hidden_states (`Tuple[Tuple[torch.Tensor]]`):
The generated hidden states. Tuple (one element for each generated token) of tuples (one element for
each layer of the decoder) of torch.FloatTensor of shape (batch_size*num_beams*num_return_sequences,
generated_length, hidden_size).
beam_indices (`torch.LongTensor`, *optional*):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
generate-time.
Return:
`torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length, hidden_size)`
containing
the last hidden states.
```"""
# 1. First, let's compute last_hidden_states from hidden_states.
# For each generation step, takes the hidden state from the last layer.
# shape: (batch_size*vocab_size*num_return_sequences, # generation_steps, hidden_dim)
last_hidden_states = torch.concat([hidden_states[-1] for hidden_states in hidden_states], dim=1)
# 2. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
# to a beam search approach were the first (and only) beam is always selected
# in that case, return directly last_hidden_states
if beam_indices is None:
return last_hidden_states
# 3. cut beam_indices to longest beam length
beam_indices_mask = beam_indices < 0
max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
beam_indices = beam_indices.clone()[:, :max_beam_length]
beam_indices_mask = beam_indices_mask[:, :max_beam_length]
# 4. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards anyways
beam_indices[beam_indices_mask] = 0
# 5. expand beam_indices to last_hidden_states dim
beam_indices = beam_indices.unsqueeze(-1)
beam_indices = beam_indices.expand(-1, -1, last_hidden_states.shape[-1])
# 6. select the right candidate for each beam
# in other words, new_last_hidden_states[i,j,k] = last_hidden_states[beam_indices[i,j,k], j, k] for all i, j, k
last_hidden_states = torch.gather(last_hidden_states, 0, beam_indices)
return last_hidden_states
@add_start_docstrings(
"""Transformer speech encoder consisting of *config.speech_encoder_layers* conformer self attention layers.
Each layer is a [`SeamlessM4TConformerEncoderLayer`].""",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TSpeechEncoder(SeamlessM4TPreTrainedModel):
main_input_name = "input_features"
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.feature_projection = SeamlessM4TConformerFeatureProjection(config)
self.encoder = SeamlessM4TConformerEncoder(config)
self.intermediate_ffn = SeamlessM4TConformerFeedForward(config, act_fn="relu", dropout=0.0)
self.adapter = SeamlessM4TConformerAdapter(config) if config.add_adapter else None
self.inner_layer_norm = nn.LayerNorm(config.hidden_size)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_features is None:
raise ValueError(
"""Both `input_features` and `inputs_embeds` are `None` in `SeamlessM4TSpeechEncoder.forward`.
Make sure one of them is not `None`."""
)
hidden_states = self.feature_projection(input_features)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
expanded_hidden_states = self.intermediate_ffn(hidden_states)
hidden_states = hidden_states + 0.5 * expanded_hidden_states
if self.adapter is not None:
hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
hidden_states = self.inner_layer_norm(hidden_states)
if not return_dict:
return (hidden_states,) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
# inspired from MBart and NllbMoe
@add_start_docstrings(
"Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`SeamlessM4TEncoderLayer`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
is_t2u_encoder (`bool`, *optional*, defaults to `False`):
indicates if it belongs to the text-to-units model, in which case it won't have input embeddings
""",
)
class SeamlessM4TEncoder(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens: Optional[nn.Embedding] = None,
is_t2u_encoder: bool = False,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
self.padding_idx = config.pad_token_id
embed_dim = config.hidden_size
self.is_t2u_encoder = is_t2u_encoder
self.max_source_positions = config.max_position_embeddings
if not self.is_t2u_encoder:
embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
self.embed_tokens = SeamlessM4TScaledWordEmbedding(
config.vocab_size, embed_dim, self.padding_idx, embed_scale=embed_scale
)
if embed_tokens is not None:
self.embed_tokens.weight = embed_tokens.weight
self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
self.max_source_positions,
embed_dim,
self.padding_idx,
)
layers = []
for _ in range(config.encoder_layers):
layers.append(
SeamlessM4TEncoderLayer(
config,
encoder_attention_heads=config.encoder_attention_heads,
encoder_ffn_dim=config.encoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Tuple, BaseModelOutput]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and self.is_t2u_encoder:
raise ValueError(
"You cannot pass input_ids to the encoder of the text_to_units model. Pass inputs_embeds instead."
)
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.shape
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if not self.is_t2u_encoder:
embed_pos = self.embed_positions(input)
hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device)
else:
hidden_states = inputs_embeds
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
to_drop = False
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop: # skip the layer
to_drop = True
if to_drop:
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
encoder_layer.forward,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
@add_start_docstrings(
"Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`SeamlessM4TDecoderLayer`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens (`nn.Embedding`, *optional*):
Input embedding
""",
)
class SeamlessM4TDecoder(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.max_target_positions = config.max_position_embeddings
embed_scale = math.sqrt(config.hidden_size) if config.scale_embedding else 1.0
if embed_tokens is not None:
# if embed_tokens defined, use its shape instead
self.embed_tokens = SeamlessM4TScaledWordEmbedding(
embed_tokens.num_embeddings, embed_tokens.embedding_dim, self.padding_idx, embed_scale=embed_scale
)
self.embed_tokens.weight = embed_tokens.weight
else:
self.embed_tokens = SeamlessM4TScaledWordEmbedding(
self.vocab_size, config.hidden_size, self.padding_idx, embed_scale=embed_scale
)
self.embed_positions = SeamlessM4TSinusoidalPositionalEmbedding(
self.max_target_positions,
config.hidden_size,
padding_idx=self.padding_idx,
)
layers = []
for _ in range(config.decoder_layers):
layers.append(
SeamlessM4TDecoderLayer(
config,
decoder_attention_heads=config.decoder_attention_heads,
decoder_ffn_dim=config.decoder_ffn_dim,
)
)
self.layers = nn.ModuleList(layers)
self.layer_norm = nn.LayerNorm(config.hidden_size)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
provide it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
of the decoder.
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
elif input_ids is not None:
input = input_ids
input_shape = input.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
input = inputs_embeds[:, :, -1]
else:
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
attention_mask = _prepare_4d_causal_attention_mask(
attention_mask, input_shape, inputs_embeds, past_key_values_length
)
# expand encoder attention mask
if encoder_hidden_states is not None and encoder_attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
encoder_attention_mask = _prepare_4d_attention_mask(
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
)
# embed positions
positions = self.embed_positions(input, past_key_values_length=past_key_values_length)
hidden_states = inputs_embeds + positions.to(inputs_embeds.device)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..."
)
use_cache = False
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
next_decoder_cache = () if use_cache else None
for idx, decoder_layer in enumerate(self.layers):
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.training:
dropout_probability = torch.rand([])
if dropout_probability < self.layerdrop:
continue
past_key_value = past_key_values[idx] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
None,
output_attentions,
use_cache,
)
else:
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache += (layer_outputs[1],)
if output_attentions:
all_self_attns += (layer_outputs[2],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[3],)
hidden_states = self.layer_norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if not return_dict:
return tuple(
v
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attns,
cross_attentions=all_cross_attentions,
)
@add_start_docstrings(
"Transformer bare text-to-unit encoder-decoder. The encoder is a [`SeamlessM4TEncoder`] without embeddings and the decoder is a [`SeamlessM4TDecoder`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4TTextToUnitModel(SeamlessM4TPreTrainedModel):
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
super().__init__(config)
self.encoder = SeamlessM4TEncoder(config, is_t2u_encoder=True)
self.decoder = SeamlessM4TDecoder(config, embed_tokens_decoder)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], Seq2SeqModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"Transformer text-to-unit encoder-decoder with a language model head. The base encoder-decoder model is a [`SeamlessM4TTextToUnit`].",
SEAMLESS_M4T_START_DOCSTRING,
"""
embed_tokens_decoder (`nn.Embedding`, *optional*): input embedding of the decoder.
""",
)
class SeamlessM4TTextToUnitForConditionalGeneration(SeamlessM4TPreTrainedModel, GenerationMixin):
_keys_to_ignore_on_load_missing = [
"vocoder",
"speech_encoder",
"text_encoder",
"text_decoder",
]
_tied_weights_keys = ["decoder.embed_tokens.weight", "lm_head.weight"]
def __init__(
self,
config: SeamlessM4TConfig,
embed_tokens_decoder: Optional[nn.Embedding] = None,
):
# update config - used principaly for bos_token_id etc.
config = copy.deepcopy(config)
for param, val in config.to_dict().items():
if param.startswith("t2u_"):
config.__setattr__(param[4:], val)
super().__init__(config)
self.model = SeamlessM4TTextToUnitModel(config, embed_tokens_decoder)
self.lm_head = nn.Linear(config.hidden_size, config.t2u_vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.model.encoder
def get_decoder(self):
return self.model.decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.model.decoder.embed_tokens
def set_input_embeddings(self, value):
self.model.decoder.embed_tokens = value
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id
)
outputs = self.model(
input_ids,
attention_mask=attention_mask,
decoder_input_ids=decoder_input_ids,
encoder_outputs=encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
decoder_inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=outputs.past_key_values,
decoder_hidden_states=outputs.decoder_hidden_states,
decoder_attentions=outputs.decoder_attentions,
cross_attentions=outputs.cross_attentions,
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
encoder_hidden_states=outputs.encoder_hidden_states,
encoder_attentions=outputs.encoder_attentions,
)
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
return shift_tokens_right(labels, self.config.t2u_pad_token_id, self.config.t2u_decoder_start_token_id)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
def _tie_weights(self) -> None:
if getattr(self.config, "tie_word_embeddings", True):
output_embeddings = self.get_output_embeddings()
if output_embeddings is not None:
self._tie_or_clone_weights(output_embeddings, self.get_input_embeddings())
############ VOCODER related code ################
HIFIGAN_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`SeamlessM4TConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
class HifiGanResidualBlock(nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
super().__init__()
self.leaky_relu_slope = leaky_relu_slope
self.convs1 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=dilation[i],
padding=self.get_padding(kernel_size, dilation[i]),
)
for i in range(len(dilation))
]
)
self.convs2 = nn.ModuleList(
[
nn.Conv1d(
channels,
channels,
kernel_size,
stride=1,
dilation=1,
padding=self.get_padding(kernel_size, 1),
)
for _ in range(len(dilation))
]
)
def get_padding(self, kernel_size, dilation=1):
return (kernel_size * dilation - dilation) // 2
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
for layer in self.convs1:
weight_norm(layer)
for layer in self.convs2:
weight_norm(layer)
def remove_weight_norm(self):
for layer in self.convs1:
nn.utils.remove_weight_norm(layer)
for layer in self.convs2:
nn.utils.remove_weight_norm(layer)
def forward(self, hidden_states):
for conv1, conv2 in zip(self.convs1, self.convs2):
residual = hidden_states
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv1(hidden_states)
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = conv2(hidden_states)
hidden_states = hidden_states + residual
return hidden_states
class SeamlessM4TVariancePredictor(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.unit_embed_dim
kernel_size = config.variance_predictor_kernel_size
var_pred_dropout = config.var_pred_dropout
self.conv1 = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=(kernel_size - 1) // 2,
)
self.activation_fuction = nn.ReLU()
self.ln1 = nn.LayerNorm(embed_dim)
self.dropout_module = nn.Dropout(p=var_pred_dropout)
self.conv2 = nn.Conv1d(
embed_dim,
embed_dim,
kernel_size=kernel_size,
padding=1,
)
self.ln2 = nn.LayerNorm(embed_dim)
self.proj = nn.Linear(embed_dim, 1)
def forward(self, hidden_states: Tensor) -> Tensor:
# Input: B x T x C; Output: B x T
hidden_states = self.conv1(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln1(hidden_states))
hidden_states = self.conv2(hidden_states.transpose(1, 2))
hidden_states = self.activation_fuction(hidden_states).transpose(1, 2)
hidden_states = self.dropout_module(self.ln2(hidden_states))
return self.proj(hidden_states).squeeze(dim=2)
class SeamlessM4THifiGan(nn.Module):
def __init__(self, config: SeamlessM4TConfig):
super().__init__()
model_in_dim = config.unit_embed_dim + config.lang_embed_dim + config.spkr_embed_dim
self.leaky_relu_slope = config.leaky_relu_slope
self.num_kernels = len(config.resblock_kernel_sizes)
self.num_upsamples = len(config.upsample_rates)
self.conv_pre = nn.Conv1d(
model_in_dim,
config.upsample_initial_channel,
kernel_size=7,
stride=1,
padding=3,
)
self.upsampler = nn.ModuleList()
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
self.upsampler.append(
nn.ConvTranspose1d(
config.upsample_initial_channel // (2**i),
config.upsample_initial_channel // (2 ** (i + 1)),
kernel_size=kernel_size,
stride=upsample_rate,
padding=(kernel_size - upsample_rate) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.upsampler)):
channels = config.upsample_initial_channel // (2 ** (i + 1))
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation, config.leaky_relu_slope))
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3)
def forward(self, input_embeds: torch.FloatTensor) -> torch.FloatTensor:
r"""
Converts a log-mel spectrogram into a speech waveform. Passing a batch of log-mel spectrograms returns a batch
of speech waveforms. Passing a single, un-batched log-mel spectrogram returns a single, un-batched speech
waveform.
Args:
spectrogram (`torch.FloatTensor`):
Tensor containing the log-mel spectrograms. Can be batched and of shape `(batch_size, sequence_length,
model_in_dim)`, or un-batched and of shape `(sequence_length, model_in_dim)`. Note that `model_in_dim`
is the sum of `config.unit_embed_dim`, `config.lang_embed_dim` and `config.spkr_embed_dim`.
Returns:
`torch.FloatTensor`: Tensor containing the speech waveform. If the input spectrogram is batched, will be of
shape `(batch_size, num_frames,)`. If un-batched, will be of shape `(num_frames,)`.
"""
hidden_states = self.conv_pre(input_embeds)
for i in range(self.num_upsamples):
hidden_states = nn.functional.leaky_relu(hidden_states, self.leaky_relu_slope)
hidden_states = self.upsampler[i](hidden_states)
res_state = self.resblocks[i * self.num_kernels](hidden_states)
for j in range(1, self.num_kernels):
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
hidden_states = res_state / self.num_kernels
hidden_states = nn.functional.leaky_relu(hidden_states)
hidden_states = self.conv_post(hidden_states)
hidden_states = torch.tanh(hidden_states)
# remove seq-len dim since this collapses to 1
waveform = hidden_states.squeeze(1)
return waveform
@add_start_docstrings(
"""Code HiFi-GAN vocoder as described in this [repository](https://github.com/facebookresearch/speech-resynthesis).""",
HIFIGAN_START_DOCSTRING,
)
class SeamlessM4TCodeHifiGan(PreTrainedModel):
config_class = SeamlessM4TConfig
main_input_name = "input_embeds"
_no_split_modules = []
def __init__(self, config):
super().__init__(config)
self.pad_token_id = config.t2u_pad_token_id
self.dur_predictor = SeamlessM4TVariancePredictor(config)
self.unit_embedding = nn.Embedding(config.unit_hifi_gan_vocab_size, config.unit_embed_dim)
self.speaker_embedding = nn.Embedding(config.vocoder_num_spkrs, config.spkr_embed_dim)
self.language_embedding = nn.Embedding(config.vocoder_num_langs, config.lang_embed_dim)
self.hifi_gan = SeamlessM4THifiGan(config)
# Initialize weights and apply final processing
self.post_init()
def _get_dur_output_lengths(self, input_ids, dur_out):
"""
Computes the output length after the duration layer.
"""
unit_lengths = (input_ids != self.pad_token_id).sum(1)
# take care of edge cases where no padding or too many padding
unit_lengths = torch.clamp(unit_lengths, 0, dur_out.shape[1] - 1)
cumulative_dur_out = torch.cumsum(dur_out, dim=1)
unit_lengths = cumulative_dur_out.gather(dim=1, index=unit_lengths.unsqueeze(1)).squeeze()
return unit_lengths
def _get_output_hifigan_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the hifigan convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (
torch.div(input_length + 2 * pad - dilation * (kernel_size - 1) - 1, stride, rounding_mode="floor") + 1
)
def _transpose_conv_out_length(input_length, kernel_size, stride, pad, dilation=1):
return (input_length - 1) * stride - 2 * pad + dilation * (kernel_size - 1) + 1
# conv_pre
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
# upsampler
for i, (upsample_rate, kernel_size) in enumerate(
zip(self.config.upsample_rates, self.config.upsample_kernel_sizes)
):
input_lengths = _transpose_conv_out_length(
input_lengths, kernel_size, upsample_rate, (kernel_size - upsample_rate) // 2
)
# resblock
for i in range(len(self.config.upsample_rates)):
for kernel_size, dilation in zip(self.config.resblock_kernel_sizes, self.config.resblock_dilation_sizes):
for dil in dilation:
input_lengths = _conv_out_length(
input_lengths, kernel_size, 1, (kernel_size - 1) * dil // 2, dilation=dil
)
for dil in dilation:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1, (kernel_size - 1) // 2, dilation=1)
# conv_post
input_lengths = _conv_out_length(input_lengths, 7, 1, 3)
return input_lengths
def forward(
self, input_ids: torch.LongTensor, spkr_id: torch.Tensor, lang_id: torch.Tensor
) -> Tuple[torch.Tensor]:
"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTextToUnitForConditionalGeneration`]. [What are input
IDs?](../glossary#input-ids)
spkr_id (`int`, *optional*):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
tgt_lang (`str`, *optional*):
The language id to use as target language for translation.
"""
hidden_states = self.unit_embedding(input_ids).transpose(1, 2)
spkr = self.speaker_embedding(spkr_id).transpose(1, 2)
lang = self.language_embedding(lang_id).transpose(1, 2)
log_dur_pred = self.dur_predictor(hidden_states.transpose(1, 2))
dur_out = torch.clamp(torch.round((torch.exp(log_dur_pred) - 1)).long(), min=1)
# B x C x T
if hidden_states.size(0) == 1:
hidden_states = torch.repeat_interleave(hidden_states, dur_out.view(-1), dim=2)
else:
# if batched sample, need to interleave per sample, and pad -> loss of parallelism
if hidden_states.shape[0] > 1 and self.training:
logger.warning(
"""`self.training=True` and you use batching. You lose parallelism during the hifigan
forward pass because the samples are interleaved."""
)
hidden_states = [
torch.repeat_interleave(hidden_state, duration, dim=-1).transpose(0, 1)
for (hidden_state, duration) in zip(hidden_states, dur_out)
]
hidden_states = nn.utils.rnn.pad_sequence(hidden_states, batch_first=True).transpose(1, 2)
spkr = spkr.repeat(1, 1, hidden_states.shape[-1])
lang = lang.repeat(1, 1, hidden_states.shape[-1])
hidden_states = torch.cat([lang, hidden_states, spkr], dim=1)
hidden_states = self.hifi_gan(hidden_states)
unit_lengths = self._get_dur_output_lengths(input_ids, dur_out)
lengths = self._get_output_hifigan_lengths(unit_lengths)
return hidden_states, lengths
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, nn.Conv1d, nn.ConvTranspose1d)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
def apply_weight_norm(self):
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.apply_weight_norm()
weight_norm(self.hifi_gan.conv_post)
def remove_weight_norm(self):
nn.utils.remove_weight_norm(self.hifi_gan.conv_pre)
for layer in self.hifi_gan.upsampler:
nn.utils.remove_weight_norm(layer)
for layer in self.hifi_gan.resblocks:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.hifi_gan.conv_post)
############ WHOLE MODEL related code ################
@add_start_docstrings(
"The text-to-text SeamlessM4T Model transformer which can be used for T2TT.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForTextToText(SeamlessM4TPreTrainedModel, GenerationMixin):
_keys_to_ignore_on_load_missing = ["speech_encoder", "t2u_model", "vocoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.text_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
input_ids=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_ids (`torch.Tensor` of varying shape depending on the modality, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# prepare text_decoder_input_ids
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_ids,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-text SeamlessM4T Model transformer which can be used for S2TT.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForSpeechToText(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_decoder", "t2u_model", "vocoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_encoder(self):
return self.speech_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
def generate(
self,
input_features=None,
tgt_lang=None,
generation_config=None,
logits_processor=None,
stopping_criteria=None,
prefix_allowed_tokens_fn=None,
synced_gpus=False,
**kwargs,
):
"""
Generates sequences of token ids.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Parameters:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
generation_config (`~generation.GenerationConfig`, *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which had the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complement the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*, defaults to `False`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generate_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.FloatTensor`. The possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
text_decoder_input_ids = kwargs.pop("decoder_input_ids", None)
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
input_features = input_features if input_features is not None else kwargs.pop("inputs")
if tgt_lang is not None:
inputs = kwargs.get("input_embeds") if input_features is None else input_features
inputs = (
inputs
if inputs is not None
else kwargs.get("encoder_outputs", {"last_hidden_state": None})["last_hidden_state"]
)
batch_size = len(inputs)
if hasattr(self.generation_config, "text_decoder_lang_to_code_id"):
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
if tgt_lang not in self.generation_config.text_decoder_lang_to_code_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model. Please specify a `tgt_lang` in
{', '.join(self.generation_config.text_decoder_lang_to_code_id.keys())}"""
)
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
else:
raise ValueError(
"""This model generation config doesn't have a `text_decoder_lang_to_code_id` key which maps
the target language to the right token id. Make sure to load the right generation config."""
)
else:
# only a warning, otherwise errors appear in the tests
logger.warning(
"""You must either specify a `tgt_lang` or pass a correct `text_decoder_input_ids` to get
a correct generation, otherwise the generation will probably make no sense."""
)
return super().generate(
input_features,
generation_config,
logits_processor,
stopping_criteria,
prefix_allowed_tokens_fn,
synced_gpus,
decoder_input_ids=text_decoder_input_ids,
**kwargs,
)
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The text-to-speech SeamlessM4T Model transformer which can be used for T2ST.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForTextToSpeech(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["speech_encoder"]
main_input_name = "input_ids"
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config: SeamlessM4TConfig):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def get_encoder(self):
return self.text_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_TEXT_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4TForTextToText`."
"It doesn't use the text-to-unit model `SeamlessM4TTextToUnitForConditionalGeneration`."
"If you want to generate speech, use the `.generate` method."
)
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_ids, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The speech-to-speech SeamlessM4T Model transformer which can be used for S2ST.",
SEAMLESS_M4T_START_DOCSTRING,
)
class SeamlessM4TForSpeechToSpeech(SeamlessM4TPreTrainedModel):
_keys_to_ignore_on_load_missing = ["text_encoder"]
main_input_name = "input_features"
_tied_weights_keys = [
"lm_head.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def get_encoder(self):
return self.speech_encoder
def get_decoder(self):
return self.text_decoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_decoder.embed_tokens = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_SPEECH_INPUTS_DOCSTRING)
def forward(
self,
input_features: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This is the same forward method as `SeamlessM4TForSpeechToText`. It doesn't use `self.t2u_model`."
"If you want to generate speech, use the `generate` method."
)
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_features, num_beams=4, speech_do_sample=True)` will successively perform
beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor]]`:
- If `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If not `return_intermediate_token_ids`, returns a tuple composed of waveforms of shape `(batch_size,
sequence_length)`and and `waveform_lengths` which gives the length of each sample.
"""
batch_size = len(input_features) if input_features is not None else len(kwargs.get("inputs_embeds"))
if tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
else:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
text_generation_output = super().generate(input_features, **kwargs_text)
sequences = text_generation_output.sequences
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get last_hidden_state from encoder
encoder_hidden_states = self.speech_encoder(input_features=input_features, attention_mask=attention_mask)[0]
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
@add_start_docstrings(
"The original SeamlessM4T Model transformer which can be used for every tasks available (S2ST, S2TT, T2TT, T2ST).",
SEAMLESS_M4T_START_DOCSTRING,
"""
current_modality (`str`, *optional*, defaults to `"text"`):
Default modality. Used to initialize the model.
""",
)
class SeamlessM4TModel(SeamlessM4TPreTrainedModel):
_tied_weights_keys = [
"lm_head.weight",
"text_encoder.embed_tokens.weight",
"text_decoder.embed_tokens.weight",
]
def __init__(self, config, current_modality="text"):
super().__init__(config)
self.shared = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
self.text_encoder = SeamlessM4TEncoder(config, self.shared)
self.speech_encoder = SeamlessM4TSpeechEncoder(config)
self.text_decoder = SeamlessM4TDecoder(config, self.shared)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
self.current_modality = current_modality
if current_modality == "speech":
self.main_input_name = "input_features"
# these models already call post_init in their initialization
self.t2u_model = SeamlessM4TTextToUnitForConditionalGeneration(config)
self.vocoder = SeamlessM4TCodeHifiGan(config)
def set_modality(self, modality="text"):
if modality == "text":
self.main_input_name = "input_ids"
self.current_modality = "text"
elif modality == "speech":
self.main_input_name = "input_features"
self.current_modality = "speech"
else:
raise ValueError(f"`modality={modality}` is not a valid modality. It must be `text` or `speech`.")
def get_encoder(self):
if self.current_modality == "text":
return self.text_encoder
else:
return self.speech_encoder
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def get_input_embeddings(self):
return self.text_decoder.embed_tokens
def set_input_embeddings(self, value):
self.text_encoder.embed_tokens = value
self.text_decoder.embed_tokens = value
self.shared = value
def _tie_weights(self):
if self.config.tie_word_embeddings:
self._tie_or_clone_weights(self.text_encoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.text_decoder.embed_tokens, self.shared)
self._tie_or_clone_weights(self.lm_head, self.shared)
@add_start_docstrings_to_model_forward(M4T_MODEL_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
input_features: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
decoder_input_ids: Optional[torch.LongTensor] = None,
decoder_attention_mask: Optional[torch.LongTensor] = None,
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
**kwargs,
) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None:
if use_cache:
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
use_cache = False
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
labels, self.config.pad_token_id, self.config.decoder_start_token_id
)
if input_ids is None and input_features is None and inputs_embeds is None and encoder_outputs is None:
raise ValueError(
"`input_ids`,`input_features`, `inputs_embeds` and `encoder_outputs` are all empty. Make sure at least one of them is not."
)
elif input_features is not None:
if input_ids is not None:
logger.warning(
"`input_ids` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through the `speech_encoder`. "
"Make sure that `input_features` and `input_ids` are mutually exclusive."
)
if inputs_embeds is not None:
logger.warning(
"`inputs_embeds` is not `None` but `input_features` has been given."
"`input_features` will be used in priority through `speech_encoder`. "
"`inputs_embeds` will be ignored."
)
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("speech")
encoder_outputs = self.speech_encoder(
input_features=input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif input_ids is not None or inputs_embeds is not None:
# if encoder_outputs is not None, it's probably used within a .generate method so no need to warn
logger.warning(
"This calls the same method `forward` as `SeamlessM4TForTextToText` and `SeamlessM4TForSpeechToText`"
"depending on the input modality. If you want to generate speech, use the `generate` method."
)
self.set_modality("text")
encoder_outputs = self.text_encoder(
input_ids=input_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
encoder_attention_mask = attention_mask
# input modality = speech so new attention mask
if self.current_modality == "speech" and attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_outputs[0].device
)
encoder_attention_mask = _compute_new_attention_mask(
hidden_states=encoder_outputs[0], seq_lens=sub_sampled_lengths
)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.text_decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
lm_logits = self.lm_head(decoder_outputs[0])
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(lm_logits.device)
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
outputs = decoder_outputs + encoder_outputs
output = (lm_logits,) + outputs[1:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return Seq2SeqLMOutput(
loss=masked_lm_loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
@torch.no_grad()
def generate(
self,
input_ids: Optional[torch.Tensor] = None,
input_features: Optional[torch.Tensor] = None,
return_intermediate_token_ids: Optional[bool] = None,
tgt_lang: Optional[str] = None,
spkr_id: Optional[int] = 0,
generate_speech: Optional[bool] = True,
**kwargs,
) -> Union[torch.Tensor, SeamlessM4TGenerationOutput]:
"""
Generates translated token ids and/or translated audio waveforms.
<Tip>
This method successively calls the `.generate` function of two different sub-models. You can specify keyword
arguments at two different levels: general arguments that will be passed to both models, or prefixed arguments
that will be passed to one of them.
For example, calling `.generate(input_ids=input_ids, num_beams=4, speech_do_sample=True)` will successively
perform beam-search decoding on the text model, and multinomial beam-search sampling on the speech model.
For an overview of generation strategies and code examples, check out the [following
guide](./generation_strategies).
</Tip>
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`SeamlessM4TTokenizer`] or [`SeamlessM4TProcessor`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length, num_banks)`, *optional*):
Input audio features. This should be returnes by the [`SeamlessM4TFeatureExtractor`] class or the
[`SeamlessM4TProcessor`] class. See [`SeamlessM4TFeatureExtractor.__call__`] for details.
return_intermediate_token_ids (`bool`, *optional*):
If `True`, also returns the intermediate generated text and unit tokens. Set to `True` if you also want
to get translated text alongside the audio. Note that if `generate_speech=True`, this parameter will be
ignored.
tgt_lang (`str`, *optional*):
The language to use as target language for translation.
spkr_id (`int`, *optional*, defaults to 0):
The id of the speaker used for speech synthesis. Must be lower than `config.vocoder_num_spkrs`.
generate_speech (`bool`, *optional*, defaults to `True`):
If `False`, will only returns the text tokens and won't generate speech.
kwargs (*optional*):
Remaining dictionary of keyword arguments that will be passed to [`GenerationMixin.generate`]. Keyword
arguments are of two types:
- Without a prefix, they will be entered as `**kwargs` for the `generate` method of each sub-model,
except for `decoder_input_ids` which will only be passed through the text components.
- With a *text_* or *speech_* prefix, they will be input for the `generate` method of the
text model and speech model respectively. It has the priority over the keywords without a prefix.
This means you can, for example, specify a generation strategy for one generation but not for the
other.
Returns:
`Union[SeamlessM4TGenerationOutput, Tuple[Tensor], ModelOutput]`:
- If `generate_speech` and `return_intermediate_token_ids`, returns [`SeamlessM4TGenerationOutput`].
- If `generate_speech` and not `return_intermediate_token_ids`, returns a tuple composed of waveforms of
shape `(batch_size, sequence_length)`and and `waveform_lengths` which gives the length of each sample.
- If `generate_speech=False`, it will returns `ModelOutput`.
"""
if input_ids is None and input_features is None and kwargs.get("inputs_embeds", None) is None:
raise ValueError(
"`input_ids`,`input_features` and `inputs_embeds` are all empty. Make sure at least one of them is not."
)
if generate_speech and tgt_lang is None:
raise ValueError("You must specify a `tgt_lang` to generate translated speech.")
if tgt_lang is not None:
# also accept __xxx__
tgt_lang = tgt_lang.replace("__", "")
for key in ["text_decoder_lang_to_code_id", "t2u_lang_code_to_id", "vocoder_lang_code_to_id"]:
lang_code_to_id = getattr(self.generation_config, key, None)
if lang_code_to_id is None:
raise ValueError(
f"""This model generation config doesn't have a `{key}` key which maps the target language
to the right token id. Make sure to load the right generation config."""
)
elif tgt_lang not in lang_code_to_id:
raise ValueError(
f"""`tgt_lang={tgt_lang}` is not supported by this model.
Please specify a `tgt_lang` in {','.join(lang_code_to_id.keys())}. Note that SeamlessM4T supports
more languages for text translation than for speech synthesis."""
)
batch_size = (
len(input_features)
if input_features is not None
else (len(input_ids) if input_ids is not None else len(kwargs.get("inputs_embeds")))
)
kwargs_text, kwargs_speech = format_speech_generation_kwargs(kwargs)
kwargs_text["output_hidden_states"] = True
kwargs_text["return_dict_in_generate"] = True
kwargs_text["output_scores"] = True
text_decoder_input_ids = kwargs_text.get("decoder_input_ids")
# overwrite text_decoder_input_ids if tgt_lang is passed. The latter gets priority over decoder_input_ids.
if tgt_lang is not None:
# tgt_lang gets priority over decoder input ids
text_tgt_lang_id = self.generation_config.text_decoder_lang_to_code_id.get(tgt_lang)
text_decoder_input_ids = torch.tensor([[text_tgt_lang_id]] * batch_size).to(self.device)
kwargs_text["decoder_input_ids"] = text_decoder_input_ids
# first generation
if input_features is not None:
self.set_modality("speech")
if input_ids is not None:
logger.warning(
"`input_features` and `input_ids` are both non empty. `input_features` will be used in priority "
"through the speech encoder. Make sure `input_features=None` if you want to use the text encoder."
)
text_generation_output = super().generate(input_features=input_features, **kwargs_text)
else:
self.set_modality("text")
text_generation_output = super().generate(input_ids=input_ids, input_features=None, **kwargs_text)
sequences = text_generation_output.sequences
if not generate_speech:
return text_generation_output
# prepare second generation
num_return_sequences = len(sequences) // batch_size
attention_mask = kwargs_speech.get("attention_mask", kwargs_text.get("attention_mask", None))
# get encoder last hidden states
if self.current_modality == "speech":
# get last_hidden_state from encoder - must do a pass through the speech encoder
encoder_hidden_states = self.speech_encoder(
input_features=input_features, attention_mask=attention_mask
).last_hidden_state
# input modality = speech so new attention mask for the decoder
if attention_mask is not None:
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(attention_mask).to(
encoder_hidden_states.device
)
attention_mask = _compute_new_attention_mask(
hidden_states=encoder_hidden_states, seq_lens=sub_sampled_lengths
)
else:
encoder_hidden_states = text_generation_output.encoder_hidden_states[-1]
# take care of num_return_sequences
# take most probable hidden states per batch of return_sequences
# (batch_size*num_return_sequences, ...) -> (batch_size,...)
if num_return_sequences > 1:
idx_most_probable_sequences_per_batch = text_generation_output.sequences_scores.view(batch_size, -1)
idx_most_probable_sequences_per_batch = idx_most_probable_sequences_per_batch.argmax(-1)
idx_most_probable_sequences_per_batch = (
idx_most_probable_sequences_per_batch + torch.arange(batch_size).to(self.device) * num_return_sequences
)
sequences = sequences[idx_most_probable_sequences_per_batch]
# get decoder last hidden state - must do a pass through the text decoder
t2u_input_embeds = self.text_decoder(
input_ids=sequences,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=attention_mask,
).last_hidden_state
pad_token_id = self.generation_config.pad_token_id
# Compute new attention mask
seq_lens = (sequences != pad_token_id).int().sum(1)
t2u_model_attention_mask = _compute_new_attention_mask(t2u_input_embeds, seq_lens)
kwargs_speech["attention_mask"] = t2u_model_attention_mask
# Compute t2u decoder_input_ids
t2u_decoder_input_ids = kwargs_speech.get("decoder_input_ids")
t2u_tgt_lang_id = self.generation_config.t2u_lang_code_to_id.get(tgt_lang)
t2u_decoder_input_ids = torch.tensor([[self.config.t2u_eos_token_id, t2u_tgt_lang_id]] * batch_size).to(
self.device
)
kwargs_speech["decoder_input_ids"] = t2u_decoder_input_ids
# second generation
unit_ids = self.t2u_model.generate(inputs_embeds=t2u_input_embeds, **kwargs_speech)
output_unit_ids = unit_ids.detach().clone()
# get rid of t2u_decoder_input_ids
unit_ids = unit_ids[:, kwargs_speech["decoder_input_ids"].shape[1] :]
# replace eos per pad
unit_ids[unit_ids == self.config.t2u_eos_token_id] = self.config.t2u_pad_token_id
# offset of control symbols
unit_ids = torch.where(
unit_ids == self.config.t2u_pad_token_id, unit_ids, unit_ids - self.config.vocoder_offset
)
vocoder_tgt_lang_id = self.generation_config.vocoder_lang_code_to_id.get(tgt_lang)
vocoder_tgt_lang_id = torch.tensor([[vocoder_tgt_lang_id]] * len(unit_ids)).to(self.device)
spkr_id = torch.tensor([[spkr_id]] * len(unit_ids)).to(self.device)
waveform, waveform_lengths = self.vocoder(input_ids=unit_ids, spkr_id=spkr_id, lang_id=vocoder_tgt_lang_id)
if return_intermediate_token_ids:
return SeamlessM4TGenerationOutput(
waveform=waveform,
waveform_lengths=waveform_lengths,
sequences=sequences,
unit_sequences=output_unit_ids,
)
return waveform, waveform_lengths
@staticmethod
def _reorder_cache(past_key_values, beam_idx):
reordered_past = ()
for layer_past in past_key_values:
# cached cross_attention states don't have to be reordered -> they are always the same
reordered_past += (
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
)
return reordered_past
__all__ = [
"SeamlessM4TForTextToSpeech",
"SeamlessM4TForSpeechToSpeech",
"SeamlessM4TForTextToText",
"SeamlessM4TForSpeechToText",
"SeamlessM4TModel",
"SeamlessM4TPreTrainedModel",
"SeamlessM4TCodeHifiGan",
"SeamlessM4THifiGan",
"SeamlessM4TTextToUnitForConditionalGeneration",
"SeamlessM4TTextToUnitModel",
]
| transformers/src/transformers/models/seamless_m4t/modeling_seamless_m4t.py/0 | {
"file_path": "transformers/src/transformers/models/seamless_m4t/modeling_seamless_m4t.py",
"repo_id": "transformers",
"token_count": 88197
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""SegGpt model configuration"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class SegGptConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`SegGptModel`]. It is used to instantiate a SegGPT
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the SegGPT
[BAAI/seggpt-vit-large](https://huggingface.co/BAAI/seggpt-vit-large) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1024):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
image_size (`List[int]`, *optional*, defaults to `[896, 448]`):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 16):
The size (resolution) of each patch.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries, keys and values.
mlp_dim (`int`, *optional*):
The dimensionality of the MLP layer in the Transformer encoder. If unset, defaults to
`hidden_size` * 4.
drop_path_rate (`float`, *optional*, defaults to 0.1):
The drop path rate for the dropout layers.
pretrain_image_size (`int`, *optional*, defaults to 224):
The pretrained size of the absolute position embeddings.
decoder_hidden_size (`int`, *optional*, defaults to 64):
Hidden size for decoder.
use_relative_position_embeddings (`bool`, *optional*, defaults to `True`):
Whether to use relative position embeddings in the attention layers.
merge_index (`int`, *optional*, defaults to 2):
The index of the encoder layer to merge the embeddings.
intermediate_hidden_state_indices (`List[int]`, *optional*, defaults to `[5, 11, 17, 23]`):
The indices of the encoder layers which we store as features for the decoder.
beta (`float`, *optional*, defaults to 0.01):
Regularization factor for SegGptLoss (smooth-l1 loss).
Example:
```python
>>> from transformers import SegGptConfig, SegGptModel
>>> # Initializing a SegGPT seggpt-vit-large style configuration
>>> configuration = SegGptConfig()
>>> # Initializing a model (with random weights) from the seggpt-vit-large style configuration
>>> model = SegGptModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "seggpt"
def __init__(
self,
hidden_size=1024,
num_hidden_layers=24,
num_attention_heads=16,
hidden_act="gelu",
hidden_dropout_prob=0.0,
initializer_range=0.02,
layer_norm_eps=1e-6,
image_size=[896, 448],
patch_size=16,
num_channels=3,
qkv_bias=True,
mlp_dim=None,
drop_path_rate=0.1,
pretrain_image_size=224,
decoder_hidden_size=64,
use_relative_position_embeddings=True,
merge_index=2,
intermediate_hidden_state_indices=[5, 11, 17, 23],
beta=0.01,
**kwargs,
):
super().__init__(**kwargs)
if merge_index > min(intermediate_hidden_state_indices):
raise ValueError(
f"Merge index must be less than the minimum encoder output index, but got {merge_index=} and {intermediate_hidden_state_indices=}"
)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.qkv_bias = qkv_bias
self.drop_path_rate = drop_path_rate
self.pretrain_image_size = pretrain_image_size
self.decoder_hidden_size = decoder_hidden_size
self.use_relative_position_embeddings = use_relative_position_embeddings
self.merge_index = merge_index
self.intermediate_hidden_state_indices = intermediate_hidden_state_indices
self.beta = beta
self.mlp_dim = int(hidden_size * 4) if mlp_dim is None else mlp_dim
__all__ = ["SegGptConfig"]
| transformers/src/transformers/models/seggpt/configuration_seggpt.py/0 | {
"file_path": "transformers/src/transformers/models/seggpt/configuration_seggpt.py",
"repo_id": "transformers",
"token_count": 2496
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Fast Image processor class for SigLIP."""
from ...image_processing_utils_fast import BASE_IMAGE_PROCESSOR_FAST_DOCSTRING, BaseImageProcessorFast
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
PILImageResampling,
)
from ...utils import add_start_docstrings
@add_start_docstrings(
"Constructs a fast SigLIP image processor.",
BASE_IMAGE_PROCESSOR_FAST_DOCSTRING,
)
class SiglipImageProcessorFast(BaseImageProcessorFast):
resample = PILImageResampling.BICUBIC
image_mean = IMAGENET_STANDARD_MEAN
image_std = IMAGENET_STANDARD_STD
size = {"height": 224, "width": 224}
default_to_square = False
do_resize = True
do_rescale = True
do_normalize = True
__all__ = ["SiglipImageProcessorFast"]
| transformers/src/transformers/models/siglip/image_processing_siglip_fast.py/0 | {
"file_path": "transformers/src/transformers/models/siglip/image_processing_siglip_fast.py",
"repo_id": "transformers",
"token_count": 464
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Speech processor class for Speech2Text
"""
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class Speech2TextProcessor(ProcessorMixin):
r"""
Constructs a Speech2Text processor which wraps a Speech2Text feature extractor and a Speech2Text tokenizer into a
single processor.
[`Speech2TextProcessor`] offers all the functionalities of [`Speech2TextFeatureExtractor`] and
[`Speech2TextTokenizer`]. See the [`~Speech2TextProcessor.__call__`] and [`~Speech2TextProcessor.decode`] for more
information.
Args:
feature_extractor (`Speech2TextFeatureExtractor`):
An instance of [`Speech2TextFeatureExtractor`]. The feature extractor is a required input.
tokenizer (`Speech2TextTokenizer`):
An instance of [`Speech2TextTokenizer`]. The tokenizer is a required input.
"""
feature_extractor_class = "Speech2TextFeatureExtractor"
tokenizer_class = "Speech2TextTokenizer"
def __init__(self, feature_extractor, tokenizer):
super().__init__(feature_extractor, tokenizer)
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
def __call__(self, *args, **kwargs):
"""
When used in normal mode, this method forwards all its arguments to Speech2TextFeatureExtractor's
[`~Speech2TextFeatureExtractor.__call__`] and returns its output. If used in the context
[`~Speech2TextProcessor.as_target_processor`] this method forwards all its arguments to Speech2TextTokenizer's
[`~Speech2TextTokenizer.__call__`]. Please refer to the doctsring of the above two methods for more
information.
"""
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*args, **kwargs)
if "raw_speech" in kwargs:
warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.")
audio = kwargs.pop("raw_speech")
else:
audio = kwargs.pop("audio", None)
sampling_rate = kwargs.pop("sampling_rate", None)
text = kwargs.pop("text", None)
if len(args) > 0:
audio = args[0]
args = args[1:]
if audio is None and text is None:
raise ValueError("You need to specify either an `audio` or `text` input to process.")
if audio is not None:
inputs = self.feature_extractor(audio, *args, sampling_rate=sampling_rate, **kwargs)
if text is not None:
encodings = self.tokenizer(text, **kwargs)
if text is None:
return inputs
elif audio is None:
return encodings
else:
inputs["labels"] = encodings["input_ids"]
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, **kwargs)
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Speech2TextTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer
to the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, **kwargs)
@contextmanager
def as_target_processor(self):
"""
Temporarily sets the tokenizer for processing the input. Useful for encoding the labels when fine-tuning
Speech2Text.
"""
warnings.warn(
"`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your "
"labels by using the argument `text` of the regular `__call__` method (either in the same call as "
"your audio inputs, or in a separate call."
)
self._in_target_context_manager = True
self.current_processor = self.tokenizer
yield
self.current_processor = self.feature_extractor
self._in_target_context_manager = False
__all__ = ["Speech2TextProcessor"]
| transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py/0 | {
"file_path": "transformers/src/transformers/models/speech_to_text/processing_speech_to_text.py",
"repo_id": "transformers",
"token_count": 1807
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch SuperGlue model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
from torch import nn
from transformers import PreTrainedModel, add_start_docstrings
from transformers.models.superglue.configuration_superglue import SuperGlueConfig
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import ModelOutput, add_start_docstrings_to_model_forward, logging
from ..auto import AutoModelForKeypointDetection
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC_ = "SuperGlueConfig"
_CHECKPOINT_FOR_DOC_ = "magic-leap-community/superglue_indoor"
def concat_pairs(tensor_tuple0: Tuple[torch.Tensor], tensor_tuple1: Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:
"""
Concatenate two tuples of tensors pairwise
Args:
tensor_tuple0 (`Tuple[torch.Tensor]`):
Tuple of tensors.
tensor_tuple1 (`Tuple[torch.Tensor]`):
Tuple of tensors.
Returns:
(`Tuple[torch.Tensor]`): Tuple of concatenated tensors.
"""
return tuple([torch.cat([tensor0, tensor1]) for tensor0, tensor1 in zip(tensor_tuple0, tensor_tuple1)])
def normalize_keypoints(keypoints: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
Normalize keypoints locations based on image image_shape
Args:
keypoints (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`):
Keypoints locations in (x, y) format.
height (`int`):
Image height.
width (`int`):
Image width.
Returns:
Normalized keypoints locations of shape (`torch.Tensor` of shape `(batch_size, num_keypoints, 2)`).
"""
size = torch.tensor([width, height], device=keypoints.device, dtype=keypoints.dtype)[None]
center = size / 2
scaling = size.max(1, keepdim=True).values * 0.7
return (keypoints - center[:, None, :]) / scaling[:, None, :]
def log_sinkhorn_iterations(
log_cost_matrix: torch.Tensor,
log_source_distribution: torch.Tensor,
log_target_distribution: torch.Tensor,
num_iterations: int,
) -> torch.Tensor:
"""
Perform Sinkhorn Normalization in Log-space for stability
Args:
log_cost_matrix (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`):
Logarithm of the cost matrix.
log_source_distribution (`torch.Tensor` of shape `(batch_size, num_rows)`):
Logarithm of the source distribution.
log_target_distribution (`torch.Tensor` of shape `(batch_size, num_columns)`):
Logarithm of the target distribution.
Returns:
log_cost_matrix (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Logarithm of the optimal
transport matrix.
"""
log_u_scaling = torch.zeros_like(log_source_distribution)
log_v_scaling = torch.zeros_like(log_target_distribution)
for _ in range(num_iterations):
log_u_scaling = log_source_distribution - torch.logsumexp(log_cost_matrix + log_v_scaling.unsqueeze(1), dim=2)
log_v_scaling = log_target_distribution - torch.logsumexp(log_cost_matrix + log_u_scaling.unsqueeze(2), dim=1)
return log_cost_matrix + log_u_scaling.unsqueeze(2) + log_v_scaling.unsqueeze(1)
def log_optimal_transport(scores: torch.Tensor, reg_param: torch.Tensor, iterations: int) -> torch.Tensor:
"""
Perform Differentiable Optimal Transport in Log-space for stability
Args:
scores: (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`):
Cost matrix.
reg_param: (`torch.Tensor` of shape `(batch_size, 1, 1)`):
Regularization parameter.
iterations: (`int`):
Number of Sinkhorn iterations.
Returns:
log_optimal_transport_matrix: (`torch.Tensor` of shape `(batch_size, num_rows, num_columns)`): Logarithm of the
optimal transport matrix.
"""
batch_size, num_rows, num_columns = scores.shape
one_tensor = scores.new_tensor(1)
num_rows_tensor, num_columns_tensor = (num_rows * one_tensor).to(scores), (num_columns * one_tensor).to(scores)
source_reg_param = reg_param.expand(batch_size, num_rows, 1)
target_reg_param = reg_param.expand(batch_size, 1, num_columns)
reg_param = reg_param.expand(batch_size, 1, 1)
couplings = torch.cat([torch.cat([scores, source_reg_param], -1), torch.cat([target_reg_param, reg_param], -1)], 1)
log_normalization = -(num_rows_tensor + num_columns_tensor).log()
log_source_distribution = torch.cat(
[log_normalization.expand(num_rows), num_columns_tensor.log()[None] + log_normalization]
)
log_target_distribution = torch.cat(
[log_normalization.expand(num_columns), num_rows_tensor.log()[None] + log_normalization]
)
log_source_distribution, log_target_distribution = (
log_source_distribution[None].expand(batch_size, -1),
log_target_distribution[None].expand(batch_size, -1),
)
log_optimal_transport_matrix = log_sinkhorn_iterations(
couplings, log_source_distribution, log_target_distribution, num_iterations=iterations
)
log_optimal_transport_matrix = log_optimal_transport_matrix - log_normalization # multiply probabilities by M+N
return log_optimal_transport_matrix
def arange_like(x, dim: int) -> torch.Tensor:
return x.new_ones(x.shape[dim]).cumsum(0) - 1
@dataclass
class KeypointMatchingOutput(ModelOutput):
"""
Base class for outputs of keypoint matching models. Due to the nature of keypoint detection and matching, the number
of keypoints is not fixed and can vary from image to image, which makes batching non-trivial. In the batch of
images, the maximum number of matches is set as the dimension of the matches and matching scores. The mask tensor is
used to indicate which values in the keypoints, matches and matching_scores tensors are keypoint matching
information.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*):
Loss computed during training.
mask (`torch.IntTensor` of shape `(batch_size, num_keypoints)`):
Mask indicating which values in matches and matching_scores are keypoint matching information.
matches (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`):
Index of keypoint matched in the other image.
matching_scores (`torch.FloatTensor` of shape `(batch_size, 2, num_matches)`):
Scores of predicted matches.
keypoints (`torch.FloatTensor` of shape `(batch_size, num_keypoints, 2)`):
Absolute (x, y) coordinates of predicted keypoints in a given image.
hidden_states (`Tuple[torch.FloatTensor, ...]`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(batch_size, 2, num_channels,
num_keypoints)`, returned when `output_hidden_states=True` is passed or when
`config.output_hidden_states=True`)
attentions (`Tuple[torch.FloatTensor, ...]`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, 2, num_heads, num_keypoints,
num_keypoints)`, returned when `output_attentions=True` is passed or when `config.output_attentions=True`)
"""
loss: Optional[torch.FloatTensor] = None
matches: Optional[torch.FloatTensor] = None
matching_scores: Optional[torch.FloatTensor] = None
keypoints: Optional[torch.FloatTensor] = None
mask: Optional[torch.IntTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class SuperGlueMultiLayerPerceptron(nn.Module):
def __init__(self, config: SuperGlueConfig, in_channels: int, out_channels: int) -> None:
super().__init__()
self.linear = nn.Linear(in_channels, out_channels)
self.batch_norm = nn.BatchNorm1d(out_channels)
self.activation = nn.ReLU()
def forward(self, hidden_state: torch.Tensor) -> torch.Tensor:
hidden_state = self.linear(hidden_state)
hidden_state = hidden_state.transpose(-1, -2)
hidden_state = self.batch_norm(hidden_state)
hidden_state = hidden_state.transpose(-1, -2)
hidden_state = self.activation(hidden_state)
return hidden_state
class SuperGlueKeypointEncoder(nn.Module):
def __init__(self, config: SuperGlueConfig) -> None:
super().__init__()
layer_sizes = config.keypoint_encoder_sizes
hidden_size = config.hidden_size
# 3 here consists of 2 for the (x, y) coordinates and 1 for the score of the keypoint
encoder_channels = [3] + layer_sizes + [hidden_size]
layers = [
SuperGlueMultiLayerPerceptron(config, encoder_channels[i - 1], encoder_channels[i])
for i in range(1, len(encoder_channels) - 1)
]
layers.append(nn.Linear(encoder_channels[-2], encoder_channels[-1]))
self.encoder = nn.ModuleList(layers)
def forward(
self,
keypoints: torch.Tensor,
scores: torch.Tensor,
output_hidden_states: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
scores = scores.unsqueeze(2)
hidden_state = torch.cat([keypoints, scores], dim=2)
all_hidden_states = () if output_hidden_states else None
for layer in self.encoder:
hidden_state = layer(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
return hidden_state, all_hidden_states
# Copied from transformers.models.bert.modeling_bert.BertSelfAttention with Bert->SuperGlue
class SuperGlueSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
use_cache = past_key_value is not None
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
query_length, key_length = query_layer.shape[2], key_layer.shape[2]
if use_cache:
position_ids_l = torch.tensor(key_length - 1, dtype=torch.long, device=hidden_states.device).view(
-1, 1
)
else:
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in SuperGlueModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class SuperGlueSelfOutput(nn.Module):
def __init__(self, config: SuperGlueConfig):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, *args) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
return hidden_states
SUPERGLUE_SELF_ATTENTION_CLASSES = {
"eager": SuperGlueSelfAttention,
}
# Copied from transformers.models.bert.modeling_bert.BertAttention with Bert->SuperGlue,BERT->SUPERGLUE
class SuperGlueAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
self.self = SUPERGLUE_SELF_ATTENTION_CLASSES[config._attn_implementation](
config, position_embedding_type=position_embedding_type
)
self.output = SuperGlueSelfOutput(config)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class SuperGlueAttentionalPropagation(nn.Module):
def __init__(self, config: SuperGlueConfig) -> None:
super().__init__()
hidden_size = config.hidden_size
self.attention = SuperGlueAttention(config)
mlp_channels = [hidden_size * 2, hidden_size * 2, hidden_size]
layers = [
SuperGlueMultiLayerPerceptron(config, mlp_channels[i - 1], mlp_channels[i])
for i in range(1, len(mlp_channels) - 1)
]
layers.append(nn.Linear(mlp_channels[-2], mlp_channels[-1]))
self.mlp = nn.ModuleList(layers)
def forward(
self,
descriptors: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]], Optional[Tuple[torch.Tensor]]]:
attention_outputs = self.attention(
descriptors,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
output = attention_outputs[0]
attention = attention_outputs[1:]
hidden_state = torch.cat([descriptors, output], dim=2)
all_hidden_states = () if output_hidden_states else None
for layer in self.mlp:
hidden_state = layer(hidden_state)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_state,)
return hidden_state, all_hidden_states, attention
class SuperGlueAttentionalGNN(nn.Module):
def __init__(self, config: SuperGlueConfig) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.layers_types = config.gnn_layers_types
self.layers = nn.ModuleList([SuperGlueAttentionalPropagation(config) for _ in range(len(self.layers_types))])
def forward(
self,
descriptors: torch.Tensor,
mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: Optional[bool] = False,
) -> Tuple[torch.Tensor, Optional[Tuple], Optional[Tuple]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
batch_size, num_keypoints, _ = descriptors.shape
if output_hidden_states:
all_hidden_states = all_hidden_states + (descriptors,)
for gnn_layer, layer_type in zip(self.layers, self.layers_types):
encoder_hidden_states = None
encoder_attention_mask = None
if layer_type == "cross":
encoder_hidden_states = (
descriptors.reshape(-1, 2, num_keypoints, self.hidden_size)
.flip(1)
.reshape(batch_size, num_keypoints, self.hidden_size)
)
encoder_attention_mask = (
mask.reshape(-1, 2, 1, 1, num_keypoints).flip(1).reshape(batch_size, 1, 1, num_keypoints)
if mask is not None
else None
)
gnn_outputs = gnn_layer(
descriptors,
attention_mask=mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
delta = gnn_outputs[0]
if output_hidden_states:
all_hidden_states = all_hidden_states + gnn_outputs[1]
if output_attentions:
all_attentions = all_attentions + gnn_outputs[2]
descriptors = descriptors + delta
return descriptors, all_hidden_states, all_attentions
class SuperGlueFinalProjection(nn.Module):
def __init__(self, config: SuperGlueConfig) -> None:
super().__init__()
hidden_size = config.hidden_size
self.final_proj = nn.Linear(hidden_size, hidden_size, bias=True)
def forward(self, descriptors: torch.Tensor) -> torch.Tensor:
return self.final_proj(descriptors)
class SuperGluePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SuperGlueConfig
base_model_prefix = "superglue"
main_input_name = "pixel_values"
def _init_weights(self, module: nn.Module) -> None:
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.Conv1d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, SuperGlueMultiLayerPerceptron):
nn.init.constant_(module.linear.bias, 0.0)
SUPERGLUE_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SuperGlueConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SUPERGLUE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`SuperGlueImageProcessor`]. See
[`SuperGlueImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors. See `attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"SuperGlue model taking images as inputs and outputting the matching of them.",
SUPERGLUE_START_DOCSTRING,
)
class SuperGlueForKeypointMatching(SuperGluePreTrainedModel):
"""SuperGlue feature matching middle-end
Given two sets of keypoints and locations, we determine the
correspondences by:
1. Keypoint Encoding (normalization + visual feature and location fusion)
2. Graph Neural Network with multiple self and cross-attention layers
3. Final projection layer
4. Optimal Transport Layer (a differentiable Hungarian matching algorithm)
5. Thresholding matrix based on mutual exclusivity and a match_threshold
The correspondence ids use -1 to indicate non-matching points.
Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew
Rabinovich. SuperGlue: Learning Feature Matching with Graph Neural
Networks. In CVPR, 2020. https://arxiv.org/abs/1911.11763
"""
def __init__(self, config: SuperGlueConfig) -> None:
super().__init__(config)
self.keypoint_detector = AutoModelForKeypointDetection.from_config(config.keypoint_detector_config)
self.keypoint_encoder = SuperGlueKeypointEncoder(config)
self.gnn = SuperGlueAttentionalGNN(config)
self.final_projection = SuperGlueFinalProjection(config)
bin_score = torch.nn.Parameter(torch.tensor(1.0))
self.register_parameter("bin_score", bin_score)
self.post_init()
def _match_image_pair(
self,
keypoints: torch.Tensor,
descriptors: torch.Tensor,
scores: torch.Tensor,
height: int,
width: int,
mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Tuple, Tuple]:
"""
Perform keypoint matching between two images.
Args:
keypoints (`torch.Tensor` of shape `(batch_size, 2, num_keypoints, 2)`):
Keypoints detected in the pair of image.
descriptors (`torch.Tensor` of shape `(batch_size, 2, descriptor_dim, num_keypoints)`):
Descriptors of the keypoints detected in the image pair.
scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`):
Confidence scores of the keypoints detected in the image pair.
height (`int`): Image height.
width (`int`): Image width.
mask (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`, *optional*):
Mask indicating which values in the keypoints, matches and matching_scores tensors are keypoint matching
information.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors. Default to `config.output_attentions`.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. Default to `config.output_hidden_states`.
Returns:
matches (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`):
For each image pair, for each keypoint in image0, the index of the keypoint in image1 that was matched
with. And for each keypoint in image1, the index of the keypoint in image0 that was matched with.
matching_scores (`torch.Tensor` of shape `(batch_size, 2, num_keypoints)`):
Scores of predicted matches for each image pair
all_hidden_states (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for the output of each stage) of shape `(1, 2, num_keypoints,
num_channels)`.
all_attentions (`tuple(torch.FloatTensor)`, *optional*):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(1, 2, num_heads, num_keypoints,
num_keypoints)`.
"""
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
if keypoints.shape[2] == 0: # no keypoints
shape = keypoints.shape[:-1]
return (
keypoints.new_full(shape, -1, dtype=torch.int),
keypoints.new_zeros(shape),
all_hidden_states,
all_attentions,
)
batch_size, _, num_keypoints, _ = keypoints.shape
# (batch_size, 2, num_keypoints, 2) -> (batch_size * 2, num_keypoints, 2)
keypoints = keypoints.reshape(batch_size * 2, num_keypoints, 2)
descriptors = descriptors.reshape(batch_size * 2, num_keypoints, self.config.hidden_size)
scores = scores.reshape(batch_size * 2, num_keypoints)
mask = mask.reshape(batch_size * 2, num_keypoints) if mask is not None else None
# Keypoint normalization
keypoints = normalize_keypoints(keypoints, height, width)
encoded_keypoints = self.keypoint_encoder(keypoints, scores, output_hidden_states=output_hidden_states)
last_hidden_state = encoded_keypoints[0]
# Keypoint MLP encoder.
descriptors = descriptors + last_hidden_state
if mask is not None:
input_shape = descriptors.size()
extended_attention_mask = self.get_extended_attention_mask(mask, input_shape)
else:
extended_attention_mask = torch.ones((batch_size, num_keypoints), device=keypoints.device)
# Multi-layer Transformer network.
gnn_outputs = self.gnn(
descriptors,
mask=extended_attention_mask,
output_hidden_states=output_hidden_states,
output_attentions=output_attentions,
)
descriptors = gnn_outputs[0]
# Final MLP projection.
projected_descriptors = self.final_projection(descriptors)
# (batch_size * 2, num_keypoints, descriptor_dim) -> (batch_size, 2, num_keypoints, descriptor_dim)
final_descriptors = projected_descriptors.reshape(batch_size, 2, num_keypoints, self.config.hidden_size)
final_descriptors0 = final_descriptors[:, 0]
final_descriptors1 = final_descriptors[:, 1]
# Compute matching descriptor distance.
scores = final_descriptors0 @ final_descriptors1.transpose(1, 2)
scores = scores / self.config.hidden_size**0.5
if mask is not None:
mask = mask.reshape(batch_size, 2, num_keypoints)
mask0 = mask[:, 0].unsqueeze(-1).expand(-1, -1, num_keypoints)
scores = scores.masked_fill(mask0 == 0, -1e9)
# Run the optimal transport.
scores = log_optimal_transport(scores, self.bin_score, iterations=self.config.sinkhorn_iterations)
# Get the matches with score above "match_threshold".
max0 = scores[:, :-1, :-1].max(2)
max1 = scores[:, :-1, :-1].max(1)
indices0 = max0.indices
indices1 = max1.indices
mutual0 = arange_like(indices0, 1)[None] == indices1.gather(1, indices0)
mutual1 = arange_like(indices1, 1)[None] == indices0.gather(1, indices1)
zero = scores.new_tensor(0)
matching_scores0 = torch.where(mutual0, max0.values.exp(), zero)
matching_scores0 = torch.where(matching_scores0 > self.config.matching_threshold, matching_scores0, zero)
matching_scores1 = torch.where(mutual1, matching_scores0.gather(1, indices1), zero)
valid0 = mutual0 & (matching_scores0 > zero)
valid1 = mutual1 & valid0.gather(1, indices1)
matches0 = torch.where(valid0, indices0, indices0.new_tensor(-1))
matches1 = torch.where(valid1, indices1, indices1.new_tensor(-1))
matches = torch.cat([matches0, matches1]).reshape(batch_size, 2, -1)
matching_scores = torch.cat([matching_scores0, matching_scores1]).reshape(batch_size, 2, -1)
if output_hidden_states:
all_hidden_states = all_hidden_states + encoded_keypoints[1]
all_hidden_states = all_hidden_states + gnn_outputs[1]
all_hidden_states = all_hidden_states + (projected_descriptors,)
all_hidden_states = tuple(
x.reshape(batch_size, 2, num_keypoints, -1).transpose(-1, -2) for x in all_hidden_states
)
if output_attentions:
all_attentions = all_attentions + gnn_outputs[2]
all_attentions = tuple(x.reshape(batch_size, 2, -1, num_keypoints, num_keypoints) for x in all_attentions)
return (
matches,
matching_scores,
all_hidden_states,
all_attentions,
)
@add_start_docstrings_to_model_forward(SUPERGLUE_INPUTS_DOCSTRING)
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, KeypointMatchingOutput]:
"""
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoModel
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_78916675_4568141288.jpg?raw=true"
>>> image1 = Image.open(requests.get(url, stream=True).raw)
>>> url = "https://github.com/magicleap/SuperGluePretrainedNetwork/blob/master/assets/phototourism_sample_images/london_bridge_19481797_2295892421.jpg?raw=true"
>>> image2 = Image.open(requests.get(url, stream=True).raw)
>>> images = [image1, image2]
>>> processor = AutoImageProcessor.from_pretrained("magic-leap-community/superglue_outdoor")
>>> model = AutoModel.from_pretrained("magic-leap-community/superglue_outdoor")
>>> with torch.no_grad():
>>> inputs = processor(images, return_tensors="pt")
>>> outputs = model(**inputs)
```"""
loss = None
if labels is not None:
raise ValueError("SuperGlue is not trainable, no labels should be provided.")
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values.ndim != 5 or pixel_values.size(1) != 2:
raise ValueError("Input must be a 5D tensor of shape (batch_size, 2, num_channels, height, width)")
batch_size, _, channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * 2, channels, height, width)
keypoint_detections = self.keypoint_detector(pixel_values)
keypoints, scores, descriptors, mask = keypoint_detections[:4]
keypoints = keypoints.reshape(batch_size, 2, -1, 2).to(pixel_values)
scores = scores.reshape(batch_size, 2, -1).to(pixel_values)
descriptors = descriptors.reshape(batch_size, 2, -1, self.config.hidden_size).to(pixel_values)
mask = mask.reshape(batch_size, 2, -1)
absolute_keypoints = keypoints.clone()
absolute_keypoints[:, :, :, 0] = absolute_keypoints[:, :, :, 0] * width
absolute_keypoints[:, :, :, 1] = absolute_keypoints[:, :, :, 1] * height
matches, matching_scores, hidden_states, attentions = self._match_image_pair(
absolute_keypoints,
descriptors,
scores,
height,
width,
mask=mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
if not return_dict:
return tuple(
v
for v in [loss, matches, matching_scores, keypoints, mask, hidden_states, attentions]
if v is not None
)
return KeypointMatchingOutput(
loss=loss,
matches=matches,
matching_scores=matching_scores,
keypoints=keypoints,
mask=mask,
hidden_states=hidden_states,
attentions=attentions,
)
__all__ = ["SuperGluePreTrainedModel", "SuperGlueForKeypointMatching"]
| transformers/src/transformers/models/superglue/modeling_superglue.py/0 | {
"file_path": "transformers/src/transformers/models/superglue/modeling_superglue.py",
"repo_id": "transformers",
"token_count": 16690
} |
# coding=utf-8
# Copyright 2022 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TF 2.0 Swin Transformer model."""
from __future__ import annotations
import collections.abc
import math
import warnings
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACT2FN
from ...modeling_tf_utils import (
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_swin import SwinConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "SwinConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "microsoft/swin-tiny-patch4-window7-224"
_EXPECTED_OUTPUT_SHAPE = [1, 49, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "microsoft/swin-tiny-patch4-window7-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# drop_path, TFSwinPatchEmbeddings, TFSwinPatchMerging and TFSwinDropPath are tensorflow
# implementations of PyTorch functionalities in the timm library.
@dataclass
class TFSwinEncoderOutput(ModelOutput):
"""
Swin encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFSwinModelOutput(ModelOutput):
"""
Swin model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`tf.Tensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: tf.Tensor = None
pooler_output: tf.Tensor | None = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@dataclass
class TFSwinMaskedImageModelingOutput(ModelOutput):
"""
Swin masked image model outputs.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `bool_masked_pos` is provided):
Masked image modeling (MLM) loss.
reconstruction (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Reconstructed pixel values.
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: tf.Tensor | None = None
reconstruction: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
@property
def logits(self):
warnings.warn(
"logits attribute is deprecated and will be removed in version 5 of Transformers."
" Please use the reconstruction attribute to retrieve the final output instead.",
FutureWarning,
)
return self.reconstruction
@dataclass
class TFSwinImageClassifierOutput(ModelOutput):
"""
Swin outputs for image classification.
Args:
loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each stage) of shape
`(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: tf.Tensor | None = None
logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor, ...] | None = None
attentions: Tuple[tf.Tensor, ...] | None = None
reshaped_hidden_states: Tuple[tf.Tensor, ...] | None = None
def window_partition(input_feature: tf.Tensor, window_size: int) -> tf.Tensor:
"""
Partitions the given input into windows.
"""
batch_size, height, width, num_channels = shape_list(input_feature)
input_feature = tf.reshape(
input_feature,
(batch_size, height // window_size, window_size, width // window_size, window_size, num_channels),
)
windows = tf.transpose(input_feature, (0, 1, 3, 2, 4, 5))
windows = tf.reshape(windows, (-1, window_size, window_size, num_channels))
return windows
def window_reverse(windows: tf.Tensor, window_size: int, height: int, width: int) -> tf.Tensor:
"""
Merges windows to produce higher resolution features.
"""
x = tf.shape(windows)[0]
y = tf.cast(height * width / (window_size * window_size), tf.int32)
batch_size = tf.math.floordiv(x, y)
windows = tf.reshape(
windows, (batch_size, height // window_size, width // window_size, window_size, window_size, -1)
)
windows = tf.transpose(windows, (0, 1, 3, 2, 4, 5))
windows = tf.reshape(windows, (batch_size, height, width, -1))
return windows
def drop_path(
input: tf.Tensor, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
) -> tf.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
input_shape = shape_list(input)
ndim = len(input_shape)
shape = [input_shape[0]] + [1] * (ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = tf.random.uniform(shape)
random_tensor = tf.where(random_tensor <= keep_prob, 1.0, 0.0)
if keep_prob > 0.0 and scale_by_keep:
random_tensor /= keep_prob
return input * random_tensor
class TFSwinEmbeddings(keras.layers.Layer):
"""
Construct the patch and position embeddings. Optionally, also the mask token.
"""
def __init__(self, config: SwinConfig, use_mask_token: bool = False, **kwargs) -> None:
super().__init__(**kwargs)
self.patch_embeddings = TFSwinPatchEmbeddings(config, name="patch_embeddings")
self.num_patches = self.patch_embeddings.num_patches
self.patch_grid = self.patch_embeddings.grid_size
self.embed_dim = config.embed_dim
self.use_mask_token = use_mask_token
self.use_absolute_embeddings = config.use_absolute_embeddings
self.norm = keras.layers.LayerNormalization(name="norm", epsilon=1e-5)
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
self.config = config
def build(self, input_shape: tf.TensorShape) -> None:
if self.use_mask_token:
self.mask_token = self.add_weight(shape=(1, 1, self.embed_dim), initializer="zeros", name="mask_token")
else:
self.mask_token = None
if self.use_absolute_embeddings:
self.position_embeddings = self.add_weight(
(1, self.num_patches + 1, self.embed_dim), initializer="zeros", name="positional_embeddings"
)
else:
self.position_embeddings = None
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build([None, None, self.config.embed_dim])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
def call(
self, pixel_values: tf.Tensor, bool_masked_pos: bool = None, training: bool = False
) -> Tuple[tf.Tensor, Tuple[int, int]]:
embeddings, output_dimensions = self.patch_embeddings(pixel_values, training=training)
embeddings = self.norm(embeddings, training=training)
batch_size, seq_len, _ = shape_list(embeddings)
if bool_masked_pos is not None:
mask_tokens = tf.repeat(self.mask_token, batch_size, 0)
mask_tokens = tf.repeat(mask_tokens, seq_len, 1)
# replace the masked visual tokens by mask_tokens
mask = tf.expand_dims(bool_masked_pos, -1)
mask = tf.cast(mask, mask_tokens.dtype)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
if self.position_embeddings is not None:
embeddings = embeddings + self.position_embeddings
embeddings = self.dropout(embeddings, training=training)
return embeddings, output_dimensions
class TFSwinPatchEmbeddings(keras.layers.Layer):
"""
Image to Patch Embedding.
"""
def __init__(self, config, **kwargs):
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.grid_size = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.projection = keras.layers.Conv2D(
filters=hidden_size,
kernel_size=self.patch_size,
strides=self.patch_size,
padding="valid",
name="projection",
)
def maybe_pad(self, pixel_values: tf.Tensor, height: int, width: int) -> tf.Tensor:
if width % self.patch_size[1] != 0:
pad_values = ((0, 0), (0, 0), (0, 0), (0, self.patch_size[1] - width % self.patch_size[1]))
pixel_values = tf.pad(pixel_values, pad_values)
if height % self.patch_size[0] != 0:
pad_values = ((0, 0), (0, 0), (0, self.patch_size[0] - height % self.patch_size[0]), (0, 0))
pixel_values = tf.pad(pixel_values, pad_values)
return pixel_values
def call(self, pixel_values: tf.Tensor, training: bool = False) -> Tuple[tf.Tensor, Tuple[int, int]]:
_, num_channels, height, width = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
# pad the input to be divisible by self.patch_size, if needed
pixel_values = self.maybe_pad(pixel_values, height, width)
# B,C,H,W -> B,H,W,C
pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1))
embeddings = self.projection(pixel_values, training=training)
# B,H,W,C -> B,C,H,W
embeddings = tf.transpose(embeddings, (0, 3, 1, 2))
batch_size, channels, height, width = shape_list(embeddings)
output_dimensions = (height, width)
embeddings = tf.reshape(embeddings, (batch_size, channels, -1))
embeddings = tf.transpose(embeddings, (0, 2, 1))
return embeddings, output_dimensions
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
class TFSwinPatchMerging(keras.layers.Layer):
"""
Patch Merging Layer.
Args:
input_resolution (`Tuple[int]`):
Resolution of input feature.
dim (`int`):
Number of input channels.
norm_layer (`keras.layer.Layer`, *optional*, defaults to `keras.layers.LayerNormalization`):
Normalization layer class.
"""
def __init__(
self, input_resolution: Tuple[int, int], dim: int, norm_layer: Optional[Callable] = None, **kwargs
) -> None:
super().__init__(**kwargs)
self.input_resolution = input_resolution
self.dim = dim
self.reduction = keras.layers.Dense(2 * dim, use_bias=False, name="reduction")
if norm_layer is None:
# Use same default epsilon as PyTorch
self.norm = keras.layers.LayerNormalization(epsilon=1e-5, name="norm")
else:
self.norm = norm_layer(name="norm")
def maybe_pad(self, input_feature: tf.Tensor, height: int, width: int) -> tf.Tensor:
should_pad = (height % 2 == 1) or (width % 2 == 1)
if should_pad:
pad_values = ((0, 0), (0, height % 2), (0, width % 2), (0, 0))
input_feature = tf.pad(input_feature, pad_values)
return input_feature
def call(self, input_feature: tf.Tensor, input_dimensions: Tuple[int, int], training: bool = False) -> tf.Tensor:
height, width = input_dimensions
# `dim` is height * width
batch_size, _, num_channels = shape_list(input_feature)
input_feature = tf.reshape(input_feature, (batch_size, height, width, num_channels))
# pad input to be disible by width and height, if needed
input_feature = self.maybe_pad(input_feature, height, width)
# [batch_size, height/2, width/2, num_channels]
input_feature_0 = input_feature[:, 0::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_1 = input_feature[:, 1::2, 0::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_2 = input_feature[:, 0::2, 1::2, :]
# [batch_size, height/2, width/2, num_channels]
input_feature_3 = input_feature[:, 1::2, 1::2, :]
# batch_size height/2 width/2 4*num_channels
input_feature = tf.concat([input_feature_0, input_feature_1, input_feature_2, input_feature_3], -1)
input_feature = tf.reshape(
input_feature, (batch_size, -1, 4 * num_channels)
) # batch_size height/2*width/2 4*C
input_feature = self.norm(input_feature, training=training)
input_feature = self.reduction(input_feature, training=training)
return input_feature
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "reduction", None) is not None:
with tf.name_scope(self.reduction.name):
self.reduction.build([None, None, 4 * self.dim])
if getattr(self, "norm", None) is not None:
with tf.name_scope(self.norm.name):
self.norm.build([None, None, 4 * self.dim])
class TFSwinDropPath(keras.layers.Layer):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: float = None, scale_by_keep: bool = True, **kwargs) -> None:
super(TFSwinDropPath, self).__init__(**kwargs)
self.drop_prob = drop_prob
self.scale_by_keep = scale_by_keep
def call(self, input: tf.Tensor, training: bool = False) -> tf.Tensor:
return drop_path(input, self.drop_prob, training, self.scale_by_keep)
class TFSwinSelfAttention(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None:
super().__init__(**kwargs)
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
window_size = config.window_size
self.window_size = (
window_size if isinstance(window_size, collections.abc.Iterable) else (window_size, window_size)
)
self.query = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="query",
)
self.key = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="key",
)
self.value = keras.layers.Dense(
self.all_head_size,
kernel_initializer=get_initializer(config.initializer_range),
use_bias=config.qkv_bias,
name="value",
)
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob)
def build(self, input_shape: tf.TensorShape) -> None:
self.relative_position_bias_table = self.add_weight(
shape=(((2 * self.window_size[0] - 1) * (2 * self.window_size[1] - 1)), self.num_attention_heads),
initializer="zeros",
name="relative_position_bias_table",
)
self.relative_position_index = self.add_weight(
shape=(self.window_size[0] ** 2, self.window_size[1] ** 2),
trainable=False,
dtype=tf.int32,
name="relative_position_index",
)
# get pair-wise relative position index for each token inside the window
coords_h = tf.range(self.window_size[0])
coords_w = tf.range(self.window_size[1])
coords = tf.stack(tf.meshgrid(coords_h, coords_w, indexing="ij"))
coords_flatten = tf.reshape(coords, (shape_list(coords)[0], -1))
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]
relative_coords = tf.transpose(relative_coords, (1, 2, 0))
stack_0, stack_1 = tf.unstack(relative_coords, axis=2)
stack_0 += self.window_size[0] - 1
stack_0 *= 2 * self.window_size[1] - 1
stack_1 += self.window_size[1] - 1
relative_coords = tf.stack([stack_0, stack_1], axis=2)
self.relative_position_index.assign(tf.cast(tf.reduce_sum(relative_coords, axis=-1), tf.int32))
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.all_head_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.all_head_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.all_head_size])
def transpose_for_scores(self, x: tf.Tensor) -> tf.Tensor:
new_x_shape = shape_list(x)[:-1] + [self.num_attention_heads, self.attention_head_size]
x = tf.reshape(x, new_x_shape)
return tf.transpose(x, (0, 2, 1, 3))
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> Tuple[tf.Tensor, ...]:
batch_size, dim, _ = shape_list(hidden_states)
mixed_query_layer = self.query(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = tf.matmul(query_layer, tf.transpose(key_layer, (0, 1, 3, 2)))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
relative_position_bias = tf.gather(
self.relative_position_bias_table, tf.reshape(self.relative_position_index, (-1,))
)
relative_position_bias = tf.reshape(
relative_position_bias,
(self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1),
)
relative_position_bias = tf.transpose(relative_position_bias, (2, 0, 1))
attention_scores = attention_scores + tf.expand_dims(relative_position_bias, 0)
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in SwinModel call() function)
mask_shape = shape_list(attention_mask)[0]
attention_scores = tf.reshape(
attention_scores, (batch_size // mask_shape, mask_shape, self.num_attention_heads, dim, dim)
)
attention_mask = tf.expand_dims(attention_mask, 1)
attention_mask = tf.expand_dims(attention_mask, 0)
attention_scores = attention_scores + attention_mask
attention_scores = tf.reshape(attention_scores, (-1, self.num_attention_heads, dim, dim))
# Normalize the attention scores to probabilities.
attention_probs = tf.nn.softmax(attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = tf.matmul(attention_probs, value_layer)
context_layer = tf.transpose(context_layer, (0, 2, 1, 3))
new_context_layer_shape = shape_list(context_layer)[:-2] + [
self.all_head_size,
]
context_layer = tf.reshape(context_layer, new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class TFSwinSelfOutput(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(dim, name="dense")
self.dropout = keras.layers.Dropout(config.attention_probs_dropout_prob, name="dropout")
self.dim = dim
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.dim])
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
class TFSwinAttention(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, num_heads: int, **kwargs) -> None:
super().__init__(**kwargs)
self.self = TFSwinSelfAttention(config, dim, num_heads, name="self")
self.self_output = TFSwinSelfOutput(config, dim, name="output")
self.pruned_heads = set()
def prune_heads(self, heads):
"""
Prunes heads of the model. See base class PreTrainedModel heads: dict of {layer_num: list of heads to prune in
this layer}
"""
raise NotImplementedError
def call(
self,
hidden_states: tf.Tensor,
attention_mask: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> tf.Tensor:
self_outputs = self.self(hidden_states, attention_mask, head_mask, output_attentions, training=training)
attention_output = self.self_output(self_outputs[0], hidden_states, training=training)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self", None) is not None:
with tf.name_scope(self.self.name):
self.self.build(None)
if getattr(self, "self_output", None) is not None:
with tf.name_scope(self.self_output.name):
self.self_output.build(None)
class TFSwinIntermediate(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(int(config.mlp_ratio * dim), name="dense")
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dim = dim
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.dim])
class TFSwinOutput(keras.layers.Layer):
def __init__(self, config: SwinConfig, dim: int, **kwargs) -> None:
super().__init__(**kwargs)
self.dense = keras.layers.Dense(dim, name="dense")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, "dropout")
self.config = config
self.dim = dim
def call(self, hidden_states: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, int(self.config.mlp_ratio * self.dim)])
class TFSwinLayer(keras.layers.Layer):
def __init__(
self,
config,
dim,
input_resolution: Tuple[int, int],
num_heads: int,
drop_path_rate: float = 0.0,
shift_size: int = 0,
**kwargs,
) -> None:
super().__init__(**kwargs)
self.chunk_size_feed_forward = config.chunk_size_feed_forward
min_res = tf.reduce_min(input_resolution)
self.window_size = min_res if min_res <= config.window_size else config.window_size
self.shift_size = 0 if min_res <= self.window_size else shift_size
self.input_resolution = input_resolution
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
self.attention = TFSwinAttention(config, dim, num_heads, name="attention")
self.drop_path = (
TFSwinDropPath(drop_path_rate, name="drop_path")
if drop_path_rate > 0.0
else keras.layers.Activation("linear", name="drop_path")
)
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
self.intermediate = TFSwinIntermediate(config, dim, name="intermediate")
self.swin_output = TFSwinOutput(config, dim, name="output")
self.dim = dim
def get_attn_mask(self, height: int, width: int, window_size: int, shift_size: int) -> tf.Tensor | None:
img_mask = tf.zeros((height, width))
height_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1))
width_slices = ((0, -window_size), (-window_size, -shift_size), (-shift_size, -1))
# calculate attention mask for SW-MSA
if shift_size > 0:
count = 0
for height_slice in height_slices:
for width_slice in width_slices:
height_inds = tf.range(height_slice[0] % height, height_slice[1] % height + 1)
width_inds = tf.range(width_slice[0] % width, width_slice[1] % width + 1)
indices = tf.reshape(tf.stack(tf.meshgrid(height_inds, width_inds), axis=-1), (-1, 2))
if len(indices) >= 1:
updates = tf.ones((len(indices),), dtype=img_mask.dtype) * count
img_mask = tf.tensor_scatter_nd_update(img_mask, indices, updates)
count += 1
img_mask = tf.expand_dims(img_mask, -1)
img_mask = tf.expand_dims(img_mask, 0)
mask_windows = window_partition(img_mask, window_size)
mask_windows = tf.reshape(mask_windows, (-1, window_size * window_size))
attn_mask = tf.expand_dims(mask_windows, 1) - tf.expand_dims(mask_windows, 2)
attn_mask = tf.where(attn_mask != 0, float(-100.0), attn_mask)
attn_mask = tf.where(attn_mask == 0, float(0.0), attn_mask)
return attn_mask
def maybe_pad(
self, hidden_states: tf.Tensor, window_size: int, height: int, width: int
) -> Tuple[tf.Tensor, tf.Tensor]:
pad_right = (window_size - width % window_size) % window_size
pad_bottom = (window_size - height % window_size) % window_size
pad_values = [[0, 0], [0, pad_bottom], [0, pad_right], [0, 0]]
hidden_states = tf.pad(hidden_states, pad_values)
pad_values = tf.reshape(pad_values, (-1,))
return hidden_states, pad_values
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
training: bool = False,
) -> tf.Tensor:
# if window size is larger than input resolution, we don't partition windows
min_res = tf.reduce_min(input_dimensions)
shift_size = 0 if min_res <= self.window_size else self.shift_size
window_size = min_res if min_res <= self.window_size else self.window_size
height, width = input_dimensions
batch_size, _, channels = shape_list(hidden_states)
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states, training=training)
hidden_states = tf.reshape(hidden_states, (batch_size, height, width, channels))
# pad hidden_states to multiples of window size
hidden_states, pad_values = self.maybe_pad(hidden_states, window_size, height, width)
_, height_pad, width_pad, _ = shape_list(hidden_states)
# cyclic shift
if shift_size > 0:
shifted_hidden_states = tf.roll(hidden_states, shift=(-shift_size, -shift_size), axis=(1, 2))
else:
shifted_hidden_states = hidden_states
# partition windows
hidden_states_windows = window_partition(shifted_hidden_states, window_size)
hidden_states_windows = tf.reshape(hidden_states_windows, (-1, window_size * window_size, channels))
attn_mask = self.get_attn_mask(
height=height_pad, width=width_pad, window_size=window_size, shift_size=shift_size
)
attention_outputs = self.attention(
hidden_states_windows, attn_mask, head_mask, output_attentions=output_attentions, training=training
)
attention_output = attention_outputs[0]
attention_windows = tf.reshape(attention_output, (-1, window_size, window_size, channels))
shifted_windows = window_reverse(attention_windows, window_size, height_pad, width_pad)
# reverse cyclic shift
if shift_size > 0:
attention_windows = tf.roll(shifted_windows, shift=(shift_size, shift_size), axis=(1, 2))
else:
attention_windows = shifted_windows
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_windows = attention_windows[:, :height, :width, :]
attention_windows = tf.reshape(attention_windows, (batch_size, height * width, channels))
hidden_states = shortcut + self.drop_path(attention_windows, training=training)
layer_output = self.layernorm_after(hidden_states, training=training)
layer_output = self.intermediate(layer_output)
layer_output = hidden_states + self.swin_output(layer_output, training=training)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.dim])
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "drop_path", None) is not None:
with tf.name_scope(self.drop_path.name):
self.drop_path.build(None)
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.dim])
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "swin_output", None) is not None:
with tf.name_scope(self.swin_output.name):
self.swin_output.build(None)
class TFSwinStage(keras.layers.Layer):
def __init__(
self,
config: SwinConfig,
dim: int,
input_resolution: Tuple[int, int],
depth: int,
num_heads: int,
drop_path: List[float],
downsample: Optional[Callable],
**kwargs,
) -> None:
super().__init__(**kwargs)
self.config = config
self.dim = dim
self.blocks = [
TFSwinLayer(
config=config,
dim=dim,
input_resolution=input_resolution,
num_heads=num_heads,
shift_size=0 if (i % 2 == 0) else config.window_size // 2,
drop_path_rate=drop_path[i],
name=f"blocks.{i}",
)
for i in range(depth)
]
# patch merging layer
if downsample is not None:
self.downsample = downsample(
input_resolution,
dim=dim,
norm_layer=partial(keras.layers.LayerNormalization, epsilon=1e-5),
name="downsample",
)
else:
self.downsample = None
self.pointing = False
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = False,
training: bool = False,
) -> Tuple[tf.Tensor, ...]:
height, width = input_dimensions
for i, layer_module in enumerate(self.blocks):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training
)
hidden_states = layer_outputs[0]
if self.downsample is not None:
height_downsampled, width_downsampled = (height + 1) // 2, (width + 1) // 2
output_dimensions = (height, width, height_downsampled, width_downsampled)
hidden_states = self.downsample(layer_outputs[0], input_dimensions, training=training)
else:
output_dimensions = (height, width, height, width)
stage_outputs = (hidden_states, output_dimensions)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "downsample", None) is not None:
with tf.name_scope(self.downsample.name):
self.downsample.build(None)
if getattr(self, "blocks", None) is not None:
for layer in self.blocks:
with tf.name_scope(layer.name):
layer.build(None)
class TFSwinEncoder(keras.layers.Layer):
def __init__(self, config: SwinConfig, grid_size: Tuple[int, int], **kwargs):
super().__init__(**kwargs)
self.num_layers = len(config.depths)
self.config = config
dpr = list((tf.linspace(0, 1, sum(config.depths)) * config.drop_path_rate).numpy())
self.layers = [
TFSwinStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
input_resolution=(grid_size[0] // (2**i_layer), grid_size[1] // (2**i_layer)),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
drop_path=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=TFSwinPatchMerging if (i_layer < self.num_layers - 1) else None,
name=f"layers.{i_layer}",
)
for i_layer in range(self.num_layers)
]
self.gradient_checkpointing = False
def call(
self,
hidden_states: tf.Tensor,
input_dimensions: Tuple[int, int],
head_mask: tf.Tensor | None = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
training: bool = False,
) -> Union[Tuple[tf.Tensor, ...], TFSwinEncoderOutput]:
all_input_dimensions = ()
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
batch_size, _, hidden_size = shape_list(hidden_states)
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size))
reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2))
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.layers):
layer_head_mask = head_mask[i] if head_mask is not None else None
layer_outputs = layer_module(
hidden_states, input_dimensions, layer_head_mask, output_attentions, training=training
)
hidden_states = layer_outputs[0]
output_dimensions = layer_outputs[1]
input_dimensions = (output_dimensions[-2], output_dimensions[-1])
all_input_dimensions += (input_dimensions,)
if output_hidden_states:
batch_size, _, hidden_size = shape_list(hidden_states)
# rearrange b (h w) c -> b c h w
reshaped_hidden_state = tf.reshape(hidden_states, (batch_size, *input_dimensions, hidden_size))
reshaped_hidden_state = tf.transpose(reshaped_hidden_state, (0, 3, 1, 2))
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[2:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return TFSwinEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layers", None) is not None:
for layer in self.layers:
with tf.name_scope(layer.name):
layer.build(None)
class TFSwinPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = SwinConfig
base_model_prefix = "swin"
main_input_name = "pixel_values"
SWIN_START_DOCSTRING = r"""
This model is a Tensorflow
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a
regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and
behavior.
Parameters:
config ([`SwinConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
SWIN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def normalize_data_format(value: str) -> str:
"""
From tensorflow addons
https://github.com/tensorflow/addons/blob/8cec33fcaaf1cf90aec7bdd55a0fcdbb251ce5c2/tensorflow_addons/utils/keras_utils.py#L71
"""
if value is None:
value = keras.backend.image_data_format()
data_format = value.lower()
if data_format not in {"channels_first", "channels_last"}:
raise ValueError(
'The `data_format` argument must be one of "channels_first", "channels_last". Received: ' + str(value)
)
return data_format
class AdaptiveAveragePooling1D(keras.layers.Layer):
"""
Args:
Average 1D Pooling with adaptive kernel size.
output_size: An integer or tuple/list of a single integer, specifying pooled_features.
The new size of output channels.
data_format: A string,
one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape `(batch, steps, channels)` while `channels_first` corresponds
to inputs with shape `(batch, channels, steps)`.
Input shape:
- If `data_format='channels_last'`: 3D tensor with shape `(batch, steps, channels)`.
- If `data_format='channels_first'`: 3D tensor with shape `(batch, channels, steps)`.
Output shape:
- If `data_format='channels_last'`: 3D tensor with shape `(batch_size, pooled_steps, channels)`.
- If `data_format='channels_first'`: 3D tensor with shape `(batch_size, channels, pooled_steps)`.
Adapted from [tensorflow-addon's adaptive pooling.py](
https://github.com/tensorflow/addons/blob/8cec33fcaaf1cf90aec7bdd55a0fcdbb251ce5c2/tensorflow_addons/layers/adaptive_pooling.py#L90-L120
)
"""
def __init__(
self,
output_size: Union[int, Iterable[int]],
reduce_function: Callable = tf.reduce_mean,
data_format: Optional[str] = None,
**kwargs,
) -> None:
self.data_format = normalize_data_format(data_format)
self.reduce_function = reduce_function
self.output_size = (output_size,) if isinstance(output_size, int) else tuple(output_size)
super().__init__(**kwargs)
def call(self, inputs: tf.Tensor, *args) -> None:
bins = self.output_size[0]
if self.data_format == "channels_last":
splits = tf.split(inputs, bins, axis=1)
splits = tf.stack(splits, axis=1)
out_vect = self.reduce_function(splits, axis=2)
else:
splits = tf.split(inputs, bins, axis=2)
splits = tf.stack(splits, axis=2)
out_vect = self.reduce_function(splits, axis=3)
return out_vect
def compute_output_shape(self, input_shape: Iterable[int]) -> tf.TensorShape:
input_shape = tf.TensorShape(input_shape).as_list()
if self.data_format == "channels_last":
shape = tf.TensorShape([input_shape[0], self.output_size[0], input_shape[2]])
else:
shape = tf.TensorShape([input_shape[0], input_shape[1], self.output_size[0]])
return shape
def get_config(self) -> Dict[str, Any]:
config = {
"output_size": self.output_size,
"data_format": self.data_format,
}
base_config = super().get_config()
return {**base_config, **config}
@keras_serializable
class TFSwinMainLayer(keras.layers.Layer):
config_class = SwinConfig
def __init__(
self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(**kwargs)
self.config = config
self.num_layers = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_layers - 1))
self.embeddings = TFSwinEmbeddings(config, use_mask_token=use_mask_token, name="embeddings")
self.encoder = TFSwinEncoder(config, self.embeddings.patch_grid, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = AdaptiveAveragePooling1D(output_size=(1,)) if add_pooling_layer else None
def get_input_embeddings(self) -> TFSwinPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune: Dict[int, List]):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
def get_head_mask(self, head_mask: Optional[Any]) -> List:
if head_mask is not None:
raise NotImplementedError
return [None] * len(self.config.depths)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask)
embedding_output, input_dimensions = self.embeddings(
pixel_values, bool_masked_pos=bool_masked_pos, training=training
)
encoder_outputs = self.encoder(
embedding_output,
input_dimensions,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output, training=training)
pooled_output = None
if self.pooler is not None:
batch_size, _, num_features = shape_list(sequence_output)
pooled_output = self.pooler(sequence_output)
pooled_output = tf.reshape(pooled_output, (batch_size, num_features))
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return TFSwinModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.num_features])
@add_start_docstrings(
"The bare Swin Model transformer outputting raw hidden-states without any specific head on top.",
SWIN_START_DOCSTRING,
)
class TFSwinModel(TFSwinPreTrainedModel):
def __init__(
self, config: SwinConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(config, **kwargs)
self.config = config
self.swin = TFSwinMainLayer(config, name="swin")
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFSwinModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[TFSwinModelOutput, Tuple[tf.Tensor, ...]]:
r"""
bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
swin_outputs = self.swin(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
return swin_outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
class TFSwinPixelShuffle(keras.layers.Layer):
"""TF layer implementation of torch.nn.PixelShuffle"""
def __init__(self, upscale_factor: int, **kwargs) -> None:
super().__init__(**kwargs)
if not isinstance(upscale_factor, int) or upscale_factor < 2:
raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}")
self.upscale_factor = upscale_factor
def call(self, x: tf.Tensor) -> tf.Tensor:
hidden_states = x
batch_size, _, _, num_input_channels = shape_list(hidden_states)
block_size_squared = self.upscale_factor**2
output_depth = int(num_input_channels / block_size_squared)
# When the number of output channels >= 2, PyTorch's PixelShuffle and
# TF's depth_to_space differ in their output as the order of channels selected for combining
# is a permutation of the other c.f.
# https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1
permutation = tf.constant(
[[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]]
)
hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1)
hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC")
return hidden_states
class TFSwinDecoder(keras.layers.Layer):
def __init__(self, config: SwinConfig, **kwargs):
super().__init__(**kwargs)
self.conv2d = keras.layers.Conv2D(
filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, strides=1, name="0"
)
self.pixel_shuffle = TFSwinPixelShuffle(config.encoder_stride, name="1")
self.config = config
def call(self, x: tf.Tensor) -> tf.Tensor:
hidden_states = x
# B,C,H,W -> B,H,W,C
hidden_states = tf.transpose(hidden_states, (0, 2, 3, 1))
hidden_states = self.conv2d(hidden_states)
hidden_states = self.pixel_shuffle(hidden_states)
# B,H,W,C -> B,C,H,W
hidden_states = tf.transpose(hidden_states, (0, 3, 1, 2))
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv2d", None) is not None:
with tf.name_scope(self.conv2d.name):
self.conv2d.build([None, None, None, self.config.hidden_size])
if getattr(self, "pixel_shuffle", None) is not None:
with tf.name_scope(self.pixel_shuffle.name):
self.pixel_shuffle.build(None)
@add_start_docstrings(
"Swin Model with a decoder on top for masked image modeling, as proposed in"
" [SimMIM](https://arxiv.org/abs/2111.09886).",
SWIN_START_DOCSTRING,
)
class TFSwinForMaskedImageModeling(TFSwinPreTrainedModel):
def __init__(self, config: SwinConfig):
super().__init__(config)
self.swin = TFSwinMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="swin")
self.decoder = TFSwinDecoder(config, name="decoder")
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFSwinMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple, TFSwinMaskedImageModelingOutput]:
r"""
bool_masked_pos (`tf.Tensor` of shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFSwinForMaskedImageModeling
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> model = TFSwinForMaskedImageModeling.from_pretrained("microsoft/swin-tiny-patch4-window7-224")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = tf.random.uniform((1, num_patches)) >= 0.5
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = tf.transpose(sequence_output, (0, 2, 1))
batch_size, num_channels, sequence_length = shape_list(sequence_output)
height = width = int(sequence_length**0.5)
sequence_output = tf.reshape(sequence_output, (batch_size, num_channels, height, width))
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output)
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size))
mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1)
mask = tf.repeat(mask, self.config.patch_size, 2)
mask = tf.expand_dims(mask, 1)
mask = tf.cast(mask, tf.float32)
reconstruction_loss = keras.losses.mean_absolute_error(
# Swap axes as metric calculation reduces over the final dimension
tf.transpose(pixel_values, (1, 2, 3, 0)),
tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)),
)
reconstruction_loss = tf.expand_dims(reconstruction_loss, 0)
total_loss = tf.reduce_sum(reconstruction_loss * mask)
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
masked_im_loss = total_loss / num_masked_pixels
masked_im_loss = tf.reshape(masked_im_loss, (1,))
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[2:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return TFSwinMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"""
Swin Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
SWIN_START_DOCSTRING,
)
class TFSwinForImageClassification(TFSwinPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: SwinConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.swin = TFSwinMainLayer(config, name="swin")
# Classifier head
self.classifier = (
keras.layers.Dense(config.num_labels, name="classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="classifier")
)
@add_start_docstrings_to_model_forward(SWIN_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFSwinImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
labels: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
training: bool = False,
) -> Union[Tuple[tf.Tensor, ...], TFSwinImageClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.swin(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output, training=training)
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSwinImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "swin", None) is not None:
with tf.name_scope(self.swin.name):
self.swin.build(None)
if getattr(self, "classifier", None) is not None:
if hasattr(self.classifier, "name"):
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.swin.num_features])
__all__ = ["TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel"]
| transformers/src/transformers/models/swin/modeling_tf_swin.py/0 | {
"file_path": "transformers/src/transformers/models/swin/modeling_tf_swin.py",
"repo_id": "transformers",
"token_count": 30608
} |
# coding=utf-8
# Copyright 2020 Google Research and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
TAPAS configuration. Based on the BERT configuration with added parameters.
Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS:
- https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py
- https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py
"""
from ...configuration_utils import PretrainedConfig
class TapasConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the TAPAS
[google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture.
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original
implementation. Original implementation available at https://github.com/google-research/tapas/tree/master.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`TapasModel`].
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"swish"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 1024):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`):
The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`].
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
positive_label_weight (`float`, *optional*, defaults to 10.0):
Weight for positive labels.
num_aggregation_labels (`int`, *optional*, defaults to 0):
The number of aggregation operators to predict.
aggregation_loss_weight (`float`, *optional*, defaults to 1.0):
Importance weight for the aggregation loss.
use_answer_as_supervision (`bool`, *optional*):
Whether to use the answer as the only supervision for aggregation examples.
answer_loss_importance (`float`, *optional*, defaults to 1.0):
Importance weight for the regression loss.
use_normalized_answer_loss (`bool`, *optional*, defaults to `False`):
Whether to normalize the answer loss by the maximum of the predicted and expected value.
huber_loss_delta (`float`, *optional*):
Delta parameter used to calculate the regression loss.
temperature (`float`, *optional*, defaults to 1.0):
Value used to control (OR change) the skewness of cell logits probabilities.
aggregation_temperature (`float`, *optional*, defaults to 1.0):
Scales aggregation logits to control the skewness of probabilities.
use_gumbel_for_cells (`bool`, *optional*, defaults to `False`):
Whether to apply Gumbel-Softmax to cell selection.
use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`):
Whether to apply Gumbel-Softmax to aggregation selection.
average_approximation_function (`string`, *optional*, defaults to `"ratio"`):
Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`,
`"first_order"` or `"second_order"`.
cell_selection_preference (`float`, *optional*):
Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for
aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE"
operator) is higher than this hyperparameter, then aggregation is predicted for an example.
answer_loss_cutoff (`float`, *optional*):
Ignore examples with answer loss larger than cutoff.
max_num_rows (`int`, *optional*, defaults to 64):
Maximum number of rows.
max_num_columns (`int`, *optional*, defaults to 32):
Maximum number of columns.
average_logits_per_cell (`bool`, *optional*, defaults to `False`):
Whether to average logits per cell.
select_one_column (`bool`, *optional*, defaults to `True`):
Whether to constrain the model to only select cells from a single column.
allow_empty_column_selection (`bool`, *optional*, defaults to `False`):
Whether to allow not to select any column.
init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`):
Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%.
reset_position_index_per_cell (`bool`, *optional*, defaults to `True`):
Whether to restart position indexes at every cell (i.e. use relative position embeddings).
disable_per_token_loss (`bool`, *optional*, defaults to `False`):
Whether to disable any (strong or weak) supervision on cells.
aggregation_labels (`Dict[int, label]`, *optional*):
The aggregation labels used to aggregate the results. For example, the WTQ models have the following
aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}`
no_aggregation_label_index (`int`, *optional*):
If the aggregation labels are defined and one of these labels represents "No aggregation", this should be
set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value
should be set to 0 for these models.
Example:
```python
>>> from transformers import TapasModel, TapasConfig
>>> # Initializing a default (SQA) Tapas configuration
>>> configuration = TapasConfig()
>>> # Initializing a model from the configuration
>>> model = TapasModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "tapas"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=1024,
type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10],
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
positive_label_weight=10.0,
num_aggregation_labels=0,
aggregation_loss_weight=1.0,
use_answer_as_supervision=None,
answer_loss_importance=1.0,
use_normalized_answer_loss=False,
huber_loss_delta=None,
temperature=1.0,
aggregation_temperature=1.0,
use_gumbel_for_cells=False,
use_gumbel_for_aggregation=False,
average_approximation_function="ratio",
cell_selection_preference=None,
answer_loss_cutoff=None,
max_num_rows=64,
max_num_columns=32,
average_logits_per_cell=False,
select_one_column=True,
allow_empty_column_selection=False,
init_cell_selection_weights_to_zero=False,
reset_position_index_per_cell=True,
disable_per_token_loss=False,
aggregation_labels=None,
no_aggregation_label_index=None,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
# BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_sizes = type_vocab_sizes
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
# Fine-tuning task hyperparameters
self.positive_label_weight = positive_label_weight
self.num_aggregation_labels = num_aggregation_labels
self.aggregation_loss_weight = aggregation_loss_weight
self.use_answer_as_supervision = use_answer_as_supervision
self.answer_loss_importance = answer_loss_importance
self.use_normalized_answer_loss = use_normalized_answer_loss
self.huber_loss_delta = huber_loss_delta
self.temperature = temperature
self.aggregation_temperature = aggregation_temperature
self.use_gumbel_for_cells = use_gumbel_for_cells
self.use_gumbel_for_aggregation = use_gumbel_for_aggregation
self.average_approximation_function = average_approximation_function
self.cell_selection_preference = cell_selection_preference
self.answer_loss_cutoff = answer_loss_cutoff
self.max_num_rows = max_num_rows
self.max_num_columns = max_num_columns
self.average_logits_per_cell = average_logits_per_cell
self.select_one_column = select_one_column
self.allow_empty_column_selection = allow_empty_column_selection
self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero
self.reset_position_index_per_cell = reset_position_index_per_cell
self.disable_per_token_loss = disable_per_token_loss
# Aggregation hyperparameters
self.aggregation_labels = aggregation_labels
self.no_aggregation_label_index = no_aggregation_label_index
if isinstance(self.aggregation_labels, dict):
self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()}
__all__ = ["TapasConfig"]
| transformers/src/transformers/models/tapas/configuration_tapas.py/0 | {
"file_path": "transformers/src/transformers/models/tapas/configuration_tapas.py",
"repo_id": "transformers",
"token_count": 4589
} |
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TimeSformer model."""
import collections
from typing import Optional, Tuple, Union
import torch
import torch.nn.functional
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, ImageClassifierOutput
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from .configuration_timesformer import TimesformerConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "TimesformerConfig"
_CHECKPOINT_FOR_DOC = "facebook/timesformer"
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L155
class TimesformerPatchEmbeddings(nn.Module):
"""Image to Patch Embedding"""
def __init__(self, config):
super().__init__()
image_size = config.image_size
patch_size = config.patch_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_patches = num_patches
self.projection = nn.Conv2d(config.num_channels, config.hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
pixel_values = pixel_values.reshape(batch_size * num_frames, num_channels, height, width)
embeddings = self.projection(pixel_values)
patch_width = embeddings.size(-1)
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, num_frames, patch_width
class TimesformerEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
num_frames = config.num_frames
drop_rate = config.hidden_dropout_prob
attention_type = config.attention_type
self.attention_type = attention_type
self.patch_embeddings = TimesformerPatchEmbeddings(config)
self.num_patches = self.patch_embeddings.num_patches
# Positional Embeddings
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.position_embeddings = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=drop_rate)
if attention_type != "space_only":
self.time_embeddings = nn.Parameter(torch.zeros(1, num_frames, embed_dim))
self.time_drop = nn.Dropout(p=drop_rate)
def forward(self, pixel_values):
batch_size = pixel_values.shape[0]
# create patch embeddings
embeddings, num_frames, patch_width = self.patch_embeddings(pixel_values)
cls_tokens = self.cls_token.expand(embeddings.size(0), -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
# resizing the positional embeddings in case they don't match the input at inference
if embeddings.size(1) != self.position_embeddings.size(1):
position_embeddings = self.position_embeddings
cls_pos_embed = position_embeddings[0, 0, :].unsqueeze(0).unsqueeze(1)
other_pos_embed = position_embeddings[0, 1:, :].unsqueeze(0).transpose(1, 2)
patch_num = int(other_pos_embed.size(2) ** 0.5)
patch_height = embeddings.size(1) // patch_width
other_pos_embed = other_pos_embed.reshape(1, embeddings.size(2), patch_num, patch_num)
new_pos_embed = nn.functional.interpolate(
other_pos_embed, size=(patch_height, patch_width), mode="nearest"
)
new_pos_embed = new_pos_embed.flatten(2)
new_pos_embed = new_pos_embed.transpose(1, 2)
new_pos_embed = torch.cat((cls_pos_embed, new_pos_embed), 1)
embeddings = embeddings + new_pos_embed
else:
embeddings = embeddings + self.position_embeddings
embeddings = self.pos_drop(embeddings)
# Time Embeddings
if self.attention_type != "space_only":
cls_tokens = embeddings[:batch_size, 0, :].unsqueeze(1)
embeddings = embeddings[:, 1:]
_, patch_height, patch_width = embeddings.shape
embeddings = (
embeddings.reshape(batch_size, num_frames, patch_height, patch_width)
.permute(0, 2, 1, 3)
.reshape(batch_size * patch_height, num_frames, patch_width)
)
# Resizing time embeddings in case they don't match
if num_frames != self.time_embeddings.size(1):
time_embeddings = self.time_embeddings.transpose(1, 2)
new_time_embeddings = nn.functional.interpolate(time_embeddings, size=(num_frames), mode="nearest")
new_time_embeddings = new_time_embeddings.transpose(1, 2)
embeddings = embeddings + new_time_embeddings
else:
embeddings = embeddings + self.time_embeddings
embeddings = self.time_drop(embeddings)
embeddings = embeddings.view(batch_size, patch_height, num_frames, patch_width).reshape(
batch_size, patch_height * num_frames, patch_width
)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
return embeddings
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->TimeSformer
class TimeSformerDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L57
class TimesformerSelfAttention(nn.Module):
def __init__(self, config: TimesformerConfig):
super().__init__()
num_heads = config.num_attention_heads
qkv_bias = config.qkv_bias
attention_dropout_prob = config.attention_probs_dropout_prob
self.num_heads = num_heads
head_dim = config.hidden_size // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attention_dropout_prob)
def forward(self, hidden_states, output_attentions: bool = False):
batch_size, hidden_size, num_channels = hidden_states.shape
qkv = (
self.qkv(hidden_states)
.reshape(batch_size, hidden_size, 3, self.num_heads, num_channels // self.num_heads)
.permute(2, 0, 3, 1, 4)
)
query, key, value = qkv[0], qkv[1], qkv[2]
attention_probs = (query @ key.transpose(-2, -1)) * self.scale
attention_probs = attention_probs.softmax(dim=-1)
attention_probs = self.attn_drop(attention_probs)
context_layer = (attention_probs @ value).transpose(1, 2).reshape(batch_size, hidden_size, num_channels)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class TimesformerSelfOutput(nn.Module):
"""
The residual connection is defined in TimesformerLayer instead of here (as is the case with other models), due to
the layernorm applied before each block.
"""
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimeSformerAttention(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.attention = TimesformerSelfAttention(config)
self.output = TimesformerSelfOutput(config)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]:
self_outputs = self.attention(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0])
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L39
class TimesformerIntermediate(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class TimesformerOutput(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Adapted from https://github.com/facebookresearch/TimeSformer/blob/a5ef29a7b7264baff199a30b3306ac27de901133/timesformer/models/vit.py#L89
class TimesformerLayer(nn.Module):
def __init__(self, config: TimesformerConfig, layer_index: int) -> None:
super().__init__()
attention_type = config.attention_type
drop_path_rates = [
x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)
] # stochastic depth decay rule
drop_path_rate = drop_path_rates[layer_index]
self.drop_path = TimeSformerDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.attention = TimeSformerAttention(config)
self.intermediate = TimesformerIntermediate(config)
self.output = TimesformerOutput(config)
self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.config = config
self.attention_type = attention_type
if attention_type not in ["divided_space_time", "space_only", "joint_space_time"]:
raise ValueError("Unknown attention type: {}".format(attention_type))
# Temporal Attention Parameters
if self.attention_type == "divided_space_time":
self.temporal_layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.temporal_attention = TimeSformerAttention(config)
self.temporal_dense = nn.Linear(config.hidden_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor, output_attentions: bool = False):
num_frames = self.config.num_frames
num_patch_width = self.config.image_size // self.config.patch_size
batch_size = hidden_states.shape[0]
num_spatial_tokens = (hidden_states.size(1) - 1) // num_frames
num_patch_height = num_spatial_tokens // num_patch_width
if self.attention_type in ["space_only", "joint_space_time"]:
self_attention_outputs = self.attention(
self.layernorm_before(hidden_states), output_attentions=output_attentions
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
hidden_states = hidden_states + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
elif self.attention_type == "divided_space_time":
# Temporal
temporal_embedding = hidden_states[:, 1:, :]
temporal_embedding = temporal_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, temporal_embedding.shape[2]
).reshape(batch_size * num_patch_height * num_patch_width, num_frames, temporal_embedding.shape[2])
temporal_attention_outputs = self.temporal_attention(
self.temporal_layernorm(temporal_embedding),
)
attention_output = temporal_attention_outputs[0]
residual_temporal = self.drop_path(attention_output)
residual_temporal = residual_temporal.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, residual_temporal.shape[2]
).reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_temporal.shape[2])
residual_temporal = self.temporal_dense(residual_temporal)
temporal_embedding = hidden_states[:, 1:, :] + residual_temporal
# Spatial
init_cls_token = hidden_states[:, 0, :].unsqueeze(1)
cls_token = init_cls_token.repeat(1, num_frames, 1)
cls_token = cls_token.reshape(batch_size * num_frames, 1, cls_token.shape[2])
spatial_embedding = temporal_embedding
spatial_embedding = (
spatial_embedding.reshape(
batch_size, num_patch_height, num_patch_width, num_frames, spatial_embedding.shape[2]
)
.permute(0, 3, 1, 2, 4)
.reshape(batch_size * num_frames, num_patch_height * num_patch_width, spatial_embedding.shape[2])
)
spatial_embedding = torch.cat((cls_token, spatial_embedding), 1)
spatial_attention_outputs = self.attention(
self.layernorm_before(spatial_embedding), output_attentions=output_attentions
)
attention_output = spatial_attention_outputs[0]
outputs = spatial_attention_outputs[1:] # add self attentions if we output attention weights
residual_spatial = self.drop_path(attention_output)
# Taking care of CLS token
cls_token = residual_spatial[:, 0, :]
cls_token = cls_token.reshape(batch_size, num_frames, cls_token.shape[1])
cls_token = torch.mean(cls_token, 1, True) # averaging for every frame
residual_spatial = residual_spatial[:, 1:, :]
residual_spatial = (
residual_spatial.reshape(
batch_size, num_frames, num_patch_height, num_patch_width, residual_spatial.shape[2]
)
.permute(0, 2, 3, 1, 4)
.reshape(batch_size, num_patch_height * num_patch_width * num_frames, residual_spatial.shape[2])
)
residual = residual_spatial
hidden_states = temporal_embedding
# Mlp
hidden_states = torch.cat((init_cls_token, hidden_states), 1) + torch.cat((cls_token, residual), 1)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.intermediate(layer_output)
layer_output = self.output(layer_output)
layer_output = hidden_states + self.drop_path(layer_output)
outputs = (layer_output,) + outputs
return outputs
class TimesformerEncoder(nn.Module):
def __init__(self, config: TimesformerConfig) -> None:
super().__init__()
self.config = config
self.layer = nn.ModuleList([TimesformerLayer(config, ind) for ind in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class TimesformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TimesformerConfig
base_model_prefix = "timesformer"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["TimesformerLayer"]
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Conv2d)):
nn.init.trunc_normal_(module.weight, std=self.config.initializer_range)
if module.bias is not None:
nn.init.constant_(module.bias, 0)
elif isinstance(module, nn.LayerNorm):
nn.init.constant_(module.bias, 0)
nn.init.constant_(module.weight, 1.0)
elif isinstance(module, TimesformerEmbeddings):
nn.init.trunc_normal_(module.cls_token, std=self.config.initializer_range)
nn.init.trunc_normal_(module.position_embeddings, std=self.config.initializer_range)
module.patch_embeddings.apply(self._init_weights)
TIMESFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TimesformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TIMESFORMER_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`VideoMAEImageProcessor.preprocess`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare TimeSformer Model transformer outputting raw hidden-states without any specific head on top.",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerModel(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.embeddings = TimesformerEmbeddings(config)
self.encoder = TimesformerEncoder(config)
self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]:
r"""
Returns:
Examples:
```python
>>> import av
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerModel
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=4, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base")
>>> model = TimesformerModel.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> # prepare video for the model
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> # forward pass
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 1569, 768]
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if self.layernorm is not None:
sequence_output = self.layernorm(sequence_output)
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""TimeSformer Model transformer with a video classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.""",
TIMESFORMER_START_DOCSTRING,
)
class TimesformerForVideoClassification(TimesformerPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.timesformer = TimesformerModel(config)
# Classifier head
self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(TIMESFORMER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=ImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> import av
>>> import torch
>>> import numpy as np
>>> from transformers import AutoImageProcessor, TimesformerForVideoClassification
>>> from huggingface_hub import hf_hub_download
>>> np.random.seed(0)
>>> def read_video_pyav(container, indices):
... '''
... Decode the video with PyAV decoder.
... Args:
... container (`av.container.input.InputContainer`): PyAV container.
... indices (`List[int]`): List of frame indices to decode.
... Returns:
... result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
... '''
... frames = []
... container.seek(0)
... start_index = indices[0]
... end_index = indices[-1]
... for i, frame in enumerate(container.decode(video=0)):
... if i > end_index:
... break
... if i >= start_index and i in indices:
... frames.append(frame)
... return np.stack([x.to_ndarray(format="rgb24") for x in frames])
>>> def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
... '''
... Sample a given number of frame indices from the video.
... Args:
... clip_len (`int`): Total number of frames to sample.
... frame_sample_rate (`int`): Sample every n-th frame.
... seg_len (`int`): Maximum allowed index of sample's last frame.
... Returns:
... indices (`List[int]`): List of sampled frame indices
... '''
... converted_len = int(clip_len * frame_sample_rate)
... end_idx = np.random.randint(converted_len, seg_len)
... start_idx = end_idx - converted_len
... indices = np.linspace(start_idx, end_idx, num=clip_len)
... indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
... return indices
>>> # video clip consists of 300 frames (10 seconds at 30 FPS)
>>> file_path = hf_hub_download(
... repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
... )
>>> container = av.open(file_path)
>>> # sample 8 frames
>>> indices = sample_frame_indices(clip_len=8, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
>>> video = read_video_pyav(container, indices)
>>> image_processor = AutoImageProcessor.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics")
>>> model = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400")
>>> inputs = image_processor(list(video), return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
... logits = outputs.logits
>>> # model predicts one of the 400 Kinetics-400 classes
>>> predicted_label = logits.argmax(-1).item()
>>> print(model.config.id2label[predicted_label])
eating spaghetti
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.timesformer(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0][:, 0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["TimesformerModel", "TimesformerForVideoClassification", "TimesformerPreTrainedModel"]
| transformers/src/transformers/models/timesformer/modeling_timesformer.py/0 | {
"file_path": "transformers/src/transformers/models/timesformer/modeling_timesformer.py",
"repo_id": "transformers",
"token_count": 15064
} |
# coding=utf-8
# Copyright 2023 The Intel AIA Team Authors, and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License=, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing=, software
# distributed under the License is distributed on an "AS IS" BASIS=,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND=, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TVP Model"""
import math
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...file_utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, ModelOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import prune_linear_layer
from ...utils import logging
from ...utils.backbone_utils import load_backbone
from .configuration_tvp import TvpConfig
logger = logging.get_logger(__name__)
@dataclass
class TvpVideoGroundingOutput(ModelOutput):
"""
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Temporal-Distance IoU loss for video grounding.
logits (`torch.FloatTensor` of shape `(batch_size, 2)`):
Contains start_time/duration and end_time/duration. It is the time slot of the videos corresponding to the
input texts.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of
the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
class TvpLoss(nn.Module):
"""
This class computes the losses for `TvpForVideoGrounding`. The process happens in two steps: 1) we compute
hungarian assignment between ground truth boxes and the outputs of the model 2) we supervise each pair of matched
ground-truth / prediction (supervise class and box).
Args:
losses (`List[str]`):
List of all the losses to be applied.
"""
def __init__(self, losses):
super().__init__()
self.loss_map = {
"iou": self.loss_iou,
"distance": self.loss_distance,
"duration": self.loss_duration,
}
for loss in losses:
if loss not in self.loss_map:
raise ValueError(f"Loss {loss} not supported")
self.losses = losses
def loss_iou(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the intersection over union.
"""
inter = torch.min(candidates_end_time, end_time) - torch.max(candidates_start_time, start_time)
union = torch.max(candidates_end_time, end_time) - torch.min(candidates_start_time, start_time)
iou = 1 - inter.clamp(min=0) / union
return iou
def loss_distance(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the distance of mid points.
"""
mid_candidates = torch.div(torch.add(candidates_start_time, candidates_end_time), 2.0)
mid_groundtruth = torch.div(torch.add(start_time, end_time), 2.0)
distance_diff = torch.div(
torch.max(mid_candidates, mid_groundtruth) - torch.min(mid_candidates, mid_groundtruth), duration
).clamp(min=0.2)
return distance_diff
def loss_duration(self, start_time, end_time, candidates_start_time, candidates_end_time, duration):
"""
Measure the difference of duration.
"""
duration_candidates = torch.sub(candidates_end_time, candidates_start_time)
duration_groundtruth = torch.sub(end_time, start_time)
duration_diff = torch.square(torch.div(torch.sub(duration_candidates, duration_groundtruth), duration))
duration_diff = duration_diff.clamp(min=0.4)
return duration_diff
def forward(self, logits, labels):
"""
This performs the loss computation.
Args:
logits (`torch.FloatTensor`):
The output logits of head module.
labels (`List[torch.FloatTensor]`):
List of tensors ([start, end, duration]), which contains start time, end time of the video corresponding to the text, and also the duration.
"""
duration, start_time, end_time = labels
candidates = torch.mul(logits, duration)
candidates_start_time, candidates_end_time = candidates[:, 0].float(), candidates[:, 1].float()
losses_dict = {}
for loss in self.losses:
losses_dict.update(
{loss: self.loss_map[loss](start_time, end_time, candidates_start_time, candidates_end_time, duration)}
)
return losses_dict
class TvpVisionModel(nn.Module):
def __init__(self, config):
super().__init__()
self.backbone = load_backbone(config)
if config.backbone_config is not None:
in_channels = config.backbone_config.hidden_sizes[-1]
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_sizes"):
in_channels = self.backbone.config.hidden_sizes[-1]
elif hasattr(self.backbone, "config") and hasattr(self.backbone.config, "hidden_size"):
in_channels = self.backbone.config.hidden_size
else:
raise ValueError("Backbone config not found")
self.grid_encoder_conv = nn.Conv2d(
in_channels,
config.hidden_size,
kernel_size=3,
stride=1,
padding=1,
groups=1,
bias=False,
)
def forward(self, pixel_values):
batch_size, num_frames, num_channels, height, width = pixel_values.shape
# (batch_size * num_frames, num_channels, height, width)
pixel_values = pixel_values.view(batch_size * num_frames, num_channels, height, width)
grid_feat_outputs = self.backbone(pixel_values)["feature_maps"][0]
grid = self.grid_encoder_conv(grid_feat_outputs)
grid = nn.functional.max_pool2d(grid, kernel_size=2, stride=2)
grid = nn.functional.relu(grid, inplace=True)
new_channel, new_height, new_width = grid.shape[-3:]
# (batch_size, num_frames, num_channels, height, width)
grid = grid.view(batch_size, num_frames, new_channel, new_height, new_width)
# (batch_size, num_frames, height, width, num_channels)
grid = grid.permute(0, 1, 3, 4, 2)
return grid
class TvpVisualInputEmbedding(nn.Module):
"""
Takes input of both image and video (multi-frame)
"""
def __init__(self, config):
super().__init__()
# sequence embedding
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.row_position_embeddings = nn.Embedding(config.max_grid_row_position_embeddings, config.hidden_size)
self.col_position_embeddings = nn.Embedding(config.max_grid_col_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(1, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.max_grid_row_position_embeddings = config.max_grid_row_position_embeddings
self.max_grid_col_position_embeddings = config.max_grid_col_position_embeddings
def interpolate_pos_encoding(self, embedding: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained pad weights , to be able to use the model on collection of high
resolution images (high resolution videos).
"""
h0 = w0 = 1
# if height dimension is to be interpolated
if height > self.max_grid_row_position_embeddings:
h0 = height / self.max_grid_row_position_embeddings
# if width dimension is to be interpolated
if width > self.max_grid_col_position_embeddings:
w0 = width / self.max_grid_col_position_embeddings
embedding = embedding.permute(0, 3, 1, 2) # (batch_size, hidden_dim, height, width)
embedding = nn.functional.interpolate(
embedding,
scale_factor=(h0, w0),
mode="bicubic",
align_corners=False,
)
embedding = embedding.permute(0, 2, 3, 1) # (batch_size, height, width, hidden_dim)
return embedding
def add_2d_positional_embeddings(self, grid, interpolate_pos_encoding: bool = False):
"""
Args:
grid: (batch_size, height, width, hidden_dim)
interpolate_pos_encoding: (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
Returns:
grid + col_position_embeddings.view(*col_shape): (batch_size, *, height, width, hidden_dim)
"""
batch_size, height, width, hidden_dim = grid.shape
# add row-wise position embeddings
# (height, )
row_height = min(self.max_grid_row_position_embeddings, height)
row_position_ids = torch.arange(row_height, dtype=torch.long, device=grid.device)
# (height, hidden_dim)
row_position_embeddings = self.row_position_embeddings(row_position_ids)
row_shape = (1,) * (len(grid.shape) - 3) + (row_height, 1, hidden_dim)
# (batch_size, height, 1, hidden_dim)
row_position_embeddings = row_position_embeddings.view(*row_shape)
# add column-wise position embeddings
row_width = min(self.max_grid_col_position_embeddings, width)
col_position_ids = torch.arange(row_width, dtype=torch.long, device=grid.device)
# (width, hidden_dim)
col_position_embeddings = self.col_position_embeddings(col_position_ids)
col_shape = (batch_size, 1, row_width, hidden_dim)
# (batch_size, 1, width, hidden_dim)
col_position_embeddings = col_position_embeddings.view(*col_shape)
# (batch_size, height, width, hidden_dim)
positional_embeddings = row_position_embeddings + col_position_embeddings
# This interpolation gets triggered ONLY when the input image dim is larger in any dimenstion than the original position embeddings
if interpolate_pos_encoding and (
height > self.max_grid_row_position_embeddings or width > self.max_grid_col_position_embeddings
):
grid = grid + self.interpolate_pos_encoding(positional_embeddings, height, width)
else:
grid = grid + positional_embeddings
return grid
def forward(self, grid, interpolate_pos_encoding: bool = False):
"""
Args:
grid: Array of shape (batch_size, num_frames, height, width, num_channels).
It contains processed frames extracted from videos, and is generated by Tvp image preprocessor. Note,
num_frames can be 1
interpolate_pos_encoding: (bool, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
Returns:
embeddings: The embedding of grid with size (batch_size, height*width, num_channels)
"""
batch_size, num_frames, height, width, num_channels = grid.shape
# temporal mean pooling, (batch_size, height, width, hidden_size)
grid = grid.mean(1)
grid = self.add_2d_positional_embeddings(grid, interpolate_pos_encoding=interpolate_pos_encoding)
# image token sequence, (batch_size, height*width, num_channels)
visual_tokens = grid.view(batch_size, -1, num_channels)
visual_tokens_shape = visual_tokens.shape[:-1]
device = visual_tokens.device
# image token type embeddings.
token_type_ids = torch.zeros(visual_tokens_shape, dtype=torch.long, device=device)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = visual_tokens + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpTextInputEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
if input_ids is not None:
input_shape = input_ids.size()
else:
input_shape = inputs_embeds.size()[:-1]
seq_length = input_shape[1]
device = input_ids.device if input_ids is not None else inputs_embeds.device
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0).expand(input_shape)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = inputs_embeds + position_embeddings + token_type_embeddings
embeddings = self.layer_norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class TvpAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size {config.hidden_size} is not a multiple of the number of attention heads {config.num_attention_heads}"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.attn_dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
mask = torch.ones(self.num_attention_heads, self.attention_head_size)
heads = set(heads) - self.pruned_heads # Convert to set and remove already pruned heads
for head in heads:
# Compute how many pruned heads are before the head and move the index accordingly
head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
mask[head] = 0
mask = mask.view(-1).contiguous().eq(1)
index = torch.arange(len(mask))[mask].long()
# Prune linear layers
self.query = prune_linear_layer(self.query, index)
self.key = prune_linear_layer(self.key, index)
self.value = prune_linear_layer(self.value, index)
self.dense = prune_linear_layer(self.dense, index, dim=1)
# Update hyper params and store pruned heads
self.num_attention_heads = self.num_attention_heads - len(heads)
self.all_head_size = self.attention_head_size * self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def _reshape(self, tensor: torch.Tensor, sequence_length: int, batch_size: int):
return (
tensor.view(batch_size, sequence_length, self.num_attention_heads, self.attention_head_size)
.transpose(1, 2)
.contiguous()
)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
batch_size, sequence_length = hidden_states.shape[:2]
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self._reshape(mixed_query_layer, sequence_length, batch_size)
key_layer = self._reshape(mixed_key_layer, sequence_length, batch_size)
value_layer = self._reshape(mixed_value_layer, sequence_length, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.attn_dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
attn_output = torch.matmul(attention_probs, value_layer)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(batch_size, sequence_length, self.all_head_size)
attn_output = self.dense(attn_output)
attn_output = self.dropout(attn_output)
attn_output = self.layer_norm(attn_output + hidden_states)
# add attentions if we output them
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_bert.BertIntermediate with Bert->Tvp
class TvpIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class TvpOutputLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.layer_norm(hidden_states + input_tensor)
return hidden_states
class TvpEncodeLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = TvpAttention(config)
self.intermediate = TvpIntermediate(config)
self.output = TvpOutputLayer(config)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
output_attentions: Optional[bool] = None,
):
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + outputs
return outputs
class TvpEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([TvpEncodeLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.return_dict
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
all_hidden_states = ()
all_attentions = ()
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
(head_mask[i] if head_mask is not None else None),
output_attentions,
)
else:
layer_outputs = layer_module(hidden_states, attention_mask, head_mask[i], output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
outputs = (hidden_states,)
if output_hidden_states:
outputs = outputs + (all_hidden_states,)
if output_attentions:
outputs = outputs + (all_attentions,)
return outputs # last-layer hidden state, (all hidden states), (all attentions)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states if output_hidden_states else None,
attentions=all_attentions if output_attentions else None,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->Tvp
class TvpPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class TvpPreTrainedModel(PreTrainedModel):
"""An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = TvpConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
if isinstance(module, nn.Conv2d):
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="relu")
if module.bias is not None:
nn.init.constant_(module.bias, 0)
TVP_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TvpConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TVP_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See
[`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input
IDs?](../glossary#input-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_frames, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`TvpImageProcessor`]. See [`TvpImageProcessor.__call__`]
for details.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained image pad prompter encodings and positional encodings.
"""
class TvpFrameDownPadPrompter(nn.Module):
"""
Pad frames extracted from videos only at the bottom.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.visual_prompt_size = config.visual_prompt_size
self.frame_num = config.frame_num
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.pad_down = nn.Parameter(
torch.randn([1, config.frame_num, 3, config.visual_prompt_size, config.max_img_size])
)
def forward(self, pixel_values):
if self.visual_prompter_apply != "add":
visual_prompt_mask = torch.ones(
[self.max_img_size, self.max_img_size], dtype=pixel_values.dtype, device=pixel_values.device
)
visual_prompt_mask[self.max_img_size - self.visual_prompt_size : self.max_img_size, :] = 0.0
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply != "remove":
prompt = torch.zeros(
[pixel_values.shape[0], pixel_values.shape[1], 3, self.max_img_size, self.max_img_size],
device=pixel_values.device,
)
start_point = self.max_img_size - self.visual_prompt_size
prompt[:, :, :, start_point : self.max_img_size, :] = self.pad_down
pixel_values += prompt.to(pixel_values.dtype)
return pixel_values
class TvpFramePadPrompter(nn.Module):
"""
Pad frames extracted from videos in the surroundings.
"""
def __init__(self, config):
if config.visual_prompter_apply not in ("add", "replace", "remove"):
raise ValueError("`visual_prompter_apply` must be in (add, replace, remove)")
super().__init__()
self.num_frames = config.num_frames
self.max_img_size = config.max_img_size
self.visual_prompter_apply = config.visual_prompter_apply
self.base_size = config.max_img_size - config.visual_prompt_size * 2
self.pad_up = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_down = nn.Parameter(
torch.randn([1, config.num_frames, 3, config.visual_prompt_size, config.max_img_size])
)
self.pad_left = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
self.pad_right = nn.Parameter(
torch.randn(
[
1,
config.num_frames,
3,
config.max_img_size - config.visual_prompt_size * 2,
config.visual_prompt_size,
]
)
)
def interpolate_pad_encoding(self, prompt: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained pad weights, to be able to use the model on collection of high
resolution images (high resolution videos).
"""
# creates scale factor from height and width of original image wrt to the config.max_img_size
h0, w0 = height / self.max_img_size, width / self.max_img_size
batch, num_frames, channels, prompt_height, prompt_width = prompt.shape
# reshaping the batch and num_frames dimension into a single one (i.e (b,frames,c,h,w)-->(b*frames,c,h,w)), to apply bicubic interpolation
prompt = prompt.reshape(batch * num_frames, channels, prompt_height, prompt_width)
prompt = nn.functional.interpolate(
prompt,
scale_factor=(h0, w0),
mode="bicubic",
align_corners=False,
)
# reversing back to (batch,frames,channels,height,width), where height and width is the new interpolated height and width
prompt = prompt.reshape(batch, num_frames, channels, height, width)
return prompt
def forward(self, pixel_values, interpolate_pad_encoding: bool = False):
height, width = (
(pixel_values.shape[-2], pixel_values.shape[-1])
if interpolate_pad_encoding
else (self.max_img_size, self.max_img_size)
)
if self.visual_prompter_apply not in ("add", "remove", "replace"):
raise ValueError(f"Invalid visual_prompter_apply value {self.visual_prompter_apply}")
if self.visual_prompter_apply in ("replace", "remove"):
visual_prompt_mask = torch.ones([height, width], dtype=pixel_values.dtype, device=pixel_values.device)
pixel_values *= visual_prompt_mask
if self.visual_prompter_apply in ("replace", "add"):
base = torch.zeros(1, self.num_frames, 3, self.base_size, self.base_size, device=pixel_values.device)
prompt = torch.cat([self.pad_left, base, self.pad_right], dim=4)
prompt = torch.cat([self.pad_up, prompt, self.pad_down], dim=3)
prompt = torch.cat(pixel_values.size(0) * [prompt])
if interpolate_pad_encoding:
prompt = self.interpolate_pad_encoding(prompt, height, width)
pixel_values = pixel_values + prompt.to(pixel_values.dtype)
return pixel_values
TVP_PROMPTER_CLASSES_MAPPING = {
"framedownpad": TvpFrameDownPadPrompter,
"framepad": TvpFramePadPrompter,
}
@add_start_docstrings(
"The bare Tvp Model transformer outputting BaseModelOutputWithPooling object without any specific head on" " top.",
TVP_START_DOCSTRING,
)
class TvpModel(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.vision_model = TvpVisionModel(config)
self.embeddings = TvpTextInputEmbeddings(config)
self.visual_embeddings = TvpVisualInputEmbedding(config)
self.encoder = TvpEncoder(config)
self.pooler = TvpPooler(config)
self.text_prompt = nn.Parameter(torch.randn([1, 10, config.hidden_size]))
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if config.visual_prompter_type not in TVP_PROMPTER_CLASSES_MAPPING:
raise ValueError("`visual_prompter_type` must be in (framedownpad, framepad)")
self.visual_prompter = TVP_PROMPTER_CLASSES_MAPPING[config.visual_prompter_type](config)
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""Prunes heads of the model.
heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
):
r"""
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpModel
>>> model = TvpModel.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
# Add visual prompt, it compensates for the spatiotemporal information loss in 2D visual features.
pixel_values = self.vision_model(
self.visual_prompter(pixel_values, interpolate_pad_encoding=interpolate_pos_encoding)
)
# (batch_size, sequence_length, hidden_size)
text_embedding_output = self.embeddings(input_ids=input_ids)
# (batch_size, visual_sequence_length, hidden_size)
visual_embedding_output = self.visual_embeddings(
pixel_values, interpolate_pos_encoding=interpolate_pos_encoding
)
if attention_mask is not None:
# (batch_size, visual_sequence_length)
visual_attention_mask = attention_mask.new_ones(visual_embedding_output.shape[:2])
pt_mask = torch.ones(attention_mask.shape[0], 10).to(
device=attention_mask.device, dtype=attention_mask.dtype
)
attention_mask = torch.cat([pt_mask, attention_mask, visual_attention_mask], dim=-1)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size()).to(input_ids.device)
text_prompt = self.text_prompt.expand(text_embedding_output.shape[0], -1, -1)
# (batch_size, sequence_length + visual_sequence_length, hidden_size)
embedding_output = torch.cat([text_prompt, text_embedding_output, visual_embedding_output], dim=1)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=attention_mask,
head_mask=self.get_head_mask(head_mask, self.config.num_hidden_layers),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
last_hidden_state = encoder_outputs.last_hidden_state if return_dict else encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
last_hidden_state = self.dropout(last_hidden_state)
pooled_output = self.dropout(pooled_output)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class TvpVideoGroundingHead(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_0 = nn.Linear(config.hidden_size, config.hidden_size * 2)
self.layer_1 = nn.Linear(config.hidden_size * 2, 2)
self.activation_0 = nn.ReLU()
self.activation_1 = nn.Sigmoid()
def forward(self, pooler_output):
logits = self.activation_0(self.layer_0(pooler_output))
logits = self.activation_1(self.layer_1(logits))
return logits
@add_start_docstrings(
"""
Tvp Model with a video grounding head on top computing IoU, distance, and duration loss.
""",
TVP_START_DOCSTRING,
)
class TvpForVideoGrounding(TvpPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.model = TvpModel(config)
self.video_grounding_head = TvpVideoGroundingHead(config)
self.post_init()
@add_start_docstrings_to_model_forward(TVP_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TvpVideoGroundingOutput, config_class=TvpConfig)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
labels: Tuple[torch.Tensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
):
r"""
labels (`torch.FloatTensor` of shape `(batch_size, 3)`, *optional*):
The labels contains duration, start time, and end time of the video corresponding to the text.
Returns:
Examples:
```python
>>> import torch
>>> from transformers import AutoConfig, AutoTokenizer, TvpForVideoGrounding
>>> model = TvpForVideoGrounding.from_pretrained("Jiqing/tiny-random-tvp")
>>> tokenizer = AutoTokenizer.from_pretrained("Jiqing/tiny-random-tvp")
>>> pixel_values = torch.rand(1, 1, 3, 448, 448)
>>> text_inputs = tokenizer("This is an example input", return_tensors="pt")
>>> output = model(text_inputs.input_ids, pixel_values, text_inputs.attention_mask)
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
outputs = self.model(
input_ids,
pixel_values,
attention_mask,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
)
pooler_output = outputs[1]
logits = self.video_grounding_head(pooler_output)
loss = None
if labels is not None:
criterion = TvpLoss(["iou", "distance", "duration"])
criterion.to(self.device)
loss_dict = criterion(logits, labels)
loss = (
loss_dict["iou"]
+ self.config.distance_loss_weight * loss_dict["distance"]
+ self.config.duration_loss_weight * loss_dict["duration"]
)
if not return_dict:
outputs = (logits,) + outputs[2:]
if loss is not None:
outputs = (loss,) + outputs
return outputs
return TvpVideoGroundingOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["TvpModel", "TvpPreTrainedModel", "TvpForVideoGrounding"]
| transformers/src/transformers/models/tvp/modeling_tvp.py/0 | {
"file_path": "transformers/src/transformers/models/tvp/modeling_tvp.py",
"repo_id": "transformers",
"token_count": 18422
} |
# coding=utf-8
# Copyright 2021 The Fairseq Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch UniSpeech model."""
import math
import warnings
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...integrations.fsdp import is_fsdp_managed_module
from ...modeling_outputs import BaseModelOutput, CausalLMOutput, SequenceClassifierOutput, Wav2Vec2BaseModelOutput
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
replace_return_docstrings,
)
from .configuration_unispeech import UniSpeechConfig
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "UniSpeechConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "patrickvonplaten/unispeech-large-1500h-cv-timit"
_EXPECTED_OUTPUT_SHAPE = [1, 292, 1024]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'mister quilter is the apposl of the midle classes and weare glad to welcom his gosepl'"
_CTC_EXPECTED_LOSS = 17.17
@dataclass
class UniSpeechForPreTrainingOutput(ModelOutput):
"""
Output type of [`UniSpeechForPreTrainingOutput`], with potential hidden states and attentions.
Args:
loss (*optional*, returned when model is in train mode, `torch.FloatTensor` of shape `(1,)`):
Total loss as the sum of the contrastive loss (L_m) and the diversity loss (L_d) as stated in the [official
paper](https://arxiv.org/pdf/2006.11477.pdf) . (classification) loss.
projected_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Hidden-states of the model projected to *config.proj_codevector_dim* that can be used to predict the masked
projected quantized states.
projected_quantized_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.proj_codevector_dim)`):
Quantized extracted feature vectors projected to *config.proj_codevector_dim* representing the positive
target vectors for contrastive loss.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
projected_states: torch.FloatTensor = None
projected_quantized_states: torch.FloatTensor = None
codevector_perplexity: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2NoLayerNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechNoLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2LayerNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechLayerNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.layer_norm = nn.LayerNorm(self.out_conv_dim, elementwise_affine=True)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states.transpose(-2, -1)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2GroupNormConvLayer with Wav2Vec2->UniSpeech
class UniSpeechGroupNormConvLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.conv_dim[layer_id - 1] if layer_id > 0 else 1
self.out_conv_dim = config.conv_dim[layer_id]
self.conv = nn.Conv1d(
self.in_conv_dim,
self.out_conv_dim,
kernel_size=config.conv_kernel[layer_id],
stride=config.conv_stride[layer_id],
bias=config.conv_bias,
)
self.activation = ACT2FN[config.feat_extract_activation]
self.layer_norm = nn.GroupNorm(num_groups=self.out_conv_dim, num_channels=self.out_conv_dim, affine=True)
def forward(self, hidden_states):
hidden_states = self.conv(hidden_states)
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2PositionalConvEmbedding with Wav2Vec2->UniSpeech
class UniSpeechPositionalConvEmbedding(nn.Module):
def __init__(self, config):
super().__init__()
self.conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=config.num_conv_pos_embeddings,
padding=config.num_conv_pos_embeddings // 2,
groups=config.num_conv_pos_embedding_groups,
)
weight_norm = nn.utils.weight_norm
if hasattr(nn.utils.parametrizations, "weight_norm"):
weight_norm = nn.utils.parametrizations.weight_norm
if is_deepspeed_zero3_enabled():
import deepspeed
with deepspeed.zero.GatheredParameters(self.conv.weight, modifier_rank=0):
self.conv = weight_norm(self.conv, name="weight", dim=2)
if hasattr(self.conv, "parametrizations"):
weight_g = self.conv.parametrizations.weight.original0
weight_v = self.conv.parametrizations.weight.original1
else:
weight_g = self.conv.weight_g
weight_v = self.conv.weight_v
deepspeed.zero.register_external_parameter(self, weight_v)
deepspeed.zero.register_external_parameter(self, weight_g)
else:
self.conv = weight_norm(self.conv, name="weight", dim=2)
self.padding = UniSpeechSamePadLayer(config.num_conv_pos_embeddings)
self.activation = ACT2FN[config.feat_extract_activation]
def forward(self, hidden_states):
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.conv(hidden_states)
hidden_states = self.padding(hidden_states)
hidden_states = self.activation(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2SamePadLayer with Wav2Vec2->UniSpeech
class UniSpeechSamePadLayer(nn.Module):
def __init__(self, num_conv_pos_embeddings):
super().__init__()
self.num_pad_remove = 1 if num_conv_pos_embeddings % 2 == 0 else 0
def forward(self, hidden_states):
if self.num_pad_remove > 0:
hidden_states = hidden_states[:, :, : -self.num_pad_remove]
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureEncoder with Wav2Vec2->UniSpeech
class UniSpeechFeatureEncoder(nn.Module):
"""Construct the features from raw audio waveform"""
def __init__(self, config):
super().__init__()
if config.feat_extract_norm == "group":
conv_layers = [UniSpeechGroupNormConvLayer(config, layer_id=0)] + [
UniSpeechNoLayerNormConvLayer(config, layer_id=i + 1)
for i in range(config.num_feat_extract_layers - 1)
]
elif config.feat_extract_norm == "layer":
conv_layers = [
UniSpeechLayerNormConvLayer(config, layer_id=i) for i in range(config.num_feat_extract_layers)
]
else:
raise ValueError(
f"`config.feat_extract_norm` is {config.feat_extract_norm}, but has to be one of ['group', 'layer']"
)
self.conv_layers = nn.ModuleList(conv_layers)
self.gradient_checkpointing = False
self._requires_grad = True
def _freeze_parameters(self):
for param in self.parameters():
param.requires_grad = False
self._requires_grad = False
def forward(self, input_values):
hidden_states = input_values[:, None]
# make sure hidden_states require grad for gradient_checkpointing
if self._requires_grad and self.training:
hidden_states.requires_grad = True
for conv_layer in self.conv_layers:
if self._requires_grad and self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
conv_layer.__call__,
hidden_states,
)
else:
hidden_states = conv_layer(hidden_states)
return hidden_states
class UniSpeechFeatureExtractor(UniSpeechFeatureEncoder):
def __init__(self, config):
super().__init__(config)
warnings.warn(
f"The class `{self.__class__.__name__}` has been depreciated "
"and will be removed in Transformers v5. "
f"Use `{self.__class__.__bases__[0].__name__}` instead.",
FutureWarning,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeatureProjection with Wav2Vec2->UniSpeech
class UniSpeechFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.conv_dim[-1], eps=config.layer_norm_eps)
self.projection = nn.Linear(config.conv_dim[-1], config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->UniSpeech
class UniSpeechAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
embed_dim: int,
num_heads: int,
dropout: float = 0.0,
is_decoder: bool = False,
bias: bool = True,
is_causal: bool = False,
config: Optional[UniSpeechConfig] = None,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.config = config
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim**-0.5
self.is_decoder = is_decoder
self.is_causal = is_causal
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states) * self.scaling
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
key_states = key_states.reshape(*proj_shape)
value_states = value_states.reshape(*proj_shape)
src_len = key_states.size(1)
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
if layer_head_mask is not None:
if layer_head_mask.size() != (self.num_heads,):
raise ValueError(
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
f" {layer_head_mask.size()}"
)
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if output_attentions:
# this operation is a bit awkward, but it's required to
# make sure that attn_weights keeps its gradient.
# In order to do so, attn_weights have to be reshaped
# twice and have to be reused in the following
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
else:
attn_weights_reshaped = None
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
attn_output = torch.bmm(attn_probs, value_states)
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights_reshaped, past_key_value
# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->UniSpeech
class UniSpeechFlashAttention2(UniSpeechAttention):
"""
UniSpeech flash attention module. This module inherits from `UniSpeechAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# UniSpeechFlashAttention2 attention does not support output_attentions
if output_attentions:
raise ValueError("UniSpeechFlashAttention2 attention does not support output_attentions")
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, q_len, _ = hidden_states.size()
# get query proj
query_states = self._reshape(self.q_proj(hidden_states), -1, bsz)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0].transpose(1, 2)
value_states = past_key_value[1].transpose(1, 2)
elif is_cross_attention:
# cross_attentions
key_states = self._reshape(self.k_proj(key_value_states), -1, bsz)
value_states = self._reshape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1)
value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1)
else:
# self_attention
key_states = self._reshape(self.k_proj(hidden_states), -1, bsz)
value_states = self._reshape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2))
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in the correct dtype just to be sure everything works as expected.
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
# in fp32. (LlamaRMSNorm handles it correctly)
input_dtype = query_states.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.q_proj.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_states = query_states.to(target_dtype)
key_states = key_states.to(target_dtype)
value_states = value_states.to(target_dtype)
attn_output = _flash_attention_forward(
query_states,
key_states,
value_states,
attention_mask,
q_len,
dropout=self.dropout if self.training else 0.0,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_output = attn_output.reshape(bsz, q_len, -1)
attn_output = self.out_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class UniSpeechSdpaAttention(UniSpeechAttention):
# Copied from transformers.models.bart.modeling_bart.BartSdpaAttention.forward with Bart->UniSpeech
def forward(
self,
hidden_states: torch.Tensor,
key_value_states: Optional[torch.Tensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
layer_head_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
"""Input shape: Batch x Time x Channel"""
if output_attentions or layer_head_mask is not None:
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
logger.warning_once(
"UniSpeechModel is using UniSpeechSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` or `layer_head_mask` not None. Falling back to the manual attention"
' implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
return super().forward(
hidden_states,
key_value_states=key_value_states,
past_key_value=past_key_value,
attention_mask=attention_mask,
layer_head_mask=layer_head_mask,
output_attentions=output_attentions,
)
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
bsz, tgt_len, _ = hidden_states.size()
# get query proj
query_states = self.q_proj(hidden_states)
# get key, value proj
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
# is checking that the `sequence_length` of the `past_key_value` is the same as
# the provided `key_value_states` to support prefix tuning
if (
is_cross_attention
and past_key_value is not None
and past_key_value[0].shape[2] == key_value_states.shape[1]
):
# reuse k,v, cross_attentions
key_states = past_key_value[0]
value_states = past_key_value[1]
elif is_cross_attention:
# cross_attentions
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
elif past_key_value is not None:
# reuse k, v, self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
else:
# self_attention
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_states, value_states)
query_states = self._shape(query_states, tgt_len, bsz)
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
# The tgt_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case tgt_len == 1.
is_causal = True if self.is_causal and attention_mask is None and tgt_len > 1 else False
# NOTE: SDPA with memory-efficient backend is currently (torch==2.1.2) bugged when using non-contiguous inputs and a custom attn_mask,
# but we are fine here as `_shape` do call `.contiguous()`. Reference: https://github.com/pytorch/pytorch/issues/112577
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_states,
key_states,
value_states,
attn_mask=attention_mask,
dropout_p=self.dropout if self.training else 0.0,
is_causal=is_causal,
)
if attn_output.size() != (bsz, self.num_heads, tgt_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2)
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
# partitioned across GPUs when using tensor-parallelism.
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
attn_output = self.out_proj(attn_output)
return attn_output, None, past_key_value
UNISPEECH_ATTENTION_CLASSES = {
"eager": UniSpeechAttention,
"sdpa": UniSpeechSdpaAttention,
"flash_attention_2": UniSpeechFlashAttention2,
}
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward with Wav2Vec2->UniSpeech
class UniSpeechFeedForward(nn.Module):
def __init__(self, config):
super().__init__()
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.output_dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayer with Wav2Vec2->UniSpeech, WAV2VEC2->UNISPEECH
class UniSpeechEncoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UNISPEECH_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
attn_residual = hidden_states
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states = hidden_states + self.feed_forward(hidden_states)
hidden_states = self.final_layer_norm(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2AttnAdapterLayer with Wav2Vec2->UniSpeech
class UniSpeechAttnAdapterLayer(nn.Module):
def __init__(self, config):
"""
Implements adapter modules directly with 3D tensor weight as parameters and without using ModuleList to speed
up training throughput.
"""
super().__init__()
self.input_dim = config.adapter_attn_dim
self.hidden_dim = config.hidden_size
self.norm = nn.LayerNorm(self.hidden_dim)
self.linear_1 = nn.Linear(self.hidden_dim, self.input_dim)
self.act_fn = nn.ReLU()
self.linear_2 = nn.Linear(self.input_dim, self.hidden_dim)
def forward(self, hidden_states: torch.FloatTensor):
hidden_states = self.norm(hidden_states)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act_fn(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderLayerStableLayerNorm with Wav2Vec2->UniSpeech, WAV2VEC2->UNISPEECH
class UniSpeechEncoderLayerStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.attention = UNISPEECH_ATTENTION_CLASSES[config._attn_implementation](
embed_dim=config.hidden_size,
num_heads=config.num_attention_heads,
dropout=config.attention_dropout,
is_decoder=False,
)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.feed_forward = UniSpeechFeedForward(config)
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
if getattr(config, "adapter_attn_dim", None) is not None:
self.adapter_layer = UniSpeechAttnAdapterLayer(config)
else:
self.adapter_layer = None
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
):
attn_residual = hidden_states
hidden_states = self.layer_norm(hidden_states)
hidden_states, attn_weights, _ = self.attention(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = self.dropout(hidden_states)
hidden_states = attn_residual + hidden_states
hidden_states = hidden_states + self.feed_forward(self.final_layer_norm(hidden_states))
if self.adapter_layer is not None:
hidden_states = hidden_states + self.adapter_layer(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_weights,)
return outputs
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Encoder with Wav2Vec2->UniSpeech
class UniSpeechEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([UniSpeechEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
hidden_states: torch.tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens output 0
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_attention_mask] = 0
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2EncoderStableLayerNorm with Wav2Vec2->UniSpeech
class UniSpeechEncoderStableLayerNorm(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.pos_conv_embed = UniSpeechPositionalConvEmbedding(config)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList(
[UniSpeechEncoderLayerStableLayerNorm(config) for _ in range(config.num_hidden_layers)]
)
self.gradient_checkpointing = False
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if attention_mask is not None:
# make sure padded tokens are not attended to
expand_attention_mask = attention_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states = hidden_states * expand_attention_mask.to(dtype=hidden_states.dtype)
if self._use_flash_attention_2:
# 2d mask is passed through the layers
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
else:
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
position_embeddings = self.pos_conv_embed(hidden_states)
hidden_states = hidden_states + position_embeddings
hidden_states = self.dropout(hidden_states)
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for layer in self.layers:
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
# XXX: could optimize this like synced_gpus in generate_utils but not sure if it's worth the code complication
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
output_attentions,
)
else:
layer_outputs = layer(
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
hidden_states = self.layer_norm(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class UniSpeechGumbelVectorQuantizer(nn.Module):
"""
Vector quantization using gumbel softmax. See [CATEGORICAL REPARAMETERIZATION WITH
GUMBEL-SOFTMAX](https://arxiv.org/pdf/1611.01144.pdf) for more information.
"""
def __init__(self, config):
super().__init__()
self.num_groups = config.num_codevector_groups
self.num_vars = config.num_codevectors_per_group
if config.codevector_dim % self.num_groups != 0:
raise ValueError(
f"`config.codevector_dim {config.codevector_dim} must be divisible by `config.num_codevector_groups`"
f" {self.num_groups} for concatenation"
)
# storage for codebook variables (codewords)
self.codevectors = nn.Parameter(
torch.FloatTensor(1, self.num_groups * self.num_vars, config.codevector_dim // self.num_groups)
)
self.weight_proj = nn.Linear(config.conv_dim[-1], self.num_groups * self.num_vars)
# can be decayed for training
self.temperature = 2
@staticmethod
def _compute_perplexity(probs):
marginal_probs = probs.mean(dim=0)
perplexity = torch.exp(-torch.sum(marginal_probs * torch.log(marginal_probs + 1e-7), dim=-1)).sum()
return perplexity
def forward(self, hidden_states):
batch_size, sequence_length, hidden_size = hidden_states.shape
# project to codevector dim
hidden_states = self.weight_proj(hidden_states)
hidden_states = hidden_states.view(batch_size * sequence_length * self.num_groups, -1)
if self.training:
# sample code vector probs via gumbel in differentiateable way
codevector_probs = nn.functional.gumbel_softmax(
hidden_states.float(), tau=self.temperature, hard=True
).type_as(hidden_states)
# compute perplexity
codevector_soft_dist = torch.softmax(
hidden_states.view(batch_size * sequence_length, self.num_groups, -1).float(), dim=-1
)
perplexity = self._compute_perplexity(codevector_soft_dist)
else:
# take argmax in non-differentiable way
# comptute hard codevector distribution (one hot)
codevector_idx = hidden_states.argmax(dim=-1)
codevector_probs = hidden_states.new_zeros(*hidden_states.shape).scatter_(
-1, codevector_idx.view(-1, 1), 1.0
)
codevector_probs = codevector_probs.view(batch_size * sequence_length, self.num_groups, -1)
perplexity = self._compute_perplexity(codevector_probs)
codevector_probs = codevector_probs.view(batch_size * sequence_length, -1)
# use probs to retrieve codevectors
codevectors_per_group = codevector_probs.unsqueeze(-1) * self.codevectors
codevectors = codevectors_per_group.view(batch_size * sequence_length, self.num_groups, self.num_vars, -1)
codevectors = codevectors.sum(-2).view(batch_size, sequence_length, -1)
return codevectors, perplexity
class UniSpeechPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = UniSpeechConfig
base_model_prefix = "unispeech"
main_input_name = "input_values"
supports_gradient_checkpointing = True
_supports_flash_attn_2 = True
_supports_sdpa = True
def _init_weights(self, module):
"""Initialize the weights"""
# gumbel softmax requires special init
if isinstance(module, UniSpeechGumbelVectorQuantizer):
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
module.weight_proj.bias.data.zero_()
nn.init.uniform_(module.codevectors)
elif isinstance(module, UniSpeechPositionalConvEmbedding):
nn.init.normal_(
module.conv.weight,
mean=0,
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
)
nn.init.constant_(module.conv.bias, 0)
elif isinstance(module, UniSpeechFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
def _get_feat_extract_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the convolutional layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
return input_lengths
def _get_feature_vector_attention_mask(self, feature_vector_length: int, attention_mask: torch.LongTensor):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths).to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
UNISPEECH_START_DOCSTRING = r"""
UniSpeech was proposed in [UniSpeech: Unified Speech Representation Learning with Labeled and Unlabeled
Data](https://arxiv.org/abs/2101.07597) by Chengyi Wang, Yu Wu, Yao Qian, Kenichi Kumatani, Shujie Liu, Furu Wei,
Michael Zeng, Xuedong Huang.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`UniSpeechConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
UNISPEECH_INPUTS_DOCSTRING = r"""
Args:
input_values (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_values`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2Processor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
<Tip warning={true}>
`attention_mask` should only be passed if the corresponding processor has `config.return_attention_mask ==
True`. For all models whose processor has `config.return_attention_mask == False`, `attention_mask` should
**not** be passed to avoid degraded performance when doing batched inference. For such models
`input_values` should simply be padded with 0 and passed without `attention_mask`. Be aware that these
models also yield slightly different results depending on whether `input_values` is padded or not.
</Tip>
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare UniSpeech Model transformer outputting raw hidden-states without any specific head on top.",
UNISPEECH_START_DOCSTRING,
)
class UniSpeechModel(UniSpeechPreTrainedModel):
def __init__(self, config: UniSpeechConfig):
super().__init__(config)
self.config = config
self.feature_extractor = UniSpeechFeatureEncoder(config)
self.feature_projection = UniSpeechFeatureProjection(config)
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
if config.do_stable_layer_norm:
self.encoder = UniSpeechEncoderStableLayerNorm(config)
else:
self.encoder = UniSpeechEncoder(config)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
extract_features = self.feature_extractor(input_values)
extract_features = extract_features.transpose(1, 2)
if attention_mask is not None:
# compute reduced attention_mask corresponding to feature vectors
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
hidden_states, extract_features = self.feature_projection(extract_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""UniSpeech Model with a vector-quantization module and ctc loss for pre-training.""", UNISPEECH_START_DOCSTRING
)
class UniSpeechForPreTraining(UniSpeechPreTrainedModel):
def __init__(self, config: UniSpeechConfig):
super().__init__(config)
self.unispeech = UniSpeechModel(config)
self.dropout_features = nn.Dropout(config.feat_quantizer_dropout)
self.quantizer = UniSpeechGumbelVectorQuantizer(config)
self.project_q = nn.Linear(config.codevector_dim, config.proj_codevector_dim)
self.project_hid = nn.Linear(config.proj_codevector_dim, config.hidden_size)
self.ctc_proj = nn.Linear(config.hidden_size, config.num_ctc_classes)
self.dropout = nn.Dropout(config.final_dropout)
# Initialize weights and apply final processing
self.post_init()
def set_gumbel_temperature(self, temperature: int):
"""
Set the Gumbel softmax temperature to a given value. Only necessary for training
"""
self.quantizer.temperature = temperature
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
@staticmethod
def compute_contrastive_logits(
target_features: torch.FloatTensor,
negative_features: torch.FloatTensor,
predicted_features: torch.FloatTensor,
temperature: int = 1,
):
"""
Compute logits for contrastive loss based using cosine similarity as the distance measure between
`[positive_feature, negative_features]` and `[predicted_features]`. Additionally, temperature can be applied.
"""
target_features = torch.cat([target_features, negative_features], dim=0)
logits = torch.cosine_similarity(predicted_features.float(), target_features.float(), dim=-1)
logits = logits.type_as(target_features)
# apply temperature
logits = logits / temperature
return logits
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=UniSpeechForPreTrainingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, UniSpeechForPreTrainingOutput]:
r"""
mask_time_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices to mask extracted features for contrastive loss. When in training mode, model learns to predict
masked extracted features in *config.proj_codevector_dim* space.
sampled_negative_indices (`torch.BoolTensor` of shape `(batch_size, sequence_length, num_negatives)`, *optional*):
Indices indicating which quantized target vectors are used as negative sampled vectors in contrastive loss.
Required input for pre-training.
Returns:
Example:
```python
>>> import torch
>>> from transformers import AutoFeatureExtractor, UniSpeechForPreTraining
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("microsoft/unispeech-large-1500h-cv")
>>> model = UniSpeechForPreTraining.from_pretrained("microsoft/unispeech-large-1500h-cv")
>>> # TODO: Add full pretraining example
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
transformer_features = outputs[0]
# quantize all (unmasked) extracted features and project to final vq dim
extract_features = self.dropout_features(outputs[1])
quantized_features, codevector_perplexity = self.quantizer(extract_features)
# project quantized features twice
quantized_features = self.project_q(quantized_features.to(self.project_q.weight.dtype))
quantized_features = self.project_hid(quantized_features)
prob_replace_matrix = torch.empty(transformer_features.size(0), transformer_features.size(1)).fill_(
self.config.replace_prob
)
prob_replace_matrix = prob_replace_matrix.transpose(0, 1)
sampled_replace_matrix = torch.bernoulli(prob_replace_matrix).bool().to(transformer_features.device)
sampled_replace_matrix = sampled_replace_matrix.transpose(0, 1)
sampled_replace_matrix = sampled_replace_matrix.unsqueeze(-1)
logits = transformer_features.masked_fill(sampled_replace_matrix, 0.0) + (
quantized_features.masked_fill(~sampled_replace_matrix, 0.0)
)
# project to ctc units
logits = self.dropout(logits)
logits = self.ctc_proj(logits)
# TODO(PVP) - add negative sampling & loss computation
loss = None
if not return_dict:
if loss is not None:
return (loss, transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return (transformer_features, quantized_features, codevector_perplexity) + outputs[2:]
return UniSpeechForPreTrainingOutput(
loss=loss,
projected_states=transformer_features,
projected_quantized_states=quantized_features,
codevector_perplexity=codevector_perplexity,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""UniSpeech Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
UNISPEECH_START_DOCSTRING,
"""
target_lang (`str`, *optional*):
Language id of adapter weights. Adapter weights are stored in the format adapter.<lang>.safetensors or
adapter.<lang>.bin. Only relevant when using an instance of [`UniSpeechForCTC`] with adapters. Uses 'eng'
by default.
""",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForCTC with Wav2Vec2->UniSpeech, wav2vec2->unispeech, WAV_2_VEC_2->UNISPEECH
class UniSpeechForCTC(UniSpeechPreTrainedModel):
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.unispeech = UniSpeechModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `UniSpeechForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
def tie_weights(self):
"""
This method overwrites [`~PreTrainedModel.tie_weights`] so that adapter weights can be correctly loaded when
passing `target_lang=...` to `from_pretrained(...)`.
This method is **not** supposed to be called by the user and is prone to be changed in the future.
"""
# Note that `tie_weights` is usually used to tie input and output embedding weights. The method is re-purposed to
# correctly load adapter layers for UniSpeech so that we do not have to introduce a new API to
# [`PreTrainedModel`]. While slightly hacky, UniSpeech never has to tie input and output embeddings, so that it is
# ok to repurpose this function here.
target_lang = self.target_lang
if target_lang is not None and getattr(self.config, "adapter_attn_dim", None) is None:
raise ValueError(f"Cannot pass `target_lang`: {target_lang} if `config.adapter_attn_dim` is not defined.")
elif target_lang is None and getattr(self.config, "adapter_attn_dim", None) is not None:
logger.info("By default `target_lang` is set to 'eng'.")
elif target_lang is not None:
self.load_adapter(target_lang, force_load=True)
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if labels is not None and labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask if attention_mask is not None else torch.ones_like(input_values, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(-1)).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
UniSpeech Model with a sequence classification head on top (a linear layer over the pooled output) for tasks like
SUPERB Keyword Spotting.
""",
UNISPEECH_START_DOCSTRING,
)
class UniSpeechForSequenceClassification(UniSpeechPreTrainedModel):
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of UniSpeech adapters (config.add_adapter=True)"
)
self.unispeech = UniSpeechModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_extractor
def freeze_feature_extractor(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
not be updated during training.
"""
warnings.warn(
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
"Please use the equivalent `freeze_feature_encoder` method instead.",
FutureWarning,
)
self.freeze_feature_encoder()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_feature_encoder with wav2vec2->unispeech
def freeze_feature_encoder(self):
"""
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
not be updated during training.
"""
self.unispeech.feature_extractor._freeze_parameters()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.freeze_base_model with wav2vec2->unispeech
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.unispeech.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(UNISPEECH_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->UniSpeech, wav2vec2->unispeech
def forward(
self,
input_values: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.unispeech(
input_values,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"UniSpeechForCTC",
"UniSpeechForPreTraining",
"UniSpeechForSequenceClassification",
"UniSpeechModel",
"UniSpeechPreTrainedModel",
]
| transformers/src/transformers/models/unispeech/modeling_unispeech.py/0 | {
"file_path": "transformers/src/transformers/models/unispeech/modeling_unispeech.py",
"repo_id": "transformers",
"token_count": 36927
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch VisionTextDualEncoder model."""
from typing import Optional, Tuple, Union
import torch
from torch import nn
from ...modeling_utils import PreTrainedModel
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings
from ..auto.configuration_auto import AutoConfig
from ..auto.modeling_auto import AutoModel
from ..clip.modeling_clip import CLIPOutput, CLIPVisionConfig, CLIPVisionModel
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "VisionTextDualEncoderConfig"
VISION_TEXT_DUAL_ENCODER_START_DOCSTRING = r"""
This class can be used to initialize a vision-text dual encoder model with any pretrained vision autoencoding model
as the vision encoder and any pretrained text model as the text encoder. The vision and text encoders are loaded
via the [`~AutoModel.from_pretrained`] method. The projection layers are automatically added to the model and
should be fine-tuned on a downstream task, like contrastive image-text modeling.
In [LiT: Zero-Shot Transfer with Locked-image Text Tuning](https://arxiv.org/abs/2111.07991) it is shown how
leveraging pre-trained (locked/frozen) image and text model for contrastive learning yields significant improvment
on new zero-shot vision tasks such as image classification or retrieval.
After such a Vision-Text-Dual-Encoder model has been trained/fine-tuned, it can be saved/loaded just like any other
models (see the examples for more information).
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`VisionEncoderDecoderConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
an image processor (e.g. if you use ViT as the encoder, you should use [`AutoImageProcessor`]). See
[`ViTImageProcessor.__call__`] for details.
return_loss (`bool`, *optional*):
Whether or not to return the contrastive loss.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.clip.modeling_clip.contrastive_loss
def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
# Copied from transformers.models.clip.modeling_clip.clip_loss
def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
caption_loss = contrastive_loss(similarity)
image_loss = contrastive_loss(similarity.t())
return (caption_loss + image_loss) / 2.0
@add_start_docstrings(VISION_TEXT_DUAL_ENCODER_START_DOCSTRING)
class VisionTextDualEncoderModel(PreTrainedModel):
config_class = VisionTextDualEncoderConfig
base_model_prefix = "vision_text_dual_encoder"
_supports_flash_attn_2 = True
_supports_sdpa = True
def __init__(
self,
config: Optional[VisionTextDualEncoderConfig] = None,
vision_model: Optional[PreTrainedModel] = None,
text_model: Optional[PreTrainedModel] = None,
):
if config is None and (vision_model is None or text_model is None):
raise ValueError("Either a configuration or an vision and a text model has to be provided")
if config is None:
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config)
else:
if not isinstance(config, self.config_class):
raise ValueError(f"config: {config} has to be of type {self.config_class}")
# initialize with config
super().__init__(config)
if vision_model is None:
if isinstance(config.vision_config, CLIPVisionConfig):
vision_model = CLIPVisionModel(config.vision_config)
else:
vision_model = AutoModel.from_config(config.vision_config)
if text_model is None:
text_model = AutoModel.from_config(config.text_config)
self.vision_model = vision_model
self.text_model = text_model
# make sure that the individual model's config refers to the shared config
# so that the updates to the config will be synced
self.config.vision_config._attn_implementation = self.vision_model.config._attn_implementation
self.config.text_config._attn_implementation = self.text_model.config._attn_implementation
self.vision_model.config = self.config.vision_config
self.text_model.config = self.config.text_config
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.projection_dim = config.projection_dim
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_TEXT_INPUTS_DOCSTRING)
def get_text_features(
self,
input_ids=None,
attention_mask=None,
position_ids=None,
token_type_ids=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`CLIPTextModel`].
Examples:
```python
>>> from transformers import VisionTextDualEncoderModel, AutoTokenizer
>>> model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian")
>>> tokenizer = AutoTokenizer.from_pretrained("clip-italian/clip-italian")
>>> inputs = tokenizer(["una foto di un gatto", "una foto di un cane"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
token_type_ids=token_type_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = text_outputs[1]
text_features = self.text_projection(pooled_output)
return text_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_VISION_INPUTS_DOCSTRING)
def get_image_features(
self,
pixel_values=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`CLIPVisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import VisionTextDualEncoderModel, AutoImageProcessor
>>> model = VisionTextDualEncoderModel.from_pretrained("clip-italian/clip-italian")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = vision_outputs[1] # pooled_output
image_features = self.visual_projection(pooled_output)
return image_features
@add_start_docstrings_to_model_forward(VISION_TEXT_DUAL_ENCODER_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CLIPOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
return_loss: Optional[bool] = None,
token_type_ids: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
r"""
Returns:
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import (
... VisionTextDualEncoderModel,
... VisionTextDualEncoderProcessor,
... AutoImageProcessor,
... AutoTokenizer,
... )
>>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
>>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
>>> processor = VisionTextDualEncoderProcessor(image_processor, tokenizer)
>>> model = VisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # contrastive training
>>> urls = [
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... "https://farm3.staticflickr.com/2674/5850229113_4fe05d5265_z.jpg",
... ]
>>> images = [Image.open(requests.get(url, stream=True).raw) for url in urls]
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=images, return_tensors="pt", padding=True
... )
>>> outputs = model(
... input_ids=inputs.input_ids,
... attention_mask=inputs.attention_mask,
... pixel_values=inputs.pixel_values,
... return_loss=True,
... )
>>> loss, logits_per_image = outputs.loss, outputs.logits_per_image # this is the image-text similarity score
>>> # save and load from pretrained
>>> model.save_pretrained("vit-bert")
>>> model = VisionTextDualEncoderModel.from_pretrained("vit-bert")
>>> # inference
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
return_dict = return_dict if return_dict is not None else self.config.return_dict
vision_outputs = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
text_outputs = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
image_embeds = vision_outputs[1] # pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs[1] # pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = self.logit_scale.exp()
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
logits_per_image = logits_per_text.T
loss = None
if return_loss:
loss = clip_loss(logits_per_text)
if not return_dict:
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
return ((loss,) + output) if loss is not None else output
return CLIPOutput(
loss=loss,
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
@classmethod
def from_pretrained(cls, *args, **kwargs):
# At the moment fast initialization is not supported
# for composite models
kwargs["_fast_init"] = False
return super().from_pretrained(*args, **kwargs)
@classmethod
def from_vision_text_pretrained(
cls,
vision_model_name_or_path: str = None,
text_model_name_or_path: str = None,
*model_args,
**kwargs,
) -> PreTrainedModel:
"""
Params:
vision_model_name_or_path (`str`, *optional*, defaults to `None`):
Information necessary to initiate the vision model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
text_model_name_or_path (`str`, *optional*):
Information necessary to initiate the text model. Can be either:
- A string, the *model id* of a pretrained model hosted inside a model repo on huggingface.co.
- A path to a *directory* containing model weights saved using
[`~PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`.
- A path or url to a *PyTorch checkpoint folder* (e.g, `./pt_model`). In this case, `from_pt`
should be set to `True` and a configuration object should be provided as `config` argument. This
loading path is slower than converting the PyTorch checkpoint in a Flax model using the provided
conversion scripts and loading the Flax model afterwards.
model_args (remaining positional arguments, *optional*):
All remaning positional arguments will be passed to the underlying model's `__init__` method.
kwargs (remaining dictionary of keyword arguments, *optional*):
Can be used to update the configuration object (after it being loaded) and initiate the model (e.g.,
`output_attentions=True`).
- To update the text configuration, use the prefix *text_* for each configuration parameter.
- To update the vision configuration, use the prefix *vision_* for each configuration parameter.
- To update the parent model configuration, do not use a prefix for each configuration parameter.
Behaves differently depending on whether a `config` is provided or automatically loaded.
Example:
```python
>>> from transformers import VisionTextDualEncoderModel
>>> # initialize a model from pretrained ViT and BERT models. Note that the projection layers will be randomly initialized.
>>> model = VisionTextDualEncoderModel.from_vision_text_pretrained(
... "google/vit-base-patch16-224", "google-bert/bert-base-uncased"
... )
>>> # saving model after fine-tuning
>>> model.save_pretrained("./vit-bert")
>>> # load fine-tuned model
>>> model = VisionTextDualEncoderModel.from_pretrained("./vit-bert")
```"""
kwargs_vision = {
argument[len("vision_") :]: value for argument, value in kwargs.items() if argument.startswith("vision_")
}
kwargs_text = {
argument[len("text_") :]: value for argument, value in kwargs.items() if argument.startswith("text_")
}
# remove vision, text kwargs from kwargs
for key in kwargs_vision.keys():
del kwargs["vision_" + key]
for key in kwargs_text.keys():
del kwargs["text_" + key]
# Load and initialize the vision and text model
vision_model = kwargs_vision.pop("model", None)
if vision_model is None:
if vision_model_name_or_path is None:
raise ValueError(
"If `vision_model` is not defined as an argument, a `vision_model_name_or_path` has to be defined"
)
if "config" not in kwargs_vision:
vision_config = AutoConfig.from_pretrained(vision_model_name_or_path)
if vision_config.model_type == "clip":
kwargs_vision["config"] = vision_config.vision_config
vision_model = CLIPVisionModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
# TODO: Should we use the pre-trained projection as well ?
else:
kwargs_vision["config"] = vision_config
vision_model = AutoModel.from_pretrained(vision_model_name_or_path, *model_args, **kwargs_vision)
text_model = kwargs_text.pop("model", None)
if text_model is None:
if text_model_name_or_path is None:
raise ValueError(
"If `text_model` is not defined as an argument, a `text_model_name_or_path` has to be defined"
)
if "config" not in kwargs_text:
text_config = AutoConfig.from_pretrained(text_model_name_or_path)
kwargs_text["config"] = text_config
text_model = AutoModel.from_pretrained(text_model_name_or_path, *model_args, **kwargs_text)
# instantiate config with corresponding kwargs
config = VisionTextDualEncoderConfig.from_vision_text_configs(vision_model.config, text_model.config, **kwargs)
# init model
model = cls(config=config, vision_model=vision_model, text_model=text_model)
# the projection layers are always newly initialized when loading the model
# using pre-trained vision and text model.
logger.warning(
"The projection layer and logit scale weights `['visual_projection.weight', 'text_projection.weight',"
" 'logit_scale']` are newly initialized. You should probably TRAIN this model on a down-stream task to be"
" able to use it for predictions and inference."
)
return model
__all__ = ["VisionTextDualEncoderModel"]
| transformers/src/transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py/0 | {
"file_path": "transformers/src/transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py",
"repo_id": "transformers",
"token_count": 10088
} |
# coding=utf-8
# Copyright 2023 HUST-VL and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ViTMatte model."""
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
replace_return_docstrings,
)
from ...utils.backbone_utils import load_backbone
from .configuration_vitmatte import VitMatteConfig
# General docstring
_CONFIG_FOR_DOC = "VitMatteConfig"
@dataclass
class ImageMattingOutput(ModelOutput):
"""
Class for outputs of image matting models.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Loss.
alphas (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Estimated alpha values.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each stage) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states
(also called feature maps) of the model at the output of each stage.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, patch_size,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
loss: Optional[torch.FloatTensor] = None
alphas: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class VitMattePreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = VitMatteConfig
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = []
def _init_weights(self, module):
if isinstance(module, nn.Conv2d):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
class VitMatteBasicConv3x3(nn.Module):
"""
Basic convolution layers including: Conv3x3, BatchNorm2d, ReLU layers.
"""
def __init__(self, config, in_channels, out_channels, stride=2, padding=1):
super().__init__()
self.conv = nn.Conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=3,
stride=stride,
padding=padding,
bias=False,
)
self.batch_norm = nn.BatchNorm2d(out_channels, eps=config.batch_norm_eps)
self.relu = nn.ReLU()
def forward(self, hidden_state):
hidden_state = self.conv(hidden_state)
hidden_state = self.batch_norm(hidden_state)
hidden_state = self.relu(hidden_state)
return hidden_state
class VitMatteConvStream(nn.Module):
"""
Simple ConvStream containing a series of basic conv3x3 layers to extract detail features.
"""
def __init__(self, config):
super().__init__()
# We use a default in-case there isn't a backbone config set. This is for backwards compatibility and
# to enable loading HF backbone models.
in_channels = 4
if config.backbone_config is not None:
in_channels = config.backbone_config.num_channels
out_channels = config.convstream_hidden_sizes
self.convs = nn.ModuleList()
self.conv_chans = [in_channels] + out_channels
for i in range(len(self.conv_chans) - 1):
in_chan_ = self.conv_chans[i]
out_chan_ = self.conv_chans[i + 1]
self.convs.append(VitMatteBasicConv3x3(config, in_chan_, out_chan_))
def forward(self, pixel_values):
out_dict = {"detailed_feature_map_0": pixel_values}
embeddings = pixel_values
for i in range(len(self.convs)):
embeddings = self.convs[i](embeddings)
name_ = "detailed_feature_map_" + str(i + 1)
out_dict[name_] = embeddings
return out_dict
class VitMatteFusionBlock(nn.Module):
"""
Simple fusion block to fuse features from ConvStream and Plain Vision Transformer.
"""
def __init__(self, config, in_channels, out_channels):
super().__init__()
self.conv = VitMatteBasicConv3x3(config, in_channels, out_channels, stride=1, padding=1)
def forward(self, features, detailed_feature_map):
upscaled_features = nn.functional.interpolate(features, scale_factor=2, mode="bilinear", align_corners=False)
out = torch.cat([detailed_feature_map, upscaled_features], dim=1)
out = self.conv(out)
return out
class VitMatteHead(nn.Module):
"""
Simple Matting Head, containing only conv3x3 and conv1x1 layers.
"""
def __init__(self, config):
super().__init__()
in_channels = config.fusion_hidden_sizes[-1]
mid_channels = 16
self.matting_convs = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(mid_channels),
nn.ReLU(True),
nn.Conv2d(mid_channels, 1, kernel_size=1, stride=1, padding=0),
)
def forward(self, hidden_state):
hidden_state = self.matting_convs(hidden_state)
return hidden_state
class VitMatteDetailCaptureModule(nn.Module):
"""
Simple and lightweight Detail Capture Module for ViT Matting.
"""
def __init__(self, config):
super().__init__()
if len(config.fusion_hidden_sizes) != len(config.convstream_hidden_sizes) + 1:
raise ValueError(
"The length of fusion_hidden_sizes should be equal to the length of convstream_hidden_sizes + 1."
)
self.config = config
self.convstream = VitMatteConvStream(config)
self.conv_chans = self.convstream.conv_chans
self.fusion_blocks = nn.ModuleList()
self.fusion_channels = [config.hidden_size] + config.fusion_hidden_sizes
for i in range(len(self.fusion_channels) - 1):
self.fusion_blocks.append(
VitMatteFusionBlock(
config=config,
in_channels=self.fusion_channels[i] + self.conv_chans[-(i + 1)],
out_channels=self.fusion_channels[i + 1],
)
)
self.matting_head = VitMatteHead(config)
def forward(self, features, pixel_values):
detail_features = self.convstream(pixel_values)
for i in range(len(self.fusion_blocks)):
detailed_feature_map_name = "detailed_feature_map_" + str(len(self.fusion_blocks) - i - 1)
features = self.fusion_blocks[i](features, detail_features[detailed_feature_map_name])
alphas = torch.sigmoid(self.matting_head(features))
return alphas
VITMATTE_START_DOCSTRING = r"""
Parameters:
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
VITMATTE_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`VitMatteImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See
`attentions` under returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under
returned tensors for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""ViTMatte framework leveraging any vision backbone e.g. for ADE20k, CityScapes.""",
VITMATTE_START_DOCSTRING,
)
class VitMatteForImageMatting(VitMattePreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.config = config
self.backbone = load_backbone(config)
self.decoder = VitMatteDetailCaptureModule(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(VITMATTE_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=ImageMattingOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
return_dict: Optional[bool] = None,
):
"""
labels (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth image matting for computing the loss.
Returns:
Examples:
```python
>>> from transformers import VitMatteImageProcessor, VitMatteForImageMatting
>>> import torch
>>> from PIL import Image
>>> from huggingface_hub import hf_hub_download
>>> processor = VitMatteImageProcessor.from_pretrained("hustvl/vitmatte-small-composition-1k")
>>> model = VitMatteForImageMatting.from_pretrained("hustvl/vitmatte-small-composition-1k")
>>> filepath = hf_hub_download(
... repo_id="hf-internal-testing/image-matting-fixtures", filename="image.png", repo_type="dataset"
... )
>>> image = Image.open(filepath).convert("RGB")
>>> filepath = hf_hub_download(
... repo_id="hf-internal-testing/image-matting-fixtures", filename="trimap.png", repo_type="dataset"
... )
>>> trimap = Image.open(filepath).convert("L")
>>> # prepare image + trimap for the model
>>> inputs = processor(images=image, trimaps=trimap, return_tensors="pt")
>>> with torch.no_grad():
... alphas = model(**inputs).alphas
>>> print(alphas.shape)
torch.Size([1, 1, 640, 960])
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
loss = None
if labels is not None:
raise NotImplementedError("Training is not yet supported")
outputs = self.backbone.forward_with_filtered_kwargs(
pixel_values, output_hidden_states=output_hidden_states, output_attentions=output_attentions
)
features = outputs.feature_maps[-1]
alphas = self.decoder(features, pixel_values)
if not return_dict:
output = (alphas,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return ImageMattingOutput(
loss=loss,
alphas=alphas,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = ["VitMattePreTrainedModel", "VitMatteForImageMatting"]
| transformers/src/transformers/models/vitmatte/modeling_vitmatte.py/0 | {
"file_path": "transformers/src/transformers/models/vitmatte/modeling_vitmatte.py",
"repo_id": "transformers",
"token_count": 5299
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Flax ViViT checkpoints from the original repository to PyTorch. URL:
https://github.com/google-research/scenic/tree/main/scenic/projects/vivit
"""
import argparse
import json
import os.path
from collections import OrderedDict
import numpy as np
import requests
import torch
from flax.training.checkpoints import restore_checkpoint
from huggingface_hub import hf_hub_download
from transformers import VivitConfig, VivitForVideoClassification, VivitImageProcessor
from transformers.image_utils import PILImageResampling
def download_checkpoint(path):
url = "https://storage.googleapis.com/scenic-bucket/vivit/kinetics_400/vivit_base_16x2_unfactorized/checkpoint"
with open(path, "wb") as f:
with requests.get(url, stream=True) as req:
for chunk in req.iter_content(chunk_size=2048):
f.write(chunk)
def get_vivit_config() -> VivitConfig:
config = VivitConfig()
config.num_labels = 400
repo_id = "huggingface/label-files"
filename = "kinetics400-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
# We will verify our results on a video of eating spaghetti
# Frame indices used: [ 47, 51, 55, 59, 63, 67, 71, 75, 80, 84, 88, 92, 96, 100, 104, 108, 113, 117,
# 121, 125, 129, 133, 137, 141, 146, 150, 154, 158, 162, 166, 170, 174]
def prepare_video():
file = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti_32_frames.npy", repo_type="dataset"
)
video = np.load(file)
return list(video)
def transform_attention(current: np.ndarray):
if np.ndim(current) == 2:
return transform_attention_bias(current)
elif np.ndim(current) == 3:
return transform_attention_kernel(current)
else:
raise Exception(f"Invalid number of dimesions: {np.ndim(current)}")
def transform_attention_bias(current: np.ndarray):
return current.flatten()
def transform_attention_kernel(current: np.ndarray):
return np.reshape(current, (current.shape[0], current.shape[1] * current.shape[2])).T
def transform_attention_output_weight(current: np.ndarray):
return np.reshape(current, (current.shape[0] * current.shape[1], current.shape[2])).T
def transform_state_encoder_block(state_dict, i):
state = state_dict["optimizer"]["target"]["Transformer"][f"encoderblock_{i}"]
prefix = f"encoder.layer.{i}."
new_state = {
prefix + "intermediate.dense.bias": state["MlpBlock_0"]["Dense_0"]["bias"],
prefix + "intermediate.dense.weight": np.transpose(state["MlpBlock_0"]["Dense_0"]["kernel"]),
prefix + "output.dense.bias": state["MlpBlock_0"]["Dense_1"]["bias"],
prefix + "output.dense.weight": np.transpose(state["MlpBlock_0"]["Dense_1"]["kernel"]),
prefix + "layernorm_before.bias": state["LayerNorm_0"]["bias"],
prefix + "layernorm_before.weight": state["LayerNorm_0"]["scale"],
prefix + "layernorm_after.bias": state["LayerNorm_1"]["bias"],
prefix + "layernorm_after.weight": state["LayerNorm_1"]["scale"],
prefix + "attention.attention.query.bias": transform_attention(
state["MultiHeadDotProductAttention_0"]["query"]["bias"]
),
prefix + "attention.attention.query.weight": transform_attention(
state["MultiHeadDotProductAttention_0"]["query"]["kernel"]
),
prefix + "attention.attention.key.bias": transform_attention(
state["MultiHeadDotProductAttention_0"]["key"]["bias"]
),
prefix + "attention.attention.key.weight": transform_attention(
state["MultiHeadDotProductAttention_0"]["key"]["kernel"]
),
prefix + "attention.attention.value.bias": transform_attention(
state["MultiHeadDotProductAttention_0"]["value"]["bias"]
),
prefix + "attention.attention.value.weight": transform_attention(
state["MultiHeadDotProductAttention_0"]["value"]["kernel"]
),
prefix + "attention.output.dense.bias": state["MultiHeadDotProductAttention_0"]["out"]["bias"],
prefix + "attention.output.dense.weight": transform_attention_output_weight(
state["MultiHeadDotProductAttention_0"]["out"]["kernel"]
),
}
return new_state
def get_n_layers(state_dict):
return sum([1 if "encoderblock_" in k else 0 for k in state_dict["optimizer"]["target"]["Transformer"].keys()])
def transform_state(state_dict, classification_head=False):
transformer_layers = get_n_layers(state_dict)
new_state = OrderedDict()
new_state["layernorm.bias"] = state_dict["optimizer"]["target"]["Transformer"]["encoder_norm"]["bias"]
new_state["layernorm.weight"] = state_dict["optimizer"]["target"]["Transformer"]["encoder_norm"]["scale"]
new_state["embeddings.patch_embeddings.projection.weight"] = np.transpose(
state_dict["optimizer"]["target"]["embedding"]["kernel"], (4, 3, 0, 1, 2)
)
new_state["embeddings.patch_embeddings.projection.bias"] = state_dict["optimizer"]["target"]["embedding"]["bias"]
new_state["embeddings.cls_token"] = state_dict["optimizer"]["target"]["cls"]
new_state["embeddings.position_embeddings"] = state_dict["optimizer"]["target"]["Transformer"]["posembed_input"][
"pos_embedding"
]
for i in range(transformer_layers):
new_state.update(transform_state_encoder_block(state_dict, i))
if classification_head:
new_state = {"vivit." + k: v for k, v in new_state.items()}
new_state["classifier.weight"] = np.transpose(state_dict["optimizer"]["target"]["output_projection"]["kernel"])
new_state["classifier.bias"] = np.transpose(state_dict["optimizer"]["target"]["output_projection"]["bias"])
return {k: torch.tensor(v) for k, v in new_state.items()}
# checks that image processor settings are the same as in the original implementation
# original: https://github.com/google-research/scenic/blob/main/scenic/projects/vivit/data/video_tfrecord_dataset.py
# dataset specific config:
# https://github.com/google-research/scenic/blob/main/scenic/projects/vivit/configs/kinetics400/vivit_base_k400.py
def get_processor() -> VivitImageProcessor:
extractor = VivitImageProcessor()
assert extractor.do_resize is True
assert extractor.size == {"shortest_edge": 256}
assert extractor.do_center_crop is True
assert extractor.crop_size == {"width": 224, "height": 224}
assert extractor.resample == PILImageResampling.BILINEAR
# here: https://github.com/deepmind/dmvr/blob/master/dmvr/modalities.py
# one can seen that add_image has default values for normalization_mean and normalization_std set to 0 and 1
# which effectively means no normalization (and ViViT does not overwrite those when calling this func)
assert extractor.do_normalize is False
assert extractor.do_rescale is True
assert extractor.rescale_factor == 1 / 255
# zero-centering = True in original implementation
assert extractor.do_zero_centering is True
return extractor
def convert(output_path: str):
flax_model_path = "checkpoint"
if not os.path.exists(flax_model_path):
download_checkpoint(flax_model_path)
state_dict = restore_checkpoint(flax_model_path, None)
new_state = transform_state(state_dict, classification_head=True)
config = get_vivit_config()
assert config.image_size == 224
assert config.num_frames == 32
model = VivitForVideoClassification(config)
model.load_state_dict(new_state)
model.eval()
extractor = get_processor()
video = prepare_video()
inputs = extractor(video, return_tensors="pt")
outputs = model(**inputs)
expected_shape = torch.Size([1, 400])
expected_slice = torch.tensor([-1.0543, 2.0764, -0.2104, 0.4439, -0.9658])
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :5], expected_slice, atol=1e-4), outputs.logits[0, :5]
model.save_pretrained(output_path)
extractor.save_pretrained(output_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--output_model_name", "-o", type=str, help="Output path for the converted HuggingFace model")
args = parser.parse_args()
convert(args.output_model_name)
| transformers/src/transformers/models/vivit/convert_vivit_flax_to_pytorch.py/0 | {
"file_path": "transformers/src/transformers/models/vivit/convert_vivit_flax_to_pytorch.py",
"repo_id": "transformers",
"token_count": 3450
} |
# coding=utf-8
# Copyright 2024 The Seamless Authors and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Wav2Vec2-BERT model."""
import math
import warnings
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
from ...integrations.fsdp import is_fsdp_managed_module
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask
from ...modeling_outputs import (
BaseModelOutput,
CausalLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
Wav2Vec2BaseModelOutput,
XVectorOutput,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_peft_available,
logging,
)
from .configuration_wav2vec2_bert import Wav2Vec2BertConfig
logger = logging.get_logger(__name__)
_HIDDEN_STATES_START_POSITION = 2
# General docstring
_CONFIG_FOR_DOC = "Wav2Vec2BertConfig"
# Base docstring
_BASE_CHECKPOINT_FOR_DOC = "facebook/w2v-bert-2.0"
_PRETRAINED_CHECKPOINT_FOR_DOC = "hf-audio/wav2vec2-bert-CV16-en"
_EXPECTED_OUTPUT_SHAPE = [1, 146, 1024]
# CTC docstring
_CTC_EXPECTED_OUTPUT = "'mr quilter is the apostle of the middle classes and we are glad to welcome his gospel'"
_CTC_EXPECTED_LOSS = 17.04
# Copied from transformers.models.seamless_m4t_v2.modeling_seamless_m4t_v2._compute_new_attention_mask
def _compute_new_attention_mask(hidden_states: torch.Tensor, seq_lens: torch.Tensor):
"""
Computes an attention mask of the form `(batch, seq_len)` with an attention for each element in the batch that
stops at the corresponding element in `seq_lens`.
Args:
hidden_states (`torch.FloatTensor` of shape `(batch, seq_len, *)`):
The sequences to mask, where `*` is any number of sequence-specific dimensions including none.
seq_lens (`torch.Tensor` of shape `(batch)`:
Each element represents the length of the sequence at the same index in `hidden_states`
Returns:
`torch.FloatTensor`: The float attention mask of shape `(batch, seq_len)`
"""
batch_size, mask_seq_len = hidden_states.shape[:2]
indices = torch.arange(mask_seq_len, device=seq_lens.device).expand(batch_size, -1)
bool_mask = indices >= seq_lens.unsqueeze(1).expand(-1, mask_seq_len)
mask = hidden_states.new_ones((batch_size, mask_seq_len))
mask = mask.masked_fill(bool_mask, 0)
return mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._compute_mask_indices
def _compute_mask_indices(
shape: Tuple[int, int],
mask_prob: float,
mask_length: int,
attention_mask: Optional[torch.LongTensor] = None,
min_masks: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape. Used to implement [SpecAugment: A Simple Data Augmentation Method for
ASR](https://arxiv.org/abs/1904.08779). Note that this method is not optimized to run on TPU and should be run on
CPU as part of the preprocessing during training.
Args:
shape: The shape for which to compute masks. This should be of a tuple of size 2 where
the first element is the batch size and the second element is the length of the axis to span.
mask_prob: The percentage of the whole axis (between 0 and 1) which will be masked. The number of
independently generated mask spans of length `mask_length` is computed by
`mask_prob*shape[1]/mask_length`. Note that due to overlaps, `mask_prob` is an upper bound and the
actual percentage will be smaller.
mask_length: size of the mask
min_masks: minimum number of masked spans
attention_mask: A (right-padded) attention mask which independently shortens the feature axis of
each batch dimension.
"""
batch_size, sequence_length = shape
if mask_length < 1:
raise ValueError("`mask_length` has to be bigger than 0.")
if mask_length > sequence_length:
raise ValueError(
f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length}"
f" and `sequence_length`: {sequence_length}`"
)
# epsilon is used for probabilistic rounding
epsilon = np.random.rand(1).item()
def compute_num_masked_span(input_length):
"""Given input length, compute how many spans should be masked"""
num_masked_span = int(mask_prob * input_length / mask_length + epsilon)
num_masked_span = max(num_masked_span, min_masks)
# make sure num masked span <= sequence_length
if num_masked_span * mask_length > sequence_length:
num_masked_span = sequence_length // mask_length
# make sure num_masked span is also <= input_length - (mask_length - 1)
if input_length - (mask_length - 1) < num_masked_span:
num_masked_span = max(input_length - (mask_length - 1), 0)
return num_masked_span
# compute number of masked spans in batch
input_lengths = (
attention_mask.sum(-1).detach().tolist()
if attention_mask is not None
else [sequence_length for _ in range(batch_size)]
)
# SpecAugment mask to fill
spec_aug_mask = np.zeros((batch_size, sequence_length), dtype=bool)
spec_aug_mask_idxs = []
max_num_masked_span = compute_num_masked_span(sequence_length)
if max_num_masked_span == 0:
return spec_aug_mask
for input_length in input_lengths:
# compute num of masked spans for this input
num_masked_span = compute_num_masked_span(input_length)
# get random indices to mask
spec_aug_mask_idx = np.random.choice(
np.arange(input_length - (mask_length - 1)), num_masked_span, replace=False
)
# pick first sampled index that will serve as a dummy index to pad vector
# to ensure same dimension for all batches due to probabilistic rounding
# Picking first sample just pads those vectors twice.
if len(spec_aug_mask_idx) == 0:
# this case can only happen if `input_length` is strictly smaller then
# `sequence_length` in which case the last token has to be a padding
# token which we can use as a dummy mask id
dummy_mask_idx = sequence_length - 1
else:
dummy_mask_idx = spec_aug_mask_idx[0]
spec_aug_mask_idx = np.concatenate(
[spec_aug_mask_idx, np.ones(max_num_masked_span - num_masked_span, dtype=np.int32) * dummy_mask_idx]
)
spec_aug_mask_idxs.append(spec_aug_mask_idx)
spec_aug_mask_idxs = np.array(spec_aug_mask_idxs)
# expand masked indices to masked spans
spec_aug_mask_idxs = np.broadcast_to(
spec_aug_mask_idxs[:, :, None], (batch_size, max_num_masked_span, mask_length)
)
spec_aug_mask_idxs = spec_aug_mask_idxs.reshape(batch_size, max_num_masked_span * mask_length)
# add offset to the starting indexes so that indexes now create a span
offsets = np.arange(mask_length)[None, None, :]
offsets = np.broadcast_to(offsets, (batch_size, max_num_masked_span, mask_length)).reshape(
batch_size, max_num_masked_span * mask_length
)
spec_aug_mask_idxs = spec_aug_mask_idxs + offsets
# ensure that we cannot have indices larger than sequence_length
if spec_aug_mask_idxs.max() > sequence_length - 1:
spec_aug_mask_idxs[spec_aug_mask_idxs > sequence_length - 1] = sequence_length - 1
# scatter indices to mask
np.put_along_axis(spec_aug_mask, spec_aug_mask_idxs, 1, -1)
return spec_aug_mask
# Copied from transformers.models.wav2vec2.modeling_wav2vec2._sample_negative_indices
def _sample_negative_indices(
features_shape: Tuple, num_negatives: int, mask_time_indices: Optional[np.ndarray] = None
):
"""
Sample `num_negatives` vectors from feature vectors.
"""
batch_size, sequence_length = features_shape
# generate indices of the positive vectors themselves, repeat them `num_negatives` times
sequence_length_range = np.arange(sequence_length)
# get `num_negatives` random vector indices from the same utterance
sampled_negative_indices = np.zeros(shape=(batch_size, sequence_length, num_negatives), dtype=np.int32)
mask_time_indices = (
mask_time_indices.astype(bool) if mask_time_indices is not None else np.ones(features_shape, dtype=bool)
)
for batch_idx in range(batch_size):
high = mask_time_indices[batch_idx].sum() - 1
mapped_masked_indices = sequence_length_range[mask_time_indices[batch_idx]]
feature_indices = np.broadcast_to(np.arange(high + 1)[:, None], (high + 1, num_negatives))
sampled_indices = np.random.randint(0, high, size=(high + 1, num_negatives))
# avoid sampling the same positive vector, but keep the distribution uniform
sampled_indices[sampled_indices >= feature_indices] += 1
# remap to actual indices
sampled_negative_indices[batch_idx][mask_time_indices[batch_idx]] = mapped_masked_indices[sampled_indices]
# correct for batch size
sampled_negative_indices[batch_idx] += batch_idx * sequence_length
return sampled_negative_indices
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRotaryPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
class Wav2Vec2BertRotaryPositionalEmbedding(nn.Module):
"""Rotary positional embedding
Reference : https://blog.eleuther.ai/rotary-embeddings/ Paper: https://arxiv.org/pdf/2104.09864.pdf
"""
def __init__(self, config):
super().__init__()
dim = config.hidden_size // config.num_attention_heads
base = config.rotary_embedding_base
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
# Ignore copy
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.cached_sequence_length = None
self.cached_rotary_positional_embedding = None
def forward(self, hidden_states):
sequence_length = hidden_states.shape[1]
if sequence_length == self.cached_sequence_length and self.cached_rotary_positional_embedding is not None:
return self.cached_rotary_positional_embedding
self.cached_sequence_length = sequence_length
# Embeddings are computed in the dtype of the inv_freq constant
time_stamps = torch.arange(sequence_length).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", time_stamps, self.inv_freq)
embeddings = torch.cat((freqs, freqs), dim=-1)
cos_embeddings = embeddings.cos()[:, None, None, :]
sin_embeddings = embeddings.sin()[:, None, None, :]
# Computed embeddings are cast to the dtype of the hidden state inputs
self.cached_rotary_positional_embedding = torch.stack([cos_embeddings, sin_embeddings]).type_as(hidden_states)
return self.cached_rotary_positional_embedding
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerRelPositionalEmbedding with Wav2Vec2Conformer->Wav2Vec2Bert
class Wav2Vec2BertRelPositionalEmbedding(nn.Module):
"""Relative positional encoding module."""
def __init__(self, config):
super().__init__()
self.max_len = config.max_source_positions
self.d_model = config.hidden_size
self.pe = None
self.extend_pe(torch.tensor(0.0).expand(1, self.max_len))
def extend_pe(self, x):
# Reset the positional encodings
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if self.pe.size(1) >= x.size(1) * 2 - 1:
if self.pe.dtype != x.dtype or self.pe.device != x.device:
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
return
# Suppose `i` is the position of query vector and `j` is the
# position of key vector. We use positive relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
pe_positive = torch.zeros(x.size(1), self.d_model)
pe_negative = torch.zeros(x.size(1), self.d_model)
position = torch.arange(0, x.size(1), dtype=torch.int64).float().unsqueeze(1)
div_term = torch.exp(
torch.arange(0, self.d_model, 2, dtype=torch.int64).float() * -(math.log(10000.0) / self.d_model)
)
pe_positive[:, 0::2] = torch.sin(position * div_term)
pe_positive[:, 1::2] = torch.cos(position * div_term)
pe_negative[:, 0::2] = torch.sin(-1 * position * div_term)
pe_negative[:, 1::2] = torch.cos(-1 * position * div_term)
# Reverse the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = torch.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = torch.cat([pe_positive, pe_negative], dim=1)
self.pe = pe.to(device=x.device, dtype=x.dtype)
def forward(self, hidden_states: torch.Tensor):
self.extend_pe(hidden_states)
start_idx = self.pe.size(1) // 2 - hidden_states.size(1) + 1
end_idx = self.pe.size(1) // 2 + hidden_states.size(1)
relative_position_embeddings = self.pe[:, start_idx:end_idx]
return relative_position_embeddings
class Wav2Vec2BertFeatureProjection(nn.Module):
def __init__(self, config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.feature_projection_input_dim, eps=config.layer_norm_eps)
self.projection = nn.Linear(config.feature_projection_input_dim, config.hidden_size)
self.dropout = nn.Dropout(config.feat_proj_dropout)
def forward(self, hidden_states):
# non-projected hidden states are needed for quantization
norm_hidden_states = self.layer_norm(hidden_states)
hidden_states = self.projection(norm_hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states, norm_hidden_states
class Wav2Vec2BertFeedForward(nn.Module):
def __init__(self, config, act_fn=None, hidden_size=None):
super().__init__()
act_fn = act_fn if act_fn is not None else config.hidden_act
hidden_size = hidden_size if hidden_size is not None else config.hidden_size
self.intermediate_dropout = nn.Dropout(config.activation_dropout)
self.intermediate_dense = nn.Linear(hidden_size, config.intermediate_size)
self.intermediate_act_fn = ACT2FN[act_fn] if isinstance(act_fn, str) else act_fn
self.output_dense = nn.Linear(config.intermediate_size, hidden_size)
self.output_dropout = nn.Dropout(config.hidden_dropout)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2FeedForward.forward
def forward(self, hidden_states):
hidden_states = self.intermediate_dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.intermediate_dropout(hidden_states)
hidden_states = self.output_dense(hidden_states)
hidden_states = self.output_dropout(hidden_states)
return hidden_states
class Wav2Vec2BertConvolutionModule(nn.Module):
"""Convolution block used in the conformer block"""
def __init__(self, config):
super().__init__()
if (config.conv_depthwise_kernel_size - 1) % 2 == 1:
raise ValueError("`config.conv_depthwise_kernel_size` should be a odd number for 'SAME' padding")
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.pointwise_conv1 = nn.Conv1d(
config.hidden_size,
2 * config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.glu = nn.GLU(dim=1)
self.depthwise_conv = nn.Conv1d(
config.hidden_size,
config.hidden_size,
config.conv_depthwise_kernel_size,
stride=1,
padding=0,
groups=config.hidden_size,
bias=False,
)
self.depthwise_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.activation = ACT2FN[config.hidden_act]
self.pointwise_conv2 = nn.Conv1d(
config.hidden_size,
config.hidden_size,
kernel_size=1,
stride=1,
padding=0,
bias=False,
)
self.dropout = nn.Dropout(config.conformer_conv_dropout)
def forward(self, hidden_states, attention_mask=None):
hidden_states = self.layer_norm(hidden_states)
# Ensure that we do not leak padded positions in depthwise convolution if attention mask is passed.
# Put 0 where necessary
if attention_mask is not None:
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# exchange the temporal dimension and the feature dimension
hidden_states = hidden_states.transpose(1, 2)
# GLU mechanism
# => (batch, 2*channel, dim)
hidden_states = self.pointwise_conv1(hidden_states)
# => (batch, channel, dim)
hidden_states = self.glu(hidden_states)
# Pad the sequence entirely on the left because of causal convolution.
hidden_states = torch.nn.functional.pad(hidden_states, (self.depthwise_conv.kernel_size[0] - 1, 0))
# 1D Depthwise Conv
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_layer_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
hidden_states = self.activation(hidden_states)
hidden_states = self.pointwise_conv2(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states.transpose(1, 2)
return hidden_states
class Wav2Vec2BertSelfAttention(nn.Module):
"""Construct an Wav2Vec2BertSelfAttention object.
Can be enhanced with rotary or relative position embeddings.
"""
def __init__(self, config, is_adapter_attention=False):
super().__init__()
hidden_size = config.hidden_size if not is_adapter_attention else config.output_hidden_size
self.head_size = hidden_size // config.num_attention_heads
self.num_heads = config.num_attention_heads
self.position_embeddings_type = config.position_embeddings_type if not is_adapter_attention else None
self.linear_q = nn.Linear(hidden_size, hidden_size)
self.linear_k = nn.Linear(hidden_size, hidden_size)
self.linear_v = nn.Linear(hidden_size, hidden_size)
self.linear_out = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(p=config.attention_dropout)
if self.position_embeddings_type == "relative":
# linear transformation for positional encoding
self.linear_pos = nn.Linear(hidden_size, hidden_size, bias=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
self.pos_bias_v = nn.Parameter(torch.zeros(self.num_heads, self.head_size))
if self.position_embeddings_type == "relative_key":
self.left_max_position_embeddings = config.left_max_position_embeddings
self.right_max_position_embeddings = config.right_max_position_embeddings
num_positions = self.left_max_position_embeddings + self.right_max_position_embeddings + 1
self.distance_embedding = nn.Embedding(num_positions, self.head_size)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# self-attention mechanism
batch_size, sequence_length, hidden_size = hidden_states.size()
# make sure query/key states can be != value states
query_key_states = hidden_states
value_states = hidden_states
if self.position_embeddings_type == "rotary":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type == 'rotary'"
)
query_key_states = self._apply_rotary_embedding(query_key_states, relative_position_embeddings)
# project query_key_states and value_states
query = self.linear_q(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
key = self.linear_k(query_key_states).view(batch_size, -1, self.num_heads, self.head_size)
value = self.linear_v(value_states).view(batch_size, -1, self.num_heads, self.head_size)
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
key = key.transpose(1, 2)
value = value.transpose(1, 2)
if self.position_embeddings_type == "relative":
if relative_position_embeddings is None:
raise ValueError(
"`relative_position_embeddings` has to be defined when `self.position_embeddings_type =="
" 'relative'"
)
# apply relative_position_embeddings to qk scores
# as proposed in Transformer_XL: https://arxiv.org/abs/1901.02860
scores = self._apply_relative_embeddings(
query=query, key=key, relative_position_embeddings=relative_position_embeddings
)
else:
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(self.head_size)
if self.position_embeddings_type == "relative_key":
query_length, key_length = query.shape[2], key.shape[2]
position_ids_l = torch.arange(query_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(key_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_r - position_ids_l
distance = torch.clamp(distance, -self.left_max_position_embeddings, self.right_max_position_embeddings)
positional_embedding = self.distance_embedding(distance + self.left_max_position_embeddings)
positional_embedding = positional_embedding.to(dtype=query.dtype) # fp16 compatibility
relative_position_attn_weights = torch.einsum("bhld,lrd->bhlr", query, positional_embedding)
scores = scores + (relative_position_attn_weights / math.sqrt(self.head_size))
# apply attention_mask if necessary
if attention_mask is not None:
scores = scores + attention_mask
# => (batch, head, time1, time2)
probs = torch.softmax(scores, dim=-1)
probs = self.dropout(probs)
# => (batch, head, time1, d_k)
hidden_states = torch.matmul(probs, value)
# => (batch, time1, hidden_size)
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, self.num_heads * self.head_size)
hidden_states = self.linear_out(hidden_states)
return hidden_states, probs
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_rotary_embedding
def _apply_rotary_embedding(self, hidden_states, relative_position_embeddings):
batch_size, sequence_length, hidden_size = hidden_states.size()
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads, self.head_size)
cos = relative_position_embeddings[0, :sequence_length, ...]
sin = relative_position_embeddings[1, :sequence_length, ...]
# rotate hidden_states with rotary embeddings
hidden_states = hidden_states.transpose(0, 1)
rotated_states_begin = hidden_states[..., : self.head_size // 2]
rotated_states_end = hidden_states[..., self.head_size // 2 :]
rotated_states = torch.cat((-rotated_states_end, rotated_states_begin), dim=rotated_states_begin.ndim - 1)
hidden_states = (hidden_states * cos) + (rotated_states * sin)
hidden_states = hidden_states.transpose(0, 1)
hidden_states = hidden_states.view(batch_size, sequence_length, self.num_heads * self.head_size)
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerSelfAttention._apply_relative_embeddings
def _apply_relative_embeddings(self, query, key, relative_position_embeddings):
# 1. project positional embeddings
# => (batch, head, 2*time1-1, d_k)
proj_relative_position_embeddings = self.linear_pos(relative_position_embeddings)
proj_relative_position_embeddings = proj_relative_position_embeddings.view(
relative_position_embeddings.size(0), -1, self.num_heads, self.head_size
)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(1, 2)
proj_relative_position_embeddings = proj_relative_position_embeddings.transpose(2, 3)
# 2. Add bias to query
# => (batch, head, time1, d_k)
query = query.transpose(1, 2)
q_with_bias_u = (query + self.pos_bias_u).transpose(1, 2)
q_with_bias_v = (query + self.pos_bias_v).transpose(1, 2)
# 3. attention score: first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# => (batch, head, time1, time2)
scores_ac = torch.matmul(q_with_bias_u, key.transpose(-2, -1))
# 4. then compute matrix b and matrix d
# => (batch, head, time1, 2*time1-1)
scores_bd = torch.matmul(q_with_bias_v, proj_relative_position_embeddings)
# 5. shift matrix b and matrix d
zero_pad = torch.zeros((*scores_bd.size()[:3], 1), device=scores_bd.device, dtype=scores_bd.dtype)
scores_bd_padded = torch.cat([zero_pad, scores_bd], dim=-1)
scores_bd_padded_shape = scores_bd.size()[:2] + (scores_bd.shape[3] + 1, scores_bd.shape[2])
scores_bd_padded = scores_bd_padded.view(*scores_bd_padded_shape)
scores_bd = scores_bd_padded[:, :, 1:].view_as(scores_bd)
scores_bd = scores_bd[:, :, :, : scores_bd.size(-1) // 2 + 1]
# 6. sum matrices
# => (batch, head, time1, time2)
scores = (scores_ac + scores_bd) / math.sqrt(self.head_size)
return scores
class Wav2Vec2BertEncoderLayer(nn.Module):
"""Conformer block based on https://arxiv.org/abs/2005.08100."""
def __init__(self, config):
super().__init__()
embed_dim = config.hidden_size
dropout = config.attention_dropout
# Feed-forward 1
self.ffn1_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.ffn1 = Wav2Vec2BertFeedForward(config)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.self_attn_dropout = nn.Dropout(dropout)
self.self_attn = Wav2Vec2BertSelfAttention(config)
# Conformer Convolution
self.conv_module = Wav2Vec2BertConvolutionModule(config)
# Feed-forward 2
self.ffn2_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.ffn2 = Wav2Vec2BertFeedForward(config)
self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
relative_position_embeddings: Optional[torch.Tensor] = None,
output_attentions: bool = False,
conv_attention_mask: Optional[torch.Tensor] = None,
):
hidden_states = hidden_states
# 1. Feed-Forward 1 layer
residual = hidden_states
hidden_states = self.ffn1_layer_norm(hidden_states)
hidden_states = self.ffn1(hidden_states)
hidden_states = hidden_states * 0.5 + residual
residual = hidden_states
# 2. Self-Attention layer
hidden_states = self.self_attn_layer_norm(hidden_states)
hidden_states, attn_weigts = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
# 3. Convolutional Layer
residual = hidden_states
hidden_states = self.conv_module(hidden_states, attention_mask=conv_attention_mask)
hidden_states = residual + hidden_states
# 4. Feed-Forward 2 Layer
residual = hidden_states
hidden_states = self.ffn2_layer_norm(hidden_states)
hidden_states = self.ffn2(hidden_states)
hidden_states = hidden_states * 0.5 + residual
hidden_states = self.final_layer_norm(hidden_states)
return hidden_states, attn_weigts
class Wav2Vec2BertEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
if config.position_embeddings_type == "relative":
self.embed_positions = Wav2Vec2BertRelPositionalEmbedding(config)
elif config.position_embeddings_type == "rotary":
self.embed_positions = Wav2Vec2BertRotaryPositionalEmbedding(config)
else:
self.embed_positions = None
self.dropout = nn.Dropout(config.hidden_dropout)
self.layers = nn.ModuleList([Wav2Vec2BertEncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
conv_attention_mask = attention_mask
if attention_mask is not None:
# make sure padded tokens output 0
hidden_states = hidden_states.masked_fill(~attention_mask.bool().unsqueeze(-1), 0.0)
# extend attention_mask
attention_mask = 1.0 - attention_mask[:, None, None, :].to(dtype=hidden_states.dtype)
attention_mask = attention_mask * torch.finfo(hidden_states.dtype).min
attention_mask = attention_mask.expand(
attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1]
)
hidden_states = self.dropout(hidden_states)
if self.embed_positions is not None:
relative_position_embeddings = self.embed_positions(hidden_states)
else:
relative_position_embeddings = None
synced_gpus = is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = torch.rand([])
skip_the_layer = True if self.training and (dropout_probability < self.config.layerdrop) else False
if not skip_the_layer or synced_gpus:
# under fsdp or deepspeed zero3 all gpus must run in sync
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
attention_mask,
relative_position_embeddings,
output_attentions,
conv_attention_mask,
)
else:
layer_outputs = layer(
hidden_states,
attention_mask=attention_mask,
relative_position_embeddings=relative_position_embeddings,
output_attentions=output_attentions,
conv_attention_mask=conv_attention_mask,
)
hidden_states = layer_outputs[0]
if skip_the_layer:
layer_outputs = (None, None)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class Wav2Vec2BertAdapter(nn.Module):
def __init__(self, config):
super().__init__()
# feature dim might need to be down-projected
if config.output_hidden_size != config.hidden_size:
self.proj = nn.Linear(config.hidden_size, config.output_hidden_size)
self.proj_layer_norm = nn.LayerNorm(config.output_hidden_size, eps=config.layer_norm_eps)
else:
self.proj = self.proj_layer_norm = None
self.layers = nn.ModuleList(Wav2Vec2BertAdapterLayer(config) for _ in range(config.num_adapter_layers))
self.layerdrop = config.layerdrop
self.kernel_size = config.adapter_kernel_size
self.stride = config.adapter_stride
def _compute_sub_sample_lengths_from_attention_mask(self, seq_lens):
if seq_lens is None:
return seq_lens
pad = self.kernel_size // 2
seq_lens = ((seq_lens + 2 * pad - self.kernel_size) / self.stride) + 1
return seq_lens.floor()
def forward(self, hidden_states, attention_mask=None):
# down project hidden_states if necessary
if self.proj is not None and self.proj_layer_norm is not None:
hidden_states = self.proj(hidden_states)
hidden_states = self.proj_layer_norm(hidden_states)
sub_sampled_lengths = None
if attention_mask is not None:
sub_sampled_lengths = (attention_mask.size(1) - (1 - attention_mask.int()).sum(1)).to(hidden_states.device)
for layer in self.layers:
layerdrop_prob = torch.rand([])
sub_sampled_lengths = self._compute_sub_sample_lengths_from_attention_mask(sub_sampled_lengths)
if not self.training or (layerdrop_prob > self.layerdrop):
hidden_states = layer(
hidden_states, attention_mask=attention_mask, sub_sampled_lengths=sub_sampled_lengths
)
return hidden_states
class Wav2Vec2BertAdapterLayer(nn.Module):
def __init__(self, config):
super().__init__()
embed_dim = config.output_hidden_size
dropout = config.conformer_conv_dropout
self.kernel_size = config.adapter_kernel_size
self.stride = config.adapter_stride
# 1. residual convolution
self.residual_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.residual_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.activation = nn.GLU(dim=1)
# Self-Attention
self.self_attn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.self_attn_conv = nn.Conv1d(
embed_dim,
2 * embed_dim,
self.kernel_size,
stride=self.stride,
padding=self.stride // 2,
)
self.self_attn = Wav2Vec2BertSelfAttention(config, is_adapter_attention=True)
self.self_attn_dropout = nn.Dropout(dropout)
# Feed-forward
self.ffn_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
self.ffn = Wav2Vec2BertFeedForward(config, act_fn=config.adapter_act, hidden_size=embed_dim)
def forward(
self,
hidden_states,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: bool = False,
sub_sampled_lengths: Optional[torch.Tensor] = None,
):
residual = self.residual_layer_norm(hidden_states)
# Apply pooling to the residual to match the sequence length of the
# multi-head attention output.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
residual = residual.transpose(1, 2)
residual = self.residual_conv(residual)
residual = self.activation(residual)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
residual = residual.transpose(1, 2)
hidden_states = self.self_attn_layer_norm(hidden_states)
# Apply pooling before feeding to the multihead-attention layer.
# (batch, seq_len, feature_dim) -> (batch, feature_dim, seq_len)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.self_attn_conv(hidden_states)
hidden_states = self.activation(hidden_states)
# (batch, feature_dim, seq_len) -> (batch, seq_len, feature_dim)
hidden_states = hidden_states.transpose(1, 2)
if attention_mask is not None:
attention_mask = _compute_new_attention_mask(hidden_states=hidden_states, seq_lens=sub_sampled_lengths)
attention_mask = _prepare_4d_attention_mask(
attention_mask,
hidden_states.dtype,
)
# The rest of the computation is identical to a vanilla Transformer
# encoder layer.
hidden_states, attn_weigths = self.self_attn(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
)
hidden_states = self.self_attn_dropout(hidden_states)
hidden_states = hidden_states + residual
residual = hidden_states
hidden_states = self.ffn_layer_norm(hidden_states)
hidden_states = self.ffn(hidden_states) + residual
return hidden_states
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerPreTrainedModel with Wav2Vec2Conformer->Wav2Vec2Bert,wav2vec2_conformer->wav2vec2_bert, input_values->input_features
class Wav2Vec2BertPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Wav2Vec2BertConfig
base_model_prefix = "wav2vec2_bert"
main_input_name = "input_features"
supports_gradient_checkpointing = True
# Ignore copy
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, Wav2Vec2BertSelfAttention):
if hasattr(module, "pos_bias_u"):
nn.init.xavier_uniform_(module.pos_bias_u)
if hasattr(module, "pos_bias_v"):
nn.init.xavier_uniform_(module.pos_bias_v)
elif isinstance(module, Wav2Vec2BertFeatureProjection):
k = math.sqrt(1 / module.projection.in_features)
nn.init.uniform_(module.projection.weight, a=-k, b=k)
nn.init.uniform_(module.projection.bias, a=-k, b=k)
elif isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Conv1d):
nn.init.kaiming_normal_(module.weight)
if module.bias is not None:
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
nn.init.uniform_(module.bias, a=-k, b=k)
# Ignore copy
def _get_feat_extract_output_lengths(
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
):
"""
Computes the output length of the convolutional layers
"""
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
def _conv_out_length(input_length, kernel_size, stride, padding):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return torch.div(input_length + 2 * padding - kernel_size, stride, rounding_mode="floor") + 1
if add_adapter:
padding = self.config.adapter_kernel_size // 2
for _ in range(self.config.num_adapter_layers):
input_lengths = _conv_out_length(
input_lengths, self.config.adapter_kernel_size, self.config.adapter_stride, padding
)
return input_lengths
def _get_feature_vector_attention_mask(
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
):
# Effectively attention_mask.sum(-1), but not inplace to be able to run
# on inference mode.
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
output_lengths = output_lengths.to(torch.long)
batch_size = attention_mask.shape[0]
attention_mask = torch.zeros(
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
)
# these two operations makes sure that all values before the output lengths idxs are attended to
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
return attention_mask
WAV2VEC2_BERT_START_DOCSTRING = r"""
Wav2Vec2Bert was proposed in [wav2vec 2.0: A Framework for Self-Supervised Learning of Speech
Representations](https://arxiv.org/abs/2006.11477) by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael
Auli.
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving etc.).
This model is a PyTorch [nn.Module](https://pytorch.org/docs/stable/nn.html#nn.Module) sub-class. Use it as a
regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
Parameters:
config ([`Wav2Vec2BertConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
WAV2VEC2_BERT_INPUTS_DOCSTRING = r"""
Args:
input_features (`torch.FloatTensor` of shape `(batch_size, sequence_length)`):
Float values of input raw speech waveform. Values can be obtained by loading a `.flac` or `.wav` audio file
into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install
soundfile`). To prepare the array into `input_features`, the [`AutoProcessor`] should be used for padding and
conversion into a tensor of type `torch.FloatTensor`. See [`Wav2Vec2BertProcessor.__call__`] for details.
attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Wav2Vec2Bert Model transformer outputting raw hidden-states without any specific head on top.",
WAV2VEC2_BERT_START_DOCSTRING,
)
class Wav2Vec2BertModel(Wav2Vec2BertPreTrainedModel):
def __init__(self, config: Wav2Vec2BertConfig):
super().__init__(config)
self.config = config
self.feature_projection = Wav2Vec2BertFeatureProjection(config)
# model only needs masking vector if mask prob is > 0.0
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
self.encoder = Wav2Vec2BertEncoder(config)
self.adapter = Wav2Vec2BertAdapter(config) if config.add_adapter else None
self.intermediate_ffn = None
if config.use_intermediate_ffn_before_adapter:
self.intermediate_ffn = Wav2Vec2BertFeedForward(config, act_fn="relu")
# Initialize weights and apply final processing
self.post_init()
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2Model._mask_hidden_states
def _mask_hidden_states(
self,
hidden_states: torch.FloatTensor,
mask_time_indices: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""
Masks extracted features along time axis and/or along feature axis according to
[SpecAugment](https://arxiv.org/abs/1904.08779).
"""
# `config.apply_spec_augment` can set masking to False
if not getattr(self.config, "apply_spec_augment", True):
return hidden_states
# generate indices & apply SpecAugment along time axis
batch_size, sequence_length, hidden_size = hidden_states.size()
if mask_time_indices is not None:
# apply SpecAugment along time axis with given mask_time_indices
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
elif self.config.mask_time_prob > 0 and self.training:
mask_time_indices = _compute_mask_indices(
(batch_size, sequence_length),
mask_prob=self.config.mask_time_prob,
mask_length=self.config.mask_time_length,
attention_mask=attention_mask,
min_masks=self.config.mask_time_min_masks,
)
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
if self.config.mask_feature_prob > 0 and self.training:
# generate indices & apply SpecAugment along feature axis
mask_feature_indices = _compute_mask_indices(
(batch_size, hidden_size),
mask_prob=self.config.mask_feature_prob,
mask_length=self.config.mask_feature_length,
min_masks=self.config.mask_feature_min_masks,
)
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
hidden_states[mask_feature_indices] = 0
return hidden_states
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
output_type=Wav2Vec2BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
mask_time_indices: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
hidden_states, extract_features = self.feature_projection(input_features)
hidden_states = self._mask_hidden_states(
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
)
encoder_outputs = self.encoder(
hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = encoder_outputs[0]
if self.intermediate_ffn:
expanded_hidden_states = self.intermediate_ffn(hidden_states)
hidden_states = hidden_states + 0.5 * expanded_hidden_states
if self.adapter is not None:
hidden_states = self.adapter(hidden_states, attention_mask=attention_mask)
if not return_dict:
return (hidden_states, extract_features) + encoder_outputs[1:]
return Wav2Vec2BaseModelOutput(
last_hidden_state=hidden_states,
extract_features=extract_features,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@add_start_docstrings(
"""Wav2Vec2Bert Model with a `language modeling` head on top for Connectionist Temporal Classification (CTC).""",
WAV2VEC2_BERT_START_DOCSTRING,
)
class Wav2Vec2BertForCTC(Wav2Vec2BertPreTrainedModel):
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForCTC.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
def __init__(self, config, target_lang: Optional[str] = None):
super().__init__(config)
self.wav2vec2_bert = Wav2Vec2BertModel(config)
self.dropout = nn.Dropout(config.final_dropout)
self.target_lang = target_lang
if config.vocab_size is None:
raise ValueError(
f"You are trying to instantiate {self.__class__} with a configuration that "
"does not define the vocabulary size of the language model head. Please "
"instantiate the model as follows: `Wav2Vec2BertForCTC.from_pretrained(..., vocab_size=vocab_size)`. "
"or define `vocab_size` of your model's configuration."
)
output_hidden_size = (
config.output_hidden_size if hasattr(config, "add_adapter") and config.add_adapter else config.hidden_size
)
self.lm_head = nn.Linear(output_hidden_size, config.vocab_size)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_PRETRAINED_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_CTC_EXPECTED_OUTPUT,
expected_loss=_CTC_EXPECTED_LOSS,
)
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, CausalLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, target_length)`, *optional*):
Labels for connectionist temporal classification. Note that `target_length` has to be smaller or equal to
the sequence length of the output logits. Indices are selected in `[-100, 0, ..., config.vocab_size - 1]`.
All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ...,
config.vocab_size - 1]`.
"""
if labels is not None and labels.max() >= self.config.vocab_size:
raise ValueError(f"Label values must be <= vocab_size: {self.config.vocab_size}")
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.wav2vec2_bert(
input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
# retrieve loss input_lengths from attention_mask
attention_mask = (
attention_mask
if attention_mask is not None
else torch.ones(input_features.shape[:2], device=input_features.device, dtype=torch.long)
)
input_lengths = self._get_feat_extract_output_lengths(attention_mask.sum([-1])).to(torch.long)
# assuming that padded tokens are filled with -100
# when not being attended to
labels_mask = labels >= 0
target_lengths = labels_mask.sum(-1)
flattened_targets = labels.masked_select(labels_mask)
# ctc_loss doesn't support fp16
log_probs = nn.functional.log_softmax(logits, dim=-1, dtype=torch.float32).transpose(0, 1)
with torch.backends.cudnn.flags(enabled=False):
loss = nn.functional.ctc_loss(
log_probs,
flattened_targets,
input_lengths,
target_lengths,
blank=self.config.pad_token_id,
reduction=self.config.ctc_loss_reduction,
zero_infinity=self.config.ctc_zero_infinity,
)
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutput(
loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions
)
@add_start_docstrings(
"""
Wav2Vec2Bert Model with a sequence classification head on top (a linear layer over the pooled output) for
tasks like SUPERB Keyword Spotting.
""",
WAV2VEC2_BERT_START_DOCSTRING,
)
class Wav2Vec2BertForSequenceClassification(Wav2Vec2BertPreTrainedModel):
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.__init__ with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Sequence classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
)
self.wav2vec2_bert = Wav2Vec2BertModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2_bert.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.Wav2Vec2ForSequenceClassification.forward with Wav2Vec2->Wav2Vec2Bert,wav2vec2->wav2vec2_bert,WAV_2_VEC_2->WAV2VEC2_BERT, input_values->input_features
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2_bert(
input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
if attention_mask is None:
pooled_output = hidden_states.mean(dim=1)
else:
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
expand_padding_mask = padding_mask.unsqueeze(-1).repeat(1, 1, hidden_states.shape[2])
hidden_states[~expand_padding_mask] = 0.0
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
Wav2Vec2Bert Model with a frame classification head on top for tasks like Speaker Diarization.
""",
WAV2VEC2_BERT_START_DOCSTRING,
)
class Wav2Vec2BertForAudioFrameClassification(Wav2Vec2BertPreTrainedModel):
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
def __init__(self, config):
super().__init__(config)
if hasattr(config, "add_adapter") and config.add_adapter:
raise ValueError(
"Audio frame classification does not support the use of Wav2Vec2Bert adapters (config.add_adapter=True)"
)
self.wav2vec2_bert = Wav2Vec2BertModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.num_labels = config.num_labels
self.init_weights()
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2_bert.parameters():
param.requires_grad = False
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForAudioFrameClassification.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2_bert(
input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), torch.argmax(labels.view(-1, self.num_labels), axis=1))
if not return_dict:
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
return output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.AMSoftmaxLoss
class AMSoftmaxLoss(nn.Module):
def __init__(self, input_dim, num_labels, scale=30.0, margin=0.4):
super(AMSoftmaxLoss, self).__init__()
self.scale = scale
self.margin = margin
self.num_labels = num_labels
self.weight = nn.Parameter(torch.randn(input_dim, num_labels), requires_grad=True)
self.loss = nn.CrossEntropyLoss()
def forward(self, hidden_states, labels):
labels = labels.flatten()
weight = nn.functional.normalize(self.weight, dim=0)
hidden_states = nn.functional.normalize(hidden_states, dim=1)
cos_theta = torch.mm(hidden_states, weight)
psi = cos_theta - self.margin
onehot = nn.functional.one_hot(labels, self.num_labels)
logits = self.scale * torch.where(onehot.bool(), psi, cos_theta)
loss = self.loss(logits, labels)
return loss
# Copied from transformers.models.wav2vec2.modeling_wav2vec2.TDNNLayer
class TDNNLayer(nn.Module):
def __init__(self, config, layer_id=0):
super().__init__()
self.in_conv_dim = config.tdnn_dim[layer_id - 1] if layer_id > 0 else config.tdnn_dim[layer_id]
self.out_conv_dim = config.tdnn_dim[layer_id]
self.kernel_size = config.tdnn_kernel[layer_id]
self.dilation = config.tdnn_dilation[layer_id]
self.kernel = nn.Linear(self.in_conv_dim * self.kernel_size, self.out_conv_dim)
self.activation = nn.ReLU()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
if is_peft_available():
from peft.tuners.lora import LoraLayer
if isinstance(self.kernel, LoraLayer):
warnings.warn(
"Detected LoRA on TDNNLayer. LoRA weights won't be applied due to optimization. "
"You should exclude TDNNLayer from LoRA's target modules.",
)
# for backward compatibility, we keep nn.Linear but call F.conv1d for speed up
hidden_states = hidden_states.transpose(1, 2)
weight = self.kernel.weight.view(self.out_conv_dim, self.kernel_size, self.in_conv_dim).transpose(1, 2)
hidden_states = nn.functional.conv1d(hidden_states, weight, self.kernel.bias, dilation=self.dilation)
hidden_states = hidden_states.transpose(1, 2)
hidden_states = self.activation(hidden_states)
return hidden_states
@add_start_docstrings(
"""
Wav2Vec2Bert Model with an XVector feature extraction head on top for tasks like Speaker Verification.
""",
WAV2VEC2_BERT_START_DOCSTRING,
)
class Wav2Vec2BertForXVector(Wav2Vec2BertPreTrainedModel):
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.__init__ with Wav2Vec2Conformer->Wav2Vec2Bert,WAV2VEC2_CONFORMER->WAV2VEC2_BERT,wav2vec2_conformer->wav2vec2_bert
def __init__(self, config):
super().__init__(config)
self.wav2vec2_bert = Wav2Vec2BertModel(config)
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
if config.use_weighted_layer_sum:
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
self.projector = nn.Linear(config.hidden_size, config.tdnn_dim[0])
tdnn_layers = [TDNNLayer(config, i) for i in range(len(config.tdnn_dim))]
self.tdnn = nn.ModuleList(tdnn_layers)
self.feature_extractor = nn.Linear(config.tdnn_dim[-1] * 2, config.xvector_output_dim)
self.classifier = nn.Linear(config.xvector_output_dim, config.xvector_output_dim)
self.objective = AMSoftmaxLoss(config.xvector_output_dim, config.num_labels)
self.init_weights()
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.freeze_base_model with wav2vec2_conformer->wav2vec2_bert
def freeze_base_model(self):
"""
Calling this function will disable the gradient computation for the base model so that its parameters will not
be updated during training. Only the classification head will be updated.
"""
for param in self.wav2vec2_bert.parameters():
param.requires_grad = False
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector._get_tdnn_output_lengths
def _get_tdnn_output_lengths(self, input_lengths: Union[torch.LongTensor, int]):
"""
Computes the output length of the TDNN layers
"""
def _conv_out_length(input_length, kernel_size, stride):
# 1D convolutional layer output length formula taken
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
return (input_length - kernel_size) // stride + 1
for kernel_size in self.config.tdnn_kernel:
input_lengths = _conv_out_length(input_lengths, kernel_size, 1)
return input_lengths
@add_start_docstrings_to_model_forward(WAV2VEC2_BERT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_BASE_CHECKPOINT_FOR_DOC,
output_type=XVectorOutput,
config_class=_CONFIG_FOR_DOC,
modality="audio",
)
# Copied from transformers.models.wav2vec2_conformer.modeling_wav2vec2_conformer.Wav2Vec2ConformerForXVector.forward with wav2vec2_conformer->wav2vec2_bert, input_values->input_features
def forward(
self,
input_features: Optional[torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
labels: Optional[torch.Tensor] = None,
) -> Union[Tuple, XVectorOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
outputs = self.wav2vec2_bert(
input_features,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if self.config.use_weighted_layer_sum:
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
hidden_states = torch.stack(hidden_states, dim=1)
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
else:
hidden_states = outputs[0]
hidden_states = self.projector(hidden_states)
for tdnn_layer in self.tdnn:
hidden_states = tdnn_layer(hidden_states)
# Statistic Pooling
if attention_mask is None:
mean_features = hidden_states.mean(dim=1)
std_features = hidden_states.std(dim=1)
else:
feat_extract_output_lengths = self._get_feat_extract_output_lengths(attention_mask.sum(dim=1))
tdnn_output_lengths = self._get_tdnn_output_lengths(feat_extract_output_lengths)
mean_features = []
std_features = []
for i, length in enumerate(tdnn_output_lengths):
mean_features.append(hidden_states[i, :length].mean(dim=0))
std_features.append(hidden_states[i, :length].std(dim=0))
mean_features = torch.stack(mean_features)
std_features = torch.stack(std_features)
statistic_pooling = torch.cat([mean_features, std_features], dim=-1)
output_embeddings = self.feature_extractor(statistic_pooling)
logits = self.classifier(output_embeddings)
loss = None
if labels is not None:
loss = self.objective(logits, labels)
if not return_dict:
output = (logits, output_embeddings) + outputs[_HIDDEN_STATES_START_POSITION:]
return ((loss,) + output) if loss is not None else output
return XVectorOutput(
loss=loss,
logits=logits,
embeddings=output_embeddings,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"Wav2Vec2BertForAudioFrameClassification",
"Wav2Vec2BertForCTC",
"Wav2Vec2BertForSequenceClassification",
"Wav2Vec2BertForXVector",
"Wav2Vec2BertModel",
"Wav2Vec2BertPreTrainedModel",
]
| transformers/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py/0 | {
"file_path": "transformers/src/transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py",
"repo_id": "transformers",
"token_count": 32130
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Whisper model configuration"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxSeq2SeqConfigWithPast
from ...utils import logging
if TYPE_CHECKING:
from ...feature_extraction_utils import FeatureExtractionMixin
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import TensorType
logger = logging.get_logger(__name__)
# fmt: off
NON_SPEECH_TOKENS = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 357, 366, 438, 532, 685,
705, 796, 930, 1058, 1220, 1267, 1279, 1303, 1343, 1377,
1391, 1635, 1782, 1875, 2162, 2361, 2488, 3467, 4008, 4211,
4600, 4808, 5299, 5855, 6329, 7203, 9609, 9959, 10563, 10786,
11420, 11709, 11907, 13163, 13697, 13700, 14808, 15306, 16410, 16791,
17992, 19203, 19510, 20724, 22305, 22935, 27007, 30109, 30420, 33409,
34949, 40283, 40493, 40549, 47282, 49146, 50257, 50359, 50360, 50361
]
NON_SPEECH_TOKENS_MULTI = [
1, 2, 7, 8, 9, 10, 14, 25,
26, 27, 28, 29, 31, 58, 59, 60, 61, 62,
63, 90, 91, 92, 93, 359, 503, 522, 542, 873,
893, 902, 918, 922, 931, 1350, 1853, 1982, 2460, 2627,
3246, 3253, 3268, 3536, 3846, 3961, 4183, 4667, 6585, 6647,
7273, 9061, 9383, 10428, 10929, 11938, 12033, 12331, 12562, 13793,
14157, 14635, 15265, 15618, 16553, 16604, 18362, 18956, 20075, 21675,
22520, 26130, 26161, 26435, 28279, 29464, 31650, 32302, 32470, 36865,
42863, 47425, 49870, 50254, 50258, 50360, 50361, 50362
]
# fmt: on
class WhisperConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`WhisperModel`]. It is used to instantiate a
Whisper model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the Whisper
[openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 51865):
Vocabulary size of the Whisper model. Defines the number of different tokens that can be represented by the
`decoder_input_ids` passed when calling [`WhisperModel`]
num_mel_bins (`int`, *optional*, defaults to 80):
Number of mel features used per input features. Should correspond to the value used in the
`WhisperProcessor` class.
encoder_layers (`int`, *optional*, defaults to 4):
Number of encoder layers.
decoder_layers (`int`, *optional*, defaults to 4):
Number of decoder layers.
encoder_attention_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer encoder.
decoder_attention_heads (`int`, *optional*, defaults to 6):
Number of attention heads for each attention layer in the Transformer decoder.
encoder_ffn_dim (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
decoder_ffn_dim (`int`, *optional*, defaults to 1536):
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
for more details.
decoder_start_token_id (`int`, *optional*, defaults to 50257):
Corresponds to the "<|startoftranscript|>" token, which is automatically used when no `decoder_input_ids`
are provided to the `generate` function. It is used to guide the model`s generation process depending on
the task.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
is_encoder_decoder (`bool`, *optional*, defaults to `True`):
Whether the model is used as an encoder/decoder or not.
activation_function (`str`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
d_model (`int`, *optional*, defaults to 384):
Dimensionality of the layers.
dropout (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
activation_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for activations inside the fully connected layer.
init_std (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
scale_embedding (`bool`, *optional*, defaults to False):
Scale embeddings by diving by sqrt(d_model).
max_source_positions (`int`, *optional*, defaults to 1500):
The maximum sequence length of log-mel filter-bank features that this model might ever be used with.
max_target_positions (`int`, *optional*, defaults to 448):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
pad_token_id (`int`, *optional*, defaults to 50256):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 50256):
Begin of stream token id.
eos_token_id (`int`, *optional*, defaults to 50256):
End of stream token id.
suppress_tokens (`List[int]`, *optional*):
A list containing the non-speech tokens that will be used by the logit processor in the `generate`
function. NON_SPEECH_TOKENS and NON_SPEECH_TOKENS_MULTI each correspond to the `english-only` and the
`multilingual` model.
begin_suppress_tokens (`List[int]`, *optional*, defaults to `[220,50256]`):
A list containing tokens that will be supressed at the beginning of the sampling process. Initialized as
the token for `" "` (`blank_token_id`) and the `eos_token_id`
use_weighted_layer_sum (`bool`, *optional*, defaults to `False`):
Whether to use a weighted average of layer outputs with learned weights. Only relevant when using an
instance of [`WhisperForAudioClassification`].
classifier_proj_size (`int`, *optional*, defaults to 256):
Dimensionality of the projection before token mean-pooling for classification. Only relevant when using an
instance of [`WhisperForAudioClassification`].
apply_spec_augment (`bool`, *optional*, defaults to `False`):
Whether to apply *SpecAugment* data augmentation to the outputs of the feature encoder. For reference see
[SpecAugment: A Simple Data Augmentation Method for Automatic Speech
Recognition](https://arxiv.org/abs/1904.08779).
mask_time_prob (`float`, *optional*, defaults to 0.05):
Percentage (between 0 and 1) of all feature vectors along the time axis which will be masked. The masking
procecure generates `mask_time_prob*len(time_axis)/mask_time_length` independent masks over the axis. If
reasoning from the propability of each feature vector to be chosen as the start of the vector span to be
masked, *mask_time_prob* should be `prob_vector_start*mask_time_length`. Note that overlap may decrease the
actual percentage of masked vectors. This is only relevant if `apply_spec_augment == True`.
mask_time_length (`int`, *optional*, defaults to 10):
Length of vector span along the time axis.
mask_time_min_masks (`int`, *optional*, defaults to 2),:
The minimum number of masks of length `mask_feature_length` generated along the time axis, each time step,
irrespectively of `mask_feature_prob`. Only relevant if ''mask_time_prob*len(time_axis)/mask_time_length <
mask_time_min_masks''
mask_feature_prob (`float`, *optional*, defaults to 0.0):
Percentage (between 0 and 1) of all feature vectors along the feature axis which will be masked. The
masking procecure generates `mask_feature_prob*len(feature_axis)/mask_time_length` independent masks over
the axis. If reasoning from the propability of each feature vector to be chosen as the start of the vector
span to be masked, *mask_feature_prob* should be `prob_vector_start*mask_feature_length`. Note that overlap
may decrease the actual percentage of masked vectors. This is only relevant if `apply_spec_augment is
True`.
mask_feature_length (`int`, *optional*, defaults to 10):
Length of vector span along the feature axis.
mask_feature_min_masks (`int`, *optional*, defaults to 0),:
The minimum number of masks of length `mask_feature_length` generated along the feature axis, each time
step, irrespectively of `mask_feature_prob`. Only relevant if
`mask_feature_prob*len(feature_axis)/mask_feature_length < mask_feature_min_masks`.
median_filter_width (`int`, *optional*, defaults to 7):
Width of the median filter used to smoothen to cross-attention outputs when computing token timestamps.
Should be an odd number.
Example:
```python
>>> from transformers import WhisperConfig, WhisperModel
>>> # Initializing a Whisper tiny style configuration
>>> configuration = WhisperConfig()
>>> # Initializing a model (with random weights) from the tiny style configuration
>>> model = WhisperModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "whisper"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {
"num_key_value_heads": "encoder_attention_heads",
"num_attention_heads": "encoder_attention_heads",
"hidden_size": "d_model",
}
def __init__(
self,
vocab_size=51865,
num_mel_bins=80,
encoder_layers=4,
encoder_attention_heads=6,
decoder_layers=4,
decoder_attention_heads=6,
decoder_ffn_dim=1536,
encoder_ffn_dim=1536,
encoder_layerdrop=0.0,
decoder_layerdrop=0.0,
decoder_start_token_id=50257,
use_cache=True,
is_encoder_decoder=True,
activation_function="gelu",
d_model=384,
dropout=0.0,
attention_dropout=0.0,
activation_dropout=0.0,
init_std=0.02,
scale_embedding=False,
max_source_positions=1500,
max_target_positions=448,
pad_token_id=50256,
bos_token_id=50256,
eos_token_id=50256,
suppress_tokens=None,
begin_suppress_tokens=[220, 50256],
use_weighted_layer_sum=False,
classifier_proj_size=256,
apply_spec_augment=False,
mask_time_prob=0.05,
mask_time_length=10,
mask_time_min_masks=2,
mask_feature_prob=0.0,
mask_feature_length=10,
mask_feature_min_masks=0,
median_filter_width=7,
**kwargs,
):
self.vocab_size = vocab_size
self.num_mel_bins = num_mel_bins
self.d_model = d_model
self.encoder_layers = encoder_layers
self.encoder_attention_heads = encoder_attention_heads
self.decoder_layers = decoder_layers
self.decoder_attention_heads = decoder_attention_heads
self.decoder_ffn_dim = decoder_ffn_dim
self.encoder_ffn_dim = encoder_ffn_dim
self.dropout = dropout
self.attention_dropout = attention_dropout
self.activation_dropout = activation_dropout
self.activation_function = activation_function
self.init_std = init_std
self.encoder_layerdrop = encoder_layerdrop
self.decoder_layerdrop = decoder_layerdrop
self.use_cache = use_cache
self.num_hidden_layers = encoder_layers
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
self.max_source_positions = max_source_positions
self.max_target_positions = max_target_positions
# Audio Classification-specific parameters. Feel free to ignore for other classes.
self.classifier_proj_size = classifier_proj_size
self.use_weighted_layer_sum = use_weighted_layer_sum
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
self.apply_spec_augment = apply_spec_augment
self.mask_time_prob = mask_time_prob
self.mask_time_length = mask_time_length
self.mask_time_min_masks = mask_time_min_masks
self.mask_feature_prob = mask_feature_prob
self.mask_feature_length = mask_feature_length
self.mask_feature_min_masks = mask_feature_min_masks
self.median_filter_width = median_filter_width
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
is_encoder_decoder=is_encoder_decoder,
decoder_start_token_id=decoder_start_token_id,
suppress_tokens=suppress_tokens,
begin_suppress_tokens=begin_suppress_tokens,
**kwargs,
)
class WhisperOnnxConfig(OnnxSeq2SeqConfigWithPast):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
common_inputs = OrderedDict(
[
("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}),
]
)
if self.use_past:
common_inputs["decoder_input_ids"] = {0: "batch"}
else:
common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"}
if self.use_past:
self.fill_with_past_key_values_(common_inputs, direction="inputs")
return common_inputs
def generate_dummy_inputs(
self,
preprocessor: Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"],
batch_size: int = -1,
seq_length: int = -1,
is_pair: bool = False,
framework: Optional["TensorType"] = None,
sampling_rate: int = 22050,
time_duration: float = 5.0,
frequency: int = 220,
) -> Mapping[str, Any]:
dummy_inputs = OrderedDict()
encoder_inputs = OnnxConfig.generate_dummy_inputs(
self,
preprocessor=preprocessor.feature_extractor,
batch_size=batch_size,
framework=framework,
sampling_rate=sampling_rate,
time_duration=time_duration,
frequency=frequency,
)
encoder_sequence_length = encoder_inputs["input_features"].shape[2]
seq_length = encoder_sequence_length // 2 if self.use_past else seq_length
decoder_inputs = super().generate_dummy_inputs(
preprocessor.tokenizer, batch_size, seq_length, is_pair, framework
)
dummy_inputs["input_features"] = encoder_inputs.pop("input_features")
dummy_inputs["decoder_input_ids"] = decoder_inputs.pop("decoder_input_ids")
if "past_key_values" in decoder_inputs:
dummy_inputs["past_key_values"] = decoder_inputs.pop("past_key_values")
return dummy_inputs
@property
def atol_for_validation(self) -> float:
return 1e-3
__all__ = ["WhisperConfig", "WhisperOnnxConfig"]
| transformers/src/transformers/models/whisper/configuration_whisper.py/0 | {
"file_path": "transformers/src/transformers/models/whisper/configuration_whisper.py",
"repo_id": "transformers",
"token_count": 6891
} |
# coding=utf-8
# Copyright 2022 Facebook AI Research and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Flax XLM-RoBERTa model."""
from typing import Callable, Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen import partitioning as nn_partitioning
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import (
FlaxBaseModelOutputWithPastAndCrossAttentions,
FlaxBaseModelOutputWithPooling,
FlaxBaseModelOutputWithPoolingAndCrossAttentions,
FlaxCausalLMOutputWithCrossAttentions,
FlaxMaskedLMOutput,
FlaxMultipleChoiceModelOutput,
FlaxQuestionAnsweringModelOutput,
FlaxSequenceClassifierOutput,
FlaxTokenClassifierOutput,
)
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring, overwrite_call_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_xlm_roberta import XLMRobertaConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "FacebookAI/xlm-roberta-base"
_CONFIG_FOR_DOC = "XLMRobertaConfig"
remat = nn_partitioning.remat
# Copied from transformers.models.roberta.modeling_flax_roberta.create_position_ids_from_input_ids
def create_position_ids_from_input_ids(input_ids, padding_idx):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
input_ids: jnp.ndarray
padding_idx: int
Returns: jnp.ndarray
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = (input_ids != padding_idx).astype("i4")
if mask.ndim > 2:
mask = mask.reshape((-1, mask.shape[-1]))
incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask
incremental_indices = incremental_indices.reshape(input_ids.shape)
else:
incremental_indices = jnp.cumsum(mask, axis=1).astype("i4") * mask
return incremental_indices.astype("i4") + padding_idx
XLM_ROBERTA_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading, saving and converting weights from PyTorch models)
This model is also a
[flax.linen.Module](https://flax.readthedocs.io/en/latest/api_reference/flax.linen/module.html) subclass. Use it as
a regular Flax linen Module and refer to the Flax documentation for all matter related to general usage and
behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`XLMRobertaConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
"""
XLM_ROBERTA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
token_type_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
1]`:
- 0 corresponds to a *sentence A* token,
- 1 corresponds to a *sentence B* token.
[What are token type IDs?](../glossary#token-type-ids)
position_ids (`numpy.ndarray` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEmbeddings with Bert->XLMRoberta
class FlaxXLMRobertaEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings."""
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.word_embeddings = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.position_embeddings = nn.Embed(
self.config.max_position_embeddings,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.token_type_embeddings = nn.Embed(
self.config.type_vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, input_ids, token_type_ids, position_ids, attention_mask, deterministic: bool = True):
# Embed
inputs_embeds = self.word_embeddings(input_ids.astype("i4"))
position_embeds = self.position_embeddings(position_ids.astype("i4"))
token_type_embeddings = self.token_type_embeddings(token_type_ids.astype("i4"))
# Sum all embeddings
hidden_states = inputs_embeds + token_type_embeddings + position_embeds
# Layer Norm
hidden_states = self.LayerNorm(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfAttention with Bert->XLMRoberta
class FlaxXLMRobertaSelfAttention(nn.Module):
config: XLMRobertaConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.head_dim = self.config.hidden_size // self.config.num_attention_heads
if self.config.hidden_size % self.config.num_attention_heads != 0:
raise ValueError(
"`config.hidden_size`: {self.config.hidden_size} has to be a multiple of `config.num_attention_heads` "
" : {self.config.num_attention_heads}"
)
self.query = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.key = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.value = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
if self.causal:
self.causal_mask = make_causal_mask(
jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool"
)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.num_attention_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.config.hidden_size,))
@nn.compact
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention._concatenate_to_cache
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic=True,
output_attentions: bool = False,
):
# if key_value_states are provided this layer is used as a cross-attention layer
# for the decoder
is_cross_attention = key_value_states is not None
batch_size = hidden_states.shape[0]
# get query proj
query_states = self.query(hidden_states)
# get key, value proj
if is_cross_attention:
# cross_attentions
key_states = self.key(key_value_states)
value_states = self.value(key_value_states)
else:
# self_attention
key_states = self.key(hidden_states)
value_states = self.value(hidden_states)
query_states = self._split_heads(query_states)
key_states = self._split_heads(key_states)
value_states = self._split_heads(value_states)
# handle cache prepare causal attention mask
if self.causal:
query_length, key_length = query_states.shape[1], key_states.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
# combine masks if needed
if attention_mask is not None and self.causal:
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
elif self.causal:
attention_mask = causal_mask
elif attention_mask is not None:
attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2))
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.causal and (self.has_variable("cache", "cached_key") or init_cache):
key_states, value_states, attention_mask = self._concatenate_to_cache(
key_states, value_states, query_states, attention_mask
)
# Convert the boolean attention mask to an attention bias.
if attention_mask is not None:
# attention mask in the form of attention bias
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
else:
attention_bias = None
dropout_rng = None
if not deterministic and self.config.attention_probs_dropout_prob > 0.0:
dropout_rng = self.make_rng("dropout")
attn_weights = dot_product_attention_weights(
query_states,
key_states,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attention_probs_dropout_prob,
broadcast_dropout=True,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
# Mask heads if we want to
if layer_head_mask is not None:
attn_weights = jnp.einsum("...hqk,h->...hqk", attn_weights, layer_head_mask)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states)
attn_output = attn_output.reshape(attn_output.shape[:2] + (-1,))
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertSelfOutput with Bert->XLMRoberta
class FlaxXLMRobertaSelfOutput(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
def __call__(self, hidden_states, input_tensor, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertAttention with Bert->XLMRoberta
class FlaxXLMRobertaAttention(nn.Module):
config: XLMRobertaConfig
causal: bool = False
dtype: jnp.dtype = jnp.float32
def setup(self):
self.self = FlaxXLMRobertaSelfAttention(self.config, causal=self.causal, dtype=self.dtype)
self.output = FlaxXLMRobertaSelfOutput(self.config, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
key_value_states=None,
init_cache=False,
deterministic=True,
output_attentions: bool = False,
):
# Attention mask comes in as attention_mask.shape == (*batch_sizes, kv_length)
# FLAX expects: attention_mask.shape == (*batch_sizes, 1, 1, kv_length) such that it is broadcastable
# with attn_weights.shape == (*batch_sizes, num_heads, q_length, kv_length)
attn_outputs = self.self(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=key_value_states,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
hidden_states = self.output(attn_output, hidden_states, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attn_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertIntermediate with Bert->XLMRoberta
class FlaxXLMRobertaIntermediate(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.intermediate_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.activation = ACT2FN[self.config.hidden_act]
def __call__(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.activation(hidden_states)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertOutput with Bert->XLMRoberta
class FlaxXLMRobertaOutput(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.LayerNorm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
def __call__(self, hidden_states, attention_output, deterministic: bool = True):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.LayerNorm(hidden_states + attention_output)
return hidden_states
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayer with Bert->XLMRoberta
class FlaxXLMRobertaLayer(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.attention = FlaxXLMRobertaAttention(self.config, causal=self.config.is_decoder, dtype=self.dtype)
self.intermediate = FlaxXLMRobertaIntermediate(self.config, dtype=self.dtype)
self.output = FlaxXLMRobertaOutput(self.config, dtype=self.dtype)
if self.config.add_cross_attention:
self.crossattention = FlaxXLMRobertaAttention(self.config, causal=False, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
):
# Self Attention
attention_outputs = self.attention(
hidden_states,
attention_mask,
layer_head_mask=layer_head_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = attention_outputs[0]
# Cross-Attention Block
if encoder_hidden_states is not None:
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask=encoder_attention_mask,
layer_head_mask=layer_head_mask,
key_value_states=encoder_hidden_states,
deterministic=deterministic,
output_attentions=output_attentions,
)
attention_output = cross_attention_outputs[0]
hidden_states = self.intermediate(attention_output)
hidden_states = self.output(hidden_states, attention_output, deterministic=deterministic)
outputs = (hidden_states,)
if output_attentions:
outputs += (attention_outputs[1],)
if encoder_hidden_states is not None:
outputs += (cross_attention_outputs[1],)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertLayerCollection with Bert->XLMRoberta
class FlaxXLMRobertaLayerCollection(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
if self.gradient_checkpointing:
FlaxXLMRobertaCheckpointLayer = remat(FlaxXLMRobertaLayer, static_argnums=(5, 6, 7))
self.layers = [
FlaxXLMRobertaCheckpointLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
else:
self.layers = [
FlaxXLMRobertaLayer(self.config, name=str(i), dtype=self.dtype)
for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
# Check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.shape[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for "
f" {head_mask.shape[0]}."
)
for i, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = layer(
hidden_states,
attention_mask,
head_mask[i] if head_mask is not None else None,
encoder_hidden_states,
encoder_attention_mask,
init_cache,
deterministic,
output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
if encoder_hidden_states is not None:
all_cross_attentions += (layer_outputs[2],)
if output_hidden_states:
all_hidden_states += (hidden_states,)
outputs = (hidden_states, all_hidden_states, all_attentions, all_cross_attentions)
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertEncoder with Bert->XLMRoberta
class FlaxXLMRobertaEncoder(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
gradient_checkpointing: bool = False
def setup(self):
self.layer = FlaxXLMRobertaLayerCollection(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
def __call__(
self,
hidden_states,
attention_mask,
head_mask,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
return self.layer(
hidden_states,
attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPooler with Bert->XLMRoberta
class FlaxXLMRobertaPooler(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
dtype=self.dtype,
)
def __call__(self, hidden_states):
cls_hidden_state = hidden_states[:, 0]
cls_hidden_state = self.dense(cls_hidden_state)
return nn.tanh(cls_hidden_state)
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaLMHead with Roberta->XLMRoberta
class FlaxXLMRobertaLMHead(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
bias_init: Callable[..., np.ndarray] = jax.nn.initializers.zeros
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.layer_norm = nn.LayerNorm(epsilon=self.config.layer_norm_eps, dtype=self.dtype)
self.decoder = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
use_bias=False,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.bias = self.param("bias", self.bias_init, (self.config.vocab_size,))
def __call__(self, hidden_states, shared_embedding=None):
hidden_states = self.dense(hidden_states)
hidden_states = ACT2FN["gelu"](hidden_states)
hidden_states = self.layer_norm(hidden_states)
if shared_embedding is not None:
hidden_states = self.decoder.apply({"params": {"kernel": shared_embedding.T}}, hidden_states)
else:
hidden_states = self.decoder(hidden_states)
bias = jnp.asarray(self.bias, self.dtype)
hidden_states += bias
return hidden_states
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaClassificationHead with Roberta->XLMRoberta
class FlaxXLMRobertaClassificationHead(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.dense = nn.Dense(
self.config.hidden_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.out_proj = nn.Dense(
self.config.num_labels,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
def __call__(self, hidden_states, deterministic=True):
hidden_states = hidden_states[:, 0, :] # take <s> token (equiv. to [CLS])
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.dense(hidden_states)
hidden_states = nn.tanh(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
hidden_states = self.out_proj(hidden_states)
return hidden_states
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaPreTrainedModel with Roberta->XLMRoberta, roberta->xlm-roberta, ROBERTA->XLM_ROBERTA
class FlaxXLMRobertaPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = XLMRobertaConfig
base_model_prefix = "xlm-roberta"
module_class: nn.Module = None
def __init__(
self,
config: XLMRobertaConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
gradient_checkpointing: bool = False,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, gradient_checkpointing=gradient_checkpointing, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertPreTrainedModel.enable_gradient_checkpointing
def enable_gradient_checkpointing(self):
self._module = self.module_class(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=True,
)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
token_type_ids = jnp.ones_like(input_ids)
position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
attention_mask = jnp.ones_like(input_ids)
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.hidden_size,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(
rngs, input_ids, attention_mask, token_type_ids, position_ids, head_mask, return_dict=False
)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderPreTrainedModel.init_cache
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length), dtype="i4")
attention_mask = jnp.ones_like(input_ids, dtype="i4")
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return unfreeze(init_variables["cache"])
@add_start_docstrings_to_model_forward(XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
def __call__(
self,
input_ids,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
params: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
past_key_values: dict = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
# init input tensors if not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
if position_ids is None:
position_ids = create_position_ids_from_input_ids(input_ids, self.config.pad_token_id)
if attention_mask is None:
attention_mask = jnp.ones_like(input_ids)
if head_mask is None:
head_mask = jnp.ones((self.config.num_hidden_layers, self.config.num_attention_heads))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
if self.config.add_cross_attention:
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed
# down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be
# changed by FlaxXLMRobertaAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
else:
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
token_type_ids=jnp.array(token_type_ids, dtype="i4"),
position_ids=jnp.array(position_ids, dtype="i4"),
head_mask=jnp.array(head_mask, dtype="i4"),
deterministic=not train,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
rngs=rngs,
)
return outputs
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertModule with Bert->XLMRoberta
class FlaxXLMRobertaModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32 # the dtype of the computation
add_pooling_layer: bool = True
gradient_checkpointing: bool = False
def setup(self):
self.embeddings = FlaxXLMRobertaEmbeddings(self.config, dtype=self.dtype)
self.encoder = FlaxXLMRobertaEncoder(
self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.pooler = FlaxXLMRobertaPooler(self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids: Optional[jnp.ndarray] = None,
position_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# make sure `token_type_ids` is correctly initialized when not passed
if token_type_ids is None:
token_type_ids = jnp.zeros_like(input_ids)
# make sure `position_ids` is correctly initialized when not passed
if position_ids is None:
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
hidden_states = self.embeddings(
input_ids, token_type_ids, position_ids, attention_mask, deterministic=deterministic
)
outputs = self.encoder(
hidden_states,
attention_mask,
head_mask=head_mask,
deterministic=deterministic,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
pooled = self.pooler(hidden_states) if self.add_pooling_layer else None
if not return_dict:
# if pooled is None, don't return it
if pooled is None:
return (hidden_states,) + outputs[1:]
return (hidden_states, pooled) + outputs[1:]
return FlaxBaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=hidden_states,
pooler_output=pooled,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"The bare XLM RoBERTa Model transformer outputting raw hidden-states without any specific head on top.",
XLM_ROBERTA_START_DOCSTRING,
)
class FlaxXLMRobertaModel(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaModule
append_call_sample_docstring(FlaxXLMRobertaModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutputWithPooling, _CONFIG_FOR_DOC)
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForMaskedLMModule with Roberta->XLMRoberta
class FlaxXLMRobertaForMaskedLMModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxMaskedLMOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings("""XLM RoBERTa Model with a `language modeling` head on top.""", XLM_ROBERTA_START_DOCSTRING)
class FlaxXLMRobertaForMaskedLM(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForMaskedLMModule
append_call_sample_docstring(
FlaxXLMRobertaForMaskedLM,
_CHECKPOINT_FOR_DOC,
FlaxBaseModelOutputWithPooling,
_CONFIG_FOR_DOC,
mask="<mask>",
)
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForSequenceClassificationModule with Roberta->XLMRoberta
class FlaxXLMRobertaForSequenceClassificationModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
self.classifier = FlaxXLMRobertaClassificationHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output, deterministic=deterministic)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxSequenceClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLM Roberta Model transformer with a sequence classification/regression head on top (a linear layer on top of the
pooled output) e.g. for GLUE tasks.
""",
XLM_ROBERTA_START_DOCSTRING,
)
class FlaxXLMRobertaForSequenceClassification(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForSequenceClassificationModule
append_call_sample_docstring(
FlaxXLMRobertaForSequenceClassification,
_CHECKPOINT_FOR_DOC,
FlaxSequenceClassifierOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForMultipleChoiceModule with Bert->XLMRoberta, with self.bert->self.roberta
class FlaxXLMRobertaForMultipleChoiceModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.dropout = nn.Dropout(rate=self.config.hidden_dropout_prob)
self.classifier = nn.Dense(1, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
num_choices = input_ids.shape[1]
input_ids = input_ids.reshape(-1, input_ids.shape[-1]) if input_ids is not None else None
attention_mask = attention_mask.reshape(-1, attention_mask.shape[-1]) if attention_mask is not None else None
token_type_ids = token_type_ids.reshape(-1, token_type_ids.shape[-1]) if token_type_ids is not None else None
position_ids = position_ids.reshape(-1, position_ids.shape[-1]) if position_ids is not None else None
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
pooled_output = self.dropout(pooled_output, deterministic=deterministic)
logits = self.classifier(pooled_output)
reshaped_logits = logits.reshape(-1, num_choices)
if not return_dict:
return (reshaped_logits,) + outputs[2:]
return FlaxMultipleChoiceModelOutput(
logits=reshaped_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLM Roberta Model with a multiple choice classification head on top (a linear layer on top of the pooled output and
a softmax) e.g. for RocStories/SWAG tasks.
""",
XLM_ROBERTA_START_DOCSTRING,
)
class FlaxXLMRobertaForMultipleChoice(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForMultipleChoiceModule
overwrite_call_docstring(
FlaxXLMRobertaForMultipleChoice, XLM_ROBERTA_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
)
append_call_sample_docstring(
FlaxXLMRobertaForMultipleChoice,
_CHECKPOINT_FOR_DOC,
FlaxMultipleChoiceModelOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForTokenClassificationModule with Bert->XLMRoberta, with self.bert->self.roberta
class FlaxXLMRobertaForTokenClassificationModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
classifier_dropout = (
self.config.classifier_dropout
if self.config.classifier_dropout is not None
else self.config.hidden_dropout_prob
)
self.dropout = nn.Dropout(rate=classifier_dropout)
self.classifier = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
logits = self.classifier(hidden_states)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxTokenClassifierOutput(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLM Roberta Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
for Named-Entity-Recognition (NER) tasks.
""",
XLM_ROBERTA_START_DOCSTRING,
)
class FlaxXLMRobertaForTokenClassification(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForTokenClassificationModule
append_call_sample_docstring(
FlaxXLMRobertaForTokenClassification,
_CHECKPOINT_FOR_DOC,
FlaxTokenClassifierOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.bert.modeling_flax_bert.FlaxBertForQuestionAnsweringModule with Bert->XLMRoberta, with self.bert->self.roberta
class FlaxXLMRobertaForQuestionAnsweringModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
dtype=self.dtype,
add_pooling_layer=False,
gradient_checkpointing=self.gradient_checkpointing,
)
self.qa_outputs = nn.Dense(self.config.num_labels, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
logits = self.qa_outputs(hidden_states)
start_logits, end_logits = jnp.split(logits, self.config.num_labels, axis=-1)
start_logits = start_logits.squeeze(-1)
end_logits = end_logits.squeeze(-1)
if not return_dict:
return (start_logits, end_logits) + outputs[1:]
return FlaxQuestionAnsweringModelOutput(
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
XLM Roberta Model with a span classification head on top for extractive question-answering tasks like SQuAD (a
linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
XLM_ROBERTA_START_DOCSTRING,
)
class FlaxXLMRobertaForQuestionAnswering(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForQuestionAnsweringModule
append_call_sample_docstring(
FlaxXLMRobertaForQuestionAnswering,
_CHECKPOINT_FOR_DOC,
FlaxQuestionAnsweringModelOutput,
_CONFIG_FOR_DOC,
)
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLMModule with Roberta->XLMRoberta
class FlaxXLMRobertaForCausalLMModule(nn.Module):
config: XLMRobertaConfig
dtype: jnp.dtype = jnp.float32
gradient_checkpointing: bool = False
def setup(self):
self.roberta = FlaxXLMRobertaModule(
config=self.config,
add_pooling_layer=False,
dtype=self.dtype,
gradient_checkpointing=self.gradient_checkpointing,
)
self.lm_head = FlaxXLMRobertaLMHead(config=self.config, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
token_type_ids: Optional[jnp.ndarray] = None,
head_mask: Optional[jnp.ndarray] = None,
encoder_hidden_states: Optional[jnp.ndarray] = None,
encoder_attention_mask: Optional[jnp.ndarray] = None,
init_cache: bool = False,
deterministic: bool = True,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
# Model
outputs = self.roberta(
input_ids,
attention_mask,
token_type_ids,
position_ids,
head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
init_cache=init_cache,
deterministic=deterministic,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_embedding = self.roberta.variables["params"]["embeddings"]["word_embeddings"]["embedding"]
else:
shared_embedding = None
# Compute the prediction scores
logits = self.lm_head(hidden_states, shared_embedding=shared_embedding)
if not return_dict:
return (logits,) + outputs[1:]
return FlaxCausalLMOutputWithCrossAttentions(
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
cross_attentions=outputs.cross_attentions,
)
@add_start_docstrings(
"""
XLM Roberta Model with a language modeling head on top (a linear layer on top of the hidden-states output) e.g for
autoregressive tasks.
""",
XLM_ROBERTA_START_DOCSTRING,
)
# Copied from transformers.models.roberta.modeling_flax_roberta.FlaxRobertaForCausalLM with Roberta->XLMRoberta
class FlaxXLMRobertaForCausalLM(FlaxXLMRobertaPreTrainedModel):
module_class = FlaxXLMRobertaForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since the decoder uses a causal mask, those positions are masked anyway.
# Thus, we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxXLMRobertaForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutputWithCrossAttentions,
_CONFIG_FOR_DOC,
)
__all__ = [
"FlaxXLMRobertaForMaskedLM",
"FlaxXLMRobertaForCausalLM",
"FlaxXLMRobertaForMultipleChoice",
"FlaxXLMRobertaForQuestionAnswering",
"FlaxXLMRobertaForSequenceClassification",
"FlaxXLMRobertaForTokenClassification",
"FlaxXLMRobertaModel",
"FlaxXLMRobertaPreTrainedModel",
]
| transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py/0 | {
"file_path": "transformers/src/transformers/models/xlm_roberta/modeling_flax_xlm_roberta.py",
"repo_id": "transformers",
"token_count": 26119
} |
# coding=utf-8
# Copyright 2024 Zyphra Technologies and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Zamba model."""
import math
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...cache_utils import Cache, DynamicCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
SequenceClassifierOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...processing_utils import Unpack
from ...pytorch_utils import ALL_LAYERNORM_LAYERS
from ...utils import (
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_torchdynamo_compiling,
logging,
replace_return_docstrings,
)
from ...utils.deprecation import deprecate_kwarg
from ...utils.import_utils import (
is_causal_conv1d_available,
is_mamba_ssm_available,
)
from .configuration_zamba import ZambaConfig
if is_mamba_ssm_available():
from mamba_ssm.ops.selective_scan_interface import mamba_inner_fn, selective_scan_fn
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
else:
selective_state_update, selective_scan_fn, mamba_inner_fn = None, None, None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all(
(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)
)
logger = logging.get_logger(__name__)
_CONFIG_FOR_DOC = "ZambaConfig"
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Zamba
class ZambaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
ZambaRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
ALL_LAYERNORM_LAYERS.append(ZambaRMSNorm)
# Copied from transformers.models.llama.modeling_llama.repeat_kv
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class ZambaHybridDynamicCache(DynamicCache):
"""
A dynamic cache that can handle both the attention cache (which has a seq_len dimension) and the mamba cache
(which has a constant shape regardless of seq_len).
This cache has two sets of lists of tensors: `key_cache` and `value_cache` for attention cache and `conv_states`
and `ssm_states` for mamba cache. Each of these lists has `num_layers` tensors. The expected shape for each tensor
For attention layers, `key_cache` and `value_cache` have a shape of `(batch_size, num_heads, seq_len, head_dim)`,
while `conv_states` and `ssm_states` have a shape of `(batch_size, 0)` (empty tensors).
For mamba layers, `key_cache` and `value_cache` have a shape of `(batch_size, 0)` (empty tensors),
while `conv_states` represents the convolution state and has a shape of `(batch_size, d_inner, d_conv)`,
and `ssm_states` represents the ssm state and has a shape of `(batch_size, d_inner, d_state)`.
"""
def __init__(self, config, batch_size, dtype=torch.float16, device=None):
self.dtype = dtype
self.layers_block_type = config.layers_block_type
self.has_previous_state = False # only used by mamba
self.intermediate_size = config.mamba_expand * config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.n_mamba_heads = config.n_mamba_heads
self.conv_states = []
self.ssm_states = []
self.transformer_layers = []
self._modules = {}
self._parameters = {}
self._buffers = {}
for i in range(config.num_hidden_layers):
self.conv_states += [
torch.zeros(batch_size, self.intermediate_size, self.conv_kernel_size, device=device, dtype=dtype)
]
cache_shape = (
batch_size,
self.n_mamba_heads,
self.intermediate_size // self.n_mamba_heads,
self.ssm_state_size,
)
self.ssm_states += [torch.zeros(cache_shape, device=device, dtype=dtype)]
if self.layers_block_type[i] == "hybrid":
self.transformer_layers.append(i)
self.key_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
self.value_cache = [torch.tensor([[]] * batch_size, device=device) for _ in range(config.num_hidden_layers)]
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.update
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
# Update the cache
if self.key_cache[layer_idx].shape[-1] == 0:
self.key_cache[layer_idx] = key_states
self.value_cache[layer_idx] = value_states
else:
self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx], key_states], dim=2)
self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx], value_states], dim=2)
return self.key_cache[layer_idx], self.value_cache[layer_idx]
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.reorder_cache
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
for layer_idx in range(len(self.key_cache)):
device = self.key_cache[layer_idx].device
self.key_cache[layer_idx] = self.key_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.value_cache[layer_idx].device
self.value_cache[layer_idx] = self.value_cache[layer_idx].index_select(0, beam_idx.to(device))
device = self.conv_states[layer_idx].device
self.conv_states[layer_idx] = self.conv_states[layer_idx].index_select(0, beam_idx.to(device))
device = self.ssm_states[layer_idx].device
self.ssm_states[layer_idx] = self.ssm_states[layer_idx].index_select(0, beam_idx.to(device))
# Copied from transformers.models.jamba.modeling_jamba.HybridMambaAttentionDynamicCache.get_seq_length
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
# take any layer that contains cache and not empty tensor
layer_idx = self.transformer_layers[0] if layer_idx not in self.transformer_layers else layer_idx
if len(self.key_cache) <= layer_idx:
return 0
return self.key_cache[layer_idx].shape[-2]
def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor], Tuple[torch.Tensor]]:
raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.")
@classmethod
def from_legacy_cache(cls, past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None) -> "DynamicCache":
raise NotImplementedError("ZambaHybridDynamicCache does not have a legacy cache equivalent.")
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class ZambaAttention(nn.Module):
"""
Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
and "Generating Long Sequences with Sparse Transformers".
Adapted from transformers.models.mistral.modeling_mistral.MistralAttention:
The input dimension here is attention_hidden_size = 2 * hidden_size, and head_dim = attention_hidden_size // num_heads.
The extra factor of 2 comes from the input being the concatenation of original_hidden_states with the output of the previous (mamba) layer
(see fig. 2 in https://arxiv.org/pdf/2405.16712).
Additionally, replaced
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) with
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim/2)
"""
def __init__(self, config: ZambaConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.attention_hidden_size = config.attention_hidden_size
self.head_dim = config.attention_head_dim
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.max_position_embeddings = config.max_position_embeddings
self.scaling = (self.head_dim / 2) ** -0.5
self.is_causal = True
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(config.attention_hidden_size, config.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.attention_hidden_size, config.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
layer_idx: int,
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[ZambaHybridDynamicCache] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
if past_key_value is not None:
key_states, value_states = past_key_value.update(key_states, value_states, layer_idx)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class ZambaMambaMixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
This module differs from `transformers.models.mamba.modeling_mamba.MambaMixer` in two ways:
- Added multi-head: the output of `self.in_proj` is split into `self.n_mamba_heads` heads, and each head
undergoes an independent forward pass, identical to the original `MambaMixer`, up until the pre-activations of
`self.out_proj`. The pre-activations, coming from different mamba heads, are then concatenated and fed into `self.out_proj`.
"""
def __init__(self, config: ZambaConfig, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.hidden_size = config.hidden_size
self.ssm_state_size = config.mamba_d_state
self.conv_kernel_size = config.mamba_d_conv
self.intermediate_size = config.mamba_expand * config.hidden_size
self.time_step_rank = config.mamba_dt_rank
self.n_mamba_heads = config.n_mamba_heads
self.mamba_head_dim = self.intermediate_size // self.n_mamba_heads
self.use_conv_bias = config.mamba_conv_bias
self.use_bias = config.mamba_proj_bias
self.conv1d = nn.Conv1d(
in_channels=self.intermediate_size,
out_channels=self.intermediate_size,
bias=self.use_conv_bias,
kernel_size=self.conv_kernel_size,
groups=self.intermediate_size,
padding=self.conv_kernel_size - 1,
)
self.activation = config.hidden_mamba_act
self.act = ACT2FN[config.hidden_mamba_act]
self.use_fast_kernels = config.use_mamba_kernels
# projection of the input hidden states
self.in_proj = nn.Linear(self.hidden_size, self.intermediate_size * 2, bias=self.use_bias)
# weight associated to the selective projection used to make dt, B and C input dependent
# each mamba head is processed independently
self.x_proj_weight = nn.Parameter(
(
torch.zeros(
self.n_mamba_heads,
self.time_step_rank + self.ssm_state_size * 2,
self.mamba_head_dim,
)
)
)
# time step projection (discretization)
self.dt_proj_weight = nn.Parameter(
(torch.zeros(self.n_mamba_heads, self.mamba_head_dim, self.time_step_rank) - 0.5)
* 2
/ self.time_step_rank**0.5
)
self.dt_proj_bias = nn.Parameter(torch.zeros(self.n_mamba_heads, self.mamba_head_dim))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.ssm_state_size + 1, dtype=torch.float32)[None, :]
A = A.expand(self.intermediate_size, -1).contiguous()
self.A_log = nn.Parameter(torch.log(A).reshape(self.n_mamba_heads, self.mamba_head_dim, -1))
self.D = nn.Parameter(torch.ones(self.n_mamba_heads, self.mamba_head_dim))
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=self.use_bias)
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, selective_scan_fn, causal_conv1d_fn, causal_conv1d_update, mamba_inner_fn)`"
" is None. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d. If you want to use the naive implementation, set `use_mamba_kernels=False` in the model config"
)
def cuda_kernels_forward(
self, hidden_states: torch.Tensor, cache_params: ZambaHybridDynamicCache = None, attention_mask=None
):
batch_size, seq_len, _ = hidden_states.shape
use_precomputed_states = cache_params is not None and cache_params.has_previous_state and seq_len == 1
# 1. Gated linear projection
projected_states = self.in_proj(hidden_states).transpose(1, 2)
hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2)
hidden_states = hidden_states.squeeze(2).contiguous()
gate = gate.squeeze(2)
gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1)
# 2. Convolution sequence transformation
conv_weights = self.conv1d.weight.view(self.conv1d.weight.size(0), self.conv1d.weight.size(2))
if use_precomputed_states:
hidden_states = causal_conv1d_update(
hidden_states.squeeze(-1),
cache_params.conv_states[self.layer_idx],
conv_weights,
self.conv1d.bias,
self.activation,
)
hidden_states = hidden_states.unsqueeze(-1)
else:
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask.unsqueeze(1)
if cache_params is not None:
conv_states = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.conv_states[self.layer_idx].copy_(conv_states)
hidden_states = causal_conv1d_fn(hidden_states, conv_weights, self.conv1d.bias, activation=self.activation)
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. SSM sequence transformation
# 3.a. input varying initialization of time_step, B and C
hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1)
ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2)
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)
A = -torch.exp(self.A_log.float())
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
time_proj_bias = self.dt_proj_bias.float() if self.dt_proj_bias is not None else None
scan_outputs = torch.empty((batch_size, 0, seq_len), device=hidden_states.device, dtype=hidden_states.dtype)
if use_precomputed_states:
for n in range(self.n_mamba_heads):
scan_outputs_ = selective_state_update(
cache_params.ssm_states[self.layer_idx][:, n],
hidden_states[n, ..., 0],
discrete_time_step[n, ..., 0],
A[n],
B[n, :, 0],
C[n, :, 0],
self.D[n],
gate[n, ..., 0],
time_proj_bias[n],
dt_softplus=True,
).unsqueeze(-1)
scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1)
else:
ssm_state = torch.empty(
(batch_size, 0, self.mamba_head_dim, self.ssm_state_size),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
for n in range(self.n_mamba_heads):
scan_outputs_, ssm_state_ = selective_scan_fn(
hidden_states[n],
discrete_time_step[n],
A[n],
B[n].transpose(1, 2),
C[n].transpose(1, 2),
self.D[n].float(),
gate[n],
time_proj_bias[n],
delta_softplus=True,
return_last_state=True,
)
scan_outputs = torch.cat((scan_outputs, scan_outputs_), dim=1).contiguous()
ssm_state = torch.cat((ssm_state, ssm_state_.unsqueeze(1)), dim=1)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
# 4. Final linear projection
contextualized_states = self.out_proj(scan_outputs.transpose(1, 2))
return contextualized_states
def slow_forward(self, input_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# 1. Gated linear projection
projected_states = self.in_proj(input_states).transpose(1, 2)
hidden_states, gate = projected_states.view(batch_size, -1, 2, seq_len).chunk(2, dim=2)
hidden_states = hidden_states.squeeze(2).contiguous()
gate = gate.squeeze(2)
gate = gate.reshape(batch_size, self.n_mamba_heads, -1, seq_len).transpose(0, 1)
use_cache = isinstance(cache_params, ZambaHybridDynamicCache)
# 2. Convolution sequence transformation
if use_cache and cache_params.ssm_states[self.layer_idx].shape[0] == batch_size:
if self.training:
# In training mode, we don't want to perform in-place operations on ssm_state so we can compute the backwards pass
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
else:
ssm_state = cache_params.ssm_states[self.layer_idx]
ssm_state = ssm_state.to(hidden_states.device)
if (
cache_params.has_previous_state
and seq_len == 1
and cache_params.conv_states[self.layer_idx].shape[0] == batch_size
):
conv_state = cache_params.conv_states[self.layer_idx]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
conv_state[:, :, -1] = hidden_states[:, :, 0]
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = torch.sum(conv_state * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype).unsqueeze(-1)
else:
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1)
conv_state = nn.functional.pad(hidden_states, (self.conv_kernel_size - hidden_states.shape[-1], 0))
cache_params.conv_states[self.layer_idx] = conv_state
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask[:, -hidden_states.shape[-1] :].unsqueeze(1)
else:
ssm_state = torch.zeros(
(batch_size, self.n_mamba_heads, self.mamba_head_dim, self.ssm_state_size),
device=hidden_states.device,
dtype=dtype,
)
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask.unsqueeze(1)
hidden_states = self.act(self.conv1d(hidden_states)[..., :seq_len])
if attention_mask is not None and not torch.all(attention_mask == 1):
hidden_states = hidden_states * attention_mask.unsqueeze(1)
# 3. State Space Model sequence transformation
# 3.a. Selection: [batch, seq_len, self.time_step_rank + self.ssm_state_size * 2]
hidden_states = hidden_states.reshape(-1, self.n_mamba_heads, self.mamba_head_dim, seq_len).transpose(0, 1)
ssm_parameters = (self.x_proj_weight[:, None, :, :] @ hidden_states).transpose(-1, -2)
time_step, B, C = torch.split(
ssm_parameters, [self.time_step_rank, self.ssm_state_size, self.ssm_state_size], dim=-1
)
discrete_time_step = (self.dt_proj_weight[:, None] @ time_step.transpose(-1, -2)) + self.dt_proj_bias[
:, None, :, None
]
discrete_time_step = nn.functional.softplus(discrete_time_step)
# 3.b. Discretization: B and C to [batch, seq_len, intermediate_size, ssm_state_size] (SRAM)
A = -torch.exp(self.A_log.float())
discrete_A = torch.exp(A[:, None, :, None, :] * discrete_time_step[:, :, :, :, None])
discrete_B = discrete_time_step[:, :, :, :, None] * B[:, :, None, :, :].float()
deltaB_u = discrete_B * hidden_states[:, :, :, :, None].float()
# 3.c perform the recurrence y ← SSM(A, B, C)(x)
scan_outputs = []
for i in range(seq_len):
ssm_state = discrete_A[:, :, :, i, :].transpose(0, 1) * ssm_state + deltaB_u[:, :, :, i, :].transpose(0, 1)
scan_output = torch.matmul(ssm_state.transpose(0, 1).to(dtype), C[:, :, i, :].unsqueeze(-1))
scan_outputs.append(scan_output[:, :, :, 0])
scan_output = torch.stack(scan_outputs, dim=-1)
scan_output = scan_output + (hidden_states * self.D[:, None, :, None])
scan_output = scan_output * self.act(gate)
if use_cache:
cache_params.ssm_states[self.layer_idx] = ssm_state
# 4. Final linear projection
contextualized_states = self.out_proj(
scan_output.transpose(0, 1).reshape(batch_size, -1, seq_len).transpose(1, 2)
)
return contextualized_states
def forward(self, hidden_states, cache_params: ZambaHybridDynamicCache = None, attention_mask=None):
if self.use_fast_kernels:
if not is_fast_path_available or "cuda" not in self.x_proj_weight.device.type:
raise ValueError(
"Fast Mamba kernels are not available. Make sure to they are installed and that "
"the mamba module is on a CUDA device. lease run 'pip install causal-conv1d>=1.2.0' "
"and 'pip install mamba-ssm', or set use_mamba_kernels=False in the model's config."
)
return self.cuda_kernels_forward(hidden_states, cache_params, attention_mask=attention_mask)
return self.slow_forward(hidden_states, cache_params, attention_mask=attention_mask)
# Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Zamba
class ZambaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class ZambaAttentionDecoderLayer(nn.Module):
def __init__(self, config: ZambaConfig, layer_idx: Optional[int] = None):
super().__init__()
self.self_attn = ZambaAttention(config, layer_idx)
self.feed_forward = ZambaMLP(config)
self.input_layernorm = ZambaRMSNorm(config.attention_hidden_size, eps=config.rms_norm_eps)
self.pre_ff_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: torch.Tensor,
layer_idx: int,
attention_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[ZambaHybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): output of previous Mamba layer of shape `(batch, seq_len, embed_dim)`
original_hidden_states (`torch.FloatTensor`): word embedding output of shape `(batch, seq_len, embed_dim)`.
This is concatenated with `hidden_states` (which is the output of the previous (mamba) layer). The
concatenated tensor is then used as input of the pre-attention RMSNorm
(see fig. 2 in https://arxiv.org/pdf/2405.16712).
layer_idx (`int`): layer_idx in the forward pass. Used to distinguish Zamba's tied transformer layers.
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
hidden_states = torch.concatenate([hidden_states, original_hidden_states], dim=-1)
hidden_states = self.input_layernorm(hidden_states)
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
layer_idx=layer_idx,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
**kwargs,
)
# feed-forward (MLP)
hidden_states = self.pre_ff_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class ZambaMambaDecoderLayer(nn.Module):
def __init__(self, config: ZambaConfig, layer_idx: int):
super().__init__()
self.mamba = ZambaMambaMixer(config=config, layer_idx=layer_idx)
self.input_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.layer_idx = layer_idx
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: Optional[torch.Tensor] = None,
layer_idx: int = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[ZambaHybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
transformer_hidden_states: Optional[torch.Tensor] = None,
**kwargs,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
residual = hidden_states
# `transformer_hidden_states` is the output from shared transformer + linear layer (see fig. 2 in https://arxiv.org/pdf/2405.16712).
# `transformer_hidden_states` is then added to the input to the mamba layer below (as described in eq. (6) of https://arxiv.org/pdf/2405.16712).
hidden_states = (
hidden_states + transformer_hidden_states if transformer_hidden_states is not None else hidden_states
)
hidden_states = self.input_layernorm(hidden_states)
hidden_states = self.mamba(
hidden_states=hidden_states,
cache_params=past_key_value,
attention_mask=attention_mask,
)
self_attn_weights = None
# residual connection after mamba
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (past_key_value,)
return outputs
class ZambaHybridLayer(nn.Module):
def __init__(self, shared_transf: ZambaAttentionDecoderLayer, linear: nn.Linear, mamba: ZambaMambaDecoderLayer):
super().__init__()
self.shared_transf = shared_transf
self.linear = linear
self.mamba_decoder = mamba
def forward(
self,
hidden_states: torch.Tensor,
original_hidden_states: Optional[torch.Tensor] = None,
layer_idx: int = None,
attention_mask: Optional[torch.Tensor] = None,
causal_mask: Optional[torch.Tensor] = None,
past_key_value: Optional[ZambaHybridDynamicCache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
"""
Args:
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
original_hidden_states (`torch.FloatTensor`): word embedding output that will be concatenated with
hidden activations to form the input of the shared transformer layer.
layer_idx (`int`): layer number.
attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
`(batch, sequence_length)` where padding elements are indicated by 0.
past_key_value (`ZambaHybridDynamicCache`, *optional*): cached past key and value projection states
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
(see `past_key_values`).
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence.
"""
layer_outputs = self.shared_transf(
hidden_states,
original_hidden_states=original_hidden_states,
layer_idx=layer_idx,
attention_mask=causal_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
transformer_hidden_states = layer_outputs[0]
if output_attentions:
self_attn_weights = layer_outputs[1]
transformer_hidden_states = self.linear(transformer_hidden_states)
layer_outputs = self.mamba_decoder(
hidden_states,
transformer_hidden_states=transformer_hidden_states,
attention_mask=attention_mask,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
if output_attentions:
layer_outputs = (layer_outputs[0], self_attn_weights) + layer_outputs[2:]
return layer_outputs
ZAMBA_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`ZambaConfig`]):
Model configuration class with all the parameters of the model. Initializing with a config file does not
load the weights associated with the model, only the configuration. Check out the
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
@add_start_docstrings(
"The bare Zamba Model outputting raw hidden-states without any specific head on top.",
ZAMBA_START_DOCSTRING,
)
class ZambaPreTrainedModel(PreTrainedModel):
config_class = ZambaConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["ZambaAttentionDecoderLayer", "ZambaMambaDecoderLayer"]
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = False
_supports_sdpa = False
_supports_cache_class = True # Note: only supports ZambaHybridDynamicCache
_is_stateful = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, (nn.Linear, nn.Conv1d)):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, ZambaMambaMixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
module.x_proj_weight.data.normal_(mean=0.0, std=std)
dt_init_std = self.config.mamba_dt_rank**-0.5
nn.init.uniform_(module.dt_proj_weight, -dt_init_std, dt_init_std)
mamba_head_dim = self.config.mamba_expand * self.config.hidden_size // self.config.n_mamba_heads
dt = torch.exp(
torch.rand(self.config.n_mamba_heads, mamba_head_dim)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_proj_bias.copy_(inv_dt)
module.dt_proj_bias._no_reinit = True
@classmethod
@classmethod
def _check_and_enable_flash_attn_2(
cls,
config,
torch_dtype: Optional[torch.dtype] = None,
device_map: Optional[Union[str, Dict[str, int]]] = None,
hard_check_only: bool = False,
check_device_map: bool = False,
):
"""
Overloads `PreTrainedModel._check_and_enable_flash_attn_2` so as to DISABLE Flash Attention 2 by default on Zamba models.
Flash attention 2 is currently not supported in the HuggingFace implementation of Zamba v1.
"""
config = super()._check_and_enable_flash_attn_2(
config, torch_dtype, device_map, hard_check_only=hard_check_only, check_device_map=check_device_map
)
# if using the default path -> swap sdpa by eager
if not hard_check_only and config._attn_implementation == "flash_attention_2":
config._attn_implementation = "eager"
return config
ZAMBA_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
it.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
`past_key_values`).
If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
information on the default strategy.
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
past_key_values (`ZambaHybridDynamicCache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
A ZambaHybridDynamicCache object containing pre-computed hidden-states (keys and values in the
self-attention blocks and convolution and ssm states in the mamba blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
Key and value cache tensors have shape `(batch_size, num_heads, seq_len, head_dim)`.
Convolution and ssm states tensors have shape `(batch_size, d_inner, d_conv)` and
`(batch_size, d_inner, d_state)` respectively.
See the `ZambaHybridDynamicCache` class for more details.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`input_ids` of shape `(batch_size, sequence_length)`.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
@add_start_docstrings(
"The bare Zamba Model outputting raw hidden-states without any specific head on top.",
ZAMBA_START_DOCSTRING,
)
class ZambaModel(ZambaPreTrainedModel):
"""
Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`ZambaDecoderLayer`]
Args:
config: ZambaConfig
"""
def __init__(self, config: ZambaConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
block = ZambaAttentionDecoderLayer(config)
mamba_layers = []
linear_layers = []
self.layers_block_type = config.layers_block_type
for i in range(config.num_hidden_layers):
if config.layers_block_type[i] == "mamba":
mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i))
elif config.layers_block_type[i] == "hybrid":
linear_layers.append(nn.Linear(self.config.hidden_size, self.config.hidden_size, bias=False))
mamba_layers.append(ZambaMambaDecoderLayer(config, layer_idx=i))
mamba_layers = iter(mamba_layers)
linear_layers = iter(linear_layers)
layers = []
self._tied_weights_keys = []
for layer_id, layer_type in enumerate(self.layers_block_type):
if layer_type == "hybrid":
prefix_name = f"layers.{layer_id}."
tied_keys = [
"shared_transf.self_attn.q_proj.weight",
"shared_transf.self_attn.k_proj.weight",
"shared_transf.self_attn.v_proj.weight",
"shared_transf.self_attn.o_proj.weight",
"shared_transf.feed_forward.gate_proj.weight",
"shared_transf.feed_forward.up_proj.weight",
"shared_transf.feed_forward.down_proj.weight",
"shared_transf.input_layernorm.weight",
"shared_transf.pre_ff_layernorm.weight",
]
self._tied_weights_keys = [*self._tied_weights_keys, *[prefix_name + key for key in tied_keys]]
layers.append(ZambaHybridLayer(block, next(linear_layers), next(mamba_layers)))
else:
layers.append(next(mamba_layers))
self.layers = nn.ModuleList(layers)
self._attn_implementation = config._attn_implementation
self.final_layernorm = ZambaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[ZambaHybridDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
)
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
hidden_states = inputs_embeds
original_hidden_states = torch.clone(inputs_embeds)
# original_hidden_states: word embedding output that will be concatenated with hidden activations to form the input of the shared transformer layer
if use_cache and past_key_values is None:
logger.warning_once(
"Zamba requires an initialized `ZambaHybridDynamicCache` to return a cache. None was "
"provided, so no cache will be returned."
)
if cache_position is None:
cache_position = torch.arange(hidden_states.shape[1], device=hidden_states.device)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds, cache_position)
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for layer_idx, layer in enumerate(self.layers):
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer.__call__,
hidden_states,
original_hidden_states,
layer_idx,
attention_mask,
causal_mask,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = layer(
hidden_states,
original_hidden_states=original_hidden_states,
layer_idx=layer_idx,
attention_mask=attention_mask,
causal_mask=causal_mask,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = layer_outputs[0]
if output_attentions:
if layer_outputs[1] is not None:
# append attentions only of attention layers. Mamba layers return `None` as the attention weights
all_self_attns += (layer_outputs[1],)
hidden_states = self.final_layernorm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
if past_key_values and not past_key_values.has_previous_state:
past_key_values.has_previous_state = True
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
# Copied from transformers.models.jamba.modeling_jamba.JambaModel._update_causal_mask
def _update_causal_mask(self, attention_mask, input_tensor, cache_position):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
target_length = cache_position[-1] + 1
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.dim() == 2:
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[:, None, None, :].eq(0.0)
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(padding_mask, min_dtype)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu"]
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
# Adapted from transformers.models.jamba.modeling_jamba.JambaForCausalLM with Jamba->Zamba, JAMBA->ZAMBA
class ZambaForCausalLM(ZambaPreTrainedModel, GenerationMixin):
def __init__(self, config: ZambaConfig):
super().__init__(config)
self.model = ZambaModel(config)
self._tied_weights_keys = ["lm_head.weight", *self.model._tied_weights_keys]
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[ZambaHybridDynamicCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
Args:
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
Returns:
Example:
```python
>>> from transformers import AutoTokenizer, ZambaForCausalLM
>>> model = ZambaForCausalLM.from_pretrained("Zyphra/Zamba-7B-v1")
>>> tokenizer = AutoTokenizer.from_pretrained("Zyphra/Zamba-7B-v1")
>>> prompt = "Hey, are you conscious? Can you talk to me?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
return_dict=return_dict,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
**kwargs,
):
# Overwitten -- has a unique cache type, `ZambaHybridDynamicCache`
empty_past_kv = past_key_values is None
# Omit tokens covered by past_key_values
if not empty_past_kv:
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if (
inputs_embeds is not None # Exception 1
or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
else:
past_key_values = ZambaHybridDynamicCache(
self.config, input_ids.shape[0], dtype=self.dtype, device=self.device
)
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if not empty_past_kv:
position_ids = position_ids[:, -input_ids.shape[1] :]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and empty_past_kv:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids.contiguous()} # `contiguous()` needed for compilation use cases
model_inputs.update(
{
"position_ids": position_ids,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
"logits_to_keep": self.config.num_logits_to_keep,
"cache_position": cache_position,
}
)
return model_inputs
@add_start_docstrings(
"""
The Zamba Model with a sequence classification head on top (linear layer).
[`ZambaForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-2) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
ZAMBA_START_DOCSTRING,
)
class ZambaForSequenceClassification(ZambaPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.model = ZambaModel(config)
self._tied_weights_keys = self.model._tied_weights_keys
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
@add_start_docstrings_to_model_forward(ZAMBA_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.model(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
last_non_pad_token = -1
elif input_ids is not None:
# To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
token_indices = torch.arange(input_ids.shape[-1], device=logits.device)
last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
else:
last_non_pad_token = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
__all__ = ["ZambaForCausalLM", "ZambaForSequenceClassification", "ZambaModel", "ZambaPreTrainedModel"]
| transformers/src/transformers/models/zamba/modeling_zamba.py/0 | {
"file_path": "transformers/src/transformers/models/zamba/modeling_zamba.py",
"repo_id": "transformers",
"token_count": 31122
} |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import warnings
from functools import partial
from typing import Callable, Iterable, Optional, Tuple, Union
import torch
from torch import nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau
from .trainer_pt_utils import LayerWiseDummyOptimizer, LayerWiseDummyScheduler
from .trainer_utils import SchedulerType
from .utils import logging
from .utils.versions import require_version
logger = logging.get_logger(__name__)
def _get_constant_lambda(_=None):
return 1
def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate, using the learning rate set in optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
return LambdaLR(optimizer, _get_constant_lambda, last_epoch=last_epoch)
def get_reduce_on_plateau_schedule(optimizer: Optimizer, **kwargs):
"""
Create a schedule with a constant learning rate that decreases when a metric has stopped improving.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
kwargs (`dict`, *optional*):
Extra parameters to be passed to the scheduler. See `torch.optim.lr_scheduler.ReduceLROnPlateau`
for possible parameters.
Return:
`torch.optim.lr_scheduler.ReduceLROnPlateau` with the appropriate schedule.
"""
return ReduceLROnPlateau(optimizer, **kwargs)
def _get_constant_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1.0, num_warmup_steps))
return 1.0
def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
"""
Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
increases linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(_get_constant_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps)
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
"""
Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_linear_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
def get_cosine_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: int
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
if progress >= 1.0:
return 0.0
return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))
def get_cosine_with_hard_restarts_schedule_with_warmup(
optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
linearly between 0 and the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`int`, *optional*, defaults to 1):
The number of hard restarts to use.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_polynomial_decay_schedule_with_warmup_lr_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_training_steps: int,
lr_end: float,
power: float,
lr_init: int,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
elif current_step > num_training_steps:
return lr_end / lr_init # as LambdaLR multiplies by lr_init
else:
lr_range = lr_init - lr_end
decay_steps = num_training_steps - num_warmup_steps
pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
decay = lr_range * pct_remaining**power + lr_end
return decay / lr_init # as LambdaLR multiplies by lr_init
def get_polynomial_decay_schedule_with_warmup(
optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
):
"""
Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
lr_end (`float`, *optional*, defaults to 1e-7):
The end LR.
power (`float`, *optional*, defaults to 1.0):
Power factor.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
implementation at
https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_init = optimizer.defaults["lr"]
if not (lr_init > lr_end):
raise ValueError(f"lr_end ({lr_end}) must be smaller than initial lr ({lr_init})")
lr_lambda = partial(
_get_polynomial_decay_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
lr_end=lr_end,
power=power,
lr_init=lr_init,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_inverse_sqrt_schedule_lr_lambda(current_step: int, *, num_warmup_steps: int, timescale: int = None):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
shift = timescale - num_warmup_steps
decay = 1.0 / math.sqrt((current_step + shift) / timescale)
return decay
def get_inverse_sqrt_schedule(
optimizer: Optimizer, num_warmup_steps: int, timescale: int = None, last_epoch: int = -1
):
"""
Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a
warmup period which increases lr linearly from 0 to the initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
timescale (`int`, *optional*, defaults to `num_warmup_steps`):
Time scale.
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
# Note: this implementation is adapted from
# https://github.com/google-research/big_vision/blob/f071ce68852d56099437004fd70057597a95f6ef/big_vision/utils.py#L930
if timescale is None:
timescale = num_warmup_steps or 10_000
lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale)
return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)
def _get_cosine_schedule_with_warmup_lr_lambda(
current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float, min_lr_rate: float = 0.0
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
factor = 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress))
factor = factor * (1 - min_lr_rate) + min_lr_rate
return max(0, factor)
def get_cosine_with_min_lr_schedule_with_warmup(
optimizer: Optimizer,
num_warmup_steps: int,
num_training_steps: int,
num_cycles: float = 0.5,
last_epoch: int = -1,
min_lr: float = None,
min_lr_rate: float = None,
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to min_lr, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
min_lr (`float`, *optional*):
The minimum learning rate to reach after the cosine schedule.
min_lr_rate (`float`, *optional*):
The minimum learning rate as a ratio of the initial learning rate. If set, `min_lr` should not be set.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
if min_lr is not None and min_lr_rate is not None:
raise ValueError("Only one of min_lr or min_lr_rate should be set")
elif min_lr is not None:
min_lr_rate = min_lr / optimizer.defaults["lr"]
elif min_lr_rate is None:
raise ValueError("One of min_lr or min_lr_rate should be set through the `lr_scheduler_kwargs`")
lr_lambda = partial(
_get_cosine_schedule_with_warmup_lr_lambda,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
num_cycles=num_cycles,
min_lr_rate=min_lr_rate,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
def _get_wsd_scheduler_lambda(
current_step: int,
*,
num_warmup_steps: int,
num_stable_steps: int,
num_decay_steps: int,
num_cycles: float,
min_lr_ratio: float,
):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
if current_step < num_warmup_steps + num_stable_steps:
return 1.0
if current_step < num_warmup_steps + num_stable_steps + num_decay_steps:
progress = float(current_step - num_warmup_steps - num_stable_steps) / float(max(1, num_decay_steps))
value = max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
return (1.0 - min_lr_ratio) * value + min_lr_ratio
return min_lr_ratio
def get_wsd_schedule(
optimizer: Optimizer,
num_warmup_steps: int,
num_stable_steps: int,
num_decay_steps: int,
min_lr_ratio: float = 0,
num_cycles: float = 0.5,
last_epoch: int = -1,
):
"""
Create a schedule with a learning rate that has three stages:
1. linear increase from 0 to initial lr.
2. constant lr (equal to initial lr).
3. decrease following the values of the cosine function between the initial lr set in the optimizer to
a fraction of initial lr.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_stable_steps (`int`):
The number of steps for the stable phase.
num_decay_steps (`int`):
The number of steps for the cosine annealing phase.
min_lr_ratio (`float`, *optional*, defaults to 0):
The minimum learning rate as a ratio of the initial learning rate.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
lr_lambda = partial(
_get_wsd_scheduler_lambda,
num_warmup_steps=num_warmup_steps,
num_stable_steps=num_stable_steps,
num_decay_steps=num_decay_steps,
min_lr_ratio=min_lr_ratio,
num_cycles=num_cycles,
)
return LambdaLR(optimizer, lr_lambda, last_epoch)
TYPE_TO_SCHEDULER_FUNCTION = {
SchedulerType.LINEAR: get_linear_schedule_with_warmup,
SchedulerType.COSINE: get_cosine_schedule_with_warmup,
SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup,
SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup,
SchedulerType.CONSTANT: get_constant_schedule,
SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup,
SchedulerType.INVERSE_SQRT: get_inverse_sqrt_schedule,
SchedulerType.REDUCE_ON_PLATEAU: get_reduce_on_plateau_schedule,
SchedulerType.COSINE_WITH_MIN_LR: get_cosine_with_min_lr_schedule_with_warmup,
SchedulerType.WARMUP_STABLE_DECAY: get_wsd_schedule,
}
def get_scheduler(
name: Union[str, SchedulerType],
optimizer: Optimizer,
num_warmup_steps: Optional[int] = None,
num_training_steps: Optional[int] = None,
scheduler_specific_kwargs: Optional[dict] = None,
):
"""
Unified API to get any scheduler from its name.
Args:
name (`str` or `SchedulerType`):
The name of the scheduler to use.
optimizer (`torch.optim.Optimizer`):
The optimizer that will be used during training.
num_warmup_steps (`int`, *optional*):
The number of warmup steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
num_training_steps (`int``, *optional*):
The number of training steps to do. This is not required by all schedulers (hence the argument being
optional), the function will raise an error if it's unset and the scheduler type requires it.
scheduler_specific_kwargs (`dict`, *optional*):
Extra parameters for schedulers such as cosine with restarts. Mismatched scheduler types and scheduler
parameters will cause the scheduler function to raise a TypeError.
"""
name = SchedulerType(name)
schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
# If a `LayerWiseDummyOptimizer` is passed we extract the optimizer dict and
# recursively call `get_scheduler` to get the proper schedulers on each parameter
if optimizer is not None and isinstance(optimizer, LayerWiseDummyOptimizer):
optimizer_dict = optimizer.optimizer_dict
scheduler_dict = {}
for param in optimizer_dict.keys():
scheduler_dict[param] = get_scheduler(
name,
optimizer=optimizer_dict[param],
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
)
def scheduler_hook(param):
# Since the optimizer hook has been already attached we only need to
# attach the scheduler hook, the gradients have been zeroed here
scheduler_dict[param].step()
for param in optimizer_dict.keys():
if param.requires_grad:
param.register_post_accumulate_grad_hook(scheduler_hook)
return LayerWiseDummyScheduler(optimizer_dict=optimizer_dict, lr=optimizer.defaults["lr"])
if name == SchedulerType.CONSTANT:
return schedule_func(optimizer)
if scheduler_specific_kwargs is None:
scheduler_specific_kwargs = {}
if name == SchedulerType.REDUCE_ON_PLATEAU:
return schedule_func(optimizer, **scheduler_specific_kwargs)
# All other schedulers require `num_warmup_steps`
if num_warmup_steps is None:
raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")
if name == SchedulerType.CONSTANT_WITH_WARMUP:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
if name == SchedulerType.INVERSE_SQRT:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)
if name == SchedulerType.WARMUP_STABLE_DECAY:
return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, **scheduler_specific_kwargs)
# All other schedulers require `num_training_steps`
if num_training_steps is None:
raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")
return schedule_func(
optimizer,
num_warmup_steps=num_warmup_steps,
num_training_steps=num_training_steps,
**scheduler_specific_kwargs,
)
class AdamW(Optimizer):
"""
Implements Adam algorithm with weight decay fix as introduced in [Decoupled Weight Decay
Regularization](https://arxiv.org/abs/1711.05101).
Parameters:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*, defaults to 0.001):
The learning rate to use.
betas (`Tuple[float,float]`, *optional*, defaults to `(0.9, 0.999)`):
Adam's betas parameters (b1, b2).
eps (`float`, *optional*, defaults to 1e-06):
Adam's epsilon for numerical stability.
weight_decay (`float`, *optional*, defaults to 0.0):
Decoupled weight decay to apply.
correct_bias (`bool`, *optional*, defaults to `True`):
Whether or not to correct bias in Adam (for instance, in Bert TF repository they use `False`).
no_deprecation_warning (`bool`, *optional*, defaults to `False`):
A flag used to disable the deprecation warning (set to `True` to disable the warning).
"""
def __init__(
self,
params: Iterable[nn.parameter.Parameter],
lr: float = 1e-3,
betas: Tuple[float, float] = (0.9, 0.999),
eps: float = 1e-6,
weight_decay: float = 0.0,
correct_bias: bool = True,
no_deprecation_warning: bool = False,
):
if not no_deprecation_warning:
warnings.warn(
"This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch"
" implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this"
" warning",
FutureWarning,
)
require_version("torch>=1.5.0") # add_ with alpha
if lr < 0.0:
raise ValueError(f"Invalid learning rate: {lr} - should be >= 0.0")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[0]} - should be in [0.0, 1.0)")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter: {betas[1]} - should be in [0.0, 1.0)")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps} - should be >= 0.0")
defaults = {"lr": lr, "betas": betas, "eps": eps, "weight_decay": weight_decay, "correct_bias": correct_bias}
super().__init__(params, defaults)
@torch.no_grad()
def step(self, closure: Callable = None):
"""
Performs a single optimization step.
Arguments:
closure (`Callable`, *optional*): A closure that reevaluates the model and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.is_sparse:
raise RuntimeError("Adam does not support sparse gradients, please consider SparseAdam instead")
state = self.state[p]
# State initialization
if len(state) == 0:
state["step"] = 0
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(p)
# Exponential moving average of squared gradient values
state["exp_avg_sq"] = torch.zeros_like(p)
exp_avg, exp_avg_sq = state["exp_avg"], state["exp_avg_sq"]
beta1, beta2 = group["betas"]
state["step"] += 1
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
exp_avg.mul_(beta1).add_(grad, alpha=(1.0 - beta1))
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1.0 - beta2)
denom = exp_avg_sq.sqrt().add_(group["eps"])
step_size = group["lr"]
if group["correct_bias"]: # No bias correction for Bert
bias_correction1 = 1.0 - beta1 ** state["step"]
bias_correction2 = 1.0 - beta2 ** state["step"]
step_size = step_size * math.sqrt(bias_correction2) / bias_correction1
p.addcdiv_(exp_avg, denom, value=-step_size)
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
# Add weight decay at the end (fixed version)
if group["weight_decay"] > 0.0:
p.add_(p, alpha=(-group["lr"] * group["weight_decay"]))
return loss
class Adafactor(Optimizer):
"""
AdaFactor pytorch implementation can be used as a drop in replacement for Adam original fairseq code:
https://github.com/pytorch/fairseq/blob/master/fairseq/optim/adafactor.py
Paper: *Adafactor: Adaptive Learning Rates with Sublinear Memory Cost* https://arxiv.org/abs/1804.04235 Note that
this optimizer internally adjusts the learning rate depending on the `scale_parameter`, `relative_step` and
`warmup_init` options. To use a manual (external) learning rate schedule you should set `scale_parameter=False` and
`relative_step=False`.
Arguments:
params (`Iterable[nn.parameter.Parameter]`):
Iterable of parameters to optimize or dictionaries defining parameter groups.
lr (`float`, *optional*):
The external learning rate.
eps (`Tuple[float, float]`, *optional*, defaults to `(1e-30, 0.001)`):
Regularization constants for square gradient and parameter scale respectively
clip_threshold (`float`, *optional*, defaults to 1.0):
Threshold of root mean square of final gradient update
decay_rate (`float`, *optional*, defaults to -0.8):
Coefficient used to compute running averages of square
beta1 (`float`, *optional*):
Coefficient used for computing running averages of gradient
weight_decay (`float`, *optional*, defaults to 0.0):
Weight decay (L2 penalty)
scale_parameter (`bool`, *optional*, defaults to `True`):
If True, learning rate is scaled by root mean square
relative_step (`bool`, *optional*, defaults to `True`):
If True, time-dependent learning rate is computed instead of external learning rate
warmup_init (`bool`, *optional*, defaults to `False`):
Time-dependent learning rate computation depends on whether warm-up initialization is being used
This implementation handles low-precision (FP16, bfloat) values, but we have not thoroughly tested.
Recommended T5 finetuning settings (https://discuss.huggingface.co/t/t5-finetuning-tips/684/3):
- Training without LR warmup or clip_threshold is not recommended.
- use scheduled LR warm-up to fixed LR
- use clip_threshold=1.0 (https://arxiv.org/abs/1804.04235)
- Disable relative updates
- Use scale_parameter=False
- Additional optimizer operations like gradient clipping should not be used alongside Adafactor
Example:
```python
Adafactor(model.parameters(), scale_parameter=False, relative_step=False, warmup_init=False, lr=1e-3)
```
Others reported the following combination to work well:
```python
Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
```
When using `lr=None` with [`Trainer`] you will most likely need to use [`~optimization.AdafactorSchedule`]
scheduler as following:
```python
from transformers.optimization import Adafactor, AdafactorSchedule
optimizer = Adafactor(model.parameters(), scale_parameter=True, relative_step=True, warmup_init=True, lr=None)
lr_scheduler = AdafactorSchedule(optimizer)
trainer = Trainer(..., optimizers=(optimizer, lr_scheduler))
```
Usage:
```python
# replace AdamW with Adafactor
optimizer = Adafactor(
model.parameters(),
lr=1e-3,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
relative_step=False,
scale_parameter=False,
warmup_init=False,
)
```"""
def __init__(
self,
params,
lr=None,
eps=(1e-30, 1e-3),
clip_threshold=1.0,
decay_rate=-0.8,
beta1=None,
weight_decay=0.0,
scale_parameter=True,
relative_step=True,
warmup_init=False,
):
require_version("torch>=1.5.0") # add_ with alpha
if lr is not None and relative_step:
raise ValueError("Cannot combine manual `lr` and `relative_step=True` options")
if warmup_init and not relative_step:
raise ValueError("`warmup_init=True` requires `relative_step=True`")
defaults = {
"lr": lr,
"eps": eps,
"clip_threshold": clip_threshold,
"decay_rate": decay_rate,
"beta1": beta1,
"weight_decay": weight_decay,
"scale_parameter": scale_parameter,
"relative_step": relative_step,
"warmup_init": warmup_init,
}
super().__init__(params, defaults)
@staticmethod
def _get_lr(param_group, param_state):
rel_step_sz = param_group["lr"]
if param_group["relative_step"]:
min_step = 1e-6 * param_state["step"] if param_group["warmup_init"] else 1e-2
rel_step_sz = min(min_step, 1.0 / math.sqrt(param_state["step"]))
param_scale = 1.0
if param_group["scale_parameter"]:
param_scale = max(param_group["eps"][1], param_state["RMS"])
return param_scale * rel_step_sz
@staticmethod
def _get_options(param_group, param_shape):
factored = len(param_shape) >= 2
use_first_moment = param_group["beta1"] is not None
return factored, use_first_moment
@staticmethod
def _rms(tensor):
return tensor.norm(2) / (tensor.numel() ** 0.5)
@staticmethod
def _approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col):
# copy from fairseq's adafactor implementation:
# https://github.com/huggingface/transformers/blob/8395f14de6068012787d83989c3627c3df6a252b/src/transformers/optimization.py#L505
r_factor = (exp_avg_sq_row / exp_avg_sq_row.mean(dim=-1, keepdim=True)).rsqrt_().unsqueeze(-1)
c_factor = exp_avg_sq_col.unsqueeze(-2).rsqrt()
return torch.mul(r_factor, c_factor)
@torch.no_grad()
def step(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if p.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad**2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))
p_data_fp32.add_(-update)
if p.dtype in {torch.float16, torch.bfloat16}:
p.copy_(p_data_fp32)
return loss
class AdafactorSchedule(LambdaLR):
"""
Since [`~optimization.Adafactor`] performs its own scheduling, if the training loop relies on a scheduler (e.g.,
for logging), this class creates a proxy object that retrieves the current lr values from the optimizer.
It returns `initial_lr` during startup and the actual `lr` during stepping.
"""
def __init__(self, optimizer, initial_lr=0.0):
def lr_lambda(_):
return initial_lr
for group in optimizer.param_groups:
group["initial_lr"] = initial_lr
super().__init__(optimizer, lr_lambda)
for group in optimizer.param_groups:
del group["initial_lr"]
def get_lr(self):
opt = self.optimizer
lrs = [
opt._get_lr(group, opt.state[group["params"][0]])
for group in opt.param_groups
if group["params"][0].grad is not None
]
if len(lrs) == 0:
lrs = self.base_lrs # if called before stepping
return lrs
def get_adafactor_schedule(optimizer, initial_lr=0.0):
"""
Get a proxy schedule for [`~optimization.Adafactor`]
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
initial_lr (`float`, *optional*, defaults to 0.0):
Initial lr
Return:
[`~optimization.Adafactor`] proxy schedule object.
"""
return AdafactorSchedule(optimizer, initial_lr)
| transformers/src/transformers/optimization.py/0 | {
"file_path": "transformers/src/transformers/optimization.py",
"repo_id": "transformers",
"token_count": 16752
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import Pipeline, build_pipeline_init_args
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(build_pipeline_init_args(has_tokenizer=True, has_image_processor=True))
class ImageToTextPipeline(Pipeline):
"""
Image To Text pipeline using a `AutoModelForVision2Seq`. This pipeline predicts a caption for a given image.
Example:
```python
>>> from transformers import pipeline
>>> captioner = pipeline(model="ydshieh/vit-gpt2-coco-en")
>>> captioner("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png")
[{'generated_text': 'two birds are standing next to each other '}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This image to text pipeline can currently be loaded from pipeline() using the following task identifier:
"image-to-text".
See the list of available models on
[huggingface.co/models](https://huggingface.co/models?pipeline_tag=image-to-text).
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
requires_backends(self, "vision")
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES if self.framework == "tf" else MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES
)
def _sanitize_parameters(self, max_new_tokens=None, generate_kwargs=None, prompt=None, timeout=None):
forward_params = {}
preprocess_params = {}
if prompt is not None:
preprocess_params["prompt"] = prompt
if timeout is not None:
preprocess_params["timeout"] = timeout
if max_new_tokens is not None:
forward_params["max_new_tokens"] = max_new_tokens
if generate_kwargs is not None:
if max_new_tokens is not None and "max_new_tokens" in generate_kwargs:
raise ValueError(
"`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use"
" only 1 version"
)
forward_params.update(generate_kwargs)
if self.assistant_model is not None:
forward_params["assistant_model"] = self.assistant_model
if self.assistant_tokenizer is not None:
forward_params["tokenizer"] = self.tokenizer
forward_params["assistant_tokenizer"] = self.assistant_tokenizer
return preprocess_params, forward_params, {}
def __call__(self, inputs: Union[str, List[str], "Image.Image", List["Image.Image"]] = None, **kwargs):
"""
Assign labels to the image(s) passed as inputs.
Args:
inputs (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
The pipeline handles three types of images:
- A string containing a HTTP(s) link pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
The pipeline accepts either a single image or a batch of images.
max_new_tokens (`int`, *optional*):
The amount of maximum tokens to generate. By default it will use `generate` default.
generate_kwargs (`Dict`, *optional*):
Pass it to send all of these arguments directly to `generate` allowing full control of this function.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A list or a list of list of `dict`: Each result comes as a dictionary with the following key:
- **generated_text** (`str`) -- The generated text.
"""
# After deprecation of this is completed, remove the default `None` value for `images`
if "images" in kwargs:
inputs = kwargs.pop("images")
if inputs is None:
raise ValueError("Cannot call the image-to-text pipeline without an inputs argument!")
return super().__call__(inputs, **kwargs)
def preprocess(self, image, prompt=None, timeout=None):
image = load_image(image, timeout=timeout)
if prompt is not None:
logger.warning_once(
"Passing `prompt` to the `image-to-text` pipeline is deprecated and will be removed in version 4.48"
" of 🤗 Transformers. Use the `image-text-to-text` pipeline instead",
)
if not isinstance(prompt, str):
raise ValueError(
f"Received an invalid text input, got - {type(prompt)} - but expected a single string. "
"Note also that one single text can be provided for conditional image to text generation."
)
model_type = self.model.config.model_type
if model_type == "git":
model_inputs = self.image_processor(images=image, return_tensors=self.framework)
if self.framework == "pt":
model_inputs = model_inputs.to(self.torch_dtype)
input_ids = self.tokenizer(text=prompt, add_special_tokens=False).input_ids
input_ids = [self.tokenizer.cls_token_id] + input_ids
input_ids = torch.tensor(input_ids).unsqueeze(0)
model_inputs.update({"input_ids": input_ids})
elif model_type == "pix2struct":
model_inputs = self.image_processor(images=image, header_text=prompt, return_tensors=self.framework)
if self.framework == "pt":
model_inputs = model_inputs.to(self.torch_dtype)
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
model_inputs = self.image_processor(images=image, return_tensors=self.framework)
if self.framework == "pt":
model_inputs = model_inputs.to(self.torch_dtype)
text_inputs = self.tokenizer(prompt, return_tensors=self.framework)
model_inputs.update(text_inputs)
else:
raise ValueError(f"Model type {model_type} does not support conditional text generation")
else:
model_inputs = self.image_processor(images=image, return_tensors=self.framework)
if self.framework == "pt":
model_inputs = model_inputs.to(self.torch_dtype)
if self.model.config.model_type == "git" and prompt is None:
model_inputs["input_ids"] = None
return model_inputs
def _forward(self, model_inputs, **generate_kwargs):
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs["input_ids"], list)
and all(x is None for x in model_inputs["input_ids"])
):
model_inputs["input_ids"] = None
# User-defined `generation_config` passed to the pipeline call take precedence
if "generation_config" not in generate_kwargs:
generate_kwargs["generation_config"] = self.generation_config
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
inputs = model_inputs.pop(self.model.main_input_name)
model_outputs = self.model.generate(inputs, **model_inputs, **generate_kwargs)
return model_outputs
def postprocess(self, model_outputs):
records = []
for output_ids in model_outputs:
record = {
"generated_text": self.tokenizer.decode(
output_ids,
skip_special_tokens=True,
)
}
records.append(record)
return records
| transformers/src/transformers/pipelines/image_to_text.py/0 | {
"file_path": "transformers/src/transformers/pipelines/image_to_text.py",
"repo_id": "transformers",
"token_count": 3959
} |
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import ChunkPipeline, build_pipeline_init_args
if is_vision_available():
from PIL import Image
from ..image_utils import load_image, valid_images
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES
logger = logging.get_logger(__name__)
@add_end_docstrings(build_pipeline_init_args(has_image_processor=True))
class ZeroShotObjectDetectionPipeline(ChunkPipeline):
"""
Zero shot object detection pipeline using `OwlViTForObjectDetection`. This pipeline predicts bounding boxes of
objects when you provide an image and a set of `candidate_labels`.
Example:
```python
>>> from transformers import pipeline
>>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
>>> detector(
... "http://images.cocodataset.org/val2017/000000039769.jpg",
... candidate_labels=["cat", "couch"],
... )
[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]
>>> detector(
... "https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png",
... candidate_labels=["head", "bird"],
... )
[{'score': 0.119, 'label': 'bird', 'box': {'xmin': 71, 'ymin': 170, 'xmax': 410, 'ymax': 508}}]
```
Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
This object detection pipeline can currently be loaded from [`pipeline`] using the following task identifier:
`"zero-shot-object-detection"`.
See the list of available models on
[huggingface.co/models](https://huggingface.co/models?filter=zero-shot-object-detection).
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
if self.framework == "tf":
raise ValueError(f"The {self.__class__} is only available in PyTorch.")
requires_backends(self, "vision")
self.check_model_type(MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES)
def __call__(
self,
image: Union[str, "Image.Image", List[Dict[str, Any]]],
candidate_labels: Union[str, List[str]] = None,
**kwargs,
):
"""
Detect objects (bounding boxes & classes) in the image(s) passed as inputs.
Args:
image (`str`, `PIL.Image` or `List[Dict[str, Any]]`):
The pipeline handles three types of images:
- A string containing an http url pointing to an image
- A string containing a local path to an image
- An image loaded in PIL directly
You can use this parameter to send directly a list of images, or a dataset or a generator like so:
```python
>>> from transformers import pipeline
>>> detector = pipeline(model="google/owlvit-base-patch32", task="zero-shot-object-detection")
>>> detector(
... [
... {
... "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
... "candidate_labels": ["cat", "couch"],
... },
... {
... "image": "http://images.cocodataset.org/val2017/000000039769.jpg",
... "candidate_labels": ["cat", "couch"],
... },
... ]
... )
[[{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.25, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}], [{'score': 0.287, 'label': 'cat', 'box': {'xmin': 324, 'ymin': 20, 'xmax': 640, 'ymax': 373}}, {'score': 0.254, 'label': 'cat', 'box': {'xmin': 1, 'ymin': 55, 'xmax': 315, 'ymax': 472}}, {'score': 0.121, 'label': 'couch', 'box': {'xmin': 4, 'ymin': 0, 'xmax': 642, 'ymax': 476}}]]
```
candidate_labels (`str` or `List[str]` or `List[List[str]]`):
What the model should recognize in the image.
threshold (`float`, *optional*, defaults to 0.1):
The probability necessary to make a prediction.
top_k (`int`, *optional*, defaults to None):
The number of top predictions that will be returned by the pipeline. If the provided number is `None`
or higher than the number of predictions available, it will default to the number of predictions.
timeout (`float`, *optional*, defaults to None):
The maximum time in seconds to wait for fetching images from the web. If None, no timeout is set and
the call may block forever.
Return:
A list of lists containing prediction results, one list per input image. Each list contains dictionaries
with the following keys:
- **label** (`str`) -- Text query corresponding to the found object.
- **score** (`float`) -- Score corresponding to the object (between 0 and 1).
- **box** (`Dict[str,int]`) -- Bounding box of the detected object in image's original size. It is a
dictionary with `x_min`, `x_max`, `y_min`, `y_max` keys.
"""
if "text_queries" in kwargs:
candidate_labels = kwargs.pop("text_queries")
if isinstance(image, (str, Image.Image)):
inputs = {"image": image, "candidate_labels": candidate_labels}
elif isinstance(image, (list, tuple)) and valid_images(image):
return list(
super().__call__(
({"image": img, "candidate_labels": labels} for img, labels in zip(image, candidate_labels)),
**kwargs,
)
)
else:
"""
Supports the following format
- {"image": image, "candidate_labels": candidate_labels}
- [{"image": image, "candidate_labels": candidate_labels}]
- Generator and datasets
This is a common pattern in other multimodal pipelines, so we support it here as well.
"""
inputs = image
results = super().__call__(inputs, **kwargs)
return results
def _sanitize_parameters(self, **kwargs):
preprocess_params = {}
if "timeout" in kwargs:
preprocess_params["timeout"] = kwargs["timeout"]
postprocess_params = {}
if "threshold" in kwargs:
postprocess_params["threshold"] = kwargs["threshold"]
if "top_k" in kwargs:
postprocess_params["top_k"] = kwargs["top_k"]
return preprocess_params, {}, postprocess_params
def preprocess(self, inputs, timeout=None):
image = load_image(inputs["image"], timeout=timeout)
candidate_labels = inputs["candidate_labels"]
if isinstance(candidate_labels, str):
candidate_labels = candidate_labels.split(",")
target_size = torch.tensor([[image.height, image.width]], dtype=torch.int32)
for i, candidate_label in enumerate(candidate_labels):
text_inputs = self.tokenizer(candidate_label, return_tensors=self.framework)
image_features = self.image_processor(image, return_tensors=self.framework)
if self.framework == "pt":
image_features = image_features.to(self.torch_dtype)
yield {
"is_last": i == len(candidate_labels) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _forward(self, model_inputs):
target_size = model_inputs.pop("target_size")
candidate_label = model_inputs.pop("candidate_label")
is_last = model_inputs.pop("is_last")
outputs = self.model(**model_inputs)
model_outputs = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def postprocess(self, model_outputs, threshold=0.1, top_k=None):
results = []
for model_output in model_outputs:
label = model_output["candidate_label"]
model_output = BaseModelOutput(model_output)
outputs = self.image_processor.post_process_object_detection(
outputs=model_output, threshold=threshold, target_sizes=model_output["target_size"]
)[0]
for index in outputs["scores"].nonzero():
score = outputs["scores"][index].item()
box = self._get_bounding_box(outputs["boxes"][index][0])
result = {"score": score, "label": label, "box": box}
results.append(result)
results = sorted(results, key=lambda x: x["score"], reverse=True)
if top_k:
results = results[:top_k]
return results
def _get_bounding_box(self, box: "torch.Tensor") -> Dict[str, int]:
"""
Turns list [xmin, xmax, ymin, ymax] into dict { "xmin": xmin, ... }
Args:
box (`torch.Tensor`): Tensor containing the coordinates in corners format.
Returns:
bbox (`Dict[str, int]`): Dict containing the coordinates in corners format.
"""
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
xmin, ymin, xmax, ymax = box.int().tolist()
bbox = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| transformers/src/transformers/pipelines/zero_shot_object_detection.py/0 | {
"file_path": "transformers/src/transformers/pipelines/zero_shot_object_detection.py",
"repo_id": "transformers",
"token_count": 4578
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING, Any, Dict, List
from ..integrations import prepare_for_hqq_linear
from ..utils import is_accelerate_available, is_hqq_available, is_torch_available, logging
from .base import HfQuantizer
from .quantizers_utils import get_module_from_name
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
if is_accelerate_available():
from accelerate.hooks import remove_hook_from_module
if is_torch_available():
import torch
logger = logging.get_logger(__name__)
# Finds the parent of a node module named "name"
def find_parent(model, name):
module_tree = name.split(".")[:-1]
parent = model
for m in module_tree:
parent = parent._modules[m]
return parent
class HqqHfQuantizer(HfQuantizer):
"""
HQQ quantizer base HF class.
nn.Linear modules are first tagged with quant_config in _process_model_before_weight_loading().
The actual quantization and offloading to the GPU is done in check_quantized_param().
"""
use_keep_in_fp32_modules = False
requires_parameters_quantization = True
requires_calibration = False
required_packages = ["hqq"]
def __init__(self, quantization_config, **kwargs):
super().__init__(quantization_config, **kwargs)
self.torch_dtype = None
self.using_multi_gpu = False
def validate_environment(self, *args, **kwargs):
if not (is_hqq_available()):
raise ImportError(
"A valid HQQ version (>=0.2.1) is not available. Please follow the instructions to install it: `https://github.com/mobiusml/hqq/`."
)
if kwargs.get("from_tf", False) or kwargs.get("from_flax", False):
raise ValueError(
"Converting weights from tf/flax weights is currently not supported, please make"
" sure the weights are in PyTorch format."
)
if not torch.cuda.is_available():
raise RuntimeError("No GPU found. A GPU is needed for quantization.")
if self.torch_dtype is None:
if "torch_dtype" in kwargs:
self.torch_dtype = kwargs["torch_dtype"]
else:
self.torch_dtype = torch.float32
logger.info("Setting torch_dtype to torch.float32 as the default value since it was not specified.")
device_map = kwargs.get("device_map", None)
if isinstance(device_map, dict):
if "cpu" in device_map.values() or "disk" in device_map.values():
raise ValueError(
"You are attempting to use an HQQ model with a device_map that contains a CPU or disk device."
" This is not supported. Please remove the CPU or disk device from the device_map."
)
else:
self.using_multi_gpu = len(set(device_map.values())) > 1
def update_missing_keys(
self, model: "PreTrainedModel", missing_keys: List[str], prefix: str, **kwargs
) -> List[str]:
if self.pre_quantized:
return [key for key in missing_keys if ("weight" not in key)]
else:
return missing_keys
# Adds missing keys for HQQLinear modules that are loaded but the model with initialized with torch.nn.Linear
def update_expected_keys(
self, model: "PreTrainedModel", expected_keys: List[str], loaded_keys: List[str]
) -> List[str]:
if not self.pre_quantized:
return expected_keys
# Collects all quantizable (linear) layers
def _find_hqq_quantizable_layers(model, layers):
for name, module in model.named_children():
if isinstance(module, (torch.nn.Linear)):
layers.add(module.name)
_find_hqq_quantizable_layers(module, layers)
new_keys = set(expected_keys)
if is_hqq_available():
from hqq.core.quantize import HQQLinear
# Name modules
for name, module in model.named_modules():
module.name = name
# valid modules are Linear layers that have HQQLinear state_dict. We ignore skip_modules and any layers with Linear state_dict() params
_valid_modules = set()
_find_hqq_quantizable_layers(model, _valid_modules)
_valid_modules -= set(model.config.quantization_config["skip_modules"])
# Append new expected layers based on _ref_keys
_ref_keys = HQQLinear(
linear_layer=None, quant_config=None, compute_dtype=torch.float16, device="cpu"
).state_dict_keys() - {"bias"}
# Clean-up
_rm_keys = set()
for key in new_keys:
if any(_module in key for _module in _valid_modules):
_rm_keys.add(key)
new_keys -= _rm_keys
# At this point, new_keys contains all the keys of the layers that are NOT HQQLinear or torch.nn.Linear
# Re-populate Linear/HQQLinear
for _module in _valid_modules:
if _module + ".weight" in loaded_keys:
new_keys.add(_module + ".weight")
else:
new_keys.update({_module + "." + _ref_key for _ref_key in _ref_keys})
if _module + ".bias" in loaded_keys:
new_keys.add(_module + ".bias")
return list(new_keys)
def check_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
state_dict: Dict[str, Any],
**kwargs,
) -> bool:
if is_hqq_available():
from hqq.core.quantize import HQQLinear
module, tensor_name = get_module_from_name(model, param_name)
if self.pre_quantized:
return (
(isinstance(module, torch.nn.Linear) or isinstance(module, HQQLinear))
and tensor_name != "weight"
and tensor_name != "bias"
)
else:
return isinstance(module, torch.nn.Linear) and tensor_name == "weight"
def create_quantized_param(
self,
model: "PreTrainedModel",
param_value: "torch.Tensor",
param_name: str,
target_device: "torch.device",
state_dict: Dict[str, Any],
unexpected_keys: List[str],
):
"""
Each nn.Linear layer is processsed here.
We first check if the corresponding module state_dict contains already HQQ quantized parameters.
If not, we create a temp linear layer with the module state_dict params and use it for quantization
"""
if is_hqq_available():
from hqq.core.quantize import HQQLinear
module, tensor_name = get_module_from_name(model, param_name)
layer_name = ".".join(param_name.split(".")[:-1])
parent_module = find_parent(model, layer_name)
node = layer_name.split(".")[-1]
# set module state_dict
module_state_dict = {}
for k, v in state_dict.items():
if layer_name + "." in k:
module_state_dict[k.split(".")[-1]] = v
if unexpected_keys is not None and k in unexpected_keys:
unexpected_keys.remove(k)
if self.pre_quantized:
if isinstance(module, HQQLinear):
return
else:
hqq_layer = HQQLinear(
linear_layer=None,
quant_config=None,
compute_dtype=self.torch_dtype,
device=target_device,
)
hqq_layer.load_state_dict(module_state_dict)
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
if self.using_multi_gpu:
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
setattr(parent_module, node, hqq_layer)
# cleanup
del module.__dict__, module
torch.cuda.empty_cache()
return
# Step 1: populate module with weight/bias from module state dict
for key in module_state_dict:
setattr(module, key, torch.nn.Parameter(module_state_dict[key]))
# Step 2: Replace module with either HQQLinear or move it to device. We do this via setattr on the parent as doing on it on the module
# directly doesn't work.
if hasattr(module, "quant_config"):
hqq_layer = HQQLinear(
module,
module.quant_config,
compute_dtype=self.torch_dtype,
device=target_device,
del_orig=True,
)
if hqq_layer.bias is not None and isinstance(hqq_layer.bias, torch.Tensor):
hqq_layer.bias = torch.nn.Parameter(hqq_layer.bias)
if self.using_multi_gpu:
hqq_layer = self._patch_layer_for_multigpu(hqq_layer)
setattr(parent_module, node, hqq_layer)
else:
module = module.to(dtype=self.torch_dtype, device=target_device)
setattr(parent_module, node, module)
torch.cuda.empty_cache()
# Remove accelerate hook and uses a simpler forward pass. Otherwise, this breaks with multi-gpu
def _patch_layer_for_multigpu(self, hqq_layer):
hqq_layer = remove_hook_from_module(hqq_layer)
def forward_with_device(self, x):
out = torch.matmul(x.to(self.device), self.dequantize().t())
if self.bias is not None:
out += self.bias
return out
hqq_layer.forward = lambda x: forward_with_device(hqq_layer, x)
return hqq_layer
def _process_model_before_weight_loading(
self,
model: "PreTrainedModel",
device_map,
keep_in_fp32_modules: List[str] = None,
**kwargs,
):
keep_in_fp32_modules = keep_in_fp32_modules if keep_in_fp32_modules is not None else []
# Add the corresponding quant_config to each valid module. This allows us to do the actual nn.Linear -> HQQLinear conversion in create_quantized_param().
# prepare_for_hqq_linear() also sets the right quantization config inside the model (model.config.quantization_config) and the layers (hqq_layer.quant_config)
model = prepare_for_hqq_linear(model, quantization_config=self.quantization_config)
def _process_model_after_weight_loading(self, model: "PreTrainedModel", **kwargs):
model.is_hqq_quantized = True
model.is_hqq_serializable = self.is_serializable()
return model
def is_serializable(self, safe_serialization=None):
return True
@property
def is_trainable(self) -> bool:
return True
| transformers/src/transformers/quantizers/quantizer_hqq.py/0 | {
"file_path": "transformers/src/transformers/quantizers/quantizer_hqq.py",
"repo_id": "transformers",
"token_count": 5050
} |
# coding=utf-8
# Copyright 2020-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Callbacks to use with the Trainer class and customize the training loop.
"""
import dataclasses
import json
import math
from dataclasses import dataclass
from typing import Dict, List, Optional, Union
import numpy as np
from tqdm.auto import tqdm
from .trainer_utils import HPSearchBackend, IntervalStrategy, SaveStrategy, has_length
from .training_args import TrainingArguments
from .utils import logging
logger = logging.get_logger(__name__)
@dataclass
class TrainerState:
"""
A class containing the [`Trainer`] inner state that will be saved along the model and optimizer when checkpointing
and passed to the [`TrainerCallback`].
<Tip>
In all this class, one step is to be understood as one update step. When using gradient accumulation, one update
step may require several forward and backward passes: if you use `gradient_accumulation_steps=n`, then one update
step requires going through *n* batches.
</Tip>
Args:
epoch (`float`, *optional*):
Only set during training, will represent the epoch the training is at (the decimal part being the
percentage of the current epoch completed).
global_step (`int`, *optional*, defaults to 0):
During training, represents the number of update steps completed.
max_steps (`int`, *optional*, defaults to 0):
The number of update steps to do during the current training.
logging_steps (`int`, *optional*, defaults to 500):
Log every X updates steps
eval_steps (`int`, *optional*):
Run an evaluation every X steps.
save_steps (`int`, *optional*, defaults to 500):
Save checkpoint every X updates steps.
train_batch_size (`int`, *optional*):
The batch size for the training dataloader. Only needed when
`auto_find_batch_size` has been used.
num_input_tokens_seen (`int`, *optional*, defaults to 0):
When tracking the inputs tokens, the number of tokens seen during training (number of input tokens, not the
number of prediction tokens).
total_flos (`float`, *optional*, defaults to 0):
The total number of floating operations done by the model since the beginning of training (stored as floats
to avoid overflow).
log_history (`List[Dict[str, float]]`, *optional*):
The list of logs done since the beginning of training.
best_metric (`float`, *optional*):
When tracking the best model, the value of the best metric encountered so far.
best_model_checkpoint (`str`, *optional*):
When tracking the best model, the value of the name of the checkpoint for the best model encountered so
far.
is_local_process_zero (`bool`, *optional*, defaults to `True`):
Whether or not this process is the local (e.g., on one machine if training in a distributed fashion on
several machines) main process.
is_world_process_zero (`bool`, *optional*, defaults to `True`):
Whether or not this process is the global main process (when training in a distributed fashion on several
machines, this is only going to be `True` for one process).
is_hyper_param_search (`bool`, *optional*, defaults to `False`):
Whether we are in the process of a hyper parameter search using Trainer.hyperparameter_search. This will
impact the way data will be logged in TensorBoard.
stateful_callbacks (`List[StatefulTrainerCallback]`, *optional*):
Callbacks attached to the `Trainer` that should have their states be saved or restored.
Relevent callbacks should implement a `state` and `from_state` function.
"""
epoch: Optional[float] = None
global_step: int = 0
max_steps: int = 0
logging_steps: int = 500
eval_steps: int = 500
save_steps: int = 500
train_batch_size: int = None
num_train_epochs: int = 0
num_input_tokens_seen: int = 0
total_flos: float = 0
log_history: List[Dict[str, float]] = None
best_metric: Optional[float] = None
best_model_checkpoint: Optional[str] = None
is_local_process_zero: bool = True
is_world_process_zero: bool = True
is_hyper_param_search: bool = False
trial_name: str = None
trial_params: Dict[str, Union[str, float, int, bool]] = None
stateful_callbacks: List["TrainerCallback"] = None
def __post_init__(self):
if self.log_history is None:
self.log_history = []
if self.stateful_callbacks is None:
self.stateful_callbacks = {}
elif isinstance(self.stateful_callbacks, dict):
# We are loading the callbacks in from the state file, no need to process them
pass
else:
# Saveable callbacks get stored as dict of kwargs
stateful_callbacks = {}
for callback in self.stateful_callbacks:
if not isinstance(callback, (ExportableState)):
raise TypeError(
f"All callbacks passed to be saved must inherit `ExportableState`, but received {type(callback)}"
)
name = callback.__class__.__name__
if name in stateful_callbacks:
# We can have multiple versions of the same callback
# if so, we store them as a list of states to restore
if not isinstance(stateful_callbacks[name], list):
stateful_callbacks[name] = [stateful_callbacks[name]]
stateful_callbacks[name].append(callback.state())
else:
stateful_callbacks[name] = callback.state()
self.stateful_callbacks = stateful_callbacks
def save_to_json(self, json_path: str):
"""Save the content of this instance in JSON format inside `json_path`."""
json_string = json.dumps(dataclasses.asdict(self), indent=2, sort_keys=True) + "\n"
with open(json_path, "w", encoding="utf-8") as f:
f.write(json_string)
@classmethod
def load_from_json(cls, json_path: str):
"""Create an instance from the content of `json_path`."""
with open(json_path, "r", encoding="utf-8") as f:
text = f.read()
return cls(**json.loads(text))
def compute_steps(self, args, max_steps):
"""
Calculates and stores the absolute value for logging,
eval, and save steps based on if it was a proportion
or not.
"""
for step_kind in ("logging", "eval", "save"):
num_steps = getattr(args, f"{step_kind}_steps")
if num_steps is not None:
if num_steps < 1:
num_steps = math.ceil(max_steps * num_steps)
setattr(self, f"{step_kind}_steps", num_steps)
def init_training_references(self, trainer, train_dataloader, max_steps, num_train_epochs, trial):
"""
Stores the initial training references needed in `self`
"""
for attr in ("model", "optimizer", "lr_scheduler"):
setattr(self, attr, getattr(trainer, attr))
self.train_dataloader = train_dataloader
if trainer.hp_name is not None and trainer._trial is not None:
# use self._trial because the SigOpt/Optuna hpo only call `_hp_search_setup(trial)` instead of passing trial
# parameter to Train when using DDP.
self.trial_name = trainer.hp_name(trainer._trial)
self.trial_params = None
if trial is not None:
from transformers.integrations import hp_params
assignments = trial.assignments if trainer.hp_search_backend == HPSearchBackend.SIGOPT else trial
self.trial_params = hp_params(assignments)
self.max_steps = max_steps
self.num_train_epochs = num_train_epochs
self.is_local_process_zero = trainer.is_local_process_zero()
self.is_world_process_zero = trainer.is_world_process_zero()
class ExportableState:
"""
A class for objects that include the ability to have its state
be saved during `Trainer._save_checkpoint` and loaded back in during
`Trainer._load_from_checkpoint`.
These must implement a `state` function that gets called during the respective
Trainer function call. It should only include parameters and attributes needed to
recreate the state at a particular time, to avoid utilizing pickle/maintain standard
file IO writing.
Example:
```python
class EarlyStoppingCallback(TrainerCallback, ExportableState):
def __init__(self, early_stopping_patience: int = 1, early_stopping_threshold: Optional[float] = 0.0):
self.early_stopping_patience = early_stopping_patience
self.early_stopping_threshold = early_stopping_threshold
# early_stopping_patience_counter denotes the number of times validation metrics failed to improve.
self.early_stopping_patience_counter = 0
def state(self) -> dict:
return {
"args": {
"early_stopping_patience": self.early_stopping_patience,
"early_stopping_threshold": self.early_stopping_threshold,
},
"attributes": {
"early_stopping_patience_counter": self.early_stopping_patience_counter,
}
}
```"""
def state(self) -> dict:
raise NotImplementedError("You must implement a `state` function to utilize this class.")
@classmethod
def from_state(cls, state):
instance = cls(**state["args"])
for k, v in state["attributes"].items():
setattr(instance, k, v)
return instance
@dataclass
class TrainerControl(ExportableState):
"""
A class that handles the [`Trainer`] control flow. This class is used by the [`TrainerCallback`] to activate some
switches in the training loop.
Args:
should_training_stop (`bool`, *optional*, defaults to `False`):
Whether or not the training should be interrupted.
If `True`, this variable will not be set back to `False`. The training will just stop.
should_epoch_stop (`bool`, *optional*, defaults to `False`):
Whether or not the current epoch should be interrupted.
If `True`, this variable will be set back to `False` at the beginning of the next epoch.
should_save (`bool`, *optional*, defaults to `False`):
Whether or not the model should be saved at this step.
If `True`, this variable will be set back to `False` at the beginning of the next step.
should_evaluate (`bool`, *optional*, defaults to `False`):
Whether or not the model should be evaluated at this step.
If `True`, this variable will be set back to `False` at the beginning of the next step.
should_log (`bool`, *optional*, defaults to `False`):
Whether or not the logs should be reported at this step.
If `True`, this variable will be set back to `False` at the beginning of the next step.
"""
should_training_stop: bool = False
should_epoch_stop: bool = False
should_save: bool = False
should_evaluate: bool = False
should_log: bool = False
def _new_training(self):
"""Internal method that resets the variable for a new training."""
self.should_training_stop = False
def _new_epoch(self):
"""Internal method that resets the variable for a new epoch."""
self.should_epoch_stop = False
def _new_step(self):
"""Internal method that resets the variable for a new step."""
self.should_save = False
self.should_evaluate = False
self.should_log = False
def state(self) -> dict:
return {
"args": {
"should_training_stop": self.should_training_stop,
"should_epoch_stop": self.should_epoch_stop,
"should_save": self.should_save,
"should_evaluate": self.should_evaluate,
"should_log": self.should_log,
},
"attributes": {},
}
class TrainerCallback:
# no-format
"""
A class for objects that will inspect the state of the training loop at some events and take some decisions. At
each of those events the following arguments are available:
Args:
args ([`TrainingArguments`]):
The training arguments used to instantiate the [`Trainer`].
state ([`TrainerState`]):
The current state of the [`Trainer`].
control ([`TrainerControl`]):
The object that is returned to the [`Trainer`] and can be used to make some decisions.
model ([`PreTrainedModel`] or `torch.nn.Module`):
The model being trained.
tokenizer ([`PreTrainedTokenizer`]):
The tokenizer used for encoding the data. This is deprecated in favour of `processing_class`.
processing_class ([`PreTrainedTokenizer` or `BaseImageProcessor` or `ProcessorMixin` or `FeatureExtractionMixin`]):
The processing class used for encoding the data. Can be a tokenizer, a processor, an image processor or a feature extractor.
optimizer (`torch.optim.Optimizer`):
The optimizer used for the training steps.
lr_scheduler (`torch.optim.lr_scheduler.LambdaLR`):
The scheduler used for setting the learning rate.
train_dataloader (`torch.utils.data.DataLoader`, *optional*):
The current dataloader used for training.
eval_dataloader (`torch.utils.data.DataLoader`, *optional*):
The current dataloader used for evaluation.
metrics (`Dict[str, float]`):
The metrics computed by the last evaluation phase.
Those are only accessible in the event `on_evaluate`.
logs (`Dict[str, float]`):
The values to log.
Those are only accessible in the event `on_log`.
The `control` object is the only one that can be changed by the callback, in which case the event that changes it
should return the modified version.
The argument `args`, `state` and `control` are positionals for all events, all the others are grouped in `kwargs`.
You can unpack the ones you need in the signature of the event using them. As an example, see the code of the
simple [`~transformers.PrinterCallback`].
Example:
```python
class PrinterCallback(TrainerCallback):
def on_log(self, args, state, control, logs=None, **kwargs):
_ = logs.pop("total_flos", None)
if state.is_local_process_zero:
print(logs)
```"""
def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of the initialization of the [`Trainer`].
"""
pass
def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the beginning of training.
"""
pass
def on_train_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of training.
"""
pass
def on_epoch_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the beginning of an epoch.
"""
pass
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of an epoch.
"""
pass
def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the beginning of a training step. If using gradient accumulation, one training step might take
several inputs.
"""
pass
def on_pre_optimizer_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called before the optimizer step but after gradient clipping. Useful for monitoring gradients.
"""
pass
def on_optimizer_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called after the optimizer step but before gradients are zeroed out. Useful for monitoring gradients.
"""
pass
def on_substep_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of an substep during gradient accumulation.
"""
pass
def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called at the end of a training step. If using gradient accumulation, one training step might take
several inputs.
"""
pass
def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called after an evaluation phase.
"""
pass
def on_predict(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics, **kwargs):
"""
Event called after a successful prediction.
"""
pass
def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called after a checkpoint save.
"""
pass
def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called after logging the last logs.
"""
pass
def on_prediction_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
"""
Event called after a prediction step.
"""
pass
class CallbackHandler(TrainerCallback):
"""Internal class that just calls the list of callbacks in order."""
def __init__(self, callbacks, model, processing_class, optimizer, lr_scheduler):
self.callbacks = []
for cb in callbacks:
self.add_callback(cb)
self.model = model
self.processing_class = processing_class
self.optimizer = optimizer
self.lr_scheduler = lr_scheduler
self.train_dataloader = None
self.eval_dataloader = None
if not any(isinstance(cb, DefaultFlowCallback) for cb in self.callbacks):
logger.warning(
"The Trainer will not work properly if you don't have a `DefaultFlowCallback` in its callbacks. You\n"
+ "should add one before training with `trainer.add_callback(DefaultFlowCallback). The current list of"
+ "callbacks is\n:"
+ self.callback_list
)
def add_callback(self, callback):
cb = callback() if isinstance(callback, type) else callback
cb_class = callback if isinstance(callback, type) else callback.__class__
if cb_class in [c.__class__ for c in self.callbacks]:
logger.warning(
f"You are adding a {cb_class} to the callbacks of this Trainer, but there is already one. The current"
+ "list of callbacks is\n:"
+ self.callback_list
)
self.callbacks.append(cb)
def pop_callback(self, callback):
if isinstance(callback, type):
for cb in self.callbacks:
if isinstance(cb, callback):
self.callbacks.remove(cb)
return cb
else:
for cb in self.callbacks:
if cb == callback:
self.callbacks.remove(cb)
return cb
def remove_callback(self, callback):
if isinstance(callback, type):
for cb in self.callbacks:
if isinstance(cb, callback):
self.callbacks.remove(cb)
return
else:
self.callbacks.remove(callback)
@property
def callback_list(self):
return "\n".join(cb.__class__.__name__ for cb in self.callbacks)
def on_init_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_init_end", args, state, control)
def on_train_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
control.should_training_stop = False
return self.call_event("on_train_begin", args, state, control)
def on_train_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_train_end", args, state, control)
def on_epoch_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
control.should_epoch_stop = False
return self.call_event("on_epoch_begin", args, state, control)
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_epoch_end", args, state, control)
def on_step_begin(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
control.should_log = False
control.should_evaluate = False
control.should_save = False
return self.call_event("on_step_begin", args, state, control)
def on_pre_optimizer_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_pre_optimizer_step", args, state, control)
def on_optimizer_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_optimizer_step", args, state, control)
def on_substep_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_substep_end", args, state, control)
def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_step_end", args, state, control)
def on_evaluate(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics):
control.should_evaluate = False
return self.call_event("on_evaluate", args, state, control, metrics=metrics)
def on_predict(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, metrics):
return self.call_event("on_predict", args, state, control, metrics=metrics)
def on_save(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
control.should_save = False
return self.call_event("on_save", args, state, control)
def on_log(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, logs):
control.should_log = False
return self.call_event("on_log", args, state, control, logs=logs)
def on_prediction_step(self, args: TrainingArguments, state: TrainerState, control: TrainerControl):
return self.call_event("on_prediction_step", args, state, control)
def call_event(self, event, args, state, control, **kwargs):
for callback in self.callbacks:
result = getattr(callback, event)(
args,
state,
control,
model=self.model,
processing_class=self.processing_class,
optimizer=self.optimizer,
lr_scheduler=self.lr_scheduler,
train_dataloader=self.train_dataloader,
eval_dataloader=self.eval_dataloader,
**kwargs,
)
# A Callback can skip the return of `control` if it doesn't change it.
if result is not None:
control = result
return control
class DefaultFlowCallback(TrainerCallback):
"""
A [`TrainerCallback`] that handles the default flow of the training loop for logs, evaluation and checkpoints.
"""
def on_step_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# Log
if state.global_step == 1 and args.logging_first_step:
control.should_log = True
if args.logging_strategy == IntervalStrategy.STEPS and state.global_step % state.logging_steps == 0:
control.should_log = True
# Evaluate
if (
args.eval_strategy == IntervalStrategy.STEPS
and state.global_step % state.eval_steps == 0
and args.eval_delay <= state.global_step
):
control.should_evaluate = True
# Save
if (
args.save_strategy == SaveStrategy.STEPS
and state.save_steps > 0
and state.global_step % state.save_steps == 0
):
control.should_save = True
# End training
if state.global_step >= state.max_steps:
control.should_training_stop = True
# Save the model at the end if we have a save strategy
if args.save_strategy not in [SaveStrategy.NO, SaveStrategy.BEST]:
control.should_save = True
return control
def on_epoch_end(self, args: TrainingArguments, state: TrainerState, control: TrainerControl, **kwargs):
# Log
if args.logging_strategy == IntervalStrategy.EPOCH:
control.should_log = True
# Evaluate
if args.eval_strategy == IntervalStrategy.EPOCH and args.eval_delay <= state.epoch:
control.should_evaluate = True
# Save
if args.save_strategy == SaveStrategy.EPOCH:
control.should_save = True
return control
class ProgressCallback(TrainerCallback):
"""
A [`TrainerCallback`] that displays the progress of training or evaluation.
You can modify `max_str_len` to control how long strings are truncated when logging.
"""
def __init__(self, max_str_len: int = 100):
"""
Initialize the callback with optional max_str_len parameter to control string truncation length.
Args:
max_str_len (`int`):
Maximum length of strings to display in logs.
Longer strings will be truncated with a message.
"""
self.training_bar = None
self.prediction_bar = None
self.max_str_len = max_str_len
def on_train_begin(self, args, state, control, **kwargs):
if state.is_world_process_zero:
self.training_bar = tqdm(total=state.max_steps, dynamic_ncols=True)
self.current_step = 0
def on_step_end(self, args, state, control, **kwargs):
if state.is_world_process_zero:
self.training_bar.update(state.global_step - self.current_step)
self.current_step = state.global_step
def on_prediction_step(self, args, state, control, eval_dataloader=None, **kwargs):
if state.is_world_process_zero and has_length(eval_dataloader):
if self.prediction_bar is None:
self.prediction_bar = tqdm(
total=len(eval_dataloader), leave=self.training_bar is None, dynamic_ncols=True
)
self.prediction_bar.update(1)
def on_evaluate(self, args, state, control, **kwargs):
if state.is_world_process_zero:
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def on_predict(self, args, state, control, **kwargs):
if state.is_world_process_zero:
if self.prediction_bar is not None:
self.prediction_bar.close()
self.prediction_bar = None
def on_log(self, args, state, control, logs=None, **kwargs):
if state.is_world_process_zero and self.training_bar is not None:
# make a shallow copy of logs so we can mutate the fields copied
# but avoid doing any value pickling.
shallow_logs = {}
for k, v in logs.items():
if isinstance(v, str) and len(v) > self.max_str_len:
shallow_logs[k] = (
f"[String too long to display, length: {len(v)} > {self.max_str_len}. "
"Consider increasing `max_str_len` if needed.]"
)
else:
shallow_logs[k] = v
_ = shallow_logs.pop("total_flos", None)
# round numbers so that it looks better in console
if "epoch" in shallow_logs:
shallow_logs["epoch"] = round(shallow_logs["epoch"], 2)
self.training_bar.write(str(shallow_logs))
def on_train_end(self, args, state, control, **kwargs):
if state.is_world_process_zero:
self.training_bar.close()
self.training_bar = None
class PrinterCallback(TrainerCallback):
"""
A bare [`TrainerCallback`] that just prints the logs.
"""
def on_log(self, args, state, control, logs=None, **kwargs):
_ = logs.pop("total_flos", None)
if state.is_local_process_zero:
print(logs)
class EarlyStoppingCallback(TrainerCallback, ExportableState):
"""
A [`TrainerCallback`] that handles early stopping.
Args:
early_stopping_patience (`int`):
Use with `metric_for_best_model` to stop training when the specified metric worsens for
`early_stopping_patience` evaluation calls.
early_stopping_threshold(`float`, *optional*):
Use with TrainingArguments `metric_for_best_model` and `early_stopping_patience` to denote how much the
specified metric must improve to satisfy early stopping conditions. `
This callback depends on [`TrainingArguments`] argument *load_best_model_at_end* functionality to set best_metric
in [`TrainerState`]. Note that if the [`TrainingArguments`] argument *save_steps* differs from *eval_steps*, the
early stopping will not occur until the next save step.
"""
def __init__(self, early_stopping_patience: int = 1, early_stopping_threshold: Optional[float] = 0.0):
self.early_stopping_patience = early_stopping_patience
self.early_stopping_threshold = early_stopping_threshold
# early_stopping_patience_counter denotes the number of times validation metrics failed to improve.
self.early_stopping_patience_counter = 0
def check_metric_value(self, args, state, control, metric_value):
# best_metric is set by code for load_best_model
operator = np.greater if args.greater_is_better else np.less
if state.best_metric is None or (
operator(metric_value, state.best_metric)
and abs(metric_value - state.best_metric) > self.early_stopping_threshold
):
self.early_stopping_patience_counter = 0
else:
self.early_stopping_patience_counter += 1
def on_train_begin(self, args, state, control, **kwargs):
if not args.load_best_model_at_end:
logger.warning(
"Using EarlyStoppingCallback without load_best_model_at_end=True. "
"Once training is finished, the best model will not be loaded automatically."
)
assert (
args.metric_for_best_model is not None
), "EarlyStoppingCallback requires metric_for_best_model to be defined"
assert (
args.eval_strategy != IntervalStrategy.NO
), "EarlyStoppingCallback requires IntervalStrategy of steps or epoch"
def on_evaluate(self, args, state, control, metrics, **kwargs):
metric_to_check = args.metric_for_best_model
if not metric_to_check.startswith("eval_"):
metric_to_check = f"eval_{metric_to_check}"
metric_value = metrics.get(metric_to_check)
if metric_value is None:
logger.warning(
f"early stopping required metric_for_best_model, but did not find {metric_to_check} so early stopping"
" is disabled"
)
return
self.check_metric_value(args, state, control, metric_value)
if self.early_stopping_patience_counter >= self.early_stopping_patience:
control.should_training_stop = True
def state(self) -> dict:
return {
"args": {
"early_stopping_patience": self.early_stopping_patience,
"early_stopping_threshold": self.early_stopping_threshold,
},
"attributes": {
"early_stopping_patience_counter": self.early_stopping_patience_counter,
},
}
| transformers/src/transformers/trainer_callback.py/0 | {
"file_path": "transformers/src/transformers/trainer_callback.py",
"repo_id": "transformers",
"token_count": 13483
} |
# This file is autogenerated by the command `make fix-copies`, do not edit.
from ..utils import DummyObject, requires_backends
class FlaxForcedBOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxForcedEOSTokenLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxForceTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGenerationMixin(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLogitsProcessorList(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLogitsWarper(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMinLengthLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxSuppressTokensAtBeginLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxSuppressTokensLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxTemperatureLogitsWarper(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxTopKLogitsWarper(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxTopPLogitsWarper(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWhisperTimeStampLogitsProcessor(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAlbertPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING = None
FLAX_MODEL_FOR_CAUSAL_LM_MAPPING = None
FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING = None
FLAX_MODEL_FOR_MASKED_LM_MAPPING = None
FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING = None
FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING = None
FLAX_MODEL_FOR_PRETRAINING_MAPPING = None
FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING = None
FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING = None
FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING = None
FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING = None
FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING = None
FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING = None
FLAX_MODEL_MAPPING = None
class FlaxAutoModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForNextSentencePrediction(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForSeq2SeqLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForSpeechSeq2Seq(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxAutoModelForVision2Seq(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartDecoderPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBartPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBeitForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBeitForMaskedImageModeling(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBeitModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBeitPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForNextSentencePrediction(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBertPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBigBirdPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotSmallForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotSmallModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBlenderbotSmallPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBloomForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBloomModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxBloomPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPTextModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPTextModelWithProjection(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPTextPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPVisionModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxCLIPVisionPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDinov2ForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDinov2Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDinov2PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxDistilBertPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxElectraPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxEncoderDecoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGemmaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGemmaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGemmaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPT2LMHeadModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPT2Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPT2PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTNeoForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTNeoModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTNeoPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTJForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTJModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxGPTJPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLlamaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLlamaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLlamaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLongT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLongT5Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxLongT5PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMarianModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMarianMTModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMarianPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMBartForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMBartForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMBartForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMBartModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMBartPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMistralForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMistralModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMistralPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMT5EncoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxMT5Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxOPTForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxOPTModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxOPTPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxPegasusForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxPegasusModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxPegasusPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRegNetForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRegNetModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRegNetPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxResNetForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxResNetModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxResNetPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRobertaPreLayerNormPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxRoFormerPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxSpeechEncoderDecoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxT5EncoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxT5ForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxT5Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxT5PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxVisionEncoderDecoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxVisionTextDualEncoderModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxViTForImageClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxViTModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxViTPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWav2Vec2ForCTC(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWav2Vec2ForPreTraining(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWav2Vec2Model(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWav2Vec2PreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWhisperForAudioClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWhisperForConditionalGeneration(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWhisperModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxWhisperPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXGLMForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXGLMModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXGLMPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForCausalLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForMaskedLM(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForMultipleChoice(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForQuestionAnswering(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForSequenceClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaForTokenClassification(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
class FlaxXLMRobertaPreTrainedModel(metaclass=DummyObject):
_backends = ["flax"]
def __init__(self, *args, **kwargs):
requires_backends(self, ["flax"])
| transformers/src/transformers/utils/dummy_flax_objects.py/0 | {
"file_path": "transformers/src/transformers/utils/dummy_flax_objects.py",
"repo_id": "transformers",
"token_count": 14238
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import re
class TrialShortNamer:
PREFIX = "hp"
DEFAULTS = {}
NAMING_INFO = None
@classmethod
def set_defaults(cls, prefix, defaults):
cls.PREFIX = prefix
cls.DEFAULTS = defaults
cls.build_naming_info()
@staticmethod
def shortname_for_word(info, word):
if len(word) == 0:
return ""
short_word = None
if any(char.isdigit() for char in word):
raise Exception(f"Parameters should not contain numbers: '{word}' contains a number")
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1, len(word) + 1):
prefix = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
short_word = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(integer):
s = ""
while integer != 0:
s = chr(ord("A") + integer % 10) + s
integer //= 10
return s
i = 0
while True:
sword = word + "#" + int_to_alphabetic(i)
if sword in info["reverse_short_word"]:
continue
else:
short_word = sword
break
info["short_word"][word] = short_word
info["reverse_short_word"][short_word] = word
return short_word
@staticmethod
def shortname_for_key(info, param_name):
words = param_name.split("_")
shortname_parts = [TrialShortNamer.shortname_for_word(info, word) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
separators = ["", "_"]
for separator in separators:
shortname = separator.join(shortname_parts)
if shortname not in info["reverse_short_param"]:
info["short_param"][param_name] = shortname
info["reverse_short_param"][shortname] = param_name
return shortname
return param_name
@staticmethod
def add_new_param_name(info, param_name):
short_name = TrialShortNamer.shortname_for_key(info, param_name)
info["short_param"][param_name] = short_name
info["reverse_short_param"][short_name] = param_name
@classmethod
def build_naming_info(cls):
if cls.NAMING_INFO is not None:
return
info = {
"short_word": {},
"reverse_short_word": {},
"short_param": {},
"reverse_short_param": {},
}
field_keys = list(cls.DEFAULTS.keys())
for k in field_keys:
cls.add_new_param_name(info, k)
cls.NAMING_INFO = info
@classmethod
def shortname(cls, params):
cls.build_naming_info()
assert cls.PREFIX is not None
name = [copy.copy(cls.PREFIX)]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(f"You should provide a default value for the param name {k} with value {v}")
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
key = cls.NAMING_INFO["short_param"][k]
if isinstance(v, bool):
v = 1 if v else 0
sep = "" if isinstance(v, (int, float)) else "-"
e = f"{key}{sep}{v}"
name.append(e)
return "_".join(name)
@classmethod
def parse_repr(cls, repr):
repr = repr[len(cls.PREFIX) + 1 :]
if repr == "":
values = []
else:
values = repr.split("_")
parameters = {}
for value in values:
if "-" in value:
p_k, p_v = value.split("-")
else:
p_k = re.sub("[0-9.]", "", value)
p_v = float(re.sub("[^0-9.]", "", value))
key = cls.NAMING_INFO["reverse_short_param"][p_k]
parameters[key] = p_v
for k in cls.DEFAULTS:
if k not in parameters:
parameters[k] = cls.DEFAULTS[k]
return parameters
| transformers/src/transformers/utils/hp_naming.py/0 | {
"file_path": "transformers/src/transformers/utils/hp_naming.py",
"repo_id": "transformers",
"token_count": 2393
} |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 {{cookiecutter.authors}} and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning a 🤗 Transformers model on {{cookiecutter.example_name}}.
"""
# You can also adapt this script on your own {{cookiecutter.example_name}} task. Pointers for this are left as comments.
{%- if cookiecutter.with_trainer == "True" %}
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional, List
import datasets
import torch
from datasets import load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
{{cookiecutter.model_class}},
AutoTokenizer,
DataCollatorWithPadding,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import send_example_telemetry
logger = logging.getLogger(__name__)
{%- if cookiecutter.can_train_from_scratch == "True" %}
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune, or train from scratch.
"""
model_name_or_path: Optional[str] = field(
default=None,
metadata={
"help": "The model checkpoint for weights initialization. "
"Don't set if you want to train a model from scratch."
},
)
model_type: Optional[str] = field(
default=None,
metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
{%- elif cookiecutter.can_train_from_scratch == "False" %}
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
)
},
)
{% endif %}
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(default=None, metadata={"help": "The input training data file (a text file)."})
validation_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."},
)
test_file: Optional[str] = field(
default=None,
metadata={"help": "An optional input test data file to predict the label on (a text file)."},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training/validation/test file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in ["csv", "json", "txt"], "`test_file` should be a csv, a json or a txt file."
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_{{cookiecutter.example_shortcut}}", model_args, data_args)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
trust_remote_code=model_args.trust_remote_code,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
if extension == "txt":
extension = "text"
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
{%- if cookiecutter.can_train_from_scratch == "True" %}
config_kwargs = {
"cache_dir": model_args.cache_dir,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
if model_args.config_name:
config = AutoConfig.from_pretrained(model_args.config_name, **config_kwargs)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(model_args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[model_args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
tokenizer_kwargs = {
"cache_dir": model_args.cache_dir,
"use_fast": model_args.use_fast_tokenizer,
"revision": model_args.model_revision,
"token": model_args.token,
"trust_remote_code": model_args.trust_remote_code,
}
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **tokenizer_kwargs)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **tokenizer_kwargs)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = {{cookiecutter.model_class}}.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = {{cookiecutter.model_class}}.from_config(config)
model.resize_token_embeddings(len(tokenizer))
{%- elif cookiecutter.can_train_from_scratch == "False" %}
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
# num_labels=num_labels, Uncomment if you have a certain number of labels
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
{% endif %}
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
column_names = raw_datasets["test"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
def tokenize_function(examples):
return tokenizer(examples[text_column_name], padding="max_length", truncation=True)
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
# Select Sample from Dataset
train_dataset = train_dataset.select(range(data_args.max_train_samples))
# tokenize train dataset in batch
with training_args.main_process_first(desc="train dataset map tokenization"):
train_dataset = train_dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
# Selecting samples from dataset
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
# tokenize validation dataset
with training_args.main_process_first(desc="validation dataset map tokenization"):
eval_dataset = eval_dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test"]
# Selecting samples from dataset
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
# tokenize predict dataset
with training_args.main_process_first(desc="prediction dataset map tokenization"):
predict_dataset = predict_dataset.map(
tokenize_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=[text_column_name],
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
data_collator=default_data_collator if not training_args.fp16 else DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
# Initialize our Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
processing_class=tokenizer,
data_collator=data_collator,
)
# Training
if training_args.do_train:
{%- if cookiecutter.can_train_from_scratch == "False" %}
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
{%- elif cookiecutter.can_train_from_scratch == "True" %}
if last_checkpoint is not None:
checkpoint = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path):
checkpoint = model_args.model_name_or_path
else:
checkpoint = None
{% endif %}
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate()
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***")
predictions, labels, metrics = trainer.predict(predict_dataset)
max_predict_samples = data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
# write custom code for saving predictions according to task
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
{%- elif cookiecutter.with_trainer == "False" %}
import argparse
import logging
import math
import os
import random
import datasets
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from accelerate import Accelerator
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AdamW,
AutoConfig,
{{cookiecutter.model_class}},
AutoTokenizer,
DataCollatorWithPadding,
PretrainedConfig,
SchedulerType,
default_data_collator,
get_scheduler,
set_seed,
)
from transformers.utils import send_example_telemetry
logger = logging.getLogger(__name__)
{%- if cookiecutter.can_train_from_scratch == "True" %}
# You should update this to your particular problem to have better documentation of `model_type`
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
{% endif %}
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a transformers model on a text classification task")
parser.add_argument(
"--dataset_name",
type=str,
default=None,
help="The name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help= "The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help=(
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--train_file", type=str, default=None, help="A csv or a json file containing the training data."
)
parser.add_argument(
"--validation_file", type=str, default=None, help="A csv or a json file containing the validation data."
)
parser.add_argument(
"--max_length",
type=int,
default=128,
help=(
"The maximum total input sequence length after tokenization. Sequences longer than this will be truncated,"
" sequences shorter will be padded if `--pad_to_max_length` is passed."
),
)
parser.add_argument(
"--pad_to_max_length",
action="store_true",
help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.",
)
parser.add_argument(
"--model_name_or_path",
type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.",
required=True,
)
parser.add_argument(
"--config_name",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--tokenizer_name",
type=str,
default=None,
help="Pretrained tokenizer name or path if not the same as model_name",
)
parser.add_argument(
"--use_slow_tokenizer",
action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.")
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
{%- if cookiecutter.can_train_from_scratch == "True" %}
parser.add_argument(
"--model_type",
type=str,
default=None,
help="Model type to use if training from scratch.",
choices=MODEL_TYPES,
)
{% endif %}
args = parser.parse_args()
# Sanity checks
if args.task_name is None and args.train_file is None and args.validation_file is None:
raise ValueError("Need either a task name or a training/validation file.")
else:
if args.train_file is not None:
extension = args.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if args.validation_file is not None:
extension = args.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
return args
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_{{cookiecutter.example_shortcut}", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
accelerator = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
args.dataset_name, args.dataset_config_name, trust_remote_code=args.trust_remote_code
)
else:
data_files = {}
if args.train_file is not None:
data_files["train"] = args.train_file
extension = args.train_file.split(".")[-1]
if args.validation_file is not None:
data_files["validation"] = args.validation_file
extension = args.validation_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files=data_files)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
{%- if cookiecutter.can_train_from_scratch == "True" %}
if model_args.config_name:
config = AutoConfig.from_pretrained(args.model_name_or_path)
elif model_args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if model_args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name, use_fast=not args.use_slow_tokenizer)
elif model_args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, use_fast=not args.use_slow_tokenizer)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
if model_args.model_name_or_path:
model = {{cookiecutter.model_class}}.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
else:
logger.info("Training new model from scratch")
model = {{cookiecutter.model_class}}.from_config(config)
model.resize_token_embeddings(len(tokenizer))
{%- elif cookiecutter.can_train_from_scratch == "False" %}
config = AutoConfig.from_pretrained(
args.config_name if model_args.config_name else args.model_name_or_path,
# num_labels=num_labels, Uncomment if you have a certain number of labels
finetuning_task=data_args.task_name,
)
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name if model_args.tokenizer_name else args.model_name_or_path,
use_fast=not args.use_slow_tokenizer,
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
)
{% endif %}
# Preprocessing the datasets.
# First we tokenize all the texts.
column_names = raw_datasets["train"].column_names
text_column_name = "text" if "text" in column_names else column_names[0]
padding = "max_length" if args.pad_to_max_length else False
def tokenize_function(examples):
result = tokenizer(examples[text_column_name], padding=padding, max_length=args.max_length, truncation=True)
if "label" in examples:
result["labels"] = examples["label"]
return result
processed_datasets = raw_datasets.map(
preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names
)
train_dataset = processed_datasets["train"]
eval_dataset = processed_datasets["validation"]
# Log a few random samples from the training set:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# DataLoaders creation:
if args.pad_to_max_length:
# If padding was already done ot max length, we use the default data collator that will just convert everything
# to tensors.
data_collator = default_data_collator
else:
# Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of
# the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple
# of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta).
# For fp8, we pad to multiple of 16.
if accelerator.mixed_precision == "fp8":
pad_to_multiple_of = 16
elif accelerator.mixed_precision != "no":
pad_to_multiple_of = 8
else:
pad_to_multiple_of = None
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=pad_to_multiple_of)
train_dataloader = DataLoader(
train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size
)
eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
else:
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
# TODO Get the proper metric function
# metric = load_metric(xxx)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
for epoch in range(args.num_train_epochs):
model.train()
for step, batch in enumerate(train_dataloader):
outputs = model(**batch)
loss = outputs.loss
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
model.eval()
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
predictions = outputs.logits.argmax(dim=-1)
metric.add_batch(
predictions=accelerator.gather(predictions),
references=accelerator.gather(batch["labels"]),
)
eval_metric = metric.compute()
logger.info(f"epoch {epoch}: {eval_metric}")
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(args.output_dir, save_function=accelerator.save)
if __name__ == "__main__":
main()
{% endif %}
| transformers/templates/adding_a_new_example_script/{{cookiecutter.directory_name}}/run_{{cookiecutter.example_shortcut}}.py/0 | {
"file_path": "transformers/templates/adding_a_new_example_script/{{cookiecutter.directory_name}}/run_{{cookiecutter.example_shortcut}}.py",
"repo_id": "transformers",
"token_count": 15549
} |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import load_tool
from transformers.utils import is_torch_available
if is_torch_available():
import torch
from transformers.testing_utils import require_torch
from .test_tools_common import ToolTesterMixin
@require_torch
class TextToSpeechToolTester(unittest.TestCase, ToolTesterMixin):
def setUp(self):
self.tool = load_tool("text_to_speech")
self.tool.setup()
def test_exact_match_arg(self):
# SpeechT5 isn't deterministic
torch.manual_seed(0)
result = self.tool("hey")
resulting_tensor = result.to_raw()
self.assertTrue(len(resulting_tensor.detach().shape) == 1)
self.assertTrue(resulting_tensor.detach().shape[0] > 1000)
def test_exact_match_kwarg(self):
# SpeechT5 isn't deterministic
torch.manual_seed(0)
result = self.tool("hey")
resulting_tensor = result.to_raw()
self.assertTrue(len(resulting_tensor.detach().shape) == 1)
self.assertTrue(resulting_tensor.detach().shape[0] > 1000)
| transformers/tests/agents/test_text_to_speech.py/0 | {
"file_path": "transformers/tests/agents/test_text_to_speech.py",
"repo_id": "transformers",
"token_count": 593
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a clone of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import unittest
from transformers import AutoTokenizer, is_torch_available
from transformers.testing_utils import require_torch, torch_device
from ..test_modeling_common import ids_tensor
if is_torch_available():
import torch
from transformers.generation import (
ConfidenceCriteria,
EosTokenCriteria,
MaxLengthCriteria,
MaxTimeCriteria,
StoppingCriteriaList,
StopStringCriteria,
validate_stopping_criteria,
)
@require_torch
class StoppingCriteriaTestCase(unittest.TestCase):
def _get_tensors(self, length):
batch_size = 3
vocab_size = 250
input_ids = ids_tensor((batch_size, length), vocab_size)
scores = torch.ones((batch_size, length), device=torch_device, dtype=torch.float) / length
return input_ids, scores
def test_list_criteria(self):
input_ids, scores = self._get_tensors(5)
criteria = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=10),
MaxTimeCriteria(max_time=0.1),
]
)
self.assertFalse(all(criteria(input_ids, scores)))
input_ids, scores = self._get_tensors(9)
self.assertFalse(all(criteria(input_ids, scores)))
input_ids, scores = self._get_tensors(10)
self.assertTrue(all(criteria(input_ids, scores)))
def test_max_length_criteria(self):
criteria = MaxLengthCriteria(max_length=10)
input_ids, scores = self._get_tensors(5)
self.assertFalse(all(criteria(input_ids, scores)))
input_ids, scores = self._get_tensors(9)
self.assertFalse(all(criteria(input_ids, scores)))
input_ids, scores = self._get_tensors(10)
self.assertTrue(all(criteria(input_ids, scores)))
def test_max_time_criteria(self):
input_ids, scores = self._get_tensors(5)
criteria = MaxTimeCriteria(max_time=0.1)
self.assertFalse(all(criteria(input_ids, scores)))
criteria = MaxTimeCriteria(max_time=0.1, initial_timestamp=time.time() - 0.2)
self.assertTrue(all(criteria(input_ids, scores)))
def test_eos_token_criteria(self):
criteria = EosTokenCriteria(eos_token_id=0)
input_ids, scores = self._get_tensors(5)
input_ids[:, -1] = 0
self.assertTrue(all(criteria(input_ids, scores)))
input_ids, scores = self._get_tensors(5)
input_ids[:2, -1] = 0
input_ids[2, -1] = 1
self.assertListEqual(criteria(input_ids, scores).tolist(), [True, True, False])
input_ids, scores = self._get_tensors(5)
input_ids[:, -1] = 1
self.assertListEqual(criteria(input_ids, scores).tolist(), [False, False, False])
def test_confidence_criteria(self):
criteria = ConfidenceCriteria(assistant_confidence_threshold=0.5)
vocab_size = 250
length = 5
input_ids = ids_tensor((1, length), vocab_size)
scores = (torch.randn((1, vocab_size)),)
# Simulate high confidence by setting the probability of the last token to be high
scores[0][0, input_ids[0, -1]] = 10.0 # Logits before softmax
self.assertFalse(criteria(input_ids, scores))
# Simulate low confidence by setting the probability of the last token to be low
scores[0][0, input_ids[0, -1]] = -10.0 # Logits before softmax
self.assertTrue(criteria(input_ids, scores))
def test_validate_stopping_criteria(self):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 10)
with self.assertWarns(UserWarning):
validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10)]), 11)
stopping_criteria = validate_stopping_criteria(StoppingCriteriaList(), 11)
self.assertEqual(len(stopping_criteria), 1)
def test_stop_string_criteria(self):
true_strings = [
"<|im_start|><|im_end|>",
"<|im_start|><|im_end|<|im_end|>",
">><|im_start|>>stop",
"stop",
"e nd",
]
false_strings = [
"<|im_start|><|im_end|",
"<|im_start|><|im_end|<|im_end|",
"<|im_end|><|im_start|>",
"<|im_end|<>stop<|im_end|",
"end",
"en d",
"eNd",
"<|im_end|",
"|im_end|>",
"s",
]
stop_strings = ["<|im_end|>", "stop", "e nd"]
# Use a tokenizer that won't actually have special tokens for these
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
scores = None
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
for i in range(len(true_strings)):
self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores))
for i in range(len(false_strings)):
self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores))
# Now try it with a tokenizer where those are actually special tokens
tokenizer = AutoTokenizer.from_pretrained("cognitivecomputations/dolphin-2.5-mixtral-8x7b")
tokenizer.padding_side = "left"
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
for i in range(len(true_strings)):
self.assertTrue(criteria(true_input_ids["input_ids"][i : i + 1], scores))
for i in range(len(false_strings)):
self.assertFalse(criteria(false_input_ids["input_ids"][i : i + 1], scores))
def test_stop_string_criteria_vocab_size_mismatch(self):
"""Test that StopStringCriteria handles tokens above len(tokenizer) correctly."""
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
# Create input_ids with tokens above len(tokenizer)
input_ids = torch.tensor([[len(tokenizer) + 1024, 1, 2]], device=torch_device)
scores = None
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=["test"])
# This should not raise an error and should return False since no stop string is matched
self.assertFalse(criteria(input_ids, scores))
def test_stop_string_matching_positions(self):
stop_string = "stop"
token_list = ["last", "top", "topper", "s", "p"]
token_indices = list(range(len(token_list)))
all_token_valid_positions, all_token_end_overlaps = StopStringCriteria._stop_string_get_matching_positions(
token_list=token_list, token_indices=token_indices, stop_strings=[stop_string]
)
valid_positions = {
token_list[idx]: positions for idx, positions in all_token_valid_positions[stop_string].items()
}
end_overlaps = {token_list[idx]: overlaps for idx, overlaps in all_token_end_overlaps[stop_string].items()}
self.assertEqual(valid_positions, {"s": [3], "last": [2]})
self.assertEqual(end_overlaps, {"top": [3], "topper": [3], "p": [1]})
def test_stop_string_embedding_vecs(self):
stop_string = "stop"
token_list = ["last", "top", "topper", "s", "p"]
token_indices = list(range(len(token_list)))
embedding_vec, max_valid_positions, max_valid_end_lens = StopStringCriteria._stop_string_create_embedding_vec(
token_list=token_list, token_indices=token_indices, stop_strings=[stop_string]
)
# Positions inside the stop string where the token matches (excluding end overlaps)
valid_positions = embedding_vec[:, 0].tolist()
self.assertEqual(valid_positions, [2, -1, -1, 3, -1, -1])
# Overlap lengths between end of stop string and start of token
end_overlaps = embedding_vec[:, 1].tolist()
self.assertEqual(end_overlaps, [-1, 3, 3, -1, 1, -1])
# Length of each token
token_lengths = embedding_vec[:-1, 2].tolist()
self.assertEqual(token_lengths, [len(token) for token in token_list])
def test_single_letter_stop_string(self):
true_strings = ["a", "baa", "abc"] # "abc" is a single token
false_strings = ["abbbbbbb", "b"] # "abbbbbbb" is split into multiple tokens
stop_strings = ["a"]
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
true_input_ids = tokenizer(true_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
false_input_ids = tokenizer(false_strings, return_tensors="pt", padding="longest", add_special_tokens=False)
scores = None
criteria = StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings)
for input_ids in true_input_ids["input_ids"]:
self.assertTrue(criteria(input_ids.unsqueeze(0), scores))
for input_ids in false_input_ids["input_ids"]:
self.assertFalse(criteria(input_ids.unsqueeze(0), scores))
def test_criterias_per_row(self):
text = "They completed the challenging puzzle, revealing the hidden image at the end"
stop_strings = ["end"]
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tokenizer.pad_token_id = tokenizer.eos_token_id
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False)
scores = None
criteria = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=20),
StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings),
]
)
# trigger stopping when at leat one criteria is satisfied, one value per batch
self.assertTrue(criteria(inputs["input_ids"], scores))
# return False when neither is satisfied
self.assertFalse(criteria(inputs["input_ids"][:, :-1], scores))
def test_criterias_per_row_batched(self):
text = [
"They completed the challenging puzzle, revealing the hidden image at the end",
"Today a dragon flew over France",
"The aroma of freshly baked pizza filled the kitchen",
]
stop_strings = ["end"]
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
tokenizer.pad_token_id = tokenizer.eos_token_id
tokenizer.padding_side = "left"
inputs = tokenizer(text, return_tensors="pt", padding="longest", add_special_tokens=False)
scores = None
criteria = StoppingCriteriaList(
[
MaxLengthCriteria(max_length=20),
StopStringCriteria(tokenizer=tokenizer, stop_strings=stop_strings),
]
)
# trigger stopping when at leat one criteria is satisfied
self.assertListEqual(criteria(inputs["input_ids"], scores).tolist(), [True, False, False])
# False when neither is satisfied
self.assertListEqual(criteria(inputs["input_ids"][:, :-1], scores).tolist(), [False, False, False])
| transformers/tests/generation/test_stopping_criteria.py/0 | {
"file_path": "transformers/tests/generation/test_stopping_criteria.py",
"repo_id": "transformers",
"token_count": 5131
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from transformers import AltCLIPProcessor, CLIPImageProcessor, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import require_vision
from ...test_processing_common import ProcessorTesterMixin
@require_vision
class AltClipProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = AltCLIPProcessor
def setUp(self):
self.model_id = "BAAI/AltCLIP"
self.tmpdirname = tempfile.mkdtemp()
image_processor = CLIPImageProcessor()
tokenizer = XLMRobertaTokenizer.from_pretrained(self.model_id)
processor = self.processor_class(image_processor, tokenizer)
processor.save_pretrained(self.tmpdirname)
def get_tokenizer(self, **kwargs):
return XLMRobertaTokenizer.from_pretrained(self.model_id, **kwargs)
def get_rust_tokenizer(self, **kwargs):
return XLMRobertaTokenizerFast.from_pretrained(self.model_id, **kwargs)
def get_image_processor(self, **kwargs):
return CLIPImageProcessor.from_pretrained(self.model_id, **kwargs)
| transformers/tests/models/altclip/test_processor_altclip.py/0 | {
"file_path": "transformers/tests/models/altclip/test_processor_altclip.py",
"repo_id": "transformers",
"token_count": 565
} |
# coding=utf-8
# Copyright 2021 the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
Wav2Vec2Config,
Wav2Vec2FeatureExtractor,
Wav2Vec2Processor,
)
from transformers.testing_utils import TOKEN, TemporaryHubRepo, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, PROCESSOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils"))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
SAMPLE_PROCESSOR_CONFIG = get_tests_dir("fixtures/dummy_feature_extractor_config.json")
SAMPLE_VOCAB = get_tests_dir("fixtures/vocab.json")
SAMPLE_PROCESSOR_CONFIG_DIR = get_tests_dir("fixtures")
class AutoFeatureExtractorTest(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
def setUp(self):
transformers.dynamic_module_utils.TIME_OUT_REMOTE_CODE = 0
def test_processor_from_model_shortcut(self):
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_repo(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config()
processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h")
# save in new folder
model_config.save_pretrained(tmpdirname)
processor.save_pretrained(tmpdirname)
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_extractor_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SAMPLE_PROCESSOR_CONFIG, os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME))
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if not os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# create one manually in order to perform this test's objective
config_dict = {"processor_class": "Wav2Vec2Processor"}
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as fp:
json.dump(config_dict, fp)
# drop `processor_class` in tokenizer config
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_feat_extr_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# drop `processor_class` in processor
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "r") as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
# drop `processor_class` in tokenizer
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "r") as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, TOKENIZER_CONFIG_FILE), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_tokenizer_processor_class(self):
with tempfile.TemporaryDirectory() as tmpdirname:
feature_extractor = Wav2Vec2FeatureExtractor()
tokenizer = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h")
processor = Wav2Vec2Processor(feature_extractor, tokenizer)
# save in new folder
processor.save_pretrained(tmpdirname)
if os.path.isfile(os.path.join(tmpdirname, PROCESSOR_NAME)):
# drop `processor_class` in processor
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "r") as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, PROCESSOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
# drop `processor_class` in feature extractor
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "r") as f:
config_dict = json.load(f)
config_dict.pop("processor_class")
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
f.write(json.dumps(config_dict))
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_processor_from_local_directory_from_model_config(self):
with tempfile.TemporaryDirectory() as tmpdirname:
model_config = Wav2Vec2Config(processor_class="Wav2Vec2Processor")
model_config.save_pretrained(tmpdirname)
# copy relevant files
copyfile(SAMPLE_VOCAB, os.path.join(tmpdirname, "vocab.json"))
# create emtpy sample processor
with open(os.path.join(tmpdirname, FEATURE_EXTRACTOR_NAME), "w") as f:
f.write("{}")
processor = AutoProcessor.from_pretrained(tmpdirname)
self.assertIsInstance(processor, Wav2Vec2Processor)
def test_from_pretrained_dynamic_processor(self):
# If remote code is not set, we will time out when asking whether to load the model.
with self.assertRaises(ValueError):
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
# If remote code is disabled, we can't load this config.
with self.assertRaises(ValueError):
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False
)
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor", trust_remote_code=True)
self.assertTrue(processor.special_attribute_present)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
feature_extractor = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present)
self.assertEqual(feature_extractor.__class__.__name__, "NewFeatureExtractor")
tokenizer = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present)
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizerFast")
# Test we can also load the slow version
new_processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True, use_fast=False
)
new_tokenizer = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present)
self.assertEqual(new_tokenizer.__class__.__name__, "NewTokenizer")
else:
self.assertEqual(tokenizer.__class__.__name__, "NewTokenizer")
def test_new_processor_registration(self):
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, CustomFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=CustomTokenizer)
AutoProcessor.register(CustomConfig, CustomProcessor)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(ValueError):
AutoProcessor.register(Wav2Vec2Config, Wav2Vec2Processor)
# Now that the config is registered, it can be used as any other config with the auto-API
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = CustomTokenizer(vocab_file)
processor = CustomProcessor(feature_extractor, tokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(tmp_dir)
new_processor = AutoProcessor.from_pretrained(tmp_dir)
self.assertIsInstance(new_processor, CustomProcessor)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_processor_conflict(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
special_attribute_present = False
class NewTokenizer(BertTokenizer):
special_attribute_present = False
class NewProcessor(ProcessorMixin):
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
special_attribute_present = False
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
AutoProcessor.register(CustomConfig, NewProcessor)
# If remote code is not set, the default is to use local classes.
processor = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor")
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote code is disabled, we load the local ones.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=False
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertFalse(processor.special_attribute_present)
self.assertFalse(processor.feature_extractor.special_attribute_present)
self.assertFalse(processor.tokenizer.special_attribute_present)
# If remote is enabled, we load from the Hub.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", trust_remote_code=True
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertTrue(processor.special_attribute_present)
self.assertTrue(processor.feature_extractor.special_attribute_present)
self.assertTrue(processor.tokenizer.special_attribute_present)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_from_pretrained_dynamic_processor_with_extra_attributes(self):
class NewFeatureExtractor(Wav2Vec2FeatureExtractor):
pass
class NewTokenizer(BertTokenizer):
pass
class NewProcessor(ProcessorMixin):
feature_extractor_class = "AutoFeatureExtractor"
tokenizer_class = "AutoTokenizer"
def __init__(self, feature_extractor, tokenizer, processor_attr_1=1, processor_attr_2=True):
super().__init__(feature_extractor, tokenizer)
self.processor_attr_1 = processor_attr_1
self.processor_attr_2 = processor_attr_2
try:
AutoConfig.register("custom", CustomConfig)
AutoFeatureExtractor.register(CustomConfig, NewFeatureExtractor)
AutoTokenizer.register(CustomConfig, slow_tokenizer_class=NewTokenizer)
AutoProcessor.register(CustomConfig, NewProcessor)
# If remote code is not set, the default is to use local classes.
processor = AutoProcessor.from_pretrained(
"hf-internal-testing/test_dynamic_processor", processor_attr_2=False
)
self.assertEqual(processor.__class__.__name__, "NewProcessor")
self.assertEqual(processor.processor_attr_1, 1)
self.assertEqual(processor.processor_attr_2, False)
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def test_auto_processor_creates_tokenizer(self):
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert")
self.assertEqual(processor.__class__.__name__, "BertTokenizerFast")
def test_auto_processor_creates_image_processor(self):
processor = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext")
self.assertEqual(processor.__class__.__name__, "ConvNextImageProcessor")
@is_staging_test
class ProcessorPushToHubTester(unittest.TestCase):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"]
@classmethod
def setUpClass(cls):
cls._token = TOKEN
HfFolder.save_token(TOKEN)
def test_push_to_hub_via_save_pretrained(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token)
new_processor = Wav2Vec2Processor.from_pretrained(tmp_repo.repo_id)
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_processor.feature_extractor, k))
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())
def test_push_to_hub_in_organization_via_save_pretrained(self):
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
processor = Wav2Vec2Processor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
tmp_dir,
repo_id=tmp_repo.repo_id,
push_to_hub=True,
token=self._token,
)
new_processor = Wav2Vec2Processor.from_pretrained(tmp_repo.repo_id)
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(v, getattr(new_processor.feature_extractor, k))
self.assertDictEqual(new_processor.tokenizer.get_vocab(), processor.tokenizer.get_vocab())
def test_push_to_hub_dynamic_processor(self):
with TemporaryHubRepo(token=self._token) as tmp_repo:
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_PROCESSOR_CONFIG_DIR)
with tempfile.TemporaryDirectory() as tmp_dir:
vocab_file = os.path.join(tmp_dir, "vocab.txt")
with open(vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens]))
tokenizer = CustomTokenizer(vocab_file)
processor = CustomProcessor(feature_extractor, tokenizer)
with tempfile.TemporaryDirectory() as tmp_dir:
repo = Repository(tmp_dir, clone_from=tmp_repo, token=self._token)
processor.save_pretrained(tmp_dir)
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map,
{
"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor",
"AutoProcessor": "custom_processing.CustomProcessor",
},
)
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(tmp_dir, "tokenizer_config.json")) as f:
tokenizer_config = json.load(f)
self.assertDictEqual(
tokenizer_config["auto_map"],
{
"AutoTokenizer": ["custom_tokenization.CustomTokenizer", None],
"AutoProcessor": "custom_processing.CustomProcessor",
},
)
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_feature_extraction.py")))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_tokenization.py")))
self.assertTrue(os.path.isfile(os.path.join(tmp_dir, "custom_processing.py")))
repo.push_to_hub()
new_processor = AutoProcessor.from_pretrained(tmp_repo.repo_id, trust_remote_code=True)
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__, "CustomProcessor")
| transformers/tests/models/auto/test_processor_auto.py/0 | {
"file_path": "transformers/tests/models/auto/test_processor_auto.py",
"repo_id": "transformers",
"token_count": 9354
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
import unittest
from transformers import AutoTokenizer
from transformers.models.bert.tokenization_bert import BertTokenizer
from transformers.models.bert_japanese.tokenization_bert_japanese import (
VOCAB_FILES_NAMES,
BertJapaneseTokenizer,
CharacterTokenizer,
JumanppTokenizer,
MecabTokenizer,
SudachiTokenizer,
WordpieceTokenizer,
)
from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi_projection
from ...test_tokenization_common import TokenizerTesterMixin
@custom_tokenizers
class BertJapaneseTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "cl-tohoku/bert-base-japanese"
tokenizer_class = BertJapaneseTokenizer
test_rust_tokenizer = False
space_between_special_tokens = True
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"こんにちは",
"こん",
"にちは",
"ばんは",
"##こん",
"##にちは",
"##ばんは",
"世界",
"##世界",
"、",
"##、",
"。",
"##。",
"アップルストア",
"外国",
"##人",
"参政",
"##権",
"此れ",
"は",
"猫",
"です",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、世界。"
output_text = "こんにちは 、 世界 。 こんばんは 、 世界 。"
return input_text, output_text
def get_clean_sequence(self, tokenizer):
input_text, output_text = self.get_input_output_texts(tokenizer)
ids = tokenizer.encode(output_text, add_special_tokens=False)
text = tokenizer.decode(ids, clean_up_tokenization_spaces=False)
return text, ids
def test_pretokenized_inputs(self):
pass # TODO add if relevant
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("こんにちは、世界。\nこんばんは、世界。")
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
def test_pickle_mecab_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="mecab")
self.assertIsNotNone(tokenizer)
text = "こんにちは、世界。\nこんばんは、世界。"
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
filename = os.path.join(self.tmpdirname, "tokenizer.bin")
with open(filename, "wb") as handle:
pickle.dump(tokenizer, handle)
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
tokens_loaded = tokenizer_new.tokenize(text)
self.assertListEqual(tokens, tokens_loaded)
def test_mecab_full_tokenizer_with_mecab_kwargs(self):
tokenizer = self.tokenizer_class(
self.vocab_file, word_tokenizer_type="mecab", mecab_kwargs={"mecab_dic": "ipadic"}
)
text = "アップルストア"
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, ["アップルストア"])
def test_mecab_tokenizer_ipadic(self):
tokenizer = MecabTokenizer(mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
)
def test_mecab_tokenizer_unidic_lite(self):
try:
tokenizer = MecabTokenizer(mecab_dic="unidic_lite")
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
)
def test_mecab_tokenizer_unidic(self):
try:
import unidic
self.assertTrue(
os.path.isdir(unidic.DICDIR),
"The content of unidic was not downloaded. Run `python -m unidic download` before running this test case. Note that this requires 2.1GB on disk.",
)
tokenizer = MecabTokenizer(mecab_dic="unidic")
except ModuleNotFoundError:
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
)
def test_mecab_tokenizer_lower(self):
tokenizer = MecabTokenizer(do_lower_case=True, mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップルストア", "で", "iphone", "8", "が", "発売", "さ", "れ", "た", "。"],
)
def test_mecab_tokenizer_with_option(self):
try:
tokenizer = MecabTokenizer(
do_lower_case=True, normalize_text=False, mecab_option="-d /usr/local/lib/mecab/dic/jumandic"
)
except RuntimeError:
# if dict doesn't exist in the system, previous code raises this error.
return
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "\u3000", "。"],
)
def test_mecab_tokenizer_no_normalize(self):
tokenizer = MecabTokenizer(normalize_text=False, mecab_dic="ipadic")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップルストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", " ", "。"],
)
@require_sudachi_projection
def test_pickle_sudachi_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="sudachi")
self.assertIsNotNone(tokenizer)
text = "こんにちは、世界。\nこんばんは、世界。"
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
filename = os.path.join(self.tmpdirname, "tokenizer.bin")
with open(filename, "wb") as handle:
pickle.dump(tokenizer, handle)
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
tokens_loaded = tokenizer_new.tokenize(text)
self.assertListEqual(tokens, tokens_loaded)
@require_sudachi_projection
def test_sudachi_tokenizer_core(self):
tokenizer = SudachiTokenizer(sudachi_dict_type="core")
# fmt: off
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "],
)
# fmt: on
@require_sudachi_projection
def test_sudachi_tokenizer_split_mode_A(self):
tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="A")
self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国", "人", "参政", "権"])
@require_sudachi_projection
def test_sudachi_tokenizer_split_mode_B(self):
tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="B")
self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国人", "参政権"])
@require_sudachi_projection
def test_sudachi_tokenizer_split_mode_C(self):
tokenizer = SudachiTokenizer(sudachi_dict_type="core", sudachi_split_mode="C")
self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国人参政権"])
@require_sudachi_projection
def test_sudachi_full_tokenizer_with_sudachi_kwargs_split_mode_B(self):
tokenizer = self.tokenizer_class(
self.vocab_file, word_tokenizer_type="sudachi", sudachi_kwargs={"sudachi_split_mode": "B"}
)
self.assertListEqual(tokenizer.tokenize("外国人参政権"), ["外国", "##人", "参政", "##権"])
@require_sudachi_projection
def test_sudachi_tokenizer_projection(self):
tokenizer = SudachiTokenizer(
sudachi_dict_type="core", sudachi_split_mode="A", sudachi_projection="normalized_nouns"
)
self.assertListEqual(tokenizer.tokenize("これはねこです。"), ["此れ", "は", "猫", "です", "。"])
@require_sudachi_projection
def test_sudachi_full_tokenizer_with_sudachi_kwargs_sudachi_projection(self):
tokenizer = self.tokenizer_class(
self.vocab_file, word_tokenizer_type="sudachi", sudachi_kwargs={"sudachi_projection": "normalized_nouns"}
)
self.assertListEqual(tokenizer.tokenize("これはねこです。"), ["此れ", "は", "猫", "です", "。"])
@require_sudachi_projection
def test_sudachi_tokenizer_lower(self):
tokenizer = SudachiTokenizer(do_lower_case=True, sudachi_dict_type="core")
self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),[" ", "\t", "アップル", "ストア", "で", "iphone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", " ", "。", " ", " "]) # fmt: skip
@require_sudachi_projection
def test_sudachi_tokenizer_no_normalize(self):
tokenizer = SudachiTokenizer(normalize_text=False, sudachi_dict_type="core")
self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),[" ", "\t", "アップル", "ストア", "で", "iPhone", "8", " ", "が", " ", " ", "\n ", "発売", "さ", "れ", "た", "\u3000", "。", " ", " "]) # fmt: skip
@require_sudachi_projection
def test_sudachi_tokenizer_trim_whitespace(self):
tokenizer = SudachiTokenizer(trim_whitespace=True, sudachi_dict_type="core")
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れ", "た", "。"],
)
@require_jumanpp
def test_pickle_jumanpp_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, word_tokenizer_type="jumanpp")
self.assertIsNotNone(tokenizer)
text = "こんにちは、世界。\nこんばんは、世界。"
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
filename = os.path.join(self.tmpdirname, "tokenizer.bin")
with open(filename, "wb") as handle:
pickle.dump(tokenizer, handle)
with open(filename, "rb") as handle:
tokenizer_new = pickle.load(handle)
tokens_loaded = tokenizer_new.tokenize(text)
self.assertListEqual(tokens, tokens_loaded)
@require_jumanpp
def test_jumanpp_tokenizer(self):
tokenizer = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["アップル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"]) # fmt: skip
@require_jumanpp
def test_jumanpp_tokenizer_lower(self):
tokenizer = JumanppTokenizer(do_lower_case=True)
self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["アップル", "ストア", "で", "iphone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"],) # fmt: skip
@require_jumanpp
def test_jumanpp_tokenizer_no_normalize(self):
tokenizer = JumanppTokenizer(normalize_text=False)
self.assertListEqual(tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),["ア", "ッ", "フ", "゚", "ル", "ストア", "で", "iPhone", "8", "\u3000", "が", "\u3000", "\u3000", "\u3000", "発売", "さ", "れた", "\u3000", "。"],) # fmt: skip
@require_jumanpp
def test_jumanpp_tokenizer_trim_whitespace(self):
tokenizer = JumanppTokenizer(trim_whitespace=True)
self.assertListEqual(
tokenizer.tokenize(" \tアップルストアでiPhone8 が \n 発売された 。 "),
["アップル", "ストア", "で", "iPhone", "8", "が", "発売", "さ", "れた", "。"],
)
@require_jumanpp
def test_jumanpp_full_tokenizer_with_jumanpp_kwargs_trim_whitespace(self):
tokenizer = self.tokenizer_class(
self.vocab_file, word_tokenizer_type="jumanpp", jumanpp_kwargs={"trim_whitespace": True}
)
text = "こんにちは、世界。\nこんばんは、世界。"
tokens = tokenizer.tokenize(text)
self.assertListEqual(tokens, ["こんにちは", "、", "世界", "。", "こん", "##ばんは", "、", "世界", "。"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [3, 12, 10, 14, 4, 9, 12, 10, 14])
@require_jumanpp
def test_jumanpp_tokenizer_ext(self):
tokenizer = JumanppTokenizer()
self.assertListEqual(
tokenizer.tokenize("ありがとうございますm(_ _)m見つけるのが大変です。"),
["ありがとう", "ございます", "m(_ _)m", "見つける", "の", "が", "大変です", "。"],
)
def test_wordpiece_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こんにちは", "こん", "にちは", "ばんは", "##こん", "##にちは", "##ばんは"] # fmt: skip
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = WordpieceTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こんにちは"])
self.assertListEqual(tokenizer.tokenize("こんばんは"), ["こん", "##ばんは"])
self.assertListEqual(tokenizer.tokenize("こんばんは こんばんにちは こんにちは"), ["こん", "##ばんは", "[UNK]", "こんにちは"]) # fmt: skip
def test_sentencepiece_tokenizer(self):
tokenizer = BertJapaneseTokenizer.from_pretrained("nlp-waseda/roberta-base-japanese-with-auto-jumanpp")
subword_tokenizer = tokenizer.subword_tokenizer
tokens = subword_tokenizer.tokenize("国境 の 長い トンネル を 抜ける と 雪国 であった 。")
self.assertListEqual(tokens, ["▁国境", "▁の", "▁長い", "▁トンネル", "▁を", "▁抜ける", "▁と", "▁雪", "国", "▁であった", "▁。"]) # fmt: skip
tokens = subword_tokenizer.tokenize("こんばんは こんばん にち は こんにちは")
self.assertListEqual(tokens, ["▁こん", "ばん", "は", "▁こん", "ばん", "▁に", "ち", "▁は", "▁こんにちは"])
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese")
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_2 + [3]
@custom_tokenizers
class BertJapaneseCharacterTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "cl-tohoku/bert-base-japanese"
tokenizer_class = BertJapaneseTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_tokenizer(self, **kwargs):
return BertJapaneseTokenizer.from_pretrained(self.tmpdirname, subword_tokenizer_type="character", **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "こんにちは、世界。 \nこんばんは、世界。"
output_text = "こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。"
return input_text, output_text
def test_pretokenized_inputs(self):
pass # TODO add if relevant
def test_maximum_encoding_length_pair_input(self):
pass # TODO add if relevant
def test_maximum_encoding_length_single_input(self):
pass # TODO add if relevant
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file, subword_tokenizer_type="character")
tokens = tokenizer.tokenize("こんにちは、世界。 \nこんばんは、世界。")
self.assertListEqual(tokens, ["こ", "ん", "に", "ち", "は", "、", "世", "界", "。", "こ", "ん", "ば", "ん", "は", "、", "世", "界", "。"]) # fmt: skip
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens), [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12]
)
def test_character_tokenizer(self):
vocab_tokens = ["[UNK]", "[CLS]", "[SEP]", "こ", "ん", "に", "ち", "は", "ば", "世", "界", "、", "。"]
vocab = {}
for i, token in enumerate(vocab_tokens):
vocab[token] = i
tokenizer = CharacterTokenizer(vocab=vocab, unk_token="[UNK]")
self.assertListEqual(tokenizer.tokenize(""), [])
self.assertListEqual(tokenizer.tokenize("こんにちは"), ["こ", "ん", "に", "ち", "は"])
self.assertListEqual(tokenizer.tokenize("こんにちほ"), ["こ", "ん", "に", "ち", "[UNK]"])
def test_sequence_builders(self):
tokenizer = self.tokenizer_class.from_pretrained("cl-tohoku/bert-base-japanese-char")
text = tokenizer.encode("ありがとう。", add_special_tokens=False)
text_2 = tokenizer.encode("どういたしまして。", add_special_tokens=False)
encoded_sentence = tokenizer.build_inputs_with_special_tokens(text)
encoded_pair = tokenizer.build_inputs_with_special_tokens(text, text_2)
# 2 is for "[CLS]", 3 is for "[SEP]"
assert encoded_sentence == [2] + text + [3]
assert encoded_pair == [2] + text + [3] + text_2 + [3]
@custom_tokenizers
class AutoTokenizerCustomTest(unittest.TestCase):
def test_tokenizer_bert_japanese(self):
EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese"
tokenizer = AutoTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID)
self.assertIsInstance(tokenizer, BertJapaneseTokenizer)
class BertTokenizerMismatchTest(unittest.TestCase):
def test_tokenizer_mismatch_warning(self):
EXAMPLE_BERT_JAPANESE_ID = "cl-tohoku/bert-base-japanese"
with self.assertLogs("transformers", level="WARNING") as cm:
BertTokenizer.from_pretrained(EXAMPLE_BERT_JAPANESE_ID)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from."
)
)
EXAMPLE_BERT_ID = "google-bert/bert-base-cased"
with self.assertLogs("transformers", level="WARNING") as cm:
BertJapaneseTokenizer.from_pretrained(EXAMPLE_BERT_ID)
self.assertTrue(
cm.records[0].message.startswith(
"The tokenizer class you load from this checkpoint is not the same type as the class this function"
" is called from."
)
)
| transformers/tests/models/bert_japanese/test_tokenization_bert_japanese.py/0 | {
"file_path": "transformers/tests/models/bert_japanese/test_tokenization_bert_japanese.py",
"repo_id": "transformers",
"token_count": 10470
} |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def prepare_blenderbot_inputs_dict(
config,
input_ids,
decoder_input_ids=None,
attention_mask=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
):
if attention_mask is None:
attention_mask = np.where(input_ids != config.pad_token_id, 1, 0)
if decoder_attention_mask is None:
decoder_attention_mask = np.where(decoder_input_ids != config.pad_token_id, 1, 0)
if head_mask is None:
head_mask = np.ones((config.encoder_layers, config.encoder_attention_heads))
if decoder_head_mask is None:
decoder_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
if cross_attn_head_mask is None:
cross_attn_head_mask = np.ones((config.decoder_layers, config.decoder_attention_heads))
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class FlaxBlenderbotModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=50,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.initializer_range = initializer_range
def prepare_config_and_inputs(self):
input_ids = np.clip(ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size), 3, self.vocab_size)
input_ids = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1), dtype=np.int64)), -1)
decoder_input_ids = shift_tokens_right(input_ids, 1, 2)
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
encoder_layers=self.num_hidden_layers,
decoder_layers=self.num_hidden_layers,
encoder_attention_heads=self.num_attention_heads,
decoder_attention_heads=self.num_attention_heads,
encoder_ffn_dim=self.intermediate_size,
decoder_ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
initializer_range=self.initializer_range,
use_cache=False,
)
inputs_dict = prepare_blenderbot_inputs_dict(config, input_ids, decoder_input_ids)
return config, inputs_dict
def prepare_config_and_inputs_for_common(self):
config, inputs_dict = self.prepare_config_and_inputs()
return config, inputs_dict
def check_use_cache_forward(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_attention_mask = jnp.ones((decoder_input_ids.shape[0], max_decoder_length), dtype="i4")
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask,
past_key_values=outputs_cache.past_key_values,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, inputs_dict):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(inputs_dict["input_ids"])
decoder_input_ids, decoder_attention_mask = (
inputs_dict["decoder_input_ids"],
inputs_dict["decoder_attention_mask"],
)
decoder_attention_mask_cache = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
decoder_position_ids = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :],
(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1),
)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask_cache,
past_key_values=past_key_values,
decoder_position_ids=decoder_position_ids,
)
decoder_position_ids = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
past_key_values=outputs_cache.past_key_values,
decoder_attention_mask=decoder_attention_mask_cache,
decoder_position_ids=decoder_position_ids,
)
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
@require_flax
class BlenderbotHeadTests(unittest.TestCase):
vocab_size = 99
def _get_config_and_data(self):
input_ids = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
],
dtype=np.int64,
)
batch_size = input_ids.shape[0]
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=24,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=32,
decoder_ffn_dim=32,
max_position_embeddings=48,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
)
return config, input_ids, batch_size
# @timeout_decorator.timeout(1) # not working with the decorator so far
def test_lm_forward(self):
config, input_ids, batch_size = self._get_config_and_data()
lm_model = FlaxBlenderbotForConditionalGeneration(config)
outputs = lm_model(input_ids=input_ids)
expected_shape = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_lm_uneven_forward(self):
config = BlenderbotConfig(
vocab_size=self.vocab_size,
d_model=14,
encoder_layers=2,
decoder_layers=2,
encoder_attention_heads=2,
decoder_attention_heads=2,
encoder_ffn_dim=8,
decoder_ffn_dim=8,
max_position_embeddings=48,
)
lm_model = FlaxBlenderbotForConditionalGeneration(config)
context = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]], dtype=np.int64)
summary = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]], dtype=np.int64)
outputs = lm_model(input_ids=context, decoder_input_ids=summary)
expected_shape = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["logits"].shape, expected_shape)
def test_shift_tokens_right(self):
input_ids = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]], dtype=np.int64)
shifted = shift_tokens_right(input_ids, 1, 2)
n_pad_before = np.equal(input_ids, 1).astype(np.float32).sum()
n_pad_after = np.equal(shifted, 1).astype(np.float32).sum()
self.assertEqual(shifted.shape, input_ids.shape)
self.assertEqual(n_pad_after, n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0], 2).all())
@require_flax
class FlaxBlenderbotModelTest(FlaxModelTesterMixin, unittest.TestCase, FlaxGenerationTesterMixin):
is_encoder_decoder = True
all_model_classes = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
all_generative_model_classes = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxBlenderbotModelTester(self)
def test_use_cache_forward(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(model_class, config, inputs_dict)
def test_use_cache_forward_with_attn_mask(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, config, inputs_dict)
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_decode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
model = model_class(config)
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
prepared_inputs_dict = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
return model.decode(
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
)
with self.subTest("JIT Enabled"):
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("facebook/blenderbot-400M-distill")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
input_ids = np.ones((1, 1)) * model.config.eos_token_id
outputs = model(input_ids)
self.assertIsNotNone(outputs)
@unittest.skipUnless(jax_device != "cpu", "3B test too slow on CPU.")
@slow
def test_generation_from_short_input_same_as_parlai_3B(self):
FASTER_GEN_KWARGS = {"num_beams": 1, "early_stopping": True, "min_length": 15, "max_length": 25}
TOK_DECODE_KW = {"skip_special_tokens": True, "clean_up_tokenization_spaces": True}
model = FlaxBlenderbotForConditionalGeneration.from_pretrained("facebook/blenderbot-3B", from_pt=True)
tokenizer = BlenderbotTokenizer.from_pretrained("facebook/blenderbot-3B")
src_text = ["Sam"]
model_inputs = tokenizer(src_text, return_tensors="jax")
generated_utterances = model.generate(**model_inputs, **FASTER_GEN_KWARGS)
tgt_text = 'Sam is a great name. It means "sun" in Gaelic.'
generated_txt = tokenizer.batch_decode(generated_utterances, **TOK_DECODE_KW)
assert generated_txt[0].strip() == tgt_text
| transformers/tests/models/blenderbot/test_modeling_flax_blenderbot.py/0 | {
"file_path": "transformers/tests/models/blenderbot/test_modeling_flax_blenderbot.py",
"repo_id": "transformers",
"token_count": 8215
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch BLIP-2 model."""
import inspect
import os
import tempfile
import unittest
import numpy as np
import pytest
import requests
from parameterized import parameterized
from transformers import CONFIG_MAPPING, Blip2Config, Blip2QFormerConfig, Blip2VisionConfig
from transformers.testing_utils import (
require_torch,
require_torch_accelerator,
require_torch_fp16,
require_torch_gpu,
require_torch_multi_accelerator,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_torch_sdpa_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
_config_zero_init,
floats_tensor,
ids_tensor,
random_attention_mask,
)
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
Blip2ForConditionalGeneration,
Blip2ForImageTextRetrieval,
Blip2Model,
Blip2TextModelWithProjection,
Blip2VisionModel,
Blip2VisionModelWithProjection,
)
if is_vision_available():
from PIL import Image
from transformers import Blip2Processor
class Blip2VisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return Blip2VisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Blip2VisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as BLIP-2's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (Blip2VisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Blip2VisionModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Blip2VisionConfig, has_text_modality=False, hidden_size=37
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="BLIP-2's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip
def test_training(self):
pass
@unittest.skip
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2VisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2VisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class Blip2QFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
use_qformer_text_input=False,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
self.use_qformer_text_input = use_qformer_text_input
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask
def get_config(self):
return Blip2QFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
use_qformer_text_input=self.use_qformer_text_input,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class Blip2TextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class Blip2ForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self,
parent,
vision_kwargs=None,
qformer_kwargs=None,
text_kwargs=None,
is_training=True,
num_query_tokens=10,
image_token_index=4,
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length + num_query_tokens # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
self.image_token_index = image_token_index
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
vision_tokens = (
torch.ones((input_ids.shape[0], self.num_query_tokens), device=torch_device, dtype=input_ids.dtype)
* self.image_token_index
)
input_ids[input_ids == self.image_token_index] = self.text_model_tester.pad_token_id
input_ids = torch.cat([vision_tokens, input_ids], dim=-1)
vision_attention_mask = torch.ones_like(vision_tokens)
attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1)
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
image_token_index=self.image_token_index,
)
def create_and_check_for_conditional_generation(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
@require_torch
class Blip2ForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (Blip2ForConditionalGeneration,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = False
test_attention_outputs = False
test_torchscript = True
_is_composite = True
def setUp(self):
self.model_tester = Blip2ForConditionalGenerationDecoderOnlyModelTester(self)
common_properties = ["image_token_index", "num_query_tokens", "image_text_hidden_size"]
self.config_tester = ConfigTester(
self, config_class=Blip2Config, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
def _create_and_check_torchscript(self, config, inputs_dict):
# overwrite because BLIP requires ipnut ids and pixel values as input
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to `False`")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
for attn_implementation in ["eager", "sdpa"]:
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
continue
configs_no_init._attn_implementation = attn_implementation
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
model(main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
traced_model = torch.jit.trace(
model, (main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
)
else:
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
if model.config._attn_implementation == "sdpa":
trace_input = {main_input_name: main_input, "input_ids": input_ids}
if "attention_mask" in inputs:
trace_input["attention_mask"] = inputs["attention_mask"]
else:
self.skipTest(reason="testing SDPA without attention_mask is not supported")
model(main_input, attention_mask=inputs["attention_mask"])
# example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
else:
model(main_input, input_ids)
traced_model = torch.jit.trace(model, (main_input, input_ids))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_to_base(self):
pass
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
text_attn = "sdpa" if model.language_model._supports_sdpa else "eager"
vision_attn = "sdpa" if model.vision_model._supports_sdpa else "eager"
qformer_attn = "sdpa" if model.qformer._supports_sdpa else "eager"
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == text_attn)
self.assertTrue(model.vision_model.config._attn_implementation == vision_attn)
self.assertTrue(model.qformer.config._attn_implementation == qformer_attn)
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
has_sdpa = True
break
if not has_sdpa and any(
module_attn == "sdpa" for module_attn in [text_attn, vision_attn, qformer_attn]
):
raise ValueError("The SDPA model should have SDPA attention layers")
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite because BLIP internally calls LM.generate() with embeds thus it cannot operate in no cache format
def _check_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1):
use_cache = True # force this to be True in case False is passed
input_batch_size = int(output.sequences.shape[0] / num_return_sequences)
internal_batch_size = (
input_batch_size * num_beams if num_beams > 1 else input_batch_size * num_return_sequences
)
seq_length = getattr(self.model_tester, "seq_length", None)
seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
seq_length = getattr(self.model_tester, "text_seq_length", seq_length)
config = config.text_config if hasattr(config, "text_config") else config
gen_len = (
output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
)
# in some models we subsample the sequence length in inner layers
if hasattr(self.model_tester, "get_subsampled_output_lengths"):
seq_length = self.model_tester.get_subsampled_output_lengths(seq_length)
# scores
self._check_scores(internal_batch_size, output.scores, length=gen_len, config=config)
# unprocessed logits
self._check_logits(internal_batch_size, output.logits, config=config)
# Attentions
if self.has_attentions:
if config.is_encoder_decoder:
# encoder
self._check_encoder_attention_for_generate(
output.encoder_attentions, input_batch_size, config, seq_length
)
# decoder
self._check_attentions_for_generate(
internal_batch_size,
output.decoder_attentions,
min_length=1,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
else:
# if use_cache first input is equal to no use_cache, so skip here
attentions = output.attentions if not use_cache else output.attentions[1:]
min_length = seq_length if not use_cache else seq_length + 1
self._check_attentions_for_generate(
internal_batch_size,
attentions=attentions,
min_length=min_length,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
# Hidden States
if config.is_encoder_decoder:
# encoder
self._check_encoder_hidden_states_for_generate(
output.encoder_hidden_states, input_batch_size, config, seq_length
)
# decoder
self._check_hidden_states_for_generate(
internal_batch_size,
output.decoder_hidden_states,
min_length=1,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
else:
# if use_cache first input is equal to no use_cache, so skip here
hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
min_length = seq_length if not use_cache else seq_length + 1
self._check_hidden_states_for_generate(
internal_batch_size,
hidden_states,
min_length=min_length,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
# Past Key Value States
if use_cache:
past_key_values = output.past_key_values
past_sequence_length = output.sequences.shape[-1] - 1
self._check_past_key_values_for_generate(
internal_batch_size,
past_key_values,
seq_length=past_sequence_length,
config=config,
)
# overwrite because BLIP2 cannot generate only from input ids, and requires pixel values in all cases to be present
@pytest.mark.generate
def test_left_padding_compatibility(self):
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding
# - The model must have generative capabilities
if len(self.all_generative_model_classes) == 0:
self.skipTest(reason="No generative architecture available for this model.")
# - The model must support padding
if not self.has_attentions:
self.skipTest(reason="This model doesn't support padding.")
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _ = self.prepare_config_and_inputs_for_generate()
if config.is_encoder_decoder:
continue
else:
decoder_only_classes.append(model_class)
if len(decoder_only_classes) == 0:
self.skipTest(reason="No decoder-only architecture available for this model.")
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
# added support for it yet. We skip these models for now.
has_encoder_attributes = any(
attr_name
for attr_name in config.to_dict().keys()
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
)
if has_encoder_attributes:
self.skipTest(
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
)
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict.get("attention_mask")
pixel_values = inputs_dict["pixel_values"]
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(**model_kwargs, pixel_values=pixel_values).logits[:, -1, :]
# They should result in very similar logits
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
@unittest.skip("BLIP2 cannot generate only from input ids, and requires pixel values in all cases to be present")
@parameterized.expand([("greedy", 1), ("beam search", 2)])
def test_generate_from_inputs_embeds(self, _, num_beams):
pass
# this class is based on `T5ModelTester` found in tests/models/t5/test_modeling_t5.py
class Blip2TextModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=12,
encoder_seq_length=7,
decoder_seq_length=9,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
lm_labels = None
if self.use_labels:
lm_labels = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
config = self.get_config()
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
)
def get_config(self):
return CONFIG_MAPPING["t5"](
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
)
# this model tester uses an encoder-decoder language model (T5)
class Blip2ModelTester:
def __init__(
self, parent, vision_kwargs=None, qformer_kwargs=None, text_kwargs=None, is_training=True, num_query_tokens=10
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = Blip2TextModelTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
(
_,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
lm_labels,
) = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, lm_labels
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, pixel_values, decoder_input_ids, decoder_attention_mask, labels
):
model = Blip2ForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
self.parent.assertEqual(
result.logits.shape,
(
self.vision_model_tester.batch_size,
self.text_model_tester.seq_length,
self.text_model_tester.vocab_size,
),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
attention_mask,
pixel_values,
decoder_input_ids,
decoder_attention_mask,
labels,
) = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return config, inputs_dict
@require_torch
class Blip2ModelTest(ModelTesterMixin, PipelineTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForConditionalGeneration, Blip2Model) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": Blip2Model,
"image-to-text": Blip2ForConditionalGeneration,
"visual-question-answering": Blip2ForConditionalGeneration,
"image-text-to-text": Blip2ForConditionalGeneration,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = True
_is_composite = True
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "VisualQuestionAnsweringPipelineTests":
# Get `RuntimeError: "LayerNormKernelImpl" not implemented for 'Half'`.
return True
return False
def setUp(self):
self.model_tester = Blip2ModelTester(self)
common_properties = ["image_token_index", "num_query_tokens", "image_text_hidden_size"]
self.config_tester = ConfigTester(
self, config_class=Blip2Config, has_text_modality=False, common_properties=common_properties
)
def test_config(self):
self.config_tester.run_common_tests()
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
def _create_and_check_torchscript(self, config, inputs_dict):
# overwrite because BLIP requires ipnut ids and pixel values as input
if not self.test_torchscript:
self.skipTest(reason="test_torchscript is set to `False`")
configs_no_init = _config_zero_init(config) # To be sure we have no Nan
configs_no_init.torchscript = True
for model_class in self.all_model_classes:
for attn_implementation in ["eager", "sdpa"]:
if attn_implementation == "sdpa" and (not model_class._supports_sdpa or not is_torch_sdpa_available()):
continue
configs_no_init._attn_implementation = attn_implementation
model = model_class(config=configs_no_init)
model.to(torch_device)
model.eval()
inputs = self._prepare_for_class(inputs_dict, model_class)
main_input_name = model_class.main_input_name
try:
if model.config.is_encoder_decoder:
model.config.use_cache = False # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
attention_mask = inputs["attention_mask"]
decoder_input_ids = inputs["decoder_input_ids"]
decoder_attention_mask = inputs["decoder_attention_mask"]
model(main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
traced_model = torch.jit.trace(
model, (main_input, input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
)
else:
main_input = inputs[main_input_name]
input_ids = inputs["input_ids"]
if model.config._attn_implementation == "sdpa":
trace_input = {main_input_name: main_input, "input_ids": input_ids}
if "attention_mask" in inputs:
trace_input["attention_mask"] = inputs["attention_mask"]
else:
self.skipTest(reason="testing SDPA without attention_mask is not supported")
model(main_input, attention_mask=inputs["attention_mask"])
# example_kwarg_inputs was introduced in torch==2.0, but it is fine here since SDPA has a requirement on torch>=2.1.
traced_model = torch.jit.trace(model, example_kwarg_inputs=trace_input)
else:
model(main_input, input_ids)
traced_model = torch.jit.trace(model, (main_input, input_ids))
except RuntimeError:
self.fail("Couldn't trace module.")
with tempfile.TemporaryDirectory() as tmp_dir_name:
pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
try:
torch.jit.save(traced_model, pt_file_name)
except Exception:
self.fail("Couldn't save module.")
try:
loaded_model = torch.jit.load(pt_file_name)
except Exception:
self.fail("Couldn't load module.")
model.to(torch_device)
model.eval()
loaded_model.to(torch_device)
loaded_model.eval()
model_state_dict = model.state_dict()
loaded_model_state_dict = loaded_model.state_dict()
non_persistent_buffers = {}
for key in loaded_model_state_dict.keys():
if key not in model_state_dict.keys():
non_persistent_buffers[key] = loaded_model_state_dict[key]
loaded_model_state_dict = {
key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
}
self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
model_buffers = list(model.buffers())
for non_persistent_buffer in non_persistent_buffers.values():
found_buffer = False
for i, model_buffer in enumerate(model_buffers):
if torch.equal(non_persistent_buffer, model_buffer):
found_buffer = True
break
self.assertTrue(found_buffer)
model_buffers.pop(i)
models_equal = True
for layer_name, p1 in model_state_dict.items():
if layer_name in loaded_model_state_dict:
p2 = loaded_model_state_dict[layer_name]
if p1.data.ne(p2.data).sum() > 0:
models_equal = False
self.assertTrue(models_equal)
# Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
# (Even with this call, there are still memory leak by ~0.04MB)
self.clear_torch_jit_class_registry()
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base Blip2Model")
def test_save_load_fast_init_to_base(self):
pass
@unittest.skip(reason="Does not work on the tiny model as we keep hitting edge cases.")
def test_cpu_offload(self):
pass
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
text_attn = "sdpa" if model.language_model._supports_sdpa else "eager"
vision_attn = "sdpa" if model.vision_model._supports_sdpa else "eager"
qformer_attn = "sdpa" if model.qformer._supports_sdpa else "eager"
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == text_attn)
self.assertTrue(model.vision_model.config._attn_implementation == vision_attn)
self.assertTrue(model.qformer.config._attn_implementation == qformer_attn)
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
has_sdpa = True
break
if not has_sdpa and any(
module_attn == "sdpa" for module_attn in [text_attn, vision_attn, qformer_attn]
):
raise ValueError("The SDPA model should have SDPA attention layers")
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-opt-2.7b"
model = Blip2ForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
def test_get_text_features(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
inputs_dict = {
"input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
"attention_mask": torch.LongTensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]).to(torch_device),
"decoder_input_ids": torch.LongTensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]).to(torch_device),
}
model = Blip2Model(config).to(torch_device)
model.eval()
text_features = model.get_text_features(**inputs_dict)
self.assertEqual(text_features[0].shape, (1, 10, config.text_config.vocab_size))
def test_get_image_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
image_features = model.get_image_features(**inputs_dict)
self.assertEqual(
image_features[0].shape,
(
self.model_tester.vision_model_tester.batch_size,
self.model_tester.vision_model_tester.seq_length,
config.vision_config.hidden_size,
),
)
def test_get_qformer_features(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
keys_to_pop = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
for key in keys_to_pop:
inputs_dict.pop(key)
model = Blip2Model(config).to(torch_device)
model.eval()
qformer_features = model.get_qformer_features(**inputs_dict)
self.assertEqual(
qformer_features[0].shape,
(self.model_tester.vision_model_tester.batch_size, 10, config.vision_config.hidden_size),
)
# override from common to deal with nested configurations (`vision_config`, `text_config` and `qformer_config`)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for key in ["vision_config", "qformer_config", "text_config"]:
setattr(configs_no_init, key, _config_zero_init(getattr(configs_no_init, key)))
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
class Blip2TextModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
}
return config, inputs_dict
def create_and_check_model(self, config, input_ids, attention_mask):
model = Blip2TextModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(input_ids, attention_mask=attention_mask, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.vision_model_tester.batch_size, input_ids.shape[1], self.qformer_model_tester.hidden_size),
)
self.parent.assertEqual(
result.text_embeds.shape,
(
self.vision_model_tester.batch_size,
input_ids.shape[1],
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
input_ids,
attention_mask=attention_mask,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.text_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2TextModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2TextModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection does not have input/output embeddings")
def test_model_common_attributes(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2TextModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["input_ids", "attention_mask", "position_ids"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_accelerator
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2TextModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "text_projection"))
_, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
self.assertEqual(
outputs.text_embeds.shape,
(
self.model_tester.qformer_model_tester.batch_size,
input_ids.shape[1],
model.config.image_text_hidden_size,
),
)
class Blip2VisionModelWithProjectionTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.num_hidden_layers = self.vision_model_tester.num_hidden_layers
self.num_attention_heads = self.vision_model_tester.num_attention_heads
self.seq_length = self.vision_model_tester.seq_length
self.hidden_size = self.vision_model_tester.hidden_size
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, pixel_values
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
def create_and_check_model(self, config, pixel_values):
model = Blip2VisionModelWithProjection(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values, output_attentions=True, output_hidden_states=True)
self.parent.assertEqual(
result.last_hidden_state.shape,
(
self.vision_model_tester.batch_size,
self.vision_model_tester.seq_length,
self.qformer_model_tester.hidden_size,
),
)
self.parent.assertEqual(
result.image_embeds.shape,
(
self.vision_model_tester.batch_size,
config.vision_config.hidden_size,
config.image_text_hidden_size,
),
)
with torch.no_grad():
result2 = model(
pixel_values,
return_dict=not config.use_return_dict,
output_attentions=True,
output_hidden_states=True,
)
self.parent.assertTrue(torch.allclose(result.image_embeds, result2[0]))
self.parent.assertTrue(torch.allclose(result.last_hidden_state, result2[1]))
self.parent.assertTrue(torch.allclose(result.hidden_states[0], result2[2][0]))
self.parent.assertTrue(torch.allclose(result.hidden_states[1], result2[2][1]))
self.parent.assertTrue(torch.allclose(result.attentions[0], result2[3][0]))
self.parent.assertTrue(torch.allclose(result.attentions[1], result2[3][1]))
@require_torch
class Blip2VisionModelWithProjectionTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2VisionModelWithProjection,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_head_masking = False
test_resize_embeddings = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2VisionModelWithProjectionTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
def test_model_common_attributes(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
@unittest.skip(reason="Blip2VisionModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="Blip2VisionModelWithProjection has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
@slow
@require_torch_gpu
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2VisionModelWithProjection.from_pretrained(model_name)
self.assertIsNotNone(model)
self.assertTrue(hasattr(model, "vision_projection"))
_, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(pixel_values=pixel_values)
self.assertEqual(
outputs.image_embeds.shape,
(
self.model_tester.vision_model_tester.batch_size,
model.config.num_query_tokens,
model.config.image_text_hidden_size,
),
)
class Blip2TextRetrievalModelTester:
def __init__(self, parent, vision_kwargs=None, qformer_kwargs=None, is_training=True):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {"use_qformer_text_input": True}
self.parent = parent
self.vision_model_tester = Blip2VisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = Blip2QFormerModelTester(parent, **qformer_kwargs)
self.is_training = is_training
self.batch_size = self.vision_model_tester.batch_size # need bs for batching_equivalence test
def get_config(self):
return Blip2Config.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
)
def prepare_config_and_inputs(self):
_, input_ids, attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
config = self.get_config()
return config, input_ids, attention_mask, pixel_values
def create_and_check_model(self, config, input_ids, attention_mask, pixel_values):
model = Blip2ForImageTextRetrieval(config).to(torch_device).eval()
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask, use_image_text_matching_head=True)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, 2),
)
with torch.no_grad():
result = model(pixel_values, input_ids, attention_mask)
self.parent.assertEqual(
result.logits_per_image.shape,
(self.vision_model_tester.batch_size, self.qformer_model_tester.batch_size),
)
self.parent.assertEqual(
result.logits_per_text.shape, (self.qformer_model_tester.batch_size, self.vision_model_tester.batch_size)
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"pixel_values": pixel_values,
}
return config, inputs_dict
@require_torch
class Blip2TextRetrievalModelTest(ModelTesterMixin, unittest.TestCase):
all_model_classes = (Blip2ForImageTextRetrieval,) if is_torch_available() else ()
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
def setUp(self):
self.model_tester = Blip2TextRetrievalModelTester(self)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="Inputs_embeds is tested in individual model tests")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Blip2ForImageTextRetrieval does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="Blip2Model does not have input/output embeddings")
def test_model_common_attributes(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values", "input_ids", "attention_mask"]
expected_arg_names.extend(
["use_image_text_matching_head"] if "use_image_text_matching_head" in arg_names else []
)
self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
# Save Blip2Config and check if we can load Blip2VisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = Blip2VisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save Blip2Config and check if we can load Blip2QFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = Blip2QFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
@require_torch_gpu
def test_model_from_pretrained(self):
model_name = "Salesforce/blip2-itm-vit-g"
model = Blip2ForImageTextRetrieval.from_pretrained(model_name)
self.assertIsNotNone(model)
_, input_ids, attention_mask, pixel_values = self.model_tester.prepare_config_and_inputs()
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
use_image_text_matching_head=True,
)
self.assertEqual(outputs.logits_per_image.shape, (self.model_tester.qformer_model_tester.batch_size, 2))
with torch.no_grad():
outputs = model(
pixel_values=pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
)
self.assertEqual(
outputs.logits_per_image.shape,
(self.model_tester.vision_model_tester.batch_size, self.model_tester.qformer_model_tester.batch_size),
)
@unittest.skip(reason="Training is not yet supported")
def test_training(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(reason="Training is not yet supported")
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad:
# check if `logit_scale` is initilized as per the original implementation
if name == "logit_scale":
self.assertAlmostEqual(
param.data.item(),
np.log(1 / 0.07),
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
elif name == "temp":
self.assertAlmostEqual(
param.data.item(),
0.07,
delta=1e-3,
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
else:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class Blip2ModelIntegrationTest(unittest.TestCase):
def test_inference_opt(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
# max_length for BLIP includes prompt length from now on, use max_new_tokens
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 45641, 35, 61, 343, 16, 42, 116, 31652, 35, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(generated_text, "Question: which city is this? Answer: it's not a city, it's a beach")
def test_inference_interpolate_pos_encoding(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 8, 2335, 15, 5, 4105, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(generated_text, "a woman and dog on the beach")
def test_inference_opt_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
# Test output (in this case, slightly different from greedy search)
expected_ids = [50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 50265, 2, 102, 693, 2828, 15, 5, 4105, 19, 69, 2335, 50118] # fmt: skip
self.assertEqual(predictions[0].tolist(), expected_ids)
self.assertEqual(predictions[1].tolist(), expected_ids)
def test_inference_t5(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 3, 7, 152, 67, 839, 1])
self.assertEqual(generated_text, "san diego")
def test_inference_t5_batched_beam_search(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16
).to(torch_device)
# prepare image
image = prepare_img()
inputs = processor(images=[image, image], return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, num_beams=2)
# Test output (in this case, slightly different from greedy search)
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual(predictions[1].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
@require_torch_multi_accelerator
def test_inference_opt_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16, device_map="balanced"
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [2, 102, 693, 2828, 15, 5, 4105, 19, 10, 2335, 50118])
self.assertEqual("a woman sitting on the beach with a dog", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(0, dtype=torch.float16)
predictions = model.generate(**inputs, max_new_tokens=11)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[2, 45641, 35, 61, 343, 16, 42, 116, 31652, 35, 24, 18, 45, 10, 343, 6, 24, 18, 10, 4105, 50118],
)
self.assertEqual(generated_text, "Question: which city is this? Answer: it's not a city, it's a beach")
@require_torch_multi_accelerator
def test_inference_t5_multi_accelerator(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-flan-t5-xl")
device_map = device_map = {
"query_tokens": 0,
"vision_model": 0,
"language_model": 1,
"language_projection": 0,
"qformer": 0,
}
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-flan-t5-xl", torch_dtype=torch.float16, device_map=device_map
)
# prepare image
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(predictions[0].tolist(), [0, 2335, 1556, 28, 1782, 30, 8, 2608, 1])
self.assertEqual("woman playing with dog on the beach", generated_text)
# image and context
prompt = "Question: which city is this? Answer:"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(f"{torch_device}:0", dtype=torch.float16)
predictions = model.generate(**inputs)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Test output
self.assertEqual(
predictions[0].tolist(),
[0, 3, 7, 152, 67, 839, 1],
)
self.assertEqual(generated_text, "san diego")
def test_expansion_in_processing(self):
processor = Blip2Processor.from_pretrained("Salesforce/blip2-opt-2.7b")
model = Blip2ForConditionalGeneration.from_pretrained(
"Salesforce/blip2-opt-2.7b", torch_dtype=torch.float16
).to(torch_device)
image = prepare_img()
prompt = "Question: which city is this? Answer:"
# Make sure we will go the legacy path by setting these args to None
processor.num_query_tokens = None
model.config.image_token_index = None
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Add args to the config to trigger new logic when inputs are expanded in processing file
processor.num_query_tokens = model.config.num_query_tokens
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
model.config.image_token_index = len(processor.tokenizer) - 1
model.resize_token_embeddings(processor.tokenizer.vocab_size, pad_to_multiple_of=64)
# Generate again with new inputs
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
self.assertTrue(generated_text_expanded == generated_text)
@require_torch_accelerator
def test_inference_itm(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0238, 0.9762]])
torch.testing.assert_close(torch.nn.Softmax()(out_itm[0].cpu()), expected_scores, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(out[0].cpu(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3)
@require_torch_accelerator
@require_torch_fp16
def test_inference_itm_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForImageTextRetrieval.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
text = "A woman and her dog sitting in a beach"
inputs = processor(images=image, text=text, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out_itm = model(**inputs, use_image_text_matching_head=True)
out = model(**inputs)
# verify
expected_scores = torch.Tensor([[0.0239, 0.9761]])
torch.testing.assert_close(torch.nn.Softmax()(out_itm[0].cpu().float()), expected_scores, rtol=1e-3, atol=1e-3)
torch.testing.assert_close(out[0].cpu().float(), torch.Tensor([[0.4406]]), rtol=1e-3, atol=1e-3)
@require_torch_accelerator
@require_torch_fp16
def test_inference_vision_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2VisionModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
image = prepare_img()
inputs = processor(images=image, return_tensors="pt").to(torch_device, dtype=torch.float16)
# forward pass
out = model(**inputs)
# verify
expected_image_embeds = [
-0.093994140625,
-0.075927734375,
0.031890869140625,
0.053009033203125,
0.0352783203125,
-0.01190185546875,
]
self.assertTrue(np.allclose(out.image_embeds[0][0][:6].tolist(), expected_image_embeds, atol=1e-3))
@require_torch_accelerator
@require_torch_fp16
def test_inference_text_with_projection_fp16(self):
model_name = "Salesforce/blip2-itm-vit-g"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2TextModelWithProjection.from_pretrained(model_name, torch_dtype=torch.float16).to(torch_device)
inputs = processor(text="a woman sitting on the beach with a dog", padding=True, return_tensors="pt").to(
torch_device
)
# forward pass
out = model(**inputs)
# verify
expected_text_embeds = [
-0.1082763671875,
0.053192138671875,
-0.02825927734375,
0.0169830322265625,
0.08648681640625,
-0.04656982421875,
]
self.assertTrue(np.allclose(out.text_embeds[0][0][:6].tolist(), expected_text_embeds, atol=1e-3))
| transformers/tests/models/blip_2/test_modeling_blip_2.py/0 | {
"file_path": "transformers/tests/models/blip_2/test_modeling_blip_2.py",
"repo_id": "transformers",
"token_count": 44768
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class TFCamembertModelIntegrationTest(unittest.TestCase):
@slow
def test_output_embeds_base_model(self):
model = TFCamembertModel.from_pretrained("jplu/tf-camembert-base")
input_ids = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 25543, 110, 83, 6]],
dtype=tf.int32,
) # J'aime le camembert !"
output = model(input_ids)["last_hidden_state"]
expected_shape = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape, expected_shape)
# compare the actual values for a slice.
expected_slice = tf.convert_to_tensor(
[[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]],
dtype=tf.float32,
)
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
| transformers/tests/models/camembert/test_modeling_tf_camembert.py/0 | {
"file_path": "transformers/tests/models/camembert/test_modeling_tf_camembert.py",
"repo_id": "transformers",
"token_count": 783
} |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import ClapFeatureExtractor, ClapProcessor, RobertaTokenizer, RobertaTokenizerFast
from transformers.testing_utils import require_sentencepiece, require_torchaudio
from .test_feature_extraction_clap import floats_list
@require_torchaudio
@require_sentencepiece
class ClapProcessorTest(unittest.TestCase):
def setUp(self):
self.checkpoint = "laion/clap-htsat-unfused"
self.tmpdirname = tempfile.mkdtemp()
def get_tokenizer(self, **kwargs):
return RobertaTokenizer.from_pretrained(self.checkpoint, **kwargs)
def get_feature_extractor(self, **kwargs):
return ClapFeatureExtractor.from_pretrained(self.checkpoint, **kwargs)
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def test_save_load_pretrained_default(self):
tokenizer = self.get_tokenizer()
feature_extractor = self.get_feature_extractor()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
processor.save_pretrained(self.tmpdirname)
processor = ClapProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor)
def test_save_load_pretrained_additional_features(self):
processor = ClapProcessor(tokenizer=self.get_tokenizer(), feature_extractor=self.get_feature_extractor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
feature_extractor_add_kwargs = self.get_feature_extractor(do_normalize=False, padding_value=1.0)
processor = ClapProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, RobertaTokenizerFast)
self.assertEqual(processor.feature_extractor.to_json_string(), feature_extractor_add_kwargs.to_json_string())
self.assertIsInstance(processor.feature_extractor, ClapFeatureExtractor)
def test_feature_extractor(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
raw_speech = floats_list((3, 1000))
input_feat_extract = feature_extractor(raw_speech, return_tensors="np")
input_processor = processor(audios=raw_speech, return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
input_str = "This is a test string"
encoded_processor = processor(text=input_str)
encoded_tok = tokenizer(input_str)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_tokenizer_decode(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
feature_extractor = self.get_feature_extractor()
tokenizer = self.get_tokenizer()
processor = ClapProcessor(tokenizer=tokenizer, feature_extractor=feature_extractor)
self.assertListEqual(
processor.model_input_names[2:],
feature_extractor.model_input_names,
msg="`processor` and `feature_extractor` model input names do not match",
)
| transformers/tests/models/clap/test_processor_clap.py/0 | {
"file_path": "transformers/tests/models/clap/test_processor_clap.py",
"repo_id": "transformers",
"token_count": 1895
} |
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import cleanup, require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class CTRLModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_token_type_ids=True,
use_input_mask=True,
use_labels=True,
use_mc_token_ids=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_token_type_ids = use_token_type_ids
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.use_mc_token_ids = use_mc_token_ids
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.pad_token_id = self.vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
mc_token_ids = None
if self.use_mc_token_ids:
mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def get_config(self):
return CTRLConfig(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
dff=self.intermediate_size,
# hidden_act=self.hidden_act,
# hidden_dropout_prob=self.hidden_dropout_prob,
# attention_probs_dropout_prob=self.attention_probs_dropout_prob,
n_positions=self.max_position_embeddings,
# type_vocab_size=self.type_vocab_size,
# initializer_range=self.initializer_range,
pad_token_id=self.pad_token_id,
)
def create_and_check_ctrl_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLModel(config=config)
model.to(torch_device)
model.eval()
model(input_ids, token_type_ids=token_type_ids, head_mask=head_mask)
model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(len(result.past_key_values), config.n_layer)
def create_and_check_lm_head_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
model = CTRLLMHeadModel(config)
model.to(torch_device)
model.eval()
result = model(input_ids, token_type_ids=token_type_ids, labels=input_ids)
self.parent.assertEqual(result.loss.shape, ())
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask}
return config, inputs_dict
def create_and_check_ctrl_for_sequence_classification(self, config, input_ids, head_mask, token_type_ids, *args):
config.num_labels = self.num_labels
model = CTRLForSequenceClassification(config)
model.to(torch_device)
model.eval()
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
result = model(input_ids, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
@require_torch
class CTRLModelTest(ModelTesterMixin, GenerationTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
all_generative_model_classes = (CTRLLMHeadModel,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": CTRLModel,
"text-classification": CTRLForSequenceClassification,
"text-generation": CTRLLMHeadModel,
"zero-shot": CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
test_pruning = True
test_resize_embeddings = False
test_head_masking = False
# TODO: Fix the failed tests
def is_pipeline_test_to_skip(
self,
pipeline_test_case_name,
config_class,
model_architecture,
tokenizer_name,
image_processor_name,
feature_extractor_name,
processor_name,
):
if pipeline_test_case_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def setUp(self):
self.model_tester = CTRLModelTester(self)
self.config_tester = ConfigTester(self, config_class=CTRLConfig, n_embd=37)
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
cleanup(torch_device)
def test_config(self):
self.config_tester.run_common_tests()
def test_ctrl_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*config_and_inputs)
def test_ctrl_lm_head_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/ctrl"
model = CTRLModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_torch
class CTRLModelLanguageGenerationTest(unittest.TestCase):
def tearDown(self):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
cleanup(torch_device, gc_collect=True)
@slow
def test_lm_generate_ctrl(self):
model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl")
model.to(torch_device)
input_ids = torch.tensor(
[[11859, 0, 1611, 8]], dtype=torch.long, device=torch_device
) # Legal the president is
expected_output_ids = [
11859,
0,
1611,
8,
5,
150,
26449,
2,
19,
348,
469,
3,
2595,
48,
20740,
246533,
246533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
output_ids = model.generate(input_ids, do_sample=False)
self.assertListEqual(output_ids[0].tolist(), expected_output_ids)
| transformers/tests/models/ctrl/test_modeling_ctrl.py/0 | {
"file_path": "transformers/tests/models/ctrl/test_modeling_ctrl.py",
"repo_id": "transformers",
"token_count": 4789
} |
# coding=utf-8
# Copyright 2021 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_image_inputs
if is_vision_available():
from transformers import DeiTImageProcessor
if is_torchvision_available():
from transformers import DeiTImageProcessorFast
class DeiTImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
image_size=18,
min_resolution=30,
max_resolution=400,
do_resize=True,
size=None,
do_center_crop=True,
crop_size=None,
do_normalize=True,
image_mean=[0.5, 0.5, 0.5],
image_std=[0.5, 0.5, 0.5],
):
size = size if size is not None else {"height": 20, "width": 20}
crop_size = crop_size if crop_size is not None else {"height": 18, "width": 18}
self.parent = parent
self.batch_size = batch_size
self.num_channels = num_channels
self.image_size = image_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
def expected_output_image_shape(self, images):
return self.num_channels, self.crop_size["height"], self.crop_size["width"]
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class DeiTImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = DeiTImageProcessor if is_vision_available() else None
fast_image_processing_class = DeiTImageProcessorFast if is_torchvision_available() else None
test_cast_dtype = True
def setUp(self):
super().setUp()
self.image_processor_tester = DeiTImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "center_crop"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"height": 20, "width": 20})
self.assertEqual(image_processor.crop_size, {"height": 18, "width": 18})
image_processor = image_processing_class.from_dict(self.image_processor_dict, size=42, crop_size=84)
self.assertEqual(image_processor.size, {"height": 42, "width": 42})
self.assertEqual(image_processor.crop_size, {"height": 84, "width": 84})
| transformers/tests/models/deit/test_image_processing_deit.py/0 | {
"file_path": "transformers/tests/models/deit/test_image_processing_deit.py",
"repo_id": "transformers",
"token_count": 1992
} |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch Dinov2WithRegisters model."""
import unittest
from transformers import Dinov2WithRegistersConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
Dinov2WithRegistersBackbone,
Dinov2WithRegistersForImageClassification,
Dinov2WithRegistersModel,
)
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class Dinov2WithRegistersModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
type_sequence_label_size=10,
initializer_range=0.02,
num_register_tokens=2,
mask_ratio=0.5,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.use_labels = use_labels
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_register_tokens = num_register_tokens
self.scope = scope
# in DINOv2 with Registers, the seq length equals the number of patches + 1 + num_register_tokens (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1 + self.num_register_tokens
self.mask_ratio = mask_ratio
self.num_masks = int(mask_ratio * self.seq_length)
self.mask_length = num_patches
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return Dinov2WithRegistersConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
is_decoder=False,
initializer_range=self.initializer_range,
num_register_tokens=self.num_register_tokens,
)
def create_and_check_model(self, config, pixel_values, labels):
model = Dinov2WithRegistersModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_backbone(self, config, pixel_values, labels):
model = Dinov2WithRegistersBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify hidden states
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
expected_size = self.image_size // config.patch_size
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size]
)
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
# verify backbone works with out_features=None
config.out_features = None
model = Dinov2WithRegistersBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, model.channels[0], expected_size, expected_size]
)
# verify channels
self.parent.assertEqual(len(model.channels), 1)
# verify backbone works with apply_layernorm=False and reshape_hidden_states=False
config.apply_layernorm = False
config.reshape_hidden_states = False
model = Dinov2WithRegistersBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(
list(result.feature_maps[0].shape), [self.batch_size, self.seq_length, self.hidden_size]
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.type_sequence_label_size
model = Dinov2WithRegistersForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
# test greyscale images
config.num_channels = 1
model = Dinov2WithRegistersForImageClassification(config)
model.to(torch_device)
model.eval()
pixel_values = floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
result = model(pixel_values)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
pixel_values,
labels,
) = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class Dinov2WithRegistersModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as Dinov2WithRegisters does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
Dinov2WithRegistersModel,
Dinov2WithRegistersForImageClassification,
Dinov2WithRegistersBackbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{
"image-feature-extraction": Dinov2WithRegistersModel,
"image-classification": Dinov2WithRegistersForImageClassification,
}
if is_torch_available()
else {}
)
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = Dinov2WithRegistersModelTester(self)
self.config_tester = ConfigTester(
self, config_class=Dinov2WithRegistersConfig, has_text_modality=False, hidden_size=37
)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
configs_no_init = _config_zero_init(config)
for model_class in self.all_model_classes:
model = model_class(config=configs_no_init)
for name, param in model.named_parameters():
if param.requires_grad and "register_tokens" not in name:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item(),
[0.0, 1.0],
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="Dinov2WithRegisters does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@unittest.skip(reason="Dinov2WithRegisters does not support feedforward chunking yet")
def test_feed_forward_chunking(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "facebook/dinov2-with-registers-base"
model = Dinov2WithRegistersModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class Dinov2WithRegistersModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return (
AutoImageProcessor.from_pretrained("facebook/dinov2-with-registers-base")
if is_vision_available()
else None
)
@slow
def test_inference_no_head(self):
model = Dinov2WithRegistersModel.from_pretrained("facebook/dinov2-with-registers-base").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the last hidden states
# in DINOv2 with Registers, the seq length equals the number of patches + 1 + num_register_tokens (we add 1 for the [CLS] token)
num_patches = (image_processor.crop_size["height"] // model.config.patch_size) ** 2
expected_seq_length = num_patches + 1 + model.config.num_register_tokens
expected_shape = torch.Size((1, expected_seq_length, model.config.hidden_size))
self.assertEqual(outputs.last_hidden_state.shape, expected_shape)
expected_slice = torch.tensor(
[[-0.4636, -1.4582, -0.0274], [-1.4738, -0.8858, 0.3002], [0.0714, -0.2407, -1.5940]],
device=torch_device,
)
torch.testing.assert_close(outputs.last_hidden_state[0, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@require_torch
class Dinov2WithRegistersBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (Dinov2WithRegistersBackbone,) if is_torch_available() else ()
config_class = Dinov2WithRegistersConfig
has_attentions = False
def setUp(self):
self.model_tester = Dinov2WithRegistersModelTester(self)
| transformers/tests/models/dinov2_with_registers/test_modeling_dinov2_with_registers.py/0 | {
"file_path": "transformers/tests/models/dinov2_with_registers/test_modeling_dinov2_with_registers.py",
"repo_id": "transformers",
"token_count": 5854
} |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPT2Config, GPT2Tokenizer, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gpt2.modeling_flax_gpt2 import FlaxGPT2LMHeadModel, FlaxGPT2Model
if is_torch_available():
import torch
class FlaxGPT2ModelTester:
def __init__(
self,
parent,
batch_size=14,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=False,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = None
self.bos_token_id = vocab_size - 1
self.eos_token_id = vocab_size - 1
self.pad_token_id = vocab_size - 1
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
config = GPT2Config(
vocab_size=self.vocab_size,
n_embd=self.hidden_size,
n_layer=self.num_hidden_layers,
n_head=self.num_attention_heads,
n_positions=self.max_position_embeddings,
use_cache=False,
bos_token_id=self.bos_token_id,
eos_token_id=self.eos_token_id,
pad_token_id=self.pad_token_id,
)
return (config, input_ids, input_mask)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask = config_and_inputs
inputs_dict = {"input_ids": input_ids, "attention_mask": attention_mask}
return config, inputs_dict
def prepare_config_and_inputs_for_decoder(self):
config, input_ids, attention_mask = self.prepare_config_and_inputs()
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
def check_use_cache_forward(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
attention_mask = jnp.ones((input_ids.shape[0], max_decoder_length), dtype="i4")
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
attention_mask=attention_mask,
past_key_values=outputs_cache.past_key_values,
position_ids=position_ids,
)
outputs = model(input_ids)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_use_cache_forward_with_attn_mask(self, model_class_name, config, input_ids, attention_mask):
max_decoder_length = 20
model = model_class_name(config)
attention_mask_cache = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]))],
axis=-1,
)
past_key_values = model.init_cache(input_ids.shape[0], max_decoder_length)
position_ids = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1)[None, :], (input_ids.shape[0], input_ids.shape[-1] - 1)
)
outputs_cache = model(
input_ids[:, :-1],
attention_mask=attention_mask_cache,
past_key_values=past_key_values,
position_ids=position_ids,
)
position_ids = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]], dtype="i4")
outputs_cache_next = model(
input_ids[:, -1:],
past_key_values=outputs_cache.past_key_values,
attention_mask=attention_mask_cache,
position_ids=position_ids,
)
outputs = model(input_ids, attention_mask=attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def check_bool_attention_mask_in_generation(self, model_class_name, config, input_ids, attention_mask):
model = model_class_name(config)
output_int_att_mask = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=3,
)
output_bool_att_mask = model.generate(
input_ids=input_ids,
attention_mask=attention_mask.astype(bool),
max_new_tokens=3,
)
self.parent.assertTrue(
(output_bool_att_mask.sequences == output_int_att_mask.sequences).all(),
"Generated response differ between boolean and integer attention mask",
)
@require_flax
class FlaxGPT2ModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
all_model_classes = (FlaxGPT2Model, FlaxGPT2LMHeadModel) if is_flax_available() else ()
all_generative_model_classes = (FlaxGPT2LMHeadModel,) if is_flax_available() else ()
def setUp(self):
self.model_tester = FlaxGPT2ModelTester(self)
def test_use_cache_forward(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(model_class_name, config, input_ids, attention_mask)
def test_use_cache_forward_with_attn_mask(self):
for model_class_name in self.all_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
model_class_name, config, input_ids, attention_mask
)
def test_bool_attention_mask_in_generation(self):
for model_class_name in self.all_generative_model_classes:
config, input_ids, attention_mask = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_bool_attention_mask_in_generation(
model_class_name, config, input_ids, attention_mask
)
@slow
def test_batch_generation(self):
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2", pad_token="</s>", padding_side="left")
inputs = tokenizer(["Hello this is a long string", "Hey"], return_tensors="np", padding=True, truncation=True)
model = FlaxGPT2LMHeadModel.from_pretrained("openai-community/gpt2")
model.do_sample = False
model.config.pad_token_id = model.config.eos_token_id
jit_generate = jax.jit(model.generate)
output_sequences = jit_generate(inputs["input_ids"], attention_mask=inputs["attention_mask"]).sequences
output_string = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)
expected_string = [
"Hello this is a long string of words. I'm going to start with the first one.\n",
"Hey, I'm not sure if I'm going to be able to do",
]
self.assertListEqual(output_string, expected_string)
# overwrite from common since `attention_mask` in combination
# with `causal_mask` behaves slighly differently
@is_pt_flax_cross_test
def test_equivalence_pt_to_flax(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
batch_size, seq_length = pt_inputs["input_ids"].shape
rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
pt_inputs["attention_mask"][batch_idx, :start_index] = 0
pt_inputs["attention_mask"][batch_idx, start_index:] = 1
prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0
prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1
pt_model = pt_model_class(config).eval()
fx_model = model_class(config, dtype=jnp.float32)
fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
fx_model.params = fx_state
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
fx_model_loaded = model_class.from_pretrained(tmpdirname, from_pt=True)
fx_outputs_loaded = fx_model_loaded(**prepared_inputs_dict).to_tuple()
self.assertEqual(
len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
)
for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
self.assert_almost_equals(fx_output_loaded[:, -1], pt_output[:, -1].numpy(), 4e-2)
# overwrite from common since `attention_mask` in combination
# with `causal_mask` behaves slighly differently
@is_pt_flax_cross_test
def test_equivalence_flax_to_pt(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
# prepare inputs
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
pt_inputs = {k: torch.tensor(v.tolist()) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
pt_model_class_name = model_class.__name__[4:] # Skip the "Flax" at the beginning
pt_model_class = getattr(transformers, pt_model_class_name)
pt_model = pt_model_class(config).eval()
fx_model = model_class(config, dtype=jnp.float32)
pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)
batch_size, seq_length = pt_inputs["input_ids"].shape
rnd_start_indices = np.random.randint(0, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
pt_inputs["attention_mask"][batch_idx, :start_index] = 0
pt_inputs["attention_mask"][batch_idx, start_index:] = 1
prepared_inputs_dict["attention_mask"][batch_idx, :start_index] = 0
prepared_inputs_dict["attention_mask"][batch_idx, start_index:] = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
pt_outputs = pt_model(**pt_inputs).to_tuple()
fx_outputs = fx_model(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
for fx_output, pt_output in zip(fx_outputs, pt_outputs):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(tmpdirname)
pt_model_loaded = pt_model_class.from_pretrained(tmpdirname, from_flax=True)
with torch.no_grad():
pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()
self.assertEqual(
len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
)
for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
self.assert_almost_equals(fx_output[:, -1], pt_output[:, -1].numpy(), 4e-2)
@slow
def test_model_from_pretrained(self):
for model_class_name in self.all_model_classes:
model = model_class_name.from_pretrained("openai-community/gpt2", from_pt=True)
outputs = model(np.ones((1, 1)))
self.assertIsNotNone(outputs)
| transformers/tests/models/gpt2/test_modeling_flax_gpt2.py/0 | {
"file_path": "transformers/tests/models/gpt2/test_modeling_flax_gpt2.py",
"repo_id": "transformers",
"token_count": 7414
} |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch InstructBLIP model."""
import inspect
import tempfile
import unittest
import numpy as np
import pytest
import requests
from parameterized import parameterized
from transformers import (
CONFIG_MAPPING,
InstructBlipConfig,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
)
from transformers.testing_utils import (
require_accelerate,
require_bitsandbytes,
require_torch,
require_torch_sdpa,
require_vision,
slow,
torch_device,
)
from transformers.utils import is_torch_available, is_vision_available
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import (
ModelTesterMixin,
floats_tensor,
ids_tensor,
random_attention_mask,
)
if is_torch_available():
import torch
from torch import nn
from transformers import InstructBlipForConditionalGeneration, InstructBlipVisionModel
if is_vision_available():
from PIL import Image
class InstructBlipVisionModelTester:
def __init__(
self,
parent,
batch_size=12,
image_size=30,
patch_size=2,
num_channels=3,
is_training=True,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
initializer_range=1e-10,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.is_training = is_training
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.initializer_range = initializer_range
self.scope = scope
# in case of a vision transformer, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
num_patches = (image_size // patch_size) ** 2
self.seq_length = num_patches + 1
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
config = self.get_config()
return config, pixel_values
def get_config(self):
return InstructBlipVisionConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
initializer_range=self.initializer_range,
)
def create_and_check_model(self, config, pixel_values):
model = InstructBlipVisionModel(config=config)
model.to(torch_device)
model.eval()
with torch.no_grad():
result = model(pixel_values)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
image_size = (self.image_size, self.image_size)
patch_size = (self.patch_size, self.patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class InstructBlipVisionModelTest(ModelTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as InstructBLIP's vision encoder does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (InstructBlipVisionModel,) if is_torch_available() else ()
fx_compatible = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = InstructBlipVisionModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=InstructBlipConfig,
has_text_modality=False,
common_properties=["num_query_tokens", "image_token_index"],
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="InstructBLIP's vision encoder does not use inputs_embeds")
def test_inputs_embeds(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training(self):
pass
@unittest.skip(reason="InstructBlipVisionModel is an internal building block, doesn't support standalone training")
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="InstructBlipVisionModel has no base class and is not available in MODEL_MAPPING")
def test_save_load_fast_init_to_base(self):
pass
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-flan-t5-xl"
model = InstructBlipVisionModel.from_pretrained(model_name)
self.assertIsNotNone(model)
class InstructBlipQFormerModelTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_input_mask=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
projection_dim=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
dropout=0.1,
attention_dropout=0.1,
max_position_embeddings=512,
initializer_range=0.02,
bos_token_id=0,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.dropout = dropout
self.attention_dropout = attention_dropout
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.scope = scope
self.bos_token_id = bos_token_id
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
qformer_input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
qformer_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
if input_mask is not None:
batch_size, seq_length = input_mask.shape
rnd_start_indices = np.random.randint(1, seq_length - 1, size=(batch_size,))
for batch_idx, start_index in enumerate(rnd_start_indices):
input_mask[batch_idx, :start_index] = 1
input_mask[batch_idx, start_index:] = 0
config = self.get_config()
return config, input_ids, input_mask, qformer_input_ids, qformer_attention_mask
def get_config(self):
return InstructBlipQFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
projection_dim=self.projection_dim,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
dropout=self.dropout,
attention_dropout=self.attention_dropout,
max_position_embeddings=self.max_position_embeddings,
initializer_range=self.initializer_range,
bos_token_id=self.bos_token_id,
)
# this class is based on `OPTModelTester` found in tests/models/opt/test_modeling_opt.py
class InstructBlipTextModelDecoderOnlyTester:
def __init__(
self,
parent,
batch_size=12,
seq_length=7,
is_training=True,
use_labels=False,
vocab_size=99,
hidden_size=16,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=4,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=100,
eos_token_id=2,
pad_token_id=1,
bos_token_id=0,
embed_dim=16,
num_labels=3,
word_embed_proj_dim=16,
type_sequence_label_size=2,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.bos_token_id = bos_token_id
self.embed_dim = embed_dim
self.num_labels = num_labels
self.type_sequence_label_size = type_sequence_label_size
self.word_embed_proj_dim = word_embed_proj_dim
self.is_encoder_decoder = False
def prepare_config_and_inputs(self):
config = self.get_config()
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size).clamp(3)
input_ids[:, -1] = self.eos_token_id # Eos Token
attention_mask = input_ids.ne(self.pad_token_id)
return config, input_ids, attention_mask
def get_config(self):
return CONFIG_MAPPING["opt"](
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
ffn_dim=self.intermediate_size,
dropout=self.hidden_dropout_prob,
attention_dropout=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
eos_token_id=self.eos_token_id,
bos_token_id=self.bos_token_id,
pad_token_id=self.pad_token_id,
embed_dim=self.embed_dim,
is_encoder_decoder=False,
word_embed_proj_dim=self.word_embed_proj_dim,
)
# this model tester uses a decoder-only language model (OPT)
class InstructBlipForConditionalGenerationDecoderOnlyModelTester:
def __init__(
self,
parent,
vision_kwargs=None,
qformer_kwargs=None,
text_kwargs=None,
is_training=True,
num_query_tokens=10,
image_token_index=4,
):
if vision_kwargs is None:
vision_kwargs = {}
if qformer_kwargs is None:
qformer_kwargs = {}
if text_kwargs is None:
text_kwargs = {}
self.parent = parent
self.vision_model_tester = InstructBlipVisionModelTester(parent, **vision_kwargs)
self.qformer_model_tester = InstructBlipQFormerModelTester(parent, **qformer_kwargs)
self.text_model_tester = InstructBlipTextModelDecoderOnlyTester(parent, **text_kwargs)
self.batch_size = self.text_model_tester.batch_size # need bs for batching_equivalence test
self.seq_length = self.text_model_tester.seq_length + num_query_tokens # need seq_length for common tests
self.is_training = is_training
self.num_query_tokens = num_query_tokens
self.image_token_index = image_token_index
def prepare_config_and_inputs(self):
_, pixel_values = self.vision_model_tester.prepare_config_and_inputs()
_, _, _, qformer_input_ids, qformer_attention_mask = self.qformer_model_tester.prepare_config_and_inputs()
_, input_ids, attention_mask = self.text_model_tester.prepare_config_and_inputs()
config = self.get_config()
vision_tokens = (
torch.ones((input_ids.shape[0], self.num_query_tokens), device=torch_device, dtype=input_ids.dtype)
* self.image_token_index
)
input_ids[input_ids == self.image_token_index] = self.text_model_tester.pad_token_id
input_ids = torch.cat([vision_tokens, input_ids], dim=-1)
vision_attention_mask = torch.ones_like(vision_tokens)
attention_mask = torch.cat([vision_attention_mask, attention_mask], dim=-1)
return config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
def get_config(self):
return InstructBlipConfig.from_vision_qformer_text_configs(
vision_config=self.vision_model_tester.get_config(),
qformer_config=self.qformer_model_tester.get_config(),
text_config=self.text_model_tester.get_config(),
num_query_tokens=self.num_query_tokens,
image_token_index=self.image_token_index,
)
def create_and_check_for_conditional_generation(
self, config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values
):
model = InstructBlipForConditionalGeneration(config).to(torch_device).eval()
with torch.no_grad():
result = model(
pixel_values,
input_ids=input_ids,
attention_mask=attention_mask,
qformer_input_ids=qformer_input_ids,
qformer_attention_mask=qformer_attention_mask,
)
expected_seq_length = self.num_query_tokens + self.text_model_tester.seq_length
self.parent.assertEqual(
result.logits.shape,
(self.vision_model_tester.batch_size, expected_seq_length, self.text_model_tester.vocab_size),
)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, input_ids, attention_mask, qformer_input_ids, qformer_attention_mask, pixel_values = config_and_inputs
inputs_dict = {
"pixel_values": pixel_values,
"input_ids": input_ids,
"attention_mask": attention_mask,
"qformer_input_ids": qformer_input_ids,
"qformer_attention_mask": qformer_attention_mask,
"labels": input_ids,
}
return config, inputs_dict
@require_torch
class InstructBlipForConditionalGenerationDecoderOnlyTest(ModelTesterMixin, GenerationTesterMixin, unittest.TestCase):
all_model_classes = (InstructBlipForConditionalGeneration,) if is_torch_available() else ()
all_generative_model_classes = (InstructBlipForConditionalGeneration,) if is_torch_available() else ()
pipeline_model_mapping = {"image-text-to-text": InstructBlipForConditionalGeneration}
fx_compatible = False
test_head_masking = False
test_pruning = False
test_resize_embeddings = True
test_attention_outputs = False
test_torchscript = False
_is_composite = True
def setUp(self):
self.model_tester = InstructBlipForConditionalGenerationDecoderOnlyModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=InstructBlipConfig,
has_text_modality=False,
common_properties=["num_query_tokens", "image_token_index"],
)
def test_config(self):
self.config_tester.run_common_tests()
def test_for_conditional_generation(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_conditional_generation(*config_and_inputs)
@unittest.skip(reason="Hidden_states is tested in individual model tests")
def test_hidden_states_output(self):
pass
@unittest.skip(reason="InstructBlipForConditionalGeneration doesn't support inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Tied weights are tested in individual model tests")
def test_tied_weights_keys(self):
pass
@unittest.skip(reason="Retain_grad is tested in individual model tests")
def test_retain_grad_hidden_states_attentions(self):
pass
@unittest.skip(reason="InstructBlipModel does not have input/output embeddings")
def test_model_get_set_embeddings(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_from_base(self):
pass
@unittest.skip(reason="There's no base InstructBlipModel")
def test_save_load_fast_init_to_base(self):
pass
def test_forward_signature(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
signature = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
arg_names = [*signature.parameters.keys()]
expected_arg_names = ["pixel_values"]
self.assertListEqual(arg_names[:1], expected_arg_names)
def test_load_vision_qformer_text_config(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
# Save InstructBlipConfig and check if we can load InstructBlipVisionConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
vision_config = InstructBlipVisionConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.vision_config.to_dict(), vision_config.to_dict())
# Save InstructBlipConfig and check if we can load InstructBlipQFormerConfig from it
with tempfile.TemporaryDirectory() as tmp_dir_name:
config.save_pretrained(tmp_dir_name)
qformer_config = InstructBlipQFormerConfig.from_pretrained(tmp_dir_name)
self.assertDictEqual(config.qformer_config.to_dict(), qformer_config.to_dict())
@slow
def test_model_from_pretrained(self):
model_name = "Salesforce/instructblip-flan-t5-xl"
model = InstructBlipForConditionalGeneration.from_pretrained(model_name)
self.assertIsNotNone(model)
# overwrite because InstructBLIP internally calls LM.generate() with embeds thus it cannot operate in no cache format
def _check_outputs(self, output, config, use_cache=False, num_return_sequences=1, num_beams=1):
use_cache = True # force this to be True in case False is passed
input_batch_size = int(output.sequences.shape[0] / num_return_sequences)
internal_batch_size = (
input_batch_size * num_beams if num_beams > 1 else input_batch_size * num_return_sequences
)
seq_length = getattr(self.model_tester, "seq_length", None)
seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
seq_length = getattr(self.model_tester, "text_seq_length", seq_length)
config = config.text_config if hasattr(config, "text_config") else config
gen_len = (
output.sequences.shape[-1] - 1 if config.is_encoder_decoder else output.sequences.shape[-1] - seq_length
)
# in some models we subsample the sequence length in inner layers
if hasattr(self.model_tester, "get_subsampled_output_lengths"):
seq_length = self.model_tester.get_subsampled_output_lengths(seq_length)
# scores
self._check_scores(internal_batch_size, output.scores, length=gen_len, config=config)
# unprocessed logits
self._check_logits(internal_batch_size, output.logits, config=config)
# Attentions
if self.has_attentions:
if config.is_encoder_decoder:
# encoder
self._check_encoder_attention_for_generate(
output.encoder_attentions, input_batch_size, config, seq_length
)
# decoder
self._check_attentions_for_generate(
internal_batch_size,
output.decoder_attentions,
min_length=1,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
else:
# if use_cache first input is equal to no use_cache, so skip here
attentions = output.attentions if not use_cache else output.attentions[1:]
min_length = seq_length if not use_cache else seq_length + 1
self._check_attentions_for_generate(
internal_batch_size,
attentions=attentions,
min_length=min_length,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
# Hidden States
if config.is_encoder_decoder:
# encoder
self._check_encoder_hidden_states_for_generate(
output.encoder_hidden_states, input_batch_size, config, seq_length
)
# decoder
self._check_hidden_states_for_generate(
internal_batch_size,
output.decoder_hidden_states,
min_length=1,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
else:
# if use_cache first input is equal to no use_cache, so skip here
hidden_states = output.hidden_states if not use_cache else output.hidden_states[1:]
min_length = seq_length if not use_cache else seq_length + 1
self._check_hidden_states_for_generate(
internal_batch_size,
hidden_states,
min_length=min_length,
max_length=output.sequences.shape[-1],
config=config,
use_cache=use_cache,
)
# Past Key Value States
if use_cache:
past_key_values = output.past_key_values
past_sequence_length = output.sequences.shape[-1] - 1
self._check_past_key_values_for_generate(
internal_batch_size,
past_key_values,
seq_length=past_sequence_length,
config=config,
)
# overwrite because InstructBLIP cannot generate only from input ids, and requires `pixel` values and `qformer_input_ids` in all cases to be present
@pytest.mark.generate
def test_left_padding_compatibility(self):
# NOTE: left-padding results in small numerical differences. This is expected.
# See https://github.com/huggingface/transformers/issues/25420#issuecomment-1775317535
# First, filter out models that don't support left padding
# - The model must have generative capabilities
if len(self.all_generative_model_classes) == 0:
self.skipTest(reason="No generative architecture available for this model.")
# - The model must support padding
if not self.has_attentions:
self.skipTest(reason="This model doesn't support padding.")
# - The model must be a decoder-only architecture (encoder-based architectures use right-padding)
decoder_only_classes = []
for model_class in self.all_generative_model_classes:
config, _ = self.prepare_config_and_inputs_for_generate()
if config.is_encoder_decoder:
continue
else:
decoder_only_classes.append(model_class)
if len(decoder_only_classes) == 0:
self.skipTest(reason="No decoder-only architecture available for this model.")
# - Decoder-only architectures derived from encoder-decoder models could support it in theory, but we haven't
# added support for it yet. We skip these models for now.
has_encoder_attributes = any(
attr_name
for attr_name in config.to_dict().keys()
if attr_name.startswith("encoder") and attr_name != "encoder_no_repeat_ngram_size"
)
if has_encoder_attributes:
self.skipTest(
reason="The decoder-only derived from encoder-decoder models are not expected to support left-padding."
)
# Then, test left-padding
def _prepare_model_kwargs(input_ids, attention_mask, signature):
model_kwargs = {"input_ids": input_ids, "attention_mask": attention_mask}
if "position_ids" in signature:
position_ids = torch.cumsum(attention_mask, dim=-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
model_kwargs["position_ids"] = position_ids
if "cache_position" in signature:
cache_position = torch.arange(input_ids.shape[-1], device=torch_device)
model_kwargs["cache_position"] = cache_position
return model_kwargs
for model_class in decoder_only_classes:
config, inputs_dict = self.prepare_config_and_inputs_for_generate()
input_ids = inputs_dict["input_ids"]
attention_mask = inputs_dict.get("attention_mask")
pixel_values = inputs_dict["pixel_values"]
qformer_input_ids = inputs_dict["qformer_input_ids"]
if attention_mask is None:
attention_mask = torch.ones_like(input_ids)
model = model_class(config).to(torch_device).eval()
signature = inspect.signature(model.forward).parameters.keys()
# no cache as some models require special cache classes to be init outside forward
model.generation_config.use_cache = False
# Without padding
model_kwargs = _prepare_model_kwargs(input_ids, attention_mask, signature)
next_logits_wo_padding = model(
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
).logits[:, -1, :]
# With left-padding (length 32)
# can hardcode pad_token to be 0 as we'll do attn masking anyway
pad_token_id = (
config.get_text_config().pad_token_id if config.get_text_config().pad_token_id is not None else 0
)
pad_size = (input_ids.shape[0], 32)
padding = torch.ones(pad_size, dtype=input_ids.dtype, device=torch_device) * pad_token_id
padded_input_ids = torch.cat((padding, input_ids), dim=1)
padded_attention_mask = torch.cat((torch.zeros_like(padding), attention_mask), dim=1)
model_kwargs = _prepare_model_kwargs(padded_input_ids, padded_attention_mask, signature)
next_logits_with_padding = model(
**model_kwargs, pixel_values=pixel_values, qformer_input_ids=qformer_input_ids
).logits[:, -1, :]
# They should result in very similar logits
torch.testing.assert_close(next_logits_wo_padding, next_logits_with_padding, rtol=1e-5, atol=1e-5)
@unittest.skip(
"InstructBLIP cannot generate only from input ids, and requires pixel values in all cases to be present"
)
@parameterized.expand([("greedy", 1), ("beam search", 2)])
def test_generate_from_inputs_embeds(self, _, num_beams):
pass
@require_torch_sdpa
def test_sdpa_can_dispatch_composite_models(self):
"""
Tests if composite models dispatch correctly on SDPA/eager when requested so when loading the model.
This tests only by looking at layer names, as usually SDPA layers are calles "SDPAAttention".
In contrast to the above test, this one checks if the "config._attn_implamentation" is a dict after the model
is loaded, because we manually replicate requested attn implementation on each sub-config when loading.
See https://github.com/huggingface/transformers/pull/32238 for more info
The test tries to cover most general cases of composite models, VLMs with vision and text configs. Any model
that has a different set of sub-configs has to overwrite this test.
"""
if not self.has_attentions:
self.skipTest(reason="Model architecture does not support attentions")
if not self._is_composite:
self.skipTest(f"{self.all_model_classes[0].__name__} does not support SDPA")
for model_class in self.all_model_classes:
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
model = model_class(config)
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
model_sdpa = model_class.from_pretrained(tmpdirname)
model_sdpa = model_sdpa.eval().to(torch_device)
text_attn = "sdpa" if model.language_model._supports_sdpa else "eager"
vision_attn = "sdpa" if model.vision_model._supports_sdpa else "eager"
qformer_attn = "sdpa" if model.qformer._supports_sdpa else "eager"
# `None` as it is the requested one which will be assigned to each sub-config
# Sub-model will dispatch to SDPA if it can (checked below that `SDPA` layers are present)
self.assertTrue(model.language_model.config._attn_implementation == text_attn)
self.assertTrue(model.vision_model.config._attn_implementation == vision_attn)
self.assertTrue(model.qformer.config._attn_implementation == qformer_attn)
model_eager = model_class.from_pretrained(tmpdirname, attn_implementation="eager")
model_eager = model_eager.eval().to(torch_device)
self.assertTrue(model_eager.config._attn_implementation == "eager")
self.assertTrue(model_eager.language_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.vision_model.config._attn_implementation == "eager")
self.assertTrue(model_eager.qformer.config._attn_implementation == "eager")
for name, submodule in model_eager.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
raise ValueError("The eager model should not have SDPA attention layers")
has_sdpa = False
for name, submodule in model_sdpa.named_modules():
class_name = submodule.__class__.__name__
if "SdpaAttention" in class_name or "SdpaSelfAttention" in class_name:
has_sdpa = True
break
if not has_sdpa and any(
module_attn == "sdpa" for module_attn in [text_attn, vision_attn, qformer_attn]
):
raise ValueError("The SDPA model should have SDPA attention layers")
# We will verify our results on an image of cute cats
def prepare_img():
url = "https://huggingface.co/hf-internal-testing/blip-test-image/resolve/main/demo.jpg"
image = Image.open(requests.get(url, stream=True).raw)
return image
@require_vision
@require_torch
@slow
class InstructBlipModelIntegrationTest(unittest.TestCase):
@require_bitsandbytes
@require_accelerate
def test_inference_vicuna_7b(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-vicuna-7b")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-vicuna-7b", load_in_8bit=True, low_cpu_mem_usage=True
)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, torch.float16)
# verify generation
outputs = model.generate(**inputs, max_new_tokens=30)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
expected_outputs = [32001] * 32 + [2, 1724, 338, 22910, 1048, 445, 1967, 29973, 450, 22910, 9565, 310, 445, 1967, 338, 393, 263, 767, 338, 13977, 292, 22095, 373, 278, 1250, 310, 263, 13328, 20134, 29963, 1550, 19500, 373, 263, 19587, 4272, 11952, 29889] # fmt: off
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"What is unusual about this image? The unusual aspect of this image is that a man is ironing clothes on the back of a yellow SUV while driving on a busy city street.",
)
def test_inference_flant5_xl(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
url = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")
prompt = "What is unusual about this image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
for k, v in inputs.items():
if torch.is_floating_point(v):
inputs[k] = v.to(torch.bfloat16)
outputs = model.generate(
**inputs,
do_sample=False,
num_beams=5,
max_length=256,
min_length=1,
top_p=0.9,
repetition_penalty=1.5,
length_penalty=1.0,
temperature=1,
)
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0]
expected_outputs = [0, 37, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 3, 9, 2756, 4459, 6177, 6, 11, 3, 88, 19, 338, 46, 3575, 53, 1476, 12, 743, 112, 2491, 5, 37, 1023, 19, 7225, 788, 12, 8, 685, 24, 34, 1267, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 94, 19, 487, 24, 8, 388, 19, 1119, 12, 1097, 540, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 6, 68, 34, 19, 92, 487, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 3, 13865, 13, 8, 1053, 21, 8, 388, 31, 7, 2874, 6, 34, 19, 964, 24, 3, 88, 19, 1119, 12, 1097, 97, 57, 692, 112, 10428, 30, 8, 223, 13, 8, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 1] # fmt: skip
expected_outputs = [0, 37, 7225, 1023, 9850, 7, 3, 9, 388, 3575, 53, 4954, 30, 8, 223, 13, 3, 9, 4459, 4049, 16, 8, 2214, 13, 3, 9, 3164, 690, 2815, 5, 37, 388, 19, 5119, 3, 9, 4459, 8677, 28, 46, 3575, 53, 1476, 5223, 12, 34, 6, 15495, 24, 3, 88, 19, 692, 112, 293, 10428, 44, 234, 1066, 145, 338, 3, 9, 50, 1106, 3522, 144, 42, 2192, 7919, 31, 7, 5, 37, 1023, 92, 1267, 3, 9, 381, 13, 119, 3203, 16, 8, 2458, 6, 379, 14264, 6, 9256, 7, 6, 11, 11718, 7, 5, 1] # fmt: skip
self.assertEqual(outputs[0].tolist(), expected_outputs)
self.assertEqual(
generated_text,
"The unusual image depicts a man ironing clothes on the back of a yellow van in the middle of a busy city street. The man is wearing a yellow shirt with an ironing board attached to it, suggesting that he is doing his own laundry at home rather than using a laundromat or dry cleaner's. The image also shows a number of other vehicles in the background, including buses, taxis, and motorcycles.",
)
def test_inference_interpolate_pos_encoding(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
processor.image_processor.size = {"height": 500, "width": 500}
image = prepare_img()
prompt = "What's in the image?"
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device)
predictions = model.generate(**inputs, interpolate_pos_encoding=True)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
self.assertEqual(
predictions[0].tolist(), [0, 37, 1023, 753, 3, 9, 2335, 3823, 30, 8, 2608, 28, 3, 9, 1782, 5, 1]
)
self.assertEqual(generated_text, "The image features a woman sitting on the beach with a dog.")
def test_expansion_in_processing(self):
processor = InstructBlipProcessor.from_pretrained("Salesforce/instructblip-flan-t5-xl")
model = InstructBlipForConditionalGeneration.from_pretrained(
"Salesforce/instructblip-flan-t5-xl",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
).to(torch_device)
image = prepare_img()
prompt = "What's in the image?"
# Make sure we will go the legacy path by setting these args to None
processor.num_query_tokens = None
model.config.image_token_index = None
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text = processor.batch_decode(predictions, skip_special_tokens=True)[0].strip()
# Add args to the config to trigger new logic when inputs are expanded in processing file
processor.num_query_tokens = model.config.num_query_tokens
processor.tokenizer.add_special_tokens({"additional_special_tokens": ["<image>"]})
model.config.image_token_index = len(processor.tokenizer) - 2
model.resize_token_embeddings(processor.tokenizer.vocab_size, pad_to_multiple_of=64)
# Generate again with new inputs
inputs = processor(images=image, text=prompt, return_tensors="pt").to(torch_device, dtype=torch.float16)
predictions_expanded = model.generate(**inputs, do_sample=False, max_new_tokens=15)
generated_text_expanded = processor.batch_decode(predictions_expanded, skip_special_tokens=True)[0].strip()
self.assertTrue(generated_text_expanded == generated_text)
| transformers/tests/models/instructblip/test_modeling_instructblip.py/0 | {
"file_path": "transformers/tests/models/instructblip/test_modeling_instructblip.py",
"repo_id": "transformers",
"token_count": 18580
} |
# coding=utf-8
# Copyright 2018 The Microsoft Research Asia LayoutLM Team Authors, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast
from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class LayoutLMTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "microsoft/layoutlm-base-uncased"
tokenizer_class = LayoutLMTokenizer
rust_tokenizer_class = LayoutLMTokenizerFast
test_rust_tokenizer = True
space_between_special_tokens = True
def setUp(self):
super().setUp()
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
def get_tokenizer(self, **kwargs):
return LayoutLMTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "UNwant\u00e9d,running"
output_text = "unwanted, running"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = self.tokenizer_class(self.vocab_file)
tokens = tokenizer.tokenize("UNwant\u00e9d,running")
self.assertListEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
@unittest.skip
def test_special_tokens_as_you_expect(self):
"""If you are training a seq2seq model that expects a decoder_prefix token make sure it is prepended to decoder_input_ids"""
pass
| transformers/tests/models/layoutlm/test_tokenization_layoutlm.py/0 | {
"file_path": "transformers/tests/models/layoutlm/test_tokenization_layoutlm.py",
"repo_id": "transformers",
"token_count": 1090
} |
# coding=utf-8
# Copyright 2022 Google LongT5 Authors and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
import numpy as np
import transformers
from transformers import is_flax_available
from transformers.models.auto import get_values
from transformers.testing_utils import (
is_pt_flax_cross_test,
require_flax,
require_sentencepiece,
require_tokenizers,
slow,
)
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
os.environ["XLA_PYTHON_CLIENT_ALLOCATOR"] = "platform"
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING, FLAX_MODEL_MAPPING, AutoTokenizer, LongT5Config
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.models.longt5.modeling_flax_longt5 import (
FlaxLongT5ForConditionalGeneration,
FlaxLongT5Model,
shift_tokens_right,
)
class FlaxLongT5ModelTester:
def __init__(
self,
parent,
vocab_size=99,
batch_size=13,
encoder_seq_length=7,
decoder_seq_length=9,
local_radius=5,
encoder_attention_type="local",
global_block_size=3,
# For common tests
is_training=True,
use_attention_mask=True,
use_labels=True,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
d_ff=37,
relative_attention_num_buckets=8,
dropout_rate=0.1,
initializer_factor=0.002,
eos_token_id=1,
pad_token_id=0,
decoder_start_token_id=0,
scope=None,
decoder_layers=None,
):
self.parent = parent
self.batch_size = batch_size
self.encoder_seq_length = encoder_seq_length
self.decoder_seq_length = decoder_seq_length
self.local_radius = local_radius
self.block_len = local_radius + 1
self.encoder_attention_type = encoder_attention_type
self.global_block_size = global_block_size
# For common tests
self.seq_length = self.decoder_seq_length
self.is_training = is_training
self.use_attention_mask = use_attention_mask
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.d_ff = d_ff
self.relative_attention_num_buckets = relative_attention_num_buckets
self.dropout_rate = dropout_rate
self.initializer_factor = initializer_factor
self.eos_token_id = eos_token_id
self.pad_token_id = pad_token_id
self.decoder_start_token_id = decoder_start_token_id
self.scope = None
self.decoder_layers = decoder_layers
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.encoder_seq_length], self.vocab_size)
decoder_input_ids = ids_tensor([self.batch_size, self.decoder_seq_length], self.vocab_size)
attention_mask = None
decoder_attention_mask = None
if self.use_attention_mask:
attention_mask = ids_tensor([self.batch_size, self.encoder_seq_length], vocab_size=2)
decoder_attention_mask = ids_tensor([self.batch_size, self.decoder_seq_length], vocab_size=2)
config = LongT5Config(
vocab_size=self.vocab_size,
d_model=self.hidden_size,
d_ff=self.d_ff,
d_kv=self.hidden_size // self.num_attention_heads,
num_layers=self.num_hidden_layers,
num_decoder_layers=self.decoder_layers,
num_heads=self.num_attention_heads,
relative_attention_num_buckets=self.relative_attention_num_buckets,
dropout_rate=self.dropout_rate,
initializer_factor=self.initializer_factor,
eos_token_id=self.eos_token_id,
bos_token_id=self.pad_token_id,
pad_token_id=self.pad_token_id,
decoder_start_token_id=self.decoder_start_token_id,
local_radius=self.local_radius,
encoder_attention_type=self.encoder_attention_type,
global_block_size=self.global_block_size,
)
return (
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
)
def create_and_check_model(
self,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
):
model = FlaxLongT5Model(config=config)
result = model(
input_ids=input_ids,
decoder_input_ids=decoder_input_ids,
attention_mask=attention_mask,
decoder_attention_mask=decoder_attention_mask,
)
result = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
decoder_output = result.last_hidden_state
encoder_output = result.encoder_last_hidden_state
self.parent.assertEqual(encoder_output.shape, (self.batch_size, self.encoder_seq_length, self.hidden_size))
self.parent.assertEqual(decoder_output.shape, (self.batch_size, self.decoder_seq_length, self.hidden_size))
def check_use_cache_forward_with_attn_mask(
self,
model_class_name,
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
):
max_decoder_length = 20
model = model_class_name(config)
encoder_outputs = model.encode(input_ids)
# prevent fully zero'd out attention mask
decoder_attention_mask = jnp.ones_like(decoder_attention_mask)
decoder_attention_mask_cache = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
],
axis=-1,
)
past_key_values = model.init_cache(decoder_input_ids.shape[0], max_decoder_length, encoder_outputs)
outputs_cache = model.decode(
decoder_input_ids[:, :-1],
encoder_outputs,
decoder_attention_mask=decoder_attention_mask_cache,
past_key_values=past_key_values,
)
outputs_cache_next = model.decode(
decoder_input_ids[:, -1:],
encoder_outputs,
past_key_values=outputs_cache.past_key_values,
decoder_attention_mask=decoder_attention_mask_cache,
)
outputs = model.decode(decoder_input_ids, encoder_outputs, decoder_attention_mask=decoder_attention_mask)
diff = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1e-3, msg=f"Max diff is {diff}")
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
decoder_input_ids,
attention_mask,
decoder_attention_mask,
) = config_and_inputs
inputs_dict = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
}
return config, inputs_dict
@require_flax
class FlaxLongT5ModelTest(FlaxModelTesterMixin, FlaxGenerationTesterMixin, unittest.TestCase):
all_model_classes = (FlaxLongT5Model, FlaxLongT5ForConditionalGeneration) if is_flax_available() else ()
all_generative_model_classes = (FlaxLongT5ForConditionalGeneration,) if is_flax_available() else ()
is_encoder_decoder = True
def setUp(self):
self.model_tester = FlaxLongT5ModelTester(self)
self.config_tester = ConfigTester(self, config_class=LongT5Config, d_model=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_model_v1_1(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
# check that gated gelu feed forward and different word embeddings work
config = config_and_inputs[0]
config.tie_word_embeddings = False
config.feed_forward_proj = "gated-gelu"
self.model_tester.create_and_check_model(config, *config_and_inputs[1:])
def test_use_cache_forward_with_attn_mask(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(model_class, *config_and_inputs)
def test_encode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
prepared_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
model = model_class(config)
@jax.jit
def encode_jitted(input_ids, attention_mask=None, **kwargs):
return model.encode(input_ids=input_ids, attention_mask=attention_mask)
with self.subTest("JIT Enabled"):
jitted_outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = encode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_decode(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
model = model_class(config)
encoder_outputs = model.encode(inputs_dict["input_ids"], inputs_dict["attention_mask"])
prepared_inputs_dict = {
"decoder_input_ids": inputs_dict["decoder_input_ids"],
"decoder_attention_mask": inputs_dict["decoder_attention_mask"],
"encoder_outputs": encoder_outputs,
}
@jax.jit
def decode_jitted(decoder_input_ids, decoder_attention_mask, encoder_outputs):
return model.decode(
decoder_input_ids=decoder_input_ids,
decoder_attention_mask=decoder_attention_mask,
encoder_outputs=encoder_outputs,
)
with self.subTest("JIT Enabled"):
jitted_outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
with self.subTest("JIT Disabled"):
with jax.disable_jit():
outputs = decode_jitted(**prepared_inputs_dict).to_tuple()
self.assertEqual(len(outputs), len(jitted_outputs))
for jitted_output, output in zip(jitted_outputs, outputs):
self.assertEqual(jitted_output.shape, output.shape)
def test_shift_right(self):
decoder_start_token_id = 0
pad_token_id = 1
labels = np.arange(2, 102).reshape(5, 20)
labels[:2, 15:] = -100
decoder_input_ids = shift_tokens_right(labels, pad_token_id, decoder_start_token_id)
np_decoder_input_ids = np.array(decoder_input_ids)
padded_slice = np_decoder_input_ids[:2, (15 + 1) :]
self.assertTrue((padded_slice == 1).all())
not_padded_slice = np_decoder_input_ids[2:, 1:]
rolled_labels = np.roll(labels[2:], 1)[:, 1:]
self.assertTrue((not_padded_slice == rolled_labels).all())
self.assertTrue((np_decoder_input_ids[:, 0] == 0).all())
# overwrite since special base model prefix is used
def test_save_load_from_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
def test_save_load_to_base(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_length = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
block_len = getattr(self.model_tester, "block_len", None)
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, block_len, 3 * block_len],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# Question Answering model returns start_logits and end_logits
if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, block_len, 3 * block_len],
)
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_from_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = base_class(config)
base_params = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, base_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
# save pt model
pt_model.save_pretrained(tmpdirname)
head_model = model_class.from_pretrained(tmpdirname, from_pt=True)
base_param_from_head = flatten_dict(unfreeze(head_model.params))
for key in base_param_from_head.keys():
max_diff = (base_params[key] - base_param_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
# overwrite since special base model prefix is used
@is_pt_flax_cross_test
def test_save_load_bf16_to_base_pt(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
base_class = FLAX_MODEL_MAPPING[config.__class__]
for model_class in self.all_model_classes:
if model_class == base_class:
continue
model = model_class(config)
model.params = model.to_bf16(model.params)
base_params_from_head = flatten_dict(unfreeze(model.params))
# convert Flax model to PyTorch model
pt_model_class = getattr(transformers, model_class.__name__[4:]) # Skip the "Flax" at the beginning
pt_model = pt_model_class(config).eval()
pt_model = load_flax_weights_in_pytorch_model(pt_model, model.params)
# check that all base model weights are loaded correctly
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(tmpdirname)
base_model = base_class.from_pretrained(tmpdirname, from_pt=True)
base_params = flatten_dict(unfreeze(base_model.params))
for key in base_params_from_head.keys():
max_diff = (base_params[key] - base_params_from_head[key]).sum().item()
self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
class FlaxLongT5TGlobalModelTest(FlaxLongT5ModelTest):
def setUp(self):
self.model_tester = FlaxLongT5ModelTester(self, encoder_attention_type="transient-global")
self.config_tester = ConfigTester(self, config_class=LongT5Config, d_model=37)
def test_attention_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.return_dict = True
seq_length = getattr(self.model_tester, "seq_length", None)
decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_length)
encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_length)
decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
block_len = getattr(self.model_tester, "block_len", None)
global_block_size = getattr(self.model_tester, "global_block_size", None)
global_seq_len = encoder_seq_length // global_block_size
for model_class in self.all_model_classes:
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = False
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
config.output_attentions = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, block_len, 3 * block_len + global_seq_len],
)
out_len = len(outputs)
if self.is_encoder_decoder:
correct_outlen = 5
# Question Answering model returns start_logits and end_logits
if model_class in get_values(FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING):
correct_outlen += 1 # start_logits and end_logits instead of only 1 output
self.assertEqual(out_len, correct_outlen)
# decoder attentions
decoder_attentions = outputs.decoder_attentions
self.assertIsInstance(decoder_attentions, (list, tuple))
self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
)
# cross attentions
cross_attentions = outputs.cross_attentions
self.assertIsInstance(cross_attentions, (list, tuple))
self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(cross_attentions[0].shape[-3:]),
[
self.model_tester.num_attention_heads,
decoder_seq_length,
encoder_key_length,
],
)
# Check attention is always last and order is fine
inputs_dict["output_attentions"] = True
inputs_dict["output_hidden_states"] = True
model = model_class(config)
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
if hasattr(self.model_tester, "num_hidden_states_types"):
added_hidden_states = self.model_tester.num_hidden_states_types
elif self.is_encoder_decoder:
added_hidden_states = 2
else:
added_hidden_states = 1
self.assertEqual(out_len + added_hidden_states, len(outputs))
self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]),
[self.model_tester.num_attention_heads, block_len, 3 * block_len + global_seq_len],
)
@require_sentencepiece
@require_tokenizers
@require_flax
class FlaxLongT5ModelIntegrationTests(unittest.TestCase):
model_path = "Stancld/longt5-tglobal-large-16384-pubmed-3k_steps"
def expected_summary(self):
return [
"background : coronary artery disease ( cad ) is the emerging cause of morbidity and mortality in"
" developing world . it provides an excellent resolution for visualization of the coronary arteries for"
" catheter - based or operating interventions . although the association of this technique with major"
" complications such as mortality is highly uncommon , it is frequently associated with various cardiac"
" and noncardiac complications . computed tomography coronary angiography is a promising technique for the"
" evaluation of cad noninvasively . it assesses disease within the coronary artery and provides"
" qualitative and quantitative information about nonobstructive atherosclerotic plaque"
]
@slow
def test_summarization(self):
model = FlaxLongT5ForConditionalGeneration.from_pretrained(self.model_path)
tok = AutoTokenizer.from_pretrained(self.model_path)
ARTICLE = """coronary artery disease ( cad ) is the emerging cause of morbidity and mortality in developing world . \n it provides an excellent resolution for visualization of the coronary arteries for catheter - based or operating interventions . \n
although the association of this technique with major complications such as mortality is highly uncommon , it is frequently associated with various cardiac and noncardiac complications . computed tomography ( ct ) coronary angiography is
a promising technique for the evaluation of cad noninvasively . \n it assesses disease within the coronary artery and provides qualitative and quantitative information about nonobstructive atherosclerotic plaque burden within the vessel
wall . \n thus , ct angiography - based disease evaluation may provide clinically more significant information than conventional angiography . the introduction of multi - slice computed tomography ( msct ) technology such as 64-slice , 12
8-slice , 256-slice , and now 320-slice msct has produced a high diagnostic accuracy of ct coronary angiography . \n it has consistently showed to have a very high negative predictive value ( well above 90% ) in ruling out patients with s
ignificant cad defined as coronary luminal stenosis of > 50% . \n the american college of cardiology / american heart association recommends that coronary angiography should be performed before valve surgery in men aged > 40 years , women
aged > 35 years with coronary risk factors and in postmenopausal women . \n the prevalence of cad in patients undergoing valve replacement is 2040% in developed countries . in the previous studies , \n the incidence of angiographically p
roven cad in acquired valvular diseases has been shown to vary widely from 9% to 41% . in aortic stenosis , \n we aimed to report the diagnostic performance of 128-slice ct coronary angiography in 50 patients undergoing for major noncoron
ary cardiac surgery referred for diagnostic invasive coronary angiography to assess the extent and severity of coronary stenosis . \n during january 2013 to december 2014 , we enrolled fifty major noncoronary cardiac surgery patients sche
duled for invasive coronary angiography who fulfilled the following inclusion criteria of age 40 years , having low or intermediate probability of cad , left ventricular ejection fraction ( lvef ) > 35% , and patient giving informed conse
nt for undergoing msct and conventional coronary angiography . \n those having any contraindication for contrast injection , lvef < 35% , high pretest probability of cad , and hemodynamic instability were excluded from the study . \n pati
ents with heart rates of > 70 bpm received ( unless they had known overt heart failure or electrocardiogram ( ecg ) atrioventricular conduction abnormalities ) a single oral dose of 100 mg metoprolol 45 min before the scan . \n patients w
ith heart rates of > 80 bpm received an additional oral dose of metoprolol if not contraindicated . \n all patients were scanned with a 128-slice ct scanner ( siemens , somatom definition as ) equipped with a new feature in msct technolog
y , so - called z - axis flying - focus technology . \n the central 32 detector rows acquire 0.6-mm slices , and the flying - focus spot switches back and forth between 2 z positions between each reading . \n two slices per detector row a
re acquired , which results in a higher oversampling rate in the z - axis , thereby reducing artifacts related to the spiral acquisition and improving spatial resolution down to 0.4 mm . \n a bolus of 6580 ml contrast material ( omnipaque
) was injected through an arm vein at a flow rate of 5 ml / s . \n a bolus tracking technique was used to synchronize the arrival of contrast in the coronary arteries with the initiation of the scan . to monitor the arrival of contrast m
aterial , \n axial scans were obtained at the level of the ascending aorta with a delay of 10 s after the start of the contrast injection . \n the scan was automatically started when a threshold of 150 hounsfield units was reached in a re
gion of interest positioned in the ascending aorta . \n images were reconstructed with ecg gating to obtain optimal , motion - free image quality . \n all scans were performed within 2 weeks of the msct coronary diagnostic angiogram . a s
ingle observer unaware of the multi - slice ct results identified coronary lesion as a single vessel , double vessel , or triple vessel disease . \n all lesion , regardless of size , were included for comparison with ct coronary angiograp
hy . \n lesions were classified as having nonsignificant disease ( luminal irregularities or < 50% stenosis ) or as having significant stenosis . \n stenosis was evaluated in two orthogonal views and classified as significant if the mean
lumen diameter reduction was 50% using a validated quantitative coronary angiography ( qca ) . \n all scans were analyzed independently by a radiologist and a cardiologist who were unaware of the results of conventional coronary angiograp
hy . \n total calcium scores of all patients were calculated with dedicated software and expressed as agatston scores . \n the agatston score is a commonly used scoring method that calculates the total amount of calcium on the basis of th
e number , areas , and peak hounsfield units of the detected calcified lesions . \n all available coronary segments were visually scored for the presence of > 50% considered as significant stenosis . \n maximum intensity projections were
used to identify coronary lesions and ( curved ) multiplanar reconstructions to classify lesions as significant or nonsignificant . \n data were analyzed using statistical system spss version 20 software ( chicago , il , usa ) . \n the di
agnostic performance of ct coronary angiography for the detection of significant lesions in coronary arteries with qca as the standard of reference is presented as sensitivity , specificity , positive and negative predictive values , and
positive and negative likelihood ratios with the corresponding exact 95% of confidence interval ( cis ) . \n comparison between ct and conventional coronary angiography was performed on the two level vessel by vessel ( no or any disease p
er vessel ) , and patient by patient ( no or any disease per patient ) . \n all scans were performed within 2 weeks of the msct coronary diagnostic angiogram . a single observer unaware of the multi - slice ct results identified coronary
lesion as a single vessel , double vessel , or triple vessel disease . \n all lesion , regardless of size , were included for comparison with ct coronary angiography . \n lesions were classified as having nonsignificant disease ( luminal
irregularities or < 50% stenosis ) or as having significant stenosis . \n stenosis was evaluated in two orthogonal views and classified as significant if the mean lumen diameter reduction was 50% using a validated quantitative coronary an
giography ( qca ) . \n all scans were analyzed independently by a radiologist and a cardiologist who were unaware of the results of conventional coronary angiography . \n total calcium scores of all patients were calculated with dedicated
software and expressed as agatston scores . \n the agatston score is a commonly used scoring method that calculates the total amount of calcium on the basis of the number , areas , and peak hounsfield units of the detected calcified lesi
ons . \n all available coronary segments were visually scored for the presence of > 50% considered as significant stenosis . \n maximum intensity projections were used to identify coronary lesions and ( curved ) multiplanar reconstruction
s to classify lesions as significant or nonsignificant . \n data were analyzed using statistical system spss version 20 software ( chicago , il , usa ) . \n the diagnostic performance of ct coronary angiography for the detection of signif
icant lesions in coronary arteries with qca as the standard of reference is presented as sensitivity , specificity , positive and negative predictive values , and positive and negative likelihood ratios with the corresponding exact 95% of
confidence interval ( cis ) . \n comparison between ct and conventional coronary angiography was performed on the two level vessel by vessel ( no or any disease per vessel ) , and patient by patient ( no or any disease per patient ) . \n
in this study , 29 ( 58% ) subjects were female , and 21 ( 42% ) were male showing an average age of 50.36 8.39 years . \n of fifty patients 24 ( 48% ) , 13 ( 26% ) , eight ( 16% ) , and five ( 10% ) underwent mitral valve replacement ,
double valve replacement ( dvr ) , aortic valve replacement , and other surgeries , respectively . \n high distribution of cad risk factors such as hypertension ( 24% ) , smoking ( 22% ) , and dyslipidemia ( 18% ) was observed in the stu
dy group . \n the mean creatinine level was 0.766 0.17 and average dye used in conventional angiography was 48.5 26.6 whereas for ct angiography it was 72.8 6.32 . \n average radiation dose in conventional coronary angiography and msct
coronary angiography was 5.2 msv and 9.2 msv , respectively . \n the majority of the patients had sinus rhythm ( 68% ) , whereas atrial fibrillation was found in 32% of the subjects . \n patients included in the study had low to intermed
iate probability of cad . in this study , three patients had complications after conventional angiography . \n complications were of local site hematoma , acute kidney injury managed conservatively , and acute heart failure . \n a patient
who developed hematoma was obese female patients with body mass index > 30 kg / m . \n the patient suffered from pseudoaneurysm , had hospitalized for 9 days , which leads to increased morbidity and cost of hospital stay . \n the diagnos
tic accuracy of ct coronary angiography was evaluated regarding true positive , true negative values and is presented in table 1 . the overall sensitivity and \n specificity of ct angiography technique was 100% ( 95% ci : 39.76%100% ) and
91.30% ( 95% ci : 79.21%97.58% ) , respectively [ table 2 ] . \n the positive predictive value ( 50% ; 95% ci : 15.70%84.30% ) and negative predictive value ( 100% ; 95% ci : 91.59%100% ) of ct angiography were also fairly high in these
patients . \n recent reports from multiple studies demonstrated that recent - generation msct scanners showed promise for noninvasive detection of coronary stenosis however , until now no studies were found regarding the clinical efficacy
or prognostic value of 128-slice ct coronary angiography versus conventional invasive coronary angiography in the diagnosis of patients planned for major noncoronary surgeries such as dvr , bentall , atrial septal defect closure , etc .
in our study , we reported 8% cad prevalence in patients planned for major noncoronary cardiac surgery . \n we performed conventional and msct coronary angiography in all patients and the results showed that ct coronary angiography with i
nvasive coronary angiography as the reference standard had a considerably high sensitivity ( 100% ) and specificity ( 95.65% ) . \n the health economic model using invasive coronary angiography as the reference standard showed that at a p
retest probability of cad of 70% or lower , ct coronary angiography resulted in lower cost per patient with a true positive diagnosis . at a pretest probability of cad of 70% or higher , invasive coronary angiography was associated with a
lower cost per patient with a true positive diagnosis . in our study population , \n two patients developed local site complications in the form of hematoma and pseudoaneurysm after conventional angiography . \n hence , msct coronary ang
iography will be more favorable in female obese patients with intermediate likelihood of cad . \n hence , msct coronary angiography will be cost - effective in patients of valvular heart diseases . \n however , ct angiography suffers from
a drawback that average amount of dye used in msct coronary angiography were 72.8 6.32 ml which is higher than average amount of dye required for conventional angiography ( 48.6 26.6 ml ) . \n hence , the use of ct coronary angiography
could not be used in patients with known renal dysfunction , where reduction of contrast dye load is highly advocated . \n our results show that 128-slice ct coronary angiography is a reliable technique to detect coronary stenosis in pat
ients planned for noncoronary cardiac surgery . \n although there has been important technological progress in the development of ct coronary angiography , its clinical application remains limited . \n a study wth large numbers of patient
s is required for the recommendation of only ct coronary angiography for the coronary evaluation in major non - cardiac surgeries . \n mehta institute of cardiology and research center ( affiliated to bj medical college , ahmedabad , guja
rat , india ) . \n u.n . mehta institute of cardiology and research center ( affiliated to bj medical college , ahmedabad , gujarat , india ) . \n """
dct = tok(
[ARTICLE],
max_length=1024,
padding="max_length",
truncation=True,
return_tensors="np",
)
hypotheses_batch = model.generate(
**dct,
num_beams=4,
length_penalty=2.0,
max_length=142,
min_length=56,
do_sample=False,
early_stopping=True,
).sequences
decoded = tok.batch_decode(hypotheses_batch, skip_special_tokens=True, clean_up_tokenization_spaces=False)
self.assertListEqual(
self.expected_summary(),
decoded,
)
| transformers/tests/models/longt5/test_modeling_flax_longt5.py/0 | {
"file_path": "transformers/tests/models/longt5/test_modeling_flax_longt5.py",
"repo_id": "transformers",
"token_count": 17644
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch MaskFormer Swin model."""
import collections
import unittest
from typing import Dict, List, Tuple
from transformers import MaskFormerSwinConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device
from transformers.utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MaskFormerSwinBackbone
from transformers.models.maskformer import MaskFormerSwinModel
class MaskFormerSwinModelTester:
def __init__(
self,
parent,
batch_size=13,
image_size=32,
patch_size=2,
num_channels=3,
embed_dim=16,
depths=[1, 2, 1],
num_heads=[2, 2, 4],
window_size=2,
mlp_ratio=2.0,
qkv_bias=True,
hidden_dropout_prob=0.0,
attention_probs_dropout_prob=0.0,
drop_path_rate=0.1,
hidden_act="gelu",
use_absolute_embeddings=False,
patch_norm=True,
initializer_range=0.02,
layer_norm_eps=1e-5,
is_training=True,
scope=None,
use_labels=True,
type_sequence_label_size=10,
encoder_stride=8,
out_features=["stage1", "stage2", "stage3"],
out_indices=[1, 2, 3],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.embed_dim = embed_dim
self.depths = depths
self.num_heads = num_heads
self.window_size = window_size
self.mlp_ratio = mlp_ratio
self.qkv_bias = qkv_bias
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.drop_path_rate = drop_path_rate
self.hidden_act = hidden_act
self.use_absolute_embeddings = use_absolute_embeddings
self.patch_norm = patch_norm
self.layer_norm_eps = layer_norm_eps
self.initializer_range = initializer_range
self.is_training = is_training
self.scope = scope
self.use_labels = use_labels
self.type_sequence_label_size = type_sequence_label_size
self.encoder_stride = encoder_stride
self.out_features = out_features
self.out_indices = out_indices
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return MaskFormerSwinConfig(
image_size=self.image_size,
patch_size=self.patch_size,
num_channels=self.num_channels,
embed_dim=self.embed_dim,
depths=self.depths,
num_heads=self.num_heads,
window_size=self.window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=self.qkv_bias,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
drop_path_rate=self.drop_path_rate,
hidden_act=self.hidden_act,
use_absolute_embeddings=self.use_absolute_embeddings,
path_norm=self.patch_norm,
layer_norm_eps=self.layer_norm_eps,
initializer_range=self.initializer_range,
encoder_stride=self.encoder_stride,
out_features=self.out_features,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels):
model = MaskFormerSwinModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
expected_seq_len = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1))
expected_dim = int(config.embed_dim * 2 ** (len(config.depths) - 1))
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, expected_seq_len, expected_dim))
def create_and_check_backbone(self, config, pixel_values, labels):
model = MaskFormerSwinBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape), [13, 16, 16, 16])
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, [16, 32, 64])
# verify ValueError
with self.parent.assertRaises(ValueError):
config.out_features = ["stem"]
model = MaskFormerSwinBackbone(config=config)
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class MaskFormerSwinModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
MaskFormerSwinModel,
MaskFormerSwinBackbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {}
fx_compatible = False
test_torchscript = False
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
def setUp(self):
self.model_tester = MaskFormerSwinModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=MaskFormerSwinConfig,
has_text_modality=False,
embed_dim=37,
common_properties=["image_size", "patch_size", "num_channels"],
)
@require_torch_multi_gpu
@unittest.skip(
reason=(
"`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with"
" `nn.DataParallel`"
)
)
def test_multi_gpu_data_parallel_forward(self):
pass
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
@unittest.skip(reason="Swin does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="Swin does not support feedforward chunking")
def test_feed_forward_chunking(self):
pass
def test_model_get_set_embeddings(self):
config, _ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config)
self.assertIsInstance(model.get_input_embeddings(), (nn.Module))
x = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(x, nn.Linear))
@unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions")
def test_attention_outputs(self):
pass
@unittest.skip(reason="MaskFormerSwin is only used as an internal backbone")
def test_save_load_fast_init_to_base(self):
pass
def check_hidden_states_output(self, inputs_dict, config, model_class, image_size):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.hidden_states
expected_num_layers = getattr(
self.model_tester, "expected_num_hidden_layers", len(self.model_tester.depths) + 1
)
self.assertEqual(len(hidden_states), expected_num_layers)
# Swin has a different seq_length
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[num_patches, self.model_tester.embed_dim],
)
def test_hidden_states_output(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, image_size)
def test_hidden_states_output_with_padding(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
config.patch_size = 3
image_size = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size, collections.abc.Iterable)
else (self.model_tester.image_size, self.model_tester.image_size)
)
patch_size = (
config.patch_size
if isinstance(config.patch_size, collections.abc.Iterable)
else (config.patch_size, config.patch_size)
)
padded_height = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
padded_width = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes:
inputs_dict["output_hidden_states"] = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
self.check_hidden_states_output(inputs_dict, config, model_class, (padded_height, padded_width))
@unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints")
def test_model_from_pretrained(self):
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def test_initialization(self):
pass
@unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin")
def test_gradient_checkpointing_backward_compatibility(self):
pass
def test_model_outputs_equivalence(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
with torch.no_grad():
tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(
tuple_object.values(), dict_object.values()
):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
recursive_check(tuple_output, dict_output)
for model_class in self.all_model_classes:
model = model_class(config)
model.to(torch_device)
model.eval()
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs)
tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
dict_inputs = self._prepare_for_class(inputs_dict, model_class)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})
@require_torch
class MaskFormerSwinBackboneTest(unittest.TestCase, BackboneTesterMixin):
all_model_classes = (MaskFormerSwinBackbone,) if is_torch_available() else ()
config_class = MaskFormerSwinConfig
def setUp(self):
self.model_tester = MaskFormerSwinModelTester(self)
# Overriding as returned hidden states are tuples of tensors instead of a single tensor
def test_backbone_outputs(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
batch_size = inputs_dict["pixel_values"].shape[0]
for backbone_class in self.all_model_classes:
backbone = backbone_class(config)
backbone.to(torch_device)
backbone.eval()
outputs = backbone(**inputs_dict)
# Test default outputs and verify feature maps
self.assertIsInstance(outputs.feature_maps, tuple)
self.assertTrue(len(outputs.feature_maps) == len(backbone.channels))
for feature_map, n_channels in zip(outputs.feature_maps, backbone.channels):
self.assertTrue(feature_map.shape[:2], (batch_size, n_channels))
self.assertIsNone(outputs.hidden_states)
self.assertIsNone(outputs.attentions)
# Test output_hidden_states=True
outputs = backbone(**inputs_dict, output_hidden_states=True)
self.assertIsNotNone(outputs.hidden_states)
self.assertTrue(len(outputs.hidden_states), len(backbone.stage_names))
# We skip the stem layer
for hidden_states, n_channels in zip(outputs.hidden_states[1:], backbone.channels):
for hidden_state in hidden_states:
# Hidden states are in the format (batch_size, (height * width), n_channels)
h_batch_size, _, h_n_channels = hidden_state.shape
self.assertTrue((h_batch_size, h_n_channels), (batch_size, n_channels))
# Test output_attentions=True
if self.has_attentions:
outputs = backbone(**inputs_dict, output_attentions=True)
self.assertIsNotNone(outputs.attentions)
| transformers/tests/models/maskformer/test_modeling_maskformer_swin.py/0 | {
"file_path": "transformers/tests/models/maskformer/test_modeling_maskformer_swin.py",
"repo_id": "transformers",
"token_count": 7955
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class TFMobileBertModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
pipeline_model_mapping = (
{
"feature-extraction": TFMobileBertModel,
"fill-mask": TFMobileBertForMaskedLM,
"question-answering": TFMobileBertForQuestionAnswering,
"text-classification": TFMobileBertForSequenceClassification,
"token-classification": TFMobileBertForTokenClassification,
"zero-shot": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
test_head_masking = False
test_onnx = False
# special case for ForPreTraining model, same as BERT tests
def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
inputs_dict = super()._prepare_for_class(inputs_dict, model_class, return_labels=return_labels)
if return_labels:
if model_class in get_values(TF_MODEL_FOR_PRETRAINING_MAPPING):
inputs_dict["next_sentence_label"] = tf.zeros(self.model_tester.batch_size, dtype=tf.int32)
return inputs_dict
class TFMobileBertModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
embedding_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
self.embedding_size = embedding_size
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = MobileBertConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
initializer_range=self.initializer_range,
embedding_size=self.embedding_size,
)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def create_and_check_mobilebert_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFMobileBertModel(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
inputs = [input_ids, input_mask]
result = model(inputs)
result = model(input_ids)
self.parent.assertEqual(
result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)
)
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size))
def create_and_check_mobilebert_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFMobileBertForMaskedLM(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_mobilebert_for_next_sequence_prediction(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFMobileBertForNextSentencePrediction(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, 2))
def create_and_check_mobilebert_for_pretraining(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFMobileBertForPreTraining(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(
result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)
)
self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2))
def create_and_check_mobilebert_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFMobileBertForSequenceClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_mobilebert_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = TFMobileBertForMultipleChoice(config=config)
multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
inputs = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def create_and_check_mobilebert_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = TFMobileBertForTokenClassification(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_mobilebert_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = TFMobileBertForQuestionAnswering(config=config)
inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
result = model(inputs)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
def setUp(self):
self.model_tester = TFMobileBertModelTest.TFMobileBertModelTester(self)
self.config_tester = ConfigTester(self, config_class=MobileBertConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_mobilebert_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*config_and_inputs)
def test_for_next_sequence_prediction(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*config_and_inputs)
def test_for_pretraining(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
# model_name = 'google/mobilebert-uncased'
for model_name in ["google/mobilebert-uncased"]:
model = TFMobileBertModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@require_tf
class TFMobileBertModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased")
input_ids = tf.constant([[0, 1, 2, 3, 4, 5]])
output = model(input_ids)[0]
expected_shape = [1, 6, 30522]
self.assertEqual(output.shape, expected_shape)
expected_slice = tf.constant(
[
[
[-4.5919547, -9.248295, -9.645256],
[-6.7306175, -6.440284, -6.6052837],
[-7.2743506, -6.7847915, -6.024673],
]
]
)
tf.debugging.assert_near(output[:, :3, :3], expected_slice, atol=1e-4)
| transformers/tests/models/mobilebert/test_modeling_tf_mobilebert.py/0 | {
"file_path": "transformers/tests/models/mobilebert/test_modeling_tf_mobilebert.py",
"repo_id": "transformers",
"token_count": 7002
} |
# coding=utf-8
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import tensorflow as tf
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
@require_tf
@require_sentencepiece
@require_tokenizers
class TFMT5ModelIntegrationTest(unittest.TestCase):
@slow
def test_small_integration_test(self):
"""
For comparision run:
>>> import t5 # pip install t5==0.7.1
>>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary
>>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'
>>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'
>>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)
>>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)
>>> score = t5_model.score(inputs=["Hello there"], targets=["Hi I am"], vocabulary=vocab)
"""
model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -21.228168
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
| transformers/tests/models/mt5/test_modeling_tf_mt5.py/0 | {
"file_path": "transformers/tests/models/mt5/test_modeling_tf_mt5.py",
"repo_id": "transformers",
"token_count": 819
} |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
from transformers import (
SPIECE_UNDERLINE,
AddedToken,
BatchEncoding,
NllbTokenizer,
NllbTokenizerFast,
is_torch_available,
)
from transformers.models.nllb.tokenization_nllb import FAIRSEQ_LANGUAGE_CODES
from transformers.testing_utils import (
get_tests_dir,
nested_simplify,
require_sentencepiece,
require_tokenizers,
require_torch,
)
from ...test_tokenization_common import TokenizerTesterMixin
SAMPLE_VOCAB = get_tests_dir("fixtures/test_sentencepiece.model")
if is_torch_available():
from transformers.models.m2m_100.modeling_m2m_100 import shift_tokens_right
EN_CODE = 256047
RO_CODE = 256145
@require_sentencepiece
@require_tokenizers
class NllbTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "facebook/nllb-200-distilled-600M"
tokenizer_class = NllbTokenizer
rust_tokenizer_class = NllbTokenizerFast
test_rust_tokenizer = True
test_sentencepiece = True
from_pretrained_kwargs = {}
def setUp(self):
super().setUp()
# We have a SentencePiece fixture for testing
tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokenizer.save_pretrained(self.tmpdirname)
def test_full_tokenizer(self):
tokenizer = NllbTokenizer(SAMPLE_VOCAB, keep_accents=True)
tokens = tokenizer.tokenize("This is a test")
self.assertListEqual(tokens, ["▁This", "▁is", "▁a", "▁t", "est"])
self.assertListEqual(
tokenizer.convert_tokens_to_ids(tokens),
[value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]],
)
tokens = tokenizer.tokenize("I was born in 92000, and this is falsé.")
self.assertListEqual(
tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"9",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"é",
".",
],
)
ids = tokenizer.convert_tokens_to_ids(tokens)
self.assertListEqual(
ids,
[
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4]
],
)
back_tokens = tokenizer.convert_ids_to_tokens(ids)
self.assertListEqual(
back_tokens,
[
SPIECE_UNDERLINE + "I",
SPIECE_UNDERLINE + "was",
SPIECE_UNDERLINE + "b",
"or",
"n",
SPIECE_UNDERLINE + "in",
SPIECE_UNDERLINE + "",
"<unk>",
"2",
"0",
"0",
"0",
",",
SPIECE_UNDERLINE + "and",
SPIECE_UNDERLINE + "this",
SPIECE_UNDERLINE + "is",
SPIECE_UNDERLINE + "f",
"al",
"s",
"<unk>",
".",
],
)
# overwrite from test_tokenization_common to speed up test
def test_save_pretrained(self):
self.tokenizers_list[0] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=True
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it save with the same files
self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
# Save tokenizer rust, legacy_format=False
tmpdirname2 = tempfile.mkdtemp()
tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
# Checks it saved the tokenizer.json file
self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
# Checks everything loads correctly in the same way
tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(tokenizer_rp, key))
shutil.rmtree(tmpdirname2)
@require_torch
def test_prepare_seq2seq_batch(self):
if not self.test_seq2seq:
self.skipTest(reason="test_seq2seq is set to False")
tokenizers = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f"{tokenizer.__class__.__name__}"):
# Longer text that will definitely require truncation.
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
" Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
" will only worsen the violence and misery for millions of people.",
]
tgt_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al"
' Rusiei pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi'
" că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
try:
batch = tokenizer.prepare_seq2seq_batch(
src_texts=src_text,
tgt_texts=tgt_text,
max_length=3,
max_target_length=10,
return_tensors="pt",
src_lang="eng_Latn",
tgt_lang="ron_Latn",
)
except NotImplementedError:
self.skipTest(reason="Encountered NotImplementedError when calling prepare_seq2seq_batch")
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.labels.shape[1], 10)
# max_target_length will default to max_length if not specified
batch = tokenizer.prepare_seq2seq_batch(
src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
)
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.labels.shape[1], 3)
batch_encoder_only = tokenizer.prepare_seq2seq_batch(
src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
)
self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
self.assertNotIn("decoder_input_ids", batch_encoder_only)
@unittest.skip(reason="Unfortunately way too slow to build a BPE with SentencePiece.")
def test_save_slow_from_fast_and_reload_fast(self):
pass
def test_special_tokens_initialization(self):
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
added_tokens = [AddedToken("<special>", lstrip=True)]
tokenizer_r = self.rust_tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
r_output = tokenizer_r.encode("Hey this is a <special> token")
special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]
self.assertTrue(special_token_id in r_output)
if self.test_slow_tokenizer:
tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
pretrained_name,
additional_special_tokens=added_tokens,
**kwargs, # , from_slow=True <- unfortunately too slow to convert
)
tokenizer_p = self.tokenizer_class.from_pretrained(
pretrained_name, additional_special_tokens=added_tokens, **kwargs
)
p_output = tokenizer_p.encode("Hey this is a <special> token")
cr_output = tokenizer_cr.encode("Hey this is a <special> token")
self.assertEqual(p_output, r_output)
self.assertEqual(cr_output, r_output)
self.assertTrue(special_token_id in p_output)
self.assertTrue(special_token_id in cr_output)
@unittest.skip(reason="Need to fix this after #26538")
def test_training_new_tokenizer(self):
pass
def test_new_language_codes(self):
code1, code2 = "myv_Cyrl", "myv_Latn"
new_codes = FAIRSEQ_LANGUAGE_CODES + [code1, code2]
# here I create a tokenizer with the default behaviour
tok1 = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
# here I enhance the model's vocabulary with two new language codes
tok2 = NllbTokenizer.from_pretrained("facebook/nllb-200-distilled-600M", additional_special_tokens=new_codes)
# testing that the new codes can work
self.assertEqual(len(tok2), len(tok1) + 2)
tok2.tgt_lang = code1
tok2.src_lang = code2
self.assertEqual(tok2("šumbrat!").input_ids[0], tok2.convert_tokens_to_ids(code2))
with tempfile.TemporaryDirectory() as tempdir:
# testing that saving and loading the tokenizer preserves the new behaviour
tok2.save_pretrained(tempdir)
tok3 = NllbTokenizer.from_pretrained(tempdir)
self.assertEqual(tok2.get_vocab(), tok3.get_vocab())
tok3.src_lang = code2
self.assertEqual(tok3("šumbrat!").input_ids[0], tok3.convert_tokens_to_ids(code2))
# testing that saving and loading the tokenizer preserves the new behaviour
tok2.save_pretrained(tempdir)
tok3 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=None)
self.assertEqual(len(tok3), 256204) # legacy
tok4 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=[])
self.assertEqual(len(tok4), 256002)
tok5 = NllbTokenizer(f"{tempdir}/sentencepiece.bpe.model", additional_special_tokens=[code1, code2])
self.assertEqual(len(tok5), 256004)
@require_torch
@require_sentencepiece
@require_tokenizers
class NllbDistilledIntegrationTest(unittest.TestCase):
checkpoint_name = "facebook/nllb-200-distilled-600M"
src_text = [
" UN Chief Says There Is No Military Solution in Syria",
""" Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""",
]
tgt_text = [
"Şeful ONU declară că nu există o soluţie militară în Siria",
"Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei"
' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor'
" face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.",
]
expected_src_tokens = [
256047,
16297,
134408,
8165,
248066,
14734,
950,
1135,
105721,
3573,
83,
27352,
108,
49486,
2,
]
@classmethod
def setUpClass(cls):
cls.tokenizer: NllbTokenizer = NllbTokenizer.from_pretrained(
cls.checkpoint_name, src_lang="eng_Latn", tgt_lang="ron_Latn"
)
cls.pad_token_id = 1
return cls
def test_enro_tokenizer_batch_encode_plus(self):
ids = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0]
self.assertListEqual(self.expected_src_tokens, ids)
def test_enro_tokenizer_decode_ignores_language_codes(self):
self.assertIn(RO_CODE, self.tokenizer.all_special_ids)
generated_ids = [RO_CODE, 4254, 98068, 112923, 39072, 3909, 713, 102767, 26, 17314, 35642, 14683, 33118, 2022, 66987, 2, 256047] # fmt: skip
result = self.tokenizer.decode(generated_ids, skip_special_tokens=True)
expected_romanian = self.tokenizer.decode(generated_ids[1:], skip_special_tokens=True)
self.assertEqual(result, expected_romanian)
self.assertNotIn(self.tokenizer.eos_token, result)
def test_enro_tokenizer_truncation(self):
src_text = ["this is gunna be a long sentence " * 20]
assert isinstance(src_text[0], str)
desired_max_length = 10
ids = self.tokenizer(src_text, max_length=desired_max_length, truncation=True).input_ids[0]
self.assertEqual(ids[-1], 2)
self.assertEqual(ids[0], EN_CODE)
self.assertEqual(len(ids), desired_max_length)
def test_mask_token(self):
self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"]), [256203, 3])
@require_torch
def test_enro_tokenizer_prepare_batch(self):
batch = self.tokenizer(
self.src_text,
text_target=self.tgt_text,
padding=True,
truncation=True,
max_length=len(self.expected_src_tokens),
return_tensors="pt",
)
batch["decoder_input_ids"] = shift_tokens_right(
batch["labels"], self.tokenizer.pad_token_id, self.tokenizer.convert_tokens_to_ids("ron_Latn")
)
self.assertIsInstance(batch, BatchEncoding)
self.assertEqual((2, 15), batch.input_ids.shape)
self.assertEqual((2, 15), batch.attention_mask.shape)
result = batch.input_ids.tolist()[0]
self.assertListEqual(self.expected_src_tokens, result)
self.assertEqual(RO_CODE, batch.decoder_input_ids[0, 0]) # EOS
# Test that special tokens are reset
self.assertEqual(self.tokenizer.prefix_tokens, [EN_CODE])
self.assertEqual(self.tokenizer.suffix_tokens, [self.tokenizer.eos_token_id])
def test_seq2seq_max_length(self):
batch = self.tokenizer(self.src_text, padding=True, truncation=True, max_length=3, return_tensors="pt")
targets = self.tokenizer(
text_target=self.tgt_text, padding=True, truncation=True, max_length=10, return_tensors="pt"
)
labels = targets["input_ids"]
batch["decoder_input_ids"] = shift_tokens_right(
labels,
self.tokenizer.pad_token_id,
decoder_start_token_id=self.tokenizer.convert_tokens_to_ids(self.tokenizer.tgt_lang),
)
self.assertEqual(batch.input_ids.shape[1], 3)
self.assertEqual(batch.decoder_input_ids.shape[1], 10)
@require_torch
def test_tokenizer_translation(self):
inputs = self.tokenizer._build_translation_inputs(
"A test", return_tensors="pt", src_lang="eng_Latn", tgt_lang="fra_Latn"
)
self.assertEqual(
nested_simplify(inputs),
{
# A, test, EOS, en_XX
"input_ids": [[256047, 70, 7356, 2]],
"attention_mask": [[1, 1, 1, 1]],
# ar_AR
"forced_bos_token_id": 256057,
},
)
@require_torch
def test_legacy_behaviour(self):
self.tokenizer.legacy_behaviour = True
inputs = self.tokenizer(
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
)
self.assertEqual(
inputs.input_ids, [16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2, 256047]
)
self.tokenizer.legacy_behaviour = False
inputs = self.tokenizer(
"UN Chief says there is no military solution in Syria", src_lang="eng_Latn", tgt_lang="fra_Latn"
)
self.assertEqual(
inputs.input_ids, [256047, 16297, 134408, 25653, 6370, 248, 254, 103929, 94995, 108, 49486, 2]
)
| transformers/tests/models/nllb/test_tokenization_nllb.py/0 | {
"file_path": "transformers/tests/models/nllb/test_tokenization_nllb.py",
"repo_id": "transformers",
"token_count": 9740
} |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import shutil
import tempfile
import unittest
import pytest
from transformers import AutoProcessor, CLIPTokenizerFast, OmDetTurboProcessor
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_processing_common import ProcessorTesterMixin
IMAGE_MEAN = [123.675, 116.28, 103.53]
IMAGE_STD = [58.395, 57.12, 57.375]
if is_torch_available():
import torch
from transformers.models.omdet_turbo.modeling_omdet_turbo import OmDetTurboObjectDetectionOutput
if is_vision_available():
from transformers import DetrImageProcessor
@require_torch
@require_vision
class OmDetTurboProcessorTest(ProcessorTesterMixin, unittest.TestCase):
processor_class = OmDetTurboProcessor
text_input_name = "classes_input_ids"
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
image_processor = DetrImageProcessor()
tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32")
processor = OmDetTurboProcessor(image_processor, tokenizer)
processor.save_pretrained(self.tmpdirname)
self.input_keys = [
"tasks_input_ids",
"tasks_attention_mask",
"classes_input_ids",
"classes_attention_mask",
"classes_structure",
"pixel_values",
"pixel_mask",
]
self.batch_size = 5
self.num_queries = 5
self.embed_dim = 3
def get_tokenizer(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).tokenizer
def get_image_processor(self, **kwargs):
return AutoProcessor.from_pretrained(self.tmpdirname, **kwargs).image_processor
def tearDown(self):
shutil.rmtree(self.tmpdirname)
def get_fake_omdet_turbo_output(self):
classes = self.get_fake_omdet_turbo_classes()
classes_structure = torch.tensor([len(sublist) for sublist in classes])
torch.manual_seed(42)
return OmDetTurboObjectDetectionOutput(
decoder_coord_logits=torch.rand(self.batch_size, self.num_queries, 4),
decoder_class_logits=torch.rand(self.batch_size, self.num_queries, self.embed_dim),
classes_structure=classes_structure,
)
def get_fake_omdet_turbo_classes(self):
return [[f"class{i}_{j}" for i in range(self.num_queries)] for j in range(self.batch_size)]
def test_post_process_grounded_object_detection(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor)
omdet_turbo_output = self.get_fake_omdet_turbo_output()
omdet_turbo_classes = self.get_fake_omdet_turbo_classes()
post_processed = processor.post_process_grounded_object_detection(
omdet_turbo_output, omdet_turbo_classes, target_sizes=[(400, 30) for _ in range(self.batch_size)]
)
self.assertEqual(len(post_processed), self.batch_size)
self.assertEqual(list(post_processed[0].keys()), ["boxes", "scores", "labels", "text_labels"])
self.assertEqual(post_processed[0]["boxes"].shape, (self.num_queries, 4))
self.assertEqual(post_processed[0]["scores"].shape, (self.num_queries,))
expected_scores = torch.tensor([0.7310, 0.6579, 0.6513, 0.6444, 0.6252])
torch.testing.assert_close(post_processed[0]["scores"], expected_scores, rtol=1e-4, atol=1e-4)
expected_box_slice = torch.tensor([14.9657, 141.2052, 30.0000, 312.9670])
torch.testing.assert_close(post_processed[0]["boxes"][0], expected_box_slice, rtol=1e-4, atol=1e-4)
def test_save_load_pretrained_additional_features(self):
processor = OmDetTurboProcessor(tokenizer=self.get_tokenizer(), image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
tokenizer_add_kwargs = self.get_tokenizer(bos_token="(BOS)", eos_token="(EOS)")
image_processor_add_kwargs = self.get_image_processor(do_normalize=False, padding_value=1.0)
processor = OmDetTurboProcessor.from_pretrained(
self.tmpdirname, bos_token="(BOS)", eos_token="(EOS)", do_normalize=False, padding_value=1.0
)
self.assertEqual(processor.tokenizer.get_vocab(), tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer, CLIPTokenizerFast)
self.assertEqual(processor.image_processor.to_json_string(), image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor, DetrImageProcessor)
def test_image_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor).image_processor
image_input = self.prepare_image_inputs()
input_image_proc = image_processor(image_input, return_tensors="np")
input_processor = processor(images=image_input, return_tensors="np")
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum(), input_processor[key].sum(), delta=1e-2)
def test_tokenizer(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor).tokenizer
input_str = "lower newer"
encoded_processor = processor(text=input_str, padding="max_length", truncation=True, max_length=77)
encoded_tok = tokenizer(input_str, padding="max_length", truncation=True, max_length=77)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key], encoded_processor[key])
def test_processor(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_tasks = "task"
input_classes = ["class1", "class2"]
image_input = self.prepare_image_inputs()
input_processor = processor(images=image_input, text=input_classes, task=input_tasks, return_tensors="pt")
for key in self.input_keys:
assert torch.is_tensor(input_processor[key])
# test if it raises when no input is passed
with pytest.raises(ValueError):
processor()
def test_tokenizer_decode(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor)
predicted_ids = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
decoded_processor = processor.batch_decode(predicted_ids)
decoded_tok = tokenizer.batch_decode(predicted_ids)
self.assertListEqual(decoded_tok, decoded_processor)
def test_model_input_names(self):
image_processor = self.get_image_processor()
tokenizer = self.get_tokenizer()
processor = OmDetTurboProcessor(tokenizer=tokenizer, image_processor=image_processor)
input_tasks = "task"
input_classes = ["class1", "class2"]
image_input = self.prepare_image_inputs()
inputs = processor(images=image_input, text=input_classes, task=input_tasks, return_tensors="pt")
self.assertListEqual(list(inputs.keys()), self.input_keys)
| transformers/tests/models/omdet_turbo/test_processor_omdet_turbo.py/0 | {
"file_path": "transformers/tests/models/omdet_turbo/test_processor_omdet_turbo.py",
"repo_id": "transformers",
"token_count": 3240
} |
# coding=utf-8
# Copyright 2018 Salesforce and HuggingFace Inc. team.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import unittest
from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer
from ...test_tokenization_common import TokenizerTesterMixin
class PhobertTokenizationTest(TokenizerTesterMixin, unittest.TestCase):
from_pretrained_id = "vinai/phobert-base"
tokenizer_class = PhobertTokenizer
test_rust_tokenizer = False
def setUp(self):
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
vocab = ["T@@", "i", "I", "R@@", "r", "e@@"]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "l à</w>"]
self.special_tokens_map = {"unk_token": "<unk>"}
self.vocab_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
for token in vocab_tokens:
fp.write(f"{token} {vocab_tokens[token]}\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_tokenizer(self, **kwargs):
kwargs.update(self.special_tokens_map)
return PhobertTokenizer.from_pretrained(self.tmpdirname, **kwargs)
def get_input_output_texts(self, tokenizer):
input_text = "Tôi là VinAI Research"
output_text = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>"
return input_text, output_text
def test_full_tokenizer(self):
tokenizer = PhobertTokenizer(self.vocab_file, self.merges_file, **self.special_tokens_map)
text = "Tôi là VinAI Research"
bpe_tokens = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split()
tokens = tokenizer.tokenize(text)
print(tokens)
self.assertListEqual(tokens, bpe_tokens)
input_tokens = tokens + [tokenizer.unk_token]
input_bpe_tokens = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3]
self.assertListEqual(tokenizer.convert_tokens_to_ids(input_tokens), input_bpe_tokens)
| transformers/tests/models/phobert/test_tokenization_phobert.py/0 | {
"file_path": "transformers/tests/models/phobert/test_tokenization_phobert.py",
"repo_id": "transformers",
"token_count": 1190
} |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import (
check_json_file_has_correct_format,
require_essentia,
require_librosa,
require_scipy,
require_tf,
require_torch,
)
from transformers.utils.import_utils import (
is_essentia_available,
is_librosa_available,
is_scipy_available,
is_torch_available,
)
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
requirements_available = (
is_torch_available() and is_essentia_available() and is_scipy_available() and is_librosa_available()
)
if requirements_available:
import torch
from transformers import Pop2PianoFeatureExtractor
class Pop2PianoFeatureExtractionTester:
def __init__(
self,
parent,
n_bars=2,
sample_rate=22050,
use_mel=True,
padding_value=0,
vocab_size_special=4,
vocab_size_note=128,
vocab_size_velocity=2,
vocab_size_time=100,
):
self.parent = parent
self.n_bars = n_bars
self.sample_rate = sample_rate
self.use_mel = use_mel
self.padding_value = padding_value
self.vocab_size_special = vocab_size_special
self.vocab_size_note = vocab_size_note
self.vocab_size_velocity = vocab_size_velocity
self.vocab_size_time = vocab_size_time
def prepare_feat_extract_dict(self):
return {
"n_bars": self.n_bars,
"sample_rate": self.sample_rate,
"use_mel": self.use_mel,
"padding_value": self.padding_value,
"vocab_size_special": self.vocab_size_special,
"vocab_size_note": self.vocab_size_note,
"vocab_size_velocity": self.vocab_size_velocity,
"vocab_size_time": self.vocab_size_time,
}
@require_torch
@require_essentia
@require_librosa
@require_scipy
class Pop2PianoFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = Pop2PianoFeatureExtractor if requirements_available else None
def setUp(self):
self.feat_extract_tester = Pop2PianoFeatureExtractionTester(self)
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.use_mel
mel_2 = feat_extract_second.use_mel
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
mel_1 = feat_extract_first.use_mel
mel_2 = feat_extract_second.use_mel
self.assertTrue(np.allclose(mel_1, mel_2))
self.assertEqual(dict_first, dict_second)
def test_call(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input = np.zeros([1000000], dtype=np.float32)
input_features = feature_extractor(speech_input, sampling_rate=16_000, return_tensors="np")
self.assertTrue(input_features.input_features.ndim == 3)
self.assertEqual(input_features.input_features.shape[-1], 512)
self.assertTrue(input_features.beatsteps.ndim == 2)
self.assertTrue(input_features.extrapolated_beatstep.ndim == 2)
def test_integration(self):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
speech_samples = ds.sort("id").select([0])["audio"]
input_speech = [x["array"] for x in speech_samples][0]
sampling_rate = [x["sampling_rate"] for x in speech_samples][0]
feaure_extractor = Pop2PianoFeatureExtractor.from_pretrained("sweetcocoa/pop2piano")
input_features = feaure_extractor(
input_speech, sampling_rate=sampling_rate, return_tensors="pt"
).input_features
EXPECTED_INPUT_FEATURES = torch.tensor(
[[-7.1493, -6.8701, -4.3214], [-5.9473, -5.7548, -3.8438], [-6.1324, -5.9018, -4.3778]]
)
torch.testing.assert_close(input_features[0, :3, :3], EXPECTED_INPUT_FEATURES, rtol=1e-4, atol=1e-4)
def test_attention_mask(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
speech_input2 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32)
input_features = feature_extractor(
[speech_input1, speech_input2],
sampling_rate=[44_100, 16_000],
return_tensors="np",
return_attention_mask=True,
)
self.assertTrue(hasattr(input_features, "attention_mask"))
# check shapes
self.assertTrue(input_features["attention_mask"].ndim == 2)
self.assertEqual(input_features["attention_mask_beatsteps"].shape[0], 2)
self.assertEqual(input_features["attention_mask_extrapolated_beatstep"].shape[0], 2)
# check if they are any values except 0 and 1
self.assertTrue(np.max(input_features["attention_mask"]) == 1)
self.assertTrue(np.max(input_features["attention_mask_beatsteps"]) == 1)
self.assertTrue(np.max(input_features["attention_mask_extrapolated_beatstep"]) == 1)
self.assertTrue(np.min(input_features["attention_mask"]) == 0)
self.assertTrue(np.min(input_features["attention_mask_beatsteps"]) == 0)
self.assertTrue(np.min(input_features["attention_mask_extrapolated_beatstep"]) == 0)
def test_batch_feature(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
speech_input2 = np.ones([2_000_000], dtype=np.float32)
speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32)
input_features = feature_extractor(
[speech_input1, speech_input2, speech_input3],
sampling_rate=[44_100, 16_000, 48_000],
return_attention_mask=True,
)
self.assertEqual(len(input_features["input_features"].shape), 3)
# check shape
self.assertEqual(input_features["beatsteps"].shape[0], 3)
self.assertEqual(input_features["extrapolated_beatstep"].shape[0], 3)
def test_batch_feature_np(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
speech_input2 = np.ones([2_000_000], dtype=np.float32)
speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32)
input_features = feature_extractor(
[speech_input1, speech_input2, speech_input3],
sampling_rate=[44_100, 16_000, 48_000],
return_tensors="np",
return_attention_mask=True,
)
# check np array or not
self.assertEqual(type(input_features["input_features"]), np.ndarray)
# check shape
self.assertEqual(len(input_features["input_features"].shape), 3)
def test_batch_feature_pt(self):
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
speech_input2 = np.ones([2_000_000], dtype=np.float32)
speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32)
input_features = feature_extractor(
[speech_input1, speech_input2, speech_input3],
sampling_rate=[44_100, 16_000, 48_000],
return_tensors="pt",
return_attention_mask=True,
)
# check pt tensor or not
self.assertEqual(type(input_features["input_features"]), torch.Tensor)
# check shape
self.assertEqual(len(input_features["input_features"].shape), 3)
@require_tf
def test_batch_feature_tf(self):
import tensorflow as tf
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
speech_input1 = np.zeros([1_000_000], dtype=np.float32)
speech_input2 = np.ones([2_000_000], dtype=np.float32)
speech_input3 = np.random.randint(low=0, high=10, size=500_000).astype(np.float32)
input_features = feature_extractor(
[speech_input1, speech_input2, speech_input3],
sampling_rate=[44_100, 16_000, 48_000],
return_tensors="tf",
return_attention_mask=True,
)
# check tf tensor or not
self.assertTrue(tf.is_tensor(input_features["input_features"]))
# check shape
self.assertEqual(len(input_features["input_features"].shape), 3)
@unittest.skip(
"Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)"
)
def test_padding_accepts_tensors_pt(self):
pass
@unittest.skip(
"Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)"
)
def test_padding_accepts_tensors_tf(self):
pass
@unittest.skip(
"Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)"
)
def test_padding_from_list(self):
pass
@unittest.skip(
"Pop2PianoFeatureExtractor does not supports padding externally (while processing audios in batches padding is automatically applied to max_length)"
)
def test_padding_from_array(self):
pass
@unittest.skip(reason="Pop2PianoFeatureExtractor does not support truncation")
def test_attention_mask_with_truncation(self):
pass
@unittest.skip(reason="Pop2PianoFeatureExtractor does not supports truncation")
def test_truncation_from_array(self):
pass
@unittest.skip(reason="Pop2PianoFeatureExtractor does not supports truncation")
def test_truncation_from_list(self):
pass
| transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py/0 | {
"file_path": "transformers/tests/models/pop2piano/test_feature_extraction_pop2piano.py",
"repo_id": "transformers",
"token_count": 4967
} |
# coding=utf-8
# Copyright 2025 The Qwen Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_utils import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
from transformers.models.qwen2_5_vl.image_processing_qwen2_5_vl import smart_resize
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import (
ImageProcessingTestMixin,
prepare_image_inputs,
)
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import Qwen2_5_VLImageProcessor
class Qwen2_5_VLImageProcessingTester:
def __init__(
self,
parent,
batch_size=7,
num_channels=3,
min_resolution=56,
max_resolution=1024,
min_pixels=56 * 56,
max_pixels=28 * 28 * 1280,
do_normalize=True,
image_mean=OPENAI_CLIP_MEAN,
image_std=OPENAI_CLIP_STD,
do_resize=True,
patch_size=14,
temporal_patch_size=2,
merge_size=2,
do_convert_rgb=True,
):
self.parent = parent
self.batch_size = batch_size
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.num_channels = num_channels
self.image_mean = OPENAI_CLIP_MEAN
self.image_std = OPENAI_CLIP_STD
self.min_pixels = min_pixels
self.max_pixels = max_pixels
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.merge_size = merge_size
self.do_resize = do_resize
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.do_convert_rgb = do_convert_rgb
def prepare_image_processor_dict(self):
return {
"do_resize": self.do_resize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"min_pixels": self.min_pixels,
"max_pixels": self.max_pixels,
"patch_size": self.patch_size,
"temporal_patch_size": self.temporal_patch_size,
"merge_size": self.merge_size,
}
def prepare_image_inputs(self, equal_resolution=False, numpify=False, torchify=False):
images = prepare_image_inputs(
batch_size=self.batch_size,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
return [[image] for image in images]
@require_torch
@require_vision
class Qwen2_5_VLImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = Qwen2_5_VLImageProcessor if is_vision_available() else None
def setUp(self):
super().setUp()
self.image_processor_tester = Qwen2_5_VLImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "min_pixels"))
self.assertTrue(hasattr(image_processing, "max_pixels"))
self.assertTrue(hasattr(image_processing, "do_convert_rgb"))
self.assertTrue(hasattr(image_processing, "patch_size"))
self.assertTrue(hasattr(image_processing, "temporal_patch_size"))
self.assertTrue(hasattr(image_processing, "merge_size"))
def test_image_processor_from_dict_with_kwargs(self):
image_processor = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.min_pixels, 56 * 56)
self.assertEqual(image_processor.max_pixels, 28 * 28 * 1280)
image_processor = self.image_processing_class.from_dict(
self.image_processor_dict, min_pixels=256 * 256, max_pixels=640 * 640
)
self.assertEqual(image_processor.min_pixels, 256 * 256)
self.assertEqual(image_processor.max_pixels, 640 * 640)
def test_select_best_resolution(self):
# Test with a final resize resolution
best_resolution = smart_resize(561, 278, factor=28)
self.assertEqual(best_resolution, (560, 280))
def test_call_pil(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
for image in image_inputs:
self.assertIsInstance(image[0], Image.Image)
# Test not batched input
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (4900, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
# Test batched
prcocess_out = image_processing(image_inputs, return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (34300, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
def test_call_numpy(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, numpify=True)
for image in image_inputs:
self.assertIsInstance(image[0], np.ndarray)
# Test not batched input
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (4900, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
# Test batched
prcocess_out = image_processing(image_inputs, return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (34300, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
def test_call_pytorch(self):
# Initialize image_processing
image_processing = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True, torchify=True)
for image in image_inputs:
self.assertIsInstance(image[0], torch.Tensor)
# Test not batched input
prcocess_out = image_processing(image_inputs[0], return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (4900, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]])
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
# Test batched
prcocess_out = image_processing(image_inputs, return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (34300, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
@unittest.skip(reason="Qwen2_5_VLImageProcessor doesn't treat 4 channel PIL and numpy consistently yet")
def test_call_numpy_4_channels(self):
pass
def test_nested_input(self):
image_processing = self.image_processing_class(**self.image_processor_dict)
image_inputs = self.image_processor_tester.prepare_image_inputs(equal_resolution=True)
# Test batched as a list of images
prcocess_out = image_processing(image_inputs, return_tensors="pt")
encoded_images = prcocess_out.pixel_values
image_grid_thws = prcocess_out.image_grid_thw
expected_output_image_shape = (34300, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
self.assertEqual(tuple(encoded_images.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
# Test batched as a nested list of images, where each sublist is one batch
image_inputs_nested = image_inputs[:3] + image_inputs[3:]
prcocess_out = image_processing(image_inputs_nested, return_tensors="pt")
encoded_images_nested = prcocess_out.pixel_values
image_grid_thws_nested = prcocess_out.image_grid_thw
expected_output_image_shape = (34300, 1176)
expected_image_grid_thws = torch.Tensor([[1, 70, 70]] * 7)
self.assertEqual(tuple(encoded_images_nested.shape), expected_output_image_shape)
self.assertTrue((image_grid_thws == expected_image_grid_thws).all())
# Image processor should return same pixel values, independently of ipnut format
self.assertTrue((encoded_images_nested == encoded_images).all())
self.assertTrue((image_grid_thws_nested == expected_image_grid_thws).all())
| transformers/tests/models/qwen2_5_vl/test_image_processing_qwen2_5_vl.py/0 | {
"file_path": "transformers/tests/models/qwen2_5_vl/test_image_processing_qwen2_5_vl.py",
"repo_id": "transformers",
"token_count": 4659
} |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class RagTokenizerTest(TestCase):
def setUp(self):
self.tmpdirname = tempfile.mkdtemp()
self.retrieval_vector_size = 8
# DPR tok
vocab_tokens = [
"[UNK]",
"[CLS]",
"[SEP]",
"[PAD]",
"[MASK]",
"want",
"##want",
"##ed",
"wa",
"un",
"runn",
"##ing",
",",
"low",
"lowest",
]
dpr_tokenizer_path = os.path.join(self.tmpdirname, "dpr_tokenizer")
os.makedirs(dpr_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(dpr_tokenizer_path, DPR_VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file, "w", encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
# BART tok
vocab = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
]
vocab_tokens = dict(zip(vocab, range(len(vocab))))
merges = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
self.special_tokens_map = {"unk_token": "<unk>"}
bart_tokenizer_path = os.path.join(self.tmpdirname, "bart_tokenizer")
os.makedirs(bart_tokenizer_path, exist_ok=True)
self.vocab_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["vocab_file"])
self.merges_file = os.path.join(bart_tokenizer_path, BART_VOCAB_FILES_NAMES["merges_file"])
with open(self.vocab_file, "w", encoding="utf-8") as fp:
fp.write(json.dumps(vocab_tokens) + "\n")
with open(self.merges_file, "w", encoding="utf-8") as fp:
fp.write("\n".join(merges))
def get_dpr_tokenizer(self) -> DPRQuestionEncoderTokenizer:
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer"))
def get_bart_tokenizer(self) -> BartTokenizer:
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer"))
def tearDown(self):
shutil.rmtree(self.tmpdirname)
@require_tokenizers
def test_save_load_pretrained_with_saved_config(self):
save_dir = os.path.join(self.tmpdirname, "rag_tokenizer")
rag_config = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict())
rag_tokenizer = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer())
rag_config.save_pretrained(save_dir)
rag_tokenizer.save_pretrained(save_dir)
new_rag_tokenizer = RagTokenizer.from_pretrained(save_dir, config=rag_config)
self.assertIsInstance(new_rag_tokenizer.question_encoder, DPRQuestionEncoderTokenizerFast)
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab())
self.assertIsInstance(new_rag_tokenizer.generator, BartTokenizerFast)
self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab())
@slow
def test_pretrained_token_nq_tokenizer(self):
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq")
input_strings = [
"who got the first nobel prize in physics",
"when is the next deadpool movie being released",
"which mode is used for short wave broadcast service",
"who is the owner of reading football club",
"when is the next scandal episode coming out",
"when is the last time the philadelphia won the superbowl",
"what is the most current adobe flash player version",
"how many episodes are there in dragon ball z",
"what is the first step in the evolution of the eye",
"where is gall bladder situated in human body",
"what is the main mineral in lithium batteries",
"who is the president of usa right now",
"where do the greasers live in the outsiders",
"panda is a national animal of which country",
"what is the name of manchester united stadium",
]
input_dict = tokenizer(input_strings)
self.assertIsNotNone(input_dict)
@slow
def test_pretrained_sequence_nq_tokenizer(self):
tokenizer = RagTokenizer.from_pretrained("facebook/rag-sequence-nq")
input_strings = [
"who got the first nobel prize in physics",
"when is the next deadpool movie being released",
"which mode is used for short wave broadcast service",
"who is the owner of reading football club",
"when is the next scandal episode coming out",
"when is the last time the philadelphia won the superbowl",
"what is the most current adobe flash player version",
"how many episodes are there in dragon ball z",
"what is the first step in the evolution of the eye",
"where is gall bladder situated in human body",
"what is the main mineral in lithium batteries",
"who is the president of usa right now",
"where do the greasers live in the outsiders",
"panda is a national animal of which country",
"what is the name of manchester united stadium",
]
input_dict = tokenizer(input_strings)
self.assertIsNotNone(input_dict)
| transformers/tests/models/rag/test_tokenization_rag.py/0 | {
"file_path": "transformers/tests/models/rag/test_tokenization_rag.py",
"repo_id": "transformers",
"token_count": 3143
} |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch ResNet model."""
import unittest
from transformers import ResNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ResNetBackbone, ResNetForImageClassification, ResNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class ResNetModelTester:
def __init__(
self,
parent,
batch_size=3,
image_size=32,
num_channels=3,
embeddings_size=10,
hidden_sizes=[10, 20, 30, 40],
depths=[1, 1, 2, 1],
is_training=True,
use_labels=True,
hidden_act="relu",
num_labels=3,
scope=None,
out_features=["stage2", "stage3", "stage4"],
out_indices=[2, 3, 4],
):
self.parent = parent
self.batch_size = batch_size
self.image_size = image_size
self.num_channels = num_channels
self.embeddings_size = embeddings_size
self.hidden_sizes = hidden_sizes
self.depths = depths
self.is_training = is_training
self.use_labels = use_labels
self.hidden_act = hidden_act
self.num_labels = num_labels
self.scope = scope
self.num_stages = len(hidden_sizes)
self.out_features = out_features
self.out_indices = out_indices
def prepare_config_and_inputs(self):
pixel_values = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
labels = None
if self.use_labels:
labels = ids_tensor([self.batch_size], self.num_labels)
config = self.get_config()
return config, pixel_values, labels
def get_config(self):
return ResNetConfig(
num_channels=self.num_channels,
embeddings_size=self.embeddings_size,
hidden_sizes=self.hidden_sizes,
depths=self.depths,
hidden_act=self.hidden_act,
num_labels=self.num_labels,
out_features=self.out_features,
out_indices=self.out_indices,
)
def create_and_check_model(self, config, pixel_values, labels):
model = ResNetModel(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape,
(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32),
)
def create_and_check_for_image_classification(self, config, pixel_values, labels):
config.num_labels = self.num_labels
model = ResNetForImageClassification(config)
model.to(torch_device)
model.eval()
result = model(pixel_values, labels=labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_backbone(self, config, pixel_values, labels):
model = ResNetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), len(config.out_features))
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[1], 4, 4])
# verify channels
self.parent.assertEqual(len(model.channels), len(config.out_features))
self.parent.assertListEqual(model.channels, config.hidden_sizes[1:])
# verify backbone works with out_features=None
config.out_features = None
model = ResNetBackbone(config=config)
model.to(torch_device)
model.eval()
result = model(pixel_values)
# verify feature maps
self.parent.assertEqual(len(result.feature_maps), 1)
self.parent.assertListEqual(list(result.feature_maps[0].shape), [self.batch_size, self.hidden_sizes[-1], 1, 1])
# verify channels
self.parent.assertEqual(len(model.channels), 1)
self.parent.assertListEqual(model.channels, [config.hidden_sizes[-1]])
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
config, pixel_values, labels = config_and_inputs
inputs_dict = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class ResNetModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
"""
Here we also overwrite some of the tests of test_modeling_common.py, as ResNet does not use input_ids, inputs_embeds,
attention_mask and seq_length.
"""
all_model_classes = (
(
ResNetModel,
ResNetForImageClassification,
ResNetBackbone,
)
if is_torch_available()
else ()
)
pipeline_model_mapping = (
{"image-feature-extraction": ResNetModel, "image-classification": ResNetForImageClassification}
if is_torch_available()
else {}
)
fx_compatible = True
test_pruning = False
test_resize_embeddings = False
test_head_masking = False
has_attentions = False
def setUp(self):
self.model_tester = ResNetModelTester(self)
self.config_tester = ConfigTester(
self,
config_class=ResNetConfig,
has_text_modality=False,
common_properties=["num_channels", "hidden_sizes"],
)
def test_config(self):
self.config_tester.run_common_tests()
@unittest.skip(reason="ResNet does not use inputs_embeds")
def test_inputs_embeds(self):
pass
@unittest.skip(reason="ResNet does not support input and output embeddings")
def test_model_get_set_embeddings(self):
pass
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_backbone(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*config_and_inputs)
def test_initialization(self):
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
model = model_class(config=config)
for name, module in model.named_modules():
if isinstance(module, (nn.BatchNorm2d, nn.GroupNorm)):
self.assertTrue(
torch.all(module.weight == 1),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
self.assertTrue(
torch.all(module.bias == 0),
msg=f"Parameter {name} of model {model_class} seems not properly initialized",
)
def test_hidden_states_output(self):
def check_hidden_states_output(inputs_dict, config, model_class):
model = model_class(config)
model.to(torch_device)
model.eval()
with torch.no_grad():
outputs = model(**self._prepare_for_class(inputs_dict, model_class))
hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
expected_num_stages = self.model_tester.num_stages
self.assertEqual(len(hidden_states), expected_num_stages + 1)
# ResNet's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:]),
[self.model_tester.image_size // 4, self.model_tester.image_size // 4],
)
config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
layers_type = ["basic", "bottleneck"]
for model_class in self.all_model_classes:
for layer_type in layers_type:
config.layer_type = layer_type
inputs_dict["output_hidden_states"] = True
check_hidden_states_output(inputs_dict, config, model_class)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
config.output_hidden_states = True
check_hidden_states_output(inputs_dict, config, model_class)
@unittest.skip(reason="ResNet does not use feedforward chunking")
def test_feed_forward_chunking(self):
pass
def test_for_image_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*config_and_inputs)
@slow
def test_model_from_pretrained(self):
model_name = "microsoft/resnet-50"
model = ResNetModel.from_pretrained(model_name)
self.assertIsNotNone(model)
# We will verify our results on an image of cute cats
def prepare_img():
image = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png")
return image
@require_torch
@require_vision
class ResNetModelIntegrationTest(unittest.TestCase):
@cached_property
def default_image_processor(self):
return AutoImageProcessor.from_pretrained("microsoft/resnet-50") if is_vision_available() else None
@slow
def test_inference_image_classification_head(self):
model = ResNetForImageClassification.from_pretrained("microsoft/resnet-50").to(torch_device)
image_processor = self.default_image_processor
image = prepare_img()
inputs = image_processor(images=image, return_tensors="pt").to(torch_device)
# forward pass
with torch.no_grad():
outputs = model(**inputs)
# verify the logits
expected_shape = torch.Size((1, 1000))
self.assertEqual(outputs.logits.shape, expected_shape)
expected_slice = torch.tensor([-11.1069, -9.7877, -8.3777]).to(torch_device)
torch.testing.assert_close(outputs.logits[0, :3], expected_slice, rtol=1e-4, atol=1e-4)
@require_torch
class ResNetBackboneTest(BackboneTesterMixin, unittest.TestCase):
all_model_classes = (ResNetBackbone,) if is_torch_available() else ()
has_attentions = False
config_class = ResNetConfig
def setUp(self):
self.model_tester = ResNetModelTester(self)
| transformers/tests/models/resnet/test_modeling_resnet.py/0 | {
"file_path": "transformers/tests/models/resnet/test_modeling_resnet.py",
"repo_id": "transformers",
"token_count": 4899
} |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Testing suite for the PyTorch RoFormer model."""
import unittest
from transformers import RoFormerConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerModel,
)
from transformers.models.roformer.modeling_roformer import (
RoFormerSelfAttention,
RoFormerSinusoidalPositionalEmbedding,
)
class RoFormerModelTester:
def __init__(
self,
parent,
batch_size=13,
seq_length=7,
is_training=True,
use_input_mask=True,
use_token_type_ids=True,
use_labels=True,
vocab_size=99,
hidden_size=32,
num_hidden_layers=2,
num_attention_heads=4,
intermediate_size=37,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=16,
type_sequence_label_size=2,
initializer_range=0.02,
num_labels=3,
num_choices=4,
scope=None,
):
self.parent = parent
self.batch_size = batch_size
self.seq_length = seq_length
self.is_training = is_training
self.use_input_mask = use_input_mask
self.use_token_type_ids = use_token_type_ids
self.use_labels = use_labels
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.hidden_act = hidden_act
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.type_sequence_label_size = type_sequence_label_size
self.initializer_range = initializer_range
self.num_labels = num_labels
self.num_choices = num_choices
self.scope = scope
def prepare_config_and_inputs(self):
input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)
input_mask = None
if self.use_input_mask:
input_mask = random_attention_mask([self.batch_size, self.seq_length])
token_type_ids = None
if self.use_token_type_ids:
token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)
sequence_labels = None
token_labels = None
choice_labels = None
if self.use_labels:
sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
choice_labels = ids_tensor([self.batch_size], self.num_choices)
config = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def get_config(self):
return RoFormerConfig(
vocab_size=self.vocab_size,
hidden_size=self.hidden_size,
num_hidden_layers=self.num_hidden_layers,
num_attention_heads=self.num_attention_heads,
intermediate_size=self.intermediate_size,
hidden_act=self.hidden_act,
hidden_dropout_prob=self.hidden_dropout_prob,
attention_probs_dropout_prob=self.attention_probs_dropout_prob,
max_position_embeddings=self.max_position_embeddings,
type_vocab_size=self.type_vocab_size,
is_decoder=False,
initializer_range=self.initializer_range,
)
def prepare_config_and_inputs_for_decoder(self):
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = self.prepare_config_and_inputs()
config.is_decoder = True
encoder_hidden_states = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
encoder_attention_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def create_and_check_model(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerModel(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
result = model(input_ids, token_type_ids=token_type_ids)
result = model(input_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_model_as_decoder(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.add_cross_attention = True
model = RoFormerModel(config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
)
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
encoder_hidden_states=encoder_hidden_states,
)
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids)
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
def create_and_check_for_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
model = RoFormerForCausalLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_for_generate_causal_lm(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
):
model = RoFormerForCausalLM(config=config).to(torch_device).eval()
torch.manual_seed(0)
output_without_past_cache = model.generate(
input_ids[:1], num_beams=2, max_length=15, do_sample=True, use_cache=False
)
torch.manual_seed(0)
output_with_past_cache = model.generate(input_ids[:1], num_beams=2, max_length=15, do_sample=True)
self.parent.assertTrue(torch.all(output_with_past_cache == output_without_past_cache))
def create_and_check_for_masked_lm(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerForMaskedLM(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
def create_and_check_decoder_model_past_large_inputs(
self,
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
):
config.is_decoder = True
config.add_cross_attention = True
model = RoFormerForCausalLM(config=config)
model.to(torch_device)
model.eval()
# first forward pass
outputs = model(
input_ids,
attention_mask=input_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=True,
)
past_key_values = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
next_tokens = ids_tensor((self.batch_size, 3), config.vocab_size)
next_mask = ids_tensor((self.batch_size, 3), vocab_size=2)
# append to next input_ids and
next_input_ids = torch.cat([input_ids, next_tokens], dim=-1)
next_attention_mask = torch.cat([input_mask, next_mask], dim=-1)
output_from_no_past = model(
next_input_ids,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_hidden_states=True,
)["hidden_states"][0]
output_from_past = model(
next_tokens,
attention_mask=next_attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
past_key_values=past_key_values,
output_hidden_states=True,
)["hidden_states"][0]
# select random slice
random_slice_idx = ids_tensor((1,), output_from_past.shape[-1]).item()
output_from_no_past_slice = output_from_no_past[:, -3:, random_slice_idx].detach()
output_from_past_slice = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1])
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(output_from_past_slice, output_from_no_past_slice, atol=1e-3))
def create_and_check_for_question_answering(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
model = RoFormerForQuestionAnswering(config=config)
model.to(torch_device)
model.eval()
result = model(
input_ids,
attention_mask=input_mask,
token_type_ids=token_type_ids,
start_positions=sequence_labels,
end_positions=sequence_labels,
)
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
def create_and_check_for_sequence_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RoFormerForSequenceClassification(config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=sequence_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))
def create_and_check_for_token_classification(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_labels = self.num_labels
model = RoFormerForTokenClassification(config=config)
model.to(torch_device)
model.eval()
result = model(input_ids, attention_mask=input_mask, token_type_ids=token_type_ids, labels=token_labels)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
def create_and_check_for_multiple_choice(
self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
):
config.num_choices = self.num_choices
model = RoFormerForMultipleChoice(config=config)
model.to(torch_device)
model.eval()
multiple_choice_inputs_ids = input_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_token_type_ids = token_type_ids.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
multiple_choice_input_mask = input_mask.unsqueeze(1).expand(-1, self.num_choices, -1).contiguous()
result = model(
multiple_choice_inputs_ids,
attention_mask=multiple_choice_input_mask,
token_type_ids=multiple_choice_token_type_ids,
labels=choice_labels,
)
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
def prepare_config_and_inputs_for_common(self):
config_and_inputs = self.prepare_config_and_inputs()
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
) = config_and_inputs
inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class RoFormerModelTest(ModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
all_model_classes = (
(
RoFormerModel,
RoFormerForMaskedLM,
RoFormerForCausalLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
)
if is_torch_available()
else ()
)
all_generative_model_classes = (RoFormerForCausalLM,) if is_torch_available() else ()
pipeline_model_mapping = (
{
"feature-extraction": RoFormerModel,
"fill-mask": RoFormerForMaskedLM,
"question-answering": RoFormerForQuestionAnswering,
"text-classification": RoFormerForSequenceClassification,
"text-generation": RoFormerForCausalLM,
"token-classification": RoFormerForTokenClassification,
"zero-shot": RoFormerForSequenceClassification,
}
if is_torch_available()
else {}
)
def setUp(self):
self.model_tester = RoFormerModelTester(self)
self.config_tester = ConfigTester(self, config_class=RoFormerConfig, hidden_size=37)
def test_config(self):
self.config_tester.run_common_tests()
def test_model(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*config_and_inputs)
def test_for_masked_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*config_and_inputs)
def test_for_generate_causal_lm(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_generate_causal_lm(*config_and_inputs)
def test_for_multiple_choice(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*config_and_inputs)
def test_decoder_model_past_with_large_inputs(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_decoder_model_past_large_inputs(*config_and_inputs)
def test_for_question_answering(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*config_and_inputs)
def test_for_sequence_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*config_and_inputs)
def test_for_token_classification(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*config_and_inputs)
def test_model_as_decoder(self):
config_and_inputs = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*config_and_inputs)
def test_model_as_decoder_with_default_input_mask(self):
# This regression test was failing with PyTorch < 1.3
(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
) = self.model_tester.prepare_config_and_inputs_for_decoder()
input_mask = None
self.model_tester.create_and_check_model_as_decoder(
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
@slow
def test_model_from_pretrained(self):
model_name = "junnyu/roformer_chinese_small"
model = RoFormerModel.from_pretrained(model_name)
self.assertIsNotNone(model)
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant(self):
pass
@unittest.skip(
reason="This architecure seem to not compute gradients properly when using GC, check: https://github.com/huggingface/transformers/pull/27124"
)
def test_training_gradient_checkpointing_use_reentrant_false(self):
pass
@require_torch
class RoFormerModelIntegrationTest(unittest.TestCase):
@slow
def test_inference_masked_lm(self):
model = RoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base")
input_ids = torch.tensor([[0, 1, 2, 3, 4, 5]])
with torch.no_grad():
output = model(input_ids)[0]
# TODO Replace vocab size
vocab_size = 50000
expected_shape = torch.Size((1, 6, vocab_size))
self.assertEqual(output.shape, expected_shape)
# TODO Replace values below with what was printed above.
expected_slice = torch.tensor(
[[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]
)
torch.testing.assert_close(output[:, :3, :3], expected_slice, rtol=1e-4, atol=1e-4)
@require_torch
class RoFormerSinusoidalPositionalEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_basic(self):
input_ids = torch.tensor([[4, 10]], dtype=torch.long, device=torch_device)
emb1 = RoFormerSinusoidalPositionalEmbedding(num_positions=6, embedding_dim=6).to(torch_device)
emb = emb1(input_ids.shape)
desired_weights = torch.tensor(
[[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]]
).to(torch_device)
self.assertTrue(
torch.allclose(emb, desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{emb[0]}\n",
)
def test_positional_emb_weights_against_roformer(self):
desired_weights = torch.tensor(
[
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
[0.8415, 0.8219, 0.8020, 0.7819, 0.7617],
[0.9093, 0.9364, 0.9581, 0.9749, 0.9870],
]
).to(torch_device)
emb1 = RoFormerSinusoidalPositionalEmbedding(num_positions=512, embedding_dim=512).to(torch_device)
weights = emb1.weight.data[:3, :5].to(torch_device)
self.assertTrue(
torch.allclose(weights, desired_weights, atol=self.tolerance),
msg=f"\nexp:\n{desired_weights}\ngot:\n{weights}\n",
)
@require_torch
class RoFormerSelfAttentionRotaryPositionEmbeddingTest(unittest.TestCase):
tolerance = 1e-4
def test_apply_rotary_position_embeddings(self):
# 2,12,16,64
query_layer = (
torch.arange(2 * 12 * 16 * 64, dtype=torch.float, device=torch_device).reshape(2, 12, 16, 64) / 100
).to(torch_device)
key_layer = (
-torch.arange(2 * 12 * 16 * 64, dtype=torch.float, device=torch_device).reshape(2, 12, 16, 64) / 100
).to(torch_device)
embed_positions = RoFormerSinusoidalPositionalEmbedding(num_positions=32, embedding_dim=64).to(torch_device)
sinusoidal_pos = embed_positions([2, 16, 768])[None, None, :, :]
query_layer, key_layer = RoFormerSelfAttention.apply_rotary_position_embeddings(
sinusoidal_pos, query_layer, key_layer
)
desired_query_layer = torch.tensor(
[
[0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700],
[-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343],
[-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985],
[-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871],
[0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980],
[3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253],
]
).to(torch_device)
desired_key_layer = torch.tensor(
[
[0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700],
[0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343],
[1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985],
[2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871],
[-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980],
[-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253],
]
).to(torch_device)
self.assertTrue(
torch.allclose(query_layer[0, 0, :6, :8], desired_query_layer, atol=self.tolerance),
msg=f"\nexp:\n{desired_query_layer}\ngot:\n{query_layer}\n",
)
self.assertTrue(
torch.allclose(key_layer[0, 0, :6, :8], desired_key_layer, atol=self.tolerance),
msg=f"\nexp:\n{desired_key_layer}\ngot:\n{key_layer}\n",
)
| transformers/tests/models/roformer/test_modeling_roformer.py/0 | {
"file_path": "transformers/tests/models/roformer/test_modeling_roformer.py",
"repo_id": "transformers",
"token_count": 11342
} |
# coding=utf-8
# Copyright 2023 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import SeamlessM4TFeatureExtractor, is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_torch_available():
import torch
global_rng = random.Random()
# Copied from tests.models.whisper.test_feature_extraction_whisper.floats_list
def floats_list(shape, scale=1.0, rng=None, name=None):
"""Creates a random float32 tensor"""
if rng is None:
rng = global_rng
values = []
for batch_idx in range(shape[0]):
values.append([])
for _ in range(shape[1]):
values[-1].append(rng.random() * scale)
return values
@require_torch
class SeamlessM4TFeatureExtractionTester:
def __init__(
self,
parent,
batch_size=7,
min_seq_length=400,
max_seq_length=2000,
feature_size=10,
padding_value=0.0,
sampling_rate=4_000,
return_attention_mask=True,
do_normalize=True,
stride=2,
):
self.parent = parent
self.batch_size = batch_size
self.min_seq_length = min_seq_length
self.max_seq_length = max_seq_length
self.seq_length_diff = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
self.padding_value = padding_value
self.sampling_rate = sampling_rate
self.return_attention_mask = return_attention_mask
self.do_normalize = do_normalize
self.feature_size = feature_size
self.stride = stride
self.num_mel_bins = feature_size
def prepare_feat_extract_dict(self):
return {
"feature_size": self.feature_size,
"num_mel_bins": self.num_mel_bins,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"stride": self.stride,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTester.prepare_inputs_for_common
def prepare_inputs_for_common(self, equal_length=False, numpify=False):
def _flatten(list_of_lists):
return list(itertools.chain(*list_of_lists))
if equal_length:
speech_inputs = [floats_list((self.max_seq_length, self.feature_size)) for _ in range(self.batch_size)]
else:
# make sure that inputs increase in size
speech_inputs = [
floats_list((x, self.feature_size))
for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff)
]
if numpify:
speech_inputs = [np.asarray(x) for x in speech_inputs]
return speech_inputs
@require_torch
class SeamlessM4TFeatureExtractionTest(SequenceFeatureExtractionTestMixin, unittest.TestCase):
feature_extraction_class = SeamlessM4TFeatureExtractor if is_speech_available() else None
def setUp(self):
self.feat_extract_tester = SeamlessM4TFeatureExtractionTester(self)
def test_feat_extract_from_and_save_pretrained(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
saved_file = feat_extract_first.save_pretrained(tmpdirname)[0]
check_json_file_has_correct_format(saved_file)
feat_extract_second = self.feature_extraction_class.from_pretrained(tmpdirname)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertDictEqual(dict_first, dict_second)
def test_feat_extract_to_json_file(self):
feat_extract_first = self.feature_extraction_class(**self.feat_extract_dict)
with tempfile.TemporaryDirectory() as tmpdirname:
json_file_path = os.path.join(tmpdirname, "feat_extract.json")
feat_extract_first.to_json_file(json_file_path)
feat_extract_second = self.feature_extraction_class.from_json_file(json_file_path)
dict_first = feat_extract_first.to_dict()
dict_second = feat_extract_second.to_dict()
self.assertEqual(dict_first, dict_second)
def test_call_numpy(self):
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(np_speech_inputs, padding=True, return_tensors="np").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[0] == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size * feature_extractor.stride)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs[0], return_tensors="np").input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="np").input_features
encoded_sequences_2 = feature_extractor(np_speech_inputs, return_tensors="np").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_call_with_padded_input_not_multiple_of_stride(self):
# same as test_call_numpy but with stride=6 and pad_to_multiple_of=8
# the input sizes 800, 1400 and 200 are a multiple of pad_to_multiple_of but not a multiple of stride
# therefore remainder = num_frames % self.stride will not be zero and must be subtracted from num_frames
stride = 6
pad_to_multiple_of = 8
feature_extractor_args = self.feat_extract_tester.prepare_feat_extract_dict()
feature_extractor_args["stride"] = stride
feature_extractor = self.feature_extraction_class(**feature_extractor_args)
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test feature size and attention mask size
output = feature_extractor(np_speech_inputs, pad_to_multiple_of=pad_to_multiple_of, return_tensors="np")
input_features = output.input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[0] == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size * feature_extractor.stride)
# same as test_attention_mask
attention_mask = output.attention_mask
self.assertTrue(attention_mask.ndim == 2)
self.assertTrue(attention_mask.shape[0] == 3)
self.assertTrue(attention_mask.shape[-1] == input_features.shape[1])
# Test not batched input
encoded_sequences_1 = feature_extractor(
speech_inputs[0], pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
encoded_sequences_2 = feature_extractor(
np_speech_inputs[0], pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
self.assertTrue(np.allclose(encoded_sequences_1, encoded_sequences_2, atol=1e-3))
# Test batched
encoded_sequences_1 = feature_extractor(
speech_inputs, pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
encoded_sequences_2 = feature_extractor(
np_speech_inputs, pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
np_speech_inputs = np.asarray(speech_inputs)
encoded_sequences_1 = feature_extractor(
speech_inputs, pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
encoded_sequences_2 = feature_extractor(
np_speech_inputs, pad_to_multiple_of=pad_to_multiple_of, return_tensors="np"
).input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
self.assertTrue(np.allclose(enc_seq_1, enc_seq_2, atol=1e-3))
def test_call_without_attention_mask(self):
feature_extractor_args = self.feat_extract_tester.prepare_feat_extract_dict()
feature_extractor = self.feature_extraction_class(**feature_extractor_args)
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test attention mask when passing no attention mask to forward call
output = feature_extractor(np_speech_inputs, padding=True, return_tensors="np", return_attention_mask=False)
self.assertTrue("attention_mask" not in output)
# Test attention mask when no attention mask by default
feature_extractor_args["return_attention_mask"] = False
feature_extractor = self.feature_extraction_class(**feature_extractor_args)
output = feature_extractor(np_speech_inputs, padding=True, return_tensors="np", return_attention_mask=False)
self.assertTrue("attention_mask" not in output)
def test_attention_mask(self):
# test attention mask has the right output shape
feature_extractor_args = self.feat_extract_tester.prepare_feat_extract_dict()
feature_extractor = self.feature_extraction_class(**feature_extractor_args)
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
np_speech_inputs = [np.asarray(speech_input) for speech_input in speech_inputs]
# Test attention mask when passing it to forward call
output = feature_extractor(np_speech_inputs, padding=True, return_tensors="np")
input_features = output.input_features
attention_mask = output.attention_mask
self.assertTrue(attention_mask.ndim == 2)
self.assertTrue(attention_mask.shape[0] == 3)
self.assertTrue(attention_mask.shape[-1] == input_features.shape[1])
@require_torch
def test_call_torch(self):
import torch
# Tests that all call wrap to encode_plus and batch_encode_plus
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
# create three inputs of length 800, 1000, and 1200
speech_inputs = [floats_list((1, x))[0] for x in range(800, 1400, 200)]
pt_speech_inputs = [torch.tensor(speech_input) for speech_input in speech_inputs]
# Test feature size
input_features = feature_extractor(pt_speech_inputs, padding=True, return_tensors="pt").input_features
self.assertTrue(input_features.ndim == 3)
self.assertTrue(input_features.shape[0] == 3)
self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size * feature_extractor.stride)
# Test not batched input
encoded_sequences_1 = feature_extractor(speech_inputs[0], return_tensors="pt").input_features
encoded_sequences_2 = feature_extractor(pt_speech_inputs[0], return_tensors="pt").input_features
torch.testing.assert_close(encoded_sequences_1, encoded_sequences_2, rtol=1e-3, atol=1e-3)
# Test batched
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="pt").input_features
encoded_sequences_2 = feature_extractor(pt_speech_inputs, return_tensors="pt").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
torch.testing.assert_close(enc_seq_1, enc_seq_2, rtol=1e-3, atol=1e-3)
# Test 2-D numpy arrays are batched.
speech_inputs = [floats_list((1, x))[0] for x in (800, 800, 800)]
pt_speech_inputs = torch.tensor(speech_inputs)
encoded_sequences_1 = feature_extractor(speech_inputs, return_tensors="pt").input_features
encoded_sequences_2 = feature_extractor(pt_speech_inputs, return_tensors="pt").input_features
for enc_seq_1, enc_seq_2 in zip(encoded_sequences_1, encoded_sequences_2):
torch.testing.assert_close(enc_seq_1, enc_seq_2, rtol=1e-3, atol=1e-3)
@require_torch
# Copied from tests.models.whisper.test_feature_extraction_whisper.WhisperFeatureExtractionTest.test_double_precision_pad
def test_double_precision_pad(self):
import torch
feature_extractor = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
np_speech_inputs = np.random.rand(100, 32).astype(np.float64)
py_speech_inputs = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
np_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="np")
self.assertTrue(np_processed.input_features.dtype == np.float32)
pt_processed = feature_extractor.pad([{"input_features": inputs}], return_tensors="pt")
self.assertTrue(pt_processed.input_features.dtype == torch.float32)
def _load_datasample(self, id):
ds = load_dataset("hf-internal-testing/librispeech_asr_dummy", "clean", split="validation")
# automatic decoding with librispeech
speech_sample = ds.sort("id")[id]["audio"]["array"]
return torch.from_numpy(speech_sample).unsqueeze(0)
def test_integration(self):
# fmt: off
EXPECTED_INPUT_FEATURES = torch.tensor(
[
-1.5621, -1.4236, -1.3335, -1.3991, -1.2881, -1.1133, -0.9710, -0.8895,
-0.8280, -0.7376, -0.7194, -0.6896, -0.6849, -0.6788, -0.6545, -0.6610,
-0.6566, -0.5738, -0.5252, -0.5533, -0.5887, -0.6116, -0.5971, -0.4956,
-0.2881, -0.1512, 0.0299, 0.1762, 0.2728, 0.2236
]
)
# fmt: on
input_speech = self._load_datasample(10)
feature_extractor = SeamlessM4TFeatureExtractor()
input_features = feature_extractor(input_speech, return_tensors="pt").input_features
feature_extractor(input_speech, return_tensors="pt").input_features[0, 5, :30]
self.assertEqual(input_features.shape, (1, 279, 160))
torch.testing.assert_close(input_features[0, 5, :30], EXPECTED_INPUT_FEATURES, rtol=1e-4, atol=1e-4)
def test_zero_mean_unit_variance_normalization_trunc_np_longest(self):
feat_extract = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict())
audio = self._load_datasample(1)
audio = ((audio - audio.min()) / (audio.max() - audio.min())) * 65535 # Rescale to [0, 65535] to show issue
audio = feat_extract.zero_mean_unit_var_norm([audio], attention_mask=None)[0]
self.assertTrue((audio.mean() < 1e-3).all())
self.assertTrue(((audio.var() - 1).abs() < 1e-3).all())
| transformers/tests/models/seamless_m4t/test_feature_extraction_seamless_m4t.py/0 | {
"file_path": "transformers/tests/models/seamless_m4t/test_feature_extraction_seamless_m4t.py",
"repo_id": "transformers",
"token_count": 7174
} |
Subsets and Splits