content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('api', '0026_event_image'), ] operations = [ migrations.CreateModel( name='EventParticipation', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('ranking', models.PositiveIntegerField(null=True, verbose_name='Ranking', blank=True)), ('song_ranking', models.PositiveIntegerField(null=True, verbose_name='Song Ranking', blank=True)), ('points', models.PositiveIntegerField(null=True, verbose_name='Points', blank=True)), ('account', models.ForeignKey(related_name='events', to='api.Account')), ('event', models.ForeignKey(related_name='participations', to='api.Event')), ], options={ }, bases=(models.Model,), ), migrations.AlterUniqueTogether( name='eventparticipation', unique_together=set([('event', 'account')]), ), migrations.AlterField( model_name='card', name='event', field=models.ForeignKey(related_name='cards', blank=True, to='api.Event', null=True), preserve_default=True, ), ]
36.589744
114
0.585144
[ "Apache-2.0" ]
MagiCircles/SchoolIdolAPI
api/migrations/0027_auto_20150227_2321.py
1,427
Python
# import the definition of the steps and input files: from Configuration.PyReleaseValidation.relval_steps import * # here only define the workflows as a combination of the steps defined above: workflows = Matrix() # each workflow defines a name and a list of steps to be done. # if no explicit name/label given for the workflow (first arg), # the name of step1 will be used from Configuration.PyReleaseValidation.relval_upgrade import workflows as _upgrade_workflows #just define all of them #WFs to run in IB: # 2017 (ele guns 10, 35, 1000; pho guns 10, 35; mu guns 1, 10, 100, 1000, QCD 3TeV, QCD Flat) # (ZMM, TTbar, ZEE, MinBias, TTbar PU, ZEE PU, TTbar design) # (TTbar trackingOnly, trackingRun2, trackingOnlyRun2, trackingLowPU, pixelTrackingOnly) # 2018 (ele guns 10, 35, 1000; pho guns 10, 35; mu guns 1, 10, 100, 1000, QCD 3TeV, QCD Flat) # 2018 (ZMM, TTbar, ZEE, MinBias, TTbar PU, ZEE PU, TTbar design) # (TTbar trackingOnly, pixelTrackingOnly) # (HE collapse: TTbar, TTbar PU, TTbar design) # (ParkingBPH: TTbar) # (Patatrack pixel-only: ZMM - on CPU, on GPU, both, auto) # (Patatrack pixel-only: TTbar - on CPU, on GPU, both, auto) # (Patatrack ECAL-only: TTbar - on CPU, on GPU, both, auto) # (Patatrack HCAL-only: TTbar - on CPU, on GPU, both, auto) # 2021 (ZMM, TTbar, ZEE, MinBias, TTbar PU, TTbar PU premix, ZEE PU, TTbar design) # (TTbar trackingMkFit) # (Patatrack pixel-only: ZMM - on CPU, on GPU, both, auto) # (Patatrack pixel-only: TTbar - on CPU, on GPU, both, auto) # (Patatrack ECAL-only: TTbar - on CPU, on GPU, both, auto) # (Patatrack HCAL-only: TTbar - on CPU, on GPU, both, auto) # 2023 (TTbar, TTbar PU, TTbar PU premix) # 2024 (TTbar, TTbar PU, TTbar PU premix) numWFIB = [10001.0,10002.0,10003.0,10004.0,10005.0,10006.0,10007.0,10008.0,10009.0,10059.0,10071.0, 10042.0,10024.0,10025.0,10026.0,10023.0,10224.0,10225.0,10424.0, 10024.1,10024.2,10024.3,10024.4,10024.5, 10801.0,10802.0,10803.0,10804.0,10805.0,10806.0,10807.0,10808.0,10809.0,10859.0,10871.0, 10842.0,10824.0,10825.0,10826.0,10823.0,11024.0,11025.0,11224.0, 10824.1,10824.5, 10824.6,11024.6,11224.6, 10824.8, 10842.501,10842.502, # 10842.503,10842.504, 10824.501,10824.502, # 10824.503,10824.504, # 10824.511,10824.512,10824.513,10824.514, # 10824.521,10824.522,10824.523,10824.524, 11650.0,11634.0,11646.0,11640.0,11834.0,11834.99,11846.0,12024.0, 11634.7, 11650.501,11650.502, # 11650.503,11650.504, 11634.501,11634.502, # 11634.503,11634.504, # 11634.511,11634.512,11634.513,11634.514, # 11634.521,11634.522,11634.523,11634.524, 12434.0,12634.0,12634.99, 12834.0,13034.0,13034.99] for numWF in numWFIB: if not numWF in _upgrade_workflows: continue workflows[numWF] = _upgrade_workflows[numWF]
50.5
99
0.649175
[ "Apache-2.0" ]
AlionaD/cmssw
Configuration/PyReleaseValidation/python/relval_2017.py
3,030
Python
import MPS_class as MPS import MPO_class as MPO from ncon import ncon import numpy as np from scipy.linalg import expm #%% def TEBD_evo(MPS_,Lx,Ly,J=1,epsilon=0.1,etrunc=0,chiMAX=256,chiMAXswap=256,info=True): L = Lx*Ly config = np.arange(0,L).reshape(Lx,Ly) theta = (np.pi+2*epsilon) flip_op = np.eye(2)*np.cos(theta/2) - 1j*np.sin(theta/2)*np.array([[0,1],[1,0]]) sigma_z = np.array([[1,0],[0,-1]]) Uprop = expm(-1j*np.kron(sigma_z,-J*sigma_z)).reshape(2,2,2,2) nn_list_forward = [[] for x in range(L)] for x in range(L): i,j = np.where(config == x) if j != Ly-1: nn_list_forward[x].append( config[i,j+1]) if i != Lx-1: nn_list_forward[x].append( config[i+1,j]) nn_list_forward[x] = np.array(nn_list_forward[x]).ravel() nn_list_backward = [[] for x in range(L)] for x in reversed(range(L)): i,j = np.where(config == x) if j != 0: nn_list_backward[x].append( config[i,j-1]) if i != 0: nn_list_backward[x].append( config[i-1,j]) nn_list_backward[x] = np.array(nn_list_backward[x]).ravel() for x in range(L): for nn in nn_list_forward[x]: # If they are nearest neighbours if nn == x+1: shpM1,shpM2 = MPS_.M[x].shape, MPS_.M[nn].shape Theta = ncon([MPS_.M[x],MPS_.M[nn],Uprop],[[-1,2,1],[1,3,-4],[2,3,-2,-3]]) Theta = Theta.reshape(shpM1[0]*shpM1[1], shpM2[1]*shpM2[2]) U,S,V = MPS.svdtruncate(Theta, etrunc, chiMAX,info=info) MPS_.M[x] = U.reshape(shpM1[0],shpM1[1],S.size) MPS_.M[nn] = (np.diag(S)@V).reshape(S.size,shpM2[1],shpM2[2]) else: for index in range(x,nn-1): MPS_.swap(index,chiMAX=chiMAXswap,info=info) shpM1,shpM2 = MPS_.M[nn-1].shape, MPS_.M[nn].shape Theta = ncon([MPS_.M[nn-1],MPS_.M[nn],Uprop],[[-1,2,1],[1,3,-4],[2,3,-2,-3]]) Theta = Theta.reshape(shpM1[0]*shpM1[1], shpM2[1]*shpM2[2]) U,S,V = MPS.svdtruncate(Theta, etrunc, chiMAX,info=info) MPS_.M[nn-1] = ([email protected](S)).reshape(shpM1[0],shpM1[1],S.size) MPS_.M[nn] = V.reshape(S.size,shpM2[1],shpM2[2]) for index in reversed(range(x,nn-1)): MPS_.swap(index,chiMAX=chiMAXswap,info=info) MPS_.M[x] = ncon([MPS_.M[x],flip_op],[[-1,1,-3],[1,-2]]) for x in reversed(range(L)): for nn in nn_list_backward[x]: # If they are nearest neighbours if nn == x-1: shpM1,shpM2 = MPS_.M[nn].shape, MPS_.M[x].shape Theta = ncon([MPS_.M[nn],MPS_.M[x],Uprop],[[-1,2,1],[1,3,-4],[2,3,-2,-3]]) Theta = Theta.reshape(shpM1[0]*shpM1[1], shpM2[1]*shpM2[2]) U,S,V = MPS.svdtruncate(Theta, etrunc, chiMAX,info=info) MPS_.M[nn] = ([email protected](S)).reshape(shpM1[0],shpM1[1],S.size) MPS_.M[x] = (V).reshape(S.size,shpM2[1],shpM2[2]) else: for index in range(x-1,nn,-1): MPS_.swap(index,chiMAX=chiMAXswap,center='i',info=info) shpM1,shpM2 = MPS_.M[nn].shape, MPS_.M[nn+1].shape Theta = ncon([MPS_.M[nn],MPS_.M[nn+1],Uprop],[[-1,2,1],[1,3,-4],[2,3,-2,-3]]) Theta = Theta.reshape(shpM1[0]*shpM1[1], shpM2[1]*shpM2[2]) U,S,V = MPS.svdtruncate(Theta, etrunc, chiMAX,info=info) MPS_.M[nn] = U.reshape(shpM1[0],shpM1[1],S.size) MPS_.M[nn+1] = (np.diag(S)@V).reshape(S.size,shpM2[1],shpM2[2]) for index in reversed(range(x-1,nn,-1)): MPS_.swap(index,chiMAX=chiMAXswap,center='i',info=info) MPS_.M[x] = ncon([MPS_.M[x],flip_op],[[-1,1,-3],[1,-2]]) Lx = 5 Ly = Lx L = Lx*Ly psi_state = MPS.getAllUp(L) mag = [] err = 0. info = True mag.append(MPO.return_LocalMz(psi_state).real.reshape(Lx,Ly)) for k in range(20): print('k',k,np.max(mag[k]-mag[k].T)) for x in psi_state.M: print(x.shape) TEBD_evo(psi_state, Lx, Ly,J = -1j,chiMAX=256,chiMAXswap=256,etrunc=1e-12,info=info) mag.append(MPO.return_LocalMz(psi_state).real.reshape(Lx,Ly)) mag = np.array(mag) #%% from scipy.sparse.linalg import expm_multiply import scipy.sparse as sps import numpy as np import matplotlib.pyplot as plt import seaborn as sns import matplotlib as mpl import seaborn as sns def nested_tensor(lst): if len(lst) == 2: return sps.kron(lst[0],lst[1],format='csc') else: return sps.kron(lst[0], nested_tensor(lst[1:]),format='csc') def spin_op_construct(sigma, j, L): before = [sps.eye(2) for _ in range(j)] mid = [sigma] after = [sps.eye(2) for _ in range(j+1,L)] return nested_tensor(before+mid+after) def int_spin_op_construct(sigma1,sigma2,i1,i2,L): if i2 < i1: i1,i2 = i2,i1 before1 = [sps.eye(2) for _ in range(i1)] mid1 = [sigma1] after1 = [sps.eye(2) for _ in range(i1+1,i2)] mid2 = [sigma2] after2 = [sps.eye(2) for _ in range(i2+1,L)] return nested_tensor(before1+mid1+after1+mid2+after2) def H1(L, epsilon): sigma_x = sps.csc_matrix(np.array([[0,1],[1,0]])) op1 = 0 for i in range(L): op1 += spin_op_construct(-sigma_x*(np.pi/2+epsilon),i,L) return op1 def H2(Lx, Ly, J=1): L = Lx*Ly sigma_z = sps.csc_matrix(np.array([[1,0],[0,-1]])) op2 = 0 config = np.arange(L).reshape(Lx,Ly) for i in range(Lx): for j in range(Ly): nn = [] if i != Lx-1: nn.append(config[i+1,j]) if j != Ly-1: nn.append(config[i,j+1]) op = 0 for x in nn: op += int_spin_op_construct(-J*sigma_z,sigma_z,config[i,j],x,L) op2 += op return op2 def H2_pbc(Lx, Ly, J=1): L = Lx*Ly sigma_z = sps.csc_matrix(np.array([[1,0],[0,-1]])) op2 = 0 config = np.arange(L).reshape(Lx,Ly) for i in range(Lx): for j in range(Ly): nn = [] nn.append(config[(i+1)%(Lx-1),j]) nn.append(config[i,(j+1)%(Ly-1)]) op = 0 for x in nn: op += int_spin_op_construct(-J*sigma_z,sigma_z,config[i,j],x,L) op2 += op return op2 def H2_pbc1D(L, J=1): sigma_z = sps.csc_matrix(np.array([[1,0],[0,-1]])) op2 = 0 for i in range(L): op2 += int_spin_op_construct(-J*sigma_z,sigma_z,i,(i+1)%L,L) return op2 def H2_pbc1D_var(L, J=1): sigma_z = sps.csc_matrix(np.array([[1,0],[0,-1]])) op2 = 0 for i in range(1,L-1): op2 += int_spin_op_construct(-J*sigma_z,sigma_z,i,(i+1),L) op2 += spin_op_construct(-J*0.5*np.eye(2), L-1, L) op2 += spin_op_construct(-J*0.5*np.eye(2), 0, L) return op2 Lx = 4; Ly = Lx; L = Lx*Ly; D = 2**L en = [] mz_config = np.zeros(D) for i,state in enumerate(np.vectorize(np.binary_repr)(np.arange(2**L),L)): mz_config[i] = (L-2*state.count('1'))/L Hdouble_1d = H2_pbc1D(L) Hdouble_1dv = H2_pbc1D_var(L) epsilon = 0.1 Hsingle = H1(L,epsilon) psi0 = np.zeros(D) psi0[0] = 1 psi1dv = [psi0] psi1d = [psi0] for n in range(200): print(n,' ',end='') psi1dv.append(expm_multiply(-1j*Hsingle,expm_multiply(-1j*Hdouble_1dv,psi1dv[-1]))) psi1d.append(expm_multiply(-1j*Hsingle,expm_multiply(-1j*Hdouble_1d,psi1d[-1]))) #%% psi1dv = np.array(psi1dv) psi1d = np.array(psi1d) mag_ED = np.abs(psi1dv)**2@mz_config.reshape(D,1) mag_ED = mag_ED.reshape(mag_ED.size) mag_ED1d = np.abs(psi1d)**2@mz_config.reshape(D,1) mag_ED1d = mag_ED1d.reshape(mag_ED1d.size) plt.plot(np.abs(mag_ED)) plt.plot(np.abs(mag_ED1d)) #%% L1d = np.zeros(psi1d.shape[0]) L2d = np.zeros(psi1d.shape[0]) for x in range(psi1d.shape[0]): if x%2 == 0: k = 0 else: k=-1 L1d[x] = np.abs(psi1d[x,k])**2 L2d[x] = np.abs(psi[x,k])**2 #%% K = (sps.eye(2**L)-1j*Hsingle) U = (sps.eye(2**L)-1j*Hdouble) psi_1 = [] psi_1.append(psi0) for n in range(100): print(n,' ',end='') psi_1.append(K.dot(U.dot(psi_1[-1]))) psi_1[-1] /= np.linalg.norm(psi_1[-1]) psi_1 = np.array(psi_1) mag_ED1 = np.abs(psi_1)**2@mz_config.reshape(D,1) plt.plot(mag_ED) plt.plot(mag_ED1)
34.27686
94
0.563472
[ "MIT" ]
alessandro-santini/Tensor-Network
tebd_floquet.py
8,295
Python
""" link: https://leetcode-cn.com/problems/smallest-rectangle-enclosing-black-pixels problem: 给定 0, 1 矩阵,以及一个矩阵中为 1 的点坐标,求包含矩阵中所有的1的最小矩形面积 solution: 暴搜。忽略坐标,直接遍历所有节点,找到上下左右四个边界点,时间O(nm)。 solution-fix: 二分。将x轴投影到y轴,y轴投影到x轴,形成两个一维数组。显然数组形如下图。而 x, y 坐标为界,两侧各为非严格递增和递减 1: +------+ 0: -----+ +----- 四次二分找到递增递减边界,时间复杂度 O(nlogn*mlogm) """ class Solution: def minArea(self, image: List[List[str]], x: int, y: int) -> int: if not image or not image[0]: return 0 n, m = len(image), len(image[0]) a, b, c, d = n, m, 0, 0 for i in range(n): for j in range(m): if image[i][j] == '1': a = min(a, i) b = min(b, j) c = max(c, i) d = max(d, j) return (c + 1 - a) * (d + 1 - b) # --- class Solution: def minArea(self, image: List[List[str]], x: int, y: int) -> int: if not image or not image[0]: return 0 n, m = len(image), len(image[0]) def search_column(l: int, r: int, up: bool) -> int: k = r if up else l while l <= r: mid, mid_k = (l + r) >> 1, 0 for i in range(m): if image[mid][i] == '1': mid_k = 1 break if mid_k: k = min(k, mid) if up else max(k, mid) if mid_k ^ up: l = mid + 1 else: r = mid - 1 return k def search_row(l: int, r: int, up: bool) -> int: k = r if up else l while l <= r: mid, mid_k = (l + r) >> 1, 0 for i in range(n): if image[i][mid] == '1': mid_k = 1 break if mid_k: k = min(k, mid) if up else max(k, mid) if mid_k ^ up: l = mid + 1 else: r = mid - 1 return k a = search_column(0, x, True) b = search_row(0, y, True) c = search_column(x, n - 1, False) d = search_row(y, m - 1, False) return (c + 1 - a) * (d + 1 - b)
31.053333
80
0.396737
[ "Apache-2.0" ]
windniw/just-for-fun
leetcode/302.py
2,601
Python
#!/usr/bin/env python # # Copyright (c) 2016, The OpenThread Authors. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import time import unittest import node import config import command LEADER = 1 ROUTER1 = 2 DUT_ROUTER2 = 3 ROUTER3 = 4 MED1 = 5 MED1_TIMEOUT = 3 class Cert_5_3_3_AddressQuery(unittest.TestCase): def setUp(self): self.simulator = config.create_default_simulator() self.nodes = {} for i in range(1,6): self.nodes[i] = node.Node(i, (i == MED1), simulator=self.simulator) self.nodes[LEADER].set_panid() self.nodes[LEADER].set_mode('rsdn') self.nodes[LEADER].add_whitelist(self.nodes[ROUTER1].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[DUT_ROUTER2].get_addr64()) self.nodes[LEADER].add_whitelist(self.nodes[ROUTER3].get_addr64()) self.nodes[LEADER].enable_whitelist() self.nodes[ROUTER1].set_panid() self.nodes[ROUTER1].set_mode('rsdn') self.nodes[ROUTER1].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ROUTER1].enable_whitelist() self.nodes[ROUTER1].set_router_selection_jitter(1) self.nodes[DUT_ROUTER2].set_panid() self.nodes[DUT_ROUTER2].set_mode('rsdn') self.nodes[DUT_ROUTER2].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[DUT_ROUTER2].add_whitelist(self.nodes[ROUTER3].get_addr64()) self.nodes[DUT_ROUTER2].add_whitelist(self.nodes[MED1].get_addr64()) self.nodes[DUT_ROUTER2].enable_whitelist() self.nodes[DUT_ROUTER2].set_router_selection_jitter(1) self.nodes[ROUTER3].set_panid() self.nodes[ROUTER3].set_mode('rsdn') self.nodes[ROUTER3].add_whitelist(self.nodes[LEADER].get_addr64()) self.nodes[ROUTER3].add_whitelist(self.nodes[DUT_ROUTER2].get_addr64()) self.nodes[ROUTER3].enable_whitelist() self.nodes[ROUTER3].set_router_selection_jitter(1) self.nodes[MED1].set_panid() self.nodes[MED1].set_mode('rsn') self.nodes[MED1].add_whitelist(self.nodes[DUT_ROUTER2].get_addr64()) self.nodes[MED1].set_timeout(MED1_TIMEOUT) self.nodes[MED1].enable_whitelist() def tearDown(self): for node in list(self.nodes.values()): node.stop() del self.nodes del self.simulator def test(self): # 1 self.nodes[LEADER].start() self.simulator.go(5) self.assertEqual(self.nodes[LEADER].get_state(), 'leader') self.nodes[ROUTER1].start() self.nodes[DUT_ROUTER2].start() self.nodes[ROUTER3].start() self.nodes[MED1].start() self.simulator.go(5) self.assertEqual(self.nodes[ROUTER1].get_state(), 'router') self.assertEqual(self.nodes[DUT_ROUTER2].get_state(), 'router') self.assertEqual(self.nodes[ROUTER3].get_state(), 'router') self.assertEqual(self.nodes[MED1].get_state(), 'child') # 2 # Flush the message queue to avoid possible impact on follow-up verification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) router3_mleid = self.nodes[ROUTER3].get_ip6_address(config.ADDRESS_TYPE.ML_EID) self.assertTrue(self.nodes[MED1].ping(router3_mleid)) # Verify DUT_ROUTER2 sent an Address Query Request to the Realm local address. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) msg = dut_messages.next_coap_message('0.02', '/a/aq') command.check_address_query(msg, self.nodes[DUT_ROUTER2], config.REALM_LOCAL_ALL_ROUTERS_ADDRESS) # 3 # Wait the finish of address resolution traffic triggerred by previous ping. self.simulator.go(5) # Flush the message queue to avoid possible impact on follow-up verification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) med1_mleid = self.nodes[MED1].get_ip6_address(config.ADDRESS_TYPE.ML_EID) self.assertTrue(self.nodes[ROUTER1].ping(med1_mleid)) # Verify DUT_ROUTER2 responded with an Address Notification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) msg = dut_messages.next_coap_message('0.02', '/a/an') command.check_address_notification(msg, self.nodes[DUT_ROUTER2], self.nodes[ROUTER1]) # 4 # Wait the finish of address resolution traffic triggerred by previous ping. self.simulator.go(5) # Flush the message queue to avoid possible impact on follow-up verification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) self.assertTrue(self.nodes[MED1].ping(router3_mleid)) # Verify DUT_ROUTER2 didn't send an Address Query Request. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) msg = dut_messages.next_coap_message('0.02', '/a/aq', False) assert msg is None, "The Address Query Request is not expected." # 5 self.nodes[ROUTER3].stop() # Wait for the Leader to expire its Router ID. # MAX_NEIGHBOR_AGE + INFINITE_COST_TIMEOUT + ID_REUSE_DELAY + propagation time + transmission time ~ 580s. self.simulator.go(580) # Flush the message queue to avoid possible impact on follow-up verification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) self.assertFalse(self.nodes[MED1].ping(router3_mleid)) # Verify DUT_ROUTER2 sent an Address Query Request to the Realm local address. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) msg = dut_messages.next_coap_message('0.02', '/a/aq') command.check_address_query(msg, self.nodes[DUT_ROUTER2], config.REALM_LOCAL_ALL_ROUTERS_ADDRESS) # 6 self.nodes[MED1].stop() self.simulator.go(MED1_TIMEOUT) # Flush the message queue to avoid possible impact on follow-up verification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) self.assertFalse(self.nodes[ROUTER1].ping(med1_mleid)) self.assertFalse(self.nodes[ROUTER1].ping(med1_mleid)) # Verify DUT_ROUTER2 didn't respond with an Address Notification. dut_messages = self.simulator.get_messages_sent_by(DUT_ROUTER2) msg = dut_messages.next_coap_message('0.02', '/a/an', False) assert msg is None, "The Address Notification is not expected." if __name__ == '__main__': unittest.main()
43.037838
114
0.706104
[ "BSD-3-Clause" ]
VictorAtPL/openthread
tests/scripts/thread-cert/Cert_5_3_03_AddressQuery.py
7,962
Python
import re from haystack.inputs import Exact, Clean, BaseInput from api.helpers.parse_helper import has_balanced_parentheses, matched_parens class ElasticSearchExtendedAutoQuery(BaseInput): """ A convenience class that handles common user queries. In addition to cleaning all tokens, it handles double quote bits as exact matches & terms with '-' in front as NOT queries. """ input_type_name = 'auto_query' post_process = False exact_match_re = re.compile(r'"(?P<phrase>.*?)"') uncleaned_tokens = [ 'OR', 'AND', 'NOT', 'TO', ] to_be_removed_special_chars_translation_table = {ord(c): None for c in matched_parens} def prepare(self, query_obj): query_string = super(ElasticSearchExtendedAutoQuery, self).prepare(query_obj) # Remove parens if they are not balanced if not has_balanced_parentheses(query_string): query_string = query_string.translate(self.to_be_removed_special_chars_translation_table) exacts = self.exact_match_re.findall(query_string) tokens = [] query_bits = [] for rough_token in self.exact_match_re.split(query_string): if not rough_token: continue elif rough_token not in exacts: # We have something that's not an exact match but may have more # than on word in it. tokens.extend(rough_token.split(' ')) else: tokens.append(rough_token) for token in tokens: if not token: continue if token in exacts: query_bits.append(Exact(token, clean=True).prepare(query_obj)) elif token in self.uncleaned_tokens: query_bits.append(token) else: query_bits.append(Clean(token).prepare(query_obj)) return u' '.join(query_bits)
34.5
101
0.630952
[ "MIT" ]
geometalab/G4SE-Compass
compass-api/G4SE/api/helpers/input.py
1,932
Python
"""Mark channels in an existing BIDS dataset as "bad". example usage: $ mne_bids mark_bad_channels --ch_name="MEG 0112" --description="noisy" \ --ch_name="MEG 0131" --description="flat" \ --subject_id=01 --task=experiment --session=test \ --bids_root=bids_root --overwrite """ # Authors: Richard Höchenberger <[email protected]> # # License: BSD-3-Clause from mne.utils import logger import mne_bids from mne_bids.config import reader from mne_bids import BIDSPath, mark_bad_channels def run(): """Run the mark_bad_channels command.""" from mne.commands.utils import get_optparser parser = get_optparser(__file__, usage="usage: %prog options args", prog_prefix='mne_bids', version=mne_bids.__version__) parser.add_option('--ch_name', dest='ch_names', action='append', default=[], help='The names of the bad channels. If multiple ' 'channels are bad, pass the --ch_name parameter ' 'multiple times.') parser.add_option('--description', dest='descriptions', action='append', default=[], help='Descriptions as to why the channels are bad. ' 'Must match the number of bad channels provided. ' 'Pass multiple times to supply more than one ' 'value in that case.') parser.add_option('--bids_root', dest='bids_root', help='The path of the folder containing the BIDS ' 'dataset') parser.add_option('--subject_id', dest='subject', help=('Subject name')) parser.add_option('--session_id', dest='session', help='Session name') parser.add_option('--task', dest='task', help='Task name') parser.add_option('--acq', dest='acquisition', help='Acquisition parameter') parser.add_option('--run', dest='run', help='Run number') parser.add_option('--proc', dest='processing', help='Processing label.') parser.add_option('--rec', dest='recording', help='Recording name') parser.add_option('--type', dest='datatype', help='Recording data type, e.g. meg, ieeg or eeg') parser.add_option('--suffix', dest='suffix', help='The filename suffix, i.e. the last part before ' 'the extension') parser.add_option('--ext', dest='extension', help='The filename extension, including the leading ' 'period, e.g. .fif') parser.add_option('--overwrite', dest='overwrite', action='store_true', help='Replace existing channel status entries') parser.add_option('--verbose', dest='verbose', action='store_true', help='Whether do generate additional diagnostic output') opt, args = parser.parse_args() if args: parser.print_help() parser.error(f'Please do not specify arguments without flags. ' f'Got: {args}.\n') if opt.bids_root is None: parser.print_help() parser.error('You must specify bids_root') if opt.ch_names is None: parser.print_help() parser.error('You must specify some --ch_name parameters.') ch_names = [] if opt.ch_names == [''] else opt.ch_names bids_path = BIDSPath(subject=opt.subject, session=opt.session, task=opt.task, acquisition=opt.acquisition, run=opt.run, processing=opt.processing, recording=opt.recording, datatype=opt.datatype, suffix=opt.suffix, extension=opt.extension, root=opt.bids_root) bids_paths = bids_path.match() # Only keep data we can actually read & write. allowed_extensions = list(reader.keys()) bids_paths = [p for p in bids_paths if p.extension in allowed_extensions] if not bids_paths: logger.info('No matching files found. Please consider using a less ' 'restrictive set of entities to broaden the search.') return # XXX should be return with an error code? logger.info(f'Marking channels {", ".join(ch_names)} as bad in ' f'{len(bids_paths)} recording(s) …') for bids_path in bids_paths: logger.info(f'Processing: {bids_path.basename}') mark_bad_channels(ch_names=ch_names, descriptions=opt.descriptions, bids_path=bids_path, overwrite=opt.overwrite, verbose=opt.verbose) if __name__ == '__main__': run()
43.690265
79
0.569374
[ "BSD-3-Clause" ]
adam2392/mne-bids
mne_bids/commands/mne_bids_mark_bad_channels.py
4,940
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys import json import os from pymisp import ExpandedPyMISP from settings import url, key, ssl, outputdir, filters, valid_attribute_distribution_levels try: from settings import with_distribution except ImportError: with_distribution = False try: from settings import include_deleted except ImportError: include_deleted = False try: from settings import exclude_attribute_types except ImportError: exclude_attribute_types = [] valid_attribute_distributions = [] def init(): # If we have an old settings.py file then this variable won't exist global valid_attribute_distributions try: valid_attribute_distributions = [int(v) for v in valid_attribute_distribution_levels] except Exception: valid_attribute_distributions = [0, 1, 2, 3, 4, 5] return ExpandedPyMISP(url, key, ssl) def saveEvent(event): try: with open(os.path.join(outputdir, f'{event["Event"]["uuid"]}.json'), 'w') as f: json.dump(event, f, indent=2) except Exception as e: print(e) sys.exit('Could not create the event dump.') def saveHashes(hashes): try: with open(os.path.join(outputdir, 'hashes.csv'), 'w') as hashFile: for element in hashes: hashFile.write('{},{}\n'.format(element[0], element[1])) except Exception as e: print(e) sys.exit('Could not create the quick hash lookup file.') def saveManifest(manifest): try: manifestFile = open(os.path.join(outputdir, 'manifest.json'), 'w') manifestFile.write(json.dumps(manifest)) manifestFile.close() except Exception as e: print(e) sys.exit('Could not create the manifest file.') if __name__ == '__main__': misp = init() try: events = misp.search_index(minimal=True, **filters, pythonify=False) except Exception as e: print(e) sys.exit("Invalid response received from MISP.") if len(events) == 0: sys.exit("No events returned.") manifest = {} hashes = [] counter = 1 total = len(events) for event in events: try: e = misp.get_event(event['uuid'], deleted=include_deleted, pythonify=True) if exclude_attribute_types: for i, attribute in enumerate(e.attributes): if attribute.type in exclude_attribute_types: e.attributes.pop(i) e_feed = e.to_feed(valid_distributions=valid_attribute_distributions, with_meta=True, with_distribution=with_distribution) except Exception as err: print(err, event['uuid']) continue if not e_feed: print(f'Invalid distribution {e.distribution}, skipping') continue hashes += [[h, e.uuid] for h in e_feed['Event'].pop('_hashes')] manifest.update(e_feed['Event'].pop('_manifest')) saveEvent(e_feed) print("Event " + str(counter) + "/" + str(total) + " exported.") counter += 1 saveManifest(manifest) print('Manifest saved.') saveHashes(hashes) print('Hashes saved. Feed creation completed.')
31.431373
134
0.639426
[ "BSD-2-Clause" ]
JMoretS21Sec/PyMISP
examples/feed-generator/generate.py
3,206
Python
#!/usr/bin/env python3 from hopla.hoplalib.user.usermodels import HabiticaUser class TestHabiticaUser: def test_get_stats(self): user_test_stat_values = { "buffs": { "str": 50, "int": 50, "per": 3206, "con": 50, "stealth": 0, "streaks": False, "snowball": False, "spookySparkles": False, "shinySeed": False, "seafoam": False }, "training": {"int": 0, "per": 0, "str": 0, "con": 0}, "hp": 50, "mp": 65.7, "exp": 2501, "gp": 1072327.9, "lvl": 121, "class": "wizard", "points": 0, "str": 0, "con": 0, "int": 12, "per": 88, "toNextLevel": 5010, "maxHealth": 50, "maxMP": 304 } user = HabiticaUser(user_dict={"stats": user_test_stat_values}) assert user.get_stats() == user_test_stat_values def test_get_auth(self): user_test_auth_values = { "local": {"username": "hopla", "lowerCaseUsername": "hopla", "email": "[email protected]" }, "timestamps": {"created": "2022-03-22T24:23:38.119Z", "loggedin": "2022-09-18T08:47:45.286Z", "updated": "2022-09-18T14:20:55.530Z" }, "facebook": {}, "google": {}, "apple": {} } user = HabiticaUser(user_dict={"auth": user_test_auth_values}) assert user.get_auth() == user_test_auth_values def test_get_inventory(self): inventory = { "gear": {"equipped": {"back": "back_special_aetherCloak"}, "costume": {"armor": "armor_armoire_bluePartyDress", "body": "body_base_0"}, "owned": {"armor_special_fall2019Healer": True}}, "special": {"goodluck": 9000}, "lastDrop": {"count": 80, "date": "2021-10-12T15:45:30.384Z"}, "pets": {"Cactus-Golden": 0, "Unicorn-Red": -1, "Wolf-CottonCandyPink": 5}, "eggs": {"Dragon": 338, "Nudibranch": 3, "TRex": 0}, "hatchingPotions": {"Desert": 456, "MossyStone": 1}, "food": {"RottenMeat": 846}, "mounts": {"Fox-RoyalPurple": True, "Dragon-Skeleton": None, "Wolf-MossyStone": True}, "quests": {"trex_undead": 0}, "currentPet": "Egg-Base", "currentMount": "Aether-Invisible" } user = HabiticaUser(user_dict={"items": inventory}) assert user.get_inventory() == inventory def test_get_gp(self): gp = 12.0 user = HabiticaUser(user_dict={"stats": {"gp": gp}}) assert user.get_gp() == gp def test_get_mp(self): mp = 112.0 user = HabiticaUser(user_dict={"stats": {"mp": mp}}) assert user.get_mp() == mp def test_get_pets(self): pets = {"Spider-Base": -1, "TRex-Skeleton": 5} user = HabiticaUser(user_dict={"items": {"pets": pets}}) assert user.get_pets() == pets def test_get_mounts(self): mounts = {"Spider-Base": None, "TRex-Skeleton": True} user = HabiticaUser(user_dict={"items": {"mounts": mounts}}) assert user.get_mounts() == mounts def test_get_food(self): food = {"CottonCandyBlue": 10, "Fish": 830} user = HabiticaUser(user_dict={"items": {"food": food}}) assert user.get_food() == food def test_get_hatch_potions(self): hatch_potions = {"Base": 10, "SolarSystem": 1009} user = HabiticaUser(user_dict={"items": {"hatchingPotions": hatch_potions}}) assert user.get_hatch_potions() == hatch_potions def test_get_eggs(self): eggs = {"Fox": 1001, "Nudibranch": 9} user = HabiticaUser(user_dict={"items": {"eggs": eggs}}) assert user.get_eggs() == eggs
41.086957
98
0.544709
[ "Apache-2.0" ]
rickie/hopla
src/tests/hoplalib/user/test_usermodels.py
3,780
Python
import os from celery import Celery from django.conf import settings # set the default Django settings module for the 'celery' program. os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'myshop.settings') app = Celery('myshop') app.config_from_object('django.conf:settings') app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)
28.583333
67
0.781341
[ "MIT" ]
BendalPrathmesh/E-commerce--site
myshop/celery.py
343
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 币安推荐码: 返佣10% https://www.binancezh.pro/cn/register?ref=AIR1GC70 币安合约推荐码: 返佣10% https://www.binancezh.com/cn/futures/ref/51bitquant if you don't have a binance account, you can use the invitation link to register one: https://www.binancezh.com/cn/futures/ref/51bitquant or use the inviation code: 51bitquant 网格交易: 适合币圈的高波动率的品种,适合现货, 如果交易合约,需要注意防止极端行情爆仓。 服务器购买地址: https://www.ucloud.cn/site/global.html?invitation_code=C1x2EA81CD79B8C#dongjing """ from gateway import BinanceSpotHttp, OrderStatus, OrderType, OrderSide from utils import config from utils import utility, round_to from enum import Enum import logging from datetime import datetime class BinanceTrader(object): def __init__(self): """ :param api_key: :param secret: :param trade_type: 交易的类型, only support future and spot. """ self.http_client = BinanceSpotHttp(api_key=config.api_key, secret=config.api_secret, proxy_host=config.proxy_host, proxy_port=config.proxy_port) self.buy_orders = [] # 买单. self.sell_orders = [] # 卖单. def get_bid_ask_price(self): ticker = self.http_client.get_ticker(config.symbol) bid_price = 0 ask_price = 0 if ticker: bid_price = float(ticker.get('bidPrice', 0)) ask_price = float(ticker.get('askPrice', 0)) return bid_price, ask_price def grid_trader(self): """ 执行核心逻辑,网格交易的逻辑. :return: """ bid_price, ask_price = self.get_bid_ask_price() print(f"bid_price: {bid_price}, ask_price: {ask_price}") quantity = round_to(float(config.quantity), float(config.min_qty)) self.buy_orders.sort(key=lambda x: float(x['price']), reverse=True) # 最高价到最低价. self.sell_orders.sort(key=lambda x: float(x['price']), reverse=True) # 最高价到最低价. print(f"buy orders: {self.buy_orders}") print("------------------------------") print(f"sell orders: {self.sell_orders}") buy_delete_orders = [] # 需要删除买单 sell_delete_orders = [] # 需要删除的卖单 # 买单逻辑,检查成交的情况. for buy_order in self.buy_orders: check_order = self.http_client.get_order(buy_order.get('symbol', config.symbol),client_order_id=buy_order.get('clientOrderId')) if check_order: if check_order.get('status') == OrderStatus.CANCELED.value: buy_delete_orders.append(buy_order) print(f"buy order status was canceled: {check_order.get('status')}") elif check_order.get('status') == OrderStatus.FILLED.value: # 买单成交,挂卖单. logging.info(f"买单成交时间: {datetime.now()}, 价格: {check_order.get('price')}, 数量: {check_order.get('origQty')}") sell_price = round_to(float(check_order.get("price")) * (1 + float(config.gap_percent)), float(config.min_price)) if 0 < sell_price < ask_price: # 防止价格 sell_price = round_to(ask_price, float(config.min_price)) new_sell_order = self.http_client.place_order(symbol=config.symbol, order_side=OrderSide.SELL, order_type=OrderType.LIMIT, quantity=quantity, price=sell_price) if new_sell_order: buy_delete_orders.append(buy_order) self.sell_orders.append(new_sell_order) buy_price = round_to(float(check_order.get("price")) * (1 - float(config.gap_percent)), config.min_price) if buy_price > bid_price > 0: buy_price = round_to(bid_price, float(config.min_price)) new_buy_order = self.http_client.place_order(symbol=config.symbol, order_side=OrderSide.BUY, order_type=OrderType.LIMIT, quantity=quantity, price=buy_price) if new_buy_order: self.buy_orders.append(new_buy_order) elif check_order.get('status') == OrderStatus.NEW.value: print("buy order status is: New") else: print(f"buy order status is not above options: {check_order.get('status')}") # 过期或者拒绝的订单删除掉. for delete_order in buy_delete_orders: self.buy_orders.remove(delete_order) # 卖单逻辑, 检查卖单成交情况. for sell_order in self.sell_orders: check_order = self.http_client.get_order(sell_order.get('symbol', config.symbol), client_order_id=sell_order.get('clientOrderId')) if check_order: if check_order.get('status') == OrderStatus.CANCELED.value: sell_delete_orders.append(sell_order) print(f"sell order status was canceled: {check_order.get('status')}") elif check_order.get('status') == OrderStatus.FILLED.value: logging.info( f"卖单成交时间: {datetime.now()}, 价格: {check_order.get('price')}, 数量: {check_order.get('origQty')}") # 卖单成交,先下买单. buy_price = round_to(float(check_order.get("price")) * (1 - float(config.gap_percent)), float(config.min_price)) if buy_price > bid_price > 0: buy_price = round_to(bid_price, float(config.min_price)) new_buy_order = self.http_client.place_order(symbol=config.symbol, order_side=OrderSide.BUY, order_type=OrderType.LIMIT, quantity=quantity, price=buy_price) if new_buy_order: sell_delete_orders.append(sell_order) self.buy_orders.append(new_buy_order) sell_price = round_to(float(check_order.get("price")) * (1 + float(config.gap_percent)), float(config.min_price)) if 0 < sell_price < ask_price: # 防止价格 sell_price = round_to(ask_price, float(config.min_price)) new_sell_order = self.http_client.place_order(symbol=config.symbol, order_side=OrderSide.SELL, order_type=OrderType.LIMIT, quantity=quantity, price=sell_price) if new_sell_order: self.sell_orders.append(new_sell_order) elif check_order.get('status') == OrderStatus.NEW.value: print("sell order status is: New") else: print(f"sell order status is not in above options: {check_order.get('status')}") # 过期或者拒绝的订单删除掉. for delete_order in sell_delete_orders: self.sell_orders.remove(delete_order) # 没有买单的时候. if len(self.buy_orders) <= 0: if bid_price > 0: price = round_to(bid_price * (1 - float(config.gap_percent)), float(config.min_price)) buy_order = self.http_client.place_order(symbol=config.symbol,order_side=OrderSide.BUY, order_type=OrderType.LIMIT, quantity=quantity,price=price) if buy_order: self.buy_orders.append(buy_order) elif len(self.buy_orders) > int(config.max_orders): # 最多允许的挂单数量. # 订单数量比较多的时候. self.buy_orders.sort(key=lambda x: float(x['price']), reverse=False) # 最低价到最高价 delete_order = self.buy_orders[0] order = self.http_client.cancel_order(delete_order.get('symbol'), client_order_id=delete_order.get('clientOrderId')) if order: self.buy_orders.remove(delete_order) # 没有卖单的时候. if len(self.sell_orders) <= 0: if ask_price > 0: price = round_to(ask_price * (1 + float(config.gap_percent)), float(config.min_price)) order = self.http_client.place_order(symbol=config.symbol,order_side=OrderSide.SELL, order_type=OrderType.LIMIT, quantity=quantity,price=price) if order: self.sell_orders.append(order) elif len(self.sell_orders) > int(config.max_orders): # 最多允许的挂单数量. # 订单数量比较多的时候. self.sell_orders.sort(key=lambda x: x['price'], reverse=True) # 最高价到最低价 delete_order = self.sell_orders[0] order = self.http_client.cancel_order(delete_order.get('symbol'), client_order_id=delete_order.get('clientOrderId')) if order: self.sell_orders.remove(delete_order)
44.110553
179
0.586238
[ "MIT" ]
xgy560501/binance_grid_trader
trader/binance_trader.py
9,326
Python
# -*- coding: utf-8 -*- # # Copyright 2017 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Utilities for running Daisy builds on Google Container Builder.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import time from apitools.base.py import encoding from googlecloudsdk.api_lib.cloudbuild import cloudbuild_util from googlecloudsdk.api_lib.cloudbuild import logs as cb_logs from googlecloudsdk.api_lib.cloudresourcemanager import projects_api from googlecloudsdk.api_lib.compute import utils from googlecloudsdk.api_lib.services import enable_api as services_api from googlecloudsdk.api_lib.storage import storage_util from googlecloudsdk.calliope import arg_parsers from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.cloudbuild import execution from googlecloudsdk.command_lib.compute.sole_tenancy import util as sole_tenancy_util from googlecloudsdk.command_lib.projects import util as projects_util from googlecloudsdk.core import exceptions from googlecloudsdk.core import execution_utils from googlecloudsdk.core import log from googlecloudsdk.core import properties from googlecloudsdk.core import resources from googlecloudsdk.core.console import console_io import six _IMAGE_IMPORT_BUILDER = 'gcr.io/compute-image-tools/gce_vm_image_import:{}' _IMAGE_EXPORT_BUILDER = 'gcr.io/compute-image-tools/gce_vm_image_export:{}' _OVF_IMPORT_BUILDER = 'gcr.io/compute-image-tools/gce_ovf_import:{}' _DEFAULT_BUILDER_VERSION = 'release' SERVICE_ACCOUNT_ROLES = [ 'roles/iam.serviceAccountUser', 'roles/iam.serviceAccountTokenCreator'] class FilteredLogTailer(cb_logs.LogTailer): """Subclass of LogTailer that allows for filtering.""" def _PrintLogLine(self, text): """Override PrintLogLine method to use self.filter.""" if self.filter: output_lines = text.splitlines() for line in output_lines: for match in self.filter: if line.startswith(match): self.out.Print(line) break else: self.out.Print(text) class CloudBuildClientWithFiltering(cb_logs.CloudBuildClient): """Subclass of CloudBuildClient that allows filtering.""" def StreamWithFilter(self, build_ref, backoff, output_filter=None): """Stream the logs for a build using whitelist filter. Args: build_ref: Build reference, The build whose logs shall be streamed. backoff: A function that takes the current elapsed time and returns the next sleep length. Both are in seconds. output_filter: List of strings, The output will only be shown if the line starts with one of the strings in the list. Raises: NoLogsBucketException: If the build does not specify a logsBucket. Returns: Build message, The completed or terminated build as read for the final poll. """ build = self.GetBuild(build_ref) log_tailer = FilteredLogTailer.FromBuild(build) log_tailer.filter = output_filter statuses = self.messages.Build.StatusValueValuesEnum working_statuses = [ statuses.QUEUED, statuses.WORKING, ] seconds_between_poll = backoff(0) seconds_elapsed = 0 while build.status in working_statuses: log_tailer.Poll() time.sleep(seconds_between_poll) build = self.GetBuild(build_ref) seconds_elapsed += seconds_between_poll seconds_between_poll = backoff(seconds_elapsed) # Poll the logs one final time to ensure we have everything. We know this # final poll will get the full log contents because GCS is strongly # consistent and Container Builder waits for logs to finish pushing before # marking the build complete. log_tailer.Poll(is_last=True) return build class FailedBuildException(exceptions.Error): """Exception for builds that did not succeed.""" def __init__(self, build): super(FailedBuildException, self).__init__('build {id} completed with status "{status}"'.format( id=build.id, status=build.status)) class SubnetException(exceptions.Error): """Exception for subnet related errors.""" class ImageOperation(object): """Enum representing image operation.""" IMPORT = 'import' EXPORT = 'export' def AddCommonDaisyArgs(parser, add_log_location=True): """Common arguments for Daisy builds.""" if add_log_location: parser.add_argument( '--log-location', help='Directory in Cloud Storage to hold build logs. If not ' 'set, ```gs://<project num>.cloudbuild-logs.googleusercontent.com/``` ' 'is created and used.', ) parser.add_argument( '--timeout', type=arg_parsers.Duration(), default='2h', help="""\ Maximum time a build can last before it fails as "TIMEOUT". For example, specifying `2h` fails the process after 2 hours. See $ gcloud topic datetimes for information about duration formats. """) base.ASYNC_FLAG.AddToParser(parser) def AddExtraCommonDaisyArgs(parser): """Extra common arguments for Daisy builds.""" parser.add_argument( '--docker-image-tag', default=_DEFAULT_BUILDER_VERSION, hidden=True, help="""\ Specify which docker image tag (of tools from compute-image-tools) should be used for this command. By default it's "release", while "latest" is supported as well. There may be more versions supported in the future. """ ) def _CheckIamPermissions(project_id): """Check for needed IAM permissions and prompt to add if missing. Args: project_id: A string with the name of the project. """ project = projects_api.Get(project_id) # If the user's project doesn't have cloudbuild enabled yet, then the service # account won't even exist. If so, then ask to enable it before continuing. # Also prompt them to enable Stackdriver Logging if they haven't yet. expected_services = ['cloudbuild.googleapis.com', 'logging.googleapis.com'] for service_name in expected_services: if not services_api.IsServiceEnabled(project.projectId, service_name): # TODO(b/112757283): Split this out into a separate library. prompt_message = ( 'The "{0}" service is not enabled for this project. ' 'It is required for this operation.\n').format(service_name) console_io.PromptContinue( prompt_message, 'Would you like to enable this service?', throw_if_unattended=True, cancel_on_no=True) services_api.EnableService(project.projectId, service_name) # Now that we're sure the service account exists, actually check permissions. service_account = 'serviceAccount:{0}@cloudbuild.gserviceaccount.com'.format( project.projectNumber) expected_permissions = {'roles/compute.admin': service_account} for role in SERVICE_ACCOUNT_ROLES: expected_permissions[role] = service_account permissions = projects_api.GetIamPolicy(project_id) for binding in permissions.bindings: if expected_permissions.get(binding.role) in binding.members: del expected_permissions[binding.role] if expected_permissions: ep_table = [ '{0} {1}'.format(role, account) for role, account in expected_permissions.items() ] prompt_message = ( 'The following IAM permissions are needed for this operation:\n' '[{0}]\n'.format('\n'.join(ep_table))) console_io.PromptContinue( message=prompt_message, prompt_string='Would you like to add the permissions', throw_if_unattended=True, cancel_on_no=True) for role, account in expected_permissions.items(): log.info('Adding [{0}] to [{1}]'.format(account, role)) projects_api.AddIamPolicyBinding(project_id, account, role) def _CreateCloudBuild(build_config, client, messages): """Create a build in cloud build. Args: build_config: A cloud build Build message. client: The cloud build api client. messages: The cloud build api messages module. Returns: Tuple containing a cloud build build object and the resource reference for that build. """ log.debug('submitting build: {0}'.format(repr(build_config))) op = client.projects_builds.Create( messages.CloudbuildProjectsBuildsCreateRequest( build=build_config, projectId=properties.VALUES.core.project.Get())) json = encoding.MessageToJson(op.metadata) build = encoding.JsonToMessage(messages.BuildOperationMetadata, json).build build_ref = resources.REGISTRY.Create( collection='cloudbuild.projects.builds', projectId=build.projectId, id=build.id) log.CreatedResource(build_ref) if build.logUrl: log.status.Print('Logs are available at [{0}].'.format(build.logUrl)) else: log.status.Print('Logs are available in the Cloud Console.') return build, build_ref def GetDaisyBucketName(bucket_location=None): """Determine bucket name for daisy. Args: bucket_location: str, specified bucket location. Returns: str, bucket name for daisy. """ project = properties.VALUES.core.project.GetOrFail() safe_project = project.replace(':', '-') safe_project = safe_project.replace('.', '-') bucket_name = '{0}-daisy-bkt'.format(safe_project) if bucket_location: bucket_name = '{0}-{1}'.format(bucket_name, bucket_location).lower() safe_bucket_name = _GetSafeBucketName(bucket_name) # TODO (b/117668144): Make Daisy scratch bucket ACLs same as # source/destination bucket return safe_bucket_name def _GetSafeBucketName(bucket_name): # Rules are from https://cloud.google.com/storage/docs/naming. # Bucket name can't contain "google". bucket_name = bucket_name.replace('google', 'go-ogle') # Bucket name can't start with "goog". Workaround for b/128691621 bucket_name = bucket_name[:4].replace('goog', 'go-og') + bucket_name[4:] return bucket_name def GetSubnetRegion(): """Gets region from global properties/args that should be used for subnet arg. Returns: str, region Raises: SubnetException: if region couldn't be inferred. """ if properties.VALUES.compute.zone.Get(): return utils.ZoneNameToRegionName(properties.VALUES.compute.zone.Get()) elif properties.VALUES.compute.region.Get(): return properties.VALUES.compute.region.Get() raise SubnetException('Region or zone should be specified.') def AppendNetworkAndSubnetArgs(args, builder_args): """Extracts network/subnet out of CLI args and append for importer. Args: args: list of str, CLI args that might contain network/subnet args. builder_args: list of str, args for builder. """ if args.subnet: AppendArg(builder_args, 'subnet', args.subnet.lower()) if args.network: AppendArg(builder_args, 'network', args.network.lower()) def RunImageImport(args, import_args, tags, output_filter, docker_image_tag=_DEFAULT_BUILDER_VERSION): """Run a build over gce_vm_image_import on Google Cloud Builder. Args: args: An argparse namespace. All the arguments that were provided to this command invocation. import_args: A list of key-value pairs to pass to importer. tags: A list of strings for adding tags to the Argo build. output_filter: A list of strings indicating what lines from the log should be output. Only lines that start with one of the strings in output_filter will be displayed. docker_image_tag: Specified docker image tag. Returns: A build object that either streams the output or is displayed as a link to the build. Raises: FailedBuildException: If the build is completed and not 'SUCCESS'. """ builder = _IMAGE_IMPORT_BUILDER.format(docker_image_tag) return RunImageCloudBuild(args, builder, import_args, tags, output_filter) def RunImageExport(args, export_args, tags, output_filter, docker_image_tag=_DEFAULT_BUILDER_VERSION): """Run a build over gce_vm_image_export on Google Cloud Builder. Args: args: An argparse namespace. All the arguments that were provided to this command invocation. export_args: A list of key-value pairs to pass to exporter. tags: A list of strings for adding tags to the Argo build. output_filter: A list of strings indicating what lines from the log should be output. Only lines that start with one of the strings in output_filter will be displayed. docker_image_tag: Specified docker image tag. Returns: A build object that either streams the output or is displayed as a link to the build. Raises: FailedBuildException: If the build is completed and not 'SUCCESS'. """ builder = _IMAGE_EXPORT_BUILDER.format(docker_image_tag) return RunImageCloudBuild(args, builder, export_args, tags, output_filter) def RunImageCloudBuild(args, builder, builder_args, tags, output_filter): """Run a build related to image on Google Cloud Builder. Args: args: An argparse namespace. All the arguments that were provided to this command invocation. builder: Path to builder image. builder_args: A list of key-value pairs to pass to builder. tags: A list of strings for adding tags to the Argo build. output_filter: A list of strings indicating what lines from the log should be output. Only lines that start with one of the strings in output_filter will be displayed. Returns: A build object that either streams the output or is displayed as a link to the build. Raises: FailedBuildException: If the build is completed and not 'SUCCESS'. """ project_id = projects_util.ParseProject( properties.VALUES.core.project.GetOrFail()) _CheckIamPermissions(project_id) return _RunCloudBuild(args, builder, builder_args, ['gce-daisy'] + tags, output_filter, args.log_location) def GetDaisyTimeout(args): # Make Daisy time out before gcloud by shaving off 2% from the timeout time, # up to a max of 5m (300s). two_percent = int(args.timeout * 0.02) daisy_timeout = args.timeout - min(two_percent, 300) return daisy_timeout def _RunCloudBuild(args, builder, build_args, build_tags=None, output_filter=None, log_location=None, backoff=lambda elapsed: 1): """Run a build with a specific builder on Google Cloud Builder. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. builder: path to builder image build_args: args to be sent to builder build_tags: tags to be attached to the build output_filter: A list of strings indicating what lines from the log should be output. Only lines that start with one of the strings in output_filter will be displayed. log_location: GCS path to directory where logs will be stored. backoff: A function that takes the current elapsed time and returns the next sleep length. Both are in seconds. Returns: A build object that either streams the output or is displayed as a link to the build. Raises: FailedBuildException: If the build is completed and not 'SUCCESS'. """ client = cloudbuild_util.GetClientInstance() messages = cloudbuild_util.GetMessagesModule() # Create the build request. build_config = messages.Build( steps=[ messages.BuildStep( name=builder, args=build_args, ), ], tags=build_tags, timeout='{0}s'.format(args.timeout), ) if log_location: gcs_log_dir = resources.REGISTRY.Parse( args.log_location, collection='storage.objects') build_config.logsBucket = ('gs://{0}/{1}'.format(gcs_log_dir.bucket, gcs_log_dir.object)) # Start the build. build, build_ref = _CreateCloudBuild(build_config, client, messages) # If the command is run --async, we just print out a reference to the build. if args.async_: return build mash_handler = execution.MashHandler( execution.GetCancelBuildHandler(client, messages, build_ref)) # Otherwise, logs are streamed from GCS. with execution_utils.CtrlCSection(mash_handler): build = CloudBuildClientWithFiltering(client, messages).StreamWithFilter( build_ref, backoff, output_filter=output_filter) if build.status == messages.Build.StatusValueValuesEnum.TIMEOUT: log.status.Print( 'Your build timed out. Use the [--timeout=DURATION] flag to change ' 'the timeout threshold.') if build.status != messages.Build.StatusValueValuesEnum.SUCCESS: raise FailedBuildException(build) return build def RunOVFImportBuild(args, compute_client, instance_name, source_uri, no_guest_environment, can_ip_forward, deletion_protection, description, labels, machine_type, network, network_tier, subnet, private_network_ip, no_restart_on_failure, os, tags, zone, project, output_filter, compute_release_track): """Run a OVF import build on Google Cloud Builder. Args: args: an argparse namespace. All the arguments that were provided to this command invocation. compute_client: Google Compute Engine client. instance_name: Name of the instance to be imported. source_uri: A GCS path to OVA or OVF package. no_guest_environment: If set to True, Google Guest Environment won't be installed on the boot disk of the VM. can_ip_forward: If set to True, allows the instances to send and receive packets with non-matching destination or source IP addresses. deletion_protection: Enables deletion protection for the instance. description: Specifies a textual description of the instances. labels: List of label KEY=VALUE pairs to add to the instance. machine_type: Specifies the machine type used for the instances. network: Specifies the network that the instances will be part of. network_tier: Specifies the network tier of the interface. NETWORK_TIER must be one of: PREMIUM, STANDARD. subnet: Specifies the subnet that the instances will be part of. private_network_ip: Specifies the RFC1918 IP to assign to the instance. no_restart_on_failure: The instances will NOT be restarted if they are terminated by Compute Engine. os: Specifies the OS of the boot disk being imported. tags: A list of strings for adding tags to the Argo build. zone: The GCP zone to tell Daisy to do work in. If unspecified, defaults to wherever the Argo runner happens to be. project: The Google Cloud Platform project name to use for OVF import. output_filter: A list of strings indicating what lines from the log should be output. Only lines that start with one of the strings in output_filter will be displayed. compute_release_track: release track to be used for Compute API calls. One of - "alpha", "beta" or "" Returns: A build object that either streams the output or is displayed as a link to the build. Raises: FailedBuildException: If the build is completed and not 'SUCCESS'. """ project_id = projects_util.ParseProject( properties.VALUES.core.project.GetOrFail()) _CheckIamPermissions(project_id) # Make OVF import time-out before gcloud by shaving off 2% from the timeout # time, up to a max of 5m (300s). two_percent = int(args.timeout * 0.02) ovf_import_timeout = args.timeout - min(two_percent, 300) ovf_importer_args = [] AppendArg(ovf_importer_args, 'instance-names', instance_name) AppendArg(ovf_importer_args, 'client-id', 'gcloud') AppendArg(ovf_importer_args, 'ovf-gcs-path', source_uri) AppendBoolArg(ovf_importer_args, 'no-guest-environment', no_guest_environment) AppendBoolArg(ovf_importer_args, 'can-ip-forward', can_ip_forward) AppendBoolArg(ovf_importer_args, 'deletion-protection', deletion_protection) AppendArg(ovf_importer_args, 'description', description) if labels: AppendArg(ovf_importer_args, 'labels', ','.join(['{}={}'.format(k, v) for k, v in labels.items()])) AppendArg(ovf_importer_args, 'machine-type', machine_type) AppendArg(ovf_importer_args, 'network', network) AppendArg(ovf_importer_args, 'network-tier', network_tier) AppendArg(ovf_importer_args, 'subnet', subnet) AppendArg(ovf_importer_args, 'private-network-ip', private_network_ip) AppendBoolArg(ovf_importer_args, 'no-restart-on-failure', no_restart_on_failure) AppendArg(ovf_importer_args, 'os', os) if tags: AppendArg(ovf_importer_args, 'tags', ','.join(tags)) AppendArg(ovf_importer_args, 'zone', zone) AppendArg(ovf_importer_args, 'timeout', ovf_import_timeout, '-{0}={1}s') AppendArg(ovf_importer_args, 'project', project) _AppendNodeAffinityLabelArgs(ovf_importer_args, args, compute_client.messages) if compute_release_track: AppendArg(ovf_importer_args, 'release-track', compute_release_track) build_tags = ['gce-ovf-import'] backoff = lambda elapsed: 2 if elapsed < 30 else 15 return _RunCloudBuild(args, _OVF_IMPORT_BUILDER.format(args.docker_image_tag), ovf_importer_args, build_tags, output_filter, backoff=backoff) def _AppendNodeAffinityLabelArgs( ovf_importer_args, args, compute_client_messages): node_affinities = sole_tenancy_util.GetSchedulingNodeAffinityListFromArgs( args, compute_client_messages) for node_affinity in node_affinities: AppendArg(ovf_importer_args, 'node-affinity-label', _BuildOvfImporterNodeAffinityFlagValue(node_affinity)) def _BuildOvfImporterNodeAffinityFlagValue(node_affinity): node_affinity_flag = node_affinity.key + ',' + six.text_type( node_affinity.operator) for value in node_affinity.values: node_affinity_flag += ',' + value return node_affinity_flag def AppendArg(args, name, arg, format_pattern='-{0}={1}'): if arg: args.append(format_pattern.format(name, arg)) def AppendBoolArg(args, name, arg=True): AppendArg(args, name, arg, '-{0}') def MakeGcsUri(uri): obj_ref = resources.REGISTRY.Parse(uri) return 'gs://{0}/{1}'.format(obj_ref.bucket, obj_ref.object) def MakeGcsObjectOrPathUri(uri): """Creates Google Cloud Storage URI for an object or a path. Raises storage_util.InvalidObjectNameError if a path contains only bucket name. Args: uri: a string to a Google Cloud Storage object or a path. Can be a gs:// or an https:// variant. Returns: Google Cloud Storage URI for an object or a path. """ obj_ref = resources.REGISTRY.Parse(uri) if hasattr(obj_ref, 'object'): return 'gs://{0}/{1}'.format(obj_ref.bucket, obj_ref.object) else: raise storage_util.InvalidObjectNameError(uri, 'Missing object name')
36.762128
85
0.722277
[ "Apache-2.0" ]
bopopescu/cndw
mac/google-cloud-sdk/lib/googlecloudsdk/api_lib/compute/daisy_utils.py
23,491
Python
# ---------------------------------------------------------------------- # Distributed Lock # ---------------------------------------------------------------------- # Copyright (C) 2007-2021 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules from typing import Optional, List import datetime import time import random from logging import getLogger # Third-party modules import pymongo from pymongo.collection import Collection from bson import ObjectId # NOC modules from noc.core.mongo.connection import get_db from noc.core.perf import metrics from .base import BaseLock, DEFAULT_TTL DEFAULT_LOCK_WAIT = 1.0 DEFAULT_LOCK_WAIT_JITTER = 0.1 logger = getLogger(__name__) class DistributedLock(BaseLock): """ Distributed locking primitive. Allows exclusive access to all requested items within category between the group of processes. Example ------- ``` lock = DistributedLock("test", "test:12") with lock.acquire(["obj1", "obj2"]): ... ``` """ def __init__(self, category: str, owner: str, ttl: Optional[float] = None): """ :param category: Lock category name :param owner: Lock owner id :param ttl: Default lock ttl in seconds """ super().__init__(category, owner, ttl=ttl) self.collection = self.get_collection() self.release_all() def release_all(self): """ Release all locks held by owner """ self.collection.delete_many({"owner": self.owner}) def get_collection_name(self) -> str: """ Get name of the lock collection """ return f"locks.{self.category}" def get_collection(self) -> Collection: """ Ensure the collection is exists and indexed properly """ coll = get_db()[self.get_collection_name()] coll.create_index([("items", pymongo.ASCENDING)], unique=True) coll.create_index([("expires", pymongo.ASCENDING)], expireAfterSeconds=0) return coll def acquire_by_items(self, items: List[str], ttl: Optional[float] = None) -> str: """ Acquire lock by list of items """ lock_id = ObjectId() ttl = ttl or self.ttl or DEFAULT_TTL metrics[f"lock_{self.category}_requests"] += 1 logger.debug( "[%s|%s] Acquiring lock for %s (%s seconds)", self.category, self.owner, ", ".join(items), ttl, ) while True: try: self.collection.insert_one( { "_id": lock_id, "items": items, "owner": self.owner, "expire": datetime.datetime.now() + datetime.timedelta(seconds=ttl), } ) return str(lock_id) except pymongo.errors.DuplicateKeyError: metrics[f"lock_{self.category}_misses"] += 1 jitter = random.random() * DEFAULT_LOCK_WAIT_JITTER * DEFAULT_LOCK_WAIT timeout = DEFAULT_LOCK_WAIT + jitter logger.debug( "[%s|%s] Cannnot get lock. Waiting %s seconds", self.category, self.owner, timeout, ) time.sleep(timeout) def release_by_lock_id(self, lock_id: str): """ Release lock by id """ self.collection.delete_one({"_id": ObjectId(lock_id)})
30.495798
92
0.532929
[ "BSD-3-Clause" ]
sbworth/getnoc
core/lock/distributed.py
3,629
Python
# Copyright (c) 2020 Aiven, Helsinki, Finland. https://aiven.io/ from .object_storage.gcs import GCSProvider from argparse import ArgumentParser from tempfile import TemporaryDirectory import codecs import datetime import dateutil import gzip import json import kafka import logging import os import re class KafkaRestore: def __init__(self, *, config): self.log = logging.getLogger(self.__class__.__name__) self.config = config object_storage_config = self.config.get("object_storage", {}) object_storage_type = object_storage_config.get("type") if object_storage_type == "gcs": self.object_storage = GCSProvider(config=object_storage_config) else: raise ValueError(f"Unknown object storage type: {object_storage_type}") kafka_config = self.config.get("kafka", {}) if ("ssl_cafile" in kafka_config and "ssl_access_certificate_file" in kafka_config and "ssl_access_key_file" in kafka_config): self.kafka_producer = kafka.KafkaProducer( bootstrap_servers=kafka_config["kafka_url"], security_protocol="SSL", ssl_cafile=kafka_config["ssl_ca_file"], ssl_certfile=kafka_config["ssl_access_certificate_file"], ssl_keyfile=kafka_config["ssl_access_key_file"], ) else: self.kafka_producer = kafka.KafkaProducer( bootstrap_servers=kafka_config["kafka_url"], ) def list_topic_data_files(self, *, topic): topic_re = re.compile( ( r"(?P<topic>" + re.escape(topic) + r")" r"-(?P<partition>[0-9]+)" r"-(?P<offset>[0-9]+)" r"(?P<suffix>[.a-z]*)" ) ) topic_partition_files = {} for item in self.object_storage.list_items(): matches = topic_re.match(item.name) if matches: partition = int(matches.group("partition")) if partition not in topic_partition_files: topic_partition_files[partition] = [] begin_offset = matches.group("offset") record = { "begin_offset": int(begin_offset), "last_modified": item.last_modified, "object_name": item.name, } if matches.group("suffix") == ".gz": record["compression"] = "gzip" topic_partition_files[partition].append(record) for partition in topic_partition_files: topic_partition_files[partition] = sorted(topic_partition_files[partition], key=lambda x: x["begin_offset"]) return topic_partition_files def parse_record(self, record_line): fields = record_line.split(",") if fields[0]: key = codecs.decode(codecs.encode(fields[0], "ascii"), "base64") else: key = None if fields[1]: value = codecs.decode(codecs.encode(fields[1], "ascii"), "base64") else: value = None offset = int(fields[2]) if fields[3]: timestamp = int(fields[3]) else: timestamp = None return key, value, offset, timestamp def restore(self, *, topic): topic_partition_files = self.list_topic_data_files(topic=topic) partition_offset_records = {} since = self.config.get("since") with TemporaryDirectory() as working_directory: while True: progress = False for partition in topic_partition_files: if topic_partition_files[partition]: object_record = topic_partition_files[partition][0] topic_partition_files[partition] = topic_partition_files[partition][1:] progress = True object_name = object_record["object_name"] if since is not None and since > object_record["last_modified"]: self.log.info("Skipping object %r due to timestamp", object_name) continue local_name = f"{working_directory}/{topic}-{partition}" self.object_storage.get_contents_to_file(object_name, local_name) if object_record.get("compression") == "gzip": fh = gzip.open(local_name, "rt") else: fh = open(local_name, "r") nrecords = 0 for line in fh.readlines(): key, value, offset, timestamp = self.parse_record(line.strip()) future_record = self.kafka_producer.send( topic, partition=partition, key=key, value=value, timestamp_ms=timestamp, ) nrecords += 1 partition_offset_records[partition] = { "last_original_offset": offset, "last_produced_record": future_record, } self.log.info("Restored %d messages from object %r", nrecords, object_name) fh.close() os.unlink(local_name) if not progress: self.kafka_producer.flush() break for partition in sorted(partition_offset_records): self.log.info( "Partition %d original offset %d new offset %d", partition, partition_offset_records[partition]["last_original_offset"], partition_offset_records[partition]["last_produced_record"].get().offset, ) def main(): logging.basicConfig(level=logging.INFO, format="%(name)-20s %(levelname)-8s %(message)s") parser = ArgumentParser() parser.add_argument("-c", "--config", required=True, help="Path to config file") parser.add_argument("-t", "--topic", required=True, help="Topic name") parser.add_argument("--since", help="Skip objects that are older than given timestamp") args = parser.parse_args() with open(args.config) as fh: restore_config = json.load(fh) if args.since: dt = dateutil.parser.parse(args.since) if dt.tzinfo is None: # assume UTC if no timezone is present dt = dt.replace(tzinfo=datetime.timezone.utc) restore_config["since"] = dt kafka_restore = KafkaRestore(config=restore_config) kafka_restore.restore(topic=args.topic) if __name__ == "__main__": main()
37.462366
120
0.548794
[ "Apache-2.0" ]
AlexAmin/aiven-kafka-restore
kafka_restore/__main__.py
6,968
Python
# Generated by Django 4.0 on 2022-01-10 10:35 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('funblog', '0001_initial'), ] operations = [ migrations.AlterField( model_name='fblog', name='DOC', field=models.DateTimeField(auto_now_add=True, verbose_name='Date of creating'), ), migrations.AlterField( model_name='fblog', name='DOU', field=models.DateTimeField(auto_now=True, verbose_name='Date of updating'), ), migrations.AlterField( model_name='fblog', name='comment', field=models.TextField(max_length=128, verbose_name='Comment'), ), ]
26.689655
91
0.582687
[ "MIT" ]
larryw3i/osp
fun/funblog/migrations/0002_alter_fblog_doc_alter_fblog_dou_alter_fblog_comment.py
774
Python
try: xrange except: xrange = range def totalvalue(comb): ' Totalise a particular combination of items' totwt = totval = 0 for item, wt, val in comb: totwt += wt totval += val return (totval, -totwt) if totwt <= 400 else (0, 0) items = ( ("map", 9, 150), ("compass", 13, 35), ("water", 153, 200), ("sandwich", 50, 160), ("glucose", 15, 60), ("tin", 68, 45), ("banana", 27, 60), ("apple", 39, 40), ("cheese", 23, 30), ("beer", 52, 10), ("suntan cream", 11, 70), ("camera", 32, 30), ("t-shirt", 24, 15), ("trousers", 48, 10), ("umbrella", 73, 40), ("waterproof trousers", 42, 70), ("waterproof overclothes", 43, 75), ("note-case", 22, 80), ("sunglasses", 7, 20), ("towel", 18, 12), ("socks", 4, 50), ("book", 30, 10), ) def knapsack01_dp(items, limit): table = [[0 for w in range(limit + 1)] for j in range(len(items) + 1)] for j in range(1, len(items) + 1): item, wt, val = items[j-1] for w in range(1, limit + 1): if wt > w: table[j][w] = table[j-1][w] else: table[j][w] = max(table[j-1][w], table[j-1][w-wt] + val) result = [] w = limit for j in range(len(items), 0, -1): was_added = table[j][w] != table[j-1][w] if was_added: item, wt, val = items[j-1] result.append(items[j-1]) w -= wt return result bagged = knapsack01_dp(items, 400) print(("Bagged the following items\n " + '\n '.join(sorted(item for item,_,_ in bagged)))) val, wt = totalvalue(bagged) print(("for a total value of %i and a total weight of %i" % (val, -wt)))
31.518519
87
0.509988
[ "MIT" ]
ethansaxenian/RosettaDecode
lang/Python/knapsack-problem-0-1-2.py
1,702
Python
# # voice-skill-sdk # # (C) 2020, Deutsche Telekom AG # # This file is distributed under the terms of the MIT license. # For details see the file LICENSE in the top directory. # # # Circuit breaker for skills requesting external services # from .config import config from circuitbreaker import CircuitBreaker from requests.exceptions import RequestException class SkillCircuitBreaker(CircuitBreaker): """ Circuit breaker's defaults from skill config """ FAILURE_THRESHOLD = config.getint('circuit_breakers', 'threshold', fallback=5) RECOVERY_TIMEOUT = config.getint('circuit_breakers', 'timeout', fallback=30) EXPECTED_EXCEPTION = RequestException # Default circuit breaker will be used if no custom breaker supplied DEFAULT_CIRCUIT_BREAKER = SkillCircuitBreaker()
27.172414
82
0.777919
[ "MIT" ]
Anrufliste/voice-skill-sdk
skill_sdk/circuit_breaker.py
788
Python
from itertools import combinations f = open("input.txt") d = f.readlines() nog = [] for l in d: nog.append(int(l)) combos = 0 min_num = 0 do_break = False for nog_len in range(len(nog)): for c in combinations(nog, nog_len): combo_sum = sum(c) if combo_sum == 150: min_num = nog_len do_break = True if do_break: break if do_break: break for c in combinations(nog, min_num): combo_sum = sum(c) if combo_sum == 150: combos += 1 print(combos)
18.586207
40
0.580705
[ "MIT" ]
pwicks86/adventofcode2015
day17/p2.py
539
Python
import logging from angr_platforms.msp430 import arch_msp430, lift_msp430, simos_msp430 import angr import os def test_new_orleans(): thebin = str(os.path.join(os.path.dirname(os.path.realpath(__file__)), '../test_programs/msp430/microcorruption_new_orleans/out.elf')) p = angr.Project(thebin, load_options={'rebase_granularity': 8}) p.hook_symbol('getsn', simos_msp430.MCgetsn()) p.hook_symbol('__stop_progExec__', simos_msp430.MCstopexec()) p.hook_symbol('puts', simos_msp430.MCputs()) simgr = p.factory.simulation_manager() simgr.explore(find=p.loader.find_symbol('unlock_door').rebased_addr) stdin_contents = simgr.found[0].posix.dumps(0) assert '7d493c6a51373f' in stdin_contents.hex() if __name__ == '__main__': test_new_orleans()
38.571429
93
0.724691
[ "BSD-2-Clause" ]
shahinsba/angr-platforms
tests/test_msp430_mc_new_orleans.py
810
Python
import pytest from django.contrib.auth import get_user_model from rest_framework.test import APIClient @pytest.fixture def client(): return APIClient() @pytest.fixture def db_user(): user_data = { 'email': '[email protected]', 'password': 'testpass123', 'first_name': 'Jack', 'last_name': 'Programmer', } return get_user_model().objects.create_user(**user_data)
20.65
60
0.670702
[ "MIT" ]
thehomebrewnerd/react-django-template
backend/user/tests/conftest.py
413
Python
from django.apps import AppConfig class ActivityFeedConfig(AppConfig): """App config for activity_feed.""" name = 'datahub.activity_feed'
18.625
39
0.738255
[ "MIT" ]
Staberinde/data-hub-api
datahub/activity_feed/apps.py
149
Python
#crie um tupla com o nome dos produtos, seguidos do preço. #mostre uma listagem de preços, de forma tabular. lista = ('Lápis', 1.5, 'Borracha', 2.5, 'Caderno', 10.8, 'Estojo', 20, 'Mochila', 100.5) print('\033[31m--'*20) print(f'{"LISTAGEM DE PREÇOS":^40}') print('--'*20, '\033[m') for i in range(0, len(lista), 2): print(f'{lista[i]:.<30}R${lista[i+1]:>5.2f}') print('\033[31m--\033[m'*20) ''' Formatação: print(f'{"LISTAGEM DE PREÇOS":^40}') centralizado = {elemento:^quantidade} à direita = {:<quantidade} > preenche com espaço à direita = {:.<quantidade} > preenche com ponto à esquerda = {:>quantidade} > preenche com espaço à esquerda = {:->quantidade} > preenche com - '''
30.347826
58
0.637536
[ "MIT" ]
NataliaNasu/cursoemvideo-python3
PacoteDownload/ex076.py
711
Python
#!/usr/bin/env python import os import json import pprint as pp from time import time import torch import torch.optim as optim from tensorboard_logger import Logger as TbLogger from nets.critic_network import CriticNetwork from options import get_options from train import train_epoch, validate, get_inner_model from reinforce_baselines import NoBaseline, ExponentialBaseline, CriticBaseline, RolloutBaseline, WarmupBaseline from nets.attention_model import AttentionModel from nets.pointer_network import PointerNetwork, CriticNetworkLSTM from utils import torch_load_cpu, load_problem import pickle # for hyperparameter tuning using wanb # https://docs.wandb.ai/sweeps/quickstart import torch.nn.functional as F import torchvision.datasets as datasets import torch.nn as nn import wandb from torchvision import datasets, transforms def run(opts): # start time start_time = time() train_run = [] opts.save_hrs.sort() run_name = opts.run_name # Pretty print the run args pp.pprint(vars(opts)) # Set the random seed torch.manual_seed(opts.seed) # Optionally configure tensorboard tb_logger = None if not opts.no_tensorboard: tb_logger = TbLogger(os.path.join(opts.log_dir, "{}_{}".format(opts.problem, opts.graph_size), opts.run_name)) os.makedirs(opts.save_dir) # Save arguments so exact configuration can always be found with open(os.path.join(opts.save_dir, "args.json"), 'w') as f: json.dump(vars(opts), f, indent=True) # Set the device opts.device = torch.device("cuda:0" if opts.use_cuda else "cpu") # Figure out what's the problem problem = load_problem(opts.problem) # Load data from load_path load_data = {} assert opts.load_path is None or opts.resume is None, "Only one of load path and resume can be given" load_path = opts.load_path if opts.load_path is not None else opts.resume if load_path is not None: print(' [*] Loading data from {}'.format(load_path)) load_data = torch_load_cpu(load_path) # hyperparameter search # default (user specified) config config_defaults = { 'batch_size': opts.batch_size, 'lr_model': opts.lr_model, 'lr_critic': opts.lr_critic, 'lr_decay': opts.lr_decay, } # determine the parameter space """sweep_config = { 'parameters': { 'batch_size': { 'values': [256, 128, 64, 32] }, 'lr_model': { 'values': [1e-2, 1e-3, 1e-4, 3e-4, 3e-5, 1e-5] }, 'lr_critic': { 'values': [1e-2, 1e-3, 1e-4, 3e-4, 3e-5, 1e-5] }, 'lr_decay': { 'lr_decay': [0.9, 0.95, 1.0, 1.05, 1.1, 1.15] }, } }""" # initialize the sweep # sweep_id = wandb.sweep(sweep_config, project="Pytorch-sweeps") # Initialize a new wandb run wandb.init(config=config_defaults) # Config is a variable that holds and saves hyperparameters and inputs config = wandb.config # ??? any code for setting up hyperparameters interested should use config.parameter to set instead of opt.parameter # including functions in other files-> pass config to other functions # Initialize model model_class = { 'attention': AttentionModel, 'pointer': PointerNetwork }.get(opts.model, None) assert model_class is not None, "Unknown model: {}".format(model_class) model = model_class( opts.embedding_dim, opts.hidden_dim, problem, n_encode_layers=opts.n_encode_layers, mask_inner=True, mask_logits=True, normalization=opts.normalization, tanh_clipping=opts.tanh_clipping, checkpoint_encoder=opts.checkpoint_encoder, shrink_size=opts.shrink_size ).to(opts.device) if opts.use_cuda and torch.cuda.device_count() > 1: model = torch.nn.DataParallel(model) # Overwrite model parameters by parameters to load model_ = get_inner_model(model) model_.load_state_dict({**model_.state_dict(), **load_data.get('model', {})}) # Initialize baseline if opts.baseline == 'exponential': baseline = ExponentialBaseline(opts.exp_beta) elif opts.baseline == 'critic' or opts.baseline == 'critic_lstm': assert problem.NAME == 'tsp', "Critic only supported for TSP" baseline = CriticBaseline( ( CriticNetworkLSTM( 2, opts.embedding_dim, opts.hidden_dim, opts.n_encode_layers, opts.tanh_clipping ) if opts.baseline == 'critic_lstm' else CriticNetwork( 2, opts.embedding_dim, opts.hidden_dim, opts.n_encode_layers, opts.normalization ) ).to(opts.device) ) elif opts.baseline == 'rollout': baseline = RolloutBaseline(model, problem, opts) else: assert opts.baseline is None, "Unknown baseline: {}".format(opts.baseline) baseline = NoBaseline() if opts.bl_warmup_epochs > 0: baseline = WarmupBaseline(baseline, opts.bl_warmup_epochs, warmup_exp_beta=opts.exp_beta) # Load baseline from data, make sure script is called with same type of baseline if 'baseline' in load_data: baseline.load_state_dict(load_data['baseline']) # Initialize optimizer optimizer = optim.Adam( [{'params': model.parameters(), 'lr': config.lr_model}] + ( [{'params': baseline.get_learnable_parameters(), 'lr': config.lr_critic}] if len(baseline.get_learnable_parameters()) > 0 else [] ) ) # Load optimizer state if 'optimizer' in load_data: optimizer.load_state_dict(load_data['optimizer']) for state in optimizer.state.values(): for k, v in state.items(): # if isinstance(v, torch.Tensor): if torch.is_tensor(v): state[k] = v.to(opts.device) # Initialize learning rate scheduler, decay by lr_decay once per epoch! lr_scheduler = optim.lr_scheduler.LambdaLR(optimizer, lambda epoch: config.lr_decay ** epoch) # Start the actual training loop val_dataset = problem.make_dataset( size=opts.graph_size, num_samples=opts.val_size, filename=opts.val_dataset, distribution=opts.data_distribution) if opts.resume: epoch_resume = int(os.path.splitext(os.path.split(opts.resume)[-1])[0].split("-")[1]) torch.set_rng_state(load_data['rng_state']) if opts.use_cuda: torch.cuda.set_rng_state_all(load_data['cuda_rng_state']) # Set the random states # Dumping of state was done before epoch callback, so do that now (model is loaded) baseline.epoch_callback(model, epoch_resume) print("Resuming after {}".format(epoch_resume)) opts.epoch_start = epoch_resume + 1 torch.save(model, os.path.join('.', 'empty.pt')) if opts.eval_only: validate(model, val_dataset, opts) else: for epoch in range(opts.epoch_start, opts.epoch_start + opts.n_epochs): avg_time = train_epoch( model, optimizer, baseline, lr_scheduler, epoch, val_dataset, problem, tb_logger, opts, start_time, config ) train_run.append(avg_time) for hr in opts.save_hrs: if (time() - start_time) > hr*3600: opts.save_hrs.remove(hr) print('Saving model and state...') hr_time = int(round((time()-start_time)/3600)) with open('../models/att/hist_{}_{}hr.pickle'.format(run_name,hr_time), 'wb') as handle: pickle.dump(train_run, handle, protocol=pickle.HIGHEST_PROTOCOL) torch.save( { 'model': get_inner_model(model).state_dict(), 'optimizer': optimizer.state_dict(), 'rng_state': torch.get_rng_state(), 'cuda_rng_state': torch.cuda.get_rng_state_all(), 'baseline': baseline.state_dict() }, os.path.join('../models/att', '{}_{}hr-model-att-only.pt'.format(run_name,hr_time)) ) torch.save(model, os.path.join('../models/att', '{}_{}hr-model.pt'.format(run_name,hr_time))) if __name__ == "__main__": run(get_options())
36.334694
120
0.601887
[ "MIT" ]
angela18199/CORL_hyperparameter_search
hyper_attention/run.py
8,902
Python
# pylint:disable=unused-variable # pylint:disable=unused-argument # pylint:disable=redefined-outer-name import pytest from models_library.basic_types import LogLevel from simcore_service_director_v2.core.settings import ( AppSettings, BootModeEnum, DynamicSidecarProxySettings, DynamicSidecarSettings, RegistrySettings, ) def test_settings_with_project_env_devel(project_env_devel_environment): # loads from environ settings = AppSettings.create_from_envs() print("captured settings: \n", settings.json(indent=2)) assert settings.SC_BOOT_MODE == BootModeEnum.DEBUG assert settings.LOG_LEVEL == LogLevel.DEBUG assert settings.POSTGRES.dsn == "postgresql://test:test@localhost:5432/test" def test_settings_with_env_devel(mock_env_devel_environment): settings = AppSettings.create_from_envs() print("captured settings: \n", settings.json(indent=2)) assert settings @pytest.mark.parametrize( "image", [ "local/dynamic-sidecar:development", "local/dynamic-sidecar:production", "itisfoundation/dynamic-sidecar:merge-github-testbuild-latest", "itisfoundation/dynamic-sidecar:1.0.0", "local/dynamic-sidecar:0.0.1", "dynamic-sidecar:production", "/dynamic-sidecar:latest", "/local/dynamic-sidecar:latest", ], ) def test_dynamic_sidecar_settings(image: str) -> None: required_kwards = dict( DYNAMIC_SIDECAR_IMAGE=image, SIMCORE_SERVICES_NETWORK_NAME="test", TRAEFIK_SIMCORE_ZONE="", SWARM_STACK_NAME="", DYNAMIC_SIDECAR_PROXY_SETTINGS=DynamicSidecarProxySettings(), REGISTRY=RegistrySettings( REGISTRY_URL="http://te.st", REGISTRY_AUTH=True, REGISTRY_USER="test", REGISTRY_PW="test", REGISTRY_SSL=False, ), ) settings = DynamicSidecarSettings(**required_kwards) assert settings.DYNAMIC_SIDECAR_IMAGE == image.lstrip("/")
31.015625
80
0.70529
[ "MIT" ]
ITISFoundation/osparc-simcore
services/director-v2/tests/unit/test_core_settings.py
1,985
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class MonitoringSettingsOperations(object): """MonitoringSettingsOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.appplatform.v2020_11_01_preview.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def get( self, resource_group_name, # type: str service_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.MonitoringSettingResource" """Get the Monitoring Setting and its properties. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param service_name: The name of the Service resource. :type service_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: MonitoringSettingResource, or the result of cls(response) :rtype: ~azure.mgmt.appplatform.v2020_11_01_preview.models.MonitoringSettingResource :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.MonitoringSettingResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01-preview" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/monitoringSettings/default'} # type: ignore def _update_put_initial( self, resource_group_name, # type: str service_name, # type: str monitoring_setting_resource, # type: "_models.MonitoringSettingResource" **kwargs # type: Any ): # type: (...) -> "_models.MonitoringSettingResource" cls = kwargs.pop('cls', None) # type: ClsType["_models.MonitoringSettingResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_put_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(monitoring_setting_resource, 'MonitoringSettingResource') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_put_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/monitoringSettings/default'} # type: ignore def begin_update_put( self, resource_group_name, # type: str service_name, # type: str monitoring_setting_resource, # type: "_models.MonitoringSettingResource" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.MonitoringSettingResource"] """Update the Monitoring Setting. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param service_name: The name of the Service resource. :type service_name: str :param monitoring_setting_resource: Parameters for the update operation. :type monitoring_setting_resource: ~azure.mgmt.appplatform.v2020_11_01_preview.models.MonitoringSettingResource :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the ARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either MonitoringSettingResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.appplatform.v2020_11_01_preview.models.MonitoringSettingResource] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.MonitoringSettingResource"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_put_initial( resource_group_name=resource_group_name, service_name=service_name, monitoring_setting_resource=monitoring_setting_resource, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_put.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/monitoringSettings/default'} # type: ignore def _update_patch_initial( self, resource_group_name, # type: str service_name, # type: str monitoring_setting_resource, # type: "_models.MonitoringSettingResource" **kwargs # type: Any ): # type: (...) -> "_models.MonitoringSettingResource" cls = kwargs.pop('cls', None) # type: ClsType["_models.MonitoringSettingResource"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-11-01-preview" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_patch_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(monitoring_setting_resource, 'MonitoringSettingResource') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if response.status_code == 200: deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if response.status_code == 202: deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_patch_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/monitoringSettings/default'} # type: ignore def begin_update_patch( self, resource_group_name, # type: str service_name, # type: str monitoring_setting_resource, # type: "_models.MonitoringSettingResource" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.MonitoringSettingResource"] """Update the Monitoring Setting. :param resource_group_name: The name of the resource group that contains the resource. You can obtain this value from the Azure Resource Manager API or the portal. :type resource_group_name: str :param service_name: The name of the Service resource. :type service_name: str :param monitoring_setting_resource: Parameters for the update operation. :type monitoring_setting_resource: ~azure.mgmt.appplatform.v2020_11_01_preview.models.MonitoringSettingResource :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: Pass in True if you'd like the ARMPolling polling method, False for no polling, or your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either MonitoringSettingResource or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.appplatform.v2020_11_01_preview.models.MonitoringSettingResource] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.MonitoringSettingResource"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_patch_initial( resource_group_name=resource_group_name, service_name=service_name, monitoring_setting_resource=monitoring_setting_resource, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('MonitoringSettingResource', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'serviceName': self._serialize.url("service_name", service_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'azure-async-operation'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_patch.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.AppPlatform/Spring/{serviceName}/monitoringSettings/default'} # type: ignore
51.702703
210
0.68437
[ "MIT" ]
AriZavala2/azure-sdk-for-python
sdk/appplatform/azure-mgmt-appplatform/azure/mgmt/appplatform/v2020_11_01_preview/operations/_monitoring_settings_operations.py
19,130
Python
# coding: utf-8 # In[ ]: def choice(): print("1-create,2-update,3-read,4-delete") try: x=int(input("\nEnter your choice:")) except ValueError: print("Enter integer choice:....") choice() else: if(x==1): create() elif(x==2): update() elif(x==3): read() else: delete() def create(): try: id=int(input("\nEnter your id:")) except ValueError: f=int(input("Enter a valid integer number or press 0 to exit:")) if(f==0): choice() else: create() else: name=str(input("Enter your name:")) college=str(input("Enter the college name:")) branch=str(input("Enter the branch:")) print("\n") lid.append(id) lname.append(name) lcollege.append(college) lbranch.append(branch) choice() def update(): try: id=int(input("Enter your id:")) except ValueError: print("\nEnter valid integer id.......") update() else: if id in lid: r=lid.index(id) newname=str(input("Enter the name")) lname[r]=newname newcollege=str(input("Enter the college name:")) lcollege[r]=newcollege newbranch=str(input("Enter the branch:")) lbranch[r]=newbranch else: print("id didnot match........") print("please register yourself....") choice() def read(): try: db=int(input("\nTo access database enter id:")) except ValueError: print("Enter integer id.....") read() else: if db in lid: print("ID:-",lid) print("NAMES:-",lname) print("COLLEGE:-",lcollege) print("BRANCH:-",lbranch) elif(lid==dummy): print("\nno records......") else: print("\nRegister inorder to access database.....") choice() def delete(): if(lid==dummy): print("No records found to delete.....") else: try: id=int(input("\nEnter your id:")) except ValueError: print("\nEnter the valid integer id.....") delete() else: if id in lid: delid.append(id) d=lid.index(id) del lid[d] del lname[d] del lcollege[d] del lbranch[d] print("\ndetails of your id has been deleted sucessfully......") elif id in delid: print("\nDetails of this id has been deleted......") else: print("\nregister the id... ") choice() #creating lists lid=[] lname=[] lcollege=[] lbranch=[] dummy=[] delid=[] #list of deleted id choice()
25.625
80
0.48223
[ "MIT" ]
AbhishekSalian/Database
database.py
2,870
Python
# !/usr/bin/env python import os import sys if __name__ == '__main__': os.environ.setdefault( 'DJANGO_SETTINGS_MODULE', 'bootstrap_components.tests.settings' ) from django.core.management import execute_from_command_line execute_from_command_line(sys.argv)
20.461538
65
0.793233
[ "MIT" ]
IshanManchanda/dj-bootstrap-components
manage.py
266
Python
#!/usr/bin/python3 import socket import re import time pattern = re.compile('N=\d+\sC=\d+') s = socket.socket() s.connect(('localhost', 9007)) s.recv(1024) # what received is just a introduction, we do not need it. time.sleep(4) while True: received = s.recv(1024).decode('ascii') print(received, end='') received = received.replace('\n', '') matches = re.findall(pattern, received) if len(matches) == 0: break match = matches[0].split(' ') N = int(match[0].replace('N=', '')) C = int(match[1].replace('C=', '')) start = 0 end = N for i in range(0, C): if end - start == 1: print(start) s.send(str(start).encode('ascii') + b'\n') else: sd = ' '.join(str(j) for j in range(start, (end + start) // 2)) print(sd) s.send(sd.encode('ascii') + b'\n') result = s.recv(1024).decode('ascii') print(result, end = '') if result.startswith('Correct'): break try: result = int(result.replace('\n', '')) except: exit(-1) if result == ((end + start) // 2 - start) * 10: start = (end + start) // 2 else: end = (end + start) // 2 s.send(str(start).encode('ascii') + b'\n') print(s.recv(1024).decode('ascii'), end = '')
25.388889
78
0.504741
[ "MIT" ]
IdanBanani/Pwnable.kr-CTF-Writeups
pwnable.kr/Toddler's Bottle/coin1/coin1.py
1,371
Python
import pymysql db = pymysql.connect('localhost', 'root', 'password', 'login') cursor = db.cursor() def sign_up(): userid = input('Enter UserID : ') query = "select * from login;" try: cursor.execute(query) fetch = cursor.fetchall() n = len(fetch) flag = 0 for i in range(n): if userid == fetch[i][0]: print('User already exist!, redirecting to login page') flag = 1 login() if flag == 0: pswd = input('Enter password : ') re_pswd = input('Enter password again : ') if pswd == re_pswd: query = "insert into login values('" + userid + "', '" + pswd + "');" try: cursor.execute(query) print('Sign up successful') except: db.rollback() print('Sign up fail') else: print("Password didn't match") except: db.rollback() def login(): userid = input('Enter UserID : ') query = "select * from login;" try: cursor.execute(query) fetch = cursor.fetchall() n = len(fetch) flag = 0 for i in range(n): if userid == fetch[i][0]: pswd = input('Enter password : ') if pswd == fetch[i][1]: print('Login successfully :)') flag = 1 else: print("UserID and password doesn't match") flag = 1 if flag == 0: print('NO such user exist!, redirecting to Sign Up page') sign_up() except: db.rollback() def show(): query = "select * from login;" try: cursor.execute(query) fetch = cursor.fetchall() n = len(fetch) for i in range(n): print(fetch[i][0], fetch[i][1]) except: db.rollback() print('Bad') def change_pswd(): userid = input('Enter UserId : ') query = 'select * from login;' try: cursor.execute(query) fetch = cursor.fetchall() n = len(fetch) flag = 0 for i in range(n): if userid == fetch[i][0]: pswd = input('Enter old password : ') if pswd == fetch[i][1]: new_pswd = input('Enter new password : ') query = "update login set password = \'" + new_pswd + "\' where userid = \'" + userid + "\'" try: cursor.execute(query) db.commit() print('Password changed successfully') flag = 1 except: db.rollback() else: print('Wrong password') flag = 1 if flag == 0: print('No such user exist!') except: db.rollback() print('Bad') print('1.Sign UP', '2.Login', '3.Show All User', '4.Change Password', sep="\n") opt = int(input()) if opt == 1: sign_up() elif opt == 2: login() elif opt == 3: show() elif opt == 4: change_pswd()
30.715596
113
0.433393
[ "Unlicense" ]
vinay-yadav/Login_system
db_login_system.py
3,348
Python
import os from pathlib import Path import numpy as np import pandas as pd import tensorflow as tf from skimage import io from tensorflow import keras class BimodalDenoiseDataGen(keras.utils.Sequence): ''' Generate train/validation/test samples for our multimodal denoise network. Inputs are static images, spectrograms and corresponding noisy labels. Outputs are noisy labels. In order to decorrelate training samples, we randonly shuffle movie sequences, sequentially fetch sel_movie movie clips from that sequence, then randomly select sel_frames frames from each moive clip. ''' def __init__(self, label_file, length_file, sample_rate, video_root, audio_root, video_shape, audio_shape, video_preproc, audio_preproc, sel_movies, sel_frames, n_classes, affective_type, ret_label_X=True, ret_label_y=True): self.__parse_label_file (label_file , affective_type) self.__parse_length_file(length_file, sample_rate) self.file_list = list(self.label_dict.keys()) self.video_root = video_root self.audio_root = audio_root self.video_preproc = video_preproc self.audio_preproc = audio_preproc self.sel_movies = sel_movies self.sel_frames = sel_frames self._video_shape = video_shape self._audio_shape = audio_shape self._n_classes = n_classes self._batch_size = self.sel_movies*self.sel_frames self.ret_label_X = ret_label_X self.ret_label_y = ret_label_y self.on_epoch_end() def on_epoch_end(self): np.random.shuffle(self.file_list) def __parse_label_file(self, label_file, affective_type): label_table = pd.read_table(label_file) self.label_dict = dict( zip( label_table["name"], label_table["valenceClass"] if affective_type == "val" else label_table["arousalClass"] )) def __parse_length_file(self, length_file, sample_rate): length_table = pd.read_table(length_file) self.length_dict = dict( zip( length_table["name"], [l//sample_rate for l in length_table["length"]] )) def __len__(self): num = len(self.label_dict) return num // self.sel_movies def __getitem__(self, i): batch_file_list = self.file_list[i*self.sel_movies:(i+1)*self.sel_movies] X, y = self._data_generator(batch_file_list) return X, y def _data_generator(self, batch_file_list): videos = np.zeros((self._batch_size, *self.video_shape), dtype=np.float32) audios = np.zeros((self._batch_size, *self.audio_shape), dtype=np.float32) labels = [] for i, filename in enumerate(batch_file_list): length = self.length_dict[filename] frame_idx = np.random.choice(length, self.sel_frames) for j, idx in enumerate(frame_idx): videos[i*self.sel_frames+j] = io.imread( Path(self.video_root)/"{}_{}.jpg".format(filename, idx) ) audios[i*self.sel_frames+j] = np.load( Path(self.audio_root)/"{}_{}.npy".format(filename, idx) )[..., None] labels += [self.label_dict[filename]]*self.sel_frames if self.video_preproc: videos = self.video_preproc(videos) if self.audio_preproc: audios = self.audio_preproc(audios) labels = keras.utils.to_categorical(labels, self._n_classes) X = [videos, audios] y = [] if self.ret_label_X: X += [labels] if self.ret_label_y: y += [labels] return X, y @property def batch_size(self): return self._batch_size @property def video_shape(self): return self._video_shape @property def audio_shape(self): return self._audio_shape @property def n_classes(self): return self._n_classes class BimodalClassifierDataGen(BimodalDenoiseDataGen): def __init__(self, training, denoise_model=None, **kwargs): super(BimodalClassifierDataGen, self).__init__(**kwargs) self.training = training if self.training: assert denoise_model is not None, \ "must specify denoise model in training mode!" self.denoise_model = denoise_model def __getitem__(self, i): batch_file_list = self.file_list[i*self.sel_movies:(i+1)*self.sel_movies] X, _ = self._data_generator(batch_file_list) #if self.training == True: # y = self.denoise_model.predict(X) #else: y = X[-1] X = [X[0], X[1]] return X, y class DenoiseDataGen(keras.utils.Sequence): def __init__(self, label_file, length_file, sample_rate, video_root, audio_root, video_shape, audio_shape, video_preproc, audio_preproc, sel_movies, sel_frames, n_classes, affective_type, modality, ret_label_X=True, ret_label_y=True): self.__parse_label_file (label_file , affective_type) self.__parse_length_file(length_file, sample_rate) self.file_list = list(self.label_dict.keys()) self.video_root = video_root self.audio_root = audio_root self.video_preproc = video_preproc self.audio_preproc = audio_preproc self.sel_movies = sel_movies self.sel_frames = sel_frames self._video_shape = video_shape self._audio_shape = audio_shape self._n_classes = n_classes self._batch_size = self.sel_movies*self.sel_frames self.ret_label_X = ret_label_X self.ret_label_y = ret_label_y self.modality = modality assert modality in ["visual", "aural"] self.on_epoch_end() def on_epoch_end(self): np.random.shuffle(self.file_list) def __parse_label_file(self, label_file, affective_type): label_table = pd.read_table(label_file) self.label_dict = dict( zip( label_table["name"], label_table["valenceClass"] if affective_type == "val" else label_table["arousalClass"] )) def __parse_length_file(self, length_file, sample_rate): length_table = pd.read_table(length_file) self.length_dict = dict( zip( length_table["name"], [l//sample_rate for l in length_table["length"]] )) def __len__(self): num = len(self.label_dict) return num // self.sel_movies def __getitem__(self, i): batch_file_list = self.file_list[i*self.sel_movies:(i+1)*self.sel_movies] X, y = self._data_generator(batch_file_list) return X, y def _data_generator(self, batch_file_list): videos = np.zeros((self._batch_size, *self.video_shape), dtype=np.float32) audios = np.zeros((self._batch_size, *self.audio_shape), dtype=np.float32) labels = [] for i, filename in enumerate(batch_file_list): length = self.length_dict[filename] frame_idx = np.random.choice(length, self.sel_frames) if self.modality == "visual": for j, idx in enumerate(frame_idx): videos[i*self.sel_frames+j] = io.imread( Path(self.video_root)/"{}_{}.jpg".format(filename, idx) ) labels += [self.label_dict[filename]]*self.sel_frames elif self.modality == "aural": for j, idx in enumerate(frame_idx): audios[i*self.sel_frames+j] = np.load( Path(self.audio_root)/"{}_{}.npy".format(filename, idx) )[..., None] labels += [self.label_dict[filename]]*self.sel_frames if self.video_preproc and self.modality == "visual": videos = self.video_preproc(videos) if self.audio_preproc and self.modality == "aural": audios = self.audio_preproc(audios) labels = keras.utils.to_categorical(labels, self._n_classes) X = [videos] if self.modality == "visual" else [audios] y = [] if self.ret_label_X: X += [labels] if self.ret_label_y: y += [labels] return X, y @property def batch_size(self): return self._batch_size @property def video_shape(self): return self._video_shape @property def audio_shape(self): return self._audio_shape @property def n_classes(self): return self._n_classes class ClassifierDataGen(DenoiseDataGen): def __init__(self, training, denoise_model=None, **kwargs): super(ClassifierDataGen, self).__init__(**kwargs) self.training = training if self.training: assert denoise_model is not None, \ "must specify denoise model in training mode!" self.denoise_model = denoise_model def __getitem__(self, i): batch_file_list = self.file_list[i*self.sel_movies:(i+1)*self.sel_movies] X, _ = self._data_generator(batch_file_list) #if self.training == True: # y = self.denoise_model.predict(X) #else: y = X[-1] X = X[0] return X, y
35.69863
83
0.560054
[ "MIT" ]
yaochenzhu/MMDQEN
data.py
10,424
Python
# -*- coding: utf-8 -*- """layers.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1fCQ_zLCcWNzgE99LK9B2cWrql8J3HgBO """ # Author : Vedant Shah # E-mail : [email protected] import torch import torch.nn as nn from torch.nn.parameter import Parameter class gcn_layer(nn.Module): def __init__(self, ip_size, op_size): super(gcn_layer, self).__init__() self.ip_size = ip_size # number of features for each node in the input self.op_size = op_size # number of features for each node in the output self.weights = Parameter( torch.rand( self.ip_size, self.op_size, dtype=torch.float32, requires_grad=True ) ) def compute(self, admat, features): """ Forward Propagation through the layer according to the spectral rule """ self.D = torch.diag(admat.sum(1), diagonal=0) self.out = torch.empty(admat.size[0], self.op_size) self.a_hat = admat + torch.eye( admat.size[0] ) # Counting the contribution of each node to itself self.D_inv = self.D ** (-0.5) self.a_hat = ( self.D_inv * self.a_hat * self.D_inv ) # Normalising according to the spectral rule self.out = torch.dot( torch.dot(self.a_hat, features), self.weights ) # Forward propagate trhough the layer return self.out
32.6
84
0.638718
[ "MIT" ]
veds12/aihaven
gcn/layers.py
1,467
Python
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() PROJECT_NAME = "Perceptron_PyPi_package" USER_NAME = "Jap_patel" setuptools.setup( name=f"{PROJECT_NAME}-{USER_NAME}", version="0.0.2", author=USER_NAME, author_email="[email protected]", description="its an implementation of perceptron" , long_description=long_description, long_description_content_type="text/markdown", url=f"https://github.com/{USER_NAME}/{PROJECT_NAME}", project_urls={ "Bug Tracker": f"https://github.com/{USER_NAME}/{PROJECT_NAME}/issues", }, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], package_dir={"": "src"}, packages=setuptools.find_packages(where="src"), python_requires=">=3.7", install_requires=[ "numpy", "tqdm" ] )
29.272727
79
0.650104
[ "MIT" ]
jap-patel/Perceptron_PyPi_package
setup.py
966
Python
import os import portalocker from deep_architect.contrib.communicators.communicator import Communicator from deep_architect.contrib.communicators.file_utils import (consume_file, read_file, write_file) class FileCommunicator(Communicator): def __init__(self, num_procs, dirname='file_comm', worker_queue_file='worker_queue', worker_results_prefix='worker_results_'): # make directory where communication files are created try: os.makedirs(dirname) except OSError: pass # claim a rank for the process lock = portalocker.Lock(os.path.join(dirname, 'init'), mode='a+', flags=portalocker.LOCK_EX) lock.acquire() fh = lock.fh fh.seek(0) curnum = fh.read() if len(curnum) is 0: rank = 0 else: rank = int(curnum) if rank >= num_procs: raise ValueError('Number of processes > the number of workers') fh.seek(0) fh.truncate(0) fh.write(str(rank + 1)) lock.release() super(FileCommunicator, self).__init__(num_procs - 1, rank) self.worker_queue_file = os.path.join(dirname, worker_queue_file) self.worker_results_prefix = os.path.join(dirname, worker_results_prefix) self.done = False def _publish_results_to_master(self, results, evaluation_id, searcher_eval_token): write_file(self.worker_results_prefix + str(self.rank), (results, evaluation_id, searcher_eval_token)) def _receive_architecture_in_worker(self): while not self.done: file_data = consume_file(self.worker_queue_file) # continue looping until there is something in the queue file if file_data is None: continue # if kill signal is given, return None, otherwise return contents of file vs, evaluation_id, searcher_eval_token, kill = file_data if kill: write_file(self.worker_results_prefix + str(self.rank), 'done') self.done = True return None return vs, evaluation_id, searcher_eval_token return None def _is_ready_to_publish_architecture(self): file_data = read_file(self.worker_queue_file) return file_data is None def _publish_architecture_to_worker(self, vs, current_evaluation_id, searcher_eval_token): write_file(self.worker_queue_file, (vs, current_evaluation_id, searcher_eval_token, False)) def _receive_results_in_master(self, src): result = consume_file(self.worker_results_prefix + str(src + 1)) if result == 'done': self.finished += 1 return None return result def _kill_worker(self): write_file(self.worker_queue_file, (0, 0, 0, True))
36.393258
85
0.574251
[ "MIT" ]
aspratyush/deep_architect
deep_architect/contrib/communicators/file_communicator.py
3,239
Python
"""passes the credits""" class Settings: login_username = '' login_password = ''
10.75
24
0.662791
[ "MIT" ]
imansh77/instagram_unfollower
crawler/conf.py
86
Python
"""Tensorflow trainer class.""" import datetime import math import os import warnings from typing import Callable, Dict, Optional, Tuple import numpy as np import tensorflow as tf from packaging.version import parse from tensorflow.python.distribute.values import PerReplica from .integrations import is_comet_available, is_wandb_available from .modeling_tf_utils import TFPreTrainedModel from .optimization_tf import GradientAccumulator, create_optimizer from .trainer_utils import PREFIX_CHECKPOINT_DIR, EvalPrediction, PredictionOutput, set_seed from .training_args_tf import TFTrainingArguments from .utils import logging if is_wandb_available(): import wandb if is_comet_available(): import comet_ml logger = logging.get_logger(__name__) class TFTrainer: """ TFTrainer is a simple but feature-complete training and eval loop for TensorFlow, optimized for 🤗 Transformers. Args: model (:class:`~transformers.TFPreTrainedModel`): The model to train, evaluate or use for predictions. args (:class:`~transformers.TFTrainingArguments`): The arguments to tweak training. train_dataset (:class:`~tf.data.Dataset`, `optional`): The dataset to use for training. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. eval_dataset (:class:`~tf.data.Dataset`, `optional`): The dataset to use for evaluation. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. compute_metrics (:obj:`Callable[[EvalPrediction], Dict]`, `optional`): The function that will be used to compute metrics at evaluation. Must take a :class:`~transformers.EvalPrediction` and return a dictionary string to metric values. tb_writer (:obj:`tf.summary.SummaryWriter`, `optional`): Object to write to TensorBoard. optimizers (:obj:`Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule]`, `optional`): A tuple containing the optimizer and the scheduler to use. The optimizer default to an instance of :class:`tf.keras.optimizers.Adam` if :obj:`args.weight_decay_rate` is 0 else an instance of :class:`~transformers.AdamWeightDecay`. The scheduler will default to an instance of :class:`tf.keras.optimizers.schedules.PolynomialDecay` if :obj:`args.num_warmup_steps` is 0 else an instance of :class:`~transformers.WarmUp`. kwargs: Deprecated keyword arguments. """ def __init__( self, model: TFPreTrainedModel, args: TFTrainingArguments, train_dataset: Optional[tf.data.Dataset] = None, eval_dataset: Optional[tf.data.Dataset] = None, compute_metrics: Optional[Callable[[EvalPrediction], Dict]] = None, tb_writer: Optional[tf.summary.SummaryWriter] = None, optimizers: Tuple[tf.keras.optimizers.Optimizer, tf.keras.optimizers.schedules.LearningRateSchedule] = ( None, None, ), **kwargs, ): assert parse(tf.__version__).release >= (2, 2, 0), ( "You need to run the TensorFlow trainer with at least the version 2.2.0, your version is %r " % tf.__version__ ) self.model = model self.args = args self.train_dataset = train_dataset self.eval_dataset = eval_dataset self.compute_metrics = compute_metrics self.optimizer, self.lr_scheduler = optimizers self.gradient_accumulator = GradientAccumulator() self.global_step = 0 self.epoch_logging = 0 if "prediction_loss_only" in kwargs: warnings.warn( "Passing `prediction_loss_only` as a keyword argument is deprecated and won't be possible in a future version. Use `args.prediction_loss_only` instead.", FutureWarning, ) self.args.prediction_loss_only = kwargs.pop("prediction_loss_only") assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}." if tb_writer is not None: self.tb_writer = tb_writer else: self.tb_writer = tf.summary.create_file_writer(self.args.logging_dir) if is_wandb_available(): self.setup_wandb() elif os.environ.get("WANDB_DISABLED") != "true": logger.info( "You are instantiating a Trainer but W&B is not installed. To use wandb logging, " "run `pip install wandb; wandb login` see https://docs.wandb.com/huggingface." ) if is_comet_available(): self.setup_comet() elif os.environ.get("COMET_MODE") != "DISABLED": logger.info( "To use comet_ml logging, run `pip/conda install comet_ml` " "see https://www.comet.ml/docs/python-sdk/huggingface/" ) set_seed(self.args.seed) def get_train_tfdataset(self) -> tf.data.Dataset: """ Returns the training :class:`~tf.data.Dataset`. Subclass and override this method if you want to inject some custom behavior. """ if self.train_dataset is None: raise ValueError("Trainer: training requires a train_dataset.") self.total_train_batch_size = self.args.train_batch_size * self.args.gradient_accumulation_steps self.num_train_examples = tf.data.experimental.cardinality(self.train_dataset).numpy() if self.num_train_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") ds = ( self.train_dataset.repeat() .shuffle(self.num_train_examples, seed=self.args.seed) .batch(self.total_train_batch_size, drop_remainder=self.args.dataloader_drop_last) .prefetch(tf.data.experimental.AUTOTUNE) ) return self.args.strategy.experimental_distribute_dataset(ds) def get_eval_tfdataset(self, eval_dataset: Optional[tf.data.Dataset] = None) -> tf.data.Dataset: """ Returns the evaluation :class:`~tf.data.Dataset`. Args: eval_dataset (:class:`~tf.data.Dataset`, `optional`): If provided, will override `self.eval_dataset`. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Subclass and override this method if you want to inject some custom behavior. """ if eval_dataset is None and self.eval_dataset is None: raise ValueError("Trainer: evaluation requires an eval_dataset.") eval_dataset = eval_dataset if eval_dataset is not None else self.eval_dataset num_examples = tf.data.experimental.cardinality(eval_dataset).numpy() if num_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") approx = math.floor if self.args.dataloader_drop_last else math.ceil steps = approx(num_examples / self.args.eval_batch_size) ds = ( eval_dataset.repeat() .batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last) .prefetch(tf.data.experimental.AUTOTUNE) ) return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples def get_test_tfdataset(self, test_dataset: tf.data.Dataset) -> tf.data.Dataset: """ Returns a test :class:`~tf.data.Dataset`. Args: test_dataset (:class:`~tf.data.Dataset`): The dataset to use. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Subclass and override this method if you want to inject some custom behavior. """ num_examples = tf.data.experimental.cardinality(test_dataset).numpy() if num_examples < 0: raise ValueError("The training dataset must have an asserted cardinality") approx = math.floor if self.args.dataloader_drop_last else math.ceil steps = approx(num_examples / self.args.eval_batch_size) ds = ( test_dataset.repeat() .batch(self.args.eval_batch_size, drop_remainder=self.args.dataloader_drop_last) .prefetch(tf.data.experimental.AUTOTUNE) ) return self.args.strategy.experimental_distribute_dataset(ds), steps, num_examples def create_optimizer_and_scheduler(self, num_training_steps: int): """ Setup the optimizer and the learning rate scheduler. We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the TFTrainer's init through :obj:`optimizers`, or subclass and override this method. """ if not self.optimizer and not self.lr_scheduler: self.optimizer, self.lr_scheduler = create_optimizer( self.args.learning_rate, num_training_steps, self.args.warmup_steps, adam_beta1=self.args.adam_beta1, adam_beta2=self.args.adam_beta2, adam_epsilon=self.args.adam_epsilon, weight_decay_rate=self.args.weight_decay, power=self.args.poly_power, ) def setup_wandb(self): """ Setup the optional Weights & Biases (`wandb`) integration. One can subclass and override this method to customize the setup if needed. Find more information `here <https://docs.wandb.com/huggingface>`__. You can also override the following environment variables: Environment: WANDB_PROJECT: (Optional): str - "huggingface" by default, set this to a custom string to store results in a different project WANDB_DISABLED: (Optional): boolean - defaults to false, set to "true" to disable wandb entirely """ if hasattr(self, "_setup_wandb"): warnings.warn( "The `_setup_wandb` method is deprecated and won't be called in a future version, define `setup_wandb` in your subclass.", FutureWarning, ) return self._setup_wandb() logger.info('Automatic Weights & Biases logging enabled, to disable set os.environ["WANDB_DISABLED"] = "true"') combined_dict = {**self.model.config.to_dict(), **self.args.to_sanitized_dict()} wandb.init(project=os.getenv("WANDB_PROJECT", "huggingface"), config=combined_dict, name=self.args.run_name) def setup_comet(self): """ Setup the optional Comet.ml integration. Environment: COMET_MODE: (Optional): str - "OFFLINE", "ONLINE", or "DISABLED" COMET_PROJECT_NAME: (Optional): str - Comet.ml project name for experiments COMET_OFFLINE_DIRECTORY: (Optional): str - folder to use for saving offline experiments when `COMET_MODE` is "OFFLINE" For a number of configurable items in the environment, see `here <https://www.comet.ml/docs/python-sdk/advanced/#comet-configuration-variables>`__ """ comet_mode = os.getenv("COMET_MODE", "ONLINE").upper() args = {"project_name": os.getenv("COMET_PROJECT_NAME", "huggingface")} experiment = None if comet_mode == "ONLINE": experiment = comet_ml.Experiment(**args) logger.info("Automatic Comet.ml online logging enabled") elif comet_mode == "OFFLINE": args["offline_directory"] = os.getenv("COMET_OFFLINE_DIRECTORY", "./") experiment = comet_ml.OfflineExperiment(**args) logger.info("Automatic Comet.ml offline logging enabled; use `comet upload` when finished") if experiment is not None: experiment._set_model_graph(self.model, framework="transformers") experiment._log_parameters(self.args, prefix="args/", framework="transformers") experiment._log_parameters(self.model.config, prefix="config/", framework="transformers") def prediction_loop( self, dataset: tf.data.Dataset, steps: int, num_examples: int, description: str, prediction_loss_only: Optional[bool] = None, ) -> PredictionOutput: """ Prediction/evaluation loop, shared by :func:`~transformers.TFTrainer.evaluate` and :func:`~transformers.TFTrainer.predict`. Works both with or without labels. """ if hasattr(self, "_prediction_loop"): warnings.warn( "The `_prediction_loop` method is deprecated and won't be called in a future version, define `prediction_loop` in your subclass.", FutureWarning, ) return self._prediction_loop( dataset, steps, num_examples, description, prediction_loss_only=prediction_loss_only ) prediction_loss_only = ( prediction_loss_only if prediction_loss_only is not None else self.args.prediction_loss_only ) logger.info("***** Running %s *****", description) logger.info(" Num examples = %d", num_examples) logger.info(" Batch size = %d", self.args.eval_batch_size) label_ids: np.ndarray = None preds: np.ndarray = None self.eval_loss = tf.keras.metrics.Sum() # Reset the past mems state at the beginning of the evaluation if necessary. if self.args.past_index >= 0: self._past = None for step, batch in enumerate(dataset): logits = self.distributed_prediction_steps(batch) _, labels = batch if not prediction_loss_only: if isinstance(logits, tuple): logits = logits[0] if isinstance(labels, tuple): labels = labels[0] if self.args.n_replicas > 1: for val in logits.values: if preds is None: preds = val.numpy() else: preds = np.append(preds, val.numpy(), axis=0) for val in labels.values: if label_ids is None: label_ids = val.numpy() else: label_ids = np.append(label_ids, val.numpy(), axis=0) else: if preds is None: preds = logits.numpy() else: preds = np.append(preds, logits.numpy(), axis=0) if label_ids is None: label_ids = labels.numpy() else: label_ids = np.append(label_ids, labels.numpy(), axis=0) if step == steps: break if self.compute_metrics is not None and preds is not None and label_ids is not None: metrics = self.compute_metrics(EvalPrediction(predictions=preds, label_ids=label_ids)) else: metrics = {} metrics["eval_loss"] = self.eval_loss.result().numpy() / steps for key in list(metrics.keys()): if not key.startswith("eval_"): metrics[f"eval_{key}"] = metrics.pop(key) if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") return PredictionOutput(predictions=preds, label_ids=label_ids, metrics=metrics) def log(self, logs: Dict[str, float]) -> None: """ Log :obj:`logs` on the various objects watching training. Subclass and override this method to inject custom behavior. Args: logs (:obj:`Dict[str, float]`): The values to log. """ if hasattr(self, "_log"): warnings.warn( "The `_log` method is deprecated and won't be called in a future version, define `log` in your subclass.", FutureWarning, ) return self._log(logs) logs["epoch"] = self.epoch_logging if self.tb_writer: with self.tb_writer.as_default(): for k, v in logs.items(): tf.summary.scalar(k, v, step=self.global_step) self.tb_writer.flush() if is_wandb_available(): wandb.log(logs, step=self.global_step) if is_comet_available(): experiment = comet_ml.config.get_global_experiment() if experiment is not None: experiment._log_metrics( logs, step=self.global_step, epoch=self.epoch_logging, framework="transformers" ) output = {**logs, **{"step": self.global_step}} logger.info(output) def evaluate(self, eval_dataset: Optional[tf.data.Dataset] = None) -> Dict[str, float]: """ Run evaluation and returns metrics. The calling script will be responsible for providing a method to compute metrics, as they are task-dependent (pass it to the init :obj:`compute_metrics` argument). Args: eval_dataset (:class:`~tf.data.Dataset`, `optional`): Pass a dataset if you wish to override :obj:`self.eval_dataset`. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Returns: A dictionary containing the evaluation loss and the potential metrics computed from the predictions. """ eval_ds, steps, num_examples = self.get_eval_tfdataset(eval_dataset) output = self.prediction_loop(eval_ds, steps, num_examples, description="Evaluation") logs = {**output.metrics} logs["epoch"] = self.epoch_logging self.log(logs) return output.metrics def prediction_step( self, features: tf.Tensor, labels: tf.Tensor, nb_instances_in_global_batch: tf.Tensor ) -> tf.Tensor: """ Compute the prediction on features and update the loss with labels. Subclass and override to inject some custom behavior. """ per_example_loss, logits = self.run_model(features, labels, False) scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype) self.eval_loss.update_state(scaled_loss) return logits @tf.function def distributed_prediction_steps(self, batch): nb_instances_in_batch = self._compute_nb_instances(batch) inputs = self._get_step_inputs(batch, nb_instances_in_batch) logits = self.args.strategy.run(self.prediction_step, inputs) return logits def train(self) -> None: """ Train method to train the model. """ train_ds = self.get_train_tfdataset() if self.args.debug: tf.summary.trace_on(graph=True, profiler=True) self.gradient_accumulator.reset() num_update_steps_per_epoch = self.num_train_examples / self.total_train_batch_size # In fact, ``self.args.dataloader_drop_last`` has no effect in `trainer_tf.py`, because # the dataset is repeated before being batched. # It has the effect only when TPU is used which requires explicit tensor shape in order to make # the gradient accumulation implementation work. approx = math.floor if self.args.dataloader_drop_last else math.ceil num_update_steps_per_epoch = approx(num_update_steps_per_epoch) # At least one update for each epoch. num_update_steps_per_epoch = max(num_update_steps_per_epoch, 1) self.steps_per_epoch = num_update_steps_per_epoch if self.args.max_steps > 0: t_total = self.args.max_steps epochs = (self.args.max_steps // self.steps_per_epoch) + int( self.args.max_steps % self.steps_per_epoch > 0 ) else: t_total = self.steps_per_epoch * self.args.num_train_epochs epochs = self.args.num_train_epochs # Since ``self.args.num_train_epochs`` can be `float`, we make ``epochs`` be a `float` always. epochs = float(epochs) with self.args.strategy.scope(): self.create_optimizer_and_scheduler(num_training_steps=t_total) folder = os.path.join(self.args.output_dir, PREFIX_CHECKPOINT_DIR) ckpt = tf.train.Checkpoint(optimizer=self.optimizer, model=self.model) self.model.ckpt_manager = tf.train.CheckpointManager(ckpt, folder, max_to_keep=self.args.save_total_limit) iterations = self.optimizer.iterations epochs_trained = 0 steps_trained_in_current_epoch = 0 if self.model.ckpt_manager.latest_checkpoint: logger.info( "Checkpoint file %s found and restoring from checkpoint", self.model.ckpt_manager.latest_checkpoint ) ckpt.restore(self.model.ckpt_manager.latest_checkpoint).expect_partial() self.global_step = iterations.numpy() epochs_trained = self.global_step // self.steps_per_epoch steps_trained_in_current_epoch = self.global_step % self.steps_per_epoch logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", self.global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) tf.summary.experimental.set_step(self.global_step) with self.tb_writer.as_default(): tf.summary.text("args", self.args.to_json_string()) self.tb_writer.flush() logger.info("***** Running training *****") logger.info(" Num examples = %d", self.num_train_examples) # TODO: We might want to print a more precise ``epochs`` if self.args.max_steps > 0 ? logger.info(" Num Epochs = %d", epochs) logger.info(" Instantaneous batch size per device = %d", self.args.per_device_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", self.total_train_batch_size ) logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps) logger.info(" Steps per epoch = %d", self.steps_per_epoch) logger.info(" Total optimization steps = %d", t_total) self.train_loss = tf.keras.metrics.Sum() start_time = datetime.datetime.now() for epoch_iter in range(epochs_trained, int(epochs)): # Reset the past mems state at the beginning of each epoch if necessary. if self.args.past_index >= 0: self._past = None for step, batch in enumerate(train_ds): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue self.distributed_training_steps(batch) self.global_step = iterations.numpy() self.epoch_logging = epoch_iter + (step + 1) / self.steps_per_epoch training_loss = self.train_loss.result() / (step + 1) if self.args.debug: logs = {} logs["loss"] = training_loss.numpy() logs["epoch"] = self.epoch_logging self.log(logs) if self.global_step == 1 and self.args.debug: with self.tb_writer.as_default(): tf.summary.trace_export( name="training", step=self.global_step, profiler_outdir=self.args.logging_dir ) if ( self.args.eval_steps > 0 and self.args.evaluate_during_training and self.global_step % self.args.eval_steps == 0 ): self.evaluate() if (self.args.logging_steps > 0 and self.global_step % self.args.logging_steps == 0) or ( self.global_step == 1 and self.args.logging_first_step ): logs = {} logs["loss"] = training_loss.numpy() logs["learning_rate"] = self.lr_scheduler(self.global_step).numpy() logs["epoch"] = self.epoch_logging self.log(logs) if self.args.save_steps > 0 and self.global_step % self.args.save_steps == 0: ckpt_save_path = self.model.ckpt_manager.save() logger.info("Saving checkpoint for step {} at {}".format(self.global_step, ckpt_save_path)) if self.args.max_steps > 0 and self.global_step >= t_total: break if self.global_step % self.steps_per_epoch == 0: break self.train_loss.reset_states() if self.args.max_steps > 0 and self.global_step >= self.args.max_steps: break end_time = datetime.datetime.now() logger.info("Training took: {}".format(str(end_time - start_time))) if self.args.past_index and hasattr(self, "_past"): # Clean the state at the end of training delattr(self, "_past") def training_step(self, features, labels, nb_instances_in_global_batch): """ Perform a training step on features and labels. Subclass and override to inject some custom behavior. """ per_example_loss, _ = self.run_model(features, labels, True) scaled_loss = per_example_loss / tf.cast(nb_instances_in_global_batch, dtype=per_example_loss.dtype) gradients = tf.gradients(scaled_loss, self.model.trainable_variables) gradients = [ g if g is not None else tf.zeros_like(v) for g, v in zip(gradients, self.model.trainable_variables) ] if self.args.gradient_accumulation_steps > 1: self.gradient_accumulator(gradients) self.train_loss.update_state(scaled_loss) if self.args.gradient_accumulation_steps == 1: return gradients def apply_gradients(self, features, labels, nb_instances_in_global_batch): if self.args.gradient_accumulation_steps == 1: gradients = self.training_step(features, labels, nb_instances_in_global_batch) self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables))) else: for _ in tf.range(self.args.gradient_accumulation_steps): reduced_features = { k: ft[: self.args.train_batch_size // self.args.n_replicas] for k, ft in features.items() } reduced_labels = labels[: self.args.train_batch_size // self.args.n_replicas] self.training_step(reduced_features, reduced_labels, nb_instances_in_global_batch) features = { k: tf.concat( [ft[self.args.train_batch_size // self.args.n_replicas :], reduced_features[k]], axis=0, ) for k, ft in features.items() } labels = tf.concat( [labels[self.args.train_batch_size // self.args.n_replicas :], reduced_labels], axis=0 ) gradients = self.gradient_accumulator.gradients gradients = [ (tf.clip_by_value(grad, -self.args.max_grad_norm, self.args.max_grad_norm)) for grad in gradients ] self.optimizer.apply_gradients(list(zip(gradients, self.model.trainable_variables))) self.gradient_accumulator.reset() @tf.function def distributed_training_steps(self, batch): with self.args.strategy.scope(): nb_instances_in_batch = self._compute_nb_instances(batch) inputs = self._get_step_inputs(batch, nb_instances_in_batch) self.args.strategy.run(self.apply_gradients, inputs) @staticmethod def _compute_nb_instances(batch): labels = batch[-1] if isinstance(labels, PerReplica): labels = tf.concat(labels.values, axis=0) nb_instances = tf.reduce_sum(tf.cast(labels != -100, dtype=tf.int32)) return nb_instances @staticmethod def _get_step_inputs(batch, nb_instances): features, labels = batch if isinstance(labels, PerReplica): # need to make a `PerReplica` objects for ``nb_instances`` nb_instances = PerReplica([nb_instances] * len(labels.values)) step_inputs = (features, labels, nb_instances) return step_inputs def run_model(self, features, labels, training): """ Computes the loss of the given features and labels pair. Subclass and override this method if you want to inject some custom behavior. Args: features (:obj:`tf.Tensor`): A batch of input features. labels (:obj:`tf.Tensor`): A batch of labels. training (:obj:`bool`): Whether or not to run the model in training mode. Returns: A tuple of two :obj:`tf.Tensor`: The loss and logits. """ if hasattr(self, "_run_model"): warnings.warn( "The `_run_model` method is deprecated and won't be called in a future version, define `run_model` in your subclass.", FutureWarning, ) return self._run_model(features, labels, training) if self.args.past_index >= 0 and getattr(self, "_past", None) is not None: features["mems"] = self._past if isinstance(labels, (dict)): outputs = self.model(features, training=training, **labels)[:2] else: outputs = self.model(features, labels=labels, training=training)[:2] loss, logits = outputs[:2] if self.args.past_index >= 0: self._past = outputs[self.args.past_index] return loss, logits def predict(self, test_dataset: tf.data.Dataset) -> PredictionOutput: """ Run prediction and returns predictions and potential metrics. Depending on the dataset and your use case, your test dataset may contain labels. In that case, this method will also return metrics, like in :obj:`evaluate()`. Args: test_dataset (:class:`~tf.data.Dataset`): Dataset to run the predictions on. The dataset should yield tuples of ``(features, labels)`` where ``features`` is a dict of input features and ``labels`` is the labels. If ``labels`` is a tensor, the loss is calculated by the model by calling ``model(features, labels=labels)``. If ``labels`` is a dict, such as when using a QuestionAnswering head model with multiple targets, the loss is instead calculated by calling ``model(features, **labels)``. Returns: `NamedTuple`: predictions (:obj:`np.ndarray`): The predictions on :obj:`test_dataset`. label_ids (:obj:`np.ndarray`, `optional`): The labels (if the dataset contained some). metrics (:obj:`Dict[str, float]`, `optional`): The potential dictionary of metrics (if the dataset contained labels). """ test_ds, steps, num_examples = self.get_test_tfdataset(test_dataset) return self.prediction_loop(test_ds, steps, num_examples, description="Prediction") def save_model(self, output_dir: Optional[str] = None): """ Will save the model, so you can reload it using :obj:`from_pretrained()`. """ output_dir = output_dir if output_dir is not None else self.args.output_dir logger.info("Saving model in {}".format(output_dir)) if not isinstance(self.model, TFPreTrainedModel): raise ValueError("Trainer.model appears to not be a PreTrainedModel") self.model.save_pretrained(output_dir)
43.88622
169
0.617013
[ "Apache-2.0" ]
AdrienDS/transformers
src/transformers/trainer_tf.py
34,717
Python
from logbunker.contexts.bunker.logs.domain.LogRepository import LogRepository from logbunker.contexts.bunker.logs.domain.entities.Log import Log from logbunker.contexts.bunker.logs.domain.entities.LogContent import LogContent from logbunker.contexts.bunker.logs.domain.entities.LogCreationDate import LogCreationDate from logbunker.contexts.bunker.logs.domain.entities.LogId import LogId from logbunker.contexts.bunker.logs.domain.entities.LogLevel import LogLevel from logbunker.contexts.bunker.logs.domain.entities.LogOrigin import LogOrigin from logbunker.contexts.bunker.logs.domain.entities.LogTrace import LogTrace from logbunker.contexts.bunker.logs.domain.entities.LogType import LogType from logbunker.contexts.shared.domain.EventBus import EventBus class LogCreator: def __init__(self, log_repository: LogRepository, event_bus: EventBus): self.__log_repository = log_repository self.__event_bus = event_bus async def run( self, log_id: LogId, content: LogContent, level: LogLevel, origin: LogOrigin, log_type: LogType, trace: LogTrace, creation_date: LogCreationDate, ): log: Log = Log.create(log_id, content, level, origin, log_type, trace, creation_date) await self.__log_repository.create_one(log) await self.__event_bus.publish(log.pull_domain_events())
44.375
93
0.75493
[ "MIT" ]
parada3desu/logbunker
logbunker/contexts/bunker/logs/application/createone/LogCreator.py
1,420
Python
""" Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from cfnlint import CloudFormationLintRule from cfnlint import RuleMatch from cfnlint.helpers import RESOURCE_SPECS class AllowedValue(CloudFormationLintRule): """Check if properties have a valid value""" id = 'E3030' shortdesc = 'Check if properties have a valid value' description = 'Check if properties have a valid value in case of an enumator' source_url = 'https://github.com/aws-cloudformation/cfn-python-lint/blob/master/docs/cfn-resource-specification.md#allowedvalue' tags = ['resources', 'property', 'allowed value'] def initialize(self, cfn): """Initialize the rule""" for resource_type_spec in RESOURCE_SPECS.get(cfn.regions[0]).get('ResourceTypes'): self.resource_property_types.append(resource_type_spec) for property_type_spec in RESOURCE_SPECS.get(cfn.regions[0]).get('PropertyTypes'): self.resource_sub_property_types.append(property_type_spec) def check_value(self, value, path, property_name, **kwargs): """Check Value""" matches = [] allowed_value_specs = kwargs.get('value_specs', {}).get('AllowedValues', {}) if allowed_value_specs: # Always compare the allowed value as a string, strict typing is not of concern for this rule if str(value) not in allowed_value_specs: message = 'You must specify a valid value for {0} ({1}).\nValid values are {2}' matches.append(RuleMatch(path, message.format(property_name, value, allowed_value_specs))) return matches def check(self, cfn, properties, value_specs, property_specs, path): """Check itself""" matches = list() for p_value, p_path in properties.items_safe(path[:]): for prop in p_value: if prop in value_specs: value = value_specs.get(prop).get('Value', {}) if value: value_type = value.get('ValueType', '') property_type = property_specs.get('Properties').get(prop).get('Type') matches.extend( cfn.check_value( p_value, prop, p_path, check_value=self.check_value, value_specs=RESOURCE_SPECS.get(cfn.regions[0]).get('ValueTypes').get(value_type, {}), cfn=cfn, property_type=property_type, property_name=prop ) ) return matches def match_resource_sub_properties(self, properties, property_type, path, cfn): """Match for sub properties""" matches = list() specs = RESOURCE_SPECS.get(cfn.regions[0]).get('PropertyTypes').get(property_type, {}).get('Properties', {}) property_specs = RESOURCE_SPECS.get(cfn.regions[0]).get('PropertyTypes').get(property_type) matches.extend(self.check(cfn, properties, specs, property_specs, path)) return matches def match_resource_properties(self, properties, resource_type, path, cfn): """Check CloudFormation Properties""" matches = list() specs = RESOURCE_SPECS.get(cfn.regions[0]).get('ResourceTypes').get(resource_type, {}).get('Properties', {}) resource_specs = RESOURCE_SPECS.get(cfn.regions[0]).get('ResourceTypes').get(resource_type) matches.extend(self.check(cfn, properties, specs, resource_specs, path)) return matches
48.663043
132
0.6587
[ "MIT-0" ]
janssenivo/cfn-python-lint
src/cfnlint/rules/resources/properties/AllowedValue.py
4,477
Python
#!/usr/bin/env python3 import os import sys from utils import config, logger, env from librarian.librarian import Librarian log = logger.get_log('KodiLibrarian') kodi = Librarian(config.hosts, update_while_playing=config.update_while_playing) if env.event == 'download': if env.calledBy == 'radarr': log.info('Radarr has downloaded "{}" {}. Initiating update process.'.format(env.movieTitle, env.moviePath)) kodi.updateMovie(env.movieTitle, env.movieDirectory, env.moviePath) if config.clean_after_update: kodi.cleanLibrary('movies') elif env.calledBy == 'sonarr': log.info('Sonarr has downloaded "{}" {}. Initiating update process.'.format(env.showTitle, env.episodePath)) kodi.updateTVShow(env.episodePath, env.showDirectory) if config.clean_after_update: kodi.cleanLibrary('tvshows') elif env.calledBy == 'lidarr': log.info('Lidarr not supported yet!! Aborting.') elif env.event == 'test': log.debug('Called with test environment from {}'.format(env.calledBy)) sys.exit(0) else: log.critical('Could not find any recognizable environment variables. Aborting.')
34.558824
116
0.700426
[ "MIT" ]
jsaddiction/SharedLibraryManager
KodiLibrarian.py
1,175
Python
from textsimilarity import clean_text, rankers, text_models __all__ = ['clean_text', 'rankers', 'text_models']
28
59
0.776786
[ "MIT" ]
NalaniKai/TextSimilarity
textsimilarity/__init__.py
112
Python
import layers import wrappers import replay_buffer
16.666667
20
0.9
[ "MIT" ]
charleneeboo/flatland
common/__init__.py
50
Python
from .access_code import SubmitterAccessCode from .cfp import CfP from .feedback import Feedback from .question import Answer, AnswerOption, Question, QuestionTarget, QuestionVariant from .resource import Resource from .review import Review, ReviewPhase from .submission import Submission, SubmissionError, SubmissionStates from .track import Track from .type import SubmissionType __all__ = [ "Answer", "AnswerOption", "CfP", "Feedback", "Question", "QuestionTarget", "QuestionVariant", "Resource", "Review", "ReviewPhase", "Submission", "SubmissionError", "SubmissionStates", "SubmissionType", "SubmitterAccessCode", "Track", ]
23.965517
85
0.719424
[ "Apache-2.0" ]
MaximilianKindshofer/pretalx
src/pretalx/submission/models/__init__.py
695
Python
import json import platform from django.db.models import Q from django.http import HttpResponse from django.http import HttpResponseNotFound from morango.models import InstanceIDModel from rest_framework import viewsets from rest_framework.decorators import api_view from rest_framework.response import Response import kolibri from .. import error_constants from kolibri.core.content.models import ChannelMetadata from kolibri.core.content.models import ContentNode from kolibri.core.content.serializers import PublicChannelSerializer class InfoViewSet(viewsets.ViewSet): """ An equivalent endpoint in studio which allows kolibri devices to know if this device can serve content. Spec doc: https://docs.google.com/document/d/1XKXQe25sf9Tht6uIXvqb3T40KeY3BLkkexcV08wvR9M/edit# """ def list(self, request): """Returns metadata information about the device""" instance_model = InstanceIDModel.get_or_create_current_instance()[0] info = { "application": "kolibri", "kolibri_version": kolibri.__version__, "instance_id": instance_model.id, "device_name": instance_model.hostname, "operating_system": platform.system(), } return Response(info) def _get_channel_list(version, params, identifier=None): if version == "v1": return _get_channel_list_v1(params, identifier=identifier) else: raise LookupError() def _get_channel_list_v1(params, identifier=None): keyword = params.get("keyword", "").strip() language_id = params.get("language", "").strip() channels = None if identifier: channels = ChannelMetadata.objects.filter(pk=identifier) else: channels = ChannelMetadata.objects.all() if keyword != "": channels = channels.filter( Q(name__icontains=keyword) | Q(description__icontains=keyword) ) if language_id != "": matching_tree_ids = ( ContentNode.objects.prefetch_related("files") .filter( Q(lang__id__icontains=language_id) | Q(files__lang__id__icontains=language_id) ) .values_list("tree_id", flat=True) ) channels = channels.filter( Q(root__lang__id__icontains=language_id) | Q(root__tree_id__in=matching_tree_ids) ) return channels.filter(root__available=True).distinct() @api_view(["GET"]) def get_public_channel_list(request, version): """ Endpoint: /public/<version>/channels/?=<query params> """ try: channel_list = _get_channel_list(version, request.query_params) except LookupError: return HttpResponseNotFound( json.dumps({"id": error_constants.NOT_FOUND, "metadata": {"view": ""}}), content_type="application/json", ) return HttpResponse( json.dumps(PublicChannelSerializer(channel_list, many=True).data), content_type="application/json", ) @api_view(["GET"]) def get_public_channel_lookup(request, version, identifier): """ Endpoint: /public/<version>/channels/lookup/<identifier> """ try: channel_list = _get_channel_list( version, request.query_params, identifier=identifier.strip().replace("-", ""), ) except LookupError: return HttpResponseNotFound( json.dumps({"id": error_constants.NOT_FOUND, "metadata": {"view": ""}}), content_type="application/json", ) if not channel_list.exists(): return HttpResponseNotFound( json.dumps({"id": error_constants.NOT_FOUND, "metadata": {"view": ""}}), content_type="application/json", ) return HttpResponse( json.dumps(PublicChannelSerializer(channel_list, many=True).data), content_type="application/json", )
32.5
99
0.664359
[ "MIT" ]
MikiasEphrem/kolibri
kolibri/core/public/api.py
3,900
Python
def power(x, y, serialId): r = x + 10 p = r * y p += serialId p *= r p = (p%1000)//100 return p-5 if __name__ == '__main__': serialId = 1788 # serialId = 42 # serialId = 18 cum_sum_square = {} for i in range(0, 301): cum_sum_square[(0,i)] = 0 cum_sum_square[(i,0)] = 0 for i in range(1, 301):#row(y) for j in range(1, 301):#col(x) # print(j,i) value = cum_sum_square[(j-1,i-1)] for k in range(1, j): value += power(k, i, serialId) for k in range(1, i): value += power(j, k, serialId) cum_sum_square[(j,i)] = value + power(j, i, serialId) largest_v = -1000000000 largest_cord = None largest_s = 0 for k in range(1, 301): for i in range(1, 301-k+1): for j in range(1, 301-k+1): v = cum_sum_square[(j+k-1,i+k-1)] + cum_sum_square[(j-1,i-1)] - cum_sum_square[(j+k-1,i-1)] - cum_sum_square[(j-1,i+k-1)] if v>largest_v: largest_v = v largest_cord = (j,i) largest_s = k print(largest_cord, largest_v, largest_s)
30.948718
137
0.487158
[ "MIT" ]
antonydeepak/AdventOfCode2018
11/2.py
1,207
Python
"""Tests for 2d flow around a cylinder with a conforming mesh and rans3p""" from builtins import range from builtins import object from proteus.iproteus import * from proteus import Comm from proteus import Context import tables import importlib comm = Comm.get() Profiling.logLevel = 7 Profiling.verbose = False import numpy as np class Test_HotStart_rans3p(object): @classmethod def setup_class(cls): cls._scriptdir = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0,cls._scriptdir) @classmethod def teardown_class(cls): sys.path.remove(cls._scriptdir) pass def setup_method(self, method): """Initialize the test problem. """ self.aux_names = [] def teardown_method(self, method): pass def test_hotstart_p1(self): self.compare_name = "T01P1_hotstart" self.example_setting("T=0.1 vspaceOrder=1 onlySaveFinalSolution=True",h5_filename="solution_p1") self.example_setting("T=0.1 vspaceOrder=1 onlySaveFinalSolution=True isHotStart=True", h5_filename="solution_p1", check_result=True, isHotstart=True,hotstart_t=0.1) def test_hotstart_p2(self): self.compare_name = "T01P2_hotstart" self.example_setting("T=0.1 vspaceOrder=2 onlySaveFinalSolution=True",h5_filename="solution_p2") self.example_setting("T=0.1 vspaceOrder=2 onlySaveFinalSolution=True isHotStart=True", h5_filename="solution_p2", check_result=True, isHotstart=True,hotstart_t=0.1) def example_setting(self, pre_setting, h5_filename, check_result=False, isHotstart=False, hotstart_t=0.0): Context.contextOptionsString = pre_setting from . import NS_hotstart_so as my_so reload(my_so) # defined in iproteus opts.profile = False opts.gatherArchive = True opts.hotStart = isHotstart opts.hotStartTime = hotstart_t pList=[] nList=[] sList=[] for (pModule,nModule) in my_so.pnList: pList.append( importlib.import_module("."+pModule, "proteus.tests.HotStart_3P")) nList.append( importlib.import_module("."+nModule, "proteus.tests.HotStart_3P")) if pList[-1].name == None: pList[-1].name = pModule reload(pList[-1]) # Serious error reload(nList[-1]) if my_so.sList == []: for i in range(len(my_so.pnList)): s = default_s sList.append(s) else: sList = my_so.sList my_so.name = h5_filename#"_hotstart_"+self.compare_name #save data with different filename # NUMERICAL SOLUTION # ns = proteus.NumericalSolution.NS_base(my_so, pList, nList, sList, opts) self.aux_names.append(ns.modelList[0].name) ns.calculateSolution(my_so.name) if check_result: # COMPARE VS SAVED FILES # expected_path = 'comparison_files/' + self.compare_name + '.h5' with tables.open_file(os.path.join(self._scriptdir, expected_path)) as expected, \ tables.open_file( my_so.name + '.h5') as actual: assert np.allclose(expected.root.u_t2, actual.root.u_t2, atol=1e-10)
38.666667
172
0.592325
[ "MIT" ]
burgreen/proteus
proteus/tests/HotStart_3P/test_HotStart_rans3p.py
3,596
Python
import json import hashlib import os import pickle import re import shutil class Block: def __init__(self, numberBlock, data, previousHash, idHash): self._idBlock = numberBlock self._data = data self._previousHash = previousHash self._idHash = idHash self._checker = True def getIdBlock(self): return self._idBlock def getData(self): return self._data def getPreviousHash(self): return self._previousHash def getIdHash(self): return self._idHash def getChecker(self): return self._checker def setData(self, data): self._data = data def setIdHash(self, idHash): self._idHash = idHash def setChecker(self, boolInfo): self._checker = boolInfo def getBlock(self): return [self._idBlock, self._data, self._previousHash, self._idHash] def getInfoGraph(self): info = "Bloque: " + str(self._idBlock) + "\\nData: " + str(self._data) + "\\nHash Bloque: " + str(self._idHash)\ + "\\nHash Ant.: " + str(self._previousHash) return info def verifyBlock(self, hashAnteriorBA): if hashAnteriorBA == self._previousHash: return True # self._checker = False return False class Blockchain: def __init__(self): self.idChain = 1 self.previous = 0 self.blocks_list = [] self.firstHash = "" self.checkerChain = True def generate_hash(self, data): pattern = r'[0-9a-zA-Z]+' objectStr = pickle.dumps(data) while True: id_hash = hashlib.sha256(objectStr).hexdigest() if re.match(pattern, id_hash): return id_hash def verifyFirstBlock(self, hashActual): if self.firstHash == hashActual: return True return False def insertBlock(self, tupla, nameJson): id_hash = self.generate_hash(tupla) newBlock = Block(self.idChain, tupla, self.previous, id_hash) self.blocks_list.append(newBlock) file = self.load_json(nameJson) file.write(json.dumps([j.getBlock() for j in self.blocks_list])) file.close() # only for the first if self.idChain == 1: self.firstHash = id_hash self.idChain += 1 self.previous = id_hash def graphBlockchain(self, nombreImagen): graph = 'digraph G{\n' graph += 'rankdir=LR;\n' graph += "node[shape = \"box\"]\n" graph += self.__graficar() graph += '}' direccion = self.pathImageGraph() file = open(f"{direccion}\\{nombreImagen}.dot", "w") file.write(graph) file.close() os.system(f'dot -Tpng {direccion}\\{nombreImagen}.dot -o {direccion}\\{nombreImagen}.png') def __graficar(self): graph = "" bandera = True for i in range(len(self.blocks_list)): info = self.blocks_list[i].getInfoGraph() nodo = 'node' + str(self.blocks_list[i].getIdBlock()) color = "green" # If is not the first, verify the previous hash if not (i == 0): hashAnterior = self.blocks_list[i-1].getIdHash() brokeChain = self.blocks_list[i].verifyBlock(str(hashAnterior)) # If is the first, verify the actual hash, because the first always has previous in 0 else: hashActual = self.blocks_list[i].getIdHash() brokeChain = self.verifyFirstBlock(hashActual) if not brokeChain: self.checkerChain = False bandera = False if bandera is False: color = "red" # If is not the last to put the next pointer if not (i == (len(self.blocks_list) - 1)): nextId = self.blocks_list[i + 1].getIdBlock() nextNodo = 'node' + str(nextId) graph += nodo + f'[label="{info}", color="{color}", penwidth=3]\n' graph += nodo + '->' + nextNodo + '\n' # If is the Last not put the next pointer else: graph += nodo + f'[label="{info}", color="{color}", penwidth=3]\n' # If is not the First to the Back pointer if not (i == 0): nodoAnterior = "node" + str(self.blocks_list[i-1].getIdBlock()) if color == "green": graph += nodo + '->' + nodoAnterior + "\n" graph += nodoAnterior + f"[color={color}]" return graph def updateBlock(self, oldTuple, newTuple, nameJson): # Cambiando valores de la lista y generando nuevo hash file = open(os.getcwd() + "\\DataJsonBC\\" + nameJson + ".json", "r") JSblock_list = json.loads(file.read()) file.close() newHash = self.generate_hash(newTuple) # Recorriendo y actualizando JSON for blockJS in JSblock_list: if oldTuple == blockJS[1]: blockJS[1] = newTuple blockJS[3] = newHash # recorriendo y actualizando Block list for block in self.blocks_list: if oldTuple == block.getData(): block.setData(newTuple) block.setIdHash(newHash) file = open(os.getcwd() + "\\DataJsonBC\\" + nameJson + ".json", "w+") file.write(json.dumps(JSblock_list)) file.close() # ------------------------------------------------------- FILES ---------------------------------------------------- def load_json(self, nombre): if os.path.isdir(os.getcwd() + "\\DataJsonBC"): file = open(os.getcwd() + "\\DataJsonBC\\" + nombre + ".json", "+w") return file os.makedirs(os.getcwd() + "\\DataJsonBC") file = open(os.getcwd() + "\\DataJsonBC\\" + nombre + ".json", "+w") return file def pathImageGraph(self): if not os.path.isdir(os.getcwd() + "\\ImageBlockChain"): os.makedirs(os.getcwd() + "\\ImageBlockChain") direccion = os.getcwd() + "\\ImageBlockChain" return direccion def removeFilesBlock(self, nameJson): if os.path.isdir(os.getcwd() + "\\DataJsonBC"): if os.path.isfile(os.getcwd() + "\\DataJsonBC\\" + nameJson + ".json"): os.remove(os.getcwd() + "\\DataJsonBC\\" + nameJson + ".json") # os.remove(os.getcwd() + "\\DataJsonBC\\" + nameJson + ".dot")
33.848958
120
0.550085
[ "MIT" ]
jorgeisa/Respaldo_EDD_Fase2
storage/fase2/team13/Blockchain.py
6,499
Python
from d2lbook2 import notebook from d2lbook2 import rst import unittest import nbconvert _markdown_src = r''' # Test :label:`test` first para python is good another para This is :eqref:`sec_1` ```python2 1+2+3 ``` python3 is better - here - haha ```{.input .python} 1+2+3 ``` ```{.input .python} #@tab python2 1+2+3 ``` ```bash ```` aa ```` ``` ## Section 2 :label:`sec_2` ```eval_rst .. only:: html Table of Contents ----------------- ``` ```toc :numbered: :maxdepth: 2 install user/index develop/index ``` ![Estimating the length of a foot](../img/koebel.jpg) :width:`400px` $x=1$, :numref:`sec_2` ''' class TestRst(unittest.TestCase): # TODO(mli) add some asserts def test_convert_notebook(self): nb = notebook.read_markdown(_markdown_src) body, _ = rst.convert_notebook(nb, {}) lines = body.split('\n') for l in lines: if l.startswith(':math:`x=1`'): self.assertEqual(l, ':math:`x=1`, :numref:`sec_2`')
12.5375
67
0.601196
[ "Apache-2.0" ]
aieye-top/d2l-book2
d2lbook2/rst_test.py
1,003
Python
from .default import DefaultAttackEval from ..classifier import Classifier from ..attacker import Attacker import json from tqdm import tqdm class InvokeLimitException(Exception): pass class InvokeLimitClassifierWrapper(Classifier): def __init__(self, clsf, invoke_limit): self.__invoke_limit = invoke_limit self.__clsf = clsf self.__brk = False self.__invoke = 0 def clear(self): self.__invoke = 0 def test(self, limit=True): self.__brk = limit def get_invoke(self): return self.__invoke def get_pred(self, input_, data): if self.__brk and self.__invoke >= self.__invoke_limit: raise InvokeLimitException() self.__invoke += len(input_) return self.__clsf.get_pred(input_, data) def get_prob(self, input_, data): if self.__brk and self.__invoke >= self.__invoke_limit: raise InvokeLimitException() self.__invoke += len(input_) return self.__clsf.get_prob(input_, data) def get_grad(self, input_, labels, data): if self.__brk and self.__invoke > self.__invoke_limit: raise InvokeLimitException() self.__invoke += len(input_) return self.__clsf.get_grad(input_, labels, data) class InvokeLimitAttackerWrapper(Attacker): def __init__(self, attacker, clsf): self.__attacker = attacker self.__clsf = clsf self.__exceed = False def __call__(self, *args, **kwargs): self.__clsf.test() self.__clsf.clear() self.__exceed = False try: ret = self.__attacker(*args, **kwargs) except InvokeLimitException: ret = None self.__exceed = True self.__clsf.test(limit=False) return ret def exceed(self): return self.__exceed class InvokeLimitedAttackEval(DefaultAttackEval): """ Evaluate attackers and classifiers with invoke limitation. """ def __init__(self, attacker, classifier, invoke_limit=100, average_invoke=False, **kwargs): """ :param Attacker attacker: The attacker you use. :param Classifier classifier: The classifier you want to attack. :param int invoke_limit: Limitation of invoke for each instance. :param bool average_invoke: If true, returns "Avg. Victim Model Queries". :param kwargs: Other parameters, see :py:class:`.DefaultAttackEval` for detail. """ super().__init__(attacker, classifier, **kwargs) # wrap classifier, attacker after super().__init__ self.classifier = InvokeLimitClassifierWrapper(self.classifier, invoke_limit) self.attacker = InvokeLimitAttackerWrapper(self.attacker, self.classifier) # keep a private version self.__attacker = self.attacker self.__classifier = self.classifier self.__average_invoke = average_invoke def measure(self, sentA, sentB): info = super().measure(sentA, sentB) if self.__attacker.exceed(): info["Query Exceeded"] = True else: info["Query Exceeded"] = False # only records succeed attacks if info["Succeed"] and self.__average_invoke: info["Queries"] = self.__classifier.get_invoke() return info def update(self, info): info = super().update(info) if "Queries" in info: if "invoke" not in self.__result: self.__result["invoke"] = 0 self.__result["invoke"] += info["Queries"] if info["Query Exceeded"]: if "out_of_invoke" not in self.__result: self.__result["out_of_invoke"] = 0 self.__result["out_of_invoke"] += 1 return info def clear(self): super().clear() self.__result = {} def get_result(self): ret = super().get_result() if self.__average_invoke and "invoke" in self.__result: ret["Avg. Victim Model Queries"] = self.__result["invoke"] / ret["Successful Instances"] return ret
33.451613
100
0.623915
[ "MIT" ]
agcopenhaver/OpenAttack
OpenAttack/attack_evals/invoke_limit_eval.py
4,148
Python
""" Common utilities for the library """ import shutil import sys import os import logging from aws_lambda_builders.architecture import X86_64, ARM64 LOG = logging.getLogger(__name__) def copytree(source, destination, ignore=None, include=None): """ Similar to shutil.copytree except that it removes the limitation that the destination directory should be present. :type source: str :param source: Path to the source folder to copy :type destination: str :param destination: Path to destination folder :type ignore: function :param ignore: A function that returns a set of file names to ignore, given a list of available file names. Similar to the ``ignore`` property of ``shutils.copytree`` method :type include: Callable[[str], bool] :param include: A function that will decide whether a file should be copied or skipped it. It accepts file name as parameter and return True or False. Returning True will continue copy operation, returning False will skip copy operation for that file """ if not os.path.exists(source): LOG.warning("Skipping copy operation since source %s does not exist", source) return if not os.path.exists(destination): LOG.debug("Creating target folders at %s", destination) os.makedirs(destination) try: # Let's try to copy the directory metadata from source to destination LOG.debug("Copying directory metadata from source (%s) to destination (%s)", source, destination) shutil.copystat(source, destination) except OSError as ex: # Can't copy file access times in Windows LOG.debug("Unable to copy file access times from %s to %s", source, destination, exc_info=ex) names = os.listdir(source) if ignore is not None: ignored_names = ignore(source, names) else: ignored_names = set() for name in names: # Skip ignored names if name in ignored_names: LOG.debug("File (%s) is in ignored set, skipping it", name) continue new_source = os.path.join(source, name) new_destination = os.path.join(destination, name) if include and not os.path.isdir(new_source) and not include(name): LOG.debug("File (%s) doesn't satisfy the include rule, skipping it", name) continue if os.path.isdir(new_source): copytree(new_source, new_destination, ignore=ignore, include=include) else: LOG.debug("Copying source file (%s) to destination (%s)", new_source, new_destination) shutil.copy2(new_source, new_destination) # NOTE: The below function is copied from Python source code and modified # slightly to return a list of paths that match a given command # instead of returning just the first match # The function "which" at aws_lambda_builders/utils.py was copied from https://github.com/python/cpython/blob/3.7/Lib/shutil.py # SPDX-License-Identifier: Python-2.0 # Copyright 2019 by the Python Software Foundation def which(cmd, mode=os.F_OK | os.X_OK, executable_search_paths=None): # pragma: no cover """Given a command, mode, and executable search paths list, return the paths which conforms to the given mode on the PATH with the prepended additional search paths, or None if there is no such file. `mode` defaults to os.F_OK | os.X_OK. the default search `path` defaults to the result of os.environ.get("PATH") Note: This function was backported from the Python 3 source code. :type cmd: str :param cmd: Executable to be looked up in PATH. :type mode: str :param mode: Modes of access for the executable. :type executable_search_paths: list :param executable_search_paths: List of paths to look for `cmd` in preference order. """ # Check that a given file can be accessed with the correct mode. # Additionally check that `file` is not a directory, as on Windows # directories pass the os.access check. def _access_check(fn, mode): return os.path.exists(fn) and os.access(fn, mode) and not os.path.isdir(fn) # If we're given a path with a directory part, look it up directly # rather than referring to PATH directories. This includes checking # relative to the current directory, e.g. ./script if os.path.dirname(cmd): if _access_check(cmd, mode): return cmd return None path = os.environ.get("PATH", os.defpath) if not path: return None path = path.split(os.pathsep) if executable_search_paths: path = executable_search_paths + path if sys.platform == "win32": # The current directory takes precedence on Windows. if os.curdir not in path: path.insert(0, os.curdir) # PATHEXT is necessary to check on Windows. pathext = os.environ.get("PATHEXT", "").split(os.pathsep) # See if the given file matches any of the expected path # extensions. This will allow us to short circuit when given # "python.exe". If it does match, only test that one, otherwise we # have to try others. if any(cmd.lower().endswith(ext.lower()) for ext in pathext): files = [cmd] else: files = [cmd + ext for ext in pathext] else: # On other platforms you don't have things like PATHEXT to tell you # what file suffixes are executable, so just pass on cmd as-is. files = [cmd] seen = set() paths = [] for dir in path: normdir = os.path.normcase(dir) if normdir not in seen: seen.add(normdir) for thefile in files: name = os.path.join(dir, thefile) if _access_check(name, mode): paths.append(name) return paths def get_goarch(architecture): """ Parameters ---------- architecture : str name of the type of architecture Returns ------- str returns a valid GO Architecture value """ return "arm64" if architecture == ARM64 else "amd64"
33.686486
127
0.652599
[ "Apache-2.0" ]
awslabs/aws-lambda-builders
aws_lambda_builders/utils.py
6,232
Python
import tensorflow as tf import os import json import subprocess from scipy.misc import imread, imresize from scipy import misc from train import build_forward from utils.annolist import AnnotationLib as al from utils.train_utils import add_rectangles, rescale_boxes import cv2 import argparse def get_image_dir(args): weights_iteration = int(args.weights.split('-')[-1]) expname = '_' + args.expname if args.expname else '' image_dir = '%s/images_%s_%d%s' % (os.path.dirname(args.weights), os.path.basename(args.test_boxes)[:-5], weights_iteration, expname) return image_dir def get_results(args, H): tf.reset_default_graph() x_in = tf.placeholder(tf.float32, name='x_in', shape=[H['image_height'], H['image_width'], 3]) if H['use_rezoom']: pred_boxes, pred_logits, pred_confidences, pred_confs_deltas, pred_boxes_deltas = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None) grid_area = H['grid_height'] * H['grid_width'] pred_confidences = tf.reshape(tf.nn.softmax(tf.reshape(pred_confs_deltas, [grid_area * H['rnn_len'], 2])), [grid_area, H['rnn_len'], 2]) if H['reregress']: pred_boxes = pred_boxes + pred_boxes_deltas else: pred_boxes, pred_logits, pred_confidences = build_forward(H, tf.expand_dims(x_in, 0), 'test', reuse=None) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, args.weights) pred_annolist = al.AnnoList() true_annolist = al.parse(args.test_boxes) data_dir = os.path.dirname(args.test_boxes) image_dir = get_image_dir(args) os.makedirs(image_dir) for i in range(len(true_annolist)): true_anno = true_annolist[i] orig_img = imread('%s/%s' % (data_dir, true_anno.imageName))[:,:,:3] img = imresize(orig_img, (H["image_height"], H["image_width"]), interp='cubic') feed = {x_in: img} (np_pred_boxes, np_pred_confidences) = sess.run([pred_boxes, pred_confidences], feed_dict=feed) pred_anno = al.Annotation() pred_anno.imageName = true_anno.imageName new_img, rects = add_rectangles(H, [img], np_pred_confidences, np_pred_boxes, use_stitching=True, rnn_len=H['rnn_len'], min_conf=args.min_conf, tau=args.tau, show_suppressed=args.show_suppressed) pred_anno.rects = rects pred_anno.imagePath = os.path.abspath(data_dir) pred_anno = rescale_boxes((H["image_height"], H["image_width"]), pred_anno, orig_img.shape[0], orig_img.shape[1]) pred_annolist.append(pred_anno) imname = '%s/%s' % (image_dir, os.path.basename(true_anno.imageName)) misc.imsave(imname, new_img) if i % 25 == 0: print(i) return pred_annolist, true_annolist def main(): parser = argparse.ArgumentParser() parser.add_argument('--weights', required=True) parser.add_argument('--expname', default='') parser.add_argument('--test_boxes', required=True) parser.add_argument('--gpu', default=0) parser.add_argument('--logdir', default='output') parser.add_argument('--iou_threshold', default=0.5, type=float) parser.add_argument('--tau', default=0.25, type=float) parser.add_argument('--min_conf', default=0.2, type=float) parser.add_argument('--show_suppressed', default=True, type=bool) args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) hypes_file = '%s/hypes.json' % os.path.dirname(args.weights) with open(hypes_file, 'r') as f: H = json.load(f) expname = args.expname + '_' if args.expname else '' pred_boxes = '%s.%s%s' % (args.weights, expname, os.path.basename(args.test_boxes)) true_boxes = '%s.gt_%s%s' % (args.weights, expname, os.path.basename(args.test_boxes)) pred_annolist, true_annolist = get_results(args, H) pred_annolist.save(pred_boxes) true_annolist.save(true_boxes) try: rpc_cmd = './utils/annolist/doRPC.py --minOverlap %f %s %s' % (args.iou_threshold, true_boxes, pred_boxes) print('$ %s' % rpc_cmd) rpc_output = subprocess.check_output(rpc_cmd, shell=True) print(rpc_output) txt_file = [line for line in rpc_output.split('\n') if line.strip()][-1] output_png = '%s/results.png' % get_image_dir(args) plot_cmd = './utils/annolist/plotSimple.py %s --output %s' % (txt_file, output_png) print('$ %s' % plot_cmd) plot_output = subprocess.check_output(plot_cmd, shell=True) print('output results at: %s' % plot_output) except Exception as e: print(e) if __name__ == '__main__': main()
45.358491
161
0.656614
[ "Apache-2.0", "MIT" ]
lilohuang/TensorBox
evaluate.py
4,808
Python
# -*- coding: utf-8 -*- # # How long does a Computron take? # # - [build model of computron\-to\-wallclock relationship · Issue \#3459 · Agoric/agoric\-sdk](https://github.com/Agoric/agoric-sdk/issues/3459) # ## Preface: Python Data Tools # # See also [shell.nix](shell.nix). # + import pandas as pd import numpy as np import sqlalchemy as sqla import matplotlib.cm as cm import dask import dask.dataframe as dd import dask.bag as db dict(pandas=pd.__version__, numpy=np.__version__, sqlalchemy=sqla.__version__, dask=dask.__version__) # - # ### Notebook / Scripting Authority # # As a nod to OCap discipline, we avoid ambient authority unless we're in a `TOP`-level scripting or notebook context. TOP = __name__ == '__main__' # Logging is a bit of an exception to OCap discipline, as is stderr. # + import logging from sys import stderr logging.basicConfig(level=logging.INFO, stream=stderr, format='%(asctime)s %(levelname)s: %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log = logging.getLogger(__name__) if TOP: log.info('notebook start') # - # ### Dask Parallel Scheduler UI # + from dask.distributed import Client, LocalCluster if TOP: cluster = LocalCluster(n_workers=8) client = Client(cluster) TOP and client # - # ## Result Store # + db4_uri = 'sqlite:///slog4.db' if TOP: db4 = sqla.create_engine(db4_uri) # - # ## SLog files # # [rclone support for Google drive](https://rclone.org/drive/) # # > This contains 564GB of data from 117 participants, spread across 172 slogfiles ... # # ``` # [nix-shell:~/t4]$ rclone sync --progress 'Engineering:/2021-07-04 testnet phase4-stress data/validator slogfiles' ./slogfiles/ # Transferred: 78.633G / 78.633 GBytes, 100%, 101.302 MBytes/s, ETA 0s # Checks: 5 / 5, 100% # Transferred: 182 / 182, 100% # Elapsed time: 13m16.0s # ``` # # + import importlib import slogdata importlib.reload(slogdata) from slogdata import SlogAccess, CLI, show_times if TOP: def _dir(path): import pathlib return pathlib.Path(path) def _cli(bin): from subprocess import run, Popen return CLI(bin, run, Popen, debug=True) _sa4 = SlogAccess(_dir('/home/customer/t4/slogfiles'), _cli('/home/customer/projects/gztool/gztool')) TOP and show_times(_sa4.get_records('pathrocknetwork/chain-15.pathrocknetwork.slog.gz', 7721, 2)) # - _bySize = _sa4.files_by_size() _bySize _bySize[_bySize.parent == 'KingSuper'] TOP and _bySize[::5].set_index('name')[['st_size']].plot.barh( title='slogfile sizes (sample)', figsize=(10, 8)); # ### random access with `gztool` # # [gztool](https://github.com/circulosmeos/gztool) `a03c5b4fd5b3` Jul 13 2021. # # # ``` # ~/projects/gztool/gztool -C -e */*.slog.gz # ... # ERROR: Compressed data error in 'atlantean/atlantean-agorictest16-chain.slog.gz'. # ... # Index file 'ZenQQQ/ZenQQQ-agorictest16-chain.slog.gzi' already exists and will be used. # Processing 'ZenQQQ/ZenQQQ-agorictest16-chain.slog.gz' ... # Processing index to 'ZenQQQ/ZenQQQ-agorictest16-chain.slog.gzi'... # # 172 files processed # 1 files processed with errors! # ``` # + # count lines on all slogfiles in parallel # TODO: if it's already in the DB, don't compute it again. if TOP: _withLines = _bySize.assign( lines=db.from_sequence(_bySize.values).map( lambda v: _sa4.line_count(*v[1:3])).compute()) TOP and _withLines # - _withLines.to_sql('file_meta', db4, index=False, if_exists='replace') # !sqlite3 slog4.db '.header on' '.mode column' 'select * from file_meta limit 3' _withLines = pd.read_sql_table('file_meta', db4) # + def file_chart(slogdf, sample=5, **plotkw): df = slogdf[['name', 'st_size', 'lines']].copy() df['b64'] = df.st_size / 64 df.drop('st_size', axis=1, inplace=True) df.set_index('name')[::sample].plot.barh(**plotkw) TOP and file_chart(_withLines, title='slogfile sizes (sample)', figsize=(10, 8)) # - # ## slogfile basics pd.read_sql(""" select st_size, lines from file_meta order by st_size desc """, db4).describe() # ## Runs, Blocks, and Deliveries # # > split each slogfile into runs (each beginning with an import-kernel event) # + def partition_lines(lines, step=1000000): """Note: line numbers are **1-based** """ lo = pd.DataFrame.from_records([ dict(start=lo, qty=min(lines + 1 - lo, step), lines=lines) for lo in range(1, lines + 1, step)]) return lo partition_lines(_withLines.lines.iloc[-1]) # + #client.restart() # + # # !sqlite3 slog4.db 'drop table run' # + def provide_table(engine, table, todo, chunksize=None, index=True): if sqla.inspect(engine).has_table(table): return pd.read_sql_table(table, engine, chunksize=chunksize) df = todo() df.to_sql(table, engine, index=index) return df def runs_todo(withLines): runs = dd.from_delayed([ dask.delayed(_sa4.provide_runs)(f.parent, f['name'], part.start, part.qty) for fid, f in withLines.iterrows() for _, part in partition_lines(f.lines).iterrows() ]).compute().sort_values(['file_id', 'line']) withNames = pd.merge(runs, withLines[['file_id', 'parent', 'name', 'st_size', 'lines']], on='file_id') # Compute end times byFile = withNames.groupby('file_id') runs = pd.concat([ withNames, byFile.apply(lambda g: pd.DataFrame(dict(time_end=g.time.shift(-1)))), byFile.apply(lambda g: pd.DataFrame(dict(line_end=g.line.shift(-1)))), ], axis=1) runs.line_end = np.where(runs.line_end.isnull(), runs.lines, runs.line_end) return runs.sort_values(['st_size', 'file_id', 'line']).reset_index(drop=True) _runs = provide_table(db4, 'run', lambda: runs_todo(_withLines)) # - # !sqlite3 slog4.db '.schema run' show_times(_runs, ['time', 'time_end'])[['st_size', 'line', 'line_end', 'parent', 'file_id', 'time', 'time_end']] # ### runs per slogfile df = _runs.groupby('file_id')[['line']].count() df.describe() # + df = pd.read_sql(""" select file_id, count(*) runs, name, st_size, lines from run r -- join file_id s on s."index" = r.slogfile group by file_id order by 2 """, db4) df.set_index('name')[['runs']][::5].plot.barh( log=True, title='slogfile runs (sample)', figsize=(10, 8)); # - # ## agorictest-16 genesis: `2021-07-01 19:00:00` gen16 = show_times(pd.DataFrame(dict(blockHeight=64628, blockTime=[1625166000], ts=1625166000)), ['blockTime']) gen16 # ## Block end start / finish events # + import importlib import slogdata from slogdata import SlogAccess importlib.reload(slogdata) _sa4 = SlogAccess(_dir('/home/customer/t4/slogfiles'), _cli('/home/customer/projects/gztool/gztool')) show_times( _sa4.provide_blocks('ChainodeTech', 'agorictest-16_chain.slog.gz', 1, 1000000) ) # - # ## Separate runs by chain # + def first_block(sa, run, head=5000, ts=gen16.ts[0]): log.info('1st block: %s/%s', run.parent, run['name']) qty = min(int(run.line_end) - run.line + 1, head) df = sa.get_blocks(f'{run.parent}/{run["name"]}', run.line, qty)[:2] if not len(df): return pd.DataFrame.from_records([dict( blockHeight=-1, blockTime=-1, run=run.name, chain=np.nan)], index=[run.name]) df = df.assign(run=run.name, chain=16 if df.blockTime[0] >= ts else 15) return df show_times(first_block(_sa4, _runs.loc[0])) # + def run2chain(sa, runs): df = runs.apply(lambda run: first_block(sa, run).iloc[0][['blockHeight', 'blockTime', 'chain']], axis=1) return df _r2c = run2chain(_sa4, _runs) _r2c # - _runchain = pd.concat([_runs.drop(columns=['index']), _r2c], axis=1) _runchain.to_sql('runchain', db4) _runchain.groupby('chain')[['line']].count() # !sqlite3 slog4.db '.header on' '.mode column' 'select * from runchain limit 3' _runchain = pd.read_sql('runchain', db4) _runchain.groupby('chain')[['line']].count() _runs['chain'] = _runchain.chain _runs.groupby('chain')[['file_id', 'lines']].count() # + # # !sqlite3 slog4.db 'drop table blockval;' # + def blockval_todo(file_meta): return dd.from_delayed([ dask.delayed(_sa4.provide_blocks)(f.parent, f['name'], part.start, part.qty) for fid, f in file_meta.iterrows() for _, part in partition_lines(f.lines).iterrows() ]).compute() _blockval = provide_table(db4, 'blockval', lambda: blockval_todo(_withLines), index=True) show_times(_blockval) # - # !sqlite3 slog4.db '.schema blockval' pd.read_sql(""" select file_id, max(blockHeight) from blockval where blockTime >= 1625166000 group by file_id order by 2 desc """, db4) # ### Consensus Block-to-Block Time # + # db4.execute("""drop table if exists block""") # - db4.execute(""" create table block as select distinct case when blockTime >= 1625166000 then 16 else 15 end chain , blockHeight, blockTime from blockval order by blockTime """) pd.read_sql(""" select * from block limit 10 """, db4) # ### What is the range of blocks in `agorictest-16`? pd.read_sql(""" select lo, n, lo + n - 1, hi from ( select min(blockHeight) lo, max(blockHeight) hi, count(distinct blockHeight) n from block where chain = 16 ) """, db4) # + blk16 = pd.read_sql(""" select blockHeight, blockTime from block where chain = 16 """, db4, index_col='blockHeight') show_times(blk16).describe(datetime_is_numeric=True) # - b16time = pd.read_sql(""" select * from block where chain = 16 """, db4, index_col='blockHeight') b16time['delta'] = b16time.shift(-1).blockTime - b16time.blockTime b16time[['delta']].describe() b16time[b16time.index < 90527].delta.max() b16time[b16time.delta == 120] b16time[['delta']].plot( title='agorictest-16 consensus blockTime delta', ylabel='sec', figsize=(9, 6)); show_times(b16time, ['blockTime']).set_index('blockTime')[['delta']].plot( title='agorictest-16 consensus blockTime delta', ylabel='sec', figsize=(9, 6)); # histogram of block-to-block time delta for agorictest-16. (_Note the log scale on the y axis._) b16time[['delta']].hist(bins=20, log=True); df = show_times(b16time, ['blockTime']) df[df.blockTime <= '2021-07-02 19:00:00'][['delta']].hist(bins=20, log=True); df[df.blockTime <= '2021-07-02 19:00:00'][['delta']].describe() # ### How many validators logged each block in agorictest-16? df = pd.read_sql(""" select blockHeight, count(distinct file_id) qty from blockval where sign = -1 and blockTime >= 1625166000 group by blockHeight """, db4) df.head() df.set_index('blockHeight').plot(title='agorictest-16 validator coverage by block', figsize=(9, 6)); # !sqlite3 slog4.db '.schema run' # + # db4.execute('drop table if exists blockrun16') db4.execute(""" create table blockrun16 as with b as ( select * from blockval where blockTime >= 1625166000 ) select file_id , (select r."index" from run r where r.file_id = b.file_id and r.line <= b.line and b.line < r.line_end) run , b.line, b.time , b.sign , blockHeight, blockTime from b """) df = pd.read_sql(""" select * from blockrun16 """, db4) df.tail() # - x = df.groupby('blockHeight')[['run']].count() x.plot(); x['blockHeight'].sort_values('max').reset_index(drop=True).plot(); # ## Slow Blocks df = show_times(b16time, ['blockTime']) df[(df.blockTime <= '2021-07-02 19:00:00') & (df.delta >= 30)] # Which runs include block 72712, which took 31 sec? b33 = pd.read_sql(""" select lo.file_id, lo.run, lo.line, hi.line - lo.line + 1 range, lo.blockHeight from blockrun16 lo join blockrun16 hi on hi.run = lo.run and hi.blockHeight = lo.blockHeight where lo.blockHeight in (72712) and lo.sign = -1 and hi.sign = 1 """, db4) b33 # ## Correlating block start with block end _blockrun16 = df = pd.read_sql_table('blockrun16', db4) df.tail() lo = df[df.sign == -1] hi = df.shift(-1) hi = hi[hi.sign == 1] dur = hi.time - lo.time # show_times(df, ['time', 'time_end']) lo['dur'] = dur lo['s_hi'] = hi.file_id lo['l_hi'] = hi.line lo['t_hi'] = hi.time dur = lo[lo.file_id == lo.s_hi] show_times(dur, ['time', 'blockTime']) show_times( dur.sort_values('dur').dropna().tail(), ['time', 'blockTime', 't_hi'] ) dur[dur.dur.abs() <= 120].plot.scatter(x='blockHeight', y='dur') dur[['blockHeight', 'dur']].describe() # ## Cranks in a Block # + def long_runs_including(runs, blockrun, blockHeight): runs_matching = blockrun[blockrun.blockHeight == blockHeight].run runs = runs.assign(length=runs.line_end - runs.line) runs = runs[runs.index.isin(runs_matching)] return runs.sort_values('length', ascending=False) _long16 = long_runs_including(_runs, _blockrun16, 64628) _long16.head() # - show_times(dur[dur.run == _long16.index[0]], ['time', 'blockTime', 't_hi']) _blockrun16[(_blockrun16.run == _long16.index[0]) & (_blockrun16.blockHeight == 64628)].iloc[:2] # + def blockrun_records(blockHeight, run, slogAccess, blockrun, target=None, include=None): ref = f'{run.parent}/{run["name"]}' br = blockrun[(blockrun.run == run.name) & (blockrun.blockHeight == blockHeight)] block_start = br.iloc[0] # assert sign == -1? block_end = br.iloc[1] length = block_end.line - block_start.line + 1 df = slogAccess.get_records(f'{run.parent}/{run["name"]}', int(block_start.line), int(length), target=target, include=include) return df.assign(file_id=run.file_id) def get_vats(slogAccess, ref, start, qty): df = slogAccess.get_records(ref, start, qty, target='create-vat', include=['create-vat']) return df def vats_in_blockrun(blockHeight, run, slogAccess, blockrun): br = blockrun[(blockrun.run == run.name) & (blockrun.blockHeight == blockHeight)] block_start = br.iloc[0] # assert sign == -1? block_end = br.iloc[1] length = block_end.line - block_start.line + 1 ref = f'{run.parent}/{run["name"]}' df = get_vats(slogAccess, ref, int(block_start.line), int(length)) return df.assign(blockHeight=blockHeight, parent=run.parent) # _sa4.get_records('Nodeasy.com/Nodeasy.com-agorictest15-chain.slog.gz', 1662497, 1671912 - 1662497) vats_in_blockrun(_blockrun16.iloc[0].blockHeight, _runs.loc[_long16.index[0]], _sa4, _blockrun16) # - vats_in_blockrun(64629, _runs.loc[_long16.index[0]], _sa4, _blockrun16) no_deliveries = pd.DataFrame.from_records([ {'time': 1625198620.6265895, 'type': 'deliver-result', 'crankNum': 1291, 'vatID': 'v11', 'deliveryNum': 124, 'kd': object(), 'line': 1673077, 'dr': object(), 'syscalls': 2, 'method': 'inbound', 'compute': 119496.0, # missing compute is possible... from replay. 'dur': 0.1912224292755127, }]).iloc[:0] no_deliveries.dtypes # + import json import itertools # {"time":1625059432.2093444,"type":"cosmic-swingset-end-block-start","blockHeight":58394,"blockTime":1625059394} # {"time":1625059432.2096362,"type":"cosmic-swingset-end-block-finish","blockHeight":58394,"blockTime":1625059394} def block_cranks(records): deliveries = [] syscalls = 0 deliver = None for record in records: ty = record['type'] if ty == 'deliver': deliver = record syscalls = 0 elif ty == 'syscall-result': syscalls += 1 elif ty == 'deliver-result': if not deliver: log.warn('no deliver? %s', record) continue dur = record['time'] - deliver['time'] method = deliver['kd'][2]['method'] if deliver['kd'][0] == 'message' else None compute = record['dr'][2]['compute'] if type(record['dr'][2]) is type({}) else np.nan detail = dict(record, syscalls=syscalls, kd=deliver['kd'], method=method, compute=compute, dur=dur) deliveries.append(detail) if deliveries: return pd.DataFrame.from_records(deliveries) else: return no_deliveries def get_deliveries(slogAccess, ref, start, qty): if qty <= 2: # just block start, block end return no_deliveries df = slogAccess.get_records( ref, int(start), int(qty), target=None, include=['deliver', 'deliver-result', 'syscall-result']) if len(df) > 0 and 'syscallNum' in df.columns: for c in ['syscallNum', 'ksr', 'vsr', 'vd']: df = df.drop(columns=list(set(df.columns) & set(['syscallNum', 'ksr', 'vsr', 'vd']))) return block_cranks(df.to_dict('records')) else: return no_deliveries _g16 = _blockrun16[(_blockrun16.run == _long16.index[0]) & (_blockrun16.blockHeight == 64628)].iloc[:2] _run1 = _runs.loc[_long16.index[0]] get_deliveries(_sa4, f'{_run1.parent}/{_run1["name"]}', _g16.iloc[0].line, _g16.iloc[1].line - _g16.iloc[0].line + 1) # - df = dur[dur.run == _long16.index[0]].assign(length=dur.l_hi - dur.line + 1) # df[df.length > 2].head(10) df[df.dur > 5].head(10) # + # https://avi.im/blag/2021/fast-sqlite-inserts/ def run_sql(script, engine): for stmt in script.strip().split(';\n'): engine.execute(stmt) run_sql(''' PRAGMA journal_mode = OFF; PRAGMA synchronous = 0; PRAGMA cache_size = 1000000; PRAGMA locking_mode = NORMAL; PRAGMA temp_store = MEMORY; ''', db4) # - len(dur) dur.to_sql('blockrun16dur', db4, if_exists='replace', chunksize=25000, index=False) # + _br2 = _blockrun16[(_blockrun16.run == _long16.index[0]) & (_blockrun16.blockHeight == 64632)].iloc[:2] get_deliveries(_sa4, f'{_run1.parent}/{_run1["name"]}', _br2.iloc[0].line, _br2.iloc[1].line - _br2.iloc[0].line + 1) # + # chain_id, vatID, deliveryNum -> blockHeight, kd, compute import inspect def provide_deliveries(slogAccess, blockHeight, run, blockrun): br = blockrun[(blockrun.run == run.name) & (blockrun.blockHeight == blockHeight)] if len(br) < 2: return no_deliveries.assign(file_id=-1, chain=-1, blockHeight=blockHeight, run=run.name) block_start = br.iloc[0] # assert sign == -1? block_end = br.iloc[1] length = int(block_end.line - block_start.line + 1) df = slogAccess.provide_data(run.parent, run['name'], int(block_start.line), length, f'deliveries-{blockHeight}', no_deliveries, lambda ref, start, qty: get_deliveries(slogAccess, ref, start, qty), 'gzip') df = df.assign(chain=run.chain, blockHeight=blockHeight, run=run.name) if df.dtypes['chain'] not in ['int64', 'float64'] or 'vatID' not in df.columns or 'vd' in df.columns: raise NotImplementedError(f'cols: {df.columns} dtypes: {df.dtypes} block {blockHeight, int(block_start.line)}, run\n{run}') return df df = provide_deliveries(_sa4, 66371, _run1, _blockrun16) show_times(df) # - # Computron rate for just this one block? df.compute.sum() / df.dur.sum() # test empty provide_deliveries(_sa4, 64629, _run1, _blockrun16) _runs.loc[455:456] # ## Cranks in one long run starting at agorictest-16 genesis gen16 df = pd.read_sql(""" with lo as ( select * , time - blockTime delta from blockrun16 where blockHeight = 64628 and blockTime = 1625166000 and sign = -1 and run is not null ), hi as ( select run, max(blockHeight) hi, max(blockTime) t_hi from blockrun16 where run is not null and sign = -1 group by run ), agg as ( select lo.*, hi.hi, hi.t_hi from lo join hi on lo.run = hi.run where abs(delta) < 7 order by hi.t_hi desc ) select agg.*, run.parent, run.name from agg join run on agg.run = run."index" limit 5 """, db4) show_times(df, ['time', 'blockTime', 't_hi']) show_times(_runs).loc[445] # + import json def run1_deliveries(con, sa, lo, hi, run, br, json_cols=['kd', 'dr'], table='run1'): if sqla.inspect(con).has_table(table): lo = pd.read_sql(f'select max(blockHeight) + 1 lo from {table}', con).iloc[0].lo if_exists = 'append' else: if_exists = 'replace' for blockHeight in range(lo, hi): df = provide_deliveries(sa, blockHeight, run, br) if not len(df): # log.info('block %d: no deliveries', blockHeight) continue for col in json_cols: df[col] = df[col].apply(json.dumps) log.info('block %d of %d: %s += %d rows', blockHeight, hi, table, len(df)) df.to_sql(table, con, if_exists=if_exists, index=False) if_exists = 'append' run1_deliveries(db4, _sa4, 64628, 75000, _runs.loc[445], _blockrun16) # run1_deliveries(db4, _sa4, 75000, 90530, _runs.loc[445], _blockrun16, table='run1b') # - _run1 = df = pd.read_sql('select * from run1 union all select * from run1b', db4) show_times(_run1.tail(3)) _run1.blockHeight.describe() _run1[_run1.blockHeight >= 88296 - 2].sort_values('blockHeight').head(30).drop(columns=['kd', 'dr', 'file_id']) df = _run1[_run1.blockHeight == 88295].sort_values('dur', ascending=False).drop(columns=['kd', 'dr', 'file_id']) df.head(10) df[df.dur >= 1] # TODO: compare `getPayout` here (in 88295) vs something earlier... same computrons? same duration? # # e.g. if harden weakset grew, the duration could grow while keeping computrons constant _run1[_run1.method == 'getPayout'][['compute', 'dur']].describe() _run1[_run1.method == 'getPayout'].compute.hist() _run1[(_run1.method == 'getPayout') & (_run1.compute == 31654)].plot.scatter(x='blockHeight', y='dur') lg = _run1[_run1.blockHeight > 76000] lg = lg[lg.dur < 1] lg[(lg.method == 'getPayout') & (lg.compute == 31654)].plot.scatter(x='blockHeight', y='dur') # Things got slower over time. # # Hypothesis: GC didn't happen -> weak set got big -> weakset access time got big # So computron model should not be based on this range, but rather on pre-loadgen time. # When looking at comptron / wallclock, we should look at: # # - all getCurrentAmount calls # - within a narrow range of blockHeight # - that all use the same # of computrons # # (as above) # b16time[b16time.delta == 224] _run1[['compute', 'dur']].describe() # + def drate(df): rate = df.compute / (df.syscalls + 1) / df.dur # rate = df.compute / df.dur return df.assign(rate=rate) df = drate(_run1).groupby('method')[['rate']].aggregate(['count', 'mean', 'std', 'max']) df = df.sort_values(('rate', 'mean'), ascending=False) df # - common = _run1.groupby('method')[['line']].count() common = common[common.line > 20] common drate(_run1[_run1.method.isin(common.index)])[['method', 'rate']].boxplot(by='method', rot=90, figsize=(20, 12)) common.sort_values('line', ascending=False).head() _run1.blockHeight.describe() _run1.sort_values('dur', ascending=False) # This is an always-busy sim, but **TODO** we'd like to look at the arrival pattern that we have. # + def sim(df, c_eg, dur_eg, target): df = df[df.chain == 16] df['running'] = df.compute.cumsum() # try exp threshold = target * (c_eg / dur_eg) log.info('threshold: %s', threshold) df['sim_blk'] = (df.running / threshold).round() # df['adj'] = df.sim_blk - df.blockHeight return df.reset_index(drop=True) df = _run1.drop(columns=['type', 'kd', 'dr', 'file_id', 'line', 'run']) # df = df[df.method != 'executeContract'] # df = df[df.method == 'getCurrentAmount'] # getPayout # df.blockHeight = df.blockHeight - df.blockHeight.iloc[0] df = sim(df, 48390.0, 0.074363, 5) df = df[df.sim_blk.notnull()] df.sim_blk = df.sim_blk.astype('int64') show_times(df) # - pd.read_sql(''' select count(distinct run) from blockrun16 ''', db4) len(_runs) # + def nth_block(sa, blockHeight, run, blockrun, ts=gen16.ts[0]): log.info('%d th block: %s/%s', blockHeight, run.parent, run['name']) br = blockrun[(blockrun.blockHeight == blockHeight) & (blockrun.run == run.name)] df = provide_deliveries(sa, blockHeight, run, br) if not len(df): return df df = df.assign(run=run.name, chain=run.chain) return df m1b1 = pd.concat( df for _, run in _runs.iterrows() for df in [nth_block(_sa4, 80001, run, _blockrun16)] if len(df) ) m1b1 # - m1b1[(m1b1.method == 'getCurrentAmount') & (m1b1.deliveryNum == 44721)][['compute', 'dur', 'run']] df = m1b1[(m1b1.method == 'getCurrentAmount') & (m1b1.deliveryNum == 44721)][['compute', 'dur', 'run']] df.describe() # ## Validator speed: 2-4x spread for `getCurrentAmount` df[['dur']].hist() # + # df.groupby('method')[['compute']].describe().loc['executeContract'] # - df.compute.hist(log=True); df.dur.hist(log=True); df[df.dur < .1].dur.hist() # #### Total delivery duration per block x = pd.concat([ df.groupby('blockHeight')[['dur']].sum(), df.groupby('sim_blk')[['dur']].sum().rename(columns=dict(dur='dur_sim')), ], axis=1) x.hist(); # log=True); x.describe() x.dur.quantile(.9) xx = df.groupby('sim_blk')[['dur']].sum().rename(columns=dict(dur='dur_sim')) xx[xx.dur_sim > 25] df[df.blockHeight == 88295].sort_values('dur', ascending=False) df[df.sim_blk == 32607].sort_values('dur', ascending=False) _run1[_run1.compute == 381240].dur.describe() _run1[_run1.compute == 381240].plot.scatter(x='blockHeight', y='dur') # This wasn't a big deal during most of the chain (.25sec 75th percentile). # # We could model this within 2x or 3x by ignoring the spike. # **TODO**: what happened during that spike? is it consensus-observable? kernel-observable? df = _run1[_run1.compute == 381240] df[(df.blockHeight >= 88100) & (df.blockHeight < 88400)].plot.scatter(x='blockHeight', y='dur') df[df.sim_blk == 32607].compute.sum() df[df.sim_blk == 32607].dur.sum() df[df.sim_blk == 32607].syscalls.sum() df.groupby('blockHeight')[['syscalls']].sum().describe() # #### Total compute per block x = pd.concat([ df.groupby('blockHeight')[['compute']].sum(), df.groupby('sim_blk')[['compute']].sum().rename(columns=dict(compute='cmp_sim')), ], axis=1) x.hist(log=True); x.describe() cluster.scale(8) client.restart() f'{12:04}' # + def pick_chain(ht, gen=1625166000, hi=16, lo=15): return np.where(ht > gen, hi, lo) def run_deliveries(slogs, sa, run): chain_id = f'agorictest-{run.chain}' blocks = pd.concat( pd.read_csv(blockFile) for blockFile in (slogs / run.parent).glob('*-blocks.csv') ) blocks = blocks[(blocks.line >= run.line) & (blocks.line < run.line_end)] blocks = blocks.assign(run=run.name) heights = blocks.blockHeight.unique() log.info('run %s %-3d blocks %.16s %s', run.name, len(heights), pd.to_datetime(run.time, unit='s'), run['name']) tot = 0 for blockHeight in heights: detail = provide_deliveries(sa, blockHeight, run, blocks) if not len(detail): continue tot += len(detail) yield detail if not tot: yield no_deliveries.assign(file_id=-1, chain=-1, blockHeight=-1, run=run.name) def by_vat(dest, run, detail): chain_id = f'agorictest-{run.chain}' run_detail = f'{run.name:04}-{run.parent}-{run.file_id}-{run.line}' for vatID, g in detail.groupby('vatID'): try: (dest / chain_id / vatID).mkdir(parents=True) except: pass vat_dir = dest / chain_id / vatID f = vat_dir / f'delivery-detail-{run_detail}.csv.gz' log.info('saving to %s:\n%s', f, g.set_index(['vatID', 'deliveryNum'])[['compute', 'dur']].tail(3)) g.to_csv(f, index=False) f = vat_dir / f'delivery-summary-{run_detail}.csv.gz' g[['vatID', 'deliveryNum', 'kd', 'syscalls', 'compute']].to_csv(f, index=False) return detail.assign(run=run.name).groupby(['run', 'vatID'])[['deliveryNum']].count() #by_vat(_dir('slogfiles/'), _dir('vat-details/'), _sa4, _runs) for df in run_deliveries(_dir('slogfiles/'), _sa4, _runs.loc[58]): print(df) print(by_vat(_dir('vat-details/'), _runs.loc[58], df)) break # + def run_deliveries_todo(sa, slogs, dest, runs): def do_run(run): df = pd.concat( detail for detail in run_deliveries(slogs, sa, run) ) return by_vat(dest, run, df) todo = ( dask.delayed(do_run)(run) for _, run in runs.iterrows() ) return todo per_run = dd.from_delayed(run_deliveries_todo(_sa4, _dir('slogfiles/'), _dir('vat-details/'), _runs)) per_run.compute() # - pd.to_datetime(1625213913.1672082, unit='s') # + import inspect from slogdata import show_times db4.execute('drop table if exists crankrun') #@@ def deliveries_todo(sa, blockrun, runs): todo = ( dask.delayed(provide_deliveries)(sa, blockHeight, run, blockrun[(blockrun.run == run.name) & (blockrun.blockHeight == blockHeight)]) for run_ix, run in runs.iterrows() for heights in [blockrun[blockrun.run == run_ix].blockHeight.unique()] for _ in [log.info('run %s %-3d blocks %.16s %s', run_ix, len(heights), pd.to_datetime(run.time, unit='s'), run['name'])] for blockHeight in heights ) log.info('todo: %s', type(todo)) df = dd.from_delayed(todo, meta=no_deliveries.assign(file_id=1, chain=1, blockHeight=1, run=1)) return df.compute() # _dr16 = provide_table( # db4, 'crankrun', # # 65517 # lambda: deliveries_todo(_sa4, _blockrun16[_blockrun16.blockHeight <= 65000], _runs.loc[200:275])) _dr16 = deliveries_todo(_sa4, _blockrun16, # [_blockrun16.blockHeight <= 65000] _runs[_runs.chain == 16]) _dr16 # - # ## deliveries from batch _delrun = pd.read_sql('select * from delrun', db4) _delrun.groupby('chain')[['line']].count() # ## Are compute meter values consistent? # + def compute_meter_consistent(df): compute_count = df.groupby(['vatID', 'deliveryNum'])[['compute']].nunique() dups = compute_count[compute_count['compute'] > 1] return pd.merge(dups.reset_index(), df[['run', 'vatID', 'deliveryNum', 'compute']], how='left', suffixes=['_dup', ''], left_on=['vatID', 'deliveryNum'], right_on=['vatID', 'deliveryNum']) # x = compute_meter_consistent(_alld16).compute() x = compute_meter_consistent(_delrun[_delrun.chain == 16]).sort_values(['vatID', 'deliveryNum']) # .compute() x # - compute_meter_consistent(_delrun[_delrun.chain == 15]).sort_values(['vatID', 'deliveryNum']) # .compute() # ## Computrons per block blockdel = _delrun[_delrun.method != 'executeContract'] key = ['chain', 'blockHeight', 'vatID', 'deliveryNum', 'compute'] blockdel = blockdel.sort_values(key).drop_duplicates() df = blockdel.groupby(['chain', 'blockHeight'])[['deliveryNum']].count().sort_index() df.plot() _bkcomp = df = blockdel.groupby(['chain', 'blockHeight'])[['compute']].sum() df df.plot() # + def type2sign(df): df['sign'] = np.where(df.type == 'cosmic-swingset-end-block-start', -1, 1) return df def byChain(df, gen=gen16.ts[0], hi=16, lo=15): return df.assign(chain=np.where(df.blockTime >= gen, hi, lo)) return df def slog_blocks(slogfiles, pattern='**/*-blocks.csv'): df = pd.concat(type2sign(pd.read_csv(p)[['type', 'blockHeight', 'blockTime']]) for p in slogfiles.glob(pattern)) df = byChain(df) key = ['chain', 'blockHeight', 'blockTime'] df = df[key].sort_values(key).drop_duplicates() return df.reset_index(drop=True) _blk = slog_blocks(_dir('slogfiles/')) _blk.tail() # - _byChain = _blk.groupby('chain') df = pd.merge( _byChain[['blockHeight']].nunique(), _byChain[['blockHeight']].aggregate(['min', 'max'])['blockHeight'], left_index=True, right_index=True, ) df['span'] = df['max'] - df['min'] + 1 df # + def blockdur(df): df = df.set_index(['chain', 'blockHeight']) df['dur'] = df.shift(-1).blockTime - df.blockTime return df _bkdur = blockdur(_blk) _bkdur # - # compute by block with duration _bkcmpdur = _bkcomp.join(_bkdur, lsuffix='_d', rsuffix='_b') _bkcmpdur['rate'] = (_bkcmpdur.compute / _bkcmpdur.dur).astype(float) _bkcmpdur _bkcmpdur[_bkcmpdur.dur > _bkcmpdur.dur.quantile(0.99)] df = _bkcmpdur.loc[16] df[df.dur < 8][['rate']].hist(log=True) _bkcmpdur[_bkcmpdur.dur < 8][['rate']].describe() # ## simulation _delrun.groupby('run')[['line']].count() _delrun[['crankNum', 'run']].groupby(['crankNum'])[['run']].aggregate(['count']).plot() # + def sim(df, percentile): df = df[df.chain == 16] df = df[df.method != 'executeContract'] key = ['blockHeight', 'crankNum', 'vatID', 'deliveryNum', 'compute'] df = df.groupby(key)[['dur']].aggregate(['count', 'mean', 'median', 'sum']) return df df = df[['blockHeight', 'crankNum', 'vatID', 'deliveryNum', 'compute']].sort_values( ['blockHeight', 'crankNum', 'vatID', 'deliveryNum']).drop_duplicates() threshold = df.compute.quantile(percentile) df['running'] = df.compute.cumsum() df['sim_block'] = (df.running / threshold).round() return df.reset_index(drop=True) df = sim(_run1, .99) df # - df[['blockHeight']].plot() df.set_index('blockHeight')[['sim_block']].plot() # ## Compute rate by vat plt.cm.rainbow[1] pd.Categorical(_delrun.method.dropna(), ordered=True) # + import matplotlib as plt def cmap_of(df, color, cmap=plt.cm.get_cmap('hot')): df = df.loc[:, [color]].fillna('???') byColor = df.groupby(color).count() #.set_index(color) byColor['unit'] = range(len(byColor)) byColor.unit = byColor.unit / len(byColor) byColor['color'] = byColor.unit.apply(cmap) return byColor.loc[df[color]].color cmap_of(_delrun, 'method') # + def vat_rate(df, vatID): df = df[['vatID', 'deliveryNum', 'compute', 'dur']].dropna() df['rate'] = df.compute / df.dur df = df[df.vatID == vatID] # df = df.groupby('deliveryNum')[['compute', 'dur', 'rate']].mean() #df.sort_values('dur', ascending=False) #df df = df.set_index('deliveryNum').sort_index() return df def show_rate(df, vatID, figsize=(8, 9)): df = vat_rate(df, vatID) ax = df.plot(subplots=True, figsize=figsize) def fit_line(df, x, y, color=None, figsize=(9, 6)): df = df[~df[x].isnull() & ~df[y].isnull()] cs = np.polyfit(df[x], df[y], 1) f = np.poly1d(cs) if color: color = cmap_of(df, color) ax1 = df[[x, y]].plot.scatter(x=x, y=y, color=color, figsize=figsize) df['fit'] = f(df[x]) df.plot(x=x, y='fit', color='Red', legend=False, ax=ax1); # show_rate(start1, 'v10'); # vat_rate(start1, 'v10').plot.scatter(x='compute', y='dur') # fastSlog = start1[start1.slogfile == 'PDPnodeTestnet-agorictest16-chain.slog.gz'] # fit_line(vat_rate(fastSlog, 'v10'), 'compute', 'dur') # len(fastSlog[fastSlog.vatID == 'v10']) # fastSlog[fastSlog.vatID == 'v10'].drop(['kd', 'dr'], axis=1) #.sort_values('compute', ascending=False) #fastSlog[fastSlog.vatID == 'v10'].set_index('deliveryNum').sort_index()[['compute', 'dur']].plot(subplots=True) fit_line(_delrun[_delrun.chain == 16], 'compute', 'dur', color='method') # - _r = _delrun[['compute', 'dur', 'method']].assign(rate=_delrun.compute / _delrun.dur) _r.groupby('method')[['rate']].describe().sort_values(('rate', 'mean')) df.sort_values(('compute', 'mean')) df = fastSlog[fastSlog.vatID == 'v10'] df['rate'] = df.compute / df.dur df[['deliveryNum', 'dur', 'compute', 'rate']].set_index('deliveryNum').plot(subplots=True) df.rate.describe() # ### exclude dynamic vat creation fastSlog.groupby('method')[['compute']].mean().plot.barh(log=True, figsize=(12, 10)) noContract = df =fastSlog[fastSlog.method != 'executeContract'].copy() df['rate'] = df.compute / df.dur df[['dur', 'compute', 'rate']].plot(subplots=True) fit_line(noContract, 'compute', 'dur') fit_line(fastSlog, 'compute', 'dur') # ## Add syscalls to the model df = noContract cs = np.polyfit(df[['compute', 'syscalls']], df['dur'], 1) df = _dr16.assign(chain_id=16) df = df[['chain_id', 'vatID', 'deliveryNum', 'blockHeight', 'kd', 'compute']].drop_duplicates() df = df.set_index(['chain_id', 'vatID', 'deliveryNum']).sort_index() df[df.index.duplicated()] df df.loc[16].loc['v1'].loc[0] _dr16.query('(deliveryNum == 0) & (vatID == "v1")').groupby('compute')[['line']].count() pd.merge(_dr16, df[df.index.duplicated()].reset_index()[['vatID', 'deliveryNum']], left_on=['vatID', 'deliveryNum'], right_on=['vatID', 'deliveryNum'] )[['vatID', 'deliveryNum', 'blockHeight', 'kd', 'compute']] # _dr16.assign(chain_id=16).set_index(['chain_id', 'vatID', 'deliveryNum']) dall = pd.concat( pd.read_csv(f) for f in _dir('slogfiles/').glob('**/*-deliveries-*.csv.gz') ) dall # + def load_deliveries(files, con, table): if_exists = 'replace' for file in files: df = pd.read_csv(file) df.to_sql(table, con, if_exists=if_exists) if_exists = 'append' log.info('loaded %d records from %s', len(df), file) load_deliveries( _dir('slogfiles/').glob('**/*-deliveries-*.csv.gz'), db4, 'delrun3') # - # ### Did we ever do more than 1000 cranks in a block? # # if not, current policy never fired df = _dr16[['blockHeight', 'crankNum']].drop_duplicates() df.groupby('blockHeight')[['crankNum']].count().sort_values('crankNum', ascending=False) # ## @@ Older approaches # ## Delivery statistics # # > For each delivery in the corpus, we want to get statistics on the range of wallclock times taken by these validators. # + import gzip import itertools def iter_cranks(path): """split each slogfile into runs (each beginning with an import-kernel event), process each run by finding sequential matching deliver+deliver-result pairs, turn each pair into a (crankNum, computrons, wallclock) triple """ log.info('iter_cranks: %s', path) with gzip.open(path) as f: kernel = None deliver = None block = None syscalls = None for (ix, line) in enumerate(f): try: data = json.loads(line) except json.JSONDecodeError: log.warning('%s:%d: bad JSON: %s', path.name, ix, repr(line)) continue ty = data['type'] # print(ix, data['type'], kernel, deliver) if ty == 'import-kernel-finish': kernel = data deliver = None syscalls = None yield dict(kernel, slogfile=path.name, line=ix) elif ty == 'create-vat': yield dict(slogfile=path.name, line=ix, time=data['time'], type=ty, vatID=data['vatID'], description=data['description'], managerType=data['managerType'], time_kernel=kernel['time']) # {"time":1625059432.2093444,"type":"cosmic-swingset-end-block-start","blockHeight":58394,"blockTime":1625059394} # {"time":1625059432.2096362,"type":"cosmic-swingset-end-block-finish","blockHeight":58394,"blockTime":1625059394} elif ty == 'cosmic-swingset-end-block-start': block = data elif ty == 'cosmic-swingset-end-block-finish': time = data['time'] time_start = block['time'] dur = time - time_start if kernel: time_kernel = kernel['time'] else: log.warning('%s:%d: missing kernel context', path.name, ix) time_kernel = np.nan yield dict(slogfile=path.name, line=ix, time=time, type=ty, time_start=time_start, dur=dur, blockHeight=data['blockHeight'], blockTime=data['blockTime'], time_kernel=time_kernel) block = None elif deliver is None: if ty == 'deliver': deliver = data syscalls = 0 elif data['type'] == 'deliver-result': time = data['time'] time_start = deliver['time'] dur = time - time_start method = deliver['kd'][2]['method'] if deliver['kd'][0] == 'message' else None compute = data['dr'][2]['compute'] if type(data['dr'][2]) is type({}) else None if block: blockHeight = block['blockHeight'] blockTime=block['blockTime'] else: # odd... how do we get here without block info??? log.warning('%s:%d: missing block context', path.name, ix) blockHeight = blockTime = np.nan if kernel: time_kernel = kernel['time'] else: log.warning('%s:%d: missing kernel context', path.name, ix) time_kernel = np.nan yield dict(slogfile=path.name, line=ix, time=time, type=ty, crankNum=data['crankNum'], deliveryNum=data['deliveryNum'], vatID=data['vatID'], kd=deliver['kd'], method=method, syscalls=syscalls, dr=data['dr'], compute=compute, time_start=time_start, dur=dur, blockHeight=blockHeight, blockTime=blockTime, time_kernel=time_kernel) deliver = None elif ty == 'syscall-result': syscalls += 1 elif ty in ['clist', 'syscall']: continue else: log.warning("%s:%d: expected deliver-result; got: %s", path.name, ix, ty) deliver = None def sample(files=50, cranks=2000, slogdir=slogdir): return pd.DataFrame.from_records( r for slogfile in itertools.islice(slogdir.glob('**/*.slog.gz'), files) for r in itertools.islice(iter_cranks(slogfile), cranks)) # files_top = sample(200, 100) c500 = sample() # - show_times( files_top[files_top.crankNum == 1][[ 'slogfile', 'line', 'time', 'vatID', 'deliveryNum', 'syscalls', 'compute', 'time_kernel', 'blockHeight'] ].sort_values('blockHeight').set_index(['slogfile', 'line']), ['time']) # + def show_times(df, cols): out = df.copy() for col in cols: out[col] = pd.to_datetime(out[col], unit='s') return out def slogfile_summary(df): g = df.groupby(['slogfile', 'type']) out = g[['line']].count() out['time_min'] = g[['time']].min().time out['time_max'] = g[['time']].max().time out['blockHeight_min'] = g[['blockHeight']].min().blockHeight # out['blockHeight_max'] = g[['blockHeight']].max().blockHeight out['crankNum_min'] = g[['crankNum']].min().crankNum return show_times(out, ['time_min', 'time_max']) slogfile_summary(files_top) # [files_top.type == 'deliver-result']).sort_values('crankNum_min', ascending=False).head(15) # + def stuff(df, slogfile): return df[(df.slogfile==slogfile) & (df.type == 'deliver-result')][['crankNum', 'vatID', 'deliveryNum', 'kd', 'line', 'blockHeight' ]] coolex = stuff(c500, 'coolex-agorictest16-chain.slog.gz').set_index('crankNum') mym = stuff(c500, 'mymoniker-agorictest16-chain.slog.gz').set_index('crankNum') xwalk = pd.merge(coolex, mym, left_index=True, right_index=True) xwalk[xwalk.kd_x != xwalk.kd_y] # - xwalk[xwalk.deliveryNum_y == 2801].kd_y.iloc[0] # warner says: suppose we have 2 deliverInboundAcks # # when swingset tells mb device, device consults state _in RAM_ for dup ack num... # not durable... differs between run-from-start and restart # ## global crankNum -> vatID, deliveryNum cranks = c500[c500['type'] == 'deliver-result'] cranks = cranks[['chain_id', 'crankNum', 'vatID', 'deliveryNum']].set_index(['chain_id', 'crankNum']).drop_duplicates().sort_index() cranks # .sort_values('deliveryNum') c500 = c500[~c500.line.isnull()] show_times(c500[c500.blockHeight == 64628], ['time', 'time_start', 'blockTime']) cranks.pivot(columns='vatID', values='deliveryNum') cranks.plot(subplots=True) c500[['kd']].dropna() c500[['compute']].dropna() # + ## reduced data set # chain-wide deliveries # chain_id, crankNum -> blockHeight, vatID, deliveryNum, kd, compute # chain_id, vatID, deliveryNum -> blockHeight, kd, compute # except vatTP? # per-validator data # chain_id, crankNum, run (slogfile, kernel-start) -> dur # + # global crankNum -> vatID, deliveryNum c500[['crankNum', 'vatID', 'deliveryNum']].set_index() # ignore un-full blocks? # histogram of block durations; interval between... # {"time":1625059432.2093444,"type":"cosmic-swingset-end-block-start","blockHeight":58394,"blockTime":1625059394} # {"time":1625059432.2096362,"type":"cosmic-swingset-end-block-finish","blockHeight":58394,"blockTime":1625059394} # "blockTime":1625059381 <- consensus block time is median of block times (?) # vatID, deliveryNum -> args / syscalls # watch out for GC esp. # c.run(runPolicy) # simple model: kernel says how many computrons # refinement: computrons, syscalls # fitness: block distribution... 10s blocks... # blocks that aren't too big (latency, validator variance risk) # cpu that isn't idle (throughput) # an ideal: median block time 10s # 80 20 %ile # importing a contract is an outlier # + # median validator - existing distribution of deliveries / compute -> blocks # supplement: study wallclock stuff # - show_times(c500[c500['type'] == 'deliver-result'].set_index(['crankNum', 'vatID', 'deliveryNum', 'slogfile']) .drop(['type', 'kd', 'dr', 'time_dr', 'description', 'managerType'], axis=1).sort_index(), ['time', 'time_kernel', 'blockTime']) # ### Missing `compute` meter info? start1 = c500 start1[(start1['type'] == 'deliver-result') & start1.compute.isnull()] compute_ref = start1[(start1.slogfile == 'coolex-agorictest16-chain.slog.gz') & (start1['type'] == 'deliver-result')].set_index('crankNum')[['compute']] compute_ref compute_delta = start1[['slogfile', 'crankNum', 'compute']] compute_delta = pd.merge(compute_delta, compute_ref, left_on='crankNum', right_index=True, suffixes=['', '_ref']) compute_delta['delta'] = (compute_delta.compute - compute_delta.compute_ref).abs() compute_delta.sort_values('delta', ascending=False) # + df = start1 categories = df.vatID.apply(lambda v: int(v[1:])) colors = cm.rainbow(np.linspace(0, 1, categories.max() + 1)) df.plot.scatter(x='compute', y='dur', c=colors[categories], title='Deliveries (colored by vatID)', figsize=(12, 9), ylabel="dur (sec)"); # - start1[~start1.compute.isnull()].groupby('vatID')[['crankNum']].count().sort_values('crankNum', ascending=False) # + def vat_rate(df, vatID): df = df[['vatID', 'deliveryNum', 'compute', 'dur']].dropna() df['rate'] = df.compute / df.dur df = df[df.vatID == vatID] # df = df.groupby('deliveryNum')[['compute', 'dur', 'rate']].mean() #df.sort_values('dur', ascending=False) #df df = df.set_index('deliveryNum').sort_index() return df def show_rate(df, vatID, figsize=(8, 9)): df = vat_rate(df, vatID) ax = df.plot(subplots=True, figsize=figsize) def fit_line(df, x, y, figsize=(9, 6)): cs = np.polyfit(df[x], df[y], 1) f = np.poly1d(cs) ax1 = df[[x, y]].plot.scatter(x=x, y=y, figsize=figsize) df['fit'] = f(df[x]) df.plot(x=x, y='fit', color='Red', legend=False, ax=ax1); # show_rate(start1, 'v10'); # vat_rate(start1, 'v10').plot.scatter(x='compute', y='dur') fastSlog = start1[start1.slogfile == 'PDPnodeTestnet-agorictest16-chain.slog.gz'] fit_line(vat_rate(fastSlog, 'v10'), 'compute', 'dur') # len(fastSlog[fastSlog.vatID == 'v10']) # fastSlog[fastSlog.vatID == 'v10'].drop(['kd', 'dr'], axis=1) #.sort_values('compute', ascending=False) #fastSlog[fastSlog.vatID == 'v10'].set_index('deliveryNum').sort_index()[['compute', 'dur']].plot(subplots=True) # - vat_rate(start1, 'v16'); df = start1.pivot(columns='vatID', values=['compute', 'dur'], index=['vatID', 'deliveryNum', 'crankNum', 'slogfile', 'line']) df.reset_index().set_index('deliveryNum').drop(['crankNum', 'line'], axis=1) #.plot(figsize=(12, 8)); df.reset_index().set_index('deliveryNum')[['v23']].sort_index().dropna() #.plot() df.describe() df[['v14']].dropna() df.crankNum.hist(); df.deliveryNum.hist(); df.groupby('method')[['compute', 'rate']].describe() df.groupby('method')[['rate', 'compute', 'dur']].mean().sort_values('rate').head(90).plot( subplots=True, rot=90, figsize=(8, 6), title='Method Compute Cost, Rate: bottom 90'); df.groupby('method')[['rate', 'compute', 'dur']].mean().sort_values('rate').tail(8).plot( subplots=True, rot=90, figsize=(8, 6), title='Method Compute Cost, Rate: top 8'); durByMethod.dur.sum() # + durByMethod = df.groupby('method')[['dur']].sum().sort_values('dur', ascending=False) durByMethod.plot.pie(y='dur', figsize=(12, 9), autopct='%1.1f%%') # - df.groupby('vatID')[['rate']].describe().head(20) df.groupby('slogfile')[['rate']].describe().head(20) df.plot.scatter(x='deliveryNum', y='rate') speed = df.groupby('slogfile')[['rate']].describe()[['rate'][0]][['count', 'mean', 'std']] speed = speed.sort_values('mean', ascending=False) speed['relative'] = speed['mean'] / speed['mean'][0] speed # + def boxplot_sorted(df, by, column, **config): df2 = pd.DataFrame({col:vals[column] for col, vals in df.groupby(by)}) meds = df2.median().sort_values() return df2[meds.index].boxplot(**config) ax = boxplot_sorted(df, by=["slogfile"], column="rate", rot=90, figsize=(12, 9)) ax.set_title('Validator Speed: Sample of 20 from Phase 4'); ax.set_ylabel('computrons / sec') # - ax = df.sort_values('crankNum').plot.scatter(x='crankNum', y='compute'); ax.set_yscale('log') df[(df.dur < df.dur.mean() + df.dur.std()) & (df.compute < df.compute.mean() + df.compute.std())][['compute', 'dur']].hist(); # + df = crank_info(c500) df = df[df.crankNum.isin(compute_ref.index)] rate = np.polyfit(df.compute, df.dur, 1) f = np.poly1d(rate) df['rate'] = f(df.compute) # df[['compute', 'dur', 'rate']].head() print(f) # - ax1 = df[['compute', 'dur']].plot.scatter(x='compute', y='dur', figsize=(9, 6)) df.plot(x='compute', y='rate', color='Red', legend=False, ax=ax1); ax1.set_title(f"{len(df)} cranks from w3m: Duration vs. Compute Meter"); ax1.set_xlabel("compute units") ax1.set_ylabel("duration (sec)") r = df.compute / df.dur r.max() / r.min() df.sort_values('rate', ascending=False).drop(['time', 'type', 'detail', 'detail_dr'], axis=1) # ## Colophon: jupytext # # This is a jupyter notebook paired with a python script using [jupytext](https://jupytext.readthedocs.io/en/latest/). # # We use the [python38Packages.jupytext](https://search.nixos.org/packages?channel=21.05&from=0&size=50&buckets=%7B%22package_attr_set%22%3A%5B%22python38Packages%22%5D%2C%22package_license_set%22%3A%5B%5D%2C%22package_maintainers_set%22%3A%5B%5D%2C%22package_platforms%22%3A%5B%5D%7D&sort=relevance&query=jupytext) nix package; in particular, `/nix/store/a9911qj06dy0ah7fshl39x3w4cjs7bxk-python3.8-jupytext-1.11.2`. #
30.668827
417
0.625632
[ "CC0-1.0" ]
Agoric/testnet-notes
nb4/slogfiles.py
52,047
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the CPIO extracted file-like object.""" from __future__ import unicode_literals import unittest from dfvfs.file_io import cpio_file_io from dfvfs.path import cpio_path_spec from dfvfs.path import os_path_spec from dfvfs.resolver import context from tests.file_io import test_lib class CPIOBinaryFileTest(test_lib.SylogTestCase): """The unit test for a CPIO extracted file-like object.""" def setUp(self): """Sets up the needed objects used throughout the test.""" super(CPIOBinaryFileTest, self).setUp() self._resolver_context = context.Context() test_file = self._GetTestFilePath(['syslog.bin.cpio']) self._SkipIfPathNotExists(test_file) path_spec = os_path_spec.OSPathSpec(location=test_file) self._cpio_path_spec = cpio_path_spec.CPIOPathSpec( location='/syslog', parent=path_spec) def testOpenClosePathSpec(self): """Test the open and close functionality using a path specification.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestGetSizeFileObject(file_object) file_object.close() def testSeek(self): """Test the seek functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestSeekFileObject(file_object) file_object.close() def testRead(self): """Test the read functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestReadFileObject(file_object) file_object.close() class CPIOPortableASCIIFileTest(test_lib.SylogTestCase): """The unit test for a CPIO extracted file-like object.""" def setUp(self): """Sets up the needed objects used throughout the test.""" super(CPIOPortableASCIIFileTest, self).setUp() self._resolver_context = context.Context() test_file = self._GetTestFilePath(['syslog.odc.cpio']) self._SkipIfPathNotExists(test_file) path_spec = os_path_spec.OSPathSpec(location=test_file) self._cpio_path_spec = cpio_path_spec.CPIOPathSpec( location='/syslog', parent=path_spec) def testOpenClosePathSpec(self): """Test the open and close functionality using a path specification.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestGetSizeFileObject(file_object) file_object.close() def testSeek(self): """Test the seek functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestSeekFileObject(file_object) file_object.close() def testRead(self): """Test the read functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestReadFileObject(file_object) file_object.close() class CPIONewASCIIFileTest(test_lib.SylogTestCase): """The unit test for a CPIO extracted file-like object.""" def setUp(self): """Sets up the needed objects used throughout the test.""" super(CPIONewASCIIFileTest, self).setUp() self._resolver_context = context.Context() test_file = self._GetTestFilePath(['syslog.newc.cpio']) self._SkipIfPathNotExists(test_file) path_spec = os_path_spec.OSPathSpec(location=test_file) self._cpio_path_spec = cpio_path_spec.CPIOPathSpec( location='/syslog', parent=path_spec) def testOpenClosePathSpec(self): """Test the open and close functionality using a path specification.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestGetSizeFileObject(file_object) file_object.close() def testSeek(self): """Test the seek functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestSeekFileObject(file_object) file_object.close() def testRead(self): """Test the read functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestReadFileObject(file_object) file_object.close() class CPIONewASCIIFileWithChecksumTest(test_lib.SylogTestCase): """The unit test for a CPIO extracted file-like object.""" def setUp(self): """Sets up the needed objects used throughout the test.""" super(CPIONewASCIIFileWithChecksumTest, self).setUp() self._resolver_context = context.Context() test_file = self._GetTestFilePath(['syslog.crc.cpio']) self._SkipIfPathNotExists(test_file) path_spec = os_path_spec.OSPathSpec(location=test_file) self._cpio_path_spec = cpio_path_spec.CPIOPathSpec( location='/syslog', parent=path_spec) def testOpenClosePathSpec(self): """Test the open and close functionality using a path specification.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestGetSizeFileObject(file_object) file_object.close() def testSeek(self): """Test the seek functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestSeekFileObject(file_object) file_object.close() def testRead(self): """Test the read functionality.""" file_object = cpio_file_io.CPIOFile(self._resolver_context) file_object.open(path_spec=self._cpio_path_spec) self._TestReadFileObject(file_object) file_object.close() if __name__ == '__main__': unittest.main()
31.080214
75
0.75086
[ "Apache-2.0" ]
Acidburn0zzz/dfvfs
tests/file_io/cpio_file_io.py
5,812
Python
import time import json from anchore_engine.subsys import logger def get_docker_registry_userpw(registry_record): user = pw = None try: if 'registry_type' in registry_record and registry_record['registry_type'] == 'awsecr': try: ecr_creds = json.loads(registry_record['registry_meta']) except Exception as err: raise Exception("cannot access/parse registry metadata for awsecr registry type - exception: {}".format(str(err))) docker_auth_token = ecr_creds['authorizationToken'] user, pw = docker_auth_token.split(":", 1) else: user = registry_record['registry_user'] pw = registry_record['registry_pass'] except Exception as err: logger.error("cannot fetch registry creds from registry record - exception: " + str(err)) raise err return user, pw def get_creds_by_registry(registry, repository, registry_creds=None): user = pw = registry_verify = None if registry_creds: try: registry_creds.sort(key=lambda x: len(x['registry']), reverse=True) for registry_record in registry_creds: if registry_record_matches(registry_record['registry'], registry, repository): if registry_record['record_state_key'] not in ['active']: try: last_try = int(registry_record['record_state_val']) except: last_try = 0 if (int(time.time()) - last_try) < 60: logger.debug("SKIPPING REGISTRY ATTEMPT: " + str(registry_record['record_state_key'])) raise Exception("registry not available - " + str(registry_record['record_state_key'])) user, pw = get_docker_registry_userpw(registry_record) registry_verify = registry_record['registry_verify'] break except Exception as err: raise err return user, pw, registry_verify def registry_record_matches(registry_record_str, registry, repository): """ :param registry_record_str: the string with optional wildcard to match against a the registry/repository combo :param registry: the registry to match against :param repository: the repository to match against :return: bool true if a match, false if not """ return (registry_record_str[-1] == '*' and '{}/{}'.format(registry, repository).startswith(registry_record_str[:-1])) or ('/' in registry_record_str and registry_record_str == '{}/{}'.format(registry, repository)) or (registry_record_str == registry)
42.421875
254
0.628729
[ "Apache-2.0" ]
Mattlk13/anchore-engine
anchore_engine/auth/common.py
2,715
Python
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from __future__ import annotations from collections import defaultdict from typing import TYPE_CHECKING, Dict, List, Optional, Tuple import numpy as np from ax.core.observation import ObservationData, ObservationFeatures from ax.core.optimization_config import OptimizationConfig from ax.core.outcome_constraint import ScalarizedOutcomeConstraint from ax.core.search_space import SearchSpace from ax.modelbridge.transforms.base import Transform from ax.modelbridge.transforms.utils import get_data, match_ci_width_truncated from ax.models.types import TConfig from ax.utils.common.logger import get_logger from ax.utils.common.typeutils import checked_cast_list from sklearn.preprocessing import PowerTransformer if TYPE_CHECKING: # import as module to make sphinx-autodoc-typehints happy from ax import modelbridge as modelbridge_module # noqa F401 # pragma: no cover logger = get_logger(__name__) class PowerTransformY(Transform): """Transform the values to look as normally distributed as possible. This fits a power transform to the data with the goal of making the transformed values look as normally distributed as possible. We use Yeo-Johnson (https://www.stat.umn.edu/arc/yjpower.pdf), which can handle both positive and negative values. While the transform seems to be quite robust, it probably makes sense to apply a bit of winsorization and also standardize the inputs before applying the power transform. The power transform will automatically standardize the data so the data will remain standardized. The transform can't be inverted for all values, so we apply clipping to move values to the image of the transform. This behavior can be controlled via the `clip_mean` setting. """ def __init__( self, search_space: SearchSpace, observation_features: List[ObservationFeatures], observation_data: List[ObservationData], modelbridge: Optional[modelbridge_module.base.ModelBridge] = None, config: Optional[TConfig] = None, ) -> None: if config is None: raise ValueError("PowerTransform requires a config.") # pyre-fixme[6]: Same issue as for LogY metric_names = list(config.get("metrics", [])) if len(metric_names) == 0: raise ValueError("Must specify at least one metric in the config.") self.clip_mean = config.get("clip_mean", True) self.metric_names = metric_names Ys = get_data(observation_data=observation_data, metric_names=metric_names) self.power_transforms = _compute_power_transforms(Ys=Ys) self.inv_bounds = _compute_inverse_bounds(self.power_transforms, tol=1e-10) def transform_observation_data( self, observation_data: List[ObservationData], observation_features: List[ObservationFeatures], ) -> List[ObservationData]: """Winsorize observation data in place.""" for obsd in observation_data: for i, m in enumerate(obsd.metric_names): if m in self.metric_names: transform = self.power_transforms[m].transform obsd.means[i], obsd.covariance[i, i] = match_ci_width_truncated( mean=obsd.means[i], variance=obsd.covariance[i, i], transform=lambda y: transform(np.array(y, ndmin=2)), lower_bound=-np.inf, upper_bound=np.inf, ) return observation_data def untransform_observation_data( self, observation_data: List[ObservationData], observation_features: List[ObservationFeatures], ) -> List[ObservationData]: """Winsorize observation data in place.""" for obsd in observation_data: for i, m in enumerate(obsd.metric_names): if m in self.metric_names: l, u = self.inv_bounds[m] transform = self.power_transforms[m].inverse_transform if not self.clip_mean and (obsd.means[i] < l or obsd.means[i] > u): raise ValueError( "Can't untransform mean outside the bounds without clipping" ) obsd.means[i], obsd.covariance[i, i] = match_ci_width_truncated( mean=obsd.means[i], variance=obsd.covariance[i, i], transform=lambda y: transform(np.array(y, ndmin=2)), lower_bound=l, upper_bound=u, clip_mean=True, ) return observation_data def transform_optimization_config( self, optimization_config: OptimizationConfig, modelbridge: Optional[modelbridge_module.base.ModelBridge], fixed_features: ObservationFeatures, ) -> OptimizationConfig: for c in optimization_config.all_constraints: if isinstance(c, ScalarizedOutcomeConstraint): c_metric_names = [metric.name for metric in c.metrics] intersection = set(c_metric_names) & set(self.metric_names) if intersection: raise NotImplementedError( f"PowerTransformY cannot be used for metric(s) {intersection} " "that are part of a ScalarizedOutcomeConstraint." ) elif c.metric.name in self.metric_names: if c.relative: raise ValueError( f"PowerTransformY cannot be applied to metric {c.metric.name} " "since it is subject to a relative constraint." ) else: transform = self.power_transforms[c.metric.name].transform c.bound = transform(np.array(c.bound, ndmin=2)).item() return optimization_config def _compute_power_transforms( Ys: Dict[str, List[float]] ) -> Dict[str, PowerTransformer]: """Compute power transforms.""" power_transforms = {} for k, ys in Ys.items(): y = np.array(ys)[:, None] # Need to unsqueeze the last dimension pt = PowerTransformer(method="yeo-johnson").fit(y) power_transforms[k] = pt return power_transforms def _compute_inverse_bounds( power_transforms: Dict[str, PowerTransformer], tol: float = 1e-10 ) -> Dict[str, Tuple[float, float]]: """Computes the image of the transform so we can clip when we untransform. The inverse of the Yeo-Johnson transform is given by: if X >= 0 and lambda == 0: X = exp(X_trans) - 1 elif X >= 0 and lambda != 0: X = (X_trans * lambda + 1) ** (1 / lambda) - 1 elif X < 0 and lambda != 2: X = 1 - (-(2 - lambda) * X_trans + 1) ** (1 / (2 - lambda)) elif X < 0 and lambda == 2: X = 1 - exp(-X_trans) We can break this down into three cases: lambda < 0: X < -1 / lambda 0 <= lambda <= 2: X is unbounded lambda > 2: X > 1 / (2 - lambda) Sklearn standardizes the transformed values to have mean zero and standard deviation 1, so we also need to account for this when we compute the bounds. """ inv_bounds = defaultdict() for k, pt in power_transforms.items(): bounds = [-np.inf, np.inf] mu, sigma = pt._scaler.mean_.item(), pt._scaler.scale_.item() # pyre-ignore lambda_ = pt.lambdas_.item() # pyre-ignore if lambda_ < -1 * tol: bounds[1] = (-1.0 / lambda_ - mu) / sigma elif lambda_ > 2.0 + tol: bounds[0] = (1.0 / (2.0 - lambda_) - mu) / sigma inv_bounds[k] = tuple(checked_cast_list(float, bounds)) return inv_bounds
43
88
0.630767
[ "MIT" ]
danielcohenlive/Ax-1
ax/modelbridge/transforms/power_transform_y.py
8,041
Python
# # Copyright 2019 Jonas Berg # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ .. moduleauthor:: Jonas Berg dummy_serial: A dummy/mock implementation of a serial port for testing purposes. """ __author__ = "Jonas Berg" __license__ = "Apache License, Version 2.0" import sys import time DEFAULT_TIMEOUT = 0.01 """The default timeot value in seconds. Used if not set by the constructor.""" DEFAULT_BAUDRATE = 19200 """The default baud rate. Used if not set by the constructor.""" VERBOSE = False """Set this to :const:`True` for printing the communication, and also details on the port initialization. Might be monkey-patched in the calling test module. """ RESPONSES = {} """A dictionary of respones from the dummy serial port. The key is the message (string) sent to the dummy serial port, and the item is the response (string) from the dummy serial port. Intended to be monkey-patched in the calling test module. """ RESPONSES["EXAMPLEREQUEST"] = "EXAMPLERESPONSE" DEFAULT_RESPONSE = "NotFoundInResponseDictionary" """Response when no matching message (key) is found in the look-up dictionary. Should not be an empty string, as that is interpreted as "no data available on port". Might be monkey-patched in the calling test module. """ NO_DATA_PRESENT = "" class Serial: """Dummy (mock) serial port for testing purposes. Mimics the behavior of a serial port as defined by the `pySerial <https://github.com/pyserial/pyserial>`_ module. Args: * port: * timeout: Note: As the portname argument not is used properly, only one port on :mod:`dummy_serial` can be used simultaneously. """ def __init__(self, *args, **kwargs): self._waiting_data = NO_DATA_PRESENT self._isOpen = True self.port = kwargs["port"] # Serial port name. self._initial_port_name = self.port # Initial name given to the serial port try: self.timeout = kwargs["timeout"] except: self.timeout = DEFAULT_TIMEOUT try: self.baudrate = kwargs["baudrate"] except: self.baudrate = DEFAULT_BAUDRATE if VERBOSE: _print_out("\nDummy_serial: Initializing") _print_out("dummy_serial initialization args: " + repr(args)) _print_out("dummy_serial initialization kwargs: " + repr(kwargs) + "\n") def __repr__(self): """String representation of the dummy_serial object""" return "{0}.{1}<id=0x{2:x}, open={3}>(port={4!r}, timeout={5!r}, waiting_data={6!r})".format( self.__module__, self.__class__.__name__, id(self), self._isOpen, self.port, self.timeout, self._waiting_data, ) @property def is_open(self): return self._isOpen def reset_input_buffer(self): pass def reset_output_buffer(self): pass def open(self): """Open a (previously initialized) port on dummy_serial.""" if VERBOSE: _print_out("\nDummy_serial: Opening port\n") if self._isOpen: raise IOError("Dummy_serial: The port is already open") self._isOpen = True self.port = self._initial_port_name def close(self): """Close a port on dummy_serial.""" if VERBOSE: _print_out("\nDummy_serial: Closing port\n") if not self._isOpen: raise IOError("Dummy_serial: The port is already closed") self._isOpen = False self.port = None def write(self, inputdata): """Write to a port on dummy_serial. Args: inputdata (string/bytes): data for sending to the port on dummy_serial. Will affect the response for subsequent read operations. Note that for Python2, the inputdata should be a **string**. For Python3 it should be of type **bytes**. """ if VERBOSE: _print_out( "\nDummy_serial: Writing to port. Given:" + repr(inputdata) + "\n" ) if sys.version_info[0] > 2: if not type(inputdata) == bytes: raise TypeError( "The input must be type bytes. Given:" + repr(inputdata) ) inputstring = str(inputdata, encoding="latin1") else: inputstring = inputdata if not self._isOpen: raise IOError( "Dummy_serial: Trying to write, but the port is not open. Given:" + repr(inputdata) ) # Look up which data that should be waiting for subsequent read commands try: response = RESPONSES[inputstring] except: response = DEFAULT_RESPONSE self._waiting_data = response def read(self, numberOfBytes): """Read from a port on dummy_serial. The response is dependent on what was written last to the port on dummy_serial, and what is defined in the :data:`RESPONSES` dictionary. Args: numberOfBytes (int): For compability with the real function. Returns a **string** for Python2 and **bytes** for Python3. If the response is shorter than numberOfBytes, it will sleep for timeout. If the response is longer than numberOfBytes, it will return only numberOfBytes bytes. """ if VERBOSE: _print_out( "\nDummy_serial: Reading from port (max length {!r} bytes)".format( numberOfBytes ) ) if numberOfBytes < 0: raise IOError( "Dummy_serial: The numberOfBytes to read must not be negative. Given: {!r}".format( numberOfBytes ) ) if not self._isOpen: raise IOError("Dummy_serial: Trying to read, but the port is not open.") # Do the actual reading from the waiting data, and simulate the influence of numberOfBytes if self._waiting_data == DEFAULT_RESPONSE: returnstring = self._waiting_data elif numberOfBytes == len(self._waiting_data): returnstring = self._waiting_data self._waiting_data = NO_DATA_PRESENT elif numberOfBytes < len(self._waiting_data): if VERBOSE: _print_out( "Dummy_serial: The numberOfBytes to read is smaller than the available data. " + "Some bytes will be kept for later. Available data: {!r} (length = {}), numberOfBytes: {}".format( self._waiting_data, len(self._waiting_data), numberOfBytes ) ) returnstring = self._waiting_data[:numberOfBytes] self._waiting_data = self._waiting_data[numberOfBytes:] else: # Wait for timeout, as we have asked for more data than available if VERBOSE: _print_out( "Dummy_serial: The numberOfBytes to read is larger than the available data. " + "Will sleep until timeout. Available data: {!r} (length = {}), numberOfBytes: {}".format( self._waiting_data, len(self._waiting_data), numberOfBytes ) ) time.sleep(self.timeout) returnstring = self._waiting_data self._waiting_data = NO_DATA_PRESENT # TODO Adapt the behavior to better mimic the Windows behavior if VERBOSE: _print_out( "Dummy_serial read return data: {!r} (has length {})\n".format( returnstring, len(returnstring) ) ) if sys.version_info[0] > 2: # Convert types to make it python3 compatible return bytes(returnstring, encoding="latin1") else: return returnstring def _print_out(inputstring): """Print the inputstring. To make it compatible with Python2 and Python3.""" sys.stdout.write(inputstring + "\n")
32.866412
120
0.61166
[ "Apache-2.0" ]
edgar-bonet/minimalmodbus
dummy_serial.py
8,611
Python
#!/usr/bin/env python import os from setuptools import setup from setuptools import find_packages import sys from financialdatapy import __version__ as VERSION # 'setup.py publish' shortcut. if sys.argv[-1] == 'publish': os.system('python setup.py sdist bdist_wheel') os.system('twine upload dist/*') sys.exit() description = 'Extract financial data of a company.' with open('README.md', 'r') as f: long_description = f.read() install_requires = [ 'pandas>=1.4.0', 'requests>=2.27.1', 'xmltodict>=0.12.0', 'python-dotenv>=0.19.2', 'beautifulsoup4>=4.10.0', 'lxml>=4.7.1', 'user_agent>=0.1.10', ] project_urls = { 'Source': 'https://github.com/choi-jiwoo/financialdatapy', } setup( name='financialdatapy', version=VERSION, author='Choi Jiwoo', author_email='[email protected]', description=description, long_description=long_description, long_description_content_type='text/markdown', packages=find_packages(), include_package_data=True, install_requires=install_requires, python_requires='>=3.10', keywords=['python', 'stock', 'finance'], license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Education', 'Programming Language :: Python :: 3.10', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', ], project_urls=project_urls, )
25.928571
62
0.660468
[ "MIT" ]
choi-jiwoo/financialdatapy
setup.py
1,452
Python
# IMPORT MANAGEMENT try: import gevent.monkey except ModuleNotFoundError: import os os.system('pip install -r requirements.txt') import gevent.monkey gevent.monkey.patch_all() # patch everything import colorama colorama.init(autoreset=True) import discord.commands import asyncio import discord import dotenv import os # IMPORTS from discord.ext import commands from cogs.helpers import config, management from discord_together import DiscordTogether # SETTINGS COLOR = config.load()['color-primary'] TESTING_MODE = management.testing_mode() PREFIX = '//' # SETUP dotenv.load_dotenv() # initialize virtual environment token = os.getenv('DISCORD_TOKEN') client = commands.Bot(command_prefix=PREFIX, intents=discord.Intents.all()) async def status_task(): while True: await client.change_presence(activity=discord.Game(f'v0.5・open source')) @client.event async def on_ready(): management.set_start_time() if management.testing_mode(): await client.change_presence(status=discord.Status.idle) print(colorama.Fore.GREEN + 'ONLINE as', client.user) client.togetherControl = await DiscordTogether(token) client.loop.create_task(status_task()) # load cogs # credit: https://youtu.be/vQw8cFfZPx0 for filename in os.listdir(os.getcwd() + '/src/cogs/'): if filename.endswith('.py'): client.load_extension(f'cogs.{filename[:-3]}') try: client.run(token) # run bot with the token set in the .env file except: print(colorama.Fore.RED + 'Unable to run the client. Please check your bot token.')
25.754098
87
0.741566
[ "MIT" ]
nsde/novalix
src/bot.py
1,573
Python
from dataclasses import dataclass, field from typing import List, Optional @dataclass class Regex: att: Optional[str] = field( default=None, metadata={ "type": "Attribute", "pattern": r"\p{IsSpacingModifierLetters}+", } ) @dataclass class Doc: class Meta: name = "doc" elem: List[Regex] = field( default_factory=list, metadata={ "type": "Element", "namespace": "", } )
17.785714
56
0.53012
[ "MIT" ]
tefra/xsdata-w3c-tests
output/models/ms_data/regex/re_l6_xsd/re_l6.py
498
Python
from __future__ import unicode_literals, division, absolute_import import logging import re from datetime import datetime from sqlalchemy import Column, Unicode, Integer from flexget import plugin from flexget.event import event from flexget.utils import requests from flexget.utils.soup import get_soup from flexget.utils.titles.series import name_to_re from flexget.db_schema import versioned_base log = logging.getLogger('pogcal_acquired') Base = versioned_base('pogcal_acquired', 0) session = requests.Session(max_retries=3) class PogcalShow(Base): __tablename__ = 'pogcal_shows' id = Column(Integer, primary_key=True, autoincrement=False, nullable=False) name = Column(Unicode) class PogcalAcquired(object): schema = { 'type': 'object', 'properties': { 'username': {'type': 'string'}, 'password': {'type': 'string'} }, 'required': ['username', 'password'], 'additionalProperties': False } @plugin.priority(-255) def on_task_output(self, task, config): if not task.accepted and not task.options.test: return try: result = session.post('http://www.pogdesign.co.uk/cat/', data={'username': config['username'], 'password': config['password'], 'sub_login': 'Account Login'}) except requests.RequestException as e: log.error('Error logging in to pog calendar: %s' % e) return if 'logout' not in result.text: log.error('Username/password for pogdesign calendar appear to be incorrect.') return elif task.options.test: log.verbose('Successfully logged in to pogdesign calendar.') for entry in task.accepted: if not entry.get('series_name') or not entry.get('series_id_type') == 'ep': continue show_id = self.find_show_id(entry['series_name'], task.session) if not show_id: log.debug('Could not find pogdesign calendar id for `%s`' % entry['series_name']) continue if task.options.test: log.verbose('Would mark %s %s in pogdesign calenadar.' % (entry['series_name'], entry['series_id'])) continue else: log.verbose('Marking %s %s in pogdesign calenadar.' % (entry['series_name'], entry['series_id'])) shid = '%s-%s-%s/%s-%s' % (show_id, entry['series_season'], entry['series_episode'], datetime.now().month, datetime.now().year) try: session.post('http://www.pogdesign.co.uk/cat/watchhandle', data={'watched': 'adding', 'shid': shid}) except requests.RequestException as e: log.error('Error marking %s %s in pogdesign calendar: %s' % (entry['series_name'], entry['series_id'], e)) def find_show_id(self, show_name, db_sess): # Check if we have this show id cached show_name = show_name.lower() db_show = db_sess.query(PogcalShow).filter(PogcalShow.name == show_name).first() if db_show: return db_show.id try: page = session.get('http://www.pogdesign.co.uk/cat/showselect.php') except requests.RequestException as e: log.error('Error looking up show show list from pogdesign calendar: %s' % e) return # Try to find the show id from pogdesign show list show_re = name_to_re(None, show_name) soup = get_soup(page.content) search = re.compile(show_re, flags=re.I) show = soup.find(text=search) if show: id = int(show.previous['value']) db_sess.add(PogcalShow(id=id, name=show_name)) return id else: log.verbose('Could not find pogdesign calendar id for show `%s`' % show_re) @event('plugin.register') def register_plugin(): plugin.register(PogcalAcquired, 'pogcal_acquired', api_ver=2)
40.72549
116
0.596052
[ "MIT" ]
RSully/flexget-flexget
flexget/plugins/services/pogcal_acquired.py
4,154
Python
import copy import datetime import decimal import inspect import json import logging import traceback import uuid import warnings from collections import Counter, defaultdict, namedtuple from collections.abc import Hashable from functools import wraps from typing import List from dateutil.parser import parse from great_expectations import __version__ as ge_version from great_expectations.core.evaluation_parameters import build_evaluation_parameters from great_expectations.core.expectation_configuration import ExpectationConfiguration from great_expectations.core.expectation_suite import ( ExpectationSuite, expectationSuiteSchema, ) from great_expectations.core.expectation_validation_result import ( ExpectationSuiteValidationResult, ExpectationValidationResult, ) from great_expectations.core.id_dict import BatchKwargs from great_expectations.core.run_identifier import RunIdentifier from great_expectations.data_asset.util import ( parse_result_format, recursively_convert_to_json_serializable, ) from great_expectations.exceptions import GreatExpectationsError from great_expectations.marshmallow__shade import ValidationError logger = logging.getLogger(__name__) logging.captureWarnings(True) class DataAsset: # This should in general only be changed when a subclass *adds expectations* or *changes expectation semantics* # That way, multiple backends can implement the same data_asset_type _data_asset_type = "DataAsset" def __init__(self, *args, **kwargs): """ Initialize the DataAsset. :param profiler (profiler class) = None: The profiler that should be run on the data_asset to build a baseline expectation suite. Note: DataAsset is designed to support multiple inheritance (e.g. PandasDataset inherits from both a Pandas DataFrame and Dataset which inherits from DataAsset), so it accepts generic *args and **kwargs arguments so that they can also be passed to other parent classes. In python 2, there isn't a clean way to include all of *args, **kwargs, and a named kwarg...so we use the inelegant solution of popping from kwargs, leaving the support for the profiler parameter not obvious from the signature. """ interactive_evaluation = kwargs.pop("interactive_evaluation", True) profiler = kwargs.pop("profiler", None) expectation_suite = kwargs.pop("expectation_suite", None) expectation_suite_name = kwargs.pop("expectation_suite_name", None) data_context = kwargs.pop("data_context", None) batch_kwargs = kwargs.pop( "batch_kwargs", BatchKwargs(ge_batch_id=str(uuid.uuid1())) ) batch_parameters = kwargs.pop("batch_parameters", {}) batch_markers = kwargs.pop("batch_markers", {}) if "autoinspect_func" in kwargs: warnings.warn( "Autoinspect_func is no longer supported; use a profiler instead (migration is easy!).", category=DeprecationWarning, ) super().__init__(*args, **kwargs) self._config = {"interactive_evaluation": interactive_evaluation} self._initialize_expectations( expectation_suite=expectation_suite, expectation_suite_name=expectation_suite_name, ) self._data_context = data_context self._batch_kwargs = BatchKwargs(batch_kwargs) self._batch_markers = batch_markers self._batch_parameters = batch_parameters # This special state variable tracks whether a validation run is going on, which will disable # saving expectation config objects self._active_validation = False if profiler is not None: profiler.profile(self) if data_context and hasattr(data_context, "_expectation_explorer_manager"): self.set_default_expectation_argument("include_config", True) def list_available_expectation_types(self): keys = dir(self) return [ expectation for expectation in keys if expectation.startswith("expect_") ] def autoinspect(self, profiler): """Deprecated: use profile instead. Use the provided profiler to evaluate this data_asset and assign the resulting expectation suite as its own. Args: profiler: The profiler to use Returns: tuple(expectation_suite, validation_results) """ warnings.warn( "The term autoinspect is deprecated and will be removed in a future release. Please use 'profile'\ instead." ) expectation_suite, validation_results = profiler.profile(self) return expectation_suite, validation_results def profile(self, profiler, profiler_configuration=None): """Use the provided profiler to evaluate this data_asset and assign the resulting expectation suite as its own. Args: profiler: The profiler to use profiler_configuration: Optional profiler configuration dict Returns: tuple(expectation_suite, validation_results) """ expectation_suite, validation_results = profiler.profile( self, profiler_configuration ) return expectation_suite, validation_results # TODO: add warning if no expectation_explorer_manager and how to turn on def edit_expectation_suite(self): return self._data_context._expectation_explorer_manager.edit_expectation_suite( self ) @classmethod def expectation(cls, method_arg_names): """Manages configuration and running of expectation objects. Expectation builds and saves a new expectation configuration to the DataAsset object. It is the core decorator \ used by great expectations to manage expectation configurations. Args: method_arg_names (List) : An ordered list of the arguments used by the method implementing the expectation \ (typically the result of inspection). Positional arguments are explicitly mapped to \ keyword arguments when the expectation is run. Notes: Intermediate decorators that call the core @expectation decorator will most likely need to pass their \ decorated methods' signature up to the expectation decorator. For example, the MetaPandasDataset \ column_map_expectation decorator relies on the DataAsset expectation decorator, but will pass through the \ signature from the implementing method. @expectation intercepts and takes action based on the following parameters: * include_config (boolean or None) : \ If True, then include the generated expectation config as part of the result object. \ For more detail, see :ref:`include_config`. * catch_exceptions (boolean or None) : \ If True, then catch exceptions and include them as part of the result object. \ For more detail, see :ref:`catch_exceptions`. * result_format (str or None) : \ Which output mode to use: `BOOLEAN_ONLY`, `BASIC`, `COMPLETE`, or `SUMMARY`. For more detail, see :ref:`result_format <result_format>`. * meta (dict or None): \ A JSON-serializable dictionary (nesting allowed) that will be included in the output without \ modification. For more detail, see :ref:`meta`. """ def outer_wrapper(func): @wraps(func) def wrapper(self, *args, **kwargs): # Get the name of the method method_name = func.__name__ # Combine all arguments into a single new "all_args" dictionary to name positional parameters all_args = dict(zip(method_arg_names, args)) all_args.update(kwargs) # Unpack display parameters; remove them from all_args if appropriate if "include_config" in kwargs: include_config = kwargs["include_config"] del all_args["include_config"] else: include_config = self.default_expectation_args["include_config"] if "catch_exceptions" in kwargs: catch_exceptions = kwargs["catch_exceptions"] del all_args["catch_exceptions"] else: catch_exceptions = self.default_expectation_args["catch_exceptions"] if "result_format" in kwargs: result_format = kwargs["result_format"] else: result_format = self.default_expectation_args["result_format"] # Extract the meta object for use as a top-level expectation_config holder if "meta" in kwargs: meta = kwargs["meta"] del all_args["meta"] else: meta = None # Get the signature of the inner wrapper: argspec = inspect.getfullargspec(func)[0][1:] if "result_format" in argspec: all_args["result_format"] = result_format else: if "result_format" in all_args: del all_args["result_format"] all_args = recursively_convert_to_json_serializable(all_args) # Patch in PARAMETER args, and remove locally-supplied arguments # This will become the stored config expectation_args = copy.deepcopy(all_args) if self._expectation_suite.evaluation_parameters: ( evaluation_args, substituted_parameters, ) = build_evaluation_parameters( expectation_args, self._expectation_suite.evaluation_parameters, self._config.get("interactive_evaluation", True), self._data_context, ) else: ( evaluation_args, substituted_parameters, ) = build_evaluation_parameters( expectation_args, None, self._config.get("interactive_evaluation", True), self._data_context, ) # Construct the expectation_config object expectation_config = ExpectationConfiguration( expectation_type=method_name, kwargs=expectation_args, meta=meta ) raised_exception = False exception_traceback = None exception_message = None # Finally, execute the expectation method itself if ( self._config.get("interactive_evaluation", True) or self._active_validation ): try: return_obj = func(self, **evaluation_args) if isinstance(return_obj, dict): return_obj = ExpectationValidationResult(**return_obj) except Exception as err: if catch_exceptions: raised_exception = True exception_traceback = traceback.format_exc() exception_message = "{}: {}".format( type(err).__name__, str(err) ) return_obj = ExpectationValidationResult(success=False) else: raise err else: return_obj = ExpectationValidationResult( expectation_config=copy.deepcopy(expectation_config) ) # If validate has set active_validation to true, then we do not save the config to avoid # saving updating expectation configs to the same suite during validation runs if self._active_validation is True: stored_config = expectation_config else: # Append the expectation to the config. stored_config = self._expectation_suite.add_expectation( expectation_config ) if include_config: return_obj.expectation_config = copy.deepcopy(stored_config) # If there was no interactive evaluation, success will not have been computed. if return_obj.success is not None: # Add a "success" object to the config stored_config.success_on_last_run = return_obj.success if catch_exceptions: return_obj.exception_info = { "raised_exception": raised_exception, "exception_message": exception_message, "exception_traceback": exception_traceback, } if len(substituted_parameters) > 0: if meta is None: meta = dict() meta["substituted_parameters"] = substituted_parameters # Add meta to return object if meta is not None: return_obj.meta = meta return_obj = recursively_convert_to_json_serializable(return_obj) if self._data_context is not None: return_obj = self._data_context.update_return_obj(self, return_obj) return return_obj return wrapper return outer_wrapper def _initialize_expectations( self, expectation_suite=None, expectation_suite_name=None ): """Instantiates `_expectation_suite` as empty by default or with a specified expectation `config`. In addition, this always sets the `default_expectation_args` to: `include_config`: False, `catch_exceptions`: False, `output_format`: 'BASIC' By default, initializes data_asset_type to the name of the implementing class, but subclasses that have interoperable semantics (e.g. Dataset) may override that parameter to clarify their interoperability. Args: expectation_suite (json): \ A json-serializable expectation config. \ If None, creates default `_expectation_suite` with an empty list of expectations and \ key value `data_asset_name` as `data_asset_name`. expectation_suite_name (string): \ The name to assign to the `expectation_suite.expectation_suite_name` Returns: None """ if expectation_suite is not None: if isinstance(expectation_suite, dict): expectation_suite = expectationSuiteSchema.load(expectation_suite) else: expectation_suite = copy.deepcopy(expectation_suite) self._expectation_suite = expectation_suite if expectation_suite_name is not None: if ( self._expectation_suite.expectation_suite_name != expectation_suite_name ): logger.warning( "Overriding existing expectation_suite_name {n1} with new name {n2}".format( n1=self._expectation_suite.expectation_suite_name, n2=expectation_suite_name, ) ) self._expectation_suite.expectation_suite_name = expectation_suite_name else: if expectation_suite_name is None: expectation_suite_name = "default" self._expectation_suite = ExpectationSuite( expectation_suite_name=expectation_suite_name ) self._expectation_suite.data_asset_type = self._data_asset_type self.default_expectation_args = { "include_config": True, "catch_exceptions": False, "result_format": "BASIC", } def append_expectation(self, expectation_config): """This method is a thin wrapper for ExpectationSuite.append_expectation""" warnings.warn( "append_expectation is deprecated, and will be removed in a future release. " + "Please use ExpectationSuite.add_expectation instead.", DeprecationWarning, ) self._expectation_suite.append_expectation(expectation_config) def find_expectation_indexes( self, expectation_configuration: ExpectationConfiguration, match_type: str = "domain", ) -> List[int]: """This method is a thin wrapper for ExpectationSuite.find_expectation_indexes""" warnings.warn( "find_expectation_indexes is deprecated, and will be removed in a future release. " + "Please use ExpectationSuite.find_expectation_indexes instead.", DeprecationWarning, ) return self._expectation_suite.find_expectation_indexes( expectation_configuration=expectation_configuration, match_type=match_type ) def find_expectations( self, expectation_configuration: ExpectationConfiguration, match_type: str = "domain", ) -> List[ExpectationConfiguration]: """This method is a thin wrapper for ExpectationSuite.find_expectations()""" warnings.warn( "find_expectations is deprecated, and will be removed in a future release. " + "Please use ExpectationSuite.find_expectation_indexes instead.", DeprecationWarning, ) return self._expectation_suite.find_expectations( expectation_configuration=expectation_configuration, match_type=match_type ) def remove_expectation( self, expectation_configuration: ExpectationConfiguration, match_type: str = "domain", remove_multiple_matches: bool = False, ) -> List[ExpectationConfiguration]: """This method is a thin wrapper for ExpectationSuite.remove()""" warnings.warn( "DataAsset.remove_expectations is deprecated, and will be removed in a future release. " + "Please use ExpectationSuite.remove_expectation instead.", DeprecationWarning, ) return self._expectation_suite.remove_expectation( expectation_configuration=expectation_configuration, match_type=match_type, remove_multiple_matches=remove_multiple_matches, ) def set_config_value(self, key, value): self._config[key] = value def get_config_value(self, key): return self._config[key] @property def batch_kwargs(self): return self._batch_kwargs @property def batch_id(self): return self.batch_kwargs.to_id() @property def batch_markers(self): return self._batch_markers @property def batch_parameters(self): return self._batch_parameters def discard_failing_expectations(self): res = self.validate(only_return_failures=True).results if any(res): for item in res: self.remove_expectation( expectation_configuration=item.expectation_config, match_type="runtime", ) warnings.warn("Removed %s expectations that were 'False'" % len(res)) def get_default_expectation_arguments(self): """Fetch default expectation arguments for this data_asset Returns: A dictionary containing all the current default expectation arguments for a data_asset Ex:: { "include_config" : True, "catch_exceptions" : False, "result_format" : 'BASIC' } See also: set_default_expectation_arguments """ return self.default_expectation_args def set_default_expectation_argument(self, argument, value): """Set a default expectation argument for this data_asset Args: argument (string): The argument to be replaced value : The New argument to use for replacement Returns: None See also: get_default_expectation_arguments """ # !!! Maybe add a validation check here? self.default_expectation_args[argument] = value def get_expectations_config( self, discard_failed_expectations=True, discard_result_format_kwargs=True, discard_include_config_kwargs=True, discard_catch_exceptions_kwargs=True, suppress_warnings=False, ): warnings.warn( "get_expectations_config is deprecated, and will be removed in a future release. " + "Please use get_expectation_suite instead.", DeprecationWarning, ) return self.get_expectation_suite( discard_failed_expectations, discard_result_format_kwargs, discard_include_config_kwargs, discard_catch_exceptions_kwargs, suppress_warnings, ) def get_expectation_suite( self, discard_failed_expectations=True, discard_result_format_kwargs=True, discard_include_config_kwargs=True, discard_catch_exceptions_kwargs=True, suppress_warnings=False, suppress_logging=False, ): """Returns _expectation_config as a JSON object, and perform some cleaning along the way. Args: discard_failed_expectations (boolean): \ Only include expectations with success_on_last_run=True in the exported config. Defaults to `True`. discard_result_format_kwargs (boolean): \ In returned expectation objects, suppress the `result_format` parameter. Defaults to `True`. discard_include_config_kwargs (boolean): \ In returned expectation objects, suppress the `include_config` parameter. Defaults to `True`. discard_catch_exceptions_kwargs (boolean): \ In returned expectation objects, suppress the `catch_exceptions` parameter. Defaults to `True`. suppress_warnings (boolean): \ If true, do not include warnings in logging information about the operation. suppress_logging (boolean): \ If true, do not create a log entry (useful when using get_expectation_suite programmatically) Returns: An expectation suite. Note: get_expectation_suite does not affect the underlying expectation suite at all. The returned suite is a \ copy of _expectation_suite, not the original object. """ expectation_suite = copy.deepcopy(self._expectation_suite) expectations = expectation_suite.expectations discards = defaultdict(int) if discard_failed_expectations: new_expectations = [] for expectation in expectations: # Note: This is conservative logic. # Instead of retaining expectations IFF success==True, it discard expectations IFF success==False. # In cases where expectation.success is missing or None, expectations are *retained*. # Such a case could occur if expectations were loaded from a config file and never run. if expectation.success_on_last_run is False: discards["failed_expectations"] += 1 else: new_expectations.append(expectation) expectations = new_expectations message = "\t%d expectation(s) included in expectation_suite." % len( expectations ) if discards["failed_expectations"] > 0 and not suppress_warnings: message += ( " Omitting %d expectation(s) that failed when last run; set " "discard_failed_expectations=False to include them." % discards["failed_expectations"] ) for expectation in expectations: # FIXME: Factor this out into a new function. The logic is duplicated in remove_expectation, # which calls _copy_and_clean_up_expectation expectation.success_on_last_run = None if discard_result_format_kwargs: if "result_format" in expectation.kwargs: del expectation.kwargs["result_format"] discards["result_format"] += 1 if discard_include_config_kwargs: if "include_config" in expectation.kwargs: del expectation.kwargs["include_config"] discards["include_config"] += 1 if discard_catch_exceptions_kwargs: if "catch_exceptions" in expectation.kwargs: del expectation.kwargs["catch_exceptions"] discards["catch_exceptions"] += 1 settings_message = "" if discards["result_format"] > 0 and not suppress_warnings: settings_message += " result_format" if discards["include_config"] > 0 and not suppress_warnings: settings_message += " include_config" if discards["catch_exceptions"] > 0 and not suppress_warnings: settings_message += " catch_exceptions" if ( len(settings_message) > 1 ): # Only add this if we added one of the settings above. settings_message += " settings filtered." expectation_suite.expectations = expectations if not suppress_logging: logger.info(message + settings_message) return expectation_suite def save_expectation_suite( self, filepath=None, discard_failed_expectations=True, discard_result_format_kwargs=True, discard_include_config_kwargs=True, discard_catch_exceptions_kwargs=True, suppress_warnings=False, ): """Writes ``_expectation_config`` to a JSON file. Writes the DataAsset's expectation config to the specified JSON ``filepath``. Failing expectations \ can be excluded from the JSON expectations config with ``discard_failed_expectations``. The kwarg key-value \ pairs :ref:`result_format`, :ref:`include_config`, and :ref:`catch_exceptions` are optionally excluded from \ the JSON expectations config. Args: filepath (string): \ The location and name to write the JSON config file to. discard_failed_expectations (boolean): \ If True, excludes expectations that do not return ``success = True``. \ If False, all expectations are written to the JSON config file. discard_result_format_kwargs (boolean): \ If True, the :ref:`result_format` attribute for each expectation is not written to the JSON config \ file. discard_include_config_kwargs (boolean): \ If True, the :ref:`include_config` attribute for each expectation is not written to the JSON config \ file. discard_catch_exceptions_kwargs (boolean): \ If True, the :ref:`catch_exceptions` attribute for each expectation is not written to the JSON \ config file. suppress_warnings (boolean): \ It True, all warnings raised by Great Expectations, as a result of dropped expectations, are \ suppressed. """ expectation_suite = self.get_expectation_suite( discard_failed_expectations, discard_result_format_kwargs, discard_include_config_kwargs, discard_catch_exceptions_kwargs, suppress_warnings, ) if filepath is None and self._data_context is not None: self._data_context.save_expectation_suite(expectation_suite) elif filepath is not None: with open(filepath, "w") as outfile: json.dump( expectationSuiteSchema.dump(expectation_suite), outfile, indent=2, sort_keys=True, ) else: raise ValueError( "Unable to save config: filepath or data_context must be available." ) def validate( self, expectation_suite=None, run_id=None, data_context=None, evaluation_parameters=None, catch_exceptions=True, result_format=None, only_return_failures=False, run_name=None, run_time=None, ): """Generates a JSON-formatted report describing the outcome of all expectations. Use the default expectation_suite=None to validate the expectations config associated with the DataAsset. Args: expectation_suite (json or None): \ If None, uses the expectations config generated with the DataAsset during the current session. \ If a JSON file, validates those expectations. run_name (str): \ Used to identify this validation result as part of a collection of validations. \ See DataContext for more information. data_context (DataContext): \ A datacontext object to use as part of validation for binding evaluation parameters and \ registering validation results. evaluation_parameters (dict or None): \ If None, uses the evaluation_paramters from the expectation_suite provided or as part of the \ data_asset. If a dict, uses the evaluation parameters in the dictionary. catch_exceptions (boolean): \ If True, exceptions raised by tests will not end validation and will be described in the returned \ report. result_format (string or None): \ If None, uses the default value ('BASIC' or as specified). \ If string, the returned expectation output follows the specified format ('BOOLEAN_ONLY','BASIC', \ etc.). only_return_failures (boolean): \ If True, expectation results are only returned when ``success = False`` \ Returns: A JSON-formatted dictionary containing a list of the validation results. \ An example of the returned format:: { "results": [ { "unexpected_list": [unexpected_value_1, unexpected_value_2], "expectation_type": "expect_*", "kwargs": { "column": "Column_Name", "output_format": "SUMMARY" }, "success": true, "raised_exception: false. "exception_traceback": null }, { ... (Second expectation results) }, ... (More expectations results) ], "success": true, "statistics": { "evaluated_expectations": n, "successful_expectations": m, "unsuccessful_expectations": n - m, "success_percent": m / n } } Notes: If the configuration object was built with a different version of great expectations then the \ current environment. If no version was found in the configuration file. Raises: AttributeError - if 'catch_exceptions'=None and an expectation throws an AttributeError """ try: validation_time = datetime.datetime.now(datetime.timezone.utc).strftime( "%Y%m%dT%H%M%S.%fZ" ) assert not (run_id and run_name) and not ( run_id and run_time ), "Please provide either a run_id or run_name and/or run_time." if isinstance(run_id, str) and not run_name: warnings.warn( "String run_ids will be deprecated in the future. Please provide a run_id of type " "RunIdentifier(run_name=None, run_time=None), or a dictionary containing run_name " "and run_time (both optional). Instead of providing a run_id, you may also provide" "run_name and run_time separately.", DeprecationWarning, ) try: run_time = parse(run_id) except (ValueError, TypeError): pass run_id = RunIdentifier(run_name=run_id, run_time=run_time) elif isinstance(run_id, dict): run_id = RunIdentifier(**run_id) elif not isinstance(run_id, RunIdentifier): run_id = RunIdentifier(run_name=run_name, run_time=run_time) self._active_validation = True # If a different validation data context was provided, override validate__data_context = self._data_context if data_context is None and self._data_context is not None: data_context = self._data_context elif data_context is not None: # temporarily set self._data_context so it is used inside the expectation decorator self._data_context = data_context results = [] if expectation_suite is None: expectation_suite = self.get_expectation_suite( discard_failed_expectations=False, discard_result_format_kwargs=False, discard_include_config_kwargs=False, discard_catch_exceptions_kwargs=False, ) elif isinstance(expectation_suite, str): try: with open(expectation_suite) as infile: expectation_suite = expectationSuiteSchema.loads(infile.read()) except ValidationError: raise except OSError: raise GreatExpectationsError( "Unable to load expectation suite: IO error while reading %s" % expectation_suite ) elif not isinstance(expectation_suite, ExpectationSuite): logger.error( "Unable to validate using the provided value for expectation suite; does it need to be " "loaded from a dictionary?" ) if getattr(data_context, "_usage_statistics_handler", None): handler = data_context._usage_statistics_handler handler.send_usage_message( event="data_asset.validate", event_payload=handler._batch_anonymizer.anonymize_batch_info( self ), success=False, ) return ExpectationValidationResult(success=False) # Evaluation parameter priority is # 1. from provided parameters # 2. from expectation configuration # 3. from data context # So, we load them in reverse order if data_context is not None: runtime_evaluation_parameters = ( data_context.evaluation_parameter_store.get_bind_params(run_id) ) else: runtime_evaluation_parameters = {} if expectation_suite.evaluation_parameters: runtime_evaluation_parameters.update( expectation_suite.evaluation_parameters ) if evaluation_parameters is not None: runtime_evaluation_parameters.update(evaluation_parameters) # Convert evaluation parameters to be json-serializable runtime_evaluation_parameters = recursively_convert_to_json_serializable( runtime_evaluation_parameters ) # Warn if our version is different from the version in the configuration # TODO: Deprecate "great_expectations.__version__" suite_ge_version = expectation_suite.meta.get( "great_expectations_version" ) or expectation_suite.meta.get("great_expectations.__version__") if suite_ge_version: if suite_ge_version != ge_version: warnings.warn( "WARNING: This configuration object was built using version %s of great_expectations, but " "is currently being validated by version %s." % ( suite_ge_version, ge_version, ) ) else: warnings.warn( "WARNING: No great_expectations version found in configuration object." ) ### # This is an early example of what will become part of the ValidationOperator # This operator would be dataset-semantic aware # Adding now to simply ensure we can be slightly better at ordering our expectation evaluation ### # Group expectations by column columns = {} for expectation in expectation_suite.expectations: if "column" in expectation.kwargs and isinstance( expectation.kwargs["column"], Hashable ): column = expectation.kwargs["column"] else: column = "_nocolumn" if column not in columns: columns[column] = [] columns[column].append(expectation) expectations_to_evaluate = [] for col in columns: expectations_to_evaluate.extend(columns[col]) for expectation in expectations_to_evaluate: try: # copy the config so we can modify it below if needed expectation = copy.deepcopy(expectation) expectation_method = getattr(self, expectation.expectation_type) if result_format is not None: expectation.kwargs.update({"result_format": result_format}) # A missing parameter will raise an EvaluationParameterError ( evaluation_args, substituted_parameters, ) = build_evaluation_parameters( expectation.kwargs, runtime_evaluation_parameters, self._config.get("interactive_evaluation", True), self._data_context, ) result = expectation_method( catch_exceptions=catch_exceptions, include_config=True, **evaluation_args ) except Exception as err: if catch_exceptions: raised_exception = True exception_traceback = traceback.format_exc() result = ExpectationValidationResult( success=False, exception_info={ "raised_exception": raised_exception, "exception_traceback": exception_traceback, "exception_message": str(err), }, ) else: raise err # if include_config: result.expectation_config = expectation # Add an empty exception_info object if no exception was caught if catch_exceptions and result.exception_info is None: result.exception_info = { "raised_exception": False, "exception_traceback": None, "exception_message": None, } results.append(result) statistics = _calc_validation_statistics(results) if only_return_failures: abbrev_results = [] for exp in results: if not exp.success: abbrev_results.append(exp) results = abbrev_results expectation_suite_name = expectation_suite.expectation_suite_name result = ExpectationSuiteValidationResult( results=results, success=statistics.success, statistics={ "evaluated_expectations": statistics.evaluated_expectations, "successful_expectations": statistics.successful_expectations, "unsuccessful_expectations": statistics.unsuccessful_expectations, "success_percent": statistics.success_percent, }, evaluation_parameters=runtime_evaluation_parameters, meta={ "great_expectations_version": ge_version, "expectation_suite_name": expectation_suite_name, "run_id": run_id, "batch_kwargs": self.batch_kwargs, "batch_markers": self.batch_markers, "batch_parameters": self.batch_parameters, "validation_time": validation_time, }, ) self._data_context = validate__data_context except Exception: if getattr(data_context, "_usage_statistics_handler", None): handler = data_context._usage_statistics_handler handler.send_usage_message( event="data_asset.validate", event_payload=handler._batch_anonymizer.anonymize_batch_info(self), success=False, ) raise finally: self._active_validation = False if getattr(data_context, "_usage_statistics_handler", None): handler = data_context._usage_statistics_handler handler.send_usage_message( event="data_asset.validate", event_payload=handler._batch_anonymizer.anonymize_batch_info(self), success=True, ) return result def get_evaluation_parameter(self, parameter_name, default_value=None): """Get an evaluation parameter value that has been stored in meta. Args: parameter_name (string): The name of the parameter to store. default_value (any): The default value to be returned if the parameter is not found. Returns: The current value of the evaluation parameter. """ if parameter_name in self._expectation_suite.evaluation_parameters: return self._expectation_suite.evaluation_parameters[parameter_name] else: return default_value def set_evaluation_parameter(self, parameter_name, parameter_value): """Provide a value to be stored in the data_asset evaluation_parameters object and used to evaluate parameterized expectations. Args: parameter_name (string): The name of the kwarg to be replaced at evaluation time parameter_value (any): The value to be used """ self._expectation_suite.evaluation_parameters.update( {parameter_name: parameter_value} ) def add_citation( self, comment, batch_kwargs=None, batch_markers=None, batch_parameters=None, citation_date=None, ): if batch_kwargs is None: batch_kwargs = self.batch_kwargs if batch_markers is None: batch_markers = self.batch_markers if batch_parameters is None: batch_parameters = self.batch_parameters self._expectation_suite.add_citation( comment, batch_kwargs=batch_kwargs, batch_markers=batch_markers, batch_parameters=batch_parameters, citation_date=citation_date, ) @property def expectation_suite_name(self): """Gets the current expectation_suite name of this data_asset as stored in the expectations configuration.""" return self._expectation_suite.expectation_suite_name @expectation_suite_name.setter def expectation_suite_name(self, expectation_suite_name): """Sets the expectation_suite name of this data_asset as stored in the expectations configuration.""" self._expectation_suite.expectation_suite_name = expectation_suite_name ### # # Output generation # ### def _format_map_output( self, result_format, success, element_count, nonnull_count, unexpected_count, unexpected_list, unexpected_index_list, ): """Helper function to construct expectation result objects for map_expectations (such as column_map_expectation and file_lines_map_expectation). Expectations support four result_formats: BOOLEAN_ONLY, BASIC, SUMMARY, and COMPLETE. In each case, the object returned has a different set of populated fields. See :ref:`result_format` for more information. This function handles the logic for mapping those fields for column_map_expectations. """ # NB: unexpected_count parameter is explicit some implementing classes may limit the length of unexpected_list # Retain support for string-only output formats: result_format = parse_result_format(result_format) # Incrementally add to result and return when all values for the specified level are present return_obj = {"success": success} if result_format["result_format"] == "BOOLEAN_ONLY": return return_obj missing_count = element_count - nonnull_count if element_count > 0: missing_percent = missing_count / element_count * 100 if nonnull_count > 0: unexpected_percent_total = unexpected_count / element_count * 100 unexpected_percent_nonmissing = unexpected_count / nonnull_count * 100 else: unexpected_percent_total = None unexpected_percent_nonmissing = None else: missing_percent = None unexpected_percent_total = None unexpected_percent_nonmissing = None return_obj["result"] = { "element_count": element_count, "missing_count": missing_count, "missing_percent": missing_percent, "unexpected_count": unexpected_count, "unexpected_percent": unexpected_percent_nonmissing, "unexpected_percent_total": unexpected_percent_total, "unexpected_percent_nonmissing": unexpected_percent_nonmissing, "partial_unexpected_list": unexpected_list[ : result_format["partial_unexpected_count"] ], } if result_format["result_format"] == "BASIC": return return_obj # Try to return the most common values, if possible. if 0 < result_format.get("partial_unexpected_count"): try: partial_unexpected_counts = [ {"value": key, "count": value} for key, value in sorted( Counter(unexpected_list).most_common( result_format["partial_unexpected_count"] ), key=lambda x: (-x[1], str(x[0])), ) ] except TypeError: partial_unexpected_counts = [] if "details" not in return_obj["result"]: return_obj["result"]["details"] = {} return_obj["result"]["details"][ "partial_unexpected_counts_error" ] = "partial_unexpected_counts requested, but requires a hashable type" finally: return_obj["result"].update( { "partial_unexpected_index_list": unexpected_index_list[ : result_format["partial_unexpected_count"] ] if unexpected_index_list is not None else None, "partial_unexpected_counts": partial_unexpected_counts, } ) if result_format["result_format"] == "SUMMARY": return return_obj return_obj["result"].update( { "unexpected_list": unexpected_list, "unexpected_index_list": unexpected_index_list, } ) if result_format["result_format"] == "COMPLETE": return return_obj raise ValueError( "Unknown result_format {}.".format(result_format["result_format"]) ) def _calc_map_expectation_success(self, success_count, nonnull_count, mostly): """Calculate success and percent_success for column_map_expectations Args: success_count (int): \ The number of successful values in the column nonnull_count (int): \ The number of nonnull values in the column mostly (float or None): \ A value between 0 and 1 (or None), indicating the fraction of successes required to pass the \ expectation as a whole. If mostly=None, then all values must succeed in order for the expectation as \ a whole to succeed. Returns: success (boolean), percent_success (float) """ if isinstance(success_count, decimal.Decimal): raise ValueError( "success_count must not be a decimal; check your db configuration" ) if isinstance(nonnull_count, decimal.Decimal): raise ValueError( "nonnull_count must not be a decimal; check your db configuration" ) if nonnull_count > 0: percent_success = success_count / nonnull_count if mostly is not None: success = bool(percent_success >= mostly) else: success = bool(nonnull_count - success_count == 0) else: success = True percent_success = None return success, percent_success ### # # Iterative testing for custom expectations # ### def test_expectation_function(self, function, *args, **kwargs): """Test a generic expectation function Args: function (func): The function to be tested. (Must be a valid expectation function.) *args : Positional arguments to be passed the the function **kwargs : Keyword arguments to be passed the the function Returns: A JSON-serializable expectation result object. Notes: This function is a thin layer to allow quick testing of new expectation functions, without having to \ define custom classes, etc. To use developed expectations from the command-line tool, you will still need \ to define custom classes, etc. Check out :ref:`how_to_guides__creating_and_editing_expectations__how_to_create_custom_expectations` for more information. """ argspec = inspect.getfullargspec(function)[0][1:] new_function = self.expectation(argspec)(function) return new_function(self, *args, **kwargs) ValidationStatistics = namedtuple( "ValidationStatistics", [ "evaluated_expectations", "successful_expectations", "unsuccessful_expectations", "success_percent", "success", ], ) def _calc_validation_statistics(validation_results): """ Calculate summary statistics for the validation results and return ``ExpectationStatistics``. """ # calc stats successful_expectations = sum(exp.success for exp in validation_results) evaluated_expectations = len(validation_results) unsuccessful_expectations = evaluated_expectations - successful_expectations success = successful_expectations == evaluated_expectations try: success_percent = successful_expectations / evaluated_expectations * 100 except ZeroDivisionError: # success_percent = float("nan") success_percent = None return ValidationStatistics( successful_expectations=successful_expectations, evaluated_expectations=evaluated_expectations, unsuccessful_expectations=unsuccessful_expectations, success=success, success_percent=success_percent, )
41.271407
134
0.599392
[ "Apache-2.0" ]
BSofo/great_expectations
great_expectations/data_asset/data_asset.py
53,983
Python
"""update liscence colum to hash Revision ID: 0a769c5cda0a Revises: 1de63d54c3b7 Create Date: 2018-06-21 17:57:36.549097 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '0a769c5cda0a' down_revision = '1de63d54c3b7' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('user', 'birth', existing_type=sa.VARCHAR(length=80), type_=sa.String(length=128), existing_nullable=True) op.alter_column('user', 'liscence_2', existing_type=sa.VARCHAR(length=80), type_=sa.String(length=128), existing_nullable=True) op.alter_column('user', 'liscence_3', existing_type=sa.VARCHAR(length=80), type_=sa.String(length=128), existing_nullable=True) op.alter_column('user', 'liscence_4', existing_type=sa.VARCHAR(length=80), type_=sa.String(length=128), existing_nullable=True) op.alter_column('user', 'serial', existing_type=sa.VARCHAR(length=80), type_=sa.String(length=128), existing_nullable=True) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.alter_column('user', 'serial', existing_type=sa.String(length=128), type_=sa.VARCHAR(length=80), existing_nullable=True) op.alter_column('user', 'liscence_4', existing_type=sa.String(length=128), type_=sa.VARCHAR(length=80), existing_nullable=True) op.alter_column('user', 'liscence_3', existing_type=sa.String(length=128), type_=sa.VARCHAR(length=80), existing_nullable=True) op.alter_column('user', 'liscence_2', existing_type=sa.String(length=128), type_=sa.VARCHAR(length=80), existing_nullable=True) op.alter_column('user', 'birth', existing_type=sa.String(length=128), type_=sa.VARCHAR(length=80), existing_nullable=True) # ### end Alembic commands ###
34.373134
65
0.597916
[ "MIT" ]
todhm/wicarproject
wicarproject/migrations/versions/0a769c5cda0a_update_liscence_colum_to_hash.py
2,303
Python
import os from plugins import BaseAssessment from yapsy.IPlugin import IPlugin from asmtypes import ArastDataOutputError class ReaprAssessment(BaseAssessment, IPlugin): OUTPUT = 'contigs' def run(self): """ Build the command and run. Return list of file(s) """ contigs = self.data.contigfiles reads = self.data.readsets if len(contigs) > 1: raise Exception('Reapr: multiple contig files!') #### Generate Bamfiles if len(reads) > 1: self.out_module.write('WARNING: Reapr will use only one read library') read_pair = reads[0].files bamfile = os.path.join(self.outpath, 'out.bam') cmd_args = [self.executable, 'smaltmap', contigs[0], read_pair[0], read_pair[1], bamfile] self.arast_popen(cmd_args) if not os.path.exists(bamfile): raise ArastDataOutputError('REAPR: Unable to create alignment') #### Run REAPR Pipeline rpr_outpath = os.path.join(self.outpath, 'output') cmd_args = [self.executable, 'pipeline', contigs[0], bamfile, rpr_outpath] self.arast_popen(cmd_args) # Move files into root dir for f in os.listdir(rpr_outpath): old = os.path.join(rpr_outpath, f) new = os.path.join(self.outpath, f) os.rename(old, new) broken = os.path.join(self.outpath, '04.break.broken_assembly.fa') if os.path.exists(broken): return {'contigs': [broken]}
33.255319
82
0.602047
[ "MIT" ]
levinas/assembly
lib/assembly/plugins/reapr.py
1,563
Python
#!/usr/bin/env python3 # Northcliff Airconditioner Controller Version 3.48 Gen import RPi.GPIO as GPIO import time from datetime import datetime #import requests #from threading import Thread import paho.mqtt.client as mqtt import struct import json import serial import binascii import sys import spidev import math import os class NorthcliffAirconController(object): def __init__(self, calibrate_damper_on_startup): # Set up GPIO GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) self.control_enable = 17 self.damper_control = 25 self.damper_stop = 24 self.damper_zone = 23 GPIO.setup(self.control_enable, GPIO.OUT) GPIO.setup(self.damper_control, GPIO.OUT) GPIO.setup(self.damper_stop, GPIO.OUT) GPIO.setup(self.damper_zone, GPIO.OUT) GPIO.output(self.control_enable, False) self.damper_control_state = False GPIO.output(self.damper_control, False) self.damper_stop_state = False GPIO.output(self.damper_stop, False) self.damper_zone_state = False GPIO.output(self.damper_zone, False) # Aircon Startup Mode self.remote_operation_on = False # This flag keeps track of whether the aircon is under remote or autonomous operation self.enable_serial_comms_loop = False # This flag is set to True during remote operation to enable the serial comms loop when the aircon is under remote operations self.heating = False # Mirrors aircon heating state indicator self.compressor = False # Mirrors aircon compressor state indicator self.malfunction = False # Mirrors aircon malfunction state indicator and is used to indicate a malfunction in the aircon/controller comms self.heat_mode = False # Mirrors aircon heat mode indicator self.cool_mode = False # Mirrors aircon cool mode indicator self.fan_mode = False # Mirrors aircon fan mode indicator self.fan_hi = False # Mirrors aircon fan hi indicator self.fan_med = False # Mirrors aircon fan med indicator self.fan_lo = False # Mirrors aircon fan lo indicator self.filter = False # Mirrors aircon filter indicator # Set up damper states self.requested_damper_percent = 100 self.adjusting_damper = False # Set default damper positions self.damper_day_position = 416 self.damper_night_position = 1648 self.calibrate_damper_on_startup = calibrate_damper_on_startup # Set up heartbeat self.heartbeat_count = 0 self.no_heartbeat_ack = False # Set up Serial Comms Data self.packet1_header_a = '00' self.packet1_header_b = '8f' self.packet1_header = self.packet1_header_a + self.packet1_header_b self.packet2_header_a = '80' self.packet2_header_b = '8c' self.packet2_header = self.packet2_header_a + self.packet2_header_b self.packet3_initial_header = self.packet1_header self.mode = {'Auto On': 'b0', 'Auto Off': '90', 'Dry On': 'b1', 'Dry Off': '91', 'Cool On': 'b2', 'Cool Off': '92', 'Fan On': 'b3', 'Fan Off': '93', 'Heat On': 'b4', 'Heat Off': '94'} self.set_temp = {'18 degrees': '48', '19 degrees': '4a', '20 degrees': '4c', '21 degrees': '4e', '22 degrees': '50', '23 degrees': '52', '24 degrees': '54', '25 degrees': '56', '26 degrees': '58', '27 degrees': '5a', '28 degrees': '5c', '29 degrees': '5e', '30 degrees': '60'} self.fan_speed = {'Lo On': 'f0', 'Lo Off': 'e0', 'Med On': 'f1', 'Med Off': 'e1', 'Hi On': 'f2', 'Hi Off': 'e2'} self.clean_filter = {'Reset': 'f1', 'No Reset': 'f0'} self.alerts = {'Not in Warmup': ['f8', 'fa'], 'Warmup': ['f9', 'fb'], 'Clean Filter': ['fa', 'fb'], 'Filter OK': ['f8', 'f9']} self.compressor_state = {'Off': 'e0', 'On': 'e2'} # Set up dictionaries for Serial Comms Packets to Off, Fan Mode, Fan Lo self.packet_1_dictionary = {"1Header1": self.packet1_header, "2Mode1": self.mode['Fan Off'], "3Filler1a": "00", "4SetTemp1": self.set_temp['20 degrees'], "5Fan1": self.fan_speed['Hi Off'], "6Filler1b": "fffff03fffffffffff"} self.packet_2_dictionary = {"1Header2": self.packet2_header, "2Mode2": self.mode['Fan Off'], "3Filler2a": "00", "4SetTemp2": self.set_temp['20 degrees'], "5Fan2": self.fan_speed['Hi Off'], "6ActualTemp2": "90", "7Filler2b": "00", "8Unknown2": "e0", "9Alerts2": self.alerts['Warmup'], "10Filler2c": "ffff", "11Compressor2": self.compressor_state['On'], "12Filler2c": "ffff", "13Checksum2": "00"} self.packet_3_dictionary = {"1Header3": self.packet3_initial_header, "2Mode3": self.mode['Fan Off'], "3Filler3a": "00", "4SetTemp3": self.set_temp['20 degrees'], "5Fan3": self.fan_speed['Hi Off'], "6Filler3b": "fffff03fffffffffff"} # Set up serial port for aircon controller comms self.aircon_comms = serial.Serial("/dev/ttyAMA0", 1200, parity=serial.PARITY_EVEN, timeout=0.5) # After swapping serial and bluetooth ports so we can use parity # Set up SPI Port for the damper position sensor self.spi = spidev.SpiDev() speed = 50000 self.spi.open(0,0) self.spi.max_speed_hz = speed # Initialise damper position sensor resp = self.spi.xfer2([0x0e, 0x00, 0x00]) # X-Channel Self Test time.sleep(0.3) resp = self.spi.xfer2([0x00, 0x00]) # Exit Self Test time.sleep(0.1) resp = self.spi.xfer2([0x0f, 0x00, 0x00]) # Y-Channel Self Test time.sleep(0.3) resp = self.spi.xfer2([0x00, 0x00]) # Exit Self Test time.sleep(0.1) def print_status(self, print_message): today = datetime.now() print("") print(print_message + today.strftime('%A %d %B %Y @ %H:%M:%S')) def startup(self): self.print_status("Northcliff Aircon Controller starting up on ") # Set up mqtt client self.client = mqtt.Client('aircon') #Create new instance of mqtt Class self.client.on_connect = self.on_connect self.client.on_message = self.on_message self.client.connect("<your mqtt Broker name>", 1883, 60) #Connect to mqtt broker self.client.loop_start() #Start mqtt monitor thread if self.calibrate_damper_on_startup == True: self.calibrate_damper(damper_movement_time = 180) # Detect Damper Position and update Home Manager with aircon status self.detect_damper_position(calibrate = False) self.update_status() def on_connect(self, client, userdata, flags, rc): # Print mqtt status on connecting to broker time.sleep(1) self.print_status("Connected to mqtt server with result code "+str(rc)+" on ") print("") self.client.subscribe("AirconControl") def on_message(self, client, userdata, msg): # mqtt message method calls decoded_payload = str(msg.payload.decode("utf-8")) message = msg.topic+" "+ decoded_payload # Capture message with binary states converted to a string #print(message) if str(msg.topic) == 'AirconControl': parsed_json = json.loads(decoded_payload) if parsed_json['service'] == 'Off': self.process_thermo_off_command() elif parsed_json['service'] == 'Ventilate': self.process_ventilate_mode() elif parsed_json['service'] == 'Thermostat Heat': self.process_thermo_heat_command() elif parsed_json['service'] == 'Thermostat Cool': self.process_thermo_cool_command() elif parsed_json['service'] == 'Thermostat Auto': self.process_thermo_auto_command() elif parsed_json['service'] == 'Heat Mode': self.process_heat_command() elif parsed_json['service'] == 'Cool Mode': self.process_cool_command() elif parsed_json['service'] == 'Fan Mode': self.process_fan_command() elif parsed_json['service'] == 'Fan Hi': self.process_fan_hi_command() elif parsed_json['service'] == 'Fan Med': self.process_fan_med_command() elif parsed_json['service'] == 'Fan Lo': self.process_fan_lo_command() elif parsed_json['service'] == 'Damper Percent': self.requested_damper_percent = parsed_json['value'] self.print_status("Damper Command Received on ") print("Requested Damper Percent is", self.requested_damper_percent, "Current Damper Percent is", self.reported_damper_percent) elif parsed_json['service'] == 'Update Status': # If HomeManager wants a status update self.print_status("Status Update Requested on ") self.update_status() elif parsed_json['service'] == 'Heartbeat Ack': # If HomeManager sends a heartbeat ack self.heartbeat_ack() else: print("Received unknown message", str(parsed_json)) def update_status(self): # Send aircon status to Home Manager status = json.dumps({'service': 'Status Update', 'Remote Operation': self.remote_operation_on, 'Heat': self.heat_mode, 'Cool': self.cool_mode, 'Fan': self.fan_mode, 'Fan Hi': self.fan_hi, 'Fan Med': self.fan_med, 'Fan Lo': self.fan_lo, 'Heating': self.heating, 'Compressor': self.compressor, 'Malfunction': self.malfunction, 'Damper': self.reported_damper_percent, 'Filter': self.filter}) self.client.publish('AirconStatus', status) ### Methods for mqtt messages received from Home Manager ### def process_thermo_off_command(self): self.print_status("Thermo Off Command received on ") self.packet_1_dictionary["2Mode1"] = self.mode['Fan Off'] # Set Fan to Off Mode self.packet_3_dictionary["2Mode3"] = self.mode['Fan Off'] # Set Fan to Off Mode self.packet_1_dictionary["5Fan1"] = self.fan_speed['Hi Off'] # Set Fan to High self.packet_3_dictionary["5Fan3"] = self.fan_speed['Hi Off'] # Set Fan to High self.cool_mode = False self.fan_mode = False self.heat_mode = False self.fan_med = False self.fan_hi = False self.fan_lo = False self.update_status() time.sleep(3) # Wait for packets to be sent before disconnecting self.enable_serial_comms_loop = False # Sets the flag to exit serial comms loop and prepare for disconnect # The disconnect is done in the main loop so it happens between packet 3 and packet 1 def process_thermo_heat_command(self): self.print_status("Thermo Heat Command received on ") if self.remote_operation_on == False: # Turn On self.remote_operation_on = True self.enable_serial_comms_loop = True GPIO.output(self.control_enable, True) # Take Control of Remote self.damper_control_state = True GPIO.output(self.damper_control, True) # Take Control of Damper time.sleep (1.0) self.packet_1_dictionary["2Mode1"] = self.mode['Fan On'] # Set to Fan Mode self.packet_1_dictionary["4SetTemp1"] = self.set_temp['30 degrees'] # Set 30 degrees for Heating self.packet_3_dictionary["2Mode3"] = self.mode['Fan On'] # Set to Fan Mode self.packet_3_dictionary["4SetTemp3"] = self.set_temp['30 degrees'] # Set 30 degrees for Heating self.packet_1_dictionary["5Fan1"] = self.fan_speed['Lo On'] # Fan Lo self.packet_3_dictionary["5Fan3"] = self.fan_speed['Lo On'] # Fan Lo self.cool_mode = False self.fan_mode = True self.heat_mode = False self.fan_med = False self.fan_hi = False self.fan_lo = True self.update_status() def process_thermo_cool_command(self): self.print_status("Thermo Cool Command received on ") if self.remote_operation_on == False: # Turn On self.remote_operation_on = True self.enable_serial_comms_loop = True GPIO.output(self.control_enable, True) # Take Control of Remote self.damper_control_state = True GPIO.output(self.damper_control, True) # Take Control of Damper time.sleep (1.0) self.packet_1_dictionary["2Mode1"] = self.mode['Fan On'] # Set to Fan Mode self.packet_1_dictionary["4SetTemp1"] = self.set_temp['18 degrees'] # Set 18 Degrees for Cooling self.packet_3_dictionary["2Mode3"] = self.mode['Fan On'] # Set to Fan Mode self.packet_3_dictionary["4SetTemp3"] = self.set_temp['18 degrees'] # Set 18 Degrees for Cooling self.packet_1_dictionary["5Fan1"] = self.fan_speed['Lo On'] # Fan Lo self.packet_3_dictionary["5Fan3"] = self.fan_speed['Lo On'] # Fan Lo self.cool_mode = False self.fan_mode = True self.heat_mode = False self.fan_med = False self.fan_hi = False self.fan_lo = True self.update_status() def process_ventilate_mode(self): self.print_status("Ventilate Command received on ") if self.remote_operation_on == False: # Turn On self.remote_operation_on = True self.enable_serial_comms_loop = True GPIO.output(self.control_enable, True) # Take Control of Remote self.damper_control_state = True GPIO.output(self.damper_control, True) # Take Control of Damper time.sleep (1.0) self.packet_1_dictionary["2Mode1"] = self.mode['Fan On'] # Set to Fan Mode self.packet_1_dictionary["4SetTemp1"] = self.set_temp['21 degrees'] # Set 21 Degrees self.packet_3_dictionary["2Mode3"] = self.mode['Fan On'] # Set to Fan Mode self.packet_3_dictionary["4SetTemp3"] = self.set_temp['21 degrees'] # Set 21 Degrees self.packet_1_dictionary["5Fan1"] = self.fan_speed['Hi On'] # Fan Hi self.packet_3_dictionary["5Fan3"] = self.fan_speed['Hi On'] # Fan Hi self.cool_mode = False self.fan_mode = True self.heat_mode = False self.fan_med = False self.fan_hi = True self.fan_lo = False self.update_status() def process_thermo_auto_command(self): # Holding place if Auto method is to be added in the future pass def process_heat_command(self): self.print_status("Heat Mode Command received on ") self.packet_1_dictionary["2Mode1"] = self.mode['Heat On'] # Set to Heat Mode self.packet_1_dictionary["4SetTemp1"] = self.set_temp['30 degrees'] # Set 30 degrees for Heating self.packet_3_dictionary["2Mode3"] = self.mode['Heat On'] # Set to Heat Mode self.packet_3_dictionary["4SetTemp3"] = self.set_temp['30 degrees'] # Set 30 degrees for Heating self.packet_1_dictionary["5Fan1"] = self.fan_speed['Hi On'] # Fan Hi self.packet_3_dictionary["5Fan3"] = self.fan_speed['Hi On'] # Fan Hi self.cool_mode = False self.fan_mode = False self.heat_mode = True self.fan_med = False self.fan_hi = True self.fan_lo = False self.update_status() def process_cool_command(self): self.print_status("Cool Mode Command received on ") self.packet_1_dictionary["2Mode1"] = self.mode['Cool On'] # Set to Cool Mode self.packet_1_dictionary["4SetTemp1"] = self.set_temp['18 degrees'] # Set 18 Degrees for Cooling self.packet_3_dictionary["2Mode3"] = self.mode['Cool On'] # Set to Cool Mode self.packet_3_dictionary["4SetTemp3"] = self.set_temp['18 degrees'] # Set 18 Degrees for Cooling self.packet_1_dictionary["5Fan1"] = self.fan_speed['Hi On'] # Fan Hi self.packet_3_dictionary["5Fan3"] = self.fan_speed['Hi On'] # Fan Hi self.cool_mode = True self.fan_mode = False self.heat_mode = False self.fan_med = False self.fan_hi = True self.fan_lo = False self.update_status() def process_fan_command(self): self.print_status("Fan Mode Command received on ") self.packet_1_dictionary["2Mode1"] = self.mode['Fan On'] # Set to Fan Mode self.packet_3_dictionary["2Mode3"] = self.mode['Fan On'] # Set to Fan Mode self.packet_1_dictionary["5Fan1"] = self.fan_speed['Lo On'] # Fan Lo self.packet_3_dictionary["5Fan3"] = self.fan_speed['Lo On'] # Fan Lo self.cool_mode = False self.fan_mode = True self.heat_mode = False self.fan_med = False self.fan_hi = False self.fan_lo = True self.update_status() def process_fan_hi_command(self): self.print_status("Fan Hi Command received on ") self.packet_1_dictionary["5Fan1"] = self.fan_speed['Hi On'] # Fan Hi self.packet_3_dictionary["5Fan3"] = self.fan_speed['Hi On'] # Fan Hi self.fan_med = False self.fan_hi = True self.fan_lo = False self.update_status() def process_fan_med_command(self): self.print_status("Fan Med Command received on ") self.packet_1_dictionary["5Fan1"] = self.fan_speed['Med On'] # Fan Med self.packet_3_dictionary["5Fan3"] = self.fan_speed['Med On'] # Fan Med self.fan_med = True self.fan_hi = False self.fan_lo = False self.update_status() def process_fan_lo_command(self): self.print_status("Fan Lo Command received on ") self.packet_1_dictionary["5Fan1"] = self.fan_speed['Lo On'] # Fan Lo self.packet_3_dictionary["5Fan3"] = self.fan_speed['Lo On'] # Fan Lo self.fan_med = False self.fan_hi = False self.fan_lo = True self.update_status() def heartbeat_ack(self): #self.print_status('Heartbeat received from Home Manager on ') self.heartbeat_count = 0 self.no_heartbeat_ack = False ### End of Methods for mqtt messages received from Home Manager ### ### Methods called in main loop ### def process_home_manager_heartbeat(self): # Send heartbeat signal to Home Manager every 120 loops. Turn aircon off and reboot if there's no response within 80 more loops self.heartbeat_count += 1 if self.heartbeat_count == 120: #self.print_status('Sending Heartbeat to Home Manager on ') self.send_heartbeat_to_home_manager() if self.heartbeat_count > 200: self.print_status('Home Manager Heartbeat Lost. Setting Aircon to Thermo Off Mode on ') self.client.publish('AirconStatus', '{"service": "Restart"}') self.no_heartbeat_ack = True self.process_thermo_off_command() time.sleep(10) os.system('sudo reboot') def send_heartbeat_to_home_manager(self): self.client.publish('AirconStatus', '{"service": "Heartbeat"}') def build_packets(self, packet_1, packet_3): # Build packets 1 and 3 for sending to the aircon packets = [packet_1, packet_3] for x in range(2): sorted_packet = ([value for (key, value) in sorted(packets[x].items())]) # Sort the bytes contained in each packet dictionary into the correct order by using the first digit in the byte key packet_no_checksum = ''.join(sorted_packet) # Join the packet dictionary bytes into one string checksum = self.calculate_checksum(packet_no_checksum) # Calculate the checksum packet_with_checksum = packet_no_checksum + checksum # Add the checksum to the end of the packet packet_send = bytes.fromhex(''.join(packet_with_checksum)) # Convert the joined packet to binary if x == 0: # Packet 1 self.packet_1_with_checksum = packet_with_checksum self.packet_1_send = packet_send else: # Packet 3 self.packet_3_with_checksum = packet_with_checksum self.packet_3_send = packet_send def send_serial_aircon_data(self, packet): # Send packet to aircon comms port self.aircon_comms.write(packet) def receive_serial_aircon_data(self): # Receive Packet 2 from aircon comms port # Look for Packet 2 Header (x808c) header_loop_count = 0 found_packet_2_header = False while header_loop_count < 16: # Test an entire packet for header test_for_header_1 = self.aircon_comms.read(1) # Read one byte to look for the first half of the header if test_for_header_1 == b'\x80': test_for_header_2 = self.aircon_comms.read(1) # Read one byte to look for the second half of the header, after sucessfully finding the first half of the header if test_for_header_2 == b'\x8c': found_packet_2_header = True # Flag that the correct Packet 2 header has been found exit_loop_count = header_loop_count # Record the loop count in which the correct header was found (for debugging purposes) header_loop_count = 16 # Exit the loop if the complete correct header has been found else: header_loop_count += 1 # Look for another instance of the first half of the header if the correct second half wasn't found immediately after the first half else: header_loop_count += 1 # Keep looking for the first half of the header if found_packet_2_header == True: # Read the remaining bytes in the packet after the correct Packet 2 Header is found self.raw_response_1 = self.aircon_comms.read(6) # Capture the next 6 bytes self.raw_response_2 = self.aircon_comms.read(8) # capture the next 8 bytes self.raw_response = b"".join([test_for_header_1, test_for_header_2, self.raw_response_1, self.raw_response_2]) # Construct the entire Packet 2 in binary form self.packet_2 = str(binascii.hexlify(self.raw_response), "utf-8") # Convert Packet to to a string self.decode_packet(self.packet_2) # Extract each component of Packet 2 and place in a dictionary that decodes the aircon function of each packet byte else: # Flag that no correct Packet 2 header has been found print("No valid Packet 2 Header received") self.packet_2_error = True self.malfunction = True def decode_packet(self, packet_2): # Extract each component of Packet 2 and place in a dictionary that decodes the aircon function of each packet byte. Validate checksum and comparison with Packet 1 data self.packet_2_error = False # Flag that Packet 2 is OK self.previous_malfunction = self.malfunction # Capture the previous malfunction state self.malfunction = False # Clear the malfunction flag self.packet_2_dictionary["1Header2"] = packet_2[0:4] self.packet_2_dictionary["2Mode2"] = packet_2[4:6] self.packet_2_dictionary["3Filler2a"] = packet_2[6:8] self.packet_2_dictionary["4SetTemp2"] = packet_2[8:10] self.packet_2_dictionary["5Fan2"] = packet_2[10:12] self.previous_actual_temperature = self.packet_2_dictionary["6ActualTemp2"] self.packet_2_dictionary["6ActualTemp2"] = packet_2[12:14] self.packet_2_dictionary["7Filler2b"] = packet_2[14:16] self.packet_2_dictionary["8Unknown2"] = packet_2[16:18] self.packet_2_dictionary["9Alerts2"] = packet_2[18:20] self.packet_2_dictionary["10Filler2c"] = packet_2[20:24] self.packet_2_dictionary["11Compressor2"] = packet_2[24:26] self.packet_2_dictionary["12Filler2c"] = packet_2[26:30] self.packet_2_dictionary["13Checksum2"] = packet_2[30:32] packet_no_checksum = packet_2[0:30] # Capure the packet without the checksum so that the checksum can be calculated checksum = self.calculate_checksum(packet_no_checksum) if self.packet_2_dictionary["11Compressor2"] == self.compressor_state['On']: if self.compressor == False: self.compressor = True #self.print_status("Aircon Compressor Started on ") self.update_status() if self.packet_2_dictionary["11Compressor2"] == self.compressor_state['Off']: if self.compressor == True: self.compressor = False #self.print_status("Aircon Compressor Stopped on ") self.update_status() if self.packet_2_dictionary["9Alerts2"] == self.alerts['Warmup'][0] or self.packet_2_dictionary["9Alerts2"] == self.alerts['Warmup'][1]: if self.heating == False: self.heating = True #self.print_status("Aircon Warmup Started on ") self.update_status() if self.packet_2_dictionary["9Alerts2"] == self.alerts['Not in Warmup'][0] or self.packet_2_dictionary["9Alerts2"] == self.alerts['Not in Warmup'][1]: if self.heating == True: self.heating = False #self.print_status("Aircon Warmup Stopped on ") self.update_status() if self.packet_2_dictionary["9Alerts2"] == self.alerts['Clean Filter'][0] or self.packet_2_dictionary["9Alerts2"] == self.alerts['Clean Filter'][1]: if self.filter == False: self.filter = True self.print_status("Filter Clean Alert Active on ") self.update_status() if self.packet_2_dictionary["9Alerts2"] == self.alerts['Filter OK'][0] or self.packet_2_dictionary["9Alerts2"] == self.alerts['Filter OK'][1]: if self.filter == True: self.filter = False self.print_status("Filter Clean Alert Reset on ") self.update_status() if self.packet_2_dictionary["8Unknown2"] != "e0": self.print_status("Unknown Byte 8 of Packet 2 ") print("Expected e0 but received ", self.packet_2_dictionary["8Unknown2"]) if checksum != self.packet_2_dictionary["13Checksum2"]: print ("Packet 2 Checksum Error. Expected ", checksum, " Received ", self.packet_2_dictionary["13Checksum2"]) self.packet_2_error = True self.malfunction = True if packet_2[4:12] != self.packet_1_with_checksum[4:12]: print("Mismatch between Packets 1 and 2. Expected ", self.packet_1_with_checksum[4:12], " but received ", packet_2[4:12]) if self.malfunction != self.previous_malfunction: self.update_status() def calculate_checksum(self, packet_no_checksum): # Calculate and return Packet 2's checksum b = [packet_no_checksum[i:i+2] for i in range(0, len(packet_no_checksum), 2)] # Build a list of each non-checksum Packet 2 byte in hex string form c = [int(i, 16) for i in b] # Convert the hex string form list into a list of integers d = sum(c) % 256 # Sum the integer list in modulo 256 return hex(d)[2:].zfill(2) # Return the checksum in 2 digit hex form def calculate_next_sequence_number(self, current_number): # Calculate to next Packet 3 sequence number current_first_byte = int(current_number[0:2], 16) # Convert the first byte in hex string form to an integer current_third_nibble = int(current_number[2:3], 16) # Convert the third nibble in hex string form to an integer if current_third_nibble == 11: # The third nibble cycles between Hex 8 and Hex b next_third_nibble = 8 # Reset to 8 if it's completed its full cycle if current_first_byte == 50: # The first byte cycles between Hex 00 and Hex 32, incrementing by one when the third nibble completes its full cycle next_first_byte = 0 # Reset to 0 if it's completed its full cycle else: next_first_byte = current_first_byte + 1 else: next_first_byte = current_first_byte next_third_nibble = current_third_nibble + 1 next_string = hex(next_first_byte)[2:].zfill(2) + hex(next_third_nibble)[2:] + "f" # Combine the first byte and third nibble in string form, adding hex f at the end to make it two complete bytes return next_string def detect_damper_position(self, calibrate): resp2 = self.spi.xfer2([0x11, 0x00, 0x00]) resp2a = int(resp2.pop(1)/2) # Remove LSB since we only need 10% resolution resp2b = int(resp2.pop(1)) # Capture but ignore these three bits since we only need 10% resolution self.damper_position = int(resp2a) * 2 * 8 # Move bits to their correct position and use Y-Axis number as the position if calibrate == False: self.current_damper_percent = int((self.damper_night_position - self.damper_position)/((self.damper_night_position - self.damper_day_position)/100))# Sets Day Position at 100% and Night Position at 0% - Assuming that the Night Position has a higher reading from the damper position sensor that the Day Position # Convert the reported damper percentage to the nearest 10% of the current percentage if self.current_damper_percent >=95: self.reported_damper_percent = 100 elif self.current_damper_percent < 95 and self.current_damper_percent >= 85: self.reported_damper_percent = 90 elif self.current_damper_percent < 85 and self.current_damper_percent >= 75: self.reported_damper_percent = 80 elif self.current_damper_percent < 75 and self.current_damper_percent >= 65: self.reported_damper_percent = 70 elif self.current_damper_percent < 65 and self.current_damper_percent >= 55: self.reported_damper_percent = 60 elif self.current_damper_percent < 55 and self.current_damper_percent >= 45: self.reported_damper_percent = 50 elif self.current_damper_percent < 45 and self.current_damper_percent >= 35: self.reported_damper_percent = 40 elif self.current_damper_percent < 35 and self.current_damper_percent >= 25: self.reported_damper_percent = 30 elif self.current_damper_percent < 25 and self.current_damper_percent >= 15: self.reported_damper_percent = 20 elif self.current_damper_percent < 15 and self.current_damper_percent >= 5: self.reported_damper_percent = 10 else: self.reported_damper_percent = 0 def adjust_damper_position(self): if self.requested_damper_percent != self.reported_damper_percent: self.adjusting_damper = True if self.requested_damper_percent > self.reported_damper_percent: self.damper_day_zone() # Set damper switch to day zone if the damper's to be moved towards the day zone else: self.requested_damper_percent < self.reported_damper_percent self.damper_night_zone() # Set damper switch to night zone if the damper's to be moved towards the night zone else: if self.adjusting_damper == True: # Flag that the damper is no longer being adjusted if it was previously being adjusted self.adjusting_damper = False self.update_status() if self.requested_damper_percent == 100: # Lock damper in Day Zone if the damper is to be wholly in Day Zone self.damper_day_zone() elif self.requested_damper_percent == 0: # Lock damper in Night Zone if the dampr is to be wholly in Night Zone self.damper_night_zone() else: self.hold_damper() # Hold damper in position if the damper is to be between zones def damper_day_zone(self): # Move damper towards the Day Zone self.damper_stop_state = False GPIO.output(self.damper_stop, False) self.damper_zone_state = False GPIO.output(self.damper_zone, False) def damper_night_zone(self): # Move damper towards the Night Zone self.damper_stop_state = False GPIO.output(self.damper_stop, False) self.damper_zone_state = True GPIO.output(self.damper_zone, True) def hold_damper(self): # Stop damper motion self.damper_stop_state = True GPIO.output(self.damper_stop, True) def calibrate_damper(self, damper_movement_time): print('Calibrating Damper') print('Taking Control of Damper') self.damper_control_state = True GPIO.output(self.damper_control, True) # Take Control of Damper time.sleep(1) print('Moving Damper to Night Zone') self.damper_night_zone() time.sleep(damper_movement_time) print('Moved Damper to Night Zone') self.detect_damper_position(calibrate = True) print('Night Zone Damper Position', self.damper_position) print('Changing Night Zone Damper Position from', self.damper_night_position, 'to', self.damper_position) self.damper_night_position = self.damper_position print('Moving Damper to Day Zone') self.damper_day_zone() time.sleep(damper_movement_time) print('Moved Damper to Day Zone') self.detect_damper_position(calibrate = True) print('Day Zone Damper Position', self.damper_position) print('Changing Day Zone Damper Position from', self.damper_day_position, 'to', self.damper_position) self.damper_day_position = self.damper_position print('Relinquishing Control of Damper') self.damper_control_state = False # Flag that the damper is no longer being controlled GPIO.output(self.damper_control, False) # Relinquish Control of Damper time.sleep(1) def shutdown_cleanup(self): self.print_status("Northcliff Aircon Controller shutting down on ") self.process_thermo_off_command() #Turn Aircon off GPIO.cleanup() self.client.loop_stop() #Stop monitoring mqtt thread self.spi.close() sys.exit(0) ### End of methods called in the main loop ### ### Debugging methods ### def capture_and_print_serial(self): # Only used for serial comms debugging self.controller_msg = self.aircon_comms.read(8) print(str(self.controller_msg)) def capture_and_file_serial_data(self, capture_file_name): # Only used for serial comms debugging a = 0 with open(capture_file_name, "wb+") as f: while a <= 1000: self.controller_msg = self.aircon_comms.read(8) f.write(self.controller_msg) print(str(a) + str(self.controller_msg)) a = a + 1 ### End end of debugging methods ### ### Main Loop ### def run(self): try: self.startup() while True: self.process_home_manager_heartbeat() # Send heartbeat to Home Manager every 120 loops. if self.enable_serial_comms_loop == True: self.aircon_comms.flushInput() # remove sent packets from aircon comms buffer self.build_packets(self.packet_1_dictionary, self.packet_3_dictionary) # Build Packets 1 and 3 self.send_serial_aircon_data(self.packet_1_send) # Send Packet 1 to aircon comms port time.sleep(0.160) # Wait until Packet 1 has been sent before clearing aircon comms buffer self.aircon_comms.flushInput() # remove sent packets from aircon comms buffer time.sleep(0.15) # Gap between Packets 1 and 2 self.receive_serial_aircon_data() # Receive Packet 2 and decode it if self.packet_2_error == False: #Only send packet 3 if packet 2 was OK time.sleep(0.16) # Gap between Packets 2 and 3 self.send_serial_aircon_data(self.packet_3_send) # Send Packet 3 self.packet_3_dictionary["1Header3"] = self.calculate_next_sequence_number(self.packet_3_dictionary["1Header3"]) # Set up the sequence number for the next transmission of Packet 3 else: print("Packet 3 not sent because of Packet 2 error") time.sleep(0.45) # Wait until Packet 3 has been sent, plus 0.05 sec gap (or equivalent time if it isn't sent) self.detect_damper_position(calibrate = False) # Determine the damper's current position self.adjust_damper_position() # Adjusts damper position if the current damper position is different from the requested damper position else: if self.remote_operation_on == True: # This ensures that the disconnect is only done once self.remote_operation_on = False # Flag that the aircon is not being controlled GPIO.output(self.control_enable, False) # Relinquish Control of the aircon self.damper_control_state = False # Flag that the damper is no longer being controlled GPIO.output(self.damper_control, False) # Relinquish Control of Damper self.damper_day_zone() # Turn Damper Zone and Stop relays Off self.heartbeat_count = 0 # Reset the heartbeat count to start from zero when Home Manager comms is restored if self.no_heartbeat_ack == True: self.malfunction = True else: self.malfunction = False #Clear Malfunction Flag (Packets might be corrupted on disconnect) unless there's a loss of heartbeat self.update_status() else: time.sleep (1) except KeyboardInterrupt: self.shutdown_cleanup() ### End of Main Loop ### if __name__ =='__main__': controller = NorthcliffAirconController(calibrate_damper_on_startup = False) controller.run()
58.285714
322
0.644634
[ "MIT" ]
roscoe81/Aircon-Controller
Northcliff_Aircon_Controller.py
38,352
Python
from django.utils.version import get_version VERSION = (3, 1, 6, "final", 0) __version__ = get_version(VERSION) def setup(set_prefix=True): """ Configure the settings (this happens as a side effect of accessing the first setting), configure logging and populate the app registry. Set the thread-local urlresolvers script prefix if `set_prefix` is True. """ from django.apps import apps from django.conf import settings from django.urls import set_script_prefix from django.utils.log import configure_logging configure_logging(settings.LOGGING_CONFIG, settings.LOGGING) if set_prefix: set_script_prefix( "/" if settings.FORCE_SCRIPT_NAME is None else settings.FORCE_SCRIPT_NAME ) apps.populate(settings.INSTALLED_APPS)
31.96
85
0.732165
[ "MIT" ]
nverbois/TFE21-232
[email protected]/Lib/site-packages/django/__init__.py
799
Python
# coding=utf-8 from __future__ import unicode_literals from .. import Provider as AutomotiveProvider class Provider(AutomotiveProvider): # from # https://en.wikipedia.org/wiki/Vehicle_registration_plates_of_the_United_Kingdom license_formats = ( '??## ???', '??##???' )
21.785714
85
0.67541
[ "BSD-3-Clause" ]
AMuratTuran/mkn
oscar/lib/python2.7/site-packages/faker/providers/automotive/en_GB/__init__.py
305
Python
import mysql_conn class BaseField: def __init__(self,name,column_type,primary_key,default): self.name=name self.column_type=column_type self.primary_key=primary_key self.default=default class StringField(BaseField): def __init__(self,name,column_type='varchar(200)',primary_key=False,default=None): super().__init__(name,column_type,primary_key,default) class IntegerField(BaseField): def __init__(self,name,column_type='int',primary_key=False,default=0): super().__init__(name, column_type, primary_key, default) class ModelsMeta(type): def __new__(cls,name,bases,attr): if name=='Models': return type.__new__(cls,name,bases,attr) table_name=attr.get('table_name',None) if not table_name: table_name=name primary_key=None mappings=dict() for k,v in attr.items(): if isinstance(v,BaseField): mappings[k]=v if v.primary_key: if primary_key: raise TypeError('主键重复') primary_key=k for k in mappings.keys(): attr.pop(k) if not primary_key: raise TypeError('没有主键') attr['mappings']=mappings attr['primary_key']=primary_key attr['table_name']=table_name return type.__new__(cls,name,bases,attr) class Models(dict,metaclass=ModelsMeta): def __init__(self,**kwargs): super().__init__(**kwargs) def __setattr__(self, key, value): self[key]=value def __getattr__(self, item): try: return self[item] except BaseException: raise TypeError('没有这个属性') @classmethod def select_one(cls,**kwargs): key=list(kwargs.keys())[0] value=kwargs[key] sql='select * from %s where %s=?'%(cls.table_name,key) sql=sql.replace('?','%s') ms=mysql_conn.Mysql() re=ms.select(sql,value) if re: return cls(**re[0]) else: return @classmethod def select_many(cls,**kwargs): ms=mysql_conn.Mysql() if kwargs: key = list(kwargs.keys())[0] value = kwargs[key] sql = 'select * from %s where %s=?' % (cls.table_name, key) sql = sql.replace('?', '%s') re = ms.select(sql, value) else: sql='select * from %s' %(cls.table_name) re = ms.select(sql, None) if re: return list(cls(**r) for r in re) else: return def update(self): ms=mysql_conn.Mysql() field_list=[] field_list_value=[] primary_key_value=None for k,v in self.mappings.items(): if v.primary_key: primary_key_value=getattr(self,v.name,None) else: field_list.append(v.name+'=?') field_list_value.append(getattr(self,v.name,v.default)) sql='update %s set %s where %s = %s'%(self.table_name,','.join(field_list),self.primary_key,primary_key_value) sql=sql.replace('?','%s') ms.execute(sql,field_list_value) def save(self): ms = mysql_conn.Mysql() field_list = [] field_list_value = [] char_list=[] for k, v in self.mappings.items(): if not v.primary_key: field_list.append(v.name) char_list.append('?') field_list_value.append(getattr(self,v.name,v.default)) sql='insert into %s(%s) value(%s)'%(self.table_name,','.join(field_list),','.join(char_list)) sql=sql.replace('?','%s') ms.execute(sql,field_list_value) class User(Models): table_name='user' id=IntegerField('id',primary_key=True) name=StringField('name') password=StringField('password') if __name__ == '__main__': # user=User.select_one(id=1) # user.name='这测试1111' # user.update() # print(user) user=User(name='miaoqinian',password='xxx') user.save()
28.816901
118
0.571114
[ "MIT" ]
miaoqinian/myorm
orm1.py
4,126
Python
import copy import os import logging import pickle from typing import Dict, List, Optional, Union try: import sigopt as sgo Connection = sgo.Connection except ImportError: sgo = None Connection = None from ray.tune.suggest import Searcher logger = logging.getLogger(__name__) class SigOptSearch(Searcher): """A wrapper around SigOpt to provide trial suggestions. You must install SigOpt and have a SigOpt API key to use this module. Store the API token as an environment variable ``SIGOPT_KEY`` as follows: .. code-block:: bash pip install -U sigopt export SIGOPT_KEY= ... You will need to use the `SigOpt experiment and space specification <https://app.sigopt.com/docs/overview/create>`_. This module manages its own concurrency. Parameters: space (list of dict): SigOpt configuration. Parameters will be sampled from this configuration and will be used to override parameters generated in the variant generation process. Not used if existing experiment_id is given name (str): Name of experiment. Required by SigOpt. max_concurrent (int): Number of maximum concurrent trials supported based on the user's SigOpt plan. Defaults to 1. connection (Connection): An existing connection to SigOpt. experiment_id (str): Optional, if given will connect to an existing experiment. This allows for a more interactive experience with SigOpt, such as prior beliefs and constraints. observation_budget (int): Optional, can improve SigOpt performance. project (str): Optional, Project name to assign this experiment to. SigOpt can group experiments by project metric (str or list(str)): If str then the training result objective value attribute. If list(str) then a list of metrics that can be optimized together. SigOpt currently supports up to 2 metrics. mode (str or list(str)): If experiment_id is given then this field is ignored, If str then must be one of {min, max}. If list then must be comprised of {min, max, obs}. Determines whether objective is minimizing or maximizing the metric attribute. If metrics is a list then mode must be a list of the same length as metric. Example: .. code-block:: python space = [ { 'name': 'width', 'type': 'int', 'bounds': { 'min': 0, 'max': 20 }, }, { 'name': 'height', 'type': 'int', 'bounds': { 'min': -100, 'max': 100 }, }, ] algo = SigOptSearch( space, name="SigOpt Example Experiment", max_concurrent=1, metric="mean_loss", mode="min") Example: .. code-block:: python space = [ { 'name': 'width', 'type': 'int', 'bounds': { 'min': 0, 'max': 20 }, }, { 'name': 'height', 'type': 'int', 'bounds': { 'min': -100, 'max': 100 }, }, ] algo = SigOptSearch( space, name="SigOpt Multi Objective Example Experiment", max_concurrent=1, metric=["average", "std"], mode=["max", "min"]) """ OBJECTIVE_MAP = { "max": { "objective": "maximize", "strategy": "optimize" }, "min": { "objective": "minimize", "strategy": "optimize" }, "obs": { "strategy": "store" } } def __init__(self, space: List[Dict] = None, name: str = "Default Tune Experiment", max_concurrent: int = 1, connection: Optional[Connection] = None, experiment_id: Optional[str] = None, observation_budget: Optional[int] = None, project: Optional[str] = None, metric: Union[None, str, List[str]] = "episode_reward_mean", mode: Union[None, str, List[str]] = "max", points_to_evaluate: Optional[List[Dict]] = None, **kwargs): assert (experiment_id is None) ^ (space is None), "space xor experiment_id must be set" assert type(max_concurrent) is int and max_concurrent > 0 if connection is not None: self.conn = connection else: assert sgo is not None, """SigOpt must be installed! You can install SigOpt with the command: `pip install -U sigopt`.""" assert "SIGOPT_KEY" in os.environ, \ "SigOpt API key must be stored as " \ "environ variable at SIGOPT_KEY" # Create a connection with SigOpt API, requires API key self.conn = sgo.Connection(client_token=os.environ["SIGOPT_KEY"]) self._max_concurrent = max_concurrent if isinstance(metric, str): metric = [metric] mode = [mode] self._metric = metric self._live_trial_mapping = {} if experiment_id is None: sigopt_params = dict( name=name, parameters=space, parallel_bandwidth=self._max_concurrent) if observation_budget is not None: sigopt_params["observation_budget"] = observation_budget if project is not None: sigopt_params["project"] = project if len(metric) > 1 and observation_budget is None: raise ValueError( "observation_budget is required for an" "experiment with more than one optimized metric") sigopt_params["metrics"] = self.serialize_metric(metric, mode) self.experiment = self.conn.experiments().create(**sigopt_params) else: self.experiment = self.conn.experiments(experiment_id).fetch() self._points_to_evaluate = points_to_evaluate super(SigOptSearch, self).__init__(metric=metric, mode=mode, **kwargs) def suggest(self, trial_id: str): if self._max_concurrent: if len(self._live_trial_mapping) >= self._max_concurrent: return None suggestion_kwargs = {} if self._points_to_evaluate: config = self._points_to_evaluate.pop(0) suggestion_kwargs = {"assignments": config} # Get new suggestion from SigOpt suggestion = self.conn.experiments( self.experiment.id).suggestions().create(**suggestion_kwargs) self._live_trial_mapping[trial_id] = suggestion.id return copy.deepcopy(suggestion.assignments) def on_trial_complete(self, trial_id: str, result: Optional[Dict] = None, error: bool = False): """Notification for the completion of trial. If a trial fails, it will be reported as a failed Observation, telling the optimizer that the Suggestion led to a metric failure, which updates the feasible region and improves parameter recommendation. Creates SigOpt Observation object for trial. """ if result: payload = dict( suggestion=self._live_trial_mapping[trial_id], values=self.serialize_result(result)) self.conn.experiments( self.experiment.id).observations().create(**payload) # Update the experiment object self.experiment = self.conn.experiments(self.experiment.id).fetch() elif error: # Reports a failed Observation self.conn.experiments(self.experiment.id).observations().create( failed=True, suggestion=self._live_trial_mapping[trial_id]) del self._live_trial_mapping[trial_id] @staticmethod def serialize_metric(metrics: List[str], modes: List[str]): """ Converts metrics to https://app.sigopt.com/docs/objects/metric """ serialized_metric = [] for metric, mode in zip(metrics, modes): serialized_metric.append( dict(name=metric, **SigOptSearch.OBJECTIVE_MAP[mode].copy())) return serialized_metric def serialize_result(self, result: Dict): """ Converts experiments results to https://app.sigopt.com/docs/objects/metric_evaluation """ missing_scores = [ metric for metric in self._metric if metric not in result ] if missing_scores: raise ValueError( f"Some metrics specified during initialization are missing. " f"Missing metrics: {missing_scores}, provided result {result}") values = [] for metric in self._metric: value = dict(name=metric, value=result[metric]) values.append(value) return values def save(self, checkpoint_path: str): trials_object = (self.experiment.id, self._live_trial_mapping, self._points_to_evaluate) with open(checkpoint_path, "wb") as outputFile: pickle.dump(trials_object, outputFile) def restore(self, checkpoint_path: str): with open(checkpoint_path, "rb") as inputFile: trials_object = pickle.load(inputFile) experiment_id, self._live_trial_mapping, self._points_to_evaluate = \ trials_object self.experiment = self.conn.experiments(experiment_id).fetch()
36.090253
79
0.571371
[ "Apache-2.0" ]
Actexpler/ray
python/ray/tune/suggest/sigopt.py
9,997
Python
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/13a_learner.ipynb (unless otherwise specified). __all__ = ['CancelFitException', 'CancelEpochException', 'CancelTrainException', 'CancelValidException', 'CancelBatchException', 'replacing_yield', 'mk_metric', 'save_model', 'load_model', 'Learner', 'VerboseCallback', 'Metric', 'AvgMetric', 'AvgLoss', 'AvgSmoothLoss', 'Recorder', 'FetchPreds', 'load_learner'] # Cell from .data.all import * from .optimizer import * from .callback.core import * # Cell defaults.lr = 1e-3 # Cell def replacing_yield(o, attr, val): "Context manager to temporarily replace an attribute" old = getattr(o,attr) try: yield setattr(o,attr,val) finally: setattr(o,attr,old) # Cell def mk_metric(m): "Convert `m` to an `AvgMetric`, unless it's already a `Metric`" return m if isinstance(m, Metric) else AvgMetric(m) # Cell def save_model(file, model, opt, with_opt=True): "Save `model` to `file` along with `opt` (if available, and if `with_opt`)" if opt is None: with_opt=False state = get_model(model).state_dict() if with_opt: state = {'model': state, 'opt':opt.state_dict()} torch.save(state, file) # Cell def load_model(file, model, opt, with_opt=None, device=None, strict=True): "Load `model` from `file` along with `opt` (if available, and if `with_opt`)" if isinstance(device, int): device = torch.device('cuda', device) elif device is None: device = 'cpu' state = torch.load(file, map_location=device) hasopt = set(state)=={'model', 'opt'} model_state = state['model'] if hasopt else state get_model(model).load_state_dict(model_state, strict=strict) if hasopt and ifnone(with_opt,True): try: opt.load_state_dict(state['opt']) except: if with_opt: warn("Could not load the optimizer state.") elif with_opt: warn("Saved filed doesn't contain an optimizer state.") # Cell def _try_concat(o): try: return torch.cat(o) except: return sum([L(o_[i,:] for i in range_of(o_)) for o_ in o], L()) # Cell from contextlib import ExitStack # Cell _before_epoch = [event.begin_fit, event.begin_epoch] _after_epoch = [event.after_epoch, event.after_fit] # Cell class Learner(): def __init__(self, dls, model, loss_func=None, opt_func=Adam, lr=defaults.lr, splitter=trainable_params, cbs=None, metrics=None, path=None, model_dir='models', wd=None, wd_bn_bias=False, train_bn=True, moms=(0.95,0.85,0.95)): store_attr(self, "dls,model,opt_func,lr,splitter,model_dir,wd,wd_bn_bias,train_bn,metrics,moms") self.training,self.create_mbar,self.logger,self.opt,self.cbs = False,True,print,None,L() if loss_func is None: loss_func = getattr(dls.train_ds, 'loss_func', None) assert loss_func is not None, "Could not infer loss function from the data, please pass a loss function." self.loss_func = loss_func self.path = path if path is not None else getattr(dls, 'path', Path('.')) self.add_cbs([(cb() if isinstance(cb, type) else cb) for cb in L(defaults.callbacks)+L(cbs)]) self.model.to(self.dls.device) if hasattr(self.model, 'reset'): self.model.reset() self.epoch,self.n_epoch,self.loss = 0,1,tensor(0.) @property def metrics(self): return self._metrics @metrics.setter def metrics(self,v): self._metrics = L(v).map(mk_metric) def add_cbs(self, cbs): L(cbs).map(self.add_cb) def remove_cbs(self, cbs): L(cbs).map(self.remove_cb) def add_cb(self, cb): old = getattr(self, cb.name, None) assert not old or isinstance(old, type(cb)), f"self.{cb.name} already registered" cb.learn = self setattr(self, cb.name, cb) self.cbs.append(cb) return self def remove_cb(self, cb): cb.learn = None if hasattr(self, cb.name): delattr(self, cb.name) if cb in self.cbs: self.cbs.remove(cb) @contextmanager def added_cbs(self, cbs): self.add_cbs(cbs) yield self.remove_cbs(cbs) def ordered_cbs(self, cb_func): return [cb for cb in sort_by_run(self.cbs) if hasattr(cb, cb_func)] def __call__(self, event_name): L(event_name).map(self._call_one) def _call_one(self, event_name): assert hasattr(event, event_name) [cb(event_name) for cb in sort_by_run(self.cbs)] def _bn_bias_state(self, with_bias): return bn_bias_params(self.model, with_bias).map(self.opt.state) def create_opt(self): self.opt = self.opt_func(self.splitter(self.model), lr=self.lr) if not self.wd_bn_bias: for p in self._bn_bias_state(True ): p['do_wd'] = False if self.train_bn: for p in self._bn_bias_state(False): p['force_train'] = True def _split(self, b): i = getattr(self.dls, 'n_inp', 1 if len(b)==1 else len(b)-1) self.xb,self.yb = b[:i],b[i:] def all_batches(self): self.n_iter = len(self.dl) for o in enumerate(self.dl): self.one_batch(*o) def one_batch(self, i, b): self.iter = i try: self._split(b); self('begin_batch') self.pred = self.model(*self.xb); self('after_pred') if len(self.yb) == 0: return self.loss = self.loss_func(self.pred, *self.yb); self('after_loss') if not self.training: return self.loss.backward(); self('after_backward') self.opt.step(); self('after_step') self.opt.zero_grad() except CancelBatchException: self('after_cancel_batch') finally: self('after_batch') def _do_begin_fit(self, n_epoch): self.n_epoch,self.loss = n_epoch,tensor(0.); self('begin_fit') def _do_epoch_train(self): try: self.dl = self.dls.train; self('begin_train') self.all_batches() except CancelTrainException: self('after_cancel_train') finally: self('after_train') def _do_epoch_validate(self, ds_idx=1, dl=None): if dl is None: dl = self.dls[ds_idx] names = ['shuffle', 'drop_last'] try: dl,old,has = change_attrs(dl, names, [False,False]) self.dl = dl; self('begin_validate') with torch.no_grad(): self.all_batches() except CancelValidException: self('after_cancel_validate') finally: dl,*_ = change_attrs(dl, names, old, has); self('after_validate') def fit(self, n_epoch, lr=None, wd=None, cbs=None, reset_opt=False): with self.added_cbs(cbs): if reset_opt or not self.opt: self.create_opt() if wd is None: wd = self.wd if wd is not None: self.opt.set_hypers(wd=wd) self.opt.set_hypers(lr=self.lr if lr is None else lr) try: self._do_begin_fit(n_epoch) for epoch in range(n_epoch): try: self.epoch=epoch; self('begin_epoch') self._do_epoch_train() self._do_epoch_validate() except CancelEpochException: self('after_cancel_epoch') finally: self('after_epoch') except CancelFitException: self('after_cancel_fit') finally: self('after_fit') def validate(self, ds_idx=1, dl=None, cbs=None): if dl is None: dl = self.dls[ds_idx] with self.added_cbs(cbs), self.no_logging(), self.no_mbar(): self(_before_epoch) self._do_epoch_validate(ds_idx, dl) self(_after_epoch) return getattr(self, 'final_record', None) @delegates(GatherPredsCallback.__init__) def get_preds(self, ds_idx=1, dl=None, with_input=False, with_decoded=False, with_loss=False, act=None, inner=False, **kwargs): if dl is None: dl = self.dls[ds_idx].new(shuffled=False, drop_last=False) cb = GatherPredsCallback(with_input=with_input, with_loss=with_loss, **kwargs) #with self.no_logging(), self.added_cbs(cb), self.loss_not_reduced(), self.no_mbar(): ctx_mgrs = [self.no_logging(), self.added_cbs(cb), self.no_mbar()] if with_loss: ctx_mgrs.append(self.loss_not_reduced()) with ExitStack() as stack: for mgr in ctx_mgrs: stack.enter_context(mgr) self(event.begin_epoch if inner else _before_epoch) self._do_epoch_validate(dl=dl) self(event.after_epoch if inner else _after_epoch) if act is None: act = getattr(self.loss_func, 'activation', noop) res = cb.all_tensors() pred_i = 1 if with_input else 0 if res[pred_i] is not None: res[pred_i] = act(res[pred_i]) if with_decoded: res.insert(pred_i+2, getattr(self.loss_func, 'decodes', noop)(res[pred_i])) return tuple(res) def predict(self, item, rm_type_tfms=None, with_input=False): dl = self.dls.test_dl([item], rm_type_tfms=rm_type_tfms) inp,preds,_,dec_preds = self.get_preds(dl=dl, with_input=True, with_decoded=True) dec = self.dls.decode_batch((*tuplify(inp),*tuplify(dec_preds)))[0] i = getattr(self.dls, 'n_inp', -1) dec_inp,dec_targ = map(detuplify, [dec[:i],dec[i:]]) res = dec_targ,dec_preds[0],preds[0] if with_input: res = (dec_inp,) + res return res def show_results(self, ds_idx=1, dl=None, max_n=9, shuffle=True, **kwargs): if dl is None: dl = self.dls[ds_idx].new(shuffle=shuffle) b = dl.one_batch() _,_,preds = self.get_preds(dl=[b], with_decoded=True) self.dls.show_results(b, preds, max_n=max_n, **kwargs) def show_training_loop(self): indent = 0 for s in _loop: if s.startswith('Start'): print(f'{" "*indent}{s}'); indent += 2 elif s.startswith('End'): indent -= 2; print(f'{" "*indent}{s}') else: print(f'{" "*indent} - {s:15}:', self.ordered_cbs(s)) @contextmanager def no_logging(self): return replacing_yield(self, 'logger', noop) @contextmanager def no_mbar(self): return replacing_yield(self, 'create_mbar', False) @contextmanager def loss_not_reduced(self): if hasattr(self.loss_func, 'reduction'): return replacing_yield(self.loss_func, 'reduction', 'none') else: return replacing_yield(self, 'loss_func', partial(self.loss_func, reduction='none')) def save(self, file, with_opt=True): if rank_distrib(): return # don't save if slave proc file = join_path_file(file, self.path/self.model_dir, ext='.pth') save_model(file, self.model, getattr(self,'opt',None), with_opt) def load(self, file, with_opt=None, device=None, strict=True): if device is None: device = self.dls.device if self.opt is None: self.create_opt() distrib_barrier() file = join_path_file(file, self.path/self.model_dir, ext='.pth') load_model(file, self.model, self.opt, with_opt=with_opt, device=device, strict=strict) return self Learner.x,Learner.y = add_props(lambda i,x: detuplify((x.xb,x.yb)[i])) # Cell add_docs(Learner, "Group together a `model`, some `dls` and a `loss_func` to handle training", add_cbs="Add `cbs` to the list of `Callback` and register `self` as their learner", add_cb="Add `cb` to the list of `Callback` and register `self` as their learner", remove_cbs="Remove `cbs` from the list of `Callback` and deregister `self` as their learner", remove_cb="Add `cb` from the list of `Callback` and deregister `self` as their learner", added_cbs="Context manage that temporarily adds `cbs`", ordered_cbs="Return a list of `Callback` for one step `cb_func` in the training loop", create_opt="Create an optimizer with `lr`", one_batch="Train or evaluate `self.model` on batch `(xb,yb)`", all_batches="Train or evaluate `self.model` on all batches of `self.dl`", fit="Fit `self.model` for `n_epoch` using `cbs`. Optionally `reset_opt`.", validate="Validate on `dl` with potential new `cbs`.", get_preds="Get the predictions and targets on the `ds_idx`-th dbunchset or `dl`, optionally `with_input` and `with_loss`", predict="Return the prediction on `item`, fully decoded, loss function decoded and probabilities", show_results="Show some predictions on `ds_idx`-th dbunchset or `dl`", show_training_loop="Show each step in the training loop", no_logging="Context manager to temporarily remove `logger`", no_mbar="Context manager to temporarily prevent the master progress bar from being created", loss_not_reduced="A context manager to evaluate `loss_func` with reduction set to none.", save="Save model and optimizer state (if `with_opt`) to `self.path/self.model_dir/file`", load="Load model and optimizer state (if `with_opt`) from `self.path/self.model_dir/file` using `device`" ) # Cell class VerboseCallback(Callback): "Callback that prints the name of each event called" def __call__(self, event_name): print(event_name) super().__call__(event_name) # Cell @docs class Metric(): "Blueprint for defining a metric" def reset(self): pass def accumulate(self, learn): pass @property def value(self): raise NotImplementedError @property def name(self): return class2attr(self, 'Metric') _docs = dict( reset="Reset inner state to prepare for new computation", name="Name of the `Metric`, camel-cased and with Metric removed", accumulate="Use `learn` to update the state with new results", value="The value of the metric") # Cell def _maybe_reduce(val): if num_distrib()>1: val = val.clone() torch.distributed.all_reduce(val, op=torch.distributed.ReduceOp.SUM) val /= num_distrib() return val # Cell class AvgMetric(Metric): "Average the values of `func` taking into account potential different batch sizes" def __init__(self, func): self.func = func def reset(self): self.total,self.count = 0.,0 def accumulate(self, learn): bs = find_bs(learn.yb) self.total += to_detach(self.func(learn.pred, *learn.yb))*bs self.count += bs @property def value(self): return self.total/self.count if self.count != 0 else None @property def name(self): return self.func.func.__name__ if hasattr(self.func, 'func') else self.func.__name__ # Cell class AvgLoss(Metric): "Average the losses taking into account potential different batch sizes" def reset(self): self.total,self.count = 0.,0 def accumulate(self, learn): bs = find_bs(learn.yb) self.total += to_detach(learn.loss.mean())*bs self.count += bs @property def value(self): return self.total/self.count if self.count != 0 else None @property def name(self): return "loss" # Cell class AvgSmoothLoss(Metric): "Smooth average of the losses (exponentially weighted with `beta`)" def __init__(self, beta=0.98): self.beta = beta def reset(self): self.count,self.val = 0,tensor(0.) def accumulate(self, learn): self.count += 1 self.val = torch.lerp(to_detach(learn.loss.mean(), gather=False), self.val, self.beta) @property def value(self): return self.val/(1-self.beta**self.count) # Cell from fastprogress.fastprogress import format_time def _maybe_item(t): t = t.value return t.item() if isinstance(t, Tensor) and t.numel()==1 else t # Cell class Recorder(Callback): "Callback that registers statistics (lr, loss and metrics) during training" run_after = TrainEvalCallback def __init__(self, add_time=True, train_metrics=False, valid_metrics=True, beta=0.98): store_attr(self, 'add_time,train_metrics,valid_metrics') self.loss,self.smooth_loss = AvgLoss(),AvgSmoothLoss(beta=beta) def begin_fit(self): "Prepare state for training" self.lrs,self.iters,self.losses,self.values = [],[],[],[] names = self.metrics.attrgot('name') if self.train_metrics and self.valid_metrics: names = L('loss') + names names = names.map('train_{}') + names.map('valid_{}') elif self.valid_metrics: names = L('train_loss', 'valid_loss') + names else: names = L('train_loss') + names if self.add_time: names.append('time') self.metric_names = 'epoch'+names self.smooth_loss.reset() def after_batch(self): "Update all metrics and records lr and smooth loss in training" if len(self.yb) == 0: return mets = self._train_mets if self.training else self._valid_mets for met in mets: met.accumulate(self.learn) if not self.training: return self.lrs.append(self.opt.hypers[-1]['lr']) self.losses.append(self.smooth_loss.value) self.learn.smooth_loss = self.smooth_loss.value def begin_epoch(self): "Set timer if `self.add_time=True`" self.cancel_train,self.cancel_valid = False,False if self.add_time: self.start_epoch = time.time() self.log = L(getattr(self, 'epoch', 0)) def begin_train (self): self._train_mets[1:].map(Self.reset()) def begin_validate(self): self._valid_mets.map(Self.reset()) def after_train (self): self.log += self._train_mets.map(_maybe_item) def after_validate(self): self.log += self._valid_mets.map(_maybe_item) def after_cancel_train(self): self.cancel_train = True def after_cancel_validate(self): self.cancel_valid = True def after_epoch(self): "Store and log the loss/metric values" self.learn.final_record = self.log[1:].copy() self.values.append(self.learn.final_record) if self.add_time: self.log.append(format_time(time.time() - self.start_epoch)) self.logger(self.log) self.iters.append(self.smooth_loss.count) @property def _train_mets(self): if getattr(self, 'cancel_train', False): return L() return L(self.smooth_loss) + (self.metrics if self.train_metrics else L()) @property def _valid_mets(self): if getattr(self, 'cancel_valid', False): return L() return (L(self.loss) + self.metrics if self.valid_metrics else L()) def plot_loss(self, skip_start=5, with_valid=True): plt.plot(list(range(skip_start, len(self.losses))), self.losses[skip_start:], label='train') if with_valid: idx = (np.array(self.iters)<skip_start).sum() plt.plot(self.iters[idx:], L(self.values[idx:]).itemgot(1), label='valid') plt.legend() # Cell add_docs(Recorder, begin_train = "Reset loss and metrics state", after_train = "Log loss and metric values on the training set (if `self.training_metrics=True`)", begin_validate = "Reset loss and metrics state", after_validate = "Log loss and metric values on the validation set", after_cancel_train = "Ignore training metrics for this epoch", after_cancel_validate = "Ignore validation metrics for this epoch", plot_loss = "Plot the losses from `skip_start` and onward") defaults.callbacks = [TrainEvalCallback, Recorder] # Cell class FetchPreds(Callback): "A callback to fetch predictions during the training loop" def __init__(self, ds_idx=1, dl=None, with_input=False, with_decoded=False): store_attr(self, 'ds_idx,dl,with_input,with_decoded') def after_validate(self): learn,rec = self.learn,self.learn.recorder learn.remove_cbs([self,rec]) self.preds = learn.get_preds(ds_idx=self.ds_idx, dl=self.dl, with_input=self.with_input, with_decoded=self.with_decoded, inner=True) learn.add_cbs([self, rec]) # Cell @patch def freeze_to(self:Learner, n): if self.opt is None: self.create_opt() self.opt.freeze_to(n) self.opt.clear_state() @patch def freeze(self:Learner): self.freeze_to(-1) @patch def unfreeze(self:Learner): self.freeze_to(0) add_docs(Learner, freeze_to="Freeze parameter groups up to `n`", freeze="Freeze up to last parameter group", unfreeze="Unfreeze the entire model") # Cell @patch def export(self:Learner, fname='export.pkl'): "Export the content of `self` without the items and the optimizer state for inference" if rank_distrib(): return # don't export if slave proc old_dbunch = self.dls self.dls = self.dls.new_empty() state = self.opt.state_dict() self.opt = None with warnings.catch_warnings(): #To avoid the warning that come from PyTorch about model not being checked warnings.simplefilter("ignore") torch.save(self, self.path/fname) self.create_opt() self.opt.load_state_dict(state) self.dls = old_dbunch # Cell def load_learner(fname, cpu=True): "Load a `Learner` object in `fname`, optionally putting it on the `cpu`" res = torch.load(fname, map_location='cpu' if cpu else None) if hasattr(res, 'to_fp32'): res = res.to_fp32() if cpu: res.dls.cpu() return res # Cell @patch def tta(self:Learner, ds_idx=1, dl=None, n=4, item_tfms=None, batch_tfms=None, beta=0.25, use_max=False): "Return predictions on the `ds_idx` dataset or `dl` using Test Time Augmentation" if dl is None: dl = self.dls[ds_idx] if item_tfms is not None or batch_tfms is not None: dl = dl.new(after_item=item_tfms, after_batch=batch_tfms) with dl.dataset.set_split_idx(0), self.no_mbar(): if hasattr(self,'progress'): self.progress.mbar = master_bar(list(range(n))) aug_preds = [] for i in self.progress.mbar if hasattr(self,'progress') else range(n): self.epoch = i #To keep track of progress on mbar since the progress callback will use self.epoch aug_preds.append(self.get_preds(ds_idx, inner=True)[0][None]) aug_preds = torch.cat(aug_preds) aug_preds = aug_preds.max(0)[0] if use_max else aug_preds.mean(0) self.epoch = n with dl.dataset.set_split_idx(1): preds,targs = self.get_preds(ds_idx, inner=True) if use_max: return torch.stack([preds, aug_preds], 0).max(0)[0],targs preds = (aug_preds,preds) if beta is None else torch.lerp(aug_preds, preds, beta) return preds,targs
43.911197
126
0.644245
[ "Apache-2.0" ]
akashpalrecha/fastai2
fastai2/learner.py
22,746
Python
from django import template from ..rocketchat import get_rc_id, get_rc_url, get_rc_ws_url register = template.Library() @register.inclusion_tag("rocketchat/chat.html", takes_context=True) def chat(context): user = getattr(context.get("request"), "user") return { "rocketchat_url": get_rc_url(), "websocket_url": get_rc_ws_url(), "user": user, "user_id": user and user.is_authenticated and get_rc_id(user), } @register.inclusion_tag("rocketchat/livechat.html", takes_context=True) def livechat(context): return { "rocketchat_url": get_rc_url(), "user": getattr(context.get("request"), "user"), }
26.76
71
0.68012
[ "BSD-3-Clause" ]
leprikon-cz/leprikon
leprikon/templatetags/rocketchat.py
669
Python
class dotnetPointList_t(object): """ dotnetPointList_t(Size: int) """ def FromStruct(self, PointList): """ FromStruct(self: dotnetPointList_t,PointList: PointList) """ pass def ToStruct(self, PointList): """ ToStruct(self: dotnetPointList_t,PointList: PointList) """ pass @staticmethod def __new__(self, Size): """ __new__[dotnetPointList_t]() -> dotnetPointList_t __new__(cls: type,Size: int) """ pass aPointList = None ClientId = None IndexCurrentItem = None NumberItems = None NumberItemsInSet = None
22.642857
73
0.604101
[ "MIT" ]
YKato521/ironpython-stubs
release/stubs.min/Tekla/Structures/ModelInternal_parts/dotnetPointList_t.py
634
Python
from typing import List, Optional from google.cloud import ndb from pyre_extensions import none_throws from backend.common.models.event import Event from backend.common.models.event_team import EventTeam from backend.common.models.keys import EventKey from backend.common.models.team import Team from backend.common.queries.team_query import EventTeamsQuery def preseed_teams(start_team: int, end_team: Optional[int] = None) -> List[ndb.Key]: end_team = end_team or start_team stored = ndb.put_multi( [ Team( id=f"frc{i}", team_number=i, ) for i in range(start_team, end_team + 1) ] ) assert len(stored) == (end_team - start_team + 1) return stored def preseed_event_teams(team_keys: List[ndb.Key], event_key: EventKey) -> None: event_teams = [ EventTeam( id=f"{event_key}_{t.id()}", event=ndb.Key(Event, event_key), team=t, year=int(event_key[:4]), ) for t in team_keys ] ndb.put_multi(event_teams) def test_no_data() -> None: teams = EventTeamsQuery(event_key="2020ct").fetch() assert teams == [] def test_get_data() -> None: stored_teams = preseed_teams(1, 10) preseed_event_teams(stored_teams, "2020ct") teams = EventTeamsQuery(event_key="2020ct").fetch() assert len(teams) == len(stored_teams) def test_affected_queries() -> None: stored_teams1 = preseed_teams(1, 10) stored_teams2 = preseed_teams(100, 110) preseed_event_teams(stored_teams1, "2020aaa") preseed_event_teams(stored_teams2, "2020bbb") preseed_event_teams(stored_teams1 + stored_teams2, "2020ccc") for team_key in stored_teams1: assert { q.cache_key for q in EventTeamsQuery._eventteam_affected_queries( event_key="2020aaa", team_key=none_throws(team_key.string_id()), year=2020, ) } == {EventTeamsQuery(event_key="2020aaa").cache_key} assert { q.cache_key for q in EventTeamsQuery._team_affected_queries( team_key=none_throws(team_key.string_id()) ) } == { EventTeamsQuery(event_key="2020aaa").cache_key, EventTeamsQuery(event_key="2020ccc").cache_key, } for team_key in stored_teams2: assert { q.cache_key for q in EventTeamsQuery._eventteam_affected_queries( event_key="2020bbb", team_key=none_throws(team_key.string_id()), year=2020, ) } == {EventTeamsQuery(event_key="2020bbb").cache_key} assert { q.cache_key for q in EventTeamsQuery._team_affected_queries( team_key=none_throws(team_key.string_id()) ) } == { EventTeamsQuery(event_key="2020bbb").cache_key, EventTeamsQuery(event_key="2020ccc").cache_key, }
30.4
84
0.615461
[ "MIT" ]
guineawheek/ftc-data-take-2
src/backend/common/queries/tests/event_teams_query_test.py
3,040
Python
"""Test case that checks the working of the utils/command/gen_uml.py module.""" from utils.model.gen_uml import generate import importlib_metadata class PseudoFile: def __init__(self): self.data = "" def write(self, data): self.data += data def close(self): pass def test_loading(): dist = importlib_metadata.distribution("gaphor") model_file = dist.locate_file("tests/test-model.gaphor") outfile = PseudoFile() generate(model_file, outfile) assert outfile.data == GENERATED, f'"""{outfile.data}"""' GENERATED = """# This file is generated by build_uml.py. DO NOT EDIT! from gaphor.UML.properties import association, attribute, enumeration, derived, derivedunion, redefine # class 'ValSpec' has been stereotyped as 'SimpleAttribute' # class 'ShouldNotShowUp' has been stereotyped as 'SimpleAttribute' too class Element: pass class SubClass(Element): pass class C: pass class D(C): pass C.attr = attribute('attr', str) C.name1 = association('name1', SubClass, opposite='name2') SubClass.name2 = association('name2', C, opposite='name1') C.base = association('base', SubClass, opposite='abstract') D.subbase = association('subbase', SubClass, opposite='concrete') SubClass.concrete = association('concrete', D, opposite='subbase') D.name3 = association('name3', SubClass, opposite='name4') # 'SubClass.value' is a simple attribute SubClass.value = attribute('value', str) SubClass.abstract = derivedunion('abstract', C, 0, '*', SubClass.concrete) SubClass.name4 = redefine(SubClass, 'name4', D, name2) """
32.081633
102
0.721374
[ "Apache-2.0" ]
MarianelaSena/gaphor
tests/test_gen_uml.py
1,572
Python
import tensorflow as tf from current_net_conf import * class RnnDropoutPlaceholders: probability = tf.placeholder(tf.float32, []) @staticmethod def feed(prob=1.0): return {RnnDropoutPlaceholders.probability: prob} class MultiRnnWithDropout(tf.nn.rnn_cell.DropoutWrapper): def __init__(self, num_layers, state_size): internal_cells = [tf.nn.rnn_cell.GRUCell(state_size) for _ in range(num_layers)] internal_cell = tf.nn.rnn_cell.MultiRNNCell(internal_cells) super(MultiRnnWithDropout, self).__init__( cell=internal_cell, output_keep_prob=RnnDropoutPlaceholders.probability, state_keep_prob=RnnDropoutPlaceholders.probability ) def initial_state(self, first_layer_initial_state): initial_state = self.zero_state(BATCH_SIZE, tf.float32) initial_state = list(initial_state) initial_state[0] = first_layer_initial_state initial_state = tuple(initial_state) return initial_state @staticmethod def zero_initial_inputs(size): return tf.zeros([BATCH_SIZE, size], dtype=tf.float32) class EncoderDropoutPlaceholders: probability = tf.placeholder(tf.float32, []) @staticmethod def feed(prob=1.0): return {EncoderDropoutPlaceholders.probability: prob} def apply_dropout_to_encoder_rnn_cells(cells): return [ tf.nn.rnn_cell.DropoutWrapper( cell=cell, output_keep_prob=EncoderDropoutPlaceholders.probability, state_keep_prob=EncoderDropoutPlaceholders.probability ) for cell in cells ]
30.641509
88
0.708128
[ "MIT" ]
Saloed/PythonGenerator
model/rnn_with_dropout.py
1,624
Python
import pytest def test_1(): ... @pytest.mark.slow def test_2(): ... @pytest.mark.skip def test_3(): ...
7.625
17
0.54918
[ "MIT" ]
twotwo/python-pytest
tests/test_markers.py
122
Python
import _plotly_utils.basevalidators class SizeValidator(_plotly_utils.basevalidators.AnyValidator): def __init__( self, plotly_name="size", parent_name="histogram2dcontour.ybins", **kwargs ): super(SizeValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), **kwargs )
29.642857
82
0.653012
[ "MIT" ]
1abner1/plotly.py
packages/python/plotly/plotly/validators/histogram2dcontour/ybins/_size.py
415
Python
""" This file offers the methods to automatically retrieve the graph Acidocella sp. MX-AZ02. The graph is automatically retrieved from the STRING repository. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ from typing import Dict from ..automatic_graph_retrieval import AutomaticallyRetrievedGraph from ...ensmallen import Graph # pylint: disable=import-error def AcidocellaSpMxAz02( directed: bool = False, preprocess: bool = True, load_nodes: bool = True, verbose: int = 2, cache: bool = True, cache_path: str = "graphs/string", version: str = "links.v11.5", **additional_graph_kwargs: Dict ) -> Graph: """Return new instance of the Acidocella sp. MX-AZ02 graph. The graph is automatically retrieved from the STRING repository. Parameters ------------------- directed: bool = False Wether to load the graph as directed or undirected. By default false. preprocess: bool = True Whether to preprocess the graph to be loaded in optimal time and memory. load_nodes: bool = True, Whether to load the nodes vocabulary or treat the nodes simply as a numeric range. verbose: int = 2, Wether to show loading bars during the retrieval and building of the graph. cache: bool = True Whether to use cache, i.e. download files only once and preprocess them only once. cache_path: str = "graphs" Where to store the downloaded graphs. version: str = "links.v11.5" The version of the graph to retrieve. The available versions are: - homology.v11.5 - physical.links.v11.5 - links.v11.5 additional_graph_kwargs: Dict Additional graph kwargs. Returns ----------------------- Instace of Acidocella sp. MX-AZ02 graph. References --------------------- Please cite the following if you use the data: ```bib @article{szklarczyk2019string, title={STRING v11: protein--protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets}, author={Szklarczyk, Damian and Gable, Annika L and Lyon, David and Junge, Alexander and Wyder, Stefan and Huerta-Cepas, Jaime and Simonovic, Milan and Doncheva, Nadezhda T and Morris, John H and Bork, Peer and others}, journal={Nucleic acids research}, volume={47}, number={D1}, pages={D607--D613}, year={2019}, publisher={Oxford University Press} } ``` """ return AutomaticallyRetrievedGraph( graph_name="AcidocellaSpMxAz02", repository="string", version=version, directed=directed, preprocess=preprocess, load_nodes=load_nodes, verbose=verbose, cache=cache, cache_path=cache_path, additional_graph_kwargs=additional_graph_kwargs )()
33.142857
223
0.675862
[ "MIT" ]
AnacletoLAB/ensmallen
bindings/python/ensmallen/datasets/string/acidocellaspmxaz02.py
3,480
Python
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # Copyright © 2018 Michael J. Hayford """ Support creation of an iPython console, with rayoptics environment .. Created on Wed Nov 21 21:48:02 2018 .. codeauthor: Michael J. Hayford """ from qtconsole.rich_jupyter_widget import RichJupyterWidget from qtconsole.inprocess import QtInProcessKernelManager from IPython.lib import guisupport from rayoptics.gui.appmanager import ModelInfo def create_ipython_console(app, title, view_width, view_ht): """ create a iPython console with a rayoptics environment """ opt_model = app.app_manager.model if opt_model: ro_env = { 'app': app, 'opm': opt_model, 'sm': opt_model.seq_model, 'osp': opt_model.optical_spec, 'pm': opt_model.parax_model } else: ro_env = { 'app': app, 'opm': opt_model } ro_setup = 'from rayoptics.environment import *' # construct the top level widget ipy_console = ConsoleWidget() # load the environment ipy_console.execute_command(ro_setup) ipy_console.push_vars(ro_env) mi = ModelInfo(opt_model) sub_window = app.add_subwindow(ipy_console, mi) sub_window.setWindowTitle(title) orig_x, orig_y = app.initial_window_offset() sub_window.setGeometry(orig_x, orig_y, view_width, view_ht) sub_window.show() class ConsoleWidget(RichJupyterWidget): def __init__(self, customBanner=None, *args, **kwargs): super().__init__(*args, **kwargs) if customBanner is not None: self.banner = customBanner self.font_size = 6 self.kernel_manager = kernel_manager = QtInProcessKernelManager() kernel_manager.start_kernel(show_banner=False) kernel_manager.kernel.gui = 'qt' self.kernel_client = kernel_client = self.kernel_manager.client() kernel_client.start_channels() def stop(): kernel_client.stop_channels() kernel_manager.shutdown_kernel() guisupport.get_app_qt().exit() self.exit_requested.connect(stop) def push_vars(self, variableDict): """ Given a dictionary containing name / value pairs, push those variables to the Jupyter console widget """ self.kernel_manager.kernel.shell.push(variableDict) def clear(self): """ Clears the terminal """ self._control.clear() # self.kernel_manager def print_text(self, text): """ Prints some plain text to the console """ self._append_plain_text(text) def execute_command(self, command): """ Execute a command in the frame of the console widget """ self._execute(command, False)
28.158416
78
0.639592
[ "BSD-3-Clause" ]
NelisW/ray-optics
src/rayoptics/qtgui/ipyconsole.py
2,845
Python
"""Phonopy QHA module.""" # Copyright (C) 2012 Atsushi Togo # All rights reserved. # # This file is part of phonopy. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # * Neither the name of the phonopy project nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. import warnings import numpy as np from phonopy.units import Avogadro, EvTokJmol, EVAngstromToGPa from phonopy.qha.eos import get_eos, fit_to_eos class BulkModulus(object): """Bulk modulus class. This class is used to calculate bulk modulus only from temperature independent energy input. """ def __init__(self, volumes, energies, eos='vinet'): """Init method. volumes : array_like Unit cell volumes where energies are obtained. shape=(volumes, ), dtype='double'. energies : array_like Energies obtained at volumes. shape=(volumes, ), dtype='double'. eos : str Identifier of equation of states function. """ self._volumes = volumes if np.array(energies).ndim == 1: self._energies = energies else: self._energies = energies[0] self._eos = get_eos(eos) self._energy = None self._bulk_modulus = None self._b_prime = None try: (self._energy, self._bulk_modulus, self._b_prime, self._volume) = fit_to_eos(volumes, self._energies, self._eos) except TypeError: msg = ["Failed to fit to \"%s\" equation of states." % eos] if len(volumes) < 4: msg += ["At least 4 volume points are needed for the fitting."] msg += ["Careful choice of volume points is recommended."] raise RuntimeError("\n".join(msg)) @property def bulk_modulus(self): """Return bulk modulus.""" return self._bulk_modulus def get_bulk_modulus(self): """Return bulk modulus.""" warnings.warn("BulkModulus.get_bulk_modulus() is deprecated." "Use BulkModulus.bulk_modulus attribute.", DeprecationWarning) return self.bulk_modulus @property def equilibrium_volume(self): """Return volume at equilibrium.""" return self._volume def get_equilibrium_volume(self): """Return volume at equilibrium.""" warnings.warn("BulkModulus.get_equilibrium_volume() is deprecated." "Use BulkModulus.equilibrium_volume attribute.", DeprecationWarning) return self.equilibrium_volume @property def b_prime(self): """Return fitted parameter B'.""" return self._b_prime def get_b_prime(self): """Return fitted parameter B'.""" warnings.warn("BulkModulus.get_b_prime() is deprecated." "Use BulkModulus.b_prime attribute.", DeprecationWarning) return self._b_prime @property def energy(self): """Return fitted parameter of energy.""" return self._energy def get_energy(self): """Return fitted parameter of energy.""" warnings.warn("BulkModulus.get_energy() is deprecated." "Use BulkModulus.energy attribute.", DeprecationWarning) return self._energy def get_parameters(self): """Return fitted parameters.""" return (self._energy, self._bulk_modulus, self._b_prime, self._volume) def get_eos(self): """Return EOS function as a python method.""" warnings.warn("BulkModulus.get_eos() is deprecated.", DeprecationWarning) return self._eos def plot(self): """Plot fitted EOS curve.""" import matplotlib.pyplot as plt ep = self.get_parameters() vols = self._volumes volume_points = np.linspace(min(vols), max(vols), 201) fig, ax = plt.subplots() ax.plot(volume_points, self._eos(volume_points, *ep), 'r-') ax.plot(vols, self._energies, 'bo', markersize=4) return plt class QHA(object): """Quasi harmonic approximation class.""" def __init__(self, volumes, # angstrom^3 electronic_energies, # eV temperatures, # K cv, # J/K/mol entropy, # J/K/mol fe_phonon, # kJ/mol eos='vinet', t_max=None, energy_plot_factor=None): """Init method. Parameters ---------- volumes: array_like Unit cell volumes (V) in angstrom^3. dtype='double' shape=(volumes,) electronic_energies: array_like Electronic energies (U_el) or electronic free energies (F_el) in eV. It is assumed as formar if ndim==1 and latter if ndim==2. dtype='double' shape=(volumes,) or (temperatuers, volumes) temperatures: array_like Temperatures ascending order (T) in K. dtype='double' shape=(temperatures,) cv: array_like Phonon Heat capacity at constant volume in J/K/mol. dtype='double' shape=(temperatuers, volumes) entropy: array_like Phonon entropy at constant volume (S_ph) in J/K/mol. dtype='double' shape=(temperatuers, volumes) fe_phonon: array_like Phonon Helmholtz free energy (F_ph) in kJ/mol. dtype='double' shape=(temperatuers, volumes) eos: str Equation of state used for fitting F vs V. 'vinet', 'murnaghan' or 'birch_murnaghan'. t_max: float Maximum temperature to be calculated. This has to be not greater than the temperature of the third element from the end of 'temperatre' elements. If max_t=None, the temperature of the third element from the end is used. energy_plot_factor: float This value is multiplied to energy like values only in plotting. """ self._volumes = np.array(volumes) self._electronic_energies = np.array(electronic_energies) self._all_temperatures = np.array(temperatures) self._cv = np.array(cv) self._entropy = np.array(entropy) self._fe_phonon = np.array(fe_phonon) / EvTokJmol self._eos = get_eos(eos) self._t_max = t_max self._energy_plot_factor = energy_plot_factor self._temperatures = None self._equiv_volumes = None self._equiv_energies = None self._equiv_bulk_modulus = None self._equiv_parameters = None self._free_energies = None self._num_elems = None self._thermal_expansions = None self._cp_numerical = None self._volume_entropy_parameters = None self._volume_cv_parameters = None self._volume_entropy = None self._volume_cv = None self._cp_polyfit = None self._dsdv = None self._gruneisen_parameters = None self._len = None @property def thermal_expansion(self): """Return volumetric thermal expansion coefficients at temperatures.""" return self._thermal_expansions[:self._len] @property def helmholtz_volume(self): """Return Helmholtz free energies at temperatures and volumes.""" return self._free_energies[:self._len] @property def volume_temperature(self): """Return equilibrium volumes at temperatures.""" return self._equiv_volumes[:self._len] @property def gibbs_temperature(self): """Return Gibbs free energies at temperatures.""" return self._equiv_energies[:self._len] @property def bulk_modulus_temperature(self): """Return bulk modulus vs temperature data.""" return self._equiv_bulk_modulus[:self._len] @property def heat_capacity_P_numerical(self): """Return heat capacities at constant pressure at temperatures. Values are computed by numerical derivative of Gibbs free energy. """ return self._cp_numerical[:self._len] @property def heat_capacity_P_polyfit(self): """Return heat capacities at constant pressure at temperatures. Volumes are computed in another way to heat_capacity_P_numerical for the better numerical behaviour. But this does not work when temperature dependent electronic_energies is supplied. """ if self._electronic_energies.ndim == 1: return self._cp_polyfit[:self._len] else: return None @property def gruneisen_temperature(self): """Return Gruneisen parameters at temperatures.""" return self._gruneisen_parameters[:self._len] def run(self, verbose=False): """Fit parameters to EOS at temperatures. Even if fitting failed, simply omit the volume point. In this case, the failed temperature point doesn't exist in the returned arrays. """ if verbose: print(("#%11s" + "%14s" * 4) % ("T", "E_0", "B_0", "B'_0", "V_0")) # Plus one temperature point is necessary for computing e.g. beta. num_elems = self._get_num_elems(self._all_temperatures) + 1 if num_elems > len(self._all_temperatures): num_elems -= 1 temperatures = [] parameters = [] free_energies = [] for i in range(num_elems): # loop over temperaturs if self._electronic_energies.ndim == 1: el_energy = self._electronic_energies else: el_energy = self._electronic_energies[i] fe = [ph_e + el_e for ph_e, el_e in zip(self._fe_phonon[i], el_energy)] try: ep = fit_to_eos(self._volumes, fe, self._eos) except TypeError: print("Fitting failure at T=%.1f" % self._all_temperatures[i]) if ep is None: # Simply omit volume point where the fitting failed. continue else: [ee, eb, ebp, ev] = ep t = self._all_temperatures[i] temperatures.append(t) parameters.append(ep) free_energies.append(fe) if verbose: print(("%14.6f" * 5) % (t, ep[0], ep[1] * EVAngstromToGPa, ep[2], ep[3])) self._free_energies = np.array(free_energies) self._temperatures = np.array(temperatures) self._equiv_parameters = np.array(parameters) self._equiv_volumes = np.array(self._equiv_parameters[:, 3]) self._equiv_energies = np.array(self._equiv_parameters[:, 0]) self._equiv_bulk_modulus = np.array( self._equiv_parameters[:, 1] * EVAngstromToGPa) self._num_elems = len(self._temperatures) # For computing following values at temperatures, finite difference # method is used. Therefore number of temperature points are needed # larger than self._num_elems that nearly equals to the temparature # point we expect. self._set_thermal_expansion() self._set_heat_capacity_P_numerical() self._set_heat_capacity_P_polyfit() self._set_gruneisen_parameter() # To be run after thermal expansion. self._len = len(self._thermal_expansions) assert(self._len + 1 == self._num_elems) def plot(self, thin_number=10, volume_temp_exp=None): import matplotlib.pyplot as plt plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['font.family'] = 'serif' plt.rcParams['text.usetex'] = True fig, axs = plt.subplots(1, 3, figsize=(7, 3.5)) axs[0].xaxis.set_ticks_position('both') axs[0].yaxis.set_ticks_position('both') axs[0].xaxis.set_tick_params(which='both', direction='in') axs[0].yaxis.set_tick_params(which='both', direction='in') self._plot_helmholtz_volume(axs[0], thin_number=thin_number) axs[1].xaxis.set_ticks_position('both') axs[1].yaxis.set_ticks_position('both') axs[1].xaxis.set_tick_params(which='both', direction='in') axs[1].yaxis.set_tick_params(which='both', direction='in') self._plot_volume_temperature(axs[1], exp_data=volume_temp_exp) axs[2].xaxis.set_ticks_position('both') axs[2].yaxis.set_ticks_position('both') axs[2].xaxis.set_tick_params(which='both', direction='in') axs[2].yaxis.set_tick_params(which='both', direction='in') self._plot_thermal_expansion(axs[2]) plt.tight_layout() return plt def get_helmholtz_volume(self): warnings.warn("QHA.get_helmholtz_volume() is deprecated." "Use helmholtz_volume attribute.", DeprecationWarning) return self.helmholtz_volume def plot_helmholtz_volume(self, thin_number=10, xlabel=r'Volume $(\AA^3)$', ylabel='Free energy'): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_helmholtz_volume(ax, thin_number=thin_number, xlabel=xlabel, ylabel=ylabel) return plt def plot_pdf_helmholtz_volume(self, thin_number=10, filename='helmholtz-volume.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_helmholtz_volume(ax, thin_number=thin_number) plt.savefig(filename) plt.close() def write_helmholtz_volume(self, filename='helmholtz-volume.dat'): w = open(filename, 'w') for i, (t, ep, fe) in enumerate(zip(self._temperatures, self._equiv_parameters, self._free_energies)): if i == self._len: break w.write("# Temperature: %f\n" % t) w.write("# Parameters: %f %f %f %f\n" % tuple(ep)) for j, v in enumerate(self._volumes): w.write("%20.15f %25.15f\n" % (v, fe[j])) w.write("\n\n") w.close() def write_helmholtz_volume_fitted(self, thin_number, filename='helholtz-volume_fitted.dat'): if self._energy_plot_factor is None: _energy_plot_factor = 1 else: _energy_plot_factor = self._energy_plot_factor volume_points = np.linspace( min(self._volumes), max(self._volumes), 201) selected_volumes = [] selected_energies = [] for i, t in enumerate(self._temperatures[:self._len]): if i % thin_number == 0: selected_volumes.append(self._equiv_volumes[i]) selected_energies.append(self._equiv_energies[i]) for i, t in enumerate(self._temperatures[:self._len]): if t >= 298: if i > 0: de = self._equiv_energies[i] - self._equiv_energies[i - 1] dt = t - self._temperatures[i - 1] e0 = ((298 - self._temperatures[i - 1]) / dt * de + self._equiv_energies[i - 1]) else: e0 = 0 break e0 *= _energy_plot_factor _data_vol_points = [] _data_eos = [] for i, t in enumerate(self._temperatures[:self._len]): if i % thin_number == 0: _data_vol_points.append( np.array(self._free_energies[i]) * _energy_plot_factor - e0) _data_eos.append( self._eos(volume_points, * self._equiv_parameters[i]) * _energy_plot_factor - e0) data_eos = np.array(_data_eos).T data_vol_points = np.array(_data_vol_points).T data_min = (np.array(selected_energies) * _energy_plot_factor - e0) with open(filename, 'w') as w: w.write("# Volume points\n") for (j, k) in zip(self._volumes, data_vol_points): w.write("%10.5f " % j) for l in k: w.write("%10.5f" % l) w.write("\n") w.write("\n# Fitted data\n") for (m, n) in zip(volume_points, data_eos): w.write("%10.5f " % m) for ll in n: w.write("%10.5f" % ll) w.write("\n") w.write("\n# Minimas\n") for (a, b) in zip(selected_volumes, data_min): w.write("%10.5f %10.5f %s" % (a, b, '\n')) w.write('\n') def get_volume_temperature(self): warnings.warn("QHA.get_volume_temperature() is deprecated." "Use volume_temperature attribute.", DeprecationWarning) return self.volume_temperature def plot_volume_temperature(self, exp_data=None): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_volume_temperature(ax, exp_data=exp_data) return plt def plot_pdf_volume_temperature(self, exp_data=None, filename='volume-temperature.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_volume_temperature(ax, exp_data=exp_data) plt.savefig(filename) plt.close() def write_volume_temperature(self, filename='volume-temperature.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%25.15f %25.15f\n" % (self._temperatures[i], self._equiv_volumes[i])) w.close() def get_thermal_expansion(self): warnings.warn("QHA.get_thermal_expansion() is deprecated." "Use thermal_expansion attribute.", DeprecationWarning) return self.thermal_expansion def plot_thermal_expansion(self): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_thermal_expansion(ax) return plt def plot_pdf_thermal_expansion(self, filename='thermal_expansion.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_thermal_expansion(ax) plt.savefig(filename) plt.close() def write_thermal_expansion(self, filename='thermal_expansion.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%25.15f %25.15f\n" % (self._temperatures[i], self._thermal_expansions[i])) w.close() def get_gibbs_temperature(self): return self.gibbs_temperature def plot_gibbs_temperature(self, xlabel='Temperature (K)', ylabel='Gibbs free energy'): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_gibbs_temperature(ax, xlabel=xlabel, ylabel=ylabel) return plt def plot_pdf_gibbs_temperature(self, filename='gibbs-temperature.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_gibbs_temperature(ax) plt.savefig(filename) plt.close() def write_gibbs_temperature(self, filename='gibbs-temperature.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%20.15f %25.15f\n" % (self._temperatures[i], self._equiv_energies[i])) w.close() def get_bulk_modulus_temperature(self): return self.bulk_modulus_temperature def plot_bulk_modulus_temperature(self, xlabel='Temperature (K)', ylabel='Bulk modulus'): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_bulk_modulus_temperature(ax, xlabel=xlabel, ylabel=ylabel) return plt def plot_pdf_bulk_modulus_temperature( self, filename='bulk_modulus-temperature.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_bulk_modulus_temperature(ax) plt.savefig(filename) plt.close() def write_bulk_modulus_temperature( self, filename='bulk_modulus-temperature.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%20.15f %25.15f\n" % (self._temperatures[i], self._equiv_bulk_modulus[i])) w.close() def get_heat_capacity_P_numerical(self): return self.heat_capacity_P_numerical def plot_heat_capacity_P_numerical(self, Z=1, exp_data=None): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_heat_capacity_P_numerical(ax, Z=Z, exp_data=exp_data) return plt def plot_pdf_heat_capacity_P_numerical(self, exp_data=None, filename='Cp-temperature.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_heat_capacity_P_numerical(ax, exp_data=exp_data) plt.savefig(filename) plt.close() def write_heat_capacity_P_numerical(self, filename='Cp-temperature.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%20.15f %20.15f\n" % (self._temperatures[i], self._cp_numerical[i])) w.close() def get_heat_capacity_P_polyfit(self): return self.heat_capacity_P_polyfit def plot_heat_capacity_P_polyfit(self, Z=1, exp_data=None): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_heat_capacity_P_polyfit(ax, Z=Z, exp_data=exp_data) return plt def plot_pdf_heat_capacity_P_polyfit( self, exp_data=None, filename='Cp-temperature_polyfit.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_heat_capacity_P_polyfit(ax, exp_data=exp_data) plt.savefig(filename) plt.close() def write_heat_capacity_P_polyfit(self, filename='Cp-temperature_polyfit.dat', filename_ev='entropy-volume.dat', filename_cvv='Cv-volume.dat', filename_dsdvt='dsdv-temperature.dat'): wve = open(filename_ev, 'w') wvcv = open(filename_cvv, 'w') for i in range(1, self._len): t = self._temperatures[i] wve.write("# temperature %20.15f\n" % t) wve.write("# %20.15f %20.15f %20.15f %20.15f %20.15f\n" % tuple(self._volume_entropy_parameters[i - 1])) wvcv.write("# temperature %20.15f\n" % t) wvcv.write("# %20.15f %20.15f %20.15f %20.15f %20.15f\n" % tuple(self._volume_cv_parameters[i - 1])) for ve, vcv in zip(self._volume_entropy[i - 1], self._volume_cv[i - 1]): wve.write("%20.15f %20.15f\n" % tuple(ve)) wvcv.write("%20.15f %20.15f\n" % tuple(vcv)) wve.write("\n\n") wvcv.write("\n\n") wve.close() wvcv.close() w = open(filename, 'w') for i in range(self._len): w.write("%20.15f %20.15f\n" % (self._temperatures[i], self._cp_polyfit[i])) w.close() w = open(filename_dsdvt, 'w') # GPa for i in range(self._len): w.write("%20.15f %20.15f\n" % (self._temperatures[i], self._dsdv[i] * 1e21 / Avogadro)) w.close() def get_gruneisen_temperature(self): return self.gruneisen_temperature def plot_gruneisen_temperature(self): import matplotlib.pyplot as plt fig, ax = plt.subplots() self._plot_gruneisen_temperature(ax) return plt def plot_pdf_gruneisen_temperature(self, filename='gruneisen-temperature.pdf'): import matplotlib.pyplot as plt self._set_rcParams(plt) fig, ax = plt.subplots() ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.xaxis.set_tick_params(which='both', direction='in') ax.yaxis.set_tick_params(which='both', direction='in') self._plot_gruneisen_temperature(ax) plt.savefig(filename) plt.close() def write_gruneisen_temperature(self, filename='gruneisen-temperature.dat'): w = open(filename, 'w') for i in range(self._len): w.write("%20.15f %25.15f\n" % (self._temperatures[i], self._gruneisen_parameters[i])) w.close() def _plot_helmholtz_volume(self, ax, thin_number=10, xlabel=r'Volume $(\AA^3)$', ylabel='Free energy'): if self._energy_plot_factor is None: _energy_plot_factor = 1 _ylabel = ylabel + ' (eV)' else: _energy_plot_factor = self._energy_plot_factor _ylabel = ylabel volume_points = np.linspace(min(self._volumes), max(self._volumes), 201) selected_volumes = [] selected_energies = [] thin_index = 0 for i, t in enumerate(self._temperatures[:self._len]): if i % thin_number == 0: selected_volumes.append(self._equiv_volumes[i]) selected_energies.append(self._equiv_energies[i]) for i, t in enumerate(self._temperatures[:self._len]): if t >= 298: if i > 0: de = self._equiv_energies[i] - self._equiv_energies[i - 1] dt = t - self._temperatures[i - 1] e0 = ((298 - self._temperatures[i - 1]) / dt * de + self._equiv_energies[i - 1]) else: e0 = 0 break e0 *= _energy_plot_factor for i, t in enumerate(self._temperatures[:self._len]): if i % thin_number == 0: ax.plot(self._volumes, np.array(self._free_energies[i]) * _energy_plot_factor - e0, 'bo', markeredgecolor='b', markersize=3) ax.plot(volume_points, self._eos(volume_points, * self._equiv_parameters[i]) * _energy_plot_factor - e0, 'b-') thin_index = i for i, j in enumerate((0, thin_index)): ax.text(self._volumes[-2], (self._free_energies[j, -1] + (1 - i * 2) * 0.1 - 0.05) * _energy_plot_factor - e0, "%dK" % int(self._temperatures[j]), fontsize=8) ax.plot(selected_volumes, np.array(selected_energies) * _energy_plot_factor - e0, 'ro-', markeredgecolor='r', markersize=3) ax.set_xlabel(xlabel) ax.set_ylabel(_ylabel) def _plot_volume_temperature(self, ax, exp_data=None, xlabel='Temperature (K)', ylabel=r'Volume $(\AA^3)$'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], self._equiv_volumes[:self._len], 'r-') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) # exp if exp_data: ax.plot(exp_data[0], exp_data[1], 'ro') def _plot_thermal_expansion( self, ax, xlabel='Temperature (K)', ylabel=r'Thermal expansion $(\mathrm{K}^{-1})$'): from matplotlib.ticker import ScalarFormatter class FixedScaledFormatter(ScalarFormatter): def __init__(self): ScalarFormatter.__init__(self, useMathText=True) def _set_orderOfMagnitude(self, range): self.orderOfMagnitude = -6 ax.yaxis.set_major_formatter(FixedScaledFormatter()) ax.ticklabel_format(style="sci", axis="y", scilimits=(0, 0)) beta = np.array(self._thermal_expansions) ax.plot(self._temperatures[:self._len], beta[:self._len], 'r-') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) def _plot_gibbs_temperature(self, ax, xlabel='Temperature (K)', ylabel='Gibbs free energy (eV)'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], self._equiv_energies[:self._len], 'r-') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) def _plot_bulk_modulus_temperature(self, ax, xlabel='Temperature (K)', ylabel='Bulk modulus (GPa)'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], self._equiv_bulk_modulus[:self._len], 'r-') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) def _plot_heat_capacity_P_numerical( self, ax, Z=1, exp_data=None, xlabel='Temperature (K)', ylabel=r'$C\mathrm{_P}$ $\mathrm{(J/mol\cdot K)}$'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], np.array(self._cp_numerical[:self._len]) / Z, 'r-') # exp if exp_data: ax.plot(exp_data[0], exp_data[1], 'ro') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) def _plot_heat_capacity_P_polyfit( self, ax, Z=1, exp_data=None, xlabel='Temperature (K)', ylabel=r'$C\mathrm{_P}$ $\mathrm{(J/mol\cdot K)}$'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], np.array(self._cp_polyfit[:self._len]) / Z, 'r-') # exp if exp_data: ax.plot(exp_data[0], exp_data[1], 'ro') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) def _plot_gruneisen_temperature(self, ax, xlabel='Temperature (K)', ylabel='Gruneisen parameter'): ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) ax.plot(self._temperatures[:self._len], self._gruneisen_parameters[:self._len], 'r-') ax.set_xlim(self._temperatures[0], self._temperatures[self._len - 1]) def _set_thermal_expansion(self): beta = [0.] for i in range(1, self._num_elems - 1): dt = self._temperatures[i + 1] - self._temperatures[i - 1] dv = self._equiv_volumes[i + 1] - self._equiv_volumes[i - 1] beta.append(dv / dt / self._equiv_volumes[i]) self._thermal_expansions = beta def _set_heat_capacity_P_numerical(self): cp = [] g = np.array(self._equiv_energies) * EvTokJmol * 1000 cp.append(0.0) for i in range(1, self._num_elems - 1): t = self._temperatures[i] parameters = np.polyfit(self._temperatures[i - 1:i + 2], g[i - 1: i + 2], 2) cp.append(- (2 * parameters[0]) * t) self._cp_numerical = cp def _set_heat_capacity_P_polyfit(self): cp = [0.0] dsdv = [0.0] self._volume_entropy_parameters = [] self._volume_cv_parameters = [] self._volume_entropy = [] self._volume_cv = [] for j in range(1, self._num_elems - 1): t = self._temperatures[j] x = self._equiv_volumes[j] try: parameters = np.polyfit(self._volumes, self._cv[j], 4) except np.lib.polynomial.RankWarning: msg = [ "Failed to fit heat capacities to polynomial of degree 4."] if len(self._volumes) < 5: msg += [ "At least 5 volume points are needed for the fitting."] raise RuntimeError("\n".join(msg)) cv_p = np.dot(parameters, np.array([x**4, x**3, x**2, x, 1])) self._volume_cv_parameters.append(parameters) try: parameters = np.polyfit(self._volumes, self._entropy[j], 4) except np.lib.polynomial.RankWarning: msg = [ "Failed to fit entropies to polynomial of degree 4."] if len(self._volumes) < 5: msg += [ "At least 5 volume points are needed for the fitting."] raise RuntimeError("\n".join(msg)) dsdv_t = np.dot(parameters[:4], np.array( [4 * x**3, 3 * x**2, 2 * x, 1])) self._volume_entropy_parameters.append(parameters) try: parameters = np.polyfit(self._temperatures[j - 1:j + 2], self._equiv_volumes[j - 1: j + 2], 2) except np.lib.polynomial.RankWarning: msg = ("Failed to fit equilibrium volumes vs T to " "polynomial of degree 2.") raise RuntimeError(msg) dvdt = parameters[0] * 2 * t + parameters[1] cp.append(cv_p + t * dvdt * dsdv_t) dsdv.append(dsdv_t) self._volume_cv.append(np.array([self._volumes, self._cv[j]]).T) self._volume_entropy.append(np.array([self._volumes, self._entropy[j]]).T) self._cp_polyfit = cp self._dsdv = dsdv def _set_gruneisen_parameter(self): gamma = [0] for i in range(1, self._num_elems - 1): v = self._equiv_volumes[i] kt = self._equiv_bulk_modulus[i] beta = self._thermal_expansions[i] try: parameters = np.polyfit(self._volumes, self._cv[i], 4) except np.lib.polynomial.RankWarning: msg = [ "Failed to fit heat capacities to polynomial of degree 4."] if len(self._volumes) < 5: msg += [ "At least 5 volume points are needed for the fitting."] raise RuntimeError("\n".join(msg)) cv = (np.dot(parameters, [v**4, v**3, v**2, v, 1]) / v / 1000 / EvTokJmol * EVAngstromToGPa) if cv < 1e-10: gamma.append(0.0) else: gamma.append(beta * kt / cv) self._gruneisen_parameters = gamma def _get_num_elems(self, temperatures): if self._t_max is None: return len(temperatures) else: i = np.argmin(np.abs(temperatures - self._t_max)) return i + 1 def _set_rcParams(self, plt): plt.rcParams['backend'] = 'PDF' plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['font.family'] = 'serif' plt.rcParams['axes.labelsize'] = 18 plt.rcParams['figure.subplot.left'] = 0.25 plt.rcParams['figure.subplot.bottom'] = 0.15 plt.rcParams['figure.figsize'] = 4, 6 plt.rcParams['text.usetex'] = True
36.903019
80
0.556068
[ "BSD-3-Clause" ]
SeyedMohamadMoosavi/phonopy
phonopy/qha/core.py
40,335
Python
import os from argparse import ArgumentParser from time import time import yaml import numpy as np from fx_replicator import ( build_model, load_wave, save_wave, sliding_window, LossFunc ) import nnabla as nn #import nnabla_ext.cudnn import nnabla.functions as F import nnabla.parametric_functions as PF import nnabla.solvers as S import nnabla.utils.save import tqdm def main(): args = parse_args() with open(args.config_file) as fp: config = yaml.safe_load(fp) input_timesteps = config["input_timesteps"] output_timesteps = config["output_timesteps"] batch_size = config["batch_size"] data = load_wave(args.input_file) print("data.shape is:", data.shape) print("data.len is:", len(data)) """ from nnabla.ext_utils import get_extension_context cuda_device_id = 0 ctx = get_extension_context('cudnn', device_id=cuda_device_id) print("Context: {}".format(ctx)) nn.set_default_context(ctx) # Set CUDA as a default context. """ # padding and rounded up to the batch multiple block_size = output_timesteps * batch_size prepad = input_timesteps - output_timesteps postpad = len(data) % block_size print("postpad", block_size - postpad) padded = np.concatenate(( np.zeros(prepad, np.float32), data, np.zeros(block_size - postpad, np.float32))) x = sliding_window(padded, input_timesteps, output_timesteps) x = x[:, :, np.newaxis] y = np.zeros_like(x) batchlen = x.shape[0] print("x.length is:",batchlen) xx = nn.Variable((batch_size , input_timesteps, 1)) nn.load_parameters("best_result.h5") print("xx.shape is:", xx.shape) yy = build_model(xx) print("yy.shape is:", yy.shape) print("x.shape in the loop is:", x[32:32 + batch_size , : , : ].shape) start1 = time() for step in range(0, batchlen , batch_size): xx.d = x[step:step + batch_size , : , : ] yy.forward() y[step:step + batch_size , : , : ] = yy.d proc_time = time() - start1 print(proc_time) print(step) y = y[:, -output_timesteps:, :].reshape(-1)[:len(data)] save_wave(y, args.output_file) print("finished\n") proc_time = time() - start1 print(proc_time) def parse_args(): parser = ArgumentParser() parser.add_argument( "--config_file", "-c", default="./config.yml", help="configuration file (*.yml)") parser.add_argument( "--input_file", "-i", help="input wave file (48kHz/mono, *.wav)") parser.add_argument( "--output_file", "-o", default="./predicted.wav", help="output wave file (48kHz/mono, *.wav)") parser.add_argument( "--model_file", "-m", help="input model file (*.h5)") return parser.parse_args() if __name__ == '__main__': main()
26.090909
74
0.637282
[ "MIT" ]
kmwebnet/Audio-Effect-replicator-nnabla
predict.py
2,870
Python
""" This module contains utiliy functions for fields which are used by both the :mod:`~sphinxcontrib_django2.docstrings.attributes` and :mod:`~sphinxcontrib_django2.docstrings.classes` modules. """ from django.apps import apps from django.contrib import contenttypes from django.db import models from django.utils.encoding import force_str def get_field_type(field, include_role=True): """ Get the type of a field including the correct intersphinx mappings. :param field: The field :type field: ~django.db.models.Field :param include_directive: Whether or not the role :any:`py:class` should be included :type include_directive: bool :return: The type of the field :rtype: str """ if isinstance(field, models.fields.related.RelatedField): if isinstance(field.remote_field.model, str): # This happens with foreign keys of abstract models to = field.remote_field.model else: to = f"{field.remote_field.model.__module__}.{field.remote_field.model.__name__}" return f":class:`~{type(field).__module__}.{type(field).__name__}` to :class:`~{to}`" elif isinstance(field, models.fields.reverse_related.ForeignObjectRel): to = field.remote_field.model return ( f"Reverse :class:`~{type(field.remote_field).__module__}." f"{type(field.remote_field).__name__}` from :class:`~{to.__module__}.{to.__name__}`" ) else: if include_role: # For the docstrings of attributes, the :class: role is required return f":class:`~{type(field).__module__}.{type(field).__name__}`" else: # For the :param: role in class docstrings, the :class: role is not required return f"~{type(field).__module__}.{type(field).__name__}" def get_field_verbose_name(field): """ Get the verbose name of the field. If the field has a ``help_text``, it is also included. In case the field is a related field, the ``related_name`` is used to link to the remote model. For reverse related fields, the originating field is linked. :param field: The field :type field: ~django.db.models.Field """ help_text = "" # Check whether the field is a reverse related field if isinstance(field, models.fields.reverse_related.ForeignObjectRel): # Convert related name to a readable name if ``snake_case`` is used related_name = ( field.related_name.replace("_", " ") if field.related_name else None ) if isinstance(field, models.fields.reverse_related.OneToOneRel): # If a related name is given, use it, else use the verbose name of the remote model related_name = related_name or field.remote_field.model._meta.verbose_name # If field is a OneToOne field, use the prefix "The" verbose_name = ( f"The {related_name} of this {field.model._meta.verbose_name}" ) else: # This means field is an instance of ManyToOneRel or ManyToManyRel # If a related name is given, use it, else use the verbose name of the remote model related_name = ( related_name or field.remote_field.model._meta.verbose_name_plural ) # If field is a foreign key or a ManyToMany field, use the prefix "All" verbose_name = ( f"All {related_name} of this {field.model._meta.verbose_name}" ) # Always link to the origin of the reverse related field verbose_name += ( f" (related name of :attr:`~{field.remote_field.model.__module__}" f".{field.remote_field.model.__name__}.{field.remote_field.name}`)" ) elif isinstance(field, contenttypes.fields.GenericForeignKey): # GenericForeignKey does not inherit from django.db.models.Field and has no verbose_name return ( f"Generic foreign key to the :class:`~django.contrib.contenttypes.models.ContentType` " f"specified in " f":attr:`~{field.model.__module__}.{field.model.__name__}.{field.ct_field}`" ) else: # This means the field is either a normal field or a forward related field # If the field is a primary key, include a notice primary_key = "Primary key: " if field.primary_key else "" field_verbose_name = force_str(field.verbose_name) # Make the first letter upper case while leave the rest unchanged # (str.capitalize() would make the rest lower case, e.g. ID => Id) verbose_name = ( primary_key + field_verbose_name[:1].upper() + field_verbose_name[1:] ) help_text = force_str(field.help_text) # Add help text if field has one if help_text: # Separate verbose name and help text by a dot if not verbose_name.endswith("."): verbose_name += ". " verbose_name += help_text if isinstance(field, models.fields.related.RelatedField): # If field is a forward related field, reference the remote model to = field.remote_field.model if isinstance(to, str): # This happens with foreign keys of abstract models if "." in to: to = apps.get_model(to) elif to == "self": to = field.model else: to = apps.get_model(field.model._meta.app_label, to) # If a related name is defined if hasattr(field.remote_field, "related_name"): related_name = ( field.remote_field.related_name or field.model.__name__.lower() ) verbose_name += ( f" (related name: :attr:`~{to.__module__}.{to.__name__}.{related_name}`)" ) return verbose_name
43.318519
99
0.639193
[ "Apache-2.0" ]
mkalioby/sphinxcontrib-django2
sphinxcontrib_django2/docstrings/field_utils.py
5,848
Python
"""Python wrappers around TensorFlow ops. This file is MACHINE GENERATED! Do not edit. """ import collections as _collections import six as _six from tensorflow.python import pywrap_tensorflow as _pywrap_tensorflow from tensorflow.python.eager import context as _context from tensorflow.python.eager import core as _core from tensorflow.python.eager import execute as _execute from tensorflow.python.framework import dtypes as _dtypes from tensorflow.python.framework import errors as _errors from tensorflow.python.framework import tensor_shape as _tensor_shape from tensorflow.core.framework import op_def_pb2 as _op_def_pb2 # Needed to trigger the call to _set_call_cpp_shape_fn. from tensorflow.python.framework import common_shapes as _common_shapes from tensorflow.python.framework import op_def_registry as _op_def_registry from tensorflow.python.framework import ops as _ops from tensorflow.python.framework import op_def_library as _op_def_library from tensorflow.python.util.tf_export import tf_export def fact(name=None): r"""Output a fact about factorials. Args: name: A name for the operation (optional). Returns: A `Tensor` of type `string`. """ _ctx = _context._context if _ctx is None or not _ctx._eager_context.is_eager: _, _, _op = _op_def_lib._apply_op_helper( "Fact", name=name) _result = _op.outputs[:] _inputs_flat = _op.inputs _attrs = None _execute.record_gradient( "Fact", _inputs_flat, _attrs, _result, name) _result, = _result return _result else: try: _result = _pywrap_tensorflow.TFE_Py_FastPathExecute( _ctx._context_handle, _ctx._eager_context.device_name, "Fact", name, _ctx._post_execution_callbacks) return _result except _core._FallbackException: return fact_eager_fallback( name=name, ctx=_ctx) except _core._NotOkStatusException as e: if name is not None: message = e.message + " name: " + name else: message = e.message _six.raise_from(_core._status_to_exception(e.code, message), None) def fact_eager_fallback(name=None, ctx=None): r"""This is the slowpath function for Eager mode. This is for function fact """ _ctx = ctx if ctx else _context.context() _inputs_flat = [] _attrs = None _result = _execute.execute(b"Fact", 1, inputs=_inputs_flat, attrs=_attrs, ctx=_ctx, name=name) _execute.record_gradient( "Fact", _inputs_flat, _attrs, _result, name) _result, = _result return _result def _InitOpDefLibrary(op_list_proto_bytes): op_list = _op_def_pb2.OpList() op_list.ParseFromString(op_list_proto_bytes) _op_def_registry.register_op_list(op_list) op_def_lib = _op_def_library.OpDefLibrary() op_def_lib.add_op_list(op_list) return op_def_lib # op { # name: "Fact" # output_arg { # name: "fact" # type: DT_STRING # } # } _op_def_lib = _InitOpDefLibrary(b"\n\020\n\004Fact\032\010\n\004fact\030\007")
32.107527
78
0.739786
[ "MIT" ]
caiovini/Image_reader_api
venv/Lib/site-packages/tensorflow/python/ops/gen_user_ops.py
2,986
Python
#!/usr/bin/env python3 # md_lj_module.py #------------------------------------------------------------------------------------------------# # This software was written in 2016/17 # # by Michael P. Allen <[email protected]>/<[email protected]> # # and Dominic J. Tildesley <[email protected]> ("the authors"), # # to accompany the book "Computer Simulation of Liquids", second edition, 2017 ("the text"), # # published by Oxford University Press ("the publishers"). # # # # LICENCE # # Creative Commons CC0 Public Domain Dedication. # # To the extent possible under law, the authors have dedicated all copyright and related # # and neighboring rights to this software to the PUBLIC domain worldwide. # # This software is distributed without any warranty. # # You should have received a copy of the CC0 Public Domain Dedication along with this software. # # If not, see <http://creativecommons.org/publicdomain/zero/1.0/>. # # # # DISCLAIMER # # The authors and publishers make no warranties about the software, and disclaim liability # # for all uses of the software, to the fullest extent permitted by applicable law. # # The authors and publishers do not recommend use of this software for any purpose. # # It is made freely available, solely to clarify points made in the text. When using or citing # # the software, you should not imply endorsement by the authors or publishers. # #------------------------------------------------------------------------------------------------# """Force routine for MD simulation, Lennard-Jones atoms.""" fast = True # Change this to replace NumPy force evaluation with slower Python class PotentialType: """A composite variable for interactions.""" def __init__(self, cut, pot, vir, lap, ovr): self.cut = cut # the potential energy cut (but not shifted) at r_cut self.pot = pot # the potential energy cut-and-shifted at r_cut self.vir = vir # the virial self.lap = lap # the Laplacian self.ovr = ovr # a flag indicating overlap (i.e. pot too high to use) def __add__(self, other): cut = self.cut + other.cut pot = self.pot + other.pot vir = self.vir + other.vir lap = self.lap + other.lap ovr = self.ovr or other.ovr return PotentialType(cut,pot,vir,lap,ovr) def introduction(): """Prints out introductory statements at start of run.""" print('Lennard-Jones potential') print('Cut-and-shifted version for dynamics') print('Cut (but not shifted) version also calculated') print('Diameter, sigma = 1') print('Well depth, epsilon = 1') if fast: print('Fast NumPy force routine') else: print('Slow Python force routine') def conclusion(): """Prints out concluding statements at end of run.""" print('Program ends') def force ( box, r_cut, r ): """Takes in box, cutoff range, and coordinate array, and calculates forces and potentials etc.""" import numpy as np # It is assumed that positions are in units where box = 1 # Forces are calculated in units where sigma = 1 and epsilon = 1 n, d = r.shape assert d==3, 'Dimension error in force' sr2_ovr = 1.77 # Overlap threshold (pot > 100) r_cut_box = r_cut / box r_cut_box_sq = r_cut_box ** 2 box_sq = box ** 2 # Calculate potential at cutoff sr2 = 1.0 / r_cut**2 # in sigma=1 units sr6 = sr2 ** 3 sr12 = sr6 **2 pot_cut = sr12 - sr6 # Without numerical factor 4 # Initialize f = np.zeros_like(r) total = PotentialType ( cut=0.0, pot=0.0, vir=0.0, lap=0.0, ovr=False ) if fast: for i in range(n-1): rij = r[i,:]-r[i+1:,:] # Separation vectors for j>i rij = rij - np.rint(rij) # Periodic boundary conditions in box=1 units rij_sq = np.sum(rij**2,axis=1) # Squared separations for j>1 in_range = rij_sq < r_cut_box_sq # Set flags for within cutoff rij_sq = rij_sq * box_sq # Now in sigma=1 units rij = rij * box # Now in sigma=1 units sr2 = np.where ( in_range, 1.0/rij_sq, 0.0 ) # (sigma/rij)**2, only if in range ovr = sr2 > sr2_ovr # Overlap if too close sr6 = sr2 ** 3 sr12 = sr6 ** 2 cut = sr12 - sr6 # LJ pair potential (cut but not shifted) vir = cut + sr12 # LJ pair virial pot = np.where ( in_range, cut-pot_cut, 0.0 ) # LJ pair potential (cut-and-shifted) lap = ( 22.0*sr12 - 5.0*sr6 ) * sr2 # LJ pair Laplacian fij = vir * sr2 # LJ scalar part of forces fij = rij * fij[:,np.newaxis] # LJ pair forces total = total + PotentialType ( cut=np.sum(cut), pot=np.sum(pot), vir=np.sum(vir), lap=np.sum(lap), ovr=np.any(ovr) ) f[i,:] = f[i,:] + np.sum(fij,axis=0) f[i+1:,:] = f[i+1:,:] - fij else: for i in range(n-1): # Outer loop for j in range(i+1,n): # Inner loop rij = r[i,:]-r[j,:] # Separation vector rij = rij - np.rint(rij) # Periodic boundary conditions in box=1 units rij_sq = np.sum(rij**2) # Squared separation if rij_sq < r_cut_box_sq: # Check within cutoff rij_sq = rij_sq * box_sq # Now in sigma=1 units rij = rij * box # Now in sigma=1 units sr2 = 1.0 / rij_sq # (sigma/rij)**2 ovr = sr2 > sr2_ovr # Overlap if too close sr6 = sr2 ** 3 sr12 = sr6 ** 2 cut = sr12 - sr6 # LJ pair potential (cut but not shifted) vir = cut + sr12 # LJ pair virial pot = cut - pot_cut # LJ pair potential (cut-and-shifted) lap = ( 22.0*sr12 - 5.0*sr6 ) * sr2 # LJ pair Laplacian fij = rij * vir * sr2 # LJ pair forces total = total + PotentialType ( cut=cut, pot=pot, vir=vir, lap=lap, ovr=ovr ) f[i,:] = f[i,:] + fij f[j,:] = f[j,:] - fij # Multiply results by numerical factors f = f * 24.0 # 24*epsilon total.cut = total.cut * 4.0 # 4*epsilon total.pot = total.pot * 4.0 # 4*epsilon total.vir = total.vir * 24.0 / 3.0 # 24*epsilon and divide virial by 3 total.lap = total.lap * 24.0 * 2.0 # 24*epsilon and factor 2 for ij and ji return total, f def hessian ( box, r_cut, r, f ): """Calculates Hessian function (for 1/N correction to config temp).""" import numpy as np # This routine is only needed in a constant-energy ensemble # It is assumed that positions are in units where box = 1 # but the result is given in units where sigma = 1 and epsilon = 1 # It is assumed that forces have already been calculated in array f n, d = r.shape assert d==3, 'Dimension error in hessian' assert np.all ( r.shape==f.shape ), 'Dimension mismatch in hessian' r_cut_box = r_cut / box r_cut_box_sq = r_cut_box ** 2 box_sq = box ** 2 hes = 0.0 if fast: for i in range(n-1): rij = r[i,:] - r[i+1:,:] # Separation vectors rij = rij - np.rint ( rij ) # Periodic boundary conditions in box=1 units rij_sq = np.sum(rij**2,axis=1) # Squared separations for j>1 in_range = rij_sq < r_cut_box_sq # Set flags for within cutoff rij_sq = rij_sq * box_sq # Now in sigma=1 units rij = rij * box # Now in sigma=1 units fij = f[i,:] - f[i+1:,:] # Differences in forces ff = np.sum(fij*fij,axis=1) rf = np.sum(rij*fij,axis=1) sr2 = np.where ( in_range, 1.0 / rij_sq, 0.0 ) # Only where in range sr6 = sr2 ** 3 sr8 = sr6 * sr2 sr10 = sr8 * sr2 v1 = 24.0 * ( 1.0 - 2.0 * sr6 ) * sr8 v2 = 96.0 * ( 7.0 * sr6 - 2.0 ) * sr10 hes = hes + np.sum(v1 * ff) + np.sum(v2 * rf**2) else: for i in range(n-1): for j in range(i+1,n): rij = r[i,:] - r[j,:] # Separation vector rij = rij - np.rint ( rij ) # Periodic boundary conditions in box=1 units rij_sq = np.sum ( rij**2 ) # Squared separation if rij_sq < r_cut_box_sq: rij_sq = rij_sq * box_sq # Now in sigma=1 units rij = rij * box # Now in sigma=1 units fij = f[i,:] - f[j,:] # Difference in forces ff = np.dot(fij,fij) rf = np.dot(rij,fij) sr2 = 1.0 / rij_sq sr6 = sr2 ** 3 sr8 = sr6 * sr2 sr10 = sr8 * sr2 v1 = 24.0 * ( 1.0 - 2.0 * sr6 ) * sr8 v2 = 96.0 * ( 7.0 * sr6 - 2.0 ) * sr10 hes = hes + v1 * ff + v2 * rf**2 return hes
48.116279
109
0.478879
[ "CC0-1.0" ]
Allen-Tildesley/examples
python_examples/md_lj_module.py
10,345
Python
# Copyright 2013 The Emscripten Authors. All rights reserved. # Emscripten is available under two separate licenses, the MIT license and the # University of Illinois/NCSA Open Source License. Both these licenses can be # found in the LICENSE file. """Tool to find or compare big functions in a js or ll file """ import sys def humanbytes(nbytes): if nbytes > 9 * 1024 * 1024: return '{}MB'.format(nbytes / 1024 / 1024) elif nbytes > 9 * 1024: return '{}KB'.format(nbytes / 1024) else: return '{}B'.format(nbytes) def processfile(filename): start = None curr = None nbytes = None data = {} for i, line in enumerate(open(filename)): if line.startswith(('function ', 'define ', ' (func ')) and '}' not in line: start = i curr = line nbytes = len(line) elif line.startswith(('}', ' )')) and curr: nlines = i - start data[curr] = (nlines, nbytes + 1) curr = None start = None elif curr: nbytes += len(line) return data def common_compare(data1, data2): fns1 = set(data1.keys()) fns2 = set(data2.keys()) commonfns = fns1.intersection(fns2) commonlinediff = 0 commonbytediff = 0 for fn in commonfns: d1 = data1[fn] d2 = data2[fn] commonlinediff += d2[0] - d1[0] commonbytediff += d2[1] - d1[1] linesword = 'more' if commonlinediff >= 0 else 'less' bytesword = 'more' if commonbytediff >= 0 else 'less' print('file 2 has {} lines {} than file 1 in {} common functions'.format(abs(commonlinediff), linesword, len(commonfns))) print('file 2 has {} {} than file 1 in {} common functions'.format(humanbytes(abs(commonbytediff)), bytesword, len(commonfns))) def uniq_compare(data1, data2): fns1 = set(data1.keys()) fns2 = set(data2.keys()) uniqfns1 = fns1 - fns2 uniqfns2 = fns2 - fns1 uniqlines1 = 0 uniqbytes1 = 0 uniqlines2 = 0 uniqbytes2 = 0 for fn in uniqfns1: d = data1[fn] uniqlines1 += d[0] uniqbytes1 += d[1] for fn in uniqfns2: d = data2[fn] uniqlines2 += d[0] uniqbytes2 += d[1] uniqcountdiff = len(uniqfns2) - len(uniqfns1) assert len(fns2) - len(fns1) == uniqcountdiff uniqlinediff = uniqlines2 - uniqlines1 uniqbytediff = uniqbytes2 - uniqbytes1 countword = 'more' if uniqcountdiff >= 0 else 'less' linesword = 'more' if uniqlinediff >= 0 else 'less' bytesword = 'more' if uniqbytediff >= 0 else 'less' print('file 2 has {} functions {} than file 1 overall (unique: {} vs {})'.format(abs(uniqcountdiff), countword, len(uniqfns2), len(uniqfns1))) print('file 2 has {} lines {} than file 1 overall in unique functions'.format(abs(uniqlinediff), linesword)) print('file 2 has {} {} than file 1 overall in unique functions'.format(humanbytes(abs(uniqbytediff)), bytesword)) def list_bigfuncs(data): data = list(data.items()) data.sort(key=lambda f_d: f_d[1][0]) print(''.join(['%6d lines (%6s) : %s' % (d[0], humanbytes(d[1]), f) for f, d in data])) def main(): if len(sys.argv) < 2 or len(sys.argv) > 3 or sys.argv[1] == '--help': print('Usage:') print(' {} file1 - list functions in a file in ascending order of size'.format(sys.argv[0])) print(' {} file1 file2 - compare functions across two files'.format(sys.argv[0])) return 1 if len(sys.argv) == 2: filename = sys.argv[1] data = processfile(filename) list_bigfuncs(data) return 0 if len(sys.argv) == 3: filename1 = sys.argv[1] data1 = processfile(filename1) filename2 = sys.argv[2] data2 = processfile(filename2) uniq_compare(data1, data2) common_compare(data1, data2) return 0 assert False if __name__ == '__main__': sys.exit(main())
32.875
146
0.604563
[ "MIT" ]
0x53A/emscripten
tools/find_bigfuncs.py
3,945
Python
from datetime import date from argparse import Namespace from django.contrib import admin from django_q.tasks import async_task from import_export.admin import ImportExportModelAdmin from .models import ( MunicipalStaffContactsUpdate, IncomeExpenditureV2Update, CashFlowV2Update, RepairsMaintenanceV2Update, AgedDebtorFactsV2Update, AgedCreditorFactsV2Update, CapitalFactsV2Update, GrantFactsV2Update, FinancialPositionFactsV2Update, UIFWExpenseFactsUpdate, AuditOpinionFactsUpdate, AgedCreditorItemsV2, AgedDebtorItemsV2, CflowItemsV2, IncexpItemsV2, FinancialPositionItemsV2, RepairsMaintenanceItemsV2, CapitalItemsV2, GovernmentFunctionsV2, GrantTypesV2, CapitalTypeV2, DemarcationChanges, ) from .resources import ( AgedDebtorItemsV2Resource, AgedCreditorItemsV2Resource, CashflowItemsV2Resource, IncexpItemsV2Resource, CapitalItemsV2Resource, FinancialPositionItemsV2Resource, RepairsMaintenanceItemsV2Resource, GovernmentFunctionsV2Resource, GrantTypesV2Resource, CapitalTypeV2Resource, ) class BaseUpdateAdmin(admin.ModelAdmin): list_display = ("user", "datetime", "deleted", "inserted",) readonly_fields = ("user", "deleted", "inserted",) task_function = None task_name = None def get_exclude(self, request, obj=None): if obj is None: return ("user",) else: return super(BaseUpdateAdmin, self).get_exclude(request, obj) def save_model(self, request, obj, form, change): # Set the user to the current user obj.user = request.user # Process default save behavior super(BaseUpdateAdmin, self).save_model( request, obj, form, change ) # Queue task if not change: async_task( self.task_function, obj, task_name=self.task_name, batch_size=10000, ) @admin.register(MunicipalStaffContactsUpdate) class MunicipalStaffContactsUpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_municipal_staff_contacts" task_name = "Municipal staff contacts update" @admin.register(UIFWExpenseFactsUpdate) class UIFWExpenseFactsUpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_uifw_expense_facts" task_name = "UIFW Expense Facts update" @admin.register(AuditOpinionFactsUpdate) class AuditOpinionFactsUpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_audit_opinion_facts" task_name = "Audit Opinion Facts update" @admin.register(IncomeExpenditureV2Update) class IncomeExpenditureV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_income_expenditure_v2" task_name = "Income & Expenditure v2 update" @admin.register(CashFlowV2Update) class CashFlowV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_cash_flow_v2" task_name = "Cash flow v2 update" @admin.register(RepairsMaintenanceV2Update) class RepairsMaintenanceV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_repairs_maintenance_v2" task_name = "Repairs & Maintenance v2 update" @admin.register(AgedDebtorFactsV2Update) class AgedDebtorFactsV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_aged_debtor_facts_v2" task_name = "Aged Debtor Facts v2 update" @admin.register(AgedCreditorFactsV2Update) class AgedCreditorFactsV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_aged_creditor_facts_v2" task_name = "Aged Creditor Facts v2 update" @admin.register(CapitalFactsV2Update) class CapitalFactsV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_capital_facts_v2" task_name = "Capital Facts v2 update" @admin.register(GrantFactsV2Update) class GrantFactsV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_grant_facts_v2" task_name = "Grant Facts v2 update" @admin.register(FinancialPositionFactsV2Update) class FinancialPositionFactsV2UpdateAdmin(BaseUpdateAdmin): task_function = "municipal_finance.update.update_financial_position_facts_v2" task_name = "FinancialPosition Facts v2 update" @admin.register(AgedCreditorItemsV2) class AgedCreditorItemsV2Admin(ImportExportModelAdmin): resource_class = AgedCreditorItemsV2Resource list_display = ("code", "label",) @admin.register(AgedDebtorItemsV2) class AgedDebtorItemsV2Admin(ImportExportModelAdmin): resource_class = AgedDebtorItemsV2Resource list_display = ("code", "label",) @admin.register(CflowItemsV2) class CashFlowItemsV2Admin(ImportExportModelAdmin): resource_class = CashflowItemsV2Resource list_display = ("code", "label",) @admin.register(IncexpItemsV2) class IncexpItemsV2Admin(ImportExportModelAdmin): resource_class = IncexpItemsV2Resource list_display = ("code", "label",) @admin.register(FinancialPositionItemsV2) class FinancialPositionItemsV2Admin(ImportExportModelAdmin): resource_class = FinancialPositionItemsV2Resource list_display = ("code", "label",) @admin.register(RepairsMaintenanceItemsV2) class RepairsMaintenanceItemsV2Admin(ImportExportModelAdmin): resource_class = RepairsMaintenanceItemsV2Resource list_display = ("code", "label",) @admin.register(GovernmentFunctionsV2) class GovernmentFunctionsV2Admin(ImportExportModelAdmin): resource_class = GovernmentFunctionsV2Resource list_display = ("code", "label",) @admin.register(GrantTypesV2) class GrantTypesV2Admin(ImportExportModelAdmin): resource_class = GrantTypesV2Resource list_display = ("code", "name",) @admin.register(CapitalTypeV2) class CapitalTypeV2Admin(ImportExportModelAdmin): resource_class = CapitalTypeV2Resource list_display = ("code", "label",) @admin.register(DemarcationChanges) class DemarcationChangesAdmin(admin.ModelAdmin): list_display = ( "date", "old_code", "new_code", "old_code_transition", "new_code_transition", )
30.346341
81
0.766436
[ "MIT" ]
Code4SA/municipal-data-api
municipal_finance/admin.py
6,221
Python
# Author: Mainak Jas <[email protected]> # Romain Trachel <[email protected]> # # License: BSD (3-clause) import warnings import os.path as op import numpy as np from nose.tools import assert_true, assert_raises from numpy.testing import assert_array_equal from mne import io, read_events, Epochs, pick_types from mne.decoding import Scaler, FilterEstimator from mne.decoding import PSDEstimator, EpochsVectorizer warnings.simplefilter('always') # enable b/c these tests throw warnings tmin, tmax = -0.2, 0.5 event_id = dict(aud_l=1, vis_l=3) start, stop = 0, 8 data_dir = op.join(op.dirname(__file__), '..', '..', 'io', 'tests', 'data') raw_fname = op.join(data_dir, 'test_raw.fif') event_name = op.join(data_dir, 'test-eve.fif') def test_scaler(): """Test methods of Scaler """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() scaler = Scaler(epochs.info) y = epochs.events[:, -1] # np invalid divide value warnings with warnings.catch_warnings(record=True): X = scaler.fit_transform(epochs_data, y) assert_true(X.shape == epochs_data.shape) X2 = scaler.fit(epochs_data, y).transform(epochs_data) assert_array_equal(X2, X) # Test inverse_transform with warnings.catch_warnings(record=True): # invalid value in mult Xi = scaler.inverse_transform(X, y) assert_array_equal(epochs_data, Xi) # Test init exception assert_raises(ValueError, scaler.fit, epochs, y) assert_raises(ValueError, scaler.transform, epochs, y) def test_filterestimator(): """Test methods of FilterEstimator """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() # Add tests for different combinations of l_freq and h_freq filt = FilterEstimator(epochs.info, l_freq=1, h_freq=40) y = epochs.events[:, -1] with warnings.catch_warnings(record=True): # stop freq attenuation warning X = filt.fit_transform(epochs_data, y) assert_true(X.shape == epochs_data.shape) assert_array_equal(filt.fit(epochs_data, y).transform(epochs_data), X) filt = FilterEstimator(epochs.info, l_freq=0, h_freq=40) y = epochs.events[:, -1] with warnings.catch_warnings(record=True): # stop freq attenuation warning X = filt.fit_transform(epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=1) y = epochs.events[:, -1] with warnings.catch_warnings(record=True): # stop freq attenuation warning assert_raises(ValueError, filt.fit_transform, epochs_data, y) filt = FilterEstimator(epochs.info, l_freq=1, h_freq=None) with warnings.catch_warnings(record=True): # stop freq attenuation warning X = filt.fit_transform(epochs_data, y) # Test init exception assert_raises(ValueError, filt.fit, epochs, y) assert_raises(ValueError, filt.transform, epochs, y) def test_psdestimator(): """Test methods of PSDEstimator """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() psd = PSDEstimator(2 * np.pi, 0, np.inf) y = epochs.events[:, -1] X = psd.fit_transform(epochs_data, y) assert_true(X.shape[0] == epochs_data.shape[0]) assert_array_equal(psd.fit(epochs_data, y).transform(epochs_data), X) # Test init exception assert_raises(ValueError, psd.fit, epochs, y) assert_raises(ValueError, psd.transform, epochs, y) def test_epochs_vectorizer(): """Test methods of EpochsVectorizer """ raw = io.read_raw_fif(raw_fname, preload=False) events = read_events(event_name) picks = pick_types(raw.info, meg=True, stim=False, ecg=False, eog=False, exclude='bads') picks = picks[1:13:3] with warnings.catch_warnings(record=True): epochs = Epochs(raw, events, event_id, tmin, tmax, picks=picks, baseline=(None, 0), preload=True) epochs_data = epochs.get_data() vector = EpochsVectorizer(epochs.info) y = epochs.events[:, -1] X = vector.fit_transform(epochs_data, y) # Check data dimensions assert_true(X.shape[0] == epochs_data.shape[0]) assert_true(X.shape[1] == epochs_data.shape[1] * epochs_data.shape[2]) assert_array_equal(vector.fit(epochs_data, y).transform(epochs_data), X) # Check if data is preserved n_times = epochs_data.shape[2] assert_array_equal(epochs_data[0, 0, 0:n_times], X[0, 0:n_times]) # Check inverse transform Xi = vector.inverse_transform(X, y) assert_true(Xi.shape[0] == epochs_data.shape[0]) assert_true(Xi.shape[1] == epochs_data.shape[1]) assert_array_equal(epochs_data[0, 0, 0:n_times], Xi[0, 0, 0:n_times]) # check if inverse transform works with different number of epochs Xi = vector.inverse_transform(epochs_data[0], y) assert_true(Xi.shape[1] == epochs_data.shape[1]) assert_true(Xi.shape[2] == epochs_data.shape[2]) # Test init exception assert_raises(ValueError, vector.fit, epochs, y) assert_raises(ValueError, vector.transform, epochs, y)
36.791411
79
0.679006
[ "BSD-3-Clause" ]
ARudiuk/mne-python
mne/decoding/tests/test_transformer.py
5,997
Python
from flask import render_template from flask import redirect from flask import request from flask import url_for from flask import flash from flask_login import login_user from flask_login import logout_user from flask_login import login_required from flask_login import current_user from . import auth from .forms import LoginForm from .forms import RegistrationForm from .forms import ChangePasswordForm from .forms import PasswordResetRequestForm from .forms import PasswordResetForm from .forms import ChangeEmailForm from .. import db from ..models import User from ..email import send_email @auth.before_app_request def before_request(): if current_user.is_authenticated: current_user.update_last_seen() if ( not current_user.confirmed and request.endpoint[:5] != 'auth.' and request.endpoint != 'static' ): return redirect(url_for('auth.unconfirmed')) @auth.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user is not None and user.verify_password(form.password.data): login_user(user, form.remember_me.data) return redirect(request.args.get('next') or url_for('main.index')) flash('Invalid username or password') return render_template('auth/login.html', form=form) @auth.route('/logout') @login_required def logout(): logout_user() flash('You have been logged out.') return redirect(url_for('main.index')) @auth.route('/register', methods=['GET', 'POST']) def register(): form = RegistrationForm() if form.validate_on_submit(): user = User( email=form.email.data, username=form.username.data, password=form.password.data ) db.session.add(user) db.session.commit() token = user.generate_confirmation_token() send_email(user.email, 'Confirm Your Account', 'auth/email/confirm', user=user, token=token) flash('A confirmation email has been sent to you by email.') return redirect(url_for('auth.login')) return render_template('auth/register.html', form=form) @auth.route('/unconfirmed') def unconfirmed(): if current_user.is_anonymous or current_user.confirmed: return redirect(url_for('main.index')) return render_template('auth/unconfirmed.html') @auth.route('/confirm/<token>') @login_required def confirm(token): if current_user.confirmed: return redirect(url_for('main.index')) if current_user.confirm(token): flash('You have confirmed your account. Thanks!') else: flash('The confirmation link is invalid or has expired.') return redirect(url_for('main.index')) @auth.route('/confirm') @login_required def resend_confirmation(): token = current_user.generate_confirmation_token() send_email( current_user.email, 'Confirm Your Account', 'auth/email/confirm', user=current_user, token=token ) flash('A new confirmation email has been sent to you by email.') return redirect(url_for('auth.login')) @auth.route('/change-password', methods=['GET', 'POST']) @login_required def change_password(): form = ChangePasswordForm() if form.validate_on_submit(): if current_user.verify_password(form.old_password.data): current_user.password = form.password.data db.session.add(current_user) flash('Your password has been updated.') return redirect(url_for('main.index')) else: flash('Invalid password.') return render_template('auth/change_password.html', form=form) @auth.route('/reset', methods=['GET', 'POST']) def password_reset_request(): if not current_user.is_anonymous: return redirect(url_for('main.index')) form = PasswordResetRequestForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user: token = user.generate_reset_token() send_email( user.email, 'Reset Your Password', 'auth/email/reset_password', user=user, token=token, next=request.args.get('next') ) flash('An Email with instructions to reset your ' 'password has been sent to you.') else: flash('Email not registered') return redirect(url_for('auth.login')) return render_template('auth/reset_password.html', form=form) @auth.route('/reset/<token>', methods=['GET', 'POST']) def password_reset(token): if not current_user.is_anonymous: return redirect(url_for('main.index')) form = PasswordResetForm() if form.validate_on_submit(): user = User.query.filter_by(email=form.email.data).first() if user is None: return redirect(url_for('main.index')) if user.reset_password(token, form.password.data): flash('Your password has been updated.') return redirect(url_for('auth.login')) else: return redirect(url_for('main.index')) return render_template('auth/reset_password.html', form=form) @auth.route('/change-email', methods=['GET', 'POST']) @login_required def change_email_request(): form = ChangeEmailForm() if form.validate_on_submit(): if current_user.verify_password(form.password.data): new_email = form.email.data token = current_user.generate_email_change_token(new_email) send_email( new_email, 'Confirm your email address', 'auth/email/change_email', user=current_user, token=token ) flash('An email with instructions to confirm your ' 'new email address has been sent to you.') return redirect(url_for('main.index')) else: flash('Invalid email or password.') return render_template('auth/change_email.html', form=form) @auth.route('/change-email/<token>') @login_required def change_email(token): if current_user.change_email(token): flash('Your email address has been updated.') else: flash('Invalid request.') return redirect(url_for('main.index'))
33.505208
78
0.655215
[ "MIT" ]
qimiaoxue/flash_card
app/auth/views.py
6,433
Python
from dataclasses import dataclass from cannabis.types.blockchain_format.sized_bytes import bytes32 from cannabis.util.ints import uint32 from cannabis.util.streamable import Streamable, streamable @dataclass(frozen=True) @streamable class PoolTarget(Streamable): puzzle_hash: bytes32 max_height: uint32 # A max height of 0 means it is valid forever
27.769231
69
0.814404
[ "Apache-2.0" ]
CannabisChain/cannabis-blockchain
cannabis/types/blockchain_format/pool_target.py
361
Python
import logging LOG = logging.getLogger(__name__) def export_transcripts(adapter, build="37"): """Export all transcripts from the database Args: adapter(scout.adapter.MongoAdapter) build(str) Yields: transcript(scout.models.Transcript) """ LOG.info("Exporting all transcripts") for tx_obj in adapter.transcripts(build=build): yield tx_obj
20
51
0.675
[ "BSD-3-Clause" ]
Clinical-Genomics/scout
scout/export/transcript.py
400
Python
import pandas as pd import numpy as np import math import matplotlib.pyplot as plt from .metrics import mse_score, rmse_score, r2_score, mae_score from ..features.build_features import StandardScaler, MinMaxScaler class LinearRegressor(): """Linear regressor""" def __init__(self, method='normal_equation', normalize=False, lr=0.01, epochs=1000, add_intercept=False): assert method in ['normal_equation', 'gradient_descent'], "Method not supported. Supported methods are 'normal_equation' and 'gradient_descent'" self.method = method self.normalize = normalize self.add_intercept = add_intercept self._weights = None if self.method == 'gradient_descent': self.lr = lr self.epochs = epochs if self.normalize: self._feature_scaler = MinMaxScaler() self._target_scaler = MinMaxScaler() def fit(self, X, y): """Fit the model to the data""" if self.normalize: X = self._feature_scaler.fit_transform(X) y = self._target_scaler.fit_transform(y) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y = y.to_numpy() if self.method == 'normal_equation': self._weights = np.dot(np.dot(np.linalg.inv(np.dot(X.T, X)), X.T), y) else: # mse_new = np.inf self._weights = np.zeros(X.shape[1]) self.cost_history = [0] * self.epochs for i in range(self.epochs): grad = np.dot(X.T, np.dot(X, self._weights) - y) / y.shape[0] self._weights = self._weights - self.lr * grad self.cost_history[i] = mse_score(y, np.dot(X, self._weights)) # if (rmse_new > rmse_old): # print("Stopped at iteration {}".format(i)) # break plt.scatter(range(self.epochs), self.cost_history) plt.xlabel('epoch') plt.ylabel('mse') def predict(self, X): """Use the fitted model to predict on data""" assert self._weights is not None, "Model needs to be fitted first. Use the fit method" if self.normalize: X = self._feature_scaler.transform(X) X = X.to_numpy() if self.add_intercept: X = np.hstack((np.ones((X.shape[0], 1)), X)) y_pred = np.dot(X, self._weights) if self.normalize: y_pred = self._target_scaler.inverse_transform(y_pred) return np.round(y_pred, 2) def get_weights(self): """Get weights from the fitted model""" assert self._weights is not None, "Model needs to be fitted first. Use the fit method" return self._weights def score(self, X, y, metric='r2'): """Score the model""" assert metric in ['r2', 'rmse', 'mae'], "Metric not supported. Supported metrics are 'r2', 'rmse' and 'mae'" y_pred = self.predict(X) if metric == 'r2': score = r2_score(y, y_pred) elif metric == 'rmse': score = rmse_score(y, y_pred) elif metric == 'mae': score = mae_score(y, y_pred) return score
34.197917
152
0.573865
[ "MIT" ]
orsdanilo/ml-from-scratch
src/models/_linear.py
3,283
Python
from copy import deepcopy from quest.quest_manager import QuestManager import settings from twitch.channel import Channel class QuestChannel(Channel): def __init__(self, owner, channel_manager): super().__init__(owner, channel_manager) self.quest_manager = QuestManager(self) self.mod_commands.add_commands( exact_match_commands={ '!queston': lambda _: self.channel_manager.enable_quest(self.owner), '!questoff': lambda _: self.channel_manager.disable_quest(self.owner) }, starts_with_commands={ '!questcooldown': self.set_quest_cooldown}) def set_quest_cooldown(self, display_name, cooldown): """ Sets the quest cooldown to be the specified value. :param display_name: str - The display name of the person trying to set the cooldown :param cooldown: str - The raw message specifying the value to set the cooldown to :return: """ try: self.channel_manager.set_quest_cooldown(self.owner, int(cooldown)) except (IndexError, ValueError): self.channel_manager.bot.send_whisper( display_name, 'Invalid usage! Sample usage: !questcooldown 90') def check_commands(self, display_name, msg, is_mod, is_sub): """ Connect to other command lists whose requirements are met. :param display_name: str - The display name of the command sender :param msg: str - The full message that the user sent that starts with "!" :param is_mod: bool - Whether the sender is a mod :param is_sub: bool - Whether the sender is a sub """ super().check_commands(display_name, msg, is_mod, is_sub) # Check quest commands self.quest_manager.commands.execute_command(display_name, msg)
39.404255
92
0.666307
[ "MIT" ]
Xelaadryth/Xelabot
quest_bot/quest_channel.py
1,852
Python
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "./datasets" DATASETS = { "coco_2017_train": { "img_dir": "coco/train2017", "ann_file": "coco/annotations/instances_train2017.json" }, "coco_2017_val": { "img_dir": "coco/val2017", "ann_file": "coco/annotations/instances_val2017.json" }, "coco_2017_test_dev": { "img_dir": "coco/test2017", "ann_file": "coco/annotations/image_info_test-dev2017.json" }, "coco_2014_train": { "img_dir": "coco/train2014", "ann_file": "coco/annotations/instances_train2014.json" }, "coco_2014_val": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_val2014.json" }, "coco_2014_minival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_minival2014.json" }, "coco_2014_valminusminival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/instances_valminusminival2014.json" }, "keypoints_coco_2014_train": { "img_dir": "coco/train2014", "ann_file": "coco/annotations/person_keypoints_train2014.json", }, "keypoints_coco_2014_val": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_val2014.json" }, "keypoints_coco_2014_minival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_minival2014.json", }, "keypoints_coco_2014_valminusminival": { "img_dir": "coco/val2014", "ann_file": "coco/annotations/person_keypoints_valminusminival2014.json", }, "voc_2007_train": { "data_dir": "voc/VOC2007", "split": "train" }, "voc_2007_train_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_train2007.json" }, "voc_2007_val": { "data_dir": "voc/VOC2007", "split": "val" }, "voc_2007_val_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_val2007.json" }, "voc_2007_test": { "data_dir": "voc/VOC2007", "split": "test" }, "voc_2007_test_cocostyle": { "img_dir": "voc/VOC2007/JPEGImages", "ann_file": "voc/VOC2007/Annotations/pascal_test2007.json" }, "voc_2012_train": { "data_dir": "voc/VOC2012", "split": "train" }, "voc_2012_train_cocostyle": { "img_dir": "voc/VOC2012/JPEGImages", "ann_file": "voc/VOC2012/Annotations/pascal_train2012.json" }, "voc_2012_val": { "data_dir": "voc/VOC2012", "split": "val" }, "voc_2012_val_cocostyle": { "img_dir": "voc/VOC2012/JPEGImages", "ann_file": "voc/VOC2012/Annotations/pascal_val2012.json" }, "voc_2012_test": { "data_dir": "voc/VOC2012", "split": "test" # PASCAL VOC2012 doesn't made the test annotations available, so there's no json annotation }, "cityscapes_fine_instanceonly_seg_train_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_train.json" }, "cityscapes_fine_instanceonly_seg_val_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_val.json" }, "cityscapes_fine_instanceonly_seg_test_cocostyle": { "img_dir": "cityscapes/images", "ann_file": "cityscapes/annotations/instancesonly_filtered_gtFine_test.json" } } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs["img_dir"]), ann_file=os.path.join(data_dir, attrs["ann_file"]), ) return dict( factory="COCODataset", args=args, ) elif "voc" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( data_dir=os.path.join(data_dir, attrs["data_dir"]), split=attrs["split"], ) return dict( factory="PascalVOCDataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://dl.fbaipublicfiles.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-50-GN": "ImageNetPretrained/47261647/R-50-GN.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "MSRA/R-101-GN": "ImageNetPretrained/47592356/R-101-GN.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", "FAIR/20171220/X-101-64x4d": "ImageNetPretrained/20171220/X-101-64x4d.pkl", } C2_DETECTRON_SUFFIX = "output/train/{}coco_2014_train%3A{}coco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", "37129812/e2e_mask_rcnn_X-152-32x8d-FPN-IN5k_1.44x": "09_35_36.8pzTQKYK", # keypoints "37697547/e2e_keypoint_rcnn_R-50-FPN_1x": "08_42_54.kdzV35ao" } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL dataset_tag = "keypoints_" if "keypoint" in name else "" suffix = ModelCatalog.C2_DETECTRON_SUFFIX.format(dataset_tag, dataset_tag) # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
40.585
121
0.605026
[ "BSD-2-Clause" ]
choasup/FCOS
fcos_core/config/paths_catalog.py
8,117
Python
import sys from jennie.jennie_tools.command_handler import * from jennie.ubuntu import * def execute(): arguments = sys.argv[1:] commands = CommandHandler().start(arguments) if not commands or commands == None: return elif commands == True: return elif commands[0] == "ubuntu": if commands[1] == "setup": if commands[2] == "elk": setup_elasticsearchkibana() elif commands[2] == "elasticsearch": setup_elasticsearch() elif commands[2] == "lemp": setup_lemp() elif commands[2] == "phpmyadmin": install_phpmyadmin() elif commands[1] == "deploy": info = take_user_input(DEPLOY_INFO_COMMANDS) if commands[2] == "web": deploy_folder_nginx(info["port"], info["domain"]) elif commands[2] == "django": deploy_django(info["port"], info["domain"]) if __name__ == '__main__': execute()
29.028571
65
0.554134
[ "MIT" ]
Ask-Jennie/ask-jennie
jennie/__init__.py
1,016
Python
from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt text = """<form method="post" action="/add/"> <input type="text" name="a" value="%d"> + <input type="text" name="b" value="%d"> <input type="submit" value="="> <input type="text" value="%d"> </form>""" # @csrf_exempt # def index(request): # if 'a' in request.POST: # a = int(request.POST['a']) # b = int(request.POST['b']) # else: # a = 0 # b = 0 # return HttpResponse(text % (a,b,a+b)) @csrf_exempt def index(request): if 'a' in request.POST: a = int(request.POST['a']) b = int(request.POST['b']) else: a = 0 b = 0 return HttpResponse(text % (a, b, a + b))
25.793103
85
0.550802
[ "MIT" ]
feonixsmj/Django-Python
newtest/newtest/add.py
748
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ComplianceResultsOperations: """ComplianceResultsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.security.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list( self, scope: str, **kwargs: Any ) -> AsyncIterable["_models.ComplianceResultList"]: """Security compliance results in the subscription. :param scope: Scope of the query, can be subscription (/subscriptions/0b06d9ea-afe6-4779-bd59-30e5c2d9d13f) or management group (/providers/Microsoft.Management/managementGroups/mgName). :type scope: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ComplianceResultList or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.security.models.ComplianceResultList] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ComplianceResultList"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'scope': self._serialize.url("scope", scope, 'str', skip_quote=True), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ComplianceResultList', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/{scope}/providers/Microsoft.Security/complianceResults'} # type: ignore async def get( self, resource_id: str, compliance_result_name: str, **kwargs: Any ) -> "_models.ComplianceResult": """Security Compliance Result. :param resource_id: The identifier of the resource. :type resource_id: str :param compliance_result_name: name of the desired assessment compliance result. :type compliance_result_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ComplianceResult, or the result of cls(response) :rtype: ~azure.mgmt.security.models.ComplianceResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ComplianceResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2017-08-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceId': self._serialize.url("resource_id", resource_id, 'str', skip_quote=True), 'complianceResultName': self._serialize.url("compliance_result_name", compliance_result_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ComplianceResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/{resourceId}/providers/Microsoft.Security/complianceResults/{complianceResultName}'} # type: ignore
45.438596
133
0.660746
[ "MIT" ]
AFengKK/azure-sdk-for-python
sdk/security/azure-mgmt-security/azure/mgmt/security/aio/operations/_compliance_results_operations.py
7,770
Python
# -*- coding: utf-8 -*- import argparse, json, os import numpy as np import h5py import codecs parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_txt', default='half_obama_weeklys.txt') parser.add_argument('-o', '--output_h5', default='half_obama_weeklys.h5') parser.add_argument('-oj', '--output_json', default='half_obama_weeklys.json') parser.add_argument('-vf', '--val_frac', type=float, default=0.1) parser.add_argument('-tf', '--test_frac', type=float, default=0.1) parser.add_argument('-q', '--quiet', action='store_true') parser.add_argument('-e', '--encoding', default='utf-8') args = parser.parse_args() if __name__ == '__main__': if args.encoding == 'bytes': args.encoding = None # First go the file once to see how big it is and to build the vocab token_to_idx = {} total_size = 0 with codecs.open(args.input_txt, 'r', args.encoding) as f: for line in f: total_size += len(line) for char in line: if char not in token_to_idx: token_to_idx[char] = len(token_to_idx) + 1 # Now we can figure out the split sizes val_size = int(args.val_frac * total_size) test_size = int(args.test_frac * total_size) train_size = total_size - val_size - test_size if not args.quiet: print 'Total vocabulary size: %d' % len(token_to_idx) print 'Total tokens in file: %d' % total_size print ' Training size: %d' % train_size print ' Val size: %d' % val_size print ' Test size: %d' % test_size # Choose the datatype based on the vocabulary size dtype = np.uint8 if len(token_to_idx) > 255: dtype = np.uint32 if not args.quiet: print 'Using dtype ', dtype # Just load data into memory ... we'll have to do something more clever # for huge datasets but this should be fine for now train = np.zeros(train_size, dtype=dtype) val = np.zeros(val_size, dtype=dtype) test = np.zeros(test_size, dtype=dtype) splits = [train, val, test] # Go through the file again and write data to numpy arrays split_idx, cur_idx = 0, 0 with codecs.open(args.input_txt, 'r', args.encoding) as f: for line in f: for char in line: splits[split_idx][cur_idx] = token_to_idx[char] cur_idx += 1 if cur_idx == splits[split_idx].size: split_idx += 1 cur_idx = 0 # Write data to HDF5 file with h5py.File(args.output_h5, 'w') as f: f.create_dataset('train', data=train) f.create_dataset('val', data=val) f.create_dataset('test', data=test) # For 'bytes' encoding, replace non-ascii characters so the json dump # doesn't crash if args.encoding is None: new_token_to_idx = {} for token, idx in token_to_idx.iteritems(): if ord(token) > 127: new_token_to_idx['[%d]' % ord(token)] = idx else: new_token_to_idx[token] = idx token_to_idx = new_token_to_idx # Dump a JSON file for the vocab json_data = { 'token_to_idx': token_to_idx, 'idx_to_token': {v: k for k, v in token_to_idx.iteritems()}, } with open(args.output_json, 'w') as f: json.dump(json_data, f)
32.861702
78
0.668177
[ "MIT" ]
nateGeorge/obama_bot
scrape-prez-vids/scrapy/scrape_prez/preprocess.py
3,089
Python
import psycopg2 import os from dotenv import load_dotenv load_dotenv() # Adds .env to memory # postgres db connection postgres_options = { "host": os.getenv("POSTGRES_HOST"), "database": os.getenv("POSTGRES_DATABASE"), "user": os.getenv("POSTGRES_USER"), "password": os.getenv("POSTGRES_PASSWORD") } db_conn = psycopg2.connect(**postgres_options) c = db_conn.cursor() private_keys: list = ((os.getenv("PRIVATE_KEYS")).split(',')) idol_folder = os.getenv("FOLDER_LOCATION") top_gg_webhook_key = os.getenv("TOP_GG_WEBHOOK")
22.04
61
0.715064
[ "MIT" ]
MujyKun/IreneAPI
resources/keys.py
551
Python
# Generated by Django 2.2.8 on 2019-12-24 12:45 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Redirect', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('source', models.CharField(max_length=50, unique=True)), ('destination', models.CharField(max_length=50, unique=True)), ], ), ]
25.26087
114
0.585198
[ "MIT" ]
SharifAIChallenge/AIC21-Backend
apps/go/migrations/0001_initial.py
581
Python
from xml.dom import minidom from django.utils.datastructures import MultiValueDict from django import forms from django.utils.html import format_html, mark_safe from django.forms.utils import flatatt class SelectMultipleSVG(forms.SelectMultiple): class Media: js = ('django_svgselect.js',) def __init__(self, svg): super(SelectMultipleSVG, self).__init__() # TODO: Add some validation here? self.svg = svg def render(self, name, value, attrs=None, choices=()): svg = minidom.parse(self.svg) if value is None: value = [] final_attrs = self.build_attrs(attrs, name=name) output = [format_html('<select multiple="multiple"{}>', flatatt(final_attrs))] options = self.render_options(choices, value) if options: output.append(options) output.append('</select>') output.append("<div id='%s-svg'>" % final_attrs['id']) output.append(svg.toxml()) output.append("</div>") output.append("<script language='javascript'>document.getElementById('%s').convertToSvg('%s-svg');</script>" % (final_attrs['id'], final_attrs['id'])) return mark_safe('\n'.join(output)) def value_from_datadict(self, data, files, name): if isinstance(data, MultiValueDict): return data.getlist(name) return data.get(name)
34.390244
118
0.634752
[ "MIT" ]
jmickela/django_svgselect
django_svgselect/forms.py
1,410
Python
""" Python 'unicode-internal' Codec Written by Marc-Andre Lemburg ([email protected]). (c) Copyright CNRI, All Rights Reserved. NO WARRANTY. """ import codecs ### Codec APIs class Codec(codecs.Codec): # Note: Binding these as C functions will result in the class not # converting them to methods. This is intended. encode = codecs.unicode_internal_encode decode = codecs.unicode_internal_decode class IncrementalEncoder(codecs.IncrementalEncoder): def encode(self, input, final=False): return codecs.unicode_internal_encode(input, self.errors)[0] class IncrementalDecoder(codecs.IncrementalDecoder): def decode(self, input, final=False): return codecs.unicode_internal_decode(input, self.errors)[0] class StreamWriter(Codec,codecs.StreamWriter): pass class StreamReader(Codec,codecs.StreamReader): pass ### encodings module src def getregentry(): return codecs.CodecInfo( name='unicode-internal', encode=Codec.encode, decode=Codec.decode, incrementalencoder=IncrementalEncoder, incrementaldecoder=IncrementalDecoder, streamwriter=StreamWriter, streamreader=StreamReader, )
26
69
0.728261
[ "MIT" ]
JacobMiske/nuclear-database-APIs
env/lib/python3.7/encodings/unicode_internal.py
1,196
Python
import cv2 import numpy as np from faster_rcnn import network from faster_rcnn.faster_rcnn import FasterRCNN from faster_rcnn.utils.timer import Timer def test(): import os im_file = 'demo/004545.jpg' # im_file = 'data/VOCdevkit2007/VOC2007/JPEGImages/009036.jpg' # im_file = '/media/longc/Data/data/2DMOT2015/test/ETH-Crossing/img1/000100.jpg' image = cv2.imread(im_file) model_file = '/home/zjwang/git/faster_rcnn_pytorch/VGGnet_fast_rcnn_iter_70000.h5' # model_file = '/media/longc/Data/models/faster_rcnn_pytorch3/faster_rcnn_100000.h5' # model_file = '/media/longc/Data/models/faster_rcnn_pytorch2/faster_rcnn_2000.h5' detector = FasterRCNN() network.load_net(model_file, detector) detector.cuda() detector.eval() print('load model successfully!') # network.save_net(r'/media/longc/Data/models/VGGnet_fast_rcnn_iter_70000.h5', detector) # print('save model succ') t = Timer() t.tic() # image = np.zeros(shape=[600, 800, 3], dtype=np.uint8) + 255 dets, scores, classes = detector.detect(image, 0.7) runtime = t.toc() print('total spend: {}s'.format(runtime)) im2show = np.copy(image) for i, det in enumerate(dets): det = tuple(int(x) for x in det) cv2.rectangle(im2show, det[0:2], det[2:4], (255, 205, 51), 2) cv2.putText(im2show, '%s: %.3f' % (classes[i], scores[i]), (det[0], det[1] + 15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) cv2.imwrite(os.path.join('demo', 'out.jpg'), im2show) cv2.imshow('demo', im2show) cv2.waitKey(0) if __name__ == '__main__': test()
34.93617
113
0.668697
[ "MIT" ]
princeward/faster_rcnn_pytorch
demo.py
1,642
Python
#importieren aller notwenigen Bibliotheken import tensorflow.compat.v1 as tf #Die Hauptbibliothek Tensorflow wird geladen from tensorflow.keras.models import Sequential, save_model from tensorflow.keras.layers import Conv2D, BatchNormalization, MaxPool2D, MaxPooling2D, Dense, Dropout, Activation, Flatten from tensorflow.keras.optimizers import RMSprop, Adagrad, Adam import cv2 import matplotlib.pyplot as plt import numpy as np import os from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import csv Epochen=60 Trainingsbilder = [] Trainingslabels = [] print("Trainingsdaten werden geladen") for i in range(0,43): n = str(i) Pfad = "GTSRB_Final_Training_Images/GTSRB/Final_Training/images/" + n label=i for Datei in os.listdir(Pfad): img = os.path.join(Pfad,Datei) #Bilder werden auf die Größe 32*32 Pixel mit RGB skaliert, damit diese eine einheitliche Größe haben img = image.load_img(img,target_size=(32,32)) img = image.img_to_array(img, dtype=np.float32) img=img.reshape(1,32,32,3) Trainingsbilder.append(img) Trainingslabels.append(label) #Doppeltes Hinzufügen der Trainingsbilder aus Bildklassen mit wenig Trainingsbildern if i==0 or i==6 or i==18 or i==16 or i==19 or i==20 or i==21 or i==24 or i==27 or i==29 or i==32 or i==37: Trainingsbilder.append(img) Trainingslabels.append(label) #Umformung der Liste mit den Trainingsbildern in einen Tensor Trainingslabels = np.asarray(Trainingslabels) Trainingsbilder = np.asarray([Trainingsbilder]) Trainingsbilder = Trainingsbilder.reshape(-1, 32, 32, 3) #Umwandlung der Farbwerte in Gleitkommazahlen zwischen 0 und 1 Trainingsbilder = Trainingsbilder/255 Trainingsbilder = np.asarray(Trainingsbilder, dtype = "float32") Trainingslabels = np.asarray(Trainingslabels, dtype= "float32") Testbilder = [] Testlabels = [] print() print("Testdaten werden geladen") #Laden der Testbilder als deren Bildtensoren in eine Liste Testpfad="GTSRB_Final_Test_Images/GTSRB/Final_Test/images/" for Datei in os.listdir(Testpfad): img = os.path.join(Testpfad,Datei) #Umformung der Testbilder in die Größe 32*32 Pixel img = image.load_img(img,target_size=(32,32)) img = image.img_to_array(img, dtype=np.float32) img = img.reshape(1,32,32, 3) Testbilder.append(img) #Auslesen der richtigen Bildklassen der Testbilder aus einer CSV-Datei with open('Testdaten.csv') as csvdatei: csv_datei = csv.reader(csvdatei) for Reihe in csv_datei: Testlabels.append(Reihe[6]) #Umformung der Liste mit den Testbildern in einen Tensor Testlabels.pop(0) Testlabels = np.asarray(Testlabels) Testbilder = np.asarray([Testbilder]) Testbilder = Testbilder.reshape(-1, 32, 32, 3) #Umwandlung der Farbwerte in Gleitkommazahlen zwischen 0 und 1 Testbilder = Testbilder/255 Testbilder = np.asarray(Testbilder, dtype = "float32") Testlabels = np.asarray(Testlabels, dtype= "float32") #Die csv-Datei Messdaten wird angelegt und eine neue Versuchreihe darin notiert with open('Messdaten.csv', mode='a') as employee_file: employee_writer = csv.writer(employee_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) employee_writer.writerow('neue Versuchsreihe') #Zusammenstellen des Neuronalen Netzes #zuerst Zusammenstellen der Filter mit Batchnormalisierung (3 Convolutional Filter, 2 Pooling Filter) model = Sequential(name='CNN') model.add(Conv2D(32, (3, 3), activation='selu', padding='same',input_shape=(32,32,3))) model.add(BatchNormalization()) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(BatchNormalization()) model.add(Conv2D(64, (2, 2))) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.2)) model.add(BatchNormalization()) #Umformung des Veränderten Tensors in einen langen Vektor model.add(Flatten()) #Aufstellen der 3 Neuronenschichten mit 750, 256 und 43 Neuronen, Festlegen der Dropoutraten #Neuronenzahl der 1. Schicht model.add(Dense(750)) #Aktivierungsfunktion relu model.add(Activation('relu')) #Dropout festlegen model.add(Dropout(0.4)) #Batchnormalisierung model.add(BatchNormalization()) #weitere Schichten model.add(Dense(256)) model.add(Activation('relu')) model.add(BatchNormalization()) model.add(Dropout(0.6)) model.add(Dense(43)) #Softmax zur Umwandlung in Klassenwahrscheinlichkeiten model.add(Activation('softmax')) #festlegen von Verlustfunktion, Optimizer und metrics model.compile(loss='sparse_categorical_crossentropy', optimizer='Adam', metrics=['accuracy']) #Befehl zum Trainieren des Netzes über 60 Epochen mit shuffle, Batchsize 32 #Trainiert wird mit den Trainingsbildern, nach jeder Trainingsepoche wird auf die Genauigkeit im Testdatensatz getestet for i in range(Epochen): model.fit(Trainingsbilder, Trainingslabels, epochs=1, shuffle=True, batch_size=32) #aus den Ergebnissen wird eine Genauigkeit im Testdatensatz errechnet, sowie ein durchschnittlicher Verlust score=model.evaluate(Testbilder, Testlabels) #in die csv-Datei wird nun Epoche, Genauigkeit und Verlust geschrieben, sodass man diese später auswerten kann with open('Messdaten.csv', mode='a') as data_file: data_writer = csv.writer(data_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) data_writer.writerow(['Epoche:',i]) data_writer.writerow(['Genauigkeit:',score[1]]) data_writer.writerow(['Loss:',score[0]]) print('Epoche',i+1) print('Test Verlust:', score[0]) print('Test Genauigkeit:', score[1]) #speichern des trainierten Models im hdf5-Format, falls es über 99% Genauigkeit im testdatensatz hat if score[1]>0.99: model.save('model_'+str(score[1])+'.hdf5') print("gespeichert")
41.183673
125
0.734721
[ "MIT" ]
Tom-Haustein/GTSRB_Neural_Network
Programme/Trainingsprogramm_mit_Messdaten.py
6,065
Python