content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
from env import lineFollower from stable_baselines import PPO2 import imageio import numpy as np # Load separate environment for evaluation env = lineFollower() # load model model = PPO2.load("model_final.zip") # Store image images = [] # Set environment and get image obs = env.reset() images.append(obs) done = False while not done: action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) images.append(obs) # shutdown environment env.shutdown() imageio.mimsave('foundation.gif', [np.array(img) for i, img in enumerate(images) if i%4 == 0], fps=29)
22.777778
102
0.730081
[ "MIT" ]
MajesticKhan/Reinforcement-Learning
Simulation/play.py
615
Python
from flask import json from authlib.common.urls import urlparse, url_decode from authlib.oauth2.rfc6749 import grants from authlib.oauth2.rfc7636 import ( CodeChallenge as _CodeChallenge, create_s256_code_challenge, ) from .models import db, User, Client from .models import CodeGrantMixin, generate_authorization_code from .oauth2_server import TestCase from .oauth2_server import create_authorization_server class AuthorizationCodeGrant(CodeGrantMixin, grants.AuthorizationCodeGrant): def create_authorization_code(self, client, grant_user, request): code_challenge = request.data.get('code_challenge') code_challenge_method = request.data.get('code_challenge_method') return generate_authorization_code( client, grant_user, request, code_challenge=code_challenge, code_challenge_method=code_challenge_method, ) class CodeChallenge(_CodeChallenge): SUPPORTED_CODE_CHALLENGE_METHOD = ['plain', 'S256', 'S128'] class CodeChallengeTest(TestCase): def prepare_data(self, token_endpoint_auth_method='none'): server = create_authorization_server(self.app) server.register_grant( AuthorizationCodeGrant, [CodeChallenge(required=True)] ) user = User(username='foo') db.session.add(user) db.session.commit() client_secret = '' if token_endpoint_auth_method != 'none': client_secret = 'code-secret' client = Client( user_id=user.id, client_id='code-client', client_secret=client_secret, redirect_uri='https://a.b', scope='profile address', token_endpoint_auth_method=token_endpoint_auth_method, response_type='code', grant_type='authorization_code', ) self.authorize_url = ( '/oauth/authorize?response_type=code' '&client_id=code-client' ) db.session.add(client) db.session.commit() def test_missing_code_challenge(self): self.prepare_data() rv = self.client.get(self.authorize_url) self.assertIn(b'Missing', rv.data) def test_has_code_challenge(self): self.prepare_data() rv = self.client.get(self.authorize_url + '&code_challenge=abc') self.assertEqual(rv.data, b'ok') def test_invalid_code_challenge_method(self): self.prepare_data() suffix = '&code_challenge=abc&code_challenge_method=invalid' rv = self.client.get(self.authorize_url + suffix) self.assertIn(b'Unsupported', rv.data) def test_supported_code_challenge_method(self): self.prepare_data() suffix = '&code_challenge=abc&code_challenge_method=plain' rv = self.client.get(self.authorize_url + suffix) self.assertEqual(rv.data, b'ok') def test_trusted_client_without_code_challenge(self): self.prepare_data('client_secret_basic') rv = self.client.get(self.authorize_url) self.assertEqual(rv.data, b'ok') rv = self.client.post(self.authorize_url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] headers = self.create_basic_header('code-client', 'code-secret') rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, }, headers=headers) resp = json.loads(rv.data) self.assertIn('access_token', resp) def test_missing_code_verifier(self): self.prepare_data() url = self.authorize_url + '&code_challenge=foo' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, 'client_id': 'code-client', }) resp = json.loads(rv.data) self.assertIn('Missing', resp['error_description']) def test_trusted_client_missing_code_verifier(self): self.prepare_data('client_secret_basic') url = self.authorize_url + '&code_challenge=foo' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] headers = self.create_basic_header('code-client', 'code-secret') rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, }, headers=headers) resp = json.loads(rv.data) self.assertIn('Missing', resp['error_description']) def test_plain_code_challenge_failed(self): self.prepare_data() url = self.authorize_url + '&code_challenge=foo' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, 'code_verifier': 'bar', 'client_id': 'code-client', }) resp = json.loads(rv.data) self.assertIn('failed', resp['error_description']) def test_plain_code_challenge_success(self): self.prepare_data() url = self.authorize_url + '&code_challenge=foo' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, 'code_verifier': 'foo', 'client_id': 'code-client', }) resp = json.loads(rv.data) self.assertIn('access_token', resp) def test_s256_code_challenge_success(self): self.prepare_data() code_challenge = create_s256_code_challenge('foo') url = self.authorize_url + '&code_challenge=' + code_challenge url += '&code_challenge_method=S256' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] rv = self.client.post('/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, 'code_verifier': 'foo', 'client_id': 'code-client', }) resp = json.loads(rv.data) self.assertIn('access_token', resp) def test_not_implemented_code_challenge_method(self): self.prepare_data() url = self.authorize_url + '&code_challenge=foo' url += '&code_challenge_method=S128' rv = self.client.post(url, data={'user_id': '1'}) self.assertIn('code=', rv.location) params = dict(url_decode(urlparse.urlparse(rv.location).query)) code = params['code'] self.assertRaises( RuntimeError, self.client.post, '/oauth/token', data={ 'grant_type': 'authorization_code', 'code': code, 'code_verifier': 'foo', 'client_id': 'code-client', } )
36.697115
76
0.62256
[ "BSD-3-Clause" ]
AngelLiang/hacking-authlib
tests/flask/test_oauth2/test_code_challenge.py
7,633
Python
#!/usr/bin/env python """ Matplotlib provides sophisticated date plotting capabilities, standing on the shoulders of python :mod:`datetime`, the add-on modules :mod:`pytz` and :mod:`dateutil`. :class:`datetime` objects are converted to floating point numbers which represent time in days since 0001-01-01 UTC, plus 1. For example, 0001-01-01, 06:00 is 1.25, not 0.25. The helper functions :func:`date2num`, :func:`num2date` and :func:`drange` are used to facilitate easy conversion to and from :mod:`datetime` and numeric ranges. .. note:: Like Python's datetime, mpl uses the Gregorian calendar for all conversions between dates and floating point numbers. This practice is not universal, and calendar differences can cause confusing differences between what Python and mpl give as the number of days since 0001-01-01 and what other software and databases yield. For example, the US Naval Observatory uses a calendar that switches from Julian to Gregorian in October, 1582. Hence, using their calculator, the number of days between 0001-01-01 and 2006-04-01 is 732403, whereas using the Gregorian calendar via the datetime module we find:: In [31]:date(2006,4,1).toordinal() - date(1,1,1).toordinal() Out[31]:732401 A wide range of specific and general purpose date tick locators and formatters are provided in this module. See :mod:`matplotlib.ticker` for general information on tick locators and formatters. These are described below. All the matplotlib date converters, tickers and formatters are timezone aware, and the default timezone is given by the timezone parameter in your :file:`matplotlibrc` file. If you leave out a :class:`tz` timezone instance, the default from your rc file will be assumed. If you want to use a custom time zone, pass a :class:`pytz.timezone` instance with the tz keyword argument to :func:`num2date`, :func:`plot_date`, and any custom date tickers or locators you create. See `pytz <http://pythonhosted.org/pytz/>`_ for information on :mod:`pytz` and timezone handling. The `dateutil module <https://dateutil.readthedocs.org>`_ provides additional code to handle date ticking, making it easy to place ticks on any kinds of dates. See examples below. Date tickers ------------ Most of the date tickers can locate single or multiple values. For example:: # import constants for the days of the week from matplotlib.dates import MO, TU, WE, TH, FR, SA, SU # tick on mondays every week loc = WeekdayLocator(byweekday=MO, tz=tz) # tick on mondays and saturdays loc = WeekdayLocator(byweekday=(MO, SA)) In addition, most of the constructors take an interval argument:: # tick on mondays every second week loc = WeekdayLocator(byweekday=MO, interval=2) The rrule locator allows completely general date ticking:: # tick every 5th easter rule = rrulewrapper(YEARLY, byeaster=1, interval=5) loc = RRuleLocator(rule) Here are all the date tickers: * :class:`MinuteLocator`: locate minutes * :class:`HourLocator`: locate hours * :class:`DayLocator`: locate specifed days of the month * :class:`WeekdayLocator`: Locate days of the week, e.g., MO, TU * :class:`MonthLocator`: locate months, e.g., 7 for july * :class:`YearLocator`: locate years that are multiples of base * :class:`RRuleLocator`: locate using a :class:`matplotlib.dates.rrulewrapper`. The :class:`rrulewrapper` is a simple wrapper around a :class:`dateutil.rrule` (`dateutil <https://dateutil.readthedocs.org>`_) which allow almost arbitrary date tick specifications. See `rrule example <../examples/pylab_examples/date_demo_rrule.html>`_. * :class:`AutoDateLocator`: On autoscale, this class picks the best :class:`MultipleDateLocator` to set the view limits and the tick locations. Date formatters --------------- Here all all the date formatters: * :class:`AutoDateFormatter`: attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. * :class:`DateFormatter`: use :func:`strftime` format strings * :class:`IndexDateFormatter`: date plots with implicit *x* indexing. """ from __future__ import (absolute_import, division, print_function, unicode_literals) from matplotlib.externals import six from matplotlib.externals.six.moves import xrange, zip import re import time import math import datetime import warnings from dateutil.rrule import (rrule, MO, TU, WE, TH, FR, SA, SU, YEARLY, MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY) from dateutil.relativedelta import relativedelta import dateutil.parser import numpy as np import matplotlib import matplotlib.units as units import matplotlib.cbook as cbook import matplotlib.ticker as ticker __all__ = ('date2num', 'num2date', 'drange', 'epoch2num', 'num2epoch', 'mx2num', 'DateFormatter', 'IndexDateFormatter', 'AutoDateFormatter', 'DateLocator', 'RRuleLocator', 'AutoDateLocator', 'YearLocator', 'MonthLocator', 'WeekdayLocator', 'DayLocator', 'HourLocator', 'MinuteLocator', 'SecondLocator', 'MicrosecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR', 'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY', 'HOURLY', 'MINUTELY', 'SECONDLY', 'MICROSECONDLY', 'relativedelta', 'seconds', 'minutes', 'hours', 'weeks') # Make a simple UTC instance so we don't always have to import # pytz. From the python datetime library docs: class _UTC(datetime.tzinfo): """UTC""" def utcoffset(self, dt): return datetime.timedelta(0) def tzname(self, dt): return "UTC" def dst(self, dt): return datetime.timedelta(0) UTC = _UTC() def _get_rc_timezone(): """ Retrieve the preferred timeszone from the rcParams dictionary. """ s = matplotlib.rcParams['timezone'] if s == 'UTC': return UTC import pytz return pytz.timezone(s) """ Time-related constants. """ EPOCH_OFFSET = float(datetime.datetime(1970, 1, 1).toordinal()) JULIAN_OFFSET = 1721424.5 # Julian date at 0001-01-01 MICROSECONDLY = SECONDLY + 1 HOURS_PER_DAY = 24. MIN_PER_HOUR = 60. SEC_PER_MIN = 60. MONTHS_PER_YEAR = 12. DAYS_PER_WEEK = 7. DAYS_PER_MONTH = 30. DAYS_PER_YEAR = 365.0 MINUTES_PER_DAY = MIN_PER_HOUR * HOURS_PER_DAY SEC_PER_HOUR = SEC_PER_MIN * MIN_PER_HOUR SEC_PER_DAY = SEC_PER_HOUR * HOURS_PER_DAY SEC_PER_WEEK = SEC_PER_DAY * DAYS_PER_WEEK MUSECONDS_PER_DAY = 1e6 * SEC_PER_DAY MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = ( MO, TU, WE, TH, FR, SA, SU) WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY) def _to_ordinalf(dt): """ Convert :mod:`datetime` or :mod:`date` to the Gregorian date as UTC float days, preserving hours, minutes, seconds and microseconds. Return value is a :func:`float`. """ if hasattr(dt, 'tzinfo') and dt.tzinfo is not None: delta = dt.tzinfo.utcoffset(dt) if delta is not None: dt -= delta base = float(dt.toordinal()) if isinstance(dt, datetime.datetime): # Get a datetime object at midnight in the same time zone as dt. cdate = dt.date() midnight_time = datetime.time(0, 0, 0, tzinfo=dt.tzinfo) rdt = datetime.datetime.combine(cdate, midnight_time) td_remainder = _total_seconds(dt - rdt) if td_remainder > 0: base += td_remainder / SEC_PER_DAY return base # a version of _to_ordinalf that can operate on numpy arrays _to_ordinalf_np_vectorized = np.vectorize(_to_ordinalf) try: # Available as a native method in Python >= 2.7. _total_seconds = datetime.timedelta.total_seconds except AttributeError: def _total_seconds(tdelta): """ Alias providing support for datetime.timedelta.total_seconds() function calls even in Python < 2.7. The input `tdelta` is a datetime.timedelta object, and returns a float containing the total number of seconds representing the `tdelta` duration. For large durations (> 270 on most platforms), this loses microsecond accuracy. """ return (tdelta.microseconds + (tdelta.seconds + tdelta.days * SEC_PER_DAY) * 1e6) * 1e-6 def _from_ordinalf(x, tz=None): """ Convert Gregorian float of the date, preserving hours, minutes, seconds and microseconds. Return value is a :class:`datetime`. The input date `x` is a float in ordinal days at UTC, and the output will be the specified :class:`datetime` object corresponding to that time in timezone `tz`, or if `tz` is `None`, in the timezone specified in `rcParams['timezone']`. """ if tz is None: tz = _get_rc_timezone() ix = int(x) dt = datetime.datetime.fromordinal(ix).replace(tzinfo=UTC) remainder = float(x) - ix # Round down to the nearest microsecond. dt += datetime.timedelta(microseconds=int(remainder * MUSECONDS_PER_DAY)) # Compensate for rounding errors if dt.microsecond < 10: dt = dt.replace(microsecond=0) elif dt.microsecond > 999990: dt += datetime.timedelta(microseconds=1e6 - dt.microsecond) return dt.astimezone(tz) # a version of _from_ordinalf that can operate on numpy arrays _from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf) class strpdate2num(object): """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :file:`examples/load_demo.py`. """ def __init__(self, fmt): """ fmt: any valid strptime format is supported """ self.fmt = fmt def __call__(self, s): """s : string to be converted return value: a date2num float """ return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6])) class bytespdate2num(strpdate2num): """ Use this class to parse date strings to matplotlib datenums when you know the date format string of the date you are parsing. See :file:`examples/load_demo.py`. """ def __init__(self, fmt, encoding='utf-8'): """ Args: fmt: any valid strptime format is supported encoding: encoding to use on byte input (default: 'utf-8') """ super(bytespdate2num, self).__init__(fmt) self.encoding = encoding def __call__(self, b): """ Args: b: byte input to be converted Returns: A date2num float """ s = b.decode(self.encoding) return super(bytespdate2num, self).__call__(s) # a version of dateutil.parser.parse that can operate on nump0y arrays _dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse) def datestr2num(d, default=None): """ Convert a date string to a datenum using :func:`dateutil.parser.parse`. Parameters ---------- d : string or sequence of strings The dates to convert. default : datetime instance The default date to use when fields are missing in `d`. """ if cbook.is_string_like(d): dt = dateutil.parser.parse(d, default=default) return date2num(dt) else: if default is not None: d = [dateutil.parser.parse(s, default=default) for s in d] d = np.asarray(d) if not d.size: return d return date2num(_dateutil_parser_parse_np_vectorized(d)) def date2num(d): """ *d* is either a :class:`datetime` instance or a sequence of datetimes. Return value is a floating point number (or sequence of floats) which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC, *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. """ if not cbook.iterable(d): return _to_ordinalf(d) else: d = np.asarray(d) if not d.size: return d return _to_ordinalf_np_vectorized(d) def julian2num(j): """ Convert a Julian date (or sequence) to a matplotlib date (or sequence). """ if cbook.iterable(j): j = np.asarray(j) return j - JULIAN_OFFSET def num2julian(n): """ Convert a matplotlib date (or sequence) to a Julian date (or sequence). """ if cbook.iterable(n): n = np.asarray(n) return n + JULIAN_OFFSET def num2date(x, tz=None): """ *x* is a float value which gives the number of days (fraction part represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC *plus* *one*. The addition of one here is a historical artifact. Also, note that the Gregorian calendar is assumed; this is not universal practice. For details, see the module docstring. Return value is a :class:`datetime` instance in timezone *tz* (default to rcparams TZ value). If *x* is a sequence, a sequence of :class:`datetime` objects will be returned. """ if tz is None: tz = _get_rc_timezone() if not cbook.iterable(x): return _from_ordinalf(x, tz) else: x = np.asarray(x) if not x.size: return x return _from_ordinalf_np_vectorized(x, tz).tolist() def drange(dstart, dend, delta): """ Return a date range as float Gregorian ordinals. *dstart* and *dend* are :class:`datetime` instances. *delta* is a :class:`datetime.timedelta` instance. """ f1 = _to_ordinalf(dstart) f2 = _to_ordinalf(dend) step = _total_seconds(delta) / SEC_PER_DAY # calculate the difference between dend and dstart in times of delta num = int(np.ceil((f2 - f1) / step)) # calculate end of the interval which will be generated dinterval_end = dstart + num * delta # ensure, that an half open interval will be generated [dstart, dend) if dinterval_end >= dend: # if the endpoint is greated than dend, just subtract one delta dinterval_end -= delta num -= 1 f2 = _to_ordinalf(dinterval_end) # new float-endpoint return np.linspace(f1, f2, num + 1) ### date tickers and formatters ### class DateFormatter(ticker.Formatter): """ Tick location is seconds since the epoch. Use a :func:`strftime` format string. Python only supports :mod:`datetime` :func:`strftime` formatting for years greater than 1900. Thanks to Andrew Dalke, Dalke Scientific Software who contributed the :func:`strftime` code below to include dates earlier than this year. """ illegal_s = re.compile(r"((^|[^%])(%%)*%s)") def __init__(self, fmt, tz=None): """ *fmt* is a :func:`strftime` format string; *tz* is the :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): if x == 0: raise ValueError('DateFormatter found a value of x=0, which is ' 'an illegal date. This usually occurs because ' 'you have not informed the axis that it is ' 'plotting dates, e.g., with ax.xaxis_date()') dt = num2date(x, self.tz) return self.strftime(dt, self.fmt) def set_tzinfo(self, tz): self.tz = tz def _replace_common_substr(self, s1, s2, sub1, sub2, replacement): """Helper function for replacing substrings sub1 and sub2 located at the same indexes in strings s1 and s2 respectively, with the string replacement. It is expected that sub1 and sub2 have the same length. Returns the pair s1, s2 after the substitutions. """ # Find common indexes of substrings sub1 in s1 and sub2 in s2 # and make substitutions inplace. Because this is inplace, # it is okay if len(replacement) != len(sub1), len(sub2). i = 0 while True: j = s1.find(sub1, i) if j == -1: break i = j + 1 if s2[j:j + len(sub2)] != sub2: continue s1 = s1[:j] + replacement + s1[j + len(sub1):] s2 = s2[:j] + replacement + s2[j + len(sub2):] return s1, s2 def strftime_pre_1900(self, dt, fmt=None): """Call time.strftime for years before 1900 by rolling forward a multiple of 28 years. *fmt* is a :func:`strftime` format string. Dalke: I hope I did this math right. Every 28 years the calendar repeats, except through century leap years excepting the 400 year leap years. But only if you're using the Gregorian calendar. """ if fmt is None: fmt = self.fmt # Since python's time module's strftime implementation does not # support %f microsecond (but the datetime module does), use a # regular expression substitution to replace instances of %f. # Note that this can be useful since python's floating-point # precision representation for datetime causes precision to be # more accurate closer to year 0 (around the year 2000, precision # can be at 10s of microseconds). fmt = re.sub(r'((^|[^%])(%%)*)%f', r'\g<1>{0:06d}'.format(dt.microsecond), fmt) year = dt.year # For every non-leap year century, advance by # 6 years to get into the 28-year repeat cycle delta = 2000 - year off = 6 * (delta // 100 + delta // 400) year = year + off # Move to between the years 1973 and 2000 year1 = year + ((2000 - year) // 28) * 28 year2 = year1 + 28 timetuple = dt.timetuple() # Generate timestamp string for year and year+28 s1 = time.strftime(fmt, (year1,) + timetuple[1:]) s2 = time.strftime(fmt, (year2,) + timetuple[1:]) # Replace instances of respective years (both 2-digit and 4-digit) # that are located at the same indexes of s1, s2 with dt's year. # Note that C++'s strftime implementation does not use padded # zeros or padded whitespace for %y or %Y for years before 100, but # uses padded zeros for %x. (For example, try the runnable examples # with .tm_year in the interval [-1900, -1800] on # http://en.cppreference.com/w/c/chrono/strftime.) For ease of # implementation, we always use padded zeros for %y, %Y, and %x. s1, s2 = self._replace_common_substr(s1, s2, "{0:04d}".format(year1), "{0:04d}".format(year2), "{0:04d}".format(dt.year)) s1, s2 = self._replace_common_substr(s1, s2, "{0:02d}".format(year1 % 100), "{0:02d}".format(year2 % 100), "{0:02d}".format(dt.year % 100)) return cbook.unicode_safe(s1) def strftime(self, dt, fmt=None): """Refer to documentation for datetime.strftime. *fmt* is a :func:`strftime` format string. Warning: For years before 1900, depending upon the current locale it is possible that the year displayed with %x might be incorrect. For years before 100, %y and %Y will yield zero-padded strings. """ if fmt is None: fmt = self.fmt fmt = self.illegal_s.sub(r"\1", fmt) fmt = fmt.replace("%s", "s") if dt.year >= 1900: # Note: in python 3.3 this is okay for years >= 1000, # refer to http://bugs.python.org/issue177742 return cbook.unicode_safe(dt.strftime(fmt)) return self.strftime_pre_1900(dt, fmt) class IndexDateFormatter(ticker.Formatter): """ Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format strings by index. """ def __init__(self, t, fmt, tz=None): """ *t* is a sequence of dates (floating point days). *fmt* is a :func:`strftime` format string. """ if tz is None: tz = _get_rc_timezone() self.t = t self.fmt = fmt self.tz = tz def __call__(self, x, pos=0): 'Return the label for time *x* at position *pos*' ind = int(round(x)) if ind >= len(self.t) or ind <= 0: return '' dt = num2date(self.t[ind], self.tz) return cbook.unicode_safe(dt.strftime(self.fmt)) class AutoDateFormatter(ticker.Formatter): """ This class attempts to figure out the best format to use. This is most useful when used with the :class:`AutoDateLocator`. The AutoDateFormatter has a scale dictionary that maps the scale of the tick (the distance in days between one major tick) and a format string. The default looks like this:: self.scaled = { 365.0 : '%Y', 30. : '%b %Y', 1.0 : '%b %d %Y', 1./24. : '%H:%M:%S', 1. / (24. * 60.): '%H:%M:%S.%f', } The algorithm picks the key in the dictionary that is >= the current scale and uses that format string. You can customize this dictionary by doing:: >>> formatter = AutoDateFormatter() >>> formatter.scaled[1/(24.*60.)] = '%M:%S' # only show min and sec A custom :class:`~matplotlib.ticker.FuncFormatter` can also be used. The following example shows how to use a custom format function to strip trailing zeros from decimal seconds and adds the date to the first ticklabel:: >>> def my_format_function(x, pos=None): ... x = matplotlib.dates.num2date(x) ... if pos == 0: ... fmt = '%D %H:%M:%S.%f' ... else: ... fmt = '%H:%M:%S.%f' ... label = x.strftime(fmt) ... label = label.rstrip("0") ... label = label.rstrip(".") ... return label >>> from matplotlib.ticker import FuncFormatter >>> formatter.scaled[1/(24.*60.)] = FuncFormatter(my_format_function) """ # This can be improved by providing some user-level direction on # how to choose the best format (precedence, etc...) # Perhaps a 'struct' that has a field for each time-type where a # zero would indicate "don't show" and a number would indicate # "show" with some sort of priority. Same priorities could mean # show all with the same priority. # Or more simply, perhaps just a format string for each # possibility... def __init__(self, locator, tz=None, defaultfmt='%Y-%m-%d'): """ Autoformat the date labels. The default format is the one to use if none of the values in ``self.scaled`` are greater than the unit returned by ``locator._get_unit()``. """ self._locator = locator self._tz = tz self.defaultfmt = defaultfmt self._formatter = DateFormatter(self.defaultfmt, tz) self.scaled = {DAYS_PER_YEAR: '%Y', DAYS_PER_MONTH: '%b %Y', 1.0: '%b %d %Y', 1. / HOURS_PER_DAY: '%H:%M:%S', 1. / (MINUTES_PER_DAY): '%H:%M:%S.%f'} def __call__(self, x, pos=None): locator_unit_scale = float(self._locator._get_unit()) fmt = self.defaultfmt # Pick the first scale which is greater than the locator unit. for possible_scale in sorted(self.scaled): if possible_scale >= locator_unit_scale: fmt = self.scaled[possible_scale] break if isinstance(fmt, six.string_types): self._formatter = DateFormatter(fmt, self._tz) result = self._formatter(x, pos) elif six.callable(fmt): result = fmt(x, pos) else: raise TypeError('Unexpected type passed to {0!r}.'.format(self)) return result class rrulewrapper(object): def __init__(self, freq, **kwargs): self._construct = kwargs.copy() self._construct["freq"] = freq self._rrule = rrule(**self._construct) def set(self, **kwargs): self._construct.update(kwargs) self._rrule = rrule(**self._construct) def __getattr__(self, name): if name in self.__dict__: return self.__dict__[name] return getattr(self._rrule, name) class DateLocator(ticker.Locator): """ Determines the tick locations when plotting dates. """ hms0d = {'byhour': 0, 'byminute': 0, 'bysecond': 0} def __init__(self, tz=None): """ *tz* is a :class:`tzinfo` instance. """ if tz is None: tz = _get_rc_timezone() self.tz = tz def set_tzinfo(self, tz): """ Set time zone info. """ self.tz = tz def datalim_to_dt(self): """ Convert axis data interval to datetime objects. """ dmin, dmax = self.axis.get_data_interval() if dmin > dmax: dmin, dmax = dmax, dmin return num2date(dmin, self.tz), num2date(dmax, self.tz) def viewlim_to_dt(self): """ Converts the view interval to datetime objects. """ vmin, vmax = self.axis.get_view_interval() if vmin > vmax: vmin, vmax = vmax, vmin return num2date(vmin, self.tz), num2date(vmax, self.tz) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1 def _get_interval(self): """ Return the number of units for each tick. """ return 1 def nonsingular(self, vmin, vmax): """ Given the proposed upper and lower extent, adjust the range if it is too close to being singular (i.e. a range of ~0). """ unit = self._get_unit() interval = self._get_interval() if abs(vmax - vmin) < 1e-6: vmin -= 2 * unit * interval vmax += 2 * unit * interval return vmin, vmax class RRuleLocator(DateLocator): # use the dateutil rrule instance def __init__(self, o, tz=None): DateLocator.__init__(self, tz) self.rule = o def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): delta = relativedelta(vmax, vmin) # We need to cap at the endpoints of valid datetime try: start = vmin - delta except ValueError: start = _from_ordinalf(1.0) try: stop = vmax + delta except ValueError: # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop, count=self.MAXTICKS + 1) # estimate the number of ticks very approximately so we don't # have to do a very expensive (and potentially near infinite) # 'between' calculation, only to find out it will fail. nmax, nmin = date2num((vmax, vmin)) estimate = (nmax - nmin) / (self._get_unit() * self._get_interval()) # This estimate is only an estimate, so be really conservative # about bailing... if estimate > self.MAXTICKS * 2: raise RuntimeError( 'RRuleLocator estimated to generate %d ticks from %s to %s: ' 'exceeds Locator.MAXTICKS * 2 (%d) ' % (estimate, vmin, vmax, self.MAXTICKS * 2)) dates = self.rule.between(vmin, vmax, True) if len(dates) == 0: return date2num([vmin, vmax]) return self.raise_if_exceeds(date2num(dates)) def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ freq = self.rule._rrule._freq return self.get_unit_generic(freq) @staticmethod def get_unit_generic(freq): if freq == YEARLY: return DAYS_PER_YEAR elif freq == MONTHLY: return DAYS_PER_MONTH elif freq == WEEKLY: return DAYS_PER_WEEK elif freq == DAILY: return 1.0 elif freq == HOURLY: return 1.0 / HOURS_PER_DAY elif freq == MINUTELY: return 1.0 / MINUTES_PER_DAY elif freq == SECONDLY: return 1.0 / SEC_PER_DAY else: # error return -1 # or should this just return '1'? def _get_interval(self): return self.rule._rrule._interval def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() delta = relativedelta(dmax, dmin) # We need to cap at the endpoints of valid datetime try: start = dmin - delta except ValueError: start = _from_ordinalf(1.0) try: stop = dmax + delta except ValueError: # The magic number! stop = _from_ordinalf(3652059.9999999) self.rule.set(dtstart=start, until=stop) dmin, dmax = self.datalim_to_dt() vmin = self.rule.before(dmin, True) if not vmin: vmin = dmin vmax = self.rule.after(dmax, True) if not vmax: vmax = dmax vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class AutoDateLocator(DateLocator): """ On autoscale, this class picks the best :class:`DateLocator` to set the view limits and the tick locations. """ def __init__(self, tz=None, minticks=5, maxticks=None, interval_multiples=False): """ *minticks* is the minimum number of ticks desired, which is used to select the type of ticking (yearly, monthly, etc.). *maxticks* is the maximum number of ticks desired, which controls any interval between ticks (ticking every other, every 3, etc.). For really fine-grained control, this can be a dictionary mapping individual rrule frequency constants (YEARLY, MONTHLY, etc.) to their own maximum number of ticks. This can be used to keep the number of ticks appropriate to the format chosen in :class:`AutoDateFormatter`. Any frequency not specified in this dictionary is given a default value. *tz* is a :class:`tzinfo` instance. *interval_multiples* is a boolean that indicates whether ticks should be chosen to be multiple of the interval. This will lock ticks to 'nicer' locations. For example, this will force the ticks to be at hours 0,6,12,18 when hourly ticking is done at 6 hour intervals. The AutoDateLocator has an interval dictionary that maps the frequency of the tick (a constant from dateutil.rrule) and a multiple allowed for that ticking. The default looks like this:: self.intervald = { YEARLY : [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY : [1, 2, 3, 4, 6], DAILY : [1, 2, 3, 7, 14], HOURLY : [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000], } The interval is used to specify multiples that are appropriate for the frequency of ticking. For instance, every 7 days is sensible for daily ticks, but for minutes/seconds, 15 or 30 make sense. You can customize this dictionary by doing:: locator = AutoDateLocator() locator.intervald[HOURLY] = [3] # only show every 3 hours """ DateLocator.__init__(self, tz) self._locator = YearLocator() self._freq = YEARLY self._freqs = [YEARLY, MONTHLY, DAILY, HOURLY, MINUTELY, SECONDLY, MICROSECONDLY] self.minticks = minticks self.maxticks = {YEARLY: 11, MONTHLY: 12, DAILY: 11, HOURLY: 12, MINUTELY: 11, SECONDLY: 11, MICROSECONDLY: 8} if maxticks is not None: try: self.maxticks.update(maxticks) except TypeError: # Assume we were given an integer. Use this as the maximum # number of ticks for every frequency and create a # dictionary for this self.maxticks = dict(zip(self._freqs, [maxticks] * len(self._freqs))) self.interval_multiples = interval_multiples self.intervald = { YEARLY: [1, 2, 4, 5, 10, 20, 40, 50, 100, 200, 400, 500, 1000, 2000, 4000, 5000, 10000], MONTHLY: [1, 2, 3, 4, 6], DAILY: [1, 2, 3, 7, 14, 21], HOURLY: [1, 2, 3, 4, 6, 12], MINUTELY: [1, 5, 10, 15, 30], SECONDLY: [1, 5, 10, 15, 30], MICROSECONDLY: [1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000, 500000, 1000000]} self._byranges = [None, range(1, 13), range(1, 32), range(0, 24), range(0, 60), range(0, 60), None] def __call__(self): 'Return the locations of the ticks' self.refresh() return self._locator() def tick_values(self, vmin, vmax): return self.get_locator(vmin, vmax).tick_values(vmin, vmax) def nonsingular(self, vmin, vmax): # whatever is thrown at us, we can scale the unit. # But default nonsingular date plots at an ~4 year period. if vmin == vmax: vmin = vmin - DAYS_PER_YEAR * 2 vmax = vmax + DAYS_PER_YEAR * 2 return vmin, vmax def set_axis(self, axis): DateLocator.set_axis(self, axis) self._locator.set_axis(axis) def refresh(self): 'Refresh internal information based on current limits.' dmin, dmax = self.viewlim_to_dt() self._locator = self.get_locator(dmin, dmax) def _get_unit(self): if self._freq in [MICROSECONDLY]: return 1. / MUSECONDS_PER_DAY else: return RRuleLocator.get_unit_generic(self._freq) def autoscale(self): 'Try to choose the view limits intelligently.' dmin, dmax = self.datalim_to_dt() self._locator = self.get_locator(dmin, dmax) return self._locator.autoscale() def get_locator(self, dmin, dmax): 'Pick the best locator based on a distance.' delta = relativedelta(dmax, dmin) tdelta = dmax - dmin # take absolute difference if dmin > dmax: delta = -delta tdelta = -tdelta # The following uses a mix of calls to relativedelta and timedelta # methods because there is incomplete overlap in the functionality of # these similar functions, and it's best to avoid doing our own math # whenever possible. numYears = float(delta.years) numMonths = (numYears * MONTHS_PER_YEAR) + delta.months numDays = tdelta.days # Avoids estimates of days/month, days/year numHours = (numDays * HOURS_PER_DAY) + delta.hours numMinutes = (numHours * MIN_PER_HOUR) + delta.minutes numSeconds = np.floor(_total_seconds(tdelta)) numMicroseconds = np.floor(_total_seconds(tdelta) * 1e6) nums = [numYears, numMonths, numDays, numHours, numMinutes, numSeconds, numMicroseconds] use_rrule_locator = [True] * 6 + [False] # Default setting of bymonth, etc. to pass to rrule # [unused (for year), bymonth, bymonthday, byhour, byminute, # bysecond, unused (for microseconds)] byranges = [None, 1, 1, 0, 0, 0, None] # Loop over all the frequencies and try to find one that gives at # least a minticks tick positions. Once this is found, look for # an interval from an list specific to that frequency that gives no # more than maxticks tick positions. Also, set up some ranges # (bymonth, etc.) as appropriate to be passed to rrulewrapper. for i, (freq, num) in enumerate(zip(self._freqs, nums)): # If this particular frequency doesn't give enough ticks, continue if num < self.minticks: # Since we're not using this particular frequency, set # the corresponding by_ to None so the rrule can act as # appropriate byranges[i] = None continue # Find the first available interval that doesn't give too many # ticks for interval in self.intervald[freq]: if num <= interval * (self.maxticks[freq] - 1): break else: # We went through the whole loop without breaking, default to # the last interval in the list and raise a warning warnings.warn('AutoDateLocator was unable to pick an ' 'appropriate interval for this date range. ' 'It may be necessary to add an interval value ' "to the AutoDateLocator's intervald dictionary." ' Defaulting to {0}.'.format(interval)) # Set some parameters as appropriate self._freq = freq if self._byranges[i] and self.interval_multiples: byranges[i] = self._byranges[i][::interval] interval = 1 else: byranges[i] = self._byranges[i] # We found what frequency to use break else: raise ValueError('No sensible date limit could be found in the ' 'AutoDateLocator.') if use_rrule_locator[i]: _, bymonth, bymonthday, byhour, byminute, bysecond, _ = byranges rrule = rrulewrapper(self._freq, interval=interval, dtstart=dmin, until=dmax, bymonth=bymonth, bymonthday=bymonthday, byhour=byhour, byminute=byminute, bysecond=bysecond) locator = RRuleLocator(rrule, self.tz) else: locator = MicrosecondLocator(interval, tz=self.tz) locator.set_axis(self.axis) locator.set_view_interval(*self.axis.get_view_interval()) locator.set_data_interval(*self.axis.get_data_interval()) return locator class YearLocator(DateLocator): """ Make ticks on a given day of each year that is a multiple of base. Examples:: # Tick every year on Jan 1st locator = YearLocator() # Tick every 5 years on July 4th locator = YearLocator(5, month=7, day=4) """ def __init__(self, base=1, month=1, day=1, tz=None): """ Mark years that are multiple of base on a given month and day (default jan 1). """ DateLocator.__init__(self, tz) self.base = ticker.Base(base) self.replaced = {'month': month, 'day': day, 'hour': 0, 'minute': 0, 'second': 0, 'tzinfo': tz } def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): ymin = self.base.le(vmin.year) ymax = self.base.ge(vmax.year) ticks = [vmin.replace(year=ymin, **self.replaced)] while 1: dt = ticks[-1] if dt.year >= ymax: return date2num(ticks) year = dt.year + self.base.get_base() ticks.append(dt.replace(year=year, **self.replaced)) def autoscale(self): """ Set the view limits to include the data range. """ dmin, dmax = self.datalim_to_dt() ymin = self.base.le(dmin.year) ymax = self.base.ge(dmax.year) vmin = dmin.replace(year=ymin, **self.replaced) vmax = dmax.replace(year=ymax, **self.replaced) vmin = date2num(vmin) vmax = date2num(vmax) return self.nonsingular(vmin, vmax) class MonthLocator(RRuleLocator): """ Make ticks on occurances of each month month, e.g., 1, 3, 12. """ def __init__(self, bymonth=None, bymonthday=1, interval=1, tz=None): """ Mark every month in *bymonth*; *bymonth* can be an int or sequence. Default is ``range(1,13)``, i.e. every month. *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurance. """ if bymonth is None: bymonth = range(1, 13) elif isinstance(bymonth, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. bymonth = [x.item() for x in bymonth.astype(int)] rule = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class WeekdayLocator(RRuleLocator): """ Make ticks on occurances of each weekday. """ def __init__(self, byweekday=1, interval=1, tz=None): """ Mark every weekday in *byweekday*; *byweekday* can be a number or sequence. Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA, SU, the constants from :mod:`dateutil.rrule`, which have been imported into the :mod:`matplotlib.dates` namespace. *interval* specifies the number of weeks to skip. For example, ``interval=2`` plots every second week. """ if isinstance(byweekday, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. [x.item() for x in byweekday.astype(int)] rule = rrulewrapper(DAILY, byweekday=byweekday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class DayLocator(RRuleLocator): """ Make ticks on occurances of each day of the month. For example, 1, 15, 30. """ def __init__(self, bymonthday=None, interval=1, tz=None): """ Mark every day in *bymonthday*; *bymonthday* can be an int or sequence. Default is to tick every day of the month: ``bymonthday=range(1,32)`` """ if bymonthday is None: bymonthday = range(1, 32) elif isinstance(bymonthday, np.ndarray): # This fixes a bug in dateutil <= 2.3 which prevents the use of # numpy arrays in (among other things) the bymonthday, byweekday # and bymonth parameters. bymonthday = [x.item() for x in bymonthday.astype(int)] rule = rrulewrapper(DAILY, bymonthday=bymonthday, interval=interval, **self.hms0d) RRuleLocator.__init__(self, rule, tz) class HourLocator(RRuleLocator): """ Make ticks on occurances of each hour. """ def __init__(self, byhour=None, interval=1, tz=None): """ Mark every hour in *byhour*; *byhour* can be an int or sequence. Default is to tick every hour: ``byhour=range(24)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byhour is None: byhour = range(24) rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval, byminute=0, bysecond=0) RRuleLocator.__init__(self, rule, tz) class MinuteLocator(RRuleLocator): """ Make ticks on occurances of each minute. """ def __init__(self, byminute=None, interval=1, tz=None): """ Mark every minute in *byminute*; *byminute* can be an int or sequence. Default is to tick every minute: ``byminute=range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if byminute is None: byminute = range(60) rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval, bysecond=0) RRuleLocator.__init__(self, rule, tz) class SecondLocator(RRuleLocator): """ Make ticks on occurances of each second. """ def __init__(self, bysecond=None, interval=1, tz=None): """ Mark every second in *bysecond*; *bysecond* can be an int or sequence. Default is to tick every second: ``bysecond = range(60)`` *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second occurrence. """ if bysecond is None: bysecond = range(60) rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval) RRuleLocator.__init__(self, rule, tz) class MicrosecondLocator(DateLocator): """ Make ticks on occurances of each microsecond. """ def __init__(self, interval=1, tz=None): """ *interval* is the interval between each iteration. For example, if ``interval=2``, mark every second microsecond. """ self._interval = interval self._wrapped_locator = ticker.MultipleLocator(interval) self.tz = tz def set_axis(self, axis): self._wrapped_locator.set_axis(axis) return DateLocator.set_axis(self, axis) def set_view_interval(self, vmin, vmax): self._wrapped_locator.set_view_interval(vmin, vmax) return DateLocator.set_view_interval(self, vmin, vmax) def set_data_interval(self, vmin, vmax): self._wrapped_locator.set_data_interval(vmin, vmax) return DateLocator.set_data_interval(self, vmin, vmax) def __call__(self): # if no data have been set, this will tank with a ValueError try: dmin, dmax = self.viewlim_to_dt() except ValueError: return [] return self.tick_values(dmin, dmax) def tick_values(self, vmin, vmax): nmin, nmax = date2num((vmin, vmax)) nmin *= MUSECONDS_PER_DAY nmax *= MUSECONDS_PER_DAY ticks = self._wrapped_locator.tick_values(nmin, nmax) ticks = [tick / MUSECONDS_PER_DAY for tick in ticks] return ticks def _get_unit(self): """ Return how many days a unit of the locator is; used for intelligent autoscaling. """ return 1. / MUSECONDS_PER_DAY def _get_interval(self): """ Return the number of units for each tick. """ return self._interval def _close_to_dt(d1, d2, epsilon=5): """ Assert that datetimes *d1* and *d2* are within *epsilon* microseconds. """ delta = d2 - d1 mus = abs(_total_seconds(delta) * 1e6) assert mus < epsilon def _close_to_num(o1, o2, epsilon=5): """ Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds. """ delta = abs((o2 - o1) * MUSECONDS_PER_DAY) assert delta < epsilon def epoch2num(e): """ Convert an epoch or sequence of epochs to the new date format, that is days since 0001. """ return EPOCH_OFFSET + np.asarray(e) / SEC_PER_DAY def num2epoch(d): """ Convert days since 0001 to epoch. *d* can be a number or sequence. """ return (np.asarray(d) - EPOCH_OFFSET) * SEC_PER_DAY def mx2num(mxdates): """ Convert mx :class:`datetime` instance (or sequence of mx instances) to the new date format. """ scalar = False if not cbook.iterable(mxdates): scalar = True mxdates = [mxdates] ret = epoch2num([m.ticks() for m in mxdates]) if scalar: return ret[0] else: return ret def date_ticker_factory(span, tz=None, numticks=5): """ Create a date locator with *numticks* (approx) and a date formatter for *span* in days. Return value is (locator, formatter). """ if span == 0: span = 1 / HOURS_PER_DAY mins = span * MINUTES_PER_DAY hrs = span * HOURS_PER_DAY days = span wks = span / DAYS_PER_WEEK months = span / DAYS_PER_MONTH # Approx years = span / DAYS_PER_YEAR # Approx if years > numticks: locator = YearLocator(int(years / numticks), tz=tz) # define fmt = '%Y' elif months > numticks: locator = MonthLocator(tz=tz) fmt = '%b %Y' elif wks > numticks: locator = WeekdayLocator(tz=tz) fmt = '%a, %b %d' elif days > numticks: locator = DayLocator(interval=int(math.ceil(days / numticks)), tz=tz) fmt = '%b %d' elif hrs > numticks: locator = HourLocator(interval=int(math.ceil(hrs / numticks)), tz=tz) fmt = '%H:%M\n%b %d' elif mins > numticks: locator = MinuteLocator(interval=int(math.ceil(mins / numticks)), tz=tz) fmt = '%H:%M:%S' else: locator = MinuteLocator(tz=tz) fmt = '%H:%M:%S' formatter = DateFormatter(fmt, tz=tz) return locator, formatter def seconds(s): """ Return seconds as days. """ return float(s) / SEC_PER_DAY def minutes(m): """ Return minutes as days. """ return float(m) / MINUTES_PER_DAY def hours(h): """ Return hours as days. """ return h / HOURS_PER_DAY def weeks(w): """ Return weeks as days. """ return w * DAYS_PER_WEEK class DateConverter(units.ConversionInterface): """ Converter for datetime.date and datetime.datetime data, or for date/time data represented as it would be converted by :func:`date2num`. The 'unit' tag for such data is None or a tzinfo instance. """ @staticmethod def axisinfo(unit, axis): """ Return the :class:`~matplotlib.units.AxisInfo` for *unit*. *unit* is a tzinfo instance or None. The *axis* argument is required but not used. """ tz = unit majloc = AutoDateLocator(tz=tz) majfmt = AutoDateFormatter(majloc, tz=tz) datemin = datetime.date(2000, 1, 1) datemax = datetime.date(2010, 1, 1) return units.AxisInfo(majloc=majloc, majfmt=majfmt, label='', default_limits=(datemin, datemax)) @staticmethod def convert(value, unit, axis): """ If *value* is not already a number or sequence of numbers, convert it with :func:`date2num`. The *unit* and *axis* arguments are not used. """ if units.ConversionInterface.is_numlike(value): return value return date2num(value) @staticmethod def default_units(x, axis): """ Return the tzinfo instance of *x* or of its first element, or None """ if isinstance(x, np.ndarray): x = x.ravel() try: x = cbook.safe_first_element(x) except (TypeError, StopIteration): pass try: return x.tzinfo except AttributeError: pass return None units.registry[datetime.date] = DateConverter() units.registry[datetime.datetime] = DateConverter()
33.547876
79
0.600397
[ "MIT" ]
rbalda/neural_ocr
env/lib/python2.7/site-packages/matplotlib/dates.py
52,905
Python
# coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Widget captioning model.""" import collections import os from absl import app from absl import flags from absl import logging import numpy as np import tensorflow as tf from widget_caption import widget_caption_config from widget_caption import widget_caption_eval from widget_caption import widget_caption_input as input_utils from tensorflow_models.official.legacy.transformer import model_params from tensorflow_models.official.legacy.transformer import model_utils from tensorflow_models.official.legacy.transformer import optimizer from tensorflow_models.official.legacy.transformer import transformer as nlp_transformer from tensorflow_models.official.nlp.modeling import layers from tensorflow_models.official.nlp.modeling import ops flags.DEFINE_string('experiment', 'debug', 'Experiment name defined in widget_caption_config.py.') flags.DEFINE_string('model_dir', None, 'Model dir') flags.DEFINE_string('ckpt_filepath', None, 'Checkpoint path for saving weights of every epoch.') FLAGS = flags.FLAGS def create_hparams(experiment): """Creates the hyper parameters.""" hparams = {} # General parameters. hparams['batch_size'] = 64 hparams['eval_batch_size'] = 64 hparams['learning_rate_warmup_steps'] = 2000 hparams['learning_rate_constant'] = 1 hparams['learning_rate'] = 0.001 hparams['train_epoches'] = 20 hparams['steps_per_epoch'] = 30 hparams['train_steps'] = 100 * 1000 hparams['eval_steps'] = 100 hparams['caption_optimizer'] = 't2t' hparams['clip_norm'] = 5.0 hparams['widget_encoder_checkpoint'] = '' hparams['train_files'] = '' hparams['eval_files'] = '' hparams['train_buffer_size'] = 2000 hparams['eval_buffer_size'] = 500 hparams['train_pixel_encoder'] = True hparams['debug'] = False hparams['distribution_strategy'] = 'mirrored' # Train model using decoding task, classification task, or both. hparams['decoding_task'] = True hparams['classification_task'] = False # Whether to use decoding for phrase classification: <START> phrase_id <EOS>. hparams['use_decoding_for_classification'] = False # Weight for the classification loss. hparams['classification_loss_weight'] = 1 hparams['train_with_one_node'] = False # Embedding parameters. hparams['embedding_file'] = '' hparams['word_vocab_path'] = '' hparams['glove_trainable'] = True hparams['vocab_size'] = 10000 hparams['phrase_vocab_size'] = 10000 # View hierarchy encoder parameters. hparams['max_pixel_pos'] = 100 hparams['max_dom_pos'] = 500 hparams['screen_encoder'] = 'gcn' hparams['screen_embedding_feature'] = ['text', 'type', 'pos', 'click', 'dom'] hparams['obj_text_aggregation'] = 'max' hparams['synthetic_screen_noise'] = 0. # Whether to add pixel encoding as input to view hierarchy encoder. hparams['encode_screen_with_context'] = False # Whether to add a residual link for pixel encoding. hparams['add_pixel_skip_link'] = False # General parameters. hparams['num_hidden_layers'] = 2 hparams['hidden_size'] = 2 hparams['filter_size'] = 2 hparams['num_heads'] = 2 hparams['dropout'] = 0.2 hparams['layer_prepostprocess_dropout'] = 0.2 hparams['attention_dropout'] = 0.2 hparams['relu_dropout'] = 0.2 transformer_hparams = model_params.BASE_PARAMS # Add parameters from transformer model. hparams.update(transformer_hparams) # Rewrite all the parameters from command-line flags. config = widget_caption_config.experiments[experiment] hparams.update(config) return hparams def load_embed(file_name, vocab_size): """Loads a pre-trained embedding matrix. Args: file_name: the file name of the embedding file. vocab_size: if > 0, only load embedding weights for vocab_size words. Returns: vocab: a list of tokens. embeds: a numpy array of embeddings for each token plus an OOV embedding. depth: the depth of the embedding. Raises: ValueError: embeddings have different depths. """ with tf.io.gfile.GFile(file_name, 'r') as embed_file: vocab = [] embeds = [] depth = -1 for index, line in enumerate(embed_file): if vocab_size > 0 and index >= vocab_size: break line = line.strip() tokens = line.strip().split(' ') word = tokens[0] vocab.append(word) if depth == -1: embed = [float(token) for token in tokens[1:]] else: embed = [float(token) for token in tokens[-depth:]] d = len(embed) if depth == -1: depth = d if d != depth: raise ValueError('Inconsistent embedding sizes') embeds.append(embed) embeds = np.stack(embeds) return vocab, embeds, depth def compute_score(predictions, references, vocab=None): """Computes the bleu score. Args: predictions: a numpy arrary in the shape of [batch_size, max_phrase_length] references: a numpy array in the shape of [batch_size, 7, 10] vocab: the vocabulary file. Returns: a scalar value for the corpus level bleu score. """ assert np.rank(predictions) == 2 assert predictions.shape[0] == references.shape[0] batch_size = predictions.shape[0] predictions = tf.make_ndarray(tf.make_tensor_proto(predictions)).tolist() references = tf.make_ndarray(tf.make_tensor_proto(references)).tolist() hypotheses_list = [] references_list = [] for index in range(batch_size): h = predictions[index] try: eos_index = h.index(input_utils.EOS) except ValueError: eos_index = len(h) hypotheses_list.append(h[:eos_index]) ref = references[index].decode().split('|') ref_list = [r.strip().split(' ') for r in ref if r.strip()] references_list.append(ref_list) all_scores = collections.defaultdict(list) for hypothesis, references in zip(hypotheses_list, references_list): if vocab is not None and len(vocab): # Skip PADDING, UNK, EOS, START (0-3). hypothesis = [ vocab[word_id].numpy().decode() for word_id in hypothesis if word_id > 3 ] logging.info('hypothesis: %s', str(hypothesis)) logging.info('references: %s', str(references)) h_str = ' '.join(str(e) for e in hypothesis) r_str = [' '.join(str(e) for e in ref) for ref in references] scores = widget_caption_eval.coco_evaluate(r_str, h_str) for key, score in scores.items(): all_scores[key].append(score) score_names = [ 'BLEU-1', 'BLEU-2', 'BLEU-3', 'BLEU-4', 'ROUGE-1-f1-mean', 'ROUGE-1-f1-min', 'ROUGE-1-f1-max', 'ROUGE-2-f1-mean', 'ROUGE-2-f1-min', 'ROUGE-2-f1-max', 'ROUGE-L-f1-mean', 'ROUGE-L-f1-min', 'ROUGE-L-f1-max' ] return [np.array(all_scores[name], dtype=np.float32) for name in score_names] class EmbeddingLayer(tf.keras.layers.Layer): """Embedding layer.""" def __init__(self, name, vocab_size, embedding_dim, embedding_file=None, hidden_dim=None, trainable=True): super(EmbeddingLayer, self).__init__(name=name) self._vocab_size = vocab_size self._hidden_dim = hidden_dim self._embedding_dim = embedding_dim self._embedding_file = embedding_file self._trainable = trainable def build(self, input_shape): if self._embedding_file: logging.info('Load embedding file for %s of vocab size %s: %s', self._name, self._vocab_size, self._embedding_file) _, embedding_weights, depth = load_embed( file_name=self._embedding_file, vocab_size=self._vocab_size) self._embedding_dim = depth initializer = tf.constant_initializer( embedding_weights[:self._vocab_size, :]) else: logging.info('Create random embedding matrix for %s of size %s', self._name, self._vocab_size) initializer = tf.keras.initializers.RandomNormal( mean=0.0, stddev=0.1, seed=None) self.embeddings = self.add_weight( name='{}_weights'.format(self._name), shape=(self._vocab_size, self._embedding_dim), initializer=initializer, trainable=self._trainable, dtype='float32') if self._hidden_dim: self._project_layer = tf.keras.layers.Dense(self._hidden_dim) def call(self, inputs): embeddings = tf.nn.embedding_lookup(self.embeddings, inputs) if self._hidden_dim: embeddings = self._project_layer(embeddings) return embeddings class PixelEncoderLayer(tf.keras.layers.Layer): """Pixel encoding layer (ResNet).""" def __init__(self, name, filters, kernel_sizes): super(PixelEncoderLayer, self).__init__(name=name) self._filters = filters self._kernel_sizes = kernel_sizes def build(self, input_shape): self._conv_layer_1 = tf.keras.layers.Conv2D( filters=self._filters[0], kernel_size=self._kernel_sizes[0], strides=1, padding='same') self._conv_layer_2 = tf.keras.layers.Conv2D( filters=self._filters[1], kernel_size=self._kernel_sizes[1], strides=1, padding='same') self._conv_layer_3 = tf.keras.layers.Conv2D( filters=self._filters[2], kernel_size=self._kernel_sizes[2], strides=2, padding='same') self._batch_norm_layer_1 = tf.keras.layers.BatchNormalization() self._batch_norm_layer_2 = tf.keras.layers.BatchNormalization() self._batch_norm_layer_3 = tf.keras.layers.BatchNormalization() def call(self, input_tensor, training, dropout=0.0): """Defines a single encoding layer.""" x = input_tensor skip = x x = self._conv_layer_1(x) x = self._batch_norm_layer_1(x, training=training) x = tf.nn.relu(x) if training: x = tf.nn.dropout(x, rate=dropout) x = self._conv_layer_2(x) x = self._batch_norm_layer_2(x, training=training) x += skip x = tf.nn.relu(x) if training: x = tf.nn.dropout(x, rate=dropout) x = self._conv_layer_3(x) x = self._batch_norm_layer_3(x, training=training) x = tf.nn.relu(x) if training: x = tf.nn.dropout(x, rate=dropout) return x class EncoderLayer(tf.keras.layers.Layer): """Generates encoder outputs for both the pixels and view hierarchy.""" def __init__(self, hparams, word_embedding_layer): super(EncoderLayer, self).__init__(name='dual_encoder') self._hparams = hparams self._word_embedding_layer = word_embedding_layer def build(self, input_shape): self._type_embedding_layer = EmbeddingLayer( name='object_type', vocab_size=100, embedding_dim=self._hparams['hidden_size']) self._clickable_embedding_layer = EmbeddingLayer( name='object_clickable', vocab_size=2, embedding_dim=self._hparams['hidden_size']) self._pos_embedding_layers = [ EmbeddingLayer( name='object_pos_0', vocab_size=self._hparams['max_pixel_pos'], embedding_dim=self._hparams['hidden_size']), EmbeddingLayer( name='object_pos_1', vocab_size=self._hparams['max_pixel_pos'], embedding_dim=self._hparams['hidden_size']), EmbeddingLayer( name='object_pos_2', vocab_size=self._hparams['max_pixel_pos'], embedding_dim=self._hparams['hidden_size']), EmbeddingLayer( name='object_pos_3', vocab_size=self._hparams['max_pixel_pos'], embedding_dim=self._hparams['hidden_size'], ) ] self._dom_embedding_layers = [ EmbeddingLayer( name='object_dom_pos_0', vocab_size=self._hparams['max_dom_pos'], embedding_dim=self._hparams['hidden_size']), EmbeddingLayer( name='object_dom_pos_1', vocab_size=self._hparams['max_dom_pos'], embedding_dim=self._hparams['hidden_size']), EmbeddingLayer( name='object_dom_pos_2', vocab_size=self._hparams['max_dom_pos'], embedding_dim=self._hparams['hidden_size']) ] self._final_layer = tf.keras.layers.Dense( self._hparams['hidden_size'], activation=None) self._vh_final_layer = tf.keras.layers.Dense( self._hparams['hidden_size'], activation=tf.nn.tanh) self._pixel_layers = self._get_encoder3(initial_channel_size=1) self._transformer_encoder = nlp_transformer.EncoderStack(self._hparams) def call(self, features, object_selector, training): # Compute encoding with tf.name_scope('encoder'): pixel_encoding = self._encode_pixel(features, object_selector, training) vh_encoding, obj_embedding = self._encode_view_hierarchy( features, object_selector, training) logging.info('Screen encoder: %s', self._hparams['screen_encoder']) if self._hparams['screen_encoder'] == 'pixel_only': combined_output = pixel_encoding elif self._hparams['screen_encoder'] == 'pixel_transformer': combined_output = tf.concat([pixel_encoding, vh_encoding], -1) elif self._hparams['screen_encoder'] == 'pixel_mlp': combined_output = tf.concat([pixel_encoding, obj_embedding], -1) else: raise ValueError # [valid_obj, hidden_size] logits = self._final_layer(combined_output) logits = tf.nn.relu(logits) if training: logits = tf.nn.dropout(logits, rate=self._hparams['dropout']) # Add the length dimension. logits = tf.expand_dims(logits, 1) return logits def _encode_pixel(self, features, object_selector, training): # Flatten object pixels. obj_pixels = tf.reshape(features['obj_pixels'], [-1, 64, 64, 1]) # Otherwise, we just encode worker nodes' pixels. valid_obj_pixels = tf.gather(obj_pixels, object_selector) thumbnail_encoding = valid_obj_pixels for layer in self._pixel_layers: thumbnail_encoding = layer( thumbnail_encoding, training=training, dropout=self._hparams['dropout']) # [worker_node, 256] thumbnail_encoding = tf.reshape(thumbnail_encoding, [-1, 256]) return thumbnail_encoding def _get_encoder3(self, initial_channel_size=3): """Defines the encoding model with a pre-defined filter/kernel sizes.""" pixel_layers = [] filter_groups = [[initial_channel_size, initial_channel_size, 4], [4, 4, 16], [16, 16, 32], [32, 32, 64], [64, 64, 128], [128, 128, 256]] kernel_size_groups = [[5, 3, 5], [5, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]] for index, (filters, kernel_sizes) in enumerate( zip(filter_groups, kernel_size_groups)): assert len(filters) == len(kernel_sizes) name = 'pixel_encoder_{}'.format(index) layer = PixelEncoderLayer(name, filters, kernel_sizes) pixel_layers.append(layer) return pixel_layers def _embed_composite_feature(self, features, embedding_layers): """Embed a position feature.""" embedding_list = [] for i in range(len(embedding_layers)): embedding_list.append(embedding_layers[i](features[:, :, i])) embedding = tf.add_n(embedding_list) return embedding def _encode_view_hierarchy(self, features, object_selector, training): """Encodes view hierarchy.""" logging.info('Using Transformer screen encoder') # obj_text only contain the first phrase if multiple exist. # [batch, node_num, 10, hidden_size] developer_embeddings = self._word_embedding_layer( features['developer_token_id']) resource_embeddings = self._word_embedding_layer( features['resource_token_id']) developer_embeddings = self._aggregate_text_embedding( features['developer_token_id'], developer_embeddings) resource_embeddings = self._aggregate_text_embedding( features['resource_token_id'], resource_embeddings) type_embedding = self._type_embedding_layer( tf.maximum(features['obj_type'], 0)) clickable_embedding = self._clickable_embedding_layer( features['obj_clickable']) object_info = [] if 'text' in self._hparams['screen_embedding_feature']: object_info.append(developer_embeddings) object_info.append(resource_embeddings) if 'type' in self._hparams['screen_embedding_feature']: object_info.append(type_embedding) if 'pos' in self._hparams['screen_embedding_feature']: pos_embedding = self._embed_composite_feature(features['obj_screen_pos'], self._pos_embedding_layers) object_info.append(pos_embedding) if 'click' in self._hparams['screen_embedding_feature']: object_info.append(clickable_embedding) if 'dom' in self._hparams['screen_embedding_feature']: dom_embedding = self._embed_composite_feature(features['obj_dom_pos'], self._dom_embedding_layers) object_info.append(dom_embedding) object_embed = tf.concat(object_info, -1) object_embed = self._vh_final_layer(object_embed) # [batch, obj_num] object_mask = tf.cast(tf.not_equal(features['obj_type'], -1), tf.float32) # [batch, obj_num, hidden_dim] object_embed = object_embed * tf.expand_dims(object_mask, -1) att_bias = model_utils.get_padding_bias(object_mask) if training: object_embed = tf.nn.dropout(object_embed, rate=self._hparams['dropout']) encoder_output = self._transformer_encoder( object_embed, attention_bias=att_bias, inputs_padding=None, # not used in EncoderStack. training=training) object_embed = tf.reshape(object_embed, [-1, self._hparams['hidden_size']]) encoder_output = tf.reshape(encoder_output, [-1, self._hparams['hidden_size']]) valid_object_embed = tf.gather(object_embed, object_selector) valid_screen_encoding = tf.gather(encoder_output, object_selector) return valid_screen_encoding, valid_object_embed def _aggregate_text_embedding(self, token_ids, embeddings): """Aggregate text embedding for a UI element.""" if self._hparams['obj_text_aggregation'] == 'max': # Find valid tokens (not PADDING/EOS/UNK/START). valid_token_mask = tf.greater_equal(token_ids, 4) # Use large negative bias for invalid tokens. invalid_token_bias = tf.cast( tf.logical_not(valid_token_mask), tf.float32) * -1e9 # [batch, node_num, word_num, hidden_size] embeddings = embeddings + tf.expand_dims(invalid_token_bias, axis=-1) # Max value for each dimension, [batch, node_num, hidden_size]. embeddings = tf.reduce_max(embeddings, axis=-2) # For objects with no text, use 0. valid_object_mask = tf.cast( tf.reduce_any(valid_token_mask, axis=-1), tf.float32) embeddings = embeddings * tf.expand_dims(valid_object_mask, axis=-1) elif self._hparams['obj_text_aggregation'] == 'sum': # [batch, step, #max_obj, #max_token] 0 for padded tokens real_objects = tf.cast(tf.greater_equal(token_ids, 4), tf.float32) # [batch, step, #max_obj, hidden] 0s for padded objects embeddings = tf.reduce_sum( input_tensor=embeddings * tf.expand_dims(real_objects, 3), axis=-2) else: raise ValueError('Unrecognized token aggregation %s' % (self._hparams['obj_text_aggregation'])) return embeddings class DecoderLayer(tf.keras.layers.Layer): """Captioning decoder layer.""" def __init__(self, hparams, word_embedding_layer, position_embedding_layer): super(DecoderLayer, self).__init__(name='decoder') self._hparams = hparams self._word_embedding_layer = word_embedding_layer self._position_embedding_layer = position_embedding_layer def build(self, inputs): self._transformer_decoder = nlp_transformer.DecoderStack(self._hparams) def call(self, decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training, cache=None): """Return the output of the decoder layer stacks. Args: decoder_inputs: A tensor with shape [batch_size, target_length, hidden_size]. encoder_outputs: A tensor with shape [batch_size, input_length, hidden_size] decoder_self_attention_bias: A tensor with shape [1, 1, target_len, target_length], the bias for decoder self-attention layer. attention_bias: A tensor with shape [batch_size, 1, 1, input_length], the bias for encoder-decoder attention layer. training: A bool, whether in training mode or not. cache: (Used for fast decoding) A nested dictionary storing previous decoder self-attention values. The items are: {layer_n: {"k": A tensor with shape [batch_size, i, key_channels], "v": A tensor with shape [batch_size, i, value_channels]}, ...} Returns: Output of decoder layer stack. float32 tensor with shape [batch_size, target_length, hidden_size] """ # Run values outputs = self._transformer_decoder( decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training, cache=cache) return outputs class WidgetCaptionModel(tf.keras.Model): """Widget Captioning Model.""" _SCORE_NAMES = [ 'BLEU-1', 'BLEU-2', 'BLEU-3', 'BLEU-4', 'ROUGE-1-f1-mean', 'ROUGE-1-f1-min', 'ROUGE-1-f1-max', 'ROUGE-2-f1-mean', 'ROUGE-2-f1-min', 'ROUGE-2-f1-max', 'ROUGE-L-f1-mean', 'ROUGE-L-f1-min', 'ROUGE-L-f1-max' ] # 10 words + EOS symbol. _MAX_DECODE_LENGTH = 11 def __init__(self, hparams): super(WidgetCaptionModel, self).__init__() self._hparams = hparams with tf.name_scope('captioning'): self._word_embedding_layer = EmbeddingLayer( name='word', hidden_dim=self._hparams['hidden_size'], embedding_file=self._hparams['embedding_file'], vocab_size=self._hparams['vocab_size'], embedding_dim=self._hparams['hidden_size'], # not used trainable=self._hparams['glove_trainable']) self._position_embedding_layer = layers.RelativePositionEmbedding( hidden_size=self._hparams['hidden_size']) self._encoder = EncoderLayer(self._hparams, self._word_embedding_layer) self._decoder = DecoderLayer(self._hparams, self._word_embedding_layer, self._position_embedding_layer) self._word_layer = tf.keras.layers.Dense( units=self._hparams['vocab_size']) self.model_metrics = { 'loss': tf.keras.metrics.Mean(name='loss'), 'global_norm': tf.keras.metrics.Mean(name='global_norm'), } self.caption_metrics = {} for score_name in self._SCORE_NAMES: scoped_name = 'COCO/{}'.format(score_name) self.caption_metrics[scoped_name] = tf.keras.metrics.Mean( name=scoped_name) self._word_vocab = [] with tf.io.gfile.GFile(self._hparams['word_vocab_path']) as f: for index, line in enumerate(f): if index >= self._hparams['vocab_size']: break self._word_vocab.append(line.strip()) def call(self, inputs, training): features, targets = inputs object_selector = self._caption_object_selector(features) encoder_outputs = self._encoder(features, object_selector, training) if self._hparams['decoding_task']: if targets is None: return self.predict(encoder_outputs, training) else: return self.decode(targets, encoder_outputs, training) def _caption_object_selector(self, features): worker = tf.reshape(tf.equal(features['label_flag'], 0), [-1]) # [worker_node] indices into [BxN] vector for valid worker node. worker_position = tf.reshape(tf.where(worker), [-1]) return worker_position def _caption_loss(self, targets, logits): per_example_loss = tf.nn.sparse_softmax_cross_entropy_with_logits( labels=targets, logits=logits) # Create non-padding mask and only compute loss for non-padding positions. non_padding = tf.greater(targets, input_utils.PADDING) mask = tf.cast(non_padding, tf.float32) per_example_loss = per_example_loss * mask avg_loss = tf.reduce_sum(per_example_loss) / tf.reduce_sum(mask) avg_loss = tf.cond(tf.math.is_nan(avg_loss), lambda: 0.0, lambda: avg_loss) return avg_loss def train_step(self, data): targets, _ = self.compute_targets(data) with tf.GradientTape() as tape: logits = self([data, targets], training=True) if self._hparams['decoding_task']: avg_loss = self._caption_loss(targets, logits) trainable_vars = self.trainable_variables gradients = tape.gradient(avg_loss, trainable_vars) gradients, global_norm = tf.clip_by_global_norm( gradients, self._hparams['clip_norm']) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) self.model_metrics['loss'].update_state(avg_loss) self.model_metrics['global_norm'].update_state(global_norm) train_metrics = ['loss', 'global_norm'] return {m: self.model_metrics[m].result() for m in train_metrics} def test_step(self, data): targets, references = self.compute_targets(data) logits = self([data, targets], training=False) avg_loss = self._caption_loss(targets, logits) decoded = self([data, None], training=False) self.compute_caption_metrics(decoded, references) self.model_metrics['loss'].update_state(avg_loss) return {m.name: m.result() for m in self.model_metrics.values()} def compute_caption_metrics(self, predictions, references): """Computes the eval metrics for decoding.""" py_types = [tf.float32] * len(self._SCORE_NAMES) scores = tf.py_function(compute_score, (predictions, references, self._word_vocab), py_types) for name, score in zip(self._SCORE_NAMES, scores): scoped_name = 'COCO/{}'.format(name) self.caption_metrics[scoped_name].update_state(score) self.model_metrics[scoped_name] = self.caption_metrics[scoped_name] def decode(self, targets, encoder_outputs, training): """Generate logits for each value in the target sequence. Args: targets: target values for the output sequence. int tensor with shape [batch_size, target_length] encoder_outputs: continuous representation of input sequence. float tensor with shape [batch_size, input_length, hidden_size] training: boolean, whether in training mode or not. Returns: float32 tensor with shape [batch_size, target_length, vocab_size] """ with tf.name_scope('decode'): length = tf.shape(targets)[1] decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias( length) encoder_shape = tf.shape(encoder_outputs) # [batch, 1] as there is only one object as input for decoding. mask = tf.ones([encoder_shape[0], encoder_shape[1]]) # In mask, 1 = valid object, 0 = padding, attn_bias will have -NEG_INF for # paddings and 0 for valid objects. attention_bias = model_utils.get_padding_bias(mask) # Prepare inputs to decoder layers by shifting targets, adding positional # encoding and applying dropout. targets = tf.pad( targets, [[0, 0], [1, 0]], constant_values=input_utils.START) # Remove last element. targets = targets[:, :-1] decoder_inputs = self._word_embedding_layer(targets) # No need to shift, use START above to shift. # with tf.name_scope('shift_targets'): # # Shift targets to the right, and remove the last element # decoder_inputs = tf.pad(decoder_inputs, # [[0, 0], [1, 0], [0, 0]])[:, :-1, :] with tf.name_scope('add_pos_encoding'): pos_encoding = self._position_embedding_layer(decoder_inputs) decoder_inputs += pos_encoding if training: decoder_inputs = tf.nn.dropout( decoder_inputs, rate=self._hparams['layer_postprocess_dropout']) decoder_outputs = self._decoder( decoder_inputs, encoder_outputs, decoder_self_attention_bias, attention_bias, training=training) logits = self._word_layer(decoder_outputs) return logits def predict(self, encoder_outputs, training): """Return predicted sequence.""" batch_size = tf.shape(encoder_outputs)[0] # input_length = tf.shape(encoder_outputs)[1] # 10 words + EOS symbol symbols_to_logits_fn = self._get_symbols_to_logits_fn( max_decode_length=self._MAX_DECODE_LENGTH, training=training) # Create initial set of IDs that will be passed into symbols_to_logits_fn. initial_ids = tf.ones([batch_size], dtype=tf.int32) * input_utils.START # Create cache storing decoder attention values for each layer. # pylint: disable=g-complex-comprehension init_decode_length = 0 num_heads = self._hparams['num_heads'] dim_per_head = self._hparams['hidden_size'] // num_heads cache = { 'layer_%d' % layer: { 'k': tf.zeros( [batch_size, init_decode_length, num_heads, dim_per_head]), 'v': tf.zeros( [batch_size, init_decode_length, num_heads, dim_per_head]) } for layer in range(self._hparams['num_hidden_layers']) } # pylint: enable=g-complex-comprehension # Add encoder output and attention bias to the cache. encoder_shape = tf.shape(encoder_outputs) # [batch, 1] as there is only one object as input for decoding. mask = tf.ones([encoder_shape[0], encoder_shape[1]]) # In mask, 1 = valid object, 0 = padding, attn_bias will have -NEG_INF for # paddings and 0 for valid objects. attention_bias = model_utils.get_padding_bias(mask) cache['encoder_outputs'] = encoder_outputs cache['encoder_decoder_attention_bias'] = attention_bias # Use beam search to find the top beam_size sequences and scores. decoded_ids, _ = ops.beam_search.sequence_beam_search( symbols_to_logits_fn=symbols_to_logits_fn, initial_ids=initial_ids, initial_cache=cache, vocab_size=self._hparams['vocab_size'], beam_size=self._hparams['beam_size'], alpha=1, max_decode_length=self._MAX_DECODE_LENGTH, eos_id=input_utils.EOS) # Get the top sequence for each batch element and remove START symbol. top_decoded_ids = decoded_ids[:, 0, 1:] # top_scores = scores[:, 0] return top_decoded_ids def compute_targets(self, features): """Compute the target token ids and phrase ids.""" batch_size = tf.shape(features['label_flag'])[0] num_objects = tf.shape(features['label_flag'])[1] worker_position = self._caption_object_selector(features) # [worker_node, 1]: retrieve the reference captions. valid_references = tf.gather( tf.reshape(features['reference'], [-1]), worker_position) # [worker_node, seq_len]: retrieve reference phrases. target_phrase = features['caption_token_id'] target_phrase = tf.reshape( target_phrase, [batch_size * num_objects, self._MAX_DECODE_LENGTH]) valid_target_phrase = tf.gather(target_phrase, worker_position) return valid_target_phrase, valid_references def _get_symbols_to_logits_fn(self, max_decode_length, training): """Returns a decoding function that calculates logits of the next tokens.""" timing_signal = self._position_embedding_layer( inputs=None, length=max_decode_length) decoder_self_attention_bias = model_utils.get_decoder_self_attention_bias( max_decode_length) def symbols_to_logits_fn(ids, i, cache): """Generate logits for next potential IDs. Args: ids: Current decoded sequences. int tensor with shape [batch_size * beam_size, i + 1]. i: Loop index. cache: dictionary of values storing the encoder output, encoder-decoder attention bias, and previous decoder attention values. Returns: Tuple of (logits with shape [batch_size * beam_size, vocab_size], updated cache values) """ # Set decoder input to the last generated IDs. The previous ids attention # key/value are already stored in the cache. decoder_input = ids[:, -1:] # Preprocess decoder input by getting embeddings and adding timing signal. decoder_input = self._word_embedding_layer(decoder_input) decoder_input += timing_signal[i:i + 1] self_attention_bias = decoder_self_attention_bias[:, :, i:i + 1, :i + 1] decoder_outputs = self._decoder( decoder_input, cache.get('encoder_outputs'), self_attention_bias, cache.get('encoder_decoder_attention_bias'), training=training, cache=cache) # Only use the last decoded state. decoder_outputs = decoder_outputs[:, -1, :] logits = self._word_layer(decoder_outputs) return logits, cache return symbols_to_logits_fn class TensorBoardCallBack(tf.keras.callbacks.TensorBoard): """Learning rate log callback.""" def on_train_batch_begin(self, batch, logs=None): super(TensorBoardCallBack, self).on_train_batch_begin(batch, logs) try: lr = self.model.optimizer.learning_rate(batch) except TypeError: lr = self.model.optimizer.learning_rate if batch % 100 == 0: try: with self.writer.as_default(): tf.summary.scalar('learning rate', tensor=lr) self.writer.flush() except AttributeError: logging.info('TensorBoard not init yet') def init_resnet(hparams, model): """Init resnet weights from a TF model if provided.""" if not hparams['widget_encoder_checkpoint']: return reader = tf.train.load_checkpoint(hparams['widget_encoder_checkpoint']) # Initialize model weights. init_set = input_utils.input_fn( hparams['train_files'], 1, hparams['vocab_size'], hparams['max_pixel_pos'], hparams['max_dom_pos'], epoches=1, buffer_size=1) init_features = next(iter(init_set)) init_target = model.compute_targets(init_features) model([init_features, init_target[0]], training=True) weight_value_tuples = [] for layer in model._encoder._pixel_layers: # pylint: disable=protected-access for param in layer.weights: if 'batch_normalization' in param.name: continue sublayer, varname = param.name.replace(':0', '').split('/')[-2:] var_name = 'encoder/{}/{}'.format(sublayer, varname) if reader.has_tensor(var_name): logging.info('Found pretrained weights: %s %s, %s %s', param.name, param.shape, var_name, reader.get_tensor(var_name).shape) weight_value_tuples.append((param, reader.get_tensor(var_name))) logging.info('Load pretrained %s weights', len(weight_value_tuples)) tf.keras.backend.batch_set_value(weight_value_tuples) def main(argv=None): del argv hparams = create_hparams(FLAGS.experiment) if hparams['distribution_strategy'] == 'multi_worker_mirrored': strategy = tf.distribute.experimental.MultiWorkerMirroredStrategy() elif hparams['distribution_strategy'] == 'mirrored': strategy = tf.distribute.MirroredStrategy() else: raise ValueError('Only `multi_worker_mirrored` is supported strategy ' 'in Keras MNIST example at this time. Strategy passed ' 'in is %s' % hparams['distribution_strategy']) # Build the train and eval datasets from the MNIST data. train_set = input_utils.input_fn( hparams['train_files'], hparams['batch_size'], hparams['vocab_size'], hparams['max_pixel_pos'], hparams['max_dom_pos'], epoches=1, buffer_size=hparams['train_buffer_size']) dev_set = input_utils.input_fn( hparams['eval_files'], hparams['eval_batch_size'], hparams['vocab_size'], hparams['max_pixel_pos'], hparams['max_dom_pos'], epoches=100, buffer_size=hparams['eval_buffer_size']) # Create and compile the model under Distribution strategy scope. # `fit`, `evaluate` and `predict` will be distributed based on the strategy # model was compiled with. with strategy.scope(): model = WidgetCaptionModel(hparams) lr_schedule = optimizer.LearningRateSchedule( hparams['learning_rate_constant'], hparams['hidden_size'], hparams['learning_rate_warmup_steps']) opt = tf.keras.optimizers.Adam( lr_schedule, hparams['optimizer_adam_beta1'], hparams['optimizer_adam_beta2'], epsilon=hparams['optimizer_adam_epsilon']) model.compile(optimizer=opt) init_resnet(hparams, model) callbacks = [tf.keras.callbacks.TerminateOnNaN()] if FLAGS.model_dir: ckpt_filepath = os.path.join(FLAGS.model_dir, 'saved/{epoch:04d}') backup_dir = os.path.join(FLAGS.model_dir, 'backup') tensorboard_callback = TensorBoardCallBack(log_dir=FLAGS.model_dir) callbacks.append(tensorboard_callback) model_checkpoint_callback = tf.keras.callbacks.ModelCheckpoint( filepath=ckpt_filepath, save_weights_only=True) callbacks.append(model_checkpoint_callback) if tf.executing_eagerly(): callbacks.append( tf.keras.callbacks.experimental.BackupAndRestore( backup_dir=backup_dir)) # Train the model with the train dataset. history = model.fit( x=train_set, epochs=hparams['train_epoches'], validation_data=dev_set, validation_steps=10, callbacks=callbacks) logging.info('Training ends successfully. `model.fit()` result: %s', history.history) if __name__ == '__main__': logging.set_verbosity(logging.INFO) app.run(main)
37.465567
88
0.682502
[ "Apache-2.0" ]
AI21212019/google-research
widget_caption/widget_caption_model.py
38,627
Python
from django.apps import AppConfig class AppNameConfig(AppConfig): name = "backend" verbose_name = "ToDo List"
17.142857
33
0.725
[ "Apache-2.0" ]
AlekseyLobanov/django-todo
backend/backend/apps.py
120
Python
import models import serializers from rest_framework import viewsets, permissions class apiViewSet(viewsets.ModelViewSet): """ViewSet for the api class""" queryset = models.api.objects.all() serializer_class = serializers.apiSerializer permission_classes = [permissions.IsAuthenticated]
22
54
0.775974
[ "Apache-2.0" ]
mainecivichackday/invman
api_invman/api.py
308
Python
from urllib.parse import quote from django import template register = template.Library() @register.simple_tag def pie_chart(items, width=440, height=190): return '//chart.googleapis.com/chart?cht=p3&chd=t:{0}&chs={1}x{2}&chl={3}'.format( quote(','.join([str(item[1]) for item in items])), width, height, quote('|'.join([str(item[0]) for item in items])), )
25.0625
86
0.630923
[ "BSD-2-Clause" ]
Django-AI/Django-Request
request/templatetags/request_admin.py
401
Python
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """tensor_util tests.""" # pylint: disable=unused-import from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.platform import tf_logging as logging from tensorflow.python.util import deprecation class DeprecationTest(tf.test.TestCase): def _assert_subset(self, expected_subset, actual_set): self.assertTrue( actual_set.issuperset(expected_subset), msg="%s is not a superset of %s." % (actual_set, expected_subset)) def test_deprecated_illegal_args(self): instructions = "This is how you update..." with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated(None, instructions) with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated("", instructions) with self.assertRaisesRegexp(ValueError, "YYYY-MM-DD"): deprecation.deprecated("07-04-2016", instructions) date = "2016-07-04" with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated(date, None) with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated(date, "") @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated(date, instructions) def _fn(arg0, arg1): """fn doc. Args: arg0: Arg 0. arg1: Arg 1. Returns: Sum of args. """ return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated)" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:\n%s" "\n" "\n Args:" "\n arg0: Arg 0." "\n arg1: Arg 1." "\n" "\n Returns:" "\n Sum of args." "\n " % (date, instructions), _fn.__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_one_line_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated(date, instructions) def _fn(arg0, arg1): """fn doc.""" return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated)" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:\n%s" % (date, instructions), _fn.__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_no_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated(date, instructions) def _fn(arg0, arg1): return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "DEPRECATED FUNCTION" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:" "\n%s" % (date, instructions), _fn.__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_instance_fn_with_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." class _Object(object): def __init(self): pass @deprecation.deprecated(date, instructions) def _fn(self, arg0, arg1): """fn doc. Args: arg0: Arg 0. arg1: Arg 1. Returns: Sum of args. """ return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual( "fn doc. (deprecated)" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:\n%s" "\n" "\n Args:" "\n arg0: Arg 0." "\n arg1: Arg 1." "\n" "\n Returns:" "\n Sum of args." "\n " % (date, instructions), getattr(_Object, "_fn").__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _Object()._fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_instance_fn_with_one_line_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." class _Object(object): def __init(self): pass @deprecation.deprecated(date, instructions) def _fn(self, arg0, arg1): """fn doc.""" return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual( "fn doc. (deprecated)" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:\n%s" % (date, instructions), getattr(_Object, "_fn").__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _Object()._fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_instance_fn_no_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." class _Object(object): def __init(self): pass @deprecation.deprecated(date, instructions) def _fn(self, arg0, arg1): return arg0 + arg1 # Assert function docs are properly updated. self.assertEqual( "DEPRECATED FUNCTION" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:" "\n%s" % (date, instructions), getattr(_Object, "_fn").__doc__) # Assert calling new fn issues log warning. self.assertEqual(3, _Object()._fn(1, 2)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) def test_prop_wrong_order(self): with self.assertRaisesRegexp( ValueError, "make sure @property appears before @deprecated in your source code"): # pylint: disable=unused-variable class _Object(object): def __init(self): pass @deprecation.deprecated("2016-07-04", "Instructions.") @property def _prop(self): return "prop_wrong_order" @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_prop_with_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." class _Object(object): def __init(self): pass @property @deprecation.deprecated(date, instructions) def _prop(self): """prop doc. Returns: String. """ return "prop_with_doc" # Assert function docs are properly updated. self.assertEqual( "prop doc. (deprecated)" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:" "\n%s" "\n" "\n Returns:" "\n String." "\n " % (date, instructions), getattr(_Object, "_prop").__doc__) # Assert calling new fn issues log warning. self.assertEqual("prop_with_doc", _Object()._prop) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_prop_no_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." class _Object(object): def __init(self): pass @property @deprecation.deprecated(date, instructions) def _prop(self): return "prop_no_doc" # Assert function docs are properly updated. self.assertEqual( "DEPRECATED FUNCTION" "\n" "\nTHIS FUNCTION IS DEPRECATED. It will be removed after %s." "\nInstructions for updating:" "\n%s" % (date, instructions), getattr(_Object, "_prop").__doc__) # Assert calling new fn issues log warning. self.assertEqual("prop_no_doc", _Object()._prop) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) class DeprecatedArgsTest(tf.test.TestCase): def _assert_subset(self, expected_subset, actual_set): self.assertTrue( actual_set.issuperset(expected_subset), msg="%s is not a superset of %s." % (actual_set, expected_subset)) def test_deprecated_illegal_args(self): instructions = "This is how you update..." date = "2016-07-04" with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated_args(None, instructions, "deprecated") with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated_args("", instructions, "deprecated") with self.assertRaisesRegexp(ValueError, "YYYY-MM-DD"): deprecation.deprecated_args("07-04-2016", instructions, "deprecated") with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated_args(date, None, "deprecated") with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated_args(date, "", "deprecated") with self.assertRaisesRegexp(ValueError, "argument"): deprecation.deprecated_args(date, instructions) def test_deprecated_missing_args(self): date = "2016-07-04" instructions = "This is how you update..." def _fn(arg0, arg1, deprecated=None): return arg0 + arg1 if deprecated else arg1 + arg0 # Assert calls without the deprecated argument log nothing. with self.assertRaisesRegexp(ValueError, "not present.*\\['missing'\\]"): deprecation.deprecated_args(date, instructions, "missing")(_fn) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "deprecated") def _fn(arg0, arg1, deprecated=True): """fn doc. Args: arg0: Arg 0. arg1: Arg 1. deprecated: Deprecated! Returns: Sum of args. """ return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated arguments)" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:\n%s" "\n" "\n Args:" "\n arg0: Arg 0." "\n arg1: Arg 1." "\n deprecated: Deprecated!" "\n" "\n Returns:" "\n Sum of args." "\n " % (date, instructions), _fn.__doc__) # Assert calls without the deprecated argument log nothing. self.assertEqual(3, _fn(1, 2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated argument log a warning. self.assertEqual(3, _fn(1, 2, True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_one_line_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "deprecated") def _fn(arg0, arg1, deprecated=True): """fn doc.""" return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated arguments)" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:\n%s" % (date, instructions), _fn.__doc__) # Assert calls without the deprecated argument log nothing. self.assertEqual(3, _fn(1, 2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated argument log a warning. self.assertEqual(3, _fn(1, 2, True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_no_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "deprecated") def _fn(arg0, arg1, deprecated=True): return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "DEPRECATED FUNCTION ARGUMENTS" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:" "\n%s" % (date, instructions), _fn.__doc__) # Assert calls without the deprecated argument log nothing. self.assertEqual(3, _fn(1, 2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated argument log a warning. self.assertEqual(3, _fn(1, 2, True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_varargs(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "deprecated") def _fn(arg0, arg1, *deprecated): return arg0 + arg1 if deprecated else arg1 + arg0 # Assert calls without the deprecated argument log nothing. self.assertEqual(3, _fn(1, 2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated argument log a warning. self.assertEqual(3, _fn(1, 2, True, False)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_kwargs(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "deprecated") def _fn(arg0, arg1, **deprecated): return arg0 + arg1 if deprecated else arg1 + arg0 # Assert calls without the deprecated argument log nothing. self.assertEqual(3, _fn(1, 2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated argument log a warning. self.assertEqual(3, _fn(1, 2, a=True, b=False)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_positional_and_named(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_args(date, instructions, "d1", "d2") def _fn(arg0, d1=None, arg1=2, d2=None): return arg0 + arg1 if d1 else arg1 + arg0 if d2 else arg0 * arg1 # Assert calls without the deprecated arguments log nothing. self.assertEqual(2, _fn(1, arg1=2)) self.assertEqual(0, mock_warning.call_count) # Assert calls with the deprecated arguments log warnings. self.assertEqual(2, _fn(1, None, 2, d2=False)) self.assertEqual(2, mock_warning.call_count) (args1, _) = mock_warning.call_args_list[0] self.assertRegexpMatches(args1[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions, "d1"]), set(args1[1:])) (args2, _) = mock_warning.call_args_list[1] self.assertRegexpMatches(args1[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions, "d2"]), set(args2[1:])) class DeprecatedArgValuesTest(tf.test.TestCase): def _assert_subset(self, expected_subset, actual_set): self.assertTrue( actual_set.issuperset(expected_subset), msg="%s is not a superset of %s." % (actual_set, expected_subset)) def test_deprecated_illegal_args(self): instructions = "This is how you update..." with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated_arg_values( None, instructions, deprecated=True) with self.assertRaisesRegexp(ValueError, "date"): deprecation.deprecated_arg_values( "", instructions, deprecated=True) with self.assertRaisesRegexp(ValueError, "YYYY-MM-DD"): deprecation.deprecated_arg_values( "07-04-2016", instructions, deprecated=True) date = "2016-07-04" with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated_arg_values( date, None, deprecated=True) with self.assertRaisesRegexp(ValueError, "instructions"): deprecation.deprecated_arg_values( date, "", deprecated=True) with self.assertRaisesRegexp(ValueError, "argument", deprecated=True): deprecation.deprecated_arg_values( date, instructions) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_arg_values(date, instructions, deprecated=True) def _fn(arg0, arg1, deprecated=True): """fn doc. Args: arg0: Arg 0. arg1: Arg 1. deprecated: Deprecated! Returns: Sum of args. """ return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated arguments)" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:\n%s" "\n" "\n Args:" "\n arg0: Arg 0." "\n arg1: Arg 1." "\n deprecated: Deprecated!" "\n" "\n Returns:" "\n Sum of args." "\n " % (date, instructions), _fn.__doc__) # Assert calling new fn with non-deprecated value logs nothing. self.assertEqual(3, _fn(1, 2, deprecated=False)) self.assertEqual(0, mock_warning.call_count) # Assert calling new fn with deprecated value issues log warning. self.assertEqual(3, _fn(1, 2, deprecated=True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) # Assert calling new fn with default deprecated value issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(2, mock_warning.call_count) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_with_one_line_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_arg_values(date, instructions, deprecated=True) def _fn(arg0, arg1, deprecated=True): """fn doc.""" return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "fn doc. (deprecated arguments)" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:\n%s" % (date, instructions), _fn.__doc__) # Assert calling new fn with non-deprecated value logs nothing. self.assertEqual(3, _fn(1, 2, deprecated=False)) self.assertEqual(0, mock_warning.call_count) # Assert calling new fn with deprecated value issues log warning. self.assertEqual(3, _fn(1, 2, deprecated=True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) # Assert calling new fn with default deprecated value issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(2, mock_warning.call_count) @tf.test.mock.patch.object(logging, "warning", autospec=True) def test_static_fn_no_doc(self, mock_warning): date = "2016-07-04" instructions = "This is how you update..." @deprecation.deprecated_arg_values(date, instructions, deprecated=True) def _fn(arg0, arg1, deprecated=True): return arg0 + arg1 if deprecated else arg1 + arg0 # Assert function docs are properly updated. self.assertEqual("_fn", _fn.__name__) self.assertEqual( "DEPRECATED FUNCTION ARGUMENTS" "\n" "\nSOME ARGUMENTS ARE DEPRECATED. They will be removed after %s." "\nInstructions for updating:" "\n%s" % (date, instructions), _fn.__doc__) # Assert calling new fn with non-deprecated value logs nothing. self.assertEqual(3, _fn(1, 2, deprecated=False)) self.assertEqual(0, mock_warning.call_count) # Assert calling new fn issues log warning. self.assertEqual(3, _fn(1, 2, deprecated=True)) self.assertEqual(1, mock_warning.call_count) (args, _) = mock_warning.call_args self.assertRegexpMatches(args[0], r"deprecated and will be removed after") self._assert_subset(set([date, instructions]), set(args[1:])) # Assert calling new fn with default deprecated value issues log warning. self.assertEqual(3, _fn(1, 2)) self.assertEqual(2, mock_warning.call_count) if __name__ == "__main__": tf.test.main()
35.987032
80
0.66006
[ "Apache-2.0" ]
AccelAI/tensorflow
tensorflow/python/util/deprecation_test.py
24,975
Python
# # endpoints import logging from datetime import datetime from dateutil.relativedelta import relativedelta from django.contrib import messages from django.contrib.auth.decorators import user_passes_test from django.core.exceptions import PermissionDenied from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render, get_object_or_404 from django.utils.html import escape from django.utils import timezone from dojo.filters import EndpointFilter from dojo.forms import EditEndpointForm, \ DeleteEndpointForm, AddEndpointForm, DojoMetaDataForm from dojo.models import Product, Endpoint, Finding, System_Settings, DojoMeta from dojo.utils import get_page_items, add_breadcrumb, get_period_counts, get_system_setting, Product_Tab from django.contrib.contenttypes.models import ContentType from custom_field.models import CustomFieldValue, CustomField logger = logging.getLogger(__name__) def vulnerable_endpoints(request): endpoints = Endpoint.objects.filter(finding__active=True, finding__verified=True, finding__false_p=False, finding__duplicate=False, finding__out_of_scope=False).distinct() # are they authorized if request.user.is_staff: pass else: products = Product.objects.filter(authorized_users__in=[request.user]) if products.exists(): endpoints = endpoints.filter(product__in=products.all()) else: raise PermissionDenied product = None if 'product' in request.GET: p = request.GET.getlist('product', []) if len(p) == 1: product = get_object_or_404(Product, id=p[0]) ids = get_endpoint_ids(EndpointFilter(request.GET, queryset=endpoints, user=request.user).qs) endpoints = EndpointFilter(request.GET, queryset=endpoints.filter(id__in=ids), user=request.user) endpoints_query = endpoints.qs.order_by('host') paged_endpoints = get_page_items(request, endpoints_query, 25) add_breadcrumb(title="Vulnerable Endpoints", top_level=not len(request.GET), request=request) system_settings = System_Settings.objects.get() product_tab = None view_name = "All Endpoints" if product: product_tab = Product_Tab(product.id, "Vulnerable Endpoints", tab="endpoints") return render( request, 'dojo/endpoints.html', { 'product_tab': product_tab, "endpoints": paged_endpoints, "filtered": endpoints, "name": "Vulnerable Endpoints", }) def all_endpoints(request): endpoints = Endpoint.objects.all() show_uri = get_system_setting('display_endpoint_uri') # are they authorized if request.user.is_staff: pass else: products = Product.objects.filter(authorized_users__in=[request.user]) if products.exists(): endpoints = endpoints.filter(product__in=products.all()) else: raise PermissionDenied product = None if 'product' in request.GET: p = request.GET.getlist('product', []) if len(p) == 1: product = get_object_or_404(Product, id=p[0]) if show_uri: endpoints = EndpointFilter(request.GET, queryset=endpoints, user=request.user) paged_endpoints = get_page_items(request, endpoints.qs, 25) else: ids = get_endpoint_ids(EndpointFilter(request.GET, queryset=endpoints, user=request.user).qs) endpoints = EndpointFilter(request.GET, queryset=endpoints.filter(id__in=ids), user=request.user) paged_endpoints = get_page_items(request, endpoints.qs, 25) add_breadcrumb(title="All Endpoints", top_level=not len(request.GET), request=request) product_tab = None view_name = "All Endpoints" if product: view_name = "Endpoints" product_tab = Product_Tab(product.id, "Endpoints", tab="endpoints") return render( request, 'dojo/endpoints.html', { 'product_tab': product_tab, "endpoints": paged_endpoints, "filtered": endpoints, "name": view_name, "show_uri": show_uri }) def get_endpoint_ids(endpoints): hosts = [] ids = [] for e in endpoints: if ":" in e.host: host_no_port = e.host[:e.host.index(':')] else: host_no_port = e.host key = host_no_port + '-' + str(e.product.id) if key in hosts: continue else: hosts.append(key) ids.append(e.id) return ids def view_endpoint(request, eid): endpoint = get_object_or_404(Endpoint, id=eid) host = endpoint.host_no_port endpoints = Endpoint.objects.filter(host__regex="^" + host + ":?", product=endpoint.product).distinct() if (request.user in endpoint.product.authorized_users.all()) or request.user.is_staff: pass else: raise PermissionDenied endpoint_cf = endpoint.endpoint_meta endpoint_metadata = {} for cf in endpoint_cf.all(): cfv = cf.value if len(cfv): endpoint_metadata[cf.name] = cfv all_findings = Finding.objects.filter(endpoints__in=endpoints).distinct() active_findings = Finding.objects.filter(endpoints__in=endpoints, active=True, verified=True).distinct() closed_findings = Finding.objects.filter(endpoints__in=endpoints, mitigated__isnull=False).distinct() if all_findings: start_date = timezone.make_aware(datetime.combine(all_findings.last().date, datetime.min.time())) else: start_date = timezone.now() end_date = timezone.now() r = relativedelta(end_date, start_date) months_between = (r.years * 12) + r.months # include current month months_between += 1 monthly_counts = get_period_counts(active_findings, all_findings, closed_findings, None, months_between, start_date, relative_delta='months') paged_findings = get_page_items(request, active_findings, 25) vulnerable = False if active_findings.count() != 0: vulnerable = True product_tab = Product_Tab(endpoint.product.id, "Endpoint", tab="endpoints") return render(request, "dojo/view_endpoint.html", {"endpoint": endpoint, 'product_tab': product_tab, "endpoints": endpoints, "findings": paged_findings, 'all_findings': all_findings, 'opened_per_month': monthly_counts['opened_per_period'], 'endpoint_metadata': endpoint_metadata, 'vulnerable': vulnerable, }) @user_passes_test(lambda u: u.is_staff) def edit_endpoint(request, eid): endpoint = get_object_or_404(Endpoint, id=eid) if request.method == 'POST': form = EditEndpointForm(request.POST, instance=endpoint) if form.is_valid(): endpoint = form.save() tags = request.POST.getlist('tags') t = ", ".join(tags) endpoint.tags = t messages.add_message(request, messages.SUCCESS, 'Endpoint updated successfully.', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_endpoint', args=(endpoint.id,))) add_breadcrumb(parent=endpoint, title="Edit", top_level=False, request=request) form = EditEndpointForm(instance=endpoint) form.initial['tags'] = [tag.name for tag in endpoint.tags] product_tab = Product_Tab(endpoint.product.id, "Endpoint", tab="endpoints") return render(request, "dojo/edit_endpoint.html", {"endpoint": endpoint, 'product_tab': product_tab, "form": form, }) @user_passes_test(lambda u: u.is_staff) def delete_endpoint(request, eid): endpoint = get_object_or_404(Endpoint, pk=eid) product = endpoint.product form = DeleteEndpointForm(instance=endpoint) from django.contrib.admin.utils import NestedObjects from django.db import DEFAULT_DB_ALIAS collector = NestedObjects(using=DEFAULT_DB_ALIAS) collector.collect([endpoint]) rels = collector.nested() if request.method == 'POST': if 'id' in request.POST and str(endpoint.id) == request.POST['id']: form = DeleteEndpointForm(request.POST, instance=endpoint) if form.is_valid(): del endpoint.tags endpoint.delete() messages.add_message(request, messages.SUCCESS, 'Endpoint and relationships removed.', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_endpoint', args=(product.id,))) product_tab = Product_Tab(endpoint.product.id, "Delete Endpoint", tab="endpoints") return render(request, 'dojo/delete_endpoint.html', {'endpoint': endpoint, 'product_tab': product_tab, 'form': form, 'rels': rels, }) @user_passes_test(lambda u: u.is_staff) def add_endpoint(request, pid): product = get_object_or_404(Product, id=pid) template = 'dojo/add_endpoint.html' if '_popup' in request.GET: template = 'dojo/add_related.html' form = AddEndpointForm(product=product) if request.method == 'POST': form = AddEndpointForm(request.POST, product=product) if form.is_valid(): endpoints = form.save() tags = request.POST.getlist('tags') t = ", ".join(tags) for e in endpoints: e.tags = t messages.add_message(request, messages.SUCCESS, 'Endpoint added successfully.', extra_tags='alert-success') if '_popup' in request.GET: resp = '<script type="text/javascript">opener.emptyEndpoints(window);</script>' for endpoint in endpoints: resp += '<script type="text/javascript">opener.dismissAddAnotherPopupDojo(window, "%s", "%s");</script>' \ % (escape(endpoint._get_pk_val()), escape(endpoint)) resp += '<script type="text/javascript">window.close();</script>' return HttpResponse(resp) else: return HttpResponseRedirect(reverse('endpoints') + "?product=" + pid) product_tab = None if '_popup' not in request.GET: product_tab = Product_Tab(product.id, "Add Endpoint", tab="endpoints") return render(request, template, { 'product_tab': product_tab, 'name': 'Add Endpoint', 'form': form}) @user_passes_test(lambda u: u.is_staff) def add_product_endpoint(request): form = AddEndpointForm() if request.method == 'POST': form = AddEndpointForm(request.POST) if form.is_valid(): endpoints = form.save() tags = request.POST.getlist('tags') t = ", ".join(tags) for e in endpoints: e.tags = t messages.add_message(request, messages.SUCCESS, 'Endpoint added successfully.', extra_tags='alert-success') return HttpResponseRedirect(reverse('endpoints') + "?product=%s" % form.product.id) add_breadcrumb(title="Add Endpoint", top_level=False, request=request) return render(request, 'dojo/add_endpoint.html', {'name': 'Add Endpoint', 'form': form, }) @user_passes_test(lambda u: u.is_staff) def add_meta_data(request, eid): endpoint = Endpoint.objects.get(id=eid) if request.method == 'POST': form = DojoMetaDataForm(request.POST) if form.is_valid(): cf, created = DojoMeta.objects.get_or_create(name=form.cleaned_data['name'], model_name='Endpoint', model_id=endpoint.id, value=form.cleaned_data['value']) cf.save() messages.add_message(request, messages.SUCCESS, 'Metadata added successfully.', extra_tags='alert-success') if 'add_another' in request.POST: return HttpResponseRedirect(reverse('add_meta_data', args=(eid,))) else: return HttpResponseRedirect(reverse('view_endpoint', args=(eid,))) else: form = DojoMetaDataForm(initial={'content_type': endpoint}) add_breadcrumb(parent=endpoint, title="Add Metadata", top_level=False, request=request) product_tab = Product_Tab(endpoint.product.id, "Add Metadata", tab="endpoints") return render(request, 'dojo/add_endpoint_meta_data.html', {'form': form, 'product_tab': product_tab, 'endpoint': endpoint, }) @user_passes_test(lambda u: u.is_staff) def edit_meta_data(request, eid): endpoint = Endpoint.objects.get(id=eid) endpoint_cf = endpoint.endpoint_meta.all() endpoint_metadata = {} for cf in endpoint_cf: cfv = cf.value if len(cfv): endpoint_metadata[cf] = cfv if request.method == 'POST': for key, value in request.POST.iteritems(): if key.startswith('cfv_'): cfv_id = int(key.split('_')[1]) cfv = get_object_or_404(CustomFieldValue, id=cfv_id) value = value.strip() if value: cfv.value = value cfv.save() else: cfv.delete() messages.add_message(request, messages.SUCCESS, 'Metadata edited successfully.', extra_tags='alert-success') return HttpResponseRedirect(reverse('view_endpoint', args=(eid,))) product_tab = Product_Tab(endpoint.product.id, "Edit Metadata", tab="endpoints") return render(request, 'dojo/edit_endpoint_meta_data.html', {'endpoint': endpoint, 'product_tab': product_tab, 'endpoint_metadata': endpoint_metadata, })
38.609819
126
0.595703
[ "BSD-3-Clause" ]
bend18/django-DefectDojo
dojo/endpoint/views.py
14,942
Python
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 import contextlib import funsor from funsor.adjoint import AdjointTape from pyro.contrib.funsor import to_data, to_funsor from pyro.contrib.funsor.handlers import enum, plate, replay, trace from pyro.contrib.funsor.infer.elbo import ELBO, Jit_ELBO from pyro.distributions.util import copy_docs_from from pyro.infer import TraceEnum_ELBO as _OrigTraceEnum_ELBO # Work around a bug in unfold_contraction_generic_tuple interacting with # Approximate introduced in https://github.com/pyro-ppl/funsor/pull/488 . # Once fixed, this can be replaced by funsor.optimizer.apply_optimizer(). def apply_optimizer(x): with funsor.interpretations.normalize: expr = funsor.interpreter.reinterpret(x) with funsor.optimizer.optimize_base: return funsor.interpreter.reinterpret(expr) def terms_from_trace(tr): """Helper function to extract elbo components from execution traces.""" # data structure containing densities, measures, scales, and identification # of free variables as either product (plate) variables or sum (measure) variables terms = { "log_factors": [], "log_measures": [], "scale": to_funsor(1.0), "plate_vars": frozenset(), "measure_vars": frozenset(), "plate_to_step": dict(), } for name, node in tr.nodes.items(): # add markov dimensions to the plate_to_step dictionary if node["type"] == "markov_chain": terms["plate_to_step"][node["name"]] = node["value"] # ensure previous step variables are added to measure_vars for step in node["value"]: terms["measure_vars"] |= frozenset( { var for var in step[1:-1] if tr.nodes[var]["funsor"].get("log_measure", None) is not None } ) if ( node["type"] != "sample" or type(node["fn"]).__name__ == "_Subsample" or node["infer"].get("_do_not_score", False) ): continue # grab plate dimensions from the cond_indep_stack terms["plate_vars"] |= frozenset( f.name for f in node["cond_indep_stack"] if f.vectorized ) # grab the log-measure, found only at sites that are not replayed or observed if node["funsor"].get("log_measure", None) is not None: terms["log_measures"].append(node["funsor"]["log_measure"]) # sum (measure) variables: the fresh non-plate variables at a site terms["measure_vars"] |= ( frozenset(node["funsor"]["value"].inputs) | {name} ) - terms["plate_vars"] # grab the scale, assuming a common subsampling scale if ( node.get("replay_active", False) and set(node["funsor"]["log_prob"].inputs) & terms["measure_vars"] and float(to_data(node["funsor"]["scale"])) != 1.0 ): # model site that depends on enumerated variable: common scale terms["scale"] = node["funsor"]["scale"] else: # otherwise: default scale behavior node["funsor"]["log_prob"] = ( node["funsor"]["log_prob"] * node["funsor"]["scale"] ) # grab the log-density, found at all sites except those that are not replayed if node["is_observed"] or not node.get("replay_skipped", False): terms["log_factors"].append(node["funsor"]["log_prob"]) # add plate dimensions to the plate_to_step dictionary terms["plate_to_step"].update( {plate: terms["plate_to_step"].get(plate, {}) for plate in terms["plate_vars"]} ) return terms @copy_docs_from(_OrigTraceEnum_ELBO) class TraceMarkovEnum_ELBO(ELBO): def differentiable_loss(self, model, guide, *args, **kwargs): # get batched, enumerated, to_funsor-ed traces from the guide and model with plate( size=self.num_particles ) if self.num_particles > 1 else contextlib.ExitStack(), enum( first_available_dim=(-self.max_plate_nesting - 1) if self.max_plate_nesting else None ): guide_tr = trace(guide).get_trace(*args, **kwargs) model_tr = trace(replay(model, trace=guide_tr)).get_trace(*args, **kwargs) # extract from traces all metadata that we will need to compute the elbo guide_terms = terms_from_trace(guide_tr) model_terms = terms_from_trace(model_tr) # guide side enumeration is not supported if any(guide_terms["plate_to_step"].values()): raise NotImplementedError( "TraceMarkovEnum_ELBO does not yet support guide side Markov enumeration" ) # build up a lazy expression for the elbo with funsor.terms.lazy: # identify and contract out auxiliary variables in the model with partial_sum_product contracted_factors, uncontracted_factors = [], [] for f in model_terms["log_factors"]: if model_terms["measure_vars"].intersection(f.inputs): contracted_factors.append(f) else: uncontracted_factors.append(f) # incorporate the effects of subsampling and handlers.scale through a common scale factor markov_dims = frozenset( {plate for plate, step in model_terms["plate_to_step"].items() if step} ) contracted_costs = [ model_terms["scale"] * f for f in funsor.sum_product.dynamic_partial_sum_product( funsor.ops.logaddexp, funsor.ops.add, model_terms["log_measures"] + contracted_factors, plate_to_step=model_terms["plate_to_step"], eliminate=model_terms["measure_vars"] | markov_dims, ) ] costs = contracted_costs + uncontracted_factors # model costs: logp costs += [-f for f in guide_terms["log_factors"]] # guide costs: -logq # finally, integrate out guide variables in the elbo and all plates plate_vars = guide_terms["plate_vars"] | model_terms["plate_vars"] elbo = to_funsor(0, output=funsor.Real) for cost in costs: # compute the marginal logq in the guide corresponding to this cost term log_prob = funsor.sum_product.sum_product( funsor.ops.logaddexp, funsor.ops.add, guide_terms["log_measures"], plates=plate_vars, eliminate=(plate_vars | guide_terms["measure_vars"]) - frozenset(cost.inputs), ) # compute the expected cost term E_q[logp] or E_q[-logq] using the marginal logq for q elbo_term = funsor.Integrate( log_prob, cost, guide_terms["measure_vars"] & frozenset(cost.inputs) ) elbo += elbo_term.reduce( funsor.ops.add, plate_vars & frozenset(cost.inputs) ) # evaluate the elbo, using memoize to share tensor computation where possible with funsor.interpretations.memoize(): return -to_data(apply_optimizer(elbo)) @copy_docs_from(_OrigTraceEnum_ELBO) class TraceEnum_ELBO(ELBO): def differentiable_loss(self, model, guide, *args, **kwargs): # get batched, enumerated, to_funsor-ed traces from the guide and model with plate( size=self.num_particles ) if self.num_particles > 1 else contextlib.ExitStack(), enum( first_available_dim=(-self.max_plate_nesting - 1) if self.max_plate_nesting else None ): guide_tr = trace(guide).get_trace(*args, **kwargs) model_tr = trace(replay(model, trace=guide_tr)).get_trace(*args, **kwargs) # extract from traces all metadata that we will need to compute the elbo guide_terms = terms_from_trace(guide_tr) model_terms = terms_from_trace(model_tr) # build up a lazy expression for the elbo with funsor.terms.lazy: # identify and contract out auxiliary variables in the model with partial_sum_product contracted_factors, uncontracted_factors = [], [] for f in model_terms["log_factors"]: if model_terms["measure_vars"].intersection(f.inputs): contracted_factors.append(f) else: uncontracted_factors.append(f) # incorporate the effects of subsampling and handlers.scale through a common scale factor contracted_costs = [ model_terms["scale"] * f for f in funsor.sum_product.partial_sum_product( funsor.ops.logaddexp, funsor.ops.add, model_terms["log_measures"] + contracted_factors, plates=model_terms["plate_vars"], eliminate=model_terms["measure_vars"], ) ] # accumulate costs from model (logp) and guide (-logq) costs = contracted_costs + uncontracted_factors # model costs: logp costs += [-f for f in guide_terms["log_factors"]] # guide costs: -logq # compute expected cost # Cf. pyro.infer.util.Dice.compute_expectation() # https://github.com/pyro-ppl/pyro/blob/0.3.0/pyro/infer/util.py#L212 # TODO Replace this with funsor.Expectation plate_vars = guide_terms["plate_vars"] | model_terms["plate_vars"] # compute the marginal logq in the guide corresponding to each cost term targets = dict() for cost in costs: input_vars = frozenset(cost.inputs) if input_vars not in targets: targets[input_vars] = funsor.Tensor( funsor.ops.new_zeros( funsor.tensor.get_default_prototype(), tuple(v.size for v in cost.inputs.values()), ), cost.inputs, cost.dtype, ) with AdjointTape() as tape: logzq = funsor.sum_product.sum_product( funsor.ops.logaddexp, funsor.ops.add, guide_terms["log_measures"] + list(targets.values()), plates=plate_vars, eliminate=(plate_vars | guide_terms["measure_vars"]), ) marginals = tape.adjoint( funsor.ops.logaddexp, funsor.ops.add, logzq, tuple(targets.values()) ) # finally, integrate out guide variables in the elbo and all plates elbo = to_funsor(0, output=funsor.Real) for cost in costs: target = targets[frozenset(cost.inputs)] logzq_local = marginals[target].reduce( funsor.ops.logaddexp, frozenset(cost.inputs) - plate_vars ) log_prob = marginals[target] - logzq_local elbo_term = funsor.Integrate( log_prob, cost, guide_terms["measure_vars"] & frozenset(log_prob.inputs), ) elbo += elbo_term.reduce( funsor.ops.add, plate_vars & frozenset(cost.inputs) ) # evaluate the elbo, using memoize to share tensor computation where possible with funsor.interpretations.memoize(): return -to_data(apply_optimizer(elbo)) class JitTraceEnum_ELBO(Jit_ELBO, TraceEnum_ELBO): pass class JitTraceMarkovEnum_ELBO(Jit_ELBO, TraceMarkovEnum_ELBO): pass
44.625926
102
0.589675
[ "Apache-2.0" ]
1989Ryan/pyro
pyro/contrib/funsor/infer/traceenum_elbo.py
12,049
Python
# -*- coding: utf-8 -*- # # Copyright 2020 - Swiss Data Science Center (SDSC) # A partnership between École Polytechnique Fédérale de Lausanne (EPFL) and # Eidgenössische Technische Hochschule Zürich (ETHZ). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Renku service dataset jobs tests.""" import json import uuid import pytest from flaky import flaky from git import Repo from tests.service.views.test_dataset_views import assert_rpc_response from renku.core.errors import DatasetExistsError, ParameterError from renku.service.jobs.cleanup import cache_project_cleanup from renku.service.jobs.datasets import dataset_add_remote_file, dataset_import from renku.service.utils import make_project_path @pytest.mark.parametrize( 'url', [( 'https://dev.renku.ch/projects/rokroskar/' 'scratch-project/datasets/7eba3f50-1a19-4282-8a86-2497e0f43809/' )] ) @pytest.mark.integration @flaky(max_runs=30, min_passes=1) def test_dataset_url_import_job(url, svc_client_with_repo): """Test dataset import via url.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'dataset_uri': url, } response = svc_client.post( '/datasets.import', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'job_id', 'created_at'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit job_id = response.json['result']['job_id'] dataset_import( user, job_id, project_id, url, ) new_commit = Repo(dest).head.commit assert old_commit.hexsha != new_commit.hexsha assert f'service: dataset import {url}' == new_commit.message response = svc_client.get( f'/jobs/{job_id}', headers=headers, ) assert response assert_rpc_response(response) assert 'COMPLETED' == response.json['result']['state'] @pytest.mark.parametrize( 'doi', [ '10.5281/zenodo.3239980', '10.5281/zenodo.3188334', '10.7910/DVN/TJCLKP', ] ) @pytest.mark.integration @pytest.mark.service @flaky(max_runs=30, min_passes=1) def test_dataset_import_job(doi, svc_client_with_repo): """Test dataset import via doi.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'dataset_uri': doi, } response = svc_client.post( '/datasets.import', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'job_id', 'created_at'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit job_id = response.json['result']['job_id'] dataset_import( user, job_id, project_id, doi, ) new_commit = Repo(dest).head.commit assert old_commit.hexsha != new_commit.hexsha assert f'service: dataset import {doi}' == new_commit.message response = svc_client.get( f'/jobs/{job_id}', headers=headers, ) assert response assert_rpc_response(response) assert 'COMPLETED' == response.json['result']['state'] @pytest.mark.parametrize( 'doi,expected_err', [ # not valid doi ('junkjunkjunk', 'Invalid parameter value'), # not existing doi ('10.5281/zenodo.11111111111111111', 'Invalid parameter value'), ] ) @pytest.mark.integration @pytest.mark.service @flaky(max_runs=30, min_passes=1) def test_dataset_import_junk_job(doi, expected_err, svc_client_with_repo): """Test dataset import.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'dataset_uri': doi, } response = svc_client.post( '/datasets.import', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'job_id', 'created_at'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit job_id = response.json['result']['job_id'] with pytest.raises(ParameterError): dataset_import( user, job_id, project_id, doi, ) new_commit = Repo(dest).head.commit assert old_commit.hexsha == new_commit.hexsha response = svc_client.get( f'/jobs/{job_id}', data=json.dumps(payload), headers=headers, ) assert_rpc_response(response) extras = response.json['result']['extras'] assert 'error' in extras assert expected_err in extras['error'] @pytest.mark.parametrize('doi', [ '10.5281/zenodo.3634052', ]) @pytest.mark.integration @pytest.mark.service @flaky(max_runs=30, min_passes=1) def test_dataset_import_twice_job(doi, svc_client_with_repo): """Test dataset import.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'dataset_uri': doi, } response = svc_client.post( '/datasets.import', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'job_id', 'created_at'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit job_id = response.json['result']['job_id'] dataset_import( user, job_id, project_id, doi, ) new_commit = Repo(dest).head.commit assert old_commit.hexsha != new_commit.hexsha with pytest.raises(DatasetExistsError): dataset_import( user, job_id, project_id, doi, ) new_commit2 = Repo(dest).head.commit assert new_commit.hexsha == new_commit2.hexsha response = svc_client.get( f'/jobs/{job_id}', data=json.dumps(payload), headers=headers, ) assert_rpc_response(response) extras = response.json['result']['extras'] assert 'error' in extras assert 'Dataset exists' in extras['error'] @pytest.mark.parametrize( 'url', [ 'https://gist.github.com/jsam/d957f306ed0fe4ff018e902df6a1c8e3', ] ) @pytest.mark.integration @pytest.mark.service @flaky(max_runs=30, min_passes=1) def test_dataset_add_remote_file(url, svc_client_with_repo): """Test dataset add a remote file.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'short_name': uuid.uuid4().hex, 'create_dataset': True, 'files': [{ 'file_url': url }] } response = svc_client.post( '/datasets.add', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'files', 'short_name', 'project_id'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit job_id = response.json['result']['files'][0]['job_id'] commit_message = 'service: dataset add remote file' dataset_add_remote_file( user, job_id, project_id, True, commit_message, payload['short_name'], url ) new_commit = Repo(dest).head.commit assert old_commit.hexsha != new_commit.hexsha assert commit_message == new_commit.message @pytest.mark.parametrize('doi', [ '10.5281/zenodo.3761586', ]) @pytest.mark.integration @pytest.mark.service def test_dataset_project_lock(doi, svc_client_with_repo): """Test dataset project lock.""" svc_client, headers, project_id, url_components = svc_client_with_repo user = {'user_id': headers['Renku-User-Id']} payload = { 'project_id': project_id, 'dataset_uri': doi, } response = svc_client.post( '/datasets.import', data=json.dumps(payload), headers=headers, ) assert response assert_rpc_response(response) assert {'job_id', 'created_at'} == set(response.json['result'].keys()) dest = make_project_path( user, { 'owner': url_components.owner, 'name': url_components.name } ) old_commit = Repo(dest).head.commit cache_project_cleanup() new_commit = Repo(dest).head.commit assert old_commit.hexsha == new_commit.hexsha assert dest.exists() and [file for file in dest.glob('*')]
26.932432
79
0.64275
[ "Apache-2.0" ]
mohammad-sdsc/renku-python
tests/service/jobs/test_datasets.py
9,970
Python
# specifically use concurrent.futures for threadsafety # asyncio Futures cannot be used across threads import asyncio import json import time from functools import partial from kubernetes_asyncio import watch from traitlets import Any from traitlets import Bool from traitlets import Dict from traitlets import Int from traitlets import Unicode from traitlets.config import LoggingConfigurable from urllib3.exceptions import ReadTimeoutError from .clients import shared_client # This is kubernetes client implementation specific, but we need to know # whether it was a network or watch timeout. class ResourceReflector(LoggingConfigurable): """Base class for keeping a local up-to-date copy of a set of kubernetes resources. Must be subclassed once per kind of resource that needs watching. Creating a reflector should be done with the create() classmethod, since that, in addition to creating the instance starts the watch task. Shutting down a reflector should be done by awaiting its stop() method. KubeSpawner does not do this, because its reflectors are singleton instances shared among multiple spawners. The watch task therefore runs until JupyterHub exits. """ labels = Dict( {}, config=True, help=""" Labels to reflect onto local cache """, ) fields = Dict( {}, config=True, help=""" Fields to restrict the reflected objects """, ) resources = Dict( {}, help=""" Dictionary of resource names to the appropriate resource objects. This can be accessed across threads safely. """, ) kind = Unicode( 'resource', help=""" Human readable name for kind of object we're watching for. Used for diagnostic messages. """, ) omit_namespace = Bool( False, config=True, help=""" Set this to true if the reflector is to operate across multiple namespaces. """, ) namespace = Unicode( None, allow_none=True, help=""" Namespace to watch for resources in; leave at 'None' for multi-namespace reflectors. """, ) list_method_name = Unicode( "", help=""" Name of function (on apigroup respresented by `api_group_name`) that is to be called to list resources. This will be passed a a label selector. If self.omit_namespace is False you want something of the form list_namespaced_<resource> - for example, `list_namespaced_pod` will give you a PodReflector. It will take its namespace from self.namespace (which therefore should not be None). If self.omit_namespace is True, you want list_<resource>_for_all_namespaces. This must be set by a subclass. It is not necessary to set it for pod or event reflectors, because __init__ will figure it out. If you create your own reflector subclass you probably want to add the logic to choose the method name to that class's __init__(). """, ) api_group_name = Unicode( 'CoreV1Api', help=""" Name of class that represents the apigroup on which `list_method_name` is to be found. Defaults to CoreV1Api, which has everything in the 'core' API group. If you want to watch Ingresses, for example, you would have to use ExtensionsV1beta1Api """, ) request_timeout = Int( 60, config=True, help=""" Network timeout for kubernetes watch. Trigger watch reconnect when a given request is taking too long, which can indicate network issues. """, ) timeout_seconds = Int( 10, config=True, help=""" Timeout for kubernetes watch. Trigger watch reconnect when no watch event has been received. This will cause a full reload of the currently existing resources from the API server. """, ) restart_seconds = Int( 30, config=True, help=""" Maximum time before restarting a watch. The watch will be restarted at least this often, even if events are still arriving. Avoids trusting kubernetes watch to yield all events, which seems to not be a safe assumption. """, ) on_failure = Any(help="""Function to be called when the reflector gives up.""") _stopping = Bool(False) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) # Client configuration for kubernetes, as done via the load_config # function, has already taken place in KubeSpawner or KubeIngressProxy # initialization steps. self.api = shared_client(self.api_group_name) # FIXME: Protect against malicious labels? self.label_selector = ','.join( ['{}={}'.format(k, v) for k, v in self.labels.items()] ) self.field_selector = ','.join( ['{}={}'.format(k, v) for k, v in self.fields.items()] ) self.first_load_future = asyncio.Future() # Make sure that we know kind, whether we should omit the # namespace, and what our list_method_name is. For the things # we already know about, we can derive list_method_name from # those two things. New reflector types should also update # their __init__() methods to derive list_method_name, but you # could just set it directly in the subclass. if not self.list_method_name: plural_to_singular = { "endpoints": "endpoints", "events": "event", "ingresses": "ingress", "pods": "pod", "services": "service", } if self.kind in plural_to_singular: if self.omit_namespace: self.list_method_name = ( f"list_{plural_to_singular[self.kind]}_for_all_namespaces" ) else: self.list_method_name = ( f"list_namespaced_{plural_to_singular[self.kind]}" ) # Make sure we have the required values. if not self.kind: raise RuntimeError("Reflector kind must be set!") if not self.list_method_name: raise RuntimeError("Reflector list_method_name must be set!") self.watch_task = None async def _list_and_update(self): """ Update current list of resources by doing a full fetch. Overwrites all current resource info. """ initial_resources = None kwargs = dict( label_selector=self.label_selector, field_selector=self.field_selector, _request_timeout=self.request_timeout, _preload_content=False, ) if not self.omit_namespace: kwargs["namespace"] = self.namespace list_method = getattr(self.api, self.list_method_name) initial_resources_raw = await list_method(**kwargs) # This is an atomic operation on the dictionary! initial_resources = json.loads(await initial_resources_raw.read()) self.resources = { f'{p["metadata"]["namespace"]}/{p["metadata"]["name"]}': p for p in initial_resources["items"] } if not self.first_load_future.done(): # signal that we've loaded our initial data at least once self.first_load_future.set_result(None) # return the resource version so we can hook up a watch return initial_resources["metadata"]["resourceVersion"] async def _watch_and_update(self): """ Keeps the current list of resources up-to-date We first fetch the list of current resources, and store that. Then we register to be notified of changes to those resources, and keep our local store up-to-date based on these notifications. We also perform exponential backoff, giving up after we hit 32s wait time. This should protect against network connections dropping and intermittent unavailability of the api-server. Every time we recover from an exception we also do a full fetch, to pick up changes that might've been missed in the time we were not doing a watch. Since the resources are read-only in the Spawner (where they are used), then this is safe. The Spawner's view of the world might be out-of-date, but it's not going to corrupt any data. """ selectors = [] if self.label_selector: selectors.append("label selector=%r" % self.label_selector) if self.field_selector: selectors.append("field selector=%r" % self.field_selector) log_selector = ', '.join(selectors) cur_delay = 0.1 if self.omit_namespace: ns_str = "all namespaces" else: ns_str = "namespace {}".format(self.namespace) self.log.info( "watching for %s with %s in %s", self.kind, log_selector, ns_str, ) while True: self.log.debug("Connecting %s watcher", self.kind) start = time.monotonic() w = watch.Watch() try: resource_version = await self._list_and_update() watch_args = { "label_selector": self.label_selector, "field_selector": self.field_selector, "resource_version": resource_version, } if not self.omit_namespace: watch_args["namespace"] = self.namespace if self.request_timeout: # set network receive timeout watch_args['_request_timeout'] = self.request_timeout if self.timeout_seconds: # set watch timeout watch_args['timeout_seconds'] = self.timeout_seconds # Calling the method with _preload_content=False is a performance # optimization making the Kubernetes client do less work. See # https://github.com/jupyterhub/kubespawner/pull/424. method = partial( getattr(self.api, self.list_method_name), _preload_content=False ) async with w.stream(method, **watch_args) as stream: async for watch_event in stream: # in case of timeout_seconds, the w.stream just exits (no exception thrown) # -> we stop the watcher and start a new one # Remember that these events are k8s api related WatchEvents # objects, not k8s Event or Pod representations, they will # reside in the WatchEvent's object field depending on what # kind of resource is watched. # # ref: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#watchevent-v1-meta # ref: https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.20/#event-v1-core cur_delay = 0.1 resource = watch_event['raw_object'] ref_key = "{}/{}".format( resource["metadata"]["namespace"], resource["metadata"]["name"], ) if watch_event['type'] == 'DELETED': # This is an atomic delete operation on the dictionary! self.resources.pop(ref_key, None) else: # This is an atomic operation on the dictionary! self.resources[ref_key] = resource if self._stopping: self.log.info("%s watcher stopped: inner", self.kind) break watch_duration = time.monotonic() - start if watch_duration >= self.restart_seconds: self.log.debug( "Restarting %s watcher after %i seconds", self.kind, watch_duration, ) break except ReadTimeoutError: # network read time out, just continue and restart the watch # this could be due to a network problem or just low activity self.log.warning("Read timeout watching %s, reconnecting", self.kind) continue except asyncio.CancelledError: self.log.debug("Cancelled watching %s", self.kind) raise except Exception: cur_delay = cur_delay * 2 if cur_delay > 30: self.log.exception("Watching resources never recovered, giving up") if self.on_failure: self.on_failure() return self.log.exception( "Error when watching resources, retrying in %ss", cur_delay ) await asyncio.sleep(cur_delay) continue else: # no events on watch, reconnect self.log.debug("%s watcher timeout", self.kind) finally: w.stop() if self._stopping: self.log.info("%s watcher stopped: outer", self.kind) break self.log.warning("%s watcher finished", self.kind) async def start(self): """ Start the reflection process! We'll do a blocking read of all resources first, so that we don't race with any operations that are checking the state of the pod store - such as polls. This should be called only once at the start of program initialization (when the singleton is being created), and not afterwards! """ if self.watch_task and not self.watch_task.done(): raise RuntimeError('Task watching for resources is already running') await self._list_and_update() self.watch_task = asyncio.create_task(self._watch_and_update()) async def stop(self): """ Cleanly shut down the watch task. """ self._stopping = True if self.watch_task and not self.watch_task.done(): # cancel the task, wait for it to complete self.watch_task.cancel() try: timeout = 5 await asyncio.wait_for(self.watch_task, timeout) except asyncio.TimeoutError: # Raising the TimeoutError will cancel the task. self.log.warning( f"Watch task did not finish in {timeout}s and was cancelled" ) self.watch_task = None class NamespacedResourceReflector(ResourceReflector): """ Watches for resources in a particular namespace. The list_methods want both a method name and a namespace. """ omit_namespace = False class MultiNamespaceResourceReflector(ResourceReflector): """ Watches for resources across all namespaces. The list_methods want only a method name. Note that this requires the service account to be significantly more powerful, since it must be bound to ClusterRoles rather than just Roles, and therefore this is inherently more dangerous. """ omit_namespace = True
36.949074
118
0.581631
[ "BSD-3-Clause" ]
choldgraf/kubespawner
kubespawner/reflector.py
15,962
Python
Hello World typing something eles
8.75
21
0.828571
[ "Apache-2.0" ]
mxracer409/pynet_testx
test_hello.py
35
Python
# pylint: disable=line-too-long from allennlp.data.dataset_readers.semantic_parsing.atis import AtisDatasetReader from allennlp.data.dataset_readers.semantic_parsing.nlvr import NlvrDatasetReader from allennlp.data.dataset_readers.semantic_parsing.wikitables import WikiTablesDatasetReader from allennlp.data.dataset_readers.semantic_parsing.template_text2sql import TemplateText2SqlDatasetReader
66.166667
106
0.899244
[ "Apache-2.0" ]
asiddhant/taskonomy-nlp
allennlp/data/dataset_readers/semantic_parsing/__init__.py
397
Python
a, b, c = map(int, input().split()) if(a > c and a > b): if(b > c): print(b) else: print(c) elif(b > a and b > c): if(a > c): print(a) else: print(c) else: if(a > b): print(a) else: print(b)
15.470588
35
0.391635
[ "MIT" ]
rayleighko/iceamericano
baekjoon/10817/Python.py
263
Python
import sqlite3 from .login import login lg = login() class account(): def atualizarBanco(self, email, nome, senha, cidade, aniversario, sexo, visibilidade=1): conn = sqlite3.connect('./database/project.db', check_same_thread=False) c = conn.cursor() idLogado = lg.verLogado() c.execute('PRAGMA foreign_keys = ON;') c.execute('UPDATE user SET email_user = ?, nome_user = ?, senha_user = ?, cidade_user = ?, aniversario = ?, sexo = ?, visibilidade = ? WHERE id_User = ?', (email, nome, senha, cidade, aniversario, sexo, visibilidade, idLogado)) conn.commit() return True
42.066667
235
0.651347
[ "MIT" ]
danielbandeir/MyOwn
codesForDatabase/account.py
631
Python
import numpy as np from basicsr.archs.rrdbnet_arch import RRDBNet from realesrgan.utils import RealESRGANer def test_realesrganer(): # initialize with default model restorer = RealESRGANer( scale=4, model_path='experiments/pretrained_models/RealESRGAN_x4plus.pth', model=None, tile=10, tile_pad=10, pre_pad=2, half=False) assert isinstance(restorer.model, RRDBNet) assert restorer.half is False # initialize with user-defined model model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) restorer = RealESRGANer( scale=4, model_path='experiments/pretrained_models/RealESRGAN_x4plus_anime_6B.pth', model=model, tile=10, tile_pad=10, pre_pad=2, half=True) # test attribute assert isinstance(restorer.model, RRDBNet) assert restorer.half is True # ------------------ test pre_process ---------------- # img = np.random.random((12, 12, 3)).astype(np.float32) restorer.pre_process(img) assert restorer.img.shape == (1, 3, 14, 14) # with modcrop restorer.scale = 1 restorer.pre_process(img) assert restorer.img.shape == (1, 3, 16, 16) # ------------------ test process ---------------- # restorer.process() assert restorer.output.shape == (1, 3, 64, 64) # ------------------ test post_process ---------------- # restorer.mod_scale = 4 output = restorer.post_process() assert output.shape == (1, 3, 60, 60) # ------------------ test tile_process ---------------- # restorer.scale = 4 img = np.random.random((12, 12, 3)).astype(np.float32) restorer.pre_process(img) restorer.tile_process() assert restorer.output.shape == (1, 3, 64, 64) # ------------------ test enhance ---------------- # img = np.random.random((12, 12, 3)).astype(np.float32) result = restorer.enhance(img, outscale=2) assert result[0].shape == (24, 24, 3) assert result[1] == 'RGB' # ------------------ test enhance with 16-bit image---------------- # img = np.random.random((4, 4, 3)).astype(np.uint16) + 512 result = restorer.enhance(img, outscale=2) assert result[0].shape == (8, 8, 3) assert result[1] == 'RGB' # ------------------ test enhance with gray image---------------- # img = np.random.random((4, 4)).astype(np.float32) result = restorer.enhance(img, outscale=2) assert result[0].shape == (8, 8) assert result[1] == 'L' # ------------------ test enhance with RGBA---------------- # img = np.random.random((4, 4, 4)).astype(np.float32) result = restorer.enhance(img, outscale=2) assert result[0].shape == (8, 8, 4) assert result[1] == 'RGBA' # ------------------ test enhance with RGBA, alpha_upsampler---------------- # restorer.tile_size = 0 img = np.random.random((4, 4, 4)).astype(np.float32) result = restorer.enhance(img, outscale=2, alpha_upsampler=None) assert result[0].shape == (8, 8, 4) assert result[1] == 'RGBA'
35.102273
97
0.573648
[ "BSD-3-Clause" ]
2917320323/Real-ESRGAN
tests/test_utils.py
3,089
Python
from golem import actions description = 'verify_title_contains action' def test(data): actions.navigate(data.env.url+'elements/') actions.verify_title_contains('Elem') try: actions.verify_title_contains('incorrect title') except Exception as e: assert "expected title to contain 'incorrect title'" in e.args[0]
26.615385
73
0.719653
[ "MIT" ]
kangchenwei/keyautotest2
projects/golem_integration/tests/actions/verify_title_contains.py
346
Python
title = "Ibis" tagline = "A template engine for people who enjoy the simpler things in life." version = "Version 3.2.0"
30
78
0.725
[ "Unlicense" ]
dmulholl/ibis
docs/config.py
120
Python
import unittest from parameterized import parameterized as p from solns.loggerRateLimiter.loggerRateLimiter import * class UnitTest_LoggerRateLimiter(unittest.TestCase): @p.expand([ [] ]) def test_naive(self): pass
20.416667
55
0.722449
[ "MIT" ]
zcemycl/algoTest
py/tests/testLoggerRateLimiter/test_LoggerRateLimiter.py
245
Python
# Generated by Django 3.1.5 on 2021-02-18 23:09 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('accounts', '0005_apirequestlog'), ] operations = [ migrations.AlterModelOptions( name='apirequestlog', options={'verbose_name_plural': 'API Request Log'}, ), ]
20.444444
63
0.61413
[ "MIT" ]
MatthewTe/velkozz_web_api
velkozz_web_api/apps/accounts/migrations/0006_auto_20210218_2309.py
368
Python
import geopy # Here we just tested geopy functionality. place = "kuusalu" locator = geopy.Nominatim(user_agent="myGeocoder") location = locator.geocode(place) print(place + ":") print("Latitude = {}, Longitude = {}".format(location.latitude, location.longitude))
26.5
84
0.739623
[ "MIT" ]
screaminglordbyron/IDS-project
Koordinaator.py
265
Python
#!/usr/bin/python3.6 import sys import re import csv import numpy as np import pandas as pd import string import nltk from nltk.corpus import stopwords import textcleaner as tc def main(separator='\t'): # input comes from STDIN (standard input) topWords_list = ['club','baseball','league','team','game','soccer','nike','tennis','golf','rugby'] words = read_input(sys.stdin); for word in words: for currIndex in range(len(word)-1): for nextWord in word[currIndex+1:]: currWord = word[currIndex]; if currWord != nextWord and currWord in topWords_list: w = currWord+ "-" +nextWord; print ('%s%s%d' % (w, separator, 1)); def read_input(file): for line in file: line = strip_text(line.strip()); # strip the line and remove unnecessary parts yield line.split(); # split the line # def strip_line(text): # strip smileys,emojis,urls from tweet text to get only text # smileys = """:-) :) :o) :] :3 :c) :> =] 8) =) :} :^) # :D 8-D 8D x-D xD X-D XD =-D =D =-3 =3 B^D""".split(); # pattern = "|".join(map(re.escape, smileys)); # kaomojis = r'[^0-9A-Za-zぁ-んァ-ン一-龥ovっつ゜ニノ三二]' + '[\(∩ (]' + '[^0-9A-Za-zぁ-んァ-ン一-龥ヲ-゚\)∩ )]' + '[\)∩ )]' + '[^0-9A-Za-zぁ-んァ-ン一-龥ovっつ゜ニノ三二]*' # text = text.strip().lower(); # link_regex = re.compile('((https?):((//)|(\\\\))+([\w\d:#@%/;$()~_?\+-=\\\.&](#!)?)*)', re.DOTALL) # links = re.findall(link_regex, text) # for link in links: # text = text.replace(link[0], ' '); # text = re.sub(pattern, "", text); # text = re.sub(kaomojis, "", text); # text = strip_emoji(text); # text = re.sub(r'@\w+ ?', '', text); # remove mentions # for separator in string.punctuation: # remove punctuations # if separator != '#': # text = text.replace(separator, ' '); # # nltk.download("stopwords"); # text = ' '.join([word for word in text.split() if word not in (stopwords.words('english'))]); # remove stopwords # text = ' '.join([word for word in text.split() if not word.endswith("…")]); # remove … # return text; # remove leading and trailing white space def strip_text(text): smileys = """:-) :) :o) :] :3 :c) :> =] 8) =) :} :^) :D 8-D 8D x-D xD X-D XD =-D =D =-3 =3 B^D""".split(); pattern = "|".join(map(re.escape, smileys)); kaomojis = r'[^0-9A-Za-zぁ-んァ-ン一-龥ovっつ゜ニノ三二]' + '[\(∩ (]' + '[^0-9A-Za-zぁ-んァ-ン一-龥ヲ-゚\)∩ )]' + '[\)∩ )]' + '[^0-9A-Za-zぁ-んァ-ン一-龥ovっつ゜ニノ三二]*' text=text.lower(); text = re.sub(r'((https?):((//)|(\\\\))+([\w\d:#@%/;$()~_?\+-=\\\.&](#!)?)*)', '', text); # remove links text = ' '.join([word for word in text.split() if not word.endswith("…")]); # remove ss… text = re.sub(pattern, "", text); text = re.sub(kaomojis, "", text); text = strip_emoji(text); text = re.sub(r'[\)\( \/\.-\][0-9]+[ \)\/\.\(-]', ' ', text); # replace (123)-> 123 text = re.sub(r'\([^()]*\)', '', text); # replace (vishal)-> vishal text = re.sub(r'[.,-_]', ' ', text); # remove . , text = re.sub(r'@\w+ ?', ' ', text); # remove mentions text = text.replace("'s", ""); # replace vishal's->vishal text = re.sub(r'\W+', ' ', text); # replace vishal123@@@-> vishal123 text = re.sub(r'[ ][0-9]+ ', '', text); # remove text = ' '.join([word for word in text.split() if word not in (stopwords.words('english'))]); # remove stopwords text = ' '.join(word for word in tc.document(text).lemming().data); #do lemming text = ' '.join( [w for w in text.split() if len(w)>1] ); # remove single character words a->'' return text; def strip_emoji(string): emoji_pattern = re.compile("[" u"\U0001F600-\U0001F64F" # emoticons u"\U0001F300-\U0001F5FF" # symbols & pictographs u"\U0001F680-\U0001F6FF" # transport & map symbols u"\U0001F1E0-\U0001F1FF" # flags (iOS) u"\U00002702-\U000027B0" u"\U000024C2-\U0001F251" "]+", flags=re.UNICODE) return emoji_pattern.sub(r'', string); if __name__ == "__main__": main()
48.829545
144
0.518734
[ "Apache-2.0" ]
vishalgawade/Data-Aggregation-Big-Data-Analysis-and-Visualization-of-Twitter-New-York-Times-Common-Crawl
part3/Commoncrawl/Code/mapper_latest_coocureence_cc.py
4,477
Python
# coding=utf-8 import os from flask import jsonify from lib._logging import logger def gpio_info(): gpio_info = ['ERROR'] try: gpio_info = os.popen("gpio readall|grep -v '\-\-\-'| grep -v 'Physical'|tr -s ' ' 2>/dev/null").read().replace('||', '|').splitlines() except: logger.error('Error getting gpio_info') pins = {} for line in gpio_info: undef,BCM,wPi,Name,Mode,V,Physical,Physical2,V2,Mode2,Name2,wPi2,BCM2,undef2 = line.replace(' ', '').split('|') if V is "0" or V is "0.0": V = "0v" if V is "1": V = "3.3v" pins[Physical] = { 'bcm_pin': BCM, 'wPi_pin': wPi, 'name': Name, 'mode': Mode, 'v': V, } pins[Physical2] = { 'bcm_pin': BCM2, 'wPi_pin': wPi2, 'name': Name2, 'mode': Mode2, 'v': V2, } return jsonify(pins) def set_gpio_mode(pin,mode): result = False try: os.popen('gpio mode ' + pin + " " + mode).read() result = True except: result = False logger.debug('set_gpio_mode(' + str(pin) + ',' + str(mode) + ') returned ' + str(result)) return( jsonify(result) ) def set_gpio_pin(pin, status): result = False try: os.popen('gpio write ' + int(pin) + ' ' + int(status)) result = True except: result = False logger.debug('set_gpio_pin(' + str(pin) + ',' + str(status) + ') returned ' + str(result)) return( jsonify(result) )
27.928571
142
0.507673
[ "Apache-2.0" ]
bcarroll/PiControl
lib/gpio_utils.py
1,564
Python
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 5/15/20 4:49 PM # @File : grover.py # qubit number=2 # total number=9 import cirq import cirq.google as cg from typing import Optional import sys from math import log2 import numpy as np #thatsNoCode from cirq.contrib.svg import SVGCircuit # Symbols for the rotation angles in the QAOA circuit. def make_circuit(n: int, input_qubit): c = cirq.Circuit() # circuit begin c.append(cirq.H.on(input_qubit[0])) # number=1 c.append(cirq.X.on(input_qubit[1])) # number=5 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=4 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=6 c.append(cirq.X.on(input_qubit[1])) # number=7 c.append(cirq.CNOT.on(input_qubit[0],input_qubit[1])) # number=8 c.append(cirq.X.on(input_qubit[1])) # number=3 # circuit end c.append(cirq.measure(*input_qubit, key='result')) return c def bitstring(bits): return ''.join(str(int(b)) for b in bits) if __name__ == '__main__': qubit_count = 4 input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)] circuit = make_circuit(qubit_count,input_qubits) circuit = cg.optimized_for_sycamore(circuit, optimizer_type='sqrt_iswap') circuit_sample_count =2000 simulator = cirq.Simulator() result = simulator.run(circuit, repetitions=circuit_sample_count) frequencies = result.histogram(key='result', fold_func=bitstring) writefile = open("../data/startCirq85.csv","w+") print(format(frequencies),file=writefile) print("results end", file=writefile) print(circuit.__len__(), file=writefile) print(circuit,file=writefile) writefile.close()
27.596774
77
0.696084
[ "BSD-3-Clause" ]
UCLA-SEAL/QDiff
data/p2DJ/New/R2/benchmark/startCirq85.py
1,711
Python
from datetime import datetime from infrastructure.cqrs.decorators.dtoclass import dtoclass @dtoclass class GetDataOperationJobListDto: Id: int = None JobId: int = None DataOperationId: str = None DataOperationName: str = None Cron: str = None StartDate: datetime = None EndDate: datetime = None NextRunTime: datetime = None CreationDate: datetime = None LastUpdatedDate: datetime = None IsDeleted: int = None
25.277778
60
0.718681
[ "MIT" ]
PythonDataIntegrator/pythondataintegrator
src/api/domain/operation/GetDataOperationJobList/GetDataOperationJobListDto.py
455
Python
# -*- coding: utf-8 -*- """ Created on Mon Jan 8 21:45:27 2018 @author: pilla """
10.625
35
0.552941
[ "BSD-2-Clause" ]
psnipiv/LicenseGenerator
LicenseGenerator/accounts/tests/__init__.py
85
Python
from datetime import datetime from integration_tests.utils import populate_mock_db_blocks from src.models import Challenge, ChallengeType, User, UserBankAccount, UserChallenge from src.queries.get_undisbursed_challenges import get_undisbursed_challenges from src.utils.db_session import get_db def setup_challenges(app): with app.app_context(): db = get_db() populate_mock_db_blocks(db, 99, 110) challenges = [ Challenge( id="test_challenge_1", type=ChallengeType.numeric, amount="5", step_count=3, active=False, starting_block=100, ), Challenge( id="test_challenge_2", type=ChallengeType.boolean, amount="5", active=True, starting_block=100, ), Challenge( id="test_challenge_3", type=ChallengeType.aggregate, amount="5", active=True, starting_block=100, ), ] non_current_users = [ User( blockhash=hex(99), blocknumber=99, txhash=f"xyz{i}", user_id=i, is_current=False, handle=f"TestHandle{i}", handle_lc=f"testhandle{i}", wallet=f"0x{i}", is_creator=False, is_verified=False, name=f"test_name{i}", created_at=datetime.now(), updated_at=datetime.now(), ) for i in range(7) ] users = [ User( blockhash=hex(99), blocknumber=99, txhash=f"xyz{i}", user_id=i, is_current=True, handle=f"TestHandle{i}", handle_lc=f"testhandle{i}", wallet=f"0x{i}", is_creator=False, is_verified=False, name=f"test_name{i}", created_at=datetime.now(), updated_at=datetime.now(), ) for i in range(7) ] user_bank_accounts = [ UserBankAccount( signature=f"0x{i}", ethereum_address=users[i].wallet, bank_account=f"0x{i}", created_at=datetime.now(), ) for i in range(7) ] user_challenges = [ UserChallenge( challenge_id="test_challenge_1", user_id=1, specifier="1", is_complete=False, current_step_count=1, ), UserChallenge( challenge_id="test_challenge_1", user_id=2, specifier="2", is_complete=True, current_step_count=3, completed_blocknumber=100, ), UserChallenge( challenge_id="test_challenge_2", user_id=3, specifier="3", is_complete=False, ), UserChallenge( challenge_id="test_challenge_2", user_id=4, specifier="4", is_complete=True, completed_blocknumber=102, ), UserChallenge( challenge_id="test_challenge_2", user_id=5, specifier="5", is_complete=True, completed_blocknumber=102, ), UserChallenge( challenge_id="test_challenge_3", user_id=6, specifier="6", is_complete=True, completed_blocknumber=100, ), ] with db.scoped_session() as session: session.add_all(challenges) session.flush() session.add_all(non_current_users) session.add_all(users) session.add_all(user_bank_accounts) session.add_all(user_challenges) def test_undisbursed_challenges(app): setup_challenges(app) with app.app_context(): db = get_db() with db.scoped_session() as session: # Test that all undisbursed challenges are returned in order undisbursed = get_undisbursed_challenges( session, {"user_id": None, "limit": 10, "offset": 0, "completed_blocknumber": 99}, ) expected = [ { "challenge_id": "test_challenge_3", "user_id": 6, "specifier": "6", "amount": "5", "completed_blocknumber": 100, "handle": "TestHandle6", "wallet": "0x6", }, { "challenge_id": "test_challenge_2", "user_id": 4, "specifier": "4", "amount": "5", "completed_blocknumber": 102, "handle": "TestHandle4", "wallet": "0x4", }, { "challenge_id": "test_challenge_2", "user_id": 5, "specifier": "5", "amount": "5", "completed_blocknumber": 102, "handle": "TestHandle5", "wallet": "0x5", }, ] assert expected == undisbursed # Test that it filters correctly by user_id undisbursed = get_undisbursed_challenges( session, {"user_id": 6, "limit": 10, "offset": 0, "completed_blocknumber": 99}, ) expected = [ { "challenge_id": "test_challenge_3", "user_id": 6, "specifier": "6", "amount": "5", "completed_blocknumber": 100, "handle": "TestHandle6", "wallet": "0x6", }, ] assert expected == undisbursed # Test that it filters correctly by user_id & completed blocknumber undisbursed = get_undisbursed_challenges( session, {"user_id": 6, "limit": 10, "offset": 0, "completed_blocknumber": 101}, ) expected = [] assert expected == undisbursed
30.790476
85
0.462264
[ "Apache-2.0" ]
RahulBansal123/audius-protocol
discovery-provider/integration_tests/queries/test_undisbursed_challeges.py
6,466
Python
from collections import OrderedDict from models.base_model import BaseModel from optimizers.radam import RAdam import random import torch import torch.nn as nn import torch.nn.functional as F from sklearn.metrics import accuracy_score import sys class double_conv(nn.Module): def __init__(self, in_ch, out_ch): super(double_conv, self).__init__() self.conv = nn.Sequential( nn.Conv2d(in_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True), nn.Conv2d(out_ch, out_ch, 3, padding=1), nn.BatchNorm2d(out_ch), nn.ReLU(inplace=True) ) def forward(self, x): x = self.conv(x) return x class inconv(nn.Module): def __init__(self, in_ch, out_ch): super(inconv, self).__init__() self.conv = double_conv(in_ch, out_ch) def forward(self, x): x = self.conv(x) return x class down(nn.Module): def __init__(self, in_ch, out_ch): super(down, self).__init__() self.mpconv = nn.Sequential( nn.MaxPool2d(2), double_conv(in_ch, out_ch) ) def forward(self, x): x = self.mpconv(x) return x class up(nn.Module): def __init__(self, in_ch, out_ch, bilinear=True): super(up, self).__init__() self.convtrans = nn.ConvTranspose2d(in_ch//2, in_ch//2, 2, stride=2) self.bilinear = bilinear self.conv = double_conv(in_ch, out_ch) def forward(self, x1, x2): if self.bilinear: x1 = nn.functional.interpolate(x1, scale_factor=2, mode='bilinear', align_corners=True) else: x1 = self.convtrans(x1) # input is CHW diffY = x2.size()[2] - x1.size()[2] diffX = x2.size()[3] - x1.size()[3] x1 = F.pad(x1, (diffX // 2, diffX - diffX//2, diffY // 2, diffY - diffY//2)) x = torch.cat([x2, x1], dim=1) x = self.conv(x) return x class outconv(nn.Module): def __init__(self, in_ch, out_ch): super(outconv, self).__init__() self.conv = nn.Conv2d(in_ch, out_ch, 1) def forward(self, x): x = self.conv(x) return x class UNet(nn.Module): """Standard U-Net architecture network. Input params: n_channels: Number of input channels (usually 1 for a grayscale image). n_classes: Number of output channels (2 for binary segmentation). """ def __init__(self, n_channels, n_classes): super().__init__() self.inc = inconv(n_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.up1 = up(1024, 256) self.up2 = up(512, 128) self.up3 = up(256, 64) self.up4 = up(128, 64) self.outc = outconv(64, n_classes) def forward(self, x): x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) x5 = self.down4(x4) x = self.up1(x5, x4) x = self.up2(x, x3) x = self.up3(x, x2) x = self.up4(x, x1) x = self.outc(x) return x class Segmentation2DModel(BaseModel): def __init__(self, configuration): """Initialize the model. """ super().__init__(configuration) self.loss_names = ['segmentation'] self.network_names = ['unet'] self.netunet = UNet(1, 2) self.netunet = self.netunet.to(self.device) if self.is_train: # only defined during training time self.criterion_loss = torch.nn.CrossEntropyLoss() self.optimizer = torch.optim.Adam(self.netunet.parameters(), lr=configuration['lr']) self.optimizers = [self.optimizer] # storing predictions and labels for validation self.val_predictions = [] self.val_labels = [] self.val_images = [] def forward(self): """Run forward pass. """ self.output = self.netunet(self.input) def backward(self): """Calculate losses; called in every training iteration. """ self.loss_segmentation = self.criterion_loss(self.output, self.label) def optimize_parameters(self): """Calculate gradients and update network weights. """ self.loss_segmentation.backward() # calculate gradients self.optimizer.step() self.optimizer.zero_grad() torch.cuda.empty_cache() def test(self): super().test() # run the forward pass # save predictions and labels as flat tensors self.val_images.append(self.input) self.val_predictions.append(self.output) self.val_labels.append(self.label) def post_epoch_callback(self, epoch, visualizer): self.val_predictions = torch.cat(self.val_predictions, dim=0) predictions = torch.argmax(self.val_predictions, dim=1) predictions = torch.flatten(predictions).cpu() self.val_labels = torch.cat(self.val_labels, dim=0) labels = torch.flatten(self.val_labels).cpu() self.val_images = torch.squeeze(torch.cat(self.val_images, dim=0)).cpu() # Calculate and show accuracy val_accuracy = accuracy_score(labels, predictions) metrics = OrderedDict() metrics['accuracy'] = val_accuracy visualizer.plot_current_validation_metrics(epoch, metrics) print('Validation accuracy: {0:.3f}'.format(val_accuracy)) # Here you may do something else with the validation data such as # displaying the validation images or calculating the ROC curve self.val_images = [] self.val_predictions = [] self.val_labels = []
29.769231
99
0.600689
[ "MIT" ]
Semere-Gr/PyTorchProjectFramework
models/segmentation_model.py
5,805
Python
def findMaxSubarraySum(l): maxSum = l[0] tempSum = l[0] for i in range(len(l)): tempSum = max(l[i], tempSum + l[i]) if maxSum < tempSum: maxSum = tempSum return maxSum if __name__ == "__main__": print(findMaxSubarraySum([-2, 3, 4, 2]))
19
45
0.526316
[ "MIT" ]
itsvinayak/cosmos
code/kadanes.py
304
Python
import warnings import torch import kornia import numpy as np class MetricMAD: def __call__(self, pred, true): return (pred - true).abs_().mean() * 1e3 class MetricBgrMAD: def __call__(self, pred, true): bgr_mask = true == 0 return (pred[bgr_mask] - true[bgr_mask]).abs_().mean() * 1e3 class MetricFgrMAD: def __call__(self, pred, true): fgr_mask = true > 0 return (pred[fgr_mask] - true[fgr_mask]).abs_().mean() * 1e3 class MetricMSE: def __call__(self, pred, true): return ((pred - true) ** 2).mean() * 1e3 class MetricGRAD: def __init__(self, sigma=1.4): self.filter_x, self.filter_y = self.gauss_filter(sigma) self.filter_x = torch.from_numpy(self.filter_x).unsqueeze(0).cuda() self.filter_y = torch.from_numpy(self.filter_y).unsqueeze(0).cuda() def __call__(self, pred, true): true_grad = self.gauss_gradient(true) pred_grad = self.gauss_gradient(pred) return ((true_grad - pred_grad) ** 2).sum() / 1000 def gauss_gradient(self, img): with warnings.catch_warnings(): warnings.simplefilter("ignore") warnings.warn("deprecated", DeprecationWarning) img_filtered_x = kornia.filters.filter2D(img[None, None, :, :], self.filter_x, border_type='replicate')[0, 0] img_filtered_y = kornia.filters.filter2D(img[None, None, :, :], self.filter_y, border_type='replicate')[0, 0] return (img_filtered_x ** 2 + img_filtered_y ** 2).sqrt() @staticmethod def gauss_filter(sigma, epsilon=1e-2): half_size = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon))) size = np.int(2 * half_size + 1) # create filter in x axis filter_x = np.zeros((size, size)) for i in range(size): for j in range(size): filter_x[i, j] = MetricGRAD.gaussian(i - half_size, sigma) * MetricGRAD.dgaussian( j - half_size, sigma) # normalize filter norm = np.sqrt((filter_x ** 2).sum()) filter_x = filter_x / norm filter_y = np.transpose(filter_x) return filter_x, filter_y @staticmethod def gaussian(x, sigma): return np.exp(-x ** 2 / (2 * sigma ** 2)) / (sigma * np.sqrt(2 * np.pi)) @staticmethod def dgaussian(x, sigma): return -x * MetricGRAD.gaussian(x, sigma) / sigma ** 2 class MetricDTSSD: def __call__(self, pred_t, pred_tm1, true_t, true_tm1): dtSSD = ((pred_t - pred_tm1) - (true_t - true_tm1)) ** 2 dtSSD = dtSSD.sum() / true_t.numel() dtSSD = dtSSD.sqrt() return dtSSD * 1e2
33.111111
121
0.608128
[ "MIT" ]
ivandrej/checkmatte
evaluation/evaluation_metrics.py
2,682
Python
"""Calculate the mean and standard deviation (per channel) over all images in a dataset """ # MIT License # # Copyright (c) 2017 David Sandberg # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path import sys import random import tensorflow as tf import numpy as np import argparse import facenet def main(args): np.random.seed(seed=args.seed) random.seed(args.seed) train_set = facenet.get_dataset(args.data_dir) result_filename = os.path.join(os.path.expanduser(args.data_dir), 'statistics.txt') with tf.Graph().as_default(): tf.set_random_seed(args.seed) # Get a list of image paths and their labels image_list, _ = facenet.get_image_paths_and_labels(train_set) nrof_images = len(image_list) assert nrof_images>0, 'The dataset should not be empty' input_queue = tf.train.string_input_producer(image_list, num_epochs=None, shuffle=False, seed=None, capacity=32) nrof_preprocess_threads = 4 images = [] for _ in range(nrof_preprocess_threads): filename = input_queue.dequeue() file_contents = tf.read_file(filename) image = tf.image.decode_image(file_contents) image = tf.image.resize_image_with_crop_or_pad(image, 160, 160) #pylint: disable=no-member image.set_shape((args.image_size, args.image_size, 3)) image = tf.cast(image, tf.float32) images.append((image,)) image_batch = tf.train.batch_join(images, batch_size=100, allow_smaller_final_batch=True) #mean = tf.reduce_mean(image_batch, reduction_indices=[0,1,2]) m, v = tf.nn.moments(image_batch, [1,2]) mean = tf.reduce_mean(m, 0) variance = tf.reduce_mean(v, 0) # Start running operations on the Graph. gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) sess.run(tf.global_variables_initializer()) tf.train.start_queue_runners(sess=sess) with sess.as_default(): # Training and validation loop print('Running training') nrof_batches = nrof_images // args.batch_size #nrof_batches = 20 means = np.zeros(shape=(nrof_batches, 3), dtype=np.float32) variances = np.zeros(shape=(nrof_batches, 3), dtype=np.float32) for i in range(nrof_batches): means[i,:], variances[i,:] = sess.run([mean, variance]) if (i+1)%10==0: print('Batch: %5d/%5d, Mean: %s, Variance: %s' % (i+1, nrof_batches, np.array_str(np.mean(means[:i,:],axis=0)), np.array_str(np.mean(variances[:i,:],axis=0)))) dataset_mean = np.mean(means,axis=0) dataset_variance = np.mean(variances,axis=0) print('Final mean: %s' % np.array_str(dataset_mean)) print('Final variance: %s' % np.array_str(dataset_variance)) with open(result_filename, 'w') as text_file: print('Writing result to %s' % result_filename) text_file.write('Mean: %.5f, %.5f, %.5f\n' % (dataset_mean[0], dataset_mean[1], dataset_mean[2])) text_file.write('Variance: %.5f, %.5f, %.5f\n' % (dataset_variance[0], dataset_variance[1], dataset_variance[2])) def parse_arguments(argv): parser = argparse.ArgumentParser() parser.add_argument('--logs_base_dir', type=str, help='Directory where to write event logs.', default='~/logs/facenet') parser.add_argument('--models_base_dir', type=str, help='Directory where to write trained models and checkpoints.', default='~/models/facenet') parser.add_argument('--gpu_memory_fraction', type=float, help='Upper bound on the amount of GPU memory that will be used by the process.', default=1.0) parser.add_argument('--pretrained_model', type=str, help='Load a pretrained model before training starts.') parser.add_argument('--data_dir', type=str, help='Path to the data directory containing aligned face patches.', default='~/datasets/casia/casia_maxpy_mtcnnalign_182_160') parser.add_argument('--model_def', type=str, help='Model definition. Points to a module containing the definition of the inference graph.', default='models.inception_resnet_v1') parser.add_argument('--max_nrof_epochs', type=int, help='Number of epochs to run.', default=500) parser.add_argument('--batch_size', type=int, help='Number of images to process in a batch.', default=90) parser.add_argument('--image_size', type=int, help='Image size (height, width) in pixels.', default=160) parser.add_argument('--epoch_size', type=int, help='Number of batches per epoch.', default=1000) parser.add_argument('--embedding_size', type=int, help='Dimensionality of the embedding.', default=128) parser.add_argument('--random_crop', help='Performs random cropping of training images. If false, the center image_size pixels from the training images are used. ' + 'If the size of the images in the data directory is equal to image_size no cropping is performed', action='store_true') parser.add_argument('--random_flip', help='Performs random horizontal flipping of training images.', action='store_true') parser.add_argument('--random_rotate', help='Performs random rotations of training images.', action='store_true') parser.add_argument('--keep_probability', type=float, help='Keep probability of dropout for the fully connected layer(s).', default=1.0) parser.add_argument('--weight_decay', type=float, help='L2 weight regularization.', default=0.0) parser.add_argument('--decov_loss_factor', type=float, help='DeCov loss factor.', default=0.0) parser.add_argument('--center_loss_factor', type=float, help='Center loss factor.', default=0.0) parser.add_argument('--center_loss_alfa', type=float, help='Center update rate for center loss.', default=0.95) parser.add_argument('--optimizer', type=str, choices=['ADAGRAD', 'ADADELTA', 'ADAM', 'RMSPROP', 'MOM'], help='The optimization algorithm to use', default='ADAGRAD') parser.add_argument('--learning_rate', type=float, help='Initial learning rate. If set to a negative value a learning rate ' + 'schedule can be specified in the file "learning_rate_schedule.txt"', default=0.1) parser.add_argument('--learning_rate_decay_epochs', type=int, help='Number of epochs between learning rate decay.', default=100) parser.add_argument('--learning_rate_decay_factor', type=float, help='Learning rate decay factor.', default=1.0) parser.add_argument('--moving_average_decay', type=float, help='Exponential decay for tracking of training parameters.', default=0.9999) parser.add_argument('--seed', type=int, help='Random seed.', default=666) parser.add_argument('--nrof_preprocess_threads', type=int, help='Number of preprocessing (data loading and augmentation) threads.', default=4) parser.add_argument('--log_histograms', help='Enables logging of weight/bias histograms in tensorboard.', action='store_true') parser.add_argument('--learning_rate_schedule_file', type=str, help='File containing the learning rate schedule that is used when learning_rate is set to to -1.', default='data/learning_rate_schedule.txt') parser.add_argument('--filter_filename', type=str, help='File containing image data used for dataset filtering', default='') parser.add_argument('--filter_percentile', type=float, help='Keep only the percentile images closed to its class center', default=100.0) parser.add_argument('--filter_min_nrof_images_per_class', type=int, help='Keep only the classes with this number of examples or more', default=0) # Parameters for validation on LFW parser.add_argument('--lfw_pairs', type=str, help='The file containing the pairs to use for validation.', default='data/pairs.txt') parser.add_argument('--lfw_file_ext', type=str, help='The file extension for the LFW dataset.', default='png', choices=['jpg', 'png']) parser.add_argument('--lfw_dir', type=str, help='Path to the data directory containing aligned face patches.', default='') parser.add_argument('--lfw_batch_size', type=int, help='Number of images to process in a batch in the LFW test set.', default=100) parser.add_argument('--lfw_nrof_folds', type=int, help='Number of folds to use for cross validation. Mainly used for testing.', default=10) return parser.parse_args(argv) if __name__ == '__main__': main(parse_arguments(sys.argv[1:]))
53.125654
180
0.685129
[ "MIT" ]
AifChain/deepface
src/generative/calculate_dataset_normalization.py
10,147
Python
# -*- coding: utf-8 -*- """ The MIT License (MIT) Copyright (c) 2015-2020 Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import io import os.path class File: """A parameter object used for :meth:`abc.Messageable.send` for sending file objects. .. note:: File objects are single use and are not meant to be reused in multiple :meth:`abc.Messageable.send`s. Attributes ----------- fp: Union[:class:`str`, :class:`io.BufferedIOBase`] A file-like object opened in binary mode and read mode or a filename representing a file in the hard drive to open. .. note:: If the file-like object passed is opened via ``open`` then the modes 'rb' should be used. To pass binary data, consider usage of ``io.BytesIO``. filename: Optional[:class:`str`] The filename to display when uploading to Discord. If this is not given then it defaults to ``fp.name`` or if ``fp`` is a string then the ``filename`` will default to the string given. spoiler: :class:`bool` Whether the attachment is a spoiler. """ __slots__ = ("fp", "filename", "_original_pos", "_owner", "_closer") def __init__(self, fp, filename=None, *, spoiler=False): self.fp = fp if isinstance(fp, io.IOBase): if not (fp.seekable() and fp.readable()): raise ValueError( "File buffer {!r} must be seekable and readable".format(fp) ) self.fp = fp self._original_pos = fp.tell() self._owner = False else: self.fp = open(fp, "rb") self._original_pos = 0 self._owner = True # aiohttp only uses two methods from IOBase # read and close, since I want to control when the files # close, I need to stub it so it doesn't close unless # I tell it to self._closer = self.fp.close self.fp.close = lambda: None if filename is None: if isinstance(fp, str): _, self.filename = os.path.split(fp) else: self.filename = getattr(fp, "name", None) else: self.filename = filename if ( spoiler and self.filename is not None and not self.filename.startswith("SPOILER_") ): self.filename = "SPOILER_" + self.filename def reset(self, *, seek=True): # The `seek` parameter is needed because # the retry-loop is iterated over multiple times # starting from 0, as an implementation quirk # the resetting must be done at the beginning # before a request is done, since the first index # is 0, and thus false, then this prevents an # unnecessary seek since it's the first request # done. if seek: self.fp.seek(self._original_pos) def close(self): self.fp.close = self._closer if self._owner: self._closer()
34.432203
79
0.630076
[ "MIT" ]
Kenvyra/discord.py
discord/file.py
4,063
Python
# Dependencies import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler from sklearn.neighbors import KNeighborsClassifier import pickle def train_model(): # Read data set spotify_df = pd.read_csv("spotify_data_v4.csv") # Extract the necessary columns we need for machine learning model spotify_df_clean = spotify_df[[ 'genre', 'genre_label', 'loudness', 'energy', 'danceability', 'instrumentalness' ]] # Assign X (data) and y (target) X = spotify_df_clean.drop(["genre", "genre_label"], axis=1) y = spotify_df_clean["genre_label"] # Create train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # Scale the data using MinMaxScaler # Create a MinMaxScaler model and fit it to the training data X_scaler = MinMaxScaler().fit(X_train) # Transform the training and testing data using the X_scaler X_train_scaled = X_scaler.transform(X_train) X_test_scaled = X_scaler.transform(X_test) return X_train_scaled, X_test_scaled, y_train, y_test def scale_input(score_list): # Read data set spotify_df = pd.read_csv("spotify_data_v4.csv") # Extract the necessary columns we need for machine learning model spotify_df_clean = spotify_df[[ 'genre', 'genre_label', 'loudness', 'energy', 'danceability', 'instrumentalness' ]] # Assign X (data) and y (target) X = spotify_df_clean.drop(["genre", "genre_label"], axis=1) y = spotify_df_clean["genre_label"] # Create train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # Scale the data using MinMaxScaler # Create a MinMaxScaler model and fit it to the training data X_scaler = MinMaxScaler().fit(X_train) # Need to scale and transform the input using X_scaler which the scaler we used while training the data score_list_scaled = X_scaler.transform([score_list]) return score_list_scaled
34.883333
107
0.718586
[ "MIT" ]
ealejo1/bigdata-machine-learning-challenge
model.py
2,093
Python
import pdf_to_json as p2j import json url = "file:data/multilingual/Latn.BAN/Sans_8/udhr_Latn.BAN_Sans_8.pdf" lConverter = p2j.pdf_to_json.pdf_to_json_converter() lConverter.mImageHashOnly = True lDict = lConverter.convert(url) print(json.dumps(lDict, indent=4, ensure_ascii=False, sort_keys=True))
30.1
71
0.810631
[ "BSD-3-Clause" ]
antoinecarme/pdf_to_json_tests
data/multilingual/Latn.BAN/Sans_8/pdf_to_json_test_Latn.BAN_Sans_8.py
301
Python
# -*- coding: utf-8 -*- # Copyright 2018 IBM and its contributors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= # Authors: Diego M. Rodriguez <[email protected]> """Helper for running the notebooks as unit tests. Convenience script for running the notebooks as individual `unittest` tests using the standard Python facilites. By default, only the notebooks under `reference/` are automatically discovered (can be modified via the `NOTEBOOK_PATH` variable). The test can be run by using the regular unittest facilities from the root folder of the repository: python -m unittest --verbose python -m unittest utils.test.test_tutorials.TutorialsTestCase.\ test_reference_algorithms_bernstein_vazirani_ipynb Tested under the following Jupyter versions: ipython==6.3.1 nbconvert==5.3.1 nbformat==4.4.0 """ import glob import os import re import unittest import warnings import nbformat from nbconvert.preprocessors import ExecutePreprocessor # Configurable parameters. # List of manual exclusion (for example, ["reference/foo/problematic.ipynb"]). EXCLUDED_NOTEBOOKS = [] # Timeout (in seconds) for a single notebook. TIMEOUT = os.getenv('TIMEOUT', 6000) # Jupyter kernel to execute the notebook in. JUPYTER_KERNEL = os.getenv('JUPYTER_KERNEL', 'python3') # Glob expression for discovering the notebooks. NOTEBOOK_PATH = os.getenv('NOTEBOOK_PATH', 'qiskit/**/*.ipynb') # Retrieve the notebooks recursively. NOTEBOOK_FILENAMES = [f for f in sorted(glob.glob(NOTEBOOK_PATH, recursive=True)) if not os.path.basename(f) in EXCLUDED_NOTEBOOKS] class TutorialsTestCaseMeta(type): """ Metaclass that dynamically appends a "test_TUTORIAL_NAME" method to the class. """ def __new__(mcs, name, bases, dict_): def _str_to_identifier(string): """Convert a string to a valid Python identifier.""" return re.sub(r'\W|^(?=\d)', '_', string) def create_test(filename): """Return a new test function.""" def test_function(self): self._run_notebook(filename) return test_function for filename in NOTEBOOK_FILENAMES: # Add a new "test_file_name_ipynb()" function to the test case. test_name = "test_%s" % _str_to_identifier(filename) dict_[test_name] = create_test(filename) dict_[test_name].__doc__ = 'Test tutorial "%s"' % filename return type.__new__(mcs, name, bases, dict_) class TutorialsTestCase(unittest.TestCase, metaclass=TutorialsTestCaseMeta): """ TestCase for running the tutorials. """ @staticmethod def _run_notebook(filename): # Create the preprocessor. execute_preprocessor = ExecutePreprocessor(timeout=TIMEOUT, kernel_name=JUPYTER_KERNEL) # Open the notebook. file_path = os.path.dirname(os.path.abspath(filename)) with open(filename) as file_: notebook = nbformat.read(file_, as_version=4) with warnings.catch_warnings(): # Silence some spurious warnings. warnings.filterwarnings('ignore', category=DeprecationWarning) # Finally, run the notebook. execute_preprocessor.preprocess(notebook, {'metadata': {'path': file_path}})
35.315789
79
0.665176
[ "Apache-2.0" ]
ignaziopedone/qiskit-iqx-tutorials
utils/test/test_tutorials.py
4,026
Python
# uncompyle6 version 3.2.4 # Python bytecode 2.7 (62211) # Decompiled from: Python 2.7.15 (v2.7.15:ca079a3ea3, Apr 30 2018, 16:30:26) [MSC v.1500 64 bit (AMD64)] # Embedded file name: lib.coginvasion.suit.SuitAttacks from direct.directnotify.DirectNotifyGlobal import directNotify from direct.interval.IntervalGlobal import Sequence, Wait, Func, LerpPosInterval, SoundInterval from direct.interval.IntervalGlobal import ActorInterval, Parallel, LerpScaleInterval from direct.interval.ProjectileInterval import ProjectileInterval from direct.showbase.DirectObject import DirectObject from panda3d.core import CollisionSphere, CollisionNode, CollisionHandlerEvent, NodePath, Vec3, VBase4, Point3, BitMask32, Vec4 from lib.coginvasion.distributed import DelayDelete from lib.coginvasion.toon import ParticleLoader from direct.actor.Actor import Actor from lib.coginvasion.globals import CIGlobals from direct.showutil.Rope import Rope from direct.task import Task import random SuitAttackLengths = {'canned': 4, 'clipontie': 4, 'sacked': 4, 'glowerpower': 2.5, 'playhardball': 4, 'marketcrash': 4, 'pickpocket': 3, 'fountainpen': 3, 'hangup': 4, 'redtape': 4, 'powertie': 4, 'halfwindsor': 4, 'bite': 4, 'chomp': 4, 'evictionnotice': 4, 'restrainingorder': 4, 'razzledazzle': 3, 'buzzword': 6, 'jargon': 6, 'mumbojumbo': 6, 'filibuster': 6, 'doubletalk': 6, 'schmooze': 6, 'fingerwag': 6} SuitAttackDamageFactors = {'canned': 5.5, 'clipontie': 13, 'sacked': 7, 'glowerpower': 5.5, 'playhardball': 5.5, 'marketcrash': 8, 'pickpocket': 10, 'fountainpen': 9, 'hangup': 7, 'redtape': 8, 'powertie': 13, 'halfwindsor': 13, 'bite': 7, 'chomp': 5.5, 'evictionnotice': 9, 'restrainingorder': 8, 'razzledazzle': 9, 'buzzword': 10, 'jargon': 9, 'mumbojumbo': 9.5, 'filibuster': 9.5, 'doubletalk': 10, 'schmooze': 8, 'fingerwag': 8} def setEffectTexture(effect, texture, color): particles = effect.getParticlesNamed('particles-1') sparticles = loader.loadModel('phase_3.5/models/props/suit-particles.bam') np = sparticles.find('**/' + texture) particles.renderer.setColor(color) particles.renderer.setFromNode(np) class Attack(DirectObject): notify = directNotify.newCategory('Attack') attack = 'attack' def __init__(self, attacksClass, suit): self.attacksClass = attacksClass self.suit = suit self.suitTrack = None self.attackName2attackId = {} for index in range(len(self.attacksClass.attackName2attackClass.keys())): self.attackName2attackId[SuitAttackLengths.keys()[index]] = index return def getAttackId(self, attackStr): return self.attackName2attackId[attackStr] def finishedAttack(self): messenger.send(self.attacksClass.doneEvent) def interruptAttack(self): self.cleanup() def cleanup(self): if self.suitTrack != None: self.ignore(self.suitTrack.getDoneEvent()) self.suitTrack.finish() DelayDelete.cleanupDelayDeletes(self.suitTrack) self.suitTrack = None self.attack = None self.suit = None self.attacksClass = None self.attackName2attackId = None return class ThrowAttack(Attack): notify = directNotify.newCategory('ThrowAttack') attack = 'throw' def __init__(self, attacksClass, suit): Attack.__init__(self, attacksClass, suit) self.weapon_state = None self.weapon = None self.wss = None self.wsnp = None self.suitTrack = None self.weaponSfx = None self.throwTrajectory = None self.targetX = None self.targetY = None self.targetZ = None self.startNP = None return def handleWeaponCollision(self, entry): if self.suit: self.suit.sendUpdate('toonHitByWeapon', [self.getAttackId(self.attack), base.localAvatar.doId]) base.localAvatar.b_handleSuitAttack(self.getAttackId(self.attack), self.suit.doId) self.suit.b_handleWeaponTouch() def doAttack(self, weapon_path, weapon_scale, track_name, animation_name, collsphere_radius, weapon_coll_id, weapon_h=0, weapon_p=0, weapon_r=0, weapon_x=0, weapon_y=0, weapon_z=0, ts=0): self.weapon_state = 'start' if hasattr(self.suit, 'uniqueName'): track_name = self.suit.uniqueName(track_name) weapon_coll_id = self.suit.uniqueName(weapon_coll_id) self.weapon = loader.loadModel(weapon_path) self.weapon.setScale(weapon_scale) self.weapon.setHpr(weapon_h, weapon_p, weapon_r) self.weapon.setPos(weapon_x, weapon_y, weapon_z) self.wss = CollisionSphere(0, 0, 0, collsphere_radius) self.wss.setTangible(0) self.targetX = self.attacksClass.target.getX(render) self.targetY = self.attacksClass.target.getY(render) self.targetZ = self.attacksClass.target.getZ(render) self.suitTrack = Sequence(name=track_name) if self.attack not in ('glowerpower', ): self.weapon.reparentTo(self.suit.find('**/joint_Rhold')) self.suitTrack.append(Wait(1.2)) self.suitTrack.append(Func(self.suit.setPlayRate, 1.0, animation_name)) if self.suit.type == 'C': self.suitTrack.append(Wait(0)) else: self.suitTrack.append(Wait(0.7)) self.suit.setPlayRate(2.0, animation_name) self.suitTrack.append(Func(self.throwObject)) self.suitTrack.append(Wait(1.0)) self.suitTrack.append(Func(self.delWeapon)) else: self.suitTrack.append(Wait(1)) self.suitTrack.append(Func(self.throwObject)) self.suitTrack.append(Wait(0.5)) self.suitTrack.append(Func(self.delWeapon)) self.suit.play(animation_name) wsnode = CollisionNode(weapon_coll_id) wsnode.addSolid(self.wss) wsnode.setCollideMask(CIGlobals.WallBitmask) self.wsnp = self.weapon.attachNewNode(wsnode) self.suitTrack.setDoneEvent(self.suitTrack.getName()) self.acceptOnce(self.suitTrack.getDoneEvent(), self.finishedAttack) self.suitTrack.delayDelete = DelayDelete.DelayDelete(self.suit, track_name) self.suitTrack.start(ts) def playWeaponSound(self): if self.weapon and self.weaponSfx: base.audio3d.attachSoundToObject(self.weaponSfx, self.suit) self.weaponSfx.play() def throwObject(self, projectile=True): if not self.weapon: return self.acceptOnce('enter' + self.wsnp.node().getName(), self.handleWeaponCollision) self.playWeaponSound() if self.weapon: self.weapon.wrtReparentTo(render) self.weapon.setHpr(Vec3(0, 0, 0)) if self.attack not in ('glowerpower', ): parent = self.suit.find('**/joint_Rhold') else: parent = self.suit.find('**/joint_head') startNP = parent.attachNewNode('startNp') startNP.lookAt(render, self.targetX, self.targetY, self.targetZ) pathNP = NodePath('throwPath') pathNP.reparentTo(startNP) pathNP.setScale(render, 1.0) pathNP.setPos(0, 50, 0) if self.attack in ('clipontie', 'powertie', 'halfwindsor'): self.weapon.setHpr(pathNP.getHpr(render)) if projectile == True: self.throwTrajectory = ProjectileInterval(self.weapon, startPos=self.suit.find('**/joint_Rhold').getPos(render), endPos=pathNP.getPos(render), gravityMult=0.7, duration=1.0) else: self.weapon.setH(pathNP.getH(render)) self.throwTrajectory = LerpPosInterval(self.weapon, duration=0.5, pos=pathNP.getPos(render), startPos=startNP.getPos(render) + (0, 3, 0)) self.throwTrajectory.start() self.weapon_state = 'released' startNP.removeNode() del startNP pathNP.removeNode() del pathNP def interruptAttack(self): if self.throwTrajectory: if self.throwTrajectory.isStopped(): self.delWeapon() def handleWeaponTouch(self): if self.throwTrajectory: self.throwTrajectory.pause() self.throwTrajectory = None self.delWeapon() return def delWeapon(self): if self.weapon: self.weapon.removeNode() self.weapon = None return def cleanup(self): Attack.cleanup(self) self.targetX = None self.targetY = None self.targetZ = None self.weapon_state = None if self.weaponSfx: self.weaponSfx.stop() self.weaponSfx = None if self.throwTrajectory: self.throwTrajectory.pause() self.throwTrajectory = None self.delWeapon() self.wss = None if self.wsnp: self.wsnp.node().clearSolids() self.wsnp.removeNode() self.wsnp = None return class CannedAttack(ThrowAttack): notify = directNotify.newCategory('CannedAttack') attack = 'canned' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/can.bam', 15, 'doCannedAttack', 'throw-object', 0.05, 'cannedWeaponSphere', weapon_r=180, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_canned_tossup_only.ogg') ThrowAttack.playWeaponSound(self) def handleWeaponTouch(self): if self.weaponSfx: self.weaponSfx.stop() self.weaponSfx = None ThrowAttack.handleWeaponTouch(self) return class HardballAttack(ThrowAttack): notify = directNotify.newCategory('HardballAttack') attack = 'playhardball' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/baseball.bam', 10, 'doHardballAttack', 'throw-object', 0.1, 'hardballWeaponSphere', weapon_z=-0.5, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_hardball_throw_only.ogg') ThrowAttack.playWeaponSound(self) def handleWeaponTouch(self): if self.weaponSfx: self.weaponSfx.stop() self.weaponSfx = None ThrowAttack.handleWeaponTouch(self) return class ClipOnTieAttack(ThrowAttack): notify = directNotify.newCategory('ClipOnTieAttack') attack = 'clipontie' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_3.5/models/props/clip-on-tie-mod.bam', 1, 'doClipOnTieAttack', 'throw-paper', 1.1, 'clipOnTieWeaponSphere', weapon_r=180, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_powertie_throw.ogg') ThrowAttack.playWeaponSound(self) class MarketCrashAttack(ThrowAttack): notify = directNotify.newCategory('MarketCrashAttack') attack = 'marketcrash' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/newspaper.bam', 3, 'doMarketCrashAttack', 'throw-paper', 0.35, 'marketCrashWeaponSphere', weapon_x=0.41, weapon_y=-0.06, weapon_z=-0.06, weapon_h=90, weapon_r=270, ts=ts) def playWeaponSound(self): self.weaponSfx = None ThrowAttack.playWeaponSound(self) return class SackedAttack(ThrowAttack): notify = directNotify.newCategory('SackedAttack') attack = 'sacked' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/sandbag-mod.bam', 2, 'doSackedAttack', 'throw-paper', 1, 'sackedWeaponSphere', weapon_r=180, weapon_p=90, weapon_y=-2.8, weapon_z=-0.3, ts=ts) def playWeaponSound(self): self.weaponSfx = None ThrowAttack.playWeaponSound(self) return class GlowerPowerAttack(ThrowAttack): notify = directNotify.newCategory('GlowerPowerAttack') attack = 'glowerpower' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/dagger.bam', 1, 'doGlowerPowerAttack', 'glower', 1, 'glowerPowerWeaponSphere', ts=ts) def throwObject(self): ThrowAttack.throwObject(self, False) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_glower_power.ogg') ThrowAttack.playWeaponSound(self) class PickPocketAttack(Attack): notify = directNotify.newCategory('PickPocketAttack') attack = 'pickpocket' def __init__(self, attacksClass, suit): Attack.__init__(self, attacksClass, suit) self.dollar = None self.pickSfx = None return def doAttack(self, ts=0): self.dollar = loader.loadModel('phase_5/models/props/1dollar-bill-mod.bam') self.dollar.setY(0.22) self.dollar.setHpr(289.18, 252.75, 0.0) if hasattr(self.suit, 'uniqueName'): name = self.suit.uniqueName('doPickPocketAttack') else: name = 'doPickPocketAttack' self.suitTrack = Parallel(ActorInterval(self.suit, 'pickpocket'), Sequence(Wait(0.4), Func(self.attemptDamage)), name=name) self.suitTrack.setDoneEvent(self.suitTrack.getName()) self.acceptOnce(self.suitTrack.getDoneEvent(), self.finishedAttack) self.suitTrack.delayDelete = DelayDelete.DelayDelete(self.suit, name) self.suitTrack.start(ts) def attemptDamage(self): shouldDamage = False suitH = self.suit.getH(render) % 360 myH = base.localAvatar.getH(render) % 360 if not -90.0 <= suitH - myH <= 90.0: if base.localAvatar.getDistance(self.suit) <= 15.0: shouldDamage = True if shouldDamage: self.playWeaponSound() self.dollar.reparentTo(self.suit.find('**/joint_Rhold')) self.suit.sendUpdate('toonHitByWeapon', [self.getAttackId(self.attack), base.localAvatar.doId]) base.localAvatar.b_handleSuitAttack(self.getAttackId(self.attack), self.suit.doId) def playWeaponSound(self): self.pickSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_pick_pocket.ogg') base.audio3d.attachSoundToObject(self.pickSfx, self.suit) self.pickSfx.play() def cleanup(self): Attack.cleanup(self) if self.pickSfx: self.pickSfx.stop() self.pickSfx = None if self.dollar: self.dollar.removeNode() self.dollar = None return class FountainPenAttack(Attack): notify = directNotify.newCategory('FountainPenAttack') attack = 'fountainpen' def __init__(self, attacksClass, suit): Attack.__init__(self, attacksClass, suit) self.pen = None self.spray = None self.splat = None self.spraySfx = None self.sprayParticle = None self.sprayScaleIval = None self.wsnp = None return def loadAttack(self): self.pen = loader.loadModel('phase_5/models/props/pen.bam') self.pen.reparentTo(self.suit.find('**/joint_Rhold')) self.sprayParticle = ParticleLoader.loadParticleEffect('phase_5/etc/penSpill.ptf') self.spray = loader.loadModel('phase_3.5/models/props/spray.bam') self.spray.setColor(VBase4(0, 0, 0, 1)) self.splat = Actor('phase_3.5/models/props/splat-mod.bam', {'chan': 'phase_3.5/models/props/splat-chan.bam'}) self.splat.setColor(VBase4(0, 0, 0, 1)) self.sprayScaleIval = LerpScaleInterval(self.spray, duration=0.3, scale=(1, 20, 1), startScale=(1, 1, 1)) sphere = CollisionSphere(0, 0, 0, 0.5) sphere.setTangible(0) if hasattr(self.suit, 'uniqueName'): collName = self.suit.uniqueName('fountainPenCollNode') else: collName = 'fountainPenCollNode' collNode = CollisionNode(collName) collNode.addSolid(sphere) collNode.setCollideMask(CIGlobals.WallBitmask) self.wsnp = self.spray.attachNewNode(collNode) self.wsnp.setY(1) def doAttack(self, ts=0): self.loadAttack() if hasattr(self.suit, 'uniqueName'): name = self.suit.uniqueName('doFountainPenAttack') else: name = 'doFountainPenAttack' self.suitTrack = Parallel(name=name) self.suitTrack.append(ActorInterval(self.suit, 'fountainpen')) self.suitTrack.append(Sequence(Wait(1.2), Func(self.acceptOnce, 'enter' + self.wsnp.node().getName(), self.handleSprayCollision), Func(self.playWeaponSound), Func(self.attachSpray), Func(self.sprayParticle.start, self.pen.find('**/joint_toSpray'), self.pen.find('**/joint_toSpray')), self.sprayScaleIval, Wait(0.5), Func(self.sprayParticle.cleanup), Func(self.spray.setScale, 1), Func(self.spray.reparentTo, hidden), Func(self.ignore, 'enter' + self.wsnp.node().getName()))) self.suitTrack.setDoneEvent(self.suitTrack.getName()) self.acceptOnce(self.suitTrack.getDoneEvent(), self.finishedAttack) self.suitTrack.delayDelete = DelayDelete.DelayDelete(self.suit, name) self.suitTrack.start(ts) def attachSpray(self): self.spray.reparentTo(self.pen.find('**/joint_toSpray')) pos = self.spray.getPos(render) hpr = self.spray.getHpr(render) self.spray.reparentTo(render) self.spray.setPos(pos) self.spray.setHpr(hpr) self.spray.setP(0) if self.suit.type == 'C': self.spray.setH(self.spray.getH() + 7.5) self.spray.setTwoSided(True) def handleSprayCollision(self, entry): if self.suit: self.suit.sendUpdate('toonHitByWeapon', [self.getAttackId(self.attack), base.localAvatar.doId]) base.localAvatar.b_handleSuitAttack(self.getAttackId(self.attack), self.suit.doId) self.sprayScaleIval.pause() def playWeaponSound(self): self.spraySfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_fountain_pen.ogg') base.audio3d.attachSoundToObject(self.spraySfx, self.pen) self.spraySfx.play() def cleanup(self): Attack.cleanup(self) if self.wsnp: self.wsnp.node().clearSolids() self.wsnp.removeNode() self.wsnp = None if self.pen: self.pen.removeNode() self.pen = None if self.sprayParticle: self.sprayParticle.cleanup() self.sprayParticle = None if self.spray: self.spray.removeNode() self.spray = None if self.splat: self.splat.cleanup() self.splat = None if self.sprayScaleIval: self.sprayScaleIval.pause() self.sprayScaleIval = None self.spraySfx = None return class HangUpAttack(Attack): notify = directNotify.newCategory('HangUpAttack') attack = 'hangup' def __init__(self, attacksClass, suit): Attack.__init__(self, attacksClass, suit) self.phone = None self.receiver = None self.collNP = None self.phoneSfx = None self.hangupSfx = None self.shootIval = None self.cord = None self.receiverOutCord = None self.phoneOutCord = None return def loadAttack(self): self.phone = loader.loadModel('phase_3.5/models/props/phone.bam') self.phone.setHpr(0, 0, 180) if self.suit.type == 'B': self.phone.setPos(0.7, 0.15, 0) else: if self.suit.type == 'C': self.phone.setPos(0.25, 0, 0) self.receiver = loader.loadModel('phase_3.5/models/props/receiver.bam') self.receiver.reparentTo(self.phone) self.cord = Rope() self.cord.ropeNode.setUseVertexColor(1) self.cord.ropeNode.setUseVertexThickness(1) self.cord.setup(3, ({'node': self.phone, 'point': (0.8, 0, 0.2), 'color': (0, 0, 0, 1), 'thickness': 1000}, {'node': self.phone, 'point': (2, 0, 0), 'color': (0, 0, 0, 1), 'thickness': 1000}, {'node': self.receiver, 'point': (1.1, 0.25, 0.5), 'color': (0, 0, 0, 1), 'thickness': 1000}), []) self.cord.setH(180) self.phoneSfx = base.audio3d.loadSfx('phase_3.5/audio/sfx/SA_hangup.ogg') base.audio3d.attachSoundToObject(self.phoneSfx, self.phone) self.hangupSfx = base.audio3d.loadSfx('phase_3.5/audio/sfx/SA_hangup_place_down.ogg') base.audio3d.attachSoundToObject(self.hangupSfx, self.phone) collSphere = CollisionSphere(0, 0, 0, 2) collSphere.setTangible(0) collNode = CollisionNode('phone_shootout') collNode.addSolid(collSphere) collNode.setCollideMask(CIGlobals.WallBitmask) self.collNP = self.phone.attachNewNode(collNode) def doAttack(self, ts=0): self.loadAttack() if hasattr(self.suit, 'uniqueName'): name = self.suit.uniqueName('doHangupAttack') else: name = 'doHangupAttack' if self.suit.type == 'A': delay2playSound = 1.0 delayAfterSoundToPlaceDownReceiver = 0.2 delayAfterShootToIgnoreCollisions = 1.0 delay2PickUpReceiver = 1.0 receiverInHandPos = Point3(-0.5, 0.5, -1) else: if self.suit.type == 'B': delay2playSound = 1.5 delayAfterSoundToPlaceDownReceiver = 0.7 delayAfterShootToIgnoreCollisions = 1.0 delay2PickUpReceiver = 1.5 receiverInHandPos = Point3(-0.3, 0.5, -0.8) else: if self.suit.type == 'C': delay2playSound = 1.0 delayAfterSoundToPlaceDownReceiver = 1.15 delayAfterShootToIgnoreCollisions = 1.0 delay2PickUpReceiver = 1.5 receiverInHandPos = Point3(-0.3, 0.5, -0.8) self.suitTrack = Parallel(name=name) self.suitTrack.append(ActorInterval(self.suit, 'phone')) self.suitTrack.append(Sequence(Wait(delay2playSound), SoundInterval(self.phoneSfx, duration=2.1), Wait(delayAfterSoundToPlaceDownReceiver), Func(self.receiver.setPos, 0, 0, 0), Func(self.receiver.setH, 0.0), Func(self.receiver.reparentTo, self.phone), Func(self.acceptOnce, 'enter' + self.collNP.node().getName(), self.handleCollision), Func(self.shootOut), Parallel(SoundInterval(self.hangupSfx), Sequence(Wait(delayAfterShootToIgnoreCollisions), Func(self.ignore, 'enter' + self.collNP.node().getName()))))) self.suitTrack.append(Sequence(Func(self.phone.reparentTo, self.suit.find('**/joint_Lhold')), Func(self.cord.reparentTo, render), Wait(delay2PickUpReceiver), Func(self.receiver.reparentTo, self.suit.find('**/joint_Rhold')), Func(self.receiver.setPos, receiverInHandPos), Func(self.receiver.setH, 270.0))) self.suitTrack.setDoneEvent(self.suitTrack.getName()) self.acceptOnce(self.suitTrack.getDoneEvent(), self.finishedAttack) self.suitTrack.delayDelete = DelayDelete.DelayDelete(self.suit, name) self.suitTrack.start(ts) def handleCollision(self, entry): if self.suit: self.suit.sendUpdate('toonHitByWeapon', [self.getAttackId(self.attack), base.localAvatar.doId]) base.localAvatar.b_handleSuitAttack(self.getAttackId(self.attack), self.suit.doId) def shootOut(self): pathNode = NodePath('path') pathNode.reparentTo(self.suit) pathNode.setPos(0, 50, self.phone.getZ(self.suit)) self.collNP.reparentTo(render) self.shootIval = LerpPosInterval(self.collNP, duration=1.0, pos=pathNode.getPos(render), startPos=self.phone.getPos(render)) self.shootIval.start() pathNode.removeNode() del pathNode def cleanup(self): Attack.cleanup(self) if self.shootIval: self.shootIval.pause() self.shootIval = None if self.cord: self.cord.removeNode() self.cord = None if self.phone: self.phone.removeNode() self.phone = None if self.receiver: self.receiver.removeNode() self.receiver = None if self.collNP: self.collNP.node().clearSolids() self.collNP.removeNode() self.collNP = None if self.phoneSfx: self.phoneSfx.stop() self.phoneSfx = None return class BounceCheckAttack(ThrowAttack): notify = directNotify.newCategory('BounceCheckAttack') MaxBounces = 3 WeaponHitDistance = 0.5 def __init__(self, attacksClass, suit): ThrowAttack.__init__(self, attacksClass, suit) self.attack = 'bouncecheck' self.bounceSound = None self.numBounces = 0 return def __pollCheckDistance(self, task): if base.localAvatar.getDistance(self.weapon) <= self.WeaponHitDistance: self.handleWeaponCollision(None) return Task.done return Task.cont return def loadAttack(self): self.weapon = loader.loadModel('phase_5/models/props/bounced-check.bam') self.weapon.setScale(10) self.weapon.setTwoSided(1) self.bounceSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_bounce_check_bounce.ogg') base.audio3d.attachSoundToObject(self.bounceSound, self.suit) cSphere = CollisionSphere(0, 0, 0, 0.1) cSphere.setTangible(0) if hasattr(self, 'uniqueName'): name = self.uniqueName('bounced_check_collision') else: name = 'bounced_check_collision' cNode = CollisionNode(name) cNode.addSolid(cSphere) cNode.setFromCollideMask(CIGlobals.FloorBitmask) cNP = self.weapon.attachNewNode(cNode) cNP.setCollideMask(BitMask32(0)) self.event = CollisionHandlerEvent() self.event.setInPattern('%fn-into') self.event.setOutPattern('%fn-out') base.cTrav.addCollider(cNP, self.event) self.wsnp = cNP self.wsnp.show() def doAttack(self, ts=0): ThrowAttack.doAttack(self, ts) self.loadAttack() if hasattr(self, 'uniqueName'): name = self.uniqueName('doBounceCheckAttack') else: name = 'doBounceCheckAttack' self.suitTrack = Sequence(name=name) self.weapon.reparentTo(self.suit.find('**/joint_Rhold')) if self.suit.type == 'C': self.suitTrack.append(Wait(2.3)) else: self.suitTrack.append(Wait(3)) self.suit.play('throw-paper') self.suitTrack.append(Func(self.throwObject)) self.suitTrack.start(ts) def throwObject(self): ThrowAttack.throwObject(self) taskMgr.add(self.__pollCheckDistance, 'pollCheckDistance') self.__doThrow(0) def __doThrow(self, alreadyThrown): self.weapon.setScale(1) pathNP = NodePath('throwPath') if not alreadyThrown: pathNP.reparentTo(self.suit) else: pathNP.reparentTo(self.weapon) pathNP.setScale(render, 1.0) pathNP.setPos(0, 30, -100) pathNP.setHpr(90, -90, 90) print pathNP.getPos(base.render) if self.throwTrajectory: self.throwTrajectory.pause() self.throwTrajectory = None if alreadyThrown: startPos = self.weapon.getPos(base.render) gravity = 0.7 else: gravity = 0.7 startPos = self.suit.find('**/joint_Rhold').getPos(base.render) self.throwTrajectory = ProjectileInterval(self.weapon, startPos=startPos, endPos=pathNP.getPos(base.render), gravityMult=gravity, duration=3.0) self.throwTrajectory.start() self.weapon.setScale(10) self.weapon.reparentTo(render) self.weapon.setHpr(pathNP.getHpr(render)) self.weapon_state = 'released' self.acceptOnce(self.wsnp.node().getName() + '-into', self.__handleHitFloor) return def __handleHitFloor(self, entry): self.numBounces += 1 if self.numBounces >= self.MaxBounces: self.cleanup() return base.playSfx(self.bounceSound) self.__doThrow(1) def cleanup(self): taskMgr.remove('pollCheckDistance') self.ignore(self.wsnp.node().getName() + '-into') self.bounceSound = None ThrowAttack.cleanup(self) return class RedTapeAttack(ThrowAttack): notify = directNotify.newCategory('RedTapeAttack') attack = 'redtape' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/redtape.bam', 1, 'doRedTapeAttack', 'throw-paper', 0.5, 'redTapeWeaponSphere', weapon_p=90, weapon_y=0.35, weapon_z=-0.5, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_red_tape.ogg') ThrowAttack.playWeaponSound(self) def handleWeaponTouch(self): if self.weaponSfx: self.weaponSfx.stop() self.weaponSfx = None ThrowAttack.handleWeaponTouch(self) return class PowerTieAttack(ThrowAttack): notify = directNotify.newCategory('PowerTieAttack') attack = 'powertie' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/power-tie.bam', 4, 'doPowerTieAttack', 'throw-paper', 0.2, 'powerTieWeaponSphere', weapon_r=180, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_powertie_throw.ogg') ThrowAttack.playWeaponSound(self) class HalfWindsorAttack(ThrowAttack): notify = directNotify.newCategory('HalfWindsorAttack') attack = 'halfwindsor' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/half-windsor.bam', 6, 'doHalfWindsorAttack', 'throw-paper', 0.2, 'halfWindsorWeaponSphere', weapon_r=90, weapon_p=0, weapon_h=90, weapon_z=-1, weapon_y=-1.6, ts=ts) def playWeaponSound(self): self.weaponSfx = base.audio3d.loadSfx('phase_5/audio/sfx/SA_powertie_throw.ogg') ThrowAttack.playWeaponSound(self) class BiteAttack(ThrowAttack): notify = directNotify.newCategory('BiteAttack') attack = 'bite' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/teeth-mod.bam', 6, 'doBiteAttack', 'throw-object', 0.2, 'biteWeaponSphere', weapon_r=180, ts=ts) def throwObject(self): ThrowAttack.throwObject(self, False) self.weapon.setH(self.weapon, -90) class ChompAttack(ThrowAttack): notify = directNotify.newCategory('ChompAttack') attack = 'chomp' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_5/models/props/teeth-mod.bam', 6, 'doChompAttack', 'throw-object', 0.2, 'chompWeaponSphere', weapon_r=180, ts=ts) def throwObject(self): ThrowAttack.throwObject(self, False) self.weapon.setH(self.weapon, -90) class EvictionNoticeAttack(ThrowAttack): notify = directNotify.newCategory('EvictionNoticeAttack') attack = 'evictionnotice' def doAttack(self, ts=0): ThrowAttack.doAttack(self, 'phase_3.5/models/props/shredder-paper-mod.bam', 1, 'doEvictionNoticeAttack', 'throw-paper', 1, 'evictionNoticeWeaponSphere', weapon_y=-0.15, weapon_z=-0.5, weapon_x=-1.4, weapon_r=90, weapon_h=30, ts=ts) self.wsnp.setZ(1.5) def throwObject(self): ThrowAttack.throwObject(self, False) class RestrainingOrderAttack(EvictionNoticeAttack): notify = directNotify.newCategory('RestrainingOrderAttack') attack = 'restrainingorder' class ParticleAttack(Attack): notify = directNotify.newCategory('ParticleAttack') attack = 'particleattack' particleIvalDur = 1 shooterDistance = 50 def __init__(self, attacksClass, suit): Attack.__init__(self, attacksClass, suit) self.particles = [] self.handObj = None self.shootOutCollNP = None self.particleSound = None self.particleMoveIval = None self.targetX = None self.targetY = None self.targetZ = None return def handleWeaponTouch(self): pass def handleCollision(self, entry): if self.suit: self.suit.sendUpdate('toonHitByWeapon', [self.getAttackId(self.attack), base.localAvatar.doId]) base.localAvatar.b_handleSuitAttack(self.getAttackId(self.attack), self.suit.doId) def doAttack(self, particlePaths, track_name, particleCollId, animation_name, delayUntilRelease, animationSpeed=1, handObjPath=None, handObjParent=None, startRightAway=True, ts=0): for path in particlePaths: particle = ParticleLoader.loadParticleEffect(path) self.particles.append(particle) sphere = CollisionSphere(0, 0, 0, 1) sphere.setTangible(0) node = CollisionNode(particleCollId) node.addSolid(sphere) node.setCollideMask(CIGlobals.WallBitmask) self.targetX = self.attacksClass.target.getX(render) self.targetY = self.attacksClass.target.getY(render) self.targetZ = self.attacksClass.target.getZ(render) if len(self.particles) == 1: self.shootOutCollNP = self.particles[0].attachNewNode(node) else: self.shootOutCollNP = self.suit.attachNewNode(node) if handObjPath and handObjParent: self.handObj = loader.loadModel(handObjPath) self.handObj.reparentTo(handObjParent) self.suit.setPlayRate(animationSpeed, animation_name) self.suit.play(animation_name) if hasattr(self.suit, 'uniqueName'): track_name = self.suit.uniqueName(track_name) particleCollId = self.suit.uniqueName(particleCollId) self.suitTrack = Sequence(name=track_name) self.suitTrack.append(Wait(delayUntilRelease)) self.suitTrack.append(Func(self.releaseAttack)) self.suitTrack.append(Wait(self.particleIvalDur)) self.suitTrack.setDoneEvent(self.suitTrack.getName()) self.acceptOnce(self.suitTrack.getDoneEvent(), self.finishedAttack) if startRightAway: self.suitTrack.start(ts) def releaseAttack(self, releaseFromJoint, onlyMoveColl=True, blendType='noBlend'): startNP = releaseFromJoint.attachNewNode('startNP') if None not in [self.targetX, self.targetY, self.targetZ]: startNP.lookAt(render, self.targetX, self.targetY, self.targetZ + 2) pathNP = NodePath('path') pathNP.reparentTo(startNP) pathNP.setScale(render, 1.0) pathNP.setPos(0, self.shooterDistance, 0) for particle in self.particles: if not onlyMoveColl: particle.start(render) else: particle.start(self.suit) particle.lookAt(pathNP) if self.attack == 'razzledazzle': particle.setP(particle, 90) if onlyMoveColl: target = self.shootOutCollNP target.wrtReparentTo(render) else: target = self.particles[0] self.particleMoveIval = LerpPosInterval(target, duration=self.particleIvalDur, pos=pathNP.getPos(render), startPos=startNP.getPos(render), blendType=blendType) self.particleMoveIval.start() self.acceptOnce('enter' + self.shootOutCollNP.node().getName(), self.handleCollision) pathNP.removeNode() startNP.removeNode() del pathNP del startNP self.playParticleSound() return def playParticleSound(self): if self.particleSound: base.audio3d.attachSoundToObject(self.particleSound, self.suit) base.playSfx(self.particleSound) def cleanup(self): Attack.cleanup(self) self.targetX = None self.targetY = None self.targetZ = None if self.particles: for particle in self.particles: particle.cleanup() self.particles = None if self.handObj: self.handObj.removeNode() self.handObj = None if self.shootOutCollNP: self.ignore('enter' + self.shootOutCollNP.node().getName()) self.shootOutCollNP.removeNode() self.shootOutCollNP = None if self.particleMoveIval: self.particleMoveIval.pause() self.particleMoveIval = None self.particleSound = None self.particleIvalDur = None return class RazzleDazzleAttack(ParticleAttack): notify = directNotify.newCategory('RazzleDazzleAttack') attack = 'razzledazzle' particleIvalDur = 2.0 def doAttack(self, ts): ParticleAttack.doAttack(self, ['phase_5/etc/smile.ptf'], 'doRazzleDazzle', 'razzleDazzleSphere', 'glower', 1, 1, 'phase_5/models/props/smile-mod.bam', self.suit.find('**/joint_Rhold'), ts=ts) def releaseAttack(self): ParticleAttack.releaseAttack(self, self.handObj.find('**/scale_joint_sign'), onlyMoveColl=False, blendType='easeIn') def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_razzle_dazzle.ogg') ParticleAttack.playParticleSound(self) class BuzzWordAttack(ParticleAttack): notify = directNotify.newCategory('BuzzWordAttack') attack = 'buzzword' particleIvalDur = 1.5 afterIvalDur = 1.5 shooterDistance = 32.0 def doAttack(self, ts): texturesList = [ 'buzzwords-crash', 'buzzwords-inc', 'buzzwords-main', 'buzzwords-over', 'buzzwords-syn'] particleList = [] for i in xrange(0, 5): particleList.append('phase_5/etc/buzzWord.ptf') ParticleAttack.doAttack(self, particleList, 'doBuzzWord', 'buzzWordSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 5): effect = self.particles[i] if random.random() > 0.5: setEffectTexture(effect, texturesList[i], Vec4(1, 0.94, 0.02, 1)) else: setEffectTexture(effect, texturesList[i], Vec4(0, 0, 0, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head')) def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_buzz_word.ogg') ParticleAttack.playParticleSound(self) class JargonAttack(ParticleAttack): notify = directNotify.newCategory('JargonAttack') attack = 'jargon' particleIvalDur = 1.5 afterIvalDur = 1.5 shooterDistance = 31.0 def doAttack(self, ts): texturesList = [ 'jargon-brow', 'jargon-deep', 'jargon-hoop', 'jargon-ipo'] reds = [1, 0, 1, 0] particleList = [] for i in xrange(0, 4): particleList.append('phase_5/etc/jargonSpray.ptf') ParticleAttack.doAttack(self, particleList, 'doJargon', 'jargonSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 4): effect = self.particles[i] setEffectTexture(effect, texturesList[i], Vec4(reds[i], 0, 0, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head')) def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_jargon.ogg') self.particleSound.setLoop(True) ParticleAttack.playParticleSound(self) class MumboJumboAttack(ParticleAttack): notify = directNotify.newCategory('MumboJumboAttack') attack = 'mumbojumbo' particleIvalDur = 2.5 afterIvalDur = 1.5 shooterDistance = 25.0 def doAttack(self, ts): texturesList = [ 'mumbojumbo-boiler', 'mumbojumbo-creative', 'mumbojumbo-deben', 'mumbojumbo-high', 'mumbojumbo-iron'] particleList = [] for i in xrange(0, 2): particleList.append('phase_5/etc/mumboJumboSpray.ptf') for i in xrange(0, 3): particleList.append('phase_5/etc/mumboJumboSmother.ptf') ParticleAttack.doAttack(self, particleList, 'doMumJum', 'mumJumSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 5): effect = self.particles[i] setEffectTexture(effect, texturesList[i], Vec4(1, 0, 0, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head'), blendType='easeIn') def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_mumbo_jumbo.ogg') self.particleSound.setLoop(True) ParticleAttack.playParticleSound(self) class FilibusterAttack(ParticleAttack): notify = directNotify.newCategory('FilibusterAttack') attack = 'filibuster' particleIvalDur = 1.5 afterIvalDur = 1.5 shooterDistance = 20.0 def doAttack(self, ts): texturesList = [ 'filibuster-cut', 'filibuster-fiscal', 'filibuster-impeach', 'filibuster-inc'] particleList = [] for i in xrange(0, 4): particleList.append('phase_5/etc/filibusterSpray.ptf') ParticleAttack.doAttack(self, particleList, 'doFili', 'filiSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 4): effect = self.particles[i] setEffectTexture(effect, texturesList[i], Vec4(0.4, 0, 0, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head')) def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_filibuster.ogg') self.particleSound.setLoop(True) ParticleAttack.playParticleSound(self) class DoubleTalkAttack(ParticleAttack): notify = directNotify.newCategory('DoubleTalkAttack') attack = 'doubletalk' particleIvalDur = 3.0 afterIvalDur = 1.5 shooterDistance = 40.0 def doAttack(self, ts): texturesList = [ 'doubletalk-double', 'doubletalk-good'] particleList = [] particleList.append('phase_5/etc/doubleTalkLeft.ptf') particleList.append('phase_5/etc/doubleTalkRight.ptf') ParticleAttack.doAttack(self, particleList, 'doDT', 'DTSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 2): effect = self.particles[i] setEffectTexture(effect, texturesList[i], Vec4(0, 1.0, 0, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head'), blendType='easeIn') def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_filibuster.ogg') self.particleSound.setLoop(True) ParticleAttack.playParticleSound(self) class SchmoozeAttack(ParticleAttack): notify = directNotify.newCategory('SchmoozeAttack') attack = 'schmooze' particleIvalDur = 1.5 afterIvalDur = 1.5 shooterDistance = 23.0 def doAttack(self, ts): texturesList = [ 'schmooze-genius', 'schmooze-instant', 'schmooze-master', 'schmooze-viz'] particleList = [] particleList.append('phase_5/etc/schmoozeUpperSpray.ptf') particleList.append('phase_5/etc/schmoozeLowerSpray.ptf') ParticleAttack.doAttack(self, particleList, 'doSch', 'SchSphere', 'speak', 1.5, 1.5, None, None, False, ts) for i in xrange(0, 2): effect = self.particles[i] setEffectTexture(effect, texturesList[i], Vec4(0, 0, 1, 1)) for particle in self.particles: particle.setZ(self.suit.find('**/joint_head').getZ(render)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head')) def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_schmooze.ogg') self.particleSound.setLoop(True) ParticleAttack.playParticleSound(self) class FingerWagAttack(ParticleAttack): notify = directNotify.newCategory('FingerWagAttack') attack = 'fingerwag' particleIvalDur = 2.75 afterIvalDur = 1.5 shooterDistance = 30.0 def doAttack(self, ts): ParticleAttack.doAttack(self, ['phase_5/etc/fingerwag.ptf'], 'doFW', 'FWSphere', 'fingerwag', 1.5, 1.5, None, None, False, ts) setEffectTexture(self.particles[0], 'blah', Vec4(0.55, 0, 0.55, 1)) self.suitTrack.append(Wait(self.afterIvalDur)) self.suitTrack.start(ts) return def releaseAttack(self): ParticleAttack.releaseAttack(self, self.suit.find('**/joint_head'), blendType='easeIn') self.particles[0].setH(self.particles[0], 90) def playParticleSound(self): self.particleSound = base.audio3d.loadSfx('phase_5/audio/sfx/SA_finger_wag.ogg') self.particleSound.setLoop(False) ParticleAttack.playParticleSound(self) from direct.fsm.StateData import StateData class SuitAttacks(StateData): notify = directNotify.newCategory('SuitAttacks') attackName2attackClass = {'canned': CannedAttack, 'clipontie': ClipOnTieAttack, 'sacked': SackedAttack, 'glowerpower': GlowerPowerAttack, 'playhardball': HardballAttack, 'marketcrash': MarketCrashAttack, 'pickpocket': PickPocketAttack, 'hangup': HangUpAttack, 'fountainpen': FountainPenAttack, 'redtape': RedTapeAttack, 'powertie': PowerTieAttack, 'halfwindsor': HalfWindsorAttack, 'bite': BiteAttack, 'chomp': ChompAttack, 'evictionnotice': EvictionNoticeAttack, 'restrainingorder': RestrainingOrderAttack, 'razzledazzle': RazzleDazzleAttack, 'buzzword': BuzzWordAttack, 'jargon': JargonAttack, 'mumbojumbo': MumboJumboAttack, 'filibuster': FilibusterAttack, 'doubletalk': DoubleTalkAttack, 'schmooze': SchmoozeAttack, 'fingerwag': FingerWagAttack} def __init__(self, doneEvent, suit, target): StateData.__init__(self, doneEvent) self.suit = suit self.target = target self.currentAttack = None return def load(self, attackName): StateData.load(self) className = self.attackName2attackClass[attackName] self.currentAttack = className(self, self.suit) def enter(self, ts=0): StateData.enter(self) self.currentAttack.doAttack(ts) def exit(self): self.currentAttack.cleanup() StateData.exit(self) def unload(self): self.cleanup() StateData.unload(self) def cleanup(self): self.suit = None self.currentAttack = None self.target = None return
38.614105
517
0.636905
[ "Apache-2.0" ]
theclashingfritz/Cog-Invasion-Online-Dump
lib/coginvasion/suit/SuitAttacks.py
48,731
Python
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RaxmlNg(CMakePackage): """RAxML-NG is a phylogenetic tree inference tool which uses maximum-likelihood (ML) optimality criterion. Its search heuristic is based on iteratively performing a series of Subtree Pruning and Regrafting (SPR) moves, which allows to quickly navigate to the best-known ML tree. RAxML-NG is a successor of RAxML (Stamatakis 2014) and leverages the highly optimized likelihood computation implemented in libpll (Flouri et al. 2014).""" homepage = "https://github.com/amkozlov/raxml-ng/wiki" url = "https://github.com/amkozlov/raxml-ng/archive/1.0.1.tar.gz" git = "https://github.com/amkozlov/raxml-ng.git" version('1.0.2', submodules=True) version('1.0.1', submodules=True) variant("mpi", default=True, description="Use MPI") depends_on('bison') depends_on('flex') depends_on('gmp') depends_on('mpi', when='+mpi') def cmake_args(self): return [self.define_from_variant('USE_MPI', 'mpi')]
34.333333
74
0.703883
[ "ECL-2.0", "Apache-2.0", "MIT-0", "MIT" ]
Bambi/spack
var/spack/repos/builtin/packages/raxml-ng/package.py
1,236
Python
""" Afterglow Core: settings routes """ import secrets import json from flask import Response, request, redirect from marshmallow.fields import Integer, String from ...oauth2 import oauth_clients from ... import app, json_response from ...auth import auth_required, set_access_cookies from ...resources.users import DbPersistentToken, db, DbUser, DbIdentity, DbRole from ...schemas import Resource from ...errors.oauth2 import (UnknownClientError) from . import url_prefix @app.route(url_prefix + 'oauth2/clients/<client_id>', methods=['GET']) @auth_required def oauth2_clients(client_id: str) -> Response: """ Return OAuth2 client applications :return: GET /ajax/oauth2/clients: list of OAuth2 clients """ client = next((c for c in oauth_clients.values() if c.client_id == client_id), None) if not client: raise UnknownClientError() return json_response(dict(id=client.client_id, name=client.name, description=client.description, icon=client.icon))
25.794872
119
0.739563
[ "Apache-2.0" ]
SkynetRTN/afterglow-access-server
afterglow_core/views/ajax_api/oauth2_clients.py
1,006
Python
from .base import * # noqa from .base import env # GENERAL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#debug DEBUG = True # https://docs.djangoproject.com/en/dev/ref/settings/#secret-key SECRET_KEY = env( "DJANGO_SECRET_KEY", default="TPyatMWyQl9oNj8aR735PzfRJsAZf2sdHojggLgxE3d3jSpLEbfy63ypb7p45VSM", ) # https://docs.djangoproject.com/en/dev/ref/settings/#allowed-hosts ALLOWED_HOSTS = ["localhost", "0.0.0.0", "127.0.0.1"] # CACHES # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#caches CACHES = { "default": { "BACKEND": "django.core.cache.backends.locmem.LocMemCache", "LOCATION": "", } } # EMAIL # ------------------------------------------------------------------------------ # https://docs.djangoproject.com/en/dev/ref/settings/#email-backend EMAIL_BACKEND = env("DJANGO_EMAIL_BACKEND", default="django.core.mail.backends.console.EmailBackend") # WhiteNoise # ------------------------------------------------------------------------------ # http://whitenoise.evans.io/en/latest/django.html#using-whitenoise-in-development INSTALLED_APPS = ["whitenoise.runserver_nostatic"] + INSTALLED_APPS # noqa F405 # django-debug-toolbar # ------------------------------------------------------------------------------ # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#prerequisites INSTALLED_APPS += ["debug_toolbar"] # noqa F405 # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#middleware MIDDLEWARE += [ # noqa F405 "debug_toolbar.middleware.DebugToolbarMiddleware", "querycount.middleware.QueryCountMiddleware", ] # https://django-debug-toolbar.readthedocs.io/en/latest/configuration.html#debug-toolbar-config DEBUG_TOOLBAR_CONFIG = { "DISABLE_PANELS": ["debug_toolbar.panels.redirects.RedirectsPanel"], "SHOW_TEMPLATE_CONTEXT": True, } # https://django-debug-toolbar.readthedocs.io/en/latest/installation.html#internal-ips INTERNAL_IPS = ["127.0.0.1", "10.0.2.2"] if env("USE_DOCKER") == "yes": import socket hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS += [".".join(ip.split(".")[:-1] + ["1"]) for ip in ips] # django-extensions # ------------------------------------------------------------------------------ # https://django-extensions.readthedocs.io/en/latest/installation_instructions.html#configuration INSTALLED_APPS += ["django_extensions"] # noqa F405 # Your stuff... # ------------------------------------------------------------------------------ QUERYCOUNT = { "DISPLAY_DUPLICATES": 5, }
39.128571
101
0.58525
[ "MIT" ]
ReddyLab/cegs-portal
config/settings/local.py
2,739
Python
import threading import time import mpl_qtthread.backend import matplotlib import matplotlib.backends.backend_qt import matplotlib.pyplot as plt from matplotlib.backends.qt_compat import QtWidgets, QtCore # set up the teleporter mpl_qtthread.backend.initialize_qt_teleporter() # tell Matplotlib to use this backend matplotlib.use("module://mpl_qtthread.backend_agg") # suppress (now) spurious warnings for mpl3.3+ mpl_qtthread.monkeypatch_pyplot() app = matplotlib.backends.backend_qt.qApp # button to exit early and to make sure qapp does not quit! bt = QtWidgets.QPushButton("Quit") bt.pressed.connect(app.quit) bt.show() tot_time = 15 # stop UAT in 12s timer = QtCore.QTimer() timer.setSingleShot(True) timer.timeout.connect(app.quit) timer.start(tot_time * 1000) # this is in ms def background(): # make a figure and plot some data fig, ax = plt.subplots() plt.show(block=False) (ln,) = ax.plot(range(5)) thread_start_time = start_time = time.monotonic() fig.canvas.flush_events() # periodically update the figure for j in range(5): print( f"starting block {j} at Δt {time.monotonic() - start_time:.3f} " f"(expected ~{j})" ) ln.set_color(f"C{j}") ax.set_title(f"cycle {j}") fig.set_size_inches(1 + j, 1 + j) fig.canvas.draw_idle() print(f"line should now be color 'C{j}'") time.sleep(1) plt.close(fig) print("figure is now closed, take a 1s nap") time.sleep(1) fig2 = plt.figure() fig2.show() print("New figure!") start_time = time.monotonic() for j in range(4): time.sleep(1) fig2.canvas.manager.full_screen_toggle() fig2.canvas.manager.set_window_title(f"toggled {j}") print(f"toggled Δt {time.monotonic() - start_time:.3f} (expected ~{j+1})") fig3, _ = plt.subplots(3, 1) fig3.show() print("figure is small again and there are two figures.") print("take 1s nap") time.sleep(1) plt.close("all") print( f"all figures should be closed" f"app will exit in {12 - (time.monotonic() - thread_start_time)}s on hit quit." ) # start the thread threading.Thread(target=background, daemon=True).start() # start the QApplication main loop app.exec()
26.976471
87
0.66812
[ "BSD-3-Clause" ]
tacaswell/mpl-qtthread
UAT.py
2,295
Python
# -*- coding: utf-8 -*- """ SHT21 Sensor Plugin. Return temperature and relative humidity from sensor readings. Calculate and return absolute humidity and dew point. Source for calculations: http://www.vaisala.com/Vaisala%20Documents/Application%20notes/Humidity_Conversion_Formulas_B210973EN-F.pdf """ from __future__ import absolute_import, division, print_function, unicode_literals from fcntl import flock, LOCK_EX, LOCK_UN import math import collectd from sht21 import SHT21 sht21 = None lock_file = None kock_handle = None def pws_constants(t): """Lookup-table for water vapor saturation pressure constants (A, m, Tn).""" if t < -20: raise ValueError('Temperature out of range (-20 - 350°C') if t < 50: return (6.116441, 7.591386, 240.7263) if t < 100: return (6.004918, 7.337936, 229.3975) if t < 150: return (5.856548, 7.27731, 225.1033) if t < 200: return (6.002859, 7.290361, 227.1704) return (9.980622, 7.388931, 263.1239) def pws(t): r""" Calculate water vapor saturation pressure based on temperature (in hPa). P_{WS} = A \cdot 10^{\frac{m \cdot T}{T + T_n}} """ A, m, Tn = pws_constants(t) # noqa:N806 power = (m * t) / (t + Tn) return A * 10 ** power def pw(t, rh): r""" Calculate Pw (in hPa). P_W = P_{WS} \cdot RH / 100 """ return pws(t) * rh / 100 def td(t, rh): r""" Calculate the dew point (in °C). T_d = \frac{T_n}{\frac{m}{log_{10}\left(\frac{P_w}{A}\right)} - 1} """ A, m, Tn = pws_constants(t) # noqa:N806 Pw = pw(t, rh) # noqa:N806 return Tn / ((m / math.log(Pw / A, 10)) - 1) def celsius_to_kelvin(celsius): return celsius + 273.15 def ah(t, rh): r""" Calculate the absolute humidity (in g/m³). A = C \cdot P_w / T """ C = 2.16679 # noqa:N806 Pw = pw(t, rh) # noqa:N806 T = celsius_to_kelvin(t) # noqa:N806 return C * (Pw * 100) / T def config(config): global lock_file for node in config.children: key = node.key.lower() val = node.values[0] if key == 'lockfile': lock_file = val collectd.info('sht21 user-mode plugin: Using lock file %s' % lock_file) def init(): global sht21, lock_file, lock_handle if lock_file: # Try to open lock file, in case of failure proceed without locking try: lock_handle = open(lock_file, 'w') except IOError as e: collectd.error('sht21 plugin: Could not open lock file: %s' % e) collectd.error('Proceeding without locking') try: sht21 = SHT21(1) collectd.info('sht21 user-mode plugin initialized') except IOError as e: collectd.error('sht21 plugin: Could not initialize: %s' % e) collectd.unregister_read(read) def read(): # Read values global sht21, lock_handle try: if lock_handle: flock(lock_handle, LOCK_EX) temperature = sht21.read_temperature() humidity = sht21.read_humidity() if lock_handle: flock(lock_handle, LOCK_UN) except IOError as e: collectd.error('sht21 plugin: Could not read sensor data: %s' % e) return # Calculate values try: dewpoint = td(temperature, humidity) except ValueError as e: collectd.error('sht21 plugin: Could not calculate dew point: %s' % e) dewpoint = 0 absolute_humidity = ah(temperature, humidity) # Dispatch values v_tmp = collectd.Values(plugin='sht21', type='temperature', type_instance='current') v_tmp.dispatch(values=[temperature]) v_hum = collectd.Values(plugin='sht21', type='humidity', type_instance='relative_humidity') v_hum.dispatch(values=[humidity]) v_abs = collectd.Values(plugin='sht21', type='gauge', type_instance='absolute_humidity') v_abs.dispatch(values=[absolute_humidity]) v_dew = collectd.Values(plugin='sht21', type='temperature', type_instance='dewpoint') v_dew.dispatch(values=[dewpoint]) collectd.register_config(config) collectd.register_init(init) collectd.register_read(read)
26.408805
107
0.62634
[ "MIT" ]
AmedeeBulle/collectd-python-plugins
sht21_usermode.py
4,202
Python
from .models import * from rest_framework import serializers class THLIC_CertificateSerializer(serializers.ModelSerializer): class Meta: model = THLIC_Certificate fields = '__all__' class Teaching_portofolioSerializer(serializers.ModelSerializer): class Meta: model = Teaching_portofolio fields = '__all__'
27.769231
66
0.717452
[ "MIT" ]
iPelino/cst-research-api
teaching_activities/serializers.py
361
Python
# Tests for client code in bin/test
18
35
0.75
[ "Apache-2.0" ]
EHRI/resync
bin/test/__init__.py
36
Python
import discord from discord.ext import commands class AttackStrats(commands.Cog): def __init__(self, bot): self.bot = bot @commands.group() async def strat(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify a townhall and strategy! Available townhalls:\nth8\nth9\nth10\nth11\nth12\nth13") @strat.group() async def th8(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\nhogs\ndragons") @th8.command(name="hogs") async def th8_hogs(self, ctx): th8_hogsEmbed = discord.Embed( title="TH8 Hogs", description="**ARMY COMPOSITION:**```\nTroops: 32 Hog Riders, 10 Wizards\nSpells: 3 Heals, 1 Poison\nCC: 5 high level hog riders\n```\n **ATTACKING:\n**", color=self.bot.colors ) th8_hogsEmbed.add_field( name="Step 1- Dealing the clan castle troops:", value="Send a hog in to lure out the cc. If it doesn't come out the send another one. Luring out the cc is very important because it can destroy all of your hogs. Once the cc is lured, drop your poison on the cc, drop your king and about 5 wizards. The king will suck up the damage while the wizards take out the cc.\n", inline=False ) th8_hogsEmbed.add_field( name="Step 2- Attacking:", value="Drop your hogs and cc on the defenses once the enemy cc is gone. It is better to drop them on each defense, but don't spread them out too much or they wont be effective. As soon as the hogs have taken out the first initial defense drop your wizards behind. Clean up is very important with hogs. As your hogs make their way around the base, they have to be kept healed. Drop heal spells as the hogs go while looking out for giant bombs. Giant bombs will take out all of your hogs, so make sure you are watching and are ready to drop a spell when you see one.\n", inline=False ) th8_hogsEmbed.add_field( name="Step 3- Clean up:", value="Once all the defenses are destroyed the wizards should have cleaned up a lot, and the hogs will then take care of the last few buildings.\n", inline=False ) await ctx.send(embed=th8_hogsEmbed) @th8.command(name="dragons") async def th8_dragons(self, ctx): th8_dragonsEmbed = discord.Embed( title="TH8 Dragons", description="**ARMY COMPOSITION**```\nTroops: 10 Dragons\nSpells: 3 Rages, 1 Poison\nCC: Balloons\n```\n**ATTACKING**\n", color = self.bot.colors ) th8_dragonsEmbed.add_field( name="Step 1- Funneling:", value="Drop your king on one side of the base and a dragon on the other side. We want our dragons to go to the center, not go around the base. The king and dragon will funnel so our main army goes down to the middle.", inline=False ) th8_dragonsEmbed.add_field( name="Step 2- Main Army:", value="" ) await ctx.send(embed=th8_dragonsEmbed) @strat.group() async def th9(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\n") # @th9.command(name="dragons") # async def dragons(self, ctx): # await ctx.send("") @strat.group() async def th10(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\n") @strat.group() async def th11(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\nhybrid") @th11.command(name="hybrid") async def th11_qc_hybrid(self, ctx): th11_qc_hybridEmbed = discord.Embed( title="TH11 Queen Charge Hybrid", description="**ARMY COMPOSITION:**```\nTroops: 5 Healers (for queen charge), 1 or 2 Balloons (to protect the healers), 2 Baby Dragons (for funnel), 15 or 16 Miners, 10 Hogs, 1 or 2 Super Wall Breakers (if you don't have them replace with regular wall breakers), cleanup troops with the remaining space (archers or minions)\nSpells: 2 Heals, 2 Rages, 2 Freeze, 1 Poison\nCC: More Hogs and a Rage or Heal (whatever you think you need), Siege Barracks\n```\n **ATTACKING:\n**", color=discord.Color.dark_gold()) th11_qc_hybridEmbed.add_field( name="Step 1- Queen Charge:", value="Identify where to charge your queen into the base. Remember the purpose of the queen walk is to get rid of clan castle troops. Drop the baby dragons to funnel for the Queen to make sure she goes into the base. Then drop your healers and a loon or two to look for black bombs (seeking air mines that will take out a healer). Wall break into the compartment you need your queen to go in. When your queen comes under heavy fire make sure to drop the rage on both the queen and healers. If your queen is under target by a single inferno make sure to freeze it. Once you get the cc pull make sure to POISON them. You can take care of an edrag super easily if you have a poison.\n", inline=False) th11_qc_hybridEmbed.add_field( name="Step 2- Funneling:", value="Once we have dealt with the clan castle we need to identify where we're going to be sending in the Hybrid portion of the attack. Normally the Queen Charge will have taken out a chunk of the base on one of the sides. We want our hybrid to go straight for the core of the base and not down the sides. Think of the QC as one side of a funnel for your Hybrid. For the other side of the funnel we need to place our King and Siege Barracks down the other edge of the base to clear all the trash buildings (collectors, barracks, etc.) so our hybrid has a clear path into the core of the base.\n", inline=False ) th11_qc_hybridEmbed.add_field( name="Step 3- The Main Army:", value="Once the King and Siege Barracks have cleared quite a bit, we want to start our hybrid by placing all Miners, Hogs and Warden down to go on the path into the core of the base. If you didn't take out the Eagle with your Queen Charge use the Warden ability to protect the hybrid from the strike. Freezes can also be used here to freeze up Multi Infernos or a section with a lot of splash damage like Wizard Towers, Mortars or Bomb Towers. Place Heals where necessary to keep the hybrid alive.\n" ) th11_qc_hybridEmbed.add_field( name="Step 4- Cleanup:", value="We also have to think about placing cleanup troops for corner builder huts, missed buildings on the other side of the base etc.\n", inline=False ) await ctx.send(embed=th11_qc_hybridEmbed) @strat.group() async def th12(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\n") @strat.group() async def th13(self, ctx): if ctx.invoked_subcommand is None: await ctx.send("You need to specify an attack strategy!Available strategies:\n") def setup(bot): bot.add_cog(AttackStrats(bot))
30.631579
696
0.663759
[ "MIT" ]
Ay-355/the-buds-bot
cogs/attack_strats.py
7,566
Python
# The followings are the DenseNets module, the training was actually taken place in the `run_dense_net.py` file. # Sorry, I really like Pycharm (and to be fair, Pytorch is so much an easier language to debug) import os os.environ['CUDA_VISIBLE_DEVICES'] = '2' from models import DenseNet from data_providers.utils import get_data_provider_by_name import tensorflow as tf import numpy as np import json import pandas as pd from tqdm import tqdm import random import time from matplotlib import pyplot as plt # Visualizations will be shown in the notebook. # % matplotlib inline from matplotlib import gridspec # Load pickled data import pickle training_file = './data/train.p' validation_file = './data/valid.p' testing_file = './data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train = train['features'], train['labels'] X_valid, y_valid = valid['features'], valid['labels'] X_test, y_test_origin = test['features'], test['labels'] train_params_cifar = { 'batch_size': 64, 'n_epochs': 500, 'initial_learning_rate': 0.05, 'reduce_lr_epoch_1': 50, # epochs * 0.5 'reduce_lr_epoch_2': 75, # epochs * 0.75 'validation_set': True, 'validation_split': None, # None or float 'shuffle': 'every_epoch', # None, once_prior_train, every_epoch 'normalization': 'by_chanels', # None, divide_256, divide_255, by_chanels 'use_YUV': True, 'use_Y': False, # use only Y channel 'data_augmentation': 0, # [0, 1] } # We save this model params.json from the trained model with open('model_params.json', 'r') as fp: model_params = json.load(fp) # some default params dataset/architecture related train_params = train_params_cifar print("Params:") for k, v in model_params.items(): print("\t%s: %s" % (k, v)) print("Train params:") for k, v in train_params.items(): print("\t%s: %s" % (k, v)) model_params['use_Y'] = False print("Prepare training data...") data_provider = get_data_provider_by_name(model_params['dataset'], train_params) print("Initialize the model..") tf.reset_default_graph() model = DenseNet(data_provider=data_provider, **model_params) print("Loading trained model") model.load_model() print("Data provider test images: ", data_provider.test.num_examples) print("Testing...") loss, accuracy = model.test(data_provider.test, batch_size=30) import cv2 def labels_to_one_hot(labels, n_classes=43+1): """Convert 1D array of labels to one hot representation Args: labels: 1D numpy array """ new_labels = np.zeros((n_classes,)) new_labels[labels] = 1 return new_labels newimages = [] newlabels = [] new_onehot = [] newlabelsdata = [] directories = "./newimages" subdirs = os.listdir(directories) for subdir in subdirs: classId = int(subdir.split("-")[0]) classinfo = {'label':classId,'count':0, 'samples':[]} filepath = directories+"/"+subdir for filename in os.listdir(filepath): image_filepath = filepath+"/"+filename image = cv2.imread(image_filepath) image_rgb = cv2.resize(image, (32, 32), interpolation=cv2.INTER_AREA) image = image_rgb.copy() image[:, :, 0] = image_rgb[:, :, 2] image[:, :, 2] = image_rgb[:, :, 0] newimages.append(image) newlabels.append(classId) new_onehot.append(labels_to_one_hot(classId)) classinfo['count'] += 1 classinfo['samples'].append(len(newimages)-1) if classinfo['count'] > 0: print("appending: ", classinfo) newlabelsdata.append(classinfo) newimages = np.array(newimages) newlabels = np.array(newlabels) new_onehot = np.array(new_onehot) from data_providers.GermanTrafficSign import RGB2YUV X_test_new = RGB2YUV(newimages) new_image = np.zeros(X_test_new.shape) for i in range(X_test_new.shape[-1]): new_image[:, :, :, i] = ((X_test_new[:, :, :, i] - data_provider._means[i]) /data_provider._stds[i]) y_new_onehot = model.predictions_one_image(new_image)[0] predict_classId = np.argmax(y_new_onehot, axis=1) incorrectlist = [] for i in range(len(y_new_onehot)): correct_classId = np.argmax(new_onehot[i],0) predict_classId = np.argmax(y_new_onehot[i],0) incorrectlist.append({'index':i, 'correct':correct_classId, 'predicted':predict_classId}) incorrectmatrix = {} modeCount = 0 for i in range(len(incorrectlist)): predicted = incorrectlist[i]['predicted'] correct = incorrectlist[i]['correct'] index = incorrectlist[i]['index'] bucket = str(correct) + "+" + str(predicted) incorrectinstance = incorrectmatrix.get(bucket, {'count': 0, 'samples': []}) # add to the count count = incorrectinstance['count'] + 1 # add to samples of this correct to predicted condition samples = incorrectinstance['samples'] samples.append(index) # put back in the list incorrectmatrix[bucket] = {'count': count, 'correct': correct, 'predicted': predicted, 'samples': samples} # update most common error if count > modeCount: modeCount = count modeBucket = bucket # get the list of buckets and sort them def compare_bucket_count(bucket): return modeCount - incorrectmatrix[bucket]['count'] sortedBuckets = list(incorrectmatrix.keys()) sortedBuckets.sort(key=compare_bucket_count) # get the unique number of original picture sizes and the min and max last instance n_buckets = len(sortedBuckets) # print the stats print("\nNumber of unique buckets in incorrect set: ", n_buckets, "\n") print("Mode Bucket: ", modeBucket, "with count: ", modeCount) classLabelList = pd.read_csv('signnames.csv') print("\nDistribution of buckets with predicted test dataset labels:") for n in range(len(sortedBuckets)): bucket = sortedBuckets[n] cclassId = incorrectmatrix[bucket]['correct'] pclassId = incorrectmatrix[bucket]['predicted'] count = incorrectmatrix[bucket]['count'] cdescription = classLabelList[classLabelList.ClassId == cclassId].SignName.to_string(header=False, index=False) pdescription = classLabelList[classLabelList.ClassId == pclassId].SignName.to_string(header=False, index=False) print( "incorrect set count: {0:4d} CClassId: {1:02d} Description: {2}\n PClassId: {3:02d} Description: {4}".format( count, cclassId, cdescription, pclassId, pdescription)) def draw_sample_correctmatrix(datasettxt, sortedBuckets, incorrectmatix, dataset, cmap=None): n_maxsamples = 8 n_labels = len(sortedBuckets) # size of each sample fig = plt.figure(figsize=(n_maxsamples * 1.8, n_labels)) w_ratios = [1 for n in range(n_maxsamples)] w_ratios[:0] = [int(n_maxsamples * 0.8)] h_ratios = [1 for n in range(n_labels)] # gridspec time.sleep(1) # wait for 1 second for the previous print to appear! grid = gridspec.GridSpec(n_labels, n_maxsamples + 1, wspace=0.0, hspace=0.0, width_ratios=w_ratios, height_ratios=h_ratios) labelset_pbar = tqdm(range(n_labels), desc=datasettxt, unit='labels') for a in labelset_pbar: cclassId = incorrectmatrix[sortedBuckets[n_labels - a - 1]]['correct'] pclassId = incorrectmatrix[sortedBuckets[n_labels - a - 1]]['predicted'] cdescription = classLabelList[classLabelList.ClassId == cclassId].SignName.to_string(header=False, index=False) pdescription = classLabelList[classLabelList.ClassId == pclassId].SignName.to_string(header=False, index=False) count = incorrectmatrix[sortedBuckets[n_labels - a - 1]]['count'] for b in range(n_maxsamples + 1): i = a * (n_maxsamples + 1) + b ax = plt.Subplot(fig, grid[i]) if b == 0: ax.annotate( 'CClassId %d (%d): %s\nPClassId %d: %s' % (cclassId, count, cdescription, pclassId, pdescription), xy=(0, 0), xytext=(0.0, 0.3)) ax.set_xticks([]) ax.set_yticks([]) fig.add_subplot(ax) else: if (b - 1) < count: image = dataset[incorrectmatrix[sortedBuckets[n_labels - a - 1]]['samples'][b - 1]] if cmap == None: ax.imshow(image) else: # yuv = cv2.split(image) # ax.imshow(yuv[0], cmap=cmap) ax.imshow(image, cmap=cmap) ax.set_xticks([]) ax.set_yticks([]) fig.add_subplot(ax) # hide the borders\ if a == (n_labels - 1): all_axes = fig.get_axes() for ax in all_axes: for sp in ax.spines.values(): sp.set_visible(False) plt.show()
36.24898
144
0.660511
[ "MIT" ]
stevenwudi/CarND-Traffic-Sign-Classifier-Project
test_single.py
8,881
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # Exercise the listtransactions API from test_framework.test_framework import SkyrusTestFramework from test_framework.util import * from test_framework.mininode import CTransaction, COIN from io import BytesIO def txFromHex(hexstring): tx = CTransaction() f = BytesIO(hex_str_to_bytes(hexstring)) tx.deserialize(f) return tx class ListTransactionsTest(SkyrusTestFramework): def __init__(self): super().__init__() self.num_nodes = 4 self.setup_clean_chain = False def setup_nodes(self): #This test requires mocktime enable_mocktime() return start_nodes(self.num_nodes, self.options.tmpdir) def run_test(self): # Simple send, 0 to 1: txid = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 0.1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":0}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":0}) # mine a block, confirmations should change: self.nodes[0].generate(1) self.sync_all() assert_array_result(self.nodes[0].listtransactions(), {"txid":txid}, {"category":"send","account":"","amount":Decimal("-0.1"),"confirmations":1}) assert_array_result(self.nodes[1].listtransactions(), {"txid":txid}, {"category":"receive","account":"","amount":Decimal("0.1"),"confirmations":1}) # send-to-self: txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 0.2) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"send"}, {"amount":Decimal("-0.2")}) assert_array_result(self.nodes[0].listtransactions(), {"txid":txid, "category":"receive"}, {"amount":Decimal("0.2")}) # sendmany from node1: twice to self, twice to node2: send_to = { self.nodes[0].getnewaddress() : 0.11, self.nodes[1].getnewaddress() : 0.22, self.nodes[0].getaccountaddress("from1") : 0.33, self.nodes[1].getaccountaddress("toself") : 0.44 } txid = self.nodes[1].sendmany("", send_to) self.sync_all() assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.11")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.11")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.22")}, {"txid":txid} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.33")}, {"txid":txid} ) assert_array_result(self.nodes[0].listtransactions(), {"category":"receive","amount":Decimal("0.33")}, {"txid":txid, "account" : "from1"} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"send","amount":Decimal("-0.44")}, {"txid":txid, "account" : ""} ) assert_array_result(self.nodes[1].listtransactions(), {"category":"receive","amount":Decimal("0.44")}, {"txid":txid, "account" : "toself"} ) multisig = self.nodes[1].createmultisig(1, [self.nodes[1].getnewaddress()]) self.nodes[0].importaddress(multisig["redeemScript"], "watchonly", False, True) txid = self.nodes[1].sendtoaddress(multisig["address"], 0.1) self.nodes[1].generate(1) self.sync_all() assert(len(self.nodes[0].listtransactions("watchonly", 100, 0, False)) == 0) assert_array_result(self.nodes[0].listtransactions("watchonly", 100, 0, True), {"category":"receive","amount":Decimal("0.1")}, {"txid":txid, "account" : "watchonly"} ) self.run_rbf_opt_in_test() # Check that the opt-in-rbf flag works properly, for sent and received # transactions. def run_rbf_opt_in_test(self): # Check whether a transaction signals opt-in RBF itself def is_opt_in(node, txid): rawtx = node.getrawtransaction(txid, 1) for x in rawtx["vin"]: if x["sequence"] < 0xfffffffe: return True return False # Find an unconfirmed output matching a certain txid def get_unconfirmed_utxo_entry(node, txid_to_match): utxo = node.listunspent(0, 0) for i in utxo: if i["txid"] == txid_to_match: return i return None # 1. Chain a few transactions that don't opt-in. txid_1 = self.nodes[0].sendtoaddress(self.nodes[1].getnewaddress(), 1) assert(not is_opt_in(self.nodes[0], txid_1)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_1}, {"bip125-replaceable":"no"}) # Tx2 will build off txid_1, still not opting in to RBF. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_1) # Create tx2 using createrawtransaction inputs = [{"txid":utxo_to_use["txid"], "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.999} tx2 = self.nodes[1].createrawtransaction(inputs, outputs) tx2_signed = self.nodes[1].signrawtransaction(tx2)["hex"] txid_2 = self.nodes[1].sendrawtransaction(tx2_signed) # ...and check the result assert(not is_opt_in(self.nodes[1], txid_2)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_2}, {"bip125-replaceable":"no"}) # Tx3 will opt-in to RBF utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[0], txid_2) inputs = [{"txid": txid_2, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[1].getnewaddress(): 0.998} tx3 = self.nodes[0].createrawtransaction(inputs, outputs) tx3_modified = txFromHex(tx3) tx3_modified.vin[0].nSequence = 0 tx3 = bytes_to_hex_str(tx3_modified.serialize()) tx3_signed = self.nodes[0].signrawtransaction(tx3)['hex'] txid_3 = self.nodes[0].sendrawtransaction(tx3_signed) assert(is_opt_in(self.nodes[0], txid_3)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_3}, {"bip125-replaceable":"yes"}) # Tx4 will chain off tx3. Doesn't signal itself, but depends on one # that does. utxo_to_use = get_unconfirmed_utxo_entry(self.nodes[1], txid_3) inputs = [{"txid": txid_3, "vout":utxo_to_use["vout"]}] outputs = {self.nodes[0].getnewaddress(): 0.997} tx4 = self.nodes[1].createrawtransaction(inputs, outputs) tx4_signed = self.nodes[1].signrawtransaction(tx4)["hex"] txid_4 = self.nodes[1].sendrawtransaction(tx4_signed) assert(not is_opt_in(self.nodes[1], txid_4)) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) sync_mempools(self.nodes) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"yes"}) # Replace tx3, and check that tx4 becomes unknown tx3_b = tx3_modified tx3_b.vout[0].nValue -= int(Decimal("0.004") * COIN) # bump the fee tx3_b = bytes_to_hex_str(tx3_b.serialize()) tx3_b_signed = self.nodes[0].signrawtransaction(tx3_b)['hex'] txid_3b = self.nodes[0].sendrawtransaction(tx3_b_signed, True) assert(is_opt_in(self.nodes[0], txid_3b)) assert_array_result(self.nodes[0].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) sync_mempools(self.nodes) assert_array_result(self.nodes[1].listtransactions(), {"txid": txid_4}, {"bip125-replaceable":"unknown"}) # Check gettransaction as well: for n in self.nodes[0:2]: assert_equal(n.gettransaction(txid_1)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_2)["bip125-replaceable"], "no") assert_equal(n.gettransaction(txid_3)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_3b)["bip125-replaceable"], "yes") assert_equal(n.gettransaction(txid_4)["bip125-replaceable"], "unknown") # After mining a transaction, it's no longer BIP125-replaceable self.nodes[0].generate(1) assert(txid_3b not in self.nodes[0].getrawmempool()) assert_equal(self.nodes[0].gettransaction(txid_3b)["bip125-replaceable"], "no") assert_equal(self.nodes[0].gettransaction(txid_4)["bip125-replaceable"], "unknown") if __name__ == '__main__': ListTransactionsTest().main()
49.839024
113
0.598708
[ "MIT" ]
VangYangPao/skyrus
qa/rpc-tests/listtransactions.py
10,217
Python
import warnings from importlib import import_module from django.conf import settings from pretalx.orga.signals import nav_event, nav_event_settings, nav_global SessionStore = import_module(settings.SESSION_ENGINE).SessionStore def collect_signal(signal, kwargs): result = [] for _, response in signal.send_robust(**kwargs): if isinstance(response, dict): result.append(response) elif isinstance(response, list): result += response return result def orga_events(request): """Add data to all template contexts.""" context = {"settings": settings} if not request.path.startswith("/orga/"): return {} if not getattr(request, "user", None) or not request.user.is_authenticated: return context if not getattr(request, "event", None): context["nav_global"] = collect_signal( nav_global, {"sender": None, "request": request} ) return context if getattr(request, "event", None): _nav_event = [] for _, response in nav_event.send_robust(request.event, request=request): if isinstance(response, list): _nav_event += response else: _nav_event.append(response) warnings.warn( "Please return a list in your nav_event signal receiver, not a dictionary.", DeprecationWarning, ) context["nav_event"] = _nav_event context["nav_settings"] = collect_signal( nav_event_settings, {"sender": request.event, "request": request} ) if ( not request.event.is_public and request.event.settings.custom_domain and request.user.has_perm("cfp.view_event", request.event) ): child_session_key = f"child_session_{request.event.pk}" child_session = request.session.get(child_session_key) s = SessionStore() if not child_session or not s.exists(child_session): s[ f"pretalx_event_access_{request.event.pk}" ] = request.session.session_key s.create() context["new_session"] = s.session_key request.session[child_session_key] = s.session_key request.session["event_access"] = True else: context["new_session"] = child_session request.session["event_access"] = True return context
33.706667
96
0.602848
[ "Apache-2.0" ]
ThomasWaldmann/pretalx
src/pretalx/orga/context_processors.py
2,528
Python
#! /usr/bin/env python # coding=utf-8 #================================================================ # Copyright (C) 2018 * Ltd. All rights reserved. # # Editor : VIM # File name : evaluate.py # Author : YunYang1994 # Created date: 2018-12-20 11:58:21 # Description : compute mAP # #================================================================ import sys import numpy as np import tensorflow as tf from tqdm import tqdm from PIL import Image from core import utils, yolov3 from core.dataset import dataset, Parser sess = tf.Session() IMAGE_H, IMAGE_W = 416, 416 CLASSES = utils.read_coco_names('./data/raccoon.names') NUM_CLASSES = len(CLASSES) ANCHORS = utils.get_anchors('./data/raccoon_anchors.txt', IMAGE_H, IMAGE_W) CKPT_FILE = "./checkpoint/yolov3.ckpt-2500" IOU_THRESH = 0.5 SCORE_THRESH = 0.3 all_detections = [] all_annotations = [] all_aver_precs = {CLASSES[i]:0. for i in range(NUM_CLASSES)} test_tfrecord = "./raccoon_dataset/raccoon_*.tfrecords" parser = Parser(IMAGE_H, IMAGE_W, ANCHORS, NUM_CLASSES) testset = dataset(parser, test_tfrecord , batch_size=1, shuffle=None, repeat=False) images_tensor, *y_true_tensor = testset.get_next() model = yolov3.yolov3(NUM_CLASSES, ANCHORS) with tf.variable_scope('yolov3'): pred_feature_map = model.forward(images_tensor, is_training=False) y_pred_tensor = model.predict(pred_feature_map) saver = tf.train.Saver() saver.restore(sess, CKPT_FILE) try: image_idx = 0 while True: y_pred, y_true, image = sess.run([y_pred_tensor, y_true_tensor, images_tensor]) pred_boxes = y_pred[0][0] pred_confs = y_pred[1][0] pred_probs = y_pred[2][0] image = Image.fromarray(np.uint8(image[0]*255)) true_labels_list, true_boxes_list = [], [] for i in range(3): true_probs_temp = y_true[i][..., 5: ] true_boxes_temp = y_true[i][..., 0:4] object_mask = true_probs_temp.sum(axis=-1) > 0 true_probs_temp = true_probs_temp[object_mask] true_boxes_temp = true_boxes_temp[object_mask] true_labels_list += np.argmax(true_probs_temp, axis=-1).tolist() true_boxes_list += true_boxes_temp.tolist() pred_boxes, pred_scores, pred_labels = utils.cpu_nms(pred_boxes, pred_confs*pred_probs, NUM_CLASSES, score_thresh=SCORE_THRESH, iou_thresh=IOU_THRESH) # image = datasets.draw_boxes(image, pred_boxes, pred_scores, pred_labels, CLASSES, [IMAGE_H, IMAGE_W], show=True) true_boxes = np.array(true_boxes_list) box_centers, box_sizes = true_boxes[:,0:2], true_boxes[:,2:4] true_boxes[:,0:2] = box_centers - box_sizes / 2. true_boxes[:,2:4] = true_boxes[:,0:2] + box_sizes pred_labels_list = [] if pred_labels is None else pred_labels.tolist() all_detections.append( [pred_boxes, pred_scores, pred_labels_list]) all_annotations.append([true_boxes, true_labels_list]) image_idx += 1 if image_idx % 100 == 0: sys.stdout.write(".") sys.stdout.flush() except tf.errors.OutOfRangeError: pass for idx in range(NUM_CLASSES): true_positives = [] scores = [] num_annotations = 0 for i in tqdm(range(len(all_annotations)), desc="Computing AP for class %12s" %(CLASSES[idx])): pred_boxes, pred_scores, pred_labels_list = all_detections[i] true_boxes, true_labels_list = all_annotations[i] detected = [] num_annotations += true_labels_list.count(idx) for k in range(len(pred_labels_list)): if pred_labels_list[k] != idx: continue scores.append(pred_scores[k]) ious = utils.bbox_iou(pred_boxes[k:k+1], true_boxes) m = np.argmax(ious) if ious[m] > IOU_THRESH and pred_labels_list[k] == true_labels_list[m] and m not in detected: detected.append(m) true_positives.append(1) else: true_positives.append(0) num_predictions = len(true_positives) true_positives = np.array(true_positives) false_positives = np.ones_like(true_positives) - true_positives # sorted by score indices = np.argsort(-np.array(scores)) false_positives = false_positives[indices] true_positives = true_positives[indices] # compute false positives and true positives false_positives = np.cumsum(false_positives) true_positives = np.cumsum(true_positives) # compute recall and precision recall = true_positives / np.maximum(num_annotations, np.finfo(np.float64).eps) precision = true_positives / np.maximum(num_predictions, np.finfo(np.float64).eps) # compute average precision average_precision = utils.compute_ap(recall, precision) all_aver_precs[CLASSES[idx]] = average_precision for idx in range(NUM_CLASSES): cls_name = CLASSES[idx] print("=> Class %10s - AP: %.4f" %(cls_name, all_aver_precs[cls_name])) print("=> mAP: %.4f" %(sum(all_aver_precs.values()) / NUM_CLASSES))
37.219858
122
0.634527
[ "MIT" ]
benoitLemoine/peopleCounting
detection/yolov3/src/evaluate.py
5,248
Python
''' For this exercise, you'll use what you've learned about the zip() function and combine two lists into a dictionary. These lists are actually extracted from a bigger dataset file of world development indicators from the World Bank. For pedagogical purposes, we have pre-processed this dataset into the lists that you'll be working with. The first list feature_names contains header names of the dataset and the second list row_vals contains actual values of a row from the dataset, corresponding to each of the header names. ''' # Zip lists: zipped_lists zipped_lists = zip(feature_names, row_vals) # Create a dictionary: rs_dict rs_dict = dict(zipped_lists) # Print the dictionary print(rs_dict)
44
219
0.795455
[ "MIT" ]
Baidaly/datacamp-samples
10 - python-data-science-toolbox-part-2/case_study/1 - dictionaries for data science.py
704
Python
# -*- coding: utf-8 -*- # file: data_utils.py # author: songyouwei <[email protected]> # Copyright (C) 2018. All Rights Reserved. import os import pickle import numpy as np import tqdm from findfile import find_file from google_drive_downloader.google_drive_downloader import GoogleDriveDownloader as gdd from torch.utils.data import Dataset from transformers import AutoTokenizer from pyabsa.core.apc.dataset_utils.apc_utils import load_apc_datasets from pyabsa.utils.pyabsa_utils import check_and_fix_labels def prepare_glove840_embedding(glove_path): glove840_id = '1G-vd6W1oF9ByyJ-pzp9dcqKnr_plh4Em' if not os.path.exists(glove_path): os.mkdir(glove_path) elif os.path.isfile(glove_path): return glove_path elif os.path.isdir(glove_path): embedding_file = None dir_path = os.path.dirname(glove_path) if find_file(dir_path, 'glove.42B.300d.txt', exclude_key='.zip'): embedding_file = find_file(dir_path, 'glove.42B.300d.txt', exclude_key='.zip')[0] elif find_file(dir_path, 'glove.840B.300d.txt', exclude_key='.zip'): embedding_file = find_file(dir_path, 'glove.840B.300d.txt', exclude_key='.zip')[0] elif find_file(dir_path, 'glove.twitter.27B.txt', exclude_key='.zip'): embedding_file = find_file(dir_path, 'glove.twitter.27B.txt', exclude_key='.zip')[0] if embedding_file: print('Find potential embedding files: {}'.format(embedding_file)) return embedding_file zip_glove_path = os.path.join(glove_path, '__glove__.840B.300d.txt.zip') print('No GloVe embedding found at {},' ' downloading __glove__.840B.300d.txt (2GB transferred / 5.5GB unzipped)...'.format(glove_path)) gdd.download_file_from_google_drive(file_id=glove840_id, dest_path=zip_glove_path, unzip=True ) glove_path = find_file(glove_path, 'txt', exclude_key='.zip') return glove_path def build_tokenizer(dataset_list, max_seq_len, dat_fname, opt): if os.path.exists(os.path.join(opt.dataset_name, dat_fname)): print('Loading tokenizer on {}'.format(os.path.join(opt.dataset_name, dat_fname))) tokenizer = pickle.load(open(os.path.join(opt.dataset_name, dat_fname), 'rb')) else: text = '' for dataset_type in dataset_list: for file in dataset_list[dataset_type]: fin = open(file, 'r', encoding='utf-8', newline='\n', errors='ignore') lines = fin.readlines() fin.close() for i in range(0, len(lines), 3): text_left, _, text_right = [s.lower().strip() for s in lines[i].partition("$T$")] aspect = lines[i + 1].lower().strip() text_raw = text_left + " " + aspect + " " + text_right text += text_raw + " " tokenizer = Tokenizer(max_seq_len) tokenizer.fit_on_text(text) pickle.dump(tokenizer, open(os.path.join(opt.dataset_name, dat_fname), 'wb')) return tokenizer def _load_word_vec(path, word2idx=None, embed_dim=300): fin = open(path, 'r', encoding='utf-8', newline='\n', errors='ignore') word_vec = {} for line in tqdm.tqdm(fin, postfix='Loading embedding file...'): tokens = line.rstrip().split() word, vec = ' '.join(tokens[:-embed_dim]), tokens[-embed_dim:] if word in word2idx.keys(): word_vec[word] = np.asarray(vec, dtype='float32') return word_vec def build_embedding_matrix(word2idx, embed_dim, dat_fname, opt): if os.path.exists(os.path.join(opt.dataset_name, dat_fname)): print('Loading cached embedding_matrix for {}'.format(os.path.join(opt.dataset_name, dat_fname))) embedding_matrix = pickle.load(open(os.path.join(opt.dataset_name, dat_fname), 'rb')) else: print('Extracting embedding_matrix for {}'.format(dat_fname)) glove_path = prepare_glove840_embedding(opt.dataset_name) embedding_matrix = np.zeros((len(word2idx) + 2, embed_dim)) # idx 0 and len(word2idx)+1 are all-zeros word_vec = _load_word_vec(glove_path, word2idx=word2idx, embed_dim=embed_dim) for word, i in tqdm.tqdm(word2idx.items(), postfix='Building embedding_matrix {}'.format(dat_fname)): vec = word_vec.get(word) if vec is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = vec pickle.dump(embedding_matrix, open(os.path.join(opt.dataset_name, dat_fname), 'wb')) return embedding_matrix def pad_and_truncate(sequence, maxlen, dtype='int64', padding='post', truncating='post', value=0): x = (np.ones(maxlen) * value).astype(dtype) if truncating == 'pre': trunc = sequence[-maxlen:] else: trunc = sequence[:maxlen] trunc = np.asarray(trunc, dtype=dtype) if padding == 'post': x[:len(trunc)] = trunc else: x[-len(trunc):] = trunc return x class Tokenizer(object): def __init__(self, max_seq_len, lower=True): self.lower = lower self.max_seq_len = max_seq_len self.word2idx = {} self.idx2word = {} self.idx = 1 def fit_on_text(self, text): if self.lower: text = text.lower() words = text.split() for word in words: if word not in self.word2idx: self.word2idx[word] = self.idx self.idx2word[self.idx] = word self.idx += 1 def text_to_sequence(self, text, reverse=False, padding='post', truncating='post'): if self.lower: text = text.lower() words = text.split() unknownidx = len(self.word2idx) + 1 sequence = [self.word2idx[w] if w in self.word2idx else unknownidx for w in words] if len(sequence) == 0: sequence = [0] if reverse: sequence = sequence[::-1] return pad_and_truncate(sequence, self.max_seq_len, padding=padding, truncating=truncating) class Tokenizer4Pretraining: def __init__(self, max_seq_len, pretrained_bert_name): self.tokenizer = AutoTokenizer.from_pretrained(pretrained_bert_name) self.max_seq_len = max_seq_len def text_to_sequence(self, text, reverse=False, padding='post', truncating='post'): sequence = self.tokenizer.convert_tokens_to_ids(self.tokenizer.tokenize(text)) if len(sequence) == 0: sequence = [0] if reverse: sequence = sequence[::-1] return pad_and_truncate(sequence, self.max_seq_len, padding=padding, truncating=truncating) class BERTClassificationDataset(Dataset): bert_baseline_input_colses = { 'bert': ['text_bert_indices'] } def __init__(self, dataset_list, tokenizer, opt): lines = load_apc_datasets(dataset_list) all_data = [] label_set = set() for i in tqdm.tqdm(range(len(lines)), postfix='building word indices...'): line = lines[i].strip().split('$LABEL$') text, label = line[0], line[1] text = text.strip().lower() label = label.strip().lower() text_indices = tokenizer.text_to_sequence('[CLS] {} [SEP]'.format(text)) label = int(label) data = { 'text_bert_indices': text_indices, 'label': label, } label_set.add(label) all_data.append(data) check_and_fix_labels(label_set, 'label', all_data) opt.polarities_dim = len(label_set) self.data = all_data def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data)
38.661765
110
0.624572
[ "MIT" ]
Descartes627/PyABSA
pyabsa/core/tc/classic/__bert__/dataset_utils/data_utils_for_training.py
7,887
Python
from typing import Any, Dict, Optional import lumos.numpy as lnp from lumos.models.base import StateSpaceModel, state_space_io from lumos.models.kinematics import TrackPosition2D from lumos.models.vehicles.simple_vehicle import SimpleVehicle # Combine the signals to create the names. TODO: can we make it more automatic? @state_space_io( states=TrackPosition2D.get_direct_group_names("states") + SimpleVehicle.get_direct_group_names("states"), inputs=SimpleVehicle.get_direct_group_names("inputs") + ("track_curvature", "track_heading"), con_outputs=( "vehicle.slip_ratio_fl", "vehicle.slip_ratio_fr", "vehicle.slip_ratio_rl", "vehicle.slip_ratio_rr", "vehicle.slip_angle_fl", "vehicle.slip_angle_fr", "vehicle.slip_angle_rl", "vehicle.slip_angle_rr", ), residuals=TrackPosition2D.get_direct_group_names("residuals") + SimpleVehicle.get_direct_group_names("residuals"), ) class SimpleVehicleOnTrack(StateSpaceModel): _submodel_names = ("vehicle", "kinematics") def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) @classmethod def get_default_submodel_config(self): return { "vehicle": "SimpleVehicle", "kinematics": "TrackPosition2D", } def forward(self, states: lnp.ndarray, inputs: lnp.ndarray, mesh: float): # Pick out the vehicle inputs vehicle_inputs = { k: inputs[k] for k in self.get_submodel("vehicle").get_group_names("inputs") } # Pick out vehicle states vehicle_states = { k: states[k] for k in self.get_submodel("vehicle").get_group_names("states") } # Pick out vehicle params. NOT DONE! NOT EASY! vehicle_return = self.get_submodel("vehicle").forward( states=vehicle_states, inputs=vehicle_inputs ) # Call Kinematics model # Pick out states kinematic_states = { k: states[k] for k in self.get_submodel("kinematics").get_group_names("states") } # pick out inputs # NOTE: this step is very custom, because the inputs come from vehicle model # outputs inputs_from_vehicle = {k: vehicle_states[k] for k in ("vx", "vy", "yaw_rate")} track_inputs = {k: inputs[k] for k in ["track_curvature", "track_heading"]} kinematic_inputs = dict(**track_inputs, **inputs_from_vehicle) # Pick out vehicle params. NOT DONE! NOT EASY! kinematics_return = self.get_submodel("kinematics").forward( states=kinematic_states, inputs=kinematic_inputs, mesh=mesh, ) # Convert to distance domain derivatives dt_ds = kinematics_return.states_dot["time"] states_dot = { **kinematics_return.states_dot, **{k: v * dt_ds for k, v in vehicle_return.states_dot.items()}, } # Assemble final outputs outputs = self.combine_submodel_outputs( vehicle=vehicle_return.outputs, kinematics=kinematics_return.outputs ) residuals = vehicle_return.residuals return self.make_state_space_model_return( states_dot=states_dot, outputs=outputs, residuals=residuals, )
34.113402
88
0.654881
[ "MIT" ]
numagic/lumos
lumos/models/simple_vehicle_on_track.py
3,309
Python
lst = [1,2,3,4,5] prod = 1 for i in lst: prod*= i print("Product of digits in list is:",prod)
14.142857
43
0.59596
[ "MIT" ]
AnubhavMadhav/Learn-Python
06 Control Statements/productoflist.py
99
Python
from rando.core.models import JSONModel class FeedbackCategory(JSONModel): filepath = 'api/feedback/categories.json'
20.5
45
0.788618
[ "BSD-2-Clause" ]
camillemonchicourt/Geotrek-rando
rando/feedback/models.py
123
Python
# -*- coding: utf-8 -*- import sys import os from sqlalchemy import Table from yaml import load,dump try: from yaml import CSafeLoader as SafeLoader except ImportError: from yaml import SafeLoader print("Using Python SafeLoader") distribution={'twosome':1,'bubble':2} effectcategory={} def importyaml(connection,metadata,sourcePath,language='en'): print("Importing dogma effects") dgmEffects = Table('dgmEffects',metadata) trans = connection.begin() with open(os.path.join(sourcePath,'fsd','dogmaEffects.yaml'),'r') as yamlstream: print("importing {}".format(os.path.basename(yamlstream.name))) dogmaEffects=load(yamlstream,Loader=SafeLoader) print("{} loaded".format(os.path.basename(yamlstream.name))) for dogmaEffectsid in dogmaEffects: effect=dogmaEffects[dogmaEffectsid] connection.execute(dgmEffects.insert(), effectID=dogmaEffectsid, effectName=effect.get('effectName'), effectCategory=effectcategory.get(effect['effectCategory']), description=effect.get('descriptionID',{}).get(language), guid=effect.get('guid'), iconID=effect.get('iconID'), isOffensive=effect['isOffensive'], isAssistance=effect['isAssistance'], durationAttributeID=effect.get('durationAttributeID'), trackingSpeedAttributeID=effect.get('trackingSpeedAttributeID'), dischargeAttributeID=effect.get('dischargeAttributeID'), rangeAttributeID=effect.get('rangeAttributeID'), falloffAttributeID=effect.get('falloffAttributeID'), disallowAutoRepeat=effect.get('disallowAutoRepeat'), published=effect.get('published'), displayName=effect.get('displayNameID',{}).get(language), isWarpSafe=effect.get('isWarpSafe'), rangeChance=effect.get('rangeChance'), electronicChance=effect.get('electronicChance'), propulsionChance=effect.get('propulsionChance'), distribution=distribution.get(effect.get('distribution')), sfxName=effect.get('sfxName'), npcUsageChanceAttributeID=effect.get('npcUsageChanceAttributeID'), npcActivationChanceAttributeID=effect.get('npcActivationChanceAttributeID'), fittingUsageChanceAttributeID=effect.get('fittingUsageChanceAttributeID'), modifierInfo=dump(effect.get('modifierInfo')) ) trans.commit()
51.864407
108
0.554248
[ "MIT" ]
jayblunt/yamlloader
tableloader/tableFunctions/dogmaEffects.py
3,060
Python
from django.urls import include, path from rest_framework.routers import SimpleRouter from grandchallenge.retina_api import views app_name = "retina_api" annotation_router = SimpleRouter() annotation_router.register( "singlepolygonannotation", views.LegacySinglePolygonViewSet, basename="singlepolygonannotation", ) annotation_router.register( "polygonannotationset", views.LegacyPolygonAnnotationSetViewSet, basename="polygonannotationset", ) annotation_router.register( "etdrsgridannotation", views.ETDRSGridAnnotationViewSet, basename="etdrsgridannotation", ) annotation_router.register( "imagequalityannotation", views.ImageQualityAnnotationViewSet, basename="imagequalityannotation", ) annotation_router.register( "imagepathologyannotation", views.ImagePathologyAnnotationViewSet, basename="imagepathologyannotation", ) annotation_router.register( "retinaimagepathologyannotation", views.RetinaImagePathologyAnnotationViewSet, basename="retinaimagepathologyannotation", ) annotation_router.register( "imagetextannotation", views.ImageTextAnnotationViewSet, basename="imagetextannotation", ) urlpatterns = [ path("archives/", views.ArchiveView.as_view(), name="archives-api-view"), path( "archive_data/", views.ArchiveAPIView.as_view(), name="archive-data-api-view", ), path( "archive_data/<uuid:pk>/", views.ArchiveAPIView.as_view(), name="archive-data-api-view", ), path( "image/<str:image_type>/<str:patient_identifier>/<str:study_identifier>/<str:image_identifier>/<str:image_modality>/", views.ImageView.as_view(), name="image-api-view", ), path( "data/<str:data_type>/<int:user_id>/<str:archive_identifier>/<str:patient_identifier>/", views.DataView.as_view(), name="data-api-view", ), path( "annotation/polygon/<int:user_id>/<uuid:image_id>/", views.PolygonListView.as_view(), name="polygon-annotation-list-view", ), path( "annotation/polygon/users/<uuid:image_id>", views.GradersWithPolygonAnnotationsListView.as_view(), name="polygon-annotation-users-list-view", ), path( "annotation/landmark/users/<int:user_id>", views.LandmarkAnnotationSetForImageList.as_view(), name="landmark-annotation-images-list-view", ), path( "registration/octobs/<uuid:image_id>", views.OctObsRegistrationRetrieve.as_view(), name="octobs-registration-detail-view", ), path( "image/<uuid:image_id>/spacing/", views.ImageElementSpacingView.as_view(), name="image-element-spacing-view", ), path("annotation/<int:user_id>/", include(annotation_router.urls)), path( "image/thumbnail/<uuid:pk>/", views.B64ThumbnailAPIView.as_view(), name="image-thumbnail", ), path( "image/thumbnail/<uuid:pk>/<int:width>/<int:height>/", views.B64ThumbnailAPIView.as_view(), name="image-thumbnail", ), ]
30.291262
126
0.684615
[ "Apache-2.0" ]
MAHMOUDZAHERZORO/grand-challenge.org
app/grandchallenge/retina_api/urls.py
3,120
Python
# coding: utf-8 """ Mux Python - Copyright 2019 Mux Inc. NOTE: This class is auto generated. Do not edit the class manually. """ from __future__ import absolute_import import unittest import mux_python from mux_python.models.track import Track # noqa: E501 from mux_python.rest import ApiException class TestTrack(unittest.TestCase): """Track unit test stubs""" def setUp(self): pass def tearDown(self): pass def testTrack(self): """Test Track""" # FIXME: construct object with mandatory attributes with example values # model = mux_python.models.track.Track() # noqa: E501 pass if __name__ == '__main__': unittest.main()
19.054054
79
0.676596
[ "MIT" ]
dgiacomo/mux-python
test/test_track.py
705
Python
import os import sys import psutil from monk.keras_prototype import prototype from monk.compare_prototype import compare from monk.pip_unit_tests.keras.common import print_start from monk.pip_unit_tests.keras.common import print_status import tensorflow as tf if(tf.__version__[0] == '2'): import tensorflow.compat.v1 as tf tf.disable_v2_behavior() import numpy as np def test_layer_global_average_pooling2d(system_dict): forward = True; test = "test_layer_global_average_pooling2d"; system_dict["total_tests"] += 1; print_start(test, system_dict["total_tests"]) if(forward): try: gtf = prototype(verbose=0); gtf.Prototype("sample-project-1", "sample-experiment-1"); network = []; network.append(gtf.global_average_pooling2d()); gtf.Compile_Network(network, data_shape=(3, 32, 32), use_gpu=False); x = tf.placeholder(tf.float32, shape=(1, 32, 32, 3)) y = gtf.system_dict["local"]["model"](x); system_dict["successful_tests"] += 1; print_status("Pass"); except Exception as e: system_dict["failed_tests_exceptions"].append(e); system_dict["failed_tests_lists"].append(test); forward = False; print_status("Fail"); else: system_dict["skipped_tests_lists"].append(test); print_status("Skipped"); return system_dict
29.16
80
0.651578
[ "Apache-2.0" ]
Aanisha/monk_v1
monk/pip_unit_tests/keras/test_layer_global_average_pooling2d.py
1,458
Python
from typing import Any from sqlalchemy.ext.declarative import as_declarative, declared_attr @as_declarative() class Base: id: Any __name__: str # Generate __tablename__ automatically @declared_attr def __tablename__(cls) -> str: return cls.__name__.lower() def to_dict(self): return {c.name: getattr(self, c.name, None) for c in self.__table__.columns} def dict(self): return self.to_dict()
20.454545
84
0.686667
[ "MIT" ]
Ed-XCF/bali
bali/db/declarative.py
450
Python
"""The tests for the State vacuum Mqtt platform.""" from copy import deepcopy import json from homeassistant.components import mqtt, vacuum from homeassistant.components.mqtt import CONF_COMMAND_TOPIC, CONF_STATE_TOPIC from homeassistant.components.mqtt.discovery import async_start from homeassistant.components.mqtt.vacuum import CONF_SCHEMA, schema_state as mqttvacuum from homeassistant.components.mqtt.vacuum.schema import services_to_strings from homeassistant.components.mqtt.vacuum.schema_state import SERVICE_TO_STRING from homeassistant.components.vacuum import ( ATTR_BATTERY_ICON, ATTR_BATTERY_LEVEL, ATTR_FAN_SPEED, ATTR_FAN_SPEED_LIST, DOMAIN, SERVICE_CLEAN_SPOT, SERVICE_LOCATE, SERVICE_PAUSE, SERVICE_RETURN_TO_BASE, SERVICE_START, SERVICE_STOP, STATE_CLEANING, STATE_DOCKED, ) from homeassistant.const import ( CONF_NAME, CONF_PLATFORM, STATE_UNAVAILABLE, STATE_UNKNOWN, ENTITY_MATCH_ALL, ) from homeassistant.setup import async_setup_component from tests.common import ( MockConfigEntry, async_fire_mqtt_message, async_mock_mqtt_component, ) from tests.components.vacuum import common COMMAND_TOPIC = "vacuum/command" SEND_COMMAND_TOPIC = "vacuum/send_command" STATE_TOPIC = "vacuum/state" DEFAULT_CONFIG = { CONF_PLATFORM: "mqtt", CONF_SCHEMA: "state", CONF_NAME: "mqtttest", CONF_COMMAND_TOPIC: COMMAND_TOPIC, mqttvacuum.CONF_SEND_COMMAND_TOPIC: SEND_COMMAND_TOPIC, CONF_STATE_TOPIC: STATE_TOPIC, mqttvacuum.CONF_SET_FAN_SPEED_TOPIC: "vacuum/set_fan_speed", mqttvacuum.CONF_FAN_SPEED_LIST: ["min", "medium", "high", "max"], } async def test_default_supported_features(hass, mqtt_mock): """Test that the correct supported features.""" assert await async_setup_component( hass, vacuum.DOMAIN, {vacuum.DOMAIN: DEFAULT_CONFIG} ) entity = hass.states.get("vacuum.mqtttest") entity_features = entity.attributes.get(mqttvacuum.CONF_SUPPORTED_FEATURES, 0) assert sorted(services_to_strings(entity_features, SERVICE_TO_STRING)) == sorted( ["start", "stop", "return_home", "battery", "status", "clean_spot"] ) async def test_all_commands(hass, mqtt_mock): """Test simple commands send to the vacuum.""" config = deepcopy(DEFAULT_CONFIG) config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings( mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) await hass.services.async_call( DOMAIN, SERVICE_START, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, "start", 0, False) mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_STOP, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, "stop", 0, False) mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_PAUSE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, "pause", 0, False) mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_LOCATE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with(COMMAND_TOPIC, "locate", 0, False) mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_CLEAN_SPOT, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with( COMMAND_TOPIC, "clean_spot", 0, False ) mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_RETURN_TO_BASE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_called_once_with( COMMAND_TOPIC, "return_to_base", 0, False ) mqtt_mock.async_publish.reset_mock() await common.async_set_fan_speed(hass, "medium", "vacuum.mqtttest") mqtt_mock.async_publish.assert_called_once_with( "vacuum/set_fan_speed", "medium", 0, False ) mqtt_mock.async_publish.reset_mock() await common.async_send_command(hass, "44 FE 93", entity_id="vacuum.mqtttest") mqtt_mock.async_publish.assert_called_once_with( "vacuum/send_command", "44 FE 93", 0, False ) mqtt_mock.async_publish.reset_mock() await common.async_send_command( hass, "44 FE 93", {"key": "value"}, entity_id="vacuum.mqtttest" ) assert json.loads(mqtt_mock.async_publish.mock_calls[-1][1][1]) == { "command": "44 FE 93", "key": "value", } async def test_commands_without_supported_features(hass, mqtt_mock): """Test commands which are not supported by the vacuum.""" config = deepcopy(DEFAULT_CONFIG) services = mqttvacuum.STRING_TO_SERVICE["status"] config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings( services, SERVICE_TO_STRING ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) await hass.services.async_call( DOMAIN, SERVICE_START, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_PAUSE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_STOP, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_RETURN_TO_BASE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_LOCATE, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await hass.services.async_call( DOMAIN, SERVICE_CLEAN_SPOT, {"entity_id": ENTITY_MATCH_ALL}, blocking=True ) mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await common.async_set_fan_speed(hass, "medium", "vacuum.mqtttest") mqtt_mock.async_publish.assert_not_called() mqtt_mock.async_publish.reset_mock() await common.async_send_command( hass, "44 FE 93", {"key": "value"}, entity_id="vacuum.mqtttest" ) mqtt_mock.async_publish.assert_not_called() async def test_status(hass, mqtt_mock): """Test status updates from the vacuum.""" config = deepcopy(DEFAULT_CONFIG) config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings( mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) message = """{ "battery_level": 54, "state": "cleaning", "fan_speed": "max" }""" async_fire_mqtt_message(hass, "vacuum/state", message) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_CLEANING assert state.attributes.get(ATTR_BATTERY_LEVEL) == 54 assert state.attributes.get(ATTR_BATTERY_ICON) == "mdi:battery-50" assert state.attributes.get(ATTR_FAN_SPEED) == "max" message = """{ "battery_level": 61, "state": "docked", "fan_speed": "min" }""" async_fire_mqtt_message(hass, "vacuum/state", message) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_DOCKED assert state.attributes.get(ATTR_BATTERY_ICON) == "mdi:battery-charging-60" assert state.attributes.get(ATTR_BATTERY_LEVEL) == 61 assert state.attributes.get(ATTR_FAN_SPEED) == "min" assert state.attributes.get(ATTR_FAN_SPEED_LIST) == ["min", "medium", "high", "max"] async def test_no_fan_vacuum(hass, mqtt_mock): """Test status updates from the vacuum when fan is not supported.""" config = deepcopy(DEFAULT_CONFIG) del config[mqttvacuum.CONF_FAN_SPEED_LIST] config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings( mqttvacuum.DEFAULT_SERVICES, SERVICE_TO_STRING ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) message = """{ "battery_level": 54, "state": "cleaning" }""" async_fire_mqtt_message(hass, "vacuum/state", message) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_CLEANING assert state.attributes.get(ATTR_FAN_SPEED) is None assert state.attributes.get(ATTR_FAN_SPEED_LIST) is None assert state.attributes.get(ATTR_BATTERY_LEVEL) == 54 assert state.attributes.get(ATTR_BATTERY_ICON) == "mdi:battery-50" message = """{ "battery_level": 54, "state": "cleaning", "fan_speed": "max" }""" async_fire_mqtt_message(hass, "vacuum/state", message) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_CLEANING assert state.attributes.get(ATTR_FAN_SPEED) is None assert state.attributes.get(ATTR_FAN_SPEED_LIST) is None assert state.attributes.get(ATTR_BATTERY_LEVEL) == 54 assert state.attributes.get(ATTR_BATTERY_ICON) == "mdi:battery-50" message = """{ "battery_level": 61, "state": "docked" }""" async_fire_mqtt_message(hass, "vacuum/state", message) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_DOCKED assert state.attributes.get(ATTR_BATTERY_ICON) == "mdi:battery-charging-60" assert state.attributes.get(ATTR_BATTERY_LEVEL) == 61 async def test_status_invalid_json(hass, mqtt_mock): """Test to make sure nothing breaks if the vacuum sends bad JSON.""" config = deepcopy(DEFAULT_CONFIG) config[mqttvacuum.CONF_SUPPORTED_FEATURES] = services_to_strings( mqttvacuum.ALL_SERVICES, SERVICE_TO_STRING ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) async_fire_mqtt_message(hass, "vacuum/state", '{"asdfasas false}') state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_UNKNOWN async def test_default_availability_payload(hass, mqtt_mock): """Test availability by default payload with defined topic.""" config = deepcopy(DEFAULT_CONFIG) config.update({"availability_topic": "availability-topic"}) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_UNAVAILABLE async_fire_mqtt_message(hass, "availability-topic", "online") state = hass.states.get("vacuum.mqtttest") assert STATE_UNAVAILABLE != state.state async_fire_mqtt_message(hass, "availability-topic", "offline") state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_UNAVAILABLE async def test_custom_availability_payload(hass, mqtt_mock): """Test availability by custom payload with defined topic.""" config = deepcopy(DEFAULT_CONFIG) config.update( { "availability_topic": "availability-topic", "payload_available": "good", "payload_not_available": "nogood", } ) assert await async_setup_component(hass, vacuum.DOMAIN, {vacuum.DOMAIN: config}) state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_UNAVAILABLE async_fire_mqtt_message(hass, "availability-topic", "good") state = hass.states.get("vacuum.mqtttest") assert state.state != STATE_UNAVAILABLE async_fire_mqtt_message(hass, "availability-topic", "nogood") state = hass.states.get("vacuum.mqtttest") assert state.state == STATE_UNAVAILABLE async def test_discovery_removal_vacuum(hass, mqtt_mock): """Test removal of discovered vacuum.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) await async_start(hass, "homeassistant", {}, entry) data = '{ "name": "Beer",' ' "command_topic": "test_topic"}' async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data) await hass.async_block_till_done() state = hass.states.get("vacuum.beer") assert state is not None assert state.name == "Beer" async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", "") await hass.async_block_till_done() state = hass.states.get("vacuum.beer") assert state is None async def test_discovery_broken(hass, mqtt_mock, caplog): """Test handling of bad discovery message.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) await async_start(hass, "homeassistant", {}, entry) data1 = '{ "name": "Beer",' ' "command_topic": "test_topic#"}' data2 = '{ "name": "Milk",' ' "command_topic": "test_topic"}' async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data1) await hass.async_block_till_done() state = hass.states.get("vacuum.beer") assert state is None async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data2) await hass.async_block_till_done() state = hass.states.get("vacuum.milk") assert state is not None assert state.name == "Milk" state = hass.states.get("vacuum.beer") assert state is None async def test_discovery_update_vacuum(hass, mqtt_mock): """Test update of discovered vacuum.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) await async_start(hass, "homeassistant", {}, entry) data1 = '{ "name": "Beer",' ' "command_topic": "test_topic"}' data2 = '{ "name": "Milk",' ' "command_topic": "test_topic"}' async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data1) await hass.async_block_till_done() state = hass.states.get("vacuum.beer") assert state is not None assert state.name == "Beer" async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data2) await hass.async_block_till_done() state = hass.states.get("vacuum.beer") assert state is not None assert state.name == "Milk" state = hass.states.get("vacuum.milk") assert state is None async def test_setting_attribute_via_mqtt_json_message(hass, mqtt_mock): """Test the setting of attribute via MQTT with JSON payload.""" assert await async_setup_component( hass, vacuum.DOMAIN, { vacuum.DOMAIN: { "platform": "mqtt", "name": "test", "json_attributes_topic": "attr-topic", } }, ) async_fire_mqtt_message(hass, "attr-topic", '{ "val": "100" }') state = hass.states.get("vacuum.test") assert state.attributes.get("val") == "100" async def test_update_with_json_attrs_not_dict(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" assert await async_setup_component( hass, vacuum.DOMAIN, { vacuum.DOMAIN: { "platform": "mqtt", "name": "test", "json_attributes_topic": "attr-topic", } }, ) async_fire_mqtt_message(hass, "attr-topic", '[ "list", "of", "things"]') state = hass.states.get("vacuum.test") assert state.attributes.get("val") is None assert "JSON result was not a dictionary" in caplog.text async def test_update_with_json_attrs_bad_json(hass, mqtt_mock, caplog): """Test attributes get extracted from a JSON result.""" assert await async_setup_component( hass, vacuum.DOMAIN, { vacuum.DOMAIN: { "platform": "mqtt", "name": "test", "json_attributes_topic": "attr-topic", } }, ) async_fire_mqtt_message(hass, "attr-topic", "This is not JSON") state = hass.states.get("vacuum.test") assert state.attributes.get("val") is None assert "Erroneous JSON: This is not JSON" in caplog.text async def test_discovery_update_attr(hass, mqtt_mock, caplog): """Test update of discovered MQTTAttributes.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) await async_start(hass, "homeassistant", {}, entry) data1 = ( '{ "name": "Beer",' ' "command_topic": "test_topic",' ' "json_attributes_topic": "attr-topic1" }' ) data2 = ( '{ "name": "Beer",' ' "command_topic": "test_topic",' ' "json_attributes_topic": "attr-topic2" }' ) async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data1) await hass.async_block_till_done() async_fire_mqtt_message(hass, "attr-topic1", '{ "val": "100" }') state = hass.states.get("vacuum.beer") assert state.attributes.get("val") == "100" # Change json_attributes_topic async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data2) await hass.async_block_till_done() # Verify we are no longer subscribing to the old topic async_fire_mqtt_message(hass, "attr-topic1", '{ "val": "50" }') state = hass.states.get("vacuum.beer") assert state.attributes.get("val") == "100" # Verify we are subscribing to the new topic async_fire_mqtt_message(hass, "attr-topic2", '{ "val": "75" }') state = hass.states.get("vacuum.beer") assert state.attributes.get("val") == "75" async def test_unique_id(hass, mqtt_mock): """Test unique id option only creates one vacuum per unique_id.""" await async_mock_mqtt_component(hass) assert await async_setup_component( hass, vacuum.DOMAIN, { vacuum.DOMAIN: [ { "platform": "mqtt", "name": "Test 1", "command_topic": "command-topic", "unique_id": "TOTALLY_UNIQUE", }, { "platform": "mqtt", "name": "Test 2", "command_topic": "command-topic", "unique_id": "TOTALLY_UNIQUE", }, ] }, ) async_fire_mqtt_message(hass, "test-topic", "payload") assert len(hass.states.async_entity_ids()) == 2 # all vacuums group is 1, unique id created is 1 async def test_entity_device_info_with_identifier(hass, mqtt_mock): """Test MQTT vacuum device registry integration.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) entry.add_to_hass(hass) await async_start(hass, "homeassistant", {}, entry) registry = await hass.helpers.device_registry.async_get_registry() data = json.dumps( { "platform": "mqtt", "name": "Test 1", "command_topic": "test-command-topic", "device": { "identifiers": ["helloworld"], "connections": [["mac", "02:5b:26:a8:dc:12"]], "manufacturer": "Whatever", "name": "Beer", "model": "Glass", "sw_version": "0.1-beta", }, "unique_id": "veryunique", } ) async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data) await hass.async_block_till_done() device = registry.async_get_device({("mqtt", "helloworld")}, set()) assert device is not None assert device.identifiers == {("mqtt", "helloworld")} assert device.connections == {("mac", "02:5b:26:a8:dc:12")} assert device.manufacturer == "Whatever" assert device.name == "Beer" assert device.model == "Glass" assert device.sw_version == "0.1-beta" async def test_entity_device_info_update(hass, mqtt_mock): """Test device registry update.""" entry = MockConfigEntry(domain=mqtt.DOMAIN) entry.add_to_hass(hass) await async_start(hass, "homeassistant", {}, entry) registry = await hass.helpers.device_registry.async_get_registry() config = { "platform": "mqtt", "name": "Test 1", "command_topic": "test-command-topic", "device": { "identifiers": ["helloworld"], "connections": [["mac", "02:5b:26:a8:dc:12"]], "manufacturer": "Whatever", "name": "Beer", "model": "Glass", "sw_version": "0.1-beta", }, "unique_id": "veryunique", } data = json.dumps(config) async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data) await hass.async_block_till_done() device = registry.async_get_device({("mqtt", "helloworld")}, set()) assert device is not None assert device.name == "Beer" config["device"]["name"] = "Milk" data = json.dumps(config) async_fire_mqtt_message(hass, "homeassistant/vacuum/bla/config", data) await hass.async_block_till_done() device = registry.async_get_device({("mqtt", "helloworld")}, set()) assert device is not None assert device.name == "Milk"
34.462541
88
0.675331
[ "Apache-2.0" ]
FuqiangSong/home-assistant
tests/components/mqtt/test_state_vacuum.py
21,160
Python
#-------------------------------------------------------------------------- # # Copyright (c) Microsoft Corporation. All rights reserved. # # The MIT License (MIT) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the ""Software""), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED *AS IS*, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # #-------------------------------------------------------------------------- import sys from azure.core.pipeline.transport import HttpRequest from azure.core import PipelineClient from azure.core.pipeline.policies import RedirectPolicy from azure.core.pipeline.policies import UserAgentPolicy from azure.core.pipeline.policies import SansIOHTTPPolicy def test_example_headers_policy(): url = "https://bing.com" policies = [ UserAgentPolicy("myuseragent"), RedirectPolicy() ] # [START headers_policy] from azure.core.pipeline.policies import HeadersPolicy headers_policy = HeadersPolicy() headers_policy.add_header('CustomValue', 'Foo') # Or headers can be added per operation. These headers will supplement existing headers # or those defined in the config headers policy. They will also overwrite existing # identical headers. policies.append(headers_policy) client = PipelineClient(base_url=url, policies=policies) request = client.get(url) pipeline_response = client._pipeline.run(request, headers={'CustomValue': 'Bar'}) # [END headers_policy] response = pipeline_response.http_response assert response.status_code == 200 def test_example_user_agent_policy(): url = "https://bing.com" redirect_policy = RedirectPolicy() # [START user_agent_policy] from azure.core.pipeline.policies import UserAgentPolicy user_agent_policy = UserAgentPolicy() # The user-agent policy allows you to append a custom value to the header. user_agent_policy.add_user_agent("CustomValue") # You can also pass in a custom value per operation to append to the end of the user-agent. # This can be used together with the policy configuration to append multiple values. policies=[ redirect_policy, user_agent_policy, ] client = PipelineClient(base_url=url, policies=policies) request = client.get(url) pipeline_response = client._pipeline.run(request, user_agent="AnotherValue") # [END user_agent_policy] response = pipeline_response.http_response assert response.status_code == 200 def example_network_trace_logging(): filename = "log.txt" url = "https://bing.com" policies = [ UserAgentPolicy("myuseragent"), RedirectPolicy() ] # [START network_trace_logging_policy] from azure.core.pipeline.policies import NetworkTraceLoggingPolicy import sys import logging # Create a logger for the 'azure' SDK logger = logging.getLogger("azure") logger.setLevel(logging.DEBUG) # Configure a console output handler = logging.StreamHandler(stream=sys.stdout) logger.addHandler(handler) # Configure a file output file_handler = logging.FileHandler(filename) logger.addHandler(file_handler) # Enable network trace logging. This will be logged at DEBUG level. # By default, logging is disabled. logging_policy = NetworkTraceLoggingPolicy() logging_policy.enable_http_logger = True # The logger can also be enabled per operation. policies.append(logging_policy) client = PipelineClient(base_url=url, policies=policies) request = client.get(url) pipeline_response = client._pipeline.run(request, logging_enable=True) # [END network_trace_logging_policy] response = pipeline_response.http_response assert response.status_code == 200 def example_proxy_policy(): # [START proxy_policy] from azure.core.pipeline.policies import ProxyPolicy proxy_policy = ProxyPolicy() # Example proxy_policy.proxies = {'http': 'http://10.10.1.10:3148'} # Use basic auth proxy_policy.proxies = {'https': 'http://user:[email protected]:1180/'} # You can also configure proxies by setting the environment variables # HTTP_PROXY and HTTPS_PROXY. # [END proxy_policy] def example_on_exception(): policy = SansIOHTTPPolicy() request = HttpRequest("GET", "https://bing.com") # [START on_exception] try: response = policy.next.send(request) except Exception: if not policy.on_exception(request): raise # or use exc_type, exc_value, exc_traceback = sys.exc_info() # [END on_exception]
34.639241
95
0.711858
[ "MIT" ]
SanjayHukumRana/azure-sdk-for-python
sdk/core/azure-core/samples/test_example_sansio.py
5,473
Python
#!/usr/bin/python # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function __metaclass__ = type # Copyright (c) 2020-2021, Red Hat # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) # STARTREMOVE (downstream) DOCUMENTATION = r''' module: openshift_process short_description: Process an OpenShift template.openshift.io/v1 Template version_added: "0.3.0" author: "Fabian von Feilitzsch (@fabianvf)" description: - Processes a specified OpenShift template with the provided template. - Templates can be provided inline, from a file, or specified by name and namespace in the cluster. - Analogous to `oc process`. - For CRUD operations on Template resources themselves, see the community.okd.k8s module. extends_documentation_fragment: - kubernetes.core.k8s_auth_options - kubernetes.core.k8s_wait_options - kubernetes.core.k8s_resource_options requirements: - "python >= 3.6" - "kubernetes >= 12.0.0" - "PyYAML >= 3.11" options: name: description: - The name of the Template to process. - The Template must be present in the cluster. - When provided, I(namespace) is required. - Mutually exclusive with I(resource_definition) or I(src) type: str namespace: description: - The namespace that the template can be found in. type: str namespace_target: description: - The namespace that resources should be created, updated, or deleted in. - Only used when I(state) is present or absent. parameters: description: - 'A set of key: value pairs that will be used to set/override values in the Template.' - Corresponds to the `--param` argument to oc process. type: dict parameter_file: description: - A path to a file containing template parameter values to override/set values in the Template. - Corresponds to the `--param-file` argument to oc process. type: str state: description: - Determines what to do with the rendered Template. - The state I(rendered) will render the Template based on the provided parameters, and return the rendered objects in the I(resources) field. These can then be referenced in future tasks. - The state I(present) will cause the resources in the rendered Template to be created if they do not already exist, and patched if they do. - The state I(absent) will delete the resources in the rendered Template. type: str default: rendered choices: [ absent, present, rendered ] ''' EXAMPLES = r''' - name: Process a template in the cluster community.okd.openshift_process: name: nginx-example namespace: openshift # only needed if using a template already on the server parameters: NAMESPACE: openshift NAME: test123 state: rendered register: result - name: Create the rendered resources using apply community.okd.k8s: namespace: default definition: '{{ item }}' wait: yes apply: yes loop: '{{ result.resources }}' - name: Process a template with parameters from an env file and create the resources community.okd.openshift_process: name: nginx-example namespace: openshift namespace_target: default parameter_file: 'files/nginx.env' state: present wait: yes - name: Process a local template and create the resources community.okd.openshift_process: src: files/example-template.yaml parameter_file: files/example.env namespace_target: default state: present - name: Process a local template, delete the resources, and wait for them to terminate community.okd.openshift_process: src: files/example-template.yaml parameter_file: files/example.env namespace_target: default state: absent wait: yes ''' RETURN = r''' result: description: - The created, patched, or otherwise present object. Will be empty in the case of a deletion. returned: on success when state is present or absent type: complex contains: apiVersion: description: The versioned schema of this representation of an object. returned: success type: str kind: description: Represents the REST resource this object represents. returned: success type: str metadata: description: Standard object metadata. Includes name, namespace, annotations, labels, etc. returned: success type: complex contains: name: description: The name of the resource type: str namespace: description: The namespace of the resource type: str spec: description: Specific attributes of the object. Will vary based on the I(api_version) and I(kind). returned: success type: dict status: description: Current status details for the object. returned: success type: complex contains: conditions: type: complex description: Array of status conditions for the object. Not guaranteed to be present items: description: Returned only when multiple yaml documents are passed to src or resource_definition returned: when resource_definition or src contains list of objects type: list duration: description: elapsed time of task in seconds returned: when C(wait) is true type: int sample: 48 resources: type: complex description: - The rendered resources defined in the Template returned: on success when state is rendered contains: apiVersion: description: The versioned schema of this representation of an object. returned: success type: str kind: description: Represents the REST resource this object represents. returned: success type: str metadata: description: Standard object metadata. Includes name, namespace, annotations, labels, etc. returned: success type: complex contains: name: description: The name of the resource type: str namespace: description: The namespace of the resource type: str spec: description: Specific attributes of the object. Will vary based on the I(api_version) and I(kind). returned: success type: dict status: description: Current status details for the object. returned: success type: dict contains: conditions: type: complex description: Array of status conditions for the object. Not guaranteed to be present ''' # ENDREMOVE (downstream) try: from ansible_collections.kubernetes.core.plugins.module_utils.ansiblemodule import AnsibleModule except ImportError: from ansible.module_utils.basic import AnsibleModule from ansible_collections.kubernetes.core.plugins.module_utils.args_common import ( AUTH_ARG_SPEC, RESOURCE_ARG_SPEC, WAIT_ARG_SPEC ) def argspec(): argument_spec = {} argument_spec.update(AUTH_ARG_SPEC) argument_spec.update(WAIT_ARG_SPEC) argument_spec.update(RESOURCE_ARG_SPEC) argument_spec['state'] = dict(type='str', default='rendered', choices=['present', 'absent', 'rendered']) argument_spec['namespace'] = dict(type='str') argument_spec['namespace_target'] = dict(type='str') argument_spec['parameters'] = dict(type='dict') argument_spec['name'] = dict(type='str') argument_spec['parameter_file'] = dict(type='str') return argument_spec def main(): argument_spec = argspec() module = AnsibleModule(argument_spec=argument_spec, supports_check_mode=True) from ansible_collections.community.okd.plugins.module_utils.openshift_process import ( OpenShiftProcess) openshift_process = OpenShiftProcess(module) # remove_aliases from kubernetes.core's common requires the argspec attribute. Ideally, it should # read that throught the module class, but we cannot change that. openshift_process.argspec = argument_spec openshift_process.execute_module() if __name__ == '__main__': main()
33.052632
110
0.696717
[ "Apache-2.0" ]
saeedya/docker-ansible
venv/lib/python3.8/site-packages/ansible_collections/community/okd/plugins/modules/openshift_process.py
8,164
Python
#!/usr/bin/env python """continue play youtube video""" import mac_youtube def _cli(): mac_youtube.play() if __name__ == "__main__": _cli()
12.666667
33
0.657895
[ "Unlicense" ]
andrewp-as-is/mac-youtube.py
mac_youtube/play.py
152
Python
# -*- encoding: utf-8 -*- import json import importlib import os import builtins from multiprocessing import Process from importlib.util import find_spec __all__=['run'] def run(): from utils.RedisHelper import RedisHelper _redis=RedisHelper() _redis.pubsub=_redis.conn.pubsub() _redis.pubsub.subscribe(_redis.sub_name) sub_message=next(_redis.pubsub.listen()) print(sub_message) #订阅消息 # on manage.py -e local # {'type': 'subscribe', 'pattern': None, 'channel': b'nlp_test_pub', 'data': 1} # if "subscribe"!=sub_message['type'] or _redis.sub_name!=sub_message["channel"].decode('utf-8','ignore'): # raise "sub error" for message in _redis.pubsub.listen(): if "message"!=message['type'] or _redis.sub_name!=sub_message["channel"].decode('utf-8','ignore'): print('type erro') continue # 默认不会有错误 message['data']=message['data'].decode('utf-8','ignore') try: data=json.loads(message['data']) except: # 打印日志 # print('json parse error',message) continue # 控制必要的字段 if "type" not in data: continue ### 暂时只进行单项任务 if "initialize" !=data["type"]: continue # 获取该任务唯一id if "uid_list" not in data["data"]: continue id_list = data["data"]["uid_list"] try: uid=_redis.conn.rpop(id_list).decode('utf-8','ignore') except: print("uid error",uid) continue if int(uid)>=data["data"]["sub_count"]: raise "uid Index exceeded" ## 优化报错 # os.environ['uid']=uid # print("initialize uid is ",uid) if find_spec('handlers.'+data.get("type",""),package='..'): handlers=importlib.import_module('handlers.'+data.get("type",""),package='..') else: continue raise "import error" # 优化容错 # # 优化 # if hasattr(handlers,message.get("type","")): # handlers=getattr(handlers,message.get("type","")) p=Process(target=handlers.run,args=[data,int(uid)]) p.start() p.join()
29.468354
111
0.530928
[ "MIT" ]
Askr-ssy/r
commands/router.py
2,424
Python
# MIT License # # Copyright (c) 2018-2019 Tskit Developers # Copyright (c) 2015-2017 University of Oxford # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Module responsible for visualisations. """ import collections import numbers import svgwrite import numpy as np from _tskit import NULL LEFT = "left" RIGHT = "right" TOP = "top" BOTTOM = "bottom" def check_orientation(orientation): if orientation is None: orientation = TOP else: orientation = orientation.lower() orientations = [LEFT, RIGHT, TOP, BOTTOM] if orientation not in orientations: raise ValueError( "Unknown orientiation: choose from {}".format(orientations)) return orientation def check_max_tree_height(max_tree_height, allow_numeric=True): if max_tree_height is None: max_tree_height = "tree" is_numeric = isinstance(max_tree_height, numbers.Real) if max_tree_height not in ["tree", "ts"] and not allow_numeric: raise ValueError("max_tree_height must be 'tree' or 'ts'") if max_tree_height not in ["tree", "ts"] and (allow_numeric and not is_numeric): raise ValueError( "max_tree_height must be a numeric value or one of 'tree' or 'ts'") return max_tree_height def check_tree_height_scale(tree_height_scale): if tree_height_scale is None: tree_height_scale = "time" if tree_height_scale not in ["time", "log_time", "rank"]: raise ValueError("tree_height_scale must be 'time', 'log_time' or 'rank'") return tree_height_scale def check_format(format): if format is None: format = "SVG" fmt = format.lower() supported_formats = ["svg", "ascii", "unicode"] if fmt not in supported_formats: raise ValueError("Unknown format '{}'. Supported formats are {}".format( format, supported_formats)) return fmt def draw_tree( tree, width=None, height=None, node_labels=None, node_colours=None, mutation_labels=None, mutation_colours=None, format=None, edge_colours=None, tree_height_scale=None, max_tree_height=None): # See tree.draw() for documentation on these arguments. fmt = check_format(format) if fmt == "svg": if width is None: width = 200 if height is None: height = 200 def remap(original_map, new_key, none_value): if original_map is None: return None new_map = {} for key, value in original_map.items(): if value is None: new_map[key] = none_value else: new_map[key] = {new_key: value} return new_map # Old semantics were to not draw the node if colour is None. # Setting opacity to zero has the same effect. node_attrs = remap(node_colours, "fill", {'opacity': 0}) edge_attrs = remap(edge_colours, "stroke", {'opacity': 0}) mutation_attrs = remap(mutation_colours, "fill", {'opacity': 0}) node_label_attrs = None tree = SvgTree( tree, (width, height), node_labels=node_labels, mutation_labels=mutation_labels, tree_height_scale=tree_height_scale, max_tree_height=max_tree_height, node_attrs=node_attrs, edge_attrs=edge_attrs, node_label_attrs=node_label_attrs, mutation_attrs=mutation_attrs) return tree.drawing.tostring() else: if width is not None: raise ValueError("Text trees do not support width") if height is not None: raise ValueError("Text trees do not support height") if mutation_labels is not None: raise ValueError("Text trees do not support mutation_labels") if mutation_colours is not None: raise ValueError("Text trees do not support mutation_colours") if node_colours is not None: raise ValueError("Text trees do not support node_colours") if edge_colours is not None: raise ValueError("Text trees do not support edge_colours") if tree_height_scale is not None: raise ValueError("Text trees do not support tree_height_scale") use_ascii = fmt == "ascii" text_tree = VerticalTextTree( tree, node_labels=node_labels, max_tree_height=max_tree_height, use_ascii=use_ascii, orientation=TOP) return str(text_tree) class SvgTreeSequence(object): """ Draw a TreeSequence in SVG. """ def __init__( self, ts, size=None, tree_height_scale=None, max_tree_height=None, node_labels=None, mutation_labels=None, node_attrs=None, edge_attrs=None, node_label_attrs=None): self.ts = ts if size is None: size = (200 * ts.num_trees, 200) self.image_size = size self.drawing = svgwrite.Drawing(size=self.image_size, debug=True) self.node_labels = {u: str(u) for u in range(ts.num_nodes)} # TODO add general padding arguments following matplotlib's terminology. self.axes_x_offset = 15 self.axes_y_offset = 10 self.treebox_x_offset = self.axes_x_offset + 5 self.treebox_y_offset = self.axes_y_offset + 5 x = self.treebox_x_offset treebox_width = size[0] - 2 * self.treebox_x_offset treebox_height = size[1] - 2 * self.treebox_y_offset tree_width = treebox_width / ts.num_trees svg_trees = [ SvgTree( tree, (tree_width, treebox_height), max_tree_height="ts", node_labels=node_labels, mutation_labels=mutation_labels, tree_height_scale=tree_height_scale, node_attrs=node_attrs, edge_attrs=edge_attrs, node_label_attrs=node_label_attrs) for tree in ts.trees()] ticks = [] y = self.treebox_y_offset defs = self.drawing.defs for tree, svg_tree in zip(ts.trees(), svg_trees): defs.add(svg_tree.root_group) for tree in ts.trees(): tree_id = "#tree_{}".format(tree.index) use = self.drawing.use(tree_id, (x, y)) self.drawing.add(use) ticks.append((x, tree.interval[0])) x += tree_width ticks.append((x, ts.sequence_length)) dwg = self.drawing # # Debug --- draw the tree and axes boxes # w = self.image_size[0] - 2 * self.treebox_x_offset # h = self.image_size[1] - 2 * self.treebox_y_offset # dwg.add(dwg.rect((self.treebox_x_offset, self.treebox_y_offset), (w, h), # fill="white", fill_opacity=0, stroke="black", stroke_dasharray="15,15")) # w = self.image_size[0] - 2 * self.axes_x_offset # h = self.image_size[1] - 2 * self.axes_y_offset # dwg.add(dwg.rect((self.axes_x_offset, self.axes_y_offset), (w, h), # fill="white", fill_opacity=0, stroke="black", stroke_dasharray="5,5")) axes_left = self.treebox_x_offset axes_right = self.image_size[0] - self.treebox_x_offset y = self.image_size[1] - 2 * self.axes_y_offset dwg.add(dwg.line((axes_left, y), (axes_right, y), stroke="black")) for x, genome_coord in ticks: delta = 5 dwg.add(dwg.line((x, y - delta), (x, y + delta), stroke="black")) dwg.add(dwg.text( "{:.2f}".format(genome_coord), (x, y + 20), font_size=14, text_anchor="middle", font_weight="bold")) class SvgTree(object): """ An SVG representation of a single tree. TODO should provide much more SVG structure which we document fully to that the SVG elements can be manipulated directly by the user. For example, every edge should be given an SVG ID so that it can be referred to and modified. """ def __init__( self, tree, size=None, node_labels=None, mutation_labels=None, tree_height_scale=None, max_tree_height=None, node_attrs=None, edge_attrs=None, node_label_attrs=None, mutation_attrs=None, mutation_label_attrs=None): self.tree = tree if size is None: size = (200, 200) self.image_size = size self.setup_drawing() self.treebox_x_offset = 10 self.treebox_y_offset = 10 self.treebox_width = size[0] - 2 * self.treebox_x_offset self.assign_y_coordinates(tree_height_scale, max_tree_height) self.node_x_coord_map = self.assign_x_coordinates( tree, self.treebox_x_offset, self.treebox_width) self.edge_attrs = {} self.node_attrs = {} self.node_label_attrs = {} for u in tree.nodes(): self.edge_attrs[u] = {} if edge_attrs is not None and u in edge_attrs: self.edge_attrs[u].update(edge_attrs[u]) self.node_attrs[u] = {"r": 3} if node_attrs is not None and u in node_attrs: self.node_attrs[u].update(node_attrs[u]) label = "" if node_labels is None: label = str(u) elif u in node_labels: label = str(node_labels[u]) self.node_label_attrs[u] = {"text": label} if node_label_attrs is not None and u in node_label_attrs: self.node_label_attrs[u].update(node_label_attrs[u]) self.mutation_attrs = {} self.mutation_label_attrs = {} for site in tree.sites(): for mutation in site.mutations: m = mutation.id # We need to offset the rectangle so that it's centred self.mutation_attrs[m] = { "size": (6, 6), "transform": "translate(-3, -3)"} if mutation_attrs is not None and m in mutation_attrs: self.mutation_attrs[m].update(mutation_attrs[m]) label = "" if mutation_labels is None: label = str(m) elif mutation.id in mutation_labels: label = str(mutation_labels[m]) self.mutation_label_attrs[m] = {"text": label} if mutation_label_attrs is not None and m in mutation_label_attrs: self.mutation_label_attrs[m].update(mutation_label_attrs[m]) self.draw() def setup_drawing(self): self.drawing = svgwrite.Drawing(size=self.image_size, debug=True) dwg = self.drawing self.root_group = dwg.add(dwg.g(id='tree_{}'.format(self.tree.index))) self.edges = self.root_group.add(dwg.g(id='edges', stroke="black", fill="none")) self.symbols = self.root_group.add(dwg.g(id='symbols')) self.nodes = self.symbols.add(dwg.g(class_='nodes')) self.mutations = self.symbols.add(dwg.g(class_='mutations', fill="red")) self.labels = self.root_group.add(dwg.g(id='labels', font_size=14)) self.node_labels = self.labels.add(dwg.g(class_='nodes')) self.mutation_labels = self.labels.add( dwg.g(class_='mutations', font_style="italic")) self.left_labels = self.node_labels.add(dwg.g(text_anchor="start")) self.mid_labels = self.node_labels.add(dwg.g(text_anchor="middle")) self.right_labels = self.node_labels.add(dwg.g(text_anchor="end")) self.mutation_left_labels = self.mutation_labels.add(dwg.g(text_anchor="start")) self.mutation_right_labels = self.mutation_labels.add(dwg.g(text_anchor="end")) def assign_y_coordinates(self, tree_height_scale, max_tree_height): tree_height_scale = check_tree_height_scale(tree_height_scale) max_tree_height = check_max_tree_height( max_tree_height, tree_height_scale != "rank") ts = self.tree.tree_sequence node_time = ts.tables.nodes.time if tree_height_scale == "rank": assert tree_height_scale == "rank" if max_tree_height == "tree": # We only rank the times within the tree in this case. t = np.zeros_like(node_time) + node_time[self.tree.left_root] for u in self.tree.nodes(): t[u] = node_time[u] node_time = t depth = {t: 2 * j for j, t in enumerate(np.unique(node_time))} node_height = [depth[node_time[u]] for u in range(ts.num_nodes)] max_tree_height = max(depth.values()) else: assert tree_height_scale in ["time", "log_time"] if max_tree_height == "tree": max_tree_height = max(self.tree.time(root) for root in self.tree.roots) elif max_tree_height == "ts": max_tree_height = ts.max_root_time if tree_height_scale == "log_time": # add 1 so that don't reach log(0) = -inf error. # just shifts entire timeset by 1 year so shouldn't affect anything node_height = np.log(ts.tables.nodes.time + 1) elif tree_height_scale == "time": node_height = node_time assert float(max_tree_height) == max_tree_height # In pathological cases, all the roots are at 0 if max_tree_height == 0: max_tree_height = 1 # TODO should make this a parameter somewhere. This is padding to keep the # node labels within the treebox label_padding = 10 y_padding = self.treebox_y_offset + 2 * label_padding mutations_over_root = any( any(tree.parent(mut.node) == NULL for mut in tree.mutations()) for tree in ts.trees()) root_branch_length = 0 height = self.image_size[1] if mutations_over_root: # Allocate a fixed about of space to show the mutations on the # 'root branch' root_branch_length = height / 10 # FIXME just draw branch?? # y scaling padding_numerator = (height - root_branch_length - 2 * y_padding) if tree_height_scale == "log_time": # again shift time by 1 in log(max_tree_height), so consistent y_scale = padding_numerator / (np.log(max_tree_height + 1)) else: y_scale = padding_numerator / max_tree_height self.node_y_coord_map = [ height - y_scale * node_height[u] - y_padding for u in range(ts.num_nodes)] def assign_x_coordinates(self, tree, x_start, width): num_leaves = len(list(tree.leaves())) x_scale = width / (num_leaves + 1) node_x_coord_map = {} leaf_x = x_start for root in tree.roots: for u in tree.nodes(root, order="postorder"): if tree.is_leaf(u): leaf_x += x_scale node_x_coord_map[u] = leaf_x else: child_coords = [node_x_coord_map[c] for c in tree.children(u)] if len(child_coords) == 1: node_x_coord_map[u] = child_coords[0] else: a = min(child_coords) b = max(child_coords) assert b - a > 1 node_x_coord_map[u] = a + (b - a) / 2 return node_x_coord_map def draw(self): dwg = self.drawing node_x_coord_map = self.node_x_coord_map node_y_coord_map = self.node_y_coord_map tree = self.tree node_mutations = collections.defaultdict(list) for site in tree.sites(): for mutation in site.mutations: node_mutations[mutation.node].append(mutation) for u in tree.nodes(): pu = node_x_coord_map[u], node_y_coord_map[u] node_id = "node_{}_{}".format(tree.index, u) self.nodes.add(dwg.circle(id=node_id, center=pu, **self.node_attrs[u])) dx = 0 dy = -5 labels = self.mid_labels if tree.is_leaf(u): dy = 20 elif tree.parent(u) != NULL: dx = 5 if tree.left_sib(u) == NULL: dx *= -1 labels = self.right_labels else: labels = self.left_labels # TODO add ID to node label text. # TODO get rid of these manual positioning tweaks and add them # as offsets the user can access via a transform or something. labels.add(dwg.text( insert=(pu[0] + dx, pu[1] + dy), **self.node_label_attrs[u])) v = tree.parent(u) if v != NULL: edge_id = "edge_{}_{}".format(tree.index, u) pv = node_x_coord_map[v], node_y_coord_map[v] path = dwg.path( [("M", pu), ("V", pv[1]), ("H", pv[0])], id=edge_id, **self.edge_attrs[u]) self.edges.add(path) else: # FIXME this is pretty crappy for spacing mutations over a root. pv = (pu[0], pu[1] - 20) num_mutations = len(node_mutations[u]) delta = (pv[1] - pu[1]) / (num_mutations + 1) x = pu[0] y = pv[1] - delta # TODO add mutation IDs for mutation in reversed(node_mutations[u]): self.mutations.add(dwg.rect( insert=(x, y), **self.mutation_attrs[mutation.id])) dx = 5 if tree.left_sib(mutation.node) == NULL: dx *= -1 labels = self.mutation_right_labels else: labels = self.mutation_left_labels # TODO get rid of these manual positioning tweaks and add them # as offsets the user can access via a transform or something. dy = 4 labels.add(dwg.text( insert=(x + dx, y + dy), **self.mutation_label_attrs[mutation.id])) y -= delta class TextTreeSequence(object): """ Draw a tree sequence as horizontal line of trees. """ def __init__( self, ts, node_labels=None, use_ascii=False, time_label_format=None, position_label_format=None): self.ts = ts time_label_format = ( "{:.2f}" if time_label_format is None else time_label_format) position_label_format = ( "{:.2f}" if position_label_format is None else position_label_format) time = ts.tables.nodes.time time_scale_labels = [ time_label_format.format(time[u]) for u in range(ts.num_nodes)] position_scale_labels = [ position_label_format.format(x) for x in ts.breakpoints()] trees = [ VerticalTextTree( tree, max_tree_height="ts", node_labels=node_labels, use_ascii=use_ascii) for tree in self.ts.trees()] self.height = 1 + max(tree.height for tree in trees) self.width = sum(tree.width + 2 for tree in trees) - 1 max_time_scale_label_len = max(map(len, time_scale_labels)) self.width += 3 + max_time_scale_label_len + len(position_scale_labels[-1]) // 2 self.canvas = np.zeros((self.height, self.width), dtype=str) self.canvas[:] = " " vertical_sep = "|" if use_ascii else "┊" x = 0 time_position = trees[0].time_position for u, label in enumerate(map(to_np_unicode, time_scale_labels)): y = time_position[u] self.canvas[y, 0: label.shape[0]] = label self.canvas[:, max_time_scale_label_len] = vertical_sep x = 2 + max_time_scale_label_len for j, tree in enumerate(trees): pos_label = to_np_unicode(position_scale_labels[j]) k = len(pos_label) label_x = max(x - k // 2 - 2, 0) self.canvas[-1, label_x: label_x + k] = pos_label h, w = tree.canvas.shape self.canvas[-h - 1: -1, x: x + w - 1] = tree.canvas[:, :-1] x += w self.canvas[:, x] = vertical_sep x += 2 pos_label = to_np_unicode(position_scale_labels[-1]) k = len(pos_label) label_x = max(x - k // 2 - 2, 0) self.canvas[-1, label_x: label_x + k] = pos_label self.canvas[:, -1] = "\n" def __str__(self): return "".join(self.canvas.reshape(self.width * self.height)) def to_np_unicode(string): """ Converts the specified string to a numpy unicode array. """ # TODO: what's the clean of doing this with numpy? # It really wants to create a zero-d Un array here # which breaks the assignment below and we end up # with n copies of the first char. n = len(string) np_string = np.zeros(n, dtype="U") for j in range(n): np_string[j] = string[j] return np_string def closest_left_node(tree, u): """ Returns the node that closest to u in a left-to-right sense. """ ret = NULL while u != NULL and ret == NULL: ret = tree.left_sib(u) u = tree.parent(u) return ret def node_time_depth(tree, min_branch_length=None, max_tree_height="tree"): """ Returns a dictionary mapping nodes in the specified tree to their depth in the specified tree (from the root direction). If min_branch_len is provided, it specifies the minimum length of each branch. If not specified, default to 1. """ if min_branch_length is None: min_branch_length = {u: 1 for u in range(tree.tree_sequence.num_nodes)} time_node_map = collections.defaultdict(list) current_depth = 0 depth = {} # TODO this is basically the same code for the two cases. Refactor so that # we use the same code. if max_tree_height == "tree": for u in tree.nodes(): time_node_map[tree.time(u)].append(u) for t in sorted(time_node_map.keys()): for u in time_node_map[t]: for v in tree.children(u): current_depth = max(current_depth, depth[v] + min_branch_length[v]) for u in time_node_map[t]: depth[u] = current_depth current_depth += 2 for root in tree.roots: current_depth = max(current_depth, depth[root] + min_branch_length[root]) else: assert max_tree_height == "ts" ts = tree.tree_sequence for node in ts.nodes(): time_node_map[node.time].append(node.id) node_edges = collections.defaultdict(list) for edge in ts.edges(): node_edges[edge.parent].append(edge) for t in sorted(time_node_map.keys()): for u in time_node_map[t]: for edge in node_edges[u]: v = edge.child current_depth = max(current_depth, depth[v] + min_branch_length[v]) for u in time_node_map[t]: depth[u] = current_depth current_depth += 2 return depth, current_depth class TextTree(object): """ Draws a reprentation of a tree using unicode drawing characters written to a 2D array. """ def __init__( self, tree, node_labels=None, max_tree_height=None, use_ascii=False, orientation=None): self.tree = tree self.max_tree_height = check_max_tree_height( max_tree_height, allow_numeric=False) self.use_ascii = use_ascii self.orientation = check_orientation(orientation) self.horizontal_line_char = '━' self.vertical_line_char = '┃' if use_ascii: self.horizontal_line_char = '-' self.vertical_line_char = '|' # These are set below by the placement algorithms. self.width = None self.height = None self.canvas = None # Placement of nodes in the 2D space. Nodes are positioned in one # dimension based on traversal ordering and by their time in the # other dimension. These are mapped to x and y coordinates according # to the orientation. self.traversal_position = {} # Position of nodes in traversal space self.time_position = {} # Labels for nodes self.node_labels = {} # Set the node labels for u in tree.nodes(): if node_labels is None: # If we don't specify node_labels, default to node ID self.node_labels[u] = str(u) else: # If we do specify node_labels, default an empty line self.node_labels[u] = self.default_node_label if node_labels is not None: for node, label in node_labels.items(): self.node_labels[node] = label self._assign_time_positions() self._assign_traversal_positions() self.canvas = np.zeros((self.height, self.width), dtype=str) self.canvas[:] = " " self._draw() self.canvas[:, -1] = "\n" def __str__(self): return "".join(self.canvas.reshape(self.width * self.height)) class VerticalTextTree(TextTree): """ Text tree rendering where root nodes are at the top and time goes downwards into the present. """ @property def default_node_label(self): return self.vertical_line_char def _assign_time_positions(self): tree = self.tree # TODO when we add mutations to the text tree we'll need to take it into # account here. Presumably we need to get the maximum number of mutations # per branch. self.time_position, total_depth = node_time_depth( tree, max_tree_height=self.max_tree_height) self.height = total_depth - 1 def _assign_traversal_positions(self): self.label_x = {} x = 0 for root in self.tree.roots: for u in self.tree.nodes(root, order="postorder"): label_size = len(self.node_labels[u]) if self.tree.is_leaf(u): self.traversal_position[u] = x + label_size // 2 self.label_x[u] = x x += label_size + 1 else: coords = [self.traversal_position[c] for c in self.tree.children(u)] if len(coords) == 1: self.traversal_position[u] = coords[0] else: a = min(coords) b = max(coords) child_mid = int(round((a + (b - a) / 2))) self.traversal_position[u] = child_mid self.label_x[u] = self.traversal_position[u] - label_size // 2 sib_x = -1 sib = closest_left_node(self.tree, u) if sib != NULL: sib_x = self.traversal_position[sib] self.label_x[u] = max(sib_x + 1, self.label_x[u]) x = max(x, self.label_x[u] + label_size + 1) assert self.label_x[u] >= 0 x += 1 self.width = x - 1 def _draw(self): if self.use_ascii: left_child = "+" right_child = "+" mid_parent = "+" mid_parent_child = "+" mid_child = "+" elif self.orientation == TOP: left_child = "┏" right_child = "┓" mid_parent = "┻" mid_parent_child = "╋" mid_child = "┳" else: left_child = "┗" right_child = "┛" mid_parent = "┳" mid_parent_child = "╋" mid_child = "┻" for u in self.tree.nodes(): xu = self.traversal_position[u] yu = self.time_position[u] label = to_np_unicode(self.node_labels[u]) label_len = label.shape[0] label_x = self.label_x[u] assert label_x >= 0 self.canvas[yu, label_x: label_x + label_len] = label children = self.tree.children(u) if len(children) > 0: if len(children) == 1: yv = self.time_position[children[0]] self.canvas[yv: yu, xu] = self.vertical_line_char else: left = min(self.traversal_position[v] for v in children) right = max(self.traversal_position[v] for v in children) y = yu - 1 self.canvas[y, left + 1: right] = self.horizontal_line_char self.canvas[y, xu] = mid_parent for v in children: xv = self.traversal_position[v] yv = self.time_position[v] self.canvas[yv: yu, xv] = self.vertical_line_char mid_char = mid_parent_child if xv == xu else mid_child self.canvas[y, xv] = mid_char self.canvas[y, left] = left_child self.canvas[y, right] = right_child # print(self.canvas) if self.orientation == TOP: self.canvas = np.flip(self.canvas, axis=0) # Reverse the time positions so that we can use them in the tree # sequence drawing as well. flipped_time_position = { u: self.height - y - 1 for u, y in self.time_position.items()} self.time_position = flipped_time_position class HorizontalTextTree(TextTree): """ Text tree rendering where root nodes are at the left and time goes rightwards into the present. """ @property def default_node_label(self): return self.horizontal_line_char def _assign_time_positions(self): # TODO when we add mutations to the text tree we'll need to take it into # account here. Presumably we need to get the maximum number of mutations # per branch. self.time_position, total_depth = node_time_depth( self.tree, {u: 1 + len(self.node_labels[u]) for u in self.tree.nodes()}) self.width = total_depth def _assign_traversal_positions(self): y = 0 for root in self.tree.roots: for u in self.tree.nodes(root, order="postorder"): if self.tree.is_leaf(u): self.traversal_position[u] = y y += 2 else: coords = [self.traversal_position[c] for c in self.tree.children(u)] if len(coords) == 1: self.traversal_position[u] = coords[0] else: a = min(coords) b = max(coords) child_mid = int(round((a + (b - a) / 2))) self.traversal_position[u] = child_mid y += 1 self.height = y - 2 def _draw(self): if self.use_ascii: top_across = "+" bot_across = "+" mid_parent = "+" mid_parent_child = "+" mid_child = "+" elif self.orientation == LEFT: top_across = "┏" bot_across = "┗" mid_parent = "┫" mid_parent_child = "╋" mid_child = "┣" else: top_across = "┓" bot_across = "┛" mid_parent = "┣" mid_parent_child = "╋" mid_child = "┫" # Draw in root-right mode as the coordinates go in the expected direction. for u in self.tree.nodes(): yu = self.traversal_position[u] xu = self.time_position[u] label = to_np_unicode(self.node_labels[u]) if self.orientation == LEFT: # We flip the array at the end so need to reverse the label. label = label[::-1] label_len = label.shape[0] self.canvas[yu, xu: xu + label_len] = label children = self.tree.children(u) if len(children) > 0: if len(children) == 1: xv = self.time_position[children[0]] self.canvas[yu, xv: xu] = self.horizontal_line_char else: bot = min(self.traversal_position[v] for v in children) top = max(self.traversal_position[v] for v in children) x = xu - 1 self.canvas[bot + 1: top, x] = self.vertical_line_char self.canvas[yu, x] = mid_parent for v in children: yv = self.traversal_position[v] xv = self.time_position[v] self.canvas[yv, xv: x] = self.horizontal_line_char mid_char = mid_parent_child if yv == yu else mid_child self.canvas[yv, x] = mid_char self.canvas[bot, x] = top_across self.canvas[top, x] = bot_across if self.orientation == LEFT: self.canvas = np.flip(self.canvas, axis=1) # Move the padding to the left. self.canvas[:, :-1] = self.canvas[:, 1:] self.canvas[:, -1] = " " # print(self.canvas)
40.776066
89
0.573297
[ "MIT" ]
brianzhang01/tskit
python/tskit/drawing.py
34,461
Python
import pytest from shutil import copyfile from shutil import copytree import os from cli.postman2robot import run as postman2robot @pytest.fixture(scope="function") def collection(tmpdir, request): if request.param: test_name = request.param else: test_name = request.node.name filepath = request.module.__file__ test_dir, f = os.path.split(filepath) # Resolve paths resources = os.path.join(test_dir, "resources") resources_collection = os.path.join(resources, test_name + "_collection.json") resources_validation = os.path.join(resources, "validation" , test_name + "_library.py") # Prepare env copyfile(resources_collection, os.path.join(tmpdir, "collection.json")) copyfile(resources_validation, os.path.join(tmpdir, "validation_library.py")) # We work in temps dir old_cwd = os.getcwd() os.chdir(tmpdir) library = tmpdir.join('./postman_libraries/newmanTest.py') library_validation = tmpdir.join('./validation_library.py') yield {"generated": library, "expected": library_validation} os.chdir(old_cwd) class Test_Postman2Robot: cli_args = { "--ifile": "collection.json", "--ofile": "./postman_libraries" } @pytest.mark.parametrize("collection", [("test_simple")], indirect=True) def test_simple(self, tmpdir, collection): """ Given collection.json, generate: library.py """ postman2robot(self.cli_args) assert os.path.isfile(collection["generated"]) assert collection["generated"].read() == collection["expected"].read() @pytest.mark.parametrize("collection", [("test_with_folder")], indirect=True) def test_with_folder(self, tmpdir, collection): """ Given collection.json, generate: library.py """ postman2robot(self.cli_args) assert os.path.isfile(collection["generated"]) assert collection["generated"].read() == collection["expected"].read() @pytest.mark.parametrize("collection", [("test_with_variables")], indirect=True) def test_with_variables(self, tmpdir, collection): """ Given collection.json, generate: library.py """ postman2robot(self.cli_args) assert os.path.isfile(collection["generated"]) assert collection["generated"].read() == collection["expected"].read()
30.189873
92
0.672117
[ "MIT" ]
xNok/postman2robotframework
test/test_cli_postman2robot.py
2,385
Python
textSpeakDictionary = { "rs" : "risos" , "tmb" : "também" } #imprime o dicionário inteiro print( "Dicionário =" , textSpeakDictionary ) #imprime apenas o conteúdo relacionado à chave "rs" print( "\nrs =" , textSpeakDictionary["rs"]) #texto que pede a entrada do usuário key = input("\nO que você gostaria de converter? : ") print( key , "=" , textSpeakDictionary[key] )
27.571429
53
0.670984
[ "MIT" ]
daianasousa/Conversor-de-expressoes
Traduzindo_Palavras.py
393
Python
from pygame import event from albow.widgets.Control import Control class CheckControl(Control): def mouse_down(self, e: event): self.value = not self.value def get_highlighted(self): return self.value
15.466667
41
0.698276
[ "MIT" ]
hasii2011/albow-python-3
albow/widgets/CheckControl.py
232
Python
#!/usr/bin/python # -*- coding: utf-8 -*- import time import vcgencmd from gpiozero import OutputDevice # IMPORTANT: maximum temperature is 85°C and cpu throttled at 80°C ON_THRESHOLD = 70 # (degrees Celsius) fan starts at this temperature OFF_THRESHOLD = 60 # (degrees Celsius) fan shuts down at this temperature SLEEP_INTERVAL = 5 # (seconds) how often the core temperature is checked GPIO_PIN = 18 # (number) which GPIO pin is used to control the fan def main(): vc = vcgencmd.Vcgencmd() fan = OutputDevice(GPIO_PIN) while True: temperature = int(vc.measure_temp()) # NOTE: fan.value = 1 if "on" else 0 if temperature > ON_THRESHOLD and not fan.value: fan.on() elif fan.value and temperature < OFF_THRESHOLD: fan.off() time.sleep(SLEEP_INTERVAL) if __name__ == '__main__': main()
26.424242
73
0.673165
[ "MIT" ]
olivierbenard/raspberrypi-fan-controller
src/fancontroller.py
874
Python
""" """ import snowmobile sn = snowmobile.connect(delay=True) sn.alive # > False type(sn.con) # > NoneType type(sn.cfg) # > snowmobile.core.configuration.Configuration str(sn.cfg) # > snowmobile.Configuration('snowmobile.toml') print(sn.cfg.location) # > /path/to/your/snowmobile.toml sn.cfg.connection.default_alias # > 'creds1' print(sn.alive) type(sn) # > snowmobile.core.connection.Snowmobile type(sn.cfg) # > snowmobile.core.configuration.Configuration str(sn.cfg) # > snowmobile.Configuration('snowmobile.toml') type(sn.con) # > snowflake.connector.connection.SnowflakeConnection type(sn.cursor) # > snowflake.connector.cursor.SnowflakeCursor df1 = sn.query("select 1") # == pd.read_sql() type(df1) # > pandas.core.frame.DataFrame cur1 = sn.query("select 1", as_df=False) # == SnowflakeConnection.cursor().execute() type(cur1) # > snowflake.connector.cursor.SnowflakeCursor import pandas as pd df2 = pd.read_sql(sql="select 1", con=sn.con) cur2 = sn.con.cursor().execute("select 1") print(df2.equals(df1)) # > True print(cur1.fetchone() == cur2.fetchone()) # > True # -- complete example; should run 'as is' --
27.404762
86
0.711555
[ "MIT" ]
GEM7318/Snowmobile
docs/snippets/configuration.py
1,151
Python
import os import sys import numpy as np import torch import pickle import logging log = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) class Graph4D(): def __init__(self, num_envs=4096, env_size=(4,4), steps=128, save=False, data_root='./data/', num_categories=None, verbose=False): self.num_envs = num_envs self.steps = steps self.env_size = env_size self.save = False self.data_root = data_root self.num_categories = num_categories self.generate_data(verbose=verbose) log.info('''Generated Data: \t\t\t {} Environments... \t\t\t {} env size... \t\t\t {} steps in each... \t\t\t {} observable one hot categories... '''.format( num_envs, env_size, steps, self.num_categories )) def square_env(self): """ Generate map where each vertex has a one hot categorical distribution Returns: (N,N,num_categories) matrix with one-hot categorical observations """ env_size = self.env_size env = np.zeros((env_size[0], env_size[1], self.num_categories)) for i in range(env_size[0]): # Randomly assign categories to each vertex in a row category = np.random.randint(0, self.num_categories, env_size[1]) # One hot encode them env[i, np.arange(category.size), category] = 1 return env def update_location_4way(self, env, loc): """ Samples a valid four-way action and updates location """ length = env.shape[0] valid = False # print(loc, end=' --> ') while not valid: # Sample action action = np.random.randint(0, 4) # Move up if action == 0: if loc[0] - 1 >= 0: # print('Moving up', end=' --> ') loc[0] -= 1 valid = True # Move right elif action == 1: if loc[1] + 1 < length: # print('Moving Right', end=' --> ') loc[1] += 1 valid = True # Move down elif action == 2: if loc[0] + 1 < length: # print('Moving Down', end=' --> ') loc[0] += 1 valid = True # Move left elif action == 3: if loc[1] - 1 >= 0: # print('Moving Left', end=' --> ') loc[1] -= 1 valid = True # One hot encode action act = np.zeros(4) act[action] = 1 return act, loc def trajectory_4way(self, env): """ Generate trajectory of agent diffusing through 4-way connected graph At each point we sample the one-hot observation and take an action 0 = up 1 = right 2 = down 3 = left Params: steps (int): Number of steps to take env (3d np array): environment in which to wander (NxNx(num_categories)) Returns Observations (steps, num_categories), Actions (steps, 4) """ observations = np.zeros((self.steps, self.num_categories)) actions = np.zeros((self.steps, 4)) positions = np.zeros((self.steps, 2)) loc = np.random.randint(0, env.shape[0], 2) # Initial Location for step in range(self.steps): positions[step] = loc obs = env[loc[0], loc[1]] # Observe scene action, loc = self.update_location_4way(env, loc) # Sample action and new location observations[step] = obs actions[step] = action return observations, actions, positions def generate_data(self, verbose=False): """ Generates N square environments and trajectories ((observation, action) pairs) for each environment Params: envs (int): number of environments to generate steps (int): how many steps an agent initially takes in each environment env_size (tuple): size of environment (should be something like (4,4), (9,9), etc...) save (bool): whether or not to save the dataset Returns: Dict of "environments, observations, actions", each corresponding to: environments: Array shape: (num_envs, env_size_x, env_size_y, num_categories), observations: Array shape: (num_envs, steps, num_categories), actions: Array shape: (num_envs, steps, 4) """ env_size = self.env_size if self.num_categories == None: self.num_categories = env_size[0] * env_size[1] self.environments = np.zeros((self.num_envs, env_size[0], env_size[1], self.num_categories)) self.observations = np.zeros((self.num_envs, self.steps, self.num_categories)) self.actions = np.zeros((self.num_envs, self.steps, 4)) self.positions = np.zeros((self.num_envs, self.steps, 2)) for i in range(self.num_envs): env = self.square_env() # Generate new environment obs, acts, pos = self.trajectory_4way(env) # Generate random walk for that environment self.environments[i] = env self.observations[i] = obs self.actions[i] = acts self.positions[i] = pos self.data = {'environments': self.environments, 'observations': self.observations, 'actions': self.actions, 'positions': self.positions} if self.save: name = os.path.join(self.data_root, 'four_way_graph.pickle') with open(name, 'wb') as handle: pickle.dump(data, handle, protocol=pickle.HIGHEST_PROTOCOL) if __name__=='__main__': print('Generating 20 (8,8) environments with 256 random steps in each.') graph = Graph4D(num_envs=20, env_size=(8,8), steps=256) data = graph.data envs = graph.environments observations = graph.observations actions = graph.actions positions = graph.positions print('Envs,', envs.shape) print('Obs', observations.shape) print('Acts', actions.shape) print('Pos', positions.shape)
37.528409
144
0.543679
[ "Apache-2.0" ]
Victorwz/Generative-Hippocampal-entorhinal-System
generate.py
6,605
Python
def _zero_one_validator(x, function): message = function + " must be a float between zero and one" if x < 0.0 or x > 1.0: raise ValueError(message) return x def _intenger_validator(x, function): message = function + " must be positive intenger" if isinstance(x, int) and x > 0: return x raise TypeError(message) def _early_stopping_validator(x): if x: if x <=0 or not isinstance(x, int): raise ValueError("Early stopping must be a positive number bigger than 0 or None for disable it") return x return x def _float_validator(x, function): message = function + " must be a positive float" if x < 0 or type(x) != float: raise ValueError(message) return x def _validate_dict_of_dicts(x, function): message = function + " must be a dict of dict representing a simmetric matrix" if not isinstance(x, dict) and not isinstance(x[list(x.keys())], dict): raise TypeError(message) for k in x.keys(): if x[k].keys() != x.keys(): raise ValueError(message) def _validate_route_example(x, fuel_costs, time_costs): for i in x: if not isinstance(i, int): raise TypeError("The route provided must be a list of integers") x_sorted = sorted(x) dict_sorted = sorted(list(fuel_costs.keys())) if x_sorted != dict_sorted: raise ValueError("The ints in the random route provided must be in the dicts as keys") if len(x) == len(list(fuel_costs.keys())) == len(list(time_costs.keys())): pass else: raise ValueError("The dicts must have the same dimension and the route example must have the same lenght as the dicts keys")
30.642857
132
0.650932
[ "MIT" ]
arubiales/scikit-route
skroute/_validators/_validators.py
1,716
Python
###################################################################################### #FSSNet: Fast Semantic Segmentation for Scene Perception #Paper-Link: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8392426 ###################################################################################### import torch import torch.nn as nn import torch.nn.functional as F from torchsummary import summary from utils.activations import NON_LINEARITY __all__ = ["FSSNet"] # NON_LINEARITY = { # 'ReLU': nn.ReLU(inplace=True), # 'PReLU': nn.PReLU(), # 'ReLu6': nn.ReLU6(inplace=True) # } class InitialBlock(nn.Module): def __init__(self, ninput, noutput, non_linear='ReLU'): super().__init__() self.conv = nn.Conv2d(ninput, noutput-ninput, (3, 3), stride=2, padding=1, bias=False) self.pool = nn.MaxPool2d(2, stride=2) self.bn = nn.BatchNorm2d(noutput-ninput, eps=1e-3) self.relu = NON_LINEARITY[non_linear] def forward(self, input): output = self.relu(self.bn(self.conv(input))) output = torch.cat([output, self.pool(input)], 1) return output class DownsamplingBottleneck(nn.Module): def __init__(self, in_channels, out_channels, internal_ratio=4, kernel_size=3, padding=0, dropout_prob=0., bias=False, non_linear='ReLU'): super().__init__() # Store parameters that are needed later internal_channels = in_channels // internal_ratio # Main branch - max pooling followed by feature map (channels) padding self.main_max1 = nn.Sequential( nn.MaxPool2d(kernel_size=2, stride=2), nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, bias=bias), ) # Extension branch - 2x2 convolution, followed by a regular, dilated or # asymmetric convolution, followed by another 1x1 convolution. Number # of channels is doubled. # 2x2 projection convolution with stride 2, no padding self.ext_conv1 = nn.Sequential( nn.Conv2d(in_channels, internal_channels, kernel_size=2, stride=2, bias=bias), nn.BatchNorm2d(internal_channels), NON_LINEARITY[non_linear] ) # Convolution self.ext_conv2 = nn.Sequential( nn.Conv2d(internal_channels, internal_channels, kernel_size=kernel_size, stride=1, padding=padding, bias=bias), nn.BatchNorm2d(internal_channels), NON_LINEARITY[non_linear] ) # 1x1 expansion convolution self.ext_conv3 = nn.Sequential( nn.Conv2d(internal_channels, out_channels, kernel_size=1, stride=1, bias=bias), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] ) self.ext_regul = nn.Dropout2d(p=dropout_prob) # PReLU layer to apply after concatenating the branches self.out_prelu = NON_LINEARITY[non_linear] def forward(self, x): # Main branch shortcut main = self.main_max1(x) # Extension branch ext = self.ext_conv1(x) ext = self.ext_conv2(ext) ext = self.ext_conv3(ext) ext = self.ext_regul(ext) # Add main and extension branches out = self.out_prelu(main + ext) return out class UpsamplingBottleneck(nn.Module): def __init__(self, in_channels, out_channels, internal_ratio=4, kernel_size=2, padding=0, dropout_prob=0., bias=False, non_linear='ReLU'): super().__init__() internal_channels = in_channels // internal_ratio # Main branch - max pooling followed by feature map (channels) padding self.main_conv1 = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=bias), nn.BatchNorm2d(out_channels)) # Remember that the stride is the same as the kernel_size, just like # the max pooling layers # self.main_unpool1 = nn.MaxUnpool2d(kernel_size=2) # Extension branch - 1x1 convolution, followed by a regular, dilated or # asymmetric convolution, followed by another 1x1 convolution. Number # of channels is doubled. # 1x1 projection convolution with stride 1 self.ext_conv1 = nn.Sequential( nn.Conv2d(in_channels, internal_channels, kernel_size=1, bias=bias), nn.BatchNorm2d(internal_channels), NON_LINEARITY[non_linear] ) # Transposed convolution self.ext_conv2 = nn.Sequential( nn.ConvTranspose2d(internal_channels, internal_channels, kernel_size=kernel_size, stride=2, padding=padding, output_padding=0, bias=bias), nn.BatchNorm2d(internal_channels), NON_LINEARITY[non_linear] ) # 1x1 expansion convolution self.ext_conv3 = nn.Sequential( nn.Conv2d(internal_channels, out_channels, kernel_size=1, bias=bias), nn.BatchNorm2d(out_channels), NON_LINEARITY[non_linear] ) self.ext_regul = nn.Dropout2d(p=dropout_prob) # PReLU layer to apply after concatenating the branches self.out_prelu = NON_LINEARITY[non_linear] def forward(self, x, x_pre): # Main branch shortcut # here different origin paper, Fig 4 contradict to Fig 9 main = x + x_pre main = self.main_conv1(main) # 2. conv first, follow up main = F.interpolate(main, scale_factor=2, mode="bilinear", align_corners=True) # 1. up first, follow conv # main = self.main_conv1(main) # Extension branch ext = self.ext_conv1(x) ext = self.ext_conv2(ext) ext = self.ext_conv3(ext) ext = self.ext_regul(ext) # Add main and extension branches out = self.out_prelu(main + ext) return out class DilatedBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, dropout_prob=0., bias=False, non_linear='ReLU'): super(DilatedBlock, self).__init__() self.relu = NON_LINEARITY[non_linear] self.internal_channels = in_channels // 4 # compress conv self.conv1 = nn.Conv2d(in_channels, self.internal_channels, 1, bias=bias) self.conv1_bn = nn.BatchNorm2d(self.internal_channels) # a relu self.conv2 = nn.Conv2d(self.internal_channels, self.internal_channels, kernel_size, stride, padding=int((kernel_size - 1) / 2 * dilation), dilation=dilation, groups=1, bias=bias) self.conv2_bn = nn.BatchNorm2d(self.internal_channels) # a relu self.conv4 = nn.Conv2d(self.internal_channels, out_channels, 1, bias=bias) self.conv4_bn = nn.BatchNorm2d(out_channels) self.regul = nn.Dropout2d(p=dropout_prob) def forward(self, x): residual = x main = self.relu(self.conv1_bn(self.conv1(x))) main = self.relu(self.conv2_bn(self.conv2(main))) main = self.conv4_bn(self.conv4(main)) main = self.regul(main) out = self.relu(torch.add(main, residual)) return out class Factorized_Block(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, dilation=1, dropout_prob=0., bias=False, non_linear='ReLU'): super(Factorized_Block, self).__init__() self.relu = NON_LINEARITY[non_linear] self.internal_channels = in_channels // 4 self.compress_conv1 = nn.Conv2d(in_channels, self.internal_channels, 1, padding=0, bias=bias) self.conv1_bn = nn.BatchNorm2d(self.internal_channels) # here is relu self.conv2_1 = nn.Conv2d(self.internal_channels, self.internal_channels, (kernel_size, 1), stride=(stride, 1), padding=(int((kernel_size - 1) / 2 * dilation), 0), dilation=(dilation, 1), bias=bias) self.conv2_1_bn = nn.BatchNorm2d(self.internal_channels) self.conv2_2 = nn.Conv2d(self.internal_channels, self.internal_channels, (1, kernel_size), stride=(1, stride), padding=(0, int((kernel_size - 1) / 2 * dilation)), dilation=(1, dilation), bias=bias) self.conv2_2_bn = nn.BatchNorm2d(self.internal_channels) # here is relu self.extend_conv3 = nn.Conv2d(self.internal_channels, out_channels, 1, padding=0, bias=bias) self.conv3_bn = nn.BatchNorm2d(out_channels) self.regul = nn.Dropout2d(p=dropout_prob) def forward(self, x): residual = x main = self.relu((self.conv1_bn(self.compress_conv1(x)))) main = self.relu(self.conv2_1_bn(self.conv2_1(main))) main = self.relu(self.conv2_2_bn(self.conv2_2(main))) main = self.conv3_bn(self.extend_conv3(main)) main = self.regul(main) out = self.relu((torch.add(residual, main))) return out class FSSNet(nn.Module): def __init__(self, classes): super().__init__() self.initial_block = InitialBlock(3, 16) # Stage 1 - Encoder self.downsample1_0 = DownsamplingBottleneck(16, 64, padding=1, dropout_prob=0.03) self.factorized1_1 = Factorized_Block(64, 64, dropout_prob=0.03) self.factorized1_2 = Factorized_Block(64, 64, dropout_prob=0.03) self.factorized1_3 = Factorized_Block(64, 64, dropout_prob=0.03) self.factorized1_4 = Factorized_Block(64, 64, dropout_prob=0.03) # Stage 2 - Encoder self.downsample2_0 = DownsamplingBottleneck(64, 128, padding=1, dropout_prob=0.3) self.dilated2_1 = DilatedBlock(128, 128, dilation=2, dropout_prob=0.3) self.dilated2_2 = DilatedBlock(128, 128, dilation=5, dropout_prob=0.3) self.dilated2_3 = DilatedBlock(128, 128, dilation=9, dropout_prob=0.3) self.dilated2_4 = DilatedBlock(128, 128, dilation=2, dropout_prob=0.3) self.dilated2_5 = DilatedBlock(128, 128, dilation=5, dropout_prob=0.3) self.dilated2_6 = DilatedBlock(128, 128, dilation=9, dropout_prob=0.3) # Stage 4 - Decoder self.upsample4_0 = UpsamplingBottleneck(128, 64, dropout_prob=0.3) self.bottleneck4_1 = DilatedBlock(64, 64, dropout_prob=0.3) self.bottleneck4_2 = DilatedBlock(64, 64, dropout_prob=0.3) # Stage 5 - Decoder self.upsample5_0 = UpsamplingBottleneck(64, 16, dropout_prob=0.3) self.bottleneck5_1 = DilatedBlock(16, 16, dropout_prob=0.3) self.bottleneck5_2 = DilatedBlock(16, 16, dropout_prob=0.3) self.transposed_conv = nn.ConvTranspose2d(16, classes, kernel_size=3, stride=2, padding=1, output_padding=1, bias=False) def forward(self, x): # Initial block # Initial block x = self.initial_block(x) # Encoder - Block 1 x_1= self.downsample1_0(x) x = self.factorized1_1(x_1) x = self.factorized1_2(x) x = self.factorized1_3(x) x = self.factorized1_4(x) # Encoder - Block 2 x_2 = self.downsample2_0(x) # print(x_2.shape) x = self.dilated2_1(x_2) x = self.dilated2_2(x) x = self.dilated2_3(x) x = self.dilated2_4(x) x = self.dilated2_5(x) x = self.dilated2_6(x) # print(x.shape) # Decoder - Block 3 x = self.upsample4_0(x, x_2) x = self.bottleneck4_1(x) x = self.bottleneck4_2(x) # Decoder - Block 4 x = self.upsample5_0(x, x_1) x = self.bottleneck5_1(x) x = self.bottleneck5_2(x) # Fullconv - DeConv x = self.transposed_conv(x) return x """print layers and params of network""" if __name__ == '__main__': device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = FSSNet(classes=19).to(device) summary(model,(3,512,1024))
39.71
128
0.629396
[ "MIT" ]
Abdul-Nasir11/Efficient-Segmentation-Networks
model/FSSNet.py
11,913
Python
# -*- coding: utf-8 -*- # ***************************************************************************** # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # See NOTICE file for details. # # ***************************************************************************** import os from setuptools.command.build_ext import build_ext import sys import subprocess import distutils.cmd import distutils.log from distutils.errors import DistutilsPlatformError from distutils.dir_util import copy_tree import glob import re import shlex import shutil import sysconfig # This setup option constructs a prototype Makefile suitable for compiling # the _jpype extension module. It is intended to help with development # of the extension library on unix systems. This works only on unix systems. # # To create a Makefile use # python setup.py build_ext --makefile # # Then edit with the desired options class FeatureNotice(Warning): """ indicate notices about features """ class Makefile(object): compiler_type = "unix" def __init__(self, actual): self.actual = actual self.compile_command = None self.compile_pre = None self.compile_post = None self.objects = [] self.sources = [] def captureCompile(self, x): command = x[0] x = x[1:] includes = [i for i in x if i.startswith("-I")] x = [i for i in x if not i.startswith("-I")] i0 = None i1 = None for i, v in enumerate(x): if v == '-c': i1 = i elif v == '-o': i0 = i pre = set(x[:i1]) post = x[i0 + 2:] self.compile_command = command self.compile_pre = pre self.compile_post = post self.includes = includes self.sources.append(x[i1 + 1]) def captureLink(self, x): self.link_command = x[0] x = x[1:] i = x.index("-o") self.library = x[i + 1] del x[i] del x[i] self.objects = [i for i in x if i.endswith(".o")] self.link_options = [i for i in x if not i.endswith(".o")] u = self.objects[0].split("/") self.build_dir = "/".join(u[:2]) def compile(self, *args, **kwargs): self.actual.spawn = self.captureCompile rc = self.actual.compile(*args, **kwargs) return rc def _need_link(self, *args): return True def link_shared_object(self, *args, **kwargs): self.actual._need_link = self._need_link self.actual.spawn = self.captureLink rc = self.actual.link_shared_object(*args, **kwargs) self.write() return rc def detect_language(self, x): return self.actual.detect_language(x) def write(self): print("Write makefile") library = os.path.basename(self.library) link_command = self.link_command compile_command = self.compile_command compile_pre = " ".join(list(self.compile_pre)) compile_post = " ".join(list(self.compile_post)) build = self.build_dir link_flags = " ".join(self.link_options) includes = " ".join(self.includes) sources = " \\\n ".join(self.sources) with open("Makefile", "w") as fd: print("LIB = %s" % library, file=fd) print("CC = %s" % compile_command, file=fd) print("LINK = %s" % link_command, file=fd) print("CFLAGS = %s %s" % (compile_pre, compile_post), file=fd) print("INCLUDES = %s" % includes, file=fd) print("BUILD = %s" % build, file=fd) print("LINKFLAGS = %s" % link_flags, file=fd) print("SRCS = %s" % sources, file=fd) print(""" all: $(LIB) rwildcard=$(foreach d,$(wildcard $(1:=/*)),$(call rwildcard,$d,$2) $(filter $(subst *,%,$2),$d)) #build/src/jp_thunk.cpp: $(call rwildcard,native/java,*.java) # python setup.py build_thunk DEPDIR = build/deps $(DEPDIR): ; @mkdir -p $@ DEPFILES := $(SRCS:%.cpp=$(DEPDIR)/%.d) deps: $(DEPFILES) %/: echo $@ $(DEPDIR)/%.d: %.cpp mkdir -p $(dir $@) $(CC) $(INCLUDES) -MT $(patsubst $(DEPDIR)%,'$$(BUILD)%',$(patsubst %.d,%.o,$@)) -MM $< -o $@ OBJS = $(addprefix $(BUILD)/, $(SRCS:.cpp=.o)) $(BUILD)/%.o: %.cpp mkdir -p $(dir $@) $(CC) $(CFLAGS) $(INCLUDES) -c $< -o $@ $(LIB): $(OBJS) $(LINK) $(OBJS) $(LINKFLAGS) -o $@ -include $(DEPFILES) """, file=fd) # Customization of the build_ext class BuildExtCommand(build_ext): """ Override some behavior in extension building: 1. handle compiler flags for different compilers via a dictionary. 2. try to disable warning -Wstrict-prototypes is valid for C/ObjC but not for C++ """ user_options = build_ext.user_options + [ ('android', None, 'configure for android'), ('makefile', None, 'Build a makefile for extensions'), ('jar', None, 'Build the jar only'), ] def initialize_options(self, *args): """omit -Wstrict-prototypes from CFLAGS since its only valid for C code.""" self.android = False self.makefile = False self.jar = False import distutils.sysconfig cfg_vars = distutils.sysconfig.get_config_vars() replacement = { '-Wstrict-prototypes': '', '-Wimplicit-function-declaration': '', } tracing = self.distribution.enable_tracing # Arguments to remove so we set debugging and optimization level remove_args = ['-O0', '-O1', '-O2', '-O3', '-g'] for k, v in cfg_vars.items(): if not isinstance(v, str): continue if not k == "OPT" and not "FLAGS" in k: continue args = v.split() for r in remove_args: args = list(filter((r).__ne__, args)) cfg_vars[k] = " ".join(args) super().initialize_options() def _set_cflags(self): # set compiler flags c = self.compiler.compiler_type jpypeLib = [i for i in self.extensions if i.name == '_jpype'][0] if c == 'unix' and self.distribution.enable_coverage: jpypeLib.extra_compile_args.extend( ['-ggdb', '--coverage', '-ftest-coverage']) jpypeLib.extra_compile_args = ['-O0' if x == '-O2' else x for x in jpypeLib.extra_compile_args] jpypeLib.extra_link_args.extend(['--coverage']) if c == 'unix' and self.distribution.enable_tracing: jpypeLib.extra_compile_args = ['-O0' if x == '-O2' else x for x in jpypeLib.extra_compile_args] def build_extensions(self): if self.makefile: self.compiler = Makefile(self.compiler) self.force = True jpypeLib = [i for i in self.extensions if i.name == '_jpype'][0] tracing = self.distribution.enable_tracing self._set_cflags() if tracing: jpypeLib.define_macros.append(('JP_TRACING_ENABLE', 1)) coverage = self.distribution.enable_coverage if coverage: jpypeLib.define_macros.append(('JP_INSTRUMENTATION', 1)) # has to be last call print("Call build extensions") super().build_extensions() def build_extension(self, ext): if ext.language == "java": return self.build_java_ext(ext) if self.jar: return print("Call build ext") return super().build_extension(ext) def copy_extensions_to_source(self): build_py = self.get_finalized_command('build_py') for ext in self.extensions: if ext.language == "java": fullname = self.get_ext_fullname("JAVA") filename = ext.name + ".jar" else: fullname = self.get_ext_fullname(ext.name) filename = self.get_ext_filename(fullname) modpath = fullname.split('.') package = '.'.join(modpath[:-1]) package_dir = build_py.get_package_dir(package) dest_filename = os.path.join(package_dir, os.path.basename(filename)) src_filename = os.path.join(self.build_lib, filename) # Always copy, even if source is older than destination, to ensure # that the right extensions for the current Python/platform are # used. distutils.file_util.copy_file( src_filename, dest_filename, verbose=self.verbose, dry_run=self.dry_run ) if ext._needs_stub: self.write_stub(package_dir or os.curdir, ext, True) def build_java_ext(self, ext): """Run command.""" java = self.distribution.enable_build_jar javac = "javac" try: if os.path.exists(os.path.join(os.environ['JAVA_HOME'], 'bin', 'javac')): javac = '"%s"' % os.path.join(os.environ['JAVA_HOME'], 'bin', 'javac') except KeyError: pass jar = "jar" try: if os.path.exists(os.path.join(os.environ['JAVA_HOME'], 'bin', 'jar')): jar = '"%s"' % os.path.join(os.environ['JAVA_HOME'], 'bin', 'jar') except KeyError: pass # Try to use the cache if we are not requested build if not java: src = os.path.join('native', 'jars') dest = os.path.dirname(self.get_ext_fullpath("JAVA")) if os.path.exists(src): distutils.log.info("Using Jar cache") copy_tree(src, dest) return classpath = "." if ext.libraries: classpath = os.path.pathsep.join(ext.libraries) distutils.log.info( "Jar cache is missing, using --enable-build-jar to recreate it.") coverage = self.distribution.enable_coverage target_version = "1.8" # build the jar try: dirname = os.path.dirname(self.get_ext_fullpath("JAVA")) jarFile = os.path.join(dirname, ext.name + ".jar") build_dir = os.path.join(self.build_temp, ext.name, "classes") os.makedirs(build_dir, exist_ok=True) os.makedirs(dirname, exist_ok=True) cmd1 = shlex.split('%s -cp "%s" -d "%s" -g:none -source %s -target %s' % (javac, classpath, build_dir, target_version, target_version)) cmd1.extend(ext.sources) debug = "-g:none" if coverage: debug = "-g:lines,vars,source" os.makedirs("build/classes", exist_ok=True) self.announce(" %s" % " ".join(cmd1), level=distutils.log.INFO) subprocess.check_call(cmd1) try: for file in glob.iglob("native/java/**/*.*", recursive=True): if file.endswith(".java") or os.path.isdir(file): continue p = os.path.join(build_dir, os.path.relpath(file, "native/java")) print("Copy file", file, p) shutil.copyfile(file, p) except Exception as ex: print("FAIL", ex) pass cmd3 = shlex.split( '%s cvf "%s" -C "%s" .' % (jar, jarFile, build_dir)) self.announce(" %s" % " ".join(cmd3), level=distutils.log.INFO) subprocess.check_call(cmd3) except subprocess.CalledProcessError as exc: distutils.log.error(exc.output) raise DistutilsPlatformError("Error executing {}".format(exc.cmd))
35.265306
107
0.567626
[ "Apache-2.0" ]
altendky/jpype
setupext/build_ext.py
12,096
Python
"""Policy compliance This checks that recipes are in accordance with policy (as far as it can be mechanically checked). """ import glob import os from . import LintCheck, ERROR, WARNING, INFO from bioconda_utils import utils class uses_vcs_url(LintCheck): """The recipe downloads source from a VCS Please build from source archives and don't use the ``git_url``, ``svn_url`` or ``hg_url`` feature of conda. """ def check_source(self, source, section): for vcs in ('git', 'svn', 'hg'): if f"{vcs}_url" in source: self.message(section=f"{section}/{vcs}_url") class folder_and_package_name_must_match(LintCheck): """The recipe folder and package name do not match. For clarity, the name of the folder the ``meta.yaml`` resides, in and the name of the toplevel package should match. """ def check_recipe(self, recipe): recipe_base_folder, _, _ = recipe.reldir.partition('/') if recipe.name != recipe_base_folder: self.message(section='package/name') class gpl_requires_license_distributed(LintCheck): """The recipe packages GPL software but is missing copy of license. The GPL requires that a copy of the license accompany all distributions of the software. Please add:: about: license_file: name_of_license_file If the upstream tar ball does not include a copy, please ask the authors of the software to add it to their distribution archive. """ severity = WARNING requires = ["missing_license"] def check_recipe(self, recipe): if 'gpl' in recipe.get('about/license').lower(): if not recipe.get('about/license_file', ''): self.message('about/license') class should_not_use_fn(LintCheck): """The recipe uses source/fn There is no need to specify the filename as the URL should give a name and it will in most cases be unpacked automatically. """ def check_source(self, source, section): if 'fn' in source: self.message(section=section+'/fn') class has_windows_bat_file(LintCheck): """The recipe directory contains a ``bat`` file. Bioconda does not currently build packages for Windows (and has at this time no plans to change this), so these files cannot be tested. Please remove any ``*.bat`` files generated by ``conda skeleton`` from the recipe directory. """ def check_recipe(self, recipe): for fname in glob.glob(os.path.join(recipe.dir, '*.bat')): self.message(fname=fname) class long_summary(LintCheck): """The summary line is rather long Consider using the description field for longer text:: about: summary: Fancy Read Simulator (makes drinks) description: | XYZ is a very fancy read simulator that will not just make coffee while you are waiting but prepare all kinds of exquisite caffeeinated beverages from freshly roasted, single source beans ground to match ambient humidity. This will fit better into the templates listing and describing recipes, which assume the summary to be a title and the description to be one or more paragraphs. """ severity = WARNING max_length = 120 def check_recipe(self, recipe): if len(recipe.get('about/summary', '')) > self.max_length: self.message('about/summary') class cran_packages_to_conda_forge(LintCheck): """CRAN packages not depending on Bioconda should go to Conda-Forge This recipe builds a CRAN package and does not depend on packages from Bioconda. It should therefore be moved to Conda-Forge. """ def check_deps(self, deps): # must have R in run a run dep if 'R' in deps and any('run' in dep for dep in deps['R']): # and all deps satisfied in conda-forge if all(utils.RepoData().get_package_data(name=dep, channels='conda-forge') for dep in deps): self.message()
32.095238
86
0.669387
[ "MIT" ]
JING-XINXING/bioconda-utils
bioconda_utils/lint/check_policy.py
4,044
Python
import numpy as np from gym import utils from gym.envs.mujoco import mujoco_env class EpisodeHopperEnv(mujoco_env.MujocoEnv, utils.EzPickle): def __init__(self): self.t = 0 self.r = 0 mujoco_env.MujocoEnv.__init__(self, 'hopper.xml', 4) utils.EzPickle.__init__(self) def step(self, a): posbefore = self.sim.data.qpos[0] self.do_simulation(a, self.frame_skip) posafter, height, ang = self.sim.data.qpos[0:3] alive_bonus = 1.0 reward = (posafter - posbefore) / self.dt reward += alive_bonus reward -= 1e-3 * np.square(a).sum() s = self.state_vector() done = not (np.isfinite(s).all() and (np.abs(s[2:]) < 100).all() and (height > .7) and (abs(ang) < .2)) ob = self._get_obs() self.t += 1 self.r += reward if done: return_r = self.r self.r = 0 self.t = 0 else: return_r = 0 return ob, return_r, done, {} def _get_obs(self): return np.concatenate([ self.sim.data.qpos.flat[1:], np.clip(self.sim.data.qvel.flat, -10, 10) ]) def reset_model(self): self.t = 0 self.r = 0 qpos = self.init_qpos + self.np_random.uniform(low=-.005, high=.005, size=self.model.nq) qvel = self.init_qvel + self.np_random.uniform(low=-.005, high=.005, size=self.model.nv) self.set_state(qpos, qvel) return self._get_obs() def viewer_setup(self): self.viewer.cam.trackbodyid = 2 self.viewer.cam.distance = self.model.stat.extent * 0.75 self.viewer.cam.lookat[2] = 1.15 self.viewer.cam.elevation = -20
32.735849
96
0.564841
[ "MIT" ]
daochenzha/rapid
rapid/mujoco_envs/episode_hopper.py
1,735
Python
# Copyright (c) 2012 Rackspace Hosting # All Rights Reserved. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # Copyright 2013 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ Cell messaging module. This module defines the different message types that are passed between cells and the methods that they can call when the target cell has been reached. The interface into this module is the MessageRunner class. """ import sys import traceback from eventlet import queue from oslo.config import cfg from oslo import messaging from oslo.serialization import jsonutils from oslo.utils import excutils from oslo.utils import importutils from oslo.utils import timeutils import six from nova.cells import state as cells_state from nova.cells import utils as cells_utils from nova import compute from nova.compute import delete_types from nova.compute import rpcapi as compute_rpcapi from nova.compute import task_states from nova.compute import vm_states from nova.consoleauth import rpcapi as consoleauth_rpcapi from nova import context from nova.db import base from nova import exception from nova.i18n import _, _LE, _LI, _LW from nova.network import model as network_model from nova import objects from nova.objects import base as objects_base from nova.openstack.common import log as logging from nova.openstack.common import uuidutils from nova import rpc from nova import utils cell_messaging_opts = [ cfg.IntOpt('max_hop_count', default=10, help='Maximum number of hops for cells routing.'), cfg.StrOpt('scheduler', default='nova.cells.scheduler.CellsScheduler', help='Cells scheduler to use')] CONF = cfg.CONF CONF.import_opt('name', 'nova.cells.opts', group='cells') CONF.import_opt('call_timeout', 'nova.cells.opts', group='cells') CONF.register_opts(cell_messaging_opts, group='cells') LOG = logging.getLogger(__name__) # Separator used between cell names for the 'full cell name' and routing # path. _PATH_CELL_SEP = cells_utils.PATH_CELL_SEP def _reverse_path(path): """Reverse a path. Used for sending responses upstream.""" path_parts = path.split(_PATH_CELL_SEP) path_parts.reverse() return _PATH_CELL_SEP.join(path_parts) def _response_cell_name_from_path(routing_path, neighbor_only=False): """Reverse the routing_path. If we only want to send to our parent, set neighbor_only to True. """ path = _reverse_path(routing_path) if not neighbor_only or len(path) == 1: return path return _PATH_CELL_SEP.join(path.split(_PATH_CELL_SEP)[:2]) # # Message classes. # class _BaseMessage(object): """Base message class. It defines data that is passed with every single message through every cell. Messages are JSON-ified before sending and turned back into a class instance when being received. Every message has a unique ID. This is used to route responses back to callers. In the future, this might be used to detect receiving the same message more than once. routing_path is updated on every hop through a cell. The current cell name is appended to it (cells are separated by _PATH_CELL_SEP ('!')). This is used to tell if we've reached the target cell and also to determine the source of a message for responses by reversing it. hop_count is incremented and compared against max_hop_count. The only current usefulness of this is to break out of a routing loop if someone has a broken config. fanout means to send to all nova-cells services running in a cell. This is useful for capacity and capability broadcasting as well as making sure responses get back to the nova-cells service that is waiting. """ # Override message_type in a subclass message_type = None base_attrs_to_json = ['message_type', 'ctxt', 'method_name', 'method_kwargs', 'direction', 'need_response', 'fanout', 'uuid', 'routing_path', 'hop_count', 'max_hop_count'] def __init__(self, msg_runner, ctxt, method_name, method_kwargs, direction, need_response=False, fanout=False, uuid=None, routing_path=None, hop_count=0, max_hop_count=None, **kwargs): self.ctxt = ctxt self.resp_queue = None self.msg_runner = msg_runner self.state_manager = msg_runner.state_manager # Copy these. self.base_attrs_to_json = self.base_attrs_to_json[:] # Normally this would just be CONF.cells.name, but going through # the msg_runner allows us to stub it more easily. self.our_path_part = self.msg_runner.our_name self.uuid = uuid if self.uuid is None: self.uuid = uuidutils.generate_uuid() self.method_name = method_name self.method_kwargs = method_kwargs self.direction = direction self.need_response = need_response self.fanout = fanout self.routing_path = routing_path self.hop_count = hop_count if max_hop_count is None: max_hop_count = CONF.cells.max_hop_count self.max_hop_count = max_hop_count self.is_broadcast = False self._append_hop() # Each sub-class should set this when the message is inited self.next_hops = [] self.resp_queue = None self.serializer = objects_base.NovaObjectSerializer() def __repr__(self): _dict = self._to_dict() _dict.pop('method_kwargs') return "<%s: %s>" % (self.__class__.__name__, _dict) def _append_hop(self): """Add our hop to the routing_path.""" routing_path = (self.routing_path and self.routing_path + _PATH_CELL_SEP or '') self.routing_path = routing_path + self.our_path_part self.hop_count += 1 def _process_locally(self): """Its been determined that we should process this message in this cell. Go through the MessageRunner to call the appropriate method for this message. Catch the response and/or exception and encode it within a Response instance. Return it so the caller can potentially return it to another cell... or return it to a caller waiting in this cell. """ try: resp_value = self.msg_runner._process_message_locally(self) failure = False except Exception as exc: resp_value = sys.exc_info() failure = True LOG.exception(_LE("Error processing message locally: %(exc)s"), {'exc': exc}) return Response(self.routing_path, resp_value, failure) def _setup_response_queue(self): """Shortcut to creating a response queue in the MessageRunner.""" self.resp_queue = self.msg_runner._setup_response_queue(self) def _cleanup_response_queue(self): """Shortcut to deleting a response queue in the MessageRunner.""" if self.resp_queue: self.msg_runner._cleanup_response_queue(self) self.resp_queue = None def _wait_for_json_responses(self, num_responses=1): """Wait for response(s) to be put into the eventlet queue. Since each queue entry actually contains a list of JSON-ified responses, combine them all into a single list to return. Destroy the eventlet queue when done. """ if not self.resp_queue: # Source is not actually expecting a response return responses = [] wait_time = CONF.cells.call_timeout try: for x in xrange(num_responses): json_responses = self.resp_queue.get(timeout=wait_time) responses.extend(json_responses) except queue.Empty: raise exception.CellTimeout() finally: self._cleanup_response_queue() return responses def _send_json_responses(self, json_responses, neighbor_only=False, fanout=False): """Send list of responses to this message. Responses passed here are JSON-ified. Targeted messages have a single response while Broadcast messages may have multiple responses. If this cell was the source of the message, these responses will be returned from self.process(). Otherwise, we will route the response to the source of the request. If 'neighbor_only' is True, the response will be sent to the neighbor cell, not the original requester. Broadcast messages get aggregated at each hop, so neighbor_only will be True for those messages. """ if not self.need_response: return if self.source_is_us(): responses = [] for json_response in json_responses: responses.append(Response.from_json(json_response)) return responses direction = self.direction == 'up' and 'down' or 'up' response_kwargs = {'orig_message': self.to_json(), 'responses': json_responses} target_cell = _response_cell_name_from_path(self.routing_path, neighbor_only=neighbor_only) response = self.msg_runner._create_response_message(self.ctxt, direction, target_cell, self.uuid, response_kwargs, fanout=fanout) response.process() def _send_response(self, response, neighbor_only=False): """Send a response to this message. If the source of the request was ourselves, just return the response. It'll be passed back to the caller of self.process(). See DocString for _send_json_responses() as it handles most of the real work for this method. 'response' is an instance of Response class. """ if not self.need_response: return if self.source_is_us(): return response self._send_json_responses([response.to_json()], neighbor_only=neighbor_only) def _send_response_from_exception(self, exc_info): """Take an exception as returned from sys.exc_info(), encode it in a Response, and send it. """ response = Response(self.routing_path, exc_info, True) return self._send_response(response) def _to_dict(self): """Convert a message to a dictionary. Only used internally.""" _dict = {} for key in self.base_attrs_to_json: _dict[key] = getattr(self, key) return _dict def to_json(self): """Convert a message into JSON for sending to a sibling cell.""" _dict = self._to_dict() # Convert context to dict. _dict['ctxt'] = _dict['ctxt'].to_dict() # NOTE(comstud): 'method_kwargs' needs special serialization # because it may contain objects. method_kwargs = _dict['method_kwargs'] for k, v in method_kwargs.items(): method_kwargs[k] = self.serializer.serialize_entity(self.ctxt, v) return jsonutils.dumps(_dict) def source_is_us(self): """Did this cell create this message?""" return self.routing_path == self.our_path_part def process(self): """Process a message. Deal with it locally and/or forward it to a sibling cell. Override in a subclass. """ raise NotImplementedError() class _TargetedMessage(_BaseMessage): """A targeted message is a message that is destined for a specific single cell. 'target_cell' can be a full cell name like 'api!child-cell' or it can be an instance of the CellState class if the target is a neighbor cell. """ message_type = 'targeted' def __init__(self, msg_runner, ctxt, method_name, method_kwargs, direction, target_cell, **kwargs): super(_TargetedMessage, self).__init__(msg_runner, ctxt, method_name, method_kwargs, direction, **kwargs) if isinstance(target_cell, cells_state.CellState): # Neighbor cell or ourselves. Convert it to a 'full path'. if target_cell.is_me: target_cell = self.our_path_part else: target_cell = '%s%s%s' % (self.our_path_part, _PATH_CELL_SEP, target_cell.name) self.target_cell = target_cell self.base_attrs_to_json.append('target_cell') def _get_next_hop(self): """Return the cell name for the next hop. If the next hop is the current cell, return None. """ if self.target_cell == self.routing_path: return self.state_manager.my_cell_state target_cell = self.target_cell routing_path = self.routing_path current_hops = routing_path.count(_PATH_CELL_SEP) next_hop_num = current_hops + 1 dest_hops = target_cell.count(_PATH_CELL_SEP) if dest_hops < current_hops: reason_args = {'target_cell': target_cell, 'routing_path': routing_path} reason = _("destination is %(target_cell)s but routing_path " "is %(routing_path)s") % reason_args raise exception.CellRoutingInconsistency(reason=reason) dest_name_parts = target_cell.split(_PATH_CELL_SEP) if (_PATH_CELL_SEP.join(dest_name_parts[:next_hop_num]) != routing_path): reason_args = {'target_cell': target_cell, 'routing_path': routing_path} reason = _("destination is %(target_cell)s but routing_path " "is %(routing_path)s") % reason_args raise exception.CellRoutingInconsistency(reason=reason) next_hop_name = dest_name_parts[next_hop_num] if self.direction == 'up': next_hop = self.state_manager.get_parent_cell(next_hop_name) else: next_hop = self.state_manager.get_child_cell(next_hop_name) if not next_hop: cell_type = 'parent' if self.direction == 'up' else 'child' reason_args = {'cell_type': cell_type, 'target_cell': target_cell} reason = _("Unknown %(cell_type)s when routing to " "%(target_cell)s") % reason_args raise exception.CellRoutingInconsistency(reason=reason) return next_hop def process(self): """Process a targeted message. This is called for all cells that touch this message. If the local cell is the one that created this message, we reply directly with a Response instance. If the local cell is not the target, an eventlet queue is created and we wait for the response to show up via another thread receiving the Response back. Responses to targeted messages are routed directly back to the source. No eventlet queues are created in intermediate hops. All exceptions for processing the message across the whole routing path are caught and encoded within the Response and returned to the caller. """ try: next_hop = self._get_next_hop() except Exception as exc: exc_info = sys.exc_info() LOG.exception(_LE("Error locating next hop for message: %(exc)s"), {'exc': exc}) return self._send_response_from_exception(exc_info) if next_hop.is_me: # Final destination. response = self._process_locally() return self._send_response(response) # Need to forward via neighbor cell. if self.need_response and self.source_is_us(): # A response is needed and the source of the message is # this cell. Create the eventlet queue. self._setup_response_queue() wait_for_response = True else: wait_for_response = False try: # This is inside the try block, so we can encode the # exception and return it to the caller. if self.hop_count >= self.max_hop_count: raise exception.CellMaxHopCountReached( hop_count=self.hop_count) next_hop.send_message(self) except Exception as exc: exc_info = sys.exc_info() err_str = _("Failed to send message to cell: %(next_hop)s: " "%(exc)s") LOG.exception(err_str, {'exc': exc, 'next_hop': next_hop}) self._cleanup_response_queue() return self._send_response_from_exception(exc_info) if wait_for_response: # Targeted messages only have 1 response. remote_response = self._wait_for_json_responses()[0] return Response.from_json(remote_response) class _BroadcastMessage(_BaseMessage): """A broadcast message. This means to call a method in every single cell going in a certain direction. """ message_type = 'broadcast' def __init__(self, msg_runner, ctxt, method_name, method_kwargs, direction, run_locally=True, **kwargs): super(_BroadcastMessage, self).__init__(msg_runner, ctxt, method_name, method_kwargs, direction, **kwargs) # The local cell creating this message has the option # to be able to process the message locally or not. self.run_locally = run_locally self.is_broadcast = True def _get_next_hops(self): """Set the next hops and return the number of hops. The next hops may include ourself. """ if self.hop_count >= self.max_hop_count: return [] if self.direction == 'down': return self.state_manager.get_child_cells() else: return self.state_manager.get_parent_cells() def _send_to_cells(self, target_cells): """Send a message to multiple cells.""" for cell in target_cells: cell.send_message(self) def _send_json_responses(self, json_responses): """Responses to broadcast messages always need to go to the neighbor cell from which we received this message. That cell aggregates the responses and makes sure to forward them to the correct source. """ return super(_BroadcastMessage, self)._send_json_responses( json_responses, neighbor_only=True, fanout=True) def process(self): """Process a broadcast message. This is called for all cells that touch this message. The message is sent to all cells in the certain direction and the creator of this message has the option of whether or not to process it locally as well. If responses from all cells are required, each hop creates an eventlet queue and waits for responses from its immediate neighbor cells. All responses are then aggregated into a single list and are returned to the neighbor cell until the source is reached. When the source is reached, a list of Response instances are returned to the caller. All exceptions for processing the message across the whole routing path are caught and encoded within the Response and returned to the caller. It is possible to get a mix of successful responses and failure responses. The caller is responsible for dealing with this. """ try: next_hops = self._get_next_hops() except Exception as exc: exc_info = sys.exc_info() LOG.exception(_LE("Error locating next hops for message: %(exc)s"), {'exc': exc}) return self._send_response_from_exception(exc_info) # Short circuit if we don't need to respond if not self.need_response: if self.run_locally: self._process_locally() self._send_to_cells(next_hops) return # We'll need to aggregate all of the responses (from ourself # and our sibling cells) into 1 response try: self._setup_response_queue() self._send_to_cells(next_hops) except Exception as exc: # Error just trying to send to cells. Send a single response # with the failure. exc_info = sys.exc_info() LOG.exception(_LE("Error sending message to next hops: %(exc)s"), {'exc': exc}) self._cleanup_response_queue() return self._send_response_from_exception(exc_info) if self.run_locally: # Run locally and store the Response. local_response = self._process_locally() else: local_response = None try: remote_responses = self._wait_for_json_responses( num_responses=len(next_hops)) except Exception as exc: # Error waiting for responses, most likely a timeout. # Send a single response back with the failure. exc_info = sys.exc_info() err_str = _("Error waiting for responses from neighbor cells: " "%(exc)s") LOG.exception(err_str, {'exc': exc}) return self._send_response_from_exception(exc_info) if local_response: remote_responses.append(local_response.to_json()) return self._send_json_responses(remote_responses) class _ResponseMessage(_TargetedMessage): """A response message is really just a special targeted message, saying to call 'parse_responses' when we reach the source of a 'call'. The 'fanout' attribute on this message may be true if we're responding to a broadcast or if we're about to respond to the source of an original target message. Because multiple nova-cells services may be running within a cell, we need to make sure the response gets back to the correct one, so we have to fanout. """ message_type = 'response' def __init__(self, msg_runner, ctxt, method_name, method_kwargs, direction, target_cell, response_uuid, **kwargs): super(_ResponseMessage, self).__init__(msg_runner, ctxt, method_name, method_kwargs, direction, target_cell, **kwargs) self.response_uuid = response_uuid self.base_attrs_to_json.append('response_uuid') def process(self): """Process a response. If the target is the local cell, process the response here. Otherwise, forward it to where it needs to go. """ next_hop = self._get_next_hop() if next_hop.is_me: self._process_locally() return if self.fanout is False: # Really there's 1 more hop on each of these below, but # it doesn't matter for this logic. target_hops = self.target_cell.count(_PATH_CELL_SEP) current_hops = self.routing_path.count(_PATH_CELL_SEP) if current_hops + 1 == target_hops: # Next hop is the target.. so we must fanout. See # DocString above. self.fanout = True next_hop.send_message(self) # # Methods that may be called when processing messages after reaching # a target cell. # class _BaseMessageMethods(base.Base): """Base class for defining methods by message types.""" def __init__(self, msg_runner): super(_BaseMessageMethods, self).__init__() self.msg_runner = msg_runner self.state_manager = msg_runner.state_manager self.compute_api = compute.API() self.compute_rpcapi = compute_rpcapi.ComputeAPI() self.consoleauth_rpcapi = consoleauth_rpcapi.ConsoleAuthAPI() self.host_api = compute.HostAPI() def task_log_get_all(self, message, task_name, period_beginning, period_ending, host, state): """Get task logs from the DB. The message could have directly targeted this cell, or it could have been a broadcast message. If 'host' is not None, filter by host. If 'state' is not None, filter by state. """ task_logs = self.db.task_log_get_all(message.ctxt, task_name, period_beginning, period_ending, host=host, state=state) return jsonutils.to_primitive(task_logs) class _ResponseMessageMethods(_BaseMessageMethods): """Methods that are called from a ResponseMessage. There's only 1 method (parse_responses) and it is called when the message reaches the source of a 'call'. All we do is stuff the response into the eventlet queue to signal the caller that's waiting. """ def parse_responses(self, message, orig_message, responses): self.msg_runner._put_response(message.response_uuid, responses) class _TargetedMessageMethods(_BaseMessageMethods): """These are the methods that can be called when routing a message to a specific cell. """ def __init__(self, *args, **kwargs): super(_TargetedMessageMethods, self).__init__(*args, **kwargs) def build_instances(self, message, build_inst_kwargs): """Parent cell told us to schedule new instance creation.""" self.msg_runner.scheduler.build_instances(message, build_inst_kwargs) def run_compute_api_method(self, message, method_info): """Run a method in the compute api class.""" method = method_info['method'] fn = getattr(self.compute_api, method, None) if not fn: detail = _("Unknown method '%(method)s' in compute API") raise exception.CellServiceAPIMethodNotFound( detail=detail % {'method': method}) args = list(method_info['method_args']) # 1st arg is instance_uuid that we need to turn into the # instance object. instance_uuid = args[0] try: instance = self.db.instance_get_by_uuid(message.ctxt, instance_uuid) except exception.InstanceNotFound: with excutils.save_and_reraise_exception(): # Must be a race condition. Let's try to resolve it by # telling the top level cells that this instance doesn't # exist. instance = {'uuid': instance_uuid} self.msg_runner.instance_destroy_at_top(message.ctxt, instance) # FIXME(comstud): This is temporary/transitional until I can # work out a better way to pass full objects down. EXPECTS_OBJECTS = ['start', 'stop', 'delete_instance_metadata', 'update_instance_metadata', 'shelve', 'unshelve'] if method in EXPECTS_OBJECTS: inst_obj = objects.Instance() expected_attrs = None # shelve and unshelve requires 'info_cache' and 'metadata', # because of this fetching same from database. if method in ['shelve', 'unshelve']: expected_attrs = ['metadata', 'info_cache'] inst_obj._from_db_object(message.ctxt, inst_obj, instance, expected_attrs=expected_attrs) instance = inst_obj args[0] = instance return fn(message.ctxt, *args, **method_info['method_kwargs']) def update_capabilities(self, message, cell_name, capabilities): """A child cell told us about their capabilities.""" LOG.debug("Received capabilities from child cell " "%(cell_name)s: %(capabilities)s", {'cell_name': cell_name, 'capabilities': capabilities}) self.state_manager.update_cell_capabilities(cell_name, capabilities) # Go ahead and update our parents now that a child updated us self.msg_runner.tell_parents_our_capabilities(message.ctxt) def update_capacities(self, message, cell_name, capacities): """A child cell told us about their capacity.""" LOG.debug("Received capacities from child cell " "%(cell_name)s: %(capacities)s", {'cell_name': cell_name, 'capacities': capacities}) self.state_manager.update_cell_capacities(cell_name, capacities) # Go ahead and update our parents now that a child updated us self.msg_runner.tell_parents_our_capacities(message.ctxt) def announce_capabilities(self, message): """A parent cell has told us to send our capabilities, so let's do so. """ self.msg_runner.tell_parents_our_capabilities(message.ctxt) def announce_capacities(self, message): """A parent cell has told us to send our capacity, so let's do so. """ self.msg_runner.tell_parents_our_capacities(message.ctxt) def service_get_by_compute_host(self, message, host_name): """Return the service entry for a compute host.""" service = self.db.service_get_by_compute_host(message.ctxt, host_name) return jsonutils.to_primitive(service) def service_update(self, message, host_name, binary, params_to_update): """Used to enable/disable a service. For compute services, setting to disabled stops new builds arriving on that host. :param host_name: the name of the host machine that the service is running :param binary: The name of the executable that the service runs as :param params_to_update: eg. {'disabled': True} """ return jsonutils.to_primitive( self.host_api.service_update(message.ctxt, host_name, binary, params_to_update)) def service_delete(self, message, service_id): """Deletes the specified service.""" self.host_api._service_delete(message.ctxt, service_id) def proxy_rpc_to_manager(self, message, host_name, rpc_message, topic, timeout): """Proxy RPC to the given compute topic.""" # Check that the host exists. self.db.service_get_by_compute_host(message.ctxt, host_name) topic, _sep, server = topic.partition('.') cctxt = rpc.get_client(messaging.Target(topic=topic, server=server or None)) method = rpc_message['method'] kwargs = rpc_message['args'] if message.need_response: cctxt = cctxt.prepare(timeout=timeout) return cctxt.call(message.ctxt, method, **kwargs) else: cctxt.cast(message.ctxt, method, **kwargs) def compute_node_get(self, message, compute_id): """Get compute node by ID.""" compute_node = self.db.compute_node_get(message.ctxt, compute_id) return jsonutils.to_primitive(compute_node) def actions_get(self, message, instance_uuid): actions = self.db.actions_get(message.ctxt, instance_uuid) return jsonutils.to_primitive(actions) def action_get_by_request_id(self, message, instance_uuid, request_id): action = self.db.action_get_by_request_id(message.ctxt, instance_uuid, request_id) return jsonutils.to_primitive(action) def action_events_get(self, message, action_id): action_events = self.db.action_events_get(message.ctxt, action_id) return jsonutils.to_primitive(action_events) def validate_console_port(self, message, instance_uuid, console_port, console_type): """Validate console port with child cell compute node.""" # 1st arg is instance_uuid that we need to turn into the # instance object. try: instance = self.db.instance_get_by_uuid(message.ctxt, instance_uuid) except exception.InstanceNotFound: with excutils.save_and_reraise_exception(): # Must be a race condition. Let's try to resolve it by # telling the top level cells that this instance doesn't # exist. instance = {'uuid': instance_uuid} self.msg_runner.instance_destroy_at_top(message.ctxt, instance) return self.compute_rpcapi.validate_console_port(message.ctxt, instance, console_port, console_type) def get_migrations(self, message, filters): return self.compute_api.get_migrations(message.ctxt, filters) def instance_update_from_api(self, message, instance, expected_vm_state, expected_task_state, admin_state_reset): """Update an instance in this cell.""" if not admin_state_reset: # NOTE(comstud): We don't want to nuke this cell's view # of vm_state and task_state unless it's a forced reset # via admin API. instance.obj_reset_changes(['vm_state', 'task_state']) # NOTE(alaski): A cell should be authoritative for its system_metadata # and metadata so we don't want to sync it down from the api. instance.obj_reset_changes(['metadata', 'system_metadata']) instance.save(message.ctxt, expected_vm_state=expected_vm_state, expected_task_state=expected_task_state) def _call_compute_api_with_obj(self, ctxt, instance, method, *args, **kwargs): try: # NOTE(comstud): We need to refresh the instance from this # cell's view in the DB. instance.refresh() except exception.InstanceNotFound: with excutils.save_and_reraise_exception(): # Must be a race condition. Let's try to resolve it by # telling the top level cells that this instance doesn't # exist. instance = {'uuid': instance.uuid} self.msg_runner.instance_destroy_at_top(ctxt, instance) except exception.InstanceInfoCacheNotFound: if method != delete_types.DELETE: raise fn = getattr(self.compute_api, method, None) return fn(ctxt, instance, *args, **kwargs) def start_instance(self, message, instance): """Start an instance via compute_api.start().""" self._call_compute_api_with_obj(message.ctxt, instance, 'start') def stop_instance(self, message, instance, clean_shutdown=True): """Stop an instance via compute_api.stop().""" do_cast = not message.need_response return self._call_compute_api_with_obj(message.ctxt, instance, 'stop', do_cast=do_cast, clean_shutdown=clean_shutdown) def reboot_instance(self, message, instance, reboot_type): """Reboot an instance via compute_api.reboot().""" self._call_compute_api_with_obj(message.ctxt, instance, 'reboot', reboot_type=reboot_type) def suspend_instance(self, message, instance): """Suspend an instance via compute_api.suspend().""" self._call_compute_api_with_obj(message.ctxt, instance, 'suspend') def resume_instance(self, message, instance): """Resume an instance via compute_api.suspend().""" self._call_compute_api_with_obj(message.ctxt, instance, 'resume') def get_host_uptime(self, message, host_name): return self.host_api.get_host_uptime(message.ctxt, host_name) def terminate_instance(self, message, instance): self._call_compute_api_with_obj(message.ctxt, instance, delete_types.DELETE) def soft_delete_instance(self, message, instance): self._call_compute_api_with_obj(message.ctxt, instance, delete_types.SOFT_DELETE) def pause_instance(self, message, instance): """Pause an instance via compute_api.pause().""" self._call_compute_api_with_obj(message.ctxt, instance, 'pause') def unpause_instance(self, message, instance): """Unpause an instance via compute_api.pause().""" self._call_compute_api_with_obj(message.ctxt, instance, 'unpause') def resize_instance(self, message, instance, flavor, extra_instance_updates, clean_shutdown=True): """Resize an instance via compute_api.resize().""" self._call_compute_api_with_obj(message.ctxt, instance, 'resize', flavor_id=flavor['flavorid'], clean_shutdown=clean_shutdown, **extra_instance_updates) def live_migrate_instance(self, message, instance, block_migration, disk_over_commit, host_name): """Live migrate an instance via compute_api.live_migrate().""" self._call_compute_api_with_obj(message.ctxt, instance, 'live_migrate', block_migration, disk_over_commit, host_name) def revert_resize(self, message, instance): """Revert a resize for an instance in its cell.""" self._call_compute_api_with_obj(message.ctxt, instance, 'revert_resize') def confirm_resize(self, message, instance): """Confirm a resize for an instance in its cell.""" self._call_compute_api_with_obj(message.ctxt, instance, 'confirm_resize') def reset_network(self, message, instance): """Reset networking for an instance in its cell.""" self._call_compute_api_with_obj(message.ctxt, instance, 'reset_network') def inject_network_info(self, message, instance): """Inject networking for an instance in its cell.""" self._call_compute_api_with_obj(message.ctxt, instance, 'inject_network_info') def snapshot_instance(self, message, instance, image_id): """Snapshot an instance in its cell.""" instance.refresh() instance.task_state = task_states.IMAGE_SNAPSHOT_PENDING instance.save(expected_task_state=[None]) self.compute_rpcapi.snapshot_instance(message.ctxt, instance, image_id) def backup_instance(self, message, instance, image_id, backup_type, rotation): """Backup an instance in its cell.""" instance.refresh() instance.task_state = task_states.IMAGE_BACKUP instance.save(expected_task_state=[None]) self.compute_rpcapi.backup_instance(message.ctxt, instance, image_id, backup_type, rotation) def rebuild_instance(self, message, instance, image_href, admin_password, files_to_inject, preserve_ephemeral, kwargs): kwargs['preserve_ephemeral'] = preserve_ephemeral self._call_compute_api_with_obj(message.ctxt, instance, 'rebuild', image_href, admin_password, files_to_inject, **kwargs) def set_admin_password(self, message, instance, new_pass): self._call_compute_api_with_obj(message.ctxt, instance, 'set_admin_password', new_pass) class _BroadcastMessageMethods(_BaseMessageMethods): """These are the methods that can be called as a part of a broadcast message. """ def _at_the_top(self): """Are we the API level?""" return not self.state_manager.get_parent_cells() def _apply_expected_states(self, instance_info): """To attempt to address out-of-order messages, do some sanity checking on the VM and task states. Add some requirements for vm_state and task_state to the instance_update() DB call if necessary. """ expected_vm_state_map = { # For updates containing 'vm_state' of 'building', # only allow them to occur if the DB already says # 'building' or if the vm_state is None. None # really shouldn't be possible as instances always # start out in 'building' anyway.. but just in case. vm_states.BUILDING: [vm_states.BUILDING, None]} expected_task_state_map = { # Always allow updates when task_state doesn't change, # but also make sure we don't set resize/rebuild task # states for old messages when we've potentially already # processed the ACTIVE/None messages. Ie, these checks # will prevent stomping on any ACTIVE/None messages # we already processed. task_states.REBUILD_BLOCK_DEVICE_MAPPING: [task_states.REBUILD_BLOCK_DEVICE_MAPPING, task_states.REBUILDING], task_states.REBUILD_SPAWNING: [task_states.REBUILD_SPAWNING, task_states.REBUILD_BLOCK_DEVICE_MAPPING, task_states.REBUILDING], task_states.RESIZE_MIGRATING: [task_states.RESIZE_MIGRATING, task_states.RESIZE_PREP], task_states.RESIZE_MIGRATED: [task_states.RESIZE_MIGRATED, task_states.RESIZE_MIGRATING, task_states.RESIZE_PREP], task_states.RESIZE_FINISH: [task_states.RESIZE_FINISH, task_states.RESIZE_MIGRATED, task_states.RESIZE_MIGRATING, task_states.RESIZE_PREP]} if 'vm_state' in instance_info: expected = expected_vm_state_map.get(instance_info['vm_state']) if expected is not None: instance_info['expected_vm_state'] = expected if 'task_state' in instance_info: expected = expected_task_state_map.get(instance_info['task_state']) if expected is not None: instance_info['expected_task_state'] = expected def instance_update_at_top(self, message, instance, **kwargs): """Update an instance in the DB if we're a top level cell.""" if not self._at_the_top(): return instance_uuid = instance['uuid'] # Remove things that we can't update in the top level cells. # 'metadata' is only updated in the API cell, so don't overwrite # it based on what child cells say. Make sure to update # 'cell_name' based on the routing path. items_to_remove = ['id', 'security_groups', 'volumes', 'cell_name', 'name', 'metadata'] for key in items_to_remove: instance.pop(key, None) instance['cell_name'] = _reverse_path(message.routing_path) # Fixup info_cache. We'll have to update this separately if # it exists. info_cache = instance.pop('info_cache', None) if info_cache is not None: info_cache.pop('id', None) info_cache.pop('instance', None) if 'system_metadata' in instance: # Make sure we have the dict form that we need for # instance_update. instance['system_metadata'] = utils.instance_sys_meta(instance) LOG.debug("Got update for instance: %(instance)s", {'instance': instance}, instance_uuid=instance_uuid) self._apply_expected_states(instance) # It's possible due to some weird condition that the instance # was already set as deleted... so we'll attempt to update # it with permissions that allows us to read deleted. with utils.temporary_mutation(message.ctxt, read_deleted="yes"): try: self.db.instance_update(message.ctxt, instance_uuid, instance, update_cells=False) except exception.NotFound: # FIXME(comstud): Strange. Need to handle quotas here, # if we actually want this code to remain.. self.db.instance_create(message.ctxt, instance) if info_cache: network_info = info_cache.get('network_info') if isinstance(network_info, list): if not isinstance(network_info, network_model.NetworkInfo): network_info = network_model.NetworkInfo.hydrate( network_info) info_cache['network_info'] = network_info.json() try: self.db.instance_info_cache_update( message.ctxt, instance_uuid, info_cache) except exception.InstanceInfoCacheNotFound: # Can happen if we try to update a deleted instance's # network information. pass def instance_destroy_at_top(self, message, instance, **kwargs): """Destroy an instance from the DB if we're a top level cell.""" if not self._at_the_top(): return instance_uuid = instance['uuid'] LOG.debug("Got update to delete instance", instance_uuid=instance_uuid) try: self.db.instance_destroy(message.ctxt, instance_uuid, update_cells=False) except exception.InstanceNotFound: pass def instance_delete_everywhere(self, message, instance, delete_type, **kwargs): """Call compute API delete() or soft_delete() in every cell. This is used when the API cell doesn't know what cell an instance belongs to but the instance was requested to be deleted or soft-deleted. So, we'll run it everywhere. """ LOG.debug("Got broadcast to %(delete_type)s delete instance", {'delete_type': delete_type}, instance=instance) if delete_type == delete_types.SOFT_DELETE: self.compute_api.soft_delete(message.ctxt, instance) else: self.compute_api.delete(message.ctxt, instance) def instance_fault_create_at_top(self, message, instance_fault, **kwargs): """Destroy an instance from the DB if we're a top level cell.""" if not self._at_the_top(): return items_to_remove = ['id'] for key in items_to_remove: instance_fault.pop(key, None) LOG.debug("Got message to create instance fault: %s", instance_fault) fault = objects.InstanceFault(context=message.ctxt) fault.update(instance_fault) fault.create() def bw_usage_update_at_top(self, message, bw_update_info, **kwargs): """Update Bandwidth usage in the DB if we're a top level cell.""" if not self._at_the_top(): return self.db.bw_usage_update(message.ctxt, **bw_update_info) def _sync_instance(self, ctxt, instance): if instance['deleted']: self.msg_runner.instance_destroy_at_top(ctxt, instance) else: self.msg_runner.instance_update_at_top(ctxt, instance) def sync_instances(self, message, project_id, updated_since, deleted, **kwargs): projid_str = project_id is None and "<all>" or project_id since_str = updated_since is None and "<all>" or updated_since LOG.info(_LI("Forcing a sync of instances, project_id=" "%(projid_str)s, updated_since=%(since_str)s"), {'projid_str': projid_str, 'since_str': since_str}) if updated_since is not None: updated_since = timeutils.parse_isotime(updated_since) instances = cells_utils.get_instances_to_sync(message.ctxt, updated_since=updated_since, project_id=project_id, deleted=deleted) for instance in instances: self._sync_instance(message.ctxt, instance) def service_get_all(self, message, filters): if filters is None: filters = {} disabled = filters.pop('disabled', None) services = self.db.service_get_all(message.ctxt, disabled=disabled) ret_services = [] for service in services: service = jsonutils.to_primitive(service) for key, val in filters.iteritems(): if service[key] != val: break else: ret_services.append(service) return ret_services def compute_node_get_all(self, message, hypervisor_match): """Return compute nodes in this cell.""" if hypervisor_match is not None: nodes = self.db.compute_node_search_by_hypervisor(message.ctxt, hypervisor_match) else: nodes = self.db.compute_node_get_all(message.ctxt) return jsonutils.to_primitive(nodes) def compute_node_stats(self, message): """Return compute node stats from this cell.""" return self.db.compute_node_statistics(message.ctxt) def consoleauth_delete_tokens(self, message, instance_uuid): """Delete consoleauth tokens for an instance in API cells.""" if not self._at_the_top(): return self.consoleauth_rpcapi.delete_tokens_for_instance(message.ctxt, instance_uuid) def bdm_update_or_create_at_top(self, message, bdm, create): """Create or update a block device mapping in API cells. If create is True, only try to create. If create is None, try to update but fall back to create. If create is False, only attempt to update. This maps to nova-conductor's behavior. """ if not self._at_the_top(): return items_to_remove = ['id'] for key in items_to_remove: bdm.pop(key, None) if create is None: self.db.block_device_mapping_update_or_create(message.ctxt, bdm, legacy=False) return elif create is True: self.db.block_device_mapping_create(message.ctxt, bdm, legacy=False) return # Unfortunately this update call wants BDM ID... but we don't know # what it is in this cell. Search for it.. try matching either # device_name or volume_id. dev_name = bdm['device_name'] vol_id = bdm['volume_id'] instance_bdms = self.db.block_device_mapping_get_all_by_instance( message.ctxt, bdm['instance_uuid']) for instance_bdm in instance_bdms: if dev_name and instance_bdm['device_name'] == dev_name: break if vol_id and instance_bdm['volume_id'] == vol_id: break else: LOG.warning(_LW("No match when trying to update BDM: %(bdm)s"), dict(bdm=bdm)) return self.db.block_device_mapping_update(message.ctxt, instance_bdm['id'], bdm, legacy=False) def bdm_destroy_at_top(self, message, instance_uuid, device_name, volume_id): """Destroy a block device mapping in API cells by device name or volume_id. device_name or volume_id can be None, but not both. """ if not self._at_the_top(): return if device_name: self.db.block_device_mapping_destroy_by_instance_and_device( message.ctxt, instance_uuid, device_name) elif volume_id: self.db.block_device_mapping_destroy_by_instance_and_volume( message.ctxt, instance_uuid, volume_id) def get_migrations(self, message, filters): context = message.ctxt return self.compute_api.get_migrations(context, filters) _CELL_MESSAGE_TYPE_TO_MESSAGE_CLS = {'targeted': _TargetedMessage, 'broadcast': _BroadcastMessage, 'response': _ResponseMessage} _CELL_MESSAGE_TYPE_TO_METHODS_CLS = {'targeted': _TargetedMessageMethods, 'broadcast': _BroadcastMessageMethods, 'response': _ResponseMessageMethods} # # Below are the public interfaces into this module. # class MessageRunner(object): """This class is the main interface into creating messages and processing them. Public methods in this class are typically called by the CellsManager to create a new message and process it with the exception of 'message_from_json' which should be used by CellsDrivers to convert a JSONified message it has received back into the appropriate Message class. Private methods are used internally when we need to keep some 'global' state. For instance, eventlet queues used for responses are held in this class. Also, when a Message is process()ed above and it's determined we should take action locally, _process_message_locally() will be called. When needing to add a new method to call in a Cell2Cell message, define the new method below and also add it to the appropriate MessageMethods class where the real work will be done. """ def __init__(self, state_manager): self.state_manager = state_manager cells_scheduler_cls = importutils.import_class( CONF.cells.scheduler) self.scheduler = cells_scheduler_cls(self) self.response_queues = {} self.methods_by_type = {} self.our_name = CONF.cells.name for msg_type, cls in _CELL_MESSAGE_TYPE_TO_METHODS_CLS.iteritems(): self.methods_by_type[msg_type] = cls(self) self.serializer = objects_base.NovaObjectSerializer() def _process_message_locally(self, message): """Message processing will call this when its determined that the message should be processed within this cell. Find the method to call based on the message type, and call it. The caller is responsible for catching exceptions and returning results to cells, if needed. """ methods = self.methods_by_type[message.message_type] fn = getattr(methods, message.method_name) return fn(message, **message.method_kwargs) def _put_response(self, response_uuid, response): """Put a response into a response queue. This is called when a _ResponseMessage is processed in the cell that initiated a 'call' to another cell. """ resp_queue = self.response_queues.get(response_uuid) if not resp_queue: # Response queue is gone. We must have restarted or we # received a response after our timeout period. return resp_queue.put(response) def _setup_response_queue(self, message): """Set up an eventlet queue to use to wait for replies. Replies come back from the target cell as a _ResponseMessage being sent back to the source. """ resp_queue = queue.Queue() self.response_queues[message.uuid] = resp_queue return resp_queue def _cleanup_response_queue(self, message): """Stop tracking the response queue either because we're done receiving responses, or we've timed out. """ try: del self.response_queues[message.uuid] except KeyError: # Ignore if queue is gone already somehow. pass def _create_response_message(self, ctxt, direction, target_cell, response_uuid, response_kwargs, **kwargs): """Create a ResponseMessage. This is used internally within the nova.cells.messaging module. """ return _ResponseMessage(self, ctxt, 'parse_responses', response_kwargs, direction, target_cell, response_uuid, **kwargs) def _get_migrations_for_cell(self, ctxt, cell_name, filters): method_kwargs = dict(filters=filters) message = _TargetedMessage(self, ctxt, 'get_migrations', method_kwargs, 'down', cell_name, need_response=True) response = message.process() if response.failure and isinstance(response.value[1], exception.CellRoutingInconsistency): return [] return [response] def message_from_json(self, json_message): """Turns a message in JSON format into an appropriate Message instance. This is called when cells receive a message from another cell. """ message_dict = jsonutils.loads(json_message) # Need to convert context back. ctxt = message_dict['ctxt'] message_dict['ctxt'] = context.RequestContext.from_dict(ctxt) # NOTE(comstud): We also need to re-serialize any objects that # exist in 'method_kwargs'. method_kwargs = message_dict['method_kwargs'] for k, v in method_kwargs.items(): method_kwargs[k] = self.serializer.deserialize_entity( message_dict['ctxt'], v) message_type = message_dict.pop('message_type') message_cls = _CELL_MESSAGE_TYPE_TO_MESSAGE_CLS[message_type] return message_cls(self, **message_dict) def ask_children_for_capabilities(self, ctxt): """Tell child cells to send us capabilities. This is typically called on startup of the nova-cells service. """ child_cells = self.state_manager.get_child_cells() for child_cell in child_cells: message = _TargetedMessage(self, ctxt, 'announce_capabilities', dict(), 'down', child_cell) message.process() def ask_children_for_capacities(self, ctxt): """Tell child cells to send us capacities. This is typically called on startup of the nova-cells service. """ child_cells = self.state_manager.get_child_cells() for child_cell in child_cells: message = _TargetedMessage(self, ctxt, 'announce_capacities', dict(), 'down', child_cell) message.process() def tell_parents_our_capabilities(self, ctxt): """Send our capabilities to parent cells.""" parent_cells = self.state_manager.get_parent_cells() if not parent_cells: return my_cell_info = self.state_manager.get_my_state() capabs = self.state_manager.get_our_capabilities() parent_cell_names = ','.join(x.name for x in parent_cells) LOG.debug("Updating parents [%(parent_cell_names)s] with " "our capabilities: %(capabs)s", {'parent_cell_names': parent_cell_names, 'capabs': capabs}) # We have to turn the sets into lists so they can potentially # be json encoded when the raw message is sent. for key, values in capabs.items(): capabs[key] = list(values) method_kwargs = {'cell_name': my_cell_info.name, 'capabilities': capabs} for cell in parent_cells: message = _TargetedMessage(self, ctxt, 'update_capabilities', method_kwargs, 'up', cell, fanout=True) message.process() def tell_parents_our_capacities(self, ctxt): """Send our capacities to parent cells.""" parent_cells = self.state_manager.get_parent_cells() if not parent_cells: return my_cell_info = self.state_manager.get_my_state() capacities = self.state_manager.get_our_capacities() parent_cell_names = ','.join(x.name for x in parent_cells) LOG.debug("Updating parents [%(parent_cell_names)s] with " "our capacities: %(capacities)s", {'parent_cell_names': parent_cell_names, 'capacities': capacities}) method_kwargs = {'cell_name': my_cell_info.name, 'capacities': capacities} for cell in parent_cells: message = _TargetedMessage(self, ctxt, 'update_capacities', method_kwargs, 'up', cell, fanout=True) message.process() def build_instances(self, ctxt, target_cell, build_inst_kwargs): """Called by the cell scheduler to tell a child cell to build instance(s). """ method_kwargs = dict(build_inst_kwargs=build_inst_kwargs) message = _TargetedMessage(self, ctxt, 'build_instances', method_kwargs, 'down', target_cell) message.process() def run_compute_api_method(self, ctxt, cell_name, method_info, call): """Call a compute API method in a specific cell.""" message = _TargetedMessage(self, ctxt, 'run_compute_api_method', dict(method_info=method_info), 'down', cell_name, need_response=call) return message.process() def instance_update_at_top(self, ctxt, instance): """Update an instance at the top level cell.""" message = _BroadcastMessage(self, ctxt, 'instance_update_at_top', dict(instance=instance), 'up', run_locally=False) message.process() def instance_destroy_at_top(self, ctxt, instance): """Destroy an instance at the top level cell.""" message = _BroadcastMessage(self, ctxt, 'instance_destroy_at_top', dict(instance=instance), 'up', run_locally=False) message.process() def instance_delete_everywhere(self, ctxt, instance, delete_type): """This is used by API cell when it didn't know what cell an instance was in, but the instance was requested to be deleted or soft_deleted. So, we'll broadcast this everywhere. """ method_kwargs = dict(instance=instance, delete_type=delete_type) message = _BroadcastMessage(self, ctxt, 'instance_delete_everywhere', method_kwargs, 'down', run_locally=False) message.process() def instance_fault_create_at_top(self, ctxt, instance_fault): """Create an instance fault at the top level cell.""" message = _BroadcastMessage(self, ctxt, 'instance_fault_create_at_top', dict(instance_fault=instance_fault), 'up', run_locally=False) message.process() def bw_usage_update_at_top(self, ctxt, bw_update_info): """Update bandwidth usage at top level cell.""" message = _BroadcastMessage(self, ctxt, 'bw_usage_update_at_top', dict(bw_update_info=bw_update_info), 'up', run_locally=False) message.process() def sync_instances(self, ctxt, project_id, updated_since, deleted): """Force a sync of all instances, potentially by project_id, and potentially since a certain date/time. """ method_kwargs = dict(project_id=project_id, updated_since=updated_since, deleted=deleted) message = _BroadcastMessage(self, ctxt, 'sync_instances', method_kwargs, 'down', run_locally=False) message.process() def service_get_all(self, ctxt, filters=None): method_kwargs = dict(filters=filters) message = _BroadcastMessage(self, ctxt, 'service_get_all', method_kwargs, 'down', run_locally=True, need_response=True) return message.process() def service_get_by_compute_host(self, ctxt, cell_name, host_name): method_kwargs = dict(host_name=host_name) message = _TargetedMessage(self, ctxt, 'service_get_by_compute_host', method_kwargs, 'down', cell_name, need_response=True) return message.process() def get_host_uptime(self, ctxt, cell_name, host_name): method_kwargs = dict(host_name=host_name) message = _TargetedMessage(self, ctxt, 'get_host_uptime', method_kwargs, 'down', cell_name, need_response=True) return message.process() def service_update(self, ctxt, cell_name, host_name, binary, params_to_update): """Used to enable/disable a service. For compute services, setting to disabled stops new builds arriving on that host. :param host_name: the name of the host machine that the service is running :param binary: The name of the executable that the service runs as :param params_to_update: eg. {'disabled': True} :returns: the update service object """ method_kwargs = dict(host_name=host_name, binary=binary, params_to_update=params_to_update) message = _TargetedMessage(self, ctxt, 'service_update', method_kwargs, 'down', cell_name, need_response=True) return message.process() def service_delete(self, ctxt, cell_name, service_id): """Deletes the specified service.""" method_kwargs = {'service_id': service_id} message = _TargetedMessage(self, ctxt, 'service_delete', method_kwargs, 'down', cell_name, need_response=True) message.process() def proxy_rpc_to_manager(self, ctxt, cell_name, host_name, topic, rpc_message, call, timeout): method_kwargs = {'host_name': host_name, 'topic': topic, 'rpc_message': rpc_message, 'timeout': timeout} message = _TargetedMessage(self, ctxt, 'proxy_rpc_to_manager', method_kwargs, 'down', cell_name, need_response=call) return message.process() def task_log_get_all(self, ctxt, cell_name, task_name, period_beginning, period_ending, host=None, state=None): """Get task logs from the DB from all cells or a particular cell. If 'cell_name' is None or '', get responses from all cells. If 'host' is not None, filter by host. If 'state' is not None, filter by state. Return a list of Response objects. """ method_kwargs = dict(task_name=task_name, period_beginning=period_beginning, period_ending=period_ending, host=host, state=state) if cell_name: message = _TargetedMessage(self, ctxt, 'task_log_get_all', method_kwargs, 'down', cell_name, need_response=True) # Caller should get a list of Responses. return [message.process()] message = _BroadcastMessage(self, ctxt, 'task_log_get_all', method_kwargs, 'down', run_locally=True, need_response=True) return message.process() def compute_node_get_all(self, ctxt, hypervisor_match=None): """Return list of compute nodes in all child cells.""" method_kwargs = dict(hypervisor_match=hypervisor_match) message = _BroadcastMessage(self, ctxt, 'compute_node_get_all', method_kwargs, 'down', run_locally=True, need_response=True) return message.process() def compute_node_stats(self, ctxt): """Return compute node stats from all child cells.""" method_kwargs = dict() message = _BroadcastMessage(self, ctxt, 'compute_node_stats', method_kwargs, 'down', run_locally=True, need_response=True) return message.process() def compute_node_get(self, ctxt, cell_name, compute_id): """Return compute node entry from a specific cell by ID.""" method_kwargs = dict(compute_id=compute_id) message = _TargetedMessage(self, ctxt, 'compute_node_get', method_kwargs, 'down', cell_name, need_response=True) return message.process() def actions_get(self, ctxt, cell_name, instance_uuid): method_kwargs = dict(instance_uuid=instance_uuid) message = _TargetedMessage(self, ctxt, 'actions_get', method_kwargs, 'down', cell_name, need_response=True) return message.process() def action_get_by_request_id(self, ctxt, cell_name, instance_uuid, request_id): method_kwargs = dict(instance_uuid=instance_uuid, request_id=request_id) message = _TargetedMessage(self, ctxt, 'action_get_by_request_id', method_kwargs, 'down', cell_name, need_response=True) return message.process() def action_events_get(self, ctxt, cell_name, action_id): method_kwargs = dict(action_id=action_id) message = _TargetedMessage(self, ctxt, 'action_events_get', method_kwargs, 'down', cell_name, need_response=True) return message.process() def consoleauth_delete_tokens(self, ctxt, instance_uuid): """Delete consoleauth tokens for an instance in API cells.""" message = _BroadcastMessage(self, ctxt, 'consoleauth_delete_tokens', dict(instance_uuid=instance_uuid), 'up', run_locally=False) message.process() def validate_console_port(self, ctxt, cell_name, instance_uuid, console_port, console_type): """Validate console port with child cell compute node.""" method_kwargs = {'instance_uuid': instance_uuid, 'console_port': console_port, 'console_type': console_type} message = _TargetedMessage(self, ctxt, 'validate_console_port', method_kwargs, 'down', cell_name, need_response=True) return message.process() def bdm_update_or_create_at_top(self, ctxt, bdm, create=None): """Update/Create a BDM at top level cell.""" message = _BroadcastMessage(self, ctxt, 'bdm_update_or_create_at_top', dict(bdm=bdm, create=create), 'up', run_locally=False) message.process() def bdm_destroy_at_top(self, ctxt, instance_uuid, device_name=None, volume_id=None): """Destroy a BDM at top level cell.""" method_kwargs = dict(instance_uuid=instance_uuid, device_name=device_name, volume_id=volume_id) message = _BroadcastMessage(self, ctxt, 'bdm_destroy_at_top', method_kwargs, 'up', run_locally=False) message.process() def get_migrations(self, ctxt, cell_name, run_locally, filters): """Fetch all migrations applying the filters for a given cell or all cells. """ method_kwargs = dict(filters=filters) if cell_name: return self._get_migrations_for_cell(ctxt, cell_name, filters) message = _BroadcastMessage(self, ctxt, 'get_migrations', method_kwargs, 'down', run_locally=run_locally, need_response=True) return message.process() def _instance_action(self, ctxt, instance, method, extra_kwargs=None, need_response=False): """Call instance_<method> in correct cell for instance.""" cell_name = instance.cell_name if not cell_name: LOG.warning(_LW("No cell_name for %(method)s() from API"), dict(method=method), instance=instance) return method_kwargs = {'instance': instance} if extra_kwargs: method_kwargs.update(extra_kwargs) message = _TargetedMessage(self, ctxt, method, method_kwargs, 'down', cell_name, need_response=need_response) return message.process() def instance_update_from_api(self, ctxt, instance, expected_vm_state, expected_task_state, admin_state_reset): """Update an instance object in its cell.""" cell_name = instance.cell_name if not cell_name: LOG.warning(_LW("No cell_name for instance update from API"), instance=instance) return method_kwargs = {'instance': instance, 'expected_vm_state': expected_vm_state, 'expected_task_state': expected_task_state, 'admin_state_reset': admin_state_reset} message = _TargetedMessage(self, ctxt, 'instance_update_from_api', method_kwargs, 'down', cell_name) message.process() def start_instance(self, ctxt, instance): """Start an instance in its cell.""" self._instance_action(ctxt, instance, 'start_instance') def stop_instance(self, ctxt, instance, do_cast=True, clean_shutdown=True): """Stop an instance in its cell.""" extra_kwargs = dict(clean_shutdown=clean_shutdown) if do_cast: self._instance_action(ctxt, instance, 'stop_instance', extra_kwargs=extra_kwargs) else: return self._instance_action(ctxt, instance, 'stop_instance', extra_kwargs=extra_kwargs, need_response=True) def reboot_instance(self, ctxt, instance, reboot_type): """Reboot an instance in its cell.""" extra_kwargs = dict(reboot_type=reboot_type) self._instance_action(ctxt, instance, 'reboot_instance', extra_kwargs=extra_kwargs) def suspend_instance(self, ctxt, instance): """Suspend an instance in its cell.""" self._instance_action(ctxt, instance, 'suspend_instance') def resume_instance(self, ctxt, instance): """Resume an instance in its cell.""" self._instance_action(ctxt, instance, 'resume_instance') def terminate_instance(self, ctxt, instance): self._instance_action(ctxt, instance, 'terminate_instance') def soft_delete_instance(self, ctxt, instance): self._instance_action(ctxt, instance, 'soft_delete_instance') def pause_instance(self, ctxt, instance): """Pause an instance in its cell.""" self._instance_action(ctxt, instance, 'pause_instance') def unpause_instance(self, ctxt, instance): """Unpause an instance in its cell.""" self._instance_action(ctxt, instance, 'unpause_instance') def resize_instance(self, ctxt, instance, flavor, extra_instance_updates, clean_shutdown=True): """Resize an instance in its cell.""" extra_kwargs = dict(flavor=flavor, extra_instance_updates=extra_instance_updates) self._instance_action(ctxt, instance, 'resize_instance', extra_kwargs=extra_kwargs, clean_shutdown=clean_shutdown) def live_migrate_instance(self, ctxt, instance, block_migration, disk_over_commit, host_name): """Live migrate an instance in its cell.""" extra_kwargs = dict(block_migration=block_migration, disk_over_commit=disk_over_commit, host_name=host_name) self._instance_action(ctxt, instance, 'live_migrate_instance', extra_kwargs=extra_kwargs) def revert_resize(self, ctxt, instance): """Revert a resize for an instance in its cell.""" self._instance_action(ctxt, instance, 'revert_resize') def confirm_resize(self, ctxt, instance): """Confirm a resize for an instance in its cell.""" self._instance_action(ctxt, instance, 'confirm_resize') def reset_network(self, ctxt, instance): """Reset networking for an instance in its cell.""" self._instance_action(ctxt, instance, 'reset_network') def inject_network_info(self, ctxt, instance): """Inject networking for an instance in its cell.""" self._instance_action(ctxt, instance, 'inject_network_info') def snapshot_instance(self, ctxt, instance, image_id): """Snapshot an instance in its cell.""" extra_kwargs = dict(image_id=image_id) self._instance_action(ctxt, instance, 'snapshot_instance', extra_kwargs=extra_kwargs) def backup_instance(self, ctxt, instance, image_id, backup_type, rotation): """Backup an instance in its cell.""" extra_kwargs = dict(image_id=image_id, backup_type=backup_type, rotation=rotation) self._instance_action(ctxt, instance, 'backup_instance', extra_kwargs=extra_kwargs) def rebuild_instance(self, ctxt, instance, image_href, admin_password, files_to_inject, preserve_ephemeral, kwargs): extra_kwargs = dict(image_href=image_href, admin_password=admin_password, files_to_inject=files_to_inject, preserve_ephemeral=preserve_ephemeral, kwargs=kwargs) self._instance_action(ctxt, instance, 'rebuild_instance', extra_kwargs=extra_kwargs) def set_admin_password(self, ctxt, instance, new_pass): self._instance_action(ctxt, instance, 'set_admin_password', extra_kwargs={'new_pass': new_pass}) @staticmethod def get_message_types(): return _CELL_MESSAGE_TYPE_TO_MESSAGE_CLS.keys() class Response(object): """Holds a response from a cell. If there was a failure, 'failure' will be True and 'response' will contain an encoded Exception. """ def __init__(self, cell_name, value, failure): self.failure = failure self.cell_name = cell_name self.value = value def to_json(self): resp_value = self.value if self.failure: resp_value = serialize_remote_exception(resp_value, log_failure=False) _dict = {'cell_name': self.cell_name, 'value': resp_value, 'failure': self.failure} return jsonutils.dumps(_dict) @classmethod def from_json(cls, json_message): _dict = jsonutils.loads(json_message) if _dict['failure']: resp_value = deserialize_remote_exception(_dict['value'], rpc.get_allowed_exmods()) _dict['value'] = resp_value return cls(**_dict) def value_or_raise(self): if self.failure: if isinstance(self.value, (tuple, list)): raise self.value[0], self.value[1], self.value[2] else: raise self.value return self.value _REMOTE_POSTFIX = '_Remote' def serialize_remote_exception(failure_info, log_failure=True): """Prepares exception data to be sent over rpc. Failure_info should be a sys.exc_info() tuple. """ tb = traceback.format_exception(*failure_info) failure = failure_info[1] if log_failure: LOG.error(_LE("Returning exception %s to caller"), six.text_type(failure)) LOG.error(tb) kwargs = {} if hasattr(failure, 'kwargs'): kwargs = failure.kwargs # NOTE(matiu): With cells, it's possible to re-raise remote, remote # exceptions. Lets turn it back into the original exception type. cls_name = str(failure.__class__.__name__) mod_name = str(failure.__class__.__module__) if (cls_name.endswith(_REMOTE_POSTFIX) and mod_name.endswith(_REMOTE_POSTFIX)): cls_name = cls_name[:-len(_REMOTE_POSTFIX)] mod_name = mod_name[:-len(_REMOTE_POSTFIX)] data = { 'class': cls_name, 'module': mod_name, 'message': six.text_type(failure), 'tb': tb, 'args': failure.args, 'kwargs': kwargs } json_data = jsonutils.dumps(data) return json_data def deserialize_remote_exception(data, allowed_remote_exmods): failure = jsonutils.loads(str(data)) trace = failure.get('tb', []) message = failure.get('message', "") + "\n" + "\n".join(trace) name = failure.get('class') module = failure.get('module') # NOTE(ameade): We DO NOT want to allow just any module to be imported, in # order to prevent arbitrary code execution. if module != 'exceptions' and module not in allowed_remote_exmods: return messaging.RemoteError(name, failure.get('message'), trace) try: mod = importutils.import_module(module) klass = getattr(mod, name) if not issubclass(klass, Exception): raise TypeError("Can only deserialize Exceptions") failure = klass(*failure.get('args', []), **failure.get('kwargs', {})) except (AttributeError, TypeError, ImportError): return messaging.RemoteError(name, failure.get('message'), trace) ex_type = type(failure) str_override = lambda self: message new_ex_type = type(ex_type.__name__ + _REMOTE_POSTFIX, (ex_type,), {'__str__': str_override, '__unicode__': str_override}) new_ex_type.__module__ = '%s%s' % (module, _REMOTE_POSTFIX) try: # NOTE(ameade): Dynamically create a new exception type and swap it in # as the new type for the exception. This only works on user defined # Exceptions and not core python exceptions. This is important because # we cannot necessarily change an exception message so we must override # the __str__ method. failure.__class__ = new_ex_type except TypeError: # NOTE(ameade): If a core exception then just add the traceback to the # first exception argument. failure.args = (message,) + failure.args[1:] return failure
43.981084
79
0.608239
[ "Apache-2.0" ]
Metaswitch/calico-nova
nova/cells/messaging.py
86,027
Python
from os import getenv from typing import Optional, Dict from flask import Flask TestConfig = Optional[Dict[str, bool]] def create_app(test_config: TestConfig = None) -> Flask: """ App factory method to initialize the application with given configuration """ app: Flask = Flask(__name__) if test_config is not None: app.config.from_mapping(test_config) @app.route("/") def index() -> str: # pylint: disable=unused-variable return "My Hello World App is working..." @app.route("/version") def version() -> str: # pylint: disable=unused-variable """ DOCKER_IMAGE_TAG is passed in the app from Dockerfile as ARG. It should be setup in docker build task.. It is used in .gitlab-ci.yaml to pass the hash of the latest commit as docker image tag. E.g. docker build --build-arg docker_image_tag="my-version" -t my-image-name:my-version . """ return getenv("DOCKER_IMAGE_TAG") or "DOCKER_IMAGE_TAG haven't been setup" return app
32.34375
97
0.672464
[ "MIT" ]
gsjay980/data-science-IP
my_hello_world_app/web_api/router.py
1,035
Python
# Copyright David Abrahams 2004. Distributed under the Boost # Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # This regression test checks that call_method<T>(...) where T is a # non-reference, non-pointer type that happens to be held inside the # result object (and thus is found as an lvalue) works. from ben_scott1_ext import * class CreatorImpl(Creator): def create(self): return Product() factory = Factory() c = CreatorImpl() factory.reg(c) a = factory.create()
30.833333
71
0.742342
[ "BSD-3-Clause" ]
0xDEC0DE8/mcsema
boost/libs/python/test/ben_scott1.py
555
Python
from PPPForgivenessSDK.client import Client # to run file 'delete_forgiveness_request.py', use valid token and a slug associated with a valid forgiveness request client = Client( access_token='{{YOUR_TOKEN_HERE}}', vendor_key='{{YOUR_VENDOR_KEY}}', environment='sandbox' ) forgiveness_api = client.forgiveness_requests # delete forgiveness request result = forgiveness_api.delete(slug='{{YOUR_SLUG_HERE}}') if result['status'] == 204: print('deleted') else: print("An error occurred." + str(result['status'])) print(result['data'])
28
117
0.732143
[ "BSD-3-Clause" ]
UsSbaPPP/sba-python-client
examples/delete_forgiveness_request.py
560
Python
from vision_backend.models import Classifier def deploy_request_json_as_strings(job): """ Get a string list representing a deploy job's request JSON. """ request_json = job.request_json classifier_id = request_json['classifier_id'] try: classifier = Classifier.objects.get(pk=classifier_id) classifier_display = "Classifier ID {} (Source ID {})".format( classifier_id, classifier.source.pk) except Classifier.DoesNotExist: classifier_display = "Classifier ID {} (deleted)".format(classifier_id) return [ classifier_display, "URL: {}".format(request_json['url']), "Point count: {}".format(len(request_json['points'])), ]
32.681818
79
0.668985
[ "BSD-2-Clause" ]
beijbom/coralnet
project/vision_backend_api/utils.py
719
Python
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'scrapmart.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
29.869565
74
0.657933
[ "MIT" ]
vivekx01/oldscrapmart
manage.py
687
Python
import os import pickle import argparse import numpy as np from numpy import array as npa from IPython import embed def create_argparse(): parser = argparse.ArgumentParser(description='compare') parser.add_argument('src', type=str) parser.add_argument('dst', type=str) parser.add_argument('--box_fracs_scales', type=str, default='0,8,16,32,64,128,256,512', help='inner-box attribution for different scale') return parser if __name__ == '__main__': args_parser = create_argparse() opt = args_parser.parse_args() opt.box_fracs_scales = list(map(float, opt.box_fracs_scales.split(','))) with open(os.path.join('../exp', opt.src, 'box_fracs.pkl'), 'rb') as f: f_src_list = pickle.load(f) s_src = pickle.load(f) with open(os.path.join('../exp', opt.dst, 'box_fracs.pkl'), 'rb') as f: f_dst_list = pickle.load(f) s_dst = pickle.load(f) opt.box_fracs_scales.append(1e9) ratio_list = [0.5, 0.75, 1.0, 1.25, 1.5] for idx, box_size in enumerate(opt.box_fracs_scales[:-1]): for k in range(len(ratio_list)): ratio = ratio_list[k] pos, neg = 0, 0 for i in range(len(f_src_list[0])): try: diff = np.array(f_src_list[i][k]) - np.array(f_dst_list[i][k]) pos += ((diff > 0) * (npa(s_dst[i]).mean(1) > box_size) * (npa(s_dst[i]).mean(1) <= opt.box_fracs_scales[idx+1])).sum() neg += ((diff < 0) * (npa(s_src[i]).mean(1) > box_size) * (npa(s_src[i]).mean(1) <= opt.box_fracs_scales[idx+1])).sum() except Exception as e: continue print('size@{}~{}|ratio@{} - > : {}, < : {}'.format(box_size, opt.box_fracs_scales[idx+1], ratio, pos, neg))
40.155556
139
0.586054
[ "MIT" ]
voidrank/SaccadeNet
src/compare_tool.py
1,807
Python
import requests def hello(): response = requests.get('http://weather.livedoor.com/forecast/webservice/json/v1?city=130010') weather = response.json()["forecasts"][0]["telop"] return 'Hello, the weather in tokyo today is ' + weather
29.625
95
0.729958
[ "MIT" ]
teramonagi/sandbox-package-python
sandbox_package_python/hello.py
237
Python
#!/usr/bin/python # -*- encoding: utf-8 -*- from logger import setup_logger from models.model_stages import BiSeNet from cityscapes import CityScapes from loss.loss import OhemCELoss from loss.detail_loss import DetailAggregateLoss from evaluation import MscEvalV0 from optimizer_loss import Optimizer import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import torch.distributed as dist import os import os.path as osp import logging import time import datetime import argparse logger = logging.getLogger() def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Unsupported value encountered.') def parse_args(): parse = argparse.ArgumentParser() parse.add_argument( '--local_rank', dest = 'local_rank', type = int, default = -1, ) parse.add_argument( '--n_workers_train', dest = 'n_workers_train', type = int, default = 8, ) parse.add_argument( '--n_workers_val', dest = 'n_workers_val', type = int, default = 0, ) parse.add_argument( '--n_img_per_gpu', dest = 'n_img_per_gpu', type = int, default = 4, ) parse.add_argument( '--max_iter', dest = 'max_iter', type = int, default = 40000, ) parse.add_argument( '--save_iter_sep', dest = 'save_iter_sep', type = int, default = 1000, ) parse.add_argument( '--warmup_steps', dest = 'warmup_steps', type = int, default = 1000, ) parse.add_argument( '--mode', dest = 'mode', type = str, default = 'train', ) parse.add_argument( '--ckpt', dest = 'ckpt', type = str, default = None, ) parse.add_argument( '--respath', dest = 'respath', type = str, default = None, ) parse.add_argument( '--backbone', dest = 'backbone', type = str, default = 'CatNetSmall', ) parse.add_argument( '--pretrain_path', dest = 'pretrain_path', type = str, default = '', ) parse.add_argument( '--use_conv_last', dest = 'use_conv_last', type = str2bool, default = False, ) parse.add_argument( '--use_boundary_2', dest = 'use_boundary_2', type = str2bool, default = False, ) parse.add_argument( '--use_boundary_4', dest = 'use_boundary_4', type = str2bool, default = False, ) parse.add_argument( '--use_boundary_8', dest = 'use_boundary_8', type = str2bool, default = False, ) parse.add_argument( '--use_boundary_16', dest = 'use_boundary_16', type = str2bool, default = False, ) return parse.parse_args() def train(): args = parse_args() save_pth_path = os.path.join(args.respath, 'pths') dspth = './data' # print(save_pth_path) # print(osp.exists(save_pth_path)) # if not osp.exists(save_pth_path) and dist.get_rank()==0: if not osp.exists(save_pth_path): os.makedirs(save_pth_path) torch.cuda.set_device(args.local_rank) dist.init_process_group( backend = 'nccl', init_method = 'env://', world_size = torch.cuda.device_count(), rank=args.local_rank ) setup_logger(args.respath) ## dataset n_classes = 19 n_img_per_gpu = args.n_img_per_gpu n_workers_train = args.n_workers_train n_workers_val = args.n_workers_val use_boundary_16 = args.use_boundary_16 use_boundary_8 = args.use_boundary_8 use_boundary_4 = args.use_boundary_4 use_boundary_2 = args.use_boundary_2 mode = args.mode cropsize = [1024, 512] randomscale = (0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1.0, 1.125, 1.25, 1.375, 1.5) if dist.get_rank()==0: logger.info('n_workers_train: {}'.format(n_workers_train)) logger.info('n_workers_val: {}'.format(n_workers_val)) logger.info('use_boundary_2: {}'.format(use_boundary_2)) logger.info('use_boundary_4: {}'.format(use_boundary_4)) logger.info('use_boundary_8: {}'.format(use_boundary_8)) logger.info('use_boundary_16: {}'.format(use_boundary_16)) logger.info('mode: {}'.format(args.mode)) ds = CityScapes(dspth, cropsize=cropsize, mode=mode, randomscale=randomscale) sampler = torch.utils.data.distributed.DistributedSampler(ds) dl = DataLoader(ds, batch_size = n_img_per_gpu, shuffle = False, sampler = sampler, num_workers = n_workers_train, pin_memory = False, drop_last = True) # exit(0) dsval = CityScapes(dspth, mode='val', randomscale=randomscale) sampler_val = torch.utils.data.distributed.DistributedSampler(dsval) dlval = DataLoader(dsval, batch_size = 2, shuffle = False, sampler = sampler_val, num_workers = n_workers_val, drop_last = False) ## model ignore_idx = 255 net = BiSeNet(backbone=args.backbone, n_classes=n_classes, pretrain_model=args.pretrain_path, use_boundary_2=use_boundary_2, use_boundary_4=use_boundary_4, use_boundary_8=use_boundary_8, use_boundary_16=use_boundary_16, use_conv_last=args.use_conv_last) if not args.ckpt is None: net.load_state_dict(torch.load(args.ckpt, map_location='cpu')) net.cuda() net.train() net = nn.parallel.DistributedDataParallel(net, device_ids = [args.local_rank, ], output_device = args.local_rank, find_unused_parameters=True ) score_thres = 0.7 n_min = n_img_per_gpu*cropsize[0]*cropsize[1]//16 criteria_p = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx) criteria_16 = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx) criteria_32 = OhemCELoss(thresh=score_thres, n_min=n_min, ignore_lb=ignore_idx) boundary_loss_func = DetailAggregateLoss() ## optimizer maxmIOU50 = 0. maxmIOU75 = 0. momentum = 0.9 weight_decay = 5e-4 lr_start = 1e-2 max_iter = args.max_iter save_iter_sep = args.save_iter_sep power = 0.9 warmup_steps = args.warmup_steps warmup_start_lr = 1e-5 if dist.get_rank()==0: print('max_iter: ', max_iter) print('save_iter_sep: ', save_iter_sep) print('warmup_steps: ', warmup_steps) optim = Optimizer( model = net.module, loss = boundary_loss_func, lr0 = lr_start, momentum = momentum, wd = weight_decay, warmup_steps = warmup_steps, warmup_start_lr = warmup_start_lr, max_iter = max_iter, power = power) ## train loop msg_iter = 50 loss_avg = [] loss_boundery_bce = [] loss_boundery_dice = [] st = glob_st = time.time() diter = iter(dl) epoch = 0 for it in range(max_iter): try: im, lb = next(diter) if not im.size()[0]==n_img_per_gpu: raise StopIteration except StopIteration: epoch += 1 sampler.set_epoch(epoch) diter = iter(dl) im, lb = next(diter) im = im.cuda() lb = lb.cuda() H, W = im.size()[2:] lb = torch.squeeze(lb, 1) optim.zero_grad() if use_boundary_2 and use_boundary_4 and use_boundary_8: out, out16, out32, detail2, detail4, detail8 = net(im) if (not use_boundary_2) and use_boundary_4 and use_boundary_8: out, out16, out32, detail4, detail8 = net(im) if (not use_boundary_2) and (not use_boundary_4) and use_boundary_8: out, out16, out32, detail8 = net(im) if (not use_boundary_2) and (not use_boundary_4) and (not use_boundary_8): out, out16, out32 = net(im) lossp = criteria_p(out, lb) loss2 = criteria_16(out16, lb) loss3 = criteria_32(out32, lb) boundery_bce_loss = 0. boundery_dice_loss = 0. if use_boundary_2: # if dist.get_rank()==0: # print('use_boundary_2') boundery_bce_loss2, boundery_dice_loss2 = boundary_loss_func(detail2, lb) boundery_bce_loss += boundery_bce_loss2 boundery_dice_loss += boundery_dice_loss2 if use_boundary_4: # if dist.get_rank()==0: # print('use_boundary_4') boundery_bce_loss4, boundery_dice_loss4 = boundary_loss_func(detail4, lb) boundery_bce_loss += boundery_bce_loss4 boundery_dice_loss += boundery_dice_loss4 if use_boundary_8: # if dist.get_rank()==0: # print('use_boundary_8') boundery_bce_loss8, boundery_dice_loss8 = boundary_loss_func(detail8, lb) boundery_bce_loss += boundery_bce_loss8 boundery_dice_loss += boundery_dice_loss8 loss = lossp + loss2 + loss3 + boundery_bce_loss + boundery_dice_loss loss.backward() optim.step() loss_avg.append(loss.item()) loss_boundery_bce.append(boundery_bce_loss.item()) loss_boundery_dice.append(boundery_dice_loss.item()) ## print training log message if (it+1)%msg_iter==0: loss_avg = sum(loss_avg) / len(loss_avg) lr = optim.lr ed = time.time() t_intv, glob_t_intv = ed - st, ed - glob_st eta = int((max_iter - it) * (glob_t_intv / it)) eta = str(datetime.timedelta(seconds=eta)) loss_boundery_bce_avg = sum(loss_boundery_bce) / len(loss_boundery_bce) loss_boundery_dice_avg = sum(loss_boundery_dice) / len(loss_boundery_dice) msg = ', '.join([ 'it: {it}/{max_it}', 'lr: {lr:4f}', 'loss: {loss:.4f}', 'boundery_bce_loss: {boundery_bce_loss:.4f}', 'boundery_dice_loss: {boundery_dice_loss:.4f}', 'eta: {eta}', 'time: {time:.4f}', ]).format( it = it+1, max_it = max_iter, lr = lr, loss = loss_avg, boundery_bce_loss = loss_boundery_bce_avg, boundery_dice_loss = loss_boundery_dice_avg, time = t_intv, eta = eta ) logger.info(msg) loss_avg = [] loss_boundery_bce = [] loss_boundery_dice = [] st = ed # print(boundary_loss_func.get_params()) if (it+1)%save_iter_sep==0:# and it != 0: ## model logger.info('evaluating the model ...') logger.info('setup and restore model') net.eval() # ## evaluator logger.info('compute the mIOU') with torch.no_grad(): single_scale1 = MscEvalV0() mIOU50 = single_scale1(net, dlval, n_classes) # single_scale2= MscEvalV0(scale=0.75) # mIOU75 = single_scale2(net, dlval, n_classes) save_pth = osp.join(save_pth_path, 'model_iter{}_mIOU50_{}.pth' .format(it+1, str(round(mIOU50,4)))) state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict() if dist.get_rank()==0: torch.save(state, save_pth) logger.info('training iteration {}, model saved to: {}'.format(it+1, save_pth)) if mIOU50 > maxmIOU50: maxmIOU50 = mIOU50 save_pth = osp.join(save_pth_path, 'model_maxmIOU50.pth'.format(it+1)) state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict() if dist.get_rank()==0: torch.save(state, save_pth) logger.info('max mIOU model saved to: {}'.format(save_pth)) # if mIOU75 > maxmIOU75: # maxmIOU75 = mIOU75 # save_pth = osp.join(save_pth_path, 'model_maxmIOU75.pth'.format(it+1)) # state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict() # if dist.get_rank()==0: torch.save(state, save_pth) # logger.info('max mIOU model saved to: {}'.format(save_pth)) logger.info('mIOU50 is: {}'.format(mIOU50)) logger.info('maxmIOU50 is: {}'.format(maxmIOU50)) net.train() ## dump the final model save_pth = osp.join(save_pth_path, 'model_final.pth') net.cpu() state = net.module.state_dict() if hasattr(net, 'module') else net.state_dict() if dist.get_rank()==0: torch.save(state, save_pth) logger.info('training done, model saved to: {}'.format(save_pth)) print('epoch: ', epoch) if __name__ == "__main__": train()
32.786885
98
0.551714
[ "MIT" ]
Toby-SZZ/STDC-Seg
train.py
14,000
Python
# Copyright 2019 FairwindsOps Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ruamel.yaml import YAML from ruamel.yaml.constructor import DuplicateKeyError from reckoner.exception import ReckonerConfigException import logging from io import BufferedReader, StringIO class Handler(object): """Yaml handler class for loading, and dumping yaml consistently""" yaml = YAML() yaml.preserve_quotes = True yaml.allow_unicode = True yaml.allow_duplicate_keys = False @classmethod def load(cls, yaml_file: BufferedReader): try: y = cls.yaml.load(yaml_file) except DuplicateKeyError as err: logging.error(_clean_duplicate_key_message(str(err))) raise ReckonerConfigException( "Duplicate key found while loading your course YAML, please remove the duplicate key shown above.") except Exception as err: logging.error("Unexpected error when parsing yaml. See debug for more details.") logging.debug(err) raise err return y @classmethod def dump(cls, data: dict) -> str: temp_file = StringIO() cls.yaml.dump(data, temp_file) return temp_file.getvalue() def _clean_duplicate_key_message(msg: str): unwanted = """ To suppress this check see: http://yaml.readthedocs.io/en/latest/api.html#duplicate-keys Duplicate keys will become an error in future releases, and are errors by default when using the new API. """ return msg.replace(unwanted, '')
34.525424
115
0.71134
[ "Apache-2.0" ]
CroudTech/reckoner
reckoner/yaml/handler.py
2,037
Python
from pathlib import Path from typing import Union import pandas as pd from .convention import COLUMN_NAMES from .table_map import table_map_read def open(table_file: str, table_map_file: str = None) -> pd.DataFrame: """ Opens a dynamo table file, returning a DynamoTable object :param table_file: :return: dataframe """ # Read into dataframe df = pd.read_csv(table_file, header=None, delim_whitespace=True) n_cols = df.shape[1] if n_cols <= len(COLUMN_NAMES): column_names = COLUMN_NAMES[0:n_cols] df.columns = column_names # In case table has extra columns else: extra_columns_needed = n_cols - len(COLUMN_NAMES) column_names = list(COLUMN_NAMES) + ['' for x in range(extra_columns_needed)] # Take absolute value (daxis column sometimes has complex values) df = df.apply(pd.to_numeric, errors='ignore') # Add table map info if table_map_file is not None and Path(table_map_file).exists(): table_map_dict = table_map_read(table_map_file) tomo_file = [table_map_dict[tomo_idx] for tomo_idx in df['tomo']] df['tomo_file'] = tomo_file return df def read(filename: str, table_map_file: str = None) -> pd.DataFrame: """ Opens a dynamo table file, returning a pandas DataFrame :param filename: :return: dataframe """ df = open(filename, table_map_file) return df def new(dataframe: pd.DataFrame, filename: str): """ Writes a dynamo table file from a pandas DataFrame :param dataframe: pandas dataframe with headings matching the name from the dynamo table convention :param filename: file in which to save data from dataframe, should end in .tbl :return: """ # Get n rows n_rows = dataframe.shape[0] # Check if df has tomo_name but no tomo entry with indices, if so, fix if 'tomo_file' in dataframe.columns and 'tomo' not in dataframe.columns: tomo_names = dataframe['tomo_file'].unique() tomo_name_idx = {name : index for index, name in enumerate(tomo_names)} tomo_idx = [tomo_name_idx[name] for name in dataframe['tomo_file']] dataframe['tomo'] = tomo_idx # Check if tags present in dataframe, if not, make a set of linear tags if 'tag' not in dataframe.columns: tags = [x+1 for x in range(n_rows)] dataframe['tag'] = tags # Empty columns will be either 1 or 0, precreate these columns zeros = [0 for x in range(n_rows)] ones = [1 for x in range(n_rows)] # Initialise empty dictionary to store data data = {} for column_name in COLUMN_NAMES: if column_name in dataframe.columns: data[column_name] = dataframe[column_name] # Aligned value column should set to 1 otherwise alignment projects don't run properly elif column_name not in dataframe.columns and column_name == 'aligned_value': data[column_name] = ones else: data[column_name] = zeros # Create properly formatted dataframe to write table = pd.DataFrame.from_dict(data) # Prep filename filename = str(filename) if not filename.endswith('.tbl'): filename = filename.join('.tbl') # Write out table table.to_csv(filename, sep=' ', header=False, index=False) # Write out doc file if appropriate if 'tomo_file' in dataframe.columns: # Prep table file name table_file_name = filename.replace('.tbl', '.doc') # Get necessary info in new dataframe table_map = dataframe[['tomo', 'tomo_file']].drop_duplicates(subset='tomo') table_map.to_csv(table_file_name, sep=' ', header=False, index=False) return def write(dataframe: pd.DataFrame, filename: str): """ Writes a dynamo table file from a pandas DataFrame :param dataframe: pandas dataframe with headings matching the name from the dynamo table convention :param filename: file in which to save data from dataframe, should end in .tbl :return: """ new(dataframe, filename) return
31.527132
103
0.674945
[ "BSD-3-Clause" ]
brisvag/dynamotable
dynamotable/dynamotable.py
4,067
Python
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from bentoml.yatai.repository.base_repository import BaseRepository from bentoml.yatai.repository.file_system_repository import FileSystemRepository from bentoml.yatai.repository.s3_repository import S3Repository from bentoml.yatai.repository.gcs_repository import GCSRepository def create_repository( repository_type: str, file_system_directory=None, s3_url=None, s3_endpoint_url=None, gcs_url=None, ) -> BaseRepository: """Creates a repository based on a provided type and parameters""" if repository_type == "s3": return S3Repository(s3_url, endpoint_url=s3_endpoint_url) elif repository_type == "gcs": return GCSRepository(gcs_url) elif repository_type == "file_system": return FileSystemRepository(file_system_directory) else: raise ValueError("Unrecognized repository type {}" % repository_type)
39.243243
80
0.769284
[ "Apache-2.0" ]
AnvithaGadagi/BentoML
bentoml/yatai/repository/__init__.py
1,452
Python
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from parlai.core.worlds import create_task from parlai.agents.fixed_response.fixed_response import FixedResponseAgent from parlai.tasks.self_chat.worlds import SelfChatWorld as SelfChatBaseWorld from parlai.tasks.interactive.worlds import InteractiveWorld as InteractiveBaseWorld import random def get_personas(opt, shared=None): if shared and 'personas_list' in shared: return shared['personas_list'] return _load_personas(opt=opt) def _load_personas(opt): print('[ loading personas.. ]') # Create ConvAI2 data so we can assign personas. convai2_opt = opt.copy() convai2_opt['task'] = 'convai2:both' if convai2_opt['datatype'].startswith('train'): convai2_opt['datatype'] = 'train:evalmode' convai2_opt['interactive_task'] = False convai2_opt['selfchat_task'] = False convai2_agent = FixedResponseAgent({'fixed_response': None}) convai2_world = create_task(convai2_opt, convai2_agent) personas = set() while not convai2_world.epoch_done(): convai2_world.parley() msg = convai2_world.get_acts()[0] # Find a new episode if msg.get('episode_done', False) and not convai2_world.epoch_done(): convai2_world.parley() msg = convai2_world.get_acts()[0] txt = msg.get('text', '').split('\n') a1_persona = [] a2_persona = [] for t in txt: if t.startswith("partner's persona:"): a1_persona.append(t.replace("partner's persona:", 'your persona:')) if t.startswith('your persona:'): a2_persona.append(t) personas.add('\n'.join(a1_persona)) personas.add('\n'.join(a2_persona)) print('[ loaded ' + str(len(personas)) + ' personas ]') return list(personas) class InteractiveWorld(InteractiveBaseWorld): @staticmethod def add_cmdline_args(argparser): parser = argparser.add_argument_group('ConvAI2 Interactive World') parser.add_argument( '--display-partner-persona', type='bool', default=True, help='Display your partner persona at the end of the chat', ) def __init__(self, opt, agents, shared=None): super().__init__(opt, agents, shared) self.display_partner_persona = self.opt['display_partner_persona'] def init_contexts(self, shared=None): self.personas_list = get_personas(opt=self.opt, shared=shared) def get_contexts(self): random.seed() personas_1 = random.choice(self.personas_list) personas_2 = random.choice(self.personas_list) return personas_1, personas_2 def finalize_episode(self): print("\nCHAT DONE.\n") if self.display_partner_persona: partner_persona = self.p2.replace('your persona:', 'partner\'s persona:') print(f"Your partner was playing the following persona:\n{partner_persona}") if not self.epoch_done(): print("[ Preparing new chat ... ]\n") def share(self): shared_data = super().share() shared_data['personas_list'] = self.personas_list return shared_data class SelfChatWorld(SelfChatBaseWorld): def init_contexts(self, shared=None): self.personas_list = get_personas(self.opt, shared=shared) def get_contexts(self): random.seed() personas_1 = random.choice(self.personas_list) personas_2 = random.choice(self.personas_list) return [personas_1, personas_2]
37.138614
88
0.659557
[ "MIT" ]
189569400/ParlAI
parlai/tasks/convai2/worlds.py
3,751
Python
#! /usr/bin/env python3 # This was forked from https://github.com/rustyrussell/lightning-payencode/tree/acc16ec13a3fa1dc16c07af6ec67c261bd8aff23 import re import time from hashlib import sha256 from binascii import hexlify from decimal import Decimal from typing import Optional, TYPE_CHECKING, Type import random import bitstring from .bitcoin import hash160_to_b58_address, b58_address_to_hash160, TOTAL_COIN_SUPPLY_LIMIT_IN_FTC from .segwit_addr import bech32_encode, bech32_decode, CHARSET from . import segwit_addr from . import constants from .constants import AbstractNet from . import ecc from .bitcoin import COIN if TYPE_CHECKING: from .lnutil import LnFeatures class LnInvoiceException(Exception): pass class LnDecodeException(LnInvoiceException): pass class LnEncodeException(LnInvoiceException): pass # BOLT #11: # # A writer MUST encode `amount` as a positive decimal integer with no # leading zeroes, SHOULD use the shortest representation possible. def shorten_amount(amount): """ Given an amount in bitcoin, shorten it """ # Convert to pico initially amount = int(amount * 10**12) units = ['p', 'n', 'u', 'm'] for unit in units: if amount % 1000 == 0: amount //= 1000 else: break else: unit = '' return str(amount) + unit def unshorten_amount(amount) -> Decimal: """ Given a shortened amount, convert it into a decimal """ # BOLT #11: # The following `multiplier` letters are defined: # #* `m` (milli): multiply by 0.001 #* `u` (micro): multiply by 0.000001 #* `n` (nano): multiply by 0.000000001 #* `p` (pico): multiply by 0.000000000001 units = { 'p': 10**12, 'n': 10**9, 'u': 10**6, 'm': 10**3, } unit = str(amount)[-1] # BOLT #11: # A reader SHOULD fail if `amount` contains a non-digit, or is followed by # anything except a `multiplier` in the table above. if not re.fullmatch("\\d+[pnum]?", str(amount)): raise LnDecodeException("Invalid amount '{}'".format(amount)) if unit in units.keys(): return Decimal(amount[:-1]) / units[unit] else: return Decimal(amount) _INT_TO_BINSTR = {a: '0' * (5-len(bin(a)[2:])) + bin(a)[2:] for a in range(32)} # Bech32 spits out array of 5-bit values. Shim here. def u5_to_bitarray(arr): b = ''.join(_INT_TO_BINSTR[a] for a in arr) return bitstring.BitArray(bin=b) def bitarray_to_u5(barr): assert barr.len % 5 == 0 ret = [] s = bitstring.ConstBitStream(barr) while s.pos != s.len: ret.append(s.read(5).uint) return ret def encode_fallback(fallback: str, net: Type[AbstractNet]): """ Encode all supported fallback addresses. """ wver, wprog_ints = segwit_addr.decode_segwit_address(net.SEGWIT_HRP, fallback) if wver is not None: wprog = bytes(wprog_ints) else: addrtype, addr = b58_address_to_hash160(fallback) if addrtype == net.ADDRTYPE_P2PKH: wver = 17 elif addrtype == net.ADDRTYPE_P2SH: wver = 18 else: raise LnEncodeException(f"Unknown address type {addrtype} for {net}") wprog = addr return tagged('f', bitstring.pack("uint:5", wver) + wprog) def parse_fallback(fallback, net: Type[AbstractNet]): wver = fallback[0:5].uint if wver == 17: addr = hash160_to_b58_address(fallback[5:].tobytes(), net.ADDRTYPE_P2PKH) elif wver == 18: addr = hash160_to_b58_address(fallback[5:].tobytes(), net.ADDRTYPE_P2SH) elif wver <= 16: witprog = fallback[5:] # cut witver witprog = witprog[:len(witprog) // 8 * 8] # can only be full bytes witprog = witprog.tobytes() addr = segwit_addr.encode_segwit_address(net.SEGWIT_HRP, wver, witprog) else: return None return addr BOLT11_HRP_INV_DICT = {net.BOLT11_HRP: net for net in constants.NETS_LIST} # Tagged field containing BitArray def tagged(char, l): # Tagged fields need to be zero-padded to 5 bits. while l.len % 5 != 0: l.append('0b0') return bitstring.pack("uint:5, uint:5, uint:5", CHARSET.find(char), (l.len / 5) / 32, (l.len / 5) % 32) + l # Tagged field containing bytes def tagged_bytes(char, l): return tagged(char, bitstring.BitArray(l)) def trim_to_min_length(bits): """Ensures 'bits' have min number of leading zeroes. Assumes 'bits' is big-endian, and that it needs to be encoded in 5 bit blocks. """ bits = bits[:] # copy # make sure we can be split into 5 bit blocks while bits.len % 5 != 0: bits.prepend('0b0') # Get minimal length by trimming leading 5 bits at a time. while bits.startswith('0b00000'): if len(bits) == 5: break # v == 0 bits = bits[5:] return bits # Discard trailing bits, convert to bytes. def trim_to_bytes(barr): # Adds a byte if necessary. b = barr.tobytes() if barr.len % 8 != 0: return b[:-1] return b # Try to pull out tagged data: returns tag, tagged data and remainder. def pull_tagged(stream): tag = stream.read(5).uint length = stream.read(5).uint * 32 + stream.read(5).uint return (CHARSET[tag], stream.read(length * 5), stream) def lnencode(addr: 'LnAddr', privkey) -> str: if addr.amount: amount = addr.net.BOLT11_HRP + shorten_amount(addr.amount) else: amount = addr.net.BOLT11_HRP if addr.net else '' hrp = 'ln' + amount # Start with the timestamp data = bitstring.pack('uint:35', addr.date) tags_set = set() # Payment hash data += tagged_bytes('p', addr.paymenthash) tags_set.add('p') if addr.payment_secret is not None: data += tagged_bytes('s', addr.payment_secret) tags_set.add('s') for k, v in addr.tags: # BOLT #11: # # A writer MUST NOT include more than one `d`, `h`, `n` or `x` fields, if k in ('d', 'h', 'n', 'x', 'p', 's'): if k in tags_set: raise LnEncodeException("Duplicate '{}' tag".format(k)) if k == 'r': route = bitstring.BitArray() for step in v: pubkey, channel, feebase, feerate, cltv = step route.append(bitstring.BitArray(pubkey) + bitstring.BitArray(channel) + bitstring.pack('intbe:32', feebase) + bitstring.pack('intbe:32', feerate) + bitstring.pack('intbe:16', cltv)) data += tagged('r', route) elif k == 't': pubkey, feebase, feerate, cltv = v route = bitstring.BitArray(pubkey) + bitstring.pack('intbe:32', feebase) + bitstring.pack('intbe:32', feerate) + bitstring.pack('intbe:16', cltv) data += tagged('t', route) elif k == 'f': data += encode_fallback(v, addr.net) elif k == 'd': # truncate to max length: 1024*5 bits = 639 bytes data += tagged_bytes('d', v.encode()[0:639]) elif k == 'x': expirybits = bitstring.pack('intbe:64', v) expirybits = trim_to_min_length(expirybits) data += tagged('x', expirybits) elif k == 'h': data += tagged_bytes('h', sha256(v.encode('utf-8')).digest()) elif k == 'n': data += tagged_bytes('n', v) elif k == 'c': finalcltvbits = bitstring.pack('intbe:64', v) finalcltvbits = trim_to_min_length(finalcltvbits) data += tagged('c', finalcltvbits) elif k == '9': if v == 0: continue feature_bits = bitstring.BitArray(uint=v, length=v.bit_length()) feature_bits = trim_to_min_length(feature_bits) data += tagged('9', feature_bits) else: # FIXME: Support unknown tags? raise LnEncodeException("Unknown tag {}".format(k)) tags_set.add(k) # BOLT #11: # # A writer MUST include either a `d` or `h` field, and MUST NOT include # both. if 'd' in tags_set and 'h' in tags_set: raise ValueError("Cannot include both 'd' and 'h'") if not 'd' in tags_set and not 'h' in tags_set: raise ValueError("Must include either 'd' or 'h'") # We actually sign the hrp, then data (padded to 8 bits with zeroes). msg = hrp.encode("ascii") + data.tobytes() privkey = ecc.ECPrivkey(privkey) sig = privkey.sign_message(msg, is_compressed=False, algo=lambda x:sha256(x).digest()) recovery_flag = bytes([sig[0] - 27]) sig = bytes(sig[1:]) + recovery_flag data += sig return bech32_encode(segwit_addr.Encoding.BECH32, hrp, bitarray_to_u5(data)) class LnAddr(object): def __init__(self, *, paymenthash: bytes = None, amount=None, net: Type[AbstractNet] = None, tags=None, date=None, payment_secret: bytes = None): self.date = int(time.time()) if not date else int(date) self.tags = [] if not tags else tags self.unknown_tags = [] self.paymenthash = paymenthash self.payment_secret = payment_secret self.signature = None self.pubkey = None self.net = constants.net if net is None else net # type: Type[AbstractNet] self._amount = amount # type: Optional[Decimal] # in bitcoins self._min_final_cltv_expiry = 18 @property def amount(self) -> Optional[Decimal]: return self._amount @amount.setter def amount(self, value): if not (isinstance(value, Decimal) or value is None): raise LnInvoiceException(f"amount must be Decimal or None, not {value!r}") if value is None: self._amount = None return assert isinstance(value, Decimal) if value.is_nan() or not (0 <= value <= TOTAL_COIN_SUPPLY_LIMIT_IN_FTC): raise ValueError(f"amount is out-of-bounds: {value!r} FTC") if value * 10**12 % 10: # max resolution is millisatoshi raise LnInvoiceException(f"Cannot encode {value!r}: too many decimal places") self._amount = value def get_amount_sat(self) -> Optional[Decimal]: # note that this has msat resolution potentially if self.amount is None: return None return self.amount * COIN def get_routing_info(self, tag): # note: tag will be 't' for trampoline r_tags = list(filter(lambda x: x[0] == tag, self.tags)) # strip the tag type, it's implicitly 'r' now r_tags = list(map(lambda x: x[1], r_tags)) # if there are multiple hints, we will use the first one that works, # from a random permutation random.shuffle(r_tags) return r_tags def get_amount_msat(self) -> Optional[int]: if self.amount is None: return None return int(self.amount * COIN * 1000) def get_features(self) -> 'LnFeatures': from .lnutil import LnFeatures return LnFeatures(self.get_tag('9') or 0) def __str__(self): return "LnAddr[{}, amount={}{} tags=[{}]]".format( hexlify(self.pubkey.serialize()).decode('utf-8') if self.pubkey else None, self.amount, self.net.BOLT11_HRP, ", ".join([k + '=' + str(v) for k, v in self.tags]) ) def get_min_final_cltv_expiry(self) -> int: return self._min_final_cltv_expiry def get_tag(self, tag): for k, v in self.tags: if k == tag: return v return None def get_description(self) -> str: return self.get_tag('d') or '' def get_expiry(self) -> int: exp = self.get_tag('x') if exp is None: exp = 3600 return int(exp) def is_expired(self) -> bool: now = time.time() # BOLT-11 does not specify what expiration of '0' means. # we treat it as 0 seconds here (instead of never) return now > self.get_expiry() + self.date class SerializableKey: def __init__(self, pubkey): self.pubkey = pubkey def serialize(self): return self.pubkey.get_public_key_bytes(True) def lndecode(invoice: str, *, verbose=False, net=None) -> LnAddr: if net is None: net = constants.net decoded_bech32 = bech32_decode(invoice, ignore_long_length=True) hrp = decoded_bech32.hrp data = decoded_bech32.data if decoded_bech32.encoding is None: raise LnDecodeException("Bad bech32 checksum") if decoded_bech32.encoding != segwit_addr.Encoding.BECH32: raise LnDecodeException("Bad bech32 encoding: must be using vanilla BECH32") # BOLT #11: # # A reader MUST fail if it does not understand the `prefix`. if not hrp.startswith('ln'): raise LnDecodeException("Does not start with ln") if not hrp[2:].startswith(net.BOLT11_HRP): raise LnDecodeException(f"Wrong Lightning invoice HRP {hrp[2:]}, should be {net.BOLT11_HRP}") data = u5_to_bitarray(data) # Final signature 65 bytes, split it off. if len(data) < 65*8: raise LnDecodeException("Too short to contain signature") sigdecoded = data[-65*8:].tobytes() data = bitstring.ConstBitStream(data[:-65*8]) addr = LnAddr() addr.pubkey = None m = re.search("[^\\d]+", hrp[2:]) if m: addr.net = BOLT11_HRP_INV_DICT[m.group(0)] amountstr = hrp[2+m.end():] # BOLT #11: # # A reader SHOULD indicate if amount is unspecified, otherwise it MUST # multiply `amount` by the `multiplier` value (if any) to derive the # amount required for payment. if amountstr != '': addr.amount = unshorten_amount(amountstr) addr.date = data.read(35).uint while data.pos != data.len: tag, tagdata, data = pull_tagged(data) # BOLT #11: # # A reader MUST skip over unknown fields, an `f` field with unknown # `version`, or a `p`, `h`, or `n` field which does not have # `data_length` 52, 52, or 53 respectively. data_length = len(tagdata) / 5 if tag == 'r': # BOLT #11: # # * `r` (3): `data_length` variable. One or more entries # containing extra routing information for a private route; # there may be more than one `r` field, too. # * `pubkey` (264 bits) # * `short_channel_id` (64 bits) # * `feebase` (32 bits, big-endian) # * `feerate` (32 bits, big-endian) # * `cltv_expiry_delta` (16 bits, big-endian) route=[] s = bitstring.ConstBitStream(tagdata) while s.pos + 264 + 64 + 32 + 32 + 16 < s.len: route.append((s.read(264).tobytes(), s.read(64).tobytes(), s.read(32).uintbe, s.read(32).uintbe, s.read(16).uintbe)) addr.tags.append(('r',route)) elif tag == 't': s = bitstring.ConstBitStream(tagdata) e = (s.read(264).tobytes(), s.read(32).uintbe, s.read(32).uintbe, s.read(16).uintbe) addr.tags.append(('t', e)) elif tag == 'f': fallback = parse_fallback(tagdata, addr.net) if fallback: addr.tags.append(('f', fallback)) else: # Incorrect version. addr.unknown_tags.append((tag, tagdata)) continue elif tag == 'd': addr.tags.append(('d', trim_to_bytes(tagdata).decode('utf-8'))) elif tag == 'h': if data_length != 52: addr.unknown_tags.append((tag, tagdata)) continue addr.tags.append(('h', trim_to_bytes(tagdata))) elif tag == 'x': addr.tags.append(('x', tagdata.uint)) elif tag == 'p': if data_length != 52: addr.unknown_tags.append((tag, tagdata)) continue addr.paymenthash = trim_to_bytes(tagdata) elif tag == 's': if data_length != 52: addr.unknown_tags.append((tag, tagdata)) continue addr.payment_secret = trim_to_bytes(tagdata) elif tag == 'n': if data_length != 53: addr.unknown_tags.append((tag, tagdata)) continue pubkeybytes = trim_to_bytes(tagdata) addr.pubkey = pubkeybytes elif tag == 'c': addr._min_final_cltv_expiry = tagdata.uint elif tag == '9': features = tagdata.uint addr.tags.append(('9', features)) from .lnutil import validate_features validate_features(features) else: addr.unknown_tags.append((tag, tagdata)) if verbose: print('hex of signature data (32 byte r, 32 byte s): {}' .format(hexlify(sigdecoded[0:64]))) print('recovery flag: {}'.format(sigdecoded[64])) print('hex of data for signing: {}' .format(hexlify(hrp.encode("ascii") + data.tobytes()))) print('SHA256 of above: {}'.format(sha256(hrp.encode("ascii") + data.tobytes()).hexdigest())) # BOLT #11: # # A reader MUST check that the `signature` is valid (see the `n` tagged # field specified below). addr.signature = sigdecoded[:65] hrp_hash = sha256(hrp.encode("ascii") + data.tobytes()).digest() if addr.pubkey: # Specified by `n` # BOLT #11: # # A reader MUST use the `n` field to validate the signature instead of # performing signature recovery if a valid `n` field is provided. ecc.ECPubkey(addr.pubkey).verify_message_hash(sigdecoded[:64], hrp_hash) pubkey_copy = addr.pubkey class WrappedBytesKey: serialize = lambda: pubkey_copy addr.pubkey = WrappedBytesKey else: # Recover pubkey from signature. addr.pubkey = SerializableKey(ecc.ECPubkey.from_sig_string(sigdecoded[:64], sigdecoded[64], hrp_hash)) return addr
34.90613
197
0.590582
[ "MIT" ]
Feathercoin-Applications/electrum-ftc
electrum/lnaddr.py
18,221
Python
from time import sleep from enos.message.downstream.tsl.MeasurepointGetReply import MeasurepointGetReply from enos.message.downstream.tsl.MeasurepointGetCommand import MeasurepointGetCommand from enos.message.downstream.tsl.MeasurepointSetReply import MeasurepointSetReply from enos.core.MqttClient import MqttClient from enos.message.downstream.tsl.MeasurepointSetCommand import MeasurepointSetCommand from enos.sample.SampleHelper import SampleHelper def set_measurepoint_command_handler(arrived_message, arg_list): """ message callback, handle the received downstream message and implement your logic :param arrived_message: the arrived msg instance , it may instanceof class <BaseCommand> or <BaseResponse> :param arg_list: the topic args extract from the arrived topic , including productKey , deviceKey ,etc :return: the msg you want to reply to the cloud , if you do NOT want send msg , just return None """ print('receive measurepoint set command, params: {}'.format(arrived_message.get_params())) print('product key = {}, device key= {}'.format(arg_list[0], arg_list[1])) return MeasurepointSetReply().builder()\ .set_code(200)\ .set_message('measurepoints set success')\ .build() def get_measurepoint_command_handler(arrived_message, arg_list): print('receive measurepoint get command, params: {}'.format(arrived_message.get_params())) print('product key = {}, device key= {}'.format(arg_list[0], arg_list[1])) return MeasurepointGetReply().builder()\ .set_code(200) \ .add_measurepoint('wwww0001', 2) \ .set_message('measurepoints get success')\ .build() if __name__ == "__main__": client = MqttClient(SampleHelper.TCP_SERVER_URL, SampleHelper.GW_PRODUCT_KEY, SampleHelper.GW_DEVICE_KEY, SampleHelper.GW_DEVICE_SECRET) client.get_profile().set_auto_reconnect(True) # if connection interrupted, the client can automaticlly reconnect client.setup_basic_logger('INFO') client.connect() # connect in sync # register a msg handler to handle the downstream measurepoint set command client.register_arrived_message_handler(MeasurepointSetCommand.get_class(), set_measurepoint_command_handler) client.register_arrived_message_handler(MeasurepointGetCommand.get_class(), get_measurepoint_command_handler) while True: sleep(5)
43.053571
117
0.757362
[ "MIT" ]
charleshuangcai/enos-device-sdk-python
enos/sample/CommandSample.py
2,411
Python
# !/usr/bin/env python # -*- coding: utf-8 -*- # # Project: Azimuthal integration # https://github.com/silx-kit/pyFAI # # Copyright (C) European Synchrotron Radiation Facility, Grenoble, France # # Principal author: Jérôme Kieffer ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. """This modules contains a function to fit without refinement an ellipse on a set of points .... """ __author__ = "Jerome Kieffer" __contact__ = "[email protected]" __license__ = "MIT" __copyright__ = "European Synchrotron Radiation Facility, Grenoble, France" __date__ = "14/02/2017" __status__ = "production" __docformat__ = 'restructuredtext' from collections import namedtuple import numpy Ellipse = namedtuple("Ellipse", ["cy", "cx", "angle", "half_long_axis", "half_short_axis"]) def fit_ellipse(pty, ptx): """Fit an inspired from http://nicky.vanforeest.com/misc/fitEllipse/fitEllipse.html :param pty: point coordinates in the slow dimension (y) :param ptx: point coordinates in the fast dimension (x) """ x = ptx[:, numpy.newaxis] y = pty[:, numpy.newaxis] D = numpy.hstack((x * x, x * y, y * y, x, y, numpy.ones_like(x))) S = numpy.dot(D.T, D) C = numpy.zeros([6, 6]) C[0, 2] = C[2, 0] = 2 C[1, 1] = -1 E, V = numpy.linalg.eig(numpy.dot(numpy.linalg.inv(S), C)) n = numpy.argmax(numpy.abs(E)) res = V[:, n] b, c, d, f, g, a = res[1] / 2, res[2], res[3] / 2, res[4] / 2, res[5], res[0] num = b * b - a * c x0 = (c * d - b * f) / num y0 = (a * f - b * d) / num if b == 0: if a > c: angle = 0 else: angle = numpy.pi / 2 else: if a > c: angle = numpy.arctan2(2 * b, (a - c)) / 2 else: angle = numpy.pi / 2 + numpy.arctan2(2 * b, (a - c)) / 2 up = 2 * (a * f * f + c * d * d + g * b * b - 2 * b * d * f - a * c * g) down1 = (b * b - a * c) * ((c - a) * numpy.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a)) down2 = (b * b - a * c) * ((a - c) * numpy.sqrt(1 + 4 * b * b / ((a - c) * (a - c))) - (c + a)) res1 = numpy.sqrt(up / down1) res2 = numpy.sqrt(up / down2) return Ellipse(y0, x0, angle, max(res1, res2), min(res1, res2))
37.850575
99
0.6198
[ "BSD-3-Clause" ]
michel4j/auto-process
autoprocess/utils/ellipse.py
3,295
Python
""" Slixmpp: The Slick XMPP Library Copyright (C) 2010 Nathanael C. Fritz This file is part of Slixmpp. See the file LICENSE for copying permission. """ from slixmpp.plugins.base import register_plugin from slixmpp.plugins.xep_0199.stanza import Ping from slixmpp.plugins.xep_0199.ping import XEP_0199 register_plugin(XEP_0199)
21.8125
50
0.765043
[ "BSD-3-Clause" ]
0mp/slixmpp
slixmpp/plugins/xep_0199/__init__.py
349
Python
# This code is part of Qiskit. # # (C) Copyright IBM 2017. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """Rotation around the X axis.""" import math import numpy from qiskit.qasm import pi from qiskit.circuit.controlledgate import ControlledGate from qiskit.circuit.gate import Gate from qiskit.circuit.quantumregister import QuantumRegister class RXGate(Gate): r"""Single-qubit rotation about the X axis. **Circuit symbol:** .. parsed-literal:: ┌───────┐ q_0: ┤ Rx(ϴ) ├ └───────┘ **Matrix Representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} RX(\theta) = exp(-i \th X) = \begin{pmatrix} \cos{\th} & -i\sin{\th} \\ -i\sin{\th} & \cos{\th} \end{pmatrix} """ def __init__(self, theta, label=None): """Create new RX gate.""" super().__init__('rx', 1, [theta], label=label) def _define(self): """ gate rx(theta) a {r(theta, 0) a;} """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .r import RGate q = QuantumRegister(1, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (RGate(self.params[0], 0), [q[0]], []) ] qc._data = rules self.definition = qc def control(self, num_ctrl_qubits=1, label=None, ctrl_state=None): """Return a (mutli-)controlled-RX gate. Args: num_ctrl_qubits (int): number of control qubits. label (str or None): An optional label for the gate [Default: None] ctrl_state (int or str or None): control state expressed as integer, string (e.g. '110'), or None. If None, use all 1s. Returns: ControlledGate: controlled version of this gate. """ if num_ctrl_qubits == 1: gate = CRXGate(self.params[0], label=label, ctrl_state=ctrl_state) gate.base_gate.label = self.label return gate return super().control(num_ctrl_qubits=num_ctrl_qubits, label=label, ctrl_state=ctrl_state) def inverse(self): r"""Return inverted RX gate. :math:`RX(\lambda)^{\dagger} = RX(-\lambda)` """ return RXGate(-self.params[0]) def to_matrix(self): """Return a numpy.array for the RX gate.""" cos = math.cos(self.params[0] / 2) sin = math.sin(self.params[0] / 2) return numpy.array([[cos, -1j * sin], [-1j * sin, cos]], dtype=complex) class CRXGate(ControlledGate): r"""Controlled-RX gate. **Circuit symbol:** .. parsed-literal:: q_0: ────■──── ┌───┴───┐ q_1: ┤ Rx(ϴ) ├ └───────┘ **Matrix representation:** .. math:: \newcommand{\th}{\frac{\theta}{2}} CRX(\lambda)\ q_0, q_1 = I \otimes |0\rangle\langle 0| + RX(\theta) \otimes |1\rangle\langle 1| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos{\th} & 0 & -i\sin{\th} \\ 0 & 0 & 1 & 0 \\ 0 & -i\sin{\th} & 0 & \cos{\th} \end{pmatrix} .. note:: In Qiskit's convention, higher qubit indices are more significant (little endian convention). In many textbooks, controlled gates are presented with the assumption of more significant qubits as control, which in our case would be q_1. Thus a textbook matrix for this gate will be: .. parsed-literal:: ┌───────┐ q_0: ┤ Rx(ϴ) ├ └───┬───┘ q_1: ────■──── .. math:: \newcommand{\th}{\frac{\theta}{2}} CRX(\theta)\ q_1, q_0 = |0\rangle\langle0| \otimes I + |1\rangle\langle1| \otimes RX(\theta) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \cos{\th} & -i\sin{\th} \\ 0 & 0 & -i\sin{\th} & \cos{\th} \end{pmatrix} """ def __init__(self, theta, label=None, ctrl_state=None): """Create new CRX gate.""" super().__init__('crx', 2, [theta], num_ctrl_qubits=1, label=label, ctrl_state=ctrl_state) self.base_gate = RXGate(theta) def _define(self): """ gate cu3(theta,phi,lambda) c, t { u1(pi/2) t; cx c,t; u3(-theta/2,0,0) t; cx c,t; u3(theta/2,-pi/2,0) t; } """ # pylint: disable=cyclic-import from qiskit.circuit.quantumcircuit import QuantumCircuit from .u1 import U1Gate from .u3 import U3Gate from .x import CXGate q = QuantumRegister(2, 'q') qc = QuantumCircuit(q, name=self.name) rules = [ (U1Gate(pi / 2), [q[1]], []), (CXGate(), [q[0], q[1]], []), (U3Gate(-self.params[0] / 2, 0, 0), [q[1]], []), (CXGate(), [q[0], q[1]], []), (U3Gate(self.params[0] / 2, -pi / 2, 0), [q[1]], []) ] qc._data = rules self.definition = qc def inverse(self): """Return inverse RX gate (i.e. with the negative rotation angle).""" return CRXGate(-self.params[0]) def to_matrix(self): """Return a numpy.array for the CRX gate.""" half_theta = float(self.params[0]) / 2 cos = numpy.cos(half_theta) isin = 1j * numpy.sin(half_theta) if self.ctrl_state: return numpy.array([[1, 0, 0, 0], [0, cos, 0, -isin], [0, 0, 1, 0], [0, -isin, 0, cos]], dtype=complex) else: return numpy.array([[cos, 0, -isin, 0], [0, 1, 0, 0], [-isin, 0, cos, 0], [0, 0, 0, 1]], dtype=complex)
31.278846
99
0.498156
[ "Apache-2.0" ]
CatalinaAlbornoz/qiskit-terra
qiskit/circuit/library/standard_gates/rx.py
6,665
Python
import random from collections import defaultdict, deque import logging import operator as op import time from enum import unique, Flag from functools import reduce from BaseClasses import RegionType, Door, DoorType, Direction, Sector, CrystalBarrier from Regions import key_only_locations from Dungeons import hyrule_castle_regions, eastern_regions, desert_regions, hera_regions, tower_regions, pod_regions from Dungeons import dungeon_regions, region_starts, split_region_starts, flexible_starts from Dungeons import drop_entrances, dungeon_bigs, dungeon_keys, dungeon_hints from Items import ItemFactory from RoomData import DoorKind, PairedDoor from DungeonGenerator import ExplorationState, convert_regions, generate_dungeon, validate_tr from DungeonGenerator import create_dungeon_builders, split_dungeon_builder, simple_dungeon_builder from KeyDoorShuffle import analyze_dungeon, validate_vanilla_key_logic, build_key_layout, validate_key_layout def link_doors(world, player): # Drop-down connections & push blocks for exitName, regionName in logical_connections: connect_simple_door(world, exitName, regionName, player) # These should all be connected for now as normal connections for edge_a, edge_b in interior_doors: connect_interior_doors(edge_a, edge_b, world, player) # These connections are here because they are currently unable to be shuffled for entrance, ext in straight_staircases: connect_two_way(world, entrance, ext, player) for exitName, regionName in falldown_pits: connect_simple_door(world, exitName, regionName, player) for exitName, regionName in dungeon_warps: connect_simple_door(world, exitName, regionName, player) for ent, ext in ladders: connect_two_way(world, ent, ext, player) if world.doorShuffle[player] == 'vanilla': for entrance, ext in open_edges: connect_two_way(world, entrance, ext, player) for exitName, regionName in vanilla_logical_connections: connect_simple_door(world, exitName, regionName, player) for entrance, ext in spiral_staircases: connect_two_way(world, entrance, ext, player) for entrance, ext in default_door_connections: connect_two_way(world, entrance, ext, player) for ent, ext in default_one_way_connections: connect_one_way(world, ent, ext, player) vanilla_key_logic(world, player) elif world.doorShuffle[player] == 'basic': # if not world.experimental[player]: for entrance, ext in open_edges: connect_two_way(world, entrance, ext, player) within_dungeon(world, player) elif world.doorShuffle[player] == 'crossed': for entrance, ext in open_edges: connect_two_way(world, entrance, ext, player) cross_dungeon(world, player) else: logging.getLogger('').error('Invalid door shuffle setting: %s' % world.doorShuffle[player]) raise Exception('Invalid door shuffle setting: %s' % world.doorShuffle[player]) if world.doorShuffle[player] != 'vanilla': create_door_spoiler(world, player) # todo: I think this function is not necessary def mark_regions(world, player): # traverse dungeons and make sure dungeon property is assigned player_dungeons = [dungeon for dungeon in world.dungeons if dungeon.player == player] for dungeon in player_dungeons: queue = deque(dungeon.regions) while len(queue) > 0: region = world.get_region(queue.popleft(), player) if region.name not in dungeon.regions: dungeon.regions.append(region.name) region.dungeon = dungeon for ext in region.exits: d = world.check_for_door(ext.name, player) connected = ext.connected_region if d is not None and connected is not None: if d.dest is not None and connected.name not in dungeon.regions and connected.type == RegionType.Dungeon and connected.name not in queue: queue.append(connected) # needs to be added elif connected is not None and connected.name not in dungeon.regions and connected.type == RegionType.Dungeon and connected.name not in queue: queue.append(connected) # needs to be added def create_door_spoiler(world, player): logger = logging.getLogger('') queue = deque(world.dungeon_layouts[player].values()) while len(queue) > 0: builder = queue.popleft() done = set() start_regions = set(convert_regions(builder.layout_starts, world, player)) # todo: set all_entrances for basic reg_queue = deque(start_regions) visited = set(start_regions) while len(reg_queue) > 0: next = reg_queue.pop() for ext in next.exits: door_a = ext.door connect = ext.connected_region if door_a and door_a.type in [DoorType.Normal, DoorType.SpiralStairs] and door_a not in done: done.add(door_a) door_b = door_a.dest if door_b: done.add(door_b) if not door_a.blocked and not door_b.blocked: world.spoiler.set_door(door_a.name, door_b.name, 'both', player, builder.name) elif door_a.blocked: world.spoiler.set_door(door_b.name, door_a.name, 'entrance', player, builder.name) elif door_b.blocked: world.spoiler.set_door(door_a.name, door_b.name, 'entrance', player, builder.name) else: logger.warning('This is a bug during door spoiler') else: logger.warning('Door not connected: %s', door_a.name) if connect and connect.type == RegionType.Dungeon and connect not in visited: visited.add(connect) reg_queue.append(connect) def vanilla_key_logic(world, player): builders = [] world.dungeon_layouts[player] = {} for dungeon in [dungeon for dungeon in world.dungeons if dungeon.player == player]: sector = Sector() sector.name = dungeon.name sector.regions.extend(convert_regions(dungeon.regions, world, player)) builder = simple_dungeon_builder(sector.name, [sector]) builder.master_sector = sector builders.append(builder) world.dungeon_layouts[player][builder.name] = builder overworld_prep(world, player) entrances_map, potentials, connections = determine_entrance_list(world, player) enabled_entrances = {} sector_queue = deque(builders) last_key, loops = None, 0 while len(sector_queue) > 0: builder = sector_queue.popleft() origin_list = list(entrances_map[builder.name]) find_enabled_origins(builder.sectors, enabled_entrances, origin_list, entrances_map, builder.name) origin_list_sans_drops = remove_drop_origins(origin_list) if len(origin_list_sans_drops) <= 0: if last_key == builder.name or loops > 1000: origin_name = world.get_region(origin_list[0], player).entrances[0].parent_region.name raise Exception('Infinite loop detected for "%s" located at %s' % builder.name, origin_name) sector_queue.append(builder) last_key = builder.name loops += 1 else: find_new_entrances(builder.master_sector, entrances_map, connections, potentials, enabled_entrances, world, player) start_regions = convert_regions(origin_list, world, player) doors = convert_key_doors(default_small_key_doors[builder.name], world, player) key_layout = build_key_layout(builder, start_regions, doors, world, player) valid = validate_key_layout(key_layout, world, player) if not valid: logging.getLogger('').warning('Vanilla key layout not valid %s', builder.name) if player not in world.key_logic.keys(): world.key_logic[player] = {} analyze_dungeon(key_layout, world, player) world.key_logic[player][builder.name] = key_layout.key_logic log_key_logic(builder.name, key_layout.key_logic) last_key = None if world.shuffle[player] == 'vanilla' and world.accessibility[player] == 'items' and not world.retro[player]: validate_vanilla_key_logic(world, player) # some useful functions oppositemap = { Direction.South: Direction.North, Direction.North: Direction.South, Direction.West: Direction.East, Direction.East: Direction.West, Direction.Up: Direction.Down, Direction.Down: Direction.Up, } def switch_dir(direction): return oppositemap[direction] def convert_key_doors(key_doors, world, player): result = [] for d in key_doors: if type(d) is tuple: result.append((world.get_door(d[0], player), world.get_door(d[1], player))) else: result.append(world.get_door(d, player)) return result def connect_simple_door(world, exit_name, region_name, player): region = world.get_region(region_name, player) world.get_entrance(exit_name, player).connect(region) d = world.check_for_door(exit_name, player) if d is not None: d.dest = region def connect_door_only(world, exit_name, region, player): d = world.check_for_door(exit_name, player) if d is not None: d.dest = region def connect_interior_doors(a, b, world, player): door_a = world.get_door(a, player) door_b = world.get_door(b, player) if door_a.blocked: connect_one_way(world, b, a, player) elif door_b.blocked: connect_one_way(world, a, b, player) else: connect_two_way(world, a, b, player) def connect_two_way(world, entrancename, exitname, player): entrance = world.get_entrance(entrancename, player) ext = world.get_entrance(exitname, player) # if these were already connected somewhere, remove the backreference if entrance.connected_region is not None: entrance.connected_region.entrances.remove(entrance) if ext.connected_region is not None: ext.connected_region.entrances.remove(ext) entrance.connect(ext.parent_region) ext.connect(entrance.parent_region) if entrance.parent_region.dungeon: ext.parent_region.dungeon = entrance.parent_region.dungeon x = world.check_for_door(entrancename, player) y = world.check_for_door(exitname, player) if x is not None: x.dest = y if y is not None: y.dest = x def connect_one_way(world, entrancename, exitname, player): entrance = world.get_entrance(entrancename, player) ext = world.get_entrance(exitname, player) # if these were already connected somewhere, remove the backreference if entrance.connected_region is not None: entrance.connected_region.entrances.remove(entrance) if ext.connected_region is not None: ext.connected_region.entrances.remove(ext) entrance.connect(ext.parent_region) if entrance.parent_region.dungeon: ext.parent_region.dungeon = entrance.parent_region.dungeon x = world.check_for_door(entrancename, player) y = world.check_for_door(exitname, player) if x is not None: x.dest = y if y is not None: y.dest = x def fix_big_key_doors_with_ugly_smalls(world, player): remove_ugly_small_key_doors(world, player) unpair_big_key_doors(world, player) def remove_ugly_small_key_doors(world, player): for d in ['Eastern Hint Tile Blocked Path SE', 'Eastern Darkness S', 'Thieves Hallway SE', 'Mire Left Bridge S', 'TR Lava Escape SE', 'GT Hidden Spikes SE']: door = world.get_door(d, player) room = world.get_room(door.roomIndex, player) room.change(door.doorListPos, DoorKind.Normal) door.smallKey = False door.ugly = False def unpair_big_key_doors(world, player): problematic_bk_doors = ['Eastern Courtyard N', 'Eastern Big Key NE', 'Thieves BK Corner NE', 'Mire BK Door Room N', 'TR Dodgers NE', 'GT Dash Hall NE'] for paired_door in world.paired_doors[player]: if paired_door.door_a in problematic_bk_doors or paired_door.door_b in problematic_bk_doors: paired_door.pair = False def pair_existing_key_doors(world, player, door_a, door_b): already_paired = False door_names = [door_a.name, door_b.name] for pd in world.paired_doors[player]: if pd.door_a in door_names and pd.door_b in door_names: already_paired = True break if already_paired: return for paired_door in world.paired_doors[player]: if paired_door.door_a in door_names or paired_door.door_b in door_names: paired_door.pair = False world.paired_doors[player].append(PairedDoor(door_a, door_b)) # def unpair_all_doors(world, player): # for paired_door in world.paired_doors[player]: # paired_door.pair = False def within_dungeon(world, player): fix_big_key_doors_with_ugly_smalls(world, player) overworld_prep(world, player) entrances_map, potentials, connections = determine_entrance_list(world, player) connections_tuple = (entrances_map, potentials, connections) dungeon_builders = {} for key in dungeon_regions.keys(): sector_list = convert_to_sectors(dungeon_regions[key], world, player) dungeon_builders[key] = simple_dungeon_builder(key, sector_list) dungeon_builders[key].entrance_list = list(entrances_map[key]) recombinant_builders = {} handle_split_dungeons(dungeon_builders, recombinant_builders, entrances_map) main_dungeon_generation(dungeon_builders, recombinant_builders, connections_tuple, world, player) paths = determine_required_paths(world, player) check_required_paths(paths, world, player) # shuffle_key_doors for dungeons start = time.process_time() for builder in world.dungeon_layouts[player].values(): shuffle_key_doors(builder, world, player) logging.getLogger('').info('Key door shuffle time: %s', time.process_time()-start) smooth_door_pairs(world, player) def handle_split_dungeons(dungeon_builders, recombinant_builders, entrances_map): for name, split_list in split_region_starts.items(): builder = dungeon_builders.pop(name) recombinant_builders[name] = builder split_builders = split_dungeon_builder(builder, split_list) dungeon_builders.update(split_builders) for sub_name, split_entrances in split_list.items(): sub_builder = dungeon_builders[name+' '+sub_name] sub_builder.split_flag = True entrance_list = list(split_entrances) if name in flexible_starts.keys(): add_shuffled_entrances(sub_builder.sectors, flexible_starts[name], entrance_list) filtered_entrance_list = [x for x in entrance_list if x in entrances_map[name]] sub_builder.entrance_list = filtered_entrance_list def main_dungeon_generation(dungeon_builders, recombinant_builders, connections_tuple, world, player): entrances_map, potentials, connections = connections_tuple enabled_entrances = {} sector_queue = deque(dungeon_builders.values()) last_key, loops = None, 0 while len(sector_queue) > 0: builder = sector_queue.popleft() split_dungeon = builder.name.startswith('Desert Palace') or builder.name.startswith('Skull Woods') name = builder.name if split_dungeon: name = ' '.join(builder.name.split(' ')[:-1]) origin_list = list(builder.entrance_list) find_enabled_origins(builder.sectors, enabled_entrances, origin_list, entrances_map, name) origin_list_sans_drops = remove_drop_origins(origin_list) if len(origin_list_sans_drops) <= 0 or name == "Turtle Rock" and not validate_tr(builder, origin_list_sans_drops, world, player): if last_key == builder.name or loops > 1000: origin_name = world.get_region(origin_list[0], player).entrances[0].parent_region.name raise Exception('Infinite loop detected for "%s" located at %s' % builder.name, origin_name) sector_queue.append(builder) last_key = builder.name loops += 1 else: logging.getLogger('').info('Generating dungeon: %s', builder.name) ds = generate_dungeon(builder, origin_list_sans_drops, split_dungeon, world, player) find_new_entrances(ds, entrances_map, connections, potentials, enabled_entrances, world, player) ds.name = name builder.master_sector = ds builder.layout_starts = origin_list if len(builder.entrance_list) <= 0 else builder.entrance_list last_key = None combine_layouts(recombinant_builders, dungeon_builders, entrances_map) world.dungeon_layouts[player] = {} for builder in dungeon_builders.values(): find_enabled_origins([builder.master_sector], enabled_entrances, builder.layout_starts, entrances_map, builder.name) builder.path_entrances = entrances_map[builder.name] world.dungeon_layouts[player] = dungeon_builders def determine_entrance_list(world, player): entrance_map = {} potential_entrances = {} connections = {} for key, r_names in region_starts.items(): entrance_map[key] = [] for region_name in r_names: region = world.get_region(region_name, player) for ent in region.entrances: parent = ent.parent_region if parent.type != RegionType.Dungeon or parent.name == 'Sewer Drop': if parent.name not in world.inaccessible_regions[player]: entrance_map[key].append(region_name) else: if ent.parent_region not in potential_entrances.keys(): potential_entrances[parent] = [] potential_entrances[parent].append(region_name) connections[region_name] = parent return entrance_map, potential_entrances, connections # todo: kill drop exceptions def drop_exception(name): return name in ['Skull Pot Circle', 'Skull Back Drop'] def add_shuffled_entrances(sectors, region_list, entrance_list): for sector in sectors: for region in sector.regions: if region.name in region_list: entrance_list.append(region.name) def find_enabled_origins(sectors, enabled, entrance_list, entrance_map, key): for sector in sectors: for region in sector.regions: if region.name in enabled.keys() and region.name not in entrance_list: entrance_list.append(region.name) origin_reg, origin_dungeon = enabled[region.name] if origin_reg != region.name and origin_dungeon != region.dungeon: if key not in entrance_map.keys(): key = ' '.join(key.split(' ')[:-1]) entrance_map[key].append(region.name) if drop_exception(region.name): # only because they have unique regions entrance_list.append(region.name) def remove_drop_origins(entrance_list): return [x for x in entrance_list if x not in drop_entrances] def find_new_entrances(sector, entrances_map, connections, potentials, enabled, world, player): for region in sector.regions: if region.name in connections.keys() and (connections[region.name] in potentials.keys() or connections[region.name].name in world.inaccessible_regions[player]): enable_new_entrances(region, connections, potentials, enabled, world, player) inverted_aga_check(entrances_map, connections, potentials, enabled, world, player) def enable_new_entrances(region, connections, potentials, enabled, world, player): new_region = connections[region.name] if new_region in potentials.keys(): for potential in potentials.pop(new_region): enabled[potential] = (region.name, region.dungeon) # see if this unexplored region connects elsewhere queue = deque(new_region.exits) visited = set() while len(queue) > 0: ext = queue.popleft() visited.add(ext) region_name = ext.connected_region.name if region_name in connections.keys() and connections[region_name] in potentials.keys(): for potential in potentials.pop(connections[region_name]): enabled[potential] = (region.name, region.dungeon) if ext.connected_region.name in world.inaccessible_regions[player]: for new_exit in ext.connected_region.exits: if new_exit not in visited: queue.append(new_exit) def inverted_aga_check(entrances_map, connections, potentials, enabled, world, player): if world.mode[player] == 'inverted': if 'Agahnims Tower' in entrances_map.keys() or aga_tower_enabled(enabled): for region in list(potentials.keys()): if region.name == 'Hyrule Castle Ledge': for r_name in potentials[region]: new_region = world.get_region(r_name, player) enable_new_entrances(new_region, connections, potentials, enabled, world, player) def aga_tower_enabled(enabled): for region_name, enabled_tuple in enabled.items(): entrance, dungeon = enabled_tuple if dungeon.name == 'Agahnims Tower': return True return False def within_dungeon_legacy(world, player): # TODO: The "starts" regions need access logic # Aerinon's note: I think this is handled already by ER Rules - may need to check correct requirements dungeon_region_starts_es = ['Hyrule Castle Lobby', 'Hyrule Castle West Lobby', 'Hyrule Castle East Lobby', 'Sewers Secret Room'] dungeon_region_starts_ep = ['Eastern Lobby'] dungeon_region_starts_dp = ['Desert Back Lobby', 'Desert Main Lobby', 'Desert West Lobby', 'Desert East Lobby'] dungeon_region_starts_th = ['Hera Lobby'] dungeon_region_starts_at = ['Tower Lobby'] dungeon_region_starts_pd = ['PoD Lobby'] dungeon_region_lists = [ (dungeon_region_starts_es, hyrule_castle_regions), (dungeon_region_starts_ep, eastern_regions), (dungeon_region_starts_dp, desert_regions), (dungeon_region_starts_th, hera_regions), (dungeon_region_starts_at, tower_regions), (dungeon_region_starts_pd, pod_regions), ] for start_list, region_list in dungeon_region_lists: shuffle_dungeon(world, player, start_list, region_list) world.dungeon_layouts[player] = {} for key in dungeon_regions.keys(): world.dungeon_layouts[player][key] = (key, region_starts[key]) def shuffle_dungeon(world, player, start_region_names, dungeon_region_names): logger = logging.getLogger('') # Part one - generate a random layout available_regions = [] for name in [r for r in dungeon_region_names if r not in start_region_names]: available_regions.append(world.get_region(name, player)) random.shuffle(available_regions) # "Ugly" doors are doors that we don't want to see from the front, because of some # sort of unsupported key door. To handle them, make a map of "ugly regions" and # never link across them. ugly_regions = {} next_ugly_region = 1 # Add all start regions to the open set. available_doors = [] for name in start_region_names: logger.info("Starting in %s", name) for door in get_doors(world, world.get_region(name, player), player): ugly_regions[door.name] = 0 available_doors.append(door) # Loop until all available doors are used while len(available_doors) > 0: # Pick a random available door to connect, prioritizing ones that aren't blocked. # This makes them either get picked up through another door (so they head deeper # into the dungeon), or puts them late in the dungeon (so they probably are part # of a loop). Panic if neither of these happens. random.shuffle(available_doors) available_doors.sort(key=lambda door: 1 if door.blocked else 0 if door.ugly else 2) door = available_doors.pop() logger.info('Linking %s', door.name) # Find an available region that has a compatible door connect_region, connect_door = find_compatible_door_in_regions(world, door, available_regions, player) # Also ignore compatible doors if they're blocked; these should only be used to # create loops. if connect_region is not None and not door.blocked: logger.info(' Found new region %s via %s', connect_region.name, connect_door.name) # Apply connection and add the new region's doors to the available list maybe_connect_two_way(world, door, connect_door, player) # Figure out the new room's ugliness region new_room_ugly_region = ugly_regions[door.name] if connect_door.ugly: next_ugly_region += 1 new_room_ugly_region = next_ugly_region is_new_region = connect_region in available_regions # Add the doors for door in get_doors(world, connect_region, player): ugly_regions[door.name] = new_room_ugly_region if is_new_region: available_doors.append(door) # If an ugly door is anything but the connect door, panic and die if door != connect_door and door.ugly: logger.info('Failed because of ugly door, trying again.') shuffle_dungeon(world, player, start_region_names, dungeon_region_names) return # We've used this region and door, so don't use them again if is_new_region: available_regions.remove(connect_region) if connect_door in available_doors: available_doors.remove(connect_door) else: # If there's no available region with a door, use an internal connection connect_door = find_compatible_door_in_list(ugly_regions, world, door, available_doors, player) if connect_door is not None: logger.info(' Adding loop via %s', connect_door.name) maybe_connect_two_way(world, door, connect_door, player) if connect_door in available_doors: available_doors.remove(connect_door) # Check that we used everything, and retry if we failed if len(available_regions) > 0 or len(available_doors) > 0: logger.info('Failed to add all regions to dungeon, trying again.') shuffle_dungeon(world, player, start_region_names, dungeon_region_names) return # Connects a and b. Or don't if they're an unsupported connection type. # TODO: This is gross, don't do it this way def maybe_connect_two_way(world, a, b, player): # Return on unsupported types. if a.type in [DoorType.Open, DoorType.StraightStairs, DoorType.Hole, DoorType.Warp, DoorType.Ladder, DoorType.Interior, DoorType.Logical]: return # Connect supported types if a.type == DoorType.Normal or a.type == DoorType.SpiralStairs: if a.blocked: connect_one_way(world, b.name, a.name, player) elif b.blocked: connect_one_way(world, a.name, b.name, player) else: connect_two_way(world, a.name, b.name, player) return # If we failed to account for a type, panic raise RuntimeError('Unknown door type ' + a.type.name) # Finds a compatible door in regions, returns the region and door def find_compatible_door_in_regions(world, door, regions, player): if door.type in [DoorType.Hole, DoorType.Warp, DoorType.Logical]: return door.dest, door for region in regions: for proposed_door in get_doors(world, region, player): if doors_compatible(door, proposed_door): return region, proposed_door return None, None def find_compatible_door_in_list(ugly_regions, world, door, doors, player): if door.type in [DoorType.Hole, DoorType.Warp, DoorType.Logical]: return door for proposed_door in doors: if ugly_regions[door.name] != ugly_regions[proposed_door.name]: continue if doors_compatible(door, proposed_door): return proposed_door def get_doors(world, region, player): res = [] for exit in region.exits: door = world.check_for_door(exit.name, player) if door is not None: res.append(door) return res def get_entrance_doors(world, region, player): res = [] for exit in region.entrances: door = world.check_for_door(exit.name, player) if door is not None: res.append(door) return res def doors_compatible(a, b): if a.type != b.type: return False if a.type == DoorType.Open: return doors_fit_mandatory_pair(open_edges, a, b) if a.type == DoorType.StraightStairs: return doors_fit_mandatory_pair(straight_staircases, a, b) if a.type == DoorType.Interior: return doors_fit_mandatory_pair(interior_doors, a, b) if a.type == DoorType.Ladder: return doors_fit_mandatory_pair(ladders, a, b) if a.type == DoorType.Normal and (a.smallKey or b.smallKey or a.bigKey or b.bigKey): return doors_fit_mandatory_pair(key_doors, a, b) if a.type in [DoorType.Hole, DoorType.Warp, DoorType.Logical]: return False # these aren't compatible with anything return a.direction == switch_dir(b.direction) def doors_fit_mandatory_pair(pair_list, a, b): for pair_a, pair_b in pair_list: if (a.name == pair_a and b.name == pair_b) or (a.name == pair_b and b.name == pair_a): return True return False # goals: # 1. have enough chests to be interesting (2 more than dungeon items) # 2. have a balanced amount of regions added (check) # 3. prevent soft locks due to key usage (algorithm written) # 4. rules in place to affect item placement (lamp, keys, etc. -- in rules) # 5. to be complete -- all doors linked (check, somewhat) # 6. avoid deadlocks/dead end dungeon (check) # 7. certain paths through dungeon must be possible - be able to reach goals (check) def cross_dungeon(world, player): fix_big_key_doors_with_ugly_smalls(world, player) overworld_prep(world, player) entrances_map, potentials, connections = determine_entrance_list(world, player) connections_tuple = (entrances_map, potentials, connections) all_sectors = [] for key in dungeon_regions.keys(): all_sectors.extend(convert_to_sectors(dungeon_regions[key], world, player)) dungeon_builders = create_dungeon_builders(all_sectors, world, player) for builder in dungeon_builders.values(): builder.entrance_list = list(entrances_map[builder.name]) dungeon_obj = world.get_dungeon(builder.name, player) for sector in builder.sectors: for region in sector.regions: region.dungeon = dungeon_obj for loc in region.locations: if loc.name in key_only_locations: key_name = dungeon_keys[builder.name] if loc.name != 'Hyrule Castle - Big Key Drop' else dungeon_bigs[builder.name] loc.forced_item = loc.item = ItemFactory(key_name, player) recombinant_builders = {} handle_split_dungeons(dungeon_builders, recombinant_builders, entrances_map) main_dungeon_generation(dungeon_builders, recombinant_builders, connections_tuple, world, player) paths = determine_required_paths(world, player) check_required_paths(paths, world, player) hc = world.get_dungeon('Hyrule Castle', player) del hc.dungeon_items[0] # removes map hc.dungeon_items.append(ItemFactory('Compass (Escape)', player)) at = world.get_dungeon('Agahnims Tower', player) at.dungeon_items.append(ItemFactory('Compass (Agahnims Tower)', player)) gt = world.get_dungeon('Ganons Tower', player) del gt.dungeon_items[0] # removes map assign_cross_keys(dungeon_builders, world, player) all_dungeon_items = [y for x in world.dungeons if x.player == player for y in x.all_items] target_items = 34 if world.retro[player] else 63 d_items = target_items - len(all_dungeon_items) if d_items > 0: if d_items >= 1: # restore HC map world.get_dungeon('Hyrule Castle', player).dungeon_items.append(ItemFactory('Map (Escape)', player)) if d_items >= 2: # restore GT map world.get_dungeon('Ganons Tower', player).dungeon_items.append(ItemFactory('Map (Ganons Tower)', player)) if d_items > 2: world.pool_adjustment[player] = d_items - 2 elif d_items < 0: world.pool_adjustment[player] = d_items smooth_door_pairs(world, player) # Re-assign dungeon bosses gt = world.get_dungeon('Ganons Tower', player) for name, builder in dungeon_builders.items(): reassign_boss('GT Ice Armos', 'bottom', builder, gt, world, player) reassign_boss('GT Lanmolas 2', 'middle', builder, gt, world, player) reassign_boss('GT Moldorm', 'top', builder, gt, world, player) if world.hints[player]: refine_hints(dungeon_builders) def assign_cross_keys(dungeon_builders, world, player): start = time.process_time() total_keys = remaining = 29 total_candidates = 0 start_regions_map = {} # Step 1: Find Small Key Door Candidates for name, builder in dungeon_builders.items(): dungeon = world.get_dungeon(name, player) if not builder.bk_required or builder.bk_provided: dungeon.big_key = None elif builder.bk_required and not builder.bk_provided: dungeon.big_key = ItemFactory(dungeon_bigs[name], player) start_regions = convert_regions(builder.path_entrances, world, player) find_small_key_door_candidates(builder, start_regions, world, player) builder.key_doors_num = max(0, len(builder.candidates) - builder.key_drop_cnt) total_candidates += builder.key_doors_num start_regions_map[name] = start_regions # Step 2: Initial Key Number Assignment & Calculate Flexibility for name, builder in dungeon_builders.items(): calculated = int(round(builder.key_doors_num*total_keys/total_candidates)) max_keys = builder.location_cnt - calc_used_dungeon_items(builder) cand_len = max(0, len(builder.candidates) - builder.key_drop_cnt) limit = min(max_keys, cand_len) suggested = min(calculated, limit) combo_size = ncr(len(builder.candidates), suggested + builder.key_drop_cnt) while combo_size > 500000 and suggested > 0: suggested -= 1 combo_size = ncr(len(builder.candidates), suggested + builder.key_drop_cnt) builder.key_doors_num = suggested + builder.key_drop_cnt remaining -= suggested builder.combo_size = combo_size if suggested < limit: builder.flex = limit - suggested # Step 3: Initial valid combination find - reduce flex if needed for name, builder in dungeon_builders.items(): suggested = builder.key_doors_num - builder.key_drop_cnt find_valid_combination(builder, start_regions_map[name], world, player) actual_chest_keys = builder.key_doors_num - builder.key_drop_cnt if actual_chest_keys < suggested: remaining += suggested - actual_chest_keys builder.flex = 0 # Step 4: Try to assign remaining keys builder_order = [x for x in dungeon_builders.values() if x.flex > 0] builder_order.sort(key=lambda b: b.combo_size) queue = deque(builder_order) logger = logging.getLogger('') while len(queue) > 0 and remaining > 0: builder = queue.popleft() name = builder.name logger.info('Cross Dungeon: Increasing key count by 1 for %s', name) builder.key_doors_num += 1 result = find_valid_combination(builder, start_regions_map[name], world, player, drop_keys=False) if result: remaining -= 1 builder.flex -= 1 if builder.flex > 0: builder.combo_size = ncr(len(builder.candidates), builder.key_doors_num) queue.append(builder) queue = deque(sorted(queue, key=lambda b: b.combo_size)) else: logger.info('Cross Dungeon: Increase failed for %s', name) builder.key_doors_num -= 1 builder.flex = 0 logger.info('Cross Dungeon: Keys unable to assign in pool %s', remaining) # Last Step: Adjust Small Key Dungeon Pool if not world.retro[player]: for name, builder in dungeon_builders.items(): reassign_key_doors(builder, world, player) log_key_logic(builder.name, world.key_logic[player][builder.name]) actual_chest_keys = max(builder.key_doors_num - builder.key_drop_cnt, 0) dungeon = world.get_dungeon(name, player) if actual_chest_keys == 0: dungeon.small_keys = [] else: dungeon.small_keys = [ItemFactory(dungeon_keys[name], player)] * actual_chest_keys logging.getLogger('').info('Cross Dungeon: Key door shuffle time: %s', time.process_time()-start) def reassign_boss(boss_region, boss_key, builder, gt, world, player): if boss_region in builder.master_sector.region_set(): new_dungeon = world.get_dungeon(builder.name, player) if new_dungeon != gt: gt_boss = gt.bosses.pop(boss_key) new_dungeon.bosses[boss_key] = gt_boss def refine_hints(dungeon_builders): for name, builder in dungeon_builders.items(): for region in builder.master_sector.regions: for location in region.locations: if not location.event and '- Boss' not in location.name and '- Prize' not in location.name and location.name != 'Sanctuary': location.hint_text = dungeon_hints[name] def convert_to_sectors(region_names, world, player): region_list = convert_regions(region_names, world, player) sectors = [] while len(region_list) > 0: region = region_list.pop() new_sector = True region_chunk = [region] exits = [] exits.extend(region.exits) outstanding_doors = [] matching_sectors = [] while len(exits) > 0: ext = exits.pop() door = ext.door if ext.connected_region is not None or door is not None and door.controller is not None: if door is not None and door.controller is not None: connect_region = world.get_entrance(door.controller.name, player).parent_region else: connect_region = ext.connected_region if connect_region not in region_chunk and connect_region in region_list: region_list.remove(connect_region) region_chunk.append(connect_region) exits.extend(connect_region.exits) if connect_region not in region_chunk: for existing in sectors: if connect_region in existing.regions: new_sector = False if existing not in matching_sectors: matching_sectors.append(existing) else: if door is not None and door.controller is None and door.dest is None: outstanding_doors.append(door) sector = Sector() if not new_sector: for match in matching_sectors: sector.regions.extend(match.regions) sector.outstanding_doors.extend(match.outstanding_doors) sectors.remove(match) sector.regions.extend(region_chunk) sector.outstanding_doors.extend(outstanding_doors) sectors.append(sector) return sectors # those with split region starts like Desert/Skull combine for key layouts def combine_layouts(recombinant_builders, dungeon_builders, entrances_map): for recombine in recombinant_builders.values(): queue = deque(dungeon_builders.values()) while len(queue) > 0: builder = queue.pop() if builder.name.startswith(recombine.name): del dungeon_builders[builder.name] if recombine.master_sector is None: recombine.master_sector = builder.master_sector recombine.master_sector.name = recombine.name recombine.pre_open_stonewall = builder.pre_open_stonewall else: recombine.master_sector.regions.extend(builder.master_sector.regions) if builder.pre_open_stonewall: recombine.pre_open_stonewall = builder.pre_open_stonewall recombine.layout_starts = list(entrances_map[recombine.name]) dungeon_builders[recombine.name] = recombine def valid_region_to_explore(region, world, player): return region.type == RegionType.Dungeon or region.name in world.inaccessible_regions[player] def shuffle_key_doors(builder, world, player): start_regions = convert_regions(builder.path_entrances, world, player) # count number of key doors - this could be a table? num_key_doors = 0 skips = [] for region in builder.master_sector.regions: for ext in region.exits: d = world.check_for_door(ext.name, player) if d is not None and d.smallKey: if d not in skips: if d.type == DoorType.Interior: skips.append(d.dest) if d.type == DoorType.Normal: for dp in world.paired_doors[player]: if d.name == dp.door_a: skips.append(world.get_door(dp.door_b, player)) break elif d.name == dp.door_b: skips.append(world.get_door(dp.door_a, player)) break num_key_doors += 1 builder.key_doors_num = num_key_doors find_small_key_door_candidates(builder, start_regions, world, player) find_valid_combination(builder, start_regions, world, player) reassign_key_doors(builder, world, player) log_key_logic(builder.name, world.key_logic[player][builder.name]) def find_current_key_doors(builder): current_doors = [] for region in builder.master_sector.regions: for ext in region.exits: d = ext.door if d and d.smallKey: current_doors.append(d) return current_doors def find_small_key_door_candidates(builder, start_regions, world, player): # traverse dungeon and find candidates candidates = [] checked_doors = set() for region in start_regions: possible, checked = find_key_door_candidates(region, checked_doors, world, player) candidates.extend(possible) checked_doors.update(checked) flat_candidates = [] for candidate in candidates: # not valid if: Normal and Pair in is Checked and Pair is not in Candidates if candidate.type != DoorType.Normal or candidate.dest not in checked_doors or candidate.dest in candidates: flat_candidates.append(candidate) paired_candidates = build_pair_list(flat_candidates) builder.candidates = paired_candidates def calc_used_dungeon_items(builder): base = 4 if builder.bk_required and not builder.bk_provided: base += 1 if builder.name == 'Hyrule Castle': base -= 1 # Missing compass/map if builder.name == 'Agahnims Tower': base -= 2 # Missing both compass/map # gt can lose map once compasses work return base def find_valid_combination(builder, start_regions, world, player, drop_keys=True): logger = logging.getLogger('') logger.info('Shuffling Key doors for %s', builder.name) # find valid combination of candidates if len(builder.candidates) < builder.key_doors_num: if not drop_keys: logger.info('No valid layouts for %s with %s doors', builder.name, builder.key_doors_num) return False builder.key_doors_num = len(builder.candidates) # reduce number of key doors logger.info('Lowering key door count because not enough candidates: %s', builder.name) combinations = ncr(len(builder.candidates), builder.key_doors_num) itr = 0 start = time.process_time() sample_list = list(range(0, int(combinations))) random.shuffle(sample_list) proposal = kth_combination(sample_list[itr], builder.candidates, builder.key_doors_num) key_layout = build_key_layout(builder, start_regions, proposal, world, player) while not validate_key_layout(key_layout, world, player): itr += 1 stop_early = False if itr % 1000 == 0: mark = time.process_time()-start if (mark > 10 and itr*100/combinations > 50) or (mark > 20 and itr*100/combinations > 25) or mark > 30: stop_early = True if itr >= combinations or stop_early: if not drop_keys: logger.info('No valid layouts for %s with %s doors', builder.name, builder.key_doors_num) return False logger.info('Lowering key door count because no valid layouts: %s', builder.name) builder.key_doors_num -= 1 if builder.key_doors_num < 0: raise Exception('Bad dungeon %s - 0 key doors not valid' % builder.name) combinations = ncr(len(builder.candidates), builder.key_doors_num) sample_list = list(range(0, int(combinations))) random.shuffle(sample_list) itr = 0 start = time.process_time() # reset time since itr reset proposal = kth_combination(sample_list[itr], builder.candidates, builder.key_doors_num) key_layout.reset(proposal, builder, world, player) if (itr+1) % 1000 == 0: mark = time.process_time()-start logger.info('%s time elapsed. %s iterations/s', mark, itr/mark) # make changes if player not in world.key_logic.keys(): world.key_logic[player] = {} analyze_dungeon(key_layout, world, player) builder.key_door_proposal = proposal world.key_logic[player][builder.name] = key_layout.key_logic world.key_layout[player][builder.name] = key_layout return True def log_key_logic(d_name, key_logic): logger = logging.getLogger('') if logger.isEnabledFor(logging.DEBUG): logger.debug('Key Logic for %s', d_name) if len(key_logic.bk_restricted) > 0: logger.debug('-BK Restrictions') for restriction in key_logic.bk_restricted: logger.debug(restriction) if len(key_logic.sm_restricted) > 0: logger.debug('-Small Restrictions') for restriction in key_logic.sm_restricted: logger.debug(restriction) for key in key_logic.door_rules.keys(): rule = key_logic.door_rules[key] logger.debug('--Rule for %s: Nrm:%s Allow:%s Loc:%s Alt:%s', key, rule.small_key_num, rule.allow_small, rule.small_location, rule.alternate_small_key) if rule.alternate_small_key is not None: for loc in rule.alternate_big_key_loc: logger.debug('---BK Loc %s', loc.name) logger.debug('Placement rules for %s', d_name) for rule in key_logic.placement_rules: logger.debug('*Rule for %s:', rule.door_reference) if rule.bk_conditional_set: logger.debug('**BK Checks %s', ','.join([x.name for x in rule.bk_conditional_set])) logger.debug('**BK Blocked By Door (%s) : %s', rule.needed_keys_wo_bk, ','.join([x.name for x in rule.check_locations_wo_bk])) logger.debug('**BK Elsewhere (%s) : %s', rule.needed_keys_w_bk, ','.join([x.name for x in rule.check_locations_w_bk])) def build_pair_list(flat_list): paired_list = [] queue = deque(flat_list) while len(queue) > 0: d = queue.pop() if d.dest in queue and d.type != DoorType.SpiralStairs: paired_list.append((d, d.dest)) queue.remove(d.dest) else: paired_list.append(d) return paired_list def flatten_pair_list(paired_list): flat_list = [] for d in paired_list: if type(d) is tuple: flat_list.append(d[0]) flat_list.append(d[1]) else: flat_list.append(d) return flat_list def find_key_door_candidates(region, checked, world, player): dungeon = region.dungeon candidates = [] checked_doors = list(checked) queue = deque([(region, None, None)]) while len(queue) > 0: current, last_door, last_region = queue.pop() for ext in current.exits: d = ext.door if d and d.controller: d = d.controller if d is not None and not d.blocked and d.dest is not last_door and d.dest is not last_region and d not in checked_doors: valid = False if 0 <= d.doorListPos < 4 and d.type in [DoorType.Interior, DoorType.Normal, DoorType.SpiralStairs]: room = world.get_room(d.roomIndex, player) position, kind = room.doorList[d.doorListPos] if d.type == DoorType.Interior: valid = kind in [DoorKind.Normal, DoorKind.SmallKey, DoorKind.Bombable, DoorKind.Dashable] elif d.type == DoorType.SpiralStairs: valid = kind in [DoorKind.StairKey, DoorKind.StairKey2, DoorKind.StairKeyLow] elif d.type == DoorType.Normal: d2 = d.dest if d2 not in candidates: room_b = world.get_room(d2.roomIndex, player) pos_b, kind_b = room_b.doorList[d2.doorListPos] okay_normals = [DoorKind.Normal, DoorKind.SmallKey, DoorKind.Bombable, DoorKind.Dashable, DoorKind.DungeonChanger] valid = kind in okay_normals and kind_b in okay_normals if valid and 0 <= d2.doorListPos < 4: candidates.append(d2) else: valid = True if valid and d not in candidates: candidates.append(d) if ext.connected_region.type != RegionType.Dungeon or ext.connected_region.dungeon == dungeon: queue.append((ext.connected_region, d, current)) if d is not None: checked_doors.append(d) return candidates, checked_doors def kth_combination(k, l, r): if r == 0: return [] elif len(l) == r: return l else: i = ncr(len(l)-1, r-1) if k < i: return l[0:1] + kth_combination(k, l[1:], r-1) else: return kth_combination(k-i, l[1:], r) def ncr(n, r): if r == 0: return 1 r = min(r, n-r) numerator = reduce(op.mul, range(n, n-r, -1), 1) denominator = reduce(op.mul, range(1, r+1), 1) return numerator / denominator def reassign_key_doors(builder, world, player): logger = logging.getLogger('') logger.debug('Key doors for %s', builder.name) proposal = builder.key_door_proposal flat_proposal = flatten_pair_list(proposal) queue = deque(find_current_key_doors(builder)) while len(queue) > 0: d = queue.pop() if d.type is DoorType.SpiralStairs and d not in proposal: room = world.get_room(d.roomIndex, player) if room.doorList[d.doorListPos][1] == DoorKind.StairKeyLow: room.delete(d.doorListPos) else: if len(room.doorList) > 1: room.mirror(d.doorListPos) # I think this works for crossed now else: room.delete(d.doorListPos) d.smallKey = False elif d.type is DoorType.Interior and d not in flat_proposal and d.dest not in flat_proposal: world.get_room(d.roomIndex, player).change(d.doorListPos, DoorKind.Normal) d.smallKey = False d.dest.smallKey = False queue.remove(d.dest) elif d.type is DoorType.Normal and d not in flat_proposal: world.get_room(d.roomIndex, player).change(d.doorListPos, DoorKind.Normal) d.smallKey = False for dp in world.paired_doors[player]: if dp.door_a == d.name or dp.door_b == d.name: dp.pair = False for obj in proposal: if type(obj) is tuple: d1 = obj[0] d2 = obj[1] if d1.type is DoorType.Interior: change_door_to_small_key(d1, world, player) d2.smallKey = True # ensure flag is set else: names = [d1.name, d2.name] found = False for dp in world.paired_doors[player]: if dp.door_a in names and dp.door_b in names: dp.pair = True found = True elif dp.door_a in names: dp.pair = False elif dp.door_b in names: dp.pair = False if not found: world.paired_doors[player].append(PairedDoor(d1.name, d2.name)) change_door_to_small_key(d1, world, player) change_door_to_small_key(d2, world, player) world.spoiler.set_door_type(d1.name+' <-> '+d2.name, 'Key Door', player) logger.debug('Key Door: %s', d1.name+' <-> '+d2.name) else: d = obj if d.type is DoorType.Interior: change_door_to_small_key(d, world, player) d.dest.smallKey = True # ensure flag is set elif d.type is DoorType.SpiralStairs: pass # we don't have spiral stairs candidates yet that aren't already key doors elif d.type is DoorType.Normal: change_door_to_small_key(d, world, player) world.spoiler.set_door_type(d.name, 'Key Door', player) logger.debug('Key Door: %s', d.name) def change_door_to_small_key(d, world, player): d.smallKey = True room = world.get_room(d.roomIndex, player) if room.doorList[d.doorListPos][1] != DoorKind.SmallKey: room.change(d.doorListPos, DoorKind.SmallKey) def smooth_door_pairs(world, player): all_doors = [x for x in world.doors if x.player == player] skip = set() for door in all_doors: if door.type in [DoorType.Normal, DoorType.Interior] and door not in skip: partner = door.dest skip.add(partner) room_a = world.get_room(door.roomIndex, player) room_b = world.get_room(partner.roomIndex, player) type_a = room_a.kind(door) type_b = room_b.kind(partner) valid_pair = stateful_door(door, type_a) and stateful_door(partner, type_b) if door.type == DoorType.Normal: if type_a == DoorKind.SmallKey or type_b == DoorKind.SmallKey: if valid_pair: if type_a != DoorKind.SmallKey: room_a.change(door.doorListPos, DoorKind.SmallKey) if type_b != DoorKind.SmallKey: room_b.change(partner.doorListPos, DoorKind.SmallKey) add_pair(door, partner, world, player) else: if type_a == DoorKind.SmallKey: remove_pair(door, world, player) if type_b == DoorKind.SmallKey: remove_pair(door, world, player) elif type_a in [DoorKind.Bombable, DoorKind.Dashable] or type_b in [DoorKind.Bombable, DoorKind.Dashable]: if valid_pair: if type_a == type_b: add_pair(door, partner, world, player) spoiler_type = 'Bomb Door' if type_a == DoorKind.Bombable else 'Dash Door' world.spoiler.set_door_type(door.name + ' <-> ' + partner.name, spoiler_type, player) else: new_type = DoorKind.Dashable if type_a == DoorKind.Dashable or type_b == DoorKind.Dashable else DoorKind.Bombable if type_a != new_type: room_a.change(door.doorListPos, new_type) if type_b != new_type: room_b.change(partner.doorListPos, new_type) add_pair(door, partner, world, player) spoiler_type = 'Bomb Door' if new_type == DoorKind.Bombable else 'Dash Door' world.spoiler.set_door_type(door.name + ' <-> ' + partner.name, spoiler_type, player) else: if type_a in [DoorKind.Bombable, DoorKind.Dashable]: room_a.change(door.doorListPos, DoorKind.Normal) remove_pair(door, world, player) elif type_b in [DoorKind.Bombable, DoorKind.Dashable]: room_b.change(partner.doorListPos, DoorKind.Normal) remove_pair(partner, world, player) elif world.experimental[player] and valid_pair and type_a != DoorKind.SmallKey and type_b != DoorKind.SmallKey: random_door_type(door, partner, world, player, type_a, type_b, room_a, room_b) world.paired_doors[player] = [x for x in world.paired_doors[player] if x.pair or x.original] def add_pair(door_a, door_b, world, player): pair_a, pair_b = None, None for paired_door in world.paired_doors[player]: if paired_door.door_a == door_a.name and paired_door.door_b == door_b.name: paired_door.pair = True return if paired_door.door_a == door_b.name and paired_door.door_b == door_a.name: paired_door.pair = True return if paired_door.door_a == door_a.name or paired_door.door_b == door_a.name: pair_a = paired_door if paired_door.door_a == door_b.name or paired_door.door_b == door_b.name: pair_b = paired_door if pair_a: pair_a.pair = False if pair_b: pair_b.pair = False world.paired_doors[player].append(PairedDoor(door_a, door_b)) def remove_pair(door, world, player): for paired_door in world.paired_doors[player]: if paired_door.door_a == door.name or paired_door.door_b == door.name: paired_door.pair = False break def stateful_door(door, kind): if 0 <= door.doorListPos < 4: return kind in [DoorKind.Normal, DoorKind.SmallKey, DoorKind.Bombable, DoorKind.Dashable] #, DoorKind.BigKey] return False def random_door_type(door, partner, world, player, type_a, type_b, room_a, room_b): r_kind = random.choices([DoorKind.Normal, DoorKind.Bombable, DoorKind.Dashable], [5, 2, 3], k=1)[0] if r_kind != DoorKind.Normal: if door.type == DoorType.Normal: add_pair(door, partner, world, player) if type_a != r_kind: room_a.change(door.doorListPos, r_kind) if type_b != r_kind: room_b.change(partner.doorListPos, r_kind) spoiler_type = 'Bomb Door' if r_kind == DoorKind.Bombable else 'Dash Door' world.spoiler.set_door_type(door.name + ' <-> ' + partner.name, spoiler_type, player) def determine_required_paths(world, player): paths = { 'Hyrule Castle': ['Hyrule Castle Lobby', 'Hyrule Castle West Lobby', 'Hyrule Castle East Lobby'], 'Eastern Palace': ['Eastern Boss'], 'Desert Palace': ['Desert Main Lobby', 'Desert East Lobby', 'Desert West Lobby', 'Desert Boss'], 'Tower of Hera': ['Hera Boss'], 'Agahnims Tower': ['Tower Agahnim 1'], 'Palace of Darkness': ['PoD Boss'], 'Swamp Palace': ['Swamp Boss'], 'Skull Woods': ['Skull 1 Lobby', 'Skull 2 East Lobby', 'Skull 2 West Lobby', 'Skull Boss'], 'Thieves Town': ['Thieves Boss', ('Thieves Blind\'s Cell', 'Thieves Boss')], 'Ice Palace': ['Ice Boss'], 'Misery Mire': ['Mire Boss'], 'Turtle Rock': ['TR Main Lobby', 'TR Lazy Eyes', 'TR Big Chest Entrance', 'TR Eye Bridge', 'TR Boss'], 'Ganons Tower': ['GT Agahnim 2'] } if world.mode[player] == 'standard': paths['Hyrule Castle'].append('Hyrule Dungeon Cellblock') # noinspection PyTypeChecker paths['Hyrule Castle'].append(('Hyrule Dungeon Cellblock', 'Sanctuary')) if world.doorShuffle[player] in ['basic']: paths['Thieves Town'].append('Thieves Attic Window') return paths def overworld_prep(world, player): find_inaccessible_regions(world, player) add_inaccessible_doors(world, player) def find_inaccessible_regions(world, player): world.inaccessible_regions[player] = [] if world.mode[player] != 'inverted': start_regions = ['Links House', 'Sanctuary'] else: start_regions = ['Inverted Links House', 'Inverted Dark Sanctuary'] regs = convert_regions(start_regions, world, player) all_regions = set([r for r in world.regions if r.player == player and r.type is not RegionType.Dungeon]) visited_regions = set() queue = deque(regs) while len(queue) > 0: next_region = queue.popleft() visited_regions.add(next_region) if next_region.name == 'Inverted Dark Sanctuary': # special spawn point in cave for ent in next_region.entrances: parent = ent.parent_region if parent and parent.type is not RegionType.Dungeon and parent not in queue and parent not in visited_regions: queue.append(parent) for ext in next_region.exits: connect = ext.connected_region if connect and connect.type is not RegionType.Dungeon and connect not in queue and connect not in visited_regions: queue.append(connect) world.inaccessible_regions[player].extend([r.name for r in all_regions.difference(visited_regions) if valid_inaccessible_region(r)]) if world.mode[player] == 'standard': world.inaccessible_regions[player].append('Hyrule Castle Ledge') world.inaccessible_regions[player].append('Sewer Drop') logger = logging.getLogger('') logger.debug('Inaccessible Regions:') for r in world.inaccessible_regions[player]: logger.debug('%s', r) def valid_inaccessible_region(r): return r.type is not RegionType.Cave or (len(r.exits) > 0 and r.name not in ['Links House', 'Chris Houlihan Room']) def add_inaccessible_doors(world, player): # todo: ignore standard mode hyrule castle ledge? for inaccessible_region in world.inaccessible_regions[player]: region = world.get_region(inaccessible_region, player) for ext in region.exits: create_door(world, player, ext.name, region.name) def create_door(world, player, entName, region_name): entrance = world.get_entrance(entName, player) connect = entrance.connected_region for ext in connect.exits: if ext.connected_region is not None and ext.connected_region.name == region_name: d = Door(player, ext.name, DoorType.Logical, ext), world.doors += d connect_door_only(world, ext.name, ext.connected_region, player) d = Door(player, entName, DoorType.Logical, entrance), world.doors += d connect_door_only(world, entName, connect, player) def check_required_paths(paths, world, player): for dungeon_name in paths.keys(): builder = world.dungeon_layouts[player][dungeon_name] if len(paths[dungeon_name]) > 0: states_to_explore = defaultdict(list) for path in paths[dungeon_name]: if type(path) is tuple: states_to_explore[tuple([path[0]])].append(path[1]) else: states_to_explore[tuple(builder.path_entrances)].append(path) cached_initial_state = None for start_regs, dest_regs in states_to_explore.items(): check_paths = convert_regions(dest_regs, world, player) start_regions = convert_regions(start_regs, world, player) initial = start_regs == tuple(builder.path_entrances) if not initial or cached_initial_state is None: init = determine_init_crystal(initial, cached_initial_state, start_regions) state = ExplorationState(init, dungeon_name) for region in start_regions: state.visit_region(region) state.add_all_doors_check_unattached(region, world, player) explore_state(state, world, player) if initial and cached_initial_state is None: cached_initial_state = state else: state = cached_initial_state valid, bad_region = check_if_regions_visited(state, check_paths) if not valid: if check_for_pinball_fix(state, bad_region, world, player): explore_state(state, world, player) valid, bad_region = check_if_regions_visited(state, check_paths) if not valid: raise Exception('%s cannot reach %s' % (dungeon_name, bad_region.name)) def determine_init_crystal(initial, state, start_regions): if initial: return CrystalBarrier.Orange if state is None: raise Exception('Please start path checking from the entrances') if len(start_regions) > 1: raise NotImplementedError('Path checking for multiple start regions (not the entrances) not implemented, use more paths instead') start_region = start_regions[0] if start_region in state.visited_blue and start_region in state.visited_orange: return CrystalBarrier.Either elif start_region in state.visited_blue: return CrystalBarrier.Blue elif start_region in state.visited_orange: return CrystalBarrier.Orange else: raise Exception('Can\'t get to %s from initial state', start_region.name) def explore_state(state, world, player): while len(state.avail_doors) > 0: door = state.next_avail_door().door connect_region = world.get_entrance(door.name, player).connected_region if state.can_traverse(door) and not state.visited(connect_region) and valid_region_to_explore(connect_region, world, player): state.visit_region(connect_region) state.add_all_doors_check_unattached(connect_region, world, player) def check_if_regions_visited(state, check_paths): valid = True breaking_region = None for region_target in check_paths: if not state.visited_at_all(region_target): valid = False breaking_region = region_target break return valid, breaking_region def check_for_pinball_fix(state, bad_region, world, player): pinball_region = world.get_region('Skull Pinball', player) if bad_region.name == 'Skull 2 West Lobby' and state.visited_at_all(pinball_region): #revisit this for entrance shuffle door = world.get_door('Skull Pinball WS', player) room = world.get_room(door.roomIndex, player) if room.doorList[door.doorListPos][1] == DoorKind.Trap: room.change(door.doorListPos, DoorKind.Normal) door.trapFlag = 0x0 door.blocked = False connect_two_way(world, door.name, door.dest.name, player) state.add_all_doors_check_unattached(pinball_region, world, player) return True return False @unique class DROptions(Flag): NoOptions = 0x00 Eternal_Mini_Bosses = 0x01 # If on, GT minibosses marked as defeated when they try to spawn a heart Town_Portal = 0x02 # If on, Players will start with mirror scroll Open_Desert_Wall = 0x80 # If on, pre opens the desert wall, no fire required # DATA GOES DOWN HERE logical_connections = [ ('Hyrule Dungeon North Abyss Catwalk Dropdown', 'Hyrule Dungeon North Abyss'), ('Sewers Secret Room Push Block', 'Sewers Secret Room Blocked Path'), ('Eastern Hint Tile Push Block', 'Eastern Hint Tile'), ('Eastern Map Balcony Hook Path', 'Eastern Map Room'), ('Eastern Map Room Drop Down', 'Eastern Map Balcony'), ('Desert Main Lobby Left Path', 'Desert Left Alcove'), ('Desert Main Lobby Right Path', 'Desert Right Alcove'), ('Desert Left Alcove Path', 'Desert Main Lobby'), ('Desert Right Alcove Path', 'Desert Main Lobby'), ('Hera Big Chest Landing Exit', 'Hera 4F'), ('PoD Pit Room Block Path N', 'PoD Pit Room Blocked'), ('PoD Pit Room Block Path S', 'PoD Pit Room'), ('PoD Arena Bonk Path', 'PoD Arena Bridge'), ('PoD Arena Main Crystal Path', 'PoD Arena Crystal'), ('PoD Arena Crystal Path', 'PoD Arena Main'), ('PoD Arena Main Orange Barrier', 'PoD Arena North'), ('PoD Arena North Drop Down', 'PoD Arena Main'), ('PoD Arena Bridge Drop Down', 'PoD Arena Main'), ('PoD Map Balcony Drop Down', 'PoD Sexy Statue'), ('PoD Basement Ledge Drop Down', 'PoD Stalfos Basement'), ('PoD Falling Bridge Path N', 'PoD Falling Bridge Ledge'), ('PoD Falling Bridge Path S', 'PoD Falling Bridge'), ('Swamp Lobby Moat', 'Swamp Entrance'), ('Swamp Entrance Moat', 'Swamp Lobby'), ('Swamp Trench 1 Approach Dry', 'Swamp Trench 1 Nexus'), ('Swamp Trench 1 Approach Key', 'Swamp Trench 1 Key Ledge'), ('Swamp Trench 1 Approach Swim Depart', 'Swamp Trench 1 Departure'), ('Swamp Trench 1 Nexus Approach', 'Swamp Trench 1 Approach'), ('Swamp Trench 1 Nexus Key', 'Swamp Trench 1 Key Ledge'), ('Swamp Trench 1 Key Ledge Dry', 'Swamp Trench 1 Nexus'), ('Swamp Trench 1 Key Approach', 'Swamp Trench 1 Approach'), ('Swamp Trench 1 Key Ledge Depart', 'Swamp Trench 1 Departure'), ('Swamp Trench 1 Departure Dry', 'Swamp Trench 1 Nexus'), ('Swamp Trench 1 Departure Approach', 'Swamp Trench 1 Approach'), ('Swamp Trench 1 Departure Key', 'Swamp Trench 1 Key Ledge'), ('Swamp Hub Hook Path', 'Swamp Hub North Ledge'), ('Swamp Hub North Ledge Drop Down', 'Swamp Hub'), ('Swamp Compass Donut Push Block', 'Swamp Donut Top'), ('Swamp Shortcut Blue Barrier', 'Swamp Trench 2 Pots'), ('Swamp Trench 2 Pots Blue Barrier', 'Swamp Shortcut'), ('Swamp Trench 2 Pots Dry', 'Swamp Trench 2 Blocks'), ('Swamp Trench 2 Pots Wet', 'Swamp Trench 2 Departure'), ('Swamp Trench 2 Blocks Pots', 'Swamp Trench 2 Pots'), ('Swamp Trench 2 Departure Wet', 'Swamp Trench 2 Pots'), ('Swamp West Shallows Push Blocks', 'Swamp West Block Path'), ('Swamp West Block Path Drop Down', 'Swamp West Shallows'), ('Swamp West Ledge Drop Down', 'Swamp West Shallows'), ('Swamp West Ledge Hook Path', 'Swamp Barrier Ledge'), ('Swamp Barrier Ledge Drop Down', 'Swamp West Shallows'), ('Swamp Barrier Ledge - Orange', 'Swamp Barrier'), ('Swamp Barrier - Orange', 'Swamp Barrier Ledge'), ('Swamp Barrier Ledge Hook Path', 'Swamp West Ledge'), ('Swamp Drain Right Switch', 'Swamp Drain Left'), ('Swamp Flooded Spot Ladder', 'Swamp Flooded Room'), ('Swamp Flooded Room Ladder', 'Swamp Flooded Spot'), ('Skull Pot Circle Star Path', 'Skull Map Room'), ('Skull Big Chest Hookpath', 'Skull 1 Lobby'), ('Skull Back Drop Star Path', 'Skull Small Hall'), ('Thieves Rail Ledge Drop Down', 'Thieves BK Corner'), ('Thieves Hellway Orange Barrier', 'Thieves Hellway S Crystal'), ('Thieves Hellway Crystal Orange Barrier', 'Thieves Hellway'), ('Thieves Hellway Blue Barrier', 'Thieves Hellway N Crystal'), ('Thieves Hellway Crystal Blue Barrier', 'Thieves Hellway'), ('Thieves Basement Block Path', 'Thieves Blocked Entry'), ('Thieves Blocked Entry Path', 'Thieves Basement Block'), ('Thieves Conveyor Bridge Block Path', 'Thieves Conveyor Block'), ('Thieves Conveyor Block Path', 'Thieves Conveyor Bridge'), ('Ice Cross Bottom Push Block Left', 'Ice Floor Switch'), ('Ice Cross Right Push Block Top', 'Ice Bomb Drop'), ('Ice Big Key Push Block', 'Ice Dead End'), ('Ice Bomb Jump Ledge Orange Barrier', 'Ice Bomb Jump Catwalk'), ('Ice Bomb Jump Catwalk Orange Barrier', 'Ice Bomb Jump Ledge'), ('Ice Hookshot Ledge Path', 'Ice Hookshot Balcony'), ('Ice Hookshot Balcony Path', 'Ice Hookshot Ledge'), ('Ice Crystal Right Orange Barrier', 'Ice Crystal Left'), ('Ice Crystal Left Orange Barrier', 'Ice Crystal Right'), ('Ice Crystal Left Blue Barrier', 'Ice Crystal Block'), ('Ice Crystal Block Exit', 'Ice Crystal Left'), ('Ice Big Chest Landing Push Blocks', 'Ice Big Chest View'), ('Mire Lobby Gap', 'Mire Post-Gap'), ('Mire Post-Gap Gap', 'Mire Lobby'), ('Mire Hub Upper Blue Barrier', 'Mire Hub Top'), ('Mire Hub Lower Blue Barrier', 'Mire Hub Right'), ('Mire Hub Right Blue Barrier', 'Mire Hub'), ('Mire Hub Top Blue Barrier', 'Mire Hub'), ('Mire Map Spike Side Drop Down', 'Mire Lone Shooter'), ('Mire Map Spike Side Blue Barrier', 'Mire Crystal Dead End'), ('Mire Map Spot Blue Barrier', 'Mire Crystal Dead End'), ('Mire Crystal Dead End Left Barrier', 'Mire Map Spot'), ('Mire Crystal Dead End Right Barrier', 'Mire Map Spike Side'), ('Mire Hidden Shooters Block Path S', 'Mire Hidden Shooters'), ('Mire Hidden Shooters Block Path N', 'Mire Hidden Shooters Blocked'), ('Mire Left Bridge Hook Path', 'Mire Right Bridge'), ('Mire Crystal Right Orange Barrier', 'Mire Crystal Mid'), ('Mire Crystal Mid Orange Barrier', 'Mire Crystal Right'), ('Mire Crystal Mid Blue Barrier', 'Mire Crystal Left'), ('Mire Crystal Left Blue Barrier', 'Mire Crystal Mid'), ('Mire Firesnake Skip Orange Barrier', 'Mire Antechamber'), ('Mire Antechamber Orange Barrier', 'Mire Firesnake Skip'), ('Mire Compass Blue Barrier', 'Mire Compass Chest'), ('Mire Compass Chest Exit', 'Mire Compass Room'), ('Mire South Fish Blue Barrier', 'Mire Fishbone'), ('Mire Fishbone Blue Barrier', 'Mire South Fish'), ('TR Main Lobby Gap', 'TR Lobby Ledge'), ('TR Lobby Ledge Gap', 'TR Main Lobby'), ('TR Pipe Ledge Drop Down', 'TR Pipe Pit'), ('TR Big Chest Gap', 'TR Big Chest Entrance'), ('TR Big Chest Entrance Gap', 'TR Big Chest'), ('TR Crystal Maze Forwards Path', 'TR Crystal Maze End'), ('TR Crystal Maze Blue Path', 'TR Crystal Maze'), ('TR Crystal Maze Cane Path', 'TR Crystal Maze'), ('GT Blocked Stairs Block Path', 'GT Big Chest'), ('GT Speed Torch South Path', 'GT Speed Torch'), ('GT Speed Torch North Path', 'GT Speed Torch Upper'), ('GT Hookshot East-North Path', 'GT Hookshot North Platform'), ('GT Hookshot East-South Path', 'GT Hookshot South Platform'), ('GT Hookshot North-East Path', 'GT Hookshot East Platform'), ('GT Hookshot North-South Path', 'GT Hookshot South Platform'), ('GT Hookshot South-East Path', 'GT Hookshot East Platform'), ('GT Hookshot South-North Path', 'GT Hookshot North Platform'), ('GT Hookshot Platform Blue Barrier', 'GT Hookshot South Entry'), ('GT Hookshot Entry Blue Barrier', 'GT Hookshot South Platform'), ('GT Double Switch Orange Barrier', 'GT Double Switch Switches'), ('GT Double Switch Orange Barrier 2', 'GT Double Switch Key Spot'), ('GT Double Switch Transition Blue', 'GT Double Switch Exit'), ('GT Double Switch Blue Path', 'GT Double Switch Transition'), ('GT Double Switch Orange Path', 'GT Double Switch Entry'), ('GT Double Switch Key Blue Path', 'GT Double Switch Exit'), ('GT Double Switch Key Orange Path', 'GT Double Switch Entry'), ('GT Double Switch Blue Barrier', 'GT Double Switch Key Spot'), ('GT Warp Maze - Pit Section Warp Spot', 'GT Warp Maze - Pit Exit Warp Spot'), ('GT Warp Maze Exit Section Warp Spot', 'GT Warp Maze - Pit Exit Warp Spot'), ('GT Firesnake Room Hook Path', 'GT Firesnake Room Ledge'), ('GT Left Moldorm Ledge Drop Down', 'GT Moldorm'), ('GT Right Moldorm Ledge Drop Down', 'GT Moldorm'), ('GT Moldorm Gap', 'GT Validation'), ('GT Validation Block Path', 'GT Validation Door') ] vanilla_logical_connections = [ ('Ice Cross Left Push Block', 'Ice Compass Room'), ('Ice Cross Right Push Block Bottom', 'Ice Compass Room'), ('Ice Cross Bottom Push Block Right', 'Ice Pengator Switch'), ('Ice Cross Top Push Block Right', 'Ice Pengator Switch'), ] spiral_staircases = [ ('Hyrule Castle Back Hall Down Stairs', 'Hyrule Dungeon Map Room Up Stairs'), ('Hyrule Dungeon Armory Down Stairs', 'Hyrule Dungeon Staircase Up Stairs'), ('Hyrule Dungeon Staircase Down Stairs', 'Hyrule Dungeon Cellblock Up Stairs'), ('Sewers Behind Tapestry Down Stairs', 'Sewers Rope Room Up Stairs'), ('Sewers Secret Room Up Stairs', 'Sewers Pull Switch Down Stairs'), ('Eastern Darkness Up Stairs', 'Eastern Attic Start Down Stairs'), ('Desert Tiles 1 Up Stairs', 'Desert Bridge Down Stairs'), ('Hera Lobby Down Stairs', 'Hera Basement Cage Up Stairs'), ('Hera Lobby Key Stairs', 'Hera Tile Room Up Stairs'), ('Hera Lobby Up Stairs', 'Hera Beetles Down Stairs'), ('Hera Startile Wide Up Stairs', 'Hera 4F Down Stairs'), ('Hera 4F Up Stairs', 'Hera 5F Down Stairs'), ('Hera 5F Up Stairs', 'Hera Boss Down Stairs'), ('Tower Room 03 Up Stairs', 'Tower Lone Statue Down Stairs'), ('Tower Dark Chargers Up Stairs', 'Tower Dual Statues Down Stairs'), ('Tower Dark Archers Up Stairs', 'Tower Red Spears Down Stairs'), ('Tower Pacifist Run Up Stairs', 'Tower Push Statue Down Stairs'), ('PoD Left Cage Down Stairs', 'PoD Shooter Room Up Stairs'), ('PoD Middle Cage Down Stairs', 'PoD Warp Room Up Stairs'), ('PoD Basement Ledge Up Stairs', 'PoD Big Key Landing Down Stairs'), ('PoD Compass Room W Down Stairs', 'PoD Dark Basement W Up Stairs'), ('PoD Compass Room E Down Stairs', 'PoD Dark Basement E Up Stairs'), ('Swamp Entrance Down Stairs', 'Swamp Pot Row Up Stairs'), ('Swamp West Block Path Up Stairs', 'Swamp Attic Down Stairs'), ('Swamp Push Statue Down Stairs', 'Swamp Flooded Room Up Stairs'), ('Swamp Left Elbow Down Stairs', 'Swamp Drain Left Up Stairs'), ('Swamp Right Elbow Down Stairs', 'Swamp Drain Right Up Stairs'), ('Swamp Behind Waterfall Up Stairs', 'Swamp C Down Stairs'), ('Thieves Spike Switch Up Stairs', 'Thieves Attic Down Stairs'), ('Thieves Conveyor Maze Down Stairs', 'Thieves Basement Block Up Stairs'), ('Ice Jelly Key Down Stairs', 'Ice Floor Switch Up Stairs'), ('Ice Narrow Corridor Down Stairs', 'Ice Pengator Trap Up Stairs'), ('Ice Spike Room Up Stairs', 'Ice Hammer Block Down Stairs'), ('Ice Spike Room Down Stairs', 'Ice Spikeball Up Stairs'), ('Ice Lonely Freezor Down Stairs', 'Iced T Up Stairs'), ('Ice Backwards Room Down Stairs', 'Ice Anti-Fairy Up Stairs'), ('Mire Post-Gap Down Stairs', 'Mire 2 Up Stairs'), ('Mire Left Bridge Down Stairs', 'Mire Dark Shooters Up Stairs'), ('Mire Conveyor Barrier Up Stairs', 'Mire Torches Top Down Stairs'), ('Mire Falling Foes Up Stairs', 'Mire Firesnake Skip Down Stairs'), ('TR Chain Chomps Down Stairs', 'TR Pipe Pit Up Stairs'), ('TR Crystaroller Down Stairs', 'TR Dark Ride Up Stairs'), ('GT Lobby Left Down Stairs', 'GT Torch Up Stairs'), ('GT Lobby Up Stairs', 'GT Crystal Paths Down Stairs'), ('GT Lobby Right Down Stairs', 'GT Hope Room Up Stairs'), ('GT Blocked Stairs Down Stairs', 'GT Four Torches Up Stairs'), ('GT Cannonball Bridge Up Stairs', 'GT Gauntlet 1 Down Stairs'), ('GT Quad Pot Up Stairs', 'GT Wizzrobes 1 Down Stairs'), ('GT Moldorm Pit Up Stairs', 'GT Right Moldorm Ledge Down Stairs'), ('GT Frozen Over Up Stairs', 'GT Brightly Lit Hall Down Stairs') ] straight_staircases = [ ('Hyrule Castle Lobby North Stairs', 'Hyrule Castle Throne Room South Stairs'), ('Sewers Rope Room North Stairs', 'Sewers Dark Cross South Stairs'), ('Tower Catwalk North Stairs', 'Tower Antechamber South Stairs'), ('PoD Conveyor North Stairs', 'PoD Map Balcony South Stairs'), ('TR Crystal Maze North Stairs', 'TR Final Abyss South Stairs') ] open_edges = [ ('Hyrule Dungeon North Abyss South Edge', 'Hyrule Dungeon South Abyss North Edge'), ('Hyrule Dungeon North Abyss Catwalk Edge', 'Hyrule Dungeon South Abyss Catwalk North Edge'), ('Hyrule Dungeon South Abyss West Edge', 'Hyrule Dungeon Guardroom Abyss Edge'), ('Hyrule Dungeon South Abyss Catwalk West Edge', 'Hyrule Dungeon Guardroom Catwalk Edge'), ('Desert Main Lobby NW Edge', 'Desert North Hall SW Edge'), ('Desert Main Lobby N Edge', 'Desert Dead End Edge'), ('Desert Main Lobby NE Edge', 'Desert North Hall SE Edge'), ('Desert Main Lobby E Edge', 'Desert East Wing W Edge'), ('Desert East Wing N Edge', 'Desert Arrow Pot Corner S Edge'), ('Desert Arrow Pot Corner W Edge', 'Desert North Hall E Edge'), ('Desert North Hall W Edge', 'Desert Sandworm Corner S Edge'), ('Desert Sandworm Corner E Edge', 'Desert West Wing N Edge'), ('Thieves Lobby N Edge', 'Thieves Ambush S Edge'), ('Thieves Lobby NE Edge', 'Thieves Ambush SE Edge'), ('Thieves Ambush ES Edge', 'Thieves BK Corner WS Edge'), ('Thieves Ambush EN Edge', 'Thieves BK Corner WN Edge'), ('Thieves BK Corner S Edge', 'Thieves Compass Room N Edge'), ('Thieves BK Corner SW Edge', 'Thieves Compass Room NW Edge'), ('Thieves Compass Room WS Edge', 'Thieves Big Chest Nook ES Edge'), ('Thieves Cricket Hall Left Edge', 'Thieves Cricket Hall Right Edge') ] falldown_pits = [ ('Eastern Courtyard Potholes', 'Eastern Fairies'), ('Hera Beetles Holes', 'Hera Lobby'), ('Hera Startile Corner Holes', 'Hera Lobby'), ('Hera Startile Wide Holes', 'Hera Lobby'), ('Hera 4F Holes', 'Hera Lobby'), # failed bomb jump ('Hera Big Chest Landing Holes', 'Hera Startile Wide'), # the other holes near big chest ('Hera 5F Star Hole', 'Hera Big Chest Landing'), ('Hera 5F Pothole Chain', 'Hera Fairies'), ('Hera 5F Normal Holes', 'Hera 4F'), ('Hera Boss Outer Hole', 'Hera 5F'), ('Hera Boss Inner Hole', 'Hera 4F'), ('PoD Pit Room Freefall', 'PoD Stalfos Basement'), ('PoD Pit Room Bomb Hole', 'PoD Basement Ledge'), ('PoD Big Key Landing Hole', 'PoD Stalfos Basement'), ('Swamp Attic Right Pit', 'Swamp Barrier Ledge'), ('Swamp Attic Left Pit', 'Swamp West Ledge'), ('Skull Final Drop Hole', 'Skull Boss'), ('Ice Bomb Drop Hole', 'Ice Stalfos Hint'), ('Ice Falling Square Hole', 'Ice Tall Hint'), ('Ice Freezors Hole', 'Ice Big Chest View'), ('Ice Freezors Ledge Hole', 'Ice Big Chest View'), ('Ice Freezors Bomb Hole', 'Ice Big Chest Landing'), ('Ice Crystal Block Hole', 'Ice Switch Room'), ('Ice Crystal Right Blue Hole', 'Ice Switch Room'), ('Ice Backwards Room Hole', 'Ice Fairy'), ('Ice Antechamber Hole', 'Ice Boss'), ('Mire Attic Hint Hole', 'Mire BK Chest Ledge'), ('Mire Torches Top Holes', 'Mire Conveyor Barrier'), ('Mire Torches Bottom Holes', 'Mire Warping Pool'), ('GT Bob\'s Room Hole', 'GT Ice Armos'), ('GT Falling Torches Hole', 'GT Staredown'), ('GT Moldorm Hole', 'GT Moldorm Pit') ] dungeon_warps = [ ('Eastern Fairies\' Warp', 'Eastern Courtyard'), ('Hera Fairies\' Warp', 'Hera 5F'), ('PoD Warp Hint Warp', 'PoD Warp Room'), ('PoD Warp Room Warp', 'PoD Warp Hint'), ('PoD Stalfos Basement Warp', 'PoD Warp Room'), ('PoD Callback Warp', 'PoD Dark Alley'), ('Ice Fairy Warp', 'Ice Anti-Fairy'), ('Mire Lone Warp Warp', 'Mire BK Door Room'), ('Mire Warping Pool Warp', 'Mire Square Rail'), ('GT Compass Room Warp', 'GT Conveyor Star Pits'), ('GT Spike Crystals Warp', 'GT Firesnake Room'), ('GT Warp Maze - Left Section Warp', 'GT Warp Maze - Rando Rail'), ('GT Warp Maze - Mid Section Left Warp', 'GT Warp Maze - Main Rails'), ('GT Warp Maze - Mid Section Right Warp', 'GT Warp Maze - Main Rails'), ('GT Warp Maze - Right Section Warp', 'GT Warp Maze - Main Rails'), ('GT Warp Maze - Pit Exit Warp', 'GT Warp Maze - Pot Rail'), ('GT Warp Maze - Rail Choice Left Warp', 'GT Warp Maze - Left Section'), ('GT Warp Maze - Rail Choice Right Warp', 'GT Warp Maze - Mid Section'), ('GT Warp Maze - Rando Rail Warp', 'GT Warp Maze - Mid Section'), ('GT Warp Maze - Main Rails Best Warp', 'GT Warp Maze - Pit Section'), ('GT Warp Maze - Main Rails Mid Left Warp', 'GT Warp Maze - Mid Section'), ('GT Warp Maze - Main Rails Mid Right Warp', 'GT Warp Maze - Mid Section'), ('GT Warp Maze - Main Rails Right Top Warp', 'GT Warp Maze - Right Section'), ('GT Warp Maze - Main Rails Right Mid Warp', 'GT Warp Maze - Right Section'), ('GT Warp Maze - Pot Rail Warp', 'GT Warp Maze Exit Section'), ('GT Hidden Star Warp', 'GT Invisible Bridges') ] ladders = [ ('PoD Bow Statue Down Ladder', 'PoD Dark Pegs Up Ladder'), ('Ice Big Key Down Ladder', 'Ice Tongue Pull Up Ladder'), ('Ice Firebar Down Ladder', 'Ice Freezors Up Ladder'), ('GT Staredown Up Ladder', 'GT Falling Torches Down Ladder') ] interior_doors = [ ('Hyrule Dungeon Armory Interior Key Door S', 'Hyrule Dungeon Armory Interior Key Door N'), ('Hyrule Dungeon Armory ES', 'Hyrule Dungeon Armory Boomerang WS'), ('Hyrule Dungeon Map Room Key Door S', 'Hyrule Dungeon North Abyss Key Door N'), ('Sewers Rat Path WS', 'Sewers Secret Room ES'), ('Sewers Rat Path WN', 'Sewers Secret Room EN'), ('Sewers Yet More Rats S', 'Sewers Pull Switch N'), ('Eastern Lobby N', 'Eastern Lobby Bridge S'), ('Eastern Lobby NW', 'Eastern Lobby Left Ledge SW'), ('Eastern Lobby NE', 'Eastern Lobby Right Ledge SE'), ('Eastern East Wing EN', 'Eastern Pot Switch WN'), ('Eastern East Wing ES', 'Eastern Map Balcony WS'), ('Eastern Pot Switch SE', 'Eastern Map Room NE'), ('Eastern West Wing WS', 'Eastern Stalfos Spawn ES'), ('Eastern Stalfos Spawn NW', 'Eastern Compass Room SW'), ('Eastern Compass Room EN', 'Eastern Hint Tile WN'), ('Eastern Dark Square EN', 'Eastern Dark Pots WN'), ('Eastern Darkness NE', 'Eastern Rupees SE'), ('Eastern False Switches WS', 'Eastern Cannonball Hell ES'), ('Eastern Single Eyegore NE', 'Eastern Duo Eyegores SE'), ('Desert East Lobby WS', 'Desert East Wing ES'), ('Desert East Wing Key Door EN', 'Desert Compass Key Door WN'), ('Desert North Hall NW', 'Desert Map SW'), ('Desert North Hall NE', 'Desert Map SE'), ('Desert Arrow Pot Corner NW', 'Desert Trap Room SW'), ('Desert Sandworm Corner NE', 'Desert Bonk Torch SE'), ('Desert Sandworm Corner WS', 'Desert Circle of Pots ES'), ('Desert Circle of Pots NW', 'Desert Big Chest SW'), ('Desert West Wing WS', 'Desert West Lobby ES',), ('Desert Fairy Fountain SW', 'Desert West Lobby NW'), ('Desert Back Lobby NW', 'Desert Tiles 1 SW'), ('Desert Bridge SW', 'Desert Four Statues NW'), ('Desert Four Statues ES', 'Desert Beamos Hall WS',), ('Desert Tiles 2 NE', 'Desert Wall Slide SE'), ('Hera Tile Room EN', 'Hera Tridorm WN'), ('Hera Tridorm SE', 'Hera Torches NE'), ('Hera Beetles WS', 'Hera Startile Corner ES'), ('Hera Startile Corner NW', 'Hera Startile Wide SW'), ('Tower Lobby NW', 'Tower Gold Knights SW'), ('Tower Gold Knights EN', 'Tower Room 03 WN'), ('Tower Lone Statue WN', 'Tower Dark Maze EN'), ('Tower Dark Maze ES', 'Tower Dark Chargers WS'), ('Tower Dual Statues WS', 'Tower Dark Pits ES'), ('Tower Dark Pits EN', 'Tower Dark Archers WN'), ('Tower Red Spears WN', 'Tower Red Guards EN'), ('Tower Red Guards SW', 'Tower Circle of Pots NW'), ('Tower Circle of Pots ES', 'Tower Pacifist Run WS'), ('Tower Push Statue WS', 'Tower Catwalk ES'), ('Tower Antechamber NW', 'Tower Altar SW'), ('PoD Lobby N', 'PoD Middle Cage S'), ('PoD Lobby NW', 'PoD Left Cage SW'), ('PoD Lobby NE', 'PoD Middle Cage SE'), ('PoD Warp Hint SE', 'PoD Jelly Hall NE'), ('PoD Jelly Hall NW', 'PoD Mimics 1 SW'), ('PoD Falling Bridge EN', 'PoD Compass Room WN'), ('PoD Compass Room SE', 'PoD Harmless Hellway NE'), ('PoD Mimics 2 NW', 'PoD Bow Statue SW'), ('PoD Dark Pegs WN', 'PoD Lonely Turtle EN'), ('PoD Lonely Turtle SW', 'PoD Turtle Party NW'), ('PoD Turtle Party ES', 'PoD Callback WS'), ('Swamp Trench 1 Nexus N', 'Swamp Trench 1 Alcove S'), ('Swamp Trench 1 Key Ledge NW', 'Swamp Hammer Switch SW'), ('Swamp Donut Top SE', 'Swamp Donut Bottom NE'), ('Swamp Donut Bottom NW', 'Swamp Compass Donut SW'), ('Swamp Crystal Switch SE', 'Swamp Shortcut NE'), ('Swamp Trench 2 Blocks N', 'Swamp Trench 2 Alcove S'), ('Swamp Push Statue NW', 'Swamp Shooters SW'), ('Swamp Push Statue NE', 'Swamp Right Elbow SE'), ('Swamp Shooters EN', 'Swamp Left Elbow WN'), ('Swamp Drain WN', 'Swamp Basement Shallows EN'), ('Swamp Flooded Room WS', 'Swamp Basement Shallows ES'), ('Swamp Waterfall Room NW', 'Swamp Refill SW'), ('Swamp Waterfall Room NE', 'Swamp Behind Waterfall SE'), ('Swamp C SE', 'Swamp Waterway NE'), ('Swamp Waterway N', 'Swamp I S'), ('Swamp Waterway NW', 'Swamp T SW'), ('Skull 1 Lobby ES', 'Skull Map Room WS'), ('Skull Pot Circle WN', 'Skull Pull Switch EN'), ('Skull Pull Switch S', 'Skull Big Chest N'), ('Skull Left Drop ES', 'Skull Compass Room WS'), ('Skull 2 East Lobby NW', 'Skull Big Key SW'), ('Skull Big Key WN', 'Skull Lone Pot EN'), ('Skull Small Hall WS', 'Skull 2 West Lobby ES'), ('Skull 2 West Lobby NW', 'Skull X Room SW'), ('Skull 3 Lobby EN', 'Skull East Bridge WN'), ('Skull East Bridge WS', 'Skull West Bridge Nook ES'), ('Skull Star Pits ES', 'Skull Torch Room WS'), ('Skull Torch Room WN', 'Skull Vines EN'), ('Skull Spike Corner ES', 'Skull Final Drop WS'), ('Thieves Hallway WS', 'Thieves Pot Alcove Mid ES'), ('Thieves Conveyor Maze SW', 'Thieves Pot Alcove Top NW'), ('Thieves Conveyor Maze EN', 'Thieves Hallway WN'), ('Thieves Spike Track NE', 'Thieves Triple Bypass SE'), ('Thieves Spike Track WS', 'Thieves Hellway Crystal ES'), ('Thieves Hellway Crystal EN', 'Thieves Triple Bypass WN'), ('Thieves Attic ES', 'Thieves Cricket Hall Left WS'), ('Thieves Cricket Hall Right ES', 'Thieves Attic Window WS'), ('Thieves Blocked Entry SW', 'Thieves Lonely Zazak NW'), ('Thieves Lonely Zazak ES', 'Thieves Blind\'s Cell WS'), ('Thieves Conveyor Bridge WS', 'Thieves Big Chest Room ES'), ('Thieves Conveyor Block WN', 'Thieves Trap EN'), ('Ice Lobby WS', 'Ice Jelly Key ES'), ('Ice Floor Switch ES', 'Ice Cross Left WS'), ('Ice Cross Top NE', 'Ice Bomb Drop SE'), ('Ice Pengator Switch ES', 'Ice Dead End WS'), ('Ice Stalfos Hint SE', 'Ice Conveyor NE'), ('Ice Bomb Jump EN', 'Ice Narrow Corridor WN'), ('Ice Spike Cross WS', 'Ice Firebar ES'), ('Ice Spike Cross NE', 'Ice Falling Square SE'), ('Ice Hammer Block ES', 'Ice Tongue Pull WS'), ('Ice Freezors Ledge ES', 'Ice Tall Hint WS'), ('Ice Hookshot Balcony SW', 'Ice Spikeball NW'), ('Ice Crystal Right NE', 'Ice Backwards Room SE'), ('Ice Crystal Left WS', 'Ice Big Chest View ES'), ('Ice Anti-Fairy SE', 'Ice Switch Room NE'), ('Mire Lone Shooter ES', 'Mire Falling Bridge WS'), # technically one-way ('Mire Falling Bridge W', 'Mire Failure Bridge E'), # technically one-way ('Mire Falling Bridge WN', 'Mire Map Spike Side EN'), # technically one-way ('Mire Hidden Shooters WS', 'Mire Cross ES'), # technically one-way ('Mire Hidden Shooters NE', 'Mire Minibridge SE'), ('Mire Spikes NW', 'Mire Ledgehop SW'), ('Mire Spike Barrier ES', 'Mire Square Rail WS'), ('Mire Square Rail NW', 'Mire Lone Warp SW'), ('Mire Wizzrobe Bypass WN', 'Mire Compass Room EN'), # technically one-way ('Mire Conveyor Crystal WS', 'Mire Tile Room ES'), ('Mire Tile Room NW', 'Mire Compass Room SW'), ('Mire Neglected Room SE', 'Mire Chest View NE'), ('Mire BK Chest Ledge WS', 'Mire Warping Pool ES'), # technically one-way ('Mire Torches Top SW', 'Mire Torches Bottom NW'), ('Mire Torches Bottom WS', 'Mire Attic Hint ES'), ('Mire Dark Shooters SE', 'Mire Key Rupees NE'), ('Mire Dark Shooters SW', 'Mire Block X NW'), ('Mire Tall Dark and Roomy WS', 'Mire Crystal Right ES'), ('Mire Tall Dark and Roomy WN', 'Mire Shooter Rupees EN'), ('Mire Crystal Mid NW', 'Mire Crystal Top SW'), ('TR Tile Room NE', 'TR Refill SE'), ('TR Pokey 1 NW', 'TR Chain Chomps SW'), ('TR Twin Pokeys EN', 'TR Dodgers WN'), ('TR Twin Pokeys SW', 'TR Hallway NW'), ('TR Hallway ES', 'TR Big View WS'), ('TR Big Chest NE', 'TR Dodgers SE'), ('TR Dash Room ES', 'TR Tongue Pull WS'), ('TR Dash Room NW', 'TR Crystaroller SW'), ('TR Tongue Pull NE', 'TR Rupees SE'), ('GT Torch EN', 'GT Hope Room WN'), ('GT Torch SW', 'GT Big Chest NW'), ('GT Tile Room EN', 'GT Speed Torch WN'), ('GT Speed Torch WS', 'GT Pots n Blocks ES'), ('GT Crystal Conveyor WN', 'GT Compass Room EN'), ('GT Conveyor Cross WN', 'GT Hookshot EN'), ('GT Hookshot ES', 'GT Map Room WS'), ('GT Double Switch EN', 'GT Spike Crystals WN'), ('GT Firesnake Room SW', 'GT Warp Maze (Rails) NW'), ('GT Ice Armos NE', 'GT Big Key Room SE'), ('GT Ice Armos WS', 'GT Four Torches ES'), ('GT Four Torches NW', 'GT Fairy Abyss SW'), ('GT Crystal Paths SW', 'GT Mimics 1 NW'), ('GT Mimics 1 ES', 'GT Mimics 2 WS'), ('GT Mimics 2 NE', 'GT Dash Hall SE'), ('GT Cannonball Bridge SE', 'GT Refill NE'), ('GT Gauntlet 1 WN', 'GT Gauntlet 2 EN'), ('GT Gauntlet 2 SW', 'GT Gauntlet 3 NW'), ('GT Gauntlet 4 SW', 'GT Gauntlet 5 NW'), ('GT Beam Dash WS', 'GT Lanmolas 2 ES'), ('GT Lanmolas 2 NW', 'GT Quad Pot SW'), ('GT Wizzrobes 1 SW', 'GT Dashing Bridge NW'), ('GT Dashing Bridge NE', 'GT Wizzrobes 2 SE'), ('GT Torch Cross ES', 'GT Staredown WS'), ('GT Falling Torches NE', 'GT Mini Helmasaur Room SE'), ('GT Mini Helmasaur Room WN', 'GT Bomb Conveyor EN'), ('GT Bomb Conveyor SW', 'GT Crystal Circles NW') ] key_doors = [ ('Sewers Key Rat Key Door N', 'Sewers Secret Room Key Door S'), ('Sewers Dark Cross Key Door N', 'Sewers Water S'), ('Eastern Dark Square Key Door WN', 'Eastern Cannonball Ledge Key Door EN'), ('Eastern Darkness Up Stairs', 'Eastern Attic Start Down Stairs'), ('Eastern Big Key NE', 'Eastern Hint Tile Blocked Path SE'), ('Eastern Darkness S', 'Eastern Courtyard N'), ('Desert East Wing Key Door EN', 'Desert Compass Key Door WN'), ('Desert Tiles 1 Up Stairs', 'Desert Bridge Down Stairs'), ('Desert Beamos Hall NE', 'Desert Tiles 2 SE'), ('Desert Tiles 2 NE', 'Desert Wall Slide SE'), ('Desert Wall Slide NW', 'Desert Boss SW'), ('Hera Lobby Key Stairs', 'Hera Tile Room Up Stairs'), ('Hera Startile Corner NW', 'Hera Startile Wide SW'), ('PoD Middle Cage N', 'PoD Pit Room S'), ('PoD Arena Main NW', 'PoD Falling Bridge SW'), ('PoD Falling Bridge WN', 'PoD Dark Maze EN'), ] default_small_key_doors = { 'Hyrule Castle': [ ('Sewers Key Rat Key Door N', 'Sewers Secret Room Key Door S'), ('Sewers Dark Cross Key Door N', 'Sewers Water S'), ('Hyrule Dungeon Map Room Key Door S', 'Hyrule Dungeon North Abyss Key Door N'), ('Hyrule Dungeon Armory Interior Key Door N', 'Hyrule Dungeon Armory Interior Key Door S') ], 'Eastern Palace': [ ('Eastern Dark Square Key Door WN', 'Eastern Cannonball Ledge Key Door EN'), 'Eastern Darkness Up Stairs', ], 'Desert Palace': [ ('Desert East Wing Key Door EN', 'Desert Compass Key Door WN'), 'Desert Tiles 1 Up Stairs', ('Desert Beamos Hall NE', 'Desert Tiles 2 SE'), ('Desert Tiles 2 NE', 'Desert Wall Slide SE'), ], 'Tower of Hera': [ 'Hera Lobby Key Stairs' ], 'Agahnims Tower': [ 'Tower Room 03 Up Stairs', ('Tower Dark Maze ES', 'Tower Dark Chargers WS'), 'Tower Dark Archers Up Stairs', ('Tower Circle of Pots ES', 'Tower Pacifist Run WS'), ], 'Palace of Darkness': [ ('PoD Middle Cage N', 'PoD Pit Room S'), ('PoD Arena Main NW', 'PoD Falling Bridge SW'), ('PoD Falling Bridge WN', 'PoD Dark Maze EN'), 'PoD Basement Ledge Up Stairs', ('PoD Compass Room SE', 'PoD Harmless Hellway NE'), ('PoD Dark Pegs WN', 'PoD Lonely Turtle EN') ], 'Swamp Palace': [ 'Swamp Entrance Down Stairs', ('Swamp Pot Row WS', 'Swamp Trench 1 Approach ES'), ('Swamp Trench 1 Key Ledge NW', 'Swamp Hammer Switch SW'), ('Swamp Hub WN', 'Swamp Crystal Switch EN'), ('Swamp Hub North Ledge N', 'Swamp Push Statue S'), ('Swamp Waterway NW', 'Swamp T SW') ], 'Skull Woods': [ ('Skull 1 Lobby WS', 'Skull Pot Prison ES'), ('Skull Map Room SE', 'Skull Pinball NE'), ('Skull 2 West Lobby NW', 'Skull X Room SW'), ('Skull 3 Lobby NW', 'Skull Star Pits SW'), ('Skull Spike Corner ES', 'Skull Final Drop WS') ], 'Thieves Town': [ ('Thieves Hallway WS', 'Thieves Pot Alcove Mid ES'), 'Thieves Spike Switch Up Stairs', ('Thieves Conveyor Bridge WS', 'Thieves Big Chest Room ES') ], 'Ice Palace': [ 'Ice Jelly Key Down Stairs', ('Ice Conveyor SW', 'Ice Bomb Jump NW'), ('Ice Spike Cross ES', 'Ice Spike Room WS'), ('Ice Tall Hint SE', 'Ice Lonely Freezor NE'), 'Ice Backwards Room Down Stairs', ('Ice Switch Room ES', 'Ice Refill WS') ], 'Misery Mire': [ ('Mire Hub WS', 'Mire Conveyor Crystal ES'), ('Mire Hub Right EN', 'Mire Map Spot WN'), ('Mire Spikes NW', 'Mire Ledgehop SW'), ('Mire Fishbone SE', 'Mire Spike Barrier NE'), ('Mire Conveyor Crystal WS', 'Mire Tile Room ES'), ('Mire Dark Shooters SE', 'Mire Key Rupees NE') ], 'Turtle Rock': [ ('TR Hub NW', 'TR Pokey 1 SW'), ('TR Pokey 1 NW', 'TR Chain Chomps SW'), 'TR Chain Chomps Down Stairs', ('TR Pokey 2 ES', 'TR Lava Island WS'), 'TR Crystaroller Down Stairs', ('TR Dash Bridge WS', 'TR Crystal Maze ES') ], 'Ganons Tower': [ ('GT Torch EN', 'GT Hope Room WN'), ('GT Tile Room EN', 'GT Speed Torch WN'), ('GT Hookshot ES', 'GT Map Room WS'), ('GT Double Switch EN', 'GT Spike Crystals WN'), ('GT Firesnake Room SW', 'GT Warp Maze (Rails) NW'), ('GT Conveyor Star Pits EN', 'GT Falling Bridge WN'), ('GT Mini Helmasaur Room WN', 'GT Bomb Conveyor EN'), ('GT Crystal Circles SW', 'GT Left Moldorm Ledge NW') ] } default_door_connections = [ ('Hyrule Castle Lobby W', 'Hyrule Castle West Lobby E'), ('Hyrule Castle Lobby E', 'Hyrule Castle East Lobby W'), ('Hyrule Castle Lobby WN', 'Hyrule Castle West Lobby EN'), ('Hyrule Castle West Lobby N', 'Hyrule Castle West Hall S'), ('Hyrule Castle East Lobby N', 'Hyrule Castle East Hall S'), ('Hyrule Castle East Lobby NW', 'Hyrule Castle East Hall SW'), ('Hyrule Castle East Hall W', 'Hyrule Castle Back Hall E'), ('Hyrule Castle West Hall E', 'Hyrule Castle Back Hall W'), ('Hyrule Castle Throne Room N', 'Sewers Behind Tapestry S'), ('Hyrule Dungeon Guardroom N', 'Hyrule Dungeon Armory S'), ('Sewers Dark Cross Key Door N', 'Sewers Water S'), ('Sewers Water W', 'Sewers Key Rat E'), ('Sewers Key Rat Key Door N', 'Sewers Secret Room Key Door S'), ('Eastern Lobby Bridge N', 'Eastern Cannonball S'), ('Eastern Cannonball N', 'Eastern Courtyard Ledge S'), ('Eastern Cannonball Ledge WN', 'Eastern Big Key EN'), ('Eastern Cannonball Ledge Key Door EN', 'Eastern Dark Square Key Door WN'), ('Eastern Courtyard Ledge W', 'Eastern West Wing E'), ('Eastern Courtyard Ledge E', 'Eastern East Wing W'), ('Eastern Hint Tile EN', 'Eastern Courtyard WN'), ('Eastern Big Key NE', 'Eastern Hint Tile Blocked Path SE'), ('Eastern Courtyard EN', 'Eastern Map Valley WN'), ('Eastern Courtyard N', 'Eastern Darkness S'), ('Eastern Map Valley SW', 'Eastern Dark Square NW'), ('Eastern Attic Start WS', 'Eastern False Switches ES'), ('Eastern Cannonball Hell WS', 'Eastern Single Eyegore ES'), ('Desert Compass NW', 'Desert Cannonball S'), ('Desert Beamos Hall NE', 'Desert Tiles 2 SE'), ('PoD Middle Cage N', 'PoD Pit Room S'), ('PoD Pit Room NW', 'PoD Arena Main SW'), ('PoD Pit Room NE', 'PoD Arena Bridge SE'), ('PoD Arena Main NW', 'PoD Falling Bridge SW'), ('PoD Arena Crystals E', 'PoD Sexy Statue W'), ('PoD Mimics 1 NW', 'PoD Conveyor SW'), ('PoD Map Balcony WS', 'PoD Arena Ledge ES'), ('PoD Falling Bridge WN', 'PoD Dark Maze EN'), ('PoD Dark Maze E', 'PoD Big Chest Balcony W'), ('PoD Sexy Statue NW', 'PoD Mimics 2 SW'), ('Swamp Pot Row WN', 'Swamp Map Ledge EN'), ('Swamp Pot Row WS', 'Swamp Trench 1 Approach ES'), ('Swamp Trench 1 Departure WS', 'Swamp Hub ES'), ('Swamp Hammer Switch WN', 'Swamp Hub Dead Ledge EN'), ('Swamp Hub S', 'Swamp Donut Top N'), ('Swamp Hub WS', 'Swamp Trench 2 Pots ES'), ('Swamp Hub WN', 'Swamp Crystal Switch EN'), ('Swamp Hub North Ledge N', 'Swamp Push Statue S'), ('Swamp Trench 2 Departure WS', 'Swamp West Shallows ES'), ('Swamp Big Key Ledge WN', 'Swamp Barrier EN'), ('Swamp Basement Shallows NW', 'Swamp Waterfall Room SW'), ('Skull 1 Lobby WS', 'Skull Pot Prison ES'), ('Skull Map Room SE', 'Skull Pinball NE'), ('Skull Pinball WS', 'Skull Compass Room ES'), ('Skull Compass Room NE', 'Skull Pot Prison SE'), ('Skull 2 East Lobby WS', 'Skull Small Hall ES'), ('Skull 3 Lobby NW', 'Skull Star Pits SW'), ('Skull Vines NW', 'Skull Spike Corner SW'), ('Thieves Lobby E', 'Thieves Compass Room W'), ('Thieves Ambush E', 'Thieves Rail Ledge W'), ('Thieves Rail Ledge NW', 'Thieves Pot Alcove Bottom SW'), ('Thieves BK Corner NE', 'Thieves Hallway SE'), ('Thieves Pot Alcove Mid WS', 'Thieves Spike Track ES'), ('Thieves Hellway NW', 'Thieves Spike Switch SW'), ('Thieves Triple Bypass EN', 'Thieves Conveyor Maze WN'), ('Thieves Basement Block WN', 'Thieves Conveyor Bridge EN'), ('Thieves Lonely Zazak WS', 'Thieves Conveyor Bridge ES'), ('Ice Cross Bottom SE', 'Ice Compass Room NE'), ('Ice Cross Right ES', 'Ice Pengator Switch WS'), ('Ice Conveyor SW', 'Ice Bomb Jump NW'), ('Ice Pengator Trap NE', 'Ice Spike Cross SE'), ('Ice Spike Cross ES', 'Ice Spike Room WS'), ('Ice Tall Hint SE', 'Ice Lonely Freezor NE'), ('Ice Tall Hint EN', 'Ice Hookshot Ledge WN'), ('Iced T EN', 'Ice Catwalk WN'), ('Ice Catwalk NW', 'Ice Many Pots SW'), ('Ice Many Pots WS', 'Ice Crystal Right ES'), ('Ice Switch Room ES', 'Ice Refill WS'), ('Ice Switch Room SE', 'Ice Antechamber NE'), ('Mire 2 NE', 'Mire Hub SE'), ('Mire Hub ES', 'Mire Lone Shooter WS'), ('Mire Hub E', 'Mire Failure Bridge W'), ('Mire Hub NE', 'Mire Hidden Shooters SE'), ('Mire Hub WN', 'Mire Wizzrobe Bypass EN'), ('Mire Hub WS', 'Mire Conveyor Crystal ES'), ('Mire Hub Right EN', 'Mire Map Spot WN'), ('Mire Hub Top NW', 'Mire Cross SW'), ('Mire Hidden Shooters ES', 'Mire Spikes WS'), ('Mire Minibridge NE', 'Mire Right Bridge SE'), ('Mire BK Door Room EN', 'Mire Ledgehop WN'), ('Mire BK Door Room N', 'Mire Left Bridge S'), ('Mire Spikes SW', 'Mire Crystal Dead End NW'), ('Mire Ledgehop NW', 'Mire Bent Bridge SW'), ('Mire Bent Bridge W', 'Mire Over Bridge E'), ('Mire Over Bridge W', 'Mire Fishbone E'), ('Mire Fishbone SE', 'Mire Spike Barrier NE'), ('Mire Spike Barrier SE', 'Mire Wizzrobe Bypass NE'), ('Mire Conveyor Crystal SE', 'Mire Neglected Room NE'), ('Mire Tile Room SW', 'Mire Conveyor Barrier NW'), ('Mire Block X WS', 'Mire Tall Dark and Roomy ES'), ('Mire Crystal Left WS', 'Mire Falling Foes ES'), ('TR Lobby Ledge NE', 'TR Hub SE'), ('TR Compass Room NW', 'TR Hub SW'), ('TR Hub ES', 'TR Torches Ledge WS'), ('TR Hub EN', 'TR Torches WN'), ('TR Hub NW', 'TR Pokey 1 SW'), ('TR Hub NE', 'TR Tile Room SE'), ('TR Torches NW', 'TR Roller Room SW'), ('TR Pipe Pit WN', 'TR Lava Dual Pipes EN'), ('TR Lava Island ES', 'TR Pipe Ledge WS'), ('TR Lava Dual Pipes WN', 'TR Pokey 2 EN'), ('TR Lava Dual Pipes SW', 'TR Twin Pokeys NW'), ('TR Pokey 2 ES', 'TR Lava Island WS'), ('TR Dodgers NE', 'TR Lava Escape SE'), ('TR Lava Escape NW', 'TR Dash Room SW'), ('TR Hallway WS', 'TR Lazy Eyes ES'), ('TR Dark Ride SW', 'TR Dash Bridge NW'), ('TR Dash Bridge SW', 'TR Eye Bridge NW'), ('TR Dash Bridge WS', 'TR Crystal Maze ES'), ('GT Torch WN', 'GT Conveyor Cross EN'), ('GT Hope Room EN', 'GT Tile Room WN'), ('GT Big Chest SW', 'GT Invisible Catwalk NW'), ('GT Bob\'s Room SE', 'GT Invisible Catwalk NE'), ('GT Speed Torch NE', 'GT Petting Zoo SE'), ('GT Speed Torch SE', 'GT Crystal Conveyor NE'), ('GT Warp Maze (Pits) ES', 'GT Invisible Catwalk WS'), ('GT Hookshot NW', 'GT DMs Room SW'), ('GT Hookshot SW', 'GT Double Switch NW'), ('GT Warp Maze (Rails) WS', 'GT Randomizer Room ES'), ('GT Conveyor Star Pits EN', 'GT Falling Bridge WN'), ('GT Falling Bridge WS', 'GT Hidden Star ES'), ('GT Dash Hall NE', 'GT Hidden Spikes SE'), ('GT Hidden Spikes EN', 'GT Cannonball Bridge WN'), ('GT Gauntlet 3 SW', 'GT Gauntlet 4 NW'), ('GT Gauntlet 5 WS', 'GT Beam Dash ES'), ('GT Wizzrobes 2 NE', 'GT Conveyor Bridge SE'), ('GT Conveyor Bridge EN', 'GT Torch Cross WN'), ('GT Crystal Circles SW', 'GT Left Moldorm Ledge NW') ] default_one_way_connections = [ ('Sewers Pull Switch S', 'Sanctuary N'), ('Eastern Duo Eyegores NE', 'Eastern Boss SE'), ('Desert Wall Slide NW', 'Desert Boss SW'), ('Tower Altar NW', 'Tower Agahnim 1 SW'), ('PoD Harmless Hellway SE', 'PoD Arena Main NE'), ('PoD Dark Alley NE', 'PoD Boss SE'), ('Swamp T NW', 'Swamp Boss SW'), ('Thieves Hallway NE', 'Thieves Boss SE'), ('Mire Antechamber NW', 'Mire Boss SW'), ('TR Final Abyss NW', 'TR Boss SW'), ('GT Invisible Bridges WS', 'GT Invisible Catwalk ES'), ('GT Validation WS', 'GT Frozen Over ES'), ('GT Brightly Lit Hall NW', 'GT Agahnim 2 SW') ] # For crossed # offset from 0x122e17, sram storage, write offset from compass_w_addr, 0 = jmp or # of nops, dungeon_id compass_data = { 'Hyrule Castle': (0x1, 0xc0, 0x16, 0, 0x02), 'Eastern Palace': (0x1C, 0xc1, 0x28, 0, 0x04), 'Desert Palace': (0x35, 0xc2, 0x4a, 0, 0x06), 'Agahnims Tower': (0x51, 0xc3, 0x5c, 0, 0x08), 'Swamp Palace': (0x6A, 0xc4, 0x7e, 0, 0x0a), 'Palace of Darkness': (0x83, 0xc5, 0xa4, 0, 0x0c), 'Misery Mire': (0x9C, 0xc6, 0xca, 0, 0x0e), 'Skull Woods': (0xB5, 0xc7, 0xf0, 0, 0x10), 'Ice Palace': (0xD0, 0xc8, 0x102, 0, 0x12), 'Tower of Hera': (0xEB, 0xc9, 0x114, 0, 0x14), 'Thieves Town': (0x106, 0xca, 0x138, 0, 0x16), 'Turtle Rock': (0x11F, 0xcb, 0x15e, 0, 0x18), 'Ganons Tower': (0x13A, 0xcc, 0x170, 2, 0x1a) }
48.242465
168
0.642514
[ "MIT" ]
oobitydoo/ALttPDoorRandomizer
DoorShuffle.py
108,835
Python
""" info API method.""" from ibsng.handler.handler import Handler class getAllGatewayNames(Handler): """ info method class.""" def setup(self, **kwargs): """Setup required parameters. :param dict kwargs: input args :return: void :rtype: void """ for key, value in kwargs.items(): setattr(self, key, value)
21.055556
41
0.583113
[ "MIT" ]
ParspooyeshFanavar/pyibsng
ibsng/handler/online_payment/get_all_gateway_names.py
379
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, IO, Optional, TypeVar, Union import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from azure.mgmt.core.exceptions import ARMErrorFormat from ... import models as _models from ..._vendor import _convert_request from ...operations._operation_group_two_operations import build_test_five_request, build_test_four_request T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class OperationGroupTwoOperations: """OperationGroupTwoOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~multiapi.v3.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def test_four( self, input: Optional[Union[IO, "_models.SourcePath"]] = None, **kwargs: Any ) -> None: """TestFour should be in OperationGroupTwoOperations. :param input: Input parameter. :type input: IO or ~multiapi.v3.models.SourcePath :keyword str content_type: Media type of the body sent to the API. Default value is "application/json". Allowed values are: "application/pdf", "image/jpeg", "image/png", "image/tiff", "application/json." :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) content_type = kwargs.pop('content_type', "application/json") # type: Optional[Union[str, "_models.ContentType"]] _json = None _content = None if content_type.split(";")[0] in ['application/json']: if input is not None: _json = self._serialize.body(input, 'SourcePath') elif content_type.split(";")[0] in ['application/pdf', 'image/jpeg', 'image/png', 'image/tiff']: _content = input else: raise ValueError( "The content_type '{}' is not one of the allowed values: " "['application/pdf', 'image/jpeg', 'image/png', 'image/tiff', 'application/json']".format(content_type) ) request = build_test_four_request( content_type=content_type, json=_json, content=_content, template_url=self.test_four.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) test_four.metadata = {'url': '/multiapi/two/testFourEndpoint'} # type: ignore @distributed_trace_async async def test_five( self, **kwargs: Any ) -> None: """TestFive should be in OperationGroupTwoOperations. :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) request = build_test_five_request( template_url=self.test_five.metadata['url'], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.Error, pipeline_response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) test_five.metadata = {'url': '/multiapi/two/testFiveEndpoint'} # type: ignore
43
133
0.667774
[ "MIT" ]
Sneezry/autorest.python
test/multiapi/Expected/AcceptanceTests/Multiapi/multiapi/v3/aio/operations/_operation_group_two_operations.py
6,321
Python
import pytest from app.db import model, session_ctx from app.util import exceptions from app.server.routes import routes from app.server.requestutils import * import flask import flask.testing def test_pubsubify_excs(fake_import: model.Import, client_with_modifiable_routes: flask.testing.FlaskClient): client = client_with_modifiable_routes # pre-populate an import that will get error'd with session_ctx() as sess: new_import = fake_import sess.add(new_import) sess.commit() @pubsubify_excs def ise_exc() -> flask.Response: raise exceptions.ISvcException("a bad happened", imports=[new_import]) client.application.add_url_rule('/test_pubsubify_excs', view_func=ise_exc, methods=["GET"]) resp = client.get('/test_pubsubify_excs') assert resp.status_code == 202 with session_ctx() as sess: recovered_import: Import = Import.get(new_import.id, sess) assert recovered_import.status == model.ImportStatus.Error assert recovered_import.error_message == "a bad happened"
32.30303
109
0.737336
[ "BSD-3-Clause" ]
broadinstitute/import-service
app/tests/test_requestutils.py
1,066
Python
def repl(elt, req, eq): r = req.copy() q = r[elt] // eq['qte'] if r[elt] % eq['qte'] != 0: q += 1 for i in eq['inp']: if i not in r: r[i] = 0 r[i] += q * eq['inp'][i] r[elt] -= q * eq['qte'] return r def optimize(need, dest, eqs): req = need.copy() while any(req[i] > 0 and i != dest for i in req): elt = [i for i in req if req[i] > 0 and i != dest][0] did = False others = [] req = repl(elt, req, eqs[elt]) return req[dest] with open('data/input14.txt') as f: l_eq = f.readlines() eqs = {} for eq in l_eq: left, right = eq[:-1].split(' => ') out = right.split() eqs[out[1]] = {'qte': int(out[0])} eqs[out[1]]['inp'] = {} for elt in left.split(', '): item = elt.split() eqs[out[1]]['inp'][item[1]] = int(item[0]) req = {'FUEL': 1} q_ore = optimize(req, 'ORE', eqs) print(q_ore) goal = 10**12 low = goal // q_ore high = low i = 1 while optimize({'FUEL': high}, 'ORE', eqs) < goal: high = low + 10**i i += 1 while True: m = (high + low) // 2 if optimize({'FUEL': m}, 'ORE', eqs) > goal: high = m else: low = m if high - low < 2: print(low) break
21.344828
61
0.474152
[ "MIT" ]
OpesMentis/AdventOfCode_2019
day14.py
1,238
Python
from django import forms from .models import Produto class ProdutoForm(forms.ModelForm): class Meta: model = Produto fields = '__all__'
15.9
35
0.679245
[ "MIT" ]
jonathan-mothe/estoque
produto/forms.py
159
Python