File size: 11,016 Bytes
ac09b51 336d65e ac09b51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Visual Attributes in the Wild (VAW) dataset"""
import csv
import json
import os
import datasets
_CITATION = """\
@InProceedings{Pham_2021_CVPR,
author = {Pham, Khoi and Kafle, Kushal and Lin, Zhe and Ding, Zhihong and Cohen, Scott and Tran, Quan and Shrivastava, Abhinav},
title = {Learning To Predict Visual Attributes in the Wild},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
pages = {13018-13028}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Visual Attributes in the Wild (VAW) dataset: https://github.com/adobe-research/vaw_dataset#dataset-setup
Raw annotations and configs such as attrubte_types can be found at: https://github.com/adobe-research/vaw_dataset/tree/main/data
Note: The train split loaded from this hf dataset is a concatenation of the train_part1.json and train_part2.json.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "http://vawdataset.com/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "https://github.com/adobe-research/vaw_dataset/blob/main/LICENSE.md"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# _URLS = {
# # "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
# # "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
# }
# _URL = "https://github.com/adobe-research/vaw_dataset/blob/main/data/"
_URL = "https://raw.githubusercontent.com/adobe-research/vaw_dataset/main/data/"
_URLS = {
"train": {
"part1": _URL + "train_part1.json",
"part2": _URL + "train_part2.json"
},
"val": _URL + "val.json",
"test": _URL + "test.json"
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class VAW(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
# BUILDER_CONFIGS = [
# datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
# datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
# ]
# DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
# if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option1": datasets.Value("string"),
# "answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
# else: # This is an example to show how to have different features for "first_domain" and "second_domain"
# features = datasets.Features(
# {
# "sentence": datasets.Value("string"),
# "option2": datasets.Value("string"),
# "second_domain_answer": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
features = datasets.Features(
{
"image_id": datasets.Value("string"), # int (Image ids correspond to respective Visual Genome image ids)
"instance_id": datasets.Value("string"), # int (Unique instance ID)
"instance_bbox": datasets.features.Sequence(datasets.Value("float")), # [x, y, width, height] (Bounding box co-ordinates for the instance)
"instance_polygon": datasets.features.Sequence(datasets.features.Sequence(datasets.features.Sequence(datasets.Value("float")))) , # list of [x y] (List of vertices for segmentation polygon if exists else None)
"object_name": datasets.Value("string"), # str (Name of the object for the instance)
"positive_attributes": datasets.features.Sequence(datasets.Value("string")) , # list of str (Explicitly labeled positive attributes for the instance)
"negative_attributes": datasets.features.Sequence(datasets.Value("string")) # list of str (Explicitly labeled negative attributes for the instance)
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
# data_dir = dl_manager.download_and_extract(urls)
downloaded_files = dl_manager.download_and_extract(_URLS)
print("downloaded_files: ", downloaded_files)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["val"],
"split": "val",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": downloaded_files["test"],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
# with open(filepath, encoding="utf-8") as f:
# for key, row in enumerate(f):
# data = json.loads(row)
# if self.config.name == "first_domain":
# # Yields examples as (key, example) tuples
# yield key, {
# "sentence": data["sentence"],
# "option1": data["option1"],
# "answer": "" if split == "test" else data["answer"],
# }
# else:
# yield key, {
# "sentence": data["sentence"],
# "option2": data["option2"],
# "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
# }
if split == "train":
# concat part1 and part 2 files
part1_data = json.load(open(filepath['part1'], encoding="utf-8"))
part2_data = json.load(open(filepath['part2'], encoding="utf-8"))
data = part1_data + part2_data
else:
data = json.load(open(filepath, encoding="utf-8"))
for key, row in enumerate(data):
yield key, {
"image_id": row["image_id"],
"instance_id": row["instance_id"],
"instance_bbox": row["instance_bbox"],
"instance_polygon": row["instance_polygon"],
"object_name": row["object_name"],
"positive_attributes": row["positive_attributes"],
"negative_attributes": row["negative_attributes"]
}
|