gt
stringclasses
1 value
context
stringlengths
2.49k
119k
# Copyright (c) 2012-2014 Tycho Andersen # Copyright (c) 2013 xarvh # Copyright (c) 2013 roger # Copyright (c) 2013 Tao Sauvage # Copyright (c) 2014 ramnes # Copyright (c) 2014 Sean Vig # Copyright (c) 2014 dequis # Copyright (c) 2015 Dario Giovannetti # Copyright (c) 2015 Alexander Lozovskoy # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import annotations from typing import TYPE_CHECKING from libqtile import hook, utils from libqtile.backend.base import FloatStates from libqtile.command.base import CommandObject from libqtile.log_utils import logger if TYPE_CHECKING: from libqtile.command.base import ItemT class _Group(CommandObject): """A container for a bunch of windows Analogous to workspaces in other window managers. Each client window managed by the window manager belongs to exactly one group. A group is identified by its name but displayed in GroupBox widget by its label. """ def __init__(self, name, layout=None, label=None): self.name = name self.label = name if label is None else label self.custom_layout = layout # will be set on _configure self.windows = [] self.tiled_windows = set() self.qtile = None self.layouts = [] self.floating_layout = None # self.focus_history lists the group's windows in the order they # received focus, from the oldest (first item) to the currently # focused window (last item); NB the list does *not* contain any # windows that never received focus; refer to self.windows for the # complete set self.focus_history = [] self.screen = None self.current_layout = None self.last_focused = None def _configure(self, layouts, floating_layout, qtile): self.screen = None self.current_layout = 0 self.focus_history = [] self.windows = [] self.qtile = qtile self.layouts = [i.clone(self) for i in layouts] self.floating_layout = floating_layout if self.custom_layout is not None: self.layout = self.custom_layout self.custom_layout = None @property def current_window(self): try: return self.focus_history[-1] except IndexError: # no window has focus return None @current_window.setter def current_window(self, win): try: self.focus_history.remove(win) except ValueError: # win has never received focus before pass self.focus_history.append(win) def _remove_from_focus_history(self, win): try: index = self.focus_history.index(win) except ValueError: # win has never received focus return False else: del self.focus_history[index] # return True if win was the last item (i.e. it was current_window) return index == len(self.focus_history) @property def layout(self): return self.layouts[self.current_layout] @layout.setter def layout(self, layout): """ Parameters ========== layout : a string with matching the name of a Layout object. """ for index, obj in enumerate(self.layouts): if obj.name == layout: self.current_layout = index hook.fire("layout_change", self.layouts[self.current_layout], self) self.layout_all() return logger.error("No such layout: {}".format(layout)) def use_layout(self, index): assert -len(self.layouts) <= index < len(self.layouts), "layout index out of bounds" self.layout.hide() self.current_layout = index % len(self.layouts) hook.fire("layout_change", self.layouts[self.current_layout], self) self.layout_all() screen_rect = self.screen.get_rect() self.layout.show(screen_rect) def use_next_layout(self): self.use_layout((self.current_layout + 1) % (len(self.layouts))) def use_previous_layout(self): self.use_layout((self.current_layout - 1) % (len(self.layouts))) def layout_all(self, warp=False): """Layout the floating layer, then the current layout. If we have have a current_window give it focus, optionally moving warp to it. """ if self.screen and self.windows: with self.qtile.core.masked(): normal = [x for x in self.windows if not x.floating] floating = [x for x in self.windows if x.floating and not x.minimized] screen_rect = self.screen.get_rect() if normal: try: self.layout.layout(normal, screen_rect) except Exception: logger.exception("Exception in layout %s", self.layout.name) if floating: self.floating_layout.layout(floating, screen_rect) if self.current_window and self.screen == self.qtile.current_screen: self.current_window.focus(warp) else: # Screen has lost focus so we reset record of focused window so # focus will warp when screen is focused again self.last_focused = None def set_screen(self, screen, warp=True): """Set this group's screen to screen""" if screen == self.screen: return self.screen = screen if self.screen: # move all floating guys offset to new screen self.floating_layout.to_screen(self, self.screen) self.layout_all(warp=warp and self.qtile.config.cursor_warp) screen_rect = self.screen.get_rect() self.floating_layout.show(screen_rect) self.layout.show(screen_rect) else: self.hide() def hide(self): self.screen = None with self.qtile.core.masked(): for i in self.windows: i.hide() self.layout.hide() def focus(self, win, warp=True, force=False): """Focus the given window If win is in the group, blur any windows and call ``focus`` on the layout (in case it wants to track anything), fire focus_change hook and invoke layout_all. Parameters ========== win : Window to focus warp : Warp pointer to win. This should basically always be True, unless the focus event is coming from something like EnterNotify, where the user is actively using the mouse, or on full screen layouts where only one window is "maximized" at a time, and it doesn't make sense for the mouse to automatically move. """ if self.qtile._drag and not force: # don't change focus while dragging windows (unless forced) return if win: if win not in self.windows: return # ignore focus events if window is the current window if win is self.last_focused: warp = False self.current_window = win self.last_focused = self.current_window if win.floating: for layout in self.layouts: layout.blur() self.floating_layout.focus(win) else: self.floating_layout.blur() for layout in self.layouts: layout.focus(win) hook.fire("focus_change") self.layout_all(warp) def info(self): return dict( name=self.name, label=self.label, focus=self.current_window.name if self.current_window else None, tiled_windows={i.name for i in self.tiled_windows}, windows=[i.name for i in self.windows], focus_history=[i.name for i in self.focus_history], layout=self.layout.name, layouts=[i.name for i in self.layouts], floating_info=self.floating_layout.info(), screen=self.screen.index if self.screen else None, ) def add(self, win, focus=True, force=False): hook.fire("group_window_add", self, win) if win not in self.windows: self.windows.append(win) win.group = self if self.qtile.config.auto_fullscreen and win.wants_to_fullscreen: win._float_state = FloatStates.FULLSCREEN elif self.floating_layout.match(win) and not win.fullscreen: win._float_state = FloatStates.FLOATING if win.floating and not win.fullscreen: self.floating_layout.add(win) if not win.floating or win.fullscreen: self.tiled_windows.add(win) for i in self.layouts: i.add(win) if focus: self.focus(win, warp=True, force=force) def remove(self, win, force=False): self.windows.remove(win) hadfocus = self._remove_from_focus_history(win) win.group = None if win.floating: nextfocus = self.floating_layout.remove(win) nextfocus = ( nextfocus or self.current_window or self.layout.focus_first() or self.floating_layout.focus_first(group=self) ) # Remove from the tiled layouts if it was not floating or fullscreen if not win.floating or win.fullscreen: for i in self.layouts: if i is self.layout: nextfocus = i.remove(win) else: i.remove(win) nextfocus = ( nextfocus or self.floating_layout.focus_first(group=self) or self.current_window or self.layout.focus_first() ) if win in self.tiled_windows: self.tiled_windows.remove(win) # a notification may not have focus if hadfocus: self.focus(nextfocus, warp=True, force=force) # no next focus window means focus changed to nothing if not nextfocus: hook.fire("focus_change") elif self.screen: self.layout_all() def mark_floating(self, win, floating): if floating: if win in self.floating_layout.find_clients(self): # already floating pass else: # Remove from the tiled windows list if the window is not fullscreen if not win.fullscreen: self.tiled_windows.remove(win) # Remove the window from the layout if it is not fullscreen for i in self.layouts: i.remove(win) if win is self.current_window: i.blur() self.floating_layout.add(win) if win is self.current_window: self.floating_layout.focus(win) else: self.floating_layout.remove(win) self.floating_layout.blur() # A window that was fullscreen should only be added if it was not a tiled window if win not in self.tiled_windows: for i in self.layouts: i.add(win) self.tiled_windows.add(win) if win is self.current_window: for i in self.layouts: i.focus(win) self.layout_all() def _items(self, name) -> ItemT: if name == "layout": return True, list(range(len(self.layouts))) if name == "screen" and self.screen is not None: return True, [] if name == "window": return self.current_window is not None, [i.wid for i in self.windows] return None def _select(self, name, sel): if name == "layout": if sel is None: return self.layout return utils.lget(self.layouts, sel) if name == "screen": return self.screen if name == "window": if sel is None: return self.current_window for i in self.windows: if i.wid == sel: return i raise RuntimeError("Invalid selection: {}".format(name)) def cmd_setlayout(self, layout): self.layout = layout def cmd_info(self): """Returns a dictionary of info for this group""" return self.info() def cmd_toscreen(self, screen=None, toggle=False): """Pull a group to a specified screen. Parameters ========== screen : Screen offset. If not specified, we assume the current screen. toggle : If this group is already on the screen, then the group is toggled with last used Examples ======== Pull group to the current screen:: toscreen() Pull group to screen 0:: toscreen(0) """ if screen is None: screen = self.qtile.current_screen else: screen = self.qtile.screens[screen] if screen.group == self: if toggle: screen.toggle_group(self) else: screen.set_group(self) def _get_group(self, direction, skip_empty=False, skip_managed=False): """Find a group walking the groups list in the specified direction Parameters ========== skip_empty : skips the empty groups skip_managed : skips the groups that have a screen """ def match(group): from libqtile import scratchpad if group is self: return True if skip_empty and not group.windows: return False if skip_managed and group.screen: return False if isinstance(group, scratchpad.ScratchPad): return False return True groups = [group for group in self.qtile.groups if match(group)] index = (groups.index(self) + direction) % len(groups) return groups[index] def get_previous_group(self, skip_empty=False, skip_managed=False): return self._get_group(-1, skip_empty, skip_managed) def get_next_group(self, skip_empty=False, skip_managed=False): return self._get_group(1, skip_empty, skip_managed) def cmd_unminimize_all(self): """Unminimise all windows in this group""" for win in self.windows: win.minimized = False self.layout_all() def cmd_next_window(self): """ Focus the next window in group. Method cycles _all_ windows in group regardless if tiled in current layout or floating. Cycling of tiled and floating windows is not mixed. The cycling order depends on the current Layout. """ if not self.windows: return if self.current_window.floating: nxt = ( self.floating_layout.focus_next(self.current_window) or self.layout.focus_first() or self.floating_layout.focus_first(group=self) ) else: nxt = ( self.layout.focus_next(self.current_window) or self.floating_layout.focus_first(group=self) or self.layout.focus_first() ) self.focus(nxt, True) def cmd_prev_window(self): """ Focus the previous window in group. Method cycles _all_ windows in group regardless if tiled in current layout or floating. Cycling of tiled and floating windows is not mixed. The cycling order depends on the current Layout. """ if not self.windows: return if self.current_window.floating: nxt = ( self.floating_layout.focus_previous(self.current_window) or self.layout.focus_last() or self.floating_layout.focus_last(group=self) ) else: nxt = ( self.layout.focus_previous(self.current_window) or self.floating_layout.focus_last(group=self) or self.layout.focus_last() ) self.focus(nxt, True) def cmd_focus_back(self): """ Focus the window that had focus before the current one got it. Repeated calls to this function would basically continuously switch between the last two focused windows. Do nothing if less than 2 windows ever received focus. """ try: win = self.focus_history[-2] except IndexError: pass else: self.focus(win) def cmd_focus_by_name(self, name): """ Focus the first window with the given name. Do nothing if the name is not found. """ for win in self.windows: if win.name == name: self.focus(win) break def cmd_info_by_name(self, name): """ Get the info for the first window with the given name without giving it focus. Do nothing if the name is not found. """ for win in self.windows: if win.name == name: return win.info() def cmd_switch_groups(self, name): """Switch position of current group with name""" self.qtile.cmd_switch_groups(self.name, name) def cmd_set_label(self, label): """ Set the display name of current group to be used in GroupBox widget. If label is None, the name of the group is used as display name. If label is the empty string, the group is invisible in GroupBox. """ self.label = label if label is not None else self.name hook.fire("changegroup") def __repr__(self): return "<group.Group (%r)>" % self.name
"""MSAView - Uniprot support. Copyright (c) 2011 Joel Hedlund. Contact: Joel Hedlund <[email protected]> MSAView is a modular, configurable and extensible package for analysing and visualising multiple sequence alignments and sequence features. This package provides support for downloading/saving uniprot information, and for displaying uniprot sequence features. If you have problems with this package, please contact the author. Copyright ========= The MIT License Copyright (c) 2011 Joel Hedlund. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __version__ = "0.9.0" import re from xml.etree import ElementTree as etree import gio from msaview import presets from msaview.action import (Action, register_action) from msaview.computation import (DownloadTask, SimpleETreeDownloader) from msaview.features import SequenceFeature from msaview.options import Option from msaview.selection import Region from msaview.sequence_information import SequenceInformation presets.add_to_preset_path(__file__) class UniprotID(SequenceInformation): category = 'uniprot-id' @classmethod def extract_id(cls, id): uniprot_ac = re.compile(r'\b(?P<id>[A-NR-Z][0-9][A-Z][A-Z0-9][A-Z0-9][0-9]|[OPQ][0-9][A-Z0-9][A-Z0-9][A-Z0-9][0-9])(\b|_)') sprot_id = re.compile(r'\b(?P<id>[A-Z0-9]{1,5}_[A-Z0-9]{3,5})\b') for r in (uniprot_ac, sprot_id): m = r.search(id) if m: return m.group('id') @classmethod def from_msa_sequence(cls, msa, sequence_index): id = cls.extract_id(msa.ids[sequence_index]) return cls(sequence_index, id or None) class UniprotETree(SequenceInformation): category = 'uniprot-etree' def __init__(self, sequence_index, sequence_id=None, root=None, offset=None): self.sequence_index = sequence_index self.sequence_id = sequence_id self.root = root self.offset = offset class UniprotXMLDownloadTask(DownloadTask): url = "http://www.ebi.ac.uk/cgi-bin/dbfetch?db=uniprotkb&format=uniprotxml&style=raw&id=%s" downloader_class = SimpleETreeDownloader def get_urls(self): ids = ','.join(id for i, id in self.id_enumeration[self.progress:self.progress+self.batch_size]) return [self.url % ids] def parse_downloads(self, data): entries = [] for sequence_index, sequence_id in self.id_enumeration[self.progress:self.progress+self.batch_size]: for entry_element in data[0].getroot().getchildren(): element_ids = [e.text for e in entry_element.findall('accession')] element_ids.append(entry_element.find('name').text) if sequence_id not in element_ids: continue offset = entry_element.find('sequence').text.find(self.msa.unaligned[sequence_index].upper()) if offset < 0: continue entries.append(UniprotETree(sequence_index, sequence_id, entry_element, offset)) break else: entries.append(UniprotETree(sequence_index, sequence_id, None, None)) return entries def update_progress(self, data): self.progress = min(self.total, self.progress + self.batch_size) def handle_id_category_changed(self, sequence_information, change): if change.has_changed('uniprot-id'): self.abort() def get_id_entry_for_sequence(msa, sequence_index): entry = msa.sequence_information.setdefault('uniprot-id')[sequence_index] if entry is None: entry = UniprotID.from_msa_sequence(msa, sequence_index) msa.sequence_information.add_entries(entry) return entry def get_populated_uniprot_id_category(msa): new_entries = [] for sequence_index, entry in enumerate(msa.sequence_information.setdefault('uniprot-id')): if entry is not None: continue id = UniprotID.from_msa_sequence(msa, sequence_index) if id: new_entries.append(id) msa.sequence_information.add_entries(new_entries) return msa.sequence_information.categories['uniprot-id'] def dbfetch_uniprot_xml_for_sequence(msa, sequence_index): id_entry = msa.sequence_information.setdefault('uniprot-id')[sequence_index] if not id_entry: id_entry = UniprotID.from_msa_sequence(msa, sequence_index) msa.sequence_information.add_entries(id_entry) if not id_entry.sequence_id: return task = UniprotXMLDownloadTask(msa, [(sequence_index, id_entry.sequence_id)]) task.run() return task.results[0] class UniprotSequenceFeature(SequenceFeature): def __init__(self, sequence_index=None, sequence_id=None, source=None, name=None, region=None, mapping=None, description=None, original_description=None, status=None, id=None, evidence=None, ref=None, original=None, variation=None): self.sequence_index = sequence_index self.sequence_id = sequence_id self.source = source self.name = name self.region = region self.mapping = mapping self.description = description self.status = status self.id = id self.evidence = evidence self.ref = ref self.original = original self.variation = variation def is_similarly_annotated(self, other): if (other.source.lower() != self.source.lower() or other.name.lower() != self.name.lower()): return False try: if other.description is self.description is None: return True return other.description.lower() == self.description.lower() except: return False @classmethod def from_element(cls, element): source = 'UniProtKB' name = element.attrib['type'] description = None position = element.find('location/position') if position is None: start = int(element.find('location/begin').attrib['position']) - 1 length = int(element.find('location/end').attrib['position']) - start else: start = int(position.attrib['position']) - 1 length = 1 region = Region(start, length) original_description = element.attrib.get('description', None) attrib_order = ['status', 'evidence', 'id', 'ref'] d = dict((a, element.attrib.get(a, None)) for a in attrib_order) d['original'] = element.find('original') if d['original'] is not None: d['original'] = d['original'].text d['variation'] = element.find('variation') if d['variation'] is not None: d['variation'] = d['variation'].text desc = [] if original_description and not original_description.startswith('('): desc.append(original_description) if d['original']: variation = "%s->%s" % (d['original'], d['variation']) desc.append(variation) attrs = ["%s=%s" % (a, d[a]) for a in attrib_order[:-2] if d[a]] if attrs: desc.append(', '.join(attrs)) if desc: description = '; '.join(desc) return cls(source=source, name=name, region=region, description=description, **d) def get_uniprot_features(uniprot_etree_entry, msa): offset = uniprot_etree_entry.offset or 0 if uniprot_etree_entry.root is None: return [] features = [] for element in uniprot_etree_entry.root.findall('feature'): feature = UniprotSequenceFeature.from_element(element) feature.sequence_index = uniprot_etree_entry.sequence_index feature.sequence_id = uniprot_etree_entry.sequence_id feature.map_to_msa(msa, offset) if not feature.mapping: continue features.append(feature) return features class ImportUniprotFeatures(Action): action_name = 'import-uniprot-features' path = ['Import', 'Sequence features', 'UniProtKB annotations'] tooltip = 'Import feature annotations for all UniProtKB sequences.' batch_size = 10 @classmethod def applicable(cls, target, coord=None): if target.msaview_classname != 'data.msa': return if not target: return if ('uniprot-etree' in target.sequence_information.categories or 'uniprot-ids' in target.sequence_information.categories): return cls(target, coord) for id in target.ids: if UniprotID.extract_id(id): return cls(target, coord) def run(self): id_entries = get_populated_uniprot_id_category(self.target) etree_entries = self.target.sequence_information.setdefault('uniprot-etree') features = [] id_enumeration = [] for sequence_index, etree_entry in enumerate(etree_entries): if etree_entry is not None: features.extend(get_uniprot_features(etree_entry, self.target)) continue id_entry = id_entries[sequence_index] sequence_id = (id_entry and id_entry.sequence_id) if sequence_id: id_enumeration.append((sequence_index, sequence_id)) self.target.features.add_features(features) task = UniprotXMLDownloadTask(self.target, id_enumeration, self.batch_size) def add_new_features(t, progress, finished, entries): for entry in entries or []: new_features = get_uniprot_features(entry, self.target) self.target.features.add_features(new_features) task.connect('progress', add_new_features) task.connect('progress', lambda t, progress, finished, entries: self.target.sequence_information.add_entries(entries or [])) self.target.sequence_information.connect('changed', task.handle_id_category_changed) self.target.get_compute_manager().timeout_add(100, task) return task register_action(ImportUniprotFeatures) class ImportUniprotFeaturesForSequence(Action): action_name = 'import-uniprot-features-for-sequence' path = ['Import', 'Sequence features', 'UniProtKB annotations (single sequence)'] tooltip = 'Import feature annotations for the sequence from UniProtKB.' @classmethod def applicable(cls, target, coord=None): if not coord or coord.sequence is None: return if target.msaview_classname != 'data.msa': return if (target.sequence_information.get_entry('uniprot-etree', coord.sequence) or target.sequence_information.get_entry('uniprot-id', coord.sequence)): return cls(target, coord) if UniprotID.extract_id(target.ids[coord.sequence]): return cls(target, coord) def run(self): sequence_index = self.coord.sequence etree_category = self.target.sequence_information.setdefault('uniprot-etree') entry = etree_category[sequence_index] if entry is None: entry = dbfetch_uniprot_xml_for_sequence(self.target, sequence_index) if not entry: return self.target.sequence_information.add_entries(entry) if entry.root is None: return features = get_uniprot_features(entry, self.target) self.target.features.add_features(features) register_action(ImportUniprotFeaturesForSequence) class ShowSequenceInUniprotWebInterface(Action): action_name = 'show-sequence-in-uniprot-web-interface' path = ['Web interface', 'UniProtKB', 'Show protein view for %r'] tooltip = 'Show sequence in the UniProtKB web interface.' url = 'http://www.uniprot.org/uniprot/' @classmethod def applicable(cls, target, coord=None): if not coord or coord.sequence is None: return if target.msaview_classname != 'data.msa': return entry = target.sequence_information.get_entry('uniprot-id', coord.sequence) if not entry: entry = UniprotID.from_msa_sequence(target, coord.sequence) if not entry.sequence_id: return a = cls(target, coord) a.path = list(cls.path) a.path[-1] %= entry.sequence_id return a def run(self): sequence_index = self.coord.sequence entry = get_id_entry_for_sequence(self.target, sequence_index) gio.app_info_get_default_for_uri_scheme('http').launch_uris([self.url + entry.sequence_id]) register_action(ShowSequenceInUniprotWebInterface) class ImportUniprotXML(Action): action_name = 'import-uniprot-xml' path = ['Import', 'Sequence information', 'Download UniProtKB XML'] tooltip = 'Download UniProtKB XML data for all sequences.' batch_size = 50 @classmethod def applicable(cls, target, coord=None): if target.msaview_classname != 'data.msa': return if not target: return if 'uniprot-ids' in target.sequence_information.categories: return cls(target, coord) for id in target.ids: if UniprotID.extract_id(id): return cls(target, coord) def run(self): id_entries = get_populated_uniprot_id_category(self.target) etree_entries = self.target.sequence_information.setdefault('uniprot-etree') id_enumeration = [] for sequence_index, etree_entry in enumerate(etree_entries): if etree_entry is not None: continue id_entry = id_entries[sequence_index] sequence_id = (id_entry and id_entry.sequence_id) if sequence_id: id_enumeration.append((sequence_index, sequence_id)) task = UniprotXMLDownloadTask(self.target, id_enumeration, self.batch_size) task.connect('progress', lambda t, progress, finished, entries: self.target.sequence_information.add_entries(entries or [])) self.target.sequence_information.connect('changed', task.handle_id_category_changed) self.target.get_compute_manager().timeout_add(100, task) return task register_action(ImportUniprotXML) class ImportUniprotXMLForSequence(Action): action_name = 'import-uniprot-xml-for-sequence' path = ['Import', 'Sequence information', 'Download UniProtKB XML (single sequence)'] tooltip = 'Download UniProtKB XML data for the sequence.' url = 'http://www.uniprot.org/uniprot/' @classmethod def applicable(cls, target, coord=None): if not coord or coord.sequence is None: return if target.msaview_classname != 'data.msa': return entry = target.sequence_information.get_entry('uniprot-id', coord.sequence) if not entry: entry = UniprotID.from_msa_sequence(target, coord.sequence) if not entry.sequence_id: return return cls(target, coord) def run(self): sequence_index = self.coord.sequence self.target.sequence_information.setdefault('uniprot-etree') etree_entry = dbfetch_uniprot_xml_for_sequence(self.target, sequence_index) self.target.sequence_information.add_entries(etree_entry) register_action(ImportUniprotXMLForSequence) class SaveUniprotXML(Action): action_name = 'save-uniprot-xml' path = ['Export', 'Sequence information', 'UniProtKB XML'] tooltip = 'Save UniProtKB XML data.' uniprot_xml_declaration = """<?xml version="1.0" encoding="UTF-8"?>""" uniprot_xml_root_element = """<uniprot xmlns="http://uniprot.org/uniprot" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://uniprot.org/uniprot http://www.uniprot.org/support/docs/uniprot.xsd"/>""" @classmethod def applicable(cls, target, coord=None): if target.msaview_classname != 'data.msa': return try: (True for e in target.sequence_information.categories.get('uniprot-etree', []) if (e and e.root)).next() except StopIteration: return return cls(target, coord) def get_options(self): path = 'uniprot.xml' if self.target and self.target.path: path = self.target.path + '.uniprot.xml' return [Option(None, 'path', path, path, 'Path', 'Where to save the UniProtKB XML data.')] def run(self): root = etree.XML(self.uniprot_xml_root_element) tree = etree.ElementTree(root) for entry in self.target.sequence_information.categories['uniprot-etree']: if not (entry and entry.root): continue root.append(entry.root) f = open(self.params['path'], 'w') tree.write(f) f.close() register_action(ImportUniprotXMLForSequence)
''' MODIFIED. Inspiration taken from the ref link below. ref: https://raw.githubusercontent.com/kuza55/keras-extras/master/utils/multi_gpu.py The inspirational one carried license: Apache License Version 2.0, January 2004 For further info refer to: https://github.com/kuza55/keras-extras Also used https://github.com/fchollet/keras/issues/2436 which was just posted as code snippets in a forum. DEPRECATED Features: NCCL - This module was an attempt at using Tensorflow nccl module: from tensorflow.contrib import nccl The nccl contrib package is broken: https://github.com/tensorflow/tensorflow/issues/17908 StagingArea - It is not straightforward to use StagingArea for prefetching to device (data_flow_ops.StagingArea): from tensorflow.python.ops import data_flow_ops Instead one can use the Tensorflow Dataset API with prefetch_to_device: tf.contrib.data.prefetch_to_device The StagingArea is deprecated in favor of prefetch_to_device. But prefetching to device with the multigpu implementation in this module, whereby a batch slicing/split layer is inserted after the input layer to pipeline to each device, is not straightforward. The prefetch_to_device works well with Horovod multigpu distribution where each process is cleanly mapped to a GPU and it is straightforward to split the data pipelilne. ''' # noqa from __future__ import print_function import sys # import time from itertools import chain import warnings from keras import backend as KB from keras.layers.core import Lambda from keras.models import Model from keras.layers.merge import Concatenate # , Average) # import keras.layers as KL import keras.optimizers as KO from keras.utils import multi_gpu_model from keras_exp._utils import Capturing if KB.backend() == 'tensorflow': # Monkey patch Keras back-end to use Function with enqueue. # import keras_exp._patch_tf_backend as tfbpatch # tfbpatch.patch() # from keras_exp._patch_tf_backend import patch as tfbpatch # tfbpatch() import tensorflow as tf from tensorflow.python.client import device_lib try: from tensorflow.contrib import nccl have_nccl = True print('NCCL support available', file=sys.stderr) except ImportError: have_nccl = False print('WARNING: NCCL support not available', file=sys.stderr) from tensorflow.python.ops import data_flow_ops _DEBUG = False __all__ = ('get_available_gpus', 'make_parallel', 'print_mgpu_modelsummary', 'ModelKerasMGPU', 'ModelMGPU') def get_available_gpus(ngpus=-1): ''' :param int ngpus: GPUs max to use. Default -1 means all gpus. :returns: List of gpu devices. Ex.: ['/gpu:0', '/gpu:1', ...] ''' local_device_protos = device_lib.list_local_devices() gpus_list = [x.name for x in local_device_protos if x.device_type == 'GPU'] return gpus_list[:ngpus] if ngpus > -1 else gpus_list def print_mgpu_modelsummary(model): '''Prints the summary for a multi-GPU keras model. :param model: Keras model. :type model: Model ''' # print json.dumps(model.get_config(), indent=2) # DEBUG print('\nMULTI-GPU MODEL: {}'.format(model.name)) print(model.summary()) for layer in model.layers: # print 'layer:', layer, '\ttype:', type(layer) if isinstance(layer, Model): submodel = layer print('\n\tSUBMODEL SUMMARY: {}'.format(layer.name)) with Capturing() as msum: minfo = submodel.summary() print('\t{}\n\t{}\n'.format('\n\t'.join(msum), minfo)) class ModelKerasMGPU(Model): ''' Wrapper class around "keras.utils.multi_gpu_model". This class enabled loading and saving transparently. ''' def __init__(self, ser_model, gpus): # @IgnorePep8 pylint: disable=super-init-not-called pmodel = multi_gpu_model(ser_model, gpus) # mimic copy constructor via __dict__ update, hence no super-init self.__dict__.update(pmodel.__dict__) self._smodel = ser_model def __getattribute__(self, attrname): '''Override load and save methods to be used from the serial-model. The serial-model holds references to the weights in the multi-gpu model. ''' # return Model.__getattribute__(self, attrname) if 'load' in attrname or 'save' in attrname: return getattr(self._smodel, attrname) return super(ModelKerasMGPU, self).__getattribute__(attrname) def all_sync_params(tower_params, devices, usenccl=True): """Assigns the params from the first tower to all others""" if len(devices) == 1: return tf.no_op() sync_ops = [] if have_nccl and usenccl: for param_on_devices in zip(*tower_params): # print('PARAM_ON_DEVICES: {}'.format(param_on_devices)) # DEBUG # Note: param_on_devices is [paramX_gpu0, paramX_gpu1, ...] param0 = param_on_devices[0] send_op, received_tensors = nccl.broadcast(param0, devices[1:]) sync_ops.append(send_op) for device, param, received in zip(devices[1:], param_on_devices[1:], received_tensors): with tf.device(device): sync_op = param.assign(received) sync_ops.append(sync_op) else: params0 = tower_params[0] for device, params in zip(devices, tower_params): with tf.device(device): for param, param0 in zip(params, params0): sync_op = param.assign(param0.read_value()) sync_ops.append(sync_op) return tf.group(*sync_ops) # def stage(tensors): # """Stages the given tensors in a StagingArea for asynchronous put/get. # """ # stage_area = data_flow_ops.StagingArea( # dtypes=[tensor.dtype for tensor in tensors], # shapes=[tensor.get_shape() for tensor in tensors]) # put_op = stage_area.put(tensors) # get_tensors = stage_area.get() # if not isinstance(get_tensors, list): # get_tensors = [get_tensors] # # print('GET_TENSORS: {}'.format(get_tensors)) # DEBUG # # get_tensors = [tf.reshape(gt, t.get_shape()) # for (gt, t) in zip(get_tensors, tensors)] # return put_op, get_tensors class ModelMGPU(Model): '''Override load and save methods of the multi-gpu model. The load and save should correspond to the serial model's load and save. If there are other idiosyncracies to handle for multi-gpu model case then these can be handled in this subclass. A serial model should always be instantiated prior to wrapping it or converting it to a multi-GPU model. This multi-gpu implementation uses data-parallelism. A copy-constructor is not implemented so optionally pass any additional parameters besides inputs/outputs as args/kwargs to initialize the multi-gpu model the same way as the serial model. Typically not needed. Currently, it seems that using NCCL and synchronizing/averaging gradients slows multi-gpu processing down. .. seealso:: Refer to :func:`make_parallel` docstring for scenarios when out-of-memory errors might occur and workaround. Kwargs: :param Model serial_model: Serial i.e. non-multi GPU Keras model. REQUIRED. :param list gdev_list: List of gpu devices i.e. ['/gpu:0', '/gpu:1', ...] Use function get_available_gpus to get the list of available gpus. This can be a list of strings or list of instances of tf.DeviceSpec. REQUIRED. :param str ps_device: Parameter server device to use. :param bool usenccl: Use the contrib.nccl Tensorflow library for initial parameter synchronization and gradients averaging. Note, the models usenccl option overrides the optimizers usenccl option. Default: False Raises RuntimeError if specified True and a non-multi-gpu optimizer is passed during compile stage. :param bool initsync: Synchronize initial Variables i.e. weights, biases, etc. Default: True :param bool syncopt: Synchronize gradients. Requires a multi-gpu optimizer. Default: False :param bool enqueue: Use StagingArea in the multi-GPU model. Could potentially speed up Host-to-Device transfers. Produces a warning that kwargs are ignored for Tensorflow. The _patch_tf_backend module mokey patches the Function in tensorflow_backend to use the enqueue_ops option. Default: False ''' def __init__(self, *args, **kwargs): # :param model_creator: Callable that returns a serial i.e. non-multi # GPU Keras model i.e. a keras.models.Model model. REQUIRED. # Suggestion, use partial from functools to setup model_creator. # try: # model_creator = kwargs.pop('model_creator') # except KeyError: # raise RuntimeError('Keyword argument "model_creator" required ' # 'for ModelMGPU.') super(ModelMGPU, self).__init__() try: smodel = kwargs.pop('serial_model') except KeyError: raise RuntimeError('Keyword argument "serial_model" required ' 'for ModelMGPU.') # SET STATE: Instance of serial model for checkpointing self._smodel = smodel # model_creator() try: gdev_list = kwargs.pop('gdev_list') except KeyError: raise RuntimeError('Keyword argument "gdev_list" required ' 'for ModelMGPU.') self._gdev_list = gdev_list mname = kwargs.pop('name', self._smodel.name) kwargs['name'] = mname self._ps_device = kwargs.pop('ps_device', '/cpu:0') self._initsync = kwargs.pop('initsync', True) self._usenccl = kwargs.pop('usenccl', False) self._syncopt = kwargs.pop('syncopt', False) self._enqueue = kwargs.pop('enqueue', False) if self._enqueue: warnings.warn('Enqueue option to use StagingArea currenctly does ' 'not work.', UserWarning) # NOTE: To use staging have to patch keras tensorflow_backend.Function. # Function implementation in keras_exp.multigpu._patch_tf_backend self._enqueue_ops = [] self._tower_params = [] # For init/sync'ing of parameters. kwargs_ = self._init_make_dataparallel(gdev_list, **kwargs) super(ModelMGPU, self).__init__(*args, **kwargs_) def __getattribute__(self, attrname): '''Override load and save methods to be used from the serial-model. The serial-model holds references to the weights in the multi-gpu model. ''' # return Model.__getattribute__(self, attrname) if 'load' in attrname or 'save' in attrname: return getattr(self._smodel, attrname) return super(ModelMGPU, self).__getattribute__(attrname) # ref: https://github.com/fchollet/keras/issues/2436 def _init_make_dataparallel(self, gdev_list, **kwargs): '''Uses data-parallelism to convert a serial model to multi-gpu. Refer to make_parallel doc. ''' gpucopy_ops = [] def slice_batch(x, ngpus, part, dev): '''Divide the input batch into [ngpus] slices, and obtain slice no. [part]. i.e. if len(x)=10, then slice_batch(x, 2, 1) will return x[5:]. ''' sh = KB.shape(x) L = sh[0] // ngpus if part == ngpus - 1: xslice = x[part * L:] else: xslice = x[part * L:(part + 1) * L] # tf.split fails if batch size is not divisible by ngpus. Error: # InvalidArgumentError (see above for traceback): Number of # ways to split should evenly divide the split dimension # xslice = tf.split(x, ngpus)[part] if not self._enqueue: return xslice # Did not see any benefit. with tf.device(dev): # if self._stager is None: stager = data_flow_ops.StagingArea( dtypes=[xslice.dtype], shapes=[xslice.shape]) stage = stager.put([xslice]) gpucopy_ops.append(stage) # xslice_stage = stager.get() return stager.get() ngpus = len(gdev_list) if ngpus < 2: raise RuntimeError('Number of gpus < 2. Require two or more GPUs ' 'for multi-gpu model parallelization.') model = self._smodel noutputs = len(self._smodel.outputs) global_scope = tf.get_variable_scope() towers = [[] for _ in range(noutputs)] for idev, dev in enumerate(gdev_list): # TODO: The last slice could cause a gradient calculation outlier # when averaging gradients. Maybe insure ahead of time that the # batch_size is evenly divisible by number of GPUs, or maybe don't # use the last slice. with tf.device(self._ps_device): slices = [] # multi-input case for ix, x in enumerate(model.inputs): slice_g = Lambda( slice_batch, # lambda shape: shape, # lambda shape: x.shape.as_list(), name='stage_cpuSliceIn{}_Dev{}'.format(ix, idev), arguments={'ngpus': ngpus, 'part': idev, 'dev': dev})(x) slices.append(slice_g) # print('SLICE_G: {}'.format(slice_g)) # DEBUG # print('SLICES: {}'.format(slices)) # DEBUG # with tf.variable_scope('GPU_%i' % idev), \ # tf.variable_scope(global_scope, reuse=idev > 0), \ # tf.variable_scope('GPU_{}'.format(idev), # reuse=idev > 0) as var_scope, \ with tf.device(dev), \ tf.variable_scope(global_scope, reuse=idev > 0), \ tf.name_scope('tower_%i' % idev): # NOTE: Currently not using model_creator. Did not observe # any benefit in such an implementation. # Instantiate model under device context. More complicated. # Need to use optimizer synchronization in this scenario. # model_ = model_creator() # If using NCCL without re-instantiating the model then must # set the colocate_gradients_with_ops to False in optimizer. # if idev == 0: # # SET STATE: Instance of serial model for checkpointing # self._smodel = model_ # for ability to checkpoint # Handle multi-output case modeltower = model(slices) if not isinstance(modeltower, list): modeltower = [modeltower] for imt, mt in enumerate(modeltower): towers[imt].append(mt) params = mt.graph._collections['trainable_variables'] # params = model_.trainable_weights # params = tf.get_collection( # tf.GraphKeys.TRAINABLE_VARIABLES, scope=var_scope.name) # params = modeltower.graph._collections['trainable_variables'] # print('PARAMS: {}'.format(params)) # DEBUG self._tower_params.append(params) with tf.device(self._ps_device): # merged = Concatenate(axis=0)(towers) merged = [Concatenate(axis=0)(tw) for tw in towers] # self._enqueue_ops.append(tf.group(*gpucopy_ops)) self._enqueue_ops += gpucopy_ops kwargs['inputs'] = model.inputs kwargs['outputs'] = merged return kwargs def compile(self, *args, **kwargs): '''Refer to Model.compile docstring for parameters. Override functionality is documented below. :override compile: Override Model.compile method to check for options that the optimizer is multi-gpu enabled, and synchronize initial variables. ''' initsync = self._initsync usenccl = self._usenccl opt = kwargs['optimizer'] # if isinstance(opt, str): if not isinstance(opt, KO.Optimizer): opt = KO.get(opt) kwargs['optimizer'] = opt if self._syncopt and not getattr(opt, 'ismgpu', False): raise RuntimeError( 'Multi-GPU synchronization model requires a multi-GPU ' 'optimizer. Instead got: {}'.format(opt)) opt.usenccl = usenccl if self._enqueue_ops: # Produces a warning that kwargs are ignored for Tensorflow. Patch # Function in tensorflow_backend to use the enqueue_ops option. kwargs['fetches'] = self._enqueue_ops super(ModelMGPU, self).compile(*args, **kwargs) if initsync: self._run_initsync() def _run_initsync(self): # tparams = [list(chain(*tp)) for tp in self._tower_params] tparams = self._tower_params # Check to prevent from unnecessarily re-initializing and # synchronizing, i.e. when the model loads the weights. for v in chain.from_iterable(tparams): if getattr(v, '_keras_initialized', False): return KB.manual_variable_initialization(True) sess = KB.get_session() KB.manual_variable_initialization(False) # glob_variables = tf.global_variables() # sess.run(tf.variables_initializer(glob_variables)) # Initialize on GPU0 and sync to other GPUs init_op = tf.variables_initializer(tparams[0]) # init_op = tf.variables_initializer(self._tower_params[0]) # init_op = tf.variables_initializer(self.trainable_weights) sess.run(init_op) # Important if using model_creator. Not necessary of model instance is # reused in which case the model layers are shared between slices # and are automatically sync'd. sync_op = all_sync_params(tparams, self._gdev_list, usenccl=self._usenccl) sess.run(sync_op) for v in chain.from_iterable(tparams): v._keras_initialized = True # Data-parallel ref: https://github.com/fchollet/keras/issues/2436 # Tower-parallel: # ref: https://medium.com/autonomous-agents/multi-gpu-training-of-large-sparse-matrix-on-wide-neuralnetwork-cac7afc52ffe @IgnorePep8 # ref: https://gist.github.com/vvpreetham/1379cc4e208ea33ce3e615067e92fc5e def make_parallel(serial_model, gdev_list, ps_device='/cpu:0', usenccl=False, initsync=True, syncopt=False, enqueue=False, model_class=ModelMGPU): '''Given a keras model, return an equivalent model which parallelizes the computation over multiple GPUs listed in the gdev_list. Data-Parallel: Each GPU gets a slice of the input batch, applies the model on that slice and later the outputs of the models are concatenated to a single tensor, hence the user sees a model that behaves the same as the original. If getting an out-of-memory (OOM) error when scaling the batch size by the number of GPUs, there might be input layer(s) in the serial model that runs additional special operations (such as tranformation of some sort) on the 1st GPU as enumerated by Tensorflow. This was an observed behavior for Embedding layers. The workaround is to pin such layers to the CPU, or simply pin the instantiation of the serial mode to CPU. The parallelization will move the operations to GPU. :Example: if mgpu_flag: with tf.device('/cpu:0'): # define the serial model. model_serial = get_model_serial() gdev_list = get_available_gpus() model = make_parallel(model_serial, gdev_list) else: model = def_model_serial() :param Model serial_model: Serial i.e. non-multi GPU Keras model. :param list gdev_list: List of gpu devices i.e. ['/gpu:0', '/gpu:1', ...] Use function get_available_gpus to get the list of available gpus. This can be a list of strings or list of instances of tf.DeviceSpec. :param str ps_device: Parameter server device to use. :param bool usenccl: Use the contrib.nccl Tensorflow library for initial parameter synchronization and gradients averaging. Note, the model's usenccl option overrides the optimizers usenccl option. Default: False :param bool initsync: Synchronize initial Variables i.e. weights, biases, etc. Default: True :param bool syncopt: Synchronize gradients. Requires a multi-gpu optimizer. Default: False :param bool enqueue: Use StagingArea in the multi-GPU model. Could potentially speed up Host-to-Device transfers. Produces a warning that kwargs are ignored for Tensorflow. The _patch_tf_backend module mokey patches the Function in tensorflow_backend to use the enqueue_ops option. Default: False :param model_class: Class object to instantiate for multi-gpu models. This is needed when the ModelMGPU is mixed-in with other classes. Default: ModelMGPU :returns: Multi-GPU parallelized model. If ngpus < 2 then do nothing and return the provided serial_model. :rtype: ModelMGPU ''' ngpus = len(gdev_list) if ngpus < 2: return serial_model # model_creator() return model_class( serial_model=serial_model, gdev_list=gdev_list, ps_device=ps_device, enqueue=enqueue, usenccl=usenccl, initsync=initsync, syncopt=syncopt)
# Copyright (c) 2013 Hewlett-Packard Development Company, L.P. # Copyright (c) 2012 VMware, Inc. # Copyright (c) 2011 Citrix Systems, Inc. # Copyright 2011 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ A fake VMware VI API implementation. """ import collections import sys from oslo_log import log as logging from oslo_serialization import jsonutils from oslo_utils import units from oslo_utils import uuidutils from oslo_vmware import exceptions as vexc from oslo_vmware.objects import datastore as ds_obj from nova import exception from nova.virt.vmwareapi import constants _CLASSES = ['Datacenter', 'Datastore', 'ResourcePool', 'VirtualMachine', 'Network', 'HostSystem', 'HostNetworkSystem', 'Task', 'session', 'files', 'ClusterComputeResource', 'HostStorageSystem', 'Folder'] _FAKE_FILE_SIZE = 1024 _FAKE_VCENTER_UUID = '497c514c-ef5e-4e7f-8d93-ec921993b93a' _db_content = {} _array_types = {} _vim_map = {} LOG = logging.getLogger(__name__) def reset(): """Resets the db contents.""" cleanup() create_network() create_folder() create_host_network_system() create_host_storage_system() ds_ref1 = create_datastore('ds1', 1024, 500) create_host(ds_ref=ds_ref1) ds_ref2 = create_datastore('ds2', 1024, 500) create_host(ds_ref=ds_ref2) create_datacenter('dc1', ds_ref1) create_datacenter('dc2', ds_ref2) create_res_pool() create_cluster('test_cluster', ds_ref1) create_cluster('test_cluster2', ds_ref2) def cleanup(): """Clear the db contents.""" for c in _CLASSES: # We fake the datastore by keeping the file references as a list of # names in the db if c == 'files': _db_content[c] = [] else: _db_content[c] = {} def _create_object(table, table_obj): """Create an object in the db.""" _db_content.setdefault(table, {}) _db_content[table][table_obj.obj] = table_obj def _get_object(obj_ref): """Get object for the give reference.""" return _db_content[obj_ref.type][obj_ref] def _get_objects(obj_type): """Get objects of the type.""" lst_objs = FakeRetrieveResult() for key in _db_content[obj_type]: lst_objs.add_object(_db_content[obj_type][key]) return lst_objs def _convert_to_array_of_mor(mors): """Wraps the given array into a DataObject.""" array_of_mors = DataObject() array_of_mors.ManagedObjectReference = mors return array_of_mors def _convert_to_array_of_opt_val(optvals): """Wraps the given array into a DataObject.""" array_of_optv = DataObject() array_of_optv.OptionValue = optvals return array_of_optv def _create_array_of_type(t): """Returns an array to contain objects of type t.""" if t in _array_types: return _array_types[t]() array_type_name = 'ArrayOf%s' % t array_type = type(array_type_name, (DataObject,), {}) def __init__(self): super(array_type, self).__init__(array_type_name) setattr(self, t, []) setattr(array_type, '__init__', __init__) _array_types[t] = array_type return array_type() class FakeRetrieveResult(object): """Object to retrieve a ObjectContent list.""" def __init__(self, token=None): self.objects = [] if token is not None: self.token = token def add_object(self, object): self.objects.append(object) def _get_object_refs(obj_type): """Get object References of the type.""" lst_objs = [] for key in _db_content[obj_type]: lst_objs.append(key) return lst_objs def _update_object(table, table_obj): """Update objects of the type.""" _db_content[table][table_obj.obj] = table_obj class Prop(object): """Property Object base class.""" def __init__(self, name=None, val=None): self.name = name self.val = val class ManagedObjectReference(object): """A managed object reference is a remote identifier.""" def __init__(self, name="ManagedObject", value=None): super(ManagedObjectReference, self) # Managed Object Reference value attributes # typically have values like vm-123 or # host-232 and not UUID. self.value = value # Managed Object Reference type # attributes hold the name of the type # of the vCenter object the value # attribute is the identifier for self.type = name self._type = name class ObjectContent(object): """ObjectContent array holds dynamic properties.""" # This class is a *fake* of a class sent back to us by # SOAP. It has its own names. These names are decided # for us by the API we are *faking* here. def __init__(self, obj_ref, prop_list=None, missing_list=None): self.obj = obj_ref if not isinstance(prop_list, collections.abc.Iterable): prop_list = [] if not isinstance(missing_list, collections.abc.Iterable): missing_list = [] # propSet is the name your Python code will need to # use since this is the name that the API will use if prop_list: self.propSet = prop_list # missingSet is the name your python code will # need to use since this is the name that the # API we are talking to will use. if missing_list: self.missingSet = missing_list class ManagedObject(object): """Managed Object base class.""" _counter = 0 def __init__(self, mo_id_prefix="obj"): """Sets the obj property which acts as a reference to the object.""" object.__setattr__(self, 'mo_id', self._generate_moid(mo_id_prefix)) object.__setattr__(self, 'propSet', []) object.__setattr__(self, 'obj', ManagedObjectReference(self.__class__.__name__, self.mo_id)) def set(self, attr, val): """Sets an attribute value. Not using the __setattr__ directly for we want to set attributes of the type 'a.b.c' and using this function class we set the same. """ self.__setattr__(attr, val) def get(self, attr): """Gets an attribute. Used as an intermediary to get nested property like 'a.b.c' value. """ return self.__getattr__(attr) def delete(self, attr): """Deletes an attribute.""" self.propSet = [elem for elem in self.propSet if elem.name != attr] def __setattr__(self, attr, val): # TODO(hartsocks): this is adds unnecessary complexity to the class for prop in self.propSet: if prop.name == attr: prop.val = val return elem = Prop() elem.name = attr elem.val = val self.propSet.append(elem) def __getattr__(self, attr): # TODO(hartsocks): remove this # in a real ManagedObject you have to iterate the propSet # in a real ManagedObject, the propSet is a *set* not a list for elem in self.propSet: if elem.name == attr: return elem.val msg = "Property %(attr)s not set for the managed object %(name)s" raise exception.NovaException(msg % {'attr': attr, 'name': self.__class__.__name__}) def _generate_moid(self, prefix): """Generates a new Managed Object ID.""" self.__class__._counter += 1 return prefix + "-" + str(self.__class__._counter) def __repr__(self): return jsonutils.dumps({elem.name: elem.val for elem in self.propSet}) class DataObject(object): """Data object base class.""" def __init__(self, obj_name=None): if obj_name is None: obj_name = 'ns0:' + self.__class__.__name__ self.obj_name = obj_name def __repr__(self): return str(self.__dict__) def __eq__(self, other): return self.__dict__ == other.__dict__ class HostInternetScsiHba(DataObject): """iSCSI Host Bus Adapter.""" def __init__(self, iscsi_name=None): super(HostInternetScsiHba, self).__init__() self.device = 'vmhba33' self.key = 'key-vmhba33' self.iScsiName = iscsi_name class FileAlreadyExists(DataObject): """File already exists class.""" def __init__(self): super(FileAlreadyExists, self).__init__() self.__name__ = vexc.FILE_ALREADY_EXISTS class FileNotFound(DataObject): """File not found class.""" def __init__(self): super(FileNotFound, self).__init__() self.__name__ = vexc.FILE_NOT_FOUND class FileFault(DataObject): """File fault.""" def __init__(self): super(FileFault, self).__init__() self.__name__ = vexc.FILE_FAULT class CannotDeleteFile(DataObject): """Cannot delete file.""" def __init__(self): super(CannotDeleteFile, self).__init__() self.__name__ = vexc.CANNOT_DELETE_FILE class FileLocked(DataObject): """File locked.""" def __init__(self): super(FileLocked, self).__init__() self.__name__ = vexc.FILE_LOCKED class VirtualDisk(DataObject): """Virtual Disk class.""" def __init__(self, controllerKey=0, unitNumber=0): super(VirtualDisk, self).__init__() self.key = 0 self.controllerKey = controllerKey self.unitNumber = unitNumber class VirtualDiskFlatVer2BackingInfo(DataObject): """VirtualDiskFlatVer2BackingInfo class.""" def __init__(self): super(VirtualDiskFlatVer2BackingInfo, self).__init__() self.thinProvisioned = False self.eagerlyScrub = False class VirtualDiskRawDiskMappingVer1BackingInfo(DataObject): """VirtualDiskRawDiskMappingVer1BackingInfo class.""" def __init__(self): super(VirtualDiskRawDiskMappingVer1BackingInfo, self).__init__() self.lunUuid = "" class VirtualIDEController(DataObject): def __init__(self, key=0): self.key = key class VirtualLsiLogicController(DataObject): """VirtualLsiLogicController class.""" def __init__(self, key=0, scsiCtlrUnitNumber=0, busNumber=0): self.key = key self.busNumber = busNumber self.scsiCtlrUnitNumber = scsiCtlrUnitNumber self.device = [] class VirtualLsiLogicSASController(DataObject): """VirtualLsiLogicSASController class.""" pass class VirtualPCNet32(DataObject): """VirtualPCNet32 class.""" def __init__(self): super(VirtualPCNet32, self).__init__() self.key = 4000 class OptionValue(DataObject): """OptionValue class.""" def __init__(self, key=None, value=None): super(OptionValue, self).__init__() self.key = key self.value = value class VirtualMachine(ManagedObject): """Virtual Machine class.""" def __init__(self, **kwargs): super(VirtualMachine, self).__init__("vm") self.set("name", kwargs.get("name", 'test-vm')) self.set("runtime.connectionState", kwargs.get("conn_state", "connected")) self.set("summary.config.guestId", kwargs.get("guest", constants.DEFAULT_OS_TYPE)) ds_do = kwargs.get("ds", None) self.set("datastore", _convert_to_array_of_mor(ds_do)) self.set("summary.guest.toolsStatus", kwargs.get("toolsstatus", "toolsOk")) self.set("summary.guest.toolsRunningStatus", kwargs.get( "toolsrunningstate", "guestToolsRunning")) self.set("runtime.powerState", kwargs.get("powerstate", "poweredOn")) self.set("config.files.vmPathName", kwargs.get("vmPathName")) self.set("summary.config.numCpu", kwargs.get("numCpu", 1)) self.set("summary.config.memorySizeMB", kwargs.get("mem", 1)) self.set("summary.config.instanceUuid", kwargs.get("instanceUuid")) self.set("version", kwargs.get("version")) devices = _create_array_of_type('VirtualDevice') devices.VirtualDevice = kwargs.get("virtual_device", []) self.set("config.hardware.device", devices) exconfig_do = kwargs.get("extra_config", None) self.set("config.extraConfig", _convert_to_array_of_opt_val(exconfig_do)) if exconfig_do: for optval in exconfig_do: self.set('config.extraConfig["%s"]' % optval.key, optval) self.set('runtime.host', kwargs.get("runtime_host", None)) self.device = kwargs.get("virtual_device", []) # Sample of diagnostics data is below. config = [ ('template', False), ('vmPathName', 'fake_path'), ('memorySizeMB', 512), ('cpuReservation', 0), ('memoryReservation', 0), ('numCpu', 1), ('numEthernetCards', 1), ('numVirtualDisks', 1)] self.set("summary.config", config) quickStats = [ ('overallCpuUsage', 0), ('overallCpuDemand', 0), ('guestMemoryUsage', 0), ('hostMemoryUsage', 141), ('balloonedMemory', 0), ('consumedOverheadMemory', 20)] self.set("summary.quickStats", quickStats) key1 = {'key': 'cpuid.AES'} key2 = {'key': 'cpuid.AVX'} runtime = [ ('connectionState', 'connected'), ('powerState', 'poweredOn'), ('toolsInstallerMounted', False), ('suspendInterval', 0), ('memoryOverhead', 21417984), ('maxCpuUsage', 2000), ('featureRequirement', [key1, key2])] self.set("summary.runtime", runtime) def _update_extra_config(self, extra): extra_config = self.get("config.extraConfig") values = extra_config.OptionValue for value in values: if value.key == extra.key: value.value = extra.value return kv = DataObject() kv.key = extra.key kv.value = extra.value extra_config.OptionValue.append(kv) self.set("config.extraConfig", extra_config) extra_config = self.get("config.extraConfig") def reconfig(self, factory, val): """Called to reconfigure the VM. Actually customizes the property setting of the Virtual Machine object. """ if hasattr(val, 'name') and val.name: self.set("name", val.name) if hasattr(val, 'extraConfig'): extraConfigs = _merge_extraconfig( self.get("config.extraConfig").OptionValue, val.extraConfig) self.get("config.extraConfig").OptionValue = extraConfigs if hasattr(val, 'instanceUuid') and val.instanceUuid is not None: if val.instanceUuid == "": val.instanceUuid = uuidutils.generate_uuid() self.set("summary.config.instanceUuid", val.instanceUuid) try: if not hasattr(val, 'deviceChange'): return if hasattr(val, 'extraConfig'): # there are 2 cases - new entry or update an existing one for extra in val.extraConfig: self._update_extra_config(extra) if len(val.deviceChange) < 2: return # Case of Reconfig of VM to attach disk controller_key = val.deviceChange[0].device.controllerKey filename = val.deviceChange[0].device.backing.fileName disk = VirtualDisk() disk.controllerKey = controller_key disk_backing = VirtualDiskFlatVer2BackingInfo() disk_backing.fileName = filename disk_backing.key = -101 disk.backing = disk_backing disk.capacityInBytes = 1024 disk.capacityInKB = 1 controller = VirtualLsiLogicController() controller.key = controller_key devices = _create_array_of_type('VirtualDevice') devices.VirtualDevice = [disk, controller, self.device[0]] self.set("config.hardware.device", devices) except AttributeError: pass class Folder(ManagedObject): """Folder class.""" def __init__(self): super(Folder, self).__init__("Folder") self.set("childEntity", []) class Network(ManagedObject): """Network class.""" def __init__(self): super(Network, self).__init__("network") self.set("summary.name", "vmnet0") class ResourcePool(ManagedObject): """Resource Pool class.""" def __init__(self, name="test_ResPool", value="resgroup-test"): super(ResourcePool, self).__init__("rp") self.set("name", name) summary = DataObject() runtime = DataObject() config = DataObject() memory = DataObject() cpu = DataObject() memoryAllocation = DataObject() cpuAllocation = DataObject() vm_list = DataObject() memory.maxUsage = 1000 * units.Mi memory.overallUsage = 500 * units.Mi cpu.maxUsage = 10000 cpu.overallUsage = 1000 runtime.cpu = cpu runtime.memory = memory summary.runtime = runtime cpuAllocation.limit = 10000 memoryAllocation.limit = 1024 memoryAllocation.reservation = 1024 config.memoryAllocation = memoryAllocation config.cpuAllocation = cpuAllocation vm_list.ManagedObjectReference = [] self.set("summary", summary) self.set("summary.runtime.memory", memory) self.set("config", config) self.set("vm", vm_list) parent = ManagedObjectReference(value=value, name=name) owner = ManagedObjectReference(value=value, name=name) self.set("parent", parent) self.set("owner", owner) class DatastoreHostMount(DataObject): def __init__(self, value='host-100'): super(DatastoreHostMount, self).__init__() host_ref = (_db_content["HostSystem"] [list(_db_content["HostSystem"].keys())[0]].obj) host_system = DataObject() host_system.ManagedObjectReference = [host_ref] host_system.value = value self.key = host_system class ClusterComputeResource(ManagedObject): """Cluster class.""" def __init__(self, name="test_cluster"): super(ClusterComputeResource, self).__init__("domain") self.set("name", name) self.set("host", None) self.set("datastore", None) self.set("resourcePool", None) summary = DataObject() summary.numHosts = 0 summary.numCpuCores = 0 summary.numCpuThreads = 0 summary.numEffectiveHosts = 0 summary.totalMemory = 0 summary.effectiveMemory = 0 summary.effectiveCpu = 10000 self.set("summary", summary) def _add_root_resource_pool(self, r_pool): if r_pool: self.set("resourcePool", r_pool) def _add_host(self, host_sys): if host_sys: hosts = self.get("host") if hosts is None: hosts = DataObject() hosts.ManagedObjectReference = [] self.set("host", hosts) hosts.ManagedObjectReference.append(host_sys) # Update summary every time a new host is added self._update_summary() def _add_datastore(self, datastore): if datastore: datastores = self.get("datastore") if datastores is None: datastores = DataObject() datastores.ManagedObjectReference = [] self.set("datastore", datastores) datastores.ManagedObjectReference.append(datastore) # Method to update summary of a cluster upon host addition def _update_summary(self): summary = self.get("summary") summary.numHosts = 0 summary.numCpuCores = 0 summary.numCpuThreads = 0 summary.numEffectiveHosts = 0 summary.totalMemory = 0 summary.effectiveMemory = 0 hosts = self.get("host") # Compute the aggregate stats summary.numHosts = len(hosts.ManagedObjectReference) for host_ref in hosts.ManagedObjectReference: host_sys = _get_object(host_ref) connected = host_sys.get("connected") host_summary = host_sys.get("summary") summary.numCpuCores += host_summary.hardware.numCpuCores summary.numCpuThreads += host_summary.hardware.numCpuThreads summary.totalMemory += host_summary.hardware.memorySize free_memory = (host_summary.hardware.memorySize / units.Mi - host_summary.quickStats.overallMemoryUsage) summary.effectiveMemory += free_memory if connected else 0 summary.numEffectiveHosts += 1 if connected else 0 self.set("summary", summary) class Datastore(ManagedObject): """Datastore class.""" def __init__(self, name="fake-ds", capacity=1024, free=500, accessible=True, maintenance_mode="normal"): super(Datastore, self).__init__("ds") self.set("summary.type", "VMFS") self.set("summary.name", name) self.set("summary.capacity", capacity * units.Gi) self.set("summary.freeSpace", free * units.Gi) self.set("summary.accessible", accessible) self.set("summary.maintenanceMode", maintenance_mode) self.set("browser", "") class HostNetworkSystem(ManagedObject): """HostNetworkSystem class.""" def __init__(self, name="networkSystem"): super(HostNetworkSystem, self).__init__("ns") self.set("name", name) pnic_do = DataObject() pnic_do.device = "vmnic0" net_info_pnic = DataObject() net_info_pnic.PhysicalNic = [pnic_do] self.set("networkInfo.pnic", net_info_pnic) class HostStorageSystem(ManagedObject): """HostStorageSystem class.""" def __init__(self): super(HostStorageSystem, self).__init__("storageSystem") class HostSystem(ManagedObject): """Host System class.""" def __init__(self, name="ha-host", connected=True, ds_ref=None, maintenance_mode=False): super(HostSystem, self).__init__("host") self.set("name", name) if _db_content.get("HostNetworkSystem", None) is None: create_host_network_system() if not _get_object_refs('HostStorageSystem'): create_host_storage_system() host_net_key = list(_db_content["HostNetworkSystem"].keys())[0] host_net_sys = _db_content["HostNetworkSystem"][host_net_key].obj self.set("configManager.networkSystem", host_net_sys) host_storage_sys_key = _get_object_refs('HostStorageSystem')[0] self.set("configManager.storageSystem", host_storage_sys_key) if not ds_ref: ds_ref = create_datastore('local-host-%s' % name, 500, 500) datastores = DataObject() datastores.ManagedObjectReference = [ds_ref] self.set("datastore", datastores) summary = DataObject() hardware = DataObject() hardware.numCpuCores = 8 hardware.numCpuPkgs = 2 hardware.numCpuThreads = 16 hardware.vendor = "Intel" hardware.cpuModel = "Intel(R) Xeon(R)" hardware.uuid = "host-uuid" hardware.memorySize = units.Gi summary.hardware = hardware runtime = DataObject() if connected: runtime.connectionState = "connected" else: runtime.connectionState = "disconnected" runtime.inMaintenanceMode = maintenance_mode summary.runtime = runtime quickstats = DataObject() quickstats.overallMemoryUsage = 500 summary.quickStats = quickstats product = DataObject() product.name = "VMware ESXi" product.version = constants.MIN_VC_VERSION config = DataObject() config.product = product summary.config = config pnic_do = DataObject() pnic_do.device = "vmnic0" net_info_pnic = DataObject() net_info_pnic.PhysicalNic = [pnic_do] self.set("summary", summary) self.set("capability.maxHostSupportedVcpus", 600) self.set("summary.hardware", hardware) self.set("summary.runtime", runtime) self.set("summary.quickStats", quickstats) self.set("config.network.pnic", net_info_pnic) self.set("connected", connected) if _db_content.get("Network", None) is None: create_network() net_ref = _db_content["Network"][ list(_db_content["Network"].keys())[0]].obj network_do = DataObject() network_do.ManagedObjectReference = [net_ref] self.set("network", network_do) vswitch_do = DataObject() vswitch_do.pnic = ["vmnic0"] vswitch_do.name = "vSwitch0" vswitch_do.portgroup = ["PortGroup-vmnet0"] net_swicth = DataObject() net_swicth.HostVirtualSwitch = [vswitch_do] self.set("config.network.vswitch", net_swicth) host_pg_do = DataObject() host_pg_do.key = "PortGroup-vmnet0" pg_spec = DataObject() pg_spec.vlanId = 0 pg_spec.name = "vmnet0" host_pg_do.spec = pg_spec host_pg = DataObject() host_pg.HostPortGroup = [host_pg_do] self.set("config.network.portgroup", host_pg) config = DataObject() storageDevice = DataObject() iscsi_hba = HostInternetScsiHba() iscsi_hba.iScsiName = "iscsi-name" host_bus_adapter_array = DataObject() host_bus_adapter_array.HostHostBusAdapter = [iscsi_hba] storageDevice.hostBusAdapter = host_bus_adapter_array config.storageDevice = storageDevice self.set("config.storageDevice.hostBusAdapter", host_bus_adapter_array) # Set the same on the storage system managed object host_storage_sys = _get_object(host_storage_sys_key) host_storage_sys.set('storageDeviceInfo.hostBusAdapter', host_bus_adapter_array) def _add_iscsi_target(self, data): default_lun = DataObject() default_lun.scsiLun = 'key-vim.host.ScsiDisk-010' default_lun.key = 'key-vim.host.ScsiDisk-010' default_lun.deviceName = 'fake-device' default_lun.uuid = 'fake-uuid' scsi_lun_array = DataObject() scsi_lun_array.ScsiLun = [default_lun] self.set("config.storageDevice.scsiLun", scsi_lun_array) transport = DataObject() transport.address = [data['target_portal']] transport.iScsiName = data['target_iqn'] default_target = DataObject() default_target.lun = [default_lun] default_target.transport = transport iscsi_adapter = DataObject() iscsi_adapter.adapter = 'key-vmhba33' iscsi_adapter.transport = transport iscsi_adapter.target = [default_target] iscsi_topology = DataObject() iscsi_topology.adapter = [iscsi_adapter] self.set("config.storageDevice.scsiTopology", iscsi_topology) def _add_port_group(self, spec): """Adds a port group to the host system object in the db.""" pg_name = spec.name vswitch_name = spec.vswitchName vlanid = spec.vlanId vswitch_do = DataObject() vswitch_do.pnic = ["vmnic0"] vswitch_do.name = vswitch_name vswitch_do.portgroup = ["PortGroup-%s" % pg_name] vswitches = self.get("config.network.vswitch").HostVirtualSwitch vswitches.append(vswitch_do) host_pg_do = DataObject() host_pg_do.key = "PortGroup-%s" % pg_name pg_spec = DataObject() pg_spec.vlanId = vlanid pg_spec.name = pg_name host_pg_do.spec = pg_spec host_pgrps = self.get("config.network.portgroup").HostPortGroup host_pgrps.append(host_pg_do) class Datacenter(ManagedObject): """Datacenter class.""" def __init__(self, name="ha-datacenter", ds_ref=None): super(Datacenter, self).__init__("dc") self.set("name", name) if _db_content.get("Folder", None) is None: create_folder() folder_ref = _db_content["Folder"][ list(_db_content["Folder"].keys())[0]].obj folder_do = DataObject() folder_do.ManagedObjectReference = [folder_ref] self.set("vmFolder", folder_ref) if _db_content.get("Network", None) is None: create_network() net_ref = _db_content["Network"][ list(_db_content["Network"].keys())[0]].obj network_do = DataObject() network_do.ManagedObjectReference = [net_ref] self.set("network", network_do) if ds_ref: datastore = DataObject() datastore.ManagedObjectReference = [ds_ref] else: datastore = None self.set("datastore", datastore) class Task(ManagedObject): """Task class.""" def __init__(self, task_name, state="running", result=None, error_fault=None): super(Task, self).__init__("Task") info = DataObject() info.name = task_name info.state = state if state == 'error': error = DataObject() error.localizedMessage = "Error message" if not error_fault: error.fault = DataObject() else: error.fault = error_fault info.error = error info.result = result self.set("info", info) def create_host_network_system(): host_net_system = HostNetworkSystem() _create_object("HostNetworkSystem", host_net_system) def create_host_storage_system(): host_storage_system = HostStorageSystem() _create_object("HostStorageSystem", host_storage_system) def create_host(ds_ref=None): host_system = HostSystem(ds_ref=ds_ref) _create_object('HostSystem', host_system) def create_datacenter(name, ds_ref=None): data_center = Datacenter(name, ds_ref) _create_object('Datacenter', data_center) def create_datastore(name, capacity, free): data_store = Datastore(name, capacity, free) _create_object('Datastore', data_store) return data_store.obj def create_res_pool(): res_pool = ResourcePool() _create_object('ResourcePool', res_pool) return res_pool.obj def create_folder(): folder = Folder() _create_object('Folder', folder) return folder.obj def create_network(): network = Network() _create_object('Network', network) def create_cluster(name, ds_ref): cluster = ClusterComputeResource(name=name) cluster._add_host(_get_object_refs("HostSystem")[0]) cluster._add_host(_get_object_refs("HostSystem")[1]) cluster._add_datastore(ds_ref) cluster._add_root_resource_pool(create_res_pool()) _create_object('ClusterComputeResource', cluster) return cluster def create_vm(uuid=None, name=None, cpus=1, memory=128, devices=None, vmPathName=None, extraConfig=None, res_pool_ref=None, host_ref=None, version=None): if uuid is None: uuid = uuidutils.generate_uuid() if name is None: name = uuid if devices is None: devices = [] if vmPathName is None: vm_path = ds_obj.DatastorePath( list(_db_content['Datastore'].values())[0]) else: vm_path = ds_obj.DatastorePath.parse(vmPathName) if res_pool_ref is None: res_pool_ref = list(_db_content['ResourcePool'].keys())[0] if host_ref is None: host_ref = list(_db_content["HostSystem"].keys())[0] # Fill in the default path to the vmx file if we were only given a # datastore. Note that if you create a VM with vmPathName '[foo]', when you # retrieve vmPathName it will be '[foo] uuid/uuid.vmx'. Hence we use # vm_path below for the stored value of vmPathName. if vm_path.rel_path == '': vm_path = vm_path.join(name, name + '.vmx') for key, value in _db_content["Datastore"].items(): if value.get('summary.name') == vm_path.datastore: ds = key break else: ds = create_datastore(vm_path.datastore, 1024, 500) vm_dict = {"name": name, "ds": [ds], "runtime_host": host_ref, "powerstate": "poweredOff", "vmPathName": str(vm_path), "numCpu": cpus, "mem": memory, "extra_config": extraConfig, "virtual_device": devices, "instanceUuid": uuid, "version": version} vm = VirtualMachine(**vm_dict) _create_object("VirtualMachine", vm) res_pool = _get_object(res_pool_ref) res_pool.vm.ManagedObjectReference.append(vm.obj) return vm.obj def create_task(task_name, state="running", result=None, error_fault=None): task = Task(task_name, state, result, error_fault) _create_object("Task", task) return task def _add_file(file_path): """Adds a file reference to the db.""" _db_content["files"].append(file_path) def _remove_file(file_path): """Removes a file reference from the db.""" # Check if the remove is for a single file object or for a folder if file_path.find(".vmdk") != -1: if file_path not in _db_content.get("files"): raise vexc.FileNotFoundException(file_path) _db_content.get("files").remove(file_path) else: # Removes the files in the folder and the folder too from the db to_delete = set() for file in _db_content.get("files"): if file.find(file_path) != -1: to_delete.add(file) for file in to_delete: _db_content.get("files").remove(file) def fake_plug_vifs(*args, **kwargs): """Fakes plugging vifs.""" pass def fake_get_network(*args, **kwargs): """Fake get network.""" return {'type': 'fake'} def assertPathExists(test, path): test.assertIn(path, _db_content.get('files')) def assertPathNotExists(test, path): test.assertNotIn(path, _db_content.get('files')) def get_file(file_path): """Check if file exists in the db.""" return file_path in _db_content.get("files") def fake_upload_image(context, image, instance, **kwargs): """Fakes the upload of an image.""" pass def fake_fetch_image(context, instance, host, port, dc_name, ds_name, file_path, cookies=None): """Fakes the fetch of an image.""" ds_file_path = "[" + ds_name + "] " + file_path _add_file(ds_file_path) def _get_vm_mdo(vm_ref): """Gets the Virtual Machine with the ref from the db.""" if _db_content.get("VirtualMachine", None) is None: raise exception.NotFound("There is no VM registered") if vm_ref not in _db_content.get("VirtualMachine"): raise exception.NotFound("Virtual Machine with ref %s is not " "there" % vm_ref) return _db_content.get("VirtualMachine")[vm_ref] def _merge_extraconfig(existing, changes): """Imposes the changes in extraConfig over the existing extraConfig.""" existing = existing or [] if (changes): for c in changes: if len([x for x in existing if x.key == c.key]) > 0: extraConf = [x for x in existing if x.key == c.key][0] extraConf.value = c.value else: existing.append(c) return existing class FakeFactory(object): """Fake factory class for the suds client.""" def create(self, obj_name): """Creates a namespace object.""" klass = obj_name[4:] # skip 'ns0:' module = sys.modules[__name__] fake_klass = getattr(module, klass, None) if fake_klass is None: return DataObject(obj_name) else: return fake_klass() class SharesInfo(DataObject): def __init__(self): super(SharesInfo, self).__init__() self.level = None self.shares = None class VirtualEthernetCardResourceAllocation(DataObject): def __init__(self): super(VirtualEthernetCardResourceAllocation, self).__init__() self.share = SharesInfo() class VirtualE1000(DataObject): def __init__(self): super(VirtualE1000, self).__init__() self.resourceAllocation = VirtualEthernetCardResourceAllocation() class FakeService(DataObject): """Fake service class.""" def Logout(self, session_manager): pass def FindExtension(self, extension_manager, key): return [] class FakeClient(DataObject): """Fake client class.""" def __init__(self): """Creates a namespace object.""" self.service = FakeService() class FakeSession(object): """Fake Session Class.""" def __init__(self): self.vim = FakeVim() def _call_method(self, module, method, *args, **kwargs): raise NotImplementedError() def _wait_for_task(self, task_ref): raise NotImplementedError() class FakeObjectRetrievalSession(FakeSession): """A session for faking object retrieval tasks. _call_method() returns a given set of objects sequentially, regardless of the method called. """ def __init__(self, *ret): super(FakeObjectRetrievalSession, self).__init__() self.ret = ret self.ind = 0 def _call_method(self, module, method, *args, **kwargs): if (method == 'continue_retrieval' or method == 'cancel_retrieval'): return # return fake objects in a circular manner self.ind = (self.ind + 1) % len(self.ret) return self.ret[self.ind - 1] def get_fake_vim_object(vmware_api_session): key = vmware_api_session.__repr__() if key not in _vim_map: _vim_map[key] = FakeVim() return _vim_map[key] class FakeVim(object): """Fake VIM Class.""" def __init__(self, protocol="https", host="localhost", trace=None): """Initializes the suds client object, sets the service content contents and the cookies for the session. """ self._session = None self.client = FakeClient() self.client.factory = FakeFactory() transport = DataObject() transport.cookiejar = "Fake-CookieJar" options = DataObject() options.transport = transport self.client.options = options service_content = self.client.factory.create('ns0:ServiceContent') service_content.propertyCollector = "PropCollector" service_content.virtualDiskManager = "VirtualDiskManager" service_content.fileManager = "FileManager" service_content.rootFolder = "RootFolder" service_content.sessionManager = "SessionManager" service_content.extensionManager = "ExtensionManager" service_content.searchIndex = "SearchIndex" about_info = DataObject() about_info.name = "VMware vCenter Server" about_info.version = constants.MIN_VC_VERSION about_info.instanceUuid = _FAKE_VCENTER_UUID service_content.about = about_info self._service_content = service_content @property def service_content(self): return self._service_content def __repr__(self): return "Fake VIM Object" def __str__(self): return "Fake VIM Object" def _login(self): """Logs in and sets the session object in the db.""" self._session = uuidutils.generate_uuid() session = DataObject() session.key = self._session session.userName = 'sessionUserName' _db_content['session'][self._session] = session return session def _terminate_session(self, *args, **kwargs): """Terminates a session.""" s = kwargs.get("sessionId")[0] if s not in _db_content['session']: return del _db_content['session'][s] def _check_session(self): """Checks if the session is active.""" if (self._session is None or self._session not in _db_content['session']): LOG.debug("Session is faulty") raise vexc.VimFaultException([vexc.NOT_AUTHENTICATED], "Session Invalid") def _session_is_active(self, *args, **kwargs): try: self._check_session() return True except Exception: return False def _create_vm(self, method, *args, **kwargs): """Creates and registers a VM object with the Host System.""" config_spec = kwargs.get("config") if config_spec.guestId not in constants.VALID_OS_TYPES: ex = vexc.VMwareDriverException('A specified parameter was ' 'not correct.') return create_task(method, "error", error_fault=ex).obj pool = kwargs.get('pool') version = getattr(config_spec, 'version', None) devices = [] for device_change in config_spec.deviceChange: if device_change.operation == 'add': devices.append(device_change.device) vm_ref = create_vm(config_spec.instanceUuid, config_spec.name, config_spec.numCPUs, config_spec.memoryMB, devices, config_spec.files.vmPathName, config_spec.extraConfig, pool, version=version) task_mdo = create_task(method, "success", result=vm_ref) return task_mdo.obj def _create_folder(self, method, *args, **kwargs): return create_folder() def _reconfig_vm(self, method, *args, **kwargs): """Reconfigures a VM and sets the properties supplied.""" vm_ref = args[0] vm_mdo = _get_vm_mdo(vm_ref) vm_mdo.reconfig(self.client.factory, kwargs.get("spec")) task_mdo = create_task(method, "success") return task_mdo.obj def _rename(self, method, *args, **kwargs): vm_ref = args[0] vm_mdo = _get_vm_mdo(vm_ref) vm_mdo.set('name', kwargs['newName']) task_mdo = create_task(method, "success") return task_mdo.obj def _create_copy_disk(self, method, vmdk_file_path): """Creates/copies a vmdk file object in the datastore.""" # We need to add/create both .vmdk and .-flat.vmdk files flat_vmdk_file_path = vmdk_file_path.replace(".vmdk", "-flat.vmdk") _add_file(vmdk_file_path) _add_file(flat_vmdk_file_path) task_mdo = create_task(method, "success") return task_mdo.obj def _extend_disk(self, method, size): """Extend disk size when create an instance.""" task_mdo = create_task(method, "success") return task_mdo.obj def _snapshot_vm(self, method): """Snapshots a VM. Here we do nothing for faking sake.""" task_mdo = create_task(method, "success") return task_mdo.obj def _find_all_by_uuid(self, *args, **kwargs): uuid = kwargs.get('uuid') vm_refs = [] for vm_ref in _db_content.get("VirtualMachine"): vm = _get_object(vm_ref) vm_uuid = vm.get("summary.config.instanceUuid") if vm_uuid == uuid: vm_refs.append(vm_ref) return vm_refs def _delete_snapshot(self, method, *args, **kwargs): """Deletes a VM snapshot. Here we do nothing for faking sake.""" task_mdo = create_task(method, "success") return task_mdo.obj def _delete_file(self, method, *args, **kwargs): """Deletes a file from the datastore.""" _remove_file(kwargs.get("name")) task_mdo = create_task(method, "success") return task_mdo.obj def _just_return(self): """Fakes a return.""" return def _just_return_task(self, method): """Fakes a task return.""" task_mdo = create_task(method, "success") return task_mdo.obj def _clone_vm(self, method, *args, **kwargs): """Fakes a VM clone.""" """Creates and registers a VM object with the Host System.""" source_vmref = args[0] source_vm_mdo = _get_vm_mdo(source_vmref) clone_spec = kwargs.get("spec") vm_dict = { "name": kwargs.get("name"), "ds": source_vm_mdo.get("datastore"), "runtime_host": source_vm_mdo.get("runtime.host"), "powerstate": source_vm_mdo.get("runtime.powerState"), "vmPathName": source_vm_mdo.get("config.files.vmPathName"), "numCpu": source_vm_mdo.get("summary.config.numCpu"), "mem": source_vm_mdo.get("summary.config.memorySizeMB"), "extra_config": source_vm_mdo.get("config.extraConfig").OptionValue, "virtual_device": source_vm_mdo.get("config.hardware.device").VirtualDevice, "instanceUuid": source_vm_mdo.get("summary.config.instanceUuid")} if hasattr(clone_spec, 'config'): # Impose the config changes specified in the config property if (hasattr(clone_spec.config, 'instanceUuid') and clone_spec.config.instanceUuid is not None): vm_dict["instanceUuid"] = clone_spec.config.instanceUuid if hasattr(clone_spec.config, 'extraConfig'): extraConfigs = _merge_extraconfig(vm_dict["extra_config"], clone_spec.config.extraConfig) vm_dict["extra_config"] = extraConfigs virtual_machine = VirtualMachine(**vm_dict) _create_object("VirtualMachine", virtual_machine) task_mdo = create_task(method, "success") return task_mdo.obj def _unregister_vm(self, method, *args, **kwargs): """Unregisters a VM from the Host System.""" vm_ref = args[0] _get_vm_mdo(vm_ref) del _db_content["VirtualMachine"][vm_ref] task_mdo = create_task(method, "success") return task_mdo.obj def _search_ds(self, method, *args, **kwargs): """Searches the datastore for a file.""" # TODO(garyk): add support for spec parameter ds_path = kwargs.get("datastorePath") matched_files = set() # Check if we are searching for a file or a directory directory = False dname = '%s/' % ds_path for file in _db_content.get("files"): if file == dname: directory = True break # A directory search implies that we must return all # subdirectories if directory: for file in _db_content.get("files"): if file.find(ds_path) != -1: if not file.endswith(ds_path): path = file.replace(dname, '', 1).split('/') if path: matched_files.add(path[0]) if not matched_files: matched_files.add('/') else: for file in _db_content.get("files"): if file.find(ds_path) != -1: matched_files.add(ds_path) if matched_files: result = DataObject() result.path = ds_path result.file = [] for file in matched_files: matched = DataObject() matched.path = file matched.fileSize = 1024 result.file.append(matched) task_mdo = create_task(method, "success", result=result) else: task_mdo = create_task(method, "error", error_fault=FileNotFound()) return task_mdo.obj def _move_file(self, method, *args, **kwargs): source = kwargs.get('sourceName') destination = kwargs.get('destinationName') new_files = [] if source != destination: for file in _db_content.get("files"): if source in file: new_file = file.replace(source, destination) new_files.append(new_file) # if source is not a file then the children will also # be deleted _remove_file(source) for file in new_files: _add_file(file) task_mdo = create_task(method, "success") return task_mdo.obj def _make_dir(self, method, *args, **kwargs): """Creates a directory in the datastore.""" ds_path = kwargs.get("name") if get_file(ds_path): raise vexc.FileAlreadyExistsException() _db_content["files"].append('%s/' % ds_path) def _set_power_state(self, method, vm_ref, pwr_state="poweredOn"): """Sets power state for the VM.""" if _db_content.get("VirtualMachine", None) is None: raise exception.NotFound("No Virtual Machine has been " "registered yet") if vm_ref not in _db_content.get("VirtualMachine"): raise exception.NotFound("Virtual Machine with ref %s is not " "there" % vm_ref) vm_mdo = _db_content.get("VirtualMachine").get(vm_ref) vm_mdo.set("runtime.powerState", pwr_state) task_mdo = create_task(method, "success") return task_mdo.obj def _retrieve_properties_continue(self, method, *args, **kwargs): """Continues the retrieve.""" return FakeRetrieveResult() def _retrieve_properties_cancel(self, method, *args, **kwargs): """Cancels the retrieve.""" return None def _retrieve_properties(self, method, *args, **kwargs): """Retrieves properties based on the type.""" spec_set = kwargs.get("specSet")[0] spec_type = spec_set.propSet[0].type properties = spec_set.propSet[0].pathSet if not isinstance(properties, list): properties = properties.split() objs = spec_set.objectSet lst_ret_objs = FakeRetrieveResult() for obj in objs: try: obj_ref = obj.obj if obj_ref == "RootFolder": # This means that we are retrieving props for all managed # data objects of the specified 'type' in the entire # inventory. This gets invoked by vim_util.get_objects. mdo_refs = _db_content[spec_type] elif obj_ref.type != spec_type: # This means that we are retrieving props for the managed # data objects in the parent object's 'path' property. # This gets invoked by vim_util.get_inner_objects # eg. obj_ref = <ManagedObjectReference of a cluster> # type = 'DataStore' # path = 'datastore' # the above will retrieve all datastores in the given # cluster. parent_mdo = _db_content[obj_ref.type][obj_ref] path = obj.selectSet[0].path mdo_refs = parent_mdo.get(path).ManagedObjectReference else: # This means that we are retrieving props of the given # managed data object. This gets invoked by # vim_util.get_properties_for_a_collection_of_objects. mdo_refs = [obj_ref] for mdo_ref in mdo_refs: mdo = _db_content[spec_type][mdo_ref] prop_list = [] for prop_name in properties: prop = Prop(prop_name, mdo.get(prop_name)) prop_list.append(prop) obj_content = ObjectContent(mdo.obj, prop_list) lst_ret_objs.add_object(obj_content) except Exception: LOG.exception("_retrieve_properties error") continue return lst_ret_objs def _add_port_group(self, method, *args, **kwargs): """Adds a port group to the host system.""" _host_sk = list(_db_content["HostSystem"].keys())[0] host_mdo = _db_content["HostSystem"][_host_sk] host_mdo._add_port_group(kwargs.get("portgrp")) def _add_iscsi_send_tgt(self, method, *args, **kwargs): """Adds a iscsi send target to the hba.""" send_targets = kwargs.get('targets') host_storage_sys = _get_objects('HostStorageSystem').objects[0] iscsi_hba_array = host_storage_sys.get('storageDeviceInfo' '.hostBusAdapter') iscsi_hba = iscsi_hba_array.HostHostBusAdapter[0] if hasattr(iscsi_hba, 'configuredSendTarget'): iscsi_hba.configuredSendTarget.extend(send_targets) else: iscsi_hba.configuredSendTarget = send_targets def __getattr__(self, attr_name): if attr_name != "Login": self._check_session() if attr_name == "Login": return lambda *args, **kwargs: self._login() elif attr_name == "SessionIsActive": return lambda *args, **kwargs: self._session_is_active( *args, **kwargs) elif attr_name == "TerminateSession": return lambda *args, **kwargs: self._terminate_session( *args, **kwargs) elif attr_name == "CreateVM_Task": return lambda *args, **kwargs: self._create_vm(attr_name, *args, **kwargs) elif attr_name == "CreateFolder": return lambda *args, **kwargs: self._create_folder(attr_name, *args, **kwargs) elif attr_name == "ReconfigVM_Task": return lambda *args, **kwargs: self._reconfig_vm(attr_name, *args, **kwargs) elif attr_name == "Rename_Task": return lambda *args, **kwargs: self._rename(attr_name, *args, **kwargs) elif attr_name == "CreateVirtualDisk_Task": return lambda *args, **kwargs: self._create_copy_disk(attr_name, kwargs.get("name")) elif attr_name == "DeleteDatastoreFile_Task": return lambda *args, **kwargs: self._delete_file(attr_name, *args, **kwargs) elif attr_name == "PowerOnVM_Task": return lambda *args, **kwargs: self._set_power_state(attr_name, args[0], "poweredOn") elif attr_name == "PowerOffVM_Task": return lambda *args, **kwargs: self._set_power_state(attr_name, args[0], "poweredOff") elif attr_name == "RebootGuest": return lambda *args, **kwargs: self._just_return() elif attr_name == "ResetVM_Task": return lambda *args, **kwargs: self._set_power_state(attr_name, args[0], "poweredOn") elif attr_name == "SuspendVM_Task": return lambda *args, **kwargs: self._set_power_state(attr_name, args[0], "suspended") elif attr_name == "CreateSnapshot_Task": return lambda *args, **kwargs: self._snapshot_vm(attr_name) elif attr_name == "RemoveSnapshot_Task": return lambda *args, **kwargs: self._delete_snapshot(attr_name, *args, **kwargs) elif attr_name == "CopyVirtualDisk_Task": return lambda *args, **kwargs: self._create_copy_disk(attr_name, kwargs.get("destName")) elif attr_name == "ExtendVirtualDisk_Task": return lambda *args, **kwargs: self._extend_disk(attr_name, kwargs.get("size")) elif attr_name == "Destroy_Task": return lambda *args, **kwargs: self._unregister_vm(attr_name, *args, **kwargs) elif attr_name == "UnregisterVM": return lambda *args, **kwargs: self._unregister_vm(attr_name, *args, **kwargs) elif attr_name == "CloneVM_Task": return lambda *args, **kwargs: self._clone_vm(attr_name, *args, **kwargs) elif attr_name == "FindAllByUuid": return lambda *args, **kwargs: self._find_all_by_uuid(attr_name, *args, **kwargs) elif attr_name == "SearchDatastore_Task": return lambda *args, **kwargs: self._search_ds(attr_name, *args, **kwargs) elif attr_name == "MoveDatastoreFile_Task": return lambda *args, **kwargs: self._move_file(attr_name, *args, **kwargs) elif attr_name == "MakeDirectory": return lambda *args, **kwargs: self._make_dir(attr_name, *args, **kwargs) elif attr_name == "RetrievePropertiesEx": return lambda *args, **kwargs: self._retrieve_properties( attr_name, *args, **kwargs) elif attr_name == "ContinueRetrievePropertiesEx": return lambda *args, **kwargs: self._retrieve_properties_continue( attr_name, *args, **kwargs) elif attr_name == "CancelRetrievePropertiesEx": return lambda *args, **kwargs: self._retrieve_properties_cancel( attr_name, *args, **kwargs) elif attr_name == "AddPortGroup": return lambda *args, **kwargs: self._add_port_group(attr_name, *args, **kwargs) elif attr_name in ("RebootHost_Task", "ShutdownHost_Task", "PowerUpHostFromStandBy_Task", "EnterMaintenanceMode_Task", "ExitMaintenanceMode_Task", "RescanHba"): return lambda *args, **kwargs: self._just_return_task(attr_name) elif attr_name == "AddInternetScsiSendTargets": return lambda *args, **kwargs: self._add_iscsi_send_tgt(attr_name, *args, **kwargs)
# Copyright 2008-2015 Nokia Solutions and Networks # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from robot.api import logger from robot.utils import (is_dict_like, is_string, is_truthy, plural_or_not, seq2str, seq2str2, type_name, unic, Matcher) from robot.utils.asserts import assert_equals from robot.version import get_version class NotSet(object): def __repr__(self): return "" NOT_SET = NotSet() class _List(object): def convert_to_list(self, item): """Converts the given ``item`` to a Python ``list`` type. Mainly useful for converting tuples and other iterable to lists. Use `Create List` from the BuiltIn library for constructing new lists. """ return list(item) def append_to_list(self, list_, *values): """Adds ``values`` to the end of ``list``. Example: | Append To List | ${L1} | xxx | | | | Append To List | ${L2} | x | y | z | => | ${L1} = ['a', 'xxx'] | ${L2} = ['a', 'b', 'x', 'y', 'z'] """ for value in values: list_.append(value) def insert_into_list(self, list_, index, value): """Inserts ``value`` into ``list`` to the position specified with ``index``. Index ``0`` adds the value into the first position, ``1`` to the second, and so on. Inserting from right works with negative indices so that ``-1`` is the second last position, ``-2`` third last, and so on. Use `Append To List` to add items to the end of the list. If the absolute value of the index is greater than the length of the list, the value is added at the end (positive index) or the beginning (negative index). An index can be given either as an integer or a string that can be converted to an integer. Example: | Insert Into List | ${L1} | 0 | xxx | | Insert Into List | ${L2} | ${-1} | xxx | => | ${L1} = ['xxx', 'a'] | ${L2} = ['a', 'xxx', 'b'] """ list_.insert(self._index_to_int(index), value) def combine_lists(self, *lists): """Combines the given ``lists`` together and returns the result. The given lists are not altered by this keyword. Example: | ${x} = | Combine List | ${L1} | ${L2} | | | ${y} = | Combine List | ${L1} | ${L2} | ${L1} | => | ${x} = ['a', 'a', 'b'] | ${y} = ['a', 'a', 'b', 'a'] | ${L1} and ${L2} are not changed. """ ret = [] for item in lists: ret.extend(item) return ret def set_list_value(self, list_, index, value): """Sets the value of ``list`` specified by ``index`` to the given ``value``. Index ``0`` means the first position, ``1`` the second and so on. Similarly, ``-1`` is the last position, ``-2`` second last, and so on. Using an index that does not exist on the list causes an error. The index can be either an integer or a string that can be converted to an integer. Example: | Set List Value | ${L3} | 1 | xxx | | Set List Value | ${L3} | -1 | yyy | => | ${L3} = ['a', 'xxx', 'yyy'] """ try: list_[self._index_to_int(index)] = value except IndexError: self._index_error(list_, index) def remove_values_from_list(self, list_, *values): """Removes all occurrences of given ``values`` from ``list``. It is not an error if a value does not exist in the list at all. Example: | Remove Values From List | ${L4} | a | c | e | f | => | ${L4} = ['b', 'd'] """ for value in values: while value in list_: list_.remove(value) def remove_from_list(self, list_, index): """Removes and returns the value specified with an ``index`` from ``list``. Index ``0`` means the first position, ``1`` the second and so on. Similarly, ``-1`` is the last position, ``-2`` the second last, and so on. Using an index that does not exist on the list causes an error. The index can be either an integer or a string that can be converted to an integer. Example: | ${x} = | Remove From List | ${L2} | 0 | => | ${x} = 'a' | ${L2} = ['b'] """ try: return list_.pop(self._index_to_int(index)) except IndexError: self._index_error(list_, index) def remove_duplicates(self, list_): """Returns a list without duplicates based on the given ``list``. Creates and returns a new list that contains all items in the given list so that one item can appear only once. Order of the items in the new list is the same as in the original except for missing duplicates. Number of the removed duplicates is logged. New in Robot Framework 2.7.5. """ ret = [] for item in list_: if item not in ret: ret.append(item) removed = len(list_) - len(ret) logger.info('%d duplicate%s removed.' % (removed, plural_or_not(removed))) return ret def get_from_list(self, list_, index): """Returns the value specified with an ``index`` from ``list``. The given list is never altered by this keyword. Index ``0`` means the first position, ``1`` the second, and so on. Similarly, ``-1`` is the last position, ``-2`` the second last, and so on. Using an index that does not exist on the list causes an error. The index can be either an integer or a string that can be converted to an integer. Examples (including Python equivalents in comments): | ${x} = | Get From List | ${L5} | 0 | # L5[0] | | ${y} = | Get From List | ${L5} | -2 | # L5[-2] | => | ${x} = 'a' | ${y} = 'd' | ${L5} is not changed """ try: return list_[self._index_to_int(index)] except IndexError: self._index_error(list_, index) def get_slice_from_list(self, list_, start=0, end=None): """Returns a slice of the given list between ``start`` and ``end`` indexes. The given list is never altered by this keyword. If both ``start`` and ``end`` are given, a sublist containing values from ``start`` to ``end`` is returned. This is the same as ``list[start:end]`` in Python. To get all items from the beginning, use 0 as the start value, and to get all items until and including the end, use ``None`` (default) as the end value. Using ``start`` or ``end`` not found on the list is the same as using the largest (or smallest) available index. Examples (incl. Python equivalents in comments): | ${x} = | Get Slice From List | ${L5} | 2 | 4 | # L5[2:4] | | ${y} = | Get Slice From List | ${L5} | 1 | | # L5[1:None] | | ${z} = | Get Slice From List | ${L5} | | -2 | # L5[0:-2] | => | ${x} = ['c', 'd'] | ${y} = ['b', 'c', 'd', 'e'] | ${z} = ['a', 'b', 'c'] | ${L5} is not changed """ start = self._index_to_int(start, True) if end is not None: end = self._index_to_int(end) return list_[start:end] def count_values_in_list(self, list_, value, start=0, end=None): """Returns the number of occurrences of the given ``value`` in ``list``. The search can be narrowed to the selected sublist by the ``start`` and ``end`` indexes having the same semantics as with `Get Slice From List` keyword. The given list is never altered by this keyword. Example: | ${x} = | Count Values In List | ${L3} | b | => | ${x} = 1 | ${L3} is not changed """ return self.get_slice_from_list(list_, start, end).count(value) def get_index_from_list(self, list_, value, start=0, end=None): """Returns the index of the first occurrence of the ``value`` on the list. The search can be narrowed to the selected sublist by the ``start`` and ``end`` indexes having the same semantics as with `Get Slice From List` keyword. In case the value is not found, -1 is returned. The given list is never altered by this keyword. Example: | ${x} = | Get Index From List | ${L5} | d | => | ${x} = 3 | ${L5} is not changed """ if start == '': start = 0 list_ = self.get_slice_from_list(list_, start, end) try: return int(start) + list_.index(value) except ValueError: return -1 def copy_list(self, list_): """Returns a copy of the given list. The given list is never altered by this keyword. """ return list_[:] def reverse_list(self, list_): """Reverses the given list in place. Note that the given list is changed and nothing is returned. Use `Copy List` first, if you need to keep also the original order. | Reverse List | ${L3} | => | ${L3} = ['c', 'b', 'a'] """ list_.reverse() def sort_list(self, list_): """Sorts the given list in place. The strings are sorted alphabetically and the numbers numerically. Note that the given list is changed and nothing is returned. Use `Copy List` first, if you need to keep also the original order. ${L} = [2,1,'a','c','b'] | Sort List | ${L} | => | ${L} = [1, 2, 'a', 'b', 'c'] """ list_.sort() def list_should_contain_value(self, list_, value, msg=None): """Fails if the ``value`` is not found from ``list``. If the keyword fails, the default error messages is ``<list> does not contain value '<value>'``. A custom message can be given using the ``msg`` argument. """ default = "%s does not contain value '%s'." % (seq2str2(list_), value) _verify_condition(value in list_, default, msg) def list_should_not_contain_value(self, list_, value, msg=None): """Fails if the ``value`` is not found from ``list``. See `List Should Contain Value` for an explanation of ``msg``. """ default = "%s contains value '%s'." % (seq2str2(list_), value) _verify_condition(value not in list_, default, msg) def list_should_not_contain_duplicates(self, list_, msg=None): """Fails if any element in the ``list`` is found from it more than once. The default error message lists all the elements that were found from the ``list`` multiple times, but it can be overridden by giving a custom ``msg``. All multiple times found items and their counts are also logged. This keyword works with all iterables that can be converted to a list. The original iterable is never altered. """ if not isinstance(list_, list): list_ = list(list_) dupes = [] for item in list_: if item not in dupes: count = list_.count(item) if count > 1: logger.info("'%s' found %d times." % (item, count)) dupes.append(item) if dupes: raise AssertionError(msg or '%s found multiple times.' % seq2str(dupes)) def lists_should_be_equal(self, list1, list2, msg=None, values=True, names=None): """Fails if given lists are unequal. The keyword first verifies that the lists have equal lengths, and then it checks are all their values equal. Possible differences between the values are listed in the default error message like ``Index 4: ABC != Abc``. The types of the lists do not need to be the same. For example, Python tuple and list with same content are considered equal. The error message can be configured using ``msg`` and ``values`` arguments: - If ``msg`` is not given, the default error message is used. - If ``msg`` is given and ``values`` gets a value considered true (see `Boolean arguments`), the error message starts with the given ``msg`` followed by a newline and the default message. - If ``msg`` is given and ``values`` is not given a true value, the error message is just the given ``msg``. Optional ``names`` argument can be used for naming the indices shown in the default error message. It can either be a list of names matching the indices in the lists or a dictionary where keys are indices that need to be named. It is not necessary to name all of the indices. When using a dictionary, keys can be either integers or strings that can be converted to integers. Examples: | ${names} = | Create List | First Name | Family Name | Email | | Lists Should Be Equal | ${people1} | ${people2} | names=${names} | | ${names} = | Create Dictionary | 0=First Name | 2=Email | | Lists Should Be Equal | ${people1} | ${people2} | names=${names} | If the items in index 2 would differ in the above examples, the error message would contain a row like ``Index 2 (email): [email protected] != [email protected]``. """ len1 = len(list1) len2 = len(list2) default = 'Lengths are different: %d != %d' % (len1, len2) _verify_condition(len1 == len2, default, msg, values) names = self._get_list_index_name_mapping(names, len1) diffs = list(self._yield_list_diffs(list1, list2, names)) default = 'Lists are different:\n' + '\n'.join(diffs) _verify_condition(diffs == [], default, msg, values) def _get_list_index_name_mapping(self, names, list_length): if not names: return {} if is_dict_like(names): return dict((int(index), names[index]) for index in names) return dict(zip(range(list_length), names)) def _yield_list_diffs(self, list1, list2, names): for index, (item1, item2) in enumerate(zip(list1, list2)): name = ' (%s)' % names[index] if index in names else '' try: assert_equals(item1, item2, msg='Index %d%s' % (index, name)) except AssertionError as err: yield unic(err) def list_should_contain_sub_list(self, list1, list2, msg=None, values=True): """Fails if not all of the elements in ``list2`` are found in ``list1``. The order of values and the number of values are not taken into account. See `Lists Should Be Equal` for more information about configuring the error message with ``msg`` and ``values`` arguments. """ diffs = ', '.join(unic(item) for item in list2 if item not in list1) default = 'Following values were not found from first list: ' + diffs _verify_condition(not diffs, default, msg, values) def log_list(self, list_, level='INFO'): """Logs the length and contents of the ``list`` using given ``level``. Valid levels are TRACE, DEBUG, INFO (default), and WARN. If you only want to the length, use keyword `Get Length` from the BuiltIn library. """ logger.write('\n'.join(self._log_list(list_)), level) def _log_list(self, list_): if not list_: yield 'List is empty.' elif len(list_) == 1: yield 'List has one item:\n%s' % list_[0] else: yield 'List length is %d and it contains following items:' % len(list_) for index, item in enumerate(list_): yield '%s: %s' % (index, item) def _index_to_int(self, index, empty_to_zero=False): if empty_to_zero and not index: return 0 try: return int(index) except ValueError: raise ValueError("Cannot convert index '%s' to an integer." % index) def _index_error(self, list_, index): raise IndexError('Given index %s is out of the range 0-%d.' % (index, len(list_)-1)) class _Dictionary(object): def convert_to_dictionary(self, item): """Converts the given ``item`` to a Python ``dict`` type. Mainly useful for converting other mappings to dictionaries. Use `Create Dictionary` from the BuiltIn library for constructing new dictionaries. New in Robot Framework 2.9. """ return dict(item) def set_to_dictionary(self, dictionary, *key_value_pairs, **items): """Adds the given ``key_value_pairs`` and ``items`` to the ``dictionary``. Giving items as ``key_value_pairs`` means giving keys and values as separate arguments: | Set To Dictionary | ${D1} | key | value | second | ${2} | => | ${D1} = {'a': 1, 'key': 'value', 'second': 2} Starting from Robot Framework 2.8.1, items can also be given as kwargs using ``key=value`` syntax: | Set To Dictionary | ${D1} | key=value | second=${2} | The latter syntax is typically more convenient to use, but it has a limitation that keys must be strings. If given keys already exist in the dictionary, their values are updated. """ if len(key_value_pairs) % 2 != 0: raise ValueError("Adding data to a dictionary failed. There " "should be even number of key-value-pairs.") for i in range(0, len(key_value_pairs), 2): dictionary[key_value_pairs[i]] = key_value_pairs[i+1] dictionary.update(items) return dictionary def remove_from_dictionary(self, dictionary, *keys): """Removes the given ``keys`` from the ``dictionary``. If the given ``key`` cannot be found from the ``dictionary``, it is ignored. Example: | Remove From Dictionary | ${D3} | b | x | y | => | ${D3} = {'a': 1, 'c': 3} """ for key in keys: if key in dictionary: value = dictionary.pop(key) logger.info("Removed item with key '%s' and value '%s'." % (key, value)) else: logger.info("Key '%s' not found." % key) def pop_from_dictionary(self, dictionary, key, default=NOT_SET): """Pops the given ``key`` from the ``dictionary`` and returns its value. By default the keyword fails if the given ``key`` cannot be found from the ``dictionary``. If optional ``default`` value is given, it will be returned instead of failing. Example: | ${val}= | Pop From Dictionary | ${D3} | b | => | ${val} = 2 | ${D3} = {'a': 1, 'c': 3} New in Robot Framework 2.9.2. """ if default is NOT_SET: self.dictionary_should_contain_key(dictionary, key) return dictionary.pop(key) return dictionary.pop(key, default) def keep_in_dictionary(self, dictionary, *keys): """Keeps the given ``keys`` in the ``dictionary`` and removes all other. If the given ``key`` cannot be found from the ``dictionary``, it is ignored. Example: | Keep In Dictionary | ${D5} | b | x | d | => | ${D5} = {'b': 2, 'd': 4} """ remove_keys = [k for k in dictionary if k not in keys] self.remove_from_dictionary(dictionary, *remove_keys) def copy_dictionary(self, dictionary): """Returns a copy of the given dictionary. The given dictionary is never altered by this keyword. """ return dictionary.copy() def get_dictionary_keys(self, dictionary): """Returns keys of the given ``dictionary``. If keys are sortable, they are returned in sorted order. The given ``dictionary`` is never altered by this keyword. Example: | ${keys} = | Get Dictionary Keys | ${D3} | => | ${keys} = ['a', 'b', 'c'] """ # TODO: Possibility to disable sorting. Can be handy with OrderedDicts. keys = dictionary.keys() try: return sorted(keys) except TypeError: return list(keys) def get_dictionary_values(self, dictionary): """Returns values of the given dictionary. Values are returned sorted according to keys. The given dictionary is never altered by this keyword. Example: | ${values} = | Get Dictionary Values | ${D3} | => | ${values} = [1, 2, 3] """ return [dictionary[k] for k in self.get_dictionary_keys(dictionary)] def get_dictionary_items(self, dictionary): """Returns items of the given ``dictionary``. Items are returned sorted by keys. The given ``dictionary`` is not altered by this keyword. Example: | ${items} = | Get Dictionary Items | ${D3} | => | ${items} = ['a', 1, 'b', 2, 'c', 3] """ ret = [] for key in self.get_dictionary_keys(dictionary): ret.extend((key, dictionary[key])) return ret def get_from_dictionary(self, dictionary, key): """Returns a value from the given ``dictionary`` based on the given ``key``. If the given ``key`` cannot be found from the ``dictionary``, this keyword fails. The given dictionary is never altered by this keyword. Example: | ${value} = | Get From Dictionary | ${D3} | b | => | ${value} = 2 """ try: return dictionary[key] except KeyError: raise RuntimeError("Dictionary does not contain key '%s'." % key) def dictionary_should_contain_key(self, dictionary, key, msg=None): """Fails if ``key`` is not found from ``dictionary``. See `List Should Contain Value` for an explanation of ``msg``. The given dictionary is never altered by this keyword. """ default = "Dictionary does not contain key '%s'." % key _verify_condition(key in dictionary, default, msg) def dictionary_should_not_contain_key(self, dictionary, key, msg=None): """Fails if ``key`` is found from ``dictionary``. See `List Should Contain Value` for an explanation of ``msg``. The given dictionary is never altered by this keyword. """ default = "Dictionary contains key '%s'." % key _verify_condition(key not in dictionary, default, msg) def dictionary_should_contain_item(self, dictionary, key, value, msg=None): """An item of ``key``/``value`` must be found in a `dictionary`. Value is converted to unicode for comparison. See `Lists Should Be Equal` for an explanation of ``msg``. The given dictionary is never altered by this keyword. """ self.dictionary_should_contain_key(dictionary, key, msg) actual, expected = unic(dictionary[key]), unic(value) default = "Value of dictionary key '%s' does not match: %s != %s" % (key, actual, expected) _verify_condition(actual == expected, default, msg) def dictionary_should_contain_value(self, dictionary, value, msg=None): """Fails if ``value`` is not found from ``dictionary``. See `List Should Contain Value` for an explanation of ``msg``. The given dictionary is never altered by this keyword. """ default = "Dictionary does not contain value '%s'." % value _verify_condition(value in dictionary.values(), default, msg) def dictionary_should_not_contain_value(self, dictionary, value, msg=None): """Fails if ``value`` is found from ``dictionary``. See `List Should Contain Value` for an explanation of ``msg``. The given dictionary is never altered by this keyword. """ default = "Dictionary contains value '%s'." % value _verify_condition(not value in dictionary.values(), default, msg) def dictionaries_should_be_equal(self, dict1, dict2, msg=None, values=True): """Fails if the given dictionaries are not equal. First the equality of dictionaries' keys is checked and after that all the key value pairs. If there are differences between the values, those are listed in the error message. The types of the dictionaries do not need to be same. See `Lists Should Be Equal` for more information about configuring the error message with ``msg`` and ``values`` arguments. The given dictionaries are never altered by this keyword. """ keys = self._keys_should_be_equal(dict1, dict2, msg, values) self._key_values_should_be_equal(keys, dict1, dict2, msg, values) def dictionary_should_contain_sub_dictionary(self, dict1, dict2, msg=None, values=True): """Fails unless all items in ``dict2`` are found from ``dict1``. See `Lists Should Be Equal` for more information about configuring the error message with ``msg`` and ``values`` arguments. The given dictionaries are never altered by this keyword. """ keys = self.get_dictionary_keys(dict2) diffs = [unic(k) for k in keys if k not in dict1] default = "Following keys missing from first dictionary: %s" \ % ', '.join(diffs) _verify_condition(not diffs, default, msg, values) self._key_values_should_be_equal(keys, dict1, dict2, msg, values) def log_dictionary(self, dictionary, level='INFO'): """Logs the size and contents of the ``dictionary`` using given ``level``. Valid levels are TRACE, DEBUG, INFO (default), and WARN. If you only want to log the size, use keyword `Get Length` from the BuiltIn library. """ logger.write('\n'.join(self._log_dictionary(dictionary)), level) def _log_dictionary(self, dictionary): if not dictionary: yield 'Dictionary is empty.' elif len(dictionary) == 1: yield 'Dictionary has one item:' else: yield 'Dictionary size is %d and it contains following items:' % len(dictionary) for key in self.get_dictionary_keys(dictionary): yield '%s: %s' % (key, dictionary[key]) def _keys_should_be_equal(self, dict1, dict2, msg, values): keys1 = self.get_dictionary_keys(dict1) keys2 = self.get_dictionary_keys(dict2) miss1 = [unic(k) for k in keys2 if k not in dict1] miss2 = [unic(k) for k in keys1 if k not in dict2] error = [] if miss1: error += ['Following keys missing from first dictionary: %s' % ', '.join(miss1)] if miss2: error += ['Following keys missing from second dictionary: %s' % ', '.join(miss2)] _verify_condition(not error, '\n'.join(error), msg, values) return keys1 def _key_values_should_be_equal(self, keys, dict1, dict2, msg, values): diffs = list(self._yield_dict_diffs(keys, dict1, dict2)) default = 'Following keys have different values:\n' + '\n'.join(diffs) _verify_condition(not diffs, default, msg, values) def _yield_dict_diffs(self, keys, dict1, dict2): for key in keys: try: assert_equals(dict1[key], dict2[key], msg='Key %s' % (key,)) except AssertionError as err: yield unic(err) class Collections(_List, _Dictionary): """A test library providing keywords for handling lists and dictionaries. ``Collections`` is Robot Framework's standard library that provides a set of keywords for handling Python lists and dictionaries. This library has keywords, for example, for modifying and getting values from lists and dictionaries (e.g. `Append To List`, `Get From Dictionary`) and for verifying their contents (e.g. `Lists Should Be Equal`, `Dictionary Should Contain Value`). = Related keywords in BuiltIn = Following keywords in the BuiltIn library can also be used with lists and dictionaries: | = Keyword Name = | = Applicable With = | = Comment = | | `Create List` | lists | | `Create Dictionary` | dicts | Was in Collections until RF 2.9. | | `Get Length` | both | | `Length Should Be` | both | | `Should Be Empty` | both | | `Should Not Be Empty` | both | | `Should Contain` | both | | `Should Not Contain` | both | | `Should Contain X Times` | lists | | `Should Not Contain X Times` | lists | | `Get Count` | lists | = Using with list-like and dictionary-like objects = List keywords that do not alter the given list can also be used with tuples, and to some extend also with other iterables. `Convert To List` can be used to convert tuples and other iterables to Python ``list`` objects. Similarly dictionary keywords can, for most parts, be used with other mappings. `Convert To Dictionary` can be used if real Python ``dict`` objects are needed. = Boolean arguments = Some keywords accept arguments that are handled as Boolean values true or false. If such an argument is given as a string, it is considered false if it is either empty or case-insensitively equal to ``false`` or ``no``. Keywords verifying something that allow dropping actual and expected values from the possible error message also consider string ``no values`` as false. Other strings are considered true regardless their value, and other argument types are tested using same [http://docs.python.org/2/library/stdtypes.html#truth-value-testing|rules as in Python]. True examples: | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=True | # Strings are generally true. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=yes | # Same as the above. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${TRUE} | # Python ``True`` is true. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${42} | # Numbers other than 0 are true. | False examples: | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=False | # String ``false`` is false. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=no | # Also string ``no`` is false. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${EMPTY} | # Empty string is false. | | `Should Contain Match` | ${list} | ${pattern} | case_insensitive=${FALSE} | # Python ``False`` is false. | | `Lists Should Be Equal` | ${x} | ${y} | Custom error | values=no values | # ``no values`` works with ``values`` argument | Note that prior to Robot Framework 2.9 some keywords considered all non-empty strings, including ``False``, to be true. = Data in examples = List related keywords use variables in format ``${Lx}`` in their examples. They mean lists with as many alphabetic characters as specified by ``x``. For example, ``${L1}`` means ``['a']`` and ``${L3}`` means ``['a', 'b', 'c']``. Dictionary keywords use similar ``${Dx}`` variables. For example, ``${D1}`` means ``{'a': 1}`` and ``${D3}`` means ``{'a': 1, 'b': 2, 'c': 3}``. """ ROBOT_LIBRARY_SCOPE = 'GLOBAL' ROBOT_LIBRARY_VERSION = get_version() def should_contain_match(self, list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False): """Fails if ``pattern`` is not found in ``list``. See `List Should Contain Value` for an explanation of ``msg``. By default, pattern matching is similar to matching files in a shell and is case-sensitive and whitespace-sensitive. In the pattern syntax, ``*`` matches to anything and ``?`` matches to any single character. You can also prepend ``glob=`` to your pattern to explicitly use this pattern matching behavior. If you prepend ``regexp=`` to your pattern, your pattern will be used according to the Python [http://docs.python.org/2/library/re.html|re module] regular expression syntax. Important note: Backslashes are an escape character, and must be escaped with another backslash (e.g. ``regexp=\\\\d{6}`` to search for ``\\d{6}``). See `BuiltIn.Should Match Regexp` for more details. If ``case_insensitive`` is given a true value (see `Boolean arguments`), the pattern matching will ignore case. If ``whitespace_insensitive`` is given a true value (see `Boolean arguments`), the pattern matching will ignore whitespace. Non-string values in lists are ignored when matching patterns. The given list is never altered by this keyword. See also ``Should Not Contain Match``. Examples: | Should Contain Match | ${list} | a* | | | # Match strings beginning with 'a'. | | Should Contain Match | ${list} | regexp=a.* | | | # Same as the above but with regexp. | | Should Contain Match | ${list} | regexp=\\\\d{6} | | | # Match strings containing six digits. | | Should Contain Match | ${list} | a* | case_insensitive=True | | # Match strings beginning with 'a' or 'A'. | | Should Contain Match | ${list} | ab* | whitespace_insensitive=yes | | # Match strings beginning with 'ab' with possible whitespace ignored. | | Should Contain Match | ${list} | ab* | whitespace_insensitive=true | case_insensitive=true | # Same as the above but also ignore case. | New in Robot Framework 2.8.6. """ matches = _get_matches_in_iterable(list, pattern, case_insensitive, whitespace_insensitive) default = "%s does not contain match for pattern '%s'." \ % (seq2str2(list), pattern) _verify_condition(matches, default, msg) def should_not_contain_match(self, list, pattern, msg=None, case_insensitive=False, whitespace_insensitive=False): """Fails if ``pattern`` is found in ``list``. Exact opposite of `Should Contain Match` keyword. See that keyword for information about arguments and usage in general. New in Robot Framework 2.8.6. """ matches = _get_matches_in_iterable(list, pattern, case_insensitive, whitespace_insensitive) default = "%s contains match for pattern '%s'." \ % (seq2str2(list), pattern) _verify_condition(not matches, default, msg) def get_matches(self, list, pattern, case_insensitive=False, whitespace_insensitive=False): """Returns a list of matches to ``pattern`` in ``list``. For more information on ``pattern``, ``case_insensitive``, and ``whitespace_insensitive``, see `Should Contain Match`. Examples: | ${matches}= | Get Matches | ${list} | a* | # ${matches} will contain any string beginning with 'a' | | ${matches}= | Get Matches | ${list} | regexp=a.* | # ${matches} will contain any string beginning with 'a' (regexp version) | | ${matches}= | Get Matches | ${list} | a* | case_insensitive=${True} | # ${matches} will contain any string beginning with 'a' or 'A' | New in Robot Framework 2.8.6. """ return _get_matches_in_iterable(list, pattern, case_insensitive, whitespace_insensitive) def get_match_count(self, list, pattern, case_insensitive=False, whitespace_insensitive=False): """Returns the count of matches to ``pattern`` in ``list``. For more information on ``pattern``, ``case_insensitive``, and ``whitespace_insensitive``, see `Should Contain Match`. Examples: | ${count}= | Get Match Count | ${list} | a* | # ${count} will be the count of strings beginning with 'a' | | ${count}= | Get Match Count | ${list} | regexp=a.* | # ${matches} will be the count of strings beginning with 'a' (regexp version) | | ${count}= | Get Match Count | ${list} | a* | case_insensitive=${True} | # ${matches} will be the count of strings beginning with 'a' or 'A' | New in Robot Framework 2.8.6. """ return len(self.get_matches(list, pattern, case_insensitive, whitespace_insensitive)) def _verify_condition(condition, default_msg, msg, values=False): if condition: return if not msg: msg = default_msg elif is_truthy(values) and str(values).upper() != 'NO VALUES': msg += '\n' + default_msg raise AssertionError(msg) def _get_matches_in_iterable(iterable, pattern, case_insensitive=False, whitespace_insensitive=False): if not is_string(pattern): raise TypeError("Pattern must be string, got '%s'." % type_name(pattern)) regexp = False if pattern.startswith('regexp='): pattern = pattern[7:] regexp = True elif pattern.startswith('glob='): pattern = pattern[5:] matcher = Matcher(pattern, caseless=is_truthy(case_insensitive), spaceless=is_truthy(whitespace_insensitive), regexp=regexp) return [string for string in iterable if is_string(string) and matcher.match(string)]
from jsonrpc import ServiceProxy import sys import string # ===== BEGIN USER SETTINGS ===== # if you do not set these you will be prompted for a password for every command rpcuser = "" rpcpass = "" # ====== END USER SETTINGS ====== if rpcpass == "": access = ServiceProxy("http://127.0.0.1:9334") else: access = ServiceProxy("http://"+rpcuser+":"+rpcpass+"@127.0.0.1:9334") cmd = sys.argv[1].lower() if cmd == "backupwallet": try: path = raw_input("Enter destination path/filename: ") print access.backupwallet(path) except: print "\n---An error occurred---\n" elif cmd == "getaccount": try: addr = raw_input("Enter a Bitcoin address: ") print access.getaccount(addr) except: print "\n---An error occurred---\n" elif cmd == "getaccountaddress": try: acct = raw_input("Enter an account name: ") print access.getaccountaddress(acct) except: print "\n---An error occurred---\n" elif cmd == "getaddressesbyaccount": try: acct = raw_input("Enter an account name: ") print access.getaddressesbyaccount(acct) except: print "\n---An error occurred---\n" elif cmd == "getbalance": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getbalance(acct, mc) except: print access.getbalance() except: print "\n---An error occurred---\n" elif cmd == "getblockbycount": try: height = raw_input("Height: ") print access.getblockbycount(height) except: print "\n---An error occurred---\n" elif cmd == "getblockcount": try: print access.getblockcount() except: print "\n---An error occurred---\n" elif cmd == "getblocknumber": try: print access.getblocknumber() except: print "\n---An error occurred---\n" elif cmd == "getconnectioncount": try: print access.getconnectioncount() except: print "\n---An error occurred---\n" elif cmd == "getdifficulty": try: print access.getdifficulty() except: print "\n---An error occurred---\n" elif cmd == "getgenerate": try: print access.getgenerate() except: print "\n---An error occurred---\n" elif cmd == "gethashespersec": try: print access.gethashespersec() except: print "\n---An error occurred---\n" elif cmd == "getinfo": try: print access.getinfo() except: print "\n---An error occurred---\n" elif cmd == "getnewaddress": try: acct = raw_input("Enter an account name: ") try: print access.getnewaddress(acct) except: print access.getnewaddress() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaccount": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaccount(acct, mc) except: print access.getreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaddress": try: addr = raw_input("Enter a Bitcoin address (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaddress(addr, mc) except: print access.getreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "gettransaction": try: txid = raw_input("Enter a transaction ID: ") print access.gettransaction(txid) except: print "\n---An error occurred---\n" elif cmd == "getwork": try: data = raw_input("Data (optional): ") try: print access.gettransaction(data) except: print access.gettransaction() except: print "\n---An error occurred---\n" elif cmd == "help": try: cmd = raw_input("Command (optional): ") try: print access.help(cmd) except: print access.help() except: print "\n---An error occurred---\n" elif cmd == "listaccounts": try: mc = raw_input("Minimum confirmations (optional): ") try: print access.listaccounts(mc) except: print access.listaccounts() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaccount": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaccount(mc, incemp) except: print access.listreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaddress": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaddress(mc, incemp) except: print access.listreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "listtransactions": try: acct = raw_input("Account (optional): ") count = raw_input("Number of transactions (optional): ") frm = raw_input("Skip (optional):") try: print access.listtransactions(acct, count, frm) except: print access.listtransactions() except: print "\n---An error occurred---\n" elif cmd == "move": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.move(frm, to, amt, mc, comment) except: print access.move(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendfrom": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendfrom(frm, to, amt, mc, comment, commentto) except: print access.sendfrom(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendmany": try: frm = raw_input("From: ") to = raw_input("To (in format address1:amount1,address2:amount2,...): ") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.sendmany(frm,to,mc,comment) except: print access.sendmany(frm,to) except: print "\n---An error occurred---\n" elif cmd == "sendtoaddress": try: to = raw_input("To (in format address1:amount1,address2:amount2,...): ") amt = raw_input("Amount:") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendtoaddress(to,amt,comment,commentto) except: print access.sendtoaddress(to,amt) except: print "\n---An error occurred---\n" elif cmd == "setaccount": try: addr = raw_input("Address: ") acct = raw_input("Account:") print access.setaccount(addr,acct) except: print "\n---An error occurred---\n" elif cmd == "setgenerate": try: gen= raw_input("Generate? (true/false): ") cpus = raw_input("Max processors/cores (-1 for unlimited, optional):") try: print access.setgenerate(gen, cpus) except: print access.setgenerate(gen) except: print "\n---An error occurred---\n" elif cmd == "settxfee": try: amt = raw_input("Amount:") print access.settxfee(amt) except: print "\n---An error occurred---\n" elif cmd == "stop": try: print access.stop() except: print "\n---An error occurred---\n" elif cmd == "validateaddress": try: addr = raw_input("Address: ") print access.validateaddress(addr) except: print "\n---An error occurred---\n" elif cmd == "walletpassphrase": try: pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60) print "\n---Wallet unlocked---\n" except: print "\n---An error occurred---\n" elif cmd == "walletpassphrasechange": try: pwd = raw_input("Enter old wallet passphrase: ") pwd2 = raw_input("Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2) print print "\n---Passphrase changed---\n" except: print print "\n---An error occurred---\n" print else: print "Command not found or not supported"
import pprint import argparse import sys import os import re import seldon_utils import zk_utils import attr_schema_utils gdata = { 'all_clients_node_path': "/all_clients", } def getOpts(args): parser = argparse.ArgumentParser(prog='seldon-cli attr', description='Seldon Cli') parser.add_argument('--action', help="the action to use", required=False, choices=['edit','show','apply']) parser.add_argument('--client-name', help="the name of the client", required=False) parser.add_argument('--json', help="the file containing attr json", required=False) parser.add_argument('args', nargs=argparse.REMAINDER) # catch rest (non-options) as args opts = parser.parse_args(args) return opts def pp(o): p = pprint.PrettyPrinter(indent=4) p.pprint(o) def is_existing_client(zkroot, client_name): client_names = os.listdir(zkroot + gdata["all_clients_node_path"]) if client_name in client_names: return True else: return False def ensure_client_has_attr(zkroot, zk_client, client_name): data_fpath = "{zkroot}{all_clients_node_path}/{client_name}/attr/_data_".format( zkroot=zkroot,all_clients_node_path=gdata["all_clients_node_path"],client_name=client_name) if not os.path.isfile(data_fpath): node_path = gdata["all_clients_node_path"]+"/"+client_name+"/attr" if zk_client.exists(node_path): write_node_value_to_file(zk_client, zkroot, node_path) else: default_attr_json = '{"types":[{"type_attrs":[{"name":"title","value_type":"string"}],"type_id":1,"type_name":"defaulttype"}]}' data = seldon_utils.json_to_dict(default_attr_json) write_data_to_file(data_fpath, data) zk_utils.node_set(zk_client, node_path, seldon_utils.dict_to_json(data)) def write_data_to_file(data_fpath, data): json = seldon_utils.dict_to_json(data, True) if isinstance(data,dict) else str(data) seldon_utils.mkdir_p(os.path.dirname(data_fpath)) f = open(data_fpath,'w') f.write(json) f.write('\n') f.close() print "Writing data to file[{data_fpath}]".format(**locals()) def show_attr(data): attr_types = data["types"] print "types:" for attr_type in attr_types: attr_type_name = attr_type["type_name"] attr_type_id = attr_type["type_id"] attr_type_attrs = attr_type["type_attrs"] print " [{attr_type_name}]".format(**locals()) print " type_id: {attr_type_id}".format(**locals()) print " type_attrs:" for attr_type_attr in attr_type_attrs: attrib_name = attr_type_attr["name"] attrib_value = attr_type_attr["value_type"] attrib_value_str = "enum["+",".join(attrib_value)+"]" if isinstance(attrib_value,list) else attrib_value print " {attrib_name}: {attrib_value_str}".format(**locals()) def write_node_value_to_file(zk_client, zkroot, node_path): node_value = zk_utils.node_get(zk_client, node_path) node_value = node_value.strip() if zk_utils.is_json_data(node_value): data = seldon_utils.json_to_dict(node_value) if node_value != None and len(node_value)>0 else "" else: data = str(node_value) data_fpath = zkroot + node_path + "/_data_" write_data_to_file(data_fpath, data) def action_show(command_data, opts): client_name = opts.client_name if client_name == None: print "Need client name to show the attr for" sys.exit(1) zkroot = command_data["zkdetails"]["zkroot"] if not is_existing_client(zkroot, client_name): print "Invalid client[{client_name}]".format(**locals()) sys.exit(1) zk_client = command_data["zkdetails"]["zk_client"] ensure_client_has_attr(zkroot, zk_client, client_name) data_fpath = zkroot + gdata["all_clients_node_path"] + "/" + client_name + "/attr/_data_" f = open(data_fpath) json = f.read() f.close() data = seldon_utils.json_to_dict(json) show_attr(data) def store_json(command_data,opts): f = open(opts.json) json = f.read() f.close() data = seldon_utils.json_to_dict(json) zk_client = command_data["zkdetails"]["zk_client"] zkroot = command_data["zkdetails"]["zkroot"] data_fpath = zkroot + gdata["all_clients_node_path"] + "/" + opts.client_name + "/attr/_data_" if data is None: print "Invalid attr json!" sys.exit(1) else: write_data_to_file(data_fpath, data) node_path = gdata["all_clients_node_path"]+"/"+opts.client_name+"/attr" zk_utils.node_set(zk_client, node_path, seldon_utils.dict_to_json(data)) def action_edit(command_data, opts): client_name = opts.client_name if client_name == None: print "Need client name to show the attr for" sys.exit(1) zkroot = command_data["zkdetails"]["zkroot"] if not is_existing_client(zkroot, client_name): print "Invalid client[{client_name}]".format(**locals()) sys.exit(1) zk_client = command_data["zkdetails"]["zk_client"] ensure_client_has_attr(zkroot, zk_client, client_name) data_fpath = zkroot + gdata["all_clients_node_path"] + "/" + client_name + "/attr/_data_" #do the edit from subprocess import call editor=seldon_utils.get_editor() call([editor, data_fpath]) f = open(data_fpath) json = f.read() f.close() data = seldon_utils.json_to_dict(json) if data is None: print "Invalid attr json!" else: write_data_to_file(data_fpath, data) node_path = gdata["all_clients_node_path"]+"/"+client_name+"/attr" zk_utils.node_set(zk_client, node_path, seldon_utils.dict_to_json(data)) show_attr(data) def action_apply(command_data, opts): client_name = opts.client_name if client_name == None: print "Need client name to show the attr for" sys.exit(1) zkroot = command_data["zkdetails"]["zkroot"] if not is_existing_client(zkroot, client_name): print "Invalid client[{client_name}]".format(**locals()) sys.exit(1) zk_client = command_data["zkdetails"]["zk_client"] ensure_client_has_attr(zkroot, zk_client, client_name) if not opts.json is None: store_json(command_data,opts) def get_db_jndi_name(): data_fpath = zkroot + gdata["all_clients_node_path"] + "/" + client_name + "/_data_" f = open(data_fpath) json = f.read() data = seldon_utils.json_to_dict(json) f.close() DB_JNDI_NAME = data["DB_JNDI_NAME"] if isinstance(data, dict) and data.has_key("DB_JNDI_NAME") else "" return DB_JNDI_NAME def get_db_info(db_name): data_fpath = zkroot + "/config/dbcp/_data_" f = open(data_fpath) json = f.read() data = seldon_utils.json_to_dict(json) f.close() db_info = None for db_info_entry in data['dbs']: if db_info_entry['name'] == db_name: db_info = db_info_entry break return db_info def get_db_settings(): dbSettings = {} dbSettings["host"]=re.search('://(.*?):(.*?),',db_info["jdbc"]).groups()[0] dbSettings["user"]=db_info["user"] dbSettings["password"]=db_info["password"] return dbSettings db_name = get_db_jndi_name() db_info = get_db_info(db_name) if db_info == None: print "Invalid db name[{db_name}]".format(**locals()) return dbSettings = get_db_settings() scheme_file_path = zkroot + gdata["all_clients_node_path"] + "/" + client_name + "/attr/_data_" clean = True attr_schema_utils.create_schema(client_name, dbSettings, scheme_file_path, clean) clean = False attr_schema_utils.create_schema(client_name, dbSettings, scheme_file_path, clean) def cmd_attr(gopts,command_data, command_args): actions = { "default" : action_show, "show" : action_show, "edit" : action_edit, "apply" : action_apply, } opts = getOpts(command_args) action = opts.action if action == None: actions["default"](command_data, opts) else: if actions.has_key(action): actions[action](command_data, opts) else: print "Invalid action[{}]".format(action)
import logging import traceback import numpy as np from eemeter.structures import EnergyTrace logger = logging.getLogger(__name__) class SplitModeledEnergyTrace(object): ''' Light wrapper around models applicable to a single trace which fits and predicts multiple models for different segments. Parameters ---------- trace : eemeter.structures.EnergyTrace Trace to be modeled. formatter : eemeter.modeling.formatter.Formatter Formatter to prep trace data for modeling. model_mapping : dict Items of this dictionary map `modeling_period_label` s to models modeling_period_set : eemeter.structures.ModelingPeriodSet The set of modeling periods over which models should be applicable. ''' def __init__(self, trace, formatter, model_mapping, modeling_period_set): self.trace = trace self.formatter = formatter self.model_mapping = model_mapping self.modeling_period_set = modeling_period_set self.fit_outputs = {} def __repr__(self): return ( "SplitModeledEnergyTrace(trace={}, formatter={}," " model_mapping={}, modeling_period_set={})" .format(self.trace, self.formatter, self.model_mapping, self.modeling_period_set) ) def fit(self, weather_source): ''' Fit all models associated with this trace. Parameters ---------- weather_source : eemeter.weather.ISDWeatherSource Weather source to use in creating covariate data. ''' for modeling_period_label, modeling_period in \ self.modeling_period_set.iter_modeling_periods(): filtered_data = self._filter_by_modeling_period( self.trace, modeling_period) filtered_trace = EnergyTrace( self.trace.interpretation, data=filtered_data, unit=self.trace.unit) model = self.model_mapping[modeling_period_label] try: input_data = self.formatter.create_input( filtered_trace, weather_source) except: logger.warn( 'For trace "{}" and modeling_period "{}", was not' ' able to format input data for {}.' .format(self.trace.interpretation, modeling_period_label, model) ) self.fit_outputs[modeling_period_label] = { "status": "FAILURE", "traceback": traceback.format_exc(), "start_date": None, "end_date": None, "rows": None, } continue else: input_description = self.formatter.describe_input(input_data) outputs = { "start_date": input_description.get('start_date'), "end_date": input_description.get('end_date'), "n_rows": input_description.get('n_rows'), } try: outputs.update(model.fit(input_data)) except: logger.warn( 'For trace "{}" and modeling_period "{}", {} was not' ' able to fit using input data: {}' .format(self.trace.interpretation, modeling_period_label, model, input_data) ) outputs.update({ "status": "FAILURE", "traceback": traceback.format_exc(), }) else: logger.info( 'Successfully fitted {} to formatted input data for' ' trace "{}" and modeling_period "{}".' .format(model, self.trace.interpretation, modeling_period_label) ) outputs.update({"status": "SUCCESS"}) self.fit_outputs[modeling_period_label] = outputs return self.fit_outputs def predict(self, modeling_period_label, demand_fixture_data, params=None): ''' Predict for any one of the modeling_periods associated with this trace. Light wrapper around :code:`model.predict(` method. Parameters ---------- modeling_period_label : str Modeling period indicating which model to use in making the prediction. demand_fixture_data : object Data (formatted by :code:`self.formatter`) over which prediction should be made. params : object, default None Fitted parameters for the model. If :code:`None`, use parameters found when :code:`.fit(` method was called. ''' outputs = self.fit_outputs[modeling_period_label] if outputs["status"] == "FAILURE": logger.warn( 'Skipping prediction for modeling_period "{}" because' ' model fit failed.'.format(modeling_period_label) ) return None if params is None: params = outputs["model_params"] return self.model_mapping[modeling_period_label].predict( demand_fixture_data, params) def compute_derivative(self, modeling_period_label, derivative_callable, **kwargs): ''' Compute a modeling derivative for this modeling period. Parameters ---------- modeling_period_label : str Label for modeling period for which derivative should be computed. derivative_callable : callable Callable which can be used as follows: .. code-block: python >>> derivative_callable(formatter, model, **kwargs) **kwargs Arbitrary keyword arguments to be passed to the derviative callable ''' outputs = self.fit_outputs[modeling_period_label] if outputs["status"] == "FAILURE": return None model = self.model_mapping[modeling_period_label] try: derivative = derivative_callable(self.formatter, model, **kwargs) except Exception: logger.exception("Derivative computation failed.") return None return derivative @staticmethod def _filter_by_modeling_period(trace, modeling_period): start = modeling_period.start_date end = modeling_period.end_date if start is None: if end is None: filtered_df = trace.data.copy() else: filtered_df = trace.data[:end].copy() else: if end is None: filtered_df = trace.data[start:].copy() else: filtered_df = trace.data[start:end].copy() # require NaN last data point as cap if filtered_df.shape[0] > 0: filtered_df.value.iloc[-1] = np.nan filtered_df.estimated.iloc[-1] = False return filtered_df
"""Support for HDMI CEC devices as media players.""" import logging from pycec.commands import CecCommand, KeyPressCommand, KeyReleaseCommand from pycec.const import ( KEY_BACKWARD, KEY_FORWARD, KEY_MUTE_TOGGLE, KEY_PAUSE, KEY_PLAY, KEY_STOP, KEY_VOLUME_DOWN, KEY_VOLUME_UP, POWER_OFF, POWER_ON, STATUS_PLAY, STATUS_STILL, STATUS_STOP, TYPE_AUDIO, TYPE_PLAYBACK, TYPE_RECORDER, TYPE_TUNER, ) from homeassistant.components.media_player import MediaPlayerEntity from homeassistant.components.media_player.const import ( DOMAIN, SUPPORT_NEXT_TRACK, SUPPORT_PAUSE, SUPPORT_PLAY_MEDIA, SUPPORT_PREVIOUS_TRACK, SUPPORT_STOP, SUPPORT_TURN_OFF, SUPPORT_TURN_ON, SUPPORT_VOLUME_MUTE, SUPPORT_VOLUME_STEP, ) from homeassistant.const import ( STATE_IDLE, STATE_OFF, STATE_ON, STATE_PAUSED, STATE_PLAYING, ) from . import ATTR_NEW, CecDevice _LOGGER = logging.getLogger(__name__) ENTITY_ID_FORMAT = DOMAIN + ".{}" def setup_platform(hass, config, add_entities, discovery_info=None): """Find and return HDMI devices as +switches.""" if ATTR_NEW in discovery_info: _LOGGER.debug("Setting up HDMI devices %s", discovery_info[ATTR_NEW]) entities = [] for device in discovery_info[ATTR_NEW]: hdmi_device = hass.data.get(device) entities.append(CecPlayerDevice(hdmi_device, hdmi_device.logical_address)) add_entities(entities, True) class CecPlayerDevice(CecDevice, MediaPlayerEntity): """Representation of a HDMI device as a Media player.""" def __init__(self, device, logical) -> None: """Initialize the HDMI device.""" CecDevice.__init__(self, device, logical) self.entity_id = f"{DOMAIN}.hdmi_{hex(self._logical_address)[2:]}" def send_keypress(self, key): """Send keypress to CEC adapter.""" _LOGGER.debug( "Sending keypress %s to device %s", hex(key), hex(self._logical_address) ) self._device.send_command(KeyPressCommand(key, dst=self._logical_address)) self._device.send_command(KeyReleaseCommand(dst=self._logical_address)) def send_playback(self, key): """Send playback status to CEC adapter.""" self._device.async_send_command(CecCommand(key, dst=self._logical_address)) def mute_volume(self, mute): """Mute volume.""" self.send_keypress(KEY_MUTE_TOGGLE) def media_previous_track(self): """Go to previous track.""" self.send_keypress(KEY_BACKWARD) def turn_on(self): """Turn device on.""" self._device.turn_on() self._state = STATE_ON def clear_playlist(self): """Clear players playlist.""" raise NotImplementedError() def turn_off(self): """Turn device off.""" self._device.turn_off() self._state = STATE_OFF def media_stop(self): """Stop playback.""" self.send_keypress(KEY_STOP) self._state = STATE_IDLE def play_media(self, media_type, media_id, **kwargs): """Not supported.""" raise NotImplementedError() def media_next_track(self): """Skip to next track.""" self.send_keypress(KEY_FORWARD) def media_seek(self, position): """Not supported.""" raise NotImplementedError() def set_volume_level(self, volume): """Set volume level, range 0..1.""" raise NotImplementedError() def media_pause(self): """Pause playback.""" self.send_keypress(KEY_PAUSE) self._state = STATE_PAUSED def select_source(self, source): """Not supported.""" raise NotImplementedError() def media_play(self): """Start playback.""" self.send_keypress(KEY_PLAY) self._state = STATE_PLAYING def volume_up(self): """Increase volume.""" _LOGGER.debug("%s: volume up", self._logical_address) self.send_keypress(KEY_VOLUME_UP) def volume_down(self): """Decrease volume.""" _LOGGER.debug("%s: volume down", self._logical_address) self.send_keypress(KEY_VOLUME_DOWN) @property def state(self) -> str: """Cache state of device.""" return self._state def update(self): """Update device status.""" device = self._device if device.power_status in [POWER_OFF, 3]: self._state = STATE_OFF elif not self.support_pause: if device.power_status in [POWER_ON, 4]: self._state = STATE_ON elif device.status == STATUS_PLAY: self._state = STATE_PLAYING elif device.status == STATUS_STOP: self._state = STATE_IDLE elif device.status == STATUS_STILL: self._state = STATE_PAUSED else: _LOGGER.warning("Unknown state: %s", device.status) @property def supported_features(self): """Flag media player features that are supported.""" if self.type_id == TYPE_RECORDER or self.type == TYPE_PLAYBACK: return ( SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_PLAY_MEDIA | SUPPORT_PAUSE | SUPPORT_STOP | SUPPORT_PREVIOUS_TRACK | SUPPORT_NEXT_TRACK ) if self.type == TYPE_TUNER: return ( SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_PLAY_MEDIA | SUPPORT_PAUSE | SUPPORT_STOP ) if self.type_id == TYPE_AUDIO: return ( SUPPORT_TURN_ON | SUPPORT_TURN_OFF | SUPPORT_VOLUME_STEP | SUPPORT_VOLUME_MUTE ) return SUPPORT_TURN_ON | SUPPORT_TURN_OFF
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Provides utilities to preprocess images for the Inception networks.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import flags import tensorflow.compat.v1 as tf from tensorflow.python.ops import control_flow_ops from tensorflow.python.ops import random_ops flags.DEFINE_float( 'cb_distortion_range', 0.1, 'Cb distortion range +/-') flags.DEFINE_float( 'cr_distortion_range', 0.1, 'Cr distortion range +/-') flags.DEFINE_boolean( 'use_fast_color_distort', True, 'apply fast color/chroma distortion if True, else apply' 'brightness/saturation/hue/contrast distortion') FLAGS = flags.FLAGS def apply_with_random_selector(x, func, num_cases): """Computes func(x, sel), with sel sampled from [0...num_cases-1]. Args: x: input Tensor. func: Python function to apply. num_cases: Python int32, number of cases to sample sel from. Returns: The result of func(x, sel), where func receives the value of the selector as a python integer, but sel is sampled dynamically. """ sel = tf.random_uniform([], maxval=num_cases, dtype=tf.int32) # Pass the real x only to one of the func calls. return control_flow_ops.merge([ func(control_flow_ops.switch(x, tf.equal(sel, case))[1], case) for case in range(num_cases)])[0] def distort_color(image, color_ordering=0, fast_mode=True, scope=None): """Distort the color of a Tensor image. Each color distortion is non-commutative and thus ordering of the color ops matters. Ideally we would randomly permute the ordering of the color ops. Rather then adding that level of complication, we select a distinct ordering of color ops for each preprocessing thread. Args: image: 3-D Tensor containing single image in [0, 1]. color_ordering: Python int, a type of distortion (valid values: 0-3). fast_mode: Avoids slower ops (random_hue and random_contrast) scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] Raises: ValueError: if color_ordering not in [0, 3] """ with tf.name_scope(scope, 'distort_color', [image]): if fast_mode: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) else: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: if color_ordering == 0: image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) elif color_ordering == 1: image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) elif color_ordering == 2: image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_brightness(image, max_delta=32. / 255.) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) elif color_ordering == 3: image = tf.image.random_hue(image, max_delta=0.2) image = tf.image.random_saturation(image, lower=0.5, upper=1.5) image = tf.image.random_contrast(image, lower=0.5, upper=1.5) image = tf.image.random_brightness(image, max_delta=32. / 255.) else: raise ValueError('color_ordering must be in [0, 3]') # The random_* ops do not necessarily clamp. return tf.minimum(tf.maximum(image, 0.0), 1.0) def distort_color_fast(image, scope=None): """Distort the color of a Tensor image. Distort brightness and chroma values of input image Args: image: 3-D Tensor containing single image in [0, 1]. scope: Optional scope for name_scope. Returns: 3-D Tensor color-distorted image on range [0, 1] """ with tf.name_scope(scope, 'distort_color', [image]): br_delta = random_ops.random_uniform([], -32./255., 32./255., seed=None) cb_factor = random_ops.random_uniform( [], -FLAGS.cb_distortion_range, FLAGS.cb_distortion_range, seed=None) cr_factor = random_ops.random_uniform( [], -FLAGS.cr_distortion_range, FLAGS.cr_distortion_range, seed=None) channels = tf.split(axis=2, num_or_size_splits=3, value=image) red_offset = 1.402 * cr_factor + br_delta green_offset = -0.344136 * cb_factor - 0.714136 * cr_factor + br_delta blue_offset = 1.772 * cb_factor + br_delta channels[0] += red_offset channels[1] += green_offset channels[2] += blue_offset image = tf.concat(axis=2, values=channels) image = tf.minimum(tf.maximum(image, 0.), 1.) return image def distorted_bounding_box_crop(image, bbox, min_object_covered=0.1, aspect_ratio_range=(3./4., 4./3.), area_range=(0.05, 1.0), max_attempts=100, scope=None): """Generates cropped_image using a one of the bboxes randomly distorted. See `tf.image.sample_distorted_bounding_box` for more documentation. Args: image: 3-D Tensor of image (it will be converted to floats in [0, 1]). bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. If num_boxes is 0 then it would use the whole image. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. aspect_ratio_range: An optional list of `floats`. The cropped area of the image must have an aspect ratio = width / height within this range. area_range: An optional list of `floats`. The cropped area of the image must contain a fraction of the supplied image within in this range. max_attempts: An optional `int`. Number of attempts at generating a cropped region of the image of the specified constraints. After `max_attempts` failures, return the entire image. scope: Optional scope for name_scope. Returns: A tuple, a 3-D Tensor cropped_image and the distorted bbox """ with tf.name_scope(scope, 'distorted_bounding_box_crop', [image, bbox]): # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. # A large fraction of image datasets contain a human-annotated bounding # box delineating the region of the image containing the object of interest. # We choose to create a new bounding box for the object which is a randomly # distorted version of the human-annotated bounding box that obeys an # allowed range of aspect ratios, sizes and overlap with the human-annotated # bounding box. If no box is supplied, then we assume the bounding box is # the entire image. sample_distorted_bounding_box = tf.image.sample_distorted_bounding_box( tf.shape(image), bounding_boxes=bbox, min_object_covered=min_object_covered, aspect_ratio_range=aspect_ratio_range, area_range=area_range, max_attempts=max_attempts, use_image_if_no_bounding_boxes=True) bbox_begin, bbox_size, distort_bbox = sample_distorted_bounding_box # Crop the image to the specified bounding box. cropped_image = tf.slice(image, bbox_begin, bbox_size) return cropped_image, distort_bbox def preprocess_for_train(image, height, width, bbox, min_object_covered=0.1, fast_mode=True, scope=None, add_image_summaries=True): """Distort one image for training a network. Distorting images provides a useful technique for augmenting the data set during training in order to make the network invariant to aspects of the image that do not effect the label. Additionally it would create image_summaries to display the different transformations applied to the image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. fast_mode: Optional boolean, if True avoids slower transformations (i.e. bi-cubic resizing, random_hue or random_contrast). scope: Optional scope for name_scope. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor of distorted image used for training with range [-1, 1]. """ with tf.name_scope(scope, 'distort_image', [image, height, width, bbox]): if bbox is None: bbox = tf.constant([0.0, 0.0, 1.0, 1.0], dtype=tf.float32, shape=[1, 1, 4]) if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) if add_image_summaries: # Each bounding box has shape [1, num_boxes, box coords] and # the coordinates are ordered [ymin, xmin, ymax, xmax]. image_with_box = tf.image.draw_bounding_boxes(tf.expand_dims(image, 0), bbox) tf.summary.image('image_with_bounding_boxes', image_with_box) distorted_image, distorted_bbox = distorted_bounding_box_crop( image, bbox, min_object_covered=min_object_covered, area_range=(min_object_covered, 1.0)) # Restore the shape since the dynamic slice based upon the bbox_size loses # the third dimension. distorted_image.set_shape([None, None, 3]) if add_image_summaries: image_with_distorted_box = tf.image.draw_bounding_boxes( tf.expand_dims(image, 0), distorted_bbox) tf.summary.image('images_with_distorted_bounding_box', image_with_distorted_box) # This resizing operation may distort the images because the aspect # ratio is not respected. We select a resize method in a round robin # fashion based on the thread number. # Note that ResizeMethod contains 4 enumerated resizing methods. # We select only 1 case for fast_mode bilinear. num_resize_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, method: tf.image.resize_images(x, [height, width], method), num_cases=num_resize_cases) if add_image_summaries: tf.summary.image('cropped_resized_image', tf.expand_dims(distorted_image, 0)) # Randomly flip the image horizontally. distorted_image = tf.image.random_flip_left_right(distorted_image) # Randomly distort the colors. There are 1 or 4 ways to do it. if FLAGS.use_fast_color_distort: distorted_image = distort_color_fast(distorted_image) else: num_distort_cases = 1 if fast_mode else 4 distorted_image = apply_with_random_selector( distorted_image, lambda x, ordering: distort_color(x, ordering, fast_mode), num_cases=num_distort_cases) if add_image_summaries: tf.summary.image('final_distorted_image', tf.expand_dims(distorted_image, 0)) return distorted_image def preprocess_for_eval(image, height, width, central_fraction=0.875, scope=None): """Prepare one image for evaluation. If height and width are specified it would output an image with that size by applying resize_bilinear. If central_fraction is specified it would crop the central fraction of the input image. Args: image: 3-D Tensor of image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). height: integer width: integer central_fraction: Optional Float, fraction of the image to crop. scope: Optional scope for name_scope. Returns: 3-D float Tensor of prepared image. """ with tf.name_scope(scope, 'eval_image', [image, height, width]): if image.dtype != tf.float32: image = tf.image.convert_image_dtype(image, dtype=tf.float32) # Crop the central region of the image with an area containing 87.5% of # the original image. if central_fraction: image = tf.image.central_crop(image, central_fraction=central_fraction) if height and width: # Resize the image to the specified height and width. image = tf.expand_dims(image, 0) image = tf.image.resize_bilinear(image, [height, width], align_corners=False) image = tf.squeeze(image, [0]) image.set_shape([height, width, 3]) return image def preprocess_image(image, output_height, output_width, is_training=False, scaled_images=True, bbox=None, min_object_covered=0.1, fast_mode=True, add_image_summaries=False): """Pre-process one image for training or evaluation. Args: image: 3-D Tensor [height, width, channels] with the image. If dtype is tf.float32 then the range should be [0, 1], otherwise it would converted to tf.float32 assuming that the range is [0, MAX], where MAX is largest positive representable number for int(8/16/32) data type (see `tf.image.convert_image_dtype` for details). output_height: integer, image expected height. output_width: integer, image expected width. is_training: Boolean. If true it would transform an image for train, otherwise it would transform it for evaluation. scaled_images: Whether to scale pixel values to the range [-1, 1]. If set to false, pixel values are in the range [0, 1]. bbox: 3-D float Tensor of bounding boxes arranged [1, num_boxes, coords] where each coordinate is [0, 1) and the coordinates are arranged as [ymin, xmin, ymax, xmax]. min_object_covered: An optional `float`. Defaults to `0.1`. The cropped area of the image must contain at least this fraction of any bounding box supplied. fast_mode: Optional boolean, if True avoids slower transformations. add_image_summaries: Enable image summaries. Returns: 3-D float Tensor containing an appropriately scaled image Raises: ValueError: if user does not provide bounding box """ if is_training: image = preprocess_for_train( image, output_height, output_width, bbox, min_object_covered, fast_mode, add_image_summaries=add_image_summaries) else: image = preprocess_for_eval(image, output_height, output_width) if scaled_images: image = tf.subtract(image, 0.5) image = tf.multiply(image, 2.0) return image
#!/usr/local/bin/python2.6 -tt # Copyright 2018-present Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # Copyright 2004-present Facebook. All rights reserved. # """ This file contains the main module code for buck python test programs. By default, this is the main module for all python_test() rules. However, rules can also specify their own custom main_module. If you write your own main module, you can import this module as tools.test.stubs.fbpyunit, to access any of its code to help implement your main module. """ from __future__ import print_function import contextlib import ctypes import fnmatch import json import logging import optparse import os import platform import re import sys import time import traceback import unittest import warnings with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=DeprecationWarning) import imp try: from StringIO import StringIO except ImportError: from io import StringIO try: import coverage except ImportError: coverage = None try: from importlib.machinery import SourceFileLoader except ImportError: SourceFileLoader = None EXIT_CODE_SUCCESS = 0 EXIT_CODE_TEST_FAILURE = 70 class TestStatus(object): ABORTED = "FAILURE" PASSED = "SUCCESS" FAILED = "FAILURE" EXPECTED_FAILURE = "SUCCESS" UNEXPECTED_SUCCESS = "FAILURE" SKIPPED = "ASSUMPTION_VIOLATION" class PathMatcher(object): def __init__(self, include_patterns, omit_patterns): self.include_patterns = include_patterns self.omit_patterns = omit_patterns def omit(self, path): """ Omit iff matches any of the omit_patterns or the include patterns are not empty and none is matched """ path = os.path.realpath(path) return any(fnmatch.fnmatch(path, p) for p in self.omit_patterns) or ( self.include_patterns and not any(fnmatch.fnmatch(path, p) for p in self.include_patterns) ) def include(self, path): return not self.omit(path) class DebugWipeFinder(object): """ PEP 302 finder that uses a DebugWipeLoader for all files which do not need coverage """ def __init__(self, matcher): self.matcher = matcher def find_module(self, fullname, path=None): _, _, basename = fullname.rpartition(".") try: fd, pypath, (_, _, kind) = imp.find_module(basename, path) except Exception: # Maybe it's a top level module try: fd, pypath, (_, _, kind) = imp.find_module(basename, None) except Exception: return None if hasattr(fd, "close"): fd.close() if kind != imp.PY_SOURCE: return None if self.matcher.include(pypath): return None """ This is defined to match CPython's PyVarObject struct """ class PyVarObject(ctypes.Structure): _fields_ = [ ("ob_refcnt", ctypes.c_long), ("ob_type", ctypes.c_void_p), ("ob_size", ctypes.c_ulong), ] class DebugWipeLoader(SourceFileLoader): """ PEP302 loader that zeros out debug information before execution """ def get_code(self, fullname): code = super(DebugWipeLoader, self).get_code(fullname) if code: # Ideally we'd do # code.co_lnotab = b'' # But code objects are READONLY. Not to worry though; we'll # directly modify CPython's object code_impl = PyVarObject.from_address(id(code.co_lnotab)) code_impl.ob_size = 0 return code return DebugWipeLoader(fullname, pypath) def optimize_for_coverage(cov, include_patterns, omit_patterns): """ We get better performance if we zero out debug information for files which we're not interested in. Only available in CPython 3.3+ """ matcher = PathMatcher(include_patterns, omit_patterns) if SourceFileLoader and platform.python_implementation() == "CPython": sys.meta_path.insert(0, DebugWipeFinder(matcher)) class TeeStream(object): def __init__(self, *streams): self._streams = streams def write(self, data): for stream in self._streams: stream.write(data) def flush(self): for stream in self._streams: stream.flush() def isatty(self): return False class CallbackStream(object): def __init__(self, callback, bytes_callback=None, orig=None): self._callback = callback self._fileno = orig.fileno() if orig else None # Python 3 APIs: # - `encoding` is a string holding the encoding name # - `errors` is a string holding the error-handling mode for encoding # - `buffer` should look like an io.BufferedIOBase object self.errors = orig.errors if orig else None if bytes_callback: # those members are only on the io.TextIOWrapper self.encoding = orig.encoding if orig else "UTF-8" self.buffer = CallbackStream(bytes_callback, orig=orig) def write(self, data): self._callback(data) def flush(self): pass def isatty(self): return False def fileno(self): return self._fileno class BuckTestResult(unittest._TextTestResult): """ Our own TestResult class that outputs data in a format that can be easily parsed by buck's test runner. """ def __init__( self, stream, descriptions, verbosity, show_output, main_program, suite ): super(BuckTestResult, self).__init__(stream, descriptions, verbosity) self._main_program = main_program self._suite = suite self._results = [] self._current_test = None self._saved_stdout = sys.stdout self._saved_stderr = sys.stderr self._show_output = show_output def getResults(self): return self._results def startTest(self, test): super(BuckTestResult, self).startTest(test) # Pass in the real stdout and stderr filenos. We can't really do much # here to intercept callers who directly operate on these fileno # objects. sys.stdout = CallbackStream( self.addStdout, self.addStdoutBytes, orig=sys.stdout ) sys.stderr = CallbackStream( self.addStderr, self.addStderrBytes, orig=sys.stderr ) self._current_test = test self._test_start_time = time.time() self._current_status = TestStatus.ABORTED self._messages = [] self._stacktrace = None self._stdout = "" self._stderr = "" def _find_next_test(self, suite): """ Find the next test that has not been run. """ for test in suite: # We identify test suites by test that are iterable (as is done in # the builtin python test harness). If we see one, recurse on it. if hasattr(test, "__iter__"): test = self._find_next_test(test) # The builtin python test harness sets test references to `None` # after they have run, so we know we've found the next test up # if it's not `None`. if test is not None: return test def stopTest(self, test): sys.stdout = self._saved_stdout sys.stderr = self._saved_stderr super(BuckTestResult, self).stopTest(test) # If a failure occured during module/class setup, then this "test" may # actually be a `_ErrorHolder`, which doesn't contain explicit info # about the upcoming test. Since we really only care about the test # name field (i.e. `_testMethodName`), we use that to detect an actual # test cases, and fall back to looking the test up from the suite # otherwise. if not hasattr(test, "_testMethodName"): test = self._find_next_test(self._suite) self._results.append( { "testCaseName": "{0}.{1}".format( test.__class__.__module__, test.__class__.__name__ ), "testCase": test._testMethodName, "type": self._current_status, "time": int((time.time() - self._test_start_time) * 1000), "message": os.linesep.join(self._messages), "stacktrace": self._stacktrace, "stdOut": self._stdout, "stdErr": self._stderr, } ) self._current_test = None def stopTestRun(self): cov = self._main_program.get_coverage() if cov is not None: self._results.append({"coverage": cov}) @contextlib.contextmanager def _withTest(self, test): self.startTest(test) yield self.stopTest(test) def _setStatus(self, test, status, message=None, stacktrace=None): assert test == self._current_test self._current_status = status self._stacktrace = stacktrace if message is not None: if message.endswith(os.linesep): message = message[:-1] self._messages.append(message) def setStatus(self, test, status, message=None, stacktrace=None): # addError() may be called outside of a test if one of the shared # fixtures (setUpClass/tearDownClass/setUpModule/tearDownModule) # throws an error. # # In this case, create a fake test result to record the error. if self._current_test is None: with self._withTest(test): self._setStatus(test, status, message, stacktrace) else: self._setStatus(test, status, message, stacktrace) def setException(self, test, status, excinfo): exctype, value, tb = excinfo self.setStatus( test, status, "{0}: {1}".format(exctype.__name__, value), "".join(traceback.format_tb(tb)), ) def addSuccess(self, test): super(BuckTestResult, self).addSuccess(test) self.setStatus(test, TestStatus.PASSED) def addError(self, test, err): super(BuckTestResult, self).addError(test, err) self.setException(test, TestStatus.ABORTED, err) def addFailure(self, test, err): super(BuckTestResult, self).addFailure(test, err) self.setException(test, TestStatus.FAILED, err) def addSkip(self, test, reason): super(BuckTestResult, self).addSkip(test, reason) self.setStatus(test, TestStatus.SKIPPED, "Skipped: %s" % (reason,)) def addExpectedFailure(self, test, err): super(BuckTestResult, self).addExpectedFailure(test, err) self.setException(test, TestStatus.EXPECTED_FAILURE, err) def addUnexpectedSuccess(self, test): super(BuckTestResult, self).addUnexpectedSuccess(test) self.setStatus(test, TestStatus.UNEXPECTED_SUCCESS, "Unexpected success") def addStdout(self, val): self._stdout += val if self._show_output: self._saved_stdout.write(val) self._saved_stdout.flush() def addStdoutBytes(self, val): string = val.decode("utf-8", errors="backslashreplace") self.addStdout(string) def addStderr(self, val): self._stderr += val if self._show_output: self._saved_stderr.write(val) self._saved_stderr.flush() def addStderrBytes(self, val): string = val.decode("utf-8", errors="backslashreplace") self.addStderr(string) class BuckTestRunner(unittest.TextTestRunner): def __init__(self, main_program, suite, show_output=True, **kwargs): super(BuckTestRunner, self).__init__(**kwargs) self.show_output = show_output self._main_program = main_program self._suite = suite def _makeResult(self): return BuckTestResult( self.stream, self.descriptions, self.verbosity, self.show_output, self._main_program, self._suite, ) def _format_test_name(test_class, attrname): """ Format the name of the test buck-style. """ return "{0}.{1}#{2}".format(test_class.__module__, test_class.__name__, attrname) class StderrLogHandler(logging.StreamHandler): """ This class is very similar to logging.StreamHandler, except that it always uses the current sys.stderr object. StreamHandler caches the current sys.stderr object when it is constructed. This makes it behave poorly in unit tests, which may replace sys.stderr with a StringIO buffer during tests. The StreamHandler will continue using the old sys.stderr object instead of the desired StringIO buffer. """ def __init__(self): logging.Handler.__init__(self) @property def stream(self): return sys.stderr class RegexTestLoader(unittest.TestLoader): def __init__(self, regex=None): self.regex = regex super(RegexTestLoader, self).__init__() def getTestCaseNames(self, testCaseClass): """ Return a sorted sequence of method names found within testCaseClass """ testFnNames = super(RegexTestLoader, self).getTestCaseNames(testCaseClass) if self.regex is None: return testFnNames robj = re.compile(self.regex) matched = [] for attrname in testFnNames: fullname = _format_test_name(testCaseClass, attrname) if robj.search(fullname): matched.append(attrname) return matched class Loader(object): def __init__(self, modules, regex=None): self.modules = modules self.regex = regex def load_all(self): loader = RegexTestLoader(self.regex) test_suite = unittest.TestSuite() for module_name in self.modules: __import__(module_name, level=0) module = sys.modules[module_name] module_suite = loader.loadTestsFromModule(module) test_suite.addTest(module_suite) return test_suite def load_args(self, args): loader = RegexTestLoader(self.regex) suites = [] for arg in args: suite = loader.loadTestsFromName(arg) # loadTestsFromName() can only process names that refer to # individual test functions or modules. It can't process package # names. If there were no module/function matches, check to see if # this looks like a package name. if suite.countTestCases() != 0: suites.append(suite) continue # Load all modules whose name is <arg>.<something> prefix = arg + "." for module in self.modules: if module.startswith(prefix): suite = loader.loadTestsFromName(module) suites.append(suite) return loader.suiteClass(suites) class MainProgram(object): """ This class implements the main program. It can be subclassed by users who wish to customize some parts of the main program. (Adding additional command line options, customizing test loading, etc.) """ DEFAULT_VERBOSITY = 2 def __init__(self, argv): self.init_option_parser() self.parse_options(argv) self.setup_logging() def init_option_parser(self): usage = "%prog [options] [TEST] ..." op = optparse.OptionParser(usage=usage, add_help_option=False) self.option_parser = op op.add_option( "--hide-output", dest="show_output", action="store_false", default=True, help="Suppress data that tests print to stdout/stderr, and only " "show it if the test fails.", ) op.add_option( "-o", "--output", help="Write results to a file in a JSON format to be read by Buck", ) op.add_option( "-f", "--failfast", action="store_true", default=False, help="Stop after the first failure", ) op.add_option( "-l", "--list-tests", action="store_true", dest="list", default=False, help="List tests and exit", ) op.add_option( "-L", "--list-format", dest="list_format", choices=["buck", "python"], default="python", help="List tests format", ) op.add_option( "-r", "--regex", default=None, help="Regex to apply to tests, to only run those tests", ) op.add_option( "--collect-coverage", action="store_true", default=False, help="Collect test coverage information", ) op.add_option( "--coverage-include", default="*", help='File globs to include in converage (split by ",")', ) op.add_option( "--coverage-omit", default="", help='File globs to omit from converage (split by ",")', ) op.add_option( "--logger", action="append", metavar="<category>=<level>", default=[], help="Configure log levels for specific logger categories", ) op.add_option( "-q", "--quiet", action="count", default=0, help="Decrease the verbosity (may be specified multiple times)", ) op.add_option( "-v", "--verbosity", action="count", default=self.DEFAULT_VERBOSITY, help="Increase the verbosity (may be specified multiple times)", ) op.add_option( "-?", "--help", action="help", help="Show this help message and exit" ) def parse_options(self, argv): self.options, self.test_args = self.option_parser.parse_args(argv[1:]) self.options.verbosity -= self.options.quiet if self.options.collect_coverage and coverage is None: self.option_parser.error("coverage module is not available") self.options.coverage_include = self.options.coverage_include.split(",") if self.options.coverage_omit == "": self.options.coverage_omit = [] else: self.options.coverage_omit = self.options.coverage_omit.split(",") def setup_logging(self): # Configure the root logger to log at INFO level. # This is similar to logging.basicConfig(), but uses our # StderrLogHandler instead of a StreamHandler. fmt = logging.Formatter("%(pathname)s:%(lineno)s: %(message)s") log_handler = StderrLogHandler() log_handler.setFormatter(fmt) root_logger = logging.getLogger() root_logger.addHandler(log_handler) root_logger.setLevel(logging.INFO) level_names = { "debug": logging.DEBUG, "info": logging.INFO, "warn": logging.WARNING, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, "fatal": logging.FATAL, } for value in self.options.logger: parts = value.rsplit("=", 1) if len(parts) != 2: self.option_parser.error( "--logger argument must be of the " "form <name>=<level>: %s" % value ) name = parts[0] level_name = parts[1].lower() level = level_names.get(level_name) if level is None: self.option_parser.error( "invalid log level %r for log category %s" % (parts[1], name) ) logging.getLogger(name).setLevel(level) def create_loader(self): import __test_modules__ return Loader(__test_modules__.TEST_MODULES, self.options.regex) def load_tests(self): loader = self.create_loader() if self.options.collect_coverage: self.start_coverage() include = self.options.coverage_include omit = self.options.coverage_omit if include and "*" not in include: optimize_for_coverage(self.cov, include, omit) if self.test_args: suite = loader.load_args(self.test_args) else: suite = loader.load_all() if self.options.collect_coverage: self.cov.start() return suite def get_tests(self, test_suite): tests = [] for test in test_suite: if isinstance(test, unittest.TestSuite): tests.extend(self.get_tests(test)) else: tests.append(test) return tests def run(self): test_suite = self.load_tests() if self.options.list: for test in self.get_tests(test_suite): if self.options.list_format == "python": name = str(test) elif self.options.list_format == "buck": method_name = getattr(test, "_testMethodName", "") name = _format_test_name(test.__class__, method_name) else: raise Exception( "Bad test list format: %s" % (self.options.list_format,) ) print(name) return EXIT_CODE_SUCCESS else: result = self.run_tests(test_suite) if self.options.output is not None: with open(self.options.output, "w") as f: json.dump(result.getResults(), f, indent=4, sort_keys=True) if not result.wasSuccessful(): return EXIT_CODE_TEST_FAILURE return EXIT_CODE_SUCCESS def run_tests(self, test_suite): # Install a signal handler to catch Ctrl-C and display the results # (but only if running >2.6). if sys.version_info[0] > 2 or sys.version_info[1] > 6: unittest.installHandler() # Run the tests runner = BuckTestRunner( self, test_suite, verbosity=self.options.verbosity, show_output=self.options.show_output, ) result = runner.run(test_suite) if self.options.collect_coverage and self.options.show_output: self.cov.stop() if self.cov.html_report: self.cov.html_report() else: self.cov.report(file=sys.stdout) return result def start_coverage(self): if not self.options.collect_coverage: return # Keep the original working dir in case tests use os.chdir self._original_working_dir = os.getcwd() self.cov = coverage.Coverage( include=self.options.coverage_include, omit=self.options.coverage_omit ) self.cov.erase() self.cov.start() def get_coverage(self): if not self.options.collect_coverage: return None result = {} # Switch back to the original working directory. os.chdir(self._original_working_dir) self.cov.stop() try: f = StringIO() self.cov.report(file=f) lines = f.getvalue().split("\n") except coverage.misc.CoverageException: # Nothing was covered. That's fine by us return result # N.B.: the format of the coverage library's output differs # depending on whether one or more files are in the results for line in lines[2:]: if line.strip("-") == "": break r = line.split()[0] analysis = self.cov.analysis2(r) covString = self.convert_to_diff_cov_str(analysis) if covString: result[r] = covString return result def convert_to_diff_cov_str(self, analysis): # Info on the format of analysis: # http://nedbatchelder.com/code/coverage/api.html if not analysis: return None numLines = max( analysis[1][-1] if len(analysis[1]) else 0, analysis[2][-1] if len(analysis[2]) else 0, analysis[3][-1] if len(analysis[3]) else 0, ) lines = ["N"] * numLines for l in analysis[1]: lines[l - 1] = "C" for l in analysis[2]: lines[l - 1] = "X" for l in analysis[3]: lines[l - 1] = "U" return "".join(lines) def main(argv): return MainProgram(sys.argv).run() if __name__ == "__main__": sys.exit(main(sys.argv))
# Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Provides ShapeDiffFinder, which finds differences in OTF/TTF glyph shapes. ShapeDiffFinder takes in two paths, to font binaries. It then provides methods that compare these fonts, storing results in a report dictionary. These methods are `find_area_diffs`, which compares glyph areas, `find_rendered_diffs`, which compares harfbuzz output using PIL, and `find_shape_diffs`, which takes the difference of shapes and calculates the area. Some caveats: glyph areas can be the same even if the shapes are wildly different (though they're useful for shapes that should be identical except for some offset). Image comparison is usually either slow (hi-res) or inaccurate (lo-res). Still, these are usually useful for raising red flags and catching large errors. """ from __future__ import division import os from PIL import Image import re from io import BytesIO import subprocess import booleanOperations from defcon import Glyph from fontTools.pens.basePen import BasePen from fontTools.ttLib import TTFont from fontTools.pens.pointPen import PointToSegmentPen from nototools.glyph_area_pen import GlyphAreaPen from nototools import hb_input from nototools.py23 import unichr GDEF_UNDEF = 0 GDEF_MARK = 3 GDEF_LABELS = ["no class", "base", "ligature", "mark", "component"] class ShapeDiffFinder: """Provides methods to report diffs in glyph shapes between OT Fonts.""" def __init__(self, file_a, file_b, stats, ratio_diffs=False, diff_threshold=0): self.path_a = file_a self.font_a = TTFont(self.path_a) self.glyph_set_a = self.font_a.getGlyphSet() self.gdef_a = {} if ( "GDEF" in self.font_a and not self.font_a["GDEF"].table.GlyphClassDef is None ): self.gdef_a = self.font_a["GDEF"].table.GlyphClassDef.classDefs self.path_b = file_b self.font_b = TTFont(self.path_b) self.glyph_set_b = self.font_b.getGlyphSet() self.gdef_b = {} if ( "GDEF" in self.font_b and not self.font_b["GDEF"].table.GlyphClassDef is None ): self.gdef_b = self.font_b["GDEF"].table.GlyphClassDef.classDefs for stat_type in ( "compared", "untested", "unmatched", "unicode_mismatch", "gdef_mark_mismatch", "zero_width_mismatch", "input_mismatch", ): if stat_type not in stats: stats[stat_type] = [] self.stats = stats self.ratio_diffs = ratio_diffs self.diff_threshold = diff_threshold self.basepath = os.path.basename(file_a) def find_area_diffs(self): """Report differences in glyph areas.""" self.build_names() pen_a = GlyphAreaPen(self.glyph_set_a) pen_b = GlyphAreaPen(self.glyph_set_b) mismatched = {} for name in self.names: self.glyph_set_a[name].draw(pen_a) area_a = pen_a.pop() self.glyph_set_b[name].draw(pen_b) area_b = pen_b.pop() if area_a != area_b: mismatched[name] = (area_a, area_b) stats = self.stats["compared"] calc = self._calc_ratio if self.ratio_diffs else self._calc_diff for name, areas in mismatched.items(): stats.append((calc(areas), name, self.basepath, areas[0], areas[1])) def find_rendered_diffs(self, font_size=128, render_path=None): """Find diffs of glyphs as rendered by harfbuzz.""" hb_input_generator_a = hb_input.HbInputGenerator(self.font_a) hb_input_generator_b = hb_input.HbInputGenerator(self.font_b) if render_path: font_name, _ = os.path.splitext(self.basepath) render_path = os.path.join(render_path, font_name) if not os.path.exists(render_path): os.makedirs(render_path) self.build_names() diffs = [] for name in self.names: class_a = self.gdef_a.get(name, GDEF_UNDEF) class_b = self.gdef_b.get(name, GDEF_UNDEF) if GDEF_MARK in (class_a, class_b) and class_a != class_b: self.stats["gdef_mark_mismatch"].append( (self.basepath, name, GDEF_LABELS[class_a], GDEF_LABELS[class_b]) ) continue width_a = self.glyph_set_a[name].width width_b = self.glyph_set_b[name].width zwidth_a = width_a == 0 zwidth_b = width_b == 0 if zwidth_a != zwidth_b: self.stats["zero_width_mismatch"].append( (self.basepath, name, width_a, width_b) ) continue hb_args_a = hb_input_generator_a.input_from_name(name, pad=zwidth_a) hb_args_b = hb_input_generator_b.input_from_name(name, pad=zwidth_b) if hb_args_a != hb_args_b: self.stats["input_mismatch"].append( (self.basepath, name, hb_args_a, hb_args_b) ) continue # ignore unreachable characters if not hb_args_a: self.stats["untested"].append((self.basepath, name)) continue features, text = hb_args_a # ignore null character if unichr(0) in text: continue img_file_a = BytesIO( subprocess.check_output( [ "hb-view", "--font-size=%d" % font_size, "--features=%s" % ",".join(features), self.path_a, text, ] ) ) img_file_b = BytesIO( subprocess.check_output( [ "hb-view", "--font-size=%d" % font_size, "--features=%s" % ",".join(features), self.path_b, text, ] ) ) img_a = Image.open(img_file_a) img_b = Image.open(img_file_b) width_a, height_a = img_a.size width_b, height_b = img_b.size data_a = img_a.getdata() data_b = img_b.getdata() img_file_a.close() img_file_b.close() width, height = max(width_a, width_b), max(height_a, height_b) offset_ax = (width - width_a) // 2 offset_ay = (height - height_a) // 2 offset_bx = (width - width_b) // 2 offset_by = (height - height_b) // 2 diff = 0 for y in range(height): for x in range(width): ax, ay = x - offset_ax, y - offset_ay bx, by = x - offset_bx, y - offset_by if ( ax < 0 or bx < 0 or ax >= width_a or bx >= width_b or ay < 0 or by < 0 or ay >= height_a or by >= height_b ): diff += 1 else: diff += ( abs(data_a[ax + ay * width_a] - data_b[bx + by * width_b]) / 255 ) if self.ratio_diffs: diff /= width * height if render_path and diff > self.diff_threshold: img_cmp = Image.new("RGB", (width, height)) data_cmp = list(img_cmp.getdata()) self._project(data_a, width_a, height_a, data_cmp, width, height, 1) self._project(data_b, width_b, height_b, data_cmp, width, height, 0) for y in range(height): for x in range(width): i = x + y * width r, g, b = data_cmp[i] assert b == 0 data_cmp[i] = r, g, min(r, g) img_cmp.putdata(data_cmp) img_cmp.save(self._rendered_png(render_path, name)) diffs.append((name, diff)) mismatched = {} for name, diff in diffs: if diff > self.diff_threshold: mismatched[name] = diff stats = self.stats["compared"] for name, diff in mismatched.items(): stats.append((diff, name, self.basepath)) def _project( self, src_data, src_width, src_height, dst_data, width, height, channel ): """Project a single-channel image onto a channel of an RGB image.""" offset_x = (width - src_width) // 2 offset_y = (height - src_height) // 2 for y in range(src_height): for x in range(src_width): src_i = x + y * src_width dst_i = x + offset_x + (y + offset_y) * width pixel = list(dst_data[dst_i]) pixel[channel] = src_data[src_i] dst_data[dst_i] = tuple(pixel) def find_shape_diffs(self): """Report differences in glyph shapes, using BooleanOperations.""" self.build_names() area_pen = GlyphAreaPen(None) pen = PointToSegmentPen(area_pen) mismatched = {} for name in self.names: glyph_a = Glyph() glyph_b = Glyph() self.glyph_set_a[name].draw(Qu2CuPen(glyph_a.getPen(), self.glyph_set_a)) self.glyph_set_b[name].draw(Qu2CuPen(glyph_b.getPen(), self.glyph_set_b)) booleanOperations.xor(list(glyph_a), list(glyph_b), pen) area = abs(area_pen.pop()) if area: mismatched[name] = area stats = self.stats["compared"] for name, area in mismatched.items(): stats.append((area, name, self.basepath)) def find_area_shape_diff_products(self): """Report product of differences in glyph areas and glyph shapes.""" self.find_area_diffs() old_compared = self.stats["compared"] self.stats["compared"] = [] self.find_shape_diffs() new_compared = {n: d for d, n, _ in self.stats["compared"]} for i, (diff, name, font, area_a, area_b) in enumerate(old_compared): if font != self.basepath: continue new_diff = diff * new_compared.get(name, 0) old_compared[i] = new_diff, name, font, area_a, area_b self.stats["compared"] = old_compared def build_names(self): """Build a list of glyph names shared between the fonts.""" if hasattr(self, "names"): return stats = self.stats["unmatched"] names_a = set(self.font_a.getGlyphOrder()) names_b = set(self.font_b.getGlyphOrder()) if names_a != names_b: stats.append((self.basepath, names_a - names_b, names_b - names_a)) self.names = names_a & names_b stats = self.stats["unicode_mismatch"] reverse_cmap_a = hb_input.build_reverse_cmap(self.font_a) reverse_cmap_b = hb_input.build_reverse_cmap(self.font_b) mismatched = {} for name in self.names: unival_a = reverse_cmap_a.get(name) unival_b = reverse_cmap_b.get(name) if unival_a != unival_b: mismatched[name] = (unival_a, unival_b) if mismatched: stats.append((self.basepath, mismatched.items())) self.names -= set(mismatched.keys()) @staticmethod def dump(stats, allowlist, out_lines, include_vals, multiple_fonts): """Return the results of run diffs. Args: stats: List of tuples with diff data which is sorted and printed. allowlist: Names of glyphs to exclude from report. out_lines: Number of diff lines to print. include_vals: Include the values that have been diffed in report. multiple_fonts: Designates whether stats have been accumulated from multiple fonts, if so then font names will be printed as well. """ report = [] compared = sorted(s for s in stats["compared"] if s[1] not in allowlist) compared.reverse() fmt = "%s %s" if include_vals: fmt += " (%s vs %s)" if multiple_fonts: fmt = "%s " + fmt report.append("%d differences in glyph shape" % len(compared)) for line in compared[:out_lines]: # print <font> <glyph> <vals>; stats are sorted in reverse priority line = tuple(reversed(line[:3])) + tuple(line[3:]) # ignore font name if just one pair of fonts was compared if not multiple_fonts: line = line[1:] report.append(fmt % line) report.append("") for font, set_a, set_b in stats["unmatched"]: report.append("Glyph coverage doesn't match in %s" % font) report.append(" in A but not B: %s" % sorted(set_a)) report.append(" in B but not A: %s" % sorted(set_b)) report.append("") for font, mismatches in stats["unicode_mismatch"]: report.append("Glyph unicode values don't match in %s" % font) for name, univals in sorted(mismatches): univals = [(("0x%04X" % v) if v else str(v)) for v in univals] report.append(" %s: %s in A, %s in B" % (name, univals[0], univals[1])) report.append("") ShapeDiffFinder._add_simple_report( report, stats["gdef_mark_mismatch"], "%s: Mark class mismatch for %s (%s vs %s)", ) ShapeDiffFinder._add_simple_report( report, stats["zero_width_mismatch"], "%s: Zero-width mismatch for %s (%d vs %d)", ) ShapeDiffFinder._add_simple_report( report, stats["input_mismatch"], "%s: Harfbuzz input mismatch for %s (%s vs %s)", ) ShapeDiffFinder._add_simple_report( report, stats["untested"], "%s: %s not tested (unreachable?)" ) return "\n".join(report) @staticmethod def _add_simple_report(report, stats, fmt): for stat in sorted(stats): report.append(fmt % stat) if stats: report.append("") def _calc_diff(self, vals): """Calculate an area difference.""" a, b = vals return abs(a - b) def _calc_ratio(self, vals): """Calculate an area ratio.""" a, b = vals if not (a or b): return 0 if abs(a) > abs(b): a, b = b, a return 1 - a / b def _rendered_png(self, render_path, glyph_name): glyph_filename = re.sub(r"([A-Z_])", r"\1_", glyph_name) + ".png" return os.path.join(render_path, glyph_filename) class Qu2CuPen(BasePen): def __init__(self, pen, glyphSet): BasePen.__init__(self, glyphSet) self.pen = pen def _moveTo(self, pt): self.pen.moveTo(pt) def _lineTo(self, pt): self.pen.lineTo(pt) def _curveToOne(self, pt1, pt2, pt3): self.pen.curveTo(pt1, pt2, pt3) def _closePath(self): self.pen.closePath() def _endPath(self): self.pen.endPath()
# dvcz/user.py """ User, PubUser, Committer, and PubCommitter objects and related classes and functions. """ import os # import re import sys import time import hashlib from buildlist import(check_dirs_in_path, generate_rsa_key, read_rsa_key, rm_f_dir_contents) from dvcz import DvczError from dvcz.project import Project from xlattice import HashTypes from xlu import UDir from Crypto.PublicKey import RSA if sys.version_info < (3, 6): # pylint: disable=unused-import import sha3 assert sha3 # suppress warning # == adduser ======================================================== def make_committer_id(pubkey, hashtype=HashTypes.SHA2): """ Create a unique committer ID derived from the user's RSA public key using this SHA type. This implementation adds the current time to the hash. Returns a 40- or 64-character hex value. """ if hashtype == HashTypes.SHA1: sha = hashlib.sha1() elif hashtype == HashTypes.SHA2: sha = hashlib.sha256() elif hashtype == HashTypes.SHA3: sha = hashlib.sha3_256() elif hashtype == HashTypes.BLAKE2B: sha = hashlib.blake2b(digest_size=32) else: raise NotImplementedError sha.update(pubkey.exportKey()) # PEM format sha.update(str(time.time()).encode('utf-8')) return sha.hexdigest() def do_add_user(options): """ Carry out the configuration. """ if options.testing: if os.path.exists('tmp'): rm_f_dir_contents('tmp') # empties the directory os.makedirs(options.home, exist_ok=True, mode=0o755) # user_dvcz_path ------------------------------------------------ # this is $HOME/.dvcz unless testing if os.path.exists(options.user_dvcz_path) and options.force: rm_f_dir_contents(options.user_dvcz_path) # empties the directory if not os.path.exists(options.user_dvcz_path): os.makedirs(options.user_dvcz_path, exist_ok=True, mode=0o755) # write RSA private key to $DVCZ_DIR/node/sk_priv.pem if not os.path.exists(options.key_path): check_dirs_in_path(options.key_path) if options.testing: generate_rsa_key(options.key_path, 1024) else: generate_rsa_key(options.key_path, options.key_bits) # Read the RSA private key from disk ------------------ privkey = read_rsa_key(options.key_path) pubkey = privkey.publickey() # Generate and write a unique committer ID to $DVCZ_DIR/id. path_to_id = os.path.join(options.user_dvcz_path, 'id') if os.path.exists(path_to_id): with open(path_to_id, 'r') as file: committer_id = file.read() else: committer_id = make_committer_id(pubkey, options.hashtype) with open(path_to_id, 'w+') as file: file.write(committer_id) # DEBUG print("committer ID: %s" % committer_id) # END # proj_dvcz_path ------------------------------------------------ # if testing, remove it; otherwise just make sure that it exists if options.testing and os.path.exists(options.proj_dvcz_path): # DEBUG print("deleting %s" % options.proj_dvcz_path) # END rm_f_dir_contents(options.proj_dvcz_path) # empties directory os.makedirs(options.proj_dvcz_path, 0o755, exist_ok=True) # u_path -------------------------------------------------------- hashtype = options.hashtype if options.testing and options.u_path and os.path.exists(options.u_path): rm_f_dir_contents(options.u_path) if options.u_path: # if necessary create $U_DIR with requisite DIR_STRUC and hashtype # u_dir = UDir.discover(options.u_path, hashtype=hashtype) # can get SHA type from u_dir # create $U_DIR/in/$ID/ which is DIR_FLAT with the correct hashtype my_in_path = os.path.join(options.u_path, 'in', committer_id) # my_in_dir = UDir.discover(my_in_path, hashtype=hashtype) # CLASSES =========================================================== class _User(object): """ Abstract version of the User class. Includes secret RSA keys. """ def __init__(self, login=os.environ['LOGNAME'], sk_priv=None, ck_priv=None, key_bits=2048): # The login must always be a valid name, one including no # delimiters or other odd characters. At least for the mement # we use the same rules for user names as Project names. if not Project.valid_proj_name(login): raise DvczError("not a valid login: '%s'" % login) self._login = login # Caller can supply keys with different sizes. if sk_priv: if sk_priv.size() + 1 != key_bits: sk_priv = None elif ck_priv.size() + 1 != key_bits: ck_priv = None if sk_priv is None: sk_priv = RSA.generate(key_bits) ck_priv = None if ck_priv is None: ck_priv = RSA.generate(key_bits) # To write use # with open(path, 'wb+') as file: # file.write(sk_priv.exportKey('PEM')) # To read use # with open(path, 'rb') as file: sk_priv = RSA.importKey(file.read()) self._sk_priv = sk_priv self._ck_priv = ck_priv self._key_bits = sk_priv.size() + 1 @property def login(self): """ Return the user's login. """ return self._login @property def sk_priv(self): """ Return the RSA key used for making digital signatures. """ return self._sk_priv @property def ck_priv(self): """ Return the RSA key used for encryption. """ return self._ck_priv @property def key_bits(self): """ Return the size of the RSA key. Note that PyCrypt's RSA size is 1 less than key_bits. """ return self._key_bits class User(_User): """ Descriptor for DVCZ users. Includes private keys and serialization/deserialization methods. """ START_LINE = '-----START DVCZ USER-----' END_LINE = '-----END DVCZ USER-----' def __init__(self, login=os.environ['LOGNAME'], sk_priv=None, ck_priv=None, key_bits=2048): # pylint: disable=useless-super-delegation super().__init__(login, sk_priv, ck_priv, key_bits) def __eq__(self, other): if not isinstance(other, User): return False return self._login == other.login and \ self._sk_priv == other.sk_priv and \ self._ck_priv == other.ck_priv def __str__(self): # possible ValueErrors here sk_exp_ = self.sk_priv.exportKey('PEM') # pylint is confused here # pylint: disable=no-member sk_exp = sk_exp_.decode('utf-8') ck_exp_ = self.ck_priv.exportKey('PEM') # pylint is confused here # pylint: disable=no-member ck_exp = ck_exp_.decode('utf-8') return """{0} {1} {2} {3} {4} """.format(User.START_LINE, self.login, sk_exp, ck_exp, User.END_LINE) @classmethod def create_from_file(cls, path): """ Parse the serialized User object. """ with open(path, 'r') as file: text = file.read() return cls.create_from_string(text) @classmethod def create_from_string(cls, string): """ Parse the serialized User object. """ if not string: raise DvczError('empty string') strings = string.split('\n') if strings[-1] == '\n': strings = strings[:-1] return cls.create_from_string_array(strings) @classmethod def create_from_string_array(cls, strings): """ Parse the serialized User object from a list of strings. """ if not strings: raise DvczError('empty string array') def collect_priv(lines, offset, line_count): """ Interpret a list of lines of text as a PEM-formatted RSA private key. """ # find the end of the PEM-formatted RSA private key found = False ndx = -1 for ndx in range(offset, line_count): if lines[ndx] == '-----END RSA PRIVATE KEY-----': found = True break if not found: raise DvczError("can't find end of PEM-formatted RSA key") text = '\n'.join(lines[offset:ndx + 1]) priv = RSA.importKey(text) return (ndx + 1, priv) line_count = len(strings) if line_count < 5: raise DvczError( "too few parts (%d) in User string array" % line_count) if strings[0] != cls.START_LINE: raise DvczError("found '%s' instead of '%s'" % ( strings[0], cls.START_LINE)) login = strings[1] offset = 2 offset, sk_priv = collect_priv(strings, offset, line_count) offset, ck_priv = collect_priv(strings, offset, line_count) if strings[offset] != cls.END_LINE: raise DvczError("found '%s' instead of '%s'" % ( strings[offset], cls.END_LINE)) # XXX Ignoring possiblity of differences key sizes key_bits = sk_priv.size() + 1 # XXX TILT: PyCrypto returns eg 1023 # DEBUG # print("create_from_string_array: found sk_priv size is %d" % # key_bits) # END return User(login, sk_priv, ck_priv, key_bits) class _PubUser(object): """ This version of the user descriptor includes the public part of RSA keys. """ def __init__(self, login, sk_, ck_): # The login must always be a valid name, one including no # delimiters or other odd characters. if not Project.valid_proj_name(login): raise DvczError("not a valid login: '%s'" % login) self._login = login # To write use # with open(path, 'wb+') as file: file.write(sk.exportKey('PEM')) # To read use # with open(path, 'rb') as file: sk = RSA.importKey(file.read()) self._sk = sk_ self._ck = ck_ @property def login(self): """ Return the User's login, a valid file name. """ return self._login @property def sk_(self): """ Return the public part of the RSA key used for digital sigs. """ return self._sk @property def ck_(self): """ Return the public part of the RSA key used for encryption. """ return self._ck def __str__(self): return "NOT IMPLEMENTED: User.__str__()" class PubUser(_PubUser): """ The public view of a User, one which conains no secret keys. """ @classmethod def create_from_user(cls, user): """ Replaces each private RSA key with its public part. """ return PubUser(user.login, user.sk_priv.publickey(), user.ck_priv.publickey()) def create_from_file(self, path): """ Parse the serialized PubUser object. """ raise NotImplementedError() class Committer(User): """ Specifies a Committer, a User which can commit changes to a content-keyed store. In addition to the attributes of a User, a Committer has a handle, a unique valid file name unique with the cluster of cooperating servers housing content-keyed data stores. """ START_LINE = '-----START DVCZ COMMITTER-----' END_LINE = '-----END DVCZ COMMITTER-----' def __init__(self, handle, login=os.environ['LOGNAME'], sk_priv=None, ck_priv=None, key_bits=2048): if not Project.valid_proj_name(handle): raise DvczError("'%s' is not a valid handle" % handle) super().__init__(login, sk_priv, ck_priv, key_bits) self._handle = handle @property def handle(self): """ Return the committer's handle, a valid name. """ return self._handle def __eq__(self, other): if not isinstance(other, Committer): return False return self._handle == other.handle and \ self._login == other.login and \ self._sk_priv == other.sk_priv and \ self._ck_priv == other.ck_priv def __str__(self): return """{0} {1} {2}{3} """.format(Committer.START_LINE, self.handle, super().__str__(), Committer.END_LINE) @classmethod def create_from_file(cls, path): """ Parse the serialized Committer object. """ with open(path, 'r') as file: text = file.read() return cls.create_from_string(text) @classmethod def create_from_string(cls, string): """ Parse the serialized Committer object. """ if not string: raise DvczError('empty string') # DEBUG # print("Committer.create_from_string: input is:\n%s" % string) # END strings = string.split('\n') while strings[-1] == '': strings = strings[:-1] return cls.create_from_string_array(strings) @classmethod def create_from_string_array(cls, strings): """ Parse the serialized Committer object from a list of strings. """ if not strings: raise DvczError("empty string array") line_count = len(strings) if line_count < 5: raise DvczError( "too few lines (%d) in Committer string array" % line_count) if strings[0] != cls.START_LINE: raise DvczError("found '%s' instead of '%s'" % ( strings[0], cls.START_LINE)) handle = strings[1] if strings[-1] != cls.END_LINE: raise DvczError("found '%s' instead of '%s'" % ( strings[-1], cls.END_LINE)) user = User.create_from_string_array(strings[2:-1]) return Committer(handle, user.login, user.sk_priv, user.ck_priv, user.key_bits) class PubCommitter(_PubUser): """ The public view of a Committer, one which contains no secret keys. """ def __init__(self, handle, login=os.environ['LOGNAME'], sk_=None, ck_=None): if not Project.valid_proj_name(handle): raise DvczError("'%s' is not a valid handle" % handle) super().__init__(login, sk_, ck_) self._handle = handle
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """BERT finetuning runner.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import collections import csv import os import modeling import optimization import tokenization import tensorflow as tf flags = tf.flags FLAGS = flags.FLAGS ## UAI Train related ''' Default work dir. The working dir for the traing job, it will contains: /data/data --data_dir /data/output --output_dir Note: DO NOT CHANGE THIS VALUE UCloud Train Job Executor Will Set it Automatically ''' flags.DEFINE_string("work_dir", "/data", "Default work path") ''' Default data path used in Training, all data will be downloaded into this path Please use data in this path as input for Training Note: DO NOT CHANGE THIS VALUE UCloud Train Job Executor Will Set it Automatically ''' #flags.DEFINE_string("data_dir", "/data/data", "Default data path") ''' Default output path used in Training, files in this path will be uploaded to UFile after training finished. You can also assume your checkpoint files inside output_path (If you provided in the UCloud console), files will also be downloaded into this path befor Training start Note: DO NOT CHANGE THIS VALUE UCloud Train Job Executor Will Set it Automatically ''' #flags.DEFINE_string("output_dir", "/data/output", "Default output path") ''' Default tensorboard output path used in Training, iles in this path will be uploaded to UFile after training finished. This dir is same as output_dir Note: DO NOT CHANGE THIS VALUE UCloud Train Job Executor Will Set it Automatically ''' flags.DEFINE_string("log_dir", "/data/output", "Default log path") ''' Define num_gpus for training Note: DO NOT CHANGE THIS VALUE UCloud Train Job Executor Will Set it Automatically ''' flags.DEFINE_integer("num_gpus", 0, "Num of avaliable gpus") ## Required parameters flags.DEFINE_string( "data_dir", None, "The input data dir. Should contain the .tsv files (or other data files) " "for the task.") flags.DEFINE_string( "bert_config_file", None, "The config json file corresponding to the pre-trained BERT model. " "This specifies the model architecture.") flags.DEFINE_string("task_name", None, "The name of the task to train.") flags.DEFINE_string("vocab_file", None, "The vocabulary file that the BERT model was trained on.") flags.DEFINE_string( "output_dir", None, "The output directory where the model checkpoints will be written.") ## Other parameters flags.DEFINE_string( "init_checkpoint", None, "Initial checkpoint (usually from a pre-trained BERT model).") flags.DEFINE_bool( "do_lower_case", True, "Whether to lower case the input text. Should be True for uncased " "models and False for cased models.") flags.DEFINE_integer( "max_seq_length", 128, "The maximum total input sequence length after WordPiece tokenization. " "Sequences longer than this will be truncated, and sequences shorter " "than this will be padded.") flags.DEFINE_bool("do_train", False, "Whether to run training.") flags.DEFINE_bool("do_eval", False, "Whether to run eval on the dev set.") flags.DEFINE_bool( "do_predict", False, "Whether to run the model in inference mode on the test set.") flags.DEFINE_integer("train_batch_size", 32, "Total batch size for training.") flags.DEFINE_integer("eval_batch_size", 8, "Total batch size for eval.") flags.DEFINE_integer("predict_batch_size", 8, "Total batch size for predict.") flags.DEFINE_float("learning_rate", 5e-5, "The initial learning rate for Adam.") flags.DEFINE_float("num_train_epochs", 3.0, "Total number of training epochs to perform.") flags.DEFINE_float( "warmup_proportion", 0.1, "Proportion of training to perform linear learning rate warmup for. " "E.g., 0.1 = 10% of training.") flags.DEFINE_integer("save_checkpoints_steps", 1000, "How often to save the model checkpoint.") flags.DEFINE_integer("iterations_per_loop", 1000, "How many steps to make in each estimator call.") flags.DEFINE_bool("use_tpu", False, "Whether to use TPU or GPU/CPU.") tf.flags.DEFINE_string( "tpu_name", None, "The Cloud TPU to use for training. This should be either the name " "used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 " "url.") tf.flags.DEFINE_string( "tpu_zone", None, "[Optional] GCE zone where the Cloud TPU is located in. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string( "gcp_project", None, "[Optional] Project name for the Cloud TPU-enabled project. If not " "specified, we will attempt to automatically detect the GCE project from " "metadata.") tf.flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.") flags.DEFINE_integer( "num_tpu_cores", 8, "Only used if `use_tpu` is True. Total number of TPU cores to use.") class InputExample(object): """A single training/test example for simple sequence classification.""" def __init__(self, guid, text_a, text_b=None, label=None): """Constructs a InputExample. Args: guid: Unique id for the example. text_a: string. The untokenized text of the first sequence. For single sequence tasks, only this sequence must be specified. text_b: (Optional) string. The untokenized text of the second sequence. Only must be specified for sequence pair tasks. label: (Optional) string. The label of the example. This should be specified for train and dev examples, but not for test examples. """ self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class PaddingInputExample(object): """Fake example so the num input examples is a multiple of the batch size. When running eval/predict on the TPU, we need to pad the number of examples to be a multiple of the batch size, because the TPU requires a fixed batch size. The alternative is to drop the last batch, which is bad because it means the entire output data won't be generated. We use this class instead of `None` because treating `None` as padding battches could cause silent errors. """ class InputFeatures(object): """A single set of features of data.""" def __init__(self, input_ids, input_mask, segment_ids, label_id, is_real_example=True): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.is_real_example = is_real_example class DataProcessor(object): """Base class for data converters for sequence classification data sets.""" def get_train_examples(self, data_dir): """Gets a collection of `InputExample`s for the train set.""" raise NotImplementedError() def get_dev_examples(self, data_dir): """Gets a collection of `InputExample`s for the dev set.""" raise NotImplementedError() def get_test_examples(self, data_dir): """Gets a collection of `InputExample`s for prediction.""" raise NotImplementedError() def get_labels(self): """Gets the list of labels for this data set.""" raise NotImplementedError() @classmethod def _read_tsv(cls, input_file, quotechar=None): """Reads a tab separated value file.""" with tf.gfile.Open(input_file, "r") as f: reader = csv.reader(f, delimiter="\t", quotechar=quotechar) lines = [] for line in reader: lines.append(line) return lines class XnliProcessor(DataProcessor): """Processor for the XNLI data set.""" def __init__(self): self.language = "zh" def get_train_examples(self, data_dir): """See base class.""" lines = self._read_tsv( os.path.join(data_dir, "multinli", "multinli.train.%s.tsv" % self.language)) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "train-%d" % (i) text_a = tokenization.convert_to_unicode(line[0]) text_b = tokenization.convert_to_unicode(line[1]) label = tokenization.convert_to_unicode(line[2]) if label == tokenization.convert_to_unicode("contradictory"): label = tokenization.convert_to_unicode("contradiction") examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_dev_examples(self, data_dir): """See base class.""" lines = self._read_tsv(os.path.join(data_dir, "xnli.dev.tsv")) examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "dev-%d" % (i) language = tokenization.convert_to_unicode(line[0]) if language != tokenization.convert_to_unicode(self.language): continue text_a = tokenization.convert_to_unicode(line[6]) text_b = tokenization.convert_to_unicode(line[7]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] class MnliProcessor(DataProcessor): """Processor for the MultiNLI data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev_matched.tsv")), "dev_matched") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test_matched.tsv")), "test") def get_labels(self): """See base class.""" return ["contradiction", "entailment", "neutral"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, tokenization.convert_to_unicode(line[0])) text_a = tokenization.convert_to_unicode(line[8]) text_b = tokenization.convert_to_unicode(line[9]) if set_type == "test": label = "contradiction" else: label = tokenization.convert_to_unicode(line[-1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class MrpcProcessor(DataProcessor): """Processor for the MRPC data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): if i == 0: continue guid = "%s-%s" % (set_type, i) text_a = tokenization.convert_to_unicode(line[3]) text_b = tokenization.convert_to_unicode(line[4]) if set_type == "test": label = "0" else: label = tokenization.convert_to_unicode(line[0]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)) return examples class ColaProcessor(DataProcessor): """Processor for the CoLA data set (GLUE version).""" def get_train_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "train.tsv")), "train") def get_dev_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev") def get_test_examples(self, data_dir): """See base class.""" return self._create_examples( self._read_tsv(os.path.join(data_dir, "test.tsv")), "test") def get_labels(self): """See base class.""" return ["0", "1"] def _create_examples(self, lines, set_type): """Creates examples for the training and dev sets.""" examples = [] for (i, line) in enumerate(lines): # Only the test set has a header if set_type == "test" and i == 0: continue guid = "%s-%s" % (set_type, i) if set_type == "test": text_a = tokenization.convert_to_unicode(line[1]) label = "0" else: text_a = tokenization.convert_to_unicode(line[3]) label = tokenization.convert_to_unicode(line[1]) examples.append( InputExample(guid=guid, text_a=text_a, text_b=None, label=label)) return examples def convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer): """Converts a single `InputExample` into a single `InputFeatures`.""" if isinstance(example, PaddingInputExample): return InputFeatures( input_ids=[0] * max_seq_length, input_mask=[0] * max_seq_length, segment_ids=[0] * max_seq_length, label_id=0, is_real_example=False) label_map = {} for (i, label) in enumerate(label_list): label_map[label] = i tokens_a = tokenizer.tokenize(example.text_a) tokens_b = None if example.text_b: tokens_b = tokenizer.tokenize(example.text_b) if tokens_b: # Modifies `tokens_a` and `tokens_b` in place so that the total # length is less than the specified length. # Account for [CLS], [SEP], [SEP] with "- 3" _truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3) else: # Account for [CLS] and [SEP] with "- 2" if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens = [] segment_ids = [] tokens.append("[CLS]") segment_ids.append(0) for token in tokens_a: tokens.append(token) segment_ids.append(0) tokens.append("[SEP]") segment_ids.append(0) if tokens_b: for token in tokens_b: tokens.append(token) segment_ids.append(1) tokens.append("[SEP]") segment_ids.append(1) input_ids = tokenizer.convert_tokens_to_ids(tokens) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. input_mask = [1] * len(input_ids) # Zero-pad up to the sequence length. while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) assert len(input_ids) == max_seq_length assert len(input_mask) == max_seq_length assert len(segment_ids) == max_seq_length label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join( [tokenization.printable_text(x) for x in tokens])) tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids])) tf.logging.info("label: %s (id = %d)" % (example.label, label_id)) feature = InputFeatures( input_ids=input_ids, input_mask=input_mask, segment_ids=segment_ids, label_id=label_id, is_real_example=True) return feature def file_based_convert_examples_to_features( examples, label_list, max_seq_length, tokenizer, output_file): """Convert a set of `InputExample`s to a TFRecord file.""" writer = tf.python_io.TFRecordWriter(output_file) for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) def create_int_feature(values): f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values))) return f features = collections.OrderedDict() features["input_ids"] = create_int_feature(feature.input_ids) features["input_mask"] = create_int_feature(feature.input_mask) features["segment_ids"] = create_int_feature(feature.segment_ids) features["label_ids"] = create_int_feature([feature.label_id]) features["is_real_example"] = create_int_feature( [int(feature.is_real_example)]) tf_example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(tf_example.SerializeToString()) writer.close() def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" name_to_features = { "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] # For training, we want a lot of parallel reading and shuffling. # For eval, we want no shuffling and parallel reading doesn't matter. d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.apply( tf.contrib.data.map_and_batch( lambda record: _decode_record(record, name_to_features), batch_size=batch_size, drop_remainder=drop_remainder)) return d return input_fn def _truncate_seq_pair(tokens_a, tokens_b, max_length): """Truncates a sequence pair in place to the maximum length.""" # This is a simple heuristic which will always truncate the longer sequence # one token at a time. This makes more sense than truncating an equal percent # of tokens from each, since if one sequence is very short then each token # that's truncated likely contains more information than a longer sequence. while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def create_model(bert_config, is_training, input_ids, input_mask, segment_ids, labels, num_labels, use_one_hot_embeddings): """Creates a classification model.""" model = modeling.BertModel( config=bert_config, is_training=is_training, input_ids=input_ids, input_mask=input_mask, token_type_ids=segment_ids, use_one_hot_embeddings=use_one_hot_embeddings) # In the demo, we are doing a simple classification task on the entire # segment. # # If you want to use the token-level output, use model.get_sequence_output() # instead. output_layer = model.get_pooled_output() hidden_size = output_layer.shape[-1].value output_weights = tf.get_variable( "output_weights", [num_labels, hidden_size], initializer=tf.truncated_normal_initializer(stddev=0.02)) output_bias = tf.get_variable( "output_bias", [num_labels], initializer=tf.zeros_initializer()) with tf.variable_scope("loss"): if is_training: # I.e., 0.1 dropout output_layer = tf.nn.dropout(output_layer, keep_prob=0.9) logits = tf.matmul(output_layer, output_weights, transpose_b=True) logits = tf.nn.bias_add(logits, output_bias) probabilities = tf.nn.softmax(logits, axis=-1) log_probs = tf.nn.log_softmax(logits, axis=-1) one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32) per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss) return (loss, per_example_loss, logits, probabilities) def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate, num_train_steps, num_warmup_steps, use_tpu, use_one_hot_embeddings): """Returns `model_fn` closure for TPUEstimator.""" def model_fn(features, labels, mode, params): # pylint: disable=unused-argument """The `model_fn` for TPUEstimator.""" tf.logging.info("*** Features ***") for name in sorted(features.keys()): tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape)) input_ids = features["input_ids"] input_mask = features["input_mask"] segment_ids = features["segment_ids"] label_ids = features["label_ids"] is_real_example = None if "is_real_example" in features: is_real_example = tf.cast(features["is_real_example"], dtype=tf.float32) else: is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32) is_training = (mode == tf.estimator.ModeKeys.TRAIN) (total_loss, per_example_loss, logits, probabilities) = create_model( bert_config, is_training, input_ids, input_mask, segment_ids, label_ids, num_labels, use_one_hot_embeddings) tvars = tf.trainable_variables() initialized_variable_names = {} scaffold_fn = None if init_checkpoint: (assignment_map, initialized_variable_names ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold else: tf.train.init_from_checkpoint(init_checkpoint, assignment_map) tf.logging.info("**** Trainable Variables ****") for var in tvars: init_string = "" if var.name in initialized_variable_names: init_string = ", *INIT_FROM_CKPT*" tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape, init_string) output_spec = None if mode == tf.estimator.ModeKeys.TRAIN: train_op = optimization.create_optimizer( total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, train_op=train_op, scaffold_fn=scaffold_fn) elif mode == tf.estimator.ModeKeys.EVAL: def metric_fn(per_example_loss, label_ids, logits, is_real_example): predictions = tf.argmax(logits, axis=-1, output_type=tf.int32) accuracy = tf.metrics.accuracy( labels=label_ids, predictions=predictions, weights=is_real_example) loss = tf.metrics.mean(values=per_example_loss, weights=is_real_example) return { "eval_accuracy": accuracy, "eval_loss": loss, } eval_metrics = (metric_fn, [per_example_loss, label_ids, logits, is_real_example]) output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, loss=total_loss, eval_metrics=eval_metrics, scaffold_fn=scaffold_fn) else: output_spec = tf.contrib.tpu.TPUEstimatorSpec( mode=mode, predictions={"probabilities": probabilities}, scaffold_fn=scaffold_fn) return output_spec return model_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def input_fn_builder(features, seq_length, is_training, drop_remainder): """Creates an `input_fn` closure to be passed to TPUEstimator.""" all_input_ids = [] all_input_mask = [] all_segment_ids = [] all_label_ids = [] for feature in features: all_input_ids.append(feature.input_ids) all_input_mask.append(feature.input_mask) all_segment_ids.append(feature.segment_ids) all_label_ids.append(feature.label_id) def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] num_examples = len(features) # This is for demo purposes and does NOT scale to large data sets. We do # not use Dataset.from_generator() because that uses tf.py_func which is # not TPU compatible. The right way to load data is with TFRecordReader. d = tf.data.Dataset.from_tensor_slices({ "input_ids": tf.constant( all_input_ids, shape=[num_examples, seq_length], dtype=tf.int32), "input_mask": tf.constant( all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32), "label_ids": tf.constant(all_label_ids, shape=[num_examples], dtype=tf.int32), }) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) d = d.batch(batch_size=batch_size, drop_remainder=drop_remainder) return d return input_fn # This function is not used by this file but is still used by the Colab and # people who depend on it. def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): """Convert a set of `InputExample`s to a list of `InputFeatures`.""" features = [] for (ex_index, example) in enumerate(examples): if ex_index % 10000 == 0: tf.logging.info("Writing example %d of %d" % (ex_index, len(examples))) feature = convert_single_example(ex_index, example, label_list, max_seq_length, tokenizer) features.append(feature) return features def main(_): tf.logging.set_verbosity(tf.logging.INFO) processors = { "cola": ColaProcessor, "mnli": MnliProcessor, "mrpc": MrpcProcessor, "xnli": XnliProcessor, } tokenization.validate_case_matches_checkpoint(FLAGS.do_lower_case, FLAGS.init_checkpoint) if not FLAGS.do_train and not FLAGS.do_eval and not FLAGS.do_predict: raise ValueError( "At least one of `do_train`, `do_eval` or `do_predict' must be True.") bert_config = modeling.BertConfig.from_json_file(FLAGS.bert_config_file) if FLAGS.max_seq_length > bert_config.max_position_embeddings: raise ValueError( "Cannot use sequence length %d because the BERT model " "was only trained up to sequence length %d" % (FLAGS.max_seq_length, bert_config.max_position_embeddings)) tf.gfile.MakeDirs(FLAGS.output_dir) task_name = FLAGS.task_name.lower() if task_name not in processors: raise ValueError("Task not found: %s" % (task_name)) processor = processors[task_name]() label_list = processor.get_labels() tokenizer = tokenization.FullTokenizer( vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case) tpu_cluster_resolver = None if FLAGS.use_tpu and FLAGS.tpu_name: tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver( FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2 run_config = tf.contrib.tpu.RunConfig( cluster=tpu_cluster_resolver, master=FLAGS.master, model_dir=FLAGS.output_dir, save_checkpoints_steps=FLAGS.save_checkpoints_steps, tpu_config=tf.contrib.tpu.TPUConfig( iterations_per_loop=FLAGS.iterations_per_loop, num_shards=FLAGS.num_tpu_cores, per_host_input_for_training=is_per_host)) train_examples = None num_train_steps = None num_warmup_steps = None if FLAGS.do_train: train_examples = processor.get_train_examples(FLAGS.data_dir) num_train_steps = int( len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs) num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion) model_fn = model_fn_builder( bert_config=bert_config, num_labels=len(label_list), init_checkpoint=FLAGS.init_checkpoint, learning_rate=FLAGS.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmup_steps, use_tpu=FLAGS.use_tpu, use_one_hot_embeddings=FLAGS.use_tpu) # If TPU is not available, this will fall back to normal Estimator on CPU # or GPU. estimator = tf.contrib.tpu.TPUEstimator( use_tpu=FLAGS.use_tpu, model_fn=model_fn, config=run_config, train_batch_size=FLAGS.train_batch_size, eval_batch_size=FLAGS.eval_batch_size, predict_batch_size=FLAGS.predict_batch_size) if FLAGS.do_train: train_file = os.path.join(FLAGS.output_dir, "train.tf_record") file_based_convert_examples_to_features( train_examples, label_list, FLAGS.max_seq_length, tokenizer, train_file) tf.logging.info("***** Running training *****") tf.logging.info(" Num examples = %d", len(train_examples)) tf.logging.info(" Batch size = %d", FLAGS.train_batch_size) tf.logging.info(" Num steps = %d", num_train_steps) train_input_fn = file_based_input_fn_builder( input_file=train_file, seq_length=FLAGS.max_seq_length, is_training=True, drop_remainder=True) estimator.train(input_fn=train_input_fn, max_steps=num_train_steps) if FLAGS.do_eval: eval_examples = processor.get_dev_examples(FLAGS.data_dir) num_actual_eval_examples = len(eval_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. These do NOT count towards the metric (all tf.metrics # support a per-instance weight, and these get a weight of 0.0). while len(eval_examples) % FLAGS.eval_batch_size != 0: eval_examples.append(PaddingInputExample()) eval_file = os.path.join(FLAGS.output_dir, "eval.tf_record") file_based_convert_examples_to_features( eval_examples, label_list, FLAGS.max_seq_length, tokenizer, eval_file) tf.logging.info("***** Running evaluation *****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(eval_examples), num_actual_eval_examples, len(eval_examples) - num_actual_eval_examples) tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size) # This tells the estimator to run through the entire set. eval_steps = None # However, if running eval on the TPU, you will need to specify the # number of steps. if FLAGS.use_tpu: assert len(eval_examples) % FLAGS.eval_batch_size == 0 eval_steps = int(len(eval_examples) // FLAGS.eval_batch_size) eval_drop_remainder = True if FLAGS.use_tpu else False eval_input_fn = file_based_input_fn_builder( input_file=eval_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=eval_drop_remainder) result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps) output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt") with tf.gfile.GFile(output_eval_file, "w") as writer: tf.logging.info("***** Eval results *****") for key in sorted(result.keys()): tf.logging.info(" %s = %s", key, str(result[key])) writer.write("%s = %s\n" % (key, str(result[key]))) if FLAGS.do_predict: predict_examples = processor.get_test_examples(FLAGS.data_dir) num_actual_predict_examples = len(predict_examples) if FLAGS.use_tpu: # TPU requires a fixed batch size for all batches, therefore the number # of examples must be a multiple of the batch size, or else examples # will get dropped. So we pad with fake examples which are ignored # later on. while len(predict_examples) % FLAGS.predict_batch_size != 0: predict_examples.append(PaddingInputExample()) predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record") file_based_convert_examples_to_features(predict_examples, label_list, FLAGS.max_seq_length, tokenizer, predict_file) tf.logging.info("***** Running prediction*****") tf.logging.info(" Num examples = %d (%d actual, %d padding)", len(predict_examples), num_actual_predict_examples, len(predict_examples) - num_actual_predict_examples) tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size) predict_drop_remainder = True if FLAGS.use_tpu else False predict_input_fn = file_based_input_fn_builder( input_file=predict_file, seq_length=FLAGS.max_seq_length, is_training=False, drop_remainder=predict_drop_remainder) result = estimator.predict(input_fn=predict_input_fn) output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv") with tf.gfile.GFile(output_predict_file, "w") as writer: num_written_lines = 0 tf.logging.info("***** Predict results *****") for (i, prediction) in enumerate(result): probabilities = prediction["probabilities"] if i >= num_actual_predict_examples: break output_line = "\t".join( str(class_probability) for class_probability in probabilities) + "\n" writer.write(output_line) num_written_lines += 1 assert num_written_lines == num_actual_predict_examples if __name__ == "__main__": flags.mark_flag_as_required("data_dir") flags.mark_flag_as_required("task_name") flags.mark_flag_as_required("vocab_file") flags.mark_flag_as_required("bert_config_file") flags.mark_flag_as_required("output_dir") tf.app.run()
#!/usr/bin/env python # Copyright 2014 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import json import os import pipes import shutil import subprocess import sys script_dir = os.path.dirname(os.path.realpath(__file__)) chrome_src = os.path.abspath(os.path.join(script_dir, os.pardir)) SRC_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.insert(0, os.path.join(chrome_src, 'tools', 'gyp', 'pylib')) json_data_file = os.path.join(script_dir, 'win_toolchain.json') def SetEnvironmentAndGetRuntimeDllDirs(): """Sets up os.environ to use the depot_tools VS toolchain with gyp, and returns the location of the VS runtime DLLs so they can be copied into the output directory after gyp generation. """ vs2013_runtime_dll_dirs = None depot_tools_win_toolchain = \ bool(int(os.environ.get('DEPOT_TOOLS_WIN_TOOLCHAIN', '1'))) # When running on a non-Windows host, only do this if the SDK has explicitly # been downloaded before (in which case json_data_file will exist). if ((sys.platform in ('win32', 'cygwin') or os.path.exists(json_data_file)) and depot_tools_win_toolchain): if not os.path.exists(json_data_file): Update() with open(json_data_file, 'r') as tempf: toolchain_data = json.load(tempf) toolchain = toolchain_data['path'] version = toolchain_data['version'] win_sdk = toolchain_data.get('win_sdk') if not win_sdk: win_sdk = toolchain_data['win8sdk'] wdk = toolchain_data['wdk'] # TODO(scottmg): The order unfortunately matters in these. They should be # split into separate keys for x86 and x64. (See CopyVsRuntimeDlls call # below). http://crbug.com/345992 vs2013_runtime_dll_dirs = toolchain_data['runtime_dirs'] # We may set DEPOT_TOOLS_WIN_TOOLCHAIN = 2 in gn-standalone build if os.environ.get('DEPOT_TOOLS_WIN_TOOLCHAIN') != '2': os.environ['GYP_MSVS_OVERRIDE_PATH'] = toolchain os.environ['GYP_MSVS_VERSION'] = version # We need to make sure windows_sdk_path is set to the automated # toolchain values in GYP_DEFINES, but don't want to override any # otheroptions.express # values there. import gyp gyp_defines_dict = gyp.NameValueListToDict(gyp.ShlexEnv('GYP_DEFINES')) gyp_defines_dict['windows_sdk_path'] = win_sdk os.environ['GYP_DEFINES'] = ' '.join('%s=%s' % (k, pipes.quote(str(v))) for k, v in gyp_defines_dict.iteritems()) os.environ['WINDOWSSDKDIR'] = win_sdk os.environ['WDK_DIR'] = wdk # Include the VS runtime in the PATH in case it's not machine-installed. runtime_path = ';'.join(vs2013_runtime_dll_dirs) os.environ['PATH'] = runtime_path + ';' + os.environ['PATH'] return vs2013_runtime_dll_dirs def _VersionNumber(): """Gets the standard version number ('120', '140', etc.) based on GYP_MSVS_VERSION.""" if os.environ['GYP_MSVS_VERSION'] == '2013': return '120' elif os.environ['GYP_MSVS_VERSION'] == '2015': return '140' else: raise ValueError('Unexpected GYP_MSVS_VERSION') def _CopyRuntimeImpl(target, source): """Copy |source| to |target| if it doesn't already exist or if it needs to be updated. """ if (os.path.isdir(os.path.dirname(target)) and (not os.path.isfile(target) or os.stat(target).st_mtime != os.stat(source).st_mtime)): print 'Copying %s to %s...' % (source, target) if os.path.exists(target): os.unlink(target) shutil.copy2(source, target) def _CopyRuntime2013(target_dir, source_dir, dll_pattern): """Copy both the msvcr and msvcp runtime DLLs, only if the target doesn't exist, but the target directory does exist.""" for file_part in ('p', 'r'): dll = dll_pattern % file_part target = os.path.join(target_dir, dll) source = os.path.join(source_dir, dll) _CopyRuntimeImpl(target, source) def _CopyRuntime2015(target_dir, source_dir, dll_pattern): """Copy both the msvcp and vccorlib runtime DLLs, only if the target doesn't exist, but the target directory does exist.""" for file_part in ('msvcp', 'vccorlib'): dll = dll_pattern % file_part target = os.path.join(target_dir, dll) source = os.path.join(source_dir, dll) _CopyRuntimeImpl(target, source) def CopyVsRuntimeDlls(output_dir, runtime_dirs): """Copies the VS runtime DLLs from the given |runtime_dirs| to the output directory so that even if not system-installed, built binaries are likely to be able to run. This needs to be run after gyp has been run so that the expected target output directories are already created. """ x86, x64 = runtime_dirs out_debug = os.path.join(output_dir, 'Debug') out_debug_nacl64 = os.path.join(output_dir, 'Debug', 'x64') out_release = os.path.join(output_dir, 'Release') out_release_nacl64 = os.path.join(output_dir, 'Release', 'x64') out_debug_x64 = os.path.join(output_dir, 'Debug_x64') out_release_x64 = os.path.join(output_dir, 'Release_x64') if os.path.exists(out_debug) and not os.path.exists(out_debug_nacl64): os.makedirs(out_debug_nacl64) if os.path.exists(out_release) and not os.path.exists(out_release_nacl64): os.makedirs(out_release_nacl64) if os.environ.get('GYP_MSVS_VERSION') == '2015': _CopyRuntime2015(out_debug, x86, '%s140d.dll') _CopyRuntime2015(out_release, x86, '%s140.dll') _CopyRuntime2015(out_debug_x64, x64, '%s140d.dll') _CopyRuntime2015(out_release_x64, x64, '%s140.dll') _CopyRuntime2015(out_debug_nacl64, x64, '%s140d.dll') _CopyRuntime2015(out_release_nacl64, x64, '%s140.dll') else: # VS2013 is the default. _CopyRuntime2013(out_debug, x86, 'msvc%s120d.dll') _CopyRuntime2013(out_release, x86, 'msvc%s120.dll') _CopyRuntime2013(out_debug_x64, x64, 'msvc%s120d.dll') _CopyRuntime2013(out_release_x64, x64, 'msvc%s120.dll') _CopyRuntime2013(out_debug_nacl64, x64, 'msvc%s120d.dll') _CopyRuntime2013(out_release_nacl64, x64, 'msvc%s120.dll') # Copy the PGO runtime library to the release directories. if os.environ.get('GYP_MSVS_OVERRIDE_PATH'): pgo_x86_runtime_dir = os.path.join(os.environ.get('GYP_MSVS_OVERRIDE_PATH'), 'VC', 'bin') pgo_x64_runtime_dir = os.path.join(pgo_x86_runtime_dir, 'amd64') pgo_runtime_dll = 'pgort' + _VersionNumber() + '.dll' source_x86 = os.path.join(pgo_x86_runtime_dir, pgo_runtime_dll) if os.path.exists(source_x86): _CopyRuntimeImpl(os.path.join(out_release, pgo_runtime_dll), source_x86) source_x64 = os.path.join(pgo_x64_runtime_dir, pgo_runtime_dll) if os.path.exists(source_x64): _CopyRuntimeImpl(os.path.join(out_release_x64, pgo_runtime_dll), source_x64) def CopyDlls(target_dir, configuration, target_cpu): """Copy the VS runtime DLLs into the requested directory as needed. configuration is one of 'Debug' or 'Release'. target_cpu is one of 'x86' or 'x64'. The debug configuration gets both the debug and release DLLs; the release config only the latter. """ vs2013_runtime_dll_dirs = SetEnvironmentAndGetRuntimeDllDirs() if not vs2013_runtime_dll_dirs: return x64_runtime, x86_runtime = vs2013_runtime_dll_dirs runtime_dir = x64_runtime if target_cpu == 'x64' else x86_runtime _CopyRuntime2013( target_dir, runtime_dir, 'msvc%s' + _VersionNumber() + '.dll') if configuration == 'Debug': _CopyRuntime2013( target_dir, runtime_dir, 'msvc%s' + _VersionNumber() + 'd.dll') def _GetDesiredVsToolchainHashes(): """Load a list of SHA1s corresponding to the toolchains that we want installed to build with.""" if os.environ.get('GYP_MSVS_VERSION') == '2015': return ['49ae4b60d898182fc3f521c2fcda82c453915011'] else: # Default to VS2013. return ['ee7d718ec60c2dc5d255bbe325909c2021a7efef'] def Update(force=False): """Requests an update of the toolchain to the specific hashes we have at this revision. The update outputs a .json of the various configuration information required to pass to gyp which we use in |GetToolchainDir()|. """ if force != False and force != '--force': print >>sys.stderr, 'Unknown parameter "%s"' % force return 1 if force == '--force' or os.path.exists(json_data_file): force = True depot_tools_win_toolchain = \ bool(int(os.environ.get('DEPOT_TOOLS_WIN_TOOLCHAIN', '1'))) if ((sys.platform in ('win32', 'cygwin') or force) and depot_tools_win_toolchain): import find_depot_tools depot_tools_path = find_depot_tools.add_depot_tools_to_path() get_toolchain_args = [ sys.executable, os.path.join(depot_tools_path, 'win_toolchain', 'get_toolchain_if_necessary.py'), '--output-json', json_data_file, ] + _GetDesiredVsToolchainHashes() if force: get_toolchain_args.append('--force') subprocess.check_call(get_toolchain_args) return 0 def GetToolchainDir(): """Gets location information about the current toolchain (must have been previously updated by 'update'). This is used for the GN build.""" runtime_dll_dirs = SetEnvironmentAndGetRuntimeDllDirs() # If WINDOWSSDKDIR is not set, search the default SDK path and set it. if not 'WINDOWSSDKDIR' in os.environ: default_sdk_path = 'C:\\Program Files (x86)\\Windows Kits\\8.1' if os.path.isdir(default_sdk_path): os.environ['WINDOWSSDKDIR'] = default_sdk_path print '''vs_path = "%s" sdk_path = "%s" vs_version = "%s" wdk_dir = "%s" runtime_dirs = "%s" ''' % ( os.environ['GYP_MSVS_OVERRIDE_PATH'], os.environ['WINDOWSSDKDIR'], os.environ['GYP_MSVS_VERSION'], os.environ.get('WDK_DIR', ''), ';'.join(runtime_dll_dirs or ['None'])) def main(): commands = { 'update': Update, 'get_toolchain_dir': GetToolchainDir, 'copy_dlls': CopyDlls, } if len(sys.argv) < 2 or sys.argv[1] not in commands: print >>sys.stderr, 'Expected one of: %s' % ', '.join(commands) return 1 return commands[sys.argv[1]](*sys.argv[2:]) if __name__ == '__main__': sys.exit(main())
# Copyright (c) 2013 The SAYCBridge Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from z3b import enum from core import suit # The ordering of these values does not matter. We only use Enum so that # python throws an lookup error when we typo the annotation name. annotations = enum.Enum( "Opening", # FIXME: It's a bit odd that 1C, 1S, 2N can end up with both # OneLevelSuitOpening and NotrumpSystemsOn. # e.g. Does ResponderJumpShift apply after 2N? "OneLevelSuitOpening", # 1-level suited response opening book. "StrongTwoClubOpening", # 2C response opening book. "NotrumpSystemsOn", # NT response opening book. "StandardOvercall", # Overcall opening book. "Preemptive", # Preemptive opening book. "BidClubs", "BidDiamonds", "BidHearts", "BidSpades", "LimitRaise", "OpenerReverse", # Not all Cappelletti bids are artificial, some can be treated as to-play. "Cappelletti", # Quantitiative 4N is odd, but not artificial. :) "QuantitativeFourNotrumpJump", "Artificial", # NOTE: RuleCompiler._compile_annotations will automatically imply # "Artificial" when encountering any annotations > Artificial. # This is a hack to avoid "forgot to add Artifical" bugs. "Blackwood", "FeatureRequest", "FourthSuitForcing", "Gerber", "Jacoby2N", "MichaelsCuebid", "MichaelsMinorRequest", "CappellettiMinorRequest", "NegativeDouble", "Stayman", "TakeoutDouble", "Transfer", "Unusual2N", "GrandSlamForce", ) # Used by RuleCompiler._compile_annotations. implies_artificial = set([value for value in annotations if value > annotations.Artificial]) def did_bid_annotation(suit): return ( annotations.BidClubs, annotations.BidDiamonds, annotations.BidHearts, annotations.BidSpades, )[suit.index] # FIXME: Consider adding a CallPrecondition and HistoryPrecondition subclasses # which could then easily be filtered to the front of the preconditions list # for faster matching, or asserting about unreachable call_names, etc. class Precondition(object): repr_name = None def __repr__(self): name = self.repr_name or self.__class__.__name__ return "%s(%s)" % (name, ", ".join(map(repr, self.repr_args))) @property def repr_args(self): return [] def fits(self, history, call): raise NotImplementedError class InvertedPrecondition(Precondition): repr_name = "Not" def __init__(self, precondition): self.precondition = precondition @property def repr_args(self): return [self.precondition] def fits(self, history, call): return not self.precondition.fits(history, call) class SummaryPrecondition(Precondition): def __init__(self, *preconditions): self.preconditions = preconditions @property def repr_args(self): return self.preconditions class EitherPrecondition(SummaryPrecondition): repr_name = "Either" def fits(self, history, call): return any(precondition.fits(history, call) for precondition in self.preconditions) class AndPrecondition(SummaryPrecondition): repr_name = "And" def fits(self, history, call): return all(precondition.fits(history, call) for precondition in self.preconditions) class NoOpening(Precondition): def fits(self, history, call): return annotations.Opening not in history.annotations class Opened(Precondition): def __init__(self, position): self.position = position @property def repr_args(self): return [self.position.key] def fits(self, history, call): return annotations.Opening in history.annotations_for_position(self.position) class TheyOpened(Precondition): def fits(self, history, call): return annotations.Opening in history.them.annotations # FIXME: Rename to NotrumpOpeningBook? class NotrumpSystemsOn(Precondition): def fits(self, history, call): return annotations.NotrumpSystemsOn in history.us.annotations class OneLevelSuitedOpeningBook(Precondition): def fits(self, history, call): return annotations.OneLevelSuitOpening in history.us.annotations class StrongTwoClubOpeningBook(Precondition): def fits(self, history, call): return annotations.StrongTwoClubOpening in history.us.annotations class HasBid(Precondition): def __init__(self, position): self.position = position @property def repr_args(self): return [self.position.key] def fits(self, history, call): for view in history.view_for(self.position).walk: if view.last_call and not view.last_call.is_pass(): return True return False class ForcedToBid(Precondition): def fits(self, history, call): # preconditions.py depends on forcing.py, but forcing.py needs to know annotations. from forcing import SAYCForcingOracle return SAYCForcingOracle().forced_to_bid(history) class IsGame(Precondition): def _game_level(self, strain): if strain in suit.MINORS: return 5 if strain in suit.MAJORS: return 4 return 3 def fits(self, history, call): return call.is_contract() and call.level == self._game_level(bid.strain) class LastBidWasBelowGame(IsGame): def fits(self, history, call): last_contract = history.last_contract return last_contract.level < self._game_level(last_contract.strain) class LastBidWasGameOrAbove(IsGame): def fits(self, history, call): last_contract = history.last_contract return last_contract.level >= self._game_level(last_contract.strain) class LastBidWasBelowSlam(Precondition): def fits(self, history, call): last_contract = history.last_contract return last_contract.level < 6 class LastBidHasAnnotation(Precondition): def __init__(self, position, annotation): self.position = position self.annotation = annotation # This assert is likely incompatible with module based development, but is nice for catching typos. assert self.annotation in annotations @property def repr_args(self): return [self.position.key, self.annotation.key] def fits(self, history, call): return self.annotation in history.view_for(self.position).annotations_for_last_call class LastBidHasStrain(Precondition): def __init__(self, position, strain_or_strains): self.position = position if strain_or_strains in suit.STRAINS: self.strains = [strain_or_strains] else: self.strains = strain_or_strains @property def repr_args(self): return [self.position.key, self.strains] def fits(self, history, call): last_call = history.view_for(self.position).last_call return last_call and last_call.strain in self.strains class LastBidHasSuit(Precondition): def __init__(self, position=None): self.position = position @property def repr_args(self): position_string = repr(self.position.key) if self.position else None return [position_string] def fits(self, history, call): last_call = history.last_contract if not self.position else history.view_for(self.position).last_call return last_call and last_call.strain in suit.SUITS class LastBidHasLevel(Precondition): def __init__(self, position, level): self.position = position self.level = level @property def repr_args(self): return [self.position.key, self.level] def fits(self, history, call): last_call = history.view_for(self.position).last_call return last_call and last_call.level == self.level class LastBidWas(Precondition): def __init__(self, position, call_name): self.position = position self.call_name = call_name @property def repr_args(self): return [self.position.key, self.call_name] def fits(self, history, call): last_call = history.view_for(self.position).last_call return last_call and last_call.name == self.call_name class RaiseOfPartnersLastSuit(Precondition): def fits(self, history, call): partner_last_call = history.partner.last_call if not partner_last_call or partner_last_call.strain not in suit.SUITS: return False return call.strain == partner_last_call.strain and history.partner.min_length(partner_last_call.strain) >= 3 class CueBid(Precondition): def __init__(self, position, use_first_suit=False): self.position = position self.use_first_suit = use_first_suit def fits(self, history, call): if self.use_first_suit: target_call = None for view in history.view_for(self.position).walk: target_call = view.last_call else: target_call = history.view_for(self.position).last_call if not target_call or target_call.strain not in suit.SUITS: return False return call.strain == target_call.strain and history.view_for(self.position).min_length(target_call.strain) >= 3 class SuitLowerThanMyLastSuit(Precondition): def fits(self, history, call): if call.strain not in suit.SUITS: return False last_call = history.me.last_call if last_call.strain not in suit.SUITS: return False return call.strain < last_call.strain class RebidSameSuit(Precondition): def fits(self, history, call): if call.strain not in suit.SUITS: return False return history.me.last_call and call.strain == history.me.last_call.strain and call.strain in history.me.bid_suits class PartnerHasAtLeastLengthInSuit(Precondition): def __init__(self, length): self.length = length @property def repr_args(self): return [self.length] def fits(self, history, call): if call.strain not in suit.SUITS: return False return history.partner.min_length(call.strain) >= self.length class MaxShownLength(Precondition): def __init__(self, position, max_length, suit=None): self.position = position self.max_length = max_length self.suit = suit @property def repr_args(self): return [self.position.key, self.max_length, self.suit] def fits(self, history, call): strain = call.strain if self.suit is None else self.suit return strain in suit.SUITS and history.view_for(self.position).min_length(strain) <= self.max_length class DidBidSuit(Precondition): def __init__(self, position): self.position = position def fits(self, history, call): if call.strain not in suit.SUITS: return False return history.is_bid_suit(call.strain, self.position) class UnbidSuit(Precondition): def fits(self, history, call): if call.strain not in suit.SUITS: return False return history.is_unbid_suit(call.strain) class SuitUnbidByOpponents(Precondition): def fits(self, history, call): if call.strain not in suit.SUITS: return False return call.strain in history.them.unbid_suits class UnbidSuitCountRange(Precondition): def __init__(self, lower, upper): self.lower = lower self.upper = upper @property def repr_args(self): return [self.lower, self.upper] def fits(self, history, call): count = len(history.unbid_suits) return count >= self.lower and count <= self.upper class Strain(Precondition): def __init__(self, strain): self.strain = strain @property def repr_args(self): return [self.strain] def fits(self, history, call): return call.strain == self.strain class Level(Precondition): def __init__(self, level): self.level = level @property def repr_args(self): return [self.level] def fits(self, history, call): if call.is_double(): return history.last_contract.level == self.level return call.is_contract() and call.level == self.level class MaxLevel(Precondition): def __init__(self, max_level): self.max_level = max_level @property def repr_args(self): return [self.max_level] def fits(self, history, call): if call.is_double(): return history.last_contract.level <= self.max_level return call.is_contract() and call.level <= self.max_level class HaveFit(Precondition): def fits(self, history, call): for strain in suit.SUITS: if history.partner.min_length(strain) + history.me.min_length(strain) >= 8: return True return False class Jump(Precondition): def __init__(self, exact_size=None): self.exact_size = exact_size @property def repr_args(self): return [self.exact_size] def _jump_size(self, last_call, call): if call.strain <= last_call.strain: # If the new suit is less than the last bid one, than we need to change more than one level for it to be a jump. return call.level - last_call.level - 1 # Otherwise any bid not at the current level is a jump. return call.level - last_call.level def fits(self, history, call): if call.is_pass(): return False if call.is_double() or call.is_redouble(): call = history.call_history.last_contract() last_call = self._last_call(history) if not last_call or not last_call.is_contract(): # If we don't have a previous bid to compare to, this can't be a jump. return False jump_size = self._jump_size(last_call, call) if self.exact_size is None: return jump_size != 0 return self.exact_size == jump_size def _last_call(self, history): raise NotImplementedError class JumpFromLastContract(Jump): def _last_call(self, history): return history.call_history.last_contract() class JumpFromMyLastBid(Jump): def _last_call(self, history): return history.me.last_call class JumpFromPartnerLastBid(Jump): def _last_call(self, history): return history.partner.last_call class NotJumpFromLastContract(JumpFromLastContract): def __init__(self): JumpFromLastContract.__init__(self, exact_size=0) class NotJumpFromMyLastBid(JumpFromMyLastBid): def __init__(self): JumpFromMyLastBid.__init__(self, exact_size=0) class NotJumpFromPartnerLastBid(JumpFromPartnerLastBid): def __init__(self): JumpFromPartnerLastBid.__init__(self, exact_size=0)
#! /usr/bin/env python import xbmc import xbmcgui import xbmcplugin import xbmcaddon from ConfigParser import SafeConfigParser from datetime import timedelta from datetime import datetime from urllib2 import urlopen import HTMLParser import urlparse import urllib2 import urllib import random import time import sys import os import re try: import json except ImportError: import simplejson as json class BDBase(object): """ Base class that outlines our BassDrive Plugin Components """ def __init__(self): # Load config.ini self.bd_config = SafeConfigParser() self.bd_config.read(os.path.join(os.path.dirname(__file__), "config.ini")) # Plugin Constants & Profile Path self.bd_addon = xbmcaddon.Addon(id=self.bd_config.get('plugin', 'id')) self.bd_ppath = xbmc.translatePath(self.bd_addon.getAddonInfo('profile')).decode('utf-8') self.bd_handle = int(sys.argv[1]) self.base_url = sys.argv[0] # Mode Arguments self.args = urlparse.parse_qs(sys.argv[2][1:]) self.mode = urlparse.parse_qs(sys.argv[2][1:]).get('mode', None) # Ensure our Cache directory exists self.cachedir = os.path.join(self.bd_ppath, 'cache') if not os.path.exists(self.cachedir): os.makedirs(self.cachedir) def log(self, msg): xbmc.log("[Bassdrive Plugin] %s" % (msg), xbmc.LOGNOTICE) def error(self, message): adname = self.bd_addon.getAddonInfo('name') xbmcgui.Dialog().ok(adname, message) def cache_file_expired(self, filepath, days=7): """ Super simple function that returns a boolean Args: days (int) The number of days old the file can be before its considdered expired filepath (str) Full filepath of our cache file Return: True if the cachefile is expired False if the cachefile is not expired, or file not exist """ self.log("Checking to see if `%s` cache file has expired" % filepath) if os.path.exists(filepath): tstamp = time.ctime(os.path.getmtime(filepath)) # There's an issue with .. I'm not 100% sure what. The datetime lib on stray versions of python? # http://forum.kodi.tv/showthread.php?tid=112916&pid=1212394#pid1212394 try: tstamp = datetime.strptime(tstamp, '%a %b %d %H:%M:%S %Y') except TypeError: tstamp = datetime.fromtimestamp(time.mktime(time.strptime(tstamp, '%a %b %d %H:%M:%S %Y'))) if tstamp > datetime.utcnow() + timedelta(days=days): self.log("Cache file %s has expired" % filepath) return True self.log("Cache file %s has NOT expired" % filepath) return False self.log("Cache file %s does not exist! Returning as if expired" % filepath) return True def load_cache_file(self, filepath): """ Load a json cache file and return its object Args: file (str) Full filepath of our cache file ReturnL object Loaded object False Error/Exception """ self.log("Loading cache file %s" % filepath) try: with open(filepath) as handle: cache = json.load(handle) return cache except Exception as e: self.log(e.message) return False class BassDrive(BDBase): def __init__(self): # Initialize our parent super(self.__class__, self).__init__() # Cache file infos self.cachefile = self.bd_config.get('cachefiles', 'streams') self.arcachefile = self.bd_config.get('cachefiles', 'archives') self.cache_streams_path = os.path.join(self.cachedir, self.cachefile) self.arcache_streams_path = os.path.join(self.cachedir, self.arcachefile) def build_xbmc_url(self, url): """ Given a dict, urlencode it to give us a 'path' that XBMC will understand """ return self.base_url + '?' + urllib.urlencode(url) def update_streams(self): """ Get all of the m3u files from BassDrive parse them shove them into our json cache, with format { '32k' : [ url1, url2, ... ], '56k' : [ url1, url2, ... ], '128k' : [ url1, url2, ... ] } """ def get_m3us(url): try: data = urlopen(url) return [line.strip() for line in data] except Exception as e: self.log(e.message) self.error(e.message) return False self.log("Pulling m3u's from bassdrive.com and building our stream cache") streams = {} for key, url in self.bd_config.items('streams'): urls = get_m3us(url) if not urls: continue streams[key] = urls self.log("Writing stream cache to file: %s" % self.cache_streams_path) with open(self.cache_streams_path, 'w+') as handle: json.dump(streams, handle) return True def update_archives(self): """ - Parse bassdrive archives - Build dict of structure - Write json to disk The datastructure returned looks like this { u'1 - Monday': { u'Deep In The Jungle - Illusionist and Darm': { '_files': [u'[2014.01.20] Deep In The Jungle - The Illusionist and Darm.mp3', ... ] }, u'Fokuz Recordings Show': { '_files': [u'[2016.01.11] Fokuz Recordings Show - SATL.mp3', ... ] ] ... u'2 - Tuesday': { ... ... } We opted to go with a data structure like this as it gives us quite a bit of flexibility Additionally, it allows us to track any level and mix of files and folders in a logical and easily accessed format. The tl;dr version is that _all_ key names are folder names, with the exception of the '_files' keyname, which is an explicit list of files contained in that folder. In the example structure above, '_files' under the 'Deep In the Jungle' key are all of the files contained in the 'Deel In The Jungle' folder. """ self.log("Building object of all archives from archives.bassdrive.com and writing cache file") def recursive_fetch(url): results = {} # We don't want to be going back upa level blacklisted_labels = [ 'Parent Directory' ] # Regex that we're searching for in our html anchor_re = re.compile('<a href=\".*</a>') hrefs = re.compile('(?<=href=\"(?!http)(?!/\")).*(?=\">)') text = re.compile('(?<=\">).*(?=</a>)') pars = HTMLParser.HTMLParser() url = pars.unescape(url) urlpath = urllib2.urlopen(url) req_data = urlpath.read().decode('utf-8') # Get all of our named anchors anchors = anchor_re.findall(req_data) # Traverse our anchors / web structure for item in anchors: # separate href value from the label of the anchor and strip all leading/trailing whitespace try: url_path = re.search(hrefs, item).group(0).strip() url_label = re.search(text, item).group(0).strip() # Handle edge cases, like when nothing matches except: continue # Avoid infinite recursion if url_label in blacklisted_labels: continue # If the path doesn't end in a slash, it's a file if re.search('/$', url_path) is None: if not '_files' in results: results['_files'] = [] results['_files'].append(url_label) else: # Make our directory name .. not url encoded dir_name = urllib.unquote(url_path).replace("/", "") # Get this folders contents, and add a new folder to results if there is content in it dir_contents = recursive_fetch(url + url_path) if len(dir_contents) > 0: results[dir_name] = dir_contents return results # Doing the whole structure under the 'Archive' key is a short-cut for us, so our fetch method is simple results = {'Archives':recursive_fetch('http://archives.bassdrivearchive.com')} with open(self.arcache_streams_path, 'w+') as handle: json.dump(results, handle) def get_archives_display_page(self, foldername): """ Return a list that contains folders and files found in the foldername Params: foldername (list) The result of self.args['foldername'].split('/') encountered during self.run() This list is the key tree that gets us to the current folder we're looking at Return: list, in format as follows [ [file1, file2, file3], [foldername1, foldername2] ] """ """ Get the dict for the passed nested value eg: if we pass foldername = ['1 - Monday', 'Fokuz Recordings Show'] we'll get a dictionary of {'_files':[...]} back """ data = reduce(lambda d, k: d[k], foldername, self.load_cache_file(self.arcache_streams_path) ) ret = [[]] if '_files' in data: ret[0] = data['_files'] del(data['_files']) ret.append(data.keys()) return ret def get_stream_to_play(self, quality): """ Return a random URL for a given bitrate requested to play :param quality: string of bitrate we're after, as a keyname in our json cachefile :return str: A URL to be played :D """ self.log("Getting random %s stream to build 'playlist' with" % quality) cache = self.load_cache_file(self.cache_streams_path) return random.choice(cache[quality]) def get_archive_url(self, foldername, filename): """ Built a full URL to a file in the Archives Params: foldername (list) The result of self.args['foldername'].split('/') encountered during self.run() This list is the key tree that gets us to the current folder we're looking at filename (str) The actual filename we're after Return: str URL encoded string we can stream from directly """ if foldername[0] == 'Archives': del(foldername[0]) url = 'http://archives.bassdrivearchive.com/' + urllib.quote('/'.join(foldername) + '/' + filename) self.log('Built archive URL %s' % url) return url def maintenance_stream_cache(self): """ Convienience function we call from run() to keep run tidy Checks if our stream cache exists, if it needs to be updated, etc """ cachedays = int(self.bd_addon.getSetting("stream_cache_expiry_days")) # Ensure file exists / not expired. This returns as expired if the file doesn't exist! if self.cache_file_expired(filepath=self.cache_streams_path, days=cachedays) \ or self.bd_addon.getSetting("forceupdate") == "true": self.bd_addon.setSetting(id="forceupdate", value="false") self.log("Maintenance request to update stream cache") self.update_streams() return def maintenance_archive_cache(self): """ Convienience function we call from run() to keep run tidy Checks if our archives cache exists, if it needs to be updated, etc """ cachedays = int(self.bd_addon.getSetting("archives_cache_expiry_days")) # Ensure file exists / not expired. This returns as expired if the file doesn't exist! if self.cache_file_expired(filepath=self.arcache_streams_path, days=cachedays) \ or self.bd_addon.getSetting("archives_forceupdate") == "true": self.bd_addon.setSetting(id="archives_forceupdate", value="false") self.log("Maintenance request to update archive cache") self.update_archives() def run(self): self.log(self.args) # Check to see if our cache has expired self.maintenance_stream_cache() # List of values we're to display in the menu we're on directory_items = [] # We're at the top level menu # - Bassdrive @32k # - Bassdrive @56k # - Bassdrive @128k # - Archives if self.mode is None: # Build playable bitrate menu items for key, _x in self.bd_config.items('streams'): # This currently displays a menu item with a bound URL behind it # Ideally, we wouldn't generate a URL until the item was selected # This would allow multiple clicks to get multiple stream URLs, # basically letting you cycle through streams without having to reload # the bassdrive plugin url = self.get_stream_to_play(key) # Generate a list item for Kodi li = xbmcgui.ListItem(label="Bassdrive @ %s" % key, thumbnailImage="%s" % os.path.join(self.bd_ppath, 'icon.png')) # Set our stream quality, per Bassdrives website li.setProperty("mimetype", "audio/aac") if key == '128k': li.setProperty("mimetype", "audio/mpeg") # Set player info li.setInfo(type="Music", infoLabels={"Genre": "Drum & Bass", "Comment": "World Wide Drum & Bass", "Size": int(key[:-1]) * 1024}) li.setProperty("IsPlayable", "true") isFolder=False directory_items.append((url, li, isFolder)) xbmcplugin.addDirectoryItem(handle=self.bd_handle, url=url, listitem=li, isFolder=False) # Add in our 'Archives' folder menu item archive_url = self.build_xbmc_url({'mode': 'folder', 'foldername': 'Archives'}) test = xbmcgui.ListItem(label="Archives") xbmcplugin.addDirectoryItem(handle=self.bd_handle, url=archive_url, listitem=test, isFolder=True) xbmcplugin.endOfDirectory(self.bd_handle, succeeded=True) # We're in a sub-menu elif self.mode[0] == 'folder': # Handle our archive cache, since we're now in it self.maintenance_archive_cache() # The path of the directory that called for this folder relative to the pugins root (./) calling_folder = self.args['foldername'][0] # Create a list of the full filepath of our current run self.foldername = self.args['foldername'][0].split('/') # Get our files and folders to display display_data = self.get_archives_display_page(self.foldername) # Display files/streams to play for playable in sorted(display_data[0]): # Build our URL and add the item! url = self.get_archive_url(foldername=self.foldername, filename=playable) # Generate a list item for Kodi li = xbmcgui.ListItem(label=playable, thumbnailImage="%s" % os.path.join(self.bd_ppath,'icon.png')) # Set player info li.setInfo(type="Music", infoLabels={"Genre": "Drum & Bass", "Comment": "World Wide Drum & Bass" }) li.setProperty("IsPlayable", "true") directory_items.append((url, li, False)) xbmcplugin.addDirectoryItem(handle=self.bd_handle, url=url, listitem=li, isFolder=False) # Display folders for folder in sorted(display_data[1]): # Build the relative URL for this item (this is XBMC URL lingo) archive_url = self.build_xbmc_url({'mode': 'folder', 'foldername': '%s/%s' % (calling_folder, folder) }) item = xbmcgui.ListItem(label=folder) xbmcplugin.addDirectoryItem(handle=self.bd_handle, url=archive_url, listitem=item, isFolder=True) # when we're done adding items to the directory, finish drawing it. xbmcplugin.endOfDirectory(self.bd_handle, succeeded=True) # Success return True MusicAddonInstance = BassDrive() MusicAddonInstance.run()
#!/usr/bin/env python """ Project-wide application configuration. DO NOT STORE SECRETS, PASSWORDS, ETC. IN THIS FILE. They will be exposed to users. Use environment variables instead. See get_secrets() below for a fast way to access them. """ import os from authomatic.providers import oauth2 from authomatic import Authomatic """ NAMES """ # Project name to be used in urls # Use dashes, not underscores! PROJECT_SLUG = 'piers_actual' # Project name to be used in file paths PROJECT_FILENAME = 'piers_actual' # The name of the repository containing the source REPOSITORY_NAME = 'piers_actual' GITHUB_USERNAME = 'aitkend' REPOSITORY_URL = '[email protected]:%s/%s.git' % (GITHUB_USERNAME, REPOSITORY_NAME) REPOSITORY_ALT_URL = None # '[email protected]:aitkend/%s.git' % REPOSITORY_NAME' # Project name used for assets rig # Should stay the same, even if PROJECT_SLUG changes ASSETS_SLUG = 'piers_actual' """ DEPLOYMENT """ PRODUCTION_S3_BUCKET = { 'bucket_name': 'apps.daitken', 'region': 'us-west-1' } STAGING_S3_BUCKET = { 'bucket_name': 'apps-staging.daitken', 'region': 'us-west-1' } ASSETS_S3_BUCKET = { 'bucket_name': 'assets.daitken', 'region': 'us-west-1' } DEFAULT_MAX_AGE = 20 PRODUCTION_SERVERS = ['cron.nprapps.org'] STAGING_SERVERS = ['cron-staging.nprapps.org'] # Should code be deployed to the web/cron servers? DEPLOY_TO_SERVERS = False SERVER_USER = 'ubuntu' SERVER_PYTHON = 'python2.7' SERVER_PROJECT_PATH = '/home/%s/apps/%s' % (SERVER_USER, PROJECT_FILENAME) SERVER_REPOSITORY_PATH = '%s/repository' % SERVER_PROJECT_PATH SERVER_VIRTUALENV_PATH = '%s/virtualenv' % SERVER_PROJECT_PATH # Should the crontab file be installed on the servers? # If True, DEPLOY_TO_SERVERS must also be True DEPLOY_CRONTAB = False # Should the service configurations be installed on the servers? # If True, DEPLOY_TO_SERVERS must also be True DEPLOY_SERVICES = False UWSGI_SOCKET_PATH = '/tmp/%s.uwsgi.sock' % PROJECT_FILENAME # Services are the server-side services we want to enable and configure. # A three-tuple following this format: # (service name, service deployment path, service config file extension) SERVER_SERVICES = [ ('app', SERVER_REPOSITORY_PATH, 'ini'), ('uwsgi', '/etc/init', 'conf'), ('nginx', '/etc/nginx/locations-enabled', 'conf'), ] # These variables will be set at runtime. See configure_targets() below S3_BUCKET = None S3_BASE_URL = None S3_DEPLOY_URL = None SERVERS = [] SERVER_BASE_URL = None SERVER_LOG_PATH = None DEBUG = True """ COPY EDITING """ COPY_GOOGLE_DOC_KEY = '1BPyp6pO3I6Ncllf0Zb46zqe__aBLQjzSHKslwMH9roQ' COPY_PATH = 'data/copy.xlsx' ### 1mYdd8jp2FKUpkMoy9PHvD0kLcfTuAxqrhKizOCTzW_Y -- border-map COPY ### 0Auf4XJCko_vBdFJ2UVF4RTA0S1ZGd0F3eDJCSmpXaVE -- barkedu template ### 1Ej12L83GhZhvJn0VDO7grcH-Fcx5rS4__CQI1Km_tQY -- piers testing ### 1BPyp6pO3I6Ncllf0Zb46zqe__aBLQjzSHKslwMH9roQ -- piers_actual """ SHARING """ SHARE_URL = 'http://%s/%s/' % (PRODUCTION_S3_BUCKET['bucket_name'], PROJECT_SLUG) """ ADS """ # NPR_DFP = { # 'STORY_ID': '1002', # 'TARGET': 'homepage', # 'ENVIRONMENT': 'NPRTEST', # 'TESTSERVER': 'false' # } """ SERVICES """ # NPR_GOOGLE_ANALYTICS = { # 'ACCOUNT_ID': 'UA-5828686-4', # 'DOMAIN': PRODUCTION_S3_BUCKET['bucket_name'], # 'TOPICS': '' # e.g. '[1014,3,1003,1002,1001]' # } #VIZ_GOOGLE_ANALYTICS = { # 'ACCOUNT_ID': 'UA-5828686-75' # } # DISQUS_API_KEY = 'tIbSzEhGBE9NIptbnQWn4wy1gZ546CsQ2IHHtxJiYAceyyPoAkDkVnQfCifmCaQW' # DISQUS_UUID = '23cdb597-f8f7-11e4-87d4-d49a20c1c340' """ OAUTH """ GOOGLE_OAUTH_CREDENTIALS_PATH = '~/.google_oauth_credentials' authomatic_config = { 'google': { 'id': 1, 'class_': oauth2.Google, 'consumer_key': os.environ.get('GOOGLE_OAUTH_CLIENT_ID'), 'consumer_secret': os.environ.get('GOOGLE_OAUTH_CONSUMER_SECRET'), 'scope': ['https://www.googleapis.com/auth/drive', 'https://www.googleapis.com/auth/userinfo.email'], 'offline': True, }, } authomatic = Authomatic(authomatic_config, os.environ.get('AUTHOMATIC_SALT')) """ Utilities """ def get_secrets(): """ A method for accessing our secrets. """ secrets_dict = {} for k,v in os.environ.items(): if k.startswith(PROJECT_SLUG): k = k[len(PROJECT_SLUG) + 1:] secrets_dict[k] = v return secrets_dict def configure_targets(deployment_target): """ Configure deployment targets. Abstracted so this can be overriden for rendering before deployment. """ global S3_BUCKET global S3_BASE_URL global S3_DEPLOY_URL global SERVERS global SERVER_BASE_URL global SERVER_LOG_PATH global DEBUG global DEPLOYMENT_TARGET global DISQUS_SHORTNAME global ASSETS_MAX_AGE if deployment_target == 'production': S3_BUCKET = PRODUCTION_S3_BUCKET S3_BASE_URL = 'http://%s/%s' % (S3_BUCKET['bucket_name'], PROJECT_SLUG) S3_DEPLOY_URL = 's3://%s/%s' % (S3_BUCKET['bucket_name'], PROJECT_SLUG) SERVERS = PRODUCTION_SERVERS SERVER_BASE_URL = 'http://%s/%s' % (SERVERS[0], PROJECT_SLUG) SERVER_LOG_PATH = '/var/log/%s' % PROJECT_FILENAME DISQUS_SHORTNAME = 'npr-news' DEBUG = False ASSETS_MAX_AGE = 86400 elif deployment_target == 'staging': S3_BUCKET = STAGING_S3_BUCKET S3_BASE_URL = 'http://%s/%s' % (S3_BUCKET['bucket_name'], PROJECT_SLUG) S3_DEPLOY_URL = 's3://%s/%s' % (S3_BUCKET['bucket_name'], PROJECT_SLUG) SERVERS = STAGING_SERVERS SERVER_BASE_URL = 'http://%s/%s' % (SERVERS[0], PROJECT_SLUG) SERVER_LOG_PATH = '/var/log/%s' % PROJECT_FILENAME DISQUS_SHORTNAME = 'nprviz-test' DEBUG = True ASSETS_MAX_AGE = 20 else: S3_BUCKET = None S3_BASE_URL = 'http://127.0.0.1:8000' S3_DEPLOY_URL = None SERVERS = [] SERVER_BASE_URL = 'http://127.0.0.1:8001/%s' % PROJECT_SLUG SERVER_LOG_PATH = '/tmp' DISQUS_SHORTNAME = 'nprviz-test' DEBUG = True ASSETS_MAX_AGE = 20 DEPLOYMENT_TARGET = deployment_target """ Run automated configuration """ DEPLOYMENT_TARGET = os.environ.get('DEPLOYMENT_TARGET', None) configure_targets(DEPLOYMENT_TARGET)
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import mxnet as mx from mxnet import gluon from mxnet.gluon import nn from mxnet.test_utils import assert_almost_equal import numpy as np from nose.tools import raises from copy import deepcopy import warnings def test_parameter(): p = gluon.Parameter('weight', shape=(10, 10)) p.initialize(init='xavier', ctx=[mx.cpu(0), mx.cpu(1)]) assert len(p.list_data()) == 2 assert len(p.list_grad()) == 2 assert p.data(mx.cpu(1)).context == mx.cpu(1) assert p.data(mx.cpu(0)).shape == (10, 10) assert p.var().name == 'weight' p.reset_ctx(ctx=[mx.cpu(1), mx.cpu(2)]) assert p.list_ctx() == [mx.cpu(1), mx.cpu(2)] def test_paramdict(): params = gluon.ParameterDict('net_') params.get('weight', shape=(10, 10)) assert list(params.keys()) == ['net_weight'] params.initialize(ctx=mx.cpu()) params.save('test.params') params.load('test.params', mx.cpu()) def test_parameter_sharing(): class Net(gluon.Block): def __init__(self, **kwargs): super(Net, self).__init__(**kwargs) with self.name_scope(): self.dense0 = nn.Dense(5, in_units=5) self.dense1 = nn.Dense(5, in_units=5) def forward(self, x): return self.dense1(self.dense0(x)) net1 = Net(prefix='net1_') net2 = Net(prefix='net2_', params=net1.collect_params()) net1.collect_params().initialize() net2(mx.nd.zeros((3, 5))) net1.save_params('net1.params') net3 = Net(prefix='net3_') net3.load_params('net1.params', mx.cpu()) def test_basic(): model = nn.Sequential() model.add(nn.Dense(128, activation='tanh', in_units=10, flatten=False)) model.add(nn.Dropout(0.5)) model.add(nn.Dense(64, activation='tanh', in_units=256), nn.Dense(32, in_units=64)) model.add(nn.Activation('relu')) # symbol x = mx.sym.var('data') y = model(x) assert len(y.list_arguments()) == 7 # ndarray model.collect_params().initialize(mx.init.Xavier(magnitude=2.24)) x = model(mx.nd.zeros((32, 2, 10))) assert x.shape == (32, 32) x.wait_to_read() model.collect_params().setattr('grad_req', 'null') assert list(model.collect_params().values())[0]._grad is None model.collect_params().setattr('grad_req', 'write') assert list(model.collect_params().values())[0]._grad is not None def test_dense(): model = nn.Dense(128, activation='tanh', in_units=10, flatten=False, prefix='test_') inputs = mx.sym.Variable('data') outputs = model(inputs) assert set(model.collect_params().keys()) == set(['test_weight', 'test_bias']) assert outputs.list_outputs() == ['test_tanh_fwd_output'] args, outs, auxs = outputs.infer_shape(data=(2, 3, 10)) assert outs == [(2, 3, 128)] model = nn.Dense(128, activation='relu', in_units=30, flatten=True, prefix='test2_') inputs = mx.sym.Variable('data') outputs = model(inputs) assert set(model.collect_params().keys()) == set(['test2_weight', 'test2_bias']) assert outputs.list_outputs() == ['test2_relu_fwd_output'] args, outs, auxs = outputs.infer_shape(data=(17, 2, 5, 3)) assert outs == [(17, 128)] def test_symbol_block(): model = nn.HybridSequential() model.add(nn.Dense(128, activation='tanh')) model.add(nn.Dropout(0.5)) model.add(nn.Dense(64, activation='tanh'), nn.Dense(32, in_units=64)) model.add(nn.Activation('relu')) model.initialize() inputs = mx.sym.var('data') outputs = model(inputs).get_internals() smodel = gluon.SymbolBlock(outputs, inputs, params=model.collect_params()) assert len(smodel(mx.nd.zeros((16, 10)))) == 14 out = smodel(mx.sym.var('in')) assert len(out) == len(outputs.list_outputs()) class Net(nn.HybridBlock): def __init__(self, model): super(Net, self).__init__() self.model = model def hybrid_forward(self, F, x): out = self.model(x) return F.add_n(*[i.sum() for i in out]) net = Net(smodel) net.hybridize() assert isinstance(net(mx.nd.zeros((16, 10))), mx.nd.NDArray) inputs = mx.sym.var('data') outputs = model(inputs) smodel = gluon.SymbolBlock(outputs, inputs, params=model.collect_params()) net = Net(smodel) net.hybridize() assert isinstance(net(mx.nd.zeros((16, 10))), mx.nd.NDArray) def check_layer_forward(layer, dshape): layer.collect_params().initialize() x = mx.nd.ones(shape=dshape) x.attach_grad() with mx.autograd.record(): out = layer(x) out.backward() np_out = out.asnumpy() np_dx = x.grad.asnumpy() layer.hybridize() x = mx.nd.ones(shape=dshape) x.attach_grad() with mx.autograd.record(): out = layer(x) out.backward() mx.test_utils.assert_almost_equal(np_out, out.asnumpy(), rtol=1e-5, atol=1e-6) mx.test_utils.assert_almost_equal(np_dx, x.grad.asnumpy(), rtol=1e-5, atol=1e-6) def test_conv(): layers1d = [ nn.Conv1D(16, 3, in_channels=4), nn.Conv1D(16, 3, groups=2, in_channels=4), nn.Conv1D(16, 3, strides=3, groups=2, in_channels=4), ] for layer in layers1d: check_layer_forward(layer, (1, 4, 10)) layers2d = [ nn.Conv2D(16, (3, 4), in_channels=4), nn.Conv2D(16, (5, 4), in_channels=4), nn.Conv2D(16, (3, 4), groups=2, in_channels=4), nn.Conv2D(16, (3, 4), strides=4, in_channels=4), nn.Conv2D(16, (3, 4), dilation=4, in_channels=4), nn.Conv2D(16, (3, 4), padding=4, in_channels=4), ] for layer in layers2d: check_layer_forward(layer, (1, 4, 20, 20)) layers3d = [ nn.Conv3D(16, (1, 8, 4), in_channels=4, activation='relu'), nn.Conv3D(16, (5, 4, 3), in_channels=4), nn.Conv3D(16, (3, 3, 3), groups=2, in_channels=4), nn.Conv3D(16, 4, strides=4, in_channels=4), nn.Conv3D(16, (3, 3, 3), padding=4, in_channels=4), ] for layer in layers3d: check_layer_forward(layer, (1, 4, 10, 10, 10)) layer = nn.Conv2D(16, (3, 3), layout='NHWC', in_channels=4) # check_layer_forward(layer, (1, 10, 10, 4)) layer = nn.Conv3D(16, (3, 3, 3), layout='NDHWC', in_channels=4) # check_layer_forward(layer, (1, 10, 10, 10, 4)) def test_deconv(): # layers1d = [ # nn.Conv1DTranspose(16, 3, in_channels=4), # nn.Conv1DTranspose(16, 3, groups=2, in_channels=4), # nn.Conv1DTranspose(16, 3, strides=3, groups=2, in_channels=4), # ] # for layer in layers1d: # check_layer_forward(layer, (1, 4, 10)) layers2d = [ nn.Conv2DTranspose(16, (3, 4), in_channels=4), nn.Conv2DTranspose(16, (5, 4), in_channels=4), nn.Conv2DTranspose(16, (3, 4), groups=2, in_channels=4), nn.Conv2DTranspose(16, (3, 4), strides=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), dilation=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), padding=4, in_channels=4), nn.Conv2DTranspose(16, (3, 4), strides=4, output_padding=3, in_channels=4), ] for layer in layers2d: check_layer_forward(layer, (1, 4, 20, 20)) # layers3d = [ # nn.Conv3DTranspose(16, (1, 8, 4), in_channels=4), # nn.Conv3DTranspose(16, (5, 4, 3), in_channels=4), # nn.Conv3DTranspose(16, (3, 3, 3), groups=2, in_channels=4), # nn.Conv3DTranspose(16, 4, strides=4, in_channels=4), # nn.Conv3DTranspose(16, (3, 3, 3), padding=4, in_channels=4), # ] # for layer in layers3d: # check_layer_forward(layer, (1, 4, 10, 10, 10)) # # # layer = nn.Conv2DTranspose(16, (3, 3), layout='NHWC', in_channels=4) # # check_layer_forward(layer, (1, 10, 10, 4)) # # layer = nn.Conv3DTranspose(16, (3, 3, 3), layout='NDHWC', in_channels=4) # # check_layer_forward(layer, (1, 10, 10, 10, 4)) def test_pool(): layers1d = [ nn.MaxPool1D(), nn.MaxPool1D(3), nn.MaxPool1D(3, 2), nn.AvgPool1D(), nn.GlobalAvgPool1D(), ] for layer in layers1d: check_layer_forward(layer, (1, 2, 10)) layers2d = [ nn.MaxPool2D(), nn.MaxPool2D((3, 3)), nn.MaxPool2D(3, 2), nn.AvgPool2D(), nn.GlobalAvgPool2D(), ] for layer in layers2d: check_layer_forward(layer, (1, 2, 10, 10)) layers3d = [ nn.MaxPool3D(), nn.MaxPool3D((3, 3, 3)), nn.MaxPool3D(3, 2), nn.AvgPool3D(), nn.GlobalAvgPool3D(), ] for layer in layers3d: check_layer_forward(layer, (1, 2, 10, 10, 10)) # test ceil_mode x = mx.nd.zeros((2, 2, 10, 10)) layer = nn.MaxPool2D(3, ceil_mode=False) layer.collect_params().initialize() assert (layer(x).shape==(2, 2, 3, 3)) layer = nn.MaxPool2D(3, ceil_mode=True) layer.collect_params().initialize() assert (layer(x).shape==(2, 2, 4, 4)) def test_batchnorm(): layer = nn.BatchNorm(in_channels=10) check_layer_forward(layer, (2, 10, 10, 10)) def test_reshape(): x = mx.nd.ones((2, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x.reshape((-1,)) x = x + 10 x.backward() def test_slice(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x[1:3] x = x + 10 x.backward() def test_at(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2, in_channels=4) layer.collect_params().initialize() with mx.autograd.record(): x = layer(x) x = x[1] x = x + 10 x.backward() def test_deferred_init(): x = mx.nd.ones((5, 4, 10, 10)) layer = nn.Conv2D(10, 2) layer.collect_params().initialize() layer(x) def check_split_data(x, num_slice, batch_axis, **kwargs): res = gluon.utils.split_data(x, num_slice, batch_axis, **kwargs) assert len(res) == num_slice mx.test_utils.assert_almost_equal(mx.nd.concat(*res, dim=batch_axis).asnumpy(), x.asnumpy()) def test_split_data(): x = mx.nd.random.uniform(shape=(128, 33, 64)) check_split_data(x, 8, 0) check_split_data(x, 3, 1) check_split_data(x, 4, 1, even_split=False) check_split_data(x, 15, 1, even_split=False) try: check_split_data(x, 4, 1) except ValueError: return assert False, "Should have failed" def test_flatten(): flatten = nn.Flatten() x = mx.nd.zeros((3,4,5,6)) assert flatten(x).shape == (3, 4*5*6) x = mx.nd.zeros((3,6)) assert flatten(x).shape == (3, 6) x = mx.nd.zeros((3,)) assert flatten(x).shape == (3, 1) def test_trainer(): def dict_equ(a, b): assert set(a) == set(b) for k in a: assert (a[k].asnumpy() == b[k].asnumpy()).all() x = gluon.Parameter('x', shape=(10,)) x.initialize(ctx=[mx.cpu(0), mx.cpu(1)], init='zeros') trainer = gluon.Trainer([x], 'sgd', {'learning_rate': 1.0, 'momentum': 0.5}) with mx.autograd.record(): for w in x.list_data(): y = w + 1 y.backward() trainer.step(1) assert (x.data(mx.cpu(1)).asnumpy() == -2).all() x.lr_mult = 0.5 with mx.autograd.record(): for w in x.list_data(): y = w + 1 y.backward() trainer.step(1) assert (x.data(mx.cpu(1)).asnumpy() == -4).all() trainer.save_states('test.states') states = deepcopy(trainer._kvstore._updater.states) if trainer._update_on_kvstore \ else deepcopy(trainer._updaters[0].states) trainer.load_states('test.states') if trainer._update_on_kvstore: dict_equ(trainer._kvstore._updater.states, states) assert trainer._optimizer == trainer._kvstore._updater.optimizer else: for updater in trainer._updaters: dict_equ(updater.states, states) assert trainer._optimizer == trainer._updaters[0].optimizer def test_block_attr_hidden(): b = gluon.Block() # regular attributes can change types b.a = None b.a = 1 @raises(TypeError) def test_block_attr_block(): b = gluon.Block() # regular variables can't change types b.b = gluon.Block() b.b = (2,) @raises(TypeError) def test_block_attr_param(): b = gluon.Block() # regular variables can't change types b.b = gluon.Parameter() b.b = (2,) def test_block_attr_regular(): b = gluon.Block() # set block attribute also sets _children b.c = gluon.Block() c2 = gluon.Block() b.c = c2 assert b.c is c2 and b._children[0] is c2 def test_sequential_warning(): with warnings.catch_warnings(record=True) as w: b = gluon.nn.Sequential() b.add(gluon.nn.Dense(20)) b.hybridize() assert len(w) == 1 def test_global_norm_clip(): x1 = mx.nd.ones((3,3)) x2 = mx.nd.ones((4,4)) norm = gluon.utils.clip_global_norm([x1, x2], 1.0) assert norm == 5.0 assert_almost_equal(x1.asnumpy(), np.ones((3,3))/5) assert_almost_equal(x2.asnumpy(), np.ones((4,4))/5) x3 = mx.nd.array([1.0, 2.0, float('nan')]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") gluon.utils.clip_global_norm([x1, x3], 2.0) assert len(w) == 1 def test_embedding(): layer = gluon.nn.Embedding(10, 100) layer.initialize() x = mx.nd.array([3,4,2,0,1]) with mx.autograd.record(): y = layer(x) y.backward() assert (layer.weight.grad()[:5] == 1).asnumpy().all() assert (layer.weight.grad()[5:] == 0).asnumpy().all() def test_export(): ctx = mx.context.current_context() model = gluon.model_zoo.vision.resnet18_v1( prefix='resnet', ctx=ctx, pretrained=True) model.hybridize() data = mx.nd.random.normal(shape=(1, 3, 224, 224)) out = model(data) model.export('gluon') module = mx.mod.Module.load('gluon', 0, label_names=None, context=ctx) module.bind(data_shapes=[('data', data.shape)]) module.forward(mx.io.DataBatch([data], None), is_train=False) mod_out, = module.get_outputs() assert_almost_equal(out.asnumpy(), mod_out.asnumpy()) model2 = gluon.model_zoo.vision.resnet18_v1(prefix='resnet', ctx=ctx) model2.collect_params().load('gluon-0000.params', ctx) out2 = model2(data) assert_almost_equal(out.asnumpy(), out2.asnumpy()) def test_hybrid_stale_cache(): net = mx.gluon.nn.HybridSequential() with net.name_scope(): net.add(mx.gluon.nn.Dense(10, weight_initializer='zeros', bias_initializer='ones', flatten=False)) net.hybridize() net.initialize() net(mx.nd.ones((2,3,5))) net.add(mx.gluon.nn.Flatten()) assert net(mx.nd.ones((2,3,5))).shape == (2, 30) net = mx.gluon.nn.HybridSequential() with net.name_scope(): net.fc1 = mx.gluon.nn.Dense(10, weight_initializer='zeros', bias_initializer='ones', flatten=False) net.fc2 = mx.gluon.nn.Dense(10, weight_initializer='zeros', bias_initializer='ones', flatten=False) net.hybridize() net.initialize() net(mx.nd.ones((2,3,5))) net.fc2 = mx.gluon.nn.Dense(10, weight_initializer='zeros', bias_initializer='ones', flatten=True) net.initialize() assert net(mx.nd.ones((2,3,5))).shape == (2, 10) def test_lambda(): net1 = mx.gluon.nn.HybridSequential() net1.add(nn.Activation('tanh'), nn.LeakyReLU(0.1)) net2 = mx.gluon.nn.HybridSequential() op3 = lambda F, x, *args: F.LeakyReLU(x, *args, slope=0.1) net2.add(nn.HybridLambda('tanh'), nn.HybridLambda(op3)) op4 = lambda x: mx.nd.LeakyReLU(x, slope=0.1) net3 = mx.gluon.nn.Sequential() net3.add(nn.Lambda('tanh'), nn.Lambda(op4)) input_data = mx.nd.random.uniform(shape=(2, 3, 5, 7)) out1, out2, out3 = net1(input_data), net2(input_data), net3(input_data) assert_almost_equal(out1.asnumpy(), out2.asnumpy()) assert_almost_equal(out1.asnumpy(), out3.asnumpy()) if __name__ == '__main__': import nose nose.runmodule()
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. """Tools and helper functions for abinit calculations""" import os import re import collections import shutil import operator import numpy as np from fnmatch import fnmatch from monty.collections import dict2namedtuple from monty.string import list_strings from monty.fnmatch import WildCard from monty.shutil import copy_r from pymatgen.util.plotting import add_fig_kwargs, get_ax_fig_plt import logging logger = logging.getLogger(__name__) def as_bool(s): """ Convert a string into a boolean. >>> assert as_bool(True) is True and as_bool("Yes") is True and as_bool("false") is False """ if s in (False, True): return s # Assume string s = s.lower() if s in ("yes", "true"): return True elif s in ("no", "false"): return False else: raise ValueError("Don't know how to convert type %s: %s into a boolean" % (type(s), s)) class File: """ Very simple class used to store file basenames, absolute paths and directory names. Provides wrappers for the most commonly used functions defined in os.path. """ def __init__(self, path): self._path = os.path.abspath(path) def __repr__(self): return "<%s at %s, %s>" % (self.__class__.__name__, id(self), self.path) def __str__(self): return "<%s, %s>" % (self.__class__.__name__, self.path) def __eq__(self, other): return False if other is None else self.path == other.path def __ne__(self, other): return not self.__eq__(other) @property def path(self): """Absolute path of the file.""" return self._path @property def basename(self): """File basename.""" return os.path.basename(self.path) @property def relpath(self): """Relative path.""" try: return os.path.relpath(self.path) except OSError: # current working directory may not be defined! return self.path @property def dirname(self): """Absolute path of the directory where the file is located.""" return os.path.dirname(self.path) @property def exists(self): """True if file exists.""" return os.path.exists(self.path) @property def isncfile(self): """True if self is a NetCDF file""" return self.basename.endswith(".nc") def chmod(self, mode): """Change the access permissions of a file.""" os.chmod(self.path, mode) def read(self): """Read data from file.""" with open(self.path, "r") as f: return f.read() def readlines(self): """Read lines from files.""" with open(self.path, "r") as f: return f.readlines() def write(self, string): """Write string to file.""" self.make_dir() with open(self.path, "w") as f: if not string.endswith("\n"): return f.write(string + "\n") else: return f.write(string) def writelines(self, lines): """Write a list of strings to file.""" self.make_dir() with open(self.path, "w") as f: return f.writelines(lines) def make_dir(self): """Make the directory where the file is located.""" if not os.path.exists(self.dirname): os.makedirs(self.dirname) def remove(self): """Remove the file.""" try: os.remove(self.path) except: pass def move(self, dst): """ Recursively move a file or directory to another location. This is similar to the Unix "mv" command. """ shutil.move(self.path, dst) def get_stat(self): """Results from os.stat""" return os.stat(self.path) def getsize(self): """ Return the size, in bytes, of path. Return 0 if the file is empty or it does not exist. """ if not self.exists: return 0 return os.path.getsize(self.path) class Directory: """ Very simple class that provides helper functions wrapping the most commonly used functions defined in os.path. """ def __init__(self, path): self._path = os.path.abspath(path) def __repr__(self): return "<%s at %s, %s>" % (self.__class__.__name__, id(self), self.path) def __str__(self): return self.path def __eq__(self, other): return False if other is None else self.path == other.path def __ne__(self, other): return not self.__eq__(other) @property def path(self): """Absolute path of the directory.""" return self._path @property def relpath(self): """Relative path.""" return os.path.relpath(self.path) @property def basename(self): """Directory basename.""" return os.path.basename(self.path) def path_join(self, *p): """ Join two or more pathname components, inserting '/' as needed. If any component is an absolute path, all previous path components will be discarded. """ return os.path.join(self.path, *p) @property def exists(self): """True if file exists.""" return os.path.exists(self.path) def makedirs(self): """ Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. """ if not self.exists: os.makedirs(self.path) def rmtree(self): """Recursively delete the directory tree""" shutil.rmtree(self.path, ignore_errors=True) def copy_r(self, dst): """ Implements a recursive copy function similar to Unix's "cp -r" command. """ return copy_r(self.path, dst) def clean(self): """Remove all files in the directory tree while preserving the directory""" for path in self.list_filepaths(): try: os.remove(path) except: pass def path_in(self, file_basename): """Return the absolute path of filename in the directory.""" return os.path.join(self.path, file_basename) def list_filepaths(self, wildcard=None): """ Return the list of absolute filepaths in the directory. Args: wildcard: String of tokens separated by "|". Each token represents a pattern. If wildcard is not None, we return only those files that match the given shell pattern (uses fnmatch). Example: wildcard="*.nc|*.pdf" selects only those files that end with .nc or .pdf """ # Select the files in the directory. fnames = [f for f in os.listdir(self.path)] filepaths = filter(os.path.isfile, [os.path.join(self.path, f) for f in fnames]) # Filter using the shell patterns. if wildcard is not None: filepaths = WildCard(wildcard).filter(filepaths) return filepaths def has_abiext(self, ext, single_file=True): """ Returns the absolute path of the ABINIT file with extension ext. Support both Fortran files and netcdf files. In the later case, we check whether a file with extension ext + ".nc" is present in the directory. Returns empty string is file is not present. Raises: `ValueError` if multiple files with the given ext are found. This implies that this method is not compatible with multiple datasets. """ if ext != "abo": ext = ext if ext.startswith('_') else '_' + ext files = [] for f in self.list_filepaths(): # For the time being, we ignore DDB files in nc format. if ext == "_DDB" and f.endswith(".nc"): continue # Ignore BSE text files e.g. GW_NLF_MDF if ext == "_MDF" and not f.endswith(".nc"): continue # Ignore DDK.nc files (temporary workaround for v8.8.2 in which # the DFPT code produces a new file with DDK.nc extension that enters # into conflict with AbiPy convention. if ext == "_DDK" and f.endswith(".nc"): continue if f.endswith(ext) or f.endswith(ext + ".nc"): files.append(f) # This should fix the problem with the 1WF files in which the file extension convention is broken if not files: files = [f for f in self.list_filepaths() if fnmatch(f, "*%s*" % ext)] if not files: return "" if len(files) > 1 and single_file: # ABINIT users must learn that multiple datasets are bad! raise ValueError("Found multiple files with the same extensions:\n %s\n" % files + "Please avoid using multiple datasets!") return files[0] if single_file else files def symlink_abiext(self, inext, outext): """ Create a simbolic link (outext --> inext). The file names are implicitly given by the ABINIT file extension. Example: outdir.symlink_abiext('1WF', 'DDK') creates the link out_DDK that points to out_1WF Return: 0 if success. Raise: RuntimeError """ infile = self.has_abiext(inext) if not infile: raise RuntimeError('no file with extension %s in %s' % (inext, self)) for i in range(len(infile) - 1, -1, -1): if infile[i] == '_': break else: raise RuntimeError('Extension %s could not be detected in file %s' % (inext, infile)) outfile = infile[:i] + '_' + outext if os.path.exists(outfile): if os.path.islink(outfile): if os.path.realpath(outfile) == infile: logger.debug("link %s already exists but it's ok because it points to the correct file" % outfile) return 0 else: raise RuntimeError("Expecting link at %s already exists but it does not point to %s" % (outfile, infile)) else: raise RuntimeError('Expecting link at %s but found file.' % outfile) os.symlink(infile, outfile) return 0 def rename_abiext(self, inext, outext): """Rename the Abinit file with extension inext with the new extension outext""" infile = self.has_abiext(inext) if not infile: raise RuntimeError('no file with extension %s in %s' % (inext, self)) for i in range(len(infile) - 1, -1, -1): if infile[i] == '_': break else: raise RuntimeError('Extension %s could not be detected in file %s' % (inext, infile)) outfile = infile[:i] + '_' + outext shutil.move(infile, outfile) return 0 def copy_abiext(self, inext, outext): """Copy the Abinit file with extension inext to a new file withw extension outext""" infile = self.has_abiext(inext) if not infile: raise RuntimeError('no file with extension %s in %s' % (inext, self)) for i in range(len(infile) - 1, -1, -1): if infile[i] == '_': break else: raise RuntimeError('Extension %s could not be detected in file %s' % (inext, infile)) outfile = infile[:i] + '_' + outext shutil.copy(infile, outfile) return 0 def remove_exts(self, exts): """ Remove the files with the given extensions. Unlike rmtree, this function preserves the directory path. Return list with the absolute paths of the files that have been removed. """ paths = [] for ext in list_strings(exts): path = self.has_abiext(ext) if not path: continue try: os.remove(path) paths.append(path) except IOError: logger.warning("Exception while trying to remove file %s" % path) return paths def find_last_timden_file(self): """ ABINIT produces lots of out_TIM1_DEN files for each step and we need to find the lat one in order to prepare the restart or to connect other tasks to the structural relaxation. This function finds all the TIM?_DEN files in self and return a namedtuple (path, step) where `path` is the path of the last TIM?_DEN file and step is the iteration number. Returns None if the directory does not contain TIM?_DEN files. """ regex = re.compile(r"out_TIM(\d+)_DEN(.nc)?$") timden_paths = [f for f in self.list_filepaths() if regex.match(os.path.basename(f))] if not timden_paths: return None # Build list of (step, path) tuples. stepfile_list = [] for path in timden_paths: name = os.path.basename(path) match = regex.match(name) step, ncext = match.groups() stepfile_list.append((int(step), path)) # DSU sort. last = sorted(stepfile_list, key=lambda t: t[0])[-1] return dict2namedtuple(step=last[0], path=last[1]) def find_1wf_files(self): """ Abinit adds the idir-ipert index at the end of the 1WF file and this breaks the extension e.g. out_1WF4. This method scans the files in the directories and returns a list of namedtuple Each named tuple gives the `path` of the 1FK file and the `pertcase` index. """ regex = re.compile(r"out_1WF(\d+)(\.nc)?$") wf_paths = [f for f in self.list_filepaths() if regex.match(os.path.basename(f))] if not wf_paths: return None # Build list of (pertcase, path) tuples. pertfile_list = [] for path in wf_paths: name = os.path.basename(path) match = regex.match(name) pertcase, ncext = match.groups() pertfile_list.append((int(pertcase), path)) # DSU sort. pertfile_list = sorted(pertfile_list, key=lambda t: t[0]) return [dict2namedtuple(pertcase=item[0], path=item[1]) for item in pertfile_list] def find_1den_files(self): """ Abinit adds the idir-ipert index at the end of the 1DEN file and this breaks the extension e.g. out_DEN1. This method scans the files in the directories and returns a list of namedtuple Each named tuple gives the `path` of the 1DEN file and the `pertcase` index. """ regex = re.compile(r"out_DEN(\d+)(\.nc)?$") den_paths = [f for f in self.list_filepaths() if regex.match(os.path.basename(f))] if not den_paths: return None # Build list of (pertcase, path) tuples. pertfile_list = [] for path in den_paths: name = os.path.basename(path) match = regex.match(name) pertcase, ncext = match.groups() pertfile_list.append((int(pertcase), path)) # DSU sort. pertfile_list = sorted(pertfile_list, key=lambda t: t[0]) return [dict2namedtuple(pertcase=item[0], path=item[1]) for item in pertfile_list] # This dictionary maps ABINIT file extensions to the variables that must be used to read the file in input. # # TODO: It would be nice to pass absolute paths to abinit with getden_path # so that I can avoid creating symbolic links before running but # the presence of the C-bindings complicates the implementation # (gfortran SIGFAULTs if I add strings to dataset_type! _EXT2VARS = { "DEN": {"irdden": 1}, "WFK": {"irdwfk": 1}, "WFQ": {"irdwfq": 1}, "SCR": {"irdscr": 1}, "QPS": {"irdqps": 1}, "1WF": {"ird1wf": 1}, "1DEN": {"ird1den": 1}, "BSR": {"irdbsreso": 1}, "BSC": {"irdbscoup": 1}, "HAYDR_SAVE": {"irdhaydock": 1}, "DDK": {"irdddk": 1}, "DDB": {}, "DVDB": {}, "GKK": {}, "DKK": {}, } def irdvars_for_ext(ext): """ Returns a dictionary with the ABINIT variables that must be used to read the file with extension ext. """ return _EXT2VARS[ext].copy() def abi_extensions(): """List with all the ABINIT extensions that are registered.""" return list(_EXT2VARS.keys())[:] def abi_splitext(filename): """ Split the ABINIT extension from a filename. "Extension" are found by searching in an internal database. Returns "(root, ext)" where ext is the registered ABINIT extension The final ".nc" is included (if any) >>> assert abi_splitext("foo_WFK") == ('foo_', 'WFK') >>> assert abi_splitext("/home/guido/foo_bar_WFK.nc") == ('foo_bar_', 'WFK.nc') """ filename = os.path.basename(filename) is_ncfile = False if filename.endswith(".nc"): is_ncfile = True filename = filename[:-3] known_extensions = abi_extensions() # This algorith fails if we have two files # e.g. HAYDR_SAVE, ANOTHER_HAYDR_SAVE for i in range(len(filename)-1, -1, -1): ext = filename[i:] if ext in known_extensions: break else: raise ValueError("Cannot find a registered extension in %s" % filename) root = filename[:i] if is_ncfile: ext += ".nc" return root, ext class FilepathFixer: """ This object modifies the names of particular output files produced by ABINIT so that the file extension is preserved. Having a one-to-one mapping between file extension and data format is indeed fundamental for the correct behaviour of abinit since: - We locate the output file by just inspecting the extension - We select the variables that must be added to the input file on the basis of the extension specified by the user during the initialization of the `AbinitFlow`. Unfortunately, ABINIT developers like to append extra stuff to the initial extension and therefore we have to call `FilepathFixer` to fix the output files produced by the run. Example: >>> fixer = FilepathFixer() >>> assert fixer.fix_paths('/foo/out_1WF17') == {'/foo/out_1WF17': '/foo/out_1WF'} >>> assert fixer.fix_paths('/foo/out_1WF5.nc') == {'/foo/out_1WF5.nc': '/foo/out_1WF.nc'} """ def __init__(self): # dictionary mapping the *official* file extension to # the regular expression used to tokenize the basename of the file # To add a new file it's sufficient to add a new regexp and # a static method _fix_EXTNAME self.regs = regs = {} import re regs["1WF"] = re.compile(r"(\w+_)1WF(\d+)(\.nc)?$") regs["1DEN"] = re.compile(r"(\w+_)1DEN(\d+)(\.nc)?$") @staticmethod def _fix_1WF(match): root, pert, ncext = match.groups() if ncext is None: ncext = "" return root + "1WF" + ncext @staticmethod def _fix_1DEN(match): root, pert, ncext = match.groups() if ncext is None: ncext = "" return root + "1DEN" + ncext def _fix_path(self, path): for ext, regex in self.regs.items(): head, tail = os.path.split(path) match = regex.match(tail) if match: newtail = getattr(self, "_fix_" + ext)(match) newpath = os.path.join(head, newtail) return newpath, ext return None, None def fix_paths(self, paths): """ Fix the filenames in the iterable paths Returns: old2new: Mapping old_path --> new_path """ old2new, fixed_exts = {}, [] for path in list_strings(paths): newpath, ext = self._fix_path(path) if newpath is not None: #if ext not in fixed_exts: # if ext == "1WF": continue # raise ValueError("Unknown extension %s" % ext) #print(ext, path, fixed_exts) #if ext != '1WF': # assert ext not in fixed_exts if ext not in fixed_exts: if ext == "1WF": continue raise ValueError("Unknown extension %s" % ext) fixed_exts.append(ext) old2new[path] = newpath return old2new def _bop_not(obj): """Boolean not.""" return not bool(obj) def _bop_and(obj1, obj2): """Boolean and.""" return bool(obj1) and bool(obj2) def _bop_or(obj1, obj2): """Boolean or.""" return bool(obj1) or bool(obj2) def _bop_divisible(num1, num2): """Return True if num1 is divisible by num2.""" return (num1 % num2) == 0.0 # Mapping string --> operator. _UNARY_OPS = { "$not": _bop_not, } _BIN_OPS = { "$eq": operator.eq, "$ne": operator.ne, "$gt": operator.gt, "$ge": operator.ge, "$gte": operator.ge, "$lt": operator.lt, "$le": operator.le, "$lte": operator.le, "$divisible": _bop_divisible, "$and": _bop_and, "$or": _bop_or, } _ALL_OPS = list(_UNARY_OPS.keys()) + list(_BIN_OPS.keys()) def map2rpn(map, obj): """ Convert a Mongodb-like dictionary to a RPN list of operands and operators. Reverse Polish notation (RPN) is a mathematical notation in which every operator follows all of its operands, e.g. 3 - 4 + 5 --> 3 4 - 5 + >>> d = {2.0: {'$eq': 1.0}} >>> assert map2rpn(d, None) == [2.0, 1.0, '$eq'] """ rpn = [] for k, v in map.items(): if k in _ALL_OPS: if isinstance(v, collections.abc.Mapping): # e.g "$not": {"$gt": "one"} # print("in op_vmap",k, v) values = map2rpn(v, obj) rpn.extend(values) rpn.append(k) elif isinstance(v, (list, tuple)): # e.g "$and": [{"$not": {"one": 1.0}}, {"two": {"$lt": 3}}]} # print("in_op_list",k, v) for d in v: rpn.extend(map2rpn(d, obj)) rpn.append(k) else: # Examples # 1) "$eq"": "attribute_name" # 2) "$eq"": 1.0 try: #print("in_otherv",k, v) rpn.append(getattr(obj, v)) rpn.append(k) except TypeError: #print("in_otherv, raised",k, v) rpn.extend([v, k]) else: try: k = getattr(obj, k) except TypeError: k = k if isinstance(v, collections.abc.Mapping): # "one": {"$eq": 1.0}} values = map2rpn(v, obj) rpn.append(k) rpn.extend(values) else: #"one": 1.0 rpn.extend([k, v, "$eq"]) return rpn def evaluate_rpn(rpn): """ Evaluates the RPN form produced my map2rpn. Returns: bool """ vals_stack = [] for item in rpn: if item in _ALL_OPS: # Apply the operator and push to the task. v2 = vals_stack.pop() if item in _UNARY_OPS: res = _UNARY_OPS[item](v2) elif item in _BIN_OPS: v1 = vals_stack.pop() res = _BIN_OPS[item](v1, v2) else: raise ValueError("%s not in unary_ops or bin_ops" % str(item)) vals_stack.append(res) else: # Push the operand vals_stack.append(item) #print(vals_stack) assert len(vals_stack) == 1 assert isinstance(vals_stack[0], bool) return vals_stack[0] class Condition: """ This object receives a dictionary that defines a boolean condition whose syntax is similar to the one used in mongodb (albeit not all the operators available in mongodb are supported here). Example: $gt: {field: {$gt: value} } $gt selects those documents where the value of the field is greater than (i.e. >) the specified value. $and performs a logical AND operation on an array of two or more expressions (e.g. <expression1>, <expression2>, etc.) and selects the documents that satisfy all the expressions in the array. { $and: [ { <expression1> }, { <expression2> } , ... , { <expressionN> } ] } Consider the following example: db.inventory.find( { qty: { $gt: 20 } } ) This query will select all documents in the inventory collection where the qty field value is greater than 20. Consider the following example: db.inventory.find( { qty: { $gt: 20 } } ) db.inventory.find({ $and: [ { price: 1.99 }, { qty: { $lt: 20 } }, { sale: true } ] } ) """ @classmethod def as_condition(cls, obj): """Convert obj into :class:`Condition`""" if isinstance(obj, cls): return obj else: return cls(cmap=obj) def __init__(self, cmap=None): self.cmap = {} if cmap is None else cmap def __str__(self): return str(self.cmap) def __bool__(self): return bool(self.cmap) __nonzero__ = __bool__ def __call__(self, obj): if not self: return True try: return evaluate_rpn(map2rpn(self.cmap, obj)) except Exception as exc: logger.warning("Condition(%s) raised Exception:\n %s" % (type(obj), str(exc))) return False class Editor: """ Wrapper class that calls the editor specified by the user or the one specified in the $EDITOR env variable. """ def __init__(self, editor=None): """If editor is None, $EDITOR is used.""" self.editor = os.getenv("EDITOR", "vi") if editor is None else str(editor) def edit_files(self, fnames, ask_for_exit=True): exit_status = 0 for idx, fname in enumerate(fnames): exit_status = self.edit_file(fname) if ask_for_exit and idx != len(fnames)-1 and self.user_wants_to_exit(): break return exit_status def edit_file(self, fname): from subprocess import call retcode = call([self.editor, fname]) if retcode != 0: import warnings warnings.warn("Error while trying to edit file: %s" % fname) return retcode @staticmethod def user_wants_to_exit(): """Show an interactive prompt asking if exit is wanted.""" # Fix python 2.x. try: answer = input("Do you want to continue [Y/n]") except EOFError: return True return answer.lower().strip() in ["n", "no"] class SparseHistogram: def __init__(self, items, key=None, num=None, step=None): if num is None and step is None: raise ValueError("Either num or step must be specified") from collections import defaultdict, OrderedDict values = [key(item) for item in items] if key is not None else items start, stop = min(values), max(values) if num is None: num = int((stop - start) / step) if num == 0: num = 1 mesh = np.linspace(start, stop, num, endpoint=False) from monty.bisect import find_le hist = defaultdict(list) for item, value in zip(items, values): # Find rightmost value less than or equal to x. # hence each bin contains all items whose value is >= value pos = find_le(mesh, value) hist[mesh[pos]].append(item) #new = OrderedDict([(pos, hist[pos]) for pos in sorted(hist.keys(), reverse=reverse)]) self.binvals = sorted(hist.keys()) self.values = [hist[pos] for pos in self.binvals] self.start, self.stop, self.num = start, stop, num @add_fig_kwargs def plot(self, ax=None, **kwargs): """ Plot the histogram with matplotlib, returns `matplotlib` figure. """ ax, fig, plt = get_ax_fig_plt(ax) yy = [len(v) for v in self.values] ax.plot(self.binvals, yy, **kwargs) return fig class Dirviz: #file_color = np.array((255, 0, 0)) / 255 #dir_color = np.array((0, 0, 255)) / 255 def __init__(self, top): #if not os.path.isdir(top): # raise TypeError("%s should be a directory!" % str(top)) self.top = os.path.abspath(top) def get_cluster_graph(self, engine="fdp", graph_attr=None, node_attr=None, edge_attr=None): """ Generate directory graph in the DOT language. Directories are shown as clusters .. warning:: This function scans the entire directory tree starting from top so the resulting graph can be really big. Args: engine: Layout command used. ['dot', 'neato', 'twopi', 'circo', 'fdp', 'sfdp', 'patchwork', 'osage'] graph_attr: Mapping of (attribute, value) pairs for the graph. node_attr: Mapping of (attribute, value) pairs set for all nodes. edge_attr: Mapping of (attribute, value) pairs set for all edges. Returns: graphviz.Digraph <https://graphviz.readthedocs.io/en/stable/api.html#digraph> """ # https://www.graphviz.org/doc/info/ from graphviz import Digraph g = Digraph("directory", #filename="flow_%s.gv" % os.path.basename(self.relworkdir), engine=engine) # if engine == "automatic" else engine) # Set graph attributes. #g.attr(label="%s@%s" % (self.__class__.__name__, self.relworkdir)) g.attr(label=self.top) #g.attr(fontcolor="white", bgcolor='purple:pink') #g.attr(rankdir="LR", pagedir="BL") #g.attr(constraint="false", pack="true", packMode="clust") g.node_attr.update(color='lightblue2', style='filled') #g.node_attr.update(ranksep='equally') # Add input attributes. if graph_attr is not None: fg.graph_attr.update(**graph_attr) if node_attr is not None: fg.node_attr.update(**node_attr) if edge_attr is not None: fg.edge_attr.update(**edge_attr) def node_kwargs(path): return dict( #shape="circle", #shape="none", #shape="plaintext", #shape="point", shape="record", #color=node.color_hex, fontsize="8.0", label=os.path.basename(path), ) edge_kwargs = dict(arrowType="vee", style="solid", minlen="1") cluster_kwargs = dict(rankdir="LR", pagedir="BL", style="rounded", bgcolor="azure2") # TODO: Write other method without clusters if not walk. exclude_top_node = False for root, dirs, files in os.walk(self.top): if exclude_top_node and root == self.top: continue cluster_name = "cluster_%s" % root #print("root", root, cluster_name, "dirs", dirs, "files", files, sep="\n") with g.subgraph(name=cluster_name) as d: d.attr(**cluster_kwargs) d.attr(rank="source" if (files or dirs) else "sink") d.attr(label=os.path.basename(root)) for f in files: filepath = os.path.join(root, f) d.node(filepath, **node_kwargs(filepath)) if os.path.islink(filepath): # Follow the link and use the relpath wrt link as label. realp = os.path.realpath(filepath) realp = os.path.relpath(realp, filepath) #realp = os.path.relpath(realp, self.top) #print(filepath, realp) #g.node(realp, **node_kwargs(realp)) g.edge(filepath, realp, **edge_kwargs) for dirname in dirs: dirpath = os.path.join(root, dirname) #head, basename = os.path.split(dirpath) new_cluster_name = "cluster_%s" % dirpath #rank = "source" if os.listdir(dirpath) else "sink" #g.node(dirpath, rank=rank, **node_kwargs(dirpath)) #g.edge(dirpath, new_cluster_name, **edge_kwargs) #d.edge(cluster_name, new_cluster_name, minlen="2", **edge_kwargs) d.edge(cluster_name, new_cluster_name, **edge_kwargs) return g
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ ACL2016 Multimodal Machine Translation. Please see this website for more details: http://www.statmt.org/wmt16/multimodal-task.html#task1 If you use the dataset created for your task, please cite the following paper: Multi30K: Multilingual English-German Image Descriptions. @article{elliott-EtAl:2016:VL16, author = {{Elliott}, D. and {Frank}, S. and {Sima"an}, K. and {Specia}, L.}, title = {Multi30K: Multilingual English-German Image Descriptions}, booktitle = {Proceedings of the 6th Workshop on Vision and Language}, year = {2016}, pages = {70--74}, year = 2016 } """ from __future__ import print_function import os import six import tarfile import gzip from collections import defaultdict import paddle.dataset.common import paddle.compat as cpt __all__ = [ "train", "test", "validation", "convert", "fetch", "get_dict", ] DATA_URL = ("http://cloud.dlnel.org/filepub/" "?uuid=46a0808e-ddd8-427c-bacd-0dbc6d045fed") DATA_MD5 = "0c38be43600334966403524a40dcd81e" TOTAL_EN_WORDS = 11250 TOTAL_DE_WORDS = 19220 START_MARK = "<s>" END_MARK = "<e>" UNK_MARK = "<unk>" def __build_dict(tar_file, dict_size, save_path, lang): word_dict = defaultdict(int) with tarfile.open(tar_file, mode="r") as f: for line in f.extractfile("wmt16/train"): line_split = line.strip().split(six.b("\t")) if len(line_split) != 2: continue sen = line_split[0] if lang == "en" else line_split[1] for w in sen.split(): word_dict[w] += 1 with open(save_path, "w") as fout: fout.write("%s\n%s\n%s\n" % (START_MARK, END_MARK, UNK_MARK)) for idx, word in enumerate( sorted( six.iteritems(word_dict), key=lambda x: x[1], reverse=True)): if idx + 3 == dict_size: break fout.write("%s\n" % (word[0])) def __load_dict(tar_file, dict_size, lang, reverse=False): dict_path = os.path.join(paddle.dataset.common.DATA_HOME, "wmt16/%s_%d.dict" % (lang, dict_size)) if not os.path.exists(dict_path) or ( len(open(dict_path, "rb").readlines()) != dict_size): __build_dict(tar_file, dict_size, dict_path, lang) word_dict = {} with open(dict_path, "rb") as fdict: for idx, line in enumerate(fdict): if reverse: word_dict[idx] = cpt.to_text(line.strip()) else: word_dict[cpt.to_text(line.strip())] = idx return word_dict def __get_dict_size(src_dict_size, trg_dict_size, src_lang): src_dict_size = min(src_dict_size, (TOTAL_EN_WORDS if src_lang == "en" else TOTAL_DE_WORDS)) trg_dict_size = min(trg_dict_size, (TOTAL_DE_WORDS if src_lang == "en" else TOTAL_EN_WORDS)) return src_dict_size, trg_dict_size def reader_creator(tar_file, file_name, src_dict_size, trg_dict_size, src_lang): def reader(): src_dict = __load_dict(tar_file, src_dict_size, src_lang) trg_dict = __load_dict(tar_file, trg_dict_size, ("de" if src_lang == "en" else "en")) # the indice for start mark, end mark, and unk are the same in source # language and target language. Here uses the source language # dictionary to determine their indices. start_id = src_dict[START_MARK] end_id = src_dict[END_MARK] unk_id = src_dict[UNK_MARK] src_col = 0 if src_lang == "en" else 1 trg_col = 1 - src_col with tarfile.open(tar_file, mode="r") as f: for line in f.extractfile(file_name): line_split = line.strip().split(six.b("\t")) if len(line_split) != 2: continue src_words = line_split[src_col].split() src_ids = [start_id] + [ src_dict.get(w, unk_id) for w in src_words ] + [end_id] trg_words = line_split[trg_col].split() trg_ids = [trg_dict.get(w, unk_id) for w in trg_words] trg_ids_next = trg_ids + [end_id] trg_ids = [start_id] + trg_ids yield src_ids, trg_ids, trg_ids_next return reader def train(src_dict_size, trg_dict_size, src_lang="en"): """ WMT16 train set reader. This function returns the reader for train data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence. NOTE: The original like for training data is: http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/training.tar.gz paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses's tokenization script: https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl Args: src_dict_size(int): Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. trg_dict_size(int): Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. src_lang(string): A string indicating which language is the source language. Available options are: "en" for English and "de" for Germany. Returns: callable: The train reader. """ if src_lang not in ["en", "de"]: raise ValueError("An error language type. Only support: " "en (for English); de(for Germany).") src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_lang) return reader_creator( tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5, "wmt16.tar.gz"), file_name="wmt16/train", src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang) def test(src_dict_size, trg_dict_size, src_lang="en"): """ WMT16 test set reader. This function returns the reader for test data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence. NOTE: The original like for test data is: http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/mmt16_task1_test.tar.gz paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses's tokenization script: https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl Args: src_dict_size(int): Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. trg_dict_size(int): Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. src_lang(string): A string indicating which language is the source language. Available options are: "en" for English and "de" for Germany. Returns: callable: The test reader. """ if src_lang not in ["en", "de"]: raise ValueError("An error language type. " "Only support: en (for English); de(for Germany).") src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_lang) return reader_creator( tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5, "wmt16.tar.gz"), file_name="wmt16/test", src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang) def validation(src_dict_size, trg_dict_size, src_lang="en"): """ WMT16 validation set reader. This function returns the reader for validation data. Each sample the reader returns is made up of three fields: the source language word index sequence, target language word index sequence and next word index sequence. NOTE: The original like for validation data is: http://www.quest.dcs.shef.ac.uk/wmt16_files_mmt/validation.tar.gz paddle.dataset.wmt16 provides a tokenized version of the original dataset by using moses's tokenization script: https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl Args: src_dict_size(int): Size of the source language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. trg_dict_size(int): Size of the target language dictionary. Three special tokens will be added into the dictionary: <s> for start mark, <e> for end mark, and <unk> for unknown word. src_lang(string): A string indicating which language is the source language. Available options are: "en" for English and "de" for Germany. Returns: callable: The validation reader. """ if src_lang not in ["en", "de"]: raise ValueError("An error language type. " "Only support: en (for English); de(for Germany).") src_dict_size, trg_dict_size = __get_dict_size(src_dict_size, trg_dict_size, src_lang) return reader_creator( tar_file=paddle.dataset.common.download(DATA_URL, "wmt16", DATA_MD5, "wmt16.tar.gz"), file_name="wmt16/val", src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang) def get_dict(lang, dict_size, reverse=False): """ return the word dictionary for the specified language. Args: lang(string): A string indicating which language is the source language. Available options are: "en" for English and "de" for Germany. dict_size(int): Size of the specified language dictionary. reverse(bool): If reverse is set to False, the returned python dictionary will use word as key and use index as value. If reverse is set to True, the returned python dictionary will use index as key and word as value. Returns: dict: The word dictionary for the specific language. """ if lang == "en": dict_size = min(dict_size, TOTAL_EN_WORDS) else: dict_size = min(dict_size, TOTAL_DE_WORDS) dict_path = os.path.join(paddle.dataset.common.DATA_HOME, "wmt16/%s_%d.dict" % (lang, dict_size)) assert os.path.exists(dict_path), "Word dictionary does not exist. " "Please invoke paddle.dataset.wmt16.train/test/validation first " "to build the dictionary." tar_file = os.path.join(paddle.dataset.common.DATA_HOME, "wmt16.tar.gz") return __load_dict(tar_file, dict_size, lang, reverse) def fetch(): """download the entire dataset. """ paddle.v4.dataset.common.download(DATA_URL, "wmt16", DATA_MD5, "wmt16.tar.gz") def convert(path, src_dict_size, trg_dict_size, src_lang): """Converts dataset to recordio format. """ paddle.dataset.common.convert( path, train( src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang), 1000, "wmt16_train") paddle.dataset.common.convert( path, test( src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang), 1000, "wmt16_test") paddle.dataset.common.convert( path, validation( src_dict_size=src_dict_size, trg_dict_size=trg_dict_size, src_lang=src_lang), 1000, "wmt16_validation")
from __future__ import annotations import contextlib import enum import math import typing from abc import ABCMeta, abstractmethod import cairocffi from libqtile import drawer, pangocffi, utils from libqtile.command.base import CommandError, CommandObject from libqtile.log_utils import logger if typing.TYPE_CHECKING: from typing import Any from libqtile import config from libqtile.command.base import ItemT from libqtile.core.manager import Qtile from libqtile.group import _Group from libqtile.utils import ColorsType class Core(CommandObject, metaclass=ABCMeta): painter: Any supports_restarting: bool = True @property @abstractmethod def name(self) -> str: """The name of the backend""" pass def _items(self, name: str) -> ItemT: return None def _select(self, name, sel): return None @abstractmethod def finalize(self): """Destructor/Clean up resources""" @property @abstractmethod def display_name(self) -> str: pass @abstractmethod def setup_listener(self, qtile: Qtile) -> None: """Setup a listener for the given qtile instance""" @abstractmethod def remove_listener(self) -> None: """Setup a listener for the given qtile instance""" def update_desktops(self, groups: list[_Group], index: int) -> None: """Set the current desktops of the window manager""" @abstractmethod def get_screen_info(self) -> list[tuple[int, int, int, int]]: """Get the screen information""" @abstractmethod def grab_key(self, key: config.Key | config.KeyChord) -> tuple[int, int]: """Configure the backend to grab the key event""" @abstractmethod def ungrab_key(self, key: config.Key | config.KeyChord) -> tuple[int, int]: """Release the given key event""" @abstractmethod def ungrab_keys(self) -> None: """Release the grabbed key events""" @abstractmethod def grab_button(self, mouse: config.Mouse) -> int: """Configure the backend to grab the mouse event""" @abstractmethod def ungrab_buttons(self) -> None: """Release the grabbed button events""" @abstractmethod def grab_pointer(self) -> None: """Configure the backend to grab mouse events""" @abstractmethod def ungrab_pointer(self) -> None: """Release grabbed pointer events""" def distribute_windows(self, initial: bool) -> None: """Distribute windows to groups. `initial` will be `True` if Qtile just started.""" def warp_pointer(self, x: int, y: int) -> None: """Warp the pointer to the given coordinates relative.""" def update_client_list(self, windows_map: dict[int, WindowType]) -> None: """Update the list of windows being managed""" @contextlib.contextmanager def masked(self): """A context manager to suppress window events while operating on many windows.""" yield def create_internal(self, x: int, y: int, width: int, height: int) -> Internal: """Create an internal window controlled by Qtile.""" raise NotImplementedError # Only error when called, not when instantiating class def flush(self) -> None: """If needed, flush the backend's event queue.""" def graceful_shutdown(self): """Try to close windows gracefully before exiting""" def simulate_keypress(self, modifiers: list[str], key: str) -> None: """Simulate a keypress with given modifiers""" def keysym_from_name(self, name: str) -> int: """Get the keysym for a key from its name""" raise NotImplementedError def cmd_info(self) -> dict: """Get basic information about the running backend.""" return {"backend": self.name, "display_name": self.display_name} @enum.unique class FloatStates(enum.Enum): NOT_FLOATING = 1 FLOATING = 2 MAXIMIZED = 3 FULLSCREEN = 4 TOP = 5 MINIMIZED = 6 class _Window(CommandObject, metaclass=ABCMeta): def __init__(self): self.borderwidth: int = 0 self.name: str = "<no name>" self.reserved_space: tuple[int, int, int, int] | None = None # Window.cmd_static sets this in case it is hooked to client_new to stop the # Window object from being managed, now that a Static is being used instead self.defunct: bool = False @property @abstractmethod def wid(self) -> int: """The unique window ID""" @abstractmethod def hide(self) -> None: """Hide the window""" @abstractmethod def unhide(self) -> None: """Unhide the window""" @abstractmethod def kill(self) -> None: """Kill the window""" def get_wm_class(self) -> list | None: """Return the class(es) of the window""" return None def get_wm_type(self) -> str | None: """Return the type of the window""" return None def get_wm_role(self) -> str | None: """Return the role of the window""" return None @property def can_steal_focus(self): """Is it OK for this window to steal focus?""" return True def has_fixed_ratio(self) -> bool: """Does this window want a fixed aspect ratio?""" return False def has_fixed_size(self) -> bool: """Does this window want a fixed size?""" return False @property def urgent(self): """Whether this window urgently wants focus""" return False @property def opacity(self) -> float: """The opacity of this window from 0 (transparent) to 1 (opaque).""" return self._opacity @opacity.setter def opacity(self, opacity: float) -> None: """Opacity setter.""" self._opacity = opacity @abstractmethod def place( self, x, y, width, height, borderwidth, bordercolor, above=False, margin=None, respect_hints=False, ): """Place the window in the given position.""" def _items(self, name: str) -> ItemT: return None def _select(self, name, sel): return None @abstractmethod def info(self) -> dict[str, Any]: """ Return information on this window. Mimimum required keys are: - name - x - y - width - height - group - id - wm_class """ return {} def cmd_info(self) -> dict: """Return a dictionary of info.""" return self.info() class Window(_Window, metaclass=ABCMeta): """ A regular Window belonging to a client. Abstract methods are required to be defined as part of a specific backend's implementation. Non-abstract methods have default implementations here to be shared across backends. """ qtile: Qtile # If float_x or float_y are None, the window has never floated float_x: int | None float_y: int | None def __repr__(self): return "Window(name=%r, wid=%i)" % (self.name, self.wid) @property @abstractmethod def group(self) -> _Group | None: """The group to which this window belongs.""" @property def floating(self) -> bool: """Whether this window is floating.""" return False @floating.setter def floating(self, do_float: bool) -> None: raise NotImplementedError @property def maximized(self) -> bool: """Whether this window is maximized.""" return False @maximized.setter def maximized(self, do_maximize: bool) -> None: raise NotImplementedError @property def minimized(self) -> bool: """Whether this window is minimized.""" return False @minimized.setter def minimized(self, do_minimize: bool) -> None: raise NotImplementedError @property def fullscreen(self) -> bool: """Whether this window is fullscreened.""" return False @fullscreen.setter def fullscreen(self, do_full: bool) -> None: raise NotImplementedError @property def wants_to_fullscreen(self) -> bool: """Does this window want to be fullscreen?""" return False def match(self, match: config.Match) -> bool: """Compare this window against a Match instance.""" return match.compare(self) @abstractmethod def focus(self, warp: bool) -> None: """Focus this window and optional warp the pointer to it.""" @abstractmethod def togroup(self, group_name: str | None = None, *, switch_group: bool = False) -> None: """Move window to a specified group Also switch to that group if switch_group is True. """ @property def has_focus(self): return self == self.qtile.current_window def has_user_set_position(self) -> bool: """Whether this window has user-defined geometry""" return False def is_transient_for(self) -> WindowType | None: """What window is this window a transient window for?""" return None @abstractmethod def get_pid(self) -> int: """Return the PID that owns the window.""" def paint_borders(self, color: ColorsType, width: int) -> None: """Paint the window borders with the given color(s) and width""" @abstractmethod def cmd_focus(self, warp: bool = True) -> None: """Focuses the window.""" def cmd_match(self, *args, **kwargs) -> bool: return self.match(*args, **kwargs) @abstractmethod def cmd_get_position(self) -> tuple[int, int]: """Get the (x, y) of the window""" @abstractmethod def cmd_get_size(self) -> tuple[int, int]: """Get the (width, height) of the window""" @abstractmethod def cmd_move_floating(self, dx: int, dy: int) -> None: """Move window by dx and dy""" @abstractmethod def cmd_resize_floating(self, dw: int, dh: int) -> None: """Add dw and dh to size of window""" @abstractmethod def cmd_set_position_floating(self, x: int, y: int) -> None: """Move window to x and y""" @abstractmethod def cmd_set_position(self, x: int, y: int) -> None: """ Move floating window to x and y; swap tiling window with the window under the pointer. """ @abstractmethod def cmd_set_size_floating(self, w: int, h: int) -> None: """Set window dimensions to w and h""" @abstractmethod def cmd_place( self, x, y, width, height, borderwidth, bordercolor, above=False, margin=None ) -> None: """Place the window with the given position and geometry.""" @abstractmethod def cmd_toggle_floating(self) -> None: """Toggle the floating state of the window.""" @abstractmethod def cmd_enable_floating(self) -> None: """Float the window.""" @abstractmethod def cmd_disable_floating(self) -> None: """Tile the window.""" @abstractmethod def cmd_toggle_maximize(self) -> None: """Toggle the maximize state of the window.""" @abstractmethod def cmd_toggle_minimize(self) -> None: """Toggle the minimize state of the window.""" @abstractmethod def cmd_toggle_fullscreen(self) -> None: """Toggle the fullscreen state of the window.""" @abstractmethod def cmd_enable_fullscreen(self) -> None: """Fullscreen the window""" @abstractmethod def cmd_disable_fullscreen(self) -> None: """Un-fullscreen the window""" @abstractmethod def cmd_bring_to_front(self) -> None: """Bring the window to the front""" def cmd_togroup( self, group_name: str | None = None, groupName: str | None = None, # Deprecated # noqa: N803 switch_group: bool = False, ) -> None: """Move window to a specified group Also switch to that group if `switch_group` is True. `groupName` is deprecated and will be dropped soon. Please use `group_name` instead. """ if groupName is not None: logger.warning("Window.cmd_togroup's groupName is deprecated; use group_name") group_name = groupName self.togroup(group_name, switch_group=switch_group) def cmd_toscreen(self, index: int | None = None) -> None: """Move window to a specified screen. If index is not specified, we assume the current screen Examples ======== Move window to current screen:: toscreen() Move window to screen 0:: toscreen(0) """ if index is None: screen = self.qtile.current_screen else: try: screen = self.qtile.screens[index] except IndexError: raise CommandError("No such screen: %d" % index) self.togroup(screen.group.name) def cmd_opacity(self, opacity: float) -> None: """Set the window's opacity. The value must be between 0 and 1 inclusive. """ if opacity < 0.1: self.opacity = 0.1 elif opacity > 1: self.opacity = 1 else: self.opacity = opacity def cmd_down_opacity(self) -> None: """Decrease the window's opacity by 10%.""" if self.opacity > 0.2: # don't go completely clear self.opacity -= 0.1 else: self.opacity = 0.1 def cmd_up_opacity(self) -> None: """Increase the window's opacity by 10%.""" if self.opacity < 0.9: self.opacity += 0.1 else: self.opacity = 1 @abstractmethod def cmd_kill(self) -> None: """Kill the window. Try to be polite.""" @abstractmethod def cmd_static( self, screen: int | None = None, x: int | None = None, y: int | None = None, width: int | None = None, height: int | None = None, ) -> None: """Makes this window a static window, attached to a Screen. Values left unspecified are taken from the existing window state. """ self.defunct = True def cmd_center(self) -> None: """Centers a floating window on the screen.""" if not self.floating: return if not (self.group and self.group.screen): return screen = self.group.screen x = (screen.width - self.width) // 2 # type: ignore y = (screen.height - self.height) // 2 # type: ignore self.place( x, y, self.width, # type: ignore self.height, # type: ignore self.borderwidth, self.bordercolor, # type: ignore above=True, respect_hints=True, ) class Internal(_Window, metaclass=ABCMeta): """An Internal window belonging to Qtile.""" def __repr__(self): return "Internal(wid=%s)" % self.wid @abstractmethod def create_drawer(self, width: int, height: int) -> Drawer: """Create a Drawer that draws to this window.""" def process_window_expose(self) -> None: """Respond to the window being exposed. Required by X11 backend.""" def process_button_click(self, x: int, y: int, button: int) -> None: """Handle a pointer button click.""" def process_button_release(self, x: int, y: int, button: int) -> None: """Handle a pointer button release.""" def process_pointer_enter(self, x: int, y: int) -> None: """Handle the pointer entering the window.""" def process_pointer_leave(self, x: int, y: int) -> None: """Handle the pointer leaving the window.""" def process_pointer_motion(self, x: int, y: int) -> None: """Handle pointer motion within the window.""" def process_key_press(self, keycode: int) -> None: """Handle a key press.""" class Static(_Window, metaclass=ABCMeta): """A window bound to a screen rather than a group.""" screen: config.Screen x: Any y: Any width: Any height: Any def __repr__(self): return "Static(name=%r, wid=%s)" % (self.name, self.wid) def info(self) -> dict: """Return a dictionary of info.""" return dict( name=self.name, wm_class=self.get_wm_class(), x=self.x, y=self.y, width=self.width, height=self.height, id=self.wid, ) @abstractmethod def cmd_bring_to_front(self) -> None: """Bring the window to the front""" WindowType = typing.Union[Window, Internal, Static] class Drawer: """A helper class for drawing to Internal windows. We stage drawing operations locally in memory using a cairo RecordingSurface before finally drawing all operations to a backend-specific target. """ # We need to track extent of drawing to know when to redraw. previous_rect: tuple[int, int, int | None, int | None] current_rect: tuple[int, int, int | None, int | None] def __init__(self, qtile: Qtile, win: Internal, width: int, height: int): self.qtile = qtile self._win = win self._width = width self._height = height self.surface: cairocffi.RecordingSurface self.ctx: cairocffi.Context self._reset_surface() self.mirrors: dict[Drawer, bool] = {} self.current_rect = (0, 0, 0, 0) self.previous_rect = (-1, -1, -1, -1) self._enabled = True def finalize(self): """Destructor/Clean up resources""" self.surface = None self.ctx = None def add_mirror(self, mirror: Drawer): """Keep details of other drawers that are mirroring this one.""" self.mirrors[mirror] = False def reset_mirrors(self): """Reset the drawn status of mirrors.""" self.mirrors = {m: False for m in self.mirrors} @property def mirrors_drawn(self) -> bool: """Returns True if all mirrors have been drawn with the current surface.""" return all(v for v in self.mirrors.values()) @property def width(self) -> int: return self._width @width.setter def width(self, width: int): self._width = width @property def height(self) -> int: return self._height @height.setter def height(self, height: int): self._height = height def _reset_surface(self): """This creates a fresh surface and cairo context.""" self.surface = cairocffi.RecordingSurface( cairocffi.CONTENT_COLOR_ALPHA, None, ) self.ctx = self.new_ctx() def _check_surface_reset(self): """ Checks to see if the widget is not being reflected and then clears RecordingSurface of operations. """ if not self.mirrors: self._reset_surface() @property def needs_update(self) -> bool: # We can't test for the surface's ink_extents here on its own as a completely # transparent background would not show any extents but we may still need to # redraw (e.g. if a Spacer widget has changed position and/or size) # Check if the size of the area being drawn has changed rect_changed = self.current_rect != self.previous_rect # Check if draw has content (would be False for completely transparent drawer) ink_changed = any(not math.isclose(0.0, i) for i in self.surface.ink_extents()) return ink_changed or rect_changed def paint_to(self, drawer: Drawer) -> None: drawer.ctx.set_source_surface(self.surface) drawer.ctx.paint() self.mirrors[drawer] = True if self.mirrors_drawn: self._reset_surface() self.reset_mirrors() def _rounded_rect(self, x, y, width, height, linewidth): aspect = 1.0 corner_radius = height / 10.0 radius = corner_radius / aspect degrees = math.pi / 180.0 self.ctx.new_sub_path() delta = radius + linewidth / 2 self.ctx.arc(x + width - delta, y + delta, radius, -90 * degrees, 0 * degrees) self.ctx.arc(x + width - delta, y + height - delta, radius, 0 * degrees, 90 * degrees) self.ctx.arc(x + delta, y + height - delta, radius, 90 * degrees, 180 * degrees) self.ctx.arc(x + delta, y + delta, radius, 180 * degrees, 270 * degrees) self.ctx.close_path() def rounded_rectangle(self, x: int, y: int, width: int, height: int, linewidth: int): self._rounded_rect(x, y, width, height, linewidth) self.ctx.set_line_width(linewidth) self.ctx.stroke() def rounded_fillrect(self, x: int, y: int, width: int, height: int, linewidth: int): self._rounded_rect(x, y, width, height, linewidth) self.ctx.fill() def rectangle(self, x: int, y: int, width: int, height: int, linewidth: int = 2): self.ctx.set_line_width(linewidth) self.ctx.rectangle(x, y, width, height) self.ctx.stroke() def fillrect(self, x: int, y: int, width: int, height: int, linewidth: int = 2): self.ctx.set_line_width(linewidth) self.ctx.rectangle(x, y, width, height) self.ctx.fill() self.ctx.stroke() def enable(self): """Enable drawing of surface to Internal window.""" self._enabled = True def disable(self): """Disable drawing of surface to Internal window.""" self._enabled = False def draw( self, offsetx: int = 0, offsety: int = 0, width: int | None = None, height: int | None = None, ): """ A wrapper for the draw operation. This draws our cached operations to the Internal window. If Drawer has been disabled then the RecordingSurface will be cleared if no mirrors are waiting to copy its contents. Parameters ========== offsetx : the X offset to start drawing at. offsety : the Y offset to start drawing at. width : the X portion of the canvas to draw at the starting point. height : the Y portion of the canvas to draw at the starting point. """ if self._enabled: self._draw(offsetx, offsety, width, height) # Check to see if RecordingSurface can be cleared. self._check_surface_reset() def _draw( self, offsetx: int = 0, offsety: int = 0, width: int | None = None, height: int | None = None, ): """ This draws our cached operations to the Internal window. Parameters ========== offsetx : the X offset to start drawing at. offsety : the Y offset to start drawing at. width : the X portion of the canvas to draw at the starting point. height : the Y portion of the canvas to draw at the starting point. """ def new_ctx(self): return pangocffi.patch_cairo_context(cairocffi.Context(self.surface)) def set_source_rgb(self, colour: ColorsType, ctx: cairocffi.Context | None = None): # If an alternate context is not provided then we draw to the # drawer's default context if ctx is None: ctx = self.ctx if isinstance(colour, list): if len(colour) == 0: # defaults to black ctx.set_source_rgba(0.0, 0.0, 0.0, 1.0) elif len(colour) == 1: ctx.set_source_rgba(*utils.rgb(colour[0])) else: linear = cairocffi.LinearGradient(0.0, 0.0, 0.0, self.height) step_size = 1.0 / (len(colour) - 1) step = 0.0 for c in colour: linear.add_color_stop_rgba(step, *utils.rgb(c)) step += step_size ctx.set_source(linear) else: ctx.set_source_rgba(*utils.rgb(colour)) def clear(self, colour): self.set_source_rgb(colour) self.ctx.rectangle(0, 0, self.width, self.height) self.ctx.fill() def textlayout(self, text, colour, font_family, font_size, font_shadow, markup=False, **kw): """Get a text layout""" textlayout = drawer.TextLayout( self, text, colour, font_family, font_size, font_shadow, markup=markup, **kw ) return textlayout def max_layout_size(self, texts, font_family, font_size): sizelayout = self.textlayout("", "ffffff", font_family, font_size, None) widths, heights = [], [] for i in texts: sizelayout.text = i widths.append(sizelayout.width) heights.append(sizelayout.height) return max(widths), max(heights) def text_extents(self, text): return self.ctx.text_extents(utils.scrub_to_utf8(text)) def font_extents(self): return self.ctx.font_extents() def fit_fontsize(self, heightlimit): """Try to find a maximum font size that fits any strings within the height""" self.ctx.set_font_size(heightlimit) asc, desc, height, _, _ = self.font_extents() self.ctx.set_font_size(int(heightlimit * heightlimit / height)) return self.font_extents() def fit_text(self, strings, heightlimit): """Try to find a maximum font size that fits all strings within the height""" self.ctx.set_font_size(heightlimit) _, _, _, maxheight, _, _ = self.ctx.text_extents("".join(strings)) if not maxheight: return 0, 0 self.ctx.set_font_size(int(heightlimit * heightlimit / maxheight)) maxwidth, maxheight = 0, 0 for i in strings: _, _, x, y, _, _ = self.ctx.text_extents(i) maxwidth = max(maxwidth, x) maxheight = max(maxheight, y) return maxwidth, maxheight def draw_vbar(self, color, x, y1, y2, linewidth=1): self.set_source_rgb(color) self.ctx.move_to(x, y1) self.ctx.line_to(x, y2) self.ctx.set_line_width(linewidth) self.ctx.stroke() def draw_hbar(self, color, x1, x2, y, linewidth=1): self.set_source_rgb(color) self.ctx.move_to(x1, y) self.ctx.line_to(x2, y) self.ctx.set_line_width(linewidth) self.ctx.stroke()
import copy import pickle import warnings import pandas as pd from .tools.normalize import normalize as normalizer from .tools.reduce import reduce as reducer from .tools.align import align as aligner from .tools.format_data import format_data from ._shared.helpers import convert_text, get_dtype from .config import __version__ class DataGeometry(object): """ Hypertools data object class A DataGeometry object contains the data, figure handles and transform functions used to create a plot. Note: this class should not be called directly, but is used by the `hyp.plot` function to create a plot object. Parameters ---------- fig : matplotlib.Figure The matplotlib figure handle for the plot ax : matplotlib.Axes The matplotlib axes handle for the plot line_ani : matplotlib.animation.FuncAnimation The matplotlib animation handle (if the plot is an animation) data : list A list of numpy arrays representing the raw data xform_data : list A list of numpy arrays representing the transformed data reduce : dict A dictionary containing the reduction model and parameters align : dict A dictionary containing align model and parameters normalize : str A string representing the kind of normalization kwargs : dict A dictionary containing all kwargs passed to the plot function version : str The version of the software used to create the class instance """ def __init__(self, fig=None, ax=None, line_ani=None, data=None, xform_data=None, reduce=None, align=None, normalize=None, semantic=None, vectorizer=None, corpus=None, kwargs=None, version=__version__, dtype=None): # matplotlib figure handle self.fig = fig # matplotlib axis handle self.ax = ax # matplotlib line_ani handle (if its an animation) self.line_ani = line_ani # convert to numpy array if text if isinstance(data, list): data = list(map(convert_text, data)) self.data = data self.dtype = get_dtype(data) # the transformed data self.xform_data = xform_data # dictionary of model and model_params self.reduce = reduce # 'hyper', 'SRM' or None self.align = align # 'within', 'across', 'row' or False self.normalize = normalize # text params self.semantic = semantic self.vectorizer = vectorizer self.corpus = corpus # dictionary of kwargs self.kwargs = kwargs # hypertools version self.version = version def get_data(self): """Return a copy of the data""" return copy.copy(self.data) def get_formatted_data(self): """Return a formatted copy of the data""" return format_data(self.data) # a function to transform new data def transform(self, data=None): """ Return transformed data, or transform new data using the same model parameters Parameters ---------- data : numpy array, pandas dataframe or list of arrays/dfs The data to transform. If no data is passed, the xform_data from the DataGeometry object will be returned. Returns ---------- xformed_data : list of numpy arrays The transformed data """ # if no new data passed, if data is None: return self.xform_data else: formatted = format_data( data, semantic=self.semantic, vectorizer=self.vectorizer, corpus=self.corpus, ppca=True) norm = normalizer(formatted, normalize=self.normalize) reduction = reducer( norm, reduce=self.reduce, ndims=self.reduce['params']['n_components']) return aligner(reduction, align=self.align) # a function to plot the data def plot(self, data=None, **kwargs): """ Plot the data Parameters ---------- data : numpy array, pandas dataframe or list of arrays/dfs The data to plot. If no data is passed, the xform_data from the DataGeometry object will be returned. kwargs : keyword arguments Any keyword arguments supported by `hypertools.plot` are also supported by this method Returns ---------- geo : hypertools.DataGeometry A new data geometry object """ # import plot here to avoid circular imports from .plot.plot import plot as plotter if data is None: d = copy.copy(self.data) transform = copy.copy(self.xform_data) if any([k in kwargs for k in ['reduce', 'align', 'normalize', 'semantic', 'vectorizer', 'corpus']]): d = copy.copy(self.data) transform = None else: d = data transform = None # get kwargs and update with new kwargs new_kwargs = copy.copy(self.kwargs) update_kwargs = dict(transform=transform, reduce=self.reduce, align=self.align, normalize=self.normalize, semantic=self.semantic, vectorizer=self.vectorizer, corpus=self.corpus) new_kwargs.update(update_kwargs) for key in kwargs: new_kwargs.update({key : kwargs[key]}) return plotter(d, **new_kwargs) def save(self, fname, compression=None): """ Save method for the data geometry object The data will be saved as a 'geo' file, which is a dictionary containing the elements of a data geometry object saved in the hd5 format using `deepdish`. Parameters ---------- fname : str A name for the file. If the file extension (.geo) is not specified, it will be appended. """ if compression is not None: warnings.warn("Hypertools has switched from deepdish to pickle " "for saving DataGeomtry objects. 'compression' " "argument has no effect and will be removed in a " "future version", FutureWarning) # automatically add extension if not present if not fname.endswith('.geo'): fname += '.geo' # can't save/restore matplotlib objects across sessions curr_fig = self.fig curr_ax = self.ax curr_line_ani = self.line_ani curr_data = self.data # convert pandas DataFrames to dicts of # {column_name: list(column_values)} to fix I/O compatibility # issues across certain pandas versions. Expected self.data # format is restored by hypertools.load if isinstance(curr_data, pd.DataFrame): data_out_fmt = curr_data.to_dict('list') else: data_out_fmt = curr_data try: self.fig = self.ax = self.line_ani = None self.data = data_out_fmt # save with open(fname, 'wb') as f: pickle.dump(self, f) finally: # make sure we don't mutate attribute values whether or not # save was successful self.fig = curr_fig self.ax = curr_ax self.line_ani = curr_line_ani self.data = curr_data
""" Adaptive numerical evaluation of SymPy expressions, using mpmath for mathematical functions. """ from sympy.mpmath.libmpf import (from_int, from_rational, fzero, normalize, bitcount, round_nearest, to_str, fone, fnone, fhalf, to_float, from_float, fnone, to_int, mpf_lt, mpf_sqrt, mpf_cmp, mpf_abs, mpf_pow_int, mpf_shift, mpf_add, mpf_mul, mpf_neg) import sympy.mpmath.libmpc as libmpc from sympy.mpmath.settings import dps_to_prec from sympy.mpmath import mpf, mpc, quadts, quadosc, mp, make_mpf from sympy.mpmath.gammazeta import mpf_gamma from sympy.mpmath.libelefun import mpf_pi, mpf_log, mpf_pow, mpf_sin, mpf_cos, \ mpf_atan, mpf_atan2, mpf_e, mpf_exp from sympy.mpmath.libmpf import MP_BASE, from_man_exp from sympy.mpmath.calculus import shanks, richardson, nsum from sympy.mpmath import inf as mpmath_inf from sympy.mpmath.gammazeta import mpf_bernoulli import math from basic import Basic, C, S from function import Function from sympify import sympify LG10 = math.log(10,2) # Used in a few places as placeholder values to denote exponents and # precision levels, e.g. of exact numbers. Must be careful to avoid # passing these to mpmath functions or returning them in final results. INF = 1e1000 MINUS_INF = -1e1000 # ~= 100 digits. Real men set this to INF. DEFAULT_MAXPREC = 333 class PrecisionExhausted(ArithmeticError): pass #----------------------------------------------------------------------------# # # # Helper functions for arithmetic and complex parts # # # #----------------------------------------------------------------------------# """ An mpf value tuple is a tuple of integers (sign, man, exp, bc) representing a floating-point numbers. A temporary result is a tuple (re, im, re_acc, im_acc) where re and im are nonzero mpf value tuples representing approximate numbers, or None to denote exact zeros. re_acc, im_acc are integers denoting log2(e) where e is the estimated relative accuracy of the respective complex part, but may be anything if the corresponding complex part is None. """ def fastlog(x): """Fast approximation of log2(x) for an mpf value tuple x.""" if not x or x == fzero: return MINUS_INF # log2(x) ~= exponent + width of mantissa # Note: this actually gives ceil(log2(x)), which is a useful # feature for interval arithmetic. return x[2] + x[3] def complex_accuracy(result): """ Returns relative accuracy of a complex number with given accuracies for the real and imaginary parts. The relative accuracy is defined in the complex norm sense as ||z|+|error|| / |z| where error is equal to (real absolute error) + (imag absolute error)*i. The full expression for the (logarithmic) error can be approximated easily by using the max norm to approximate the complex norm. In the worst case (re and im equal), this is wrong by a factor sqrt(2), or by log2(sqrt(2)) = 0.5 bit. """ re, im, re_acc, im_acc = result if not im: if not re: return INF return re_acc if not re: return im_acc re_size = fastlog(re) im_size = fastlog(im) absolute_error = max(re_size-re_acc, im_size-im_acc) relative_error = absolute_error - max(re_size, im_size) return -relative_error def get_abs(expr, prec, options): re, im, re_acc, im_acc = evalf(expr, prec+2, options) if not re: re, re_acc, im, im_acc = im, im_acc, re, re_acc if im: return libmpc.mpc_abs((re, im), prec), None, re_acc, None else: return mpf_abs(re), None, re_acc, None def get_complex_part(expr, no, prec, options): """no = 0 for real part, no = 1 for imaginary part""" workprec = prec i = 0 while 1: res = evalf(expr, workprec, options) value, accuracy = res[no::2] if (not value) or accuracy >= prec: return value, None, accuracy, None workprec += max(30, 2**i) i += 1 def evalf_abs(expr, prec, options): return get_abs(expr.args[0], prec, options) def evalf_re(expr, prec, options): return get_complex_part(expr.args[0], 0, prec, options) def evalf_im(expr, prec, options): return get_complex_part(expr.args[0], 1, prec, options) def finalize_complex(re, im, prec): assert re and im if re == fzero and im == fzero: raise ValueError("got complex zero with unknown accuracy") size_re = fastlog(re) size_im = fastlog(im) # Convert fzeros to scaled zeros if re == fzero: re = mpf_shift(fone, size_im-prec) size_re = fastlog(re) elif im == fzero: im = mpf_shift(fone, size_re-prec) size_im = fastlog(im) if size_re > size_im: re_acc = prec im_acc = prec + min(-(size_re - size_im), 0) else: im_acc = prec re_acc = prec + min(-(size_im - size_re), 0) return re, im, re_acc, im_acc def chop_parts(value, prec): """ Chop off tiny real or complex parts. """ re, im, re_acc, im_acc = value # Method 1: chop based on absolute value if re and (fastlog(re) < -prec+4): re, re_acc = None, None if im and (fastlog(im) < -prec+4): im, im_acc = None, None # Method 2: chop if inaccurate and relatively small if re and im: delta = fastlog(re) - fastlog(im) if re_acc < 2 and (delta - re_acc <= -prec+4): re, re_acc = None, None if im_acc < 2 and (delta - im_acc >= prec-4): im, im_acc = None, None return re, im, re_acc, im_acc def check_target(expr, result, prec): a = complex_accuracy(result) if a < prec: raise PrecisionExhausted("Failed to distinguish the expression: \n\n%s\n\n" "from zero. Try simplifying the input, using chop=True, or providing " "a higher maxprec for evalf" % (expr)) def get_integer_part(expr, no, options, return_ints=False): """ With no = 1, computes ceiling(expr) With no = -1, computes floor(expr) Note: this function either gives the exact result or signals failure. """ # The expression is likely less than 2^30 or so assumed_size = 30 ire, iim, ire_acc, iim_acc = evalf(expr, assumed_size, options) # We now know the size, so we can calculate how much extra precision # (if any) is needed to get within the nearest integer if ire and iim: gap = max(fastlog(ire)-ire_acc, fastlog(iim)-iim_acc) elif ire: gap = fastlog(ire)-ire_acc elif iim: gap = fastlog(iim)-iim_acc else: # ... or maybe the expression was exactly zero return None, None, None, None margin = 10 if gap >= -margin: ire, iim, ire_acc, iim_acc = evalf(expr, margin+assumed_size+gap, options) # We can now easily find the nearest integer, but to find floor/ceil, we # must also calculate whether the difference to the nearest integer is # positive or negative (which may fail if very close) def calc_part(expr, nexpr): nint = int(to_int(nexpr, round_nearest)) expr = C.Add(expr, -nint, evaluate=False) x, _, x_acc, _ = evalf(expr, 10, options) check_target(expr, (x, None, x_acc, None), 3) nint += int(no*(mpf_cmp(x or fzero, fzero) == no)) nint = from_int(nint) return nint, fastlog(nint) + 10 re, im, re_acc, im_acc = None, None, None, None if ire: re, re_acc = calc_part(C.re(expr, evaluate=False), ire) if iim: im, im_acc = calc_part(C.im(expr, evaluate=False), iim) if return_ints: return int(to_int(re or fzero)), int(to_int(im or fzero)) return re, im, re_acc, im_acc def evalf_ceiling(expr, prec, options): return get_integer_part(expr.args[0], 1, options) def evalf_floor(expr, prec, options): return get_integer_part(expr.args[0], -1, options) #----------------------------------------------------------------------------# # # # Arithmetic operations # # # #----------------------------------------------------------------------------# def add_terms(terms, prec, target_prec): """ Helper for evalf_add. Adds a list of (mpfval, accuracy) terms. """ if len(terms) == 1: if not terms[0]: # XXX: this is supposed to represent a scaled zero return mpf_shift(fone, target_prec), -1 return terms[0] sum_man, sum_exp, absolute_error = 0, 0, MINUS_INF for x, accuracy in terms: if not x: continue sign, man, exp, bc = x if sign: man = -man absolute_error = max(absolute_error, bc+exp-accuracy) delta = exp - sum_exp if exp >= sum_exp: if delta > 4*prec: sum_man = man sum_exp = exp else: sum_man += man << delta else: if (-delta) > 4*prec: pass else: sum_man = (sum_man << (-delta)) + man sum_exp = exp if absolute_error == MINUS_INF: return None, None if not sum_man: # XXX: this is supposed to represent a scaled zero return mpf_shift(fone, absolute_error), -1 if sum_man < 0: sum_sign = 1 sum_man = -sum_man else: sum_sign = 0 sum_bc = bitcount(sum_man) sum_accuracy = sum_exp + sum_bc - absolute_error r = normalize(sum_sign, sum_man, sum_exp, sum_bc, target_prec, round_nearest), sum_accuracy #print "returning", to_str(r[0],50), r[1] return r def evalf_add(v, prec, options): args = v.args target_prec = prec i = 0 oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2*prec) try: while 1: terms = [evalf(arg, prec+10, options) for arg in args] re, re_accuracy = add_terms([(a[0],a[2]) for a in terms if a[0]], prec, target_prec) im, im_accuracy = add_terms([(a[1],a[3]) for a in terms if a[1]], prec, target_prec) accuracy = complex_accuracy((re, im, re_accuracy, im_accuracy)) if accuracy >= target_prec: if options.get('verbose'): print "ADD: wanted", target_prec, "accurate bits, got", re_accuracy, im_accuracy return re, im, re_accuracy, im_accuracy else: diff = target_prec - accuracy if (prec-target_prec) > options.get('maxprec', DEFAULT_MAXPREC): return re, im, re_accuracy, im_accuracy prec = prec + max(10+2**i, diff) options['maxprec'] = min(oldmaxprec, 2*prec) if options.get('verbose'): print "ADD: restarting with prec", prec i += 1 finally: options['maxprec'] = oldmaxprec # Helper for complex multiplication # XXX: should be able to multiply directly, and use complex_accuracy # to obtain the final accuracy def cmul((a, aacc), (b, bacc), (c, cacc), (d, dacc), prec, target_prec): A, Aacc = mpf_mul(a,c,prec), min(aacc, cacc) B, Bacc = mpf_mul(mpf_neg(b),d,prec), min(bacc, dacc) C, Cacc = mpf_mul(a,d,prec), min(aacc, dacc) D, Dacc = mpf_mul(b,c,prec), min(bacc, cacc) re, re_accuracy = add_terms([(A, Aacc), (B, Bacc)], prec, target_prec) im, im_accuracy = add_terms([(C, Cacc), (D, Cacc)], prec, target_prec) return re, im, re_accuracy, im_accuracy def evalf_mul(v, prec, options): args = v.args # With guard digits, multiplication in the real case does not destroy # accuracy. This is also true in the complex case when considering the # total accuracy; however accuracy for the real or imaginary parts # separately may be lower. acc = prec target_prec = prec # XXX: big overestimate prec = prec + len(args) + 5 direction = 0 # Empty product is 1 man, exp, bc = MP_BASE(1), 0, 1 direction = 0 complex_factors = [] # First, we multiply all pure real or pure imaginary numbers. # direction tells us that the result should be multiplied by # i**direction for arg in args: re, im, a, aim = evalf(arg, prec, options) if re and im: complex_factors.append((re, im, a, aim)) continue elif re: s, m, e, b = re elif im: a = aim direction += 1 s, m, e, b = im else: return None, None, None, None direction += 2*s man *= m exp += e bc += b if bc > 3*prec: man >>= prec exp += prec acc = min(acc, a) sign = (direction & 2) >> 1 v = normalize(sign, man, exp, bitcount(man), prec, round_nearest) if complex_factors: # Multiply first complex number by the existing real scalar re, im, re_acc, im_acc = complex_factors[0] re = mpf_mul(re, v, prec) im = mpf_mul(im, v, prec) re_acc = min(re_acc, acc) im_acc = min(im_acc, acc) # Multiply consecutive complex factors complex_factors = complex_factors[1:] for wre, wim, wre_acc, wim_acc in complex_factors: re, im, re_acc, im_acc = cmul((re, re_acc), (im,im_acc), (wre,wre_acc), (wim,wim_acc), prec, target_prec) if options.get('verbose'): print "MUL: obtained accuracy", re_acc, im_acc, "expected", target_prec # multiply by i if direction & 1: return mpf_neg(im), re, re_acc, im_acc else: return re, im, re_acc, im_acc else: # multiply by i if direction & 1: return None, v, None, acc else: return v, None, acc, None def evalf_pow(v, prec, options): target_prec = prec base, exp = v.args # We handle x**n separately. This has two purposes: 1) it is much # faster, because we avoid calling evalf on the exponent, and 2) it # allows better handling of real/imaginary parts that are exactly zero if exp.is_Integer: p = exp.p # Exact if not p: return fone, None, prec, None # Exponentiation by p magnifies relative error by |p|, so the # base must be evaluated with increased precision if p is large prec += int(math.log(abs(p),2)) re, im, re_acc, im_acc = evalf(base, prec+5, options) # Real to integer power if re and not im: return mpf_pow_int(re, p, target_prec), None, target_prec, None # (x*I)**n = I**n * x**n if im and not re: z = fpowi(im, p, target_prec) case = p % 4 if case == 0: return z, None, target_prec, None if case == 1: return None, z, None, target_prec if case == 2: return mpf_neg(z), None, target_prec, None if case == 3: return None, mpf_neg(z), None, target_prec # Zero raised to an integer power if not re: return None, None, None, None # General complex number to arbitrary integer power re, im = libmpc.mpc_pow_int((re, im), p, prec) # Assumes full accuracy in input return finalize_complex(re, im, target_prec) # Pure square root if exp is S.Half: xre, xim, xre_acc, yim_acc = evalf(base, prec+5, options) # General complex square root if xim: re, im = libmpc.mpc_sqrt((xre or fzero, xim), prec) return finalize_complex(re, im, prec) if not xre: return None, None, None, None # Square root of a negative real number if mpf_lt(xre, fzero): return None, mpf_sqrt(mpf_neg(xre), prec), None, prec # Positive square root return mpf_sqrt(xre, prec), None, prec, None # We first evaluate the exponent to find its magnitude # This determines the working precision that must be used prec += 10 yre, yim, yre_acc, yim_acc = evalf(exp, prec, options) # Special cases: x**0 if not (yre or yim): return fone, None, prec, None ysize = fastlog(yre) # Restart if too big # XXX: prec + ysize might exceed maxprec if ysize > 5: prec += ysize yre, yim, yre_acc, yim_acc = evalf(exp, prec, options) # Pure exponential function; no need to evalf the base if base is S.Exp1: if yim: re, im = libmpc.mpc_exp((yre or fzero, yim), prec) return finalize_complex(re, im, target_prec) return mpf_exp(yre, target_prec), None, target_prec, None xre, xim, xre_acc, yim_acc = evalf(base, prec+5, options) # 0**y if not (xre or xim): return None, None, None, None # (real ** complex) or (complex ** complex) if yim: re, im = libmpc.mpc_pow((xre or fzero, xim or fzero), (yre or fzero, yim), target_prec) return finalize_complex(re, im, target_prec) # complex ** real if xim: re, im = libmpc.mpc_pow_mpf((xre or fzero, xim), yre, target_prec) return finalize_complex(re, im, target_prec) # negative ** real elif mpf_lt(xre, fzero): re, im = libmpc.mpc_pow_mpf((xre, fzero), yre, target_prec) return finalize_complex(re, im, target_prec) # positive ** real else: return mpf_pow(xre, yre, target_prec), None, target_prec, None #----------------------------------------------------------------------------# # # # Special functions # # # #----------------------------------------------------------------------------# def evalf_trig(v, prec, options): """ This function handles sin and cos of real arguments. TODO: should also handle tan and complex arguments. """ if v.func is C.cos: func = mpf_cos elif v.func is C.sin: func = mpf_sin else: raise NotImplementedError arg = v.args[0] # 20 extra bits is possibly overkill. It does make the need # to restart very unlikely xprec = prec + 20 re, im, re_accuracy, im_accuracy = evalf(arg, xprec, options) if im: raise NotImplementedError if not re: if v.func is C.cos: return fone, None, prec, None elif v.func is C.sin: return None, None, None, None else: raise NotImplementedError # For trigonometric functions, we are interested in the # fixed-point (absolute) accuracy of the argument. xsize = fastlog(re) # Magnitude <= 1.0. OK to compute directly, because there is no # danger of hitting the first root of cos (with sin, magnitude # <= 2.0 would actually be ok) if xsize < 1: return func(re, prec, round_nearest), None, prec, None # Very large if xsize >= 10: xprec = prec + xsize re, im, re_accuracy, im_accuracy = evalf(arg, xprec, options) # Need to repeat in case the argument is very close to a # multiple of pi (or pi/2), hitting close to a root while 1: y = func(re, prec, round_nearest) ysize = fastlog(y) gap = -ysize accuracy = (xprec - xsize) - gap if accuracy < prec: if options.get('verbose'): print "SIN/COS", accuracy, "wanted", prec, "gap", gap print to_str(y,10) if xprec > options.get('maxprec', DEFAULT_MAXPREC): return y, None, accuracy, None xprec += gap re, im, re_accuracy, im_accuracy = evalf(arg, xprec, options) continue else: return y, None, prec, None def evalf_log(expr, prec, options): arg = expr.args[0] workprec = prec+10 xre, xim, xacc, _ = evalf(arg, workprec, options) if xim: # XXX: use get_abs etc instead re = evalf_log(C.log(C.abs(arg, evaluate=False), evaluate=False), prec, options) im = mpf_atan2(xim, xre or fzero, prec) return re[0], im, re[2], prec imaginary_term = (mpf_cmp(xre, fzero) < 0) re = mpf_log(mpf_abs(xre), prec, round_nearest) size = fastlog(re) if prec - size > workprec: # We actually need to compute 1+x accurately, not x arg = C.Add(S.NegativeOne,arg,evaluate=False) xre, xim, xre_acc, xim_acc = evalf_add(arg, prec, options) prec2 = workprec - fastlog(xre) re = mpf_log(mpf_add(xre, fone, prec2), prec, round_nearest) re_acc = prec if imaginary_term: return re, mpf_pi(prec), re_acc, prec else: return re, None, re_acc, None def evalf_atan(v, prec, options): arg = v.args[0] xre, xim, reacc, imacc = evalf(arg, prec+5, options) if xim: raise NotImplementedError return mpf_atan(xre, prec, round_nearest), None, prec, None def evalf_piecewise(expr, prec, options): if 'subs' in options: expr = expr.subs(options['subs']) del options['subs'] if hasattr(expr,'func'): return evalf(expr, prec, options) if type(expr) == float: return evalf(C.Real(expr), prec, options) if type(expr) == int: return evalf(C.Integer(expr), prec, options) # We still have undefined symbols raise NotImplementedError def evalf_piecewise(expr, prec, options): if 'subs' in options: expr = expr.subs(options['subs']) del options['subs'] if hasattr(expr,'func'): return evalf(expr, prec, options) if type(expr) == float: return evalf(C.Real(expr), prec, options) if type(expr) == int: return evalf(C.Integer(expr), prec, options) # We still have undefined symbols raise NotImplementedError def evalf_bernoulli(expr, prec, options): arg = expr.args[0] if not arg.is_Integer: raise ValueError("Bernoulli number index must be an integer") n = int(arg) b = mpf_bernoulli(n, prec, round_nearest) if b == fzero: return None, None, None, None return b, None, prec, None #----------------------------------------------------------------------------# # # # High-level operations # # # #----------------------------------------------------------------------------# def as_mpmath(x, prec, options): x = sympify(x) if isinstance(x, C.Zero): return mpf(0) if isinstance(x, C.Infinity): return mpf('inf') if isinstance(x, C.NegativeInfinity): return mpf('-inf') # XXX re, im, _, _ = evalf(x, prec, options) if im: return mpc(re or fzero, im) return mpf(re) def do_integral(expr, prec, options): func = expr.args[0] x, (xlow, xhigh) = expr.args[1][0] orig = mp.prec oldmaxprec = options.get('maxprec', DEFAULT_MAXPREC) options['maxprec'] = min(oldmaxprec, 2*prec) try: mp.prec = prec+5 xlow = as_mpmath(xlow, prec+15, options) xhigh = as_mpmath(xhigh, prec+15, options) # Integration is like summation, and we can phone home from # the integrand function to update accuracy summation style # Note that this accuracy is inaccurate, since it fails # to account for the variable quadrature weights, # but it is better than nothing have_part = [False, False] max_real_term = [MINUS_INF] max_imag_term = [MINUS_INF] def f(t): re, im, re_acc, im_acc = evalf(func, mp.prec, {'subs':{x:t}}) have_part[0] = re or have_part[0] have_part[1] = im or have_part[1] max_real_term[0] = max(max_real_term[0], fastlog(re)) max_imag_term[0] = max(max_imag_term[0], fastlog(im)) if im: return mpc(re or fzero, im) return mpf(re or fzero) if options.get('quad') == 'osc': A = C.Wild('A', exclude=[x]) B = C.Wild('B', exclude=[x]) D = C.Wild('D') m = func.match(C.cos(A*x+B)*D) if not m: m = func.match(C.sin(A*x+B)*D) if not m: raise ValueError("An integrand of the form sin(A*x+B)*f(x) " "or cos(A*x+B)*f(x) is required for oscillatory quadrature") period = as_mpmath(2*S.Pi/m[A], prec+15, options) result = quadosc(f, [xlow, xhigh], period=period) # XXX: quadosc does not do error detection yet quadrature_error = MINUS_INF else: result, quadrature_error = quadts(f, [xlow, xhigh], error=1) quadrature_error = fastlog(quadrature_error._mpf_) finally: options['maxprec'] = oldmaxprec mp.prec = orig if have_part[0]: re = result.real._mpf_ if re == fzero: re = mpf_shift(fone, min(-prec,-max_real_term[0],-quadrature_error)) re_acc = -1 else: re_acc = -max(max_real_term[0]-fastlog(re)-prec, quadrature_error) else: re, re_acc = None, None if have_part[1]: im = result.imag._mpf_ if im == fzero: im = mpf_shift(fone, min(-prec,-max_imag_term[0],-quadrature_error)) im_acc = -1 else: im_acc = -max(max_imag_term[0]-fastlog(im)-prec, quadrature_error) else: im, im_acc = None, None result = re, im, re_acc, im_acc return result def evalf_integral(expr, prec, options): workprec = prec i = 0 maxprec = options.get('maxprec', INF) while 1: result = do_integral(expr, workprec, options) accuracy = complex_accuracy(result) if accuracy >= prec or workprec >= maxprec: return result workprec += prec - max(-2**i, accuracy) i += 1 def check_convergence(numer, denom, n): """ Returns (h, g, p) where -- h is: > 0 for convergence of rate 1/factorial(n)**h < 0 for divergence of rate factorial(n)**(-h) = 0 for geometric or polynomial convergence or divergence -- abs(g) is: > 1 for geometric convergence of rate 1/h**n < 1 for geometric divergence of rate h**n = 1 for polynomial convergence or divergence (g < 0 indicates an alternating series) -- p is: > 1 for polynomial convergence of rate 1/n**h <= 1 for polynomial divergence of rate n**(-h) """ npol = C.Poly(numer, n) dpol = C.Poly(denom, n) p = npol.degree q = dpol.degree rate = q - p if rate: return rate, None, None constant = dpol.lead_term[0] / npol.lead_term[0] if abs(constant) != 1: return rate, constant, None if npol.degree == dpol.degree == 0: return rate, constant, 0 pc = list(npol.iter_all_terms())[1][0] qc = list(dpol.iter_all_terms())[1][0] return rate, constant, qc-pc def hypsum(expr, n, start, prec): """ Sum a rapidly convergent infinite hypergeometric series with given general term, e.g. e = hypsum(1/factorial(n), n). The quotient between successive terms must be a quotient of integer polynomials. """ from sympy import hypersimp, lambdify if start: expr = expr.subs(n, n+start) hs = hypersimp(expr, n) if hs is None: raise NotImplementedError("a hypergeometric series is required") num, den = hs.as_numer_denom() func1 = lambdify(n, num) func2 = lambdify(n, den) h, g, p = check_convergence(num, den, n) if h < 0: raise ValueError("Sum diverges like (n!)^%i" % (-h)) # Direct summation if geometric or faster if h > 0 or (h == 0 and abs(g) > 1): one = MP_BASE(1) << prec term = expr.subs(n, 0) term = (MP_BASE(term.p) << prec) // term.q s = term k = 1 while abs(term) > 5: term *= MP_BASE(func1(k-1)) term //= MP_BASE(func2(k-1)) s += term k += 1 return from_man_exp(s, -prec) else: alt = g < 0 if abs(g) < 1: raise ValueError("Sum diverges like (%i)^n" % abs(1/g)) if p < 1 or (p == 1 and not alt): raise ValueError("Sum diverges like n^%i" % (-p)) # We have polynomial convergence: use Richardson extrapolation # Need to use at least quad precision because a lot of cancellation # might occur in the extrapolation process prec2 = 4*prec one = MP_BASE(1) << prec2 term = expr.subs(n, 0) term = (MP_BASE(term.p) << prec2) // term.q def summand(k, _term=[term]): if k: k = int(k) _term[0] *= MP_BASE(func1(k-1)) _term[0] //= MP_BASE(func2(k-1)) return make_mpf(from_man_exp(_term[0], -prec2)) orig = mp.prec try: mp.prec = prec v = nsum(summand, [0, mpmath_inf], method='richardson') finally: mp.prec = orig return v._mpf_ def evalf_sum(expr, prec, options): func = expr.function limits = expr.limits if len(limits) != 1 or not isinstance(limits[0], tuple) or \ len(limits[0]) != 3: raise NotImplementedError prec2 = prec+10 try: n, a, b = limits[0] if b != S.Infinity or a != int(a): raise NotImplementedError # Use fast hypergeometric summation if possible v = hypsum(func, n, int(a), prec2) delta = prec - fastlog(v) if fastlog(v) < -10: v = hypsum(func, n, int(a), delta) return v, None, min(prec, delta), None except NotImplementedError: # Euler-Maclaurin summation for general series eps = C.Real(2.0)**(-prec) for i in range(1, 5): m = n = 2**i * prec s, err = expr.euler_maclaurin(m=m, n=n, eps=eps, \ eval_integral=False) err = err.evalf() if err <= eps: break err = fastlog(evalf(abs(err), 20, options)[0]) re, im, re_acc, im_acc = evalf(s, prec2, options) re_acc = max(re_acc, -err) im_acc = max(im_acc, -err) return re, im, re_acc, im_acc #----------------------------------------------------------------------------# # # # Symbolic interface # # # #----------------------------------------------------------------------------# def evalf_symbol(x, prec, options): val = options['subs'][x] if isinstance(val, mpf): if not val: return None, None, None, None return val._mpf_, None, prec, None else: if not '_cache' in options: options['_cache'] = {} cache = options['_cache'] cached, cached_prec = cache.get(x.name, (None, MINUS_INF)) if cached_prec >= prec: return cached v = evalf(sympify(val), prec, options) cache[x.name] = (v, prec) return v evalf_table = None def _create_evalf_table(): global evalf_table evalf_table = { C.Symbol : evalf_symbol, C.Dummy : evalf_symbol, C.Real : lambda x, prec, options: (x._mpf_, None, prec, None), C.Rational : lambda x, prec, options: (from_rational(x.p, x.q, prec), None, prec, None), C.Integer : lambda x, prec, options: (from_int(x.p, prec), None, prec, None), C.Zero : lambda x, prec, options: (None, None, prec, None), C.One : lambda x, prec, options: (fone, None, prec, None), C.Half : lambda x, prec, options: (fhalf, None, prec, None), C.Pi : lambda x, prec, options: (mpf_pi(prec), None, prec, None), C.Exp1 : lambda x, prec, options: (mpf_e(prec), None, prec, None), C.ImaginaryUnit : lambda x, prec, options: (None, fone, None, prec), C.NegativeOne : lambda x, prec, options: (fnone, None, prec, None), C.exp : lambda x, prec, options: evalf_pow(C.Pow(S.Exp1, x.args[0], evaluate=False), prec, options), C.cos : evalf_trig, C.sin : evalf_trig, C.Add : evalf_add, C.Mul : evalf_mul, C.Pow : evalf_pow, C.log : evalf_log, C.atan : evalf_atan, C.abs : evalf_abs, C.re : evalf_re, C.im : evalf_im, C.floor : evalf_floor, C.ceiling : evalf_ceiling, C.Integral : evalf_integral, C.Sum : evalf_sum, C.Piecewise : evalf_piecewise, C.bernoulli : evalf_bernoulli, } def evalf(x, prec, options): try: rf = evalf_table[x.func] r = rf(x, prec, options) except KeyError: #r = finalize_complex(x._eval_evalf(prec)._mpf_, fzero, prec) try: # Fall back to ordinary evalf if possible if 'subs' in options: x = x.subs(options['subs']) r = x._eval_evalf(prec)._mpf_, None, prec, None except AttributeError: raise NotImplementedError if options.get("verbose"): print "### input", x print "### output", to_str(r[0] or fzero, 50) #print "### raw", r[0], r[2] print if options.get("chop"): r = chop_parts(r, prec) if options.get("strict"): check_target(x, r, prec) return r def Basic_evalf(x, n=15, **options): """ Evaluate the given formula to an accuracy of n digits. Optional keyword arguments: subs=<dict> Substitute numerical values for symbols, e.g. subs={x:3, y:1+pi}. maxprec=N Allow a maximum temporary working precision of N digits (default=100) chop=<bool> Replace tiny real or imaginary parts in subresults by exact zeros (default=False) strict=<bool> Raise PrecisionExhausted if any subresult fails to evaluate to full accuracy, given the available maxprec (default=False) quad=<str> Choose algorithm for numerical quadrature. By default, tanh-sinh quadrature is used. For oscillatory integrals on an infinite interval, try quad='osc'. verbose=<bool> Print debug information (default=False) """ if not evalf_table: _create_evalf_table() prec = dps_to_prec(n) if 'maxprec' in options: options['maxprec'] = int(options['maxprec']*LG10) else: options['maxprec'] = max(prec, DEFAULT_MAXPREC) try: result = evalf(x, prec+4, options) except NotImplementedError: # Fall back to the ordinary evalf v = x._eval_evalf(prec) if v is None: return x try: # If the result is numerical, normalize it result = evalf(v, prec, options) except: # Probably contains symbols or unknown functions return v re, im, re_acc, im_acc = result if re: p = max(min(prec, re_acc), 1) #re = fpos(re, p, round_nearest) re = C.Real._new(re, p) else: re = S.Zero if im: p = max(min(prec, im_acc), 1) #im = fpos(im, p, round_nearest) im = C.Real._new(im, p) return re + im*S.ImaginaryUnit else: return re Basic.evalf = Basic.n = Basic_evalf def N(x, n=15, **options): """ Calls x.evalf(n, **options). Both .evalf() and N() are equivalent, use the one that you like better. Example: >>> from sympy import Sum, Symbol, oo >>> k = Symbol("k") >>> Sum(1/k**k, (k, 1, oo)) Sum(k**(-k), (k, 1, oo)) >>> N(Sum(1/k**k, (k, 1, oo)), 4) 1.291 """ return sympify(x).evalf(n, **options)
#!/usr/bin/env python """ Copyright (c) 2020 Alex Forencich Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from myhdl import * import os import axis_ep module = 'axis_ram_switch' testbench = 'test_%s_1x4_256_64' % module srcs = [] srcs.append("../rtl/%s.v" % module) # srcs.append("../rtl/axis_ram_switch_input.v") # srcs.append("../rtl/axis_ram_switch_output.v") srcs.append("../rtl/axis_adapter.v") srcs.append("../rtl/arbiter.v") srcs.append("../rtl/priority_encoder.v") srcs.append("%s.v" % testbench) src = ' '.join(srcs) build_cmd = "iverilog -o %s.vvp %s" % (testbench, src) def bench(): # Parameters FIFO_DEPTH = 512 SPEEDUP = 0 S_COUNT = 1 M_COUNT = 4 S_DATA_WIDTH = 256 S_KEEP_ENABLE = (S_DATA_WIDTH>8) S_KEEP_WIDTH = (S_DATA_WIDTH/8) M_DATA_WIDTH = 64 M_KEEP_ENABLE = (M_DATA_WIDTH>8) M_KEEP_WIDTH = (M_DATA_WIDTH/8) ID_ENABLE = 1 ID_WIDTH = 8 DEST_WIDTH = (M_COUNT+1-1).bit_length() USER_ENABLE = 1 USER_WIDTH = 1 USER_BAD_FRAME_VALUE = 1 USER_BAD_FRAME_MASK = 1 DROP_BAD_FRAME = 1 DROP_WHEN_FULL = 0 M_BASE = [0, 1, 2, 3] M_TOP = [0, 1, 2, 3] M_CONNECT = [0b1111]*M_COUNT ARB_TYPE_ROUND_ROBIN = 1 ARB_LSB_HIGH_PRIORITY = 1 RAM_PIPELINE = 2 # Inputs clk = Signal(bool(0)) rst = Signal(bool(0)) current_test = Signal(intbv(0)[8:]) s_axis_tdata_list = [Signal(intbv(0)[S_DATA_WIDTH:]) for i in range(S_COUNT)] s_axis_tkeep_list = [Signal(intbv(1)[S_KEEP_WIDTH:]) for i in range(S_COUNT)] s_axis_tvalid_list = [Signal(bool(0)) for i in range(S_COUNT)] s_axis_tlast_list = [Signal(bool(0)) for i in range(S_COUNT)] s_axis_tid_list = [Signal(intbv(0)[ID_WIDTH:]) for i in range(S_COUNT)] s_axis_tdest_list = [Signal(intbv(0)[DEST_WIDTH:]) for i in range(S_COUNT)] s_axis_tuser_list = [Signal(intbv(0)[USER_WIDTH:]) for i in range(S_COUNT)] # s_axis_tdata = ConcatSignal(*reversed(s_axis_tdata_list)) # s_axis_tkeep = ConcatSignal(*reversed(s_axis_tkeep_list)) # s_axis_tvalid = ConcatSignal(*reversed(s_axis_tvalid_list)) # s_axis_tlast = ConcatSignal(*reversed(s_axis_tlast_list)) # s_axis_tid = ConcatSignal(*reversed(s_axis_tid_list)) # s_axis_tdest = ConcatSignal(*reversed(s_axis_tdest_list)) # s_axis_tuser = ConcatSignal(*reversed(s_axis_tuser_list)) if S_COUNT == 1: s_axis_tdata = s_axis_tdata_list[0] s_axis_tkeep = s_axis_tkeep_list[0] s_axis_tvalid = s_axis_tvalid_list[0] s_axis_tlast = s_axis_tlast_list[0] s_axis_tid = s_axis_tid_list[0] s_axis_tdest = s_axis_tdest_list[0] s_axis_tuser = s_axis_tuser_list[0] else: s_axis_tdata = ConcatSignal(*reversed(s_axis_tdata_list)) s_axis_tkeep = ConcatSignal(*reversed(s_axis_tkeep_list)) s_axis_tvalid = ConcatSignal(*reversed(s_axis_tvalid_list)) s_axis_tlast = ConcatSignal(*reversed(s_axis_tlast_list)) s_axis_tid = ConcatSignal(*reversed(s_axis_tid_list)) s_axis_tdest = ConcatSignal(*reversed(s_axis_tdest_list)) s_axis_tuser = ConcatSignal(*reversed(s_axis_tuser_list)) m_axis_tready_list = [Signal(bool(0)) for i in range(M_COUNT)] # m_axis_tready = ConcatSignal(*reversed(m_axis_tready_list)) if M_COUNT == 1: m_axis_tready = m_axis_tready_list[0] else: m_axis_tready = ConcatSignal(*reversed(m_axis_tready_list)) # Outputs s_axis_tready = Signal(intbv(0)[S_COUNT:]) s_axis_tready_list = [s_axis_tready(i) for i in range(S_COUNT)] m_axis_tdata = Signal(intbv(0)[M_COUNT*M_DATA_WIDTH:]) m_axis_tkeep = Signal(intbv(0xf)[M_COUNT*M_KEEP_WIDTH:]) m_axis_tvalid = Signal(intbv(0)[M_COUNT:]) m_axis_tlast = Signal(intbv(0)[M_COUNT:]) m_axis_tid = Signal(intbv(0)[M_COUNT*ID_WIDTH:]) m_axis_tdest = Signal(intbv(0)[M_COUNT*DEST_WIDTH:]) m_axis_tuser = Signal(intbv(0)[M_COUNT*USER_WIDTH:]) m_axis_tdata_list = [m_axis_tdata((i+1)*M_DATA_WIDTH, i*M_DATA_WIDTH) for i in range(M_COUNT)] m_axis_tkeep_list = [m_axis_tkeep((i+1)*M_KEEP_WIDTH, i*M_KEEP_WIDTH) for i in range(M_COUNT)] m_axis_tvalid_list = [m_axis_tvalid(i) for i in range(M_COUNT)] m_axis_tlast_list = [m_axis_tlast(i) for i in range(M_COUNT)] m_axis_tid_list = [m_axis_tid((i+1)*ID_WIDTH, i*ID_WIDTH) for i in range(M_COUNT)] m_axis_tdest_list = [m_axis_tdest((i+1)*DEST_WIDTH, i*DEST_WIDTH) for i in range(M_COUNT)] m_axis_tuser_list = [m_axis_tuser((i+1)*USER_WIDTH, i*USER_WIDTH) for i in range(M_COUNT)] status_overflow = Signal(intbv(0)[S_COUNT:]) status_bad_frame = Signal(intbv(0)[S_COUNT:]) status_good_frame = Signal(intbv(0)[S_COUNT:]) # sources and sinks source_pause_list = [] source_list = [] source_logic_list = [] sink_pause_list = [] sink_list = [] sink_logic_list = [] for k in range(S_COUNT): s = axis_ep.AXIStreamSource() p = Signal(bool(0)) source_list.append(s) source_pause_list.append(p) source_logic_list.append(s.create_logic( clk, rst, tdata=s_axis_tdata_list[k], tkeep=s_axis_tkeep_list[k], tvalid=s_axis_tvalid_list[k], tready=s_axis_tready_list[k], tlast=s_axis_tlast_list[k], tid=s_axis_tid_list[k], tdest=s_axis_tdest_list[k], tuser=s_axis_tuser_list[k], pause=p, name='source_%d' % k )) for k in range(M_COUNT): s = axis_ep.AXIStreamSink() p = Signal(bool(0)) sink_list.append(s) sink_pause_list.append(p) sink_logic_list.append(s.create_logic( clk, rst, tdata=m_axis_tdata_list[k], tkeep=m_axis_tkeep_list[k], tvalid=m_axis_tvalid_list[k], tready=m_axis_tready_list[k], tlast=m_axis_tlast_list[k], tid=m_axis_tid_list[k], tdest=m_axis_tdest_list[k], tuser=m_axis_tuser_list[k], pause=p, name='sink_%d' % k )) # DUT if os.system(build_cmd): raise Exception("Error running build command") dut = Cosimulation( "vvp -m myhdl %s.vvp -lxt2" % testbench, clk=clk, rst=rst, current_test=current_test, s_axis_tdata=s_axis_tdata, s_axis_tkeep=s_axis_tkeep, s_axis_tvalid=s_axis_tvalid, s_axis_tready=s_axis_tready, s_axis_tlast=s_axis_tlast, s_axis_tid=s_axis_tid, s_axis_tdest=s_axis_tdest, s_axis_tuser=s_axis_tuser, m_axis_tdata=m_axis_tdata, m_axis_tkeep=m_axis_tkeep, m_axis_tvalid=m_axis_tvalid, m_axis_tready=m_axis_tready, m_axis_tlast=m_axis_tlast, m_axis_tid=m_axis_tid, m_axis_tdest=m_axis_tdest, m_axis_tuser=m_axis_tuser, status_overflow=status_overflow, status_bad_frame=status_bad_frame, status_good_frame=status_good_frame ) @always(delay(4)) def clkgen(): clk.next = not clk status_overflow_latch = Signal(intbv(0)[S_COUNT:]) status_bad_frame_latch = Signal(intbv(0)[S_COUNT:]) status_good_frame_latch = Signal(intbv(0)[S_COUNT:]) @always(clk.posedge) def monitor(): if status_overflow: status_overflow_latch.next = status_overflow_latch | status_overflow if status_bad_frame: status_bad_frame_latch.next = status_bad_frame_latch | status_bad_frame if status_good_frame: status_good_frame_latch.next = status_good_frame_latch | status_good_frame def wait_normal(): while s_axis_tvalid: yield clk.posedge def wait_pause_source(): while s_axis_tvalid: yield clk.posedge yield clk.posedge for k in range(S_COUNT): source_pause_list[k].next = False yield clk.posedge for k in range(S_COUNT): source_pause_list[k].next = True yield clk.posedge for k in range(S_COUNT): source_pause_list[k].next = False def wait_pause_sink(): while s_axis_tvalid: for k in range(M_COUNT): sink_pause_list[k].next = True yield clk.posedge yield clk.posedge yield clk.posedge for k in range(M_COUNT): sink_pause_list[k].next = False yield clk.posedge @instance def check(): yield delay(100) yield clk.posedge rst.next = 1 yield clk.posedge rst.next = 0 yield clk.posedge yield delay(100) yield clk.posedge # testbench stimulus yield clk.posedge print("test 1: 0000 -> 0123") current_test.next = 1 test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x00\x01\xFF'+bytearray(range(256)), id=0, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x00\x02\xFF'+bytearray(range(256)), id=0, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x00\x03\xFF'+bytearray(range(256)), id=0, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[1].wait() rx_frame1 = sink_list[1].recv() assert rx_frame1 == test_frame1 yield sink_list[2].wait() rx_frame2 = sink_list[2].recv() assert rx_frame2 == test_frame2 yield sink_list[3].wait() rx_frame3 = sink_list[3].recv() assert rx_frame3 == test_frame3 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 2: 0000 -> 0000") current_test.next = 2 test_frame0 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame2 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame3 = axis_ep.AXIStreamFrame(b'\x02\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[0].wait() rx_frame1 = sink_list[0].recv() assert rx_frame1 == test_frame1 yield sink_list[0].wait() rx_frame2 = sink_list[0].recv() assert rx_frame2 == test_frame2 yield sink_list[0].wait() rx_frame3 = sink_list[0].recv() assert rx_frame3 == test_frame3 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 3: bad decoding") current_test.next = 3 test_frame0 = axis_ep.AXIStreamFrame(b'\x03\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x03\x00\x01\xFF'+bytearray(range(256)), id=0, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x03\x00\x04\xFF'+bytearray(range(256)), id=0, dest=4) test_frame3 = axis_ep.AXIStreamFrame(b'\x03\x00\x05\xFF'+bytearray(range(256)), id=0, dest=5) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[1].wait() rx_frame1 = sink_list[1].recv() assert rx_frame1 == test_frame1 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 4: tuser assert") current_test.next = 4 test_frame0 = axis_ep.AXIStreamFrame(b'\x04\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x04\x00\x01\xFF'+bytearray(range(256)), id=0, dest=1, last_cycle_user=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x04\x00\x02\xFF'+bytearray(range(256)), id=0, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x04\x00\x03\xFF'+bytearray(range(256)), id=0, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[2].wait() rx_frame2 = sink_list[2].recv() assert rx_frame2 == test_frame2 yield sink_list[3].wait() rx_frame3 = sink_list[3].recv() assert rx_frame3 == test_frame3 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x1 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 5: single packet overflow") current_test.next = 5 test_frame0 = axis_ep.AXIStreamFrame(b'\x05\x00\x00\xFF'+bytearray(range(256))*3, id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x05\x01\x01\xFF'+bytearray(range(256))*3, id=0, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x05\x02\x02\xFF'+bytearray(range(256))*3, id=0, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x05\x03\x03\xFF'+bytearray(range(256))*3, id=0, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() yield delay(100) assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x1 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x0 yield delay(100) yield clk.posedge print("test 6: initial sink pause") current_test.next = 6 test_frame0 = axis_ep.AXIStreamFrame(b'\x06\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) for k in range(M_COUNT): sink_pause_list[k].next = True yield clk.posedge yield clk.posedge while (s_axis_tvalid): yield clk.posedge for k in range(20): yield clk.posedge for k in range(M_COUNT): sink_pause_list[k].next = False yield wait_normal() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 7: initial sink pause, reset") current_test.next = 7 test_frame0 = axis_ep.AXIStreamFrame(b'\x07\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) for k in range(M_COUNT): sink_pause_list[k].next = True yield clk.posedge yield clk.posedge while (s_axis_tvalid): yield clk.posedge for k in range(20): yield clk.posedge rst.next = 1 yield clk.posedge rst.next = 0 for k in range(M_COUNT): sink_pause_list[k].next = False yield delay(500) assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 8: backpressure test") current_test.next = 8 test_frame0 = axis_ep.AXIStreamFrame(b'\x08\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x08\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame2 = axis_ep.AXIStreamFrame(b'\x08\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) test_frame3 = axis_ep.AXIStreamFrame(b'\x08\x00\x00\xFF'+bytearray(range(256)), id=0, dest=0) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) for k in range(M_COUNT): sink_pause_list[k].next = True for k in range(100): yield clk.posedge for k in range(M_COUNT): sink_pause_list[k].next = False yield wait() yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[0].wait() rx_frame1 = sink_list[0].recv() assert rx_frame1 == test_frame1 yield sink_list[0].wait() rx_frame2 = sink_list[0].recv() assert rx_frame2 == test_frame2 yield sink_list[0].wait() rx_frame3 = sink_list[0].recv() assert rx_frame3 == test_frame3 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 9: many small packets, one to one") current_test.next = 9 test_frame0 = axis_ep.AXIStreamFrame(b'\x09\x00\x00\xFF'+bytearray(range(4)), id=0, dest=0) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 for k in range(64): source_list[0].send(test_frame0) yield clk.posedge yield clk.posedge yield wait() for k in range(64): yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) yield clk.posedge print("test 10: many small packets, one to many") current_test.next = 10 test_frame0 = axis_ep.AXIStreamFrame(b'\x0A\x00\x00\xFF'+bytearray(range(4)), id=0, dest=0) test_frame1 = axis_ep.AXIStreamFrame(b'\x0A\x00\x01\xFF'+bytearray(range(4)), id=0, dest=1) test_frame2 = axis_ep.AXIStreamFrame(b'\x0A\x00\x02\xFF'+bytearray(range(4)), id=0, dest=2) test_frame3 = axis_ep.AXIStreamFrame(b'\x0A\x00\x03\xFF'+bytearray(range(4)), id=0, dest=3) for wait in wait_normal, wait_pause_source, wait_pause_sink: status_overflow_latch.next = 0 status_bad_frame_latch.next = 0 status_good_frame_latch.next = 0 for k in range(64): source_list[0].send(test_frame0) source_list[0].send(test_frame1) source_list[0].send(test_frame2) source_list[0].send(test_frame3) yield clk.posedge yield clk.posedge yield wait() for k in range(64): yield sink_list[0].wait() rx_frame0 = sink_list[0].recv() assert rx_frame0 == test_frame0 yield sink_list[1].wait() rx_frame1 = sink_list[1].recv() assert rx_frame1 == test_frame1 yield sink_list[2].wait() rx_frame2 = sink_list[2].recv() assert rx_frame2 == test_frame2 yield sink_list[3].wait() rx_frame3 = sink_list[3].recv() assert rx_frame3 == test_frame3 assert sink_list[0].empty() assert sink_list[1].empty() assert sink_list[2].empty() assert sink_list[3].empty() assert status_overflow_latch == 0x0 assert status_bad_frame_latch == 0x0 assert status_good_frame_latch == 0x1 yield delay(100) raise StopSimulation return instances() def test_bench(): sim = Simulation(bench()) sim.run() if __name__ == '__main__': print("Running test...") test_bench()
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals # # Tests for conversion of hgvs tags # import os import unittest import hgvs.variantmapper as variantmapper import hgvs.parser import framework.mock_input_source as mock_input_data_source class TestHgvsCToP(unittest.TestCase): fn = os.path.join(os.path.dirname(__file__), 'data', 'sanity_cp.tsv') _datasource = mock_input_data_source.MockInputSource(fn) _mapper = variantmapper.VariantMapper(_datasource) _parser = hgvs.parser.Parser() def test_silent(self): hgvsc = "NM_999999.1:c.6A>G" hgvsp_expected = "MOCK:p.(=)" self._run_conversion(hgvsc, hgvsp_expected) def test_substitution(self): hgvsc = "NM_999999.1:c.6A>T" hgvsp_expected = "MOCK:p.(Lys2Asn)" self._run_conversion(hgvsc, hgvsp_expected) def test_substitution_introduces_stop_codon(self): hgvsc = "NM_999996.1:c.8C>A" hgvsp_expected = "MOCK:p.(Ser3Ter)" self._run_conversion(hgvsc, hgvsp_expected) def test_substitution_removes_stop_codon(self): hgvsc = "NM_999998.1:c.30G>T" hgvsp_expected = "MOCK:p.(Ter10TyrextTer3)" self._run_conversion(hgvsc, hgvsp_expected) def test_substitution_removes_start_codon(self): hgvsc = "NM_999999.1:c.1A>G" hgvsp_expected = "MOCK:p.(Met1?)" self._run_conversion(hgvsc, hgvsp_expected) def test_insertion_no_frameshift(self): hgvsc = "NM_999999.1:c.6_7insGGG" hgvsp_expected = "MOCK:p.(Lys2_Ala3insGly)" self._run_conversion(hgvsc, hgvsp_expected) def test_insertion_frameshift(self): hgvsc = "NM_999999.1:c.22_23insT" hgvsp_expected = "MOCK:p.(Ala8ValfsTer?)" self._run_conversion(hgvsc, hgvsp_expected) def test_insertion_adds_stop(self): hgvsc = "NM_999999.1:c.8_9insTT" hgvsp_expected = "MOCK:p.(Lys4Ter)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_no_frameshift(self): hgvsc = "NM_999999.1:c.10_12del" hgvsp_expected = "MOCK:p.(Lys4del)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion2_no_frameshift(self): hgvsc = "NM_999999.1:c.4_15del" hgvsp_expected = "MOCK:p.(Lys2_Ala5del)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion3_no_frameshift_c_term(self): hgvsc = "NM_999995.1:c.4_6del" hgvsp_expected = "MOCK:p.(Lys3del)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion4_no_frameshift_c_term(self): hgvsc = "NM_999994.1:c.4_9del" hgvsp_expected = "MOCK:p.(Lys3_Lys4del)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion5_no_frameshift(self): hgvsc = "NM_999994.1:c.20_25del" hgvsp_expected = "MOCK:p.(Ala7_Arg9delinsGly)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion6_no_frameshift(self): hgvsc = "NM_999999.1:c.5_7del" hgvsp_expected = "MOCK:p.(Lys2_Ala3delinsThr)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion7_no_frameshift(self): hgvsc = "NM_999993.1:c.13_24del" hgvsp_expected = "MOCK:p.(Arg5_Ala8del)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_frameshift_nostop(self): hgvsc = "NM_999999.1:c.11_12del" hgvsp_expected = "MOCK:p.(Lys4SerfsTer?)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_frameshift_adds_stop(self): hgvsc = "NM_999997.1:c.7del" hgvsp_expected = "MOCK:p.(Ala3ArgfsTer6)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_no_frameshift_removes_stop_plus_previous(self): hgvsc = "NM_999999.1:c.25_30del" hgvsp_expected = "MOCK:p.(Lys9_Ter10delinsGly)" self._run_conversion(hgvsc, hgvsp_expected) def test_indel_no_frameshift(self): hgvsc = "NM_999999.1:c.11_12delinsTCCCA" hgvsp_expected = "MOCK:p.(Lys4delinsIlePro)" self._run_conversion(hgvsc, hgvsp_expected) def test_indel2_no_frameshift(self): hgvsc = "NM_999999.1:c.11_18delinsTCCCA" hgvsp_expected = "MOCK:p.(Lys4_Phe6delinsIlePro)" self._run_conversion(hgvsc, hgvsp_expected) def test_indel_frameshift_nostop(self): hgvsc = "NM_999999.1:c.8delinsGG" hgvsp_expected = "MOCK:p.(Ala3GlyfsTer?)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_1AA_no_frameshift_2(self): hgvsc = "NM_999999.1:c.10_12dup" hgvsp_expected = "MOCK:p.(Lys4dup)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_1AA_no_frameshift(self): hgvsc = "NM_999999.1:c.16_18dup" hgvsp_expected = "MOCK:p.(Phe6dup)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_2AA_no_frameshift(self): hgvsc = "NM_999999.1:c.16_21dup" hgvsp_expected = "MOCK:p.(Phe6_Arg7dup)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_2AA2_no_frameshift(self): hgvsc = "NM_999995.1:c.4_6dup" hgvsp_expected = "MOCK:p.(Lys3dup)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_3AA_no_frameshift(self): hgvsc = "NM_999999.1:c.16_24dup" hgvsp_expected = "MOCK:p.(Phe6_Ala8dup)" self._run_conversion(hgvsc, hgvsp_expected) def test_dup_frameshift(self): hgvsc = "NM_999999.1:c.12_13dup" hgvsp_expected = "MOCK:p.(Ala5GlufsTer?)" self._run_conversion(hgvsc, hgvsp_expected) def test_intron(self): hgvsc = "NM_999999.1:c.12+1G>A" hgvsp_expected = "MOCK:p.?" self._run_conversion(hgvsc, hgvsp_expected) def test_five_prime_utr(self): hgvsc = "NM_999999.1:c.-2A>G" hgvsp_expected = "MOCK:p.?" self._run_conversion(hgvsc, hgvsp_expected) def test_three_prime_utr(self): hgvsc = "NM_999999.1:c.*3G>A" hgvsp_expected = "MOCK:p.?" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_into_three_prime_utr_frameshift(self): hgvsc = "NM_999999.1:c.27_*3del" hgvsp_expected = "MOCK:p.(Lys9XaafsTer?)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_into_three_prime_utr_no_frameshift(self): hgvsc = "NM_999995.1:c.28_*3del" hgvsp_expected = "MOCK:p.(Lys10_Ter11delinsArgGlnPheArg)" self._run_conversion(hgvsc, hgvsp_expected) def test_delins_into_three_prime_utr_no_frameshift(self): hgvsc = "NM_999995.1:c.28_*3delinsGGG" hgvsp_expected = "MOCK:p.(Lys10_Ter11delinsGlyArgGlnPheArg)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_from_five_prime_utr_frameshift(self): hgvsc = "NM_999999.1:c.-3_1del" hgvsp_expected = "MOCK:p.(Met1?)" self._run_conversion(hgvsc, hgvsp_expected) def test_deletion_from_five_prime_utr_no_frameshift(self): hgvsc = "NM_999999.1:c.-3_3del" hgvsp_expected = "MOCK:p.(Met1?)" self._run_conversion(hgvsc, hgvsp_expected) def test_delins_from_five_prime_utr_no_frameshift(self): hgvsc = "NM_999999.1:c.-3_3delinsAAA" hgvsp_expected = "MOCK:p.(Met1?)" self._run_conversion(hgvsc, hgvsp_expected) def test_delete_entire_gene(self): hgvsc = "NM_999999.1:c.-3_*1del" hgvsp_expected = "MOCK:p.0?" self._run_conversion(hgvsc, hgvsp_expected) def test_multiple_stop_codons(self): hgvsc = "NM_999992.1:c.4G>A" hgvsp_expected = "MOCK:p.?" self._run_conversion(hgvsc, hgvsp_expected) # The following are unsupported # # def test_repeats(self): # hgvsc = "NM_999999.1:c.12_13[3]" # hgvsp_expected = "" # self._run_conversion(hgvsc, hgvsp_expected) # # def test_variable_repeats(self): # pass # # def test_indeterminate_entire_exon_del(self): # pass # # def test_indeterminate_entire_exon_dup(self): # pass # # def test_mosaic(self): # pass # # def test_chimera(self): # pass # # def test_two_changes_same_allele(self): # pass # # def test_two_changes_diff_allele(self): # pass # # def test_two_changes_unknown_allele(self): # pass def _run_conversion(self, hgvsc, hgvsp_expected): """Helper method to actually run the test :param hgvsc tag """ var_c = TestHgvsCToP._parser.parse_hgvs_variant(hgvsc) ac_p = "MOCK" hgvsp_actual = str(TestHgvsCToP._mapper.c_to_p(var_c, ac_p)) msg = "hgvsc: {} hgvsp expected: {} actual: {}".format(hgvsc, hgvsp_expected, hgvsp_actual) self.assertEqual(hgvsp_expected, hgvsp_actual, msg) # TODO - review other classes of hgvs tags (e.g. utr, intronic) - more use cases? # 5'utr # intronic # after stop codon # uncertainties in dups/dels (i.e. hgvs tags with ?) if __name__ == '__main__': unittest.main() ## <LICENSE> ## Copyright 2014 HGVS Contributors (https://bitbucket.org/hgvs/hgvs) ## ## Licensed under the Apache License, Version 2.0 (the "License"); ## you may not use this file except in compliance with the License. ## You may obtain a copy of the License at ## ## http://www.apache.org/licenses/LICENSE-2.0 ## ## Unless required by applicable law or agreed to in writing, software ## distributed under the License is distributed on an "AS IS" BASIS, ## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ## See the License for the specific language governing permissions and ## limitations under the License. ## </LICENSE>
""" Establishes a "when reviewable" flag for items, like Moodle Also adds records for supporting AssessmentPart child management """ from dlkit.abstract_osid.assessment import record_templates as abc_assessment_records from dlkit.json_.osid import record_templates as osid_records from dlkit.json_.osid import objects as osid_objects from dlkit.json_.osid.metadata import Metadata from dlkit.primordium.id.primitives import Id from dlkit.abstract_osid.osid.errors import IllegalState, InvalidArgument,\ NoAccess, NotFound from ...osid.base_records import ObjectInitRecord class ReviewOptionsAssessmentOfferedRecord(ObjectInitRecord): """when reviewable option on assessment offereds""" _implemented_record_type_identifiers = [ 'review-options' ] def can_review_whether_correct_during_attempt(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['whetherCorrect']['duringAttempt']) def can_review_whether_correct_after_attempt(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['whetherCorrect']['afterAttempt']) def can_review_whether_correct_before_deadline(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['whetherCorrect']['beforeDeadline']) def can_review_whether_correct_after_deadline(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['whetherCorrect']['afterDeadline']) def can_review_solution_during_attempt(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['solution']['duringAttempt']) def can_review_solution_after_attempt(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['solution']['afterAttempt']) def can_review_solution_before_deadline(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['solution']['beforeDeadline']) def can_review_solution_after_deadline(self): """stub""" return bool(self.my_osid_object._my_map['reviewOptions']['solution']['afterDeadline']) def has_max_attempts(self): """stub""" if 'maxAttempts' not in self.my_osid_object._my_map or \ self.my_osid_object._my_map['maxAttempts'] is None: return False return True def get_max_attempts(self): """stub""" if self.has_max_attempts(): return self.my_osid_object._my_map['maxAttempts'] raise IllegalState() max_attempts = property(fget=get_max_attempts) def get_object_map(self): obj_map = dict(self.my_osid_object._my_map) if obj_map['startTime'] is not None: start_time = obj_map['startTime'] obj_map['startTime'] = dict() obj_map['startTime']['year'] = start_time.year obj_map['startTime']['month'] = start_time.month obj_map['startTime']['day'] = start_time.day obj_map['startTime']['hour'] = start_time.hour obj_map['startTime']['minute'] = start_time.minute obj_map['startTime']['second'] = start_time.second obj_map['startTime']['microsecond'] = start_time.microsecond if obj_map['deadline'] is not None: deadline = obj_map['deadline'] obj_map['deadline'] = dict() obj_map['deadline']['year'] = deadline.year obj_map['deadline']['month'] = deadline.month obj_map['deadline']['day'] = deadline.day obj_map['deadline']['hour'] = deadline.hour obj_map['deadline']['minute'] = deadline.minute obj_map['deadline']['second'] = deadline.second obj_map['deadline']['microsecond'] = deadline.microsecond obj_map = osid_objects.OsidObject.get_object_map(self.my_osid_object, obj_map) return obj_map object_map = property(fget=get_object_map) class ReviewOptionsAssessmentOfferedFormRecord(abc_assessment_records.AssessmentOfferedFormRecord, osid_records.OsidRecord): """form to set / update the reviewable option""" _implemented_record_type_identifiers = [ 'review-options' ] def __init__(self, osid_object_form): if osid_object_form is not None: self.my_osid_object_form = osid_object_form self._init_metadata() if not osid_object_form.is_for_update(): self._init_map() super(ReviewOptionsAssessmentOfferedFormRecord, self).__init__() def _init_map(self): """stub""" self.my_osid_object_form._my_map['reviewOptions'] = \ dict(self._review_options_metadata['default_object_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect'] = \ dict(self._whether_correct_metadata['default_object_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect']['duringAttempt'] = \ bool(self._during_attempt_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect']['afterAttempt'] = \ bool(self._after_attempt_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect']['beforeDeadline'] = \ bool(self._before_deadline_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect']['afterDeadline'] = \ bool(self._after_deadline_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['solution'] = \ dict(self._solutions_metadata['default_object_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['solution']['duringAttempt'] = False self.my_osid_object_form._my_map['reviewOptions']['solution']['afterAttempt'] = \ bool(self._after_attempt_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['solution']['beforeDeadline'] = \ bool(self._before_deadline_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['reviewOptions']['solution']['afterDeadline'] = \ bool(self._after_deadline_metadata['default_boolean_values'][0]) self.my_osid_object_form._my_map['maxAttempts'] = \ list(self._max_attempts_metadata['default_integer_values'])[0] def _init_metadata(self): """stub""" self._review_options_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'review_options'), 'element_label': 'Review Options', 'instructions': 'Choose various Review Options', 'required': False, 'read_only': False, 'linked': False, 'array': False, 'default_object_values': [{}], 'syntax': 'OBJECT', 'object_set': [] } self._whether_correct_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'report_correct'), 'element_label': 'Report Correct', 'instructions': 'Choose when to report correct answer to Taker', 'required': False, 'read_only': False, 'linked': False, 'array': False, 'default_object_values': [{}], 'syntax': 'OBJECT', 'object_set': [] } self._solutions_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'review_solutions'), 'element_label': 'Review Solutions / Explanations', 'instructions': 'Choose when to report a solution or explanation text blob, when available', 'required': False, 'read_only': False, 'linked': False, 'array': False, 'default_object_values': [{}], 'syntax': 'OBJECT', 'object_set': [] } self._during_attempt_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'during-attempt'), 'element_label': 'During Attempt', 'instructions': 'accepts a boolean (True/False) value', 'required': True, 'read_only': False, 'linked': True, 'array': False, 'default_boolean_values': [True], 'syntax': 'BOOLEAN', } self._after_attempt_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'during-attempt'), 'element_label': 'During Attempt', 'instructions': 'accepts a boolean (True/False) value', 'required': True, 'read_only': False, 'linked': True, 'array': False, 'default_boolean_values': [True], 'syntax': 'BOOLEAN', } self._before_deadline_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'during-attempt'), 'element_label': 'During Attempt', 'instructions': 'accepts a boolean (True/False) value', 'required': True, 'read_only': False, 'linked': True, 'array': False, 'default_boolean_values': [True], 'syntax': 'BOOLEAN', } self._after_deadline_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'during-attempt'), 'element_label': 'During Attempt', 'instructions': 'accepts a boolean (True/False) value', 'required': True, 'read_only': False, 'linked': True, 'array': False, 'default_boolean_values': [True], 'syntax': 'BOOLEAN', } self._min_max_attempts_value = None self._max_max_attempts_value = None self._max_attempts_metadata = { 'element_id': Id(self.my_osid_object_form._authority, self.my_osid_object_form._namespace, 'max_attempts'), 'element_label': 'Maximum Attempts', 'instructions': 'enter an integer value for maximum attempts', 'required': False, 'read_only': False, 'linked': False, 'array': False, 'default_integer_values': [None], 'syntax': 'INTEGER', 'minimum_integer': self._min_max_attempts_value, 'maximum_integer': self._max_max_attempts_value, 'integer_set': [] } def get_review_options_metadata(self): """stub""" return Metadata(**self._review_options_metadata) def get_whether_correct_metadata(self): """stub""" return Metadata(**self._whether_correct_metadata) def get_during_attempt_metadata(self): """stub""" return Metadata(**self._during_attempt_metadata) def get_after_attempt_metadata(self): """stub""" return Metadata(**self._after_attempt_metadata) def get_before_deadline_metadata(self): """stub""" return Metadata(**self._before_deadline_metadata) def get_after_deadline_metadata(self): """stub""" return Metadata(**self._after_deadline_metadata) def set_review_whether_correct(self, during_attempt=None, after_attempt=None, before_deadline=None, after_deadline=None): """stub""" whether_correct = self.my_osid_object_form._my_map['reviewOptions']['whetherCorrect'] if during_attempt is not None: whether_correct['duringAttempt'] = bool(during_attempt) if after_attempt is not None: whether_correct['afterAttempt'] = bool(after_attempt) if before_deadline is not None: whether_correct['beforeDeadline'] = bool(before_deadline) if after_deadline is not None: whether_correct['afterDeadline'] = bool(after_deadline) def set_review_solution(self, during_attempt=None, after_attempt=None, before_deadline=None, after_deadline=None): """stub""" solution = self.my_osid_object_form._my_map['reviewOptions']['solution'] if during_attempt is not None: solution['duringAttempt'] = bool(during_attempt) if after_attempt is not None: solution['afterAttempt'] = bool(after_attempt) if before_deadline is not None: solution['beforeDeadline'] = bool(before_deadline) if after_deadline is not None: solution['afterDeadline'] = bool(after_deadline) def get_max_attempts_metadata(self): """stub""" return Metadata(**self._max_attempts_metadata) def set_max_attempts(self, value): """stub""" if value is None: raise InvalidArgument('value must be an integer') if value is not None and not isinstance(value, int): raise InvalidArgument('value is not an integer') if not self.my_osid_object_form._is_valid_integer(value, self.get_max_attempts_metadata()): raise InvalidArgument('value must be an integer') self.my_osid_object_form._my_map['maxAttempts'] = value def clear_max_attempts(self): """stub""" if (self.get_max_attempts_metadata().is_read_only() or self.get_max_attempts_metadata().is_required()): raise NoAccess() self.my_osid_object_form._my_map['maxAttempts'] = \ list(self._max_attempts_metadata['default_integer_values'])[0] class ReviewOptionsAssessmentTakenRecord(ObjectInitRecord): """show review options on takens too""" _implemented_record_type_identifiers = [ 'review-options' ] def _get_section_for_question(self, question_id): sections = self.my_osid_object._get_assessment_sections() for section in sections: try: section.get_question(question_id) return section except NotFound: pass raise NotFound def can_review_solution(self, question_id): ao = self.my_osid_object.get_assessment_offered() try: section = self._get_section_for_question(question_id) section.get_response(question_id) attempt_complete = True except (IllegalState, NotFound): attempt_complete = False if ao.can_review_solution_during_attempt() and not attempt_complete: return True if ao.can_review_solution_after_attempt() and attempt_complete: return True return False def can_review_whether_correct(self): """stub""" ao = self.my_osid_object.get_assessment_offered() attempt_complete = self.my_osid_object.has_ended() if ao.can_review_whether_correct_during_attempt() and not attempt_complete: return True if ao.can_review_whether_correct_after_attempt and attempt_complete: return True return False def get_solution_for_question(self, question_id, section=None): try: if section is None: section = self._get_section_for_question(question_id) if self.can_review_solution(question_id): item = section._get_item(question_id) item_map = item.object_map answers = [a.object_map for a in item.get_answers()] try: answers = answers + [a.object_map for a in item.get_wrong_answers()] except AttributeError: # no wrong answers pass try: if 'solution' in item_map: return { 'answers': answers, 'explanation': item_map['solution'] # fbw items } else: return { 'answers': answers, 'explanation': item_map['texts']['solution'] # edX items } except KeyError: pass except KeyError: pass raise IllegalState() def _update_object_map(self, obj_map): """stub""" obj_map['reviewWhetherCorrect'] = self.can_review_whether_correct() class ReviewOptionsAssessmentTakenFormRecord(abc_assessment_records.AssessmentTakenFormRecord, osid_records.OsidRecord): """form to create / update the taken options""" _implemented_record_type_identifiers = [ 'review-options' ] def __init__(self, osid_object_form): super(ReviewOptionsAssessmentTakenFormRecord, self).__init__()
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 import datetime import textwrap import pretend import pytest from cryptography import x509 from cryptography.x509.oid import NameOID from cryptography.hazmat.backends import default_backend from cryptography.hazmat.primitives import hashes from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives.asymmetric.padding import PKCS1v15 from cryptography.hazmat.primitives.serialization import ( Encoding, PrivateFormat, PublicFormat, NoEncryption, load_pem_private_key, load_pem_public_key, ) from warehouse.utils.sns import MessageVerifier, InvalidMessage VALID_SIGNATURE = object() @pytest.fixture(scope="module") def sns_privatekey(): key = rsa.generate_private_key( public_exponent=65537, key_size=1024, # 1024 shouldn't be used, but for tests it's fine. backend=default_backend(), ) return key.private_bytes(Encoding.PEM, PrivateFormat.PKCS8, NoEncryption()) @pytest.fixture(scope="module") def sns_publickey(sns_privatekey): private_key = load_pem_private_key( sns_privatekey, password=None, backend=default_backend() ) public_key = private_key.public_key() return public_key.public_bytes(Encoding.PEM, PublicFormat.SubjectPublicKeyInfo) @pytest.fixture(scope="module") def sns_certificate(sns_privatekey, sns_publickey): one_day = datetime.timedelta(1, 0, 0) private_key = load_pem_private_key( sns_privatekey, password=None, backend=default_backend() ) public_key = load_pem_public_key(sns_publickey, backend=default_backend()) builder = x509.CertificateBuilder() builder = builder.subject_name( x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "sns.amazonaws.com")]) ) builder = builder.issuer_name( x509.Name([x509.NameAttribute(NameOID.COMMON_NAME, "sns.amazonaws.com")]) ) builder = builder.not_valid_before(datetime.datetime.today() - one_day) builder = builder.not_valid_after(datetime.datetime.today() + one_day) builder = builder.serial_number(x509.random_serial_number()) builder = builder.public_key(public_key) builder = builder.add_extension( x509.SubjectAlternativeName([x509.DNSName("sns.amazonaws.com")]), critical=False ) builder = builder.add_extension( x509.BasicConstraints(ca=False, path_length=None), critical=True ) cert = builder.sign( private_key=private_key, algorithm=hashes.SHA256(), backend=default_backend() ) return cert.public_bytes(Encoding.PEM) class TestMessageVerifier: @pytest.mark.parametrize( ("topics", "data", "error"), [ ([], {}, "Unknown SignatureVersion"), ([], {"SignatureVersion": "2"}, "Unknown SignatureVersion"), ( [], { "SignatureVersion": "1", "SigningCertURL": "http://sns.us-west-2.amazonaws.com/cert.pem", }, "Invalid scheme for SigningCertURL", ), ( [], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.attacker.com/cert.pem", }, "Invalid location for SigningCertURL", ), ( [], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Signature": "SNYwQnC0BxjSo2E4aZFRiA==", "Type": "Who Knows?", }, "Invalid Type", ), ( [], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Signature": "SNYwQnC0BxjSo2E4aZFRiA==", "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "This is My Topic", }, "Invalid Signature", ), ( [], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Signature": VALID_SIGNATURE, "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": "Wat?", "TopicArn": "This is My Topic", }, "Unknown Timestamp format", ), ( [], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Signature": VALID_SIGNATURE, "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( ( datetime.datetime.utcnow() - datetime.timedelta(days=1) ).strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "This is My Topic", }, "Message has expired", ), ( ["The topic I expected"], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Signature": VALID_SIGNATURE, "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "This topic I got but didn't expect", }, "Invalid TopicArn", ), ], ) def test_invalid(self, sns_certificate, sns_privatekey, topics, data, error): response = pretend.stub(raise_for_status=lambda: None, content=sns_certificate) session = pretend.stub(get=lambda url: response) verifier = MessageVerifier(topics=topics, session=session) if data.get("Signature") is VALID_SIGNATURE: private_key = load_pem_private_key( sns_privatekey, password=None, backend=default_backend() ) signature_bytes = private_key.sign( verifier._get_data_to_sign(data), PKCS1v15(), hashes.SHA1() ) data["Signature"] = base64.b64encode(signature_bytes) with pytest.raises(InvalidMessage, match=error): verifier.verify(data) @pytest.mark.parametrize( ("topics", "data"), [ ( ["valid topic"], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "valid topic", }, ), ( ["valid topic", "another valid topic"], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "another valid topic", }, ), ( ["valid topic"], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Type": "Notification", "Subject": "This is a subject", "Message": "This is My Message", "MessageId": "1", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "valid topic", }, ), ( ["valid topic"], { "SignatureVersion": "1", "SigningCertURL": "https://sns.us-west-2.amazonaws.com/cert.pem", "Type": "SubscriptionConfirmation", "Message": "This is My Message", "MessageId": "1", "SubscribeURL": "https://example.com/subscribe", "Token": "1234", "Timestamp": ( datetime.datetime.utcnow().strftime("%Y-%m-%dT%H:%M:%S.%fZ") ), "TopicArn": "valid topic", }, ), ], ) def test_valid(self, sns_certificate, sns_privatekey, topics, data): response = pretend.stub(raise_for_status=lambda: None, content=sns_certificate) session = pretend.stub(get=lambda url: response) verifier = MessageVerifier(topics=topics, session=session) private_key = load_pem_private_key( sns_privatekey, password=None, backend=default_backend() ) signature_bytes = private_key.sign( verifier._get_data_to_sign(data), PKCS1v15(), hashes.SHA1() ) data["Signature"] = base64.b64encode(signature_bytes) verifier.verify(data) @pytest.mark.parametrize( ("data", "expected"), [ ( { "Type": "SubscriptionConfirmation", "Message": "This is My Message", "MessageId": "1", "SubscribeURL": "https://example.com/subscribe", "Token": "1234", "Timestamp": "2018-04-08T17:01:40.114582Z", "TopicArn": "valid topic", }, """ Message This is My Message MessageId 1 SubscribeURL https://example.com/subscribe Timestamp 2018-04-08T17:01:40.114582Z Token 1234 TopicArn valid topic Type SubscriptionConfirmation """, ), ( { "Type": "Notification", "Subject": "This is a subject", "Message": "This is My Message", "MessageId": "1", "Timestamp": "2018-04-08T17:01:40.114582Z", "TopicArn": "valid topic", }, """ Message This is My Message MessageId 1 Subject This is a subject Timestamp 2018-04-08T17:01:40.114582Z TopicArn valid topic Type Notification """, ), ( { "Type": "Notification", "Message": "This is My Message", "MessageId": "1", "Timestamp": "2018-04-08T17:01:40.114582Z", "TopicArn": "valid topic", }, """ Message This is My Message MessageId 1 Timestamp 2018-04-08T17:01:40.114582Z TopicArn valid topic Type Notification """, ), ], ) def test_signature_data(self, data, expected): # We have this method tested specifically, because the above tests # don't actually test if this method is functioning correctly, # since it uses it for the input and the expected. verifier = MessageVerifier(topics=[], session=pretend.stub()) expected = textwrap.dedent(expected).lstrip().encode("utf8") assert verifier._get_data_to_sign(data) == expected
""" Unit tests for visibility operations """ import unittest import numpy from numpy.testing import assert_allclose from astropy.coordinates import SkyCoord import astropy.units as u from data_models.memory_data_models import Skycomponent from data_models.polarisation import PolarisationFrame from processing_components.simulation.configurations import create_named_configuration from processing_components.imaging.base import predict_skycomponent_visibility from processing_components.visibility.coalesce import convert_blockvisibility_to_visibility from processing_components.visibility.operations import append_visibility, qa_visibility, \ sum_visibility, subtract_visibility, divide_visibility from processing_components.visibility.base import copy_visibility, create_visibility, create_blockvisibility, \ create_visibility_from_rows, phaserotate_visibility class TestVisibilityOperations(unittest.TestCase): def setUp(self): self.lowcore = create_named_configuration('LOWBD2-CORE') self.times = (numpy.pi / 43200.0) * numpy.arange(0.0, 300.0, 30.0) self.frequency = numpy.linspace(1.0e8, 1.1e8, 3) self.channel_bandwidth = numpy.array([1e7, 1e7, 1e7]) # Define the component and give it some spectral behaviour f = numpy.array([100.0, 20.0, -10.0, 1.0]) self.flux = numpy.array([f, 0.8 * f, 0.6 * f]) # The phase centre is absolute and the component is specified relative (for now). # This means that the component should end up at the position phasecentre+compredirection self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=-35.0 * u.deg, frame='icrs', equinox='J2000') self.compabsdirection = SkyCoord(ra=+181.0 * u.deg, dec=-35.0 * u.deg, frame='icrs', equinox='J2000') pcof = self.phasecentre.skyoffset_frame() self.compreldirection = self.compabsdirection.transform_to(pcof) self.comp = Skycomponent(direction=self.compreldirection, frequency=self.frequency, flux=self.flux) def test_sum_visibility(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, polarisation_frame=PolarisationFrame("linear"), weight=1.0) self.vis = predict_skycomponent_visibility(self.vis, self.comp) flux, weight = sum_visibility(self.vis, self.comp.direction) assert numpy.max(numpy.abs(flux - self.flux)) < 1e-7 def test_create_visibility1(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0) assert self.vis.nvis == len(self.vis.time) assert self.vis.nvis == len(self.vis.frequency) def test_create_visibility_polarisation(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("linear")) assert self.vis.nvis == len(self.vis.time) assert self.vis.nvis == len(self.vis.frequency) def test_create_visibility_from_rows1(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0) rows = self.vis.time > 150.0 for makecopy in [True, False]: selected_vis = create_visibility_from_rows(self.vis, rows, makecopy=makecopy) assert selected_vis.nvis == numpy.sum(numpy.array(rows)) def test_create_visibility_time(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, phasecentre=self.phasecentre, weight=1.0, channel_bandwidth=self.channel_bandwidth) assert self.vis.nvis == len(self.vis.time) def test_convert_blockvisibility(self): self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, phasecentre=self.phasecentre, weight=1.0, channel_bandwidth=self.channel_bandwidth) vis = convert_blockvisibility_to_visibility(self.vis) assert vis.nvis == len(vis.time) assert numpy.unique(vis.time).size == self.vis.time.size # pylint: disable=no-member def test_create_visibility_from_rows_makecopy(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, phasecentre=self.phasecentre, weight=1.0, channel_bandwidth=self.channel_bandwidth) rows = self.vis.time > 150.0 for makecopy in [True, False]: selected_vis = create_visibility_from_rows(self.vis, rows, makecopy=makecopy) assert selected_vis.nvis == numpy.sum(numpy.array(rows)) def test_append_visibility(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0) othertimes = (numpy.pi / 43200.0) * numpy.arange(300.0, 600.0, 30.0) self.othervis = create_visibility(self.lowcore, othertimes, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0) self.vis = append_visibility(self.vis, self.othervis) assert self.vis.nvis == len(self.vis.time) assert self.vis.nvis == len(self.vis.frequency) def test_divide_visibility(self): self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vis.data['vis'][...,:] = [2.0+0.0j, 0.0j, 0.0j, 2.0+0.0j] self.othervis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.othervis.data['vis'][...,:] = [1.0+0.0j, 0.0j, 0.0j, 1.0+0.0j] self.ratiovis = divide_visibility(self.vis, self.othervis) assert self.ratiovis.nvis == self.vis.nvis assert numpy.max(numpy.abs(self.ratiovis.vis)) == 2.0, numpy.max(numpy.abs(self.ratiovis.vis)) def test_copy_visibility(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vis = copy_visibility(self.vis) self.vis.data['vis'] = 0.0 vis.data['vis'] = 1.0 assert (vis.data['vis'][0, 0].real == 1.0) assert (self.vis.data['vis'][0, 0].real == 0.0) def test_phase_rotation_identity(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) newphasecenters = [SkyCoord(182, -35, unit=u.deg), SkyCoord(182, -30, unit=u.deg), SkyCoord(177, -30, unit=u.deg), SkyCoord(176, -35, unit=u.deg), SkyCoord(216, -35, unit=u.deg), SkyCoord(180, -70, unit=u.deg)] for newphasecentre in newphasecenters: # Phase rotating back should not make a difference original_vis = self.vismodel.vis original_uvw = self.vismodel.uvw rotatedvis = phaserotate_visibility(phaserotate_visibility(self.vismodel, newphasecentre, tangent=False), self.phasecentre, tangent=False) assert_allclose(rotatedvis.uvw, original_uvw, rtol=1e-7) assert_allclose(rotatedvis.vis, original_vis, rtol=1e-7) def test_phase_rotation(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) # Predict visibilities with new phase centre independently ha_diff = -(self.compabsdirection.ra - self.phasecentre.ra).to(u.rad).value vispred = create_visibility(self.lowcore, self.times + ha_diff, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.compabsdirection, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vismodel2 = predict_skycomponent_visibility(vispred, self.comp) # Should yield the same results as rotation rotatedvis = phaserotate_visibility(self.vismodel, newphasecentre=self.compabsdirection, tangent=False) assert_allclose(rotatedvis.vis, vismodel2.vis, rtol=3e-6) assert_allclose(rotatedvis.uvw, vismodel2.uvw, rtol=3e-6) def test_phase_rotation_block(self): self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) # Predict visibilities with new phase centre independently ha_diff = -(self.compabsdirection.ra - self.phasecentre.ra).to(u.rad).value vispred = create_blockvisibility(self.lowcore, self.times + ha_diff, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.compabsdirection, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vismodel2 = predict_skycomponent_visibility(vispred, self.comp) # Should yield the same results as rotation rotatedvis = phaserotate_visibility(self.vismodel, newphasecentre=self.compabsdirection, tangent=False) assert_allclose(rotatedvis.vis, vismodel2.vis, rtol=3e-6) assert_allclose(rotatedvis.uvw, vismodel2.uvw, rtol=3e-6) def test_phase_rotation_inverse(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) there = SkyCoord(ra=+250.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') # Phase rotating back should not make a difference original_vis = self.vismodel.vis original_uvw = self.vismodel.uvw rotatedvis = phaserotate_visibility(phaserotate_visibility(self.vismodel, there, tangent=False, inverse=True), self.phasecentre, tangent=False, inverse=True) assert_allclose(rotatedvis.uvw, original_uvw, rtol=1e-7) assert_allclose(rotatedvis.vis, original_vis, rtol=1e-7) def test_phase_rotation_block(self): self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) # Predict visibilities with new phase centre independently ha_diff = -(self.compabsdirection.ra - self.phasecentre.ra).to(u.rad).value vispred = create_blockvisibility(self.lowcore, self.times + ha_diff, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.compabsdirection, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vismodel2 = predict_skycomponent_visibility(vispred, self.comp) # Should yield the same results as rotation rotatedvis = phaserotate_visibility(self.vismodel, newphasecentre=self.compabsdirection, tangent=False) assert_allclose(rotatedvis.vis, vismodel2.vis, rtol=3e-6) assert_allclose(rotatedvis.uvw, vismodel2.uvw, rtol=3e-6) def test_phase_rotation_inverse_block(self): self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) there = SkyCoord(ra=+250.0 * u.deg, dec=-60.0 * u.deg, frame='icrs', equinox='J2000') # Phase rotating back should not make a difference original_vis = self.vismodel.vis original_uvw = self.vismodel.uvw rotatedvis = phaserotate_visibility(phaserotate_visibility(self.vismodel, there, tangent=False, inverse=True), self.phasecentre, tangent=False, inverse=True) assert_allclose(rotatedvis.uvw, original_uvw, rtol=1e-7) assert_allclose(rotatedvis.vis, original_vis, rtol=1e-7) def test_subtract(self): vis1 = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vis1.data['vis'][...] = 1.0 vis2 = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) vis2.data['vis'][...] = 1.0 zerovis = subtract_visibility(vis1, vis2) qa = qa_visibility(zerovis, context='test_qa') self.assertAlmostEqual(qa.data['maxabs'], 0.0, 7) def test_qa(self): self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV")) self.vismodel = predict_skycomponent_visibility(self.vis, self.comp) qa = qa_visibility(self.vis, context='test_qa') self.assertAlmostEqual(qa.data['maxabs'], 100.0, 7) self.assertAlmostEqual(qa.data['medianabs'], 11.0, 7) assert qa.context == 'test_qa' def test_elevation(self): self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=+15.0 * u.deg, frame='icrs', equinox='J2000') self.times = (numpy.pi / 43200.0) * numpy.arange(-43200, +43200, 3600.0) self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV"), elevation_limit=numpy.pi * 15.0/180.0) n_elevation_limit = len(numpy.unique(self.vis.time)) self.vis = create_visibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV"), elevation_limit=None) assert len(numpy.unique(self.vis.time)) >= n_elevation_limit def test_elevation_block(self): self.phasecentre = SkyCoord(ra=+180.0 * u.deg, dec=+15.0 * u.deg, frame='icrs', equinox='J2000') self.times = (numpy.pi / 43200.0) * numpy.arange(-43200, +43200, 3600.0) self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV"), elevation_limit=numpy.pi * 15.0/180.0) n_elevation_limit = len(numpy.unique(self.vis.time)) self.vis = create_blockvisibility(self.lowcore, self.times, self.frequency, channel_bandwidth=self.channel_bandwidth, phasecentre=self.phasecentre, weight=1.0, polarisation_frame=PolarisationFrame("stokesIQUV"), elevation_limit=None) assert len(numpy.unique(self.vis.time)) >= n_elevation_limit if __name__ == '__main__': unittest.main()
# Copyright 2013 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Performance test for a peer review system. WARNING! Use this script to test load U-MOOC. This is very dangerous feature, be careful, because anyone can impersonate super user of your Course Builder instance; use only if you have to perform specific load testing Keep in mind: - when repeatedly running tests and creating new test namespaces, flush memcache Here is how to run: - update /controllers/sites.py and enable CAN_IMPERSONATE - navigate to the root directory of the app - run a command line by typing: python tests/integration/load_test.py \ --thread_count=5 \ --start_uid=1 \ http://mycourse.appspot.com """ __author__ = 'Pavel Simakov ([email protected])' import argparse import cookielib import json import logging import random import re import sys import threading import time import urllib import urllib2 # The unit id for the peer review assignment in the default course. LEGACY_REVIEW_UNIT_ID = 'ReviewAssessmentExample' # command line arguments parser PARSER = argparse.ArgumentParser() PARSER.add_argument( 'base_url', help=('Base URL of the course you want to test'), type=str) PARSER.add_argument( '--start_uid', help='Initial value for unique thread identifier.', default=1, type=int) PARSER.add_argument( '--thread_count', help='Number of concurrent threads for executing the test.', default=1, type=int) PARSER.add_argument( '--iteration_count', help='Number of iterations for executing the test. Each thread of each ' 'iteration acts as a unique user with the uid equal to:' 'start_uid + thread_count * iteration_index.', default=1, type=int) def assert_contains(needle, haystack): if not needle in haystack: raise Exception('Expected to find term: %s\n%s', needle, haystack) def assert_does_not_contain(needle, haystack): if needle in haystack: raise Exception('Did not expect to find term: %s\n%s', needle, haystack) def assert_equals(expected, actual): if expected != actual: raise Exception('Expected equality of %s and %s.', expected, actual) class WebSession(object): """A class that allows navigation of web pages keeping cookie session.""" PROGRESS_LOCK = threading.Lock() MAX_RETRIES = 3 RETRY_SLEEP_SEC = 3 GET_COUNT = 0 POST_COUNT = 0 RETRY_COUNT = 0 PROGRESS_BATCH = 10 RESPONSE_TIME_HISTOGRAM = [0, 0, 0, 0, 0, 0] def __init__(self, uid, common_headers=None): if common_headers is None: common_headers = {} self.uid = uid self.common_headers = common_headers self.cj = cookielib.CookieJar() self.opener = urllib2.build_opener(urllib2.HTTPCookieProcessor(self.cj)) @classmethod def increment_duration_bucket(cls, index): cls.RESPONSE_TIME_HISTOGRAM[index] += 1 @classmethod def update_duration(cls, duration): if duration > 30: cls.increment_duration_bucket(0) elif duration > 15: cls.increment_duration_bucket(1) elif duration > 7: cls.increment_duration_bucket(2) elif duration > 3: cls.increment_duration_bucket(3) elif duration > 1: cls.increment_duration_bucket(4) else: cls.increment_duration_bucket(5) @classmethod def log_progress(cls, force=False): update = ((cls.GET_COUNT + cls.POST_COUNT) % ( cls.PROGRESS_BATCH) == 0) if update or force: logging.info( 'GET/POST:[%s, %s], RETRIES:[%s], SLA:%s', cls.GET_COUNT, cls.POST_COUNT, cls.RETRY_COUNT, cls.RESPONSE_TIME_HISTOGRAM) def get_cookie_value(self, name): for cookie in self.cj: if cookie.name == name: return cookie.value return None def is_soft_error(self, http_error): """Checks if HTTPError is due to starvation of frontend instances.""" body = http_error.fp.read() # this is the text specific to the front end instance starvation, which # is a retriable error for both GET and POST; normal HTTP error 500 has # this specific text '<h1>500 Internal Server Error</h1>' if http_error.code == 500 and '<h1>Error: Server Error</h1>' in body: return True logging.error( 'Non-retriable HTTP %s error:\n%s', http_error.code, body) return False def open(self, request, hint): """Executes any HTTP request.""" start_time = time.time() try: try_count = 0 while True: try: return self.opener.open(request) except urllib2.HTTPError as he: if ( try_count < WebSession.MAX_RETRIES and self.is_soft_error(he)): try_count += 1 with WebSession.PROGRESS_LOCK: WebSession.RETRY_COUNT += 1 time.sleep(WebSession.RETRY_SLEEP_SEC) continue raise he except Exception as e: logging.info( 'Error in session %s executing: %s', self.uid, hint) raise e finally: with WebSession.PROGRESS_LOCK: self.update_duration(time.time() - start_time) def get(self, url, expected_code=200): """HTTP GET.""" with WebSession.PROGRESS_LOCK: WebSession.GET_COUNT += 1 self.log_progress() request = urllib2.Request(url) for key, value in self.common_headers.items(): request.add_header(key, value) response = self.open(request, 'GET %s' % url) assert_equals(expected_code, response.code) return response.read() def post(self, url, args_dict, expected_code=200): """HTTP POST.""" with WebSession.PROGRESS_LOCK: WebSession.POST_COUNT += 1 self.log_progress() data = None if args_dict: data = urllib.urlencode(args_dict) request = urllib2.Request(url, data) for key, value in self.common_headers.items(): request.add_header(key, value) response = self.open(request, 'POST %s' % url) assert_equals(expected_code, response.code) return response.read() class TaskThread(threading.Thread): """Runs a task in a separate thread.""" def __init__(self, func, name=None): super(TaskThread, self).__init__() self.func = func self.exception = None self.name = name @classmethod def start_all_tasks(cls, tasks): """Starts all tasks.""" for task in tasks: task.start() @classmethod def check_all_tasks(cls, tasks): """Checks results of all tasks; fails on the first exception found.""" failed_count = 0 for task in tasks: while True: # Timeouts should happen after 30 seconds. task.join(30) if task.isAlive(): logging.info('Still waiting for: %s.', task.name) continue else: break if task.exception: failed_count += 1 if failed_count: raise Exception('Tasks failed: %s', failed_count) @classmethod def execute_task_list(cls, tasks): """Starts all tasks and checks the results.""" cls.start_all_tasks(tasks) cls.check_all_tasks(tasks) def run(self): try: self.func() except Exception as e: # pylint: disable-msg=broad-except logging.error('Error in %s: %s', self.name, e) self.exc_info = sys.exc_info() raise self.exc_info[1], None, self.exc_info[2] class PeerReviewLoadTest(object): """A peer review load test.""" def __init__(self, base_url, uid): self.uid = uid self.host = base_url # this is an impersonation identity for the actor thread self.email = 'load_test_bot_%[email protected]' % self.uid self.name = 'Load Test Bot #%s' % self.uid # begin web session impersonate_header = { 'email': self.email, 'user_id': u'impersonation-%s' % self.uid} self.session = WebSession( uid=uid, common_headers={'Gcb-Impersonate': json.dumps(impersonate_header)}) def run(self): self.register_if_has_to() self.submit_peer_review_assessment_if_possible() while self.count_completed_reviews() < 2: self.request_and_do_a_review() def get_hidden_field(self, name, body): # The "\s*" denotes arbitrary whitespace; sometimes, this tag is split # across multiple lines in the HTML. # pylint: disable-msg=anomalous-backslash-in-string reg = re.compile( '<input type="hidden" name="%s"\s* value="([^"]*)">' % name) # pylint: enable-msg=anomalous-backslash-in-string return reg.search(body).group(1) def get_js_var(self, name, body): reg = re.compile('%s = \'([^\']*)\';\n' % name) return reg.search(body).group(1) def get_draft_review_url(self, body): """Returns the URL of a draft review on the review dashboard.""" # The "\s*" denotes arbitrary whitespace; sometimes, this tag is split # across multiple lines in the HTML. # pylint: disable-msg=anomalous-backslash-in-string reg = re.compile( '<a href="([^"]*)">Assignment [0-9]+</a>\s*\(Draft\)') # pylint: enable-msg=anomalous-backslash-in-string result = reg.search(body) if result is None: return None return result.group(1) def register_if_has_to(self): """Performs student registration action.""" body = self.session.get('%s/' % self.host) assert_contains('Logout', body) if not 'href="register"' in body: body = self.session.get('%s/student/home' % self.host) assert_contains(self.email, body) assert_contains(self.name, body) return False body = self.session.get('%s/register' % self.host) xsrf_token = self.get_hidden_field('xsrf_token', body) data = {'xsrf_token': xsrf_token, 'form01': self.name} body = self.session.post('%s/register' % self.host, data) body = self.session.get('%s/' % self.host) assert_contains('Logout', body) assert_does_not_contain('href="register"', body) return True def submit_peer_review_assessment_if_possible(self): """Submits the peer review assessment.""" body = self.session.get( '%s/assessment?name=%s' % (self.host, LEGACY_REVIEW_UNIT_ID)) assert_contains('You may only submit this assignment once', body) if 'Submitted assignment' in body: # The assignment was already submitted. return True assessment_xsrf_token = self.get_js_var('assessmentXsrfToken', body) answers = [ {'index': 0, 'type': 'regex', 'value': 'Answer 0 by %s' % self.email}, {'index': 1, 'type': 'choices', 'value': self.uid}, {'index': 2, 'type': 'regex', 'value': 'Answer 2 by %s' % self.email}, ] data = { 'answers': json.dumps(answers), 'assessment_type': LEGACY_REVIEW_UNIT_ID, 'score': 0, 'xsrf_token': assessment_xsrf_token, } body = self.session.post('%s/answer' % self.host, data) assert_contains('Review peer assignments', body) return True def request_and_do_a_review(self): """Request a new review, wait for it to be granted, then submit it.""" review_dashboard_url = ( '%s/reviewdashboard?unit=%s' % (self.host, LEGACY_REVIEW_UNIT_ID)) completed = False while not completed: # Get peer review dashboard and inspect it. body = self.session.get(review_dashboard_url) assert_contains('Assignments for your review', body) assert_contains('Review a new assignment', body) # Pick first pending review if any or ask for a new review. draft_review_url = self.get_draft_review_url(body) if draft_review_url: # There is a pending review. Choose it. body = self.session.get( '%s/%s' % (self.host, draft_review_url)) else: # Request a new assignment to review. assert_contains('xsrf_token', body) xsrf_token = self.get_hidden_field('xsrf_token', body) data = { 'unit_id': LEGACY_REVIEW_UNIT_ID, 'xsrf_token': xsrf_token, } body = self.session.post(review_dashboard_url, data) # It is possible that we fail to get a new review because the # old one is now visible, but was not yet visible when we asked # for the dashboard page. if ( 'You must complete all assigned reviews before you ' 'can request a new one.' in body): continue # It is possible that no submissions available for review yet. # Wait for a while until they become available on the dashboard # page. if not 'Back to the review dashboard' in body: assert_contains('Assignments for your review', body) # Sleep for a random number of seconds between 1 and 4. time.sleep(1.0 + random.random() * 3.0) continue # Submit the review. review_xsrf_token = self.get_js_var('assessmentXsrfToken', body) answers = [ {'index': 0, 'type': 'choices', 'value': 0}, {'index': 1, 'type': 'regex', 'value': 'Review 0 by %s' % self.email}, ] data = { 'answers': json.dumps(answers), 'assessment_type': None, 'is_draft': 'false', 'key': self.get_js_var('assessmentGlobals.key', body), 'score': 0, 'unit_id': LEGACY_REVIEW_UNIT_ID, 'xsrf_token': review_xsrf_token, } body = self.session.post('%s/review' % self.host, data) assert_contains('Your review has been submitted', body) return True def count_completed_reviews(self): """Counts the number of reviews that the actor has completed.""" review_dashboard_url = ( '%s/reviewdashboard?unit=%s' % (self.host, LEGACY_REVIEW_UNIT_ID)) body = self.session.get(review_dashboard_url) num_completed = body.count('(Completed)') return num_completed def run_all(args): """Runs test scenario in multiple threads.""" if args.thread_count < 1 or args.thread_count > 256: raise Exception('Please use between 1 and 256 threads.') start_time = time.time() logging.info('Started testing: %s', args.base_url) logging.info('base_url: %s', args.base_url) logging.info('start_uid: %s', args.start_uid) logging.info('thread_count: %s', args.thread_count) logging.info('iteration_count: %s', args.iteration_count) logging.info('SLAs are [>30s, >15s, >7s, >3s, >1s, <1s]') try: for iteration_index in range(0, args.iteration_count): logging.info('Started iteration: %s', iteration_index) tasks = [] WebSession.PROGRESS_BATCH = args.thread_count for index in range(0, args.thread_count): test = PeerReviewLoadTest( args.base_url, ( args.start_uid + iteration_index * args.thread_count + index)) task = TaskThread( test.run, name='PeerReviewLoadTest-%s' % index) tasks.append(task) try: TaskThread.execute_task_list(tasks) except Exception as e: logging.info('Failed iteration: %s', iteration_index) raise e finally: WebSession.log_progress(force=True) logging.info('Done! Duration (s): %s', time.time() - start_time) if __name__ == '__main__': logging.basicConfig(level=logging.INFO) run_all(PARSER.parse_args())
''' Video ===== Core class for reading video files and managing the :class:`kivy.graphics.texture.Texture` video. .. versionchanged:: 1.8.0 There is now 2 distinct Gstreamer implementation: one using Gi/Gst working for both Python 2+3 with Gstreamer 1.0, and one using PyGST working only for Python 2 + Gstreamer 0.10. If you have issue with GStreamer, have a look at :ref:`gstreamer-compatibility` .. note:: Recording is not supported. ''' __all__ = ('VideoBase', 'Video') from kivy.clock import Clock from kivy.core import core_select_lib from kivy.event import EventDispatcher from kivy.logger import Logger from kivy.compat import PY2 class VideoBase(EventDispatcher): '''VideoBase, a class used to implement a video reader. :Parameters: `filename` : str Filename of the video. Can be a file or an URI. `eos` : str, defaults to 'pause' Action to take when EOS is hit. Can be one of 'pause', 'stop' or 'loop'. .. versionchanged:: added 'pause' `async` : bool, defaults to True Load the video asynchronously (may be not supported by all providers). `autoplay` : bool, defaults to False Auto play the video on init. :Events: `on_eos` Fired when EOS is hit. `on_load` Fired when the video is loaded and the texture is available. `on_frame` Fired when a new frame is written to the texture. ''' __slots__ = ('_wantplay', '_buffer', '_filename', '_texture', '_volume', 'eos', '_state', '_async', '_autoplay') __events__ = ('on_eos', 'on_load', 'on_frame') def __init__(self, **kwargs): kwargs.setdefault('filename', None) kwargs.setdefault('eos', 'stop') kwargs.setdefault('async', True) kwargs.setdefault('autoplay', False) super(VideoBase, self).__init__() self._wantplay = False self._buffer = None self._filename = None self._texture = None self._volume = 1. self._state = '' self._autoplay = kwargs.get('autoplay') self._async = kwargs.get('async') self.eos = kwargs.get('eos') if self.eos == 'pause': Logger.warning("'pause' is deprecated. Use 'stop' instead.") self.eos = 'stop' self.filename = kwargs.get('filename') Clock.schedule_interval(self._update, 1 / 30.) if self._autoplay: self.play() def __del__(self): self.unload() def on_eos(self): pass def on_load(self): pass def on_frame(self): pass def _get_filename(self): return self._filename def _set_filename(self, filename): if filename == self._filename: return self.unload() self._filename = filename if self._filename is None: return self.load() filename = property(lambda self: self._get_filename(), lambda self, x: self._set_filename(x), doc='Get/set the filename/uri of the current video') def _get_position(self): return 0 def _set_position(self, pos): self.seek(pos) position = property(lambda self: self._get_position(), lambda self, x: self._set_position(x), doc='Get/set the position in the video (in seconds)') def _get_volume(self): return self._volume def _set_volume(self, volume): self._volume = volume volume = property(lambda self: self._get_volume(), lambda self, x: self._set_volume(x), doc='Get/set the volume in the video (1.0 = 100%)') def _get_duration(self): return 0 duration = property(lambda self: self._get_duration(), doc='Get the video duration (in seconds)') def _get_texture(self): return self._texture texture = property(lambda self: self._get_texture(), doc='Get the video texture') def _get_state(self): return self._state state = property(lambda self: self._get_state(), doc='Get the video playing status') def _do_eos(self, *args): '''.. versionchanged:: 1.4.0 Now dispatches the `on_eos` event. ''' if self.eos == 'pause': self.pause() elif self.eos == 'stop': self.stop() elif self.eos == 'loop': self.position = 0 self.play() self.dispatch('on_eos') def _update(self, dt): '''Update the video content to texture. ''' pass def seek(self, percent): '''Move on percent position''' pass def stop(self): '''Stop the video playing''' self._state = '' def pause(self): '''Pause the video .. versionadded:: 1.4.0 ''' self._state = 'paused' def play(self): '''Play the video''' self._state = 'playing' def load(self): '''Load the video from the current filename''' pass def unload(self): '''Unload the actual video''' self._state = '' # Load the appropriate provider video_providers = [] try: from kivy.lib.gstplayer import GstPlayer video_providers += [('gstplayer', 'video_gstplayer', 'VideoGstplayer')] except ImportError: #video_providers += [('gi', 'video_gi', 'VideoGi')] if PY2: # if peoples do not have gi, fallback on pygst, only for python2 video_providers += [ ('pygst', 'video_pygst', 'VideoPyGst')] video_providers += [ ('ffmpeg', 'video_ffmpeg', 'VideoFFMpeg'), ('pyglet', 'video_pyglet', 'VideoPyglet'), ('null', 'video_null', 'VideoNull')] Video = core_select_lib('video', video_providers)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- import uuid from msrest.pipeline import ClientRawResponse from msrestazure.azure_exceptions import CloudError from msrest.polling import LROPoller, NoPolling from msrestazure.polling.arm_polling import ARMPolling from .. import models class LocalNetworkGatewaysOperations(object): """LocalNetworkGatewaysOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. :ivar api_version: Client API version. Constant value: "2016-12-01". """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.api_version = "2016-12-01" self.config = config def _create_or_update_initial( self, resource_group_name, local_network_gateway_name, parameters, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.create_or_update.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct body body_content = self._serialize.body(parameters, 'LocalNetworkGateway') # Construct and send request request = self._client.put(url, query_parameters) response = self._client.send( request, header_parameters, body_content, stream=False, **operation_config) if response.status_code not in [200, 201]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('LocalNetworkGateway', response) if response.status_code == 201: deserialized = self._deserialize('LocalNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def create_or_update( self, resource_group_name, local_network_gateway_name, parameters, custom_headers=None, raw=False, polling=True, **operation_config): """Creates or updates a local network gateway in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param parameters: Parameters supplied to the create or update local network gateway operation. :type parameters: ~azure.mgmt.network.v2016_12_01.models.LocalNetworkGateway :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns LocalNetworkGateway or ClientRawResponse<LocalNetworkGateway> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[~azure.mgmt.network.v2016_12_01.models.LocalNetworkGateway] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[~azure.mgmt.network.v2016_12_01.models.LocalNetworkGateway]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._create_or_update_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, parameters=parameters, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): deserialized = self._deserialize('LocalNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} def get( self, resource_group_name, local_network_gateway_name, custom_headers=None, raw=False, **operation_config): """Gets the specified local network gateway in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: LocalNetworkGateway or ClientRawResponse if raw=true :rtype: ~azure.mgmt.network.v2016_12_01.models.LocalNetworkGateway or ~msrest.pipeline.ClientRawResponse :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ # Construct URL url = self.get.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp deserialized = None if response.status_code == 200: deserialized = self._deserialize('LocalNetworkGateway', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} def _delete_initial( self, resource_group_name, local_network_gateway_name, custom_headers=None, raw=False, **operation_config): # Construct URL url = self.delete.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'localNetworkGatewayName': self._serialize.url("local_network_gateway_name", local_network_gateway_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200, 202, 204]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response def delete( self, resource_group_name, local_network_gateway_name, custom_headers=None, raw=False, polling=True, **operation_config): """Deletes the specified local network gateway. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param local_network_gateway_name: The name of the local network gateway. :type local_network_gateway_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: The poller return type is ClientRawResponse, the direct response alongside the deserialized response :param polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :return: An instance of LROPoller that returns None or ClientRawResponse<None> if raw==True :rtype: ~msrestazure.azure_operation.AzureOperationPoller[None] or ~msrestazure.azure_operation.AzureOperationPoller[~msrest.pipeline.ClientRawResponse[None]] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ raw_result = self._delete_initial( resource_group_name=resource_group_name, local_network_gateway_name=local_network_gateway_name, custom_headers=custom_headers, raw=True, **operation_config ) def get_long_running_output(response): if raw: client_raw_response = ClientRawResponse(None, response) return client_raw_response lro_delay = operation_config.get( 'long_running_operation_timeout', self.config.long_running_operation_timeout) if polling is True: polling_method = ARMPolling(lro_delay, **operation_config) elif polling is False: polling_method = NoPolling() else: polling_method = polling return LROPoller(self._client, raw_result, get_long_running_output, polling_method) delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways/{localNetworkGatewayName}'} def list( self, resource_group_name, custom_headers=None, raw=False, **operation_config): """Gets all the local network gateways in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: An iterator like instance of LocalNetworkGateway :rtype: ~azure.mgmt.network.v2016_12_01.models.LocalNetworkGatewayPaged[~azure.mgmt.network.v2016_12_01.models.LocalNetworkGateway] :raises: :class:`CloudError<msrestazure.azure_exceptions.CloudError>` """ def internal_paging(next_link=None, raw=False): if not next_link: # Construct URL url = self.list.metadata['url'] path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'subscriptionId': self._serialize.url("self.config.subscription_id", self.config.subscription_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['api-version'] = self._serialize.query("self.api_version", self.api_version, 'str') else: url = next_link query_parameters = {} # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if self.config.generate_client_request_id: header_parameters['x-ms-client-request-id'] = str(uuid.uuid1()) if custom_headers: header_parameters.update(custom_headers) if self.config.accept_language is not None: header_parameters['accept-language'] = self._serialize.header("self.config.accept_language", self.config.accept_language, 'str') # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send( request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: exp = CloudError(response) exp.request_id = response.headers.get('x-ms-request-id') raise exp return response # Deserialize response deserialized = models.LocalNetworkGatewayPaged(internal_paging, self._deserialize.dependencies) if raw: header_dict = {} client_raw_response = models.LocalNetworkGatewayPaged(internal_paging, self._deserialize.dependencies, header_dict) return client_raw_response return deserialized list.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/localNetworkGateways'}
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'CatalogPage' db.create_table(u'ga_resources_catalogpage', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('public', self.gf('django.db.models.fields.BooleanField')(default=True)), ('owner', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True)), )) db.send_create_signal(u'ga_resources', ['CatalogPage']) # Adding model 'DataResource' db.create_table(u'ga_resources_dataresource', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('content', self.gf('mezzanine.core.fields.RichTextField')()), ('resource_file', self.gf('django.db.models.fields.files.FileField')(max_length=100, null=True, blank=True)), ('resource_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('resource_config', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('last_change', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('last_refresh', self.gf('django.db.models.fields.DateTimeField')(null=True, blank=True)), ('next_refresh', self.gf('django.db.models.fields.DateTimeField')(db_index=True, null=True, blank=True)), ('refresh_every', self.gf('timedelta.fields.TimedeltaField')(null=True, blank=True)), ('md5sum', self.gf('django.db.models.fields.CharField')(max_length=64, null=True, blank=True)), ('metadata_url', self.gf('django.db.models.fields.URLField')(max_length=200, null=True, blank=True)), ('metadata_xml', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('native_bounding_box', self.gf('django.contrib.gis.db.models.fields.PolygonField')(null=True, blank=True)), ('bounding_box', self.gf('django.contrib.gis.db.models.fields.PolygonField')(null=True, blank=True)), ('three_d', self.gf('django.db.models.fields.BooleanField')(default=False)), ('native_srs', self.gf('django.db.models.fields.TextField')(null=True, blank=True)), ('public', self.gf('django.db.models.fields.BooleanField')(default=True)), ('owner', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True)), ('driver', self.gf('django.db.models.fields.CharField')(default='ga_resources.drivers.spatialite', max_length=255)), ('big', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal(u'ga_resources', ['DataResource']) # Adding model 'OrderedResource' db.create_table(u'ga_resources_orderedresource', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('resource_group', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['ga_resources.ResourceGroup'])), ('data_resource', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['ga_resources.DataResource'])), ('ordering', self.gf('django.db.models.fields.IntegerField')(default=0)), )) db.send_create_signal(u'ga_resources', ['OrderedResource']) # Adding model 'ResourceGroup' db.create_table(u'ga_resources_resourcegroup', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('is_timeseries', self.gf('django.db.models.fields.BooleanField')(default=False)), ('min_time', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('max_time', self.gf('django.db.models.fields.DateTimeField')(null=True)), )) db.send_create_signal(u'ga_resources', ['ResourceGroup']) # Adding model 'RelatedResource' db.create_table(u'ga_resources_relatedresource', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('content', self.gf('mezzanine.core.fields.RichTextField')()), ('resource_file', self.gf('django.db.models.fields.files.FileField')(max_length=100)), ('foreign_resource', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['ga_resources.DataResource'])), ('foreign_key', self.gf('django.db.models.fields.CharField')(max_length=64, null=True, blank=True)), ('local_key', self.gf('django.db.models.fields.CharField')(max_length=64, null=True, blank=True)), ('left_index', self.gf('django.db.models.fields.BooleanField')(default=False)), ('right_index', self.gf('django.db.models.fields.BooleanField')(default=False)), ('how', self.gf('django.db.models.fields.CharField')(default='left', max_length=8)), ('driver', self.gf('django.db.models.fields.CharField')(default='ga_resources.drivers.related.excel', max_length=255)), ('key_transform', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), )) db.send_create_signal(u'ga_resources', ['RelatedResource']) # Adding model 'Style' db.create_table(u'ga_resources_style', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('legend', self.gf('django.db.models.fields.files.ImageField')(max_length=100, null=True, blank=True)), ('legend_width', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('legend_height', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('stylesheet', self.gf('django.db.models.fields.TextField')()), ('public', self.gf('django.db.models.fields.BooleanField')(default=True)), ('owner', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True)), )) db.send_create_signal(u'ga_resources', ['Style']) # Adding model 'RenderedLayer' db.create_table(u'ga_resources_renderedlayer', ( (u'page_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['pages.Page'], unique=True, primary_key=True)), ('content', self.gf('mezzanine.core.fields.RichTextField')()), ('data_resource', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['ga_resources.DataResource'])), ('default_style', self.gf('django.db.models.fields.related.ForeignKey')(related_name='default_for_layer', to=orm['ga_resources.Style'])), ('default_class', self.gf('django.db.models.fields.CharField')(default='default', max_length=255)), ('public', self.gf('django.db.models.fields.BooleanField')(default=True)), ('owner', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True)), )) db.send_create_signal(u'ga_resources', ['RenderedLayer']) # Adding M2M table for field styles on 'RenderedLayer' m2m_table_name = db.shorten_name(u'ga_resources_renderedlayer_styles') db.create_table(m2m_table_name, ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('renderedlayer', models.ForeignKey(orm[u'ga_resources.renderedlayer'], null=False)), ('style', models.ForeignKey(orm[u'ga_resources.style'], null=False)) )) db.create_unique(m2m_table_name, ['renderedlayer_id', 'style_id']) def backwards(self, orm): # Deleting model 'CatalogPage' db.delete_table(u'ga_resources_catalogpage') # Deleting model 'DataResource' db.delete_table(u'ga_resources_dataresource') # Deleting model 'OrderedResource' db.delete_table(u'ga_resources_orderedresource') # Deleting model 'ResourceGroup' db.delete_table(u'ga_resources_resourcegroup') # Deleting model 'RelatedResource' db.delete_table(u'ga_resources_relatedresource') # Deleting model 'Style' db.delete_table(u'ga_resources_style') # Deleting model 'RenderedLayer' db.delete_table(u'ga_resources_renderedlayer') # Removing M2M table for field styles on 'RenderedLayer' db.delete_table(db.shorten_name(u'ga_resources_renderedlayer_styles')) models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'ga_resources.catalogpage': { 'Meta': {'ordering': "['title']", 'object_name': 'CatalogPage', '_ormbases': [u'pages.Page']}, 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}) }, u'ga_resources.dataresource': { 'Meta': {'ordering': "['title']", 'object_name': 'DataResource', '_ormbases': [u'pages.Page']}, 'big': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'bounding_box': ('django.contrib.gis.db.models.fields.PolygonField', [], {'null': 'True', 'blank': 'True'}), 'content': ('mezzanine.core.fields.RichTextField', [], {}), 'driver': ('django.db.models.fields.CharField', [], {'default': "'ga_resources.drivers.spatialite'", 'max_length': '255'}), 'last_change': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'last_refresh': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'md5sum': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'metadata_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'metadata_xml': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'native_bounding_box': ('django.contrib.gis.db.models.fields.PolygonField', [], {'null': 'True', 'blank': 'True'}), 'native_srs': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'next_refresh': ('django.db.models.fields.DateTimeField', [], {'db_index': 'True', 'null': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'refresh_every': ('timedelta.fields.TimedeltaField', [], {'null': 'True', 'blank': 'True'}), 'resource_config': ('django.db.models.fields.TextField', [], {'null': 'True', 'blank': 'True'}), 'resource_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'resource_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'three_d': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'ga_resources.orderedresource': { 'Meta': {'object_name': 'OrderedResource'}, 'data_resource': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ga_resources.DataResource']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ordering': ('django.db.models.fields.IntegerField', [], {'default': '0'}), 'resource_group': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ga_resources.ResourceGroup']"}) }, u'ga_resources.relatedresource': { 'Meta': {'ordering': "(u'_order',)", 'object_name': 'RelatedResource', '_ormbases': [u'pages.Page']}, 'content': ('mezzanine.core.fields.RichTextField', [], {}), 'driver': ('django.db.models.fields.CharField', [], {'default': "'ga_resources.drivers.related.excel'", 'max_length': '255'}), 'foreign_key': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'foreign_resource': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ga_resources.DataResource']"}), 'how': ('django.db.models.fields.CharField', [], {'default': "'left'", 'max_length': '8'}), 'key_transform': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'left_index': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'local_key': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'resource_file': ('django.db.models.fields.files.FileField', [], {'max_length': '100'}), 'right_index': ('django.db.models.fields.BooleanField', [], {'default': 'False'}) }, u'ga_resources.renderedlayer': { 'Meta': {'ordering': "(u'_order',)", 'object_name': 'RenderedLayer', '_ormbases': [u'pages.Page']}, 'content': ('mezzanine.core.fields.RichTextField', [], {}), 'data_resource': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['ga_resources.DataResource']"}), 'default_class': ('django.db.models.fields.CharField', [], {'default': "'default'", 'max_length': '255'}), 'default_style': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'default_for_layer'", 'to': u"orm['ga_resources.Style']"}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'styles': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['ga_resources.Style']", 'symmetrical': 'False'}) }, u'ga_resources.resourcegroup': { 'Meta': {'ordering': "(u'_order',)", 'object_name': 'ResourceGroup', '_ormbases': [u'pages.Page']}, 'is_timeseries': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'max_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'min_time': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'resources': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['ga_resources.DataResource']", 'symmetrical': 'False', 'through': u"orm['ga_resources.OrderedResource']", 'blank': 'True'}) }, u'ga_resources.style': { 'Meta': {'ordering': "(u'_order',)", 'object_name': 'Style', '_ormbases': [u'pages.Page']}, 'legend': ('django.db.models.fields.files.ImageField', [], {'max_length': '100', 'null': 'True', 'blank': 'True'}), 'legend_height': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'legend_width': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'owner': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['auth.User']", 'null': 'True'}), u'page_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': u"orm['pages.Page']", 'unique': 'True', 'primary_key': 'True'}), 'public': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'stylesheet': ('django.db.models.fields.TextField', [], {}) }, u'pages.page': { 'Meta': {'ordering': "(u'titles',)", 'object_name': 'Page'}, '_meta_title': ('django.db.models.fields.CharField', [], {'max_length': '500', 'null': 'True', 'blank': 'True'}), '_order': ('django.db.models.fields.IntegerField', [], {'null': 'True'}), 'content_model': ('django.db.models.fields.CharField', [], {'max_length': '50', 'null': 'True'}), 'created': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'expiry_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'gen_description': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'in_menus': ('mezzanine.pages.fields.MenusField', [], {'default': '(1, 2, 3)', 'max_length': '100', 'null': 'True', 'blank': 'True'}), 'in_sitemap': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), u'keywords_string': ('django.db.models.fields.CharField', [], {'max_length': '500', 'blank': 'True'}), 'login_required': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'parent': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "u'children'", 'null': 'True', 'to': u"orm['pages.Page']"}), 'publish_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True', 'blank': 'True'}), 'short_url': ('django.db.models.fields.URLField', [], {'max_length': '200', 'null': 'True', 'blank': 'True'}), 'site': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['sites.Site']"}), 'slug': ('django.db.models.fields.CharField', [], {'max_length': '2000', 'null': 'True', 'blank': 'True'}), 'status': ('django.db.models.fields.IntegerField', [], {'default': '2'}), 'title': ('django.db.models.fields.CharField', [], {'max_length': '500'}), 'titles': ('django.db.models.fields.CharField', [], {'max_length': '1000', 'null': 'True'}), 'updated': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}) }, u'sites.site': { 'Meta': {'ordering': "(u'domain',)", 'object_name': 'Site', 'db_table': "u'django_site'"}, 'domain': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) } } complete_apps = ['ga_resources']
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals import utool as ut print, rrr, profile = ut.inject2(__name__, '[_plh]') VERB_PIPELINE = ut.get_argflag(('--verb-pipeline', '--verb-pipe')) or ut.VERYVERBOSE VERB_TESTDATA = ut.get_argflag('--verb-testdata') or ut.VERYVERBOSE def testrun_pipeline_upto(qreq_, stop_node=None, verbose=True): r""" Main tester function. Runs the pipeline by mirroring `request_ibeis_query_L0`, but stops at a requested breakpoint and returns the local variables. convinience: runs pipeline for tests this should mirror request_ibeis_query_L0 Ignore: >>> # TODO: autogenerate >>> # The following is a stub that starts the autogeneration process >>> import utool as ut >>> from ibeis.algo.hots import pipeline >>> source = ut.get_func_sourcecode(pipeline.request_ibeis_query_L0, >>> strip_docstr=True, stripdef=True, >>> strip_comments=True) >>> import re >>> source = re.sub(r'^\s*$\n', '', source, flags=re.MULTILINE) >>> print(source) >>> ut.replace_between_tags(source, '', sentinal) """ from ibeis.algo.hots.pipeline import ( nearest_neighbors, baseline_neighbor_filter, weight_neighbors, build_chipmatches, spatial_verification, vsone_reranking, build_impossible_daids_list) print('RUN PIPELINE UPTO: %s' % (stop_node,)) print(qreq_) qreq_.lazy_load(verbose=verbose) #--- if stop_node == 'build_impossible_daids_list': return locals() impossible_daids_list, Kpad_list = build_impossible_daids_list(qreq_) #--- if stop_node == 'nearest_neighbors': return locals() nns_list = nearest_neighbors(qreq_, Kpad_list, verbose=verbose) #--- if stop_node == 'baseline_neighbor_filter': return locals() nnvalid0_list = baseline_neighbor_filter(qreq_, nns_list, impossible_daids_list, verbose=verbose) #--- if stop_node == 'weight_neighbors': return locals() weight_ret = weight_neighbors(qreq_, nns_list, nnvalid0_list, verbose=verbose) filtkey_list, filtweights_list, filtvalids_list, filtnormks_list = weight_ret #--- if stop_node == 'filter_neighbors': raise AssertionError('no longer exists') #--- if stop_node == 'build_chipmatches': return locals() cm_list_FILT = build_chipmatches(qreq_, nns_list, nnvalid0_list, filtkey_list, filtweights_list, filtvalids_list, filtnormks_list, verbose=verbose) #--- if stop_node == 'spatial_verification': return locals() cm_list_SVER = spatial_verification(qreq_, cm_list_FILT, verbose=verbose) #--- if stop_node == 'vsone_reranking': return locals() if qreq_.qparams.rrvsone_on: # VSONE RERANKING cm_list_VSONERR = vsone_reranking(qreq_, cm_list_SVER, verbose=verbose) cm_list = cm_list_VSONERR else: cm_list = cm_list_SVER assert False, 'unknown stop_node=%r' % (stop_node,) #qaid2_svtups = qreq_.metadata['qaid2_svtups'] return locals() def testdata_pre(stopnode, defaultdb='testdb1', p=['default'], a=['default:qindex=0:1,dindex=0:5'], **kwargs): """ New (1-1-2016) generic pipeline node testdata getter Args: stopnode (str): defaultdb (str): (default = u'testdb1') p (list): (default = [u'default:']) a (list): (default = [u'default:qsize=1,dsize=4']) Returns: tuple: (ibs, qreq_, args) CommandLine: python -m ibeis.algo.hots._pipeline_helpers --exec-testdata_pre --show Example: >>> # DISABLE_DOCTEST >>> from ibeis.algo.hots._pipeline_helpers import * # NOQA >>> stopnode = 'build_chipmatches' >>> defaultdb = 'testdb1' >>> p = ['default:'] >>> a = ['default:qindex=0:1,dindex=0:5'] >>> qreq_, args = testdata_pre(stopnode, defaultdb, p, a) """ import ibeis from ibeis.algo.hots import pipeline qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, p=p, a=a, **kwargs) locals_ = testrun_pipeline_upto(qreq_, stopnode) func = getattr(pipeline, stopnode) argnames = ut.get_argnames(func) # Hack to ignore qreq_, and verbose for ignore in ['qreq_', 'ibs', 'verbose']: try: argnames.remove(ignore) except ValueError: pass tupname = '_Ret_' + stopnode.upper() args = ut.dict_take_asnametup(locals_, argnames, name=tupname) return qreq_, args #+--- OTHER TESTDATA FUNCS --- def testdata_pre_weight_neighbors(defaultdb='testdb1', qaid_list=[1, 2], daid_list=None, codename='vsmany', cfgdict=None): """ TODO: replace testdata_pre_weight_neighbors with >>> qreq_, args = plh.testdata_pre('weight_neighbors', defaultdb='testdb1', >>> a=['default:qindex=0:1,dindex=0:5,hackerrors=False'], >>> p=['default:codename=vsmany,bar_l2_on=True,fg_on=False'], verbose=True) """ if cfgdict is None: cfgdict = dict(codename=codename) import ibeis p = 'default' + ut.get_cfg_lbl(cfgdict) qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, default_qaids=qaid_list, default_daids=daid_list, p=p) ibs = qreq_.ibs locals_ = testrun_pipeline_upto(qreq_, 'weight_neighbors') nns_list, nnvalid0_list = ut.dict_take(locals_, ['nns_list', 'nnvalid0_list']) # qreq_, args = testdata_pre('weight_neighbors', defaultdb=defaultdb, p=['default:bar_l2_on=True,fg_on=False']) return ibs, qreq_, nns_list, nnvalid0_list def testdata_sparse_matchinfo_nonagg(defaultdb='testdb1', p=['default']): qreq_, args = testdata_pre('build_chipmatches', defaultdb=defaultdb, p=p) internal_index = 1 if qreq_.qparams.vsone else 0 # qaid = qreq_.qaids[0] # daid = qreq_.daids[1] qaid = qreq_.qaids[0] daid = qreq_.daids[1] nns = args.nns_list[internal_index] neighb_idx, neighb_dist = args.nns_list[internal_index] neighb_valid0 = args.nnvalid0_list[internal_index] neighb_score_list = args.filtweights_list[internal_index] neighb_valid_list = args.filtvalids_list[internal_index] neighb_normk = args.filtnormks_list[internal_index] Knorm = qreq_.qparams.Knorm args = (nns, neighb_idx, neighb_valid0, neighb_score_list, neighb_valid_list, neighb_normk, Knorm) return qreq_, qaid, daid, args def testdata_pre_baselinefilter(defaultdb='testdb1', qaid_list=None, daid_list=None, codename='vsmany'): cfgdict = dict(codename=codename) import ibeis p = 'default' + ut.get_cfg_lbl(cfgdict) qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, default_qaids=qaid_list, default_daids=daid_list, p=p) locals_ = testrun_pipeline_upto(qreq_, 'baseline_neighbor_filter') nns_list, impossible_daids_list = ut.dict_take(locals_, ['nns_list', 'impossible_daids_list']) return qreq_, nns_list, impossible_daids_list def testdata_pre_sver(defaultdb='PZ_MTEST', qaid_list=None, daid_list=None): """ >>> from ibeis.algo.hots._pipeline_helpers import * # NOQA """ #from ibeis.algo import Config cfgdict = dict() import ibeis p = 'default' + ut.get_cfg_lbl(cfgdict) qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, default_qaids=qaid_list, default_daids=daid_list, p=p) ibs = qreq_.ibs locals_ = testrun_pipeline_upto(qreq_, 'spatial_verification') cm_list = locals_['cm_list_FILT'] #nnfilts_list = locals_['nnfilts_list'] return ibs, qreq_, cm_list def testdata_post_sver(defaultdb='PZ_MTEST', qaid_list=None, daid_list=None, codename='vsmany', cfgdict=None): """ >>> from ibeis.algo.hots._pipeline_helpers import * # NOQA """ #from ibeis.algo import Config if cfgdict is None: cfgdict = dict(codename=codename) import ibeis p = 'default' + ut.get_cfg_lbl(cfgdict) qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, default_qaids=qaid_list, default_daids=daid_list, p=p) ibs = qreq_.ibs locals_ = testrun_pipeline_upto(qreq_, 'vsone_reranking') cm_list = locals_['cm_list_SVER'] #nnfilts_list = locals_['nnfilts_list'] return ibs, qreq_, cm_list def testdata_pre_vsonerr(defaultdb='PZ_MTEST', qaid_list=[1], daid_list='all'): """ >>> from ibeis.algo.hots._pipeline_helpers import * # NOQA """ cfgdict = dict(sver_output_weighting=True, codename='vsmany', rrvsone_on=True) import ibeis p = 'default' + ut.get_cfg_lbl(cfgdict) qreq_ = ibeis.testdata_qreq_(defaultdb=defaultdb, default_qaids=qaid_list, default_daids=daid_list, p=p) ibs = qreq_.ibs qaid_list = qreq_.qaids.tolist() qaid = qaid_list[0] #daid_list = qreq_.daids.tolist() if len(ibs.get_annot_groundtruth(qaid)) == 0: print('WARNING: qaid=%r has no groundtruth' % (qaid,)) locals_ = testrun_pipeline_upto(qreq_, 'vsone_reranking') cm_list = locals_['cm_list_SVER'] return ibs, qreq_, cm_list, qaid_list def testdata_scoring(defaultdb='PZ_MTEST', qaid_list=[1], daid_list='all'): from ibeis.algo.hots import vsone_pipeline ibs, qreq_, prior_cm = testdata_matching(defaultdb=defaultdb, qaid_list=qaid_list, daid_list=daid_list) config = qreq_.qparams cm = vsone_pipeline.refine_matches(qreq_, prior_cm, config) cm.evaluate_dnids(qreq_) return qreq_, cm def testdata_matching(*args, **kwargs): """ >>> from ibeis.algo.hots._pipeline_helpers import * # NOQA """ from ibeis.algo.hots import vsone_pipeline from ibeis.algo.hots import scoring from ibeis.algo.hots import pipeline # NOQA ibs, qreq_, cm_list, qaid_list = testdata_pre_vsonerr(*args, **kwargs) vsone_pipeline.prepare_vsmany_chipmatch(qreq_, cm_list) nNameShortlist = qreq_.qparams.nNameShortlistVsone nAnnotPerName = qreq_.qparams.nAnnotPerNameVsone scoring.score_chipmatch_list(qreq_, cm_list, 'nsum') vsone_pipeline.prepare_vsmany_chipmatch(qreq_, cm_list) cm_shortlist = scoring.make_chipmatch_shortlists(qreq_, cm_list, nNameShortlist, nAnnotPerName) prior_cm = cm_shortlist[0] return ibs, qreq_, prior_cm #L_______ if __name__ == '__main__': """ CommandLine: python -m ibeis.algo.hots._pipeline_helpers python -m ibeis.algo.hots._pipeline_helpers --allexamples python -m ibeis.algo.hots._pipeline_helpers --allexamples --noface --nosrc """ import multiprocessing multiprocessing.freeze_support() # for win32 import utool as ut # NOQA ut.doctest_funcs()
import string from importlib import import_module import warnings from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.auth.models import AnonymousUser from django.contrib.auth.signals import user_logged_in, user_logged_out from django.core.exceptions import FieldDoesNotExist, ObjectDoesNotExist from django.db import models, DEFAULT_DB_ALIAS from django.dispatch import receiver from django.utils import timezone from django.utils.functional import SimpleLazyObject from django.utils.translation import gettext_lazy as _ from shop import deferred from shop.models.fields import JSONField from shop.signals import customer_recognized from shop.models.fields import ChoiceEnum, ChoiceEnumField SessionStore = import_module(settings.SESSION_ENGINE).SessionStore() class CustomerState(ChoiceEnum): UNRECOGNIZED = 0, _("Unrecognized") GUEST = 1, _("Guest") REGISTERED = 2, ("Registered") class CustomerQuerySet(models.QuerySet): def _filter_or_exclude(self, negate, *args, **kwargs): """ Emulate filter queries on a Customer using attributes from the User object. Example: Customer.objects.filter(last_name__icontains='simpson') will return a queryset with customers whose last name contains "simpson". """ opts = self.model._meta lookup_kwargs = {} for key, lookup in kwargs.items(): try: field_name = key[:key.index('__')] except ValueError: field_name = key if field_name == 'pk': field_name = opts.pk.name try: opts.get_field(field_name) if isinstance(lookup, get_user_model()): lookup.pk # force lazy object to resolve lookup_kwargs[key] = lookup except FieldDoesNotExist as fdne: try: get_user_model()._meta.get_field(field_name) lookup_kwargs['user__' + key] = lookup except FieldDoesNotExist: raise fdne except Exception as othex: raise othex result = super()._filter_or_exclude(negate, *args, **lookup_kwargs) return result class CustomerManager(models.Manager): """ Manager for the Customer database model. This manager can also cope with customers, which have an entity in the database but otherwise are considered as anonymous. The username of these so called unrecognized customers is a compact version of the session key. """ BASE64_ALPHABET = string.digits + string.ascii_uppercase + string.ascii_lowercase + '.@' REVERSE_ALPHABET = dict((c, i) for i, c in enumerate(BASE64_ALPHABET)) BASE36_ALPHABET = string.digits + string.ascii_lowercase _queryset_class = CustomerQuerySet @classmethod def encode_session_key(cls, session_key): """ Session keys have base 36 and length 32. Since the field ``username`` accepts only up to 30 characters, the session key is converted to a base 64 representation, resulting in a length of approximately 28. """ return cls._encode(int(session_key[:32], 36), cls.BASE64_ALPHABET) @classmethod def decode_session_key(cls, compact_session_key): """ Decode a compact session key back to its original length and base. """ base_length = len(cls.BASE64_ALPHABET) n = 0 for c in compact_session_key: n = n * base_length + cls.REVERSE_ALPHABET[c] return cls._encode(n, cls.BASE36_ALPHABET).zfill(32) @classmethod def _encode(cls, n, base_alphabet): base_length = len(base_alphabet) s = [] while True: n, r = divmod(n, base_length) s.append(base_alphabet[r]) if n == 0: break return ''.join(reversed(s)) def get_queryset(self): """ Whenever we fetch from the Customer table, inner join with the User table to reduce the number of presumed future queries to the database. """ qs = self._queryset_class(self.model, using=self._db).select_related('user') return qs def create(self, *args, **kwargs): if 'user' in kwargs and kwargs['user'].is_authenticated: kwargs.setdefault('recognized', CustomerState.REGISTERED) customer = super().create(*args, **kwargs) return customer def _get_visiting_user(self, session_key): """ Since the Customer has a 1:1 relation with the User object, look for an entity of a User object. As its ``username`` (which must be unique), use the given session key. """ username = self.encode_session_key(session_key) try: user = get_user_model().objects.get(username=username) except get_user_model().DoesNotExist: user = AnonymousUser() return user def get_from_request(self, request): """ Return an Customer object for the current User object. """ if request.user.is_anonymous and request.session.session_key: # the visitor is determined through the session key user = self._get_visiting_user(request.session.session_key) else: user = request.user try: if user.customer: return user.customer except AttributeError: pass if request.user.is_authenticated: customer, created = self.get_or_create(user=user) if created: # `user` has been created by another app than shop customer.recognize_as_registered(request) else: customer = VisitingCustomer() return customer def get_or_create_from_request(self, request): if request.user.is_authenticated: user = request.user recognized = CustomerState.REGISTERED else: if not request.session.session_key: request.session.cycle_key() assert request.session.session_key username = self.encode_session_key(request.session.session_key) # create or get a previously created inactive intermediate user, # which later can declare himself as guest, or register as a valid Django user try: user = get_user_model().objects.get(username=username) except get_user_model().DoesNotExist: user = get_user_model().objects.create_user(username) user.is_active = False user.save() recognized = CustomerState.UNRECOGNIZED customer, created = self.get_or_create(user=user, recognized=recognized) return customer class BaseCustomer(models.Model, metaclass=deferred.ForeignKeyBuilder): """ Base class for shop customers. Customer is a profile model that extends the django User model if a customer is authenticated. On checkout, a User object is created for anonymous customers also (with unusable password). """ user = models.OneToOneField( settings.AUTH_USER_MODEL, on_delete=models.CASCADE, primary_key=True, related_name='customer', ) recognized = ChoiceEnumField( _("Recognized as"), enum_type=CustomerState, help_text=_("Designates the state the customer is recognized as."), ) last_access = models.DateTimeField( _("Last accessed"), default=timezone.now, ) extra = JSONField( editable=False, verbose_name=_("Extra information about this customer"), ) objects = CustomerManager() class Meta: abstract = True def __str__(self): return self.get_username() def get_username(self): return self.user.get_username() def get_full_name(self): return self.user.get_full_name() @property def first_name(self): # pending deprecation: warnings.warn("Property first_name is deprecated and will be removed") return self.user.first_name @first_name.setter def first_name(self, value): # pending deprecation: warnings.warn("Property first_name is deprecated and will be removed") self.user.first_name = value @property def last_name(self): # pending deprecation: warnings.warn("Property last_name is deprecated and will be removed") return self.user.last_name @last_name.setter def last_name(self, value): # pending deprecation: warnings.warn("Property last_name is deprecated and will be removed") self.user.last_name = value @property def email(self): return self.user.email @email.setter def email(self, value): self.user.email = value @property def date_joined(self): return self.user.date_joined @property def last_login(self): return self.user.last_login @property def groups(self): return self.user.groups @property def is_anonymous(self): return self.recognized in (CustomerState.UNRECOGNIZED, CustomerState.GUEST) @property def is_authenticated(self): return self.recognized is CustomerState.REGISTERED @property def is_recognized(self): """ Return True if the customer is associated with a User account. Unrecognized customers have accessed the shop, but did not register an account nor declared themselves as guests. """ return self.recognized is not CustomerState.UNRECOGNIZED @property def is_guest(self): """ Return true if the customer isn't associated with valid User account, but declared himself as a guest, leaving their email address. """ return self.recognized is CustomerState.GUEST def recognize_as_guest(self, request=None, commit=True): """ Recognize the current customer as guest customer. """ if self.recognized != CustomerState.GUEST: self.recognized = CustomerState.GUEST if commit: self.save(update_fields=['recognized']) customer_recognized.send(sender=self.__class__, customer=self, request=request) @property def is_registered(self): """ Return true if the customer has registered himself. """ return self.recognized is CustomerState.REGISTERED def recognize_as_registered(self, request=None, commit=True): """ Recognize the current customer as registered customer. """ if self.recognized != CustomerState.REGISTERED: self.recognized = CustomerState.REGISTERED if commit: self.save(update_fields=['recognized']) customer_recognized.send(sender=self.__class__, customer=self, request=request) @property def is_visitor(self): """ Always False for instantiated Customer objects. """ return False @property def is_expired(self): """ Return True if the session of an unrecognized customer expired or is not decodable. Registered customers never expire. Guest customers only expire, if they failed fulfilling the purchase. """ is_expired = False if self.recognized is CustomerState.UNRECOGNIZED: try: session_key = CustomerManager.decode_session_key(self.user.username) is_expired = not SessionStore.exists(session_key) except KeyError: msg = "Unable to decode username '{}' as session key" warnings.warn(msg.format(self.user.username)) is_expired = True return is_expired def get_or_assign_number(self): """ Hook to get or to assign the customers number. It is invoked, every time an Order object is created. Using a customer number, which is different from the primary key is useful for merchants, wishing to assign sequential numbers only to customers which actually bought something. Otherwise the customer number (primary key) is increased whenever a site visitor puts something into the cart. If he never proceeds to checkout, that entity expires and may be deleted at any time in the future. """ return self.get_number() def get_number(self): """ Hook to get the customer's number. Customers haven't purchased anything may return None. """ return str(self.user_id) def save(self, **kwargs): if 'update_fields' not in kwargs: self.user.save(using=kwargs.get('using', DEFAULT_DB_ALIAS)) super().save(**kwargs) def delete(self, *args, **kwargs): if self.user.is_active and self.recognized is CustomerState.UNRECOGNIZED: # invalid state of customer, keep the referred User super().delete(*args, **kwargs) else: # also delete self through cascading self.user.delete(*args, **kwargs) CustomerModel = deferred.MaterializedModel(BaseCustomer) class VisitingCustomer: """ This dummy object is used for customers which just visit the site. Whenever a VisitingCustomer adds something to the cart, this object is replaced against a real Customer object. """ user = AnonymousUser() def __str__(self): return 'Visitor' @property def email(self): return '' @email.setter def email(self, value): pass @property def is_anonymous(self): return True @property def is_authenticated(self): return False @property def is_recognized(self): return False @property def is_guest(self): return False @property def is_registered(self): return False @property def is_visitor(self): return True def save(self, **kwargs): pass @receiver(user_logged_in) def handle_customer_login(sender, **kwargs): """ Update request.customer to an authenticated Customer """ try: kwargs['request'].customer = kwargs['user'].customer except (AttributeError, ObjectDoesNotExist): kwargs['request'].customer = SimpleLazyObject(lambda: CustomerModel.objects.get_from_request(kwargs['request'])) @receiver(user_logged_out) def handle_customer_logout(sender, **kwargs): """ Update request.customer to a visiting Customer """ # defer assignment to anonymous customer, since the session_key is not yet rotated kwargs['request'].customer = SimpleLazyObject(lambda: CustomerModel.objects.get_from_request(kwargs['request']))
""" Applies a (previously trained) Caffe classification model to new image data. This code takes a brute-force approach to generating per-pixel predictions; it simply extracts a tile around every pixel (that is sufficiently far away from the image border) and runs each tile through Caffe. This entails many repeated calculations and is not computationally efficient. More sophisticated approaches for dense predictions exist and could be considered in the future (e.g. see second reference below). Alternatively, you can change this code to evaluate only a subset of the pixels and then inpaint the remainder. REFERENCES: o http://caffe.berkeleyvision.org/ o Long et. al. "Fully convolutional networks for semantic segmentation" http://arxiv.org/pdf/1411.4038.pdf """ __author__ = "mjp" __copyright__ = "Copyright 2015, JHU/APL" __license__ = "Apache 2.0" import os import argparse import time import numpy as np import lmdb import pdb import skimage, skimage.io, skimage.transform import caffe # make sure PyCaffe is in your PYTHONPATH def get_args(): """Defines command line arguments for this script. """ parser = argparse.ArgumentParser(description="Deploy a classifier.") parser.add_argument('--input', type=str, dest="inputFile", required=True, help="Input file to process (a .png)") parser.add_argument('--network', type=str, dest="netFile", required=True, help="Caffe CNN network file") parser.add_argument('--weights', type=str, dest="weightFile", required=True, help="Caffe parameters associated with network") parser.add_argument('--gpu', type=int, dest="gpuId", default=-1, help="Which GPU to use (or -1 for CPU)") parser.add_argument('--output-layer', type=str, dest="outputLayer", default="pred", help="Name of the CNN output layer to use for predictions") return parser.parse_args() def init_caffe_network(netFile, weightFile, gpuId): """Creates a caffe network object. """ # set CPU or GPU mode if gpuId >= 0: caffe.set_mode_gpu() caffe.set_device(gpuId) else: caffe.set_mode_cpu() # instantiate the Caffe model # # Note: PyCaffe also offers a different interface via caffe.Classifier; # however, this does things behinds the scenes to data # (and also seems slower). So for this application, we'll stick # with the somewhat lower-level interface provided by caffe.Net. net = caffe.Net(netFile, weightFile, 1) return net def _interior_pixel_generator(X, tileDim, batchSize, mask=None): """An iterator over pixel indices that lie in the interior of an image. Warning: this is fairly memory intensive (pre-computes the entire list of indices). Note: could potentially speed up the process of extracting subtiles by creating a more efficient implementation; however, the bulk of the runtime is usually associated with Caffe forward passes. Parameters: X := a (width x height) image tileDim := the width/height of each square tile to extract batchSize := number of tiles to extract each iteration (dictated by Caffe model) mask := a boolean matrix the same size as X; elements that are true are eligible to be used as tile centers. If None, there is no restriction on which pixels to evaluate. """ m,n = X.shape assert(np.mod(tileDim,2) == 1) # tile size must be odd tileRadius = int(np.floor(tileDim/2.0)) nChannels = 1 Xmb = np.zeros((batchSize, nChannels, tileDim, tileDim), dtype=np.uint8) # Used to restrict the set of pixels under consideration. bitMask = np.ones(X.shape, dtype=bool) # by default, we do not evaluate pixels that are too close to # the border of the image. bitMask[0:tileRadius, :] = 0 bitMask[(m-tileRadius):m, :] = 0 bitMask[:, 0:tileRadius] = 0 bitMask[:, (n-tileRadius):n] = 0 if mask is not None: bitMask = bitMask & mask # return indices and tiles in subsets of size batchSize Idx = np.column_stack(np.nonzero(bitMask)) for ii in range(0, Idx.shape[0], batchSize): nRet = min(batchSize, Idx.shape[0] - ii) # creates the next "mini-batch" for jj in range(nRet): a = Idx[ii+jj,0] - tileRadius b = Idx[ii+jj,0] + tileRadius + 1 c = Idx[ii+jj,1] - tileRadius d = Idx[ii+jj,1] + tileRadius + 1 Xmb[jj, 0, :, :] = X[a:b, c:d] yield Xmb, Idx[ii:(ii+nRet),:] def predict_tiles(X, net, outputLayer): """Given an example generator whose features correspond to images, produces a new stream of examples where X is now caffe features. """ assert(X.ndim == 2) # currently assumes a single channel image Prob = np.zeros(X.shape, dtype=np.float32) # make sure the desired feature layers exists in the network if outputLayer not in net.blobs: raise RuntimeError('could not find layer %s in model' % outputLayer) # assumes the data layer is called "data" if "data" not in net.blobs: raise RuntimeError('could not find data layer in model - did you call it something other than "data"?') nMiniBatch, nChannels, rows, cols = net.blobs['data'].data.shape assert(rows == cols) tileDim = rows assert(nChannels == 1) # we assume this for now #---------------------------------------- # process each mini-batch and save results #---------------------------------------- lastChatter = -1 tic = time.time() for Xmb, idx in _interior_pixel_generator(X, tileDim, nMiniBatch): net.set_input_arrays(Xmb.astype(np.float32), np.zeros((Xmb.shape[0],), dtype=np.float32)) net.forward() # Extract predictions (for class 1) from network. # For a multi-class problem, you would want to extract predictions # for all classes. output = net.blobs[outputLayer].data pred = np.squeeze(output[0:idx.shape[0], 1]) for kk in range(idx.shape[0]): Prob[idx[kk,0], idx[kk,1]] = pred[kk] # report progress periodically runtimeMin = np.floor((time.time() - tic)/60.) if runtimeMin > lastChatter: print('[info]: last pixel processed was (%d,%d); runtime=%d min' % (idx[-1,0], idx[-1,1], runtimeMin)) print('[info]: last batch min/max/mean prediction: %0.2f / %0.2f / %0.2f' % (np.min(pred), np.max(pred), np.mean(pred))) lastChatter = runtimeMin return Prob if __name__ == "__main__": args = get_args() print args # create caffe model net = init_caffe_network(args.netFile, args.weightFile, args.gpuId) X = skimage.io.imread(args.inputFile) print('[info]: Proccessing image with dimensions %s and type %s' % (str(X.shape), X.dtype)) print('[info]: X min / max / mean: %0.2f / %0.2f / %0.2f' % (np.min(X), np.max(X), np.mean(X))) assert(X.dtype == np.uint8) # run caffe # Note: these probabilities may not be properly calibrated (if we # trained on a balanced data set and are deploying on a # data set with class imbalance). If calibrated probabilities # are needed, you will want to do some additional postprocessing. Prob1 = predict_tiles(X, net, args.outputLayer) # Save results outFile = args.inputFile + ".Yhat" np.save(outFile+".npy", Prob1) skimage.io.imsave(outFile+".tiff", Prob1) print('[info]: Wrote results to "%s.XXX"' % outFile) # vim: tabstop=8 expandtab shiftwidth=4 softtabstop=4 # (c) 2015 The Johns Hopkins University / Applied Physics Laboratory # All Rights Reserved. Contact the JHU/APL Office of Technology Transfer for any # additional rights. www.jhuapl.edu/ott # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License.
# Copyright 2014 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Multi-credential file store with lock support. This module implements a JSON credential store where multiple credentials can be stored in one file. That file supports locking both in a single process and across processes. The credential themselves are keyed off of: * client_id * user_agent * scope The format of the stored data is like so:: { 'file_version': 1, 'data': [ { 'key': { 'clientId': '<client id>', 'userAgent': '<user agent>', 'scope': '<scope>' }, 'credential': { # JSON serialized Credentials. } } ] } """ import errno import json import logging import os import threading from oauth2client.client import Credentials from oauth2client.client import Storage as BaseStorage from oauth2client import util from oauth2client.locked_file import LockedFile logger = logging.getLogger(__name__) # A dict from 'filename'->_MultiStore instances _multistores = {} _multistores_lock = threading.Lock() class Error(Exception): """Base error for this module.""" class NewerCredentialStoreError(Error): """The credential store is a newer version than supported.""" @util.positional(4) def get_credential_storage(filename, client_id, user_agent, scope, warn_on_readonly=True): """Get a Storage instance for a credential. Args: filename: The JSON file storing a set of credentials client_id: The client_id for the credential user_agent: The user agent for the credential scope: string or iterable of strings, Scope(s) being requested warn_on_readonly: if True, log a warning if the store is readonly Returns: An object derived from client.Storage for getting/setting the credential. """ # Recreate the legacy key with these specific parameters key = {'clientId': client_id, 'userAgent': user_agent, 'scope': util.scopes_to_string(scope)} return get_credential_storage_custom_key( filename, key, warn_on_readonly=warn_on_readonly) @util.positional(2) def get_credential_storage_custom_string_key( filename, key_string, warn_on_readonly=True): """Get a Storage instance for a credential using a single string as a key. Allows you to provide a string as a custom key that will be used for credential storage and retrieval. Args: filename: The JSON file storing a set of credentials key_string: A string to use as the key for storing this credential. warn_on_readonly: if True, log a warning if the store is readonly Returns: An object derived from client.Storage for getting/setting the credential. """ # Create a key dictionary that can be used key_dict = {'key': key_string} return get_credential_storage_custom_key( filename, key_dict, warn_on_readonly=warn_on_readonly) @util.positional(2) def get_credential_storage_custom_key( filename, key_dict, warn_on_readonly=True): """Get a Storage instance for a credential using a dictionary as a key. Allows you to provide a dictionary as a custom key that will be used for credential storage and retrieval. Args: filename: The JSON file storing a set of credentials key_dict: A dictionary to use as the key for storing this credential. There is no ordering of the keys in the dictionary. Logically equivalent dictionaries will produce equivalent storage keys. warn_on_readonly: if True, log a warning if the store is readonly Returns: An object derived from client.Storage for getting/setting the credential. """ multistore = _get_multistore(filename, warn_on_readonly=warn_on_readonly) key = util.dict_to_tuple_key(key_dict) return multistore._get_storage(key) @util.positional(1) def get_all_credential_keys(filename, warn_on_readonly=True): """Gets all the registered credential keys in the given Multistore. Args: filename: The JSON file storing a set of credentials warn_on_readonly: if True, log a warning if the store is readonly Returns: A list of the credential keys present in the file. They are returned as dictionaries that can be passed into get_credential_storage_custom_key to get the actual credentials. """ multistore = _get_multistore(filename, warn_on_readonly=warn_on_readonly) multistore._lock() try: return multistore._get_all_credential_keys() finally: multistore._unlock() @util.positional(1) def _get_multistore(filename, warn_on_readonly=True): """A helper method to initialize the multistore with proper locking. Args: filename: The JSON file storing a set of credentials warn_on_readonly: if True, log a warning if the store is readonly Returns: A multistore object """ filename = os.path.expanduser(filename) _multistores_lock.acquire() try: multistore = _multistores.setdefault( filename, _MultiStore(filename, warn_on_readonly=warn_on_readonly)) finally: _multistores_lock.release() return multistore class _MultiStore(object): """A file backed store for multiple credentials.""" @util.positional(2) def __init__(self, filename, warn_on_readonly=True): """Initialize the class. This will create the file if necessary. """ self._file = LockedFile(filename, 'r+', 'r') self._thread_lock = threading.Lock() self._read_only = False self._warn_on_readonly = warn_on_readonly self._create_file_if_needed() # Cache of deserialized store. This is only valid after the # _MultiStore is locked or _refresh_data_cache is called. This is # of the form of: # # ((key, value), (key, value)...) -> OAuth2Credential # # If this is None, then the store hasn't been read yet. self._data = None class _Storage(BaseStorage): """A Storage object that knows how to read/write a single credential.""" def __init__(self, multistore, key): self._multistore = multistore self._key = key def acquire_lock(self): """Acquires any lock necessary to access this Storage. This lock is not reentrant. """ self._multistore._lock() def release_lock(self): """Release the Storage lock. Trying to release a lock that isn't held will result in a RuntimeError. """ self._multistore._unlock() def locked_get(self): """Retrieve credential. The Storage lock must be held when this is called. Returns: oauth2client.client.Credentials """ credential = self._multistore._get_credential(self._key) if credential: credential.set_store(self) return credential def locked_put(self, credentials): """Write a credential. The Storage lock must be held when this is called. Args: credentials: Credentials, the credentials to store. """ self._multistore._update_credential(self._key, credentials) def locked_delete(self): """Delete a credential. The Storage lock must be held when this is called. Args: credentials: Credentials, the credentials to store. """ self._multistore._delete_credential(self._key) def _create_file_if_needed(self): """Create an empty file if necessary. This method will not initialize the file. Instead it implements a simple version of "touch" to ensure the file has been created. """ if not os.path.exists(self._file.filename()): old_umask = os.umask(0o177) try: open(self._file.filename(), 'a+b').close() finally: os.umask(old_umask) def _lock(self): """Lock the entire multistore.""" self._thread_lock.acquire() try: self._file.open_and_lock() except IOError as e: if e.errno == errno.ENOSYS: logger.warn('File system does not support locking the credentials ' 'file.') elif e.errno == errno.ENOLCK: logger.warn('File system is out of resources for writing the ' 'credentials file (is your disk full?).') else: raise if not self._file.is_locked(): self._read_only = True if self._warn_on_readonly: logger.warn('The credentials file (%s) is not writable. Opening in ' 'read-only mode. Any refreshed credentials will only be ' 'valid for this run.', self._file.filename()) if os.path.getsize(self._file.filename()) == 0: logger.debug('Initializing empty multistore file') # The multistore is empty so write out an empty file. self._data = {} self._write() elif not self._read_only or self._data is None: # Only refresh the data if we are read/write or we haven't # cached the data yet. If we are readonly, we assume is isn't # changing out from under us and that we only have to read it # once. This prevents us from whacking any new access keys that # we have cached in memory but were unable to write out. self._refresh_data_cache() def _unlock(self): """Release the lock on the multistore.""" self._file.unlock_and_close() self._thread_lock.release() def _locked_json_read(self): """Get the raw content of the multistore file. The multistore must be locked when this is called. Returns: The contents of the multistore decoded as JSON. """ assert self._thread_lock.locked() self._file.file_handle().seek(0) return json.load(self._file.file_handle()) def _locked_json_write(self, data): """Write a JSON serializable data structure to the multistore. The multistore must be locked when this is called. Args: data: The data to be serialized and written. """ assert self._thread_lock.locked() if self._read_only: return self._file.file_handle().seek(0) json.dump(data, self._file.file_handle(), sort_keys=True, indent=2, separators=(',', ': ')) self._file.file_handle().truncate() def _refresh_data_cache(self): """Refresh the contents of the multistore. The multistore must be locked when this is called. Raises: NewerCredentialStoreError: Raised when a newer client has written the store. """ self._data = {} try: raw_data = self._locked_json_read() except Exception: logger.warn('Credential data store could not be loaded. ' 'Will ignore and overwrite.') return version = 0 try: version = raw_data['file_version'] except Exception: logger.warn('Missing version for credential data store. It may be ' 'corrupt or an old version. Overwriting.') if version > 1: raise NewerCredentialStoreError( 'Credential file has file_version of %d. ' 'Only file_version of 1 is supported.' % version) credentials = [] try: credentials = raw_data['data'] except (TypeError, KeyError): pass for cred_entry in credentials: try: (key, credential) = self._decode_credential_from_json(cred_entry) self._data[key] = credential except: # If something goes wrong loading a credential, just ignore it logger.info('Error decoding credential, skipping', exc_info=True) def _decode_credential_from_json(self, cred_entry): """Load a credential from our JSON serialization. Args: cred_entry: A dict entry from the data member of our format Returns: (key, cred) where the key is the key tuple and the cred is the OAuth2Credential object. """ raw_key = cred_entry['key'] key = util.dict_to_tuple_key(raw_key) credential = None credential = Credentials.new_from_json(json.dumps(cred_entry['credential'])) return (key, credential) def _write(self): """Write the cached data back out. The multistore must be locked. """ raw_data = {'file_version': 1} raw_creds = [] raw_data['data'] = raw_creds for (cred_key, cred) in self._data.items(): raw_key = dict(cred_key) raw_cred = json.loads(cred.to_json()) raw_creds.append({'key': raw_key, 'credential': raw_cred}) self._locked_json_write(raw_data) def _get_all_credential_keys(self): """Gets all the registered credential keys in the multistore. Returns: A list of dictionaries corresponding to all the keys currently registered """ return [dict(key) for key in self._data.keys()] def _get_credential(self, key): """Get a credential from the multistore. The multistore must be locked. Args: key: The key used to retrieve the credential Returns: The credential specified or None if not present """ return self._data.get(key, None) def _update_credential(self, key, cred): """Update a credential and write the multistore. This must be called when the multistore is locked. Args: key: The key used to retrieve the credential cred: The OAuth2Credential to update/set """ self._data[key] = cred self._write() def _delete_credential(self, key): """Delete a credential and write the multistore. This must be called when the multistore is locked. Args: key: The key used to retrieve the credential """ try: del self._data[key] except KeyError: pass self._write() def _get_storage(self, key): """Get a Storage object to get/set a credential. This Storage is a 'view' into the multistore. Args: key: The key used to retrieve the credential Returns: A Storage object that can be used to get/set this cred """ return self._Storage(self, key)
import mimetypes import urlparse import os from logging import getLogger from pylons import config from ckan.common import json from ckan import plugins as p import ckan.lib.helpers as h try: from ckan.lib.datapreview import on_same_domain except ImportError: from ckan.lib.datapreview import _on_same_domain as on_same_domain ignore_empty = p.toolkit.get_validator('ignore_empty') boolean_validator = p.toolkit.get_validator('boolean_validator') log = getLogger(__name__) GEOVIEW_FORMATS = ['kml', 'geojson', 'gml', 'wms', 'wfs', 'esrigeojson', 'gft', 'arcgis_rest'] def get_proxified_service_url(data_dict): ''' :param data_dict: contains a resource and package dict :type data_dict: dictionary ''' controller = \ 'ckanext.geoview.controllers.service_proxy:ServiceProxyController' url = h.url_for( action='proxy_service', controller=controller, id=data_dict['package']['name'], resource_id=data_dict['resource']['id']) log.debug('Proxified url is {0}'.format(url)) return url def get_common_map_config(): ''' Returns a dict with all configuration options related to the common base map (ie those starting with 'ckanext.spatial.common_map.') ''' namespace = 'ckanext.spatial.common_map.' return dict([(k.replace(namespace, ''), v) for k, v in config.iteritems() if k.startswith(namespace)]) def get_openlayers_viewer_config(): ''' Returns a dict with all configuration options related to the OpenLayers viewer (ie those starting with 'ckanext.geoview.ol_viewer.') ''' namespace = 'ckanext.geoview.ol_viewer.' return dict([(k.replace(namespace, ''), v) for k, v in config.iteritems() if k.startswith(namespace)]) class GeoViewBase(p.SingletonPlugin): '''This base class is for view extensions. ''' if p.toolkit.check_ckan_version(min_version='2.3'): p.implements(p.IResourceView, inherit=True) else: p.implements(p.IResourcePreview, inherit=True) p.implements(p.IConfigurer, inherit=True) p.implements(p.IConfigurable, inherit=True) proxy_enabled = False same_domain = False def update_config(self, config): p.toolkit.add_public_directory(config, 'public') p.toolkit.add_template_directory(config, 'templates') p.toolkit.add_resource('public', 'ckanext-geoview') self.proxy_enabled = 'resource_proxy' in config.get('ckan.plugins', '') class OLGeoView(GeoViewBase): p.implements(p.IRoutes, inherit=True) p.implements(p.ITemplateHelpers, inherit=True) # IRoutes def before_map(self, m): controller = \ 'ckanext.geoview.controllers.service_proxy:ServiceProxyController' m.connect('/dataset/{id}/resource/{resource_id}/service_proxy', controller=controller, action='proxy_service') return m # ITemplateHelpers def get_helpers(self): return { 'get_common_map_config_geoviews': get_common_map_config, 'get_openlayers_viewer_config': get_openlayers_viewer_config, } # IResourceView (CKAN >=2.3) def info(self): return {'name': 'geo_view', 'title': 'Map viewer (OpenLayers)', 'icon': 'globe', 'iframed': True, 'default_title': p.toolkit._('Map viewer'), 'schema': { 'feature_hoveron': [ignore_empty, boolean_validator], 'feature_style': [ignore_empty] }, } def can_view(self, data_dict): format_lower = data_dict['resource'].get('format', '').lower() same_domain = on_same_domain(data_dict) # Guess from file extension if not format_lower and data_dict['resource'].get('url'): format_lower = self._guess_format_from_extension( data_dict['resource']['url']) if not format_lower: return False view_formats = config.get('ckanext.geoview.ol_viewer.formats', '') if view_formats: view_formats = view_formats.split(' ') else: view_formats = GEOVIEW_FORMATS correct_format = format_lower in view_formats can_preview_from_domain = self.proxy_enabled or same_domain return correct_format and can_preview_from_domain def view_template(self, context, data_dict): return 'dataviewer/openlayers2.html' def form_template(self, context, data_dict): return 'dataviewer/openlayers_form.html' # IResourcePreview (CKAN < 2.3) def can_preview(self, data_dict): return self.can_view(data_dict) def preview_template(self, context, data_dict): return 'dataviewer/openlayers2.html' # Common for IResourceView and IResourcePreview def _guess_format_from_extension(self, url): try: parsed_url = urlparse.urlparse(url) format_lower = (os.path.splitext(parsed_url.path)[1][1:] .encode('ascii', 'ignore').lower()) except ValueError, e: log.error('Invalid URL: {0}, {1}'.format(url, e)) format_lower = '' return format_lower def setup_template_variables(self, context, data_dict): import ckanext.resourceproxy.plugin as proxy same_domain = on_same_domain(data_dict) if not data_dict['resource'].get('format'): data_dict['resource']['format'] = \ self._guess_format_from_extension(data_dict['resource']['url']) if self.proxy_enabled and not same_domain: proxy_url = proxy.get_proxified_resource_url(data_dict) proxy_service_url = get_proxified_service_url(data_dict) else: proxy_url = data_dict['resource']['url'] proxy_service_url = data_dict['resource']['url'] gapi_key = config.get('ckanext.geoview.gapi_key') if not p.toolkit.check_ckan_version(min_version='2.3'): p.toolkit.c.resource['proxy_url'] = proxy_url p.toolkit.c.resource['proxy_service_url'] = proxy_service_url p.toolkit.c.resource['gapi_key'] = gapi_key return {'resource_view_json': 'resource_view' in data_dict and json.dumps(data_dict['resource_view']), 'proxy_service_url': proxy_service_url, 'proxy_url': proxy_url, 'gapi_key': gapi_key} class GeoJSONView(GeoViewBase): p.implements(p.ITemplateHelpers, inherit=True) GeoJSON = ['gjson', 'geojson'] def update_config(self, config): super(GeoJSONView, self).update_config(config) mimetypes.add_type('application/json', '.geojson') # IResourceView (CKAN >=2.3) def info(self): return {'name': 'geojson_view', 'title': 'GeoJSON', 'icon': 'map-marker', 'iframed': True, 'default_title': p.toolkit._('GeoJSON'), } def can_view(self, data_dict): resource = data_dict['resource'] format_lower = resource.get('format', '').lower() if format_lower in self.GeoJSON: return self.same_domain or self.proxy_enabled return False def view_template(self, context, data_dict): return 'dataviewer/geojson.html' # IResourcePreview (CKAN < 2.3) def can_preview(self, data_dict): format_lower = data_dict['resource']['format'].lower() correct_format = format_lower in self.GeoJSON can_preview_from_domain = (self.proxy_enabled or data_dict['resource'].get('on_same_domain')) quality = 2 if p.toolkit.check_ckan_version('2.1'): if correct_format: if can_preview_from_domain: return {'can_preview': True, 'quality': quality} else: return {'can_preview': False, 'fixable': 'Enable resource_proxy', 'quality': quality} else: return {'can_preview': False, 'quality': quality} return correct_format and can_preview_from_domain def preview_template(self, context, data_dict): return 'dataviewer/geojson.html' def setup_template_variables(self, context, data_dict): import ckanext.resourceproxy.plugin as proxy self.same_domain = data_dict['resource'].get('on_same_domain') if self.proxy_enabled and not self.same_domain: data_dict['resource']['original_url'] = \ data_dict['resource'].get('url') data_dict['resource']['url'] = \ proxy.get_proxified_resource_url(data_dict) # ITemplateHelpers def get_helpers(self): return { 'get_common_map_config_geojson': get_common_map_config, } class GeoJSONPreview(GeoJSONView): pass class WMTSView(GeoViewBase): p.implements(p.ITemplateHelpers, inherit=True) WMTS = ['wmts'] # IResourceView (CKAN >=2.3) def info(self): return {'name': 'wmts_view', 'title': 'wmts', 'icon': 'map-marker', 'iframed': True, 'default_title': p.toolkit._('WMTS'), } def can_view(self, data_dict): resource = data_dict['resource'] format_lower = resource.get('format', '').lower() if format_lower in self.WMTS: return self.same_domain or self.proxy_enabled return False def view_template(self, context, data_dict): return 'dataviewer/wmts.html' # IResourcePreview (CKAN < 2.3) def can_preview(self, data_dict): format_lower = data_dict['resource']['format'].lower() correct_format = format_lower in self.WMTS can_preview_from_domain = (self.proxy_enabled or data_dict['resource'].get('on_same_domain')) quality = 2 if p.toolkit.check_ckan_version('2.1'): if correct_format: if can_preview_from_domain: return {'can_preview': True, 'quality': quality} else: return {'can_preview': False, 'fixable': 'Enable resource_proxy', 'quality': quality} else: return {'can_preview': False, 'quality': quality} return correct_format and can_preview_from_domain def preview_template(self, context, data_dict): return 'dataviewer/wmts.html' def setup_template_variables(self, context, data_dict): import ckanext.resourceproxy.plugin as proxy self.same_domain = data_dict['resource'].get('on_same_domain') if self.proxy_enabled and not self.same_domain: data_dict['resource']['original_url'] = \ data_dict['resource'].get('url') data_dict['resource']['url'] = \ proxy.get_proxified_resource_url(data_dict) ## ITemplateHelpers def get_helpers(self): return { 'get_common_map_config_wmts' : get_common_map_config, } class WMTSPreview(WMTSView): pass
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """This module contains operator to move data from Hive to S3 bucket.""" import bz2 import gzip import os import tempfile from tempfile import NamedTemporaryFile, TemporaryDirectory from typing import Dict, Optional, Union from airflow.exceptions import AirflowException from airflow.models import BaseOperator from airflow.providers.amazon.aws.hooks.s3 import S3Hook from airflow.providers.apache.hive.hooks.hive import HiveCliHook from airflow.utils.compression import uncompress_file from airflow.utils.decorators import apply_defaults class S3ToHiveOperator(BaseOperator): # pylint: disable=too-many-instance-attributes """ Moves data from S3 to Hive. The operator downloads a file from S3, stores the file locally before loading it into a Hive table. If the ``create`` or ``recreate`` arguments are set to ``True``, a ``CREATE TABLE`` and ``DROP TABLE`` statements are generated. Hive data types are inferred from the cursor's metadata from. Note that the table generated in Hive uses ``STORED AS textfile`` which isn't the most efficient serialization format. If a large amount of data is loaded and/or if the tables gets queried considerably, you may want to use this operator only to stage the data into a temporary table before loading it into its final destination using a ``HiveOperator``. :param s3_key: The key to be retrieved from S3. (templated) :type s3_key: str :param field_dict: A dictionary of the fields name in the file as keys and their Hive types as values :type field_dict: dict :param hive_table: target Hive table, use dot notation to target a specific database. (templated) :type hive_table: str :param delimiter: field delimiter in the file :type delimiter: str :param create: whether to create the table if it doesn't exist :type create: bool :param recreate: whether to drop and recreate the table at every execution :type recreate: bool :param partition: target partition as a dict of partition columns and values. (templated) :type partition: dict :param headers: whether the file contains column names on the first line :type headers: bool :param check_headers: whether the column names on the first line should be checked against the keys of field_dict :type check_headers: bool :param wildcard_match: whether the s3_key should be interpreted as a Unix wildcard pattern :type wildcard_match: bool :param aws_conn_id: source s3 connection :type aws_conn_id: str :param verify: Whether or not to verify SSL certificates for S3 connection. By default SSL certificates are verified. You can provide the following values: - ``False``: do not validate SSL certificates. SSL will still be used (unless use_ssl is False), but SSL certificates will not be verified. - ``path/to/cert/bundle.pem``: A filename of the CA cert bundle to uses. You can specify this argument if you want to use a different CA cert bundle than the one used by botocore. :type verify: bool or str :param hive_cli_conn_id: destination hive connection :type hive_cli_conn_id: str :param input_compressed: Boolean to determine if file decompression is required to process headers :type input_compressed: bool :param tblproperties: TBLPROPERTIES of the hive table being created :type tblproperties: dict :param select_expression: S3 Select expression :type select_expression: str """ template_fields = ('s3_key', 'partition', 'hive_table') template_ext = () ui_color = '#a0e08c' @apply_defaults def __init__( # pylint: disable=too-many-arguments self, *, s3_key: str, field_dict: Dict, hive_table: str, delimiter: str = ',', create: bool = True, recreate: bool = False, partition: Optional[Dict] = None, headers: bool = False, check_headers: bool = False, wildcard_match: bool = False, aws_conn_id: str = 'aws_default', verify: Optional[Union[bool, str]] = None, hive_cli_conn_id: str = 'hive_cli_default', input_compressed: bool = False, tblproperties: Optional[Dict] = None, select_expression: Optional[str] = None, **kwargs, ) -> None: super().__init__(**kwargs) self.s3_key = s3_key self.field_dict = field_dict self.hive_table = hive_table self.delimiter = delimiter self.create = create self.recreate = recreate self.partition = partition self.headers = headers self.check_headers = check_headers self.wildcard_match = wildcard_match self.hive_cli_conn_id = hive_cli_conn_id self.aws_conn_id = aws_conn_id self.verify = verify self.input_compressed = input_compressed self.tblproperties = tblproperties self.select_expression = select_expression if self.check_headers and not (self.field_dict is not None and self.headers): raise AirflowException("To check_headers provide " + "field_dict and headers") def execute(self, context): # Downloading file from S3 s3_hook = S3Hook(aws_conn_id=self.aws_conn_id, verify=self.verify) hive_hook = HiveCliHook(hive_cli_conn_id=self.hive_cli_conn_id) self.log.info("Downloading S3 file") if self.wildcard_match: if not s3_hook.check_for_wildcard_key(self.s3_key): raise AirflowException(f"No key matches {self.s3_key}") s3_key_object = s3_hook.get_wildcard_key(self.s3_key) else: if not s3_hook.check_for_key(self.s3_key): raise AirflowException(f"The key {self.s3_key} does not exists") s3_key_object = s3_hook.get_key(self.s3_key) _, file_ext = os.path.splitext(s3_key_object.key) if self.select_expression and self.input_compressed and file_ext.lower() != '.gz': raise AirflowException("GZIP is the only compression " + "format Amazon S3 Select supports") with TemporaryDirectory(prefix='tmps32hive_') as tmp_dir, NamedTemporaryFile( mode="wb", dir=tmp_dir, suffix=file_ext ) as f: self.log.info("Dumping S3 key %s contents to local file %s", s3_key_object.key, f.name) if self.select_expression: option = {} if self.headers: option['FileHeaderInfo'] = 'USE' if self.delimiter: option['FieldDelimiter'] = self.delimiter input_serialization = {'CSV': option} if self.input_compressed: input_serialization['CompressionType'] = 'GZIP' content = s3_hook.select_key( bucket_name=s3_key_object.bucket_name, key=s3_key_object.key, expression=self.select_expression, input_serialization=input_serialization, ) f.write(content.encode("utf-8")) else: s3_key_object.download_fileobj(f) f.flush() if self.select_expression or not self.headers: self.log.info("Loading file %s into Hive", f.name) hive_hook.load_file( f.name, self.hive_table, field_dict=self.field_dict, create=self.create, partition=self.partition, delimiter=self.delimiter, recreate=self.recreate, tblproperties=self.tblproperties, ) else: # Decompressing file if self.input_compressed: self.log.info("Uncompressing file %s", f.name) fn_uncompressed = uncompress_file(f.name, file_ext, tmp_dir) self.log.info("Uncompressed to %s", fn_uncompressed) # uncompressed file available now so deleting # compressed file to save disk space f.close() else: fn_uncompressed = f.name # Testing if header matches field_dict if self.check_headers: self.log.info("Matching file header against field_dict") header_list = self._get_top_row_as_list(fn_uncompressed) if not self._match_headers(header_list): raise AirflowException("Header check failed") # Deleting top header row self.log.info("Removing header from file %s", fn_uncompressed) headless_file = self._delete_top_row_and_compress(fn_uncompressed, file_ext, tmp_dir) self.log.info("Headless file %s", headless_file) self.log.info("Loading file %s into Hive", headless_file) hive_hook.load_file( headless_file, self.hive_table, field_dict=self.field_dict, create=self.create, partition=self.partition, delimiter=self.delimiter, recreate=self.recreate, tblproperties=self.tblproperties, ) def _get_top_row_as_list(self, file_name): with open(file_name) as file: header_line = file.readline().strip() header_list = header_line.split(self.delimiter) return header_list def _match_headers(self, header_list): if not header_list: raise AirflowException("Unable to retrieve header row from file") field_names = self.field_dict.keys() if len(field_names) != len(header_list): self.log.warning( "Headers count mismatch File headers:\n %s\nField names: \n %s\n", header_list, field_names ) return False test_field_match = [h1.lower() == h2.lower() for h1, h2 in zip(header_list, field_names)] if not all(test_field_match): self.log.warning( "Headers do not match field names File headers:\n %s\nField names: \n %s\n", header_list, field_names, ) return False else: return True @staticmethod def _delete_top_row_and_compress(input_file_name, output_file_ext, dest_dir): # When output_file_ext is not defined, file is not compressed open_fn = open if output_file_ext.lower() == '.gz': open_fn = gzip.GzipFile elif output_file_ext.lower() == '.bz2': open_fn = bz2.BZ2File _, fn_output = tempfile.mkstemp(suffix=output_file_ext, dir=dest_dir) with open(input_file_name, 'rb') as f_in, open_fn(fn_output, 'wb') as f_out: f_in.seek(0) next(f_in) for line in f_in: f_out.write(line) return fn_output
# Copyright 2020 The gRPC authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for Simple Stubs.""" # TODO(https://github.com/grpc/grpc/issues/21965): Run under setuptools. import os _MAXIMUM_CHANNELS = 10 os.environ["GRPC_PYTHON_MANAGED_CHANNEL_EVICTION_SECONDS"] = "1" os.environ["GRPC_PYTHON_MANAGED_CHANNEL_MAXIMUM"] = str(_MAXIMUM_CHANNELS) import contextlib import datetime import inspect import logging import unittest import sys import time from typing import Callable, Optional from tests.unit import test_common import grpc import grpc.experimental _REQUEST = b"0000" _CACHE_EPOCHS = 8 _CACHE_TRIALS = 6 _SERVER_RESPONSE_COUNT = 10 _CLIENT_REQUEST_COUNT = _SERVER_RESPONSE_COUNT _STRESS_EPOCHS = _MAXIMUM_CHANNELS * 10 _UNARY_UNARY = "/test/UnaryUnary" _UNARY_STREAM = "/test/UnaryStream" _STREAM_UNARY = "/test/StreamUnary" _STREAM_STREAM = "/test/StreamStream" def _unary_unary_handler(request, context): return request def _unary_stream_handler(request, context): for _ in range(_SERVER_RESPONSE_COUNT): yield request def _stream_unary_handler(request_iterator, context): request = None for single_request in request_iterator: request = single_request return request def _stream_stream_handler(request_iterator, context): for request in request_iterator: yield request class _GenericHandler(grpc.GenericRpcHandler): def service(self, handler_call_details): if handler_call_details.method == _UNARY_UNARY: return grpc.unary_unary_rpc_method_handler(_unary_unary_handler) elif handler_call_details.method == _UNARY_STREAM: return grpc.unary_stream_rpc_method_handler(_unary_stream_handler) elif handler_call_details.method == _STREAM_UNARY: return grpc.stream_unary_rpc_method_handler(_stream_unary_handler) elif handler_call_details.method == _STREAM_STREAM: return grpc.stream_stream_rpc_method_handler(_stream_stream_handler) else: raise NotImplementedError() def _time_invocation(to_time: Callable[[], None]) -> datetime.timedelta: start = datetime.datetime.now() to_time() return datetime.datetime.now() - start @contextlib.contextmanager def _server(credentials: Optional[grpc.ServerCredentials]): try: server = test_common.test_server() target = '[::]:0' if credentials is None: port = server.add_insecure_port(target) else: port = server.add_secure_port(target, credentials) server.add_generic_rpc_handlers((_GenericHandler(),)) server.start() yield port finally: server.stop(None) class SimpleStubsTest(unittest.TestCase): def assert_cached(self, to_check: Callable[[str], None]) -> None: """Asserts that a function caches intermediate data/state. To be specific, given a function whose caching behavior is deterministic in the value of a supplied string, this function asserts that, on average, subsequent invocations of the function for a specific string are faster than first invocations with that same string. Args: to_check: A function returning nothing, that caches values based on an arbitrary supplied string. """ initial_runs = [] cached_runs = [] for epoch in range(_CACHE_EPOCHS): runs = [] text = str(epoch) for trial in range(_CACHE_TRIALS): runs.append(_time_invocation(lambda: to_check(text))) initial_runs.append(runs[0]) cached_runs.extend(runs[1:]) average_cold = sum((run for run in initial_runs), datetime.timedelta()) / len(initial_runs) average_warm = sum((run for run in cached_runs), datetime.timedelta()) / len(cached_runs) self.assertLess(average_warm, average_cold) def assert_eventually(self, predicate: Callable[[], bool], *, timeout: Optional[datetime.timedelta] = None, message: Optional[Callable[[], str]] = None) -> None: message = message or (lambda: "Proposition did not evaluate to true") timeout = timeout or datetime.timedelta(seconds=10) end = datetime.datetime.now() + timeout while datetime.datetime.now() < end: if predicate(): break time.sleep(0.5) else: self.fail(message() + " after " + str(timeout)) def test_unary_unary_insecure(self): with _server(None) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.experimental. insecure_channel_credentials()) self.assertEqual(_REQUEST, response) def test_unary_unary_secure(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.local_channel_credentials()) self.assertEqual(_REQUEST, response) def test_channels_cached(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' test_name = inspect.stack()[0][3] args = (_REQUEST, target, _UNARY_UNARY) kwargs = {"channel_credentials": grpc.local_channel_credentials()} def _invoke(seed: str): run_kwargs = dict(kwargs) run_kwargs["options"] = ((test_name + seed, ""),) grpc.experimental.unary_unary(*args, **run_kwargs) self.assert_cached(_invoke) def test_channels_evicted(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, channel_credentials=grpc.local_channel_credentials()) self.assert_eventually( lambda: grpc._simple_stubs.ChannelCache.get( )._test_only_channel_count() == 0, message=lambda: f"{grpc._simple_stubs.ChannelCache.get()._test_only_channel_count()} remain" ) def test_total_channels_enforced(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for i in range(_STRESS_EPOCHS): # Ensure we get a new channel each time. options = (("foo", str(i)),) # Send messages at full blast. grpc.experimental.unary_unary( _REQUEST, target, _UNARY_UNARY, options=options, channel_credentials=grpc.local_channel_credentials()) self.assert_eventually( lambda: grpc._simple_stubs.ChannelCache.get( )._test_only_channel_count() <= _MAXIMUM_CHANNELS + 1, message=lambda: f"{grpc._simple_stubs.ChannelCache.get()._test_only_channel_count()} channels remain" ) def test_unary_stream(self): with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for response in grpc.experimental.unary_stream( _REQUEST, target, _UNARY_STREAM, channel_credentials=grpc.local_channel_credentials()): self.assertEqual(_REQUEST, response) def test_stream_unary(self): def request_iter(): for _ in range(_CLIENT_REQUEST_COUNT): yield _REQUEST with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' response = grpc.experimental.stream_unary( request_iter(), target, _STREAM_UNARY, channel_credentials=grpc.local_channel_credentials()) self.assertEqual(_REQUEST, response) def test_stream_stream(self): def request_iter(): for _ in range(_CLIENT_REQUEST_COUNT): yield _REQUEST with _server(grpc.local_server_credentials()) as port: target = f'localhost:{port}' for response in grpc.experimental.stream_stream( request_iter(), target, _STREAM_STREAM, channel_credentials=grpc.local_channel_credentials()): self.assertEqual(_REQUEST, response) if __name__ == "__main__": logging.basicConfig(level=logging.INFO) unittest.main(verbosity=2)
# Copyright (C) 2013 Nippon Telegraph and Telephone Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. # vim: tabstop=4 shiftwidth=4 softtabstop=4 import unittest import logging import six import struct import inspect from nose.tools import ok_, eq_, nottest from ryu.ofproto import ether from ryu.lib.packet import packet from ryu.lib.packet import ethernet from ryu.lib.packet import lldp from ryu.lib import addrconv LOG = logging.getLogger(__name__) class TestLLDPMandatoryTLV(unittest.TestCase): def setUp(self): # sample data is based on: # http://wiki.wireshark.org/LinkLayerDiscoveryProtocol # # mandatory TLV only self.data = b'\x01\x80\xc2\x00\x00\x0e\x00\x04' \ + b'\x96\x1f\xa7\x26\x88\xcc\x02\x07' \ + b'\x04\x00\x04\x96\x1f\xa7\x26\x04' \ + b'\x04\x05\x31\x2f\x33\x06\x02\x00' \ + b'\x78\x00\x00' def tearDown(self): pass def test_get_tlv_type(self): buf = b'\x02\x07\x04\x00\x04\x96\x1f\xa7\x26' eq_(lldp.LLDPBasicTLV.get_type(buf), lldp.LLDP_TLV_CHASSIS_ID) def test_parse_without_ethernet(self): buf = self.data[ethernet.ethernet._MIN_LEN:] (lldp_pkt, cls, rest_buf) = lldp.lldp.parser(buf) eq_(len(rest_buf), 0) tlvs = lldp_pkt.tlvs eq_(tlvs[0].tlv_type, lldp.LLDP_TLV_CHASSIS_ID) eq_(tlvs[0].len, 7) eq_(tlvs[0].subtype, lldp.ChassisID.SUB_MAC_ADDRESS) eq_(tlvs[0].chassis_id, b'\x00\x04\x96\x1f\xa7\x26') eq_(tlvs[1].tlv_type, lldp.LLDP_TLV_PORT_ID) eq_(tlvs[1].len, 4) eq_(tlvs[1].subtype, lldp.PortID.SUB_INTERFACE_NAME) eq_(tlvs[1].port_id, b'1/3') eq_(tlvs[2].tlv_type, lldp.LLDP_TLV_TTL) eq_(tlvs[2].len, 2) eq_(tlvs[2].ttl, 120) eq_(tlvs[3].tlv_type, lldp.LLDP_TLV_END) def test_parse(self): buf = self.data pkt = packet.Packet(buf) i = iter(pkt) eq_(type(next(i)), ethernet.ethernet) eq_(type(next(i)), lldp.lldp) def test_tlv(self): tlv = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x04\x96\x1f\xa7\x26') eq_(tlv.tlv_type, lldp.LLDP_TLV_CHASSIS_ID) eq_(tlv.len, 7) (typelen, ) = struct.unpack('!H', b'\x02\x07') eq_(tlv.typelen, typelen) def test_serialize_without_ethernet(self): tlv_chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x04\x96\x1f\xa7\x26') tlv_port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/3') tlv_ttl = lldp.TTL(ttl=120) tlv_end = lldp.End() tlvs = (tlv_chassis_id, tlv_port_id, tlv_ttl, tlv_end) lldp_pkt = lldp.lldp(tlvs) eq_(lldp_pkt.serialize(None, None), self.data[ethernet.ethernet._MIN_LEN:]) def test_serialize(self): pkt = packet.Packet() dst = lldp.LLDP_MAC_NEAREST_BRIDGE src = '00:04:96:1f:a7:26' ethertype = ether.ETH_TYPE_LLDP eth_pkt = ethernet.ethernet(dst, src, ethertype) pkt.add_protocol(eth_pkt) tlv_chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=addrconv.mac. text_to_bin(src)) tlv_port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/3') tlv_ttl = lldp.TTL(ttl=120) tlv_end = lldp.End() tlvs = (tlv_chassis_id, tlv_port_id, tlv_ttl, tlv_end) lldp_pkt = lldp.lldp(tlvs) pkt.add_protocol(lldp_pkt) eq_(len(pkt.protocols), 2) pkt.serialize() # Note: If ethernet frame is less than 60 bytes length, # ethernet.ethernet() appends padding to the payload. # So, we splits the serialized data to compare. data_len = len(self.data) pkt_data_lldp = pkt.data[:data_len] pkt_data_pad = pkt.data[data_len:] eq_(b'\x00' * (60 - data_len), pkt_data_pad) eq_(self.data, pkt_data_lldp) def test_to_string(self): chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x04\x96\x1f\xa7\x26') port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/3') ttl = lldp.TTL(ttl=120) end = lldp.End() tlvs = (chassis_id, port_id, ttl, end) lldp_pkt = lldp.lldp(tlvs) chassis_id_values = {'subtype': lldp.ChassisID.SUB_MAC_ADDRESS, 'chassis_id': b'\x00\x04\x96\x1f\xa7\x26', 'len': chassis_id.len, 'typelen': chassis_id.typelen} _ch_id_str = ','.join(['%s=%s' % (k, repr(chassis_id_values[k])) for k, v in inspect.getmembers(chassis_id) if k in chassis_id_values]) tlv_chassis_id_str = '%s(%s)' % (lldp.ChassisID.__name__, _ch_id_str) port_id_values = {'subtype': port_id.subtype, 'port_id': port_id.port_id, 'len': port_id.len, 'typelen': port_id.typelen} _port_id_str = ','.join(['%s=%s' % (k, repr(port_id_values[k])) for k, v in inspect.getmembers(port_id) if k in port_id_values]) tlv_port_id_str = '%s(%s)' % (lldp.PortID.__name__, _port_id_str) ttl_values = {'ttl': ttl.ttl, 'len': ttl.len, 'typelen': ttl.typelen} _ttl_str = ','.join(['%s=%s' % (k, repr(ttl_values[k])) for k, v in inspect.getmembers(ttl) if k in ttl_values]) tlv_ttl_str = '%s(%s)' % (lldp.TTL.__name__, _ttl_str) end_values = {'len': end.len, 'typelen': end.typelen} _end_str = ','.join(['%s=%s' % (k, repr(end_values[k])) for k, v in inspect.getmembers(end) if k in end_values]) tlv_end_str = '%s(%s)' % (lldp.End.__name__, _end_str) _tlvs_str = '(%s, %s, %s, %s)' tlvs_str = _tlvs_str % (tlv_chassis_id_str, tlv_port_id_str, tlv_ttl_str, tlv_end_str) _lldp_str = '%s(tlvs=%s)' lldp_str = _lldp_str % (lldp.lldp.__name__, tlvs_str) eq_(str(lldp_pkt), lldp_str) eq_(repr(lldp_pkt), lldp_str) def test_json(self): chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x04\x96\x1f\xa7\x26') port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/3') ttl = lldp.TTL(ttl=120) end = lldp.End() tlvs = (chassis_id, port_id, ttl, end) lldp1 = lldp.lldp(tlvs) jsondict = lldp1.to_jsondict() lldp2 = lldp.lldp.from_jsondict(jsondict['lldp']) eq_(str(lldp1), str(lldp2)) class TestLLDPOptionalTLV(unittest.TestCase): def setUp(self): # sample data is based on: # http://wiki.wireshark.org/LinkLayerDiscoveryProtocol # # include optional TLV self.data = b'\x01\x80\xc2\x00\x00\x0e\x00\x01' \ + b'\x30\xf9\xad\xa0\x88\xcc\x02\x07' \ + b'\x04\x00\x01\x30\xf9\xad\xa0\x04' \ + b'\x04\x05\x31\x2f\x31\x06\x02\x00' \ + b'\x78\x08\x17\x53\x75\x6d\x6d\x69' \ + b'\x74\x33\x30\x30\x2d\x34\x38\x2d' \ + b'\x50\x6f\x72\x74\x20\x31\x30\x30' \ + b'\x31\x00\x0a\x0d\x53\x75\x6d\x6d' \ + b'\x69\x74\x33\x30\x30\x2d\x34\x38' \ + b'\x00\x0c\x4c\x53\x75\x6d\x6d\x69' \ + b'\x74\x33\x30\x30\x2d\x34\x38\x20' \ + b'\x2d\x20\x56\x65\x72\x73\x69\x6f' \ + b'\x6e\x20\x37\x2e\x34\x65\x2e\x31' \ + b'\x20\x28\x42\x75\x69\x6c\x64\x20' \ + b'\x35\x29\x20\x62\x79\x20\x52\x65' \ + b'\x6c\x65\x61\x73\x65\x5f\x4d\x61' \ + b'\x73\x74\x65\x72\x20\x30\x35\x2f' \ + b'\x32\x37\x2f\x30\x35\x20\x30\x34' \ + b'\x3a\x35\x33\x3a\x31\x31\x00\x0e' \ + b'\x05\x01\x00\x14\x00\x14\x10\x0e' \ + b'\x07' \ + b'\x06\x00\x01\x30\xf9\xad\xa0\x02' \ + b'\x00\x00\x03\xe9\x00\xfe\x07\x00' \ + b'\x12\x0f\x02\x07\x01\x00\xfe\x09' \ + b'\x00\x12\x0f\x01\x03\x6c\x00\x00' \ + b'\x10\xfe\x09\x00\x12\x0f\x03\x01' \ + b'\x00\x00\x00\x00\xfe\x06\x00\x12' \ + b'\x0f\x04\x05\xf2\xfe\x06\x00\x80' \ + b'\xc2\x01\x01\xe8\xfe\x07\x00\x80' \ + b'\xc2\x02\x01\x00\x00\xfe\x17\x00' \ + b'\x80\xc2\x03\x01\xe8\x10\x76\x32' \ + b'\x2d\x30\x34\x38\x38\x2d\x30\x33' \ + b'\x2d\x30\x35\x30\x35\x00\xfe\x05' \ + b'\x00\x80\xc2\x04\x00\x00\x00' def tearDown(self): pass def test_parse(self): buf = self.data pkt = packet.Packet(buf) i = iter(pkt) eq_(type(next(i)), ethernet.ethernet) lldp_pkt = next(i) eq_(type(lldp_pkt), lldp.lldp) tlvs = lldp_pkt.tlvs # Port Description eq_(tlvs[3].tlv_type, lldp.LLDP_TLV_PORT_DESCRIPTION) eq_(tlvs[3].port_description, b'Summit300-48-Port 1001\x00') # System Name eq_(tlvs[4].tlv_type, lldp.LLDP_TLV_SYSTEM_NAME) eq_(tlvs[4].system_name, b'Summit300-48\x00') # System Description eq_(tlvs[5].tlv_type, lldp.LLDP_TLV_SYSTEM_DESCRIPTION) eq_(tlvs[5].system_description, b'Summit300-48 - Version 7.4e.1 (Build 5) ' + b'by Release_Master 05/27/05 04:53:11\x00') # SystemCapabilities eq_(tlvs[6].tlv_type, lldp.LLDP_TLV_SYSTEM_CAPABILITIES) eq_(tlvs[6].subtype, lldp.ChassisID.SUB_CHASSIS_COMPONENT) eq_(tlvs[6].system_cap & lldp.SystemCapabilities.CAP_MAC_BRIDGE, lldp.SystemCapabilities.CAP_MAC_BRIDGE) eq_(tlvs[6].enabled_cap & lldp.SystemCapabilities.CAP_MAC_BRIDGE, lldp.SystemCapabilities.CAP_MAC_BRIDGE) eq_(tlvs[6].system_cap & lldp.SystemCapabilities.CAP_TELEPHONE, 0) eq_(tlvs[6].enabled_cap & lldp.SystemCapabilities.CAP_TELEPHONE, 0) # Management Address eq_(tlvs[7].tlv_type, lldp.LLDP_TLV_MANAGEMENT_ADDRESS) eq_(tlvs[7].addr_len, 7) eq_(tlvs[7].addr, b'\x00\x01\x30\xf9\xad\xa0') eq_(tlvs[7].intf_num, 1001) # Organizationally Specific eq_(tlvs[8].tlv_type, lldp.LLDP_TLV_ORGANIZATIONALLY_SPECIFIC) eq_(tlvs[8].oui, b'\x00\x12\x0f') # IEEE 802.3 eq_(tlvs[8].subtype, 0x02) # Power Via MDI # End eq_(tlvs[16].tlv_type, lldp.LLDP_TLV_END) def test_parse_corrupted(self): buf = self.data pkt = packet.Packet(buf[:128]) def test_serialize(self): pkt = packet.Packet() dst = lldp.LLDP_MAC_NEAREST_BRIDGE src = '00:01:30:f9:ad:a0' ethertype = ether.ETH_TYPE_LLDP eth_pkt = ethernet.ethernet(dst, src, ethertype) pkt.add_protocol(eth_pkt) tlv_chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=addrconv.mac. text_to_bin(src)) tlv_port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/1') tlv_ttl = lldp.TTL(ttl=120) tlv_port_description = lldp.PortDescription( port_description=b'Summit300-48-Port 1001\x00') tlv_system_name = lldp.SystemName(system_name=b'Summit300-48\x00') tlv_system_description = lldp.SystemDescription( system_description=b'Summit300-48 - Version 7.4e.1 (Build 5) ' + b'by Release_Master 05/27/05 04:53:11\x00') tlv_system_capabilities = lldp.SystemCapabilities( subtype=lldp.ChassisID.SUB_CHASSIS_COMPONENT, system_cap=0x14, enabled_cap=0x14) tlv_management_address = lldp.ManagementAddress( addr_subtype=0x06, addr=b'\x00\x01\x30\xf9\xad\xa0', intf_subtype=0x02, intf_num=1001, oid=b'') tlv_organizationally_specific = lldp.OrganizationallySpecific( oui=b'\x00\x12\x0f', subtype=0x02, info=b'\x07\x01\x00') tlv_end = lldp.End() tlvs = (tlv_chassis_id, tlv_port_id, tlv_ttl, tlv_port_description, tlv_system_name, tlv_system_description, tlv_system_capabilities, tlv_management_address, tlv_organizationally_specific, tlv_end) lldp_pkt = lldp.lldp(tlvs) pkt.add_protocol(lldp_pkt) eq_(len(pkt.protocols), 2) pkt.serialize() # self.data has many organizationally specific TLVs data = six.binary_type(pkt.data[:-2]) eq_(data, self.data[:len(data)]) def test_to_string(self): chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x01\x30\xf9\xad\xa0') port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/1') ttl = lldp.TTL(ttl=120) port_desc = lldp.PortDescription( port_description=b'Summit300-48-Port 1001\x00') sys_name = lldp.SystemName(system_name=b'Summit300-48\x00') sys_desc = lldp.SystemDescription( system_description=b'Summit300-48 - Version 7.4e.1 (Build 5) ' + b'by Release_Master 05/27/05 04:53:11\x00') sys_cap = lldp.SystemCapabilities( subtype=lldp.ChassisID.SUB_CHASSIS_COMPONENT, system_cap=0x14, enabled_cap=0x14) man_addr = lldp.ManagementAddress( addr_subtype=0x06, addr=b'\x00\x01\x30\xf9\xad\xa0', intf_subtype=0x02, intf_num=1001, oid='') org_spec = lldp.OrganizationallySpecific( oui=b'\x00\x12\x0f', subtype=0x02, info=b'\x07\x01\x00') end = lldp.End() tlvs = (chassis_id, port_id, ttl, port_desc, sys_name, sys_desc, sys_cap, man_addr, org_spec, end) lldp_pkt = lldp.lldp(tlvs) # ChassisID string chassis_id_values = {'subtype': lldp.ChassisID.SUB_MAC_ADDRESS, 'chassis_id': b'\x00\x01\x30\xf9\xad\xa0', 'len': chassis_id.len, 'typelen': chassis_id.typelen} _ch_id_str = ','.join(['%s=%s' % (k, repr(chassis_id_values[k])) for k, v in inspect.getmembers(chassis_id) if k in chassis_id_values]) tlv_chassis_id_str = '%s(%s)' % (lldp.ChassisID.__name__, _ch_id_str) # PortID string port_id_values = {'subtype': port_id.subtype, 'port_id': port_id.port_id, 'len': port_id.len, 'typelen': port_id.typelen} _port_id_str = ','.join(['%s=%s' % (k, repr(port_id_values[k])) for k, v in inspect.getmembers(port_id) if k in port_id_values]) tlv_port_id_str = '%s(%s)' % (lldp.PortID.__name__, _port_id_str) # TTL string ttl_values = {'ttl': ttl.ttl, 'len': ttl.len, 'typelen': ttl.typelen} _ttl_str = ','.join(['%s=%s' % (k, repr(ttl_values[k])) for k, v in inspect.getmembers(ttl) if k in ttl_values]) tlv_ttl_str = '%s(%s)' % (lldp.TTL.__name__, _ttl_str) # PortDescription string port_desc_values = {'tlv_info': port_desc.tlv_info, 'len': port_desc.len, 'typelen': port_desc.typelen} _port_desc_str = ','.join(['%s=%s' % (k, repr(port_desc_values[k])) for k, v in inspect.getmembers(port_desc) if k in port_desc_values]) tlv_port_desc_str = '%s(%s)' % (lldp.PortDescription.__name__, _port_desc_str) # SystemName string sys_name_values = {'tlv_info': sys_name.tlv_info, 'len': sys_name.len, 'typelen': sys_name.typelen} _system_name_str = ','.join(['%s=%s' % (k, repr(sys_name_values[k])) for k, v in inspect.getmembers(sys_name) if k in sys_name_values]) tlv_system_name_str = '%s(%s)' % (lldp.SystemName.__name__, _system_name_str) # SystemDescription string sys_desc_values = {'tlv_info': sys_desc.tlv_info, 'len': sys_desc.len, 'typelen': sys_desc.typelen} _sys_desc_str = ','.join(['%s=%s' % (k, repr(sys_desc_values[k])) for k, v in inspect.getmembers(sys_desc) if k in sys_desc_values]) tlv_sys_desc_str = '%s(%s)' % (lldp.SystemDescription.__name__, _sys_desc_str) # SystemCapabilities string sys_cap_values = {'subtype': lldp.ChassisID.SUB_CHASSIS_COMPONENT, 'system_cap': 0x14, 'enabled_cap': 0x14, 'len': sys_cap.len, 'typelen': sys_cap.typelen} _sys_cap_str = ','.join(['%s=%s' % (k, repr(sys_cap_values[k])) for k, v in inspect.getmembers(sys_cap) if k in sys_cap_values]) tlv_sys_cap_str = '%s(%s)' % (lldp.SystemCapabilities.__name__, _sys_cap_str) # ManagementAddress string man_addr_values = {'addr_subtype': 0x06, 'addr': b'\x00\x01\x30\xf9\xad\xa0', 'addr_len': man_addr.addr_len, 'intf_subtype': 0x02, 'intf_num': 1001, 'oid': '', 'oid_len': man_addr.oid_len, 'len': man_addr.len, 'typelen': man_addr.typelen} _man_addr_str = ','.join(['%s=%s' % (k, repr(man_addr_values[k])) for k, v in inspect.getmembers(man_addr) if k in man_addr_values]) tlv_man_addr_str = '%s(%s)' % (lldp.ManagementAddress.__name__, _man_addr_str) # OrganizationallySpecific string org_spec_values = {'oui': b'\x00\x12\x0f', 'subtype': 0x02, 'info': b'\x07\x01\x00', 'len': org_spec.len, 'typelen': org_spec.typelen} _org_spec_str = ','.join(['%s=%s' % (k, repr(org_spec_values[k])) for k, v in inspect.getmembers(org_spec) if k in org_spec_values]) tlv_org_spec_str = '%s(%s)' % (lldp.OrganizationallySpecific.__name__, _org_spec_str) # End string end_values = {'len': end.len, 'typelen': end.typelen} _end_str = ','.join(['%s=%s' % (k, repr(end_values[k])) for k, v in inspect.getmembers(end) if k in end_values]) tlv_end_str = '%s(%s)' % (lldp.End.__name__, _end_str) # tlvs string _tlvs_str = '(%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)' tlvs_str = _tlvs_str % (tlv_chassis_id_str, tlv_port_id_str, tlv_ttl_str, tlv_port_desc_str, tlv_system_name_str, tlv_sys_desc_str, tlv_sys_cap_str, tlv_man_addr_str, tlv_org_spec_str, tlv_end_str) # lldp string _lldp_str = '%s(tlvs=%s)' lldp_str = _lldp_str % (lldp.lldp.__name__, tlvs_str) eq_(str(lldp_pkt), lldp_str) eq_(repr(lldp_pkt), lldp_str) def test_json(self): chassis_id = lldp.ChassisID(subtype=lldp.ChassisID.SUB_MAC_ADDRESS, chassis_id=b'\x00\x01\x30\xf9\xad\xa0') port_id = lldp.PortID(subtype=lldp.PortID.SUB_INTERFACE_NAME, port_id=b'1/1') ttl = lldp.TTL(ttl=120) port_desc = lldp.PortDescription( port_description=b'Summit300-48-Port 1001\x00') sys_name = lldp.SystemName(system_name=b'Summit300-48\x00') sys_desc = lldp.SystemDescription( system_description=b'Summit300-48 - Version 7.4e.1 (Build 5) ' + b'by Release_Master 05/27/05 04:53:11\x00') sys_cap = lldp.SystemCapabilities( subtype=lldp.ChassisID.SUB_CHASSIS_COMPONENT, system_cap=0x14, enabled_cap=0x14) man_addr = lldp.ManagementAddress( addr_subtype=0x06, addr=b'\x00\x01\x30\xf9\xad\xa0', intf_subtype=0x02, intf_num=1001, oid='') org_spec = lldp.OrganizationallySpecific( oui=b'\x00\x12\x0f', subtype=0x02, info=b'\x07\x01\x00') end = lldp.End() tlvs = (chassis_id, port_id, ttl, port_desc, sys_name, sys_desc, sys_cap, man_addr, org_spec, end) lldp1 = lldp.lldp(tlvs) jsondict = lldp1.to_jsondict() lldp2 = lldp.lldp.from_jsondict(jsondict['lldp']) eq_(str(lldp1), str(lldp2))
from __future__ import unicode_literals import re from .common import InfoExtractor from ..utils import ( get_element_by_attribute, int_or_none, limit_length, lowercase_escape, try_get, ) class InstagramIE(InfoExtractor): _VALID_URL = r'(?P<url>https?://(?:www\.)?instagram\.com/p/(?P<id>[^/?#&]+))' _TESTS = [{ 'url': 'https://instagram.com/p/aye83DjauH/?foo=bar#abc', 'md5': '0d2da106a9d2631273e192b372806516', 'info_dict': { 'id': 'aye83DjauH', 'ext': 'mp4', 'title': 'Video by naomipq', 'description': 'md5:1f17f0ab29bd6fe2bfad705f58de3cb8', 'thumbnail': 're:^https?://.*\.jpg', 'timestamp': 1371748545, 'upload_date': '20130620', 'uploader_id': 'naomipq', 'uploader': 'Naomi Leonor Phan-Quang', 'like_count': int, 'comment_count': int, }, }, { # missing description 'url': 'https://www.instagram.com/p/BA-pQFBG8HZ/?taken-by=britneyspears', 'info_dict': { 'id': 'BA-pQFBG8HZ', 'ext': 'mp4', 'uploader_id': 'britneyspears', 'title': 'Video by britneyspears', 'thumbnail': 're:^https?://.*\.jpg', 'timestamp': 1453760977, 'upload_date': '20160125', 'uploader_id': 'britneyspears', 'uploader': 'Britney Spears', 'like_count': int, 'comment_count': int, }, 'params': { 'skip_download': True, }, }, { 'url': 'https://instagram.com/p/-Cmh1cukG2/', 'only_matching': True, }, { 'url': 'http://instagram.com/p/9o6LshA7zy/embed/', 'only_matching': True, }] @staticmethod def _extract_embed_url(webpage): mobj = re.search( r'<iframe[^>]+src=(["\'])(?P<url>(?:https?:)?//(?:www\.)?instagram\.com/p/[^/]+/embed.*?)\1', webpage) if mobj: return mobj.group('url') blockquote_el = get_element_by_attribute( 'class', 'instagram-media', webpage) if blockquote_el is None: return mobj = re.search( r'<a[^>]+href=([\'"])(?P<link>[^\'"]+)\1', blockquote_el) if mobj: return mobj.group('link') def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) video_id = mobj.group('id') url = mobj.group('url') webpage = self._download_webpage(url, video_id) (video_url, description, thumbnail, timestamp, uploader, uploader_id, like_count, comment_count) = [None] * 8 shared_data = self._parse_json( self._search_regex( r'window\._sharedData\s*=\s*({.+?});', webpage, 'shared data', default='{}'), video_id, fatal=False) if shared_data: media = try_get( shared_data, lambda x: x['entry_data']['PostPage'][0]['media'], dict) if media: video_url = media.get('video_url') description = media.get('caption') thumbnail = media.get('display_src') timestamp = int_or_none(media.get('date')) uploader = media.get('owner', {}).get('full_name') uploader_id = media.get('owner', {}).get('username') like_count = int_or_none(media.get('likes', {}).get('count')) comment_count = int_or_none(media.get('comments', {}).get('count')) if not video_url: video_url = self._og_search_video_url(webpage, secure=False) if not uploader_id: uploader_id = self._search_regex( r'"owner"\s*:\s*{\s*"username"\s*:\s*"(.+?)"', webpage, 'uploader id', fatal=False) if not description: description = self._search_regex( r'"caption"\s*:\s*"(.+?)"', webpage, 'description', default=None) if description is not None: description = lowercase_escape(description) if not thumbnail: thumbnail = self._og_search_thumbnail(webpage) return { 'id': video_id, 'url': video_url, 'ext': 'mp4', 'title': 'Video by %s' % uploader_id, 'description': description, 'thumbnail': thumbnail, 'timestamp': timestamp, 'uploader_id': uploader_id, 'uploader': uploader, 'like_count': like_count, 'comment_count': comment_count, } class InstagramUserIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?instagram\.com/(?P<username>[^/]{2,})/?(?:$|[?#])' IE_DESC = 'Instagram user profile' IE_NAME = 'instagram:user' _TEST = { 'url': 'https://instagram.com/porsche', 'info_dict': { 'id': 'porsche', 'title': 'porsche', }, 'playlist_mincount': 2, 'playlist': [{ 'info_dict': { 'id': '614605558512799803_462752227', 'ext': 'mp4', 'title': '#Porsche Intelligent Performance.', 'thumbnail': 're:^https?://.*\.jpg', 'uploader': 'Porsche', 'uploader_id': 'porsche', 'timestamp': 1387486713, 'upload_date': '20131219', }, }], 'params': { 'extract_flat': True, 'skip_download': True, } } def _real_extract(self, url): mobj = re.match(self._VALID_URL, url) uploader_id = mobj.group('username') entries = [] page_count = 0 media_url = 'http://instagram.com/%s/media' % uploader_id while True: page = self._download_json( media_url, uploader_id, note='Downloading page %d ' % (page_count + 1), ) page_count += 1 for it in page['items']: if it.get('type') != 'video': continue like_count = int_or_none(it.get('likes', {}).get('count')) user = it.get('user', {}) formats = [{ 'format_id': k, 'height': v.get('height'), 'width': v.get('width'), 'url': v['url'], } for k, v in it['videos'].items()] self._sort_formats(formats) thumbnails_el = it.get('images', {}) thumbnail = thumbnails_el.get('thumbnail', {}).get('url') # In some cases caption is null, which corresponds to None # in python. As a result, it.get('caption', {}) gives None title = (it.get('caption') or {}).get('text', it['id']) entries.append({ 'id': it['id'], 'title': limit_length(title, 80), 'formats': formats, 'thumbnail': thumbnail, 'webpage_url': it.get('link'), 'uploader': user.get('full_name'), 'uploader_id': user.get('username'), 'like_count': like_count, 'timestamp': int_or_none(it.get('created_time')), }) if not page['items']: break max_id = page['items'][-1]['id'].split('_')[0] media_url = ( 'http://instagram.com/%s/media?max_id=%s' % ( uploader_id, max_id)) return { '_type': 'playlist', 'entries': entries, 'id': uploader_id, 'title': uploader_id, }
import sys import os PROJECT_ROOT = os.path.dirname(__file__) sys.path.append(os.path.join(PROJECT_ROOT,"scripts")) sys.path.append(os.path.join(PROJECT_ROOT,"experimental")) if len(sys.argv) >= 3 and "--help" not in sys.argv: print sys.argv args = sys.argv mode_arg = args[args.index("-mode")+1] print mode_arg ####################Prepare a Table for visualization in a GIS############### if mode_arg.lower() == "prep_vis": import Visualize_Simple as Viz #Comma delimited listing of words to add together for Viz output #Example: -words Washington,Seahawks try: words = args[args.index('-words')+1] except: print "You did not provide any words to visualize" sys.exit("Error") #Pointgrid table name #Example: globalgrid_5_clip_geog try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Output Viz Table try: out_tbl = args[args.index('-out_tbl')+1] except: print "Did not provide a valid out table name" out_tbl = "localspatstat_tmp" #Statistics Table (Zavg/Gi*) try: stat_tbl = args[args.index("-stat_tbl")+1] except: print "You did not provide a name for a statistics table to use" sys.exit("Error") Viz.calc(words, gtbl, stat_tbl, out_tbl, conn_info) ##########################Local Spatial Stastics Mode (Gi*, Zavg)####################### if mode_arg.lower() == "local_stats": import LocalSpatialStatsV1 as LSS print "Starting Local Spatial Statistics" #Trainfile / devfile / test file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Document Type: (wiki, twitter) try: traintype = args[args.index("-traintype")+1] except: print "You did not provide a training file type (wiki or twitter)" sys.exit("Error") #Document table name try: dtbl = args[args.index("-dtbl")+1] except: print "You did not provide a name for a document table to output" sys.exit("Error") #PROCESS ID (short term solution to multiprocess problems) #try: # procid = args[args.index("-procid")+1] #except: # print "You did not provide process id" # sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Which Statistic is going to be calculated try: statistic = args[args.index('-statistic')+1] except: print "You did not provide a statistic type" print "e.g. -statistic gi -statistic zavg -statistic gi,zavg" sys.exit("Error") #Kernel Bandwidth Distance for local stats try: kern_dist = args[args.index('-kern_dist')+1] except: print "Did not provide a bandwidth size for the kern_dist kernel" sys.exit("Error") #Out file with local stats try: outf = args[args.index('-outf')+1] except: print "You did not provide an outfile name for where scores will be written" outf = "tmp.txt" #sys.exit("Error") try: grid_min = args[args.index('-grid_freq_min')+1] except: print "Did not provide a grid_freq_min argument... defaulting to 1" grid_min = 0 try: out_tbl = args[args.index('-out_tbl')+1] except: print "Did not provide a valid out table name" out_tbl = "localspatstat_tmp" #The number of cores you want to devote to multiprocessed Calcs try: cores = int(args[args.index('-cores')+1]) except: print "Did not provide a -cores argument, defaulting to 1" cores = 1 #Do you want to specify a whitelist to use for words (restircted vs any) try: listuse = args[args.index('-listuse')+1] except: print "Did not provide a valid listuse option, defaultign to any" listuse = "any" #Whitelist File path try: whitelist_file = args[args.index('-whitelist_file')+1] except: print "Did not provide a -whitelist_file option, defaulting to none" whitelist_file = "none" listuse = "any" #Kerntype for kernel function (uniform, linear, epanech) try: kerntype = args[args.index('-kerntype')+1] except: print "Did not provide a valid kerntype option, defaulting to uniform" kerntype = "uniform" #Should probabilities of zero be written to tbl? (yes for similarity scores, no for Top Resolver) try: include_zero = args[args.index('-include_zero')+1] if include_zero.lower() == "false": include_zero = False else: include_zero = True except: print "Did not provide include zero argument, defaulting to True" include_zero = True LSS.calc(f, statistic, dtbl, gtbl, conn_info, outf, out_tbl, kern_dist, kerntype, traintype, listuse, whitelist_file, grid_min, cores, include_zero) ##########################Load a database with | Doc ID | Geometry | table##################### if mode_arg.lower() == "loaddb": import LoadDBV1 as loadDB print "Starting DB Load Process" if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] try: traintype = args[args.index("-traintype")+1] except: print "You did not provide a training file type (wiki or twitter)" sys.exit("Error") try: dtbl = args[args.index("-dtbl")+1] except: print "You did not provide a name for a document table to output" sys.exit("Error") try: conn = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") loadDB.Load(f, dtbl, conn, traintype.lower()) ################Weighted Jaccard Similarity################## if mode_arg.lower() == "jsim": print "Starting Weighted Jaccard Similarity Tests" import JacSimilarity as JS #Statistics Table (Zavg/Gi*) try: stat_tbl = args[args.index("-stat_tbl")+1] except: print "You did not provide a name for a statistics table to use" sys.exit("Error") #Statistics Table (Zavg/Gi*) try: stat_tbl_func = args[args.index("-stat_tbl_func")+1] except: print "You did not provide a name for a statistics table to use" sys.exit("Error") #Synset file try: synfile = args[args.index("-synfile")+1] except: print "You did not provide a file name to retrieve synsets from" sys.exit("Error") #Out file with p values try: outf = args[args.index('-outf')+1] except: print "You did not provide an outfile name for where scores will be written" sys.exit("Error") #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #How many random word comparisons to make in building similarity score distribution #Used to derive P-value for given pair try: randits = int(args[args.index('-randits')+1]) except: print "Did not provide -randits argument, defaulting to 100" randits = 100 #Select a certain percentile of the obs to compare... not yet implemented try: pct = args[args.index('-pct')+1] except: pct = "Not Implemented" JS.calc(stat_tbl, synfile, conn_info, pct, randits, outf, stat_tbl_func) ###################Test Toponym Resolver##################### #Only used to test annotated datasets of TRCONLL, LGL, CWar if mode_arg.lower() == "topo_test": #The domain of texts that will be tested # try: which_test = args[args.index("-test_domain")+1] if which_test.strip().lower() == "lgl": import TestResolver_LGL as tstr if which_test.strip().lower() == "trconll": import TestResolver_TRCONLL as tstr if which_test.strip().lower() == "cwar": import TestResolver_CWar as tstr except: print "-mode topo_test requires you to specify an addition -test_domain argument" print "current options allow for -test_domain <lgl, trconll, cwar>" print sys.exit("Error: exiting. See above") #print "Starting test of topo resolver on TRConll" #Statistics Table (Zavg/Gi*) for in domain statistics try: in_domain_stat_tbl = args[args.index("-indomain_stat_tbl")+1] except: print "You did not provide a name for an in domain statistics table to use" print "Defaulting to None" in_domain_stat_tbl = "None" #sys.exit("Error") #Statistics Table (Zavg/Gi*) for out of domain statistics try: out_domain_stat_tbl = args[args.index("-outdomain_stat_tbl")+1] except: print "You did not provide a name for an out of domain statistics table to use" print "Defaulting to None" out_domain_stat_tbl = "None" if in_domain_stat_tbl == "None" and out_domain_stat_tbl == "None": print "Error:" print "You provided neither an in domain or out of domain stat table" sys.exit("Error") #Lambda weight applied to Gi* vectors from the in domain statistics table try: in_domain_lambda = args[args.index("-in_domain_lambda")+1] except: print "" print "You did not provide a value for in domain lambda, defaulting to 0.0" print "" in_domain_lambda = 0.0 try: out_domain_lambda = args[args.index("-out_domain_lambda")+1] except: print "" print "You did not provide a value for out domain lambda, defaulting to 0.0" print "" out_domain_lambda = 0.0 if float(in_domain_lambda) == 0.0 and float(out_domain_lambda) == 0.0: print "Error:" print "A value of 0.0 was provided for both -in_domain_lambda and -out_domain_lambda" sys.exit("Error") #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #context window size try: window = int(args[args.index('-window')+1]) except: print "You did not provide a window argument, defaulting to 15" window = 15 #percentile of selection try: percentile = float(args[args.index('-percentile')+1]) except: print "You did not provide a window argument, defaulting to .5" percentile = .5 #Weight applied to Gi* Vector of main toponym being evaluated try: main_topo_weight = float(args[args.index('-main_topo_weight')+1]) except: print "You did not provide a main topo weight, defaulting to 10" main_topo_weight = 10.0 #Weight applied to Gi* Vector of other toponyms in context try: other_topo_weight = float(args[args.index('-other_topo_weight')+1]) except: print "You did not provide an other topo weight, defaulting to 3" other_topo_weight = 3.0 #Weight applied to Gi* Vector of other toponyms in context try: other_word_weight = float(args[args.index('-other_word_weight')+1]) except: print "You did not provide an other word weight, defaulting to 1" other_word_weight = 1.0 #Test Table Name try: tst_tbl = args[args.index('-tst_tbl')+1] except: print "You did not provide a test table argument" sys.exit("Error") #Country Table Name try: country_tbl = args[args.index('-country_tbl')+1] except: print "You did not provide a country table argument" sys.exit("Error") #Region Table Name try: region_tbl = args[args.index('-region_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #State Table Name try: state_tbl = args[args.index('-state_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #Geonames Table Name try: geonames_tbl = args[args.index('-geonames_tbl')+1] except: print "You did not provide a geonames table argument" sys.exit("Error") #US Prominent Table Name #try: # us_prom_tbl = args[args.index('-us_prom_tbl')+1] #except: # print "You did not provide a prominent US city table argument" # sys.exit("Error") #US Prominent Table Name #try: # world_prom_tbl = args[args.index('-world_prom_tbl')+1] #except: # print "You did not provide a prominent WORLD city table argument" # sys.exit("Error") #Geonames Table Name try: results_file = args[args.index('-results_file')+1] except: print "You did not provide a results file name, defaulting to TestResults.txt" results_file = "TestResults.txt" tstr.calc(in_domain_stat_tbl, out_domain_stat_tbl , f, conn_info, gtbl, window, percentile, float(main_topo_weight), float(other_topo_weight), float(other_word_weight), country_tbl, region_tbl, state_tbl, geonames_tbl, tst_tbl, float(in_domain_lambda), float(out_domain_lambda), results_file) #################################################################################################################################### ###################Test Toponym Resolver Using NER################################################################################## #################################################################################################################################### if mode_arg.lower() == "topo_test_ner": import TestResolverV4_NER as tstr print "Starting test of topo resolver on TRConll" #Statistics Table (Zavg/Gi*) try: stat_tbl = args[args.index("-stat_tbl")+1] except: print "You did not provide a name for a statistics table to use" sys.exit("Error") #Path containing stanford NER jar file try: stan_path = args[args.index("-stan_path")+1] except: print "You did not a directory for the stanford NER jar" sys.exit("Error") #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #context window size try: window = int(args[args.index('-window')+1]) except: print "You did not provide a window argument, defaulting to 15" window = 15 #percentile of selection try: percentile = float(args[args.index('-percentile')+1]) except: print "You did not provide a window argument, defaulting to .5" percentile = .5 #percentile of selection try: place_name_weight = float(args[args.index('-place_name_weight')+1]) except: print "You did not provide a window argument, defaulting to 10" place_name_weight = 10.0 #Test Table Name try: tst_tbl = args[args.index('-tst_tbl')+1] except: print "You did not provide a test table argument" sys.exit("Error") #Country Table Name try: country_tbl = args[args.index('-country_tbl')+1] except: print "You did not provide a country table argument" sys.exit("Error") #Region Table Name try: region_tbl = args[args.index('-region_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #State Table Name try: state_tbl = args[args.index('-state_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #Geonames Table Name try: geonames_tbl = args[args.index('-geonames_tbl')+1] except: print "You did not provide a geonames table argument" sys.exit("Error") #US Prominent Table Name #try: # us_prom_tbl = args[args.index('-us_prom_tbl')+1] #except: # print "You did not provide a prominent US city table argument" # sys.exit("Error") #US Prominent Table Name #try: # world_prom_tbl = args[args.index('-world_prom_tbl')+1] #except: # print "You did not provide a prominent WORLD city table argument" # sys.exit("Error") tstr.calc(stat_tbl , f, conn_info, gtbl, window, percentile, place_name_weight, country_tbl, region_tbl, state_tbl, geonames_tbl, tst_tbl, stan_path) if mode_arg.lower() == "xml_topo_resolve_ner": import TestResolver_xml_ner as tr #Path containing stanford NER jar file try: stan_path = args[args.index("-stan_path")+1] except: print "You did not a directory for the stanford NER jar" sys.exit("Error") #Statistics Table (Zavg/Gi*) try: in_domain_stat_tbl = args[args.index("-indomain_stat_tbl")+1] except: print "You did not provide a name for an in domain statistics table to use" print "Defaulting to None" in_domain_stat_tbl = "None" #sys.exit("Error") try: out_domain_stat_tbl = args[args.index("-outdomain_stat_tbl")+1] except: print "You did not provide a name for an out of domain statistics table to use" print "Defaulting to None" out_domain_stat_tbl = "None" if in_domain_stat_tbl == "None" and out_domain_stat_tbl == "None": print "Error:" print "You provided neither an in domain or out of domain stat table" sys.exit("Error") #Lambda weight applied to Gi* vectors from the in domain statistics table try: in_domain_lambda = args[args.index("-in_domain_lambda")+1] except: print "" print "You did not provide a value for in domain lambda, defaulting to 0.0" print "" in_domain_lambda = 0.0 try: out_domain_lambda = args[args.index("-out_domain_lambda")+1] except: print "" print "You did not provide a value for out domain lambda, defaulting to 0.0" print "" out_domain_lambda = 0.0 if float(in_domain_lambda) == 0.0 and float(out_domain_lambda) == 0.0: print "Error:" print "A value of 0.0 was provided for both -in_domain_lambda and -out_domain_lambda" sys.exit("Error") #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #context window size try: window = int(args[args.index('-window')+1]) except: print "You did not provide a window argument, defaulting to 15" window = 15 #percentile of selection try: percentile = float(args[args.index('-percentile')+1]) except: print "You did not provide a window argument, defaulting to .5" percentile = .5 #Weight applied to Gi* Vector of main toponym being evaluated try: main_topo_weight = float(args[args.index('-main_topo_weight')+1]) except: print "You did not provide a main topo weight, defaulting to 10" main_topo_weight = 10.0 #Weight applied to Gi* Vector of other toponyms in context try: other_topo_weight = float(args[args.index('-other_topo_weight')+1]) except: print "You did not provide an other topo weight, defaulting to 5" other_topo_weight = 5.0 #Weight applied to Gi* Vector of other toponyms in context try: other_word_weight = float(args[args.index('-other_word_weight')+1]) except: print "You did not provide an other word weight, defaulting to 1" other_word_weight = 1.0 #Country Table Name try: country_tbl = args[args.index('-country_tbl')+1] except: print "You did not provide a country table argument" sys.exit("Error") #Region Table Name try: region_tbl = args[args.index('-region_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #State Table Name try: state_tbl = args[args.index('-state_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #Geonames Table Name try: geonames_tbl = args[args.index('-geonames_tbl')+1] except: print "You did not provide a geonames table argument" sys.exit("Error") #Geonames Table Name try: results_file = args[args.index('-results_file')+1] except: print "You did not provide a results file name, defaulting to TestResults.txt" results_file = "TestResults.txt" tr.calc(in_domain_stat_tbl, out_domain_stat_tbl, f, conn_info, gtbl, window, percentile, float(main_topo_weight), float(other_topo_weight), float(other_word_weight), country_tbl, region_tbl, state_tbl, geonames_tbl, float(in_domain_lambda), float(out_domain_lambda), results_file, stan_path) if mode_arg.lower() == "xml_topo_resolve": import TestResolver_xml as tr #Statistics Table (Zavg/Gi*) try: in_domain_stat_tbl = args[args.index("-indomain_stat_tbl")+1] except: print "You did not provide a name for an in domain statistics table to use" print "Defaulting to None" in_domain_stat_tbl = "None" #sys.exit("Error") try: out_domain_stat_tbl = args[args.index("-outdomain_stat_tbl")+1] except: print "You did not provide a name for an out of domain statistics table to use" print "Defaulting to None" out_domain_stat_tbl = "None" if in_domain_stat_tbl == "None" and out_domain_stat_tbl == "None": print "Error:" print "You provided neither an in domain or out of domain stat table" sys.exit("Error") #Lambda weight applied to Gi* vectors from the in domain statistics table try: in_domain_lambda = args[args.index("-in_domain_lambda")+1] except: print "" print "You did not provide a value for in domain lambda, defaulting to 0.0" print "" in_domain_lambda = 0.0 try: out_domain_lambda = args[args.index("-out_domain_lambda")+1] except: print "" print "You did not provide a value for out domain lambda, defaulting to 0.0" print "" out_domain_lambda = 0.0 if float(in_domain_lambda) == 0.0 and float(out_domain_lambda) == 0.0: print "Error:" print "A value of 0.0 was provided for both -in_domain_lambda and -out_domain_lambda" sys.exit("Error") #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #context window size try: window = int(args[args.index('-window')+1]) except: print "You did not provide a window argument, defaulting to 15" window = 15 #percentile of selection try: percentile = float(args[args.index('-percentile')+1]) except: print "You did not provide a window argument, defaulting to .5" percentile = .5 #Weight applied to Gi* Vector of main toponym being evaluated try: main_topo_weight = float(args[args.index('-main_topo_weight')+1]) except: print "You did not provide a main topo weight, defaulting to 10" main_topo_weight = 10.0 #Weight applied to Gi* Vector of other toponyms in context try: other_topo_weight = float(args[args.index('-other_topo_weight')+1]) except: print "You did not provide an other topo weight, defaulting to 5" other_topo_weight = 5.0 #Weight applied to Gi* Vector of other toponyms in context try: other_word_weight = float(args[args.index('-other_word_weight')+1]) except: print "You did not provide an other word weight, defaulting to 1" other_word_weight = 1.0 #Country Table Name try: country_tbl = args[args.index('-country_tbl')+1] except: print "You did not provide a country table argument" sys.exit("Error") #Region Table Name try: region_tbl = args[args.index('-region_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #State Table Name try: state_tbl = args[args.index('-state_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #Geonames Table Name try: geonames_tbl = args[args.index('-geonames_tbl')+1] except: print "You did not provide a geonames table argument" sys.exit("Error") #US Prominent Table Name #try: # us_prom_tbl = args[args.index('-us_prom_tbl')+1] #except: # print "You did not provide a prominent US city table argument" # sys.exit("Error") #US Prominent Table Name #try: # world_prom_tbl = args[args.index('-world_prom_tbl')+1] #except: # print "You did not provide a prominent WORLD city table argument" # sys.exit("Error") #Geonames Table Name try: results_file = args[args.index('-results_file')+1] except: print "You did not provide a results file name, defaulting to TestResults.txt" results_file = "TestResults.txt" tr.calc(in_domain_stat_tbl, out_domain_stat_tbl, f, conn_info, gtbl, window, percentile, float(main_topo_weight), float(other_topo_weight), float(other_word_weight), country_tbl, region_tbl, state_tbl, geonames_tbl, float(in_domain_lambda), float(out_domain_lambda), results_file) if mode_arg.lower() == "plain_topo_resolve": import TestResolver_PlainText_NER as tr #print "Starting test of topo resolver on TRConll" #Path containing stanford NER jar file try: stan_path = args[args.index("-stan_path")+1] except: print "You did not a directory for the stanford NER jar" sys.exit("Error") #Statistics Table (Zavg/Gi*) try: in_domain_stat_tbl = args[args.index("-indomain_stat_tbl")+1] except: print "You did not provide a name for an in domain statistics table to use" print "Defaulting to None" in_domain_stat_tbl = "None" #sys.exit("Error") try: out_domain_stat_tbl = args[args.index("-outdomain_stat_tbl")+1] except: print "You did not provide a name for an out of domain statistics table to use" print "Defaulting to None" out_domain_stat_tbl = "None" if in_domain_stat_tbl == "None" and out_domain_stat_tbl == "None": print "Error:" print "You provided neither an in domain or out of domain stat table" sys.exit("Error") #Lambda weight applied to Gi* vectors from the in domain statistics table try: in_domain_lambda = args[args.index("-in_domain_lambda")+1] except: print "" print "You did not provide a value for in domain lambda, defaulting to 0.0" print "" in_domain_lambda = 0.0 try: out_domain_lambda = args[args.index("-out_domain_lambda")+1] except: print "" print "You did not provide a value for out domain lambda, defaulting to 0.0" print "" out_domain_lambda = 0.0 if float(in_domain_lambda) == 0.0 and float(out_domain_lambda) == 0.0: print "Error:" print "A value of 0.0 was provided for both -in_domain_lambda and -out_domain_lambda" sys.exit("Error") #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Postgresql connection information try: conn_info = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Pointgrid table name try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #context window size try: window = int(args[args.index('-window')+1]) except: print "You did not provide a window argument, defaulting to 15" window = 15 #percentile of selection try: percentile = float(args[args.index('-percentile')+1]) except: print "You did not provide a window argument, defaulting to .5" percentile = .5 #Weight applied to Gi* Vector of main toponym being evaluated try: main_topo_weight = float(args[args.index('-main_topo_weight')+1]) except: print "You did not provide a main topo weight, defaulting to 10" main_topo_weight = 10.0 #Weight applied to Gi* Vector of other toponyms in context try: other_topo_weight = float(args[args.index('-other_topo_weight')+1]) except: print "You did not provide an other topo weight, defaulting to 5" other_topo_weight = 5.0 #Weight applied to Gi* Vector of other toponyms in context try: other_word_weight = float(args[args.index('-other_word_weight')+1]) except: print "You did not provide an other word weight, defaulting to 1" other_word_weight = 1.0 #Country Table Name try: country_tbl = args[args.index('-country_tbl')+1] except: print "You did not provide a country table argument" sys.exit("Error") #Region Table Name try: region_tbl = args[args.index('-region_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #State Table Name try: state_tbl = args[args.index('-state_tbl')+1] except: print "You did not provide a region table argument" sys.exit("Error") #Geonames Table Name try: geonames_tbl = args[args.index('-geonames_tbl')+1] except: print "You did not provide a geonames table argument" sys.exit("Error") #US Prominent Table Name #try: # us_prom_tbl = args[args.index('-us_prom_tbl')+1] #except: # print "You did not provide a prominent US city table argument" # sys.exit("Error") #US Prominent Table Name #try: # world_prom_tbl = args[args.index('-world_prom_tbl')+1] #except: # print "You did not provide a prominent WORLD city table argument" # sys.exit("Error") #Geonames Table Name try: results_file = args[args.index('-results_file')+1] except: print "You did not provide a results file name, defaulting to TestResults.txt" results_file = "TestResults.txt" tr.calc(in_domain_stat_tbl, out_domain_stat_tbl, f, conn_info, gtbl, window, percentile, float(main_topo_weight), float(other_topo_weight), float(other_word_weight), country_tbl, region_tbl, state_tbl, geonames_tbl, float(in_domain_lambda), float(out_domain_lambda), results_file, stan_path) ##################Perform Moran's Calculations################# if mode_arg.lower() == "calc_morans": import MoransV1 as morans print "Starting Morans Coef. Calculation" #Train file, dev file, or tst file if '-tf' in args: f = args[args.index("-tf")+1] elif '-df' in args: f = args[args.index("-df")+1] elif '-tstf' in args: f = args[args.index("-tstf")+1] #Train type should be wiki or twitter try: traintype = args[args.index("-traintype")+1] except: print "You did not provide a training type for your train file (e.g. wiki or twitter)" sys.exit("Error") #Document table try: dtbl = args[args.index("-dtbl")+1] except: print "You did not provide a name for the input document table" sys.exit("Error") #Pointgrid table try: gtbl = args[args.index('-gtbl')+1] except: print "You did not provide a grid table argument" sys.exit("Error") #DB connection Information #(in the future switch to a .config file) try: conn = args[args.index('-conn')+1] except: print "Problem parsing the connection information provided" sys.exit("Error") #Distance at which to aggregate documents try: agg_dist = args[args.index('-agg_dist')+1] except: print "Did not provide a bandwidth size for the agg_dist (aggregate distance) kernel" sys.exit("Error") #Distance that determines adjacency relation for Moran's weights try: kern_dist = args[args.index('-kern_dist')+1] except: print "Did not provide a bandwidth size for the kern_dist (Morans kernel distance) kernel" sys.exit("Error") #Out file with Moran's scores try: outf = args[args.index('-outf')+1] except: print "You did not provide an outfile for where the moran's scores will be written" sys.exit("Error") #Write aggregated language models option #Defaults to false if not provided try: if "-use_agg_lm" in args and args[args.index('-use_agg_lm')+1] != False: use_agg_lm = True else: use_agg_lm = False except: print "You did not specify whether you wanted to use an aggregated file, defaulting to False" use_agg_lm = False #Use aggregated LM #Defaults to false if not provided try: if "-write_agg_lm" in args and args[args.index('-write_agg_lm')+1] != "False": write_agg_lm = True else: write_agg_lm = False except: print "You did not provide a write aggregate option, defaulting to false" write_agg_lm = False #Write file for aggregated LM #Defaults to "tmp.txt" if not provided try: write_agg_file = args[args.index('-write_agg_file')+1] except: print "You did not provide a write aggregate outfile option, defaulting to tmp.txt" write_agg_file = "tmp.txt" #Significance testing for Moran's Coef values (true, false) try: sig_test = args[args.index('-sig_test')+1] if str(sig_test).lower() != "false": sig_test = True else: sig_test = False except: print "You did not provide a significance test option, defaulting to false" sig_test = False #neighbor reference file mode, meant to make calculations independent of DB connection. Not yet implemented try: neighbor_ref_file = args[args.index('-nieghbor_file')+1] except: print "You did not provide a neighbor reference file, defaulting to None" neighbor_ref_file = "None" #Calculate means and moran's scores using only grid cells where a word is observed (appears, all) try: mean_method = args[args.index('-mean_method')+1] except: print "Did not provide a mean_method argument, defaulting to 'appears'" mean_method = "appears" try: grid_min = args[args.index('-grid_freq_min')+1] except: print "Did not provide a grid_freq_min argument... defaulting to 1" grid_min = 0 #The number of iterations to perform on Monte Carlo Significance Simulation try: iterations = int(args[args.index('-iterations')+1]) except: print "Did not provide a -iterations argument, defaulting to 0" iterations = 0 #The number of cores you want to devote to multiprocessed significance testing try: cores = int(args[args.index('-cores')+1]) except: print "Did not provide a -cores argument, defaulting to 1" cores = 1 morans.calc(f, dtbl, gtbl, conn, outf, agg_dist, kern_dist, traintype.lower(), write_agg_lm, use_agg_lm, write_agg_file, sig_test, neighbor_ref_file, mean_method, int(grid_min), iterations, cores) else: print "TopoCluster Run Modes:" print "-mode loadDB" print "-mode calc_morans" print "-mode plain_topo_resolve" print "-mode topo_test" print "-mode topo_test_ner" print "-mode local_stats" print "========================" print "Please visit https://github.com/grantdelozier/TopoCluster/blob/master/README.md for more information"
''' ModalView ========= .. versionadded:: 1.4.0 The :class:`ModalView` widget is used to create modal views. By default, the view will cover the whole "parent" window. Remember that the default size of a Widget is size_hint=(1, 1). If you don't want your view to be fullscreen, either use size hints with values lower than 1 (for instance size_hint=(.8, .8)) or deactivate the size_hint and use fixed size attributes. Examples -------- Example of a simple 400x400 Hello world view:: view = ModalView(size_hint=(None, None), size=(400, 400)) view.add_widget(Label(text='Hello world')) By default, any click outside the view will dismiss it. If you don't want that, you can set :attr:`ModalView.auto_dismiss` to False:: view = ModalView(auto_dismiss=False) view.add_widget(Label(text='Hello world')) view.open() To manually dismiss/close the view, use the :meth:`ModalView.dismiss` method of the ModalView instance:: view.dismiss() Both :meth:`ModalView.open` and :meth:`ModalView.dismiss` are bindable. That means you can directly bind the function to an action, e.g. to a button's on_press :: # create content and add it to the view content = Button(text='Close me!') view = ModalView(auto_dismiss=False) view.add_widget(content) # bind the on_press event of the button to the dismiss function content.bind(on_press=view.dismiss) # open the view view.open() ModalView Events ---------------- There are two events available: `on_open` which is raised when the view is opening, and `on_dismiss` which is raised when the view is closed. For `on_dismiss`, you can prevent the view from closing by explictly returning True from your callback. :: def my_callback(instance): print('ModalView', instance, 'is being dismissed, but is prevented!') return True view = ModalView() view.add_widget(Label(text='Hello world')) view.bind(on_dismiss=my_callback) view.open() .. versionchanged:: 1.5.0 The ModalView can be closed by hitting the escape key on the keyboard if the :attr:`ModalView.auto_dismiss` property is True (the default). ''' __all__ = ('ModalView', ) from kivy.logger import Logger from kivy.animation import Animation from kivy.uix.anchorlayout import AnchorLayout from kivy.properties import StringProperty, BooleanProperty, ObjectProperty, \ NumericProperty, ListProperty class ModalView(AnchorLayout): '''ModalView class. See module documentation for more information. :Events: `on_pre_open`: Fired before the ModalView is opened. When this event is fired ModalView is not yet added to window. `on_open`: Fired when the ModalView is opened. `on_pre_dismiss`: Fired before the ModalView is closed. `on_dismiss`: Fired when the ModalView is closed. If the callback returns True, the dismiss will be canceled. .. versionchanged:: 1.11.0 Added events `on_pre_open` and `on_pre_dismiss`. ''' auto_dismiss = BooleanProperty(True) '''This property determines if the view is automatically dismissed when the user clicks outside it. :attr:`auto_dismiss` is a :class:`~kivy.properties.BooleanProperty` and defaults to True. ''' attach_to = ObjectProperty(None) '''If a widget is set on attach_to, the view will attach to the nearest parent window of the widget. If none is found, it will attach to the main/global Window. :attr:`attach_to` is an :class:`~kivy.properties.ObjectProperty` and defaults to None. ''' background_color = ListProperty([0, 0, 0, .7]) '''Background color in the format (r, g, b, a). :attr:`background_color` is a :class:`~kivy.properties.ListProperty` and defaults to [0, 0, 0, .7]. ''' background = StringProperty( 'atlas://data/images/defaulttheme/modalview-background') '''Background image of the view used for the view background. :attr:`background` is a :class:`~kivy.properties.StringProperty` and defaults to 'atlas://data/images/defaulttheme/modalview-background'. ''' border = ListProperty([16, 16, 16, 16]) '''Border used for :class:`~kivy.graphics.vertex_instructions.BorderImage` graphics instruction. Used for the :attr:`background_normal` and the :attr:`background_down` properties. Can be used when using custom backgrounds. It must be a list of four values: (bottom, right, top, left). Read the BorderImage instructions for more information about how to use it. :attr:`border` is a :class:`~kivy.properties.ListProperty` and defaults to (16, 16, 16, 16). ''' # Internals properties used for graphical representation. _anim_alpha = NumericProperty(0) _anim_duration = NumericProperty(.1) _window = ObjectProperty(None, allownone=True, rebind=True) __events__ = ('on_pre_open', 'on_open', 'on_pre_dismiss', 'on_dismiss') def __init__(self, **kwargs): self._parent = None super(ModalView, self).__init__(**kwargs) def _search_window(self): # get window to attach to window = None if self.attach_to is not None: window = self.attach_to.get_parent_window() if not window: window = self.attach_to.get_root_window() if not window: from kivy.core.window import Window window = Window return window def open(self, *largs, **kwargs): '''Show the view window from the :attr:`attach_to` widget. If set, it will attach to the nearest window. If the widget is not attached to any window, the view will attach to the global :class:`~kivy.core.window.Window`. When the view is opened, it will be faded in with an animation. If you don't want the animation, use:: view.open(animation=False) ''' if self._window is not None: Logger.warning('ModalView: you can only open once.') return # search window self._window = self._search_window() if not self._window: Logger.warning('ModalView: cannot open view, no window found.') return self.dispatch('on_pre_open') self._window.add_widget(self) self._window.bind( on_resize=self._align_center, on_keyboard=self._handle_keyboard) self.center = self._window.center self.fbind('center', self._align_center) self.fbind('size', self._align_center) if kwargs.get('animation', True): a = Animation(_anim_alpha=1., d=self._anim_duration) a.bind(on_complete=lambda *x: self.dispatch('on_open')) a.start(self) else: self._anim_alpha = 1. self.dispatch('on_open') def dismiss(self, *largs, **kwargs): '''Close the view if it is open. If you really want to close the view, whatever the on_dismiss event returns, you can use the *force* argument: :: view = ModalView() view.dismiss(force=True) When the view is dismissed, it will be faded out before being removed from the parent. If you don't want animation, use:: view.dismiss(animation=False) ''' if self._window is None: return self.dispatch('on_pre_dismiss') if self.dispatch('on_dismiss') is True: if kwargs.get('force', False) is not True: return if kwargs.get('animation', True): Animation(_anim_alpha=0., d=self._anim_duration).start(self) else: self._anim_alpha = 0 self._real_remove_widget() def _align_center(self, *l): if self._window: self.center = self._window.center def on_touch_down(self, touch): if not self.collide_point(*touch.pos): if self.auto_dismiss: self.dismiss() return True super(ModalView, self).on_touch_down(touch) return True def on_touch_move(self, touch): super(ModalView, self).on_touch_move(touch) return True def on_touch_up(self, touch): super(ModalView, self).on_touch_up(touch) return True def on__anim_alpha(self, instance, value): if value == 0 and self._window is not None: self._real_remove_widget() def _real_remove_widget(self): if self._window is None: return self._window.remove_widget(self) self._window.unbind( on_resize=self._align_center, on_keyboard=self._handle_keyboard) self._window = None def on_pre_open(self): pass def on_open(self): pass def on_pre_dismiss(self): pass def on_dismiss(self): pass def _handle_keyboard(self, window, key, *largs): if key == 27 and self.auto_dismiss: self.dismiss() return True if __name__ == '__main__': from kivy.base import runTouchApp from kivy.uix.button import Button from kivy.uix.label import Label from kivy.uix.gridlayout import GridLayout from kivy.core.window import Window # add view content = GridLayout(cols=1) content.add_widget(Label(text='This is a hello world')) view = ModalView(size_hint=(None, None), size=(256, 256), auto_dismiss=True) view.add_widget(content) def open_view(btn): view.open() layout = GridLayout(cols=3) for x in range(9): btn = Button(text='click me %s' % x) btn.bind(on_release=view.open) layout.add_widget(btn) Window.add_widget(layout) view.open() runTouchApp()
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2012 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Copyright 2012 Nebula, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import from horizon import exceptions from openstack_dashboard.api import base as api_base from openstack_dashboard.test import helpers as test class APIResource(api_base.APIResourceWrapper): """Simple APIResource for testing.""" _attrs = ['foo', 'bar', 'baz'] @staticmethod def get_instance(innerObject=None): if innerObject is None: class InnerAPIResource(object): pass innerObject = InnerAPIResource() innerObject.foo = 'foo' innerObject.bar = 'bar' return APIResource(innerObject) class APIDict(api_base.APIDictWrapper): """Simple APIDict for testing.""" _attrs = ['foo', 'bar', 'baz'] @staticmethod def get_instance(innerDict=None): if innerDict is None: innerDict = {'foo': 'foo', 'bar': 'bar'} return APIDict(innerDict) # Wrapper classes that only define _attrs don't need extra testing. class APIResourceWrapperTests(test.TestCase): def test_get_attribute(self): resource = APIResource.get_instance() self.assertEqual(resource.foo, 'foo') def test_get_invalid_attribute(self): resource = APIResource.get_instance() self.assertNotIn('missing', resource._attrs, msg="Test assumption broken. Find new missing attribute") with self.assertRaises(AttributeError): resource.missing def test_get_inner_missing_attribute(self): resource = APIResource.get_instance() with self.assertRaises(AttributeError): resource.baz def test_repr(self): resource = APIResource.get_instance() resource_str = resource.__repr__() self.assertIn('foo', resource_str) self.assertIn('bar', resource_str) self.assertNotIn('baz', resource_str) class APIDictWrapperTests(test.TestCase): # APIDict allows for both attribute access and dictionary style [element] # style access. Test both def test_get_item(self): resource = APIDict.get_instance() self.assertEqual(resource.foo, 'foo') self.assertEqual(resource['foo'], 'foo') def test_get_invalid_item(self): resource = APIDict.get_instance() self.assertNotIn('missing', resource._attrs, msg="Test assumption broken. Find new missing attribute") with self.assertRaises(AttributeError): resource.missing with self.assertRaises(KeyError): resource['missing'] def test_get_inner_missing_attribute(self): resource = APIDict.get_instance() with self.assertRaises(AttributeError): resource.baz with self.assertRaises(KeyError): resource['baz'] def test_get_with_default(self): resource = APIDict.get_instance() self.assertEqual(resource.get('foo'), 'foo') self.assertIsNone(resource.get('baz')) self.assertEqual('retValue', resource.get('baz', 'retValue')) class ApiHelperTests(test.TestCase): """Tests for functions that don't use one of the api objects.""" def test_url_for(self): url = api_base.url_for(self.request, 'auditlog') self.assertEqual(url, 'http://public.auditlog.example.com:9090') url = api_base.url_for(self.request, 'auditlog', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.auditlog.example.com:9090') url = api_base.url_for(self.request, 'image') self.assertEqual(url, 'http://public.glance.example.com:9292/v1') url = api_base.url_for(self.request, 'image', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.glance.example.com:9292/v1') url = api_base.url_for(self.request, 'compute') self.assertEqual(url, 'http://public.nova.example.com:8774/v2') url = api_base.url_for(self.request, 'compute', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.nova.example.com:8774/v2') url = api_base.url_for(self.request, 'volume') self.assertEqual(url, 'http://public.nova.example.com:8776/v1') url = api_base.url_for(self.request, 'volume', endpoint_type="internalURL") self.assertEqual(url, 'http://int.nova.example.com:8776/v1') url = api_base.url_for(self.request, 'volume', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.nova.example.com:8776/v1') self.assertNotIn('notAnApi', self.request.user.service_catalog, 'Select a new nonexistent service catalog key') with self.assertRaises(exceptions.ServiceCatalogException): url = api_base.url_for(self.request, 'notAnApi') self.request.user.services_region = "RegionTwo" url = api_base.url_for(self.request, 'compute') self.assertEqual(url, 'http://public.nova2.example.com:8774/v2') self.request.user.services_region = "RegionTwo" url = api_base.url_for(self.request, 'compute', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.nova2.example.com:8774/v2') self.request.user.services_region = "RegionTwo" with self.assertRaises(exceptions.ServiceCatalogException): url = api_base.url_for(self.request, 'image') self.request.user.services_region = "bogus_value" url = api_base.url_for(self.request, 'identity', endpoint_type='adminURL') self.assertEqual(url, 'http://admin.keystone.example.com:35357/v2.0') self.request.user.services_region = "bogus_value" with self.assertRaises(exceptions.ServiceCatalogException): url = api_base.url_for(self.request, 'image') class QuotaSetTests(test.TestCase): def test_quotaset_add_with_plus(self): quota_dict = {'foo': 1, 'bar': 10} other_quota_dict = {'my_test': 12} quota_set = api_base.QuotaSet(quota_dict) other_quota_set = api_base.QuotaSet(other_quota_dict) quota_set += other_quota_set self.assertEqual(len(quota_set), 3) quota_dict.update(other_quota_dict) for q in quota_set: self.assertEqual(q.limit, quota_dict[q.name]) def test_quotaset_add_doesnt_override_existing_quota(self): quota_dict = {'foo': 1, 'bar': 10} quota_set = api_base.QuotaSet(quota_dict) other_quota_set = api_base.QuotaSet({'foo': 12}) quota_set += other_quota_set self.assertEqual(len(quota_set), 2) for q in quota_set: self.assertEqual(q.limit, quota_dict[q.name]) def test_quotaset_add_method(self): quota_dict = {'foo': 1, 'bar': 10} other_quota_dict = {'my_test': 12} quota_set = api_base.QuotaSet(quota_dict) other_quota_set = api_base.QuotaSet(other_quota_dict) quota_set.add(other_quota_set) self.assertEqual(len(quota_set), 3) quota_dict.update(other_quota_dict) for q in quota_set: self.assertEqual(q.limit, quota_dict[q.name]) def test_quotaset_add_with_wrong_type(self): quota_set = api_base.QuotaSet({'foo': 1, 'bar': 10}) self.assertRaises(ValueError, quota_set.add, {'test': 7})
# # Copyright 2021 Espressif Systems (Shanghai) CO., LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from construct import Int16ul, Int32ul, Int64ul, Struct from . import BaseArchMethodsMixin, BaseTargetMethods, ESPCoreDumpLoaderError try: from typing import Any, Optional, Tuple except ImportError: pass INVALID_CAUSE_VALUE = 0xFFFF XCHAL_EXCCAUSE_NUM = 64 # Exception cause dictionary to get translation of exccause register # From 4.4.1.5 table 4-64 Exception Causes of Xtensa # Instruction Set Architecture (ISA) Reference Manual XTENSA_EXCEPTION_CAUSE_DICT = { 0: ('IllegalInstructionCause', 'Illegal instruction'), 1: ('SyscallCause', 'SYSCALL instruction'), 2: ('InstructionFetchErrorCause', 'Processor internal physical address or data error during instruction fetch. (See EXCVADDR for more information)'), 3: ('LoadStoreErrorCause', 'Processor internal physical address or data error during load or store. (See EXCVADDR for more information)'), 4: ('Level1InterruptCause', 'Level-1 interrupt as indicated by set level-1 bits in the INTERRUPT register'), 5: ('AllocaCause', 'MOVSP instruction, if caller`s registers are not in the register file'), 6: ('IntegerDivideByZeroCause', 'QUOS: QUOU, REMS: or REMU divisor operand is zero'), 8: ('PrivilegedCause', 'Attempt to execute a privileged operation when CRING ? 0'), 9: ('LoadStoreAlignmentCause', 'Load or store to an unaligned address. (See EXCVADDR for more information)'), 12: ('InstrPIFDataErrorCause', 'PIF data error during instruction fetch. (See EXCVADDR for more information)'), 13: ('LoadStorePIFDataErrorCause', 'Synchronous PIF data error during LoadStore access. (See EXCVADDR for more information)'), 14: ('InstrPIFAddrErrorCause', 'PIF address error during instruction fetch. (See EXCVADDR for more information)'), 15: ('LoadStorePIFAddrErrorCause', 'Synchronous PIF address error during LoadStore access. (See EXCVADDR for more information)'), 16: ('InstTLBMissCause', 'Error during Instruction TLB refill. (See EXCVADDR for more information)'), 17: ('InstTLBMultiHitCause', 'Multiple instruction TLB entries matched. (See EXCVADDR for more information)'), 18: ('InstFetchPrivilegeCause', 'An instruction fetch referenced a virtual address at a ring level less than CRING. (See EXCVADDR for more information)'), 20: ('InstFetchProhibitedCause', 'An instruction fetch referenced a page mapped with an attribute that does not permit instruction fetch (EXCVADDR).'), 24: ('LoadStoreTLBMissCause', 'Error during TLB refill for a load or store. (See EXCVADDR for more information)'), 25: ('LoadStoreTLBMultiHitCause', 'Multiple TLB entries matched for a load or store. (See EXCVADDR for more information)'), 26: ('LoadStorePrivilegeCause', 'A load or store referenced a virtual address at a ring level less than CRING. (See EXCVADDR for more information)'), 28: ('LoadProhibitedCause', 'A load referenced a page mapped with an attribute that does not permit loads. (See EXCVADDR for more information)'), 29: ('StoreProhibitedCause', 'A store referenced a page mapped with an attribute that does not permit stores [Region Protection Option or MMU Option].'), 32: ('Coprocessor0Disabled', 'Coprocessor 0 instruction when cp0 disabled'), 33: ('Coprocessor1Disabled', 'Coprocessor 1 instruction when cp1 disabled'), 34: ('Coprocessor2Disabled', 'Coprocessor 2 instruction when cp2 disabled'), 35: ('Coprocessor3Disabled', 'Coprocessor 3 instruction when cp3 disabled'), 36: ('Coprocessor4Disabled', 'Coprocessor 4 instruction when cp4 disabled'), 37: ('Coprocessor5Disabled', 'Coprocessor 5 instruction when cp5 disabled'), 38: ('Coprocessor6Disabled', 'Coprocessor 6 instruction when cp6 disabled'), 39: ('Coprocessor7Disabled', 'Coprocessor 7 instruction when cp7 disabled'), INVALID_CAUSE_VALUE: ( 'InvalidCauseRegister', 'Invalid EXCCAUSE register value or current task is broken and was skipped'), # ESP panic pseudo reasons XCHAL_EXCCAUSE_NUM + 0: ('UnknownException', 'Unknown exception'), XCHAL_EXCCAUSE_NUM + 1: ('DebugException', 'Unhandled debug exception'), XCHAL_EXCCAUSE_NUM + 2: ('DoubleException', 'Double exception'), XCHAL_EXCCAUSE_NUM + 3: ('KernelException', 'Unhandled kernel exception'), XCHAL_EXCCAUSE_NUM + 4: ('CoprocessorException', 'Coprocessor exception'), XCHAL_EXCCAUSE_NUM + 5: ('InterruptWDTTimoutCPU0', 'Interrupt wdt timeout on CPU0'), XCHAL_EXCCAUSE_NUM + 6: ('InterruptWDTTimoutCPU1', 'Interrupt wdt timeout on CPU1'), XCHAL_EXCCAUSE_NUM + 7: ('CacheError', 'Cache disabled but cached memory region accessed'), } class ExceptionRegisters(object): # extra regs IDs used in EXTRA_INFO note EXCCAUSE_IDX = 0 EXCVADDR_IDX = 1 EPC1_IDX = 177 EPC2_IDX = 178 EPC3_IDX = 179 EPC4_IDX = 180 EPC5_IDX = 181 EPC6_IDX = 182 EPC7_IDX = 183 EPS2_IDX = 194 EPS3_IDX = 195 EPS4_IDX = 196 EPS5_IDX = 197 EPS6_IDX = 198 EPS7_IDX = 199 @property def registers(self): # type: () -> dict[str, int] return {k: v for k, v in self.__class__.__dict__.items() if not k.startswith('__') and isinstance(v, int)} # Following structs are based on source code # IDF_PATH/components/espcoredump/src/core_dump_port.c PrStatus = Struct( 'si_signo' / Int32ul, 'si_code' / Int32ul, 'si_errno' / Int32ul, 'pr_cursig' / Int16ul, 'pr_pad0' / Int16ul, 'pr_sigpend' / Int32ul, 'pr_sighold' / Int32ul, 'pr_pid' / Int32ul, 'pr_ppid' / Int32ul, 'pr_pgrp' / Int32ul, 'pr_sid' / Int32ul, 'pr_utime' / Int64ul, 'pr_stime' / Int64ul, 'pr_cutime' / Int64ul, 'pr_cstime' / Int64ul, ) def print_exc_regs_info(extra_info): # type: (list[int]) -> None """ Print the register info by parsing extra_info :param extra_info: extra info data str :return: None """ exccause = extra_info[1 + 2 * ExceptionRegisters.EXCCAUSE_IDX + 1] exccause_str = XTENSA_EXCEPTION_CAUSE_DICT.get(exccause) if not exccause_str: exccause_str = ('Invalid EXCCAUSE code', 'Invalid EXCAUSE description or not found.') print('exccause 0x%x (%s)' % (exccause, exccause_str[0])) print('excvaddr 0x%x' % extra_info[1 + 2 * ExceptionRegisters.EXCVADDR_IDX + 1]) # skip crashed_task_tcb, exccause, and excvaddr for i in range(5, len(extra_info), 2): if (extra_info[i] >= ExceptionRegisters.EPC1_IDX and extra_info[i] <= ExceptionRegisters.EPC7_IDX): print('epc%d 0x%x' % ((extra_info[i] - ExceptionRegisters.EPC1_IDX + 1), extra_info[i + 1])) # skip crashed_task_tcb, exccause, and excvaddr for i in range(5, len(extra_info), 2): if (extra_info[i] >= ExceptionRegisters.EPS2_IDX and extra_info[i] <= ExceptionRegisters.EPS7_IDX): print('eps%d 0x%x' % ((extra_info[i] - ExceptionRegisters.EPS2_IDX + 2), extra_info[i + 1])) # from "gdb/xtensa-tdep.h" # typedef struct # { # 0 xtensa_elf_greg_t pc; # 1 xtensa_elf_greg_t ps; # 2 xtensa_elf_greg_t lbeg; # 3 xtensa_elf_greg_t lend; # 4 xtensa_elf_greg_t lcount; # 5 xtensa_elf_greg_t sar; # 6 xtensa_elf_greg_t windowstart; # 7 xtensa_elf_greg_t windowbase; # 8..63 xtensa_elf_greg_t reserved[8+48]; # 64 xtensa_elf_greg_t ar[64]; # } xtensa_elf_gregset_t; REG_PC_IDX = 0 REG_PS_IDX = 1 REG_LB_IDX = 2 REG_LE_IDX = 3 REG_LC_IDX = 4 REG_SAR_IDX = 5 # REG_WS_IDX = 6 # REG_WB_IDX = 7 REG_AR_START_IDX = 64 # REG_AR_NUM = 64 # FIXME: acc to xtensa_elf_gregset_t number of regs must be 128, # but gdb complains when it less then 129 REG_NUM = 129 # XT_SOL_EXIT = 0 XT_SOL_PC = 1 XT_SOL_PS = 2 # XT_SOL_NEXT = 3 XT_SOL_AR_START = 4 XT_SOL_AR_NUM = 4 # XT_SOL_FRMSZ = 8 XT_STK_EXIT = 0 XT_STK_PC = 1 XT_STK_PS = 2 XT_STK_AR_START = 3 XT_STK_AR_NUM = 16 XT_STK_SAR = 19 XT_STK_EXCCAUSE = 20 XT_STK_EXCVADDR = 21 XT_STK_LBEG = 22 XT_STK_LEND = 23 XT_STK_LCOUNT = 24 XT_STK_FRMSZ = 25 class XtensaMethodsMixin(BaseArchMethodsMixin): @staticmethod def get_registers_from_stack(data, grows_down): # type: (bytes, bool) -> Tuple[list[int], Optional[dict[int, int]]] extra_regs = {v: 0 for v in ExceptionRegisters().registers.values()} regs = [0] * REG_NUM # TODO: support for growing up stacks if not grows_down: raise ESPCoreDumpLoaderError('Growing up stacks are not supported for now!') ex_struct = Struct( 'stack' / Int32ul[XT_STK_FRMSZ] ) if len(data) < ex_struct.sizeof(): raise ESPCoreDumpLoaderError('Too small stack to keep frame: %d bytes!' % len(data)) stack = ex_struct.parse(data).stack # Stack frame type indicator is always the first item rc = stack[XT_STK_EXIT] if rc != 0: regs[REG_PC_IDX] = stack[XT_STK_PC] regs[REG_PS_IDX] = stack[XT_STK_PS] for i in range(XT_STK_AR_NUM): regs[REG_AR_START_IDX + i] = stack[XT_STK_AR_START + i] regs[REG_SAR_IDX] = stack[XT_STK_SAR] regs[REG_LB_IDX] = stack[XT_STK_LBEG] regs[REG_LE_IDX] = stack[XT_STK_LEND] regs[REG_LC_IDX] = stack[XT_STK_LCOUNT] # FIXME: crashed and some running tasks (e.g. prvIdleTask) have EXCM bit set # and GDB can not unwind callstack properly (it implies not windowed call0) if regs[REG_PS_IDX] & (1 << 5): regs[REG_PS_IDX] &= ~(1 << 4) if stack[XT_STK_EXCCAUSE] in XTENSA_EXCEPTION_CAUSE_DICT: extra_regs[ExceptionRegisters.EXCCAUSE_IDX] = stack[XT_STK_EXCCAUSE] else: extra_regs[ExceptionRegisters.EXCCAUSE_IDX] = INVALID_CAUSE_VALUE extra_regs[ExceptionRegisters.EXCVADDR_IDX] = stack[XT_STK_EXCVADDR] else: regs[REG_PC_IDX] = stack[XT_SOL_PC] regs[REG_PS_IDX] = stack[XT_SOL_PS] for i in range(XT_SOL_AR_NUM): regs[REG_AR_START_IDX + i] = stack[XT_SOL_AR_START + i] # nxt = stack[XT_SOL_NEXT] return regs, extra_regs @staticmethod def build_prstatus_data(tcb_addr, task_regs): # type: (int, list[int]) -> Any return PrStatus.build({ 'si_signo': 0, 'si_code': 0, 'si_errno': 0, 'pr_cursig': 0, # TODO: set sig only for current/failed task 'pr_pad0': 0, 'pr_sigpend': 0, 'pr_sighold': 0, 'pr_pid': tcb_addr, 'pr_ppid': 0, 'pr_pgrp': 0, 'pr_sid': 0, 'pr_utime': 0, 'pr_stime': 0, 'pr_cutime': 0, 'pr_cstime': 0, }) + Int32ul[len(task_regs)].build(task_regs) class Esp32Methods(BaseTargetMethods, XtensaMethodsMixin): TARGET = 'esp32' class Esp32S2Methods(BaseTargetMethods, XtensaMethodsMixin): TARGET = 'esp32s2' class Esp32S3Methods(BaseTargetMethods, XtensaMethodsMixin): TARGET = 'esp32s3'
from __future__ import division import numpy as np from itertools import combinations_with_replacement from .core import Data, Summary, Propensity, PropensitySelect, Strata from .estimators import OLS, Blocking, Weighting, Matching, Estimators class CausalModel(object): def __init__(self, Y, D, X): self.old_data = Data(Y, D, X) self.reset() def reset(self): """ Reinitializes data to original inputs, and drops any estimated results. """ Y, D, X = self.old_data['Y'], self.old_data['D'], self.old_data['X'] self.raw_data = Data(Y, D, X) self.summary_stats = Summary(self.raw_data) self.propensity = None self.cutoff = None self.blocks = None self.strata = None self.estimates = Estimators() def est_propensity(self, lin='all', qua=None): """ Estimates the propensity scores given list of covariates to include linearly or quadratically. The propensity score is the conditional probability of receiving the treatment given the observed covariates. Estimation is done via a logistic regression. Expected args ------------- lin: string, list Column numbers (zero-based) of variables of the original covariate matrix X to include linearly. Defaults to the string 'all', which uses whole covariate matrix. qua: list Tuples indicating which columns of the original covariate matrix to multiply and include. E.g., [(1,1), (2,3)] indicates squaring the 2nd column and including the product of the 3rd and 4th columns. Default is to not include any quadratic terms. """ lin_terms = parse_lin_terms(self.raw_data['K'], lin) qua_terms = parse_qua_terms(self.raw_data['K'], qua) self.propensity = Propensity(self.raw_data, lin_terms, qua_terms) self.raw_data._dict['pscore'] = self.propensity['fitted'] self._post_pscore_init() def est_propensity_s(self, lin_B=None, C_lin=1, C_qua=2.71): """ Estimates the propensity score with covariates selected using the algorithm suggested by Imbens and Rubin (2015). The propensity score is the conditional probability of receiving the treatment given the observed covariates. Estimation is done via a logistic regression. The covariate selection algorithm is based on a sequence of likelihood ratio tests. Expected args ------------- lin_B: list Column numbers (zero-based) of variables of the original covariate matrix X to include linearly. Defaults to empty list, meaning every column of X is subjected to the selection algorithm. C_lin: scalar Critical value used in likelihood ratio tests to decide whether candidate linear terms should be included. Defaults to 1 as in Imbens and Rubin (2015). C_qua: scalar Critical value used in likelihood ratio tests to decide whether candidate quadratic terms should be included. Defaults to 2.71 as in Imbens and Rubin (2015). References ---------- Imbens, G. & Rubin, D. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ lin_basic = parse_lin_terms(self.raw_data['K'], lin_B) self.propensity = PropensitySelect(self.raw_data, lin_basic, C_lin, C_qua) self.raw_data._dict['pscore'] = self.propensity['fitted'] self._post_pscore_init() def trim(self): """ Trims data based on propensity score to create a subsample with better covariate balance. The default cutoff value is set to 0.1. To set a custom cutoff value, modify the object attribute named cutoff directly. This method should only be executed after the propensity score has been estimated. """ if 0 < self.cutoff <= 0.5: pscore = self.raw_data['pscore'] keep = (pscore >= self.cutoff) & (pscore <= 1-self.cutoff) Y_trimmed = self.raw_data['Y'][keep] D_trimmed = self.raw_data['D'][keep] X_trimmed = self.raw_data['X'][keep] self.raw_data = Data(Y_trimmed, D_trimmed, X_trimmed) self.raw_data._dict['pscore'] = pscore[keep] self.summary_stats = Summary(self.raw_data) self.strata = None self.estimates = Estimators() elif self.cutoff == 0: pass else: raise ValueError('Invalid cutoff.') def trim_s(self): """ Trims data based on propensity score using the cutoff selection algorithm suggested by Crump, Hotz, Imbens, and Mitnik (2009). This method should only be executed after the propensity score has been estimated. References ---------- Crump, R., Hotz, V., Imbens, G., & Mitnik, O. (2009). Dealing with Limited Overlap in Estimation of Average Treatment Effects. Biometrika, 96, 187-199. """ pscore = self.raw_data['pscore'] g = 1.0/(pscore*(1-pscore)) # 1 over Bernoulli variance self.cutoff = select_cutoff(g) self.trim() def stratify(self): """ Stratifies the sample based on propensity score. By default the sample is divided into five equal-sized bins. The number of bins can be set by modifying the object attribute named blocks. Alternatively, custom-sized bins can be created by setting blocks equal to a sorted list of numbers between 0 and 1 indicating the bin boundaries. This method should only be executed after the propensity score has been estimated. """ Y, D, X = self.raw_data['Y'], self.raw_data['D'], self.raw_data['X'] pscore = self.raw_data['pscore'] if isinstance(self.blocks, int): blocks = split_equal_bins(pscore, self.blocks) else: blocks = self.blocks[:] # make a copy; should be sorted blocks[0] = 0 # avoids always dropping 1st unit def subset(p_low, p_high): return (p_low < pscore) & (pscore <= p_high) subsets = [subset(*ps) for ps in zip(blocks, blocks[1:])] strata = [CausalModel(Y[s], D[s], X[s]) for s in subsets] self.strata = Strata(strata, subsets, pscore) def stratify_s(self): """ Stratifies the sample based on propensity score using the bin selection procedure suggested by Imbens and Rubin (2015). The bin selection algorithm is based on a sequence of two-sample t tests performed on the log-odds ratio. This method should only be executed after the propensity score has been estimated. References ---------- Imbens, G. & Rubin, D. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ pscore_order = self.raw_data['pscore'].argsort() pscore = self.raw_data['pscore'][pscore_order] D = self.raw_data['D'][pscore_order] logodds = np.log(pscore / (1-pscore)) K = self.raw_data['K'] blocks_uniq = set(select_blocks(pscore, logodds, D, K, 0, 1)) self.blocks = sorted(blocks_uniq) self.stratify() def est_via_ols(self, adj=2): """ Estimates average treatment effects using least squares. Expected args ------------- adj: integer; 0, 1, or 2. Indicates how covariate adjustments are to be performed. Set adj = 0 to not include any covariates. Set adj = 1 to include treatment indicator D and covariates X separately. Set adj = 2 to additionally include interaction terms between D and X. Defaults to 2. """ self.estimates['ols'] = OLS(self.raw_data, adj) def est_via_blocking(self, adj=1): """ Estimates average treatment effects using regression within blocks. This method should only be executed after the sample has been stratified. Expected args ------------- adj: integer; 0, 1, or 2. Indicates how covariate adjustments are to be performed for each within-bin regression. Set adj = 0 to not include any covariates. Set adj = 1 to include treatment indicator D and covariates X separately. Set adj = 2 to additionally include interaction terms between D and X. Defaults to 1. """ self.estimates['blocking'] = Blocking(self.strata, adj) def est_via_weighting(self): """ Estimates average treatment effects using doubly-robust version of the Horvitz-Thompson weighting estimator. """ self.estimates['weighting'] = Weighting(self.raw_data) def est_via_matching(self, weights='inv', matches=1, bias_adj=False): """ Estimates average treatment effects using nearest- neighborhood matching. Matching is done with replacement. Method supports multiple matching. Correcting bias that arise due to imperfect matches is also supported. For details on methodology, see Imbens and Rubin (2015). Expected args ------------- weights: string or positive definite square matrix. Specifies weighting matrix used in computing distance measures. Defaults to string 'inv', which does inverse variance weighting. String 'maha' gives the weighting matrix used in the Mahalanobis metric. matches: integer. Number of matches to use for each subject. bias_adj: Boolean. Specifies whether bias adjustments should be attempted. References ---------- Imbens, G. & Rubin, D. (2015). Causal Inference in Statistics, Social, and Biomedical Sciences: An Introduction. """ X, K = self.raw_data['X'], self.raw_data['K'] X_c, X_t = self.raw_data['X_c'], self.raw_data['X_t'] if weights == 'inv': W = 1/X.var(0) elif weights == 'maha': V_c = np.cov(X_c, rowvar=False, ddof=0) V_t = np.cov(X_t, rowvar=False, ddof=0) if K == 1: W = 1/np.array([[(V_c+V_t)/2]]) # matrix form else: W = np.linalg.inv((V_c+V_t)/2) else: W = weights self.estimates['matching'] = Matching(self.raw_data, W, matches, bias_adj) def _post_pscore_init(self): self.cutoff = 0.1 self.blocks = 5 def parse_lin_terms(K, lin): if lin is None: return [] elif lin == 'all': return range(K) else: return lin def parse_qua_terms(K, qua): if qua is None: return [] elif qua == 'all': return list(combinations_with_replacement(range(K), 2)) else: return qua def sumlessthan(g, sorted_g, cumsum): deduped_values = dict(zip(sorted_g, cumsum)) return np.array([deduped_values[x] for x in g]) def select_cutoff(g): if g.max() <= 2*g.mean(): cutoff = 0 else: sorted_g = np.sort(g) cumsum_1 = range(1, len(g)+1) LHS = g * sumlessthan(g, sorted_g, cumsum_1) cumsum_g = np.cumsum(sorted_g) RHS = 2 * sumlessthan(g, sorted_g, cumsum_g) gamma = np.max(g[LHS <= RHS]) cutoff = 0.5 - np.sqrt(0.25 - 1./gamma) return cutoff def split_equal_bins(pscore, blocks): q = np.linspace(0, 100, blocks+1)[1:-1] # q as in qth centiles centiles = [np.percentile(pscore, x) for x in q] return [0] + centiles + [1] def calc_tstat(sample_c, sample_t): N_c = sample_c.shape[0] N_t = sample_t.shape[0] var_c = sample_c.var(ddof=1) var_t = sample_t.var(ddof=1) return (sample_t.mean()-sample_c.mean()) / np.sqrt(var_c/N_c+var_t/N_t) def calc_sample_sizes(D): N = D.shape[0] mid_index = N // 2 Nleft = mid_index Nleft_t = D[:mid_index].sum() Nleft_c = Nleft - Nleft_t Nright = N - Nleft Nright_t = D[mid_index:].sum() Nright_c = Nright - Nright_t return (Nleft_c, Nleft_t, Nright_c, Nright_t) def select_blocks(pscore, logodds, D, K, p_low, p_high): scope = (pscore >= p_low) & (pscore <= p_high) c, t = (scope & (D==0)), (scope & (D==1)) Nleft_c, Nleft_t, Nright_c, Nright_t = calc_sample_sizes(D[scope]) if min(Nleft_c, Nleft_t, Nright_c, Nright_t) < K+1: return [p_low, p_high] tstat = calc_tstat(logodds[c], logodds[t]) if tstat <= 1.96: return [p_low, p_high] low = pscore[scope][0] mid = pscore[scope][scope.sum() // 2] high = pscore[scope][-1] return select_blocks(pscore, logodds, D, K, low, mid) + \ select_blocks(pscore, logodds, D, K, mid, high)
#!/usr/bin/env python # # Copyright 2015 British Broadcasting Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """\ There are two classes provided for implementing CSS-CII clients: * :class:`CIIClient` connects to a CII server and provides a CII message object representing the complete state of the server and notifies you of changes of state. * :class:`CIIClientConnection` provides a lower level connection to a CII server and only provides the messages received from the server. It does not maintain a model of the server state and does not work out when a received message constitutes a change. An :doc:`example <examples>` client is provided in this package that uses the :class:`CIIClient` class. Using CIIClient --------------- This is the simplest class to use. Create it, passing the URL of the server to connect to, then call :func:`~CIIClient.connect` and :func:`~CIIClient.disconnect` to connect and disconnect from the server. CIIClient maintains a local copy of the state of CII data the :data:`CIIClient.cii` property and the most recently received CII message in :data:`CIIClient.latestCII`. You can use the class either by subclassing and overriding the various stub methods or by creating an instance and replacing the stub methods with your own function handlers dynamically. Pass the WebSocket URL of the CII server when creating the `CIIClient` then call the :func:`~CIIClient.connect()` and :func:`~CIIClient.disconnect()` methods to connect and disconnect from the server. The `onXXX()` methods can be overriden to find out when connection or disconnection takes place, if there is a protocol error (e.g. a message was received that could not be parsed as CII) or when properties of the CII data change. The CII state is kept in the :data:`~CIIClient.cii` property of the object. This is updated with properties in CII messages that are received. Properties not included in a CII message are left unchanged. Properties of the CII state whose value is :data:`dvbcss.protocol.OMIT` have not been defined by the CII server. .. code-block:: python from dvbcss.protocol.client.cii import CIIClient class MyCIIClient(CIIClient): def onConnected(self): print "Connected!" def onDisconnected(self, code, reason): print "Disconnected :-(" def onChange(self, propertyNames): print "The following CII properties have changed: for name in propertyNames: value = getattr(conn.cii, name) print " "+name+" is now: "+str(value) # one example of a handler for changes to a particular property 'contentId' in CII def onContentIdChange(self, newValue): print "The contentId property has changed to now be: "+str(newValue) client = MyCIIClient("ws://127.0.0.1/cii") client.connect() time.sleep(60) print "The current contentId is "+client.cii.contentId time.sleep(60) # wait only 60 more seconds then disconnect client.disconnect() The client runs in a separate thread managed by the websocket client library, so the `onXXX` methods are called while the main thread sleeps. Using CIIClientConnection ------------------------- This is a lower level class, that only implements parsing of the incoming CII messages from the server. It does not detect if a message actually constitutes a change of state or not. You can use the class either by subclassing and overriding the various stub methods or by creating an instance and replacing the stub methods with your own function handlers dynamically. Pass the WebSocket URL of the CII server when creating the `CIIClientConnection` object then call the :func:`~CIIClientConnection.connect` and :func:`~CIIClientConnection.disconnect` methods to connect and disconnect from the server. The `onXXX()` methods can be overridden to find out when connection or disconnection takes place, if there is a protocol error (e.g. a message was received that could not be parsed as CII) or when a new CII message is received. .. code-block:: python from dvbcss.protocol.client.cii import CIIClientConnection class MyCIIClientConnection(CIIClientConnection): def onConnected(self): print "Connected!" def onDisconnected(self, code, reason): print "Disconnected :-(" def onCii(self, cii): print "Received a CII message: "+str(cii) client = MyCIIClientConnection("ws://127.0.0.1/cii") client.connect() time.sleep(60) # run only for 60 seconds then disconnect client.disconnect() """ import logging import socket from dvbcss.protocol.cii import CII from dvbcss.protocol.client import WrappedWebSocket from dvbcss.protocol.client import ConnectionError class CIIClientConnection(object): """\ Simple object for connecting to a CSS-CII server and handling the connection. Use by subclassing and overriding the following methods: * :func:`onConnected` * :func:`onDisconnected` * :func:`onCII` * :func:`onProtocolError` If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed above with your own functions dynamically. """ def __init__(self, url): """\ **Initialisation takes the following parameters:** :param: url (:class:`str`) The WebSocket URL of the CII Server to connect to. E.g. "ws://127.0.0.1/mysystem/cii" """ super(CIIClientConnection,self).__init__() self.log = logging.getLogger("dvbcss.protocol.client.cii.CIIClientConnection") self._ws = WrappedWebSocket(url, self) self._isOpen = False def onDisconnected(self, code, reason=None): """\ This method is called when the connection is closed. |stub-method| :param code: (:class:`int`) The connection closure code to be sent in the WebSocket disconnect frame :param reason: (:class:`str` or :class:`None`) The human readable reason for the closure """ pass def onConnected(self): """\ This method is called when the connection is opened. |stub-method| """ pass def onCII(self, cii): """\ This method is called when a CII message is received from the server. |stub-method| :param cii: A :class:`~dvbcss.protocol.cii.CII` object representing the received message. """ pass def onProtocolError(self, msg): """\ This method is called when there has been an error in the use of the CII protocol - e.g. receiving the wrong kind of message. |stub-method| :param msg: A :class:`str` description of the problem. """ pass @property def connected(self): """True if the connection is connect, otherwise False""" return self._isOpen def connect(self): """\ Open the connection. :throws :class:`ConnectionError` if there was a problem and the connection could not be opened. """ if not self._isOpen: self.log.debug("Opening connection") try: self._ws.connect() except ConnectionError, e: raise e except socket.error, e: raise ConnectionError() def disconnect(self, code=1001, reason=''): """\ Close the connection. :param code: (optional :class:`int`) The connection closure code to be sent in the WebSocket disconnect frame :param reason: (optional :class:`str`) The human readable reason for the closure """ self._isOpen = False self._ws.close(code, reason) self._ws.close_connection() def _ws_on_open(self): self._isOpen=True self.log.debug("Connection opened.") self.onConnected() def _ws_on_close(self, code, reason=None): self._isOpen=False self.log.debug("Connection closed.") self.onDisconnected(code,reason) def _ws_on_disconnected(self): self._isOpen=False def _ws_on_error(self, msg): self.log.error("CII Protocol error: "+msg+"\n") self.onProtocolError(msg) def _ws_on_message(self, msg): self.log.debug("Message received.") if not msg.is_text: self._ws_on_error("Protocol error - message received was not a text frame") return try: cii = CII.unpack(msg.data) except Exception,e: self._ws_on_error("Protocol error - message received could not be parsed as a CII message: "+str(msg)+". Continuing anyway. Cause was: "+str(e)+"\n") return self.onCII(cii) class CIIClient(object): """\ Manages a CSS-CII protocol connection to a CSS-CII Server and notifies of changes to CII state. Use by subclassing and overriding the following methods: * :func:`onConnected` * :func:`onDisconnected` * :func:`onChange` * individual `onXXXXChange()` methods named after each CII property * :func:`onCiiReceived` (do not use, by preference) If you do not wish to subclass, you can instead create an instance of this class and replace the methods listed above with your own functions dynamically. The :func:`connect` and :func:`disconnect` methods connect and disconnect the connection to the server and :func:`getStatusSummary` provides a human readable summary of CII state. This object also provides properties you can query: * :data:`cii` represents the current state of CII at the server * :data:`latestCII` is the most recently CII message received from the server * :data:`connected` indicates whether the connection is currently connect """ def __init__(self, ciiUrl): """\ **Initialisation takes the following parameters:** :param ciiUrl: (:class:`str`) The WebSocket URL of the CSS-CII Server (e.g. "ws://127.0.0.1/myservice/cii") """ super(CIIClient,self).__init__() self.log = logging.getLogger("dvbcss.protocol.client.cii.CIIClient") self._conn = CIIClientConnection(ciiUrl) self._conn.onCII = self._onCII self._conn.onConnected = self._onConnectionOpen self._conn.onDisconnected = self._onConnectionClose self._conn.onProtocolError = self._onProtocolError self.connected = False #: True if currently connected to the server, otherwise False. self.cii = CII() #: (:class:`~dvbcss.protocol.cii.CII`) CII object representing the CII state at the server self.latestCII = None #: (:class:`~dvbcss.protocol.cii.CII` or :class:`None`) The most recent CII message received from the server or None if nothing has yet been received. self._callBackFuncNames = {} for name in CII.allProperties(): funcname = "on" + name[0].upper() + name[1:] + "Change" self._callBackFuncNames[name] = funcname def onConnected(self): """\ This method is called when the connection is opened. |stub-method| """ pass def onDisconnected(self, code, reason=None): """\ This method is called when the connection is closed. |stub-method| :param code: (:class:`int`) The connection closure code to be sent in the WebSocket disconnect frame :param reason: (:class:`str` or :class:`None`) The human readable reason for the closure """ pass def onChange(self, changedPropertyNames): """\ This method is called when a CII message is received from the server that causes one or more of the CII properties to change to a different value. :param changedPropertyNames: A :class:`list` of :class:`str` names of the properties that have changed. Query the :data:`cii` attribute to find out the new values. """ pass def onProtocolError(self, msg): """\ This method is called when there has been an error in the use of the CII protocol - e.g. receiving the wrong kind of message. |stub-method| :param msg: A :class:`str` description of the problem. """ pass def onCiiReceived(self, newCii): """\ This method is called when a CII message is received, but before any 'onXXXXChange()' handlers (if any) are called. It is called even if the message does not result in a change to CII state held locally. By preference is recommended to use the 'onXXXXChange()' handlers instead since these will only be called if there is an actual change to the value of a property in CII state. |stub-method| :param cii: A :class:`~dvbcss.protocol.cii.CII` object representing the received message. """ pass def connect(self): """\ Start the client by trying to open the connection. :throws ConnectionError: There was a problem that meant it was not possible to connect. """ self._conn.connect() def disconnect(self): """\ Disconnect from the server. """ self._conn.disconnect() def _onConnectionOpen(self): self.connected=True self.onConnected() def _onConnectionClose(self, code, reason): self.connected=False self.onDisconnected() def _onProtocolError(self, msg): self.log.error("There was a protocol error: "+msg+". Continuing anyway.") self.onProtocolError(msg) def _onCII(self, newCII): self.latestCII = newCII self.onCiiReceived(newCII) # take a diff since we cannot assume the received message is a diff diff=CII.diff(self.cii, newCII) changes=diff.definedProperties() if len(changes) > 0: self.log.debug("Changed properties: "+ " ".join(changes)) self.cii.update(diff) # now we examine changes and fire change specific callbacks as well as a general callback for name in changes: if name in changes: funcname = self._callBackFuncNames[name] callback = getattr(self, funcname) if callback is not None: newValue=getattr(diff, name) callback(newValue) # fire general catch-all callback self.onChange(changes) else: self.log.debug("No properties have changed") def getStatusSummary(self): if self.latestCII is None: return "Nothing received from TV yet." return str(self.cii) # programmatically create the onXXXChange methods for every property in a CII message for propertyName in CII.allProperties(): def f(self, newValue): pass f.__doc__="Called when the "+propertyName+" property of the CII message has been changed by a state update from the CII Server.\n\n" + \ "|stub-method|\n\n" + \ ":param newValue: The new value for this property." setattr(CIIClient, "on"+propertyName[0].upper() + propertyName[1:]+"Change", f) __all__ = [ "CIIClientConnection", "CIIClient", ]
#!/usr/bin/env python3 # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Usage: gn_to_cmake.py <json_file_name> gn gen out/config --ide=json --json-ide-script=../../gn/gn_to_cmake.py or gn gen out/config --ide=json python gn/gn_to_cmake.py out/config/project.json The first is recommended, as it will auto-update. """ from __future__ import print_function import functools import json import posixpath import string import sys def CMakeStringEscape(a): """Escapes the string 'a' for use inside a CMake string. This means escaping '\' otherwise it may be seen as modifying the next character '"' otherwise it will end the string ';' otherwise the string becomes a list The following do not need to be escaped '#' when the lexer is in string state, this does not start a comment """ return a.replace('\\', '\\\\').replace(';', '\\;').replace('"', '\\"') def CMakeTargetEscape(a): """Escapes the string 'a' for use as a CMake target name. CMP0037 in CMake 3.0 restricts target names to "^[A-Za-z0-9_.:+-]+$" The ':' is only allowed for imported targets. """ def Escape(c): if c in string.ascii_letters or c in string.digits or c in '_.+-': return c return '__' return ''.join([Escape(c) for c in a]) def SetVariable(out, variable_name, value): """Sets a CMake variable.""" out.write('set("') out.write(CMakeStringEscape(variable_name)) out.write('" "') out.write(CMakeStringEscape(value)) out.write('")\n') def SetVariableList(out, variable_name, values): """Sets a CMake variable to a list.""" if not values: SetVariable(out, variable_name, "") return if len(values) == 1: SetVariable(out, variable_name, values[0]) return out.write('list(APPEND "') out.write(CMakeStringEscape(variable_name)) out.write('"\n "') out.write('"\n "'.join([CMakeStringEscape(value) for value in values])) out.write('")\n') def SetFilesProperty(output, variable, property_name, values, sep): """Given a set of source files, sets the given property on them.""" output.write('set_source_files_properties(') WriteVariable(output, variable) output.write(' PROPERTIES ') output.write(property_name) output.write(' "') for value in values: output.write(CMakeStringEscape(value)) output.write(sep) output.write('")\n') def SetCurrentTargetProperty(out, property_name, values, sep=''): """Given a target, sets the given property.""" out.write('set_target_properties("${target}" PROPERTIES ') out.write(property_name) out.write(' "') for value in values: out.write(CMakeStringEscape(value)) out.write(sep) out.write('")\n') def WriteVariable(output, variable_name, prepend=None): if prepend: output.write(prepend) output.write('${') output.write(variable_name) output.write('}') # See GetSourceFileType in gn source_file_types = { '.cc': 'cxx', '.cpp': 'cxx', '.cxx': 'cxx', '.c': 'c', '.s': 'asm', '.S': 'asm', '.asm': 'asm', '.o': 'obj', '.obj': 'obj', } class CMakeTargetType: def __init__(self, command, modifier, property_modifier, is_linkable): self.command = command self.modifier = modifier self.property_modifier = property_modifier self.is_linkable = is_linkable CMakeTargetType.custom = CMakeTargetType('add_custom_target', 'SOURCES', None, False) # See GetStringForOutputType in gn cmake_target_types = { 'unknown': CMakeTargetType.custom, 'group': CMakeTargetType.custom, 'executable': CMakeTargetType('add_executable', None, 'RUNTIME', True), 'loadable_module': CMakeTargetType('add_library', 'MODULE', 'LIBRARY', True), 'shared_library': CMakeTargetType('add_library', 'SHARED', 'LIBRARY', True), 'static_library': CMakeTargetType('add_library', 'STATIC', 'ARCHIVE', False), 'source_set': CMakeTargetType('add_library', 'OBJECT', None, False), 'copy': CMakeTargetType.custom, 'action': CMakeTargetType.custom, 'action_foreach': CMakeTargetType.custom, 'bundle_data': CMakeTargetType.custom, 'create_bundle': CMakeTargetType.custom, } def FindFirstOf(s, a): return min(s.find(i) for i in a if i in s) def GetCMakeTargetName(gn_target_name): # See <chromium>/src/tools/gn/label.cc#Resolve # //base/test:test_support(//build/toolchain/win:msvc) path_separator = FindFirstOf(gn_target_name, (':', '(')) location = None name = None toolchain = None if not path_separator: location = gn_target_name[2:] else: location = gn_target_name[2:path_separator] toolchain_separator = gn_target_name.find('(', path_separator) if toolchain_separator == -1: name = gn_target_name[path_separator + 1:] else: if toolchain_separator > path_separator: name = gn_target_name[path_separator + 1:toolchain_separator] assert gn_target_name.endswith(')') toolchain = gn_target_name[toolchain_separator + 1:-1] assert location or name cmake_target_name = None if location.endswith('/' + name): cmake_target_name = location elif location: cmake_target_name = location + '_' + name else: cmake_target_name = name if toolchain: cmake_target_name += '--' + toolchain return CMakeTargetEscape(cmake_target_name) class Project: def __init__(self, project_json): self.targets = project_json['targets'] build_settings = project_json['build_settings'] self.root_path = build_settings['root_path'] self.build_path = posixpath.join(self.root_path, build_settings['build_dir'][2:]) self.object_source_deps = {} def GetAbsolutePath(self, path): if path.startswith("//"): return self.root_path + "/" + path[2:] return path def GetObjectSourceDependencies(self, gn_target_name, object_dependencies): """All OBJECT libraries whose sources have not been absorbed.""" if gn_target_name in self.object_source_deps: object_dependencies.update(self.object_source_deps[gn_target_name]) return target_deps = set() dependencies = self.targets[gn_target_name].get('deps', []) for dependency in dependencies: dependency_type = self.targets[dependency].get('type', None) if dependency_type == 'source_set': target_deps.add(dependency) if dependency_type not in gn_target_types_that_absorb_objects: self.GetObjectSourceDependencies(dependency, target_deps) self.object_source_deps[gn_target_name] = target_deps object_dependencies.update(target_deps) def GetObjectLibraryDependencies(self, gn_target_name, object_dependencies): """All OBJECT libraries whose libraries have not been absorbed.""" dependencies = self.targets[gn_target_name].get('deps', []) for dependency in dependencies: dependency_type = self.targets[dependency].get('type', None) if dependency_type == 'source_set': object_dependencies.add(dependency) self.GetObjectLibraryDependencies(dependency, object_dependencies) class Target: def __init__(self, gn_target_name, project): self.gn_name = gn_target_name self.properties = project.targets[self.gn_name] self.cmake_name = GetCMakeTargetName(self.gn_name) self.gn_type = self.properties.get('type', None) self.cmake_type = cmake_target_types.get(self.gn_type, None) def WriteAction(out, target, project, sources, synthetic_dependencies): outputs = [] output_directories = set() for output in target.properties.get('outputs', []): output_abs_path = project.GetAbsolutePath(output) outputs.append(output_abs_path) output_directory = posixpath.dirname(output_abs_path) if output_directory: output_directories.add(output_directory) outputs_name = '${target}__output' SetVariableList(out, outputs_name, outputs) out.write('add_custom_command(OUTPUT ') WriteVariable(out, outputs_name) out.write('\n') if output_directories: out.write(' COMMAND ${CMAKE_COMMAND} -E make_directory "') out.write('" "'.join([CMakeStringEscape(d) for d in output_directories])) out.write('"\n') script = target.properties['script'] arguments = target.properties['args'] out.write(' COMMAND python "') out.write(CMakeStringEscape(project.GetAbsolutePath(script))) out.write('"') if arguments: out.write('\n "') out.write('"\n "'.join([CMakeStringEscape(a) for a in arguments])) out.write('"') out.write('\n') out.write(' DEPENDS ') for sources_type_name in sources.values(): WriteVariable(out, sources_type_name, ' ') out.write('\n') #TODO: CMake 3.7 is introducing DEPFILE out.write(' WORKING_DIRECTORY "') out.write(CMakeStringEscape(project.build_path)) out.write('"\n') out.write(' COMMENT "Action: ${target}"\n') out.write(' VERBATIM)\n') synthetic_dependencies.add(outputs_name) def ExpandPlaceholders(source, a): source_dir, source_file_part = posixpath.split(source) source_name_part, _ = posixpath.splitext(source_file_part) #TODO: {{source_gen_dir}}, {{source_out_dir}}, {{response_file_name}} return a.replace('{{source}}', source) \ .replace('{{source_file_part}}', source_file_part) \ .replace('{{source_name_part}}', source_name_part) \ .replace('{{source_dir}}', source_dir) \ .replace('{{source_root_relative_dir}}', source_dir) def WriteActionForEach(out, target, project, sources, synthetic_dependencies): all_outputs = target.properties.get('outputs', []) inputs = target.properties.get('sources', []) # TODO: consider expanding 'output_patterns' instead. outputs_per_input = len(all_outputs) / len(inputs) for count, source in enumerate(inputs): source_abs_path = project.GetAbsolutePath(source) outputs = [] output_directories = set() for output in all_outputs[outputs_per_input * count: outputs_per_input * (count+1)]: output_abs_path = project.GetAbsolutePath(output) outputs.append(output_abs_path) output_directory = posixpath.dirname(output_abs_path) if output_directory: output_directories.add(output_directory) outputs_name = '${target}__output_' + str(count) SetVariableList(out, outputs_name, outputs) out.write('add_custom_command(OUTPUT ') WriteVariable(out, outputs_name) out.write('\n') if output_directories: out.write(' COMMAND ${CMAKE_COMMAND} -E make_directory "') out.write('" "'.join([CMakeStringEscape(d) for d in output_directories])) out.write('"\n') script = target.properties['script'] # TODO: need to expand {{xxx}} in arguments arguments = target.properties['args'] out.write(' COMMAND python "') out.write(CMakeStringEscape(project.GetAbsolutePath(script))) out.write('"') if arguments: out.write('\n "') expand = functools.partial(ExpandPlaceholders, source_abs_path) out.write('"\n "'.join( [CMakeStringEscape(expand(a)) for a in arguments])) out.write('"') out.write('\n') out.write(' DEPENDS') if 'input' in sources: WriteVariable(out, sources['input'], ' ') out.write(' "') out.write(CMakeStringEscape(source_abs_path)) out.write('"\n') #TODO: CMake 3.7 is introducing DEPFILE out.write(' WORKING_DIRECTORY "') out.write(CMakeStringEscape(project.build_path)) out.write('"\n') out.write(' COMMENT "Action ${target} on ') out.write(CMakeStringEscape(source_abs_path)) out.write('"\n') out.write(' VERBATIM)\n') synthetic_dependencies.add(outputs_name) def WriteCopy(out, target, project, sources, synthetic_dependencies): inputs = target.properties.get('sources', []) raw_outputs = target.properties.get('outputs', []) # TODO: consider expanding 'output_patterns' instead. outputs = [] for output in raw_outputs: output_abs_path = project.GetAbsolutePath(output) outputs.append(output_abs_path) outputs_name = '${target}__output' SetVariableList(out, outputs_name, outputs) out.write('add_custom_command(OUTPUT ') WriteVariable(out, outputs_name) out.write('\n') for src, dst in zip(inputs, outputs): out.write(' COMMAND ${CMAKE_COMMAND} -E copy "') out.write(CMakeStringEscape(project.GetAbsolutePath(src))) out.write('" "') out.write(CMakeStringEscape(dst)) out.write('"\n') out.write(' DEPENDS ') for sources_type_name in sources.values(): WriteVariable(out, sources_type_name, ' ') out.write('\n') out.write(' WORKING_DIRECTORY "') out.write(CMakeStringEscape(project.build_path)) out.write('"\n') out.write(' COMMENT "Copy ${target}"\n') out.write(' VERBATIM)\n') synthetic_dependencies.add(outputs_name) def WriteCompilerFlags(out, target, project, sources): # Hack, set linker language to c if no c or cxx files present. if not 'c' in sources and not 'cxx' in sources: SetCurrentTargetProperty(out, 'LINKER_LANGUAGE', ['C']) # Mark uncompiled sources as uncompiled. if 'input' in sources: SetFilesProperty(out, sources['input'], 'HEADER_FILE_ONLY', ('True',), '') if 'other' in sources: SetFilesProperty(out, sources['other'], 'HEADER_FILE_ONLY', ('True',), '') # Mark object sources as linkable. if 'obj' in sources: SetFilesProperty(out, sources['obj'], 'EXTERNAL_OBJECT', ('True',), '') # TODO: 'output_name', 'output_dir', 'output_extension' # This includes using 'source_outputs' to direct compiler output. # Includes includes = target.properties.get('include_dirs', []) if includes: out.write('set_property(TARGET "${target}" ') out.write('APPEND PROPERTY INCLUDE_DIRECTORIES') for include_dir in includes: out.write('\n "') out.write(project.GetAbsolutePath(include_dir)) out.write('"') out.write(')\n') # Defines defines = target.properties.get('defines', []) if defines: SetCurrentTargetProperty(out, 'COMPILE_DEFINITIONS', defines, ';') # Compile flags # "arflags", "asmflags", "cflags", # "cflags_c", "clfags_cc", "cflags_objc", "clfags_objcc" # CMake does not have per target lang compile flags. # TODO: $<$<COMPILE_LANGUAGE:CXX>:cflags_cc style generator expression. # http://public.kitware.com/Bug/view.php?id=14857 flags = [] flags.extend(target.properties.get('cflags', [])) cflags_asm = target.properties.get('asmflags', []) cflags_c = target.properties.get('cflags_c', []) cflags_cxx = target.properties.get('cflags_cc', []) if 'c' in sources and not any(k in sources for k in ('asm', 'cxx')): flags.extend(cflags_c) elif 'cxx' in sources and not any(k in sources for k in ('asm', 'c')): flags.extend(cflags_cxx) else: # TODO: This is broken, one cannot generally set properties on files, # as other targets may require different properties on the same files. if 'asm' in sources and cflags_asm: SetFilesProperty(out, sources['asm'], 'COMPILE_FLAGS', cflags_asm, ' ') if 'c' in sources and cflags_c: SetFilesProperty(out, sources['c'], 'COMPILE_FLAGS', cflags_c, ' ') if 'cxx' in sources and cflags_cxx: SetFilesProperty(out, sources['cxx'], 'COMPILE_FLAGS', cflags_cxx, ' ') if flags: SetCurrentTargetProperty(out, 'COMPILE_FLAGS', flags, ' ') # Linker flags ldflags = target.properties.get('ldflags', []) if ldflags: SetCurrentTargetProperty(out, 'LINK_FLAGS', ldflags, ' ') gn_target_types_that_absorb_objects = ( 'executable', 'loadable_module', 'shared_library', 'static_library' ) def WriteSourceVariables(out, target, project): # gn separates the sheep from the goats based on file extensions. # A full separation is done here because of flag handing (see Compile flags). source_types = {'cxx':[], 'c':[], 'asm':[], 'obj':[], 'obj_target':[], 'input':[], 'other':[]} # TODO .def files on Windows for source in target.properties.get('sources', []): _, ext = posixpath.splitext(source) source_abs_path = project.GetAbsolutePath(source) source_types[source_file_types.get(ext, 'other')].append(source_abs_path) for input_path in target.properties.get('inputs', []): input_abs_path = project.GetAbsolutePath(input_path) source_types['input'].append(input_abs_path) # OBJECT library dependencies need to be listed as sources. # Only executables and non-OBJECT libraries may reference an OBJECT library. # https://gitlab.kitware.com/cmake/cmake/issues/14778 if target.gn_type in gn_target_types_that_absorb_objects: object_dependencies = set() project.GetObjectSourceDependencies(target.gn_name, object_dependencies) for dependency in object_dependencies: cmake_dependency_name = GetCMakeTargetName(dependency) obj_target_sources = '$<TARGET_OBJECTS:' + cmake_dependency_name + '>' source_types['obj_target'].append(obj_target_sources) sources = {} for source_type, sources_of_type in source_types.items(): if sources_of_type: sources[source_type] = '${target}__' + source_type + '_srcs' SetVariableList(out, sources[source_type], sources_of_type) return sources def WriteTarget(out, target, project): out.write('\n#') out.write(target.gn_name) out.write('\n') if target.cmake_type is None: print('Target {} has unknown target type {}, skipping.'.format( target.gn_name, target.gn_type)) return SetVariable(out, 'target', target.cmake_name) sources = WriteSourceVariables(out, target, project) synthetic_dependencies = set() if target.gn_type == 'action': WriteAction(out, target, project, sources, synthetic_dependencies) if target.gn_type == 'action_foreach': WriteActionForEach(out, target, project, sources, synthetic_dependencies) if target.gn_type == 'copy': WriteCopy(out, target, project, sources, synthetic_dependencies) out.write(target.cmake_type.command) out.write('("${target}"') if target.cmake_type.modifier is not None: out.write(' ') out.write(target.cmake_type.modifier) for sources_type_name in sources.values(): WriteVariable(out, sources_type_name, ' ') if synthetic_dependencies: out.write(' DEPENDS') for synthetic_dependencie in synthetic_dependencies: WriteVariable(out, synthetic_dependencie, ' ') out.write(')\n') if target.cmake_type.command != 'add_custom_target': WriteCompilerFlags(out, target, project, sources) libraries = set() nonlibraries = set() dependencies = set(target.properties.get('deps', [])) # Transitive OBJECT libraries are in sources. # Those sources are dependent on the OBJECT library dependencies. # Those sources cannot bring in library dependencies. object_dependencies = set() if target.gn_type != 'source_set': project.GetObjectLibraryDependencies(target.gn_name, object_dependencies) for object_dependency in object_dependencies: dependencies.update(project.targets.get(object_dependency).get('deps', [])) for dependency in dependencies: gn_dependency_type = project.targets.get(dependency, {}).get('type', None) cmake_dependency_type = cmake_target_types.get(gn_dependency_type, None) cmake_dependency_name = GetCMakeTargetName(dependency) if cmake_dependency_type.command != 'add_library': nonlibraries.add(cmake_dependency_name) elif cmake_dependency_type.modifier != 'OBJECT': if target.cmake_type.is_linkable: libraries.add(cmake_dependency_name) else: nonlibraries.add(cmake_dependency_name) # Non-library dependencies. if nonlibraries: out.write('add_dependencies("${target}"') for nonlibrary in nonlibraries: out.write('\n "') out.write(nonlibrary) out.write('"') out.write(')\n') # Non-OBJECT library dependencies. external_libraries = target.properties.get('libs', []) if target.cmake_type.is_linkable and (external_libraries or libraries): library_dirs = target.properties.get('lib_dirs', []) if library_dirs: SetVariableList(out, '${target}__library_directories', library_dirs) system_libraries = [] for external_library in external_libraries: if '/' in external_library: libraries.add(project.GetAbsolutePath(external_library)) else: if external_library.endswith('.framework'): external_library = external_library[:-len('.framework')] system_library = 'library__' + external_library if library_dirs: system_library = system_library + '__for_${target}' out.write('find_library("') out.write(CMakeStringEscape(system_library)) out.write('" "') out.write(CMakeStringEscape(external_library)) out.write('"') if library_dirs: out.write(' PATHS "') WriteVariable(out, '${target}__library_directories') out.write('"') out.write(')\n') system_libraries.append(system_library) out.write('target_link_libraries("${target}"') for library in libraries: out.write('\n "') out.write(CMakeStringEscape(library)) out.write('"') for system_library in system_libraries: WriteVariable(out, system_library, '\n "') out.write('"') out.write(')\n') def WriteProject(project): out = open(posixpath.join(project.build_path, 'CMakeLists.txt'), 'w+') out.write('# Generated by gn_to_cmake.py.\n') out.write('cmake_minimum_required(VERSION 2.8.8 FATAL_ERROR)\n') out.write('cmake_policy(VERSION 2.8.8)\n\n') # Update the gn generated ninja build. # If a build file has changed, this will update CMakeLists.ext if # gn gen out/config --ide=json --json-ide-script=../../gn/gn_to_cmake.py # style was used to create this config. out.write('execute_process(COMMAND ninja -C "') out.write(CMakeStringEscape(project.build_path)) out.write('" build.ninja)\n') out.write('include(CMakeLists.ext)\n') out.close() out = open(posixpath.join(project.build_path, 'CMakeLists.ext'), 'w+') out.write('# Generated by gn_to_cmake.py.\n') out.write('cmake_minimum_required(VERSION 2.8.8 FATAL_ERROR)\n') out.write('cmake_policy(VERSION 2.8.8)\n') # The following appears to be as-yet undocumented. # http://public.kitware.com/Bug/view.php?id=8392 out.write('enable_language(ASM)\n\n') # ASM-ATT does not support .S files. # output.write('enable_language(ASM-ATT)\n') # Current issues with automatic re-generation: # The gn generated build.ninja target uses build.ninja.d # but build.ninja.d does not contain the ide or gn. # Currently the ide is not run if the project.json file is not changed # but the ide needs to be run anyway if it has itself changed. # This can be worked around by deleting the project.json file. out.write('file(READ "') gn_deps_file = posixpath.join(project.build_path, 'build.ninja.d') out.write(CMakeStringEscape(gn_deps_file)) out.write('" "gn_deps_string" OFFSET ') out.write(str(len('build.ninja: '))) out.write(')\n') # One would think this would need to worry about escaped spaces # but gn doesn't escape spaces here (it generates invalid .d files). out.write('string(REPLACE " " ";" "gn_deps" ${gn_deps_string})\n') out.write('foreach("gn_dep" ${gn_deps})\n') out.write(' configure_file(${gn_dep} "CMakeLists.devnull" COPYONLY)\n') out.write('endforeach("gn_dep")\n') for target_name in project.targets.keys(): out.write('\n') WriteTarget(out, Target(target_name, project), project) def main(): if len(sys.argv) != 2: print('Usage: ' + sys.argv[0] + ' <json_file_name>') sys.exit(1) json_path = sys.argv[1] project = None with open(json_path, 'r') as json_file: project = json.loads(json_file.read()) WriteProject(Project(project)) if __name__ == "__main__": main()
import pytest import pandas as pd import numpy as np from pandas import SparseArray, SparseDtype from pandas.errors import PerformanceWarning from pandas.tests.extension import base import pandas.util.testing as tm def make_data(fill_value): if np.isnan(fill_value): data = np.random.uniform(size=100) else: data = np.random.randint(1, 100, size=100) data[2::3] = fill_value return data @pytest.fixture def dtype(): return SparseDtype() @pytest.fixture(params=[0, np.nan]) def data(request): """Length-100 PeriodArray for semantics test.""" res = SparseArray(make_data(request.param), fill_value=request.param) return res @pytest.fixture(params=[0, np.nan]) def data_missing(request): """Length 2 array with [NA, Valid]""" return SparseArray([np.nan, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_repeated(request): """Return different versions of data for count times""" def gen(count): for _ in range(count): yield SparseArray(make_data(request.param), fill_value=request.param) yield gen @pytest.fixture(params=[0, np.nan]) def data_for_sorting(request): return SparseArray([2, 3, 1], fill_value=request.param) @pytest.fixture(params=[0, np.nan]) def data_missing_for_sorting(request): return SparseArray([2, np.nan, 1], fill_value=request.param) @pytest.fixture def na_value(): return np.nan @pytest.fixture def na_cmp(): return lambda left, right: pd.isna(left) and pd.isna(right) @pytest.fixture(params=[0, np.nan]) def data_for_grouping(request): return SparseArray([1, 1, np.nan, np.nan, 2, 2, 1, 3], fill_value=request.param) class BaseSparseTests(object): def _check_unsupported(self, data): if data.dtype == SparseDtype(int, 0): pytest.skip("Can't store nan in int array.") class TestDtype(BaseSparseTests, base.BaseDtypeTests): def test_array_type_with_arg(self, data, dtype): assert dtype.construct_array_type() is SparseArray class TestInterface(BaseSparseTests, base.BaseInterfaceTests): def test_no_values_attribute(self, data): pytest.skip("We have values") class TestConstructors(BaseSparseTests, base.BaseConstructorsTests): pass class TestReshaping(BaseSparseTests, base.BaseReshapingTests): def test_concat_mixed_dtypes(self, data): # https://github.com/pandas-dev/pandas/issues/20762 # This should be the same, aside from concat([sparse, float]) df1 = pd.DataFrame({'A': data[:3]}) df2 = pd.DataFrame({"A": [1, 2, 3]}) df3 = pd.DataFrame({"A": ['a', 'b', 'c']}).astype('category') dfs = [df1, df2, df3] # dataframes result = pd.concat(dfs) expected = pd.concat([x.apply(lambda s: np.asarray(s).astype(object)) for x in dfs]) self.assert_frame_equal(result, expected) def test_concat_columns(self, data, na_value): self._check_unsupported(data) super(TestReshaping, self).test_concat_columns(data, na_value) def test_align(self, data, na_value): self._check_unsupported(data) super(TestReshaping, self).test_align(data, na_value) def test_align_frame(self, data, na_value): self._check_unsupported(data) super(TestReshaping, self).test_align_frame(data, na_value) def test_align_series_frame(self, data, na_value): self._check_unsupported(data) super(TestReshaping, self).test_align_series_frame(data, na_value) def test_merge(self, data, na_value): self._check_unsupported(data) super(TestReshaping, self).test_merge(data, na_value) class TestGetitem(BaseSparseTests, base.BaseGetitemTests): def test_get(self, data): s = pd.Series(data, index=[2 * i for i in range(len(data))]) if np.isnan(s.values.fill_value): assert np.isnan(s.get(4)) and np.isnan(s.iloc[2]) else: assert s.get(4) == s.iloc[2] assert s.get(2) == s.iloc[1] def test_reindex(self, data, na_value): self._check_unsupported(data) super(TestGetitem, self).test_reindex(data, na_value) # Skipping TestSetitem, since we don't implement it. class TestMissing(BaseSparseTests, base.BaseMissingTests): def test_isna(self, data_missing): expected_dtype = SparseDtype(bool, pd.isna(data_missing.dtype.fill_value)) expected = SparseArray([True, False], dtype=expected_dtype) result = pd.isna(data_missing) self.assert_equal(result, expected) result = pd.Series(data_missing).isna() expected = pd.Series(expected) self.assert_series_equal(result, expected) # GH 21189 result = pd.Series(data_missing).drop([0, 1]).isna() expected = pd.Series([], dtype=expected_dtype) self.assert_series_equal(result, expected) def test_fillna_limit_pad(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super(TestMissing, self).test_fillna_limit_pad(data_missing) def test_fillna_limit_backfill(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super(TestMissing, self).test_fillna_limit_backfill(data_missing) def test_fillna_series_method(self, data_missing): with tm.assert_produces_warning(PerformanceWarning): super(TestMissing, self).test_fillna_limit_backfill(data_missing) @pytest.mark.skip(reason="Unsupported") def test_fillna_series(self): # this one looks doable. pass def test_fillna_frame(self, data_missing): # Have to override to specify that fill_value will change. fill_value = data_missing[1] result = pd.DataFrame({ "A": data_missing, "B": [1, 2] }).fillna(fill_value) if pd.isna(data_missing.fill_value): dtype = SparseDtype(data_missing.dtype, fill_value) else: dtype = data_missing.dtype expected = pd.DataFrame({ "A": data_missing._from_sequence([fill_value, fill_value], dtype=dtype), "B": [1, 2], }) self.assert_frame_equal(result, expected) class TestMethods(BaseSparseTests, base.BaseMethodsTests): def test_combine_le(self, data_repeated): # We return a Series[SparseArray].__le__ returns a # Series[Sparse[bool]] # rather than Series[bool] orig_data1, orig_data2 = data_repeated(2) s1 = pd.Series(orig_data1) s2 = pd.Series(orig_data2) result = s1.combine(s2, lambda x1, x2: x1 <= x2) expected = pd.Series(pd.SparseArray([ a <= b for (a, b) in zip(list(orig_data1), list(orig_data2)) ], fill_value=False)) self.assert_series_equal(result, expected) val = s1.iloc[0] result = s1.combine(val, lambda x1, x2: x1 <= x2) expected = pd.Series(pd.SparseArray([ a <= val for a in list(orig_data1) ], fill_value=False)) self.assert_series_equal(result, expected) class TestCasting(BaseSparseTests, base.BaseCastingTests): pass class TestArithmeticOps(BaseSparseTests, base.BaseArithmeticOpsTests): series_scalar_exc = None frame_scalar_exc = None divmod_exc = None series_array_exc = None def _skip_if_different_combine(self, data): if data.fill_value == 0: # arith ops call on dtype.fill_value so that the sparsity # is maintained. Combine can't be called on a dtype in # general, so we can't make the expected. This is tested elsewhere raise pytest.skip("Incorrected expected from Series.combine") def test_error(self, data, all_arithmetic_operators): pass def test_arith_series_with_scalar(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super(TestArithmeticOps, self).test_arith_series_with_scalar( data, all_arithmetic_operators ) def test_arith_series_with_array(self, data, all_arithmetic_operators): self._skip_if_different_combine(data) super(TestArithmeticOps, self).test_arith_series_with_array( data, all_arithmetic_operators ) class TestComparisonOps(BaseSparseTests, base.BaseComparisonOpsTests): def _compare_other(self, s, data, op_name, other): op = self.get_op_from_name(op_name) # array result = pd.Series(op(data, other)) # hard to test the fill value, since we don't know what expected # is in general. # Rely on tests in `tests/sparse` to validate that. assert isinstance(result.dtype, SparseDtype) assert result.dtype.subtype == np.dtype('bool') with np.errstate(all='ignore'): expected = pd.Series( pd.SparseArray(op(np.asarray(data), np.asarray(other)), fill_value=result.values.fill_value) ) tm.assert_series_equal(result, expected) # series s = pd.Series(data) result = op(s, other) tm.assert_series_equal(result, expected)
# Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Piston Cloud Computing, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ SQLAlchemy models for nova data. """ from sqlalchemy import Column, Index, Integer, BigInteger, Enum, String, schema from sqlalchemy.dialects.mysql import MEDIUMTEXT from sqlalchemy.ext.declarative import declarative_base from sqlalchemy import ForeignKey, DateTime, Boolean, Text, Float from sqlalchemy.orm import relationship, backref, object_mapper from oslo.config import cfg from nova.db.sqlalchemy import types from nova.openstack.common.db.sqlalchemy import models from nova.openstack.common import timeutils CONF = cfg.CONF BASE = declarative_base() def MediumText(): return Text().with_variant(MEDIUMTEXT(), 'mysql') class NovaBase(models.SoftDeleteMixin, models.TimestampMixin, models.ModelBase): metadata = None def save(self, session=None): from nova.db.sqlalchemy import api if session is None: session = api.get_session() super(NovaBase, self).save(session=session) class Service(BASE, NovaBase): """Represents a running service on a host.""" __tablename__ = 'services' __table_args__ = ( schema.UniqueConstraint("host", "topic", "deleted", name="uniq_services0host0topic0deleted"), schema.UniqueConstraint("host", "binary", "deleted", name="uniq_services0host0binary0deleted") ) id = Column(Integer, primary_key=True) host = Column(String(255)) # , ForeignKey('hosts.id')) binary = Column(String(255)) topic = Column(String(255)) report_count = Column(Integer, nullable=False, default=0) disabled = Column(Boolean, default=False) disabled_reason = Column(String(255)) class ComputeNode(BASE, NovaBase): """Represents a running compute service on a host.""" __tablename__ = 'compute_nodes' __table_args__ = () id = Column(Integer, primary_key=True) service_id = Column(Integer, ForeignKey('services.id'), nullable=False) service = relationship(Service, backref=backref('compute_node'), foreign_keys=service_id, primaryjoin='and_(' 'ComputeNode.service_id == Service.id,' 'ComputeNode.deleted == 0)') vcpus = Column(Integer, nullable=False) memory_mb = Column(Integer, nullable=False) local_gb = Column(Integer, nullable=False) vcpus_used = Column(Integer, nullable=False) memory_mb_used = Column(Integer, nullable=False) local_gb_used = Column(Integer, nullable=False) hypervisor_type = Column(MediumText(), nullable=False) hypervisor_version = Column(Integer, nullable=False) hypervisor_hostname = Column(String(255)) # Free Ram, amount of activity (resize, migration, boot, etc) and # the number of running VM's are a good starting point for what's # important when making scheduling decisions. free_ram_mb = Column(Integer) free_disk_gb = Column(Integer) current_workload = Column(Integer) running_vms = Column(Integer) # Note(masumotok): Expected Strings example: # # '{"arch":"x86_64", # "model":"Nehalem", # "topology":{"sockets":1, "threads":2, "cores":3}, # "features":["tdtscp", "xtpr"]}' # # Points are "json translatable" and it must have all dictionary keys # above, since it is copied from <cpu> tag of getCapabilities() # (See libvirt.virtConnection). cpu_info = Column(MediumText(), nullable=False) disk_available_least = Column(Integer) host_ip = Column(types.IPAddress()) supported_instances = Column(Text) metrics = Column(Text) # Note(yongli): json string PCI Stats # '{"vendor_id":"8086", "product_id":"1234", "count":3 }' pci_stats = Column(Text) # extra_resources is a json string containing arbitrary # data about additional resources. extra_resources = Column(Text) # json-encode string containing compute node statistics stats = Column(Text, default='{}') class Certificate(BASE, NovaBase): """Represents a x509 certificate.""" __tablename__ = 'certificates' __table_args__ = ( Index('certificates_project_id_deleted_idx', 'project_id', 'deleted'), Index('certificates_user_id_deleted_idx', 'user_id', 'deleted') ) id = Column(Integer, primary_key=True) user_id = Column(String(255)) project_id = Column(String(255)) file_name = Column(String(255)) class Instance(BASE, NovaBase): """Represents a guest VM.""" __tablename__ = 'instances' __table_args__ = ( Index('uuid', 'uuid', unique=True), Index('project_id', 'project_id'), Index('instances_host_deleted_idx', 'host', 'deleted'), Index('instances_reservation_id_idx', 'reservation_id'), Index('instances_terminated_at_launched_at_idx', 'terminated_at', 'launched_at'), Index('instances_uuid_deleted_idx', 'uuid', 'deleted'), Index('instances_task_state_updated_at_idx', 'task_state', 'updated_at'), Index('instances_host_node_deleted_idx', 'host', 'node', 'deleted'), Index('instances_host_deleted_cleaned_idx', 'host', 'deleted', 'cleaned'), ) injected_files = [] id = Column(Integer, primary_key=True, autoincrement=True) @property def name(self): try: base_name = CONF.instance_name_template % self.id except TypeError: # Support templates like "uuid-%(uuid)s", etc. info = {} # NOTE(russellb): Don't use self.iteritems() here, as it will # result in infinite recursion on the name property. for column in iter(object_mapper(self).columns): key = column.name # prevent recursion if someone specifies %(name)s # %(name)s will not be valid. if key == 'name': continue info[key] = self[key] try: base_name = CONF.instance_name_template % info except KeyError: base_name = self.uuid return base_name @property def _extra_keys(self): return ['name'] user_id = Column(String(255)) project_id = Column(String(255)) image_ref = Column(String(255)) kernel_id = Column(String(255)) ramdisk_id = Column(String(255)) hostname = Column(String(255)) launch_index = Column(Integer) key_name = Column(String(255)) key_data = Column(MediumText()) power_state = Column(Integer) vm_state = Column(String(255)) task_state = Column(String(255)) memory_mb = Column(Integer) vcpus = Column(Integer) root_gb = Column(Integer) ephemeral_gb = Column(Integer) ephemeral_key_uuid = Column(String(36)) # This is not related to hostname, above. It refers # to the nova node. host = Column(String(255)) # , ForeignKey('hosts.id')) # To identify the "ComputeNode" which the instance resides in. # This equals to ComputeNode.hypervisor_hostname. node = Column(String(255)) # *not* flavorid, this is the internal primary_key instance_type_id = Column(Integer) user_data = Column(MediumText()) reservation_id = Column(String(255)) scheduled_at = Column(DateTime) launched_at = Column(DateTime) terminated_at = Column(DateTime) availability_zone = Column(String(255)) # User editable field for display in user-facing UIs display_name = Column(String(255)) display_description = Column(String(255)) # To remember on which host an instance booted. # An instance may have moved to another host by live migration. launched_on = Column(MediumText()) # NOTE(jdillaman): locked deprecated in favor of locked_by, # to be removed in Icehouse locked = Column(Boolean) locked_by = Column(Enum('owner', 'admin')) os_type = Column(String(255)) architecture = Column(String(255)) vm_mode = Column(String(255)) uuid = Column(String(36)) root_device_name = Column(String(255)) default_ephemeral_device = Column(String(255)) default_swap_device = Column(String(255)) config_drive = Column(String(255)) # User editable field meant to represent what ip should be used # to connect to the instance access_ip_v4 = Column(types.IPAddress()) access_ip_v6 = Column(types.IPAddress()) auto_disk_config = Column(Boolean()) progress = Column(Integer) # EC2 instance_initiated_shutdown_terminate # True: -> 'terminate' # False: -> 'stop' # Note(maoy): currently Nova will always stop instead of terminate # no matter what the flag says. So we set the default to False. shutdown_terminate = Column(Boolean(), default=False) # EC2 disable_api_termination disable_terminate = Column(Boolean(), default=False) # OpenStack compute cell name. This will only be set at the top of # the cells tree and it'll be a full cell name such as 'api!hop1!hop2' cell_name = Column(String(255)) internal_id = Column(Integer) # Records whether an instance has been deleted from disk cleaned = Column(Integer, default=0) class InstanceInfoCache(BASE, NovaBase): """Represents a cache of information about an instance """ __tablename__ = 'instance_info_caches' __table_args__ = ( schema.UniqueConstraint( "instance_uuid", name="uniq_instance_info_caches0instance_uuid"),) id = Column(Integer, primary_key=True, autoincrement=True) # text column used for storing a json object of network data for api network_info = Column(MediumText()) instance_uuid = Column(String(36), ForeignKey('instances.uuid'), nullable=False) instance = relationship(Instance, backref=backref('info_cache', uselist=False), foreign_keys=instance_uuid, primaryjoin=instance_uuid == Instance.uuid) class InstanceTypes(BASE, NovaBase): """Represents possible flavors for instances. Note: instance_type and flavor are synonyms and the term instance_type is deprecated and in the process of being removed. """ __tablename__ = "instance_types" __table_args__ = ( schema.UniqueConstraint("flavorid", "deleted", name="uniq_instance_types0flavorid0deleted"), schema.UniqueConstraint("name", "deleted", name="uniq_instance_types0name0deleted") ) # Internal only primary key/id id = Column(Integer, primary_key=True) name = Column(String(255)) memory_mb = Column(Integer, nullable=False) vcpus = Column(Integer, nullable=False) root_gb = Column(Integer) ephemeral_gb = Column(Integer) # Public facing id will be renamed public_id flavorid = Column(String(255)) swap = Column(Integer, nullable=False, default=0) rxtx_factor = Column(Float, default=1) vcpu_weight = Column(Integer) disabled = Column(Boolean, default=False) is_public = Column(Boolean, default=True) instances = relationship(Instance, backref=backref('instance_type'), foreign_keys=id, primaryjoin=id == Instance.instance_type_id) class Volume(BASE, NovaBase): """Represents a block storage device that can be attached to a VM.""" __tablename__ = 'volumes' __table_args__ = ( Index('volumes_instance_uuid_idx', 'instance_uuid'), ) id = Column(String(36), primary_key=True, nullable=False) deleted = Column(String(36), default="") @property def name(self): return CONF.volume_name_template % self.id ec2_id = Column(String(255)) user_id = Column(String(255)) project_id = Column(String(255)) snapshot_id = Column(String(36)) host = Column(String(255)) size = Column(Integer) availability_zone = Column(String(255)) instance_uuid = Column(String(36)) mountpoint = Column(String(255)) attach_time = Column(DateTime) status = Column(String(255)) # TODO(vish): enum? attach_status = Column(String(255)) # TODO(vish): enum scheduled_at = Column(DateTime) launched_at = Column(DateTime) terminated_at = Column(DateTime) display_name = Column(String(255)) display_description = Column(String(255)) provider_location = Column(String(256)) provider_auth = Column(String(256)) volume_type_id = Column(Integer) class Quota(BASE, NovaBase): """Represents a single quota override for a project. If there is no row for a given project id and resource, then the default for the quota class is used. If there is no row for a given quota class and resource, then the default for the deployment is used. If the row is present but the hard limit is Null, then the resource is unlimited. """ __tablename__ = 'quotas' __table_args__ = ( schema.UniqueConstraint("project_id", "resource", "deleted", name="uniq_quotas0project_id0resource0deleted" ), ) id = Column(Integer, primary_key=True) project_id = Column(String(255)) resource = Column(String(255), nullable=False) hard_limit = Column(Integer) class ProjectUserQuota(BASE, NovaBase): """Represents a single quota override for a user with in a project.""" __tablename__ = 'project_user_quotas' uniq_name = "uniq_project_user_quotas0user_id0project_id0resource0deleted" __table_args__ = ( schema.UniqueConstraint("user_id", "project_id", "resource", "deleted", name=uniq_name), Index('project_user_quotas_project_id_deleted_idx', 'project_id', 'deleted'), Index('project_user_quotas_user_id_deleted_idx', 'user_id', 'deleted') ) id = Column(Integer, primary_key=True, nullable=False) project_id = Column(String(255), nullable=False) user_id = Column(String(255), nullable=False) resource = Column(String(255), nullable=False) hard_limit = Column(Integer) class QuotaClass(BASE, NovaBase): """Represents a single quota override for a quota class. If there is no row for a given quota class and resource, then the default for the deployment is used. If the row is present but the hard limit is Null, then the resource is unlimited. """ __tablename__ = 'quota_classes' __table_args__ = ( Index('ix_quota_classes_class_name', 'class_name'), ) id = Column(Integer, primary_key=True) class_name = Column(String(255)) resource = Column(String(255)) hard_limit = Column(Integer) class QuotaUsage(BASE, NovaBase): """Represents the current usage for a given resource.""" __tablename__ = 'quota_usages' __table_args__ = ( Index('ix_quota_usages_project_id', 'project_id'), ) id = Column(Integer, primary_key=True) project_id = Column(String(255)) user_id = Column(String(255)) resource = Column(String(255), nullable=False) in_use = Column(Integer, nullable=False) reserved = Column(Integer, nullable=False) @property def total(self): return self.in_use + self.reserved until_refresh = Column(Integer) class Reservation(BASE, NovaBase): """Represents a resource reservation for quotas.""" __tablename__ = 'reservations' __table_args__ = ( Index('ix_reservations_project_id', 'project_id'), Index('reservations_uuid_idx', 'uuid'), ) id = Column(Integer, primary_key=True, nullable=False) uuid = Column(String(36), nullable=False) usage_id = Column(Integer, ForeignKey('quota_usages.id'), nullable=False) project_id = Column(String(255)) user_id = Column(String(255)) resource = Column(String(255)) delta = Column(Integer, nullable=False) expire = Column(DateTime) usage = relationship( "QuotaUsage", foreign_keys=usage_id, primaryjoin='and_(Reservation.usage_id == QuotaUsage.id,' 'QuotaUsage.deleted == 0)') class Snapshot(BASE, NovaBase): """Represents a block storage device that can be attached to a VM.""" __tablename__ = 'snapshots' __table_args__ = () id = Column(String(36), primary_key=True, nullable=False) deleted = Column(String(36), default="") @property def name(self): return CONF.snapshot_name_template % self.id @property def volume_name(self): return CONF.volume_name_template % self.volume_id user_id = Column(String(255)) project_id = Column(String(255)) volume_id = Column(String(36), nullable=False) status = Column(String(255)) progress = Column(String(255)) volume_size = Column(Integer) scheduled_at = Column(DateTime) display_name = Column(String(255)) display_description = Column(String(255)) class BlockDeviceMapping(BASE, NovaBase): """Represents block device mapping that is defined by EC2.""" __tablename__ = "block_device_mapping" __table_args__ = ( Index('snapshot_id', 'snapshot_id'), Index('volume_id', 'volume_id'), Index('block_device_mapping_instance_uuid_device_name_idx', 'instance_uuid', 'device_name'), Index('block_device_mapping_instance_uuid_volume_id_idx', 'instance_uuid', 'volume_id'), Index('block_device_mapping_instance_uuid_idx', 'instance_uuid'), #TODO(sshturm) Should be dropped. `virtual_name` was dropped #in 186 migration, #Duplicates `block_device_mapping_instance_uuid_device_name_idx` index. Index("block_device_mapping_instance_uuid_virtual_name" "_device_name_idx", 'instance_uuid', 'device_name'), ) id = Column(Integer, primary_key=True, autoincrement=True) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) instance = relationship(Instance, backref=backref('block_device_mapping'), foreign_keys=instance_uuid, primaryjoin='and_(BlockDeviceMapping.' 'instance_uuid==' 'Instance.uuid,' 'BlockDeviceMapping.deleted==' '0)') source_type = Column(String(255)) destination_type = Column(String(255)) guest_format = Column(String(255)) device_type = Column(String(255)) disk_bus = Column(String(255)) boot_index = Column(Integer) device_name = Column(String(255)) # default=False for compatibility of the existing code. # With EC2 API, # default True for ami specified device. # default False for created with other timing. #TODO(sshturm) add default in db delete_on_termination = Column(Boolean, default=False) snapshot_id = Column(String(36)) volume_id = Column(String(36)) volume_size = Column(Integer) image_id = Column(String(36)) # for no device to suppress devices. no_device = Column(Boolean) connection_info = Column(MediumText()) class IscsiTarget(BASE, NovaBase): """Represents an iscsi target for a given host.""" __tablename__ = 'iscsi_targets' __table_args__ = ( Index('iscsi_targets_volume_id_fkey', 'volume_id'), Index('iscsi_targets_host_idx', 'host'), Index('iscsi_targets_host_volume_id_deleted_idx', 'host', 'volume_id', 'deleted') ) id = Column(Integer, primary_key=True, nullable=False) target_num = Column(Integer) host = Column(String(255)) volume_id = Column(String(36), ForeignKey('volumes.id')) volume = relationship(Volume, backref=backref('iscsi_target', uselist=False), foreign_keys=volume_id, primaryjoin='and_(IscsiTarget.volume_id==Volume.id,' 'IscsiTarget.deleted==0)') class SecurityGroupInstanceAssociation(BASE, NovaBase): __tablename__ = 'security_group_instance_association' __table_args__ = ( Index('security_group_instance_association_instance_uuid_idx', 'instance_uuid'), ) id = Column(Integer, primary_key=True, nullable=False) security_group_id = Column(Integer, ForeignKey('security_groups.id')) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) class SecurityGroup(BASE, NovaBase): """Represents a security group.""" __tablename__ = 'security_groups' __table_args__ = ( Index('uniq_security_groups0project_id0name0deleted', 'project_id', 'name', 'deleted'), ) id = Column(Integer, primary_key=True) name = Column(String(255)) description = Column(String(255)) user_id = Column(String(255)) project_id = Column(String(255)) instances = relationship(Instance, secondary="security_group_instance_association", primaryjoin='and_(' 'SecurityGroup.id == ' 'SecurityGroupInstanceAssociation.security_group_id,' 'SecurityGroupInstanceAssociation.deleted == 0,' 'SecurityGroup.deleted == 0)', secondaryjoin='and_(' 'SecurityGroupInstanceAssociation.instance_uuid == Instance.uuid,' # (anthony) the condition below shouldn't be necessary now that the # association is being marked as deleted. However, removing this # may cause existing deployments to choke, so I'm leaving it 'Instance.deleted == 0)', backref='security_groups') class SecurityGroupIngressRule(BASE, NovaBase): """Represents a rule in a security group.""" __tablename__ = 'security_group_rules' __table_args__ = () id = Column(Integer, primary_key=True) parent_group_id = Column(Integer, ForeignKey('security_groups.id')) parent_group = relationship("SecurityGroup", backref="rules", foreign_keys=parent_group_id, primaryjoin='and_(' 'SecurityGroupIngressRule.parent_group_id == SecurityGroup.id,' 'SecurityGroupIngressRule.deleted == 0)') protocol = Column(String(255)) from_port = Column(Integer) to_port = Column(Integer) cidr = Column(types.CIDR()) # Note: This is not the parent SecurityGroup. It's SecurityGroup we're # granting access for. group_id = Column(Integer, ForeignKey('security_groups.id')) grantee_group = relationship("SecurityGroup", foreign_keys=group_id, primaryjoin='and_(' 'SecurityGroupIngressRule.group_id == SecurityGroup.id,' 'SecurityGroupIngressRule.deleted == 0)') class SecurityGroupIngressDefaultRule(BASE, NovaBase): __tablename__ = 'security_group_default_rules' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False) protocol = Column(String(5)) # "tcp", "udp" or "icmp" from_port = Column(Integer) to_port = Column(Integer) cidr = Column(types.CIDR()) class ProviderFirewallRule(BASE, NovaBase): """Represents a rule in a security group.""" __tablename__ = 'provider_fw_rules' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False) protocol = Column(String(5)) # "tcp", "udp", or "icmp" from_port = Column(Integer) to_port = Column(Integer) cidr = Column(types.CIDR()) class KeyPair(BASE, NovaBase): """Represents a public key pair for ssh.""" __tablename__ = 'key_pairs' __table_args__ = ( schema.UniqueConstraint("user_id", "name", "deleted", name="uniq_key_pairs0user_id0name0deleted"), ) id = Column(Integer, primary_key=True, nullable=False) name = Column(String(255)) user_id = Column(String(255)) fingerprint = Column(String(255)) public_key = Column(MediumText()) class Migration(BASE, NovaBase): """Represents a running host-to-host migration.""" __tablename__ = 'migrations' __table_args__ = ( Index('migrations_instance_uuid_and_status_idx', 'instance_uuid', 'status'), Index('migrations_by_host_nodes_and_status_idx', 'deleted', 'source_compute', 'dest_compute', 'source_node', 'dest_node', 'status'), ) id = Column(Integer, primary_key=True, nullable=False) # NOTE(tr3buchet): the ____compute variables are instance['host'] source_compute = Column(String(255)) dest_compute = Column(String(255)) # nodes are equivalent to a compute node's 'hypervisor_hostname' source_node = Column(String(255)) dest_node = Column(String(255)) # NOTE(tr3buchet): dest_host, btw, is an ip address dest_host = Column(String(255)) old_instance_type_id = Column(Integer()) new_instance_type_id = Column(Integer()) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) #TODO(_cerberus_): enum status = Column(String(255)) instance = relationship("Instance", foreign_keys=instance_uuid, primaryjoin='and_(Migration.instance_uuid == ' 'Instance.uuid, Instance.deleted == ' '0)') class Network(BASE, NovaBase): """Represents a network.""" __tablename__ = 'networks' __table_args__ = ( schema.UniqueConstraint("vlan", "deleted", name="uniq_networks0vlan0deleted"), Index('networks_bridge_deleted_idx', 'bridge', 'deleted'), Index('networks_host_idx', 'host'), Index('networks_project_id_deleted_idx', 'project_id', 'deleted'), Index('networks_uuid_project_id_deleted_idx', 'uuid', 'project_id', 'deleted'), Index('networks_vlan_deleted_idx', 'vlan', 'deleted'), Index('networks_cidr_v6_idx', 'cidr_v6') ) id = Column(Integer, primary_key=True, nullable=False) label = Column(String(255)) injected = Column(Boolean, default=False) cidr = Column(types.CIDR()) cidr_v6 = Column(types.CIDR()) multi_host = Column(Boolean, default=False) gateway_v6 = Column(types.IPAddress()) netmask_v6 = Column(types.IPAddress()) netmask = Column(types.IPAddress()) bridge = Column(String(255)) bridge_interface = Column(String(255)) gateway = Column(types.IPAddress()) broadcast = Column(types.IPAddress()) dns1 = Column(types.IPAddress()) dns2 = Column(types.IPAddress()) vlan = Column(Integer) vpn_public_address = Column(types.IPAddress()) vpn_public_port = Column(Integer) vpn_private_address = Column(types.IPAddress()) dhcp_start = Column(types.IPAddress()) rxtx_base = Column(Integer) project_id = Column(String(255)) priority = Column(Integer) host = Column(String(255)) # , ForeignKey('hosts.id')) uuid = Column(String(36)) class VirtualInterface(BASE, NovaBase): """Represents a virtual interface on an instance.""" __tablename__ = 'virtual_interfaces' __table_args__ = ( schema.UniqueConstraint("address", "deleted", name="uniq_virtual_interfaces0address0deleted"), Index('network_id', 'network_id'), Index('virtual_interfaces_instance_uuid_fkey', 'instance_uuid'), ) id = Column(Integer, primary_key=True, nullable=False) address = Column(String(255)) network_id = Column(Integer) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) uuid = Column(String(36)) # TODO(vish): can these both come from the same baseclass? class FixedIp(BASE, NovaBase): """Represents a fixed ip for an instance.""" __tablename__ = 'fixed_ips' __table_args__ = ( schema.UniqueConstraint( "address", "deleted", name="uniq_fixed_ips0address0deleted"), Index('fixed_ips_virtual_interface_id_fkey', 'virtual_interface_id'), Index('network_id', 'network_id'), Index('address', 'address'), Index('fixed_ips_instance_uuid_fkey', 'instance_uuid'), Index('fixed_ips_host_idx', 'host'), Index('fixed_ips_network_id_host_deleted_idx', 'network_id', 'host', 'deleted'), Index('fixed_ips_address_reserved_network_id_deleted_idx', 'address', 'reserved', 'network_id', 'deleted'), Index('fixed_ips_deleted_allocated_idx', 'address', 'deleted', 'allocated') ) id = Column(Integer, primary_key=True) address = Column(types.IPAddress()) network_id = Column(Integer) virtual_interface_id = Column(Integer) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) # associated means that a fixed_ip has its instance_id column set # allocated means that a fixed_ip has its virtual_interface_id column set #TODO(sshturm) add default in db allocated = Column(Boolean, default=False) # leased means dhcp bridge has leased the ip #TODO(sshturm) add default in db leased = Column(Boolean, default=False) #TODO(sshturm) add default in db reserved = Column(Boolean, default=False) host = Column(String(255)) network = relationship(Network, backref=backref('fixed_ips'), foreign_keys=network_id, primaryjoin='and_(' 'FixedIp.network_id == Network.id,' 'FixedIp.deleted == 0,' 'Network.deleted == 0)') instance = relationship(Instance, foreign_keys=instance_uuid, primaryjoin='and_(' 'FixedIp.instance_uuid == Instance.uuid,' 'FixedIp.deleted == 0,' 'Instance.deleted == 0)') class FloatingIp(BASE, NovaBase): """Represents a floating ip that dynamically forwards to a fixed ip.""" __tablename__ = 'floating_ips' __table_args__ = ( schema.UniqueConstraint("address", "deleted", name="uniq_floating_ips0address0deleted"), Index('fixed_ip_id', 'fixed_ip_id'), Index('floating_ips_host_idx', 'host'), Index('floating_ips_project_id_idx', 'project_id'), Index('floating_ips_pool_deleted_fixed_ip_id_project_id_idx', 'pool', 'deleted', 'fixed_ip_id', 'project_id') ) id = Column(Integer, primary_key=True) address = Column(types.IPAddress()) fixed_ip_id = Column(Integer) project_id = Column(String(255)) host = Column(String(255)) # , ForeignKey('hosts.id')) auto_assigned = Column(Boolean, default=False) #TODO(sshturm) add default in db pool = Column(String(255)) interface = Column(String(255)) fixed_ip = relationship(FixedIp, backref=backref('floating_ips'), foreign_keys=fixed_ip_id, primaryjoin='and_(' 'FloatingIp.fixed_ip_id == FixedIp.id,' 'FloatingIp.deleted == 0,' 'FixedIp.deleted == 0)') class DNSDomain(BASE, NovaBase): """Represents a DNS domain with availability zone or project info.""" __tablename__ = 'dns_domains' __table_args__ = ( Index('project_id', 'project_id'), Index('dns_domains_domain_deleted_idx', 'domain', 'deleted'), ) deleted = Column(Boolean, default=False) domain = Column(String(255), primary_key=True) scope = Column(String(255)) availability_zone = Column(String(255)) project_id = Column(String(255)) class ConsolePool(BASE, NovaBase): """Represents pool of consoles on the same physical node.""" __tablename__ = 'console_pools' __table_args__ = ( schema.UniqueConstraint( "host", "console_type", "compute_host", "deleted", name="uniq_console_pools0host0console_type0compute_host0deleted"), ) id = Column(Integer, primary_key=True) address = Column(types.IPAddress()) username = Column(String(255)) password = Column(String(255)) console_type = Column(String(255)) public_hostname = Column(String(255)) host = Column(String(255)) compute_host = Column(String(255)) class Console(BASE, NovaBase): """Represents a console session for an instance.""" __tablename__ = 'consoles' __table_args__ = ( Index('consoles_instance_uuid_idx', 'instance_uuid'), ) id = Column(Integer, primary_key=True) instance_name = Column(String(255)) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) password = Column(String(255)) port = Column(Integer) pool_id = Column(Integer, ForeignKey('console_pools.id')) pool = relationship(ConsolePool, backref=backref('consoles')) class InstanceMetadata(BASE, NovaBase): """Represents a user-provided metadata key/value pair for an instance.""" __tablename__ = 'instance_metadata' __table_args__ = ( Index('instance_metadata_instance_uuid_idx', 'instance_uuid'), ) id = Column(Integer, primary_key=True) key = Column(String(255)) value = Column(String(255)) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) instance = relationship(Instance, backref="metadata", foreign_keys=instance_uuid, primaryjoin='and_(' 'InstanceMetadata.instance_uuid == ' 'Instance.uuid,' 'InstanceMetadata.deleted == 0)') class InstanceSystemMetadata(BASE, NovaBase): """Represents a system-owned metadata key/value pair for an instance.""" __tablename__ = 'instance_system_metadata' __table_args__ = () id = Column(Integer, primary_key=True) key = Column(String(255), nullable=False) value = Column(String(255)) instance_uuid = Column(String(36), ForeignKey('instances.uuid'), nullable=False) primary_join = ('and_(InstanceSystemMetadata.instance_uuid == ' 'Instance.uuid, InstanceSystemMetadata.deleted == 0)') instance = relationship(Instance, backref="system_metadata", foreign_keys=instance_uuid, primaryjoin=primary_join) class InstanceTypeProjects(BASE, NovaBase): """Represent projects associated instance_types.""" __tablename__ = "instance_type_projects" __table_args__ = (schema.UniqueConstraint( "instance_type_id", "project_id", "deleted", name="uniq_instance_type_projects0instance_type_id0project_id0deleted" ), ) id = Column(Integer, primary_key=True) instance_type_id = Column(Integer, ForeignKey('instance_types.id'), nullable=False) project_id = Column(String(255)) instance_type = relationship(InstanceTypes, backref="projects", foreign_keys=instance_type_id, primaryjoin='and_(' 'InstanceTypeProjects.instance_type_id == InstanceTypes.id,' 'InstanceTypeProjects.deleted == 0)') class InstanceTypeExtraSpecs(BASE, NovaBase): """Represents additional specs as key/value pairs for an instance_type.""" __tablename__ = 'instance_type_extra_specs' __table_args__ = ( Index('instance_type_extra_specs_instance_type_id_key_idx', 'instance_type_id', 'key'), schema.UniqueConstraint( "instance_type_id", "key", "deleted", name=("uniq_instance_type_extra_specs0" "instance_type_id0key0deleted") ), ) id = Column(Integer, primary_key=True) key = Column(String(255)) value = Column(String(255)) instance_type_id = Column(Integer, ForeignKey('instance_types.id'), nullable=False) instance_type = relationship(InstanceTypes, backref="extra_specs", foreign_keys=instance_type_id, primaryjoin='and_(' 'InstanceTypeExtraSpecs.instance_type_id == InstanceTypes.id,' 'InstanceTypeExtraSpecs.deleted == 0)') class Cell(BASE, NovaBase): """Represents parent and child cells of this cell. Cells can have multiple parents and children, so there could be any number of entries with is_parent=True or False """ __tablename__ = 'cells' __table_args__ = (schema.UniqueConstraint( "name", "deleted", name="uniq_cells0name0deleted" ), ) id = Column(Integer, primary_key=True) # Name here is the 'short name' of a cell. For instance: 'child1' name = Column(String(255)) api_url = Column(String(255)) transport_url = Column(String(255), nullable=False) weight_offset = Column(Float(), default=0.0) weight_scale = Column(Float(), default=1.0) is_parent = Column(Boolean()) class AggregateHost(BASE, NovaBase): """Represents a host that is member of an aggregate.""" __tablename__ = 'aggregate_hosts' __table_args__ = (schema.UniqueConstraint( "host", "aggregate_id", "deleted", name="uniq_aggregate_hosts0host0aggregate_id0deleted" ), ) id = Column(Integer, primary_key=True, autoincrement=True) host = Column(String(255)) aggregate_id = Column(Integer, ForeignKey('aggregates.id'), nullable=False) class AggregateMetadata(BASE, NovaBase): """Represents a metadata key/value pair for an aggregate.""" __tablename__ = 'aggregate_metadata' __table_args__ = ( schema.UniqueConstraint("aggregate_id", "key", "deleted", name="uniq_aggregate_metadata0aggregate_id0key0deleted" ), Index('aggregate_metadata_key_idx', 'key'), ) id = Column(Integer, primary_key=True) key = Column(String(255), nullable=False) value = Column(String(255), nullable=False) aggregate_id = Column(Integer, ForeignKey('aggregates.id'), nullable=False) class Aggregate(BASE, NovaBase): """Represents a cluster of hosts that exists in this zone.""" __tablename__ = 'aggregates' __table_args__ = () id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String(255)) _hosts = relationship(AggregateHost, primaryjoin='and_(' 'Aggregate.id == AggregateHost.aggregate_id,' 'AggregateHost.deleted == 0,' 'Aggregate.deleted == 0)') _metadata = relationship(AggregateMetadata, primaryjoin='and_(' 'Aggregate.id == AggregateMetadata.aggregate_id,' 'AggregateMetadata.deleted == 0,' 'Aggregate.deleted == 0)') @property def _extra_keys(self): return ['hosts', 'metadetails', 'availability_zone'] @property def hosts(self): return [h.host for h in self._hosts] @property def metadetails(self): return dict([(m.key, m.value) for m in self._metadata]) @property def availability_zone(self): if 'availability_zone' not in self.metadetails: return None return self.metadetails['availability_zone'] class AgentBuild(BASE, NovaBase): """Represents an agent build.""" __tablename__ = 'agent_builds' __table_args__ = ( Index('agent_builds_hypervisor_os_arch_idx', 'hypervisor', 'os', 'architecture'), schema.UniqueConstraint("hypervisor", "os", "architecture", "deleted", name="uniq_agent_builds0hypervisor0os0architecture0deleted"), ) id = Column(Integer, primary_key=True) hypervisor = Column(String(255)) os = Column(String(255)) architecture = Column(String(255)) version = Column(String(255)) url = Column(String(255)) md5hash = Column(String(255)) class BandwidthUsage(BASE, NovaBase): """Cache for instance bandwidth usage data pulled from the hypervisor.""" __tablename__ = 'bw_usage_cache' __table_args__ = ( Index('bw_usage_cache_uuid_start_period_idx', 'uuid', 'start_period'), ) id = Column(Integer, primary_key=True, nullable=False) uuid = Column(String(36)) mac = Column(String(255)) start_period = Column(DateTime, nullable=False) last_refreshed = Column(DateTime) bw_in = Column(BigInteger) bw_out = Column(BigInteger) last_ctr_in = Column(BigInteger) last_ctr_out = Column(BigInteger) class VolumeUsage(BASE, NovaBase): """Cache for volume usage data pulled from the hypervisor.""" __tablename__ = 'volume_usage_cache' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False) volume_id = Column(String(36), nullable=False) instance_uuid = Column(String(36)) project_id = Column(String(36)) user_id = Column(String(36)) availability_zone = Column(String(255)) tot_last_refreshed = Column(DateTime) tot_reads = Column(BigInteger, default=0) tot_read_bytes = Column(BigInteger, default=0) tot_writes = Column(BigInteger, default=0) tot_write_bytes = Column(BigInteger, default=0) curr_last_refreshed = Column(DateTime) curr_reads = Column(BigInteger, default=0) curr_read_bytes = Column(BigInteger, default=0) curr_writes = Column(BigInteger, default=0) curr_write_bytes = Column(BigInteger, default=0) class S3Image(BASE, NovaBase): """Compatibility layer for the S3 image service talking to Glance.""" __tablename__ = 's3_images' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) uuid = Column(String(36), nullable=False) class VolumeIdMapping(BASE, NovaBase): """Compatibility layer for the EC2 volume service.""" __tablename__ = 'volume_id_mappings' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) uuid = Column(String(36), nullable=False) class SnapshotIdMapping(BASE, NovaBase): """Compatibility layer for the EC2 snapshot service.""" __tablename__ = 'snapshot_id_mappings' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) uuid = Column(String(36), nullable=False) class InstanceFault(BASE, NovaBase): __tablename__ = 'instance_faults' __table_args__ = ( Index('instance_faults_host_idx', 'host'), Index('instance_faults_instance_uuid_deleted_created_at_idx', 'instance_uuid', 'deleted', 'created_at') ) id = Column(Integer, primary_key=True, nullable=False) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) code = Column(Integer(), nullable=False) message = Column(String(255)) details = Column(MediumText()) host = Column(String(255)) class InstanceAction(BASE, NovaBase): """Track client actions on an instance. The intention is that there will only be one of these per user request. A lookup by (instance_uuid, request_id) should always return a single result. """ __tablename__ = 'instance_actions' __table_args__ = ( Index('instance_uuid_idx', 'instance_uuid'), Index('request_id_idx', 'request_id') ) id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) action = Column(String(255)) instance_uuid = Column(String(36), ForeignKey('instances.uuid')) request_id = Column(String(255)) user_id = Column(String(255)) project_id = Column(String(255)) start_time = Column(DateTime, default=timeutils.utcnow) finish_time = Column(DateTime) message = Column(String(255)) class InstanceActionEvent(BASE, NovaBase): """Track events that occur during an InstanceAction.""" __tablename__ = 'instance_actions_events' __table_args__ = () id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) event = Column(String(255)) action_id = Column(Integer, ForeignKey('instance_actions.id')) start_time = Column(DateTime, default=timeutils.utcnow) finish_time = Column(DateTime) result = Column(String(255)) traceback = Column(Text) host = Column(String(255)) details = Column(Text) class InstanceIdMapping(BASE, NovaBase): """Compatibility layer for the EC2 instance service.""" __tablename__ = 'instance_id_mappings' __table_args__ = ( Index('ix_instance_id_mappings_uuid', 'uuid'), ) id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) uuid = Column(String(36), nullable=False) class TaskLog(BASE, NovaBase): """Audit log for background periodic tasks.""" __tablename__ = 'task_log' __table_args__ = ( schema.UniqueConstraint( 'task_name', 'host', 'period_beginning', 'period_ending', name="uniq_task_log0task_name0host0period_beginning0period_ending" ), Index('ix_task_log_period_beginning', 'period_beginning'), Index('ix_task_log_host', 'host'), Index('ix_task_log_period_ending', 'period_ending'), ) id = Column(Integer, primary_key=True, nullable=False, autoincrement=True) task_name = Column(String(255), nullable=False) state = Column(String(255), nullable=False) host = Column(String(255), nullable=False) period_beginning = Column(DateTime, default=timeutils.utcnow, nullable=False) period_ending = Column(DateTime, default=timeutils.utcnow, nullable=False) message = Column(String(255), nullable=False) task_items = Column(Integer(), default=0) errors = Column(Integer(), default=0) class InstanceGroupMember(BASE, NovaBase): """Represents the members for an instance group.""" __tablename__ = 'instance_group_member' __table_args__ = ( Index('instance_group_member_instance_idx', 'instance_id'), ) id = Column(Integer, primary_key=True, nullable=False) instance_id = Column(String(255)) group_id = Column(Integer, ForeignKey('instance_groups.id'), nullable=False) class InstanceGroupPolicy(BASE, NovaBase): """Represents the policy type for an instance group.""" __tablename__ = 'instance_group_policy' __table_args__ = ( Index('instance_group_policy_policy_idx', 'policy'), ) id = Column(Integer, primary_key=True, nullable=False) policy = Column(String(255)) group_id = Column(Integer, ForeignKey('instance_groups.id'), nullable=False) class InstanceGroupMetadata(BASE, NovaBase): """Represents a key/value pair for an instance group.""" __tablename__ = 'instance_group_metadata' __table_args__ = ( Index('instance_group_metadata_key_idx', 'key'), ) id = Column(Integer, primary_key=True, nullable=False) key = Column(String(255)) value = Column(String(255)) group_id = Column(Integer, ForeignKey('instance_groups.id'), nullable=False) class InstanceGroup(BASE, NovaBase): """Represents an instance group. A group will maintain a collection of instances and the relationship between them. """ __tablename__ = 'instance_groups' __table_args__ = ( schema.UniqueConstraint("uuid", "deleted", name="uniq_instance_groups0uuid0deleted"), ) id = Column(Integer, primary_key=True, autoincrement=True) user_id = Column(String(255)) project_id = Column(String(255)) uuid = Column(String(36), nullable=False) name = Column(String(255)) _policies = relationship(InstanceGroupPolicy, primaryjoin='and_(' 'InstanceGroup.id == InstanceGroupPolicy.group_id,' 'InstanceGroupPolicy.deleted == 0,' 'InstanceGroup.deleted == 0)') _metadata = relationship(InstanceGroupMetadata, primaryjoin='and_(' 'InstanceGroup.id == InstanceGroupMetadata.group_id,' 'InstanceGroupMetadata.deleted == 0,' 'InstanceGroup.deleted == 0)') _members = relationship(InstanceGroupMember, primaryjoin='and_(' 'InstanceGroup.id == InstanceGroupMember.group_id,' 'InstanceGroupMember.deleted == 0,' 'InstanceGroup.deleted == 0)') @property def policies(self): return [p.policy for p in self._policies] @property def metadetails(self): return dict((m.key, m.value) for m in self._metadata) @property def members(self): return [m.instance_id for m in self._members] class PciDevice(BASE, NovaBase): """Represents a PCI host device that can be passed through to instances. """ __tablename__ = 'pci_devices' __table_args__ = ( Index('ix_pci_devices_compute_node_id_deleted', 'compute_node_id', 'deleted'), Index('ix_pci_devices_instance_uuid_deleted', 'instance_uuid', 'deleted'), schema.UniqueConstraint( "compute_node_id", "address", "deleted", name="uniq_pci_devices0compute_node_id0address0deleted") ) id = Column(Integer, primary_key=True) compute_node_id = Column(Integer, ForeignKey('compute_nodes.id'), nullable=False) # physical address of device domain:bus:slot.func (0000:09:01.1) address = Column(String(12), nullable=False) vendor_id = Column(String(4), nullable=False) product_id = Column(String(4), nullable=False) dev_type = Column(String(8), nullable=False) dev_id = Column(String(255)) # label is abstract device name, that is used to unify devices with the # same functionality with different addresses or host. label = Column(String(255), nullable=False) status = Column(String(36), nullable=False) extra_info = Column(Text) instance_uuid = Column(String(36)) instance = relationship(Instance, backref="pci_devices", foreign_keys=instance_uuid, primaryjoin='and_(' 'PciDevice.instance_uuid == Instance.uuid,' 'PciDevice.deleted == 0)')
"""Appcommands-compatible command class with extra fixins.""" from __future__ import print_function import cmd import inspect import pdb import shlex import sys import traceback import types import six from google.apputils import app from google.apputils import appcommands import gflags as flags __all__ = [ 'NewCmd', 'Repl', ] flags.DEFINE_boolean( 'debug_mode', False, 'Show tracebacks on Python exceptions.') flags.DEFINE_boolean( 'headless', False, 'Assume no user is at the controlling console.') FLAGS = flags.FLAGS def _SafeMakeAscii(s): if isinstance(s, six.text_type): return s.encode('ascii') elif isinstance(s, str): return s.decode('ascii') else: return six.text_type(s).encode('ascii', 'backslashreplace') class NewCmd(appcommands.Cmd): """Featureful extension of appcommands.Cmd.""" def __init__(self, name, flag_values): super(NewCmd, self).__init__(name, flag_values) run_with_args = getattr(self, 'RunWithArgs', None) self._new_style = isinstance(run_with_args, types.MethodType) if self._new_style: func = run_with_args.__func__ argspec = inspect.getargspec(func) if argspec.args and argspec.args[0] == 'self': argspec = argspec._replace( # pylint: disable=protected-access args=argspec.args[1:]) self._argspec = argspec # TODO(user): Do we really want to support all this # nonsense? self._star_args = self._argspec.varargs is not None self._star_kwds = self._argspec.keywords is not None self._max_args = len(self._argspec.args or ()) self._min_args = self._max_args - len(self._argspec.defaults or ()) if self._star_args: self._max_args = sys.maxint self._debug_mode = FLAGS.debug_mode self.surface_in_shell = True self.__doc__ = self.RunWithArgs.__doc__ def __getattr__(self, name): if name in self._command_flags: return self._command_flags[name].value return super(NewCmd, self).__getattribute__(name) def _GetFlag(self, flagname): if flagname in self._command_flags: return self._command_flags[flagname] else: return None def Run(self, argv): """Run this command. If self is a new-style command, we set up arguments and call self.RunWithArgs, gracefully handling exceptions. If not, we simply call self.Run(argv). Args: argv: List of arguments as strings. Returns: 0 on success, nonzero on failure. """ if not self._new_style: return super(NewCmd, self).Run(argv) # TODO(user): We need to save and restore flags each time so # that we can per-command flags in the REPL. args = argv[1:] fail = None if len(args) < self._min_args: fail = 'Not enough positional args; found %d, expected at least %d' % ( len(args), self._min_args) if len(args) > self._max_args: fail = 'Too many positional args; found %d, expected at most %d' % ( len(args), self._max_args) if fail: print(fail) if self.usage: print('Usage: %s' % (self.usage,)) return 1 if self._debug_mode: return self.RunDebug(args, {}) else: return self.RunSafely(args, {}) def RunCmdLoop(self, argv): """Hook for use in cmd.Cmd-based command shells.""" try: args = shlex.split(argv) except ValueError as e: raise SyntaxError(self.EncodeForPrinting(e)) return self.Run([self._command_name] + args) @staticmethod def EncodeForPrinting(s): """Safely encode a string as the encoding for sys.stdout.""" encoding = sys.stdout.encoding or 'ascii' return six.text_type(s).encode(encoding, 'backslashreplace') def _FormatError(self, e): """Hook for subclasses to modify how error messages are printed.""" return _SafeMakeAscii(e) def _HandleError(self, e): message = self._FormatError(e) print('Exception raised in %s operation: %s' % ( self._command_name, message)) return 1 def _IsDebuggableException(self, e): """Hook for subclasses to skip debugging on certain exceptions.""" return not isinstance(e, app.UsageError) def RunDebug(self, args, kwds): """Run this command in debug mode.""" try: return_value = self.RunWithArgs(*args, **kwds) except BaseException as e: # Don't break into the debugger for expected exceptions. if not self._IsDebuggableException(e): return self._HandleError(e) print() print('****************************************************') print('** Unexpected Exception raised in execution! **') if FLAGS.headless: print('** --headless mode enabled, exiting. **') print('** See STDERR for traceback. **') else: print('** --debug_mode enabled, starting pdb. **') print('****************************************************') print() traceback.print_exc() print() if not FLAGS.headless: pdb.post_mortem() return 1 return return_value def RunSafely(self, args, kwds): """Run this command, turning exceptions into print statements.""" try: return_value = self.RunWithArgs(*args, **kwds) except BaseException as e: return self._HandleError(e) return return_value # pylint: disable=g-bad-name class CommandLoop(cmd.Cmd): """Instance of cmd.Cmd built to work with NewCmd.""" class TerminateSignal(Exception): """Exception type used for signaling loop completion.""" def __init__(self, commands, prompt): cmd.Cmd.__init__(self) self._commands = {'help': commands['help']} self._special_command_names = ['help', 'repl', 'EOF'] for name, command in six.iteritems(commands): if (name not in self._special_command_names and isinstance(command, NewCmd) and command.surface_in_shell): self._commands[name] = command setattr(self, 'do_%s' % (name,), command.RunCmdLoop) self._default_prompt = prompt self._set_prompt() self._last_return_code = 0 @property def last_return_code(self): return self._last_return_code def _set_prompt(self): self.prompt = self._default_prompt def do_EOF(self, *unused_args): """Terminate the running command loop. This function raises an exception to avoid the need to do potentially-error-prone string parsing inside onecmd. Args: *unused_args: unused. Returns: Never returns. Raises: CommandLoop.TerminateSignal: always. """ raise CommandLoop.TerminateSignal() def postloop(self): print('Goodbye.') def completedefault(self, unused_text, line, unused_begidx, unused_endidx): if not line: return [] else: command_name = line.partition(' ')[0].lower() usage = '' if command_name in self._commands: usage = self._commands[command_name].usage if usage: print() print(usage) print('%s%s' % (self.prompt, line), end=' ') return [] def emptyline(self): print('Available commands:', end=' ') print(' '.join(list(self._commands))) def precmd(self, line): """Preprocess the shell input.""" if line == 'EOF': return line if line.startswith('exit') or line.startswith('quit'): return 'EOF' words = line.strip().split() if len(words) == 1 and words[0] not in ['help', 'ls', 'version']: return 'help %s' % (line.strip(),) return line def onecmd(self, line): """Process a single command. Runs a single command, and stores the return code in self._last_return_code. Always returns False unless the command was EOF. Args: line: (str) Command line to process. Returns: A bool signaling whether or not the command loop should terminate. """ try: self._last_return_code = cmd.Cmd.onecmd(self, line) except CommandLoop.TerminateSignal: return True except BaseException as e: name = line.split(' ')[0] print('Error running %s:' % name) print(e) self._last_return_code = 1 return False def get_names(self): names = dir(self) commands = (name for name in self._commands if name not in self._special_command_names) names.extend('do_%s' % (name,) for name in commands) names.remove('do_EOF') return names def do_help(self, command_name): """Print the help for command_name (if present) or general help.""" # TODO(user): Add command-specific flags. def FormatOneCmd(name, command, command_names): indent_size = appcommands.GetMaxCommandLength() + 3 if len(command_names) > 1: indent = ' ' * indent_size command_help = flags.TextWrap( command.CommandGetHelp('', cmd_names=command_names), indent=indent, firstline_indent='') first_help_line, _, rest = command_help.partition('\n') first_line = '%-*s%s' % (indent_size, name + ':', first_help_line) return '\n'.join((first_line, rest)) else: default_indent = ' ' return '\n' + flags.TextWrap( command.CommandGetHelp('', cmd_names=command_names), indent=default_indent, firstline_indent=default_indent) + '\n' if not command_name: print('\nHelp for commands:\n') command_names = list(self._commands) print('\n\n'.join( FormatOneCmd(name, command, command_names) for name, command in six.iteritems(self._commands) if name not in self._special_command_names)) print() elif command_name in self._commands: print(FormatOneCmd(command_name, self._commands[command_name], command_names=[command_name])) return 0 def postcmd(self, stop, line): return bool(stop) or line == 'EOF' # pylint: enable=g-bad-name class Repl(NewCmd): """Start an interactive session.""" PROMPT = '> ' def __init__(self, name, fv): super(Repl, self).__init__(name, fv) self.surface_in_shell = False flags.DEFINE_string( 'prompt', '', 'Prompt to use for interactive shell.', flag_values=fv) def RunWithArgs(self): """Start an interactive session.""" prompt = FLAGS.prompt or self.PROMPT repl = CommandLoop(appcommands.GetCommandList(), prompt=prompt) print('Welcome! (Type help for more information.)') while True: try: repl.cmdloop() break except KeyboardInterrupt: print() return repl.last_return_code
''' // Copyright 2008 Google Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Original Author: Not stated // // Notification of Change: The original java source code has been // modified in that it has been rewritten in the python programming // language and additionally, may contain components and ideas that are // not found in the original source code. Copyright 2013 Neil Borle and Paul Lu Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. Created on 2013-06-06 @author: Neil Borle ''' import math from RendererObjectManager import RendererObjectManager from src.rendererUtil.VertexBuffer import VertexBuffer from src.rendererUtil.TextCoordBuffer import TextCoordBuffer from src.rendererUtil.NightVisionColorBuffer import NightVisionBuffer from src.rendererUtil.IndexBuffer import IndexBuffer from src.rendererUtil.TextureManager import TextureManager from src.utils.VectorUtil import difference, sum_vectors, normalized, cross_product from src.utils.DebugOptions import Debug DRAWABLE_LINE = int("0x7f02003a", 0) class PolyLineObjectManager(RendererObjectManager): ''' Manages the rendering of lines by loading points and lines into glbuffers ''' def update_objects(self, lines, update_type): # We only care about updates to positions, ignore any other updates. if not (self.update_type.Reset in update_type) and \ not (self.update_type.UpdatePositions in update_type): return num_line_segments = 0; for l_source in lines: num_line_segments += len(l_source.gc_vertices) - 1 # To render everything in one call, we render everything as a line list # rather than a series of line strips. num_vertices = 4 * num_line_segments num_indices = 6 * num_line_segments vb = self.vertex_buffer vb.reset(4 * num_line_segments) cb = self.color_buffer cb.reset(4 * num_line_segments) tb = self.text_coord_buffer tb.reset(num_vertices) ib = self.index_buffer ib.reset(num_indices) # See comment in PointObjectManager for justification of this calculation. fovy_in_radians = 60 * math.pi / 180.0 size_factor = math.tan(fovy_in_radians * 0.5) / 480.0 bool_opaque = True vertex_index = 0 for l_source in lines: coords_list = l_source.gc_vertices if len(coords_list) < 2: continue # If the color isn't fully opaque, set opaque to false. color = l_source.color bool_opaque &= int(color & 0xff000000) == 0xff000000 # Add the vertices. for i in range(0, len(coords_list) - 1): p1 = coords_list[i] p2 = coords_list[i+1] u = difference(p2, p1) # The normal to the quad should face the origin at its midpoint. avg = sum_vectors(p1, p2) avg.scale(0.5) # I'm assum_vectorsing that the points will already be on a unit sphere. If this is not the case, # then we should normalize it here. v = normalized(cross_product(u, avg)) v.scale(size_factor * l_source.line_width) # Add the vertices # Lower left corner vb.add_point(difference(p1, v)) cb.add_color(color) tb.add_text_coord(0, 1) # Upper left corner vb.add_point(sum_vectors(p1, v)) cb.add_color(color) tb.add_text_coord(0, 0) # Lower left corner vb.add_point(difference(p2, v)) cb.add_color(color) tb.add_text_coord(1, 1) # Upper left corner vb.add_point(sum_vectors(p2, v)) cb.add_color(color) tb.add_text_coord(1, 0) # Add the indices bottom_left = vertex_index top_left = vertex_index + 1 bottom_right = vertex_index +2 top_right = vertex_index + 3 vertex_index += 4 # First triangle ib.add_index(bottom_left) ib.add_index(top_left) ib.add_index(bottom_right) # Second triangle ib.add_index(bottom_right) ib.add_index(top_left) ib.add_index(top_right) self.opaque = bool_opaque def reload(self, gl, full_reload=False): TM = TextureManager() self.texture_ref = TM.get_texture_from_resource(gl, DRAWABLE_LINE) self.vertex_buffer.reload() self.color_buffer.reload() self.text_coord_buffer.reload() self.index_buffer.reload() def draw_internal(self, gl): if Debug.DRAWING == "POINTS ONLY": return if self.index_buffer.num_indices == 0: return gl.glEnableClientState(gl.GL_VERTEX_ARRAY) gl.glEnableClientState(gl.GL_COLOR_ARRAY) gl.glEnableClientState(gl.GL_TEXTURE_COORD_ARRAY) gl.glEnable(gl.GL_TEXTURE_2D) self.texture_ref.bind(gl) gl.glEnable(gl.GL_CULL_FACE) gl.glFrontFace(gl.GL_CW) gl.glCullFace(gl.GL_BACK) if not self.opaque: gl.glEnable(gl.GL_BLEND) gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA) gl.glTexEnvf(gl.GL_TEXTURE_ENV, gl.GL_TEXTURE_ENV_MODE, gl.GL_MODULATE); self.vertex_buffer.set(gl) self.color_buffer.set(gl, self.render_state.night_vision_mode) self.text_coord_buffer.set(gl) self.index_buffer.draw(gl, gl.GL_TRIANGLES) if not self.opaque: gl.glDisable(gl.GL_BLEND) gl.glDisable(gl.GL_TEXTURE_2D) gl.glDisableClientState(gl.GL_TEXTURE_COORD_ARRAY) def __init__(self, new_layer, new_texture_manager): ''' Constructor ''' RendererObjectManager.__init__(self, new_layer, new_texture_manager) self.vertex_buffer = VertexBuffer(True) self.color_buffer = NightVisionBuffer(True) self.text_coord_buffer = TextCoordBuffer(True) self.index_buffer = IndexBuffer(True) self.texture_ref = None self.opaque = True
# Copyright 2014 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for modules/certificate/.""" __author__ = 'John Orr ([email protected])' import actions from controllers import sites from models import courses from models import models from models import student_work from modules.certificate import certificate from modules.certificate import custom_criteria from modules.review import domain from modules.review import peer from modules.review import review as review_module from google.appengine.api import namespace_manager from google.appengine.ext import db class MockHandler(object): def gettext(self, text): return text class CertificateHandlerTestCase(actions.TestBase): """Tests for the handler which presents the certificate.""" def setUp(self): super(CertificateHandlerTestCase, self).setUp() # Mock the module's student_is_qualified method self.is_qualified = True self.original_student_is_qualified = certificate.student_is_qualified certificate.student_is_qualified = ( lambda student, course: self.is_qualified) def tearDown(self): certificate.student_is_qualified = self.original_student_is_qualified super(CertificateHandlerTestCase, self).tearDown() def test_student_must_be_enrolled(self): # If student not in session, expect redirect response = self.get('/certificate') self.assertEquals(302, response.status_code) # If student is not enrolled, expect redirect actions.login('[email protected]') response = self.get('/certificate') self.assertEquals(302, response.status_code) self.assertEquals( 'http://localhost/preview', response.headers['Location']) # If the student is enrolled, expect certificate models.Student.add_new_student_for_current_user('Test User', None, self) response = self.get('/certificate') self.assertEquals(200, response.status_code) def test_student_must_be_qualified(self): actions.login('[email protected]') models.Student.add_new_student_for_current_user('Test User', None, self) # If student is not qualified, expect redirect to home page self.is_qualified = False response = self.get('/certificate') self.assertEquals(302, response.status_code) self.assertEquals('http://localhost/', response.headers['Location']) # If student is qualified, expect certificate self.is_qualified = True response = self.get('/certificate') self.assertEquals(200, response.status_code) def test_certificate_should_have_student_nickname(self): actions.login('[email protected]') models.Student.add_new_student_for_current_user('Jane Doe', None, self) response = self.get('/certificate') self.assertEquals(200, response.status_code) self.assertIn('Jane Doe', response.body) def test_download_pdf(self): actions.login('[email protected]') models.Student.add_new_student_for_current_user('Test User', None, self) response = self.get('/certificate.pdf') self.assertEqual('application/pdf', response.headers['Content-Type']) self.assertEqual( 'attachment; filename=certificate.pdf', response.headers['Content-Disposition']) self.assertIn('/Title (Course Builder Certificate)', response.body) def test_certificate_table_entry(self): user = actions.login('[email protected]') models.Student.add_new_student_for_current_user('Test User', None, self) student = models.Student.get_by_user(user) all_courses = sites.get_all_courses() app_context = all_courses[0] course = courses.Course(None, app_context=app_context) # If the student is qualified, a link is shown self.is_qualified = True mock_handler = MockHandler() table_entry = certificate.get_certificate_table_entry( mock_handler, student, course) self.assertEquals('Certificate', table_entry[0]) link = str(table_entry[1]) self.assertEquals( '<a href="certificate">Click for certificate</a> ' '| <a href="certificate.pdf">Download PDF</a>', link) # If the student is not qualified, a message is shown self.is_qualified = False table_entry = certificate.get_certificate_table_entry( mock_handler, student, course) self.assertEquals('Certificate', table_entry[0]) self.assertIn( 'You have not yet met the course requirements', table_entry[1]) class CertificateCriteriaTestCase(actions.TestBase): """Tests the different certificate criteria configurations.""" COURSE_NAME = 'certificate_criteria' STUDENT_EMAIL = '[email protected]' TEST_USER = None ADMIN_EMAIL = '[email protected]' ANALYTICS_URL = ('/' + COURSE_NAME + '/dashboard?action=analytics_certificates_earned') def setUp(self): super(CertificateCriteriaTestCase, self).setUp() self.base = '/' + self.COURSE_NAME context = actions.simple_add_course( self.COURSE_NAME, self.ADMIN_EMAIL, 'Certificate Criteria') self.old_namespace = namespace_manager.get_namespace() namespace_manager.set_namespace('ns_%s' % self.COURSE_NAME) self.course = courses.Course(None, context) self.course.save() self.TEST_USER = actions.login('[email protected]') actions.register(self, self.TEST_USER.email()) self.student = ( models.StudentProfileDAO.get_enrolled_student_by_user_for( self.TEST_USER, context)) # Override course.yaml settings by patching app_context. self.get_environ_old = sites.ApplicationContext.get_environ self.certificate_criteria = [] def get_environ_new(app_context): environ = self.get_environ_old(app_context) environ['certificate_criteria'] = self.certificate_criteria return environ sites.ApplicationContext.get_environ = get_environ_new def tearDown(self): # Clean up app_context. sites.ApplicationContext.get_environ = self.get_environ_old namespace_manager.set_namespace(self.old_namespace) super(CertificateCriteriaTestCase, self).tearDown() def _assert_redirect_to_course_landing_page(self, response): self.assertEquals(302, response.status_code) self.assertEquals('http://localhost/' + self.COURSE_NAME + '/', ( response.headers['Location'])) def test_no_criteria(self): response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) def _run_analytic_and_expect(self, expected_students, expected_active_students, expected_certificates): actions.login(self.ADMIN_EMAIL) response = self.get(self.ANALYTICS_URL) self.submit(response.forms['gcb-run-visualization-certificates_earned'], response) self.execute_all_deferred_tasks() dom = self.parse_html_string(self.get(self.ANALYTICS_URL).body) total_students = int( dom.find('.//span[@id="total_students"]').text) total_active_students = int( dom.find('.//span[@id="total_active_students"]').text) total_certificates = int( dom.find('.//span[@id="total_certificates"]').text) self.assertEquals(expected_students, total_students) self.assertEquals(expected_active_students, total_active_students) self.assertEquals(expected_certificates, total_certificates) actions.login(self.STUDENT_EMAIL) def test_no_criteria_analytic(self): self._run_analytic_and_expect(1, 0, 0) def test_machine_graded(self): assessment = self.course.add_assessment() assessment.title = 'Assessment' assessment.html_content = 'assessment content' assessment.now_available = True self.course.save() self.certificate_criteria.append( {'assessment_id': assessment.unit_id, 'pass_percent': 70.0}) # Student has not yet completed assessment, expect redirect to home page response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) self._run_analytic_and_expect(1, 0, 0) # 1 student, 0 active, no cert. # Submit assessment with low score actions.submit_assessment( self, assessment.unit_id, {'answers': '', 'score': 50.0, 'assessment_type': assessment.unit_id}, presubmit_checks=False ) response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) self._run_analytic_and_expect(1, 1, 0) # 1 student, 1 active, no cert # Submit assessment with expected score actions.submit_assessment( self, assessment.unit_id, {'answers': '', 'score': 70, 'assessment_type': assessment.unit_id}, presubmit_checks=False ) response = self.get('certificate') self.assertEquals(200, response.status_code) self._run_analytic_and_expect(1, 1, 1) # 1 student, 1 active, 1 cert def _submit_review(self, assessment): """Submits a review by the current student. Creates a new user that completes the assessment as well, so that the student can review it. Args: assessment: The assessment to review. """ reviewer_key = self.student.get_key() reviewee = models.Student(key_name='[email protected]') reviewee_key = reviewee.put() submission_key = db.Key.from_path( student_work.Submission.kind(), student_work.Submission.key_name( reviewee_key=reviewee_key, unit_id=str(assessment.unit_id))) summary_key = peer.ReviewSummary( assigned_count=1, reviewee_key=reviewee_key, submission_key=submission_key, unit_id=str(assessment.unit_id) ).put() review_key = student_work.Review( contents='old_contents', reviewee_key=reviewee_key, reviewer_key=reviewer_key, unit_id=str(assessment.unit_id)).put() step_key = peer.ReviewStep( assigner_kind=domain.ASSIGNER_KIND_HUMAN, review_key=review_key, review_summary_key=summary_key, reviewee_key=reviewee_key, reviewer_key=reviewer_key, submission_key=submission_key, state=domain.REVIEW_STATE_ASSIGNED, unit_id=str(assessment.unit_id) ).put() updated_step_key = review_module.Manager.write_review( step_key, 'new_contents') self.assertEqual(step_key, updated_step_key) def test_peer_graded(self): assessment = self.course.add_assessment() assessment.title = 'Assessment' assessment.html_content = 'assessment content' assessment.workflow_yaml = ( '{grader: human,' 'matcher: peer,' 'review_due_date: \'2034-07-01 12:00\',' 'review_min_count: 1,' 'review_window_mins: 20,' 'submission_due_date: \'2034-07-01 12:00\'}') assessment.now_available = True self.course.save() self.certificate_criteria.append( {'assessment_id': assessment.unit_id}) response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) actions.submit_assessment( self, assessment.unit_id, {'answers': '', 'assessment_type': assessment.unit_id}, presubmit_checks=False ) # Submitting assessment without doing required reviews is not enough response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) # Submitting assessment together with required reviews is enough self._submit_review(assessment) response = self.get('certificate') self.assertEquals(200, response.status_code) def test_custom_criteria(self): def test_custom_criterion(unused_student, unused_course): return True CRITERION = 'test_custom_criterion' self.certificate_criteria.append( {'custom_criteria': CRITERION}) setattr(custom_criteria, CRITERION, test_custom_criterion) custom_criteria.registration_table.append(CRITERION) response = self.get('certificate') self.assertEquals(200, response.status_code) def test_combination(self): # Add machine graded assessment machine_graded = self.course.add_assessment() machine_graded.title = 'Machine Graded' machine_graded.html_content = 'assessment content' machine_graded.now_available = True # Add peer graded assessment peer_graded = self.course.add_assessment() peer_graded.title = 'Peer Graded' peer_graded.html_content = 'assessment content' peer_graded.workflow_yaml = ( '{grader: human,' 'matcher: peer,' 'review_due_date: \'2034-07-01 12:00\',' 'review_min_count: 1,' 'review_window_mins: 20,' 'submission_due_date: \'2034-07-01 12:00\'}') peer_graded.now_available = True self.course.save() self.certificate_criteria.extend([ {'assessment_id': machine_graded.unit_id, 'pass_percent': 30}, {'assessment_id': peer_graded.unit_id}]) # Confirm that meeting one criterion is not sufficient actions.submit_assessment( self, machine_graded.unit_id, {'answers': '', 'score': 40, 'assessment_type': machine_graded.unit_id}, presubmit_checks=False ) response = self.get('certificate') self._assert_redirect_to_course_landing_page(response) # Confirm that meeting both criteria is sufficient actions.submit_assessment( self, peer_graded.unit_id, {'answers': '', 'assessment_type': peer_graded.unit_id}, presubmit_checks=False ) self._submit_review(peer_graded) response = self.get('certificate') self.assertEquals(200, response.status_code)
#! /usr/bin/python """ Module which handles the creation of a Caravan Scenario, an object representing a Caravan input event. Scenario stems from the name used in the database to indicate a seismic input event. The module uses globals.py (glb in the module) to cast and check each new value added to a Scenario, for which its key matches a particular parameter defined in globals.py Moreover, a Scenario can write to a database its values (using a special function to calculate an unique hash from its values) (c) 2014, GFZ Potsdam This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. For more information, see http://www.gnu.org/ """ __author__="Riccardo Zaccarelli, PhD (<riccardo(at)gfz-potsdam.de>, <riccardo.zaccarelli(at)gmail.com>)" __date__ ="$Sep 26, 2014 3:18:42 PM$" from __builtin__ import hash as builtin_hash import hashlib import caravan.settings.globals as glb from gmpes.gmpes import getgmpe import caravan.settings.globalkeys as gk import mcerp import caravan.parser as prs def hash(value): """ returns the hash of value BUT accepts lists (which are converted to tuples in case) and dicts So hash([[1,2], "a" , {}, (4,)]) works """ def is_mutable(value, opt_value_type=None): #is just a hint, returns True if value is dict, list, or tuple containing (recursive search) a dict or list t = type(value) if opt_value_type is None else opt_value_type if t == list or t==dict: return True elif t == tuple: has_mutable_children = False len_ = len(value) i=0 while i<len_ and not has_mutable_children: has_mutable_children = is_mutable(value[i]) i+=1 return has_mutable_children else: return False def convert(value): t = type(value) if t == list or (t == tuple and is_mutable(value, t)): len_ = len(value) k = [None]*len_ #initialize a list for i in xrange(len_): k[i] = convert(value[i]) return tuple(k) elif t == dict: k = [None]*2*len(value) #initialize a list i=0 for key in value: k[i] = convert(key) k[i+1] = convert(value[key]) i+=2 return tuple(k) return value return builtin_hash(convert(value)) _scenario_name = 'scenario_name' #FIXME: is public. Good choice? def scenario_hash(dict_): """ Returns the hash of dict_ (a dict) according to s=glb.scenario_db_cols Builds a list L of N None values, where N = len(s). Then, for any key of dict_ which is found in s, takes the relative index and puts L[index] = dict_[key] Returns the hash of L (as tuple, which is hashable) """ params = glb.params dbindices = glb.scenario_db_cols dblen = len(dbindices) dbarray = [None]*dblen for k in dict_: if not k in params: continue param = params[k] if _scenario_name in param: column_name = param[_scenario_name] if column_name in dbindices: col_index = dbindices[column_name] dbarray[col_index] = dict_[k] return hash(dbarray) def val_sc(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ if pkey == gk.IPE: return glb.def_gmpes[value] if pkey == gk.SOF: return glb.sof[value] isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if not prs.isscalar(value): #note that UncertainFunction is NOT scalar, #but here we should have only numbers or array of numbers (according to params in glb) #try build a distribution with the given value(s) return mcerp.__dict__[dist_name](*value) return value def val_db(pkey, p, value): """ Returns the scenario value of the value argument, already casted according to p=glb.params[pkey] """ isdistrib = 'distrib' in p if isdistrib: dist_name = p['distrib'].lower().title() if prs.isscalar(value): #value is scalar, define how to set db value: if dist_name == "Uniform" : return [value, value] elif dist_name == "Normal": return [value, 0] else: raise Exception("{0} distribution not implemented in cast function (scenario.py). Please contact the administrator".format(dist_name)) return value def tostr(dict, html=True): n = "\n" if not html else "<br>" s = " " if not html else "&nbsp;&nbsp;" return "{{{0}{1}{0}}}".format(n, ',{0}'.format(n).join("{0}{1} = {2}".format(s, k, str(dict[k])) for k in dict)) #from collections import OrderedDict #class Scenario(OrderedDict): class Scenario(dict): def __init__(self, *args, **kwargs): super(Scenario, self).__init__() #<-- HERE call to super __init__. Useless if extending dict, necessary if extending OrderedDict self.__db = {} self.__dbhash = None self.update(*args, **kwargs) #note: pass args as positional arguments, not as (single) list owning those arguments self.__text = None self.dbtext() # holds a string representation of the scenario, it will be used to evaluate the hash self.dbhash() # why not just generating the hash upon initialization? Parameters wont change from now on # holds a string representation of the scenario, it will be used to evaluate the hash def dbtext(self): if self.__text is None: self.__text = "" for key, value in self.__db.items(): self.__text +=( str(key) +":") if "parse_opts" in glb.params[key] and "decimals" in glb.params[key]["parse_opts"]: decimals = int( glb.params[key]["parse_opts"]["decimals"] ) self.__text +=( self.__extend_to_proper_lenght__(value, decimals) +';' ) else: self.__text +=( str(value) +';' ) self.__text = self.__text.rstrip(';') return self.__text # expends parameters to proper length (important for creating dbtext) def __extend_to_proper_lenght__(self, value, decimals): if hasattr(value, "__iter__"): value_str = "(" for i in value: value_str +=( self.__extend_to_proper_lenght__(i, decimals) +"," ) value_str = value_str.rstrip(',') value_str += ")" else: value_str = str(value) if decimals > 0 and not "." in value_str: value_str += "." zeroes_to_append = decimals -( len(value_str) -(value_str.find('.') +1) ) if zeroes_to_append > 0: value_str +=( '0' *zeroes_to_append ) return value_str def __setitem__(self, key, value): params = glb.params k_low = key.lower() if k_low in params: p = params[k_low] value = glb.cast(p, value) #cast to db_val: if _scenario_name in p: self.__db[k_low] = val_db(k_low, p, value) self.__dbhash = None #cast for scenario (self): value = val_sc(k_low, p, value) super(Scenario, self).__setitem__(k_low, value) def update(self, *args, **kwargs): if args: if len(args) > 1: raise TypeError("Scenario.update expected at most 1 arguments, got {:d}" .format (len(args)) ) #if a scenario, don't check: if isinstance(args[0], Scenario): self.__dbhash = None #lazily initialized. In this case we don't call __setitem__ thus we need to call it here self.__db = args[0].__db.copy() for key in args[0]: super(Scenario, self).__setitem__(key, args[0][key]) else: #normal method: other = dict(args[0]) for key in other: self[key] = other[key] #calls __setitem__ for key in kwargs: self[key] = kwargs[key] #calls __setitem__ def setdefault(self, key, value=None): if key not in self: self[key] = value #calls __setitem__ return self[key] #from here:http://stackoverflow.com/questions/1436703/difference-between-str-and-repr-in-python #repr for developers, str for users #but should be worth a read, it's apparently a long story... # def __repr__(self): # return tostr(self) def dbstr(self): return tostr(self.__db) @property def gmpe(self): """ Returns the gmpe used for this scenario. NOTE THAT INTERNALLY THE GMPE IS THE TUPLE (gmpe_class_name, gmpe_dbase_index) (see cast function) """ #REPLACE PARAMETERS WITH GMPE PARAMS. FIXME: VERY "DIRTY", DO SEOMTHING BETTER? d = {} d['m'] = self[gk.MAG] d['lat'] = self[gk.LAT] d['lon'] = self[gk.LON] d['depth'] = self[gk.DEP] if gk.SOF in self: d['sof'] = self[gk.SOF] d['strike'] = self[gk.STR] d['dip'] = self[gk.DIP] #FIXME: this adds also unnecessary arguments to the gmpe, including the GMPE name itself! #leave it like this??!! return self[gk.IPE](**d) def dbhash(self): if self.__dbhash is None: # lazily calculate it (it is set to None at startup and any time a key which has a # parameter in glb.params p is found (and p must have the key _scenario_name) #self.__dbhash = scenario_hash(self.__db) # switching hashing mechanism to md5, in hexadecimal format # note that hexdigest needs to be shortened and casted to int # as the database expects the hash to be a bigint (in a certain range) self.__dbhash = int(hashlib.md5(self.__text).hexdigest()[0:15], 16) # at most 15 digits can be used because more digits would lead to an out-of-range bigint (database) # self.__dbhash = int('f'*15, 16) # note that still this guaranties a good level of uniqueness # https://stackoverflow.com/questions/2510716/short-python-alphanumeric-hash-with-minimal-collisions return self.__dbhash def writetodb(self, dbconn): """ Writes this scenario to database returning the tuple scenario_id, isNew where the first item is an integer (serial key to access the scenario again) and the second argument is a boolean indicating whether the scenario has been written to database (true) or an already existing scenario with the same the hash as the cuirrent scenario has been found (false): in that case scenario_id is the already existing sceenario id Raises excpetions if there are more than one scenarios with the same hash """ scenario_hash = self.dbhash() scenarios = dbconn.fetchall("select * from processing.scenarios where hash=%s;" , (scenario_hash,)) #the line above returns list objects. To return dict objects see #https://wiki.postgresql.org/wiki/Using_psycopg2_with_PostgreSQL #cursor.close() #check if exists: if len(scenarios) > 1: raise Exception("{:d} scenarios with hash={:d}: database error, please contact the administrator".format(len(scenarios), scenario_hash)); elif len(scenarios) == 1: return scenarios[0][0], False params = glb.params dbkeys = ['hash'] dbvals = [scenario_hash] for k in self.__db: if not k in params: continue #for safety p = params[k] if _scenario_name in p: #for safety, again dbkeys.append(p[_scenario_name]) dbvals.append(self.__db[k]) dbkeys_str = ','.join([k for k in dbkeys]) db_str = ",".join(["%s" for _ in dbkeys]) arg1 = """INSERT INTO processing.scenarios ({0}) VALUES ({1});""" .format (dbkeys_str, db_str) arg2 = tuple(dbvals) dbconn.execute(arg1, arg2) dbconn.commit() scenarios = dbconn.fetchall("select * from processing.scenarios where hash=%s;" , (scenario_hash,)) return scenarios[0][0], True # if __name__ == '__main__': # # from __future__ import print_function # # from collections import OrderedDict # # #min_dist(7, 15, 5, 20) # event = {'longitude': '74.2354 0.5', 'latitude':42.8, 'depth':15, 'strike':0, 'ipe':2, 'magnitude':6.8} # db = Scenario(event) # # print(str(db)) # # print(scenario_hash(event))
""" Pkgutil support for Solaris .. important:: If you feel that Salt should be using this module to manage packages on a minion, and it is using a different module (or gives an error similar to *'pkg.install' is not available*), see :ref:`here <module-provider-override>`. """ import copy import salt.utils.data import salt.utils.functools import salt.utils.pkg import salt.utils.versions from salt.exceptions import CommandExecutionError, MinionError # Define the module's virtual name __virtualname__ = "pkgutil" def __virtual__(): """ Set the virtual pkg module if the os is Solaris """ if __grains__["os_family"] == "Solaris": return __virtualname__ return ( False, "The pkgutil execution module cannot be loaded: " "only available on Solaris systems.", ) def refresh_db(): """ Updates the pkgutil repo database (pkgutil -U) CLI Example: .. code-block:: bash salt '*' pkgutil.refresh_db """ # Remove rtag file to keep multiple refreshes from happening in pkg states salt.utils.pkg.clear_rtag(__opts__) return __salt__["cmd.retcode"]("/opt/csw/bin/pkgutil -U") == 0 def upgrade_available(name): """ Check if there is an upgrade available for a certain package CLI Example: .. code-block:: bash salt '*' pkgutil.upgrade_available CSWpython """ version_num = None cmd = "/opt/csw/bin/pkgutil -c --parse --single {}".format(name) out = __salt__["cmd.run_stdout"](cmd) if out: version_num = out.split()[2].strip() if version_num: if version_num == "SAME": return "" else: return version_num return "" def list_upgrades(refresh=True, **kwargs): # pylint: disable=W0613 """ List all available package upgrades on this system CLI Example: .. code-block:: bash salt '*' pkgutil.list_upgrades """ if salt.utils.data.is_true(refresh): refresh_db() upgrades = {} lines = __salt__["cmd.run_stdout"]("/opt/csw/bin/pkgutil -A --parse").splitlines() for line in lines: comps = line.split("\t") if comps[2] == "SAME": continue if comps[2] == "not installed": continue upgrades[comps[0]] = comps[1] return upgrades def upgrade(refresh=True): """ Upgrade all of the packages to the latest available version. Returns a dict containing the changes:: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} CLI Example: .. code-block:: bash salt '*' pkgutil.upgrade """ if salt.utils.data.is_true(refresh): refresh_db() old = list_pkgs() # Install or upgrade the package # If package is already installed cmd = "/opt/csw/bin/pkgutil -yu" __salt__["cmd.run_all"](cmd) __context__.pop("pkg.list_pkgs", None) new = list_pkgs() return salt.utils.data.compare_dicts(old, new) def _list_pkgs_from_context(versions_as_list): """ Use pkg list from __context__ """ if versions_as_list: return __context__["pkg.list_pkgs"] else: ret = copy.deepcopy(__context__["pkg.list_pkgs"]) __salt__["pkg_resource.stringify"](ret) return ret def list_pkgs(versions_as_list=False, **kwargs): """ List the packages currently installed as a dict:: {'<package_name>': '<version>'} CLI Example: .. code-block:: bash salt '*' pkg.list_pkgs salt '*' pkg.list_pkgs versions_as_list=True """ versions_as_list = salt.utils.data.is_true(versions_as_list) # 'removed' not yet implemented or not applicable if salt.utils.data.is_true(kwargs.get("removed")): return {} if "pkg.list_pkgs" in __context__ and kwargs.get("use_context", True): return _list_pkgs_from_context(versions_as_list) ret = {} cmd = "/usr/bin/pkginfo -x" # Package information returned two lines per package. On even-offset # lines, the package name is in the first column. On odd-offset lines, the # package version is in the second column. lines = __salt__["cmd.run"](cmd).splitlines() for index, line in enumerate(lines): if index % 2 == 0: name = line.split()[0].strip() if index % 2 == 1: version_num = line.split()[1].strip() __salt__["pkg_resource.add_pkg"](ret, name, version_num) __salt__["pkg_resource.sort_pkglist"](ret) __context__["pkg.list_pkgs"] = copy.deepcopy(ret) if not versions_as_list: __salt__["pkg_resource.stringify"](ret) return ret def version(*names, **kwargs): """ Returns a version if the package is installed, else returns an empty string CLI Example: .. code-block:: bash salt '*' pkgutil.version CSWpython """ return __salt__["pkg_resource.version"](*names, **kwargs) def latest_version(*names, **kwargs): """ Return the latest version of the named package available for upgrade or installation. If more than one package name is specified, a dict of name/version pairs is returned. If the latest version of a given package is already installed, an empty string will be returned for that package. CLI Example: .. code-block:: bash salt '*' pkgutil.latest_version CSWpython salt '*' pkgutil.latest_version <package1> <package2> <package3> ... """ refresh = salt.utils.data.is_true(kwargs.pop("refresh", True)) if not names: return "" ret = {} # Initialize the dict with empty strings for name in names: ret[name] = "" # Refresh before looking for the latest version available if refresh: refresh_db() pkgs = list_pkgs() cmd = "/opt/csw/bin/pkgutil -a --parse {}".format(" ".join(names)) output = __salt__["cmd.run_all"](cmd).get("stdout", "").splitlines() for line in output: try: name, version_rev = line.split()[1:3] except ValueError: continue if name in names: cver = pkgs.get(name, "") nver = version_rev.split(",")[0] if not cver or salt.utils.versions.compare(ver1=cver, oper="<", ver2=nver): # Remove revision for version comparison ret[name] = version_rev # Return a string if only one package name passed if len(names) == 1: return ret[names[0]] return ret # available_version is being deprecated available_version = salt.utils.functools.alias_function( latest_version, "available_version" ) def install(name=None, refresh=False, version=None, pkgs=None, **kwargs): """ Install packages using the pkgutil tool. CLI Example: .. code-block:: bash salt '*' pkg.install <package_name> salt '*' pkg.install SMClgcc346 Multiple Package Installation Options: pkgs A list of packages to install from OpenCSW. Must be passed as a python list. CLI Example: .. code-block:: bash salt '*' pkg.install pkgs='["foo", "bar"]' salt '*' pkg.install pkgs='["foo", {"bar": "1.2.3"}]' Returns a dict containing the new package names and versions:: {'<package>': {'old': '<old-version>', 'new': '<new-version>'}} """ if refresh: refresh_db() try: # Ignore 'sources' argument pkg_params = __salt__["pkg_resource.parse_targets"](name, pkgs, **kwargs)[0] except MinionError as exc: raise CommandExecutionError(exc) if pkg_params is None or len(pkg_params) == 0: return {} if pkgs is None and version and len(pkg_params) == 1: pkg_params = {name: version} targets = [] for param, pkgver in pkg_params.items(): if pkgver is None: targets.append(param) else: targets.append("{}-{}".format(param, pkgver)) cmd = "/opt/csw/bin/pkgutil -yu {}".format(" ".join(targets)) old = list_pkgs() __salt__["cmd.run_all"](cmd) __context__.pop("pkg.list_pkgs", None) new = list_pkgs() return salt.utils.data.compare_dicts(old, new) def remove(name=None, pkgs=None, **kwargs): """ Remove a package and all its dependencies which are not in use by other packages. name The name of the package to be deleted. Multiple Package Options: pkgs A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. .. versionadded:: 0.16.0 Returns a dict containing the changes. CLI Example: .. code-block:: bash salt '*' pkg.remove <package name> salt '*' pkg.remove <package1>,<package2>,<package3> salt '*' pkg.remove pkgs='["foo", "bar"]' """ try: pkg_params = __salt__["pkg_resource.parse_targets"](name, pkgs)[0] except MinionError as exc: raise CommandExecutionError(exc) old = list_pkgs() targets = [x for x in pkg_params if x in old] if not targets: return {} cmd = "/opt/csw/bin/pkgutil -yr {}".format(" ".join(targets)) __salt__["cmd.run_all"](cmd) __context__.pop("pkg.list_pkgs", None) new = list_pkgs() return salt.utils.data.compare_dicts(old, new) def purge(name=None, pkgs=None, **kwargs): """ Package purges are not supported, this function is identical to ``remove()``. name The name of the package to be deleted. Multiple Package Options: pkgs A list of packages to delete. Must be passed as a python list. The ``name`` parameter will be ignored if this option is passed. .. versionadded:: 0.16.0 Returns a dict containing the changes. CLI Example: .. code-block:: bash salt '*' pkg.purge <package name> salt '*' pkg.purge <package1>,<package2>,<package3> salt '*' pkg.purge pkgs='["foo", "bar"]' """ return remove(name=name, pkgs=pkgs)
# -*- coding: utf-8 -*- # Unit and doctests for specific database backends. import datetime from django.conf import settings from django.core.management.color import no_style from django.db import backend, connection, connections, DEFAULT_DB_ALIAS, IntegrityError from django.db.backends.signals import connection_created from django.db.backends.postgresql_psycopg2 import version as pg_version from django.test import TestCase, skipUnlessDBFeature, TransactionTestCase from django.utils import unittest from regressiontests.backends import models class OracleChecks(unittest.TestCase): @unittest.skipUnless(connection.vendor == 'oracle', "No need to check Oracle cursor semantics") def test_dbms_session(self): # If the backend is Oracle, test that we can call a standard # stored procedure through our cursor wrapper. convert_unicode = backend.convert_unicode cursor = connection.cursor() cursor.callproc(convert_unicode('DBMS_SESSION.SET_IDENTIFIER'), [convert_unicode('_django_testing!'),]) @unittest.skipUnless(connection.vendor == 'oracle', "No need to check Oracle cursor semantics") def test_cursor_var(self): # If the backend is Oracle, test that we can pass cursor variables # as query parameters. cursor = connection.cursor() var = cursor.var(backend.Database.STRING) cursor.execute("BEGIN %s := 'X'; END; ", [var]) self.assertEqual(var.getvalue(), 'X') @unittest.skipUnless(connection.vendor == 'oracle', "No need to check Oracle cursor semantics") def test_long_string(self): # If the backend is Oracle, test that we can save a text longer # than 4000 chars and read it properly c = connection.cursor() c.execute('CREATE TABLE ltext ("TEXT" NCLOB)') long_str = ''.join([unicode(x) for x in xrange(4000)]) c.execute('INSERT INTO ltext VALUES (%s)',[long_str]) c.execute('SELECT text FROM ltext') row = c.fetchone() self.assertEqual(long_str, row[0].read()) c.execute('DROP TABLE ltext') @unittest.skipUnless(connection.vendor == 'oracle', "No need to check Oracle connection semantics") def test_client_encoding(self): # If the backend is Oracle, test that the client encoding is set # correctly. This was broken under Cygwin prior to r14781. c = connection.cursor() # Ensure the connection is initialized. self.assertEqual(connection.connection.encoding, "UTF-8") self.assertEqual(connection.connection.nencoding, "UTF-8") class DateQuotingTest(TestCase): def test_django_date_trunc(self): """ Test the custom ``django_date_trunc method``, in particular against fields which clash with strings passed to it (e.g. 'year') - see #12818__. __: http://code.djangoproject.com/ticket/12818 """ updated = datetime.datetime(2010, 2, 20) models.SchoolClass.objects.create(year=2009, last_updated=updated) years = models.SchoolClass.objects.dates('last_updated', 'year') self.assertEqual(list(years), [datetime.datetime(2010, 1, 1, 0, 0)]) def test_django_extract(self): """ Test the custom ``django_extract method``, in particular against fields which clash with strings passed to it (e.g. 'day') - see #12818__. __: http://code.djangoproject.com/ticket/12818 """ updated = datetime.datetime(2010, 2, 20) models.SchoolClass.objects.create(year=2009, last_updated=updated) classes = models.SchoolClass.objects.filter(last_updated__day=20) self.assertEqual(len(classes), 1) class LastExecutedQueryTest(TestCase): def setUp(self): # connection.queries will not be filled in without this settings.DEBUG = True def tearDown(self): settings.DEBUG = False # There are no tests for the sqlite backend because it does not # implement paramater escaping. See #14091. @unittest.skipUnless(connection.vendor in ('oracle', 'postgresql'), "These backends use the standard parameter escaping rules") def test_parameter_escaping(self): # check that both numbers and string are properly quoted list(models.Tag.objects.filter(name="special:\\\"':", object_id=12)) sql = connection.queries[-1]['sql'] self.assertTrue("= 'special:\\\"'':' " in sql) self.assertTrue("= 12 " in sql) @unittest.skipUnless(connection.vendor == 'mysql', "MySQL uses backslashes to escape parameters.") def test_parameter_escaping(self): list(models.Tag.objects.filter(name="special:\\\"':", object_id=12)) sql = connection.queries[-1]['sql'] # only this line is different from the test above self.assertTrue("= 'special:\\\\\\\"\\':' " in sql) self.assertTrue("= 12 " in sql) class ParameterHandlingTest(TestCase): def test_bad_parameter_count(self): "An executemany call with too many/not enough parameters will raise an exception (Refs #12612)" cursor = connection.cursor() query = ('INSERT INTO %s (%s, %s) VALUES (%%s, %%s)' % ( connection.introspection.table_name_converter('backends_square'), connection.ops.quote_name('root'), connection.ops.quote_name('square') )) self.assertRaises(Exception, cursor.executemany, query, [(1,2,3),]) self.assertRaises(Exception, cursor.executemany, query, [(1,),]) # Unfortunately, the following tests would be a good test to run on all # backends, but it breaks MySQL hard. Until #13711 is fixed, it can't be run # everywhere (although it would be an effective test of #13711). class LongNameTest(TestCase): """Long primary keys and model names can result in a sequence name that exceeds the database limits, which will result in truncation on certain databases (e.g., Postgres). The backend needs to use the correct sequence name in last_insert_id and other places, so check it is. Refs #8901. """ @skipUnlessDBFeature('supports_long_model_names') def test_sequence_name_length_limits_create(self): """Test creation of model with long name and long pk name doesn't error. Ref #8901""" models.VeryLongModelNameZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ.objects.create() @skipUnlessDBFeature('supports_long_model_names') def test_sequence_name_length_limits_m2m(self): """Test an m2m save of a model with a long name and a long m2m field name doesn't error as on Django >=1.2 this now uses object saves. Ref #8901""" obj = models.VeryLongModelNameZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ.objects.create() rel_obj = models.Person.objects.create(first_name='Django', last_name='Reinhardt') obj.m2m_also_quite_long_zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.add(rel_obj) @skipUnlessDBFeature('supports_long_model_names') def test_sequence_name_length_limits_flush(self): """Test that sequence resetting as part of a flush with model with long name and long pk name doesn't error. Ref #8901""" # A full flush is expensive to the full test, so we dig into the # internals to generate the likely offending SQL and run it manually # Some convenience aliases VLM = models.VeryLongModelNameZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ VLM_m2m = VLM.m2m_also_quite_long_zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz.through tables = [ VLM._meta.db_table, VLM_m2m._meta.db_table, ] sequences = [ { 'column': VLM._meta.pk.column, 'table': VLM._meta.db_table }, ] cursor = connection.cursor() for statement in connection.ops.sql_flush(no_style(), tables, sequences): cursor.execute(statement) class SequenceResetTest(TestCase): def test_generic_relation(self): "Sequence names are correct when resetting generic relations (Ref #13941)" # Create an object with a manually specified PK models.Post.objects.create(id=10, name='1st post', text='hello world') # Reset the sequences for the database cursor = connection.cursor() commands = connections[DEFAULT_DB_ALIAS].ops.sequence_reset_sql(no_style(), [models.Post]) for sql in commands: cursor.execute(sql) # If we create a new object now, it should have a PK greater # than the PK we specified manually. obj = models.Post.objects.create(name='New post', text='goodbye world') self.assertTrue(obj.pk > 10) class PostgresVersionTest(TestCase): def assert_parses(self, version_string, version): self.assertEqual(pg_version._parse_version(version_string), version) def test_parsing(self): self.assert_parses("PostgreSQL 8.3 beta4", (8, 3, None)) self.assert_parses("PostgreSQL 8.3", (8, 3, None)) self.assert_parses("EnterpriseDB 8.3", (8, 3, None)) self.assert_parses("PostgreSQL 8.3.6", (8, 3, 6)) self.assert_parses("PostgreSQL 8.4beta1", (8, 4, None)) self.assert_parses("PostgreSQL 8.3.1 on i386-apple-darwin9.2.2, compiled by GCC i686-apple-darwin9-gcc-4.0.1 (GCC) 4.0.1 (Apple Inc. build 5478)", (8, 3, 1)) # Unfortunately with sqlite3 the in-memory test database cannot be # closed, and so it cannot be re-opened during testing, and so we # sadly disable this test for now. class ConnectionCreatedSignalTest(TestCase): @skipUnlessDBFeature('test_db_allows_multiple_connections') def test_signal(self): data = {} def receiver(sender, connection, **kwargs): data["connection"] = connection connection_created.connect(receiver) connection.close() cursor = connection.cursor() self.assertTrue(data["connection"] is connection) connection_created.disconnect(receiver) data.clear() cursor = connection.cursor() self.assertTrue(data == {}) class EscapingChecks(TestCase): @unittest.skipUnless(connection.vendor == 'sqlite', "This is a sqlite-specific issue") def test_parameter_escaping(self): #13648: '%s' escaping support for sqlite3 cursor = connection.cursor() response = cursor.execute( "select strftime('%%s', date('now'))").fetchall()[0][0] self.assertNotEqual(response, None) # response should be an non-zero integer self.assertTrue(int(response)) class BackendTestCase(TestCase): def test_cursor_executemany(self): #4896: Test cursor.executemany cursor = connection.cursor() qn = connection.ops.quote_name opts = models.Square._meta f1, f2 = opts.get_field('root'), opts.get_field('square') query = ('INSERT INTO %s (%s, %s) VALUES (%%s, %%s)' % (connection.introspection.table_name_converter(opts.db_table), qn(f1.column), qn(f2.column))) cursor.executemany(query, [(i, i**2) for i in range(-5, 6)]) self.assertEqual(models.Square.objects.count(), 11) for i in range(-5, 6): square = models.Square.objects.get(root=i) self.assertEqual(square.square, i**2) #4765: executemany with params=[] does nothing cursor.executemany(query, []) self.assertEqual(models.Square.objects.count(), 11) def test_unicode_fetches(self): #6254: fetchone, fetchmany, fetchall return strings as unicode objects qn = connection.ops.quote_name models.Person(first_name="John", last_name="Doe").save() models.Person(first_name="Jane", last_name="Doe").save() models.Person(first_name="Mary", last_name="Agnelline").save() models.Person(first_name="Peter", last_name="Parker").save() models.Person(first_name="Clark", last_name="Kent").save() opts2 = models.Person._meta f3, f4 = opts2.get_field('first_name'), opts2.get_field('last_name') query2 = ('SELECT %s, %s FROM %s ORDER BY %s' % (qn(f3.column), qn(f4.column), connection.introspection.table_name_converter(opts2.db_table), qn(f3.column))) cursor = connection.cursor() cursor.execute(query2) self.assertEqual(cursor.fetchone(), (u'Clark', u'Kent')) self.assertEqual(list(cursor.fetchmany(2)), [(u'Jane', u'Doe'), (u'John', u'Doe')]) self.assertEqual(list(cursor.fetchall()), [(u'Mary', u'Agnelline'), (u'Peter', u'Parker')]) def test_database_operations_helper_class(self): # Ticket #13630 self.assertTrue(hasattr(connection, 'ops')) self.assertTrue(hasattr(connection.ops, 'connection')) self.assertEqual(connection, connection.ops.connection) # We don't make these tests conditional because that means we would need to # check and differentiate between: # * MySQL+InnoDB, MySQL+MYISAM (something we currently can't do). # * if sqlite3 (if/once we get #14204 fixed) has referential integrity turned # on or not, something that would be controlled by runtime support and user # preference. # verify if its type is django.database.db.IntegrityError. class FkConstraintsTests(TransactionTestCase): def setUp(self): # Create a Reporter. self.r = models.Reporter.objects.create(first_name='John', last_name='Smith') def test_integrity_checks_on_creation(self): """ Try to create a model instance that violates a FK constraint. If it fails it should fail with IntegrityError. """ a = models.Article(headline="This is a test", pub_date=datetime.datetime(2005, 7, 27), reporter_id=30) try: a.save() except IntegrityError: pass def test_integrity_checks_on_update(self): """ Try to update a model instance introducing a FK constraint violation. If it fails it should fail with IntegrityError. """ # Create an Article. models.Article.objects.create(headline="Test article", pub_date=datetime.datetime(2010, 9, 4), reporter=self.r) # Retrive it from the DB a = models.Article.objects.get(headline="Test article") a.reporter_id = 30 try: a.save() except IntegrityError: pass
import unittest from cpu import * class ROOperand(object): ''' Mocking class for operand ronly ''' def __init__(self, size, value): self.size = size self.value = value def read(self): return self.value & ((1<<self.size)-1) class RWOperand(ROOperand): ''' Mocking class for operand rw ''' def write(self, value): self.value = value & ((1<<self.size)-1) return self.value class CPUTest(unittest.TestCase): def setUp(self): class Memory: #todo Mock def getchar(self, addr): raise NotImplemented() def putchar(self, addr, value): raise NotImplemented() mem = Memory() self.cpu = Cpu(mem, 'i386') #TODO reset cpu in between tests... #TODO mock getchar/putchar in case the instructon access memory directly def tearDown(self): self.cpu = None def testInitialRegState(self): cpu = self.cpu #'CR0', 'CR1', 'CR2', 'CR3', 'CR4', 'CR5', 'CR6', 'CR7', 'CR8', # 'DR0', 'DR1', 'DR2', 'DR3', 'DR4', 'DR5', 'DR6', 'DR7', #'MM0', 'MM1', 'MM2', 'MM3', 'MM4', 'MM5', 'MM6', 'MM7', # 'ST0', 'ST1', 'ST2', 'ST3', 'ST4', 'ST5', 'ST6', 'ST7' for reg_name in ['AH', 'AL', 'AX', 'BH', 'BL', 'BP', 'BPL', 'BX', 'CH', 'CL', 'CS', 'CX', 'DH', 'DI', 'DIL', 'DL', 'DS', 'DX', 'EAX', 'EBP', 'EBX', 'ECX', 'EDI', 'EDX', 'EFLAGS', 'EIP', 'ES', 'ESI', 'ESP', 'FLAGS', 'FS', 'GS', 'R10', 'R10B', 'R10D', 'R10W', 'R11', 'R11B', 'R11D', 'R11W', 'R12', 'R12B', 'R12D', 'R12W', 'R13', 'R13B', 'R13D', 'R13W', 'R14', 'R14B', 'R14D', 'R14W', 'R15', 'R15B', 'R15D', 'R15W', 'R8', 'R8B', 'R8D', 'R8W', 'R9', 'R9B', 'R9D', 'R9W', 'RAX', 'RBP', 'RBX', 'RCX', 'RDI', 'RDX', 'RFLAGS', 'RIP', 'RSI', 'RSP', 'SI', 'SIL', 'SP', 'SPL', 'SS', 'XMM0', 'XMM1', 'XMM10', 'XMM11', 'XMM12', 'XMM13', 'XMM14', 'XMM15', 'XMM2', 'XMM3', 'XMM4', 'XMM5', 'XMM6', 'XMM7', 'XMM8', 'XMM9', 'YMM0', 'YMM1', 'YMM10', 'YMM11', 'YMM12', 'YMM13', 'YMM14', 'YMM15', 'YMM2', 'YMM3', 'YMM4', 'YMM5', 'YMM6', 'YMM7', 'YMM8', 'YMM9']: self.assertEqual(cpu.getRegister(reg_name),0) def testRegisterCacheAccess(self): cpu = self.cpu cpu.ESI = 0x12345678 self.assertEqual(cpu.ESI, 0x12345678) cpu.SI = 0xAAAA self.assertEqual(cpu.SI, 0xAAAA) cpu.RAX = 0x12345678aabbccdd self.assertEqual(cpu.ESI, 0x1234AAAA) cpu.SI = 0xAAAA self.assertEqual(cpu.SI, 0xAAAA) def testFlagAccess(self): '''_flags 'CF': 0x0001, 'PF': 0x0004, 'AF': 0x0010, 'ZF': 0x0040, 'SF': 0x0080, 'DF': 0x0400, 'OF': 0x0800,''' cpu = self.cpu cpu.RFLAGS = 0 self.assertFalse(cpu.CF) self.assertFalse(cpu.PF) self.assertFalse(cpu.AF) self.assertFalse(cpu.ZF) self.assertFalse(cpu.SF) self.assertFalse(cpu.DF) self.assertFalse(cpu.OF) #flag to register CF cpu.CF = True self.assertTrue( cpu.RFLAGS&cpu._flags['CF'] !=0) cpu.CF = False self.assertTrue( cpu.RFLAGS&cpu._flags['CF'] ==0) #register to flag CF cpu.RFLAGS |= cpu._flags['CF'] self.assertTrue(cpu.CF) cpu.RFLAGS &= ~cpu._flags['CF'] self.assertFalse(cpu.CF) #flag to register PF cpu.PF = True self.assertTrue( cpu.RFLAGS&cpu._flags['PF'] !=0) cpu.PF = False self.assertTrue( cpu.RFLAGS&cpu._flags['PF'] ==0) #register to flag PF cpu.RFLAGS |= cpu._flags['PF'] self.assertTrue(cpu.PF) cpu.RFLAGS &= ~cpu._flags['PF'] self.assertFalse(cpu.PF) #flag to register AF cpu.AF = True self.assertTrue( cpu.RFLAGS&cpu._flags['AF'] !=0) cpu.AF = False self.assertTrue( cpu.RFLAGS&cpu._flags['AF'] ==0) #register to flag AF cpu.RFLAGS |= cpu._flags['AF'] self.assertTrue(cpu.AF) cpu.RFLAGS &= ~cpu._flags['AF'] self.assertFalse(cpu.AF) #flag to register ZF cpu.ZF = True self.assertTrue( cpu.RFLAGS&cpu._flags['ZF'] !=0) cpu.ZF = False self.assertTrue( cpu.RFLAGS&cpu._flags['ZF'] ==0) #register to flag ZF cpu.RFLAGS |= cpu._flags['ZF'] self.assertTrue(cpu.ZF) cpu.RFLAGS &= ~cpu._flags['ZF'] self.assertFalse(cpu.ZF) #flag to register SF cpu.SF = True self.assertTrue( cpu.RFLAGS&cpu._flags['SF'] !=0) cpu.SF = False self.assertTrue( cpu.RFLAGS&cpu._flags['SF'] ==0) #register to flag SF cpu.RFLAGS |= cpu._flags['SF'] self.assertTrue(cpu.SF) cpu.RFLAGS &= ~cpu._flags['SF'] self.assertFalse(cpu.SF) #flag to register DF cpu.DF = True self.assertTrue( cpu.RFLAGS&cpu._flags['DF'] !=0) cpu.DF = False self.assertTrue( cpu.RFLAGS&cpu._flags['DF'] ==0) #register to flag DF cpu.RFLAGS |= cpu._flags['DF'] self.assertTrue(cpu.DF) cpu.RFLAGS &= ~cpu._flags['DF'] self.assertFalse(cpu.DF) #flag to register OF cpu.OF = True self.assertTrue( cpu.RFLAGS&cpu._flags['OF'] !=0) cpu.OF = False self.assertTrue( cpu.RFLAGS&cpu._flags['OF'] ==0) #register to flag cpu.RFLAGS |= cpu._flags['OF'] self.assertTrue(cpu.OF) cpu.RFLAGS &= ~cpu._flags['OF'] self.assertFalse(cpu.OF) def testRegisterAccess(self): cpu = self.cpu #initially zero self.assertEqual(cpu.EAX, 0) cpu.EAX += 1 self.assertEqual(cpu.EAX, 1) cpu.EAX = 0x8000000 self.assertEqual(cpu.EAX, 0x8000000) cpu.EAX = 0xff000000 self.assertEqual(cpu.EAX, 0xff000000) cpu.EAX = 0x00ff0000 self.assertEqual(cpu.EAX, 0x00ff0000) cpu.EAX = 0x0000ff00 self.assertEqual(cpu.EAX, 0x0000ff00) cpu.EAX = 0xff self.assertEqual(cpu.EAX, 0xff) #overflow shall be discarded cpu.EAX = 0x100000000 self.assertEqual(cpu.EAX, 0x00000000) #partial register access cpu.EAX = 0x11223344 self.assertEqual(cpu.EAX, 0x11223344) self.assertEqual(cpu.AX, 0x3344) self.assertEqual(cpu.AH, 0x33) self.assertEqual(cpu.AL, 0x44) #partial register mod cpu.AL=0xDD self.assertEqual(cpu.EAX, 0x112233DD) self.assertEqual(cpu.AX, 0x33DD) self.assertEqual(cpu.AH, 0x33) self.assertEqual(cpu.AL, 0xDD) cpu.AH=0xCC self.assertEqual(cpu.EAX, 0x1122CCDD) self.assertEqual(cpu.AX, 0xCCDD) self.assertEqual(cpu.AH, 0xCC) self.assertEqual(cpu.AL, 0xDD) #partial register mod is truncated cpu.AL=0x1234DD self.assertEqual(cpu.EAX, 0x1122CCDD) self.assertEqual(cpu.AX, 0xCCDD) self.assertEqual(cpu.AH, 0xCC) self.assertEqual(cpu.AL, 0xDD) cpu.EDX = 0x8048c50 self.assertEqual(cpu.EDX, 0x8048c50) if __name__ == '__main__': unittest.main()
""" Title: Graph attention network (GAT) for node classification Author: [akensert](https://github.com/akensert) Date created: 2021/09/13 Last modified: 2021/12/26 Description: An implementation of a Graph Attention Network (GAT) for node classification. """ """ ## Introduction [Graph neural networks](https://en.wikipedia.org/wiki/Graph_neural_network) is the prefered neural network architecture for processing data structured as graphs (for example, social networks or molecule structures), yielding better results than fully-connected networks or convolutional networks. In this tutorial, we will implement a specific graph neural network known as a [Graph Attention Network](https://arxiv.org/abs/1710.10903) (GAT) to predict labels of scientific papers based on what type of papers cite them (using the [Cora](https://linqs.soe.ucsc.edu/data) dataset). ### References For more information on GAT, see the original paper [Graph Attention Networks](https://arxiv.org/abs/1710.10903) as well as [DGL's Graph Attention Networks](https://docs.dgl.ai/en/0.4.x/tutorials/models/1_gnn/9_gat.html) documentation. """ """ ### Import packages """ import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers import numpy as np import pandas as pd import os import warnings warnings.filterwarnings("ignore") pd.set_option("display.max_columns", 6) pd.set_option("display.max_rows", 6) np.random.seed(2) """ ## Obtain the dataset The preparation of the [Cora dataset](https://linqs.soe.ucsc.edu/data) follows that of the [Node classification with Graph Neural Networks](https://keras.io/examples/graph/gnn_citations/) tutorial. Refer to this tutorial for more details on the dataset and exploratory data analysis. In brief, the Cora dataset consists of two files: `cora.cites` which contains *directed links* (citations) between papers; and `cora.content` which contains *features* of the corresponding papers and one of seven labels (the *subject* of the paper). """ zip_file = keras.utils.get_file( fname="cora.tgz", origin="https://linqs-data.soe.ucsc.edu/public/lbc/cora.tgz", extract=True, ) data_dir = os.path.join(os.path.dirname(zip_file), "cora") citations = pd.read_csv( os.path.join(data_dir, "cora.cites"), sep="\t", header=None, names=["target", "source"], ) papers = pd.read_csv( os.path.join(data_dir, "cora.content"), sep="\t", header=None, names=["paper_id"] + [f"term_{idx}" for idx in range(1433)] + ["subject"], ) class_values = sorted(papers["subject"].unique()) class_idx = {name: id for id, name in enumerate(class_values)} paper_idx = {name: idx for idx, name in enumerate(sorted(papers["paper_id"].unique()))} papers["paper_id"] = papers["paper_id"].apply(lambda name: paper_idx[name]) citations["source"] = citations["source"].apply(lambda name: paper_idx[name]) citations["target"] = citations["target"].apply(lambda name: paper_idx[name]) papers["subject"] = papers["subject"].apply(lambda value: class_idx[value]) print(citations) print(papers) """ ### Split the dataset """ # Obtain random indices random_indices = np.random.permutation(range(papers.shape[0])) # 50/50 split train_data = papers.iloc[random_indices[: len(random_indices) // 2]] test_data = papers.iloc[random_indices[len(random_indices) // 2 :]] """ ### Prepare the graph data """ # Obtain paper indices which will be used to gather node states # from the graph later on when training the model train_indices = train_data["paper_id"].to_numpy() test_indices = test_data["paper_id"].to_numpy() # Obtain ground truth labels corresponding to each paper_id train_labels = train_data["subject"].to_numpy() test_labels = test_data["subject"].to_numpy() # Define graph, namely an edge tensor and a node feature tensor edges = tf.convert_to_tensor(citations[["target", "source"]]) node_states = tf.convert_to_tensor(papers.sort_values("paper_id").iloc[:, 1:-1]) # Print shapes of the graph print("Edges shape:\t\t", edges.shape) print("Node features shape:", node_states.shape) """ ## Build the model GAT takes as input a graph (namely an edge tensor and a node feature tensor) and outputs \[updated\] node states. The node states are, for each target node, neighborhood aggregated information of *N*-hops (where *N* is decided by the number of layers of the GAT). Importantly, in contrast to the [graph convolutional network](https://arxiv.org/abs/1609.02907) (GCN) the GAT makes use of attention machanisms to aggregate information from neighboring nodes (or *source nodes*). In other words, instead of simply averaging/summing node states from source nodes (*source papers*) to the target node (*target papers*), GAT first applies normalized attention scores to each source node state and then sums. """ """ ### (Multi-head) graph attention layer The GAT model implements multi-head graph attention layers. The `MultiHeadGraphAttention` layer is simply a concatenation (or averaging) of multiple graph attention layers (`GraphAttention`), each with separate learnable weights `W`. The `GraphAttention` layer does the following: Consider inputs node states `h^{l}` which are linearly transformed by `W^{l}`, resulting in `z^{l}`. For each target node: 1. Computes pair-wise attention scores `a^{l}^{T}(z^{l}_{i}||z^{l}_{j})` for all `j`, resulting in `e_{ij}` (for all `j`). `||` denotes a concatenation, `_{i}` corresponds to the target node, and `_{j}` corresponds to a given 1-hop neighbor/source node. 2. Normalizes `e_{ij}` via softmax, so as the sum of incoming edges' attention scores to the target node (`sum_{k}{e_{norm}_{ik}}`) will add up to 1. 3. Applies attention scores `e_{norm}_{ij}` to `z_{j}` and adds it to the new target node state `h^{l+1}_{i}`, for all `j`. """ class GraphAttention(layers.Layer): def __init__( self, units, kernel_initializer="glorot_uniform", kernel_regularizer=None, **kwargs, ): super().__init__(**kwargs) self.units = units self.kernel_initializer = keras.initializers.get(kernel_initializer) self.kernel_regularizer = keras.regularizers.get(kernel_regularizer) def build(self, input_shape): self.kernel = self.add_weight( shape=(input_shape[0][-1], self.units), trainable=True, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, name="kernel", ) self.kernel_attention = self.add_weight( shape=(self.units * 2, 1), trainable=True, initializer=self.kernel_initializer, regularizer=self.kernel_regularizer, name="kernel_attention", ) self.built = True def call(self, inputs): node_states, edges = inputs # Linearly transform node states node_states_transformed = tf.matmul(node_states, self.kernel) # (1) Compute pair-wise attention scores node_states_expanded = tf.gather(node_states_transformed, edges) node_states_expanded = tf.reshape( node_states_expanded, (tf.shape(edges)[0], -1) ) attention_scores = tf.nn.leaky_relu( tf.matmul(node_states_expanded, self.kernel_attention) ) attention_scores = tf.squeeze(attention_scores, -1) # (2) Normalize attention scores attention_scores = tf.math.exp(tf.clip_by_value(attention_scores, -2, 2)) attention_scores_sum = tf.math.unsorted_segment_sum( data=attention_scores, segment_ids=edges[:, 0], num_segments=tf.reduce_max(edges[:, 0]) + 1, ) attention_scores_sum = tf.repeat( attention_scores_sum, tf.math.bincount(tf.cast(edges[:, 0], "int32")) ) attention_scores_norm = attention_scores / attention_scores_sum # (3) Gather node states of neighbors, apply attention scores and aggregate node_states_neighbors = tf.gather(node_states_transformed, edges[:, 1]) out = tf.math.unsorted_segment_sum( data=node_states_neighbors * attention_scores_norm[:, tf.newaxis], segment_ids=edges[:, 0], num_segments=tf.shape(node_states)[0], ) return out class MultiHeadGraphAttention(layers.Layer): def __init__(self, units, num_heads=8, merge_type="concat", **kwargs): super().__init__(**kwargs) self.num_heads = num_heads self.merge_type = merge_type self.attention_layers = [GraphAttention(units) for _ in range(num_heads)] def call(self, inputs): atom_features, pair_indices = inputs # Obtain outputs from each attention head outputs = [ attention_layer([atom_features, pair_indices]) for attention_layer in self.attention_layers ] # Concatenate or average the node states from each head if self.merge_type == "concat": outputs = tf.concat(outputs, axis=-1) else: outputs = tf.reduce_mean(tf.stack(outputs, axis=-1), axis=-1) # Activate and return node states return tf.nn.relu(outputs) """ ### Implement training logic with custom `train_step`, `test_step`, and `predict_step` methods Notice, the GAT model operates on the entire graph (namely, `node_states` and `edges`) in all phases (training, validation and testing). Hence, `node_states` and `edges` are passed to the constructor of the `keras.Model` and used as attributes. The difference between the phases are the indices (and labels), which gathers certain outputs (`tf.gather(outputs, indices)`). """ class GraphAttentionNetwork(keras.Model): def __init__( self, node_states, edges, hidden_units, num_heads, num_layers, output_dim, **kwargs, ): super().__init__(**kwargs) self.node_states = node_states self.edges = edges self.preprocess = layers.Dense(hidden_units * num_heads, activation="relu") self.attention_layers = [ MultiHeadGraphAttention(hidden_units, num_heads) for _ in range(num_layers) ] self.output_layer = layers.Dense(output_dim) def call(self, inputs): node_states, edges = inputs x = self.preprocess(node_states) for attention_layer in self.attention_layers: x = attention_layer([x, edges]) + x outputs = self.output_layer(x) return outputs def train_step(self, data): indices, labels = data with tf.GradientTape() as tape: # Forward pass outputs = self([self.node_states, self.edges]) # Compute loss loss = self.compiled_loss(labels, tf.gather(outputs, indices)) # Compute gradients grads = tape.gradient(loss, self.trainable_weights) # Apply gradients (update weights) optimizer.apply_gradients(zip(grads, self.trainable_weights)) # Update metric(s) self.compiled_metrics.update_state(labels, tf.gather(outputs, indices)) return {m.name: m.result() for m in self.metrics} def predict_step(self, data): indices = data # Forward pass outputs = self([self.node_states, self.edges]) # Compute probabilities return tf.nn.softmax(tf.gather(outputs, indices)) def test_step(self, data): indices, labels = data # Forward pass outputs = self([self.node_states, self.edges]) # Compute loss loss = self.compiled_loss(labels, tf.gather(outputs, indices)) # Update metric(s) self.compiled_metrics.update_state(labels, tf.gather(outputs, indices)) return {m.name: m.result() for m in self.metrics} """ ### Train and evaluate """ # Define hyper-parameters HIDDEN_UNITS = 100 NUM_HEADS = 8 NUM_LAYERS = 3 OUTPUT_DIM = len(class_values) NUM_EPOCHS = 100 BATCH_SIZE = 256 VALIDATION_SPLIT = 0.1 LEARNING_RATE = 3e-1 MOMENTUM = 0.9 loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True) optimizer = keras.optimizers.SGD(LEARNING_RATE, momentum=MOMENTUM) accuracy_fn = keras.metrics.SparseCategoricalAccuracy(name="acc") early_stopping = keras.callbacks.EarlyStopping( monitor="val_acc", min_delta=1e-5, patience=5, restore_best_weights=True ) # Build model gat_model = GraphAttentionNetwork( node_states, edges, HIDDEN_UNITS, NUM_HEADS, NUM_LAYERS, OUTPUT_DIM ) # Compile model gat_model.compile(loss=loss_fn, optimizer=optimizer, metrics=[accuracy_fn]) gat_model.fit( x=train_indices, y=train_labels, validation_split=VALIDATION_SPLIT, batch_size=BATCH_SIZE, epochs=NUM_EPOCHS, callbacks=[early_stopping], verbose=2, ) _, test_accuracy = gat_model.evaluate(x=test_indices, y=test_labels, verbose=0) print("--" * 38 + f"\nTest Accuracy {test_accuracy*100:.1f}%") """ ### Predict (probabilities) """ test_probs = gat_model.predict(x=test_indices) mapping = {v: k for (k, v) in class_idx.items()} for i, (probs, label) in enumerate(zip(test_probs[:10], test_labels[:10])): print(f"Example {i+1}: {mapping[label]}") for j, c in zip(probs, class_idx.keys()): print(f"\tProbability of {c: <24} = {j*100:7.3f}%") print("---" * 20) """ ## Conclusions The results look OK! The GAT model seems to correctly predict the subjects of the papers, based on what they cite, about 80% of the time. Further improvements could be made by fine-tuning the hyper-parameters of the GAT. For instance, try changing the number of layers, the number of hidden units, or the optimizer/learning rate; add regularization (e.g., dropout); or modify the preprocessing step. We could also try to implement *self-loops* (i.e., paper X cites paper X) and/or make the graph *undirected*. """
# -*- coding: utf-8 -*- # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import sys import json import time import base64 from airflow.contrib.hooks.gcs_hook import GoogleCloudStorageHook from airflow.hooks.mysql_hook import MySqlHook from airflow.models import BaseOperator from airflow.utils.decorators import apply_defaults from datetime import date, datetime from decimal import Decimal from MySQLdb.constants import FIELD_TYPE from tempfile import NamedTemporaryFile from six import string_types PY3 = sys.version_info[0] == 3 class MySqlToGoogleCloudStorageOperator(BaseOperator): """ Copy data from MySQL to Google cloud storage in JSON format. """ template_fields = ('sql', 'bucket', 'filename', 'schema_filename', 'schema') template_ext = ('.sql',) ui_color = '#a0e08c' @apply_defaults def __init__(self, sql, bucket, filename, schema_filename=None, approx_max_file_size_bytes=1900000000, mysql_conn_id='mysql_default', google_cloud_storage_conn_id='google_cloud_default', schema=None, delegate_to=None, *args, **kwargs): """ :param sql: The SQL to execute on the MySQL table. :type sql: string :param bucket: The bucket to upload to. :type bucket: string :param filename: The filename to use as the object name when uploading to Google cloud storage. A {} should be specified in the filename to allow the operator to inject file numbers in cases where the file is split due to size. :type filename: string :param schema_filename: If set, the filename to use as the object name when uploading a .json file containing the BigQuery schema fields for the table that was dumped from MySQL. :type schema_filename: string :param approx_max_file_size_bytes: This operator supports the ability to split large table dumps into multiple files (see notes in the filenamed param docs above). Google cloud storage allows for files to be a maximum of 4GB. This param allows developers to specify the file size of the splits. :type approx_max_file_size_bytes: long :param mysql_conn_id: Reference to a specific MySQL hook. :type mysql_conn_id: string :param google_cloud_storage_conn_id: Reference to a specific Google cloud storage hook. :type google_cloud_storage_conn_id: string :param schema: The schema to use, if any. Should be a list of dict or a str. Pass a string if using Jinja template, otherwise, pass a list of dict. Examples could be seen: https://cloud.google.com/bigquery/docs /schemas#specifying_a_json_schema_file :type schema: str or list :param delegate_to: The account to impersonate, if any. For this to work, the service account making the request must have domain-wide delegation enabled. """ super(MySqlToGoogleCloudStorageOperator, self).__init__(*args, **kwargs) self.sql = sql self.bucket = bucket self.filename = filename self.schema_filename = schema_filename self.approx_max_file_size_bytes = approx_max_file_size_bytes self.mysql_conn_id = mysql_conn_id self.google_cloud_storage_conn_id = google_cloud_storage_conn_id self.schema = schema self.delegate_to = delegate_to def execute(self, context): cursor = self._query_mysql() files_to_upload = self._write_local_data_files(cursor) # If a schema is set, create a BQ schema JSON file. if self.schema_filename: files_to_upload.update(self._write_local_schema_file(cursor)) # Flush all files before uploading. for file_handle in files_to_upload.values(): file_handle.flush() self._upload_to_gcs(files_to_upload) # Close all temp file handles. for file_handle in files_to_upload.values(): file_handle.close() def _query_mysql(self): """ Queries mysql and returns a cursor to the results. """ mysql = MySqlHook(mysql_conn_id=self.mysql_conn_id) conn = mysql.get_conn() cursor = conn.cursor() cursor.execute(self.sql) return cursor def _write_local_data_files(self, cursor): """ Takes a cursor, and writes results to a local file. :return: A dictionary where keys are filenames to be used as object names in GCS, and values are file handles to local files that contain the data for the GCS objects. """ schema = list(map(lambda schema_tuple: schema_tuple[0], cursor.description)) col_type_dict = self._get_col_type_dict() file_no = 0 tmp_file_handle = NamedTemporaryFile(delete=True) tmp_file_handles = {self.filename.format(file_no): tmp_file_handle} for row in cursor: # Convert datetime objects to utc seconds, and decimals to floats. # Convert binary type object to string encoded with base64. row = self._convert_types(schema, col_type_dict, row) row_dict = dict(zip(schema, row)) # TODO validate that row isn't > 2MB. BQ enforces a hard row size of 2MB. s = json.dumps(row_dict) if PY3: s = s.encode('utf-8') tmp_file_handle.write(s) # Append newline to make dumps BigQuery compatible. tmp_file_handle.write(b'\n') # Stop if the file exceeds the file size limit. if tmp_file_handle.tell() >= self.approx_max_file_size_bytes: file_no += 1 tmp_file_handle = NamedTemporaryFile(delete=True) tmp_file_handles[self.filename.format(file_no)] = tmp_file_handle return tmp_file_handles def _write_local_schema_file(self, cursor): """ Takes a cursor, and writes the BigQuery schema for the results to a local file system. :return: A dictionary where key is a filename to be used as an object name in GCS, and values are file handles to local files that contains the BigQuery schema fields in .json format. """ schema_str = None tmp_schema_file_handle = NamedTemporaryFile(delete=True) if self.schema is not None and isinstance(self.schema, string_types): schema_str = self.schema elif self.schema is not None and isinstance(self.schema, list): schema_str = json.dumps(self.schema) else: schema = [] for field in cursor.description: # See PEP 249 for details about the description tuple. field_name = field[0] field_type = self.type_map(field[1]) # Always allow TIMESTAMP to be nullable. MySQLdb returns None types # for required fields because some MySQL timestamps can't be # represented by Python's datetime (e.g. 0000-00-00 00:00:00). if field[6] or field_type == 'TIMESTAMP': field_mode = 'NULLABLE' else: field_mode = 'REQUIRED' schema.append({ 'name': field_name, 'type': field_type, 'mode': field_mode, }) schema_str = json.dumps(schema) if PY3: schema_str = schema_str.encode('utf-8') tmp_schema_file_handle.write(schema_str) self.log.info('Using schema for %s: %s', self.schema_filename, schema_str) return {self.schema_filename: tmp_schema_file_handle} def _upload_to_gcs(self, files_to_upload): """ Upload all of the file splits (and optionally the schema .json file) to Google cloud storage. """ hook = GoogleCloudStorageHook( google_cloud_storage_conn_id=self.google_cloud_storage_conn_id, delegate_to=self.delegate_to) for object, tmp_file_handle in files_to_upload.items(): hook.upload(self.bucket, object, tmp_file_handle.name, 'application/json') @staticmethod def _convert_types(schema, col_type_dict, row): """ Takes a value from MySQLdb, and converts it to a value that's safe for JSON/Google cloud storage/BigQuery. Dates are converted to UTC seconds. Decimals are converted to floats. Binary type fields are encoded with base64, as imported BYTES data must be base64-encoded according to Bigquery SQL date type documentation: https://cloud.google.com/bigquery/data-types """ converted_row = [] for col_name, col_val in zip(schema, row): if type(col_val) in (datetime, date): col_val = time.mktime(col_val.timetuple()) elif isinstance(col_val, Decimal): col_val = float(col_val) elif col_type_dict.get(col_name) == "BYTES": col_val = base64.standard_b64encode(col_val) if PY3: col_val = col_val.decode('ascii') else: col_val = col_val converted_row.append(col_val) return converted_row def _get_col_type_dict(self): """ Return a dict of column name and column type based on self.schema if not None. """ schema = [] if isinstance(self.schema, string_types): schema = json.loads(self.schema) elif isinstance(self.schema, list): schema = self.schema elif self.schema is not None: self.log.warn('Using default schema due to unexpected type.' 'Should be a string or list.') col_type_dict = {} try: col_type_dict = {col['name']: col['type'] for col in schema} except KeyError: self.log.warn('Using default schema due to missing name or type. Please ' 'refer to: https://cloud.google.com/bigquery/docs/schemas' '#specifying_a_json_schema_file') return col_type_dict @classmethod def type_map(cls, mysql_type): """ Helper function that maps from MySQL fields to BigQuery fields. Used when a schema_filename is set. """ d = { FIELD_TYPE.INT24: 'INTEGER', FIELD_TYPE.TINY: 'INTEGER', FIELD_TYPE.BIT: 'INTEGER', FIELD_TYPE.DATETIME: 'TIMESTAMP', FIELD_TYPE.DATE: 'TIMESTAMP', FIELD_TYPE.DECIMAL: 'FLOAT', FIELD_TYPE.NEWDECIMAL: 'FLOAT', FIELD_TYPE.DOUBLE: 'FLOAT', FIELD_TYPE.FLOAT: 'FLOAT', FIELD_TYPE.LONG: 'INTEGER', FIELD_TYPE.LONGLONG: 'INTEGER', FIELD_TYPE.SHORT: 'INTEGER', FIELD_TYPE.TIMESTAMP: 'TIMESTAMP', FIELD_TYPE.YEAR: 'INTEGER', } return d[mysql_type] if mysql_type in d else 'STRING'
#----------------------------------------------------------------------------- # Copyright (c) 2012 - 2022, Anaconda, Inc., and Bokeh Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- ''' Provide utility functions for implementing the ``bokeh`` command. ''' #----------------------------------------------------------------------------- # Boilerplate #----------------------------------------------------------------------------- from __future__ import annotations import logging # isort:skip log = logging.getLogger(__name__) #----------------------------------------------------------------------------- # Imports #----------------------------------------------------------------------------- # Standard library imports import contextlib import errno import os import sys import warnings from typing import Dict, Iterator, List # Bokeh imports from bokeh.application import Application from bokeh.application.handlers import ( DirectoryHandler, Handler, NotebookHandler, ScriptHandler, ) #----------------------------------------------------------------------------- # Globals and constants #----------------------------------------------------------------------------- __all__ = ( 'build_single_handler_application', 'build_single_handler_applications', 'die', 'report_server_init_errors', ) #----------------------------------------------------------------------------- # General API #----------------------------------------------------------------------------- def die(message: str, status: int = 1) -> None: ''' Print an error message and exit. This function will call ``sys.exit`` with the given ``status`` and the process will terminate. Args: message (str) : error message to print status (int) : the exit status to pass to ``sys.exit`` ''' print(message, file=sys.stderr) sys.exit(status) DIRSTYLE_MAIN_WARNING = """ It looks like you might be running the main.py of a directory app directly. If this is the case, to enable the features of directory style apps, you must call "bokeh serve" on the directory instead. For example: bokeh serve my_app_dir/ If this is not the case, renaming main.py will suppress this warning. """ def build_single_handler_application(path: str, argv: List[str] | None = None) -> Application: ''' Return a Bokeh application built using a single handler for a script, notebook, or directory. In general a Bokeh :class:`~bokeh.application.application.Application` may have any number of handlers to initialize |Document| objects for new client sessions. However, in many cases only a single handler is needed. This function examines the ``path`` provided, and returns an ``Application`` initialized with one of the following handlers: * :class:`~bokeh.application.handlers.script.ScriptHandler` when ``path`` is to a ``.py`` script. * :class:`~bokeh.application.handlers.notebook.NotebookHandler` when ``path`` is to an ``.ipynb`` Jupyter notebook. * :class:`~bokeh.application.handlers.directory.DirectoryHandler` when ``path`` is to a directory containing a ``main.py`` script. Args: path (str) : path to a file or directory for creating a Bokeh application. argv (seq[str], optional) : command line arguments to pass to the application handler Returns: :class:`~bokeh.application.application.Application` Raises: RuntimeError Notes: If ``path`` ends with a file ``main.py`` then a warning will be printed regarding running directory-style apps by passing the directory instead. ''' argv = argv or [] path = os.path.abspath(path) handler: Handler # There are certainly race conditions here if the file/directory is deleted # in between the isdir/isfile tests and subsequent code. But it would be a # failure if they were not there to begin with, too (just a different error) if os.path.isdir(path): handler = DirectoryHandler(filename=path, argv=argv) elif os.path.isfile(path): if path.endswith(".ipynb"): handler = NotebookHandler(filename=path, argv=argv) elif path.endswith(".py"): if path.endswith("main.py"): warnings.warn(DIRSTYLE_MAIN_WARNING) handler = ScriptHandler(filename=path, argv=argv) else: raise ValueError("Expected a '.py' script or '.ipynb' notebook, got: '%s'" % path) else: raise ValueError("Path for Bokeh server application does not exist: %s" % path) if handler.failed: raise RuntimeError("Error loading %s:\n\n%s\n%s " % (path, handler.error, handler.error_detail)) application = Application(handler) return application def build_single_handler_applications(paths: List[str], argvs: Dict[str, List[str]] | None = None) -> Dict[str, Application]: ''' Return a dictionary mapping routes to Bokeh applications built using single handlers, for specified files or directories. This function iterates over ``paths`` and ``argvs`` and calls :func:`~bokeh.command.util.build_single_handler_application` on each to generate the mapping. Args: paths (seq[str]) : paths to files or directories for creating Bokeh applications. argvs (dict[str, list[str]], optional) : mapping of paths to command line arguments to pass to the handler for each path Returns: dict[str, Application] Raises: RuntimeError ''' applications: Dict[str, Application] = {} argvs = argvs or {} for path in paths: application = build_single_handler_application(path, argvs.get(path, [])) route = application.handlers[0].url_path() if not route: if '/' in applications: raise RuntimeError("Don't know the URL path to use for %s" % (path)) route = '/' applications[route] = application return applications @contextlib.contextmanager def report_server_init_errors(address: str | None = None, port: int | None = None, **kwargs: str) -> Iterator[None]: ''' A context manager to help print more informative error messages when a ``Server`` cannot be started due to a network problem. Args: address (str) : network address that the server will be listening on port (int) : network address that the server will be listening on Example: .. code-block:: python with report_server_init_errors(**server_kwargs): server = Server(applications, **server_kwargs) If there are any errors (e.g. port or address in already in use) then a critical error will be logged and the process will terminate with a call to ``sys.exit(1)`` ''' try: yield except OSError as e: if e.errno == errno.EADDRINUSE: log.critical("Cannot start Bokeh server, port %s is already in use", port) elif e.errno == errno.EADDRNOTAVAIL: log.critical("Cannot start Bokeh server, address '%s' not available", address) else: codename = errno.errorcode[e.errno] log.critical("Cannot start Bokeh server [%s]: %r", codename, e) sys.exit(1) #----------------------------------------------------------------------------- # Dev API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Private API #----------------------------------------------------------------------------- #----------------------------------------------------------------------------- # Code #-----------------------------------------------------------------------------
#!/usr/bin/env python # cheat.py __author__ = "Kody Brown ([email protected])" __created__ = "10/23/2013" __copyright__ = "(C) 2013 Kody Brown. Released under the MIT License." __contributors__ = ["Kody Brown"] __version__ = "0.21" import glob import os import sys import shutil, errno from urllib.request import urlopen __debug = False sheetPath = "" downloadUrls = [] def debug( a, b = "", c = "", d = ""): global __debug if __debug: if len(str(b)) > 0: if a != None: print("DEBUG:", a.ljust(14, ' ') + " =", b, c, d) else: print("DEBUG:", ' '.ljust(14, ' ') + " =", b, c, d) else: print("DEBUG:", a) def getSheetPath(): try: path = os.environ["AppData"] except: path = None if path == None or len(path.strip()) == 0: return "." else: p = os.path.join(path, ".cheats") if os.path.exists(p) and not os.path.isdir(p): raise ValueError("Could not create directory: a file of the same name is in the way") if not os.path.isdir(p): os.makedirs(p) return p def getDownloadUrls(): return [ "https://raw.github.com/kodybrown/cheats/master/files/" ] def getFileName( filename ): pos = filename.rfind(os.sep) if pos > -1: return filename[pos + 1:] return "" def validateFile( filename, forceDownload ): global __debug, sheetPath, downloadUrls destfile = os.path.join(sheetPath, filename) debug('sheetPath', sheetPath) debug('filename', filename) debug('destfile', destfile) if forceDownload or not os.path.exists(destfile): for d in downloadUrls: url = d + filename debug('url', url) if downloadFile(url, destfile): break if not os.path.exists(destfile): print("could not find sheet..") return False else: return True def downloadFile( url, filename ): global __debug, sheetPath, downloadUrls if __debug: print("saving '" + url + "'\r\n to '" + filename + "'") try: ret = urlopen(url) if ret.code == 200: output = open(filename, 'wb') output.write(ret.read()) output.close() if __debug: print("successfully downloaded file") return True else: print("failed to download file: " + str(ret.code)) return False except: print("failed to download file: an exception occurred") return False def listLocal(): global sheetPath, downloadUrls, noHeader if not noHeader: print("") print("# Local Cheat Sheets") print(" located at: " + sheetPath + "") print("") files = glob.glob(os.path.join(sheetPath, "*")) fileIndex = 0 for f in files: fileIndex += 1 print("" + getFileName(f)) if fileIndex == 0: print("there are no local files") def listServer(): global sheetPath, downloadUrls, noHeader for u in downloadUrls: if not noHeader: print("") print("# Server Cheat Sheets") print(" location: " + u + "") print(" files that exist locally are denoted with an asterisk (*)") print("") files = ["<not implemented>"] # TODO Get the list of files on the server.. fileIndex = 0 for f in files: fileIndex += 1 islocal = "*" if os.path.exists(os.path.join(sheetPath, f)) else "" print("" + f + islocal) if fileIndex == 0: print("there are no files on this server") def removeSheet( sheetname ): global sheetPath fullpath = os.path.join(sheetPath, sheetname) if os.path.exists(fullpath): try: os.remove(fullpath) except OSError as e: if e.errno != errno.ENOENT: # errno.ENOENT == no such file or directory raise # re-raise exception if a different error occured def usage(): print("cheat.py - command-line cheat sheets, that works in Windows.") print("") print("USAGE:") print(" cheat.py [options] name") print("") print(" name The name of the cheet sheat to view.") print(" If it does not already exist in the local cache it will be downloaded then displayed.") print("") print("OPTIONS:") print(" --debug Outputs (a lot of) additional details about what is going on, etc.") print("") print(" --list Lists the local sheets.") print(" --download Forces download even if it already exists locally.") print("") # TODO # --search <keyword> # --remove # --create # --update # --push|upload def main(): global __debug, sheetPath, downloadUrls, noHeader sheetPath = getSheetPath() downloadUrls = getDownloadUrls() debug("sheetPath", sheetPath) debug("downloadUrls", downloadUrls) forceDownload = False noHeader = False args = [] if len(sys.argv) < 2: usage() sys.exit() for a in sys.argv[1:]: if len(a.strip()) == 0: continue debug("arg", a) if a[:1] in ("-", "/", "!"): while a[:1] in ("-", "/"): a = a[1:] al = a.lower() if al in ("?", "help"): usage() sys.exit(0) elif al == "debug": __debug = True elif al == "noheader": noHeader = True elif al in ("download", "force"): forceDownload = True elif al in ("!download", "!force"): forceDownload = False elif al in ("list", "listlocal"): listLocal() elif al in ("list-server", "listserver"): listServer() elif al.startswith("remove:") or al.startswith("delete:"): removeSheet(a[7:]) else: al = a.lower() if al == "debug": __debug = True elif al == "force": forceDownload = True elif al in ("list", "listlocal", "list-local"): listLocal() elif al in ("listserver", "list-server"): listServer() elif al.startswith("remove:"): removeSheet(a[7:]) elif a is not None and len(a) > 0: args.append(a) if __debug: debug("forceDownload", forceDownload) debug("sheetPath", sheetPath) debug("args", args) if len(args) > 0: if not validateFile(args[0], forceDownload): sys.exit(1) destfile = os.path.join(sheetPath, args[0]) # with open(destfile, "r") as f: # content = f.read() # # TODO fancy print the file's content.. # print(content) # my cat utility already handles outputting files via cli.. # https://github.com/kodybrown/cat debug("executing", "cat -w --force-plugin:md " + destfile) os.system("cat -w --force-plugin:markdown " + destfile) sys.exit(0) if __name__ == "__main__": main()
# Copyright 2015, Kay Hayen, mailto:[email protected] # # Part of "Nuitka", an optimizing Python compiler that is compatible and # integrates with CPython, but also works on its own. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This is the main actions of Nuitka. This can do all the steps to translate one module to a target language using the Python C/API, to compile it to either an executable or an extension module. """ import os import shutil import subprocess import sys from logging import info, warning from nuitka.importing import Importing, Recursion from nuitka.plugins.PluginBase import Plugins from nuitka.PythonVersions import isUninstalledPython from nuitka.tree import SyntaxErrors from nuitka.utils import InstanceCounters, Utils from . import ModuleRegistry, Options, Tracing, TreeXML from .build import SconsInterface from .codegen import CodeGeneration, ConstantCodes, MainCodes from .finalizations import Finalization from .freezer.BytecodeModuleFreezer import ( addFrozenModule, generateBytecodeFrozenCode, getFrozenModuleCount ) from .freezer.Standalone import ( copyUsedDLLs, detectEarlyImports, detectLateImports ) from .optimizations import Optimization from .tree import Building def createNodeTree(filename): """ Create a node tree. Turn that source code into a node tree structure. If recursion into imported modules is available, more trees will be available during optimization, or immediately through recursed directory paths. """ # First, build the raw node tree from the source code. main_module = Building.buildModuleTree( filename = filename, package = None, is_top = True, is_main = not Options.shallMakeModule() ) ModuleRegistry.addRootModule(main_module) # First remove old object files and old generated files, old binary or # module, and standalone mode program directory if any, they can only do # harm. source_dir = getSourceDirectoryPath(main_module) if not Options.shallOnlyExecCppCall(): cleanSourceDirectory(source_dir) if Options.isStandaloneMode(): standalone_dir = getStandaloneDirectoryPath(main_module) shutil.rmtree(standalone_dir, ignore_errors = True) Utils.makePath(standalone_dir) Utils.deleteFile( path = getResultFullpath(main_module), must_exist = False ) # Second, do it for the directories given. for plugin_filename in Options.getShallFollowExtra(): Recursion.checkPluginPath( plugin_filename = plugin_filename, module_package = None ) for pattern in Options.getShallFollowExtraFilePatterns(): Recursion.checkPluginFilenamePattern( pattern = pattern ) # Then optimize the tree and potentially recursed modules. Optimization.optimize() return main_module def dumpTreeXML(tree): xml_root = tree.asXml() TreeXML.dump(xml_root) def displayTree(tree): # Import only locally so the Qt4 dependency doesn't normally come into play # when it's not strictly needed. from .gui import TreeDisplay TreeDisplay.displayTreeInspector(tree) def getTreeFilenameWithSuffix(tree, suffix): return tree.getOutputFilename() + suffix def getSourceDirectoryPath(main_module): assert main_module.isPythonModule() return Options.getOutputPath( path = Utils.basename( getTreeFilenameWithSuffix(main_module, ".build") ) ) def getStandaloneDirectoryPath(main_module): return Options.getOutputPath( path = Utils.basename( getTreeFilenameWithSuffix(main_module, ".dist") ) ) def getResultBasepath(main_module): assert main_module.isPythonModule() if Options.isStandaloneMode(): return Utils.joinpath( getStandaloneDirectoryPath(main_module), Utils.basename( getTreeFilenameWithSuffix(main_module, "") ) ) else: return Options.getOutputPath( path = Utils.basename( getTreeFilenameWithSuffix(main_module, "") ) ) def getResultFullpath(main_module): result = getResultBasepath(main_module) if Options.shallMakeModule(): if Utils.getOS() == "Windows": result += ".pyd" else: result += ".so" else: result += ".exe" return result def cleanSourceDirectory(source_dir): if Utils.isDir(source_dir): for path, _filename in Utils.listDir(source_dir): if Utils.getExtension(path) in (".cpp", ".hpp", ".c", ".o", ".os", ".obj", ".bin", ".res", ".rc", ".manifest"): Utils.deleteFile(path, True) else: Utils.makePath(source_dir) static_source_dir = Utils.joinpath( source_dir, "static" ) if Utils.isDir(static_source_dir): for path, _filename in Utils.listDir(static_source_dir): if Utils.getExtension(path) in (".o", ".os", ".obj"): Utils.deleteFile(path, True) win32_source_dir = Utils.joinpath( static_source_dir, "win32_ucontext_src" ) if Utils.getOS() == "Windows": Utils.deleteFile( Utils.joinpath(win32_source_dir, "fibers_win32.obj"), False ) def pickSourceFilenames(source_dir, modules): collision_filenames = set() seen_filenames = set() # Our output. module_filenames = {} def getFilenames(module): base_filename = Utils.joinpath( source_dir, "module." + module.getFullName() if not module.isInternalModule() else module.getFullName() ) # Note: Could detect if the file system is cases sensitive in source_dir # or not, but that's probably not worth the effort. False positives do # no harm at all. collision_filename = Utils.normcase(base_filename) return base_filename, collision_filename # First pass, check for collisions. for module in modules: if module.isPythonShlibModule(): continue base_filename = base_filename, collision_filename = getFilenames(module) if collision_filename in seen_filenames: collision_filenames.add(collision_filename) seen_filenames.add(collision_filename) # Count up for colliding filenames. collision_counts = {} # Second pass, this time sorted, so we get deterministic results. We will # apply an @1/@2 to disambiguate the filenames. for module in sorted(modules, key = lambda x : x.getFullName()): if module.isPythonShlibModule(): continue base_filename = base_filename, collision_filename = getFilenames(module) if collision_filename in collision_filenames: collision_counts[ collision_filename ] = \ collision_counts.get(collision_filename, 0) + 1 hash_suffix = "@%d" % collision_counts[ collision_filename ] else: hash_suffix = "" base_filename += hash_suffix module_filenames[module] = base_filename + ".cpp" return module_filenames standalone_entry_points = [] def makeSourceDirectory(main_module): # We deal with a lot of details here, but rather one by one, and split makes # no sense, pylint: disable=R0912,R0914 assert main_module.isPythonModule() # The global context used to generate code. global_context = CodeGeneration.makeGlobalContext() # Get the full list of modules imported, create code for all of them. modules = ModuleRegistry.getDoneModules() assert main_module in modules # Sometimes we need to talk about all modules except main module. other_modules = ModuleRegistry.getDoneUserModules() # Lets check if the recurse-to modules are actually present, and warn the # user if one was not found. for any_case_module in Options.getShallFollowModules(): for module in other_modules: if module.getFullName() == any_case_module: break else: warning( "Didn't recurse to '%s', apparently not used." % \ any_case_module ) # Prepare code generation, i.e. execute finalization for it. for module in sorted(modules, key = lambda x : x.getFullName()): if module.isPythonModule(): Finalization.prepareCodeGeneration(module) # Pick filenames. source_dir = getSourceDirectoryPath(main_module) module_filenames = pickSourceFilenames( source_dir = source_dir, modules = modules ) # First pass, generate code and use constants doing so, but prepare the # final code generation only, because constants code will be added at the # end only. prepared_modules = {} for module in sorted(modules, key = lambda x : x.getFullName()): if module.isPythonModule(): cpp_filename = module_filenames[module] prepared_modules[cpp_filename] = CodeGeneration.prepareModuleCode( global_context = global_context, module = module, module_name = module.getFullName(), other_modules = other_modules if module is main_module else () ) # Main code constants need to be allocated already too. if module is main_module and not Options.shallMakeModule(): prepared_modules[cpp_filename][1].getConstantCode(0) for module in sorted(modules, key = lambda x : x.getFullName()): if module.isPythonModule(): cpp_filename = module_filenames[module] template_values, module_context = prepared_modules[cpp_filename] source_code = CodeGeneration.generateModuleCode( module_context = module_context, template_values = template_values ) # The main of an executable module gets a bit different code. if module is main_module and not Options.shallMakeModule(): source_code = MainCodes.generateMainCode( main_module = main_module, context = module_context, codes = source_code ) writeSourceCode( filename = cpp_filename, source_code = source_code ) if Options.isShowInclusion(): info("Included compiled module '%s'." % module.getFullName()) elif module.isPythonShlibModule(): target_filename = Utils.joinpath( getStandaloneDirectoryPath(main_module), *module.getFullName().split('.') ) if Utils.getOS() == "Windows": target_filename += ".pyd" else: target_filename += ".so" target_dir = Utils.dirname(target_filename) if not Utils.isDir(target_dir): Utils.makePath(target_dir) shutil.copy( module.getFilename(), target_filename ) standalone_entry_points.append( (target_filename, module.getPackage()) ) else: assert False, module writeSourceCode( filename = Utils.joinpath(source_dir, "__constants.cpp"), source_code = ConstantCodes.getConstantsDefinitionCode( context = global_context ) ) helper_decl_code, helper_impl_code = CodeGeneration.generateHelpersCode() writeSourceCode( filename = Utils.joinpath(source_dir, "__helpers.hpp"), source_code = helper_decl_code ) writeSourceCode( filename = Utils.joinpath(source_dir, "__helpers.cpp"), source_code = helper_impl_code ) def runScons(main_module, quiet): # Scons gets transported many details, that we express as variables, and # have checks for them, leading to many branches, pylint: disable=R0912 python_version = "%d.%d" % (sys.version_info[0], sys.version_info[1]) if hasattr(sys, "abiflags"): if Options.isPythonDebug() or \ hasattr(sys, "getobjects"): if sys.abiflags.startswith('d'): python_version += sys.abiflags else: python_version += 'd' + sys.abiflags else: python_version += sys.abiflags def asBoolStr(value): return "true" if value else "false" options = { "name" : Utils.basename( getTreeFilenameWithSuffix(main_module, "") ), "result_name" : getResultBasepath(main_module), "source_dir" : getSourceDirectoryPath(main_module), "debug_mode" : asBoolStr(Options.isDebug()), "python_debug" : asBoolStr(Options.isPythonDebug()), "unstripped_mode" : asBoolStr(Options.isUnstripped()), "module_mode" : asBoolStr(Options.shallMakeModule()), "optimize_mode" : asBoolStr(Options.isOptimize()), "full_compat" : asBoolStr(Options.isFullCompat()), "experimental" : asBoolStr(Options.isExperimental()), "trace_mode" : asBoolStr(Options.shallTraceExecution()), "python_version" : python_version, "target_arch" : Utils.getArchitecture(), "python_prefix" : sys.prefix, "nuitka_src" : SconsInterface.getSconsDataPath(), "module_count" : "%d" % ( len(ModuleRegistry.getDoneUserModules()) + 1 ) } # Ask Scons to cache on Windows, except where the directory is thrown # away. On non-Windows you can should use ccache instead. if not Options.isRemoveBuildDir() and Utils.getOS() == "Windows": options["cache_mode"] = "true" if Options.isLto(): options["lto_mode"] = "true" if Options.shallDisableConsoleWindow(): options["win_disable_console"] = "true" if Options.isStandaloneMode(): options["standalone_mode"] = "true" if not Options.isStandaloneMode() and \ not Options.shallMakeModule() and \ isUninstalledPython(): options["win_copy_dll"] = "true" if getFrozenModuleCount(): options["frozen_modules"] = str( getFrozenModuleCount() ) if Options.isShowScons(): options["show_scons"] = "true" if Options.isMingw(): options["mingw_mode"] = "true" if Options.getMsvcVersion(): msvc_version = Options.getMsvcVersion() msvc_version = msvc_version.replace("exp", "Exp") if '.' not in msvc_version: msvc_version += ".0" options["msvc_version"] = msvc_version if Options.isClang(): options["clang_mode"] = "true" if Options.getIconPath(): options["icon_path"] = Options.getIconPath() return SconsInterface.runScons(options, quiet), options def writeSourceCode(filename, source_code): # Prevent accidental overwriting. When this happens the collision detection # or something else has failed. assert not Utils.isFile(filename), filename if Utils.python_version >= 300: with open(filename, "wb") as output_file: output_file.write(source_code.encode("latin1")) else: with open(filename, 'w') as output_file: output_file.write(source_code) def writeBinaryData(filename, binary_data): # Prevent accidental overwriting. When this happens the collision detection # or something else has failed. assert not Utils.isFile(filename), filename assert type(binary_data) is bytes with open(filename, "wb") as output_file: output_file.write(binary_data) def callExec(args, clean_path, add_path): old_python_path = os.environ.get("PYTHONPATH", None) if clean_path and old_python_path is not None: os.environ["PYTHONPATH"] = "" if add_path: if "PYTHONPATH" in os.environ: os.environ["PYTHONPATH"] += ':' + Options.getOutputDir() else: os.environ["PYTHONPATH"] = Options.getOutputDir() # We better flush these, "os.execl" won't do it anymore. sys.stdout.flush() sys.stderr.flush() # Add the main arguments, previous separated. args += Options.getMainArgs() Utils.callExec(args) def executeMain(binary_filename, tree, clean_path): main_filename = tree.getFilename() if Options.isStandaloneMode(): name = binary_filename elif main_filename.endswith(".py"): name = main_filename[:-3] else: name = main_filename name = Utils.abspath(name) args = (binary_filename, name) callExec( clean_path = clean_path, add_path = False, args = args ) def executeModule(tree, clean_path): python_command = "__import__('%s')" % tree.getName() args = ( sys.executable, "python", "-c", python_command, ) callExec( clean_path = clean_path, add_path = True, args = args ) def compileTree(main_module): source_dir = getSourceDirectoryPath(main_module) if not Options.shallOnlyExecCppCall(): # Now build the target language code for the whole tree. makeSourceDirectory( main_module = main_module ) if Options.isStandaloneMode(): for late_import in detectLateImports(): addFrozenModule(late_import) if getFrozenModuleCount(): frozen_code = generateBytecodeFrozenCode() writeSourceCode( filename = Utils.joinpath( source_dir, "__frozen.cpp" ), source_code = frozen_code ) writeBinaryData( filename = Utils.joinpath(source_dir, "__constants.bin"), binary_data = ConstantCodes.stream_data.getBytes() ) else: source_dir = getSourceDirectoryPath(main_module) if not Utils.isFile(Utils.joinpath(source_dir, "__helpers.hpp")): sys.exit("Error, no previous build directory exists.") if Options.isShowProgress() or Options.isShowMemory(): Tracing.printLine( "Total memory usage before running scons: {memory}:".format( memory = Utils.getHumanReadableProcessMemoryUsage() ) ) if Options.isShowMemory(): InstanceCounters.printStats() if Options.shallNotDoExecCppCall(): return True, {} # Run the Scons to build things. result, options = runScons( main_module = main_module, quiet = not Options.isShowScons() ) return result, options data_files = [] def main(): """ Main program flow of Nuitka At this point, options will be parsed already, Nuitka will be executing in the desired version of Python with desired flags, and we just get to execute the task assigned. We might be asked to only re-compile generated C++, dump only an XML representation of the internal node tree after optimization, etc. """ # Main has to fullfil many options, leading to many branches and statements # to deal with them. pylint: disable=R0912 positional_args = Options.getPositionalArgs() assert len(positional_args) > 0 filename = Options.getPositionalArgs()[0] # Inform the importing layer about the main script directory, so it can use # it when attempting to follow imports. Importing.setMainScriptDirectory( main_dir = Utils.dirname(Utils.abspath(filename)) ) # Detect to be frozen modules if any, so we can consider to not recurse # to them. if Options.isStandaloneMode(): for early_import in detectEarlyImports(): addFrozenModule(early_import) if early_import[0] == "site": origin_prefix_filename = Utils.joinpath( Utils.dirname(early_import[3]), "orig-prefix.txt" ) if Utils.isFile(origin_prefix_filename): data_files.append( (filename, "orig-prefix.txt") ) # Turn that source code into a node tree structure. try: main_module = createNodeTree( filename = filename ) except (SyntaxError, IndentationError) as e: # Syntax or indentation errors, output them to the user and abort. sys.exit( SyntaxErrors.formatOutput(e) ) if Options.shallDumpBuiltTreeXML(): for module in ModuleRegistry.getDoneModules(): dumpTreeXML(module) elif Options.shallDisplayBuiltTree(): displayTree(main_module) else: result, options = compileTree( main_module = main_module ) # Exit if compilation failed. if not result: sys.exit(1) if Options.shallNotDoExecCppCall(): sys.exit(0) # Remove the source directory (now build directory too) if asked to. if Options.isRemoveBuildDir(): shutil.rmtree( getSourceDirectoryPath(main_module) ) if Options.isStandaloneMode(): binary_filename = options["result_name"] + ".exe" standalone_entry_points.insert( 0, (binary_filename, None) ) dist_dir = getStandaloneDirectoryPath(main_module) for module in ModuleRegistry.getDoneUserModules(): standalone_entry_points.extend( Plugins.considerExtraDlls(dist_dir, module) ) if Utils.getOS() == "NetBSD": warning("Standalone mode on NetBSD is not functional, due to $ORIGIN linkage not being supported.") copyUsedDLLs( dist_dir = dist_dir, standalone_entry_points = standalone_entry_points ) for source_filename, target_filename in data_files: shutil.copy2( source_filename, Utils.joinpath( getStandaloneDirectoryPath(main_module), target_filename ) ) # Modules should not be executable, but Scons creates them like it, fix # it up here. if Utils.getOS() != "Windows" and Options.shallMakeModule(): subprocess.call( ( "chmod", "-x", getResultFullpath(main_module) ) ) # Execute the module immediately if option was given. if Options.shallExecuteImmediately(): if Options.shallMakeModule(): executeModule( tree = main_module, clean_path = Options.shallClearPythonPathEnvironment() ) else: executeMain( binary_filename = getResultFullpath(main_module), tree = main_module, clean_path = Options.shallClearPythonPathEnvironment() )
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test pruning code # ******** # WARNING: # This test uses 4GB of disk space. # This test takes 30 mins or more (up to 2 hours) # ******** from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * import time import os MIN_BLOCKS_TO_KEEP = 288 # Rescans start at the earliest block up to 2 hours before a key timestamp, so # the manual prune RPC avoids pruning blocks in the same window to be # compatible with pruning based on key creation time. RESCAN_WINDOW = 2 * 60 * 60 def calc_usage(blockdir): return sum(os.path.getsize(blockdir+f) for f in os.listdir(blockdir) if os.path.isfile(blockdir+f)) / (1024. * 1024.) class PruneTest(BitcoinTestFramework): def __init__(self): super().__init__() self.setup_clean_chain = True self.num_nodes = 6 # Cache for utxos, as the listunspent may take a long time later in the test self.utxo_cache_0 = [] self.utxo_cache_1 = [] def setup_network(self): self.nodes = [] self.is_network_split = False # Create nodes 0 and 1 to mine self.nodes.append(start_node(0, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900)) self.nodes.append(start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900)) # Create node 2 to test pruning self.nodes.append(start_node(2, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-prune=550"], timewait=900)) self.prunedir = self.options.tmpdir+"/node2/regtest/blocks/" # Create nodes 3 and 4 to test manual pruning (they will be re-started with manual pruning later) self.nodes.append(start_node(3, self.options.tmpdir, ["-debug=0","-maxreceivebuffer=20000","-blockmaxsize=999000"], timewait=900)) self.nodes.append(start_node(4, self.options.tmpdir, ["-debug=0","-maxreceivebuffer=20000","-blockmaxsize=999000"], timewait=900)) # Create nodes 5 to test wallet in prune mode, but do not connect self.nodes.append(start_node(5, self.options.tmpdir, ["-debug=0", "-prune=550"])) # Determine default relay fee self.relayfee = self.nodes[0].getnetworkinfo()["relayfee"] connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[1], 2) connect_nodes(self.nodes[2], 0) connect_nodes(self.nodes[0], 3) connect_nodes(self.nodes[0], 4) sync_blocks(self.nodes[0:5]) def create_big_chain(self): # Start by creating some coinbases we can spend later self.nodes[1].generate(200) sync_blocks(self.nodes[0:2]) self.nodes[0].generate(150) # Then mine enough full blocks to create more than 550MiB of data for i in range(645): mine_large_block(self.nodes[0], self.utxo_cache_0) sync_blocks(self.nodes[0:5]) def test_height_min(self): if not os.path.isfile(self.prunedir+"blk00000.dat"): raise AssertionError("blk00000.dat is missing, pruning too early") print("Success") print("Though we're already using more than 550MiB, current usage:", calc_usage(self.prunedir)) print("Mining 25 more blocks should cause the first block file to be pruned") # Pruning doesn't run until we're allocating another chunk, 20 full blocks past the height cutoff will ensure this for i in range(25): mine_large_block(self.nodes[0], self.utxo_cache_0) waitstart = time.time() while os.path.isfile(self.prunedir+"blk00000.dat"): time.sleep(0.1) if time.time() - waitstart > 30: raise AssertionError("blk00000.dat not pruned when it should be") print("Success") usage = calc_usage(self.prunedir) print("Usage should be below target:", usage) if (usage > 550): raise AssertionError("Pruning target not being met") def create_chain_with_staleblocks(self): # Create stale blocks in manageable sized chunks print("Mine 24 (stale) blocks on Node 1, followed by 25 (main chain) block reorg from Node 0, for 12 rounds") for j in range(12): # Disconnect node 0 so it can mine a longer reorg chain without knowing about node 1's soon-to-be-stale chain # Node 2 stays connected, so it hears about the stale blocks and then reorg's when node0 reconnects # Stopping node 0 also clears its mempool, so it doesn't have node1's transactions to accidentally mine self.stop_node(0) self.nodes[0]=start_node(0, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=999000", "-checkblocks=5"], timewait=900) # Mine 24 blocks in node 1 for i in range(24): if j == 0: mine_large_block(self.nodes[1], self.utxo_cache_1) else: self.nodes[1].generate(1) #tx's already in mempool from previous disconnects # Reorg back with 25 block chain from node 0 for i in range(25): mine_large_block(self.nodes[0], self.utxo_cache_0) # Create connections in the order so both nodes can see the reorg at the same time connect_nodes(self.nodes[1], 0) connect_nodes(self.nodes[2], 0) sync_blocks(self.nodes[0:3]) print("Usage can be over target because of high stale rate:", calc_usage(self.prunedir)) def reorg_test(self): # Node 1 will mine a 300 block chain starting 287 blocks back from Node 0 and Node 2's tip # This will cause Node 2 to do a reorg requiring 288 blocks of undo data to the reorg_test chain # Reboot node 1 to clear its mempool (hopefully make the invalidate faster) # Lower the block max size so we don't keep mining all our big mempool transactions (from disconnected blocks) self.stop_node(1) self.nodes[1]=start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=5000", "-checkblocks=5", "-disablesafemode"], timewait=900) height = self.nodes[1].getblockcount() print("Current block height:", height) invalidheight = height-287 badhash = self.nodes[1].getblockhash(invalidheight) print("Invalidating block at height:",invalidheight,badhash) self.nodes[1].invalidateblock(badhash) # We've now switched to our previously mined-24 block fork on node 1, but thats not what we want # So invalidate that fork as well, until we're on the same chain as node 0/2 (but at an ancestor 288 blocks ago) mainchainhash = self.nodes[0].getblockhash(invalidheight - 1) curhash = self.nodes[1].getblockhash(invalidheight - 1) while curhash != mainchainhash: self.nodes[1].invalidateblock(curhash) curhash = self.nodes[1].getblockhash(invalidheight - 1) assert(self.nodes[1].getblockcount() == invalidheight - 1) print("New best height", self.nodes[1].getblockcount()) # Reboot node1 to clear those giant tx's from mempool self.stop_node(1) self.nodes[1]=start_node(1, self.options.tmpdir, ["-debug","-maxreceivebuffer=20000","-blockmaxsize=5000", "-checkblocks=5", "-disablesafemode"], timewait=900) print("Generating new longer chain of 300 more blocks") self.nodes[1].generate(300) print("Reconnect nodes") connect_nodes(self.nodes[0], 1) connect_nodes(self.nodes[2], 1) sync_blocks(self.nodes[0:3], timeout=120) print("Verify height on node 2:",self.nodes[2].getblockcount()) print("Usage possibly still high bc of stale blocks in block files:", calc_usage(self.prunedir)) print("Mine 220 more blocks so we have requisite history (some blocks will be big and cause pruning of previous chain)") for i in range(22): # This can be slow, so do this in multiple RPC calls to avoid # RPC timeouts. self.nodes[0].generate(10) #node 0 has many large tx's in its mempool from the disconnects sync_blocks(self.nodes[0:3], timeout=300) usage = calc_usage(self.prunedir) print("Usage should be below target:", usage) if (usage > 550): raise AssertionError("Pruning target not being met") return invalidheight,badhash def reorg_back(self): # Verify that a block on the old main chain fork has been pruned away try: self.nodes[2].getblock(self.forkhash) raise AssertionError("Old block wasn't pruned so can't test redownload") except JSONRPCException as e: print("Will need to redownload block",self.forkheight) # Verify that we have enough history to reorg back to the fork point # Although this is more than 288 blocks, because this chain was written more recently # and only its other 299 small and 220 large block are in the block files after it, # its expected to still be retained self.nodes[2].getblock(self.nodes[2].getblockhash(self.forkheight)) first_reorg_height = self.nodes[2].getblockcount() curchainhash = self.nodes[2].getblockhash(self.mainchainheight) self.nodes[2].invalidateblock(curchainhash) goalbestheight = self.mainchainheight goalbesthash = self.mainchainhash2 # As of 0.10 the current block download logic is not able to reorg to the original chain created in # create_chain_with_stale_blocks because it doesn't know of any peer thats on that chain from which to # redownload its missing blocks. # Invalidate the reorg_test chain in node 0 as well, it can successfully switch to the original chain # because it has all the block data. # However it must mine enough blocks to have a more work chain than the reorg_test chain in order # to trigger node 2's block download logic. # At this point node 2 is within 288 blocks of the fork point so it will preserve its ability to reorg if self.nodes[2].getblockcount() < self.mainchainheight: blocks_to_mine = first_reorg_height + 1 - self.mainchainheight print("Rewind node 0 to prev main chain to mine longer chain to trigger redownload. Blocks needed:", blocks_to_mine) self.nodes[0].invalidateblock(curchainhash) assert(self.nodes[0].getblockcount() == self.mainchainheight) assert(self.nodes[0].getbestblockhash() == self.mainchainhash2) goalbesthash = self.nodes[0].generate(blocks_to_mine)[-1] goalbestheight = first_reorg_height + 1 print("Verify node 2 reorged back to the main chain, some blocks of which it had to redownload") waitstart = time.time() while self.nodes[2].getblockcount() < goalbestheight: time.sleep(0.1) if time.time() - waitstart > 900: raise AssertionError("Node 2 didn't reorg to proper height") assert(self.nodes[2].getbestblockhash() == goalbesthash) # Verify we can now have the data for a block previously pruned assert(self.nodes[2].getblock(self.forkhash)["height"] == self.forkheight) def manual_test(self, node_number, use_timestamp): # at this point, node has 995 blocks and has not yet run in prune mode node = self.nodes[node_number] = start_node(node_number, self.options.tmpdir, ["-debug=0"], timewait=900) assert_equal(node.getblockcount(), 995) assert_raises_message(JSONRPCException, "not in prune mode", node.pruneblockchain, 500) self.stop_node(node_number) # now re-start in manual pruning mode node = self.nodes[node_number] = start_node(node_number, self.options.tmpdir, ["-debug=0","-prune=1"], timewait=900) assert_equal(node.getblockcount(), 995) def height(index): if use_timestamp: return node.getblockheader(node.getblockhash(index))["time"] + RESCAN_WINDOW else: return index def prune(index, expected_ret=None): ret = node.pruneblockchain(height(index)) # Check the return value. When use_timestamp is True, just check # that the return value is less than or equal to the expected # value, because when more than one block is generated per second, # a timestamp will not be granular enough to uniquely identify an # individual block. if expected_ret is None: expected_ret = index if use_timestamp: assert_greater_than(ret, 0) assert_greater_than(expected_ret + 1, ret) else: assert_equal(ret, expected_ret) def has_block(index): return os.path.isfile(self.options.tmpdir + "/node{}/regtest/blocks/blk{:05}.dat".format(node_number, index)) # should not prune because chain tip of node 3 (995) < PruneAfterHeight (1000) assert_raises_message(JSONRPCException, "Blockchain is too short for pruning", node.pruneblockchain, height(500)) # mine 6 blocks so we are at height 1001 (i.e., above PruneAfterHeight) node.generate(6) assert_equal(node.getblockchaininfo()["blocks"], 1001) # negative heights should raise an exception assert_raises_message(JSONRPCException, "Negative", node.pruneblockchain, -10) # height=100 too low to prune first block file so this is a no-op prune(100) if not has_block(0): raise AssertionError("blk00000.dat is missing when should still be there") # Does nothing node.pruneblockchain(height(0)) if not has_block(0): raise AssertionError("blk00000.dat is missing when should still be there") # height=500 should prune first file prune(500) if has_block(0): raise AssertionError("blk00000.dat is still there, should be pruned by now") if not has_block(1): raise AssertionError("blk00001.dat is missing when should still be there") # height=650 should prune second file prune(650) if has_block(1): raise AssertionError("blk00001.dat is still there, should be pruned by now") # height=1000 should not prune anything more, because tip-288 is in blk00002.dat. prune(1000, 1001 - MIN_BLOCKS_TO_KEEP) if not has_block(2): raise AssertionError("blk00002.dat is still there, should be pruned by now") # advance the tip so blk00002.dat and blk00003.dat can be pruned (the last 288 blocks should now be in blk00004.dat) node.generate(288) prune(1000) if has_block(2): raise AssertionError("blk00002.dat is still there, should be pruned by now") if has_block(3): raise AssertionError("blk00003.dat is still there, should be pruned by now") # stop node, start back up with auto-prune at 550MB, make sure still runs self.stop_node(node_number) self.nodes[node_number] = start_node(node_number, self.options.tmpdir, ["-debug=0","-prune=550"], timewait=900) print("Success") def wallet_test(self): # check that the pruning node's wallet is still in good shape print("Stop and start pruning node to trigger wallet rescan") try: self.stop_node(2) start_node(2, self.options.tmpdir, ["-debug=1","-prune=550"]) print("Success") except Exception as detail: raise AssertionError("Wallet test: unable to re-start the pruning node") # check that wallet loads loads successfully when restarting a pruned node after IBD. # this was reported to fail in #7494. print ("Syncing node 5 to test wallet") connect_nodes(self.nodes[0], 5) nds = [self.nodes[0], self.nodes[5]] sync_blocks(nds, wait=5, timeout=300) try: self.stop_node(5) #stop and start to trigger rescan start_node(5, self.options.tmpdir, ["-debug=1","-prune=550"]) print ("Success") except Exception as detail: raise AssertionError("Wallet test: unable to re-start node5") def run_test(self): print("Warning! This test requires 4GB of disk space and takes over 30 mins (up to 2 hours)") print("Mining a big blockchain of 995 blocks") self.create_big_chain() # Chain diagram key: # * blocks on main chain # +,&,$,@ blocks on other forks # X invalidated block # N1 Node 1 # # Start by mining a simple chain that all nodes have # N0=N1=N2 **...*(995) # stop manual-pruning node with 995 blocks self.stop_node(3) self.stop_node(4) print("Check that we haven't started pruning yet because we're below PruneAfterHeight") self.test_height_min() # Extend this chain past the PruneAfterHeight # N0=N1=N2 **...*(1020) print("Check that we'll exceed disk space target if we have a very high stale block rate") self.create_chain_with_staleblocks() # Disconnect N0 # And mine a 24 block chain on N1 and a separate 25 block chain on N0 # N1=N2 **...*+...+(1044) # N0 **...**...**(1045) # # reconnect nodes causing reorg on N1 and N2 # N1=N2 **...*(1020) *...**(1045) # \ # +...+(1044) # # repeat this process until you have 12 stale forks hanging off the # main chain on N1 and N2 # N0 *************************...***************************(1320) # # N1=N2 **...*(1020) *...**(1045) *.. ..**(1295) *...**(1320) # \ \ \ # +...+(1044) &.. $...$(1319) # Save some current chain state for later use self.mainchainheight = self.nodes[2].getblockcount() #1320 self.mainchainhash2 = self.nodes[2].getblockhash(self.mainchainheight) print("Check that we can survive a 288 block reorg still") (self.forkheight,self.forkhash) = self.reorg_test() #(1033, ) # Now create a 288 block reorg by mining a longer chain on N1 # First disconnect N1 # Then invalidate 1033 on main chain and 1032 on fork so height is 1032 on main chain # N1 **...*(1020) **...**(1032)X.. # \ # ++...+(1031)X.. # # Now mine 300 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@(1332) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # Reconnect nodes and mine 220 more blocks on N1 # N1 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ X... # \ \ # ++...+(1031)X.. .. # # N2 **...*(1020) **...**(1032) @@...@@@(1552) # \ \ # \ *...**(1320) # \ \ # ++...++(1044) .. # # N0 ********************(1032) @@...@@@(1552) # \ # *...**(1320) print("Test that we can rerequest a block we previously pruned if needed for a reorg") self.reorg_back() # Verify that N2 still has block 1033 on current chain (@), but not on main chain (*) # Invalidate 1033 on current chain (@) on N2 and we should be able to reorg to # original main chain (*), but will require redownload of some blocks # In order to have a peer we think we can download from, must also perform this invalidation # on N0 and mine a new longest chain to trigger. # Final result: # N0 ********************(1032) **...****(1553) # \ # X@...@@@(1552) # # N2 **...*(1020) **...**(1032) **...****(1553) # \ \ # \ X@...@@@(1552) # \ # +.. # # N1 doesn't change because 1033 on main chain (*) is invalid print("Test manual pruning with block indices") self.manual_test(3, use_timestamp=False) print("Test manual pruning with timestamps") self.manual_test(4, use_timestamp=True) print("Test wallet re-scan") self.wallet_test() print("Done") if __name__ == '__main__': PruneTest().main()
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple from google.api_core import grpc_helpers # type: ignore from google.api_core import gapic_v1 # type: ignore import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.ads.googleads.v8.resources.types import geo_target_constant from google.ads.googleads.v8.services.types import geo_target_constant_service from .base import GeoTargetConstantServiceTransport, DEFAULT_CLIENT_INFO class GeoTargetConstantServiceGrpcTransport(GeoTargetConstantServiceTransport): """gRPC backend transport for GeoTargetConstantService. Service to fetch geo target constants. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ def __init__( self, *, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or applicatin default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for grpc channel. It is ignored if ``channel`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. """ self._ssl_channel_credentials = ssl_channel_credentials if channel: # Sanity check: Ensure that channel and credentials are not both # provided. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None elif api_mtls_endpoint: warnings.warn( "api_mtls_endpoint and client_cert_source are deprecated", DeprecationWarning, ) host = ( api_mtls_endpoint if ":" in api_mtls_endpoint else api_mtls_endpoint + ":443" ) if credentials is None: credentials, _ = google.auth.default( scopes=self.AUTH_SCOPES, quota_project_id=quota_project_id ) # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() ssl_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: ssl_credentials = SslCredentials().ssl_credentials # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, credentials_file=credentials_file, ssl_credentials=ssl_credentials, scopes=scopes or self.AUTH_SCOPES, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._ssl_channel_credentials = ssl_credentials else: host = host if ":" in host else host + ":443" if credentials is None: credentials, _ = google.auth.default(scopes=self.AUTH_SCOPES) # create a new channel. The provided one is ignored. self._grpc_channel = type(self).create_channel( host, credentials=credentials, ssl_credentials=ssl_channel_credentials, scopes=self.AUTH_SCOPES, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) self._stubs = {} # type: Dict[str, Callable] # Run the base constructor. super().__init__( host=host, credentials=credentials, client_info=client_info, ) @classmethod def create_channel( cls, host: str = "googleads.googleapis.com", credentials: ga_credentials.Credentials = None, scopes: Optional[Sequence[str]] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: address (Optionsl[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. """ return grpc_helpers.create_channel( host, credentials=credentials, scopes=scopes or cls.AUTH_SCOPES, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def get_geo_target_constant( self, ) -> Callable[ [geo_target_constant_service.GetGeoTargetConstantRequest], geo_target_constant.GeoTargetConstant, ]: r"""Return a callable for the get geo target constant method over gRPC. Returns the requested geo target constant in full detail. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Returns: Callable[[~.GetGeoTargetConstantRequest], ~.GeoTargetConstant]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_geo_target_constant" not in self._stubs: self._stubs[ "get_geo_target_constant" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v8.services.GeoTargetConstantService/GetGeoTargetConstant", request_serializer=geo_target_constant_service.GetGeoTargetConstantRequest.serialize, response_deserializer=geo_target_constant.GeoTargetConstant.deserialize, ) return self._stubs["get_geo_target_constant"] @property def suggest_geo_target_constants( self, ) -> Callable[ [geo_target_constant_service.SuggestGeoTargetConstantsRequest], geo_target_constant_service.SuggestGeoTargetConstantsResponse, ]: r"""Return a callable for the suggest geo target constants method over gRPC. Returns GeoTargetConstant suggestions by location name or by resource name. List of thrown errors: `AuthenticationError <>`__ `AuthorizationError <>`__ `GeoTargetConstantSuggestionError <>`__ `HeaderError <>`__ `InternalError <>`__ `QuotaError <>`__ `RequestError <>`__ Returns: Callable[[~.SuggestGeoTargetConstantsRequest], ~.SuggestGeoTargetConstantsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "suggest_geo_target_constants" not in self._stubs: self._stubs[ "suggest_geo_target_constants" ] = self.grpc_channel.unary_unary( "/google.ads.googleads.v8.services.GeoTargetConstantService/SuggestGeoTargetConstants", request_serializer=geo_target_constant_service.SuggestGeoTargetConstantsRequest.serialize, response_deserializer=geo_target_constant_service.SuggestGeoTargetConstantsResponse.deserialize, ) return self._stubs["suggest_geo_target_constants"] __all__ = ("GeoTargetConstantServiceGrpcTransport",)
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the RBF code.""" from decimal import Decimal from test_framework.messages import COIN, COutPoint, CTransaction, CTxIn, CTxOut from test_framework.script import CScript, OP_DROP from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error, satoshi_round from test_framework.script_util import DUMMY_P2WPKH_SCRIPT MAX_REPLACEMENT_LIMIT = 100 def txToHex(tx): return tx.serialize().hex() def make_utxo(node, amount, confirmed=True, scriptPubKey=DUMMY_P2WPKH_SCRIPT): """Create a txout with a given amount and scriptPubKey Mines coins as needed. confirmed - txouts created will be confirmed in the blockchain; unconfirmed otherwise. """ fee = 1*COIN while node.getbalance() < satoshi_round((amount + fee)/COIN): node.generate(100) new_addr = node.getnewaddress() txid = node.sendtoaddress(new_addr, satoshi_round((amount+fee)/COIN)) tx1 = node.getrawtransaction(txid, 1) txid = int(txid, 16) i = None for i, txout in enumerate(tx1['vout']): if txout['scriptPubKey']['addresses'] == [new_addr]: break assert i is not None tx2 = CTransaction() tx2.vin = [CTxIn(COutPoint(txid, i))] tx2.vout = [CTxOut(amount, scriptPubKey)] tx2.rehash() signed_tx = node.signrawtransactionwithwallet(txToHex(tx2)) txid = node.sendrawtransaction(signed_tx['hex'], 0) # If requested, ensure txouts are confirmed. if confirmed: mempool_size = len(node.getrawmempool()) while mempool_size > 0: node.generate(1) new_size = len(node.getrawmempool()) # Error out if we have something stuck in the mempool, as this # would likely be a bug. assert new_size < mempool_size mempool_size = new_size return COutPoint(int(txid, 16), 0) class ReplaceByFeeTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 self.extra_args = [ [ "-acceptnonstdtxn=1", "-maxorphantx=1000", "-limitancestorcount=50", "-limitancestorsize=101", "-limitdescendantcount=200", "-limitdescendantsize=101", ], ] self.supports_cli = False def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): # Leave IBD self.nodes[0].generate(1) make_utxo(self.nodes[0], 1*COIN) # Ensure nodes are synced self.sync_all() self.log.info("Running test simple doublespend...") self.test_simple_doublespend() self.log.info("Running test doublespend chain...") self.test_doublespend_chain() self.log.info("Running test doublespend tree...") self.test_doublespend_tree() self.log.info("Running test replacement feeperkb...") self.test_replacement_feeperkb() self.log.info("Running test spends of conflicting outputs...") self.test_spends_of_conflicting_outputs() self.log.info("Running test new unconfirmed inputs...") self.test_new_unconfirmed_inputs() self.log.info("Running test too many replacements...") self.test_too_many_replacements() self.log.info("Running test opt-in...") self.test_opt_in() self.log.info("Running test RPC...") self.test_rpc() self.log.info("Running test prioritised transactions...") self.test_prioritised_transactions() self.log.info("Passed") def test_simple_doublespend(self): """Simple doublespend""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # make_utxo may have generated a bunch of blocks, so we need to sync # before we can spend the coins generated, or else the resulting # transactions might not be accepted by our peers. self.sync_all() tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0) self.sync_all() # Should fail because we haven't changed the fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT + b'a')] tx1b_hex = txToHex(tx1b) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0) # Extra 0.1 BTC fee tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)] tx1b_hex = txToHex(tx1b) # Works when enabled tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0) mempool = self.nodes[0].getrawmempool() assert tx1a_txid not in mempool assert tx1b_txid in mempool assert_equal(tx1b_hex, self.nodes[0].getrawtransaction(tx1b_txid)) def test_doublespend_chain(self): """Doublespend of a long chain""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) prevout = tx0_outpoint remaining_value = initial_nValue chain_txids = [] while remaining_value > 10*COIN: remaining_value -= 1*COIN tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = [CTxOut(remaining_value, CScript([1, OP_DROP] * 15 + [1]))] tx_hex = txToHex(tx) txid = self.nodes[0].sendrawtransaction(tx_hex, 0) chain_txids.append(txid) prevout = COutPoint(int(txid, 16), 0) # Whether the double-spend is allowed is evaluated by including all # child fees - 40 BTC - so this attempt is rejected. dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 30 * COIN, DUMMY_P2WPKH_SCRIPT)] dbl_tx_hex = txToHex(dbl_tx) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0) # Accepted with sufficient fee dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, 0) mempool = self.nodes[0].getrawmempool() for doublespent_txid in chain_txids: assert doublespent_txid not in mempool def test_doublespend_tree(self): """Doublespend of a big tree of transactions""" initial_nValue = 50*COIN tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) def branch(prevout, initial_value, max_txs, tree_width=5, fee=0.0001*COIN, _total_txs=None): if _total_txs is None: _total_txs = [0] if _total_txs[0] >= max_txs: return txout_value = (initial_value - fee) // tree_width if txout_value < fee: return vout = [CTxOut(txout_value, CScript([i+1])) for i in range(tree_width)] tx = CTransaction() tx.vin = [CTxIn(prevout, nSequence=0)] tx.vout = vout tx_hex = txToHex(tx) assert len(tx.serialize()) < 100000 txid = self.nodes[0].sendrawtransaction(tx_hex, 0) yield tx _total_txs[0] += 1 txid = int(txid, 16) for i, txout in enumerate(tx.vout): for x in branch(COutPoint(txid, i), txout_value, max_txs, tree_width=tree_width, fee=fee, _total_txs=_total_txs): yield x fee = int(0.0001*COIN) n = MAX_REPLACEMENT_LIMIT tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) # Attempt double-spend, will fail because too little fee paid dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee * n, DUMMY_P2WPKH_SCRIPT)] dbl_tx_hex = txToHex(dbl_tx) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0) # 1 BTC fee is enough dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - fee * n - 1 * COIN, DUMMY_P2WPKH_SCRIPT)] dbl_tx_hex = txToHex(dbl_tx) self.nodes[0].sendrawtransaction(dbl_tx_hex, 0) mempool = self.nodes[0].getrawmempool() for tx in tree_txs: tx.rehash() assert tx.hash not in mempool # Try again, but with more total transactions than the "max txs # double-spent at once" anti-DoS limit. for n in (MAX_REPLACEMENT_LIMIT+1, MAX_REPLACEMENT_LIMIT*2): fee = int(0.0001*COIN) tx0_outpoint = make_utxo(self.nodes[0], initial_nValue) tree_txs = list(branch(tx0_outpoint, initial_nValue, n, fee=fee)) assert_equal(len(tree_txs), n) dbl_tx = CTransaction() dbl_tx.vin = [CTxIn(tx0_outpoint, nSequence=0)] dbl_tx.vout = [CTxOut(initial_nValue - 2 * fee * n, DUMMY_P2WPKH_SCRIPT)] dbl_tx_hex = txToHex(dbl_tx) # This will raise an exception assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, dbl_tx_hex, 0) for tx in tree_txs: tx.rehash() self.nodes[0].getrawtransaction(tx.hash) def test_replacement_feeperkb(self): """Replacement requires fee-per-KB to be higher""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1a_hex = txToHex(tx1a) self.nodes[0].sendrawtransaction(tx1a_hex, 0) # Higher fee, but the fee per KB is much lower, so the replacement is # rejected. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*999000]))] tx1b_hex = txToHex(tx1b) # This will raise an exception due to insufficient fee assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0) def test_spends_of_conflicting_outputs(self): """Replacements that spend conflicting tx outputs are rejected""" utxo1 = make_utxo(self.nodes[0], int(1.2*COIN)) utxo2 = make_utxo(self.nodes[0], 3*COIN) tx1a = CTransaction() tx1a.vin = [CTxIn(utxo1, nSequence=0)] tx1a.vout = [CTxOut(int(1.1 * COIN), DUMMY_P2WPKH_SCRIPT)] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0) tx1a_txid = int(tx1a_txid, 16) # Direct spend an output of the transaction we're replacing. tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0)] tx2.vin.append(CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)) tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, 0) # Spend tx1a's output to test the indirect case. tx1b = CTransaction() tx1b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx1b.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1b_hex = txToHex(tx1b) tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0) tx1b_txid = int(tx1b_txid, 16) tx2 = CTransaction() tx2.vin = [CTxIn(utxo1, nSequence=0), CTxIn(utxo2, nSequence=0), CTxIn(COutPoint(tx1b_txid, 0))] tx2.vout = tx1a.vout tx2_hex = txToHex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "bad-txns-spends-conflicting-tx", self.nodes[0].sendrawtransaction, tx2_hex, 0) def test_new_unconfirmed_inputs(self): """Replacements that add new unconfirmed inputs are rejected""" confirmed_utxo = make_utxo(self.nodes[0], int(1.1*COIN)) unconfirmed_utxo = make_utxo(self.nodes[0], int(0.1*COIN), False) tx1 = CTransaction() tx1.vin = [CTxIn(confirmed_utxo)] tx1.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1_hex = txToHex(tx1) self.nodes[0].sendrawtransaction(tx1_hex, 0) tx2 = CTransaction() tx2.vin = [CTxIn(confirmed_utxo), CTxIn(unconfirmed_utxo)] tx2.vout = tx1.vout tx2_hex = txToHex(tx2) # This will raise an exception assert_raises_rpc_error(-26, "replacement-adds-unconfirmed", self.nodes[0].sendrawtransaction, tx2_hex, 0) def test_too_many_replacements(self): """Replacements that evict too many transactions are rejected""" # Try directly replacing more than MAX_REPLACEMENT_LIMIT # transactions # Start by creating a single transaction with many outputs initial_nValue = 10*COIN utxo = make_utxo(self.nodes[0], initial_nValue) fee = int(0.0001*COIN) split_value = int((initial_nValue-fee)/(MAX_REPLACEMENT_LIMIT+1)) outputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): outputs.append(CTxOut(split_value, CScript([1]))) splitting_tx = CTransaction() splitting_tx.vin = [CTxIn(utxo, nSequence=0)] splitting_tx.vout = outputs splitting_tx_hex = txToHex(splitting_tx) txid = self.nodes[0].sendrawtransaction(splitting_tx_hex, 0) txid = int(txid, 16) # Now spend each of those outputs individually for i in range(MAX_REPLACEMENT_LIMIT+1): tx_i = CTransaction() tx_i.vin = [CTxIn(COutPoint(txid, i), nSequence=0)] tx_i.vout = [CTxOut(split_value - fee, DUMMY_P2WPKH_SCRIPT)] tx_i_hex = txToHex(tx_i) self.nodes[0].sendrawtransaction(tx_i_hex, 0) # Now create doublespend of the whole lot; should fail. # Need a big enough fee to cover all spending transactions and have # a higher fee rate double_spend_value = (split_value-100*fee)*(MAX_REPLACEMENT_LIMIT+1) inputs = [] for i in range(MAX_REPLACEMENT_LIMIT+1): inputs.append(CTxIn(COutPoint(txid, i), nSequence=0)) double_tx = CTransaction() double_tx.vin = inputs double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) # This will raise an exception assert_raises_rpc_error(-26, "too many potential replacements", self.nodes[0].sendrawtransaction, double_tx_hex, 0) # If we remove an input, it should pass double_tx = CTransaction() double_tx.vin = inputs[0:-1] double_tx.vout = [CTxOut(double_spend_value, CScript([b'a']))] double_tx_hex = txToHex(double_tx) self.nodes[0].sendrawtransaction(double_tx_hex, 0) def test_opt_in(self): """Replacing should only work if orig tx opted in""" tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a non-opting in transaction tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0xffffffff)] tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0) # This transaction isn't shown as replaceable assert_equal(self.nodes[0].getmempoolentry(tx1a_txid)['bip125-replaceable'], False) # Shouldn't be able to double-spend tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)] tx1b_hex = txToHex(tx1b) # This will raise an exception assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx1b_hex, 0) tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) # Create a different non-opting in transaction tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0xfffffffe)] tx2a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx2a_hex = txToHex(tx2a) tx2a_txid = self.nodes[0].sendrawtransaction(tx2a_hex, 0) # Still shouldn't be able to double-spend tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(0.9 * COIN), DUMMY_P2WPKH_SCRIPT)] tx2b_hex = txToHex(tx2b) # This will raise an exception assert_raises_rpc_error(-26, "txn-mempool-conflict", self.nodes[0].sendrawtransaction, tx2b_hex, 0) # Now create a new transaction that spends from tx1a and tx2a # opt-in on one of the inputs # Transaction should be replaceable on either input tx1a_txid = int(tx1a_txid, 16) tx2a_txid = int(tx2a_txid, 16) tx3a = CTransaction() tx3a.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0xffffffff), CTxIn(COutPoint(tx2a_txid, 0), nSequence=0xfffffffd)] tx3a.vout = [CTxOut(int(0.9*COIN), CScript([b'c'])), CTxOut(int(0.9*COIN), CScript([b'd']))] tx3a_hex = txToHex(tx3a) tx3a_txid = self.nodes[0].sendrawtransaction(tx3a_hex, 0) # This transaction is shown as replaceable assert_equal(self.nodes[0].getmempoolentry(tx3a_txid)['bip125-replaceable'], True) tx3b = CTransaction() tx3b.vin = [CTxIn(COutPoint(tx1a_txid, 0), nSequence=0)] tx3b.vout = [CTxOut(int(0.5 * COIN), DUMMY_P2WPKH_SCRIPT)] tx3b_hex = txToHex(tx3b) tx3c = CTransaction() tx3c.vin = [CTxIn(COutPoint(tx2a_txid, 0), nSequence=0)] tx3c.vout = [CTxOut(int(0.5 * COIN), DUMMY_P2WPKH_SCRIPT)] tx3c_hex = txToHex(tx3c) self.nodes[0].sendrawtransaction(tx3b_hex, 0) # If tx3b was accepted, tx3c won't look like a replacement, # but make sure it is accepted anyway self.nodes[0].sendrawtransaction(tx3c_hex, 0) def test_prioritised_transactions(self): # Ensure that fee deltas used via prioritisetransaction are # correctly used by replacement logic # 1. Check that feeperkb uses modified fees tx0_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx1a = CTransaction() tx1a.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx1a_hex = txToHex(tx1a) tx1a_txid = self.nodes[0].sendrawtransaction(tx1a_hex, 0) # Higher fee, but the actual fee per KB is much lower. tx1b = CTransaction() tx1b.vin = [CTxIn(tx0_outpoint, nSequence=0)] tx1b.vout = [CTxOut(int(0.001*COIN), CScript([b'a'*740000]))] tx1b_hex = txToHex(tx1b) # Verify tx1b cannot replace tx1a. assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx1b_hex, 0) # Use prioritisetransaction to set tx1a's fee to 0. self.nodes[0].prioritisetransaction(txid=tx1a_txid, fee_delta=int(-0.1*COIN)) # Now tx1b should be able to replace tx1a tx1b_txid = self.nodes[0].sendrawtransaction(tx1b_hex, 0) assert tx1b_txid in self.nodes[0].getrawmempool() # 2. Check that absolute fee checks use modified fee. tx1_outpoint = make_utxo(self.nodes[0], int(1.1*COIN)) tx2a = CTransaction() tx2a.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2a.vout = [CTxOut(1 * COIN, DUMMY_P2WPKH_SCRIPT)] tx2a_hex = txToHex(tx2a) self.nodes[0].sendrawtransaction(tx2a_hex, 0) # Lower fee, but we'll prioritise it tx2b = CTransaction() tx2b.vin = [CTxIn(tx1_outpoint, nSequence=0)] tx2b.vout = [CTxOut(int(1.01 * COIN), DUMMY_P2WPKH_SCRIPT)] tx2b.rehash() tx2b_hex = txToHex(tx2b) # Verify tx2b cannot replace tx2a. assert_raises_rpc_error(-26, "insufficient fee", self.nodes[0].sendrawtransaction, tx2b_hex, 0) # Now prioritise tx2b to have a higher modified fee self.nodes[0].prioritisetransaction(txid=tx2b.hash, fee_delta=int(0.1*COIN)) # tx2b should now be accepted tx2b_txid = self.nodes[0].sendrawtransaction(tx2b_hex, 0) assert tx2b_txid in self.nodes[0].getrawmempool() def test_rpc(self): us0 = self.nodes[0].listunspent()[0] ins = [us0] outs = {self.nodes[0].getnewaddress() : Decimal(1.0000000)} rawtx0 = self.nodes[0].createrawtransaction(ins, outs, 0, True) rawtx1 = self.nodes[0].createrawtransaction(ins, outs, 0, False) json0 = self.nodes[0].decoderawtransaction(rawtx0) json1 = self.nodes[0].decoderawtransaction(rawtx1) assert_equal(json0["vin"][0]["sequence"], 4294967293) assert_equal(json1["vin"][0]["sequence"], 4294967295) rawtx2 = self.nodes[0].createrawtransaction([], outs) frawtx2a = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": True}) frawtx2b = self.nodes[0].fundrawtransaction(rawtx2, {"replaceable": False}) json0 = self.nodes[0].decoderawtransaction(frawtx2a['hex']) json1 = self.nodes[0].decoderawtransaction(frawtx2b['hex']) assert_equal(json0["vin"][0]["sequence"], 4294967293) assert_equal(json1["vin"][0]["sequence"], 4294967294) if __name__ == '__main__': ReplaceByFeeTest().main()
"""Command Line Interface to opyd objects""" from __future__ import print_function import time import functools import sys from contextlib import contextmanager, closing from StringIO import StringIO import collections from IPython.utils.coloransi import TermColors as tc from epics import caget, caput from ..controls.positioner import EpicsMotor, Positioner, PVPositioner from ..session import get_session_manager session_mgr = get_session_manager() try: logbook = session_mgr['olog_client'] except KeyError: logbook = None __all__ = ['mov', 'movr', 'set_pos', 'wh_pos', 'set_lm', 'log_pos', 'log_pos_diff' ] # Global Defs of certain strings FMT_LEN = 18 FMT_PREC = 6 def ensure(*ensure_args): def wrap(f): @functools.wraps(f) def wrapper(*args, **kwargs): # First check if we have an iterable first # on the first arg # if not then make these all lists if len(args) > 0: if not hasattr(args[0], "__iter__"): args = tuple([[a] for a in args]) # Now do type checking ignoring None for n, (arg, t) in enumerate(zip(args, ensure_args)): if t is not None: for x in arg: if not isinstance(x, t): raise TypeError("Incorect type in parameter list.\n" "Parameter at position {} " "is expected to be an instance of " "{}".format(n, t)) f(*args, **kwargs) return wrapper return wrap @ensure(Positioner, None) def mov(positioner, position): """Move positioners to given positions Move positioners using the move method of the Positioner class. Parameters ---------- positioner : Positioner or list Positioners to move position : float or list of float Values to move positioners to. Examples -------- Move a single positioner `slt1_xc` to 10:: >>>mov(slt1_xc, 10) Move positioner `slt1_xg` and `slt1_yg` to 2 and 3 respectively:: >>>mov([slt1_xg, slt1_yg], [2, 3]) """ print('\n ', end='') print(tc.Green, end='') for p in positioner: print_string(p.name) print("\n") # Start Moving all Positioners in context manager to catch # Keyboard interrupts # TODO : This should be a utility function pos_prec = [] for p in positioner: if hasattr(p, 'precision'): pos_prec.append(p.precision) else: pos_prec.append(FMT_PREC) with catch_keyboard_interrupt(positioner): stat = [p.move(v, wait=False) for p, v in zip(positioner, position)] # The loop below ensures that at least a couple prints # will happen flag = 0 done = False while not all(s.done for s in stat) or (flag < 2): print(tc.LightGreen, end='') print(' ', end='') for p, prec in zip(positioner, pos_prec): print_value(p.position, egu=p.egu, prec=prec) print('\n') print('\033[2A', end='') time.sleep(0.01) done = all(s.done for s in stat) if done: flag += 1 print(tc.Normal + '\n') @ensure(Positioner, None) def movr(positioner, position): """Move positioners relative to their current positon. See Also -------- mov : move positioners to an absolute position. """ _start_val = [p.position for p in positioner] for v in _start_val: if v is None: raise IOError("Unable to read motor position for relative move") _new_val = [a + b for a, b in zip(_start_val, position)] mov(positioner, _new_val) @ensure(Positioner, None) def set_lm(positioner, limits): """Set the limits of the positioner Sets the limits of the positioner or list of positioners. For EpicsMotors the fields .HLM and .LLM are set to the high and low limits respectively. For PVPositioners the .DRVH and .DRVL fields are set on the setopoint record. If neither method works then an IOError is raised. Parameters ---------- positioner : positioner or list of positioners limits : single or list of tuple of form (+ve, -ve) limits Raises ------ IOError If the caput (EPICS put) fails then an IOError is raised. Examples -------- Set the limits of motor `m1` to (10, -10):: >>>set_lm(slt1_xc, (10, -10)) Set the limits of motors `m1` and `m2` to (2, -2) and (3, -3) respectively:: >>>set_lm([m1, m2], [[2,-2], [3, -3]]) """ print('') msg = '' high_fields = [] low_fields = [] for p in positioner: if isinstance(p, EpicsMotor): high_fields.append(p._record + '.HLM') low_fields.append(p._record + '.LLM') elif isinstance(p, PVPositioner): high_fields.append(p.setpoint_pvname[0] + '.DRVH') low_fields.append(p.setpoint_pvname[0] + '.DRVL') else: raise TypeError("Positioners must be EpicsMotors or PVPositioners" "to set the limits") for p, lim, high_field, low_field in zip(positioner, limits, high_fields, low_fields): lim1 = max(lim) lim2 = min(lim) if not caput(high_field, lim1): raise IOError("Unable to set high limit for {}" " writing to PV {}.".format(p.name, high_field)) msg += "Upper limit set to {:.{prec}g} for positioner {}\n".format( lim1, p.name, prec=FMT_PREC) if not caput(low_field, lim2): raise IOError("Unable to set low limit for {}" " writing to PV {}.".format(p.name, low_field)) msg += "Lower limit set to {:.{prec}g} for positioner {}\n".format( lim2, p.name, prec=FMT_PREC) print(msg) if logbook: logbook.log(msg) @ensure(Positioner, (float, int)) def set_pos(positioner, position): """Set the position of a positioner Set the position of a positioner or positioners to the value position. This function only works for EpicsMotors (Based on the EPICS Motor Record) and uses the .OFF field to set the current position to the value passed to the function. Parameters ---------- positioner : Positioner or list of positioners. position : float or list of floats. New position of positioners Raises ------ TypeError If positioner is not an instance of an EpicsMotor. Examples -------- Set the position of motor m1 to 4:: >>>set_pos(m1, 4) Set the position of motors m1 and m2 to 1 and 2 respectively:: >>>set_pos([m1, m2], [1, 2]) Raises: TypeError: If positioner is not an instance of an EpicsMotor. """ for p in positioner: if not isinstance(p, EpicsMotor): raise TypeError("Positioner {} must be an EpicsMotor" "to set position.".format(p.name)) # Get the current offset offset_pvs = [p._record + ".OFF" for p in positioner] dial_pvs = [p._record + ".DRBV" for p in positioner] old_offsets = [caget(p) for p in offset_pvs] dial = [caget(p) for p in dial_pvs] for v in old_offsets + dial: if v is None: raise ValueError("Could not read or invalid value for current" "position of positioners") new_offsets = [a - b for a, b in zip(position, dial)] msg = '' for o, old_o, p in zip(new_offsets, old_offsets, positioner): if caput(p._record + '.OFF', o): msg += 'Motor {0} set to position {1} (Offset = {2} was {3})\n'\ .format(p.name, p.position, o, old_o) else: print('Unable to set position of positioner {0}'.format(p.name)) print(msg) lmsg = logbook_add_objects(positioner, dial_pvs + offset_pvs) logbook.log(msg + '\n' + lmsg) @ensure(Positioner) def wh_pos(positioners=None): """Get the current position of Positioners and print to screen. Print to the screen the position of the positioners in a formated table. If positioners is None then get all registered positioners from the session manager. Parameters ---------- positioners : Positioner, list of Positioners or None See Also -------- log_pos : Log positioner values to logbook Examples -------- List all positioners:: >>>wh_pos() List positioners `m1`, `m2` and `m3`:: >>>wh_pos([m1, m2, m3]) """ if positioners is None: pos = session_mgr.get_positioners() positioners = [pos[k] for k in sorted(pos)] _print_pos(positioners, file=sys.stdout) @ensure(Positioner) def log_pos(positioners=None): """Get the current position of Positioners and make a logbook entry. Print to the screen the position of the positioners and make a logbook text entry. If positioners is None then get all registered positioners from the session manager. This routine also creates session information in the logbook so positions can be recovered. Parameters ---------- positioners : Positioner, list of Positioners or None Returns ------- int The ID of the logbook entry returned by the logbook.log method. """ if positioners is None: pos = session_mgr.get_positioners() positioners = [pos[k] for k in sorted(pos)] msg = '' with closing(StringIO()) as sio: _print_pos(positioners, file=sio) msg += sio.getvalue() print(msg) # Add the text representation of the positioners msg += logbook_add_objects(positioners) # Create the property for storing motor posisions pdict = {} pdict['objects'] = repr(positioners) pdict['values'] = repr({p.name: p.position for p in positioners}) # make the logbook entry id = logbook.log(msg, properties={'OphydPositioners': pdict}, ensure=True) print('Logbook positions added as Logbook ID {}'.format(id)) return id def log_pos_mov(id=None, dry_run=False, positioners=None, **kwargs): """Move to positions located in logboook This function moves to positions recorded in the experimental logbook using the :py:func:`log_pos` function. Parameters ---------- id : integer, optional ID of logbook entry to search for and move positions to. dry_run : bool, optional If True, do not move motors, but execute a dry_run positioners : list, optional List of string names of positioners to compare and move. Other positioners in the log entry will be ignored. """ logpos, objects = logbook_to_objects(id, **kwargs) objects = collections.OrderedDict(sorted(objects.items())) if positioners is not None: keys = set(positioners).intersection(set(objects.keys())) objects = {x: objects[x] for x in keys} print('') stat = [] for key, value in objects.iteritems(): newpos = logpos[key] oldpos = value.position try: if not dry_run: stat.append(value.move(newpos, wait=False)) except: print('{}[!!] Unable to move positioner {}' .format(tc.Red, tc.Normal)) else: print('{}[**] Moving positioner {} to {}' ' from current position of {}{}`' .format(tc.Green, value.name, newpos, oldpos, tc.Normal)) print('\n{}Waiting for positioners to complete .....' .format(tc.LightGreen), end='') sys.stdout.flush() if len(stat) > 0: while all(s.done for s in stat): time.sleep(0.01) print(' Done{}\n'.format(tc.Normal)) def log_pos_diff(id=None, positioners=None, **kwargs): """Move to positions located in logboook This function compares positions recorded in the experimental logbook using the :py:func:`log_pos` function. Parameters ---------- id : integer ID of logbook entry to search for and move positions to. positioners : list List of string names of positioners to compare. Other positioners in the log entry will be ignored. """ oldpos, objects = logbook_to_objects(id, **kwargs) objects = collections.OrderedDict(sorted(objects.items())) # Cycle through positioners and compare position with old value # If we have an error, print a warning diff = [] pos = [] values = [] if positioners is not None: keys = set(positioners).intersection(set(objects.keys())) objects = {x: objects[x] for x in keys} print('') for key, value in objects.iteritems(): try: diff.append(value.position - oldpos[key]) pos.append(value) values.append(value.position) except: print('{}[!!] Unable to compare positioner {}{}' .format(tc.Red, key, tc.Normal)) print_header(len=3*(FMT_LEN+3)+1) print_string('Positioner', pre='| ', post=' | ') print_string('Value', post=' | ') print_string('Difference', post=' |\n') print_header(len=3*(FMT_LEN+3)+1) for p, v, d in zip(pos, values, diff): print_string(p.name, pre='| ', post=' | ') print_value(v, egu=p.egu, post=' | ') print_value(d, egu=p.egu, post=' |\n') print_header(len=3*(FMT_LEN+3)+1) print('') def logbook_to_objects(id=None, **kwargs): """Search the logbook and return positioners""" if logbook is None: raise NotImplemented("No logbook is avaliable") entry = logbook.find(id=id, **kwargs) if len(entry) != 1: raise ValueError("Search of logbook was not unique, please refine" "search") try: prop = entry[0]['properties']['OphydPositioners'] except KeyError: raise KeyError('No property in log entry with positioner information') try: obj = eval(prop['objects']) val = eval(prop['values']) except: raise RuntimeError('Unable to create objects from log entry') objects = {o.name: o for o in obj} return val, objects def logbook_add_objects(objects, extra_pvs=None): """Add to the logbook aditional information on ophyd objects. This routine takes objects and possible extra pvs and adds to the log entry information which is not printed to stdout/stderr. Parameters ---------- objects : Ophyd objects Objects to add to log entry. extra_pvs : List of strings Extra PVs to include in report """ msg = '' msg += '{:^43}|{:^22}|{:^50}\n'.format('PV Name', 'Name', 'Value') msg += '{:-^120}\n'.format('') # Make a list of all PVs and positioners pvs = [o.report['pv'] for o in objects] names = [o.name for o in objects] values = [str(o.value) for o in objects] if extra_pvs is not None: pvs += extra_pvs names += ['None' for e in extra_pvs] values += [caget(e) for e in extra_pvs] for a, b, c in zip(pvs, names, values): msg += 'PV:{:<40} {:<22} {:<50}\n'.format(a, b, c) return msg def print_header(title='', char='-', len=80, file=sys.stdout): print('{:{char}^{len}}'.format(title, char=char, len=len), file=file) def print_string(val, size=FMT_LEN, pre='', post=' ', file=sys.stdout): print('{}{:<{size}}{}'.format(pre, val, post, size=size), end='', file=file) def print_value(val, prec=FMT_PREC, egu='', **kwargs): if val is not None: print_string('{: .{fmt}f} {}'.format(val, egu, fmt=prec), **kwargs) else: print_string('', **kwargs) def blink(on=True, file=sys.stdout): if on: print("\x1b[?25h", end='', file=file) else: print("\x1b[?25l", end='', file=file) @contextmanager def catch_keyboard_interrupt(positioners): """Context manager to capture Keyboard Interrupt and stop motors This context manager should be used when moving positioners via the cli to capture the keyboardInterrupt and ensure that motors are stopped and clean up the output to the screen. """ blink(False) try: yield except KeyboardInterrupt: print(tc.Red + "[!!] ABORTED " ": Commanding all positioners to stop.") for p in positioners: p.stop() print("{}[--] Stopping {}{}".format(tc.Red, tc.LightRed, p.name)) print(tc.Normal, end='') blink(True) def _print_pos(positioners, file=sys.stdout): """Pretty Print the positioners to file""" print('', file=file) pos = [p.position for p in positioners] # Print out header print_header(len=4*(FMT_LEN+3)+1, file=file) print_string('Positioner', pre='| ', post=' | ', file=file) print_string('Value', post=' | ', file=file) print_string('Low Limit', post=' | ', file=file) print_string('High Limit', post=' |\n', file=file) print_header(len=4*(FMT_LEN+3)+1, file=file) for p, v in zip(positioners, pos): print_string(p.name, pre='| ', post=' | ', file=file) if v is not None: if hasattr(p, 'precision'): prec = p.precision else: prec = FMT_PREC print_value(v, egu=p.egu, prec=prec, post=' | ', file=file) else: print_string('INVALID', post=' | ', file=file) print_value(p.low_limit, egu=p.egu, post=' | ', file=file) print_value(p.high_limit, egu=p.egu, post=' |\n', file=file) print_header(len=4*(FMT_LEN+3)+1, file=file) print('', file=file)
"""Profile the memory usage of a Python program""" # .. we'll use this to pass it to the child script .. _clean_globals = globals().copy() __version__ = '0.32' _CMD_USAGE = "python -m memory_profiler script_file.py" import time import sys import os import pdb import warnings import linecache import inspect import subprocess from copy import copy import logging # TODO: provide alternative when multprocessing is not available try: from multiprocessing import Process, Pipe except ImportError: from multiprocessing.dummy import Process, Pipe _TWO_20 = float(2 ** 20) has_psutil = False # .. get available packages .. try: import psutil has_psutil = True except ImportError: pass def _get_memory(pid, timestamps=False, include_children=False): # .. only for current process and only on unix.. if pid == -1: pid = os.getpid() # .. cross-platform but but requires psutil .. if has_psutil: process = psutil.Process(pid) try: # avoid useing get_memory_info since it does not exists # in psutil > 2.0 and accessing it will cause exception. meminfo_attr = 'memory_info' if hasattr(process, 'memory_info') else 'get_memory_info' mem = getattr(process, meminfo_attr)()[0] / _TWO_20 if include_children: for p in process.get_children(recursive=True): mem += getattr(process, meminfo_attr)()[0] / _TWO_20 if timestamps: return (mem, time.time()) else: return mem except psutil.AccessDenied: pass # continue and try to get this from ps # .. scary stuff .. if os.name == 'posix': if include_children: raise NotImplementedError('The psutil module is required when to' ' monitor memory usage of children' ' processes') warnings.warn("psutil module not found. memory_profiler will be slow") # .. # .. memory usage in MiB .. # .. this should work on both Mac and Linux .. # .. subprocess.check_output appeared in 2.7, using Popen .. # .. for backwards compatibility .. out = subprocess.Popen(['ps', 'v', '-p', str(pid)], stdout=subprocess.PIPE ).communicate()[0].split(b'\n') try: vsz_index = out[0].split().index(b'RSS') mem = float(out[1].split()[vsz_index]) / 1024 if timestamps: return(mem, time.time()) else: return mem except: if timestamps: return (-1, time.time()) else: return -1 else: raise NotImplementedError('The psutil module is required for non-unix ' 'platforms') class MemTimer(Process): """ Fetch memory consumption from over a time interval """ def __init__(self, monitor_pid, interval, pipe, max_usage=False, *args, **kw): self.monitor_pid = monitor_pid self.interval = interval self.pipe = pipe self.cont = True self.max_usage = max_usage self.n_measurements = 1 if "timestamps" in kw: self.timestamps = kw["timestamps"] del kw["timestamps"] else: self.timestamps = False if "include_children" in kw: self.include_children = kw["include_children"] del kw["include_children"] else: self.include_children = False # get baseline memory usage self.mem_usage = [ _get_memory(self.monitor_pid, timestamps=self.timestamps, include_children=self.include_children)] super(MemTimer, self).__init__(*args, **kw) def run(self): self.pipe.send(0) # we're ready stop = False while True: cur_mem = _get_memory(self.monitor_pid, timestamps=self.timestamps, include_children=self.include_children) if not self.max_usage: self.mem_usage.append(cur_mem) else: self.mem_usage[0] = max(cur_mem, self.mem_usage[0]) self.n_measurements += 1 if stop: break stop = self.pipe.poll(self.interval) # do one more iteration self.pipe.send(self.mem_usage) self.pipe.send(self.n_measurements) def memory_usage(proc=-1, interval=.1, timeout=None, timestamps=False, include_children=False, max_usage=False, retval=False, stream=None): """ Return the memory usage of a process or piece of code Parameters ---------- proc : {int, string, tuple, subprocess.Popen}, optional The process to monitor. Can be given by an integer/string representing a PID, by a Popen object or by a tuple representing a Python function. The tuple contains three values (f, args, kw) and specifies to run the function f(*args, **kw). Set to -1 (default) for current process. interval : float, optional Interval at which measurements are collected. timeout : float, optional Maximum amount of time (in seconds) to wait before returning. max_usage : bool, optional Only return the maximum memory usage (default False) retval : bool, optional For profiling python functions. Save the return value of the profiled function. Return value of memory_usage becomes a tuple: (mem_usage, retval) timestamps : bool, optional if True, timestamps of memory usage measurement are collected as well. stream : File if stream is a File opened with write access, then results are written to this file instead of stored in memory and returned at the end of the subprocess. Useful for long-running processes. Implies timestamps=True. Returns ------- mem_usage : list of floating-poing values memory usage, in MiB. It's length is always < timeout / interval if max_usage is given, returns the two elements maximum memory and number of measurements effectuated ret : return value of the profiled function Only returned if retval is set to True """ if stream is not None: timestamps = True if not max_usage: ret = [] else: ret = -1 if timeout is not None: max_iter = int(timeout / interval) elif isinstance(proc, int): # external process and no timeout max_iter = 1 else: # for a Python function wait until it finishes max_iter = float('inf') if hasattr(proc, '__call__'): proc = (proc, (), {}) if isinstance(proc, (list, tuple)): if len(proc) == 1: f, args, kw = (proc[0], (), {}) elif len(proc) == 2: f, args, kw = (proc[0], proc[1], {}) elif len(proc) == 3: f, args, kw = (proc[0], proc[1], proc[2]) else: raise ValueError while True: child_conn, parent_conn = Pipe() # this will store MemTimer's results p = MemTimer(os.getpid(), interval, child_conn, timestamps=timestamps, max_usage=max_usage, include_children=include_children) p.start() parent_conn.recv() # wait until we start getting memory returned = f(*args, **kw) parent_conn.send(0) # finish timing ret = parent_conn.recv() n_measurements = parent_conn.recv() if retval: ret = ret, returned p.join(5 * interval) if n_measurements > 4 or interval < 1e-6: break interval /= 10. elif isinstance(proc, subprocess.Popen): # external process, launched from Python line_count = 0 while True: if not max_usage: mem_usage = _get_memory(proc.pid, timestamps=timestamps, include_children=include_children) if stream is not None: stream.write("MEM {0:.6f} {1:.4f}\n".format(*mem_usage)) else: ret.append(mem_usage) else: ret = max([ret, _get_memory(proc.pid, include_children=include_children)]) time.sleep(interval) line_count += 1 # flush every 50 lines. Make 'tail -f' usable on profile file if line_count > 50: line_count = 0 if stream is not None: stream.flush() if timeout is not None: max_iter -= 1 if max_iter == 0: break if proc.poll() is not None: break else: # external process if max_iter == -1: max_iter = 1 counter = 0 while counter < max_iter: counter += 1 if not max_usage: mem_usage = _get_memory(proc, timestamps=timestamps, include_children=include_children) if stream is not None: stream.write("MEM {0:.6f} {1:.4f}\n".format(*mem_usage)) else: ret.append(mem_usage) else: ret = max([ret, _get_memory(proc, include_children=include_children) ]) time.sleep(interval) # Flush every 50 lines. if counter % 50 == 0 and stream is not None: stream.flush() if stream: return None return ret # .. # .. utility functions for line-by-line .. def _find_script(script_name): """ Find the script. If the input is not a file, then $PATH will be searched. """ if os.path.isfile(script_name): return script_name path = os.getenv('PATH', os.defpath).split(os.pathsep) for folder in path: if not folder: continue fn = os.path.join(folder, script_name) if os.path.isfile(fn): return fn sys.stderr.write('Could not find script {0}\n'.format(script_name)) raise SystemExit(1) class _TimeStamperCM(object): """Time-stamping context manager.""" def __init__(self, timestamps): self._timestamps = timestamps def __enter__(self): self._timestamps.append(_get_memory(os.getpid(), timestamps=True)) def __exit__(self, *args): self._timestamps.append(_get_memory(os.getpid(), timestamps=True)) class TimeStamper: """ A profiler that just records start and end execution times for any decorated function. """ def __init__(self): self.functions = {} def __call__(self, func=None, precision=None): if func is not None: if not hasattr(func, "__call__"): raise ValueError("Value must be callable") self.add_function(func) f = self.wrap_function(func) f.__module__ = func.__module__ f.__name__ = func.__name__ f.__doc__ = func.__doc__ f.__dict__.update(getattr(func, '__dict__', {})) return f else: def inner_partial(f): return self.__call__(f, precision=precision) return inner_partial def timestamp(self, name="<block>"): """Returns a context manager for timestamping a block of code.""" # Make a fake function func = lambda x: x func.__module__ = "" func.__name__ = name self.add_function(func) timestamps = [] self.functions[func].append(timestamps) # A new object is required each time, since there can be several # nested context managers. return _TimeStamperCM(timestamps) def add_function(self, func): if not func in self.functions: self.functions[func] = [] def wrap_function(self, func): """ Wrap a function to timestamp it. """ def f(*args, **kwds): # Start time timestamps = [_get_memory(os.getpid(), timestamps=True)] self.functions[func].append(timestamps) try: result = func(*args, **kwds) finally: # end time timestamps.append(_get_memory(os.getpid(), timestamps=True)) return result return f def show_results(self, stream=None): if stream is None: stream = sys.stdout for func, timestamps in self.functions.items(): function_name = "%s.%s" % (func.__module__, func.__name__) for ts in timestamps: stream.write("FUNC %s %.4f %.4f %.4f %.4f\n" % ( (function_name,) + ts[0] + ts[1])) class LineProfiler(object): """ A profiler that records the amount of memory for each line """ def __init__(self, **kw): self.code_map = {} self.enable_count = 0 self.max_mem = kw.get('max_mem', None) self.prevline = None self.include_children = kw.get('include_children', False) def __call__(self, func=None, precision=1): if func is not None: self.add_function(func) f = self.wrap_function(func) f.__module__ = func.__module__ f.__name__ = func.__name__ f.__doc__ = func.__doc__ f.__dict__.update(getattr(func, '__dict__', {})) return f else: def inner_partial(f): return self.__call__(f, precision=precision) return inner_partial def add_code(self, code, toplevel_code=None): if code not in self.code_map: self.code_map[code] = {} for subcode in filter(inspect.iscode, code.co_consts): self.add_code(subcode) def add_function(self, func): """ Record line profiling information for the given Python function. """ try: # func_code does not exist in Python3 code = func.__code__ except AttributeError: warnings.warn("Could not extract a code object for the object %r" % func) else: self.add_code(code) def wrap_function(self, func): """ Wrap a function to profile it. """ def f(*args, **kwds): self.enable_by_count() try: result = func(*args, **kwds) finally: self.disable_by_count() return result return f def run(self, cmd): """ Profile a single executable statement in the main namespace. """ # TODO: can this be removed ? import __main__ main_dict = __main__.__dict__ return self.runctx(cmd, main_dict, main_dict) def runctx(self, cmd, globals, locals): """ Profile a single executable statement in the given namespaces. """ self.enable_by_count() try: exec(cmd, globals, locals) finally: self.disable_by_count() return self def enable_by_count(self): """ Enable the profiler if it hasn't been enabled before. """ if self.enable_count == 0: self.enable() self.enable_count += 1 def disable_by_count(self): """ Disable the profiler if the number of disable requests matches the number of enable requests. """ if self.enable_count > 0: self.enable_count -= 1 if self.enable_count == 0: self.disable() def trace_memory_usage(self, frame, event, arg): """Callback for sys.settrace""" if (event in ('call', 'line', 'return') and frame.f_code in self.code_map): if event != 'call': # "call" event just saves the lineno but not the memory mem = _get_memory(-1, include_children=self.include_children) # if there is already a measurement for that line get the max old_mem = self.code_map[frame.f_code].get(self.prevline, 0) self.code_map[frame.f_code][self.prevline] = max(mem, old_mem) self.prevline = frame.f_lineno if self._original_trace_function is not None: (self._original_trace_function)(frame, event, arg) return self.trace_memory_usage def trace_max_mem(self, frame, event, arg): # run into PDB as soon as memory is higher than MAX_MEM if event in ('line', 'return') and frame.f_code in self.code_map: c = _get_memory(-1) if c >= self.max_mem: t = ('Current memory {0:.2f} MiB exceeded the maximum' ''.format(c) + 'of {0:.2f} MiB\n'.format(self.max_mem)) sys.stdout.write(t) sys.stdout.write('Stepping into the debugger \n') frame.f_lineno -= 2 p = pdb.Pdb() p.quitting = False p.stopframe = frame p.returnframe = None p.stoplineno = frame.f_lineno - 3 p.botframe = None return p.trace_dispatch if self._original_trace_function is not None: (self._original_trace_function)(frame, event, arg) return self.trace_max_mem def __enter__(self): self.enable_by_count() def __exit__(self, exc_type, exc_val, exc_tb): self.disable_by_count() def enable(self): self._original_trace_function = sys.gettrace() if self.max_mem is not None: sys.settrace(self.trace_max_mem) else: sys.settrace(self.trace_memory_usage) def disable(self): sys.settrace(self._original_trace_function) def show_results(prof, stream=None, precision=1): if stream is None: stream = sys.stdout template = '{0:>6} {1:>12} {2:>12} {3:<}' for code in prof.code_map: lines = prof.code_map[code] if not lines: # .. measurements are empty .. continue filename = code.co_filename if filename.endswith((".pyc", ".pyo")): filename = filename[:-1] stream.write('Filename: ' + filename + '\n\n') if not os.path.exists(filename): stream.write('ERROR: Could not find file ' + filename + '\n') if any([filename.startswith(k) for k in ("ipython-input", "<ipython-input")]): print("NOTE: %mprun can only be used on functions defined in " "physical files, and not in the IPython environment.") continue all_lines = linecache.getlines(filename) sub_lines = inspect.getblock(all_lines[code.co_firstlineno - 1:]) linenos = range(code.co_firstlineno, code.co_firstlineno + len(sub_lines)) header = template.format('Line #', 'Mem usage', 'Increment', 'Line Contents') stream.write(header + '\n') stream.write('=' * len(header) + '\n') mem_old = lines[min(lines.keys())] float_format = '{0}.{1}f'.format(precision + 4, precision) template_mem = '{0:' + float_format + '} MiB' for line in linenos: mem = '' inc = '' if line in lines: mem = lines[line] inc = mem - mem_old mem_old = mem mem = template_mem.format(mem) inc = template_mem.format(inc) stream.write(template.format(line, mem, inc, all_lines[line - 1])) stream.write('\n\n') # A lprun-style %mprun magic for IPython. def magic_mprun(self, parameter_s=''): """ Execute a statement under the line-by-line memory profiler from the memory_profiler module. Usage: %mprun -f func1 -f func2 <statement> The given statement (which doesn't require quote marks) is run via the LineProfiler. Profiling is enabled for the functions specified by the -f options. The statistics will be shown side-by-side with the code through the pager once the statement has completed. Options: -f <function>: LineProfiler only profiles functions and methods it is told to profile. This option tells the profiler about these functions. Multiple -f options may be used. The argument may be any expression that gives a Python function or method object. However, one must be careful to avoid spaces that may confuse the option parser. Additionally, functions defined in the interpreter at the In[] prompt or via %run currently cannot be displayed. Write these functions out to a separate file and import them. One or more -f options are required to get any useful results. -T <filename>: dump the text-formatted statistics with the code side-by-side out to a text file. -r: return the LineProfiler object after it has completed profiling. -c: If present, add the memory usage of any children process to the report. """ try: from StringIO import StringIO except ImportError: # Python 3.x from io import StringIO # Local imports to avoid hard dependency. from distutils.version import LooseVersion import IPython ipython_version = LooseVersion(IPython.__version__) if ipython_version < '0.11': from IPython.genutils import page from IPython.ipstruct import Struct from IPython.ipapi import UsageError else: from IPython.core.page import page from IPython.utils.ipstruct import Struct from IPython.core.error import UsageError # Escape quote markers. opts_def = Struct(T=[''], f=[]) parameter_s = parameter_s.replace('"', r'\"').replace("'", r"\'") opts, arg_str = self.parse_options(parameter_s, 'rf:T:c', list_all=True) opts.merge(opts_def) global_ns = self.shell.user_global_ns local_ns = self.shell.user_ns # Get the requested functions. funcs = [] for name in opts.f: try: funcs.append(eval(name, global_ns, local_ns)) except Exception as e: raise UsageError('Could not find function %r.\n%s: %s' % (name, e.__class__.__name__, e)) include_children = 'c' in opts profile = LineProfiler(include_children=include_children) for func in funcs: profile(func) # Add the profiler to the builtins for @profile. try: import builtins except ImportError: # Python 3x import __builtin__ as builtins if 'profile' in builtins.__dict__: had_profile = True old_profile = builtins.__dict__['profile'] else: had_profile = False old_profile = None builtins.__dict__['profile'] = profile try: try: profile.runctx(arg_str, global_ns, local_ns) message = '' except SystemExit: message = "*** SystemExit exception caught in code being profiled." except KeyboardInterrupt: message = ("*** KeyboardInterrupt exception caught in code being " "profiled.") finally: if had_profile: builtins.__dict__['profile'] = old_profile # Trap text output. stdout_trap = StringIO() show_results(profile, stdout_trap) output = stdout_trap.getvalue() output = output.rstrip() if ipython_version < '0.11': page(output, screen_lines=self.shell.rc.screen_length) else: page(output) print(message,) text_file = opts.T[0] if text_file: with open(text_file, 'w') as pfile: pfile.write(output) print('\n*** Profile printout saved to text file %s. %s' % (text_file, message)) return_value = None if 'r' in opts: return_value = profile return return_value def _func_exec(stmt, ns): # helper for magic_memit, just a function proxy for the exec # statement exec(stmt, ns) # a timeit-style %memit magic for IPython def magic_memit(self, line=''): """Measure memory usage of a Python statement Usage, in line mode: %memit [-r<R>t<T>i<I>] statement Options: -r<R>: repeat the loop iteration <R> times and take the best result. Default: 1 -t<T>: timeout after <T> seconds. Default: None -i<I>: Get time information at an interval of I times per second. Defaults to 0.1 so that there is ten measurements per second. -c: If present, add the memory usage of any children process to the report. Examples -------- :: In [1]: import numpy as np In [2]: %memit np.zeros(1e7) maximum of 1: 76.402344 MiB per loop In [3]: %memit np.ones(1e6) maximum of 1: 7.820312 MiB per loop In [4]: %memit -r 10 np.empty(1e8) maximum of 10: 0.101562 MiB per loop """ opts, stmt = self.parse_options(line, 'r:t:i:c', posix=False, strict=False) repeat = int(getattr(opts, 'r', 1)) if repeat < 1: repeat == 1 timeout = int(getattr(opts, 't', 0)) if timeout <= 0: timeout = None interval = float(getattr(opts, 'i', 0.1)) include_children = 'c' in opts # I've noticed we get less noisier measurements if we run # a garbage collection first import gc gc.collect() mem_usage = 0 counter = 0 baseline = memory_usage()[0] while counter < repeat: counter += 1 tmp = memory_usage((_func_exec, (stmt, self.shell.user_ns)), timeout=timeout, interval=interval, max_usage=True, include_children=include_children) mem_usage = max(mem_usage, tmp[0]) if mem_usage: print('peak memory: %.02f MiB, increment: %.02f MiB' % (mem_usage, mem_usage - baseline)) else: print('ERROR: could not read memory usage, try with a lower interval ' 'or more iterations') def load_ipython_extension(ip): """This is called to load the module as an IPython extension.""" ip.define_magic('mprun', magic_mprun) ip.define_magic('memit', magic_memit) def profile(func=None, stream=None, precision=1): """ Decorator that will run the function and print a line-by-line profile """ if func is not None: def wrapper(*args, **kwargs): prof = LineProfiler() val = prof(func)(*args, **kwargs) show_results(prof, stream=stream, precision=precision) return val return wrapper else: def inner_wrapper(f): return profile(f, stream=stream, precision=precision) return inner_wrapper class LogFile(object): """File-like object to log text using the `logging` module and the log report can be customised.""" def __init__(self, name=None, reportIncrementFlag=False): """ :param name: name of the logger module reportIncrementFlag: This must be set to True if only the steps with memory increments are to be reported :type self: object name: string reportIncrementFlag: bool """ self.logger = logging.getLogger(name) self.reportIncrementFlag = reportIncrementFlag def write(self, msg, level=logging.INFO): if self.reportIncrementFlag: if "MiB" in msg and float(msg.split("MiB")[1].strip())>0: self.logger.log(level, msg) elif msg.__contains__("Filename:") or msg.__contains__("Line Contents"): self.logger.log(level, msg) else: self.logger.log(level, msg) def flush(self): for handler in self.logger.handlers: handler.flush() if __name__ == '__main__': from optparse import OptionParser parser = OptionParser(usage=_CMD_USAGE, version=__version__) parser.disable_interspersed_args() parser.add_option( "--pdb-mmem", dest="max_mem", metavar="MAXMEM", type="float", action="store", help="step into the debugger when memory exceeds MAXMEM") parser.add_option( '--precision', dest="precision", type="int", action="store", default=3, help="precision of memory output in number of significant digits") parser.add_option("-o", dest="out_filename", type="str", action="store", default=None, help="path to a file where results will be written") parser.add_option("--timestamp", dest="timestamp", default=False, action="store_true", help="""print timestamp instead of memory measurement for decorated functions""") if not sys.argv[1:]: parser.print_help() sys.exit(2) (options, args) = parser.parse_args() sys.argv[:] = args # Remove every memory_profiler arguments if options.timestamp: prof = TimeStamper() else: prof = LineProfiler(max_mem=options.max_mem) __file__ = _find_script(args[0]) try: if sys.version_info[0] < 3: # we need to ovewrite the builtins to have profile # globally defined (global variables is not enough # for all cases, e.g. a script that imports another # script where @profile is used) import __builtin__ __builtin__.__dict__['profile'] = prof ns = copy(_clean_globals) ns['profile'] = prof # shadow the profile decorator defined above execfile(__file__, ns, ns) else: import builtins builtins.__dict__['profile'] = prof ns = copy(_clean_globals) ns['profile'] = prof # shadow the profile decorator defined above exec(compile(open(__file__).read(), __file__, 'exec'), ns, ns) finally: if options.out_filename is not None: out_file = open(options.out_filename, "a") else: out_file = sys.stdout if options.timestamp: prof.show_results(stream=out_file) else: show_results(prof, precision=options.precision, stream=out_file)
import re from JumpScale import j import JumpScale.sal.disklayout.mount as mount import JumpScale.sal.disklayout.lsblk as lsblk _formatters = { # specific format command per filesystem. 'ntfs': lambda name, fstype: 'mkfs.ntfs -f {name}'.format(name=name) } isValidFS = lambda v: v.startswith('ext') or v in ('btrfs', 'ntfs') _hrd_validators = { 'filesystem': isValidFS } def _default_formatter(name, fstype): return 'mkfs.{fstype} {name}'.format( fstype=fstype, name=name ) class PartitionError(Exception): pass class FormatError(Exception): pass class DiskError(Exception): pass class BlkInfo: def __init__(self, name, type, size, executor): self.name = name self.type = type self.size = int(size) self.hrd = None if executor is None: self._executor = j.tools.executor.getLocal() else: self._executor = executor self._executor = j.sal.disklayout._executor def __str__(self): return '%s %s' % (self.name, self.size) def __repr__(self): return str(self) def mount(self): """ Mount partition to `mountpath` defined in HRD """ if self.invalid: raise PartitionError('Partition is invalid') if self.hrd is None: raise PartitionError('No HRD attached to disk') path = self.hrd.get('mountpath') mnt = mount.Mount(self.name, path) mnt.mount() self.refresh() def umount(self): """ Unmount partition """ if self.invalid: raise PartitionError('Partition is invalid') if self.hrd is None: raise PartitionError('No HRD attached to disk') path = self.hrd.get('mountpath') mnt = mount.Mount(self.name, path) mnt.umount() self.refresh() def unsetAutoMount(self): """ remote partition from fstab """ fstabpath = j.tools.path.get('/etc/fstab') fstab = fstabpath.text().splitlines() dirty = False for i in range(len(fstab) - 1, -1, -1): line = fstab[i] if line.startswith('UUID=%s' % self.uuid): del fstab[i] dirty = True if not dirty: return fstabpath.write_text('\n'.join(fstab)) fstabpath.chmod(644) def setAutoMount(self, options='defaults', _dump=0, _pass=0): """ Configure partition auto mount `fstab` on `mountpath` defined in HRD """ if self.hrd is None: path = self.mountpoint if path == "": raise RuntimeError("path cannot be empty") path = j.tools.path.get(path) else: path = j.tools.path.get(self.hrd.get('mountpath')) path.makedirs_p() fstabpath = j.tools.path.get('/etc/fstab') fstab = fstabpath.text().splitlines() for i in range(len(fstab) - 1, -1, -1): line = fstab[i] if line.startswith('UUID=%s' % self.uuid): del fstab[i] dirty = True break if path is None: return entry = ('UUID={uuid}\t{path}\t{fstype}' + '\t{options}\t{_dump}\t{_pass}\n').format( uuid=self.uuid, path=path, fstype=self.fstype, options=options, _dump=_dump, _pass=_pass ) fstab.append(entry) fstabpath.write_text('\n'.join(fstab)), fstabpath.chmod(644) def _validateHRD(self, hrd): for field in ['filesystem', 'mountpath', 'protected', 'type']: if not hrd.exists(field): raise PartitionError( 'Invalid hrd, missing mandatory field "%s"' % field ) if field in _hrd_validators: validator = _hrd_validators[field] value = hrd.get(field) if not validator(value): raise PartitionError('Invalid valud for %s: %s' % ( field, value )) class DiskInfo(BlkInfo): """ Represents a disk """ def __init__(self, name, size, mountpoint="", fstype="", uuid="", executor=None): super(DiskInfo, self).__init__(name, 'disk', size, executor=executor) self.mountpoint = mountpoint self.fstype = fstype self.uuid = uuid self.partitions = list() # self.mirrors=[] self.mirror_devices = [] if self.fstype == "btrfs": devsfound = [] out = self._executor.execute( "btrfs filesystem show %s" % self.name)[1] for line in out.split("\n"): line = line.strip() if line.startswith("devid "): dev = line.split("/dev/")[-1] dev = dev.strip(" /") devsfound.append(dev) if len(devsfound) > 1: # found mirror self.mirror_devices = [ "/dev/%s" % item for item in devsfound if "/dev/%s" % item != name] # def _getpart(self): # rc, ptable = self._executor.execute( # 'parted -sm {name} unit B print'.format(name=self.name) # ) # read_disk_next = False # disk = {} # partitions = [] # for line in ptable.splitlines(): # line = line.strip() # if line == 'BYT;': # read_disk_next = True # continue # parts = line.split(':') # if read_disk_next: # # /dev/sdb:8589934592B:scsi:512:512:gpt:ATA VBOX HARDDISK; # size = int(parts[1][:-1]) # table = parts[5] # disk.update( # size=size, # table=table, # ) # read_disk_next = False # continue # # 1:1048576B:2097151B:1048576B:btrfs:primary:; # partition = { # 'number': int(parts[0]), # 'start': int(parts[1][:-1]), # 'end': int(parts[2][:-1]), # } # partitions.append(partition) # disk['partitions'] = partitions # return disk def _findFreeSpot(self, parts, size): if size > parts['size']: return start = 20 * 1024 # start from 20k offset. for partition in parts['partitions']: if partition['start'] - start > size: return start, start + size start = partition['end'] + 1 if start + size > parts['size']: return return start, start + size def format(self, size, hrd): """ Create new partition and format it as configured in hrd file :size: in bytes :hrd: the disk hrd info Note: hrd file must contain the following filesystem = '<fs-type>' mountpath = '<mount-path>' protected = 0 or 1 type = data or root or tmp """ self._validateHRD(hrd) if not self.partitions: # if no partitions, make sure to clear mbr to convert to gpt self._clearMBR() parts = self._getpart() spot = self._findFreeSpot(parts, size) if not spot: raise Exception('No enough space on disk to allocate') start, end = spot try: self._executor.execute( ('parted -s {name} unit B ' + 'mkpart primary {start} {end}').format(name=self.name, start=start, end=end) ) except Exception as e: raise FormatError(e) numbers = [p['number'] for p in parts['partitions']] newparts = self._getpart() newnumbers = [p['number'] for p in newparts['partitions']] number = list(set(newnumbers).difference(numbers))[0] partition = PartitionInfo( name='%s%d' % (self.name, number), size=size, uuid='', fstype='', mount='', device=self ) partition.hrd = hrd partition.format() self.partitions.append(partition) return partition def _clearMBR(self): try: self._executor.execute( 'parted -s {name} mktable gpt'.format(name=self.name) ) except Exception as e: raise DiskError(e) def erase(self, force=False): """ Clean up disk by deleting all non protected partitions if force=True, delete ALL partitions included protected :force: delete protected partitions, default=False """ if force: self._clearMBR() return for partition in self.partitions: if not partition.protected: partition.delete() class PartitionInfo(BlkInfo): def __init__(self, name, size, uuid, fstype, mount, device, executor=None): super(PartitionInfo, self).__init__(name, 'part', size, executor=executor) self.uuid = uuid self.fstype = fstype self.mountpoint = mount self.hrd = None self.device = device self._invalid = False self.mount = device.mount @property def invalid(self): return self._invalid @property def protected(self): if self.hrd is None: # that's an unmanaged partition, assume protected return True return bool(self.hrd.get('protected', True)) def _formatter(self, name, fstype): fmtr = _formatters.get(fstype, _default_formatter) return fmtr(name, fstype) def refresh(self): """ Reload partition status to match current real state """ try: info = lsblk.lsblk(self.name, executor=self._executor)[0] except lsblk.LsblkError: self._invalid = True info = { 'SIZE': 0, 'UUID': '', 'FSTYPE': '', 'MOUNTPOINT': '' } for key, val in info.items(): setattr(self, key.lower(), val) def _dumpHRD(self): with mount.Mount(self.name) as mnt: filepath = j.tools.path.get(mnt.path).joinpath('.disk.hrd') filepath.write_text(str(self.hrd)) filepath.chmod(400) def format(self): """ Reformat the partition according to hrd """ if self.invalid: raise PartitionError('Partition is invalid') if self.mountpoint: raise PartitionError( 'Partition is mounted on %s' % self.mountpoint ) if self.hrd is None: raise PartitionError('No HRD attached to disk') fstype = self.hrd.get('filesystem') command = self._formatter(self.name, fstype) try: self._executor.execute(command) self._dumpHRD() except Exception as e: raise FormatError(e) self.refresh() def delete(self, force=False): """ Delete partition :force: Force delete protected partitions, default False """ if self.invalid: raise PartitionError('Partition is invalid') if self.mountpoint: raise PartitionError( 'Partition is mounted on %s' % self.mountpoint ) if self.protected and not force: raise PartitionError('Partition is protected') m = re.match('^(.+)(\d+)$', self.name) number = int(m.group(2)) device = m.group(1) command = 'parted -s {device} rm {number}'.format( device=device, number=number ) try: self._executor.execute(command) except Exception as e: raise PartitionError(e) self.unsetAutoMount() self._invalid = True
import glob import os from . import BOTOCORE_ROOT from .compat import json from .compat import OrderedDict from .exceptions import ApiVersionNotFoundError from .exceptions import DataNotFoundError def cachable(func): """ A convenient decorator for getting the data (either from the cache or populating the cache). For use on instances (not plain functions) that have a ``self._cache`` instance variable. Usage:: class Loader(object): @cachable def load_service_model(self, service): data = self.load_file(self, 'aws/{0}'.format(service)) return data """ def _wrapper(self, orig_key, **kwargs): key = orig_key # Make the full key, including all kwargs. # Sort them to prevent hash randomization from creating accidental # cache misses. for name in sorted(kwargs.keys()): key += '/{0}/{1}'.format( name, kwargs[name] ) if key in self._cache: return self._cache[key] data = func(self, orig_key, **kwargs) self._cache[key] = data return data return _wrapper class JSONFileLoader(object): """ Handles actually loading the files themselves. Split off as a seperate class to allow for swapping with more complex implementations. """ def load_file(self, file_path): """ Loads a regular data file (format-specific to subclass). This load is done uncached, so that you can always get the latest data as needed. Usage:: >>> loader = JSONFileLoader() >>> loader.load_file('/path/to/some/thing.json') { # ...JSON data... } """ try: with open(file_path) as fp: return json.load(fp, object_pairs_hook=OrderedDict) except ValueError: # For backward-compatibility with the previous implementation, # if the JSON is bad, we'll raise a ``DataNotFoundError`` exception # instead of letting it propagate. raise DataNotFoundError(data_path=file_path) class Loader(object): """ Intelligently loads the data botocore needs. Handles listing the available services, loading service data & loading arbitrary data. Default implementation uses JSON files (the ``JSONFileLoader``) & a plain cache (``Cache``). """ file_loader_class = JSONFileLoader extension = '.json' service_extension = 'api.json' def __init__(self, data_path='', file_loader_class=None, extension=None, cache=None): """ Sets up the Loader. Requires a ``data_path`` argument, which should be a unix-style PATH variable (multiple file paths, colon-delimited). Optionally accepts a ``file_loader_class`` parameter, which should be a class to use for loading files. Default is ``JSONFileLoader``. Optionally accepts an ``extension`` parameter, which should be a string of the file extension to use. Default is ``.json``. Optionally accepts a ``cache`` parameter, which should be a an instance with the same interface as the ``Cache`` class. Default is ``None`` (creates its own ``Cache()`` instance). """ super(Loader, self).__init__() self._data_path = data_path self._cache = {} if file_loader_class is not None: self.file_loader_class = file_loader_class if extension is not None: self.extension = extension if cache is not None: self._cache = cache self.file_loader = self.file_loader_class() @property def data_path(self): return self._data_path @data_path.setter def data_path(self, value): self._data_path = value def get_search_paths(self): """ Return the all the paths that data could be found on when searching for files. Usage:: # Default: >>> loader = Loader('/path/to/botocore/data') >>> loader.get_search_paths() [ '/path/to/botocore/data', ] # User-added paths >>> loader = Loader('~/.botocore/my_overrides:/path/to/botocore/data') >>> loader.get_search_paths() [ '/home/somebody/.botocore/my_overrides', '/path/to/botocore/data', ] """ paths = [] # Now look for optional user-configured paths. # We keep the order in a familiar manner of traditional UNIX paths # (overrides first). search_path = self.data_path if search_path is not None: extra_paths = search_path.split(os.pathsep) for path in extra_paths: path = os.path.expandvars(path) path = os.path.expanduser(path) paths.append(path) # Automatically add ./botocore/data to the end of the # data search path. paths.append(os.path.join(BOTOCORE_ROOT, 'data')) return paths @cachable def load_data(self, data_path): """ Either loads a regular data file (format-specific to subclass) or returns previously loaded data from the cache. Returns a dictionary of data from the file. Usage:: >>> loader = Loader('/path/to/botocore/data') >>> loader.load_data('aws/ec2/2013-02-01') { # ...EC2 service data... } >>> loader.load_data('_endpoints') { # ...Endpoint data... } """ # Here, we'll cache it. return self._load_data(data_path) def _load_data(self, data_path): # This is the uncached version for use with ``load_service_model``. # We go in-order, returning the first matching path we find # based on the search paths. for possible_path in self.get_search_paths(): full_path = os.path.join( possible_path, data_path + self.extension ) try: return self.file_loader.load_file(full_path) except IOError: continue # We didn't find anything that matched on any path. raise DataNotFoundError(data_path=data_path) @cachable def load_service_model(self, data_path, api_version=None): """ Loads a given service's model data. Requires a ``data_path`` parameter, which should be a string. This indicates the desired path to load, seperated by slashes. It should **NOT** include absolute path information nor file extensions. (i.e. ``aws/ec2``, not ``/botocore/data/aws/ec2/2010-01-01.json``) Optionally accepts an ``api_version`` parameter, which should be a string of the desired API version. This is used when you want to pin to a given API version rather than picking up the latest version. An example looks like ``2013-08-27``. Default is ``None``, which means pick the latest. Returns a dictionary of service model data. Usage:: >>> loader = Loader('/path/to/botocore/data') >>> loader.load_service_model('aws/ec2') { # The latest EC2 service data... 'api_version': '2013-08-27', # ...many more keys & values... } >>> loader.load_service_model('aws/ec2', api_version='2013-02-01') { # The EC2 service data for version 2013-02-01... 'api_version': '2013-02-01', # ...many more keys & values... } """ actual_data_path = self.determine_latest( data_path, api_version=api_version ) # Use the private method, so that we don't double-cache. return self._load_data(actual_data_path) @cachable def list_available_services(self, data_path): """ Loads all the service options available. Requires a ``data_path`` parameter, which should be a string. This indicates the desired path to load, seperated by slashes if needed. Returns a list of service names. Usage:: >>> loader = Loader('/path/to/botocore/data') >>> loader.list_available_services('aws') [ 'autoscaling', 'cloudformation', # ... ] """ options = [] for possible_path in self.get_search_paths(): option_glob = os.path.join(possible_path, data_path, '*') for possible_option in glob.glob(option_glob): if os.path.isdir(possible_option): options.append(os.path.basename(possible_option)) return sorted(options) def determine_latest(self, data_path, api_version=None): """ For given desired data_path, searches all possible locations for the version of the data file that best matches. This is used primarily for the service models themselves, which typically have an API version attached to them. Requires a ``data_path`` parameter, which should be a string. This indicates the desired path to load, seperated by slashes. It should **NOT** include absolute path information nor file extensions. (i.e. ``aws/ec2``, not ``/botocore/data/aws/ec2/2010-01-01.json``) Optionally accepts an ``api_version`` parameter, which should be a string of the desired API version. This is used when you want to pin to a given API version rather than picking up the latest version. An example looks like ``2013-08-27``. Default is ``None``, which means pick the latest. If the ``api_version`` desired can not be found, the loader will pick the next best match that is backward-compatible with the provided version. If a compatible version can not be found, an ``ApiVersionNotFoundError`` exception will be thrown. Usage:: >>> loader = Loader('~/.botocore/my_overrides:/path/to/botocore/data') # Just grabs the latest. >>> loader.determine_latest('aws/rds') 'aws/rds/2013-05-15' # Grabs the matching version. >>> loader.determine_latest('aws/rds', api_version='2013-02-12') 'aws/rds/2013-02-12' # Finds the best match. >>> loader.determine_latest('aws/rds', api_version='2013-01-31') 'aws/rds/2013-01-10' # Couldn't find a match. >>> loader.determine_latest('aws/rds', api_version='2010-05-16') # Traceback, then... ApiVersionNotFoundError: Unable to load data aws/rds for: 2010-05-16 """ all_options = [] best_match = None # Hunt down the options. for base_path in self.get_search_paths(): path = os.path.join(base_path, data_path) # If it doesn't exist, skip it (might be in a later path). if not os.path.exists(path): continue # If it's not a directory, we're not going to find versions. # Carry on. if not os.path.isdir(path): continue # If it's a directory, look inside for the right version. glob_exp = os.path.join(path, '*' + self.service_extension) options = glob.glob(glob_exp) # No options == no dice. Move along. if not len(options): continue for raw_opt in options: # Rip off the extension. opt = os.path.splitext(raw_opt)[0] # Cut off the path. opt = opt.replace(path, '') # If the left-most character is a path separator, # remove that too. if opt[0] == os.path.sep: opt = opt[1:] # One last check. Ensure it looks roughly like a versioned file. if not opt.count('-') == 2: continue all_options.append(opt) if not len(all_options): # We don't have any matches. Error out. raise ApiVersionNotFoundError( data_path=data_path, api_version=api_version ) # Reverse the list, so we can find the most correct/recent # lexicographically. all_options = sorted(all_options, reverse=True) if api_version is None: # We just care about the latest. Since they're in the proper order, # simply use the first one. best_match = all_options[0] else: # We need to look for an API version that either matches or is # the first to come before that (and hence, backward-compatible). for opt in all_options: # ``opt`` will be something like "2014-01-01.api" so we need # to strip off the ".api" part. if opt.split('.')[0] == api_version: best_match = opt break elif opt < api_version: # Since it's in reverse sorted order & nothing previously # matched, we know this is the closest API version that's # backward-compatible. best_match = opt break if not best_match: # We didn't find anything. Error out. raise ApiVersionNotFoundError( data_path=data_path, api_version=api_version ) # We've got the best match. Make a real path out of it & return that # for use elsewhere. return os.path.join(data_path, best_match)
import os import tempfile import uuid from django.contrib.contenttypes.fields import ( GenericForeignKey, GenericRelation, ) from django.contrib.contenttypes.models import ContentType from django.core.files.storage import FileSystemStorage from django.db import models from django.db.models.fields.files import ImageField, ImageFieldFile from django.db.models.fields.related import ( ForeignKey, ForeignObject, ManyToManyField, OneToOneField, ) from django.utils import six try: from PIL import Image except ImportError: Image = None class Foo(models.Model): a = models.CharField(max_length=10) d = models.DecimalField(max_digits=5, decimal_places=3) def get_foo(): return Foo.objects.get(id=1) class Bar(models.Model): b = models.CharField(max_length=10) a = models.ForeignKey(Foo, default=get_foo, related_name=b'bars') class Whiz(models.Model): CHOICES = ( ('Group 1', ( (1, 'First'), (2, 'Second'), ) ), ('Group 2', ( (3, 'Third'), (4, 'Fourth'), ) ), (0, 'Other'), ) c = models.IntegerField(choices=CHOICES, null=True) class Counter(six.Iterator): def __init__(self): self.n = 1 def __iter__(self): return self def __next__(self): if self.n > 5: raise StopIteration else: self.n += 1 return (self.n, 'val-' + str(self.n)) class WhizIter(models.Model): c = models.IntegerField(choices=Counter(), null=True) class WhizIterEmpty(models.Model): c = models.CharField(choices=(x for x in []), blank=True, max_length=1) class BigD(models.Model): d = models.DecimalField(max_digits=38, decimal_places=30) class FloatModel(models.Model): size = models.FloatField() class BigS(models.Model): s = models.SlugField(max_length=255) class SmallIntegerModel(models.Model): value = models.SmallIntegerField() class IntegerModel(models.Model): value = models.IntegerField() class BigIntegerModel(models.Model): value = models.BigIntegerField() null_value = models.BigIntegerField(null=True, blank=True) class PositiveSmallIntegerModel(models.Model): value = models.PositiveSmallIntegerField() class PositiveIntegerModel(models.Model): value = models.PositiveIntegerField() class Post(models.Model): title = models.CharField(max_length=100) body = models.TextField() class NullBooleanModel(models.Model): nbfield = models.NullBooleanField() class BooleanModel(models.Model): bfield = models.BooleanField(default=None) string = models.CharField(max_length=10, default='abc') class DateTimeModel(models.Model): d = models.DateField() dt = models.DateTimeField() t = models.TimeField() class DurationModel(models.Model): field = models.DurationField() class NullDurationModel(models.Model): field = models.DurationField(null=True) class PrimaryKeyCharModel(models.Model): string = models.CharField(max_length=10, primary_key=True) class FksToBooleans(models.Model): """Model with FKs to models with {Null,}BooleanField's, #15040""" bf = models.ForeignKey(BooleanModel) nbf = models.ForeignKey(NullBooleanModel) class FkToChar(models.Model): """Model with FK to a model with a CharField primary key, #19299""" out = models.ForeignKey(PrimaryKeyCharModel) class RenamedField(models.Model): modelname = models.IntegerField(name="fieldname", choices=((1, 'One'),)) class VerboseNameField(models.Model): id = models.AutoField("verbose pk", primary_key=True) field1 = models.BigIntegerField("verbose field1") field2 = models.BooleanField("verbose field2", default=False) field3 = models.CharField("verbose field3", max_length=10) field4 = models.CommaSeparatedIntegerField("verbose field4", max_length=99) field5 = models.DateField("verbose field5") field6 = models.DateTimeField("verbose field6") field7 = models.DecimalField("verbose field7", max_digits=6, decimal_places=1) field8 = models.EmailField("verbose field8") field9 = models.FileField("verbose field9", upload_to="unused") field10 = models.FilePathField("verbose field10") field11 = models.FloatField("verbose field11") # Don't want to depend on Pillow in this test # field_image = models.ImageField("verbose field") field12 = models.IntegerField("verbose field12") field13 = models.GenericIPAddressField("verbose field13", protocol="ipv4") field14 = models.NullBooleanField("verbose field14") field15 = models.PositiveIntegerField("verbose field15") field16 = models.PositiveSmallIntegerField("verbose field16") field17 = models.SlugField("verbose field17") field18 = models.SmallIntegerField("verbose field18") field19 = models.TextField("verbose field19") field20 = models.TimeField("verbose field20") field21 = models.URLField("verbose field21") field22 = models.UUIDField("verbose field22") field23 = models.DurationField("verbose field23") class GenericIPAddress(models.Model): ip = models.GenericIPAddressField(null=True, protocol='ipv4') ############################################################################### # These models aren't used in any test, just here to ensure they validate # successfully. # See ticket #16570. class DecimalLessThanOne(models.Model): d = models.DecimalField(max_digits=3, decimal_places=3) # See ticket #18389. class FieldClassAttributeModel(models.Model): field_class = models.CharField ############################################################################### class DataModel(models.Model): short_data = models.BinaryField(max_length=10, default=b'\x08') data = models.BinaryField() ############################################################################### # FileField class Document(models.Model): myfile = models.FileField(upload_to='unused') ############################################################################### # ImageField # If Pillow available, do these tests. if Image: class TestImageFieldFile(ImageFieldFile): """ Custom Field File class that records whether or not the underlying file was opened. """ def __init__(self, *args, **kwargs): self.was_opened = False super(TestImageFieldFile, self).__init__(*args, **kwargs) def open(self): self.was_opened = True super(TestImageFieldFile, self).open() class TestImageField(ImageField): attr_class = TestImageFieldFile # Set up a temp directory for file storage. temp_storage_dir = tempfile.mkdtemp() temp_storage = FileSystemStorage(temp_storage_dir) temp_upload_to_dir = os.path.join(temp_storage.location, 'tests') class Person(models.Model): """ Model that defines an ImageField with no dimension fields. """ name = models.CharField(max_length=50) mugshot = TestImageField(storage=temp_storage, upload_to='tests') class AbsctractPersonWithHeight(models.Model): """ Abstract model that defines an ImageField with only one dimension field to make sure the dimension update is correctly run on concrete subclass instance post-initialization. """ mugshot = TestImageField(storage=temp_storage, upload_to='tests', height_field='mugshot_height') mugshot_height = models.PositiveSmallIntegerField() class Meta: abstract = True class PersonWithHeight(AbsctractPersonWithHeight): """ Concrete model that subclass an abctract one with only on dimension field. """ name = models.CharField(max_length=50) class PersonWithHeightAndWidth(models.Model): """ Model that defines height and width fields after the ImageField. """ name = models.CharField(max_length=50) mugshot = TestImageField(storage=temp_storage, upload_to='tests', height_field='mugshot_height', width_field='mugshot_width') mugshot_height = models.PositiveSmallIntegerField() mugshot_width = models.PositiveSmallIntegerField() class PersonDimensionsFirst(models.Model): """ Model that defines height and width fields before the ImageField. """ name = models.CharField(max_length=50) mugshot_height = models.PositiveSmallIntegerField() mugshot_width = models.PositiveSmallIntegerField() mugshot = TestImageField(storage=temp_storage, upload_to='tests', height_field='mugshot_height', width_field='mugshot_width') class PersonTwoImages(models.Model): """ Model that: * Defines two ImageFields * Defines the height/width fields before the ImageFields * Has a nullalble ImageField """ name = models.CharField(max_length=50) mugshot_height = models.PositiveSmallIntegerField() mugshot_width = models.PositiveSmallIntegerField() mugshot = TestImageField(storage=temp_storage, upload_to='tests', height_field='mugshot_height', width_field='mugshot_width') headshot_height = models.PositiveSmallIntegerField( blank=True, null=True) headshot_width = models.PositiveSmallIntegerField( blank=True, null=True) headshot = TestImageField(blank=True, null=True, storage=temp_storage, upload_to='tests', height_field='headshot_height', width_field='headshot_width') class AllFieldsModel(models.Model): big_integer = models.BigIntegerField() binary = models.BinaryField() boolean = models.BooleanField(default=False) char = models.CharField(max_length=10) csv = models.CommaSeparatedIntegerField(max_length=10) date = models.DateField() datetime = models.DateTimeField() decimal = models.DecimalField(decimal_places=2, max_digits=2) duration = models.DurationField() email = models.EmailField() file_path = models.FilePathField() floatf = models.FloatField() integer = models.IntegerField() generic_ip = models.GenericIPAddressField() null_boolean = models.NullBooleanField() positive_integer = models.PositiveIntegerField() positive_small_integer = models.PositiveSmallIntegerField() slug = models.SlugField() small_integer = models.SmallIntegerField() text = models.TextField() time = models.TimeField() url = models.URLField() uuid = models.UUIDField() fo = ForeignObject( 'self', from_fields=['abstract_non_concrete_id'], to_fields=['id'], related_name='reverse' ) fk = ForeignKey( 'self', related_name='reverse2' ) m2m = ManyToManyField('self') oto = OneToOneField('self') object_id = models.PositiveIntegerField() content_type = models.ForeignKey(ContentType) gfk = GenericForeignKey() gr = GenericRelation(DataModel) ############################################################################### class UUIDModel(models.Model): field = models.UUIDField() class NullableUUIDModel(models.Model): field = models.UUIDField(blank=True, null=True) class PrimaryKeyUUIDModel(models.Model): id = models.UUIDField(primary_key=True, default=uuid.uuid4) class RelatedToUUIDModel(models.Model): uuid_fk = models.ForeignKey('PrimaryKeyUUIDModel') class UUIDChild(PrimaryKeyUUIDModel): pass class UUIDGrandchild(UUIDChild): pass
"""This module defines a base Exporter class. For Jinja template-based export, see templateexporter.py. """ from __future__ import print_function, absolute_import import io import os import copy import collections import datetime from traitlets.config.configurable import LoggingConfigurable from traitlets.config import Config import nbformat from traitlets import HasTraits, Unicode, List, TraitError from ipython_genutils.importstring import import_item from ipython_genutils import text, py3compat class ResourcesDict(collections.defaultdict): def __missing__(self, key): return '' class FilenameExtension(Unicode): """A trait for filename extensions.""" default_value = u'' info_text = 'a filename extension, beginning with a dot' def validate(self, obj, value): # cast to proper unicode value = super(FilenameExtension, self).validate(obj, value) # check that it starts with a dot if value and not value.startswith('.'): msg = "FileExtension trait '{}' does not begin with a dot: {!r}" raise TraitError(msg.format(self.name, value)) return value class Exporter(LoggingConfigurable): """ Class containing methods that sequentially run a list of preprocessors on a NotebookNode object and then return the modified NotebookNode object and accompanying resources dict. """ file_extension = FilenameExtension( '.txt', config=True, help="Extension of the file that should be written to disk" ) # MIME type of the result file, for HTTP response headers. # This is *not* a traitlet, because we want to be able to access it from # the class, not just on instances. output_mimetype = '' #Configurability, allows the user to easily add filters and preprocessors. preprocessors = List(config=True, help="""List of preprocessors, by name or namespace, to enable.""") _preprocessors = List() default_preprocessors = List([ 'nbconvert.preprocessors.ClearOutputPreprocessor', 'nbconvert.preprocessors.ExecutePreprocessor', 'nbconvert.preprocessors.coalesce_streams', 'nbconvert.preprocessors.SVG2PDFPreprocessor', 'nbconvert.preprocessors.CSSHTMLHeaderPreprocessor', 'nbconvert.preprocessors.LatexPreprocessor', 'nbconvert.preprocessors.HighlightMagicsPreprocessor', 'nbconvert.preprocessors.ExtractOutputPreprocessor', ], config=True, help="""List of preprocessors available by default, by name, namespace, instance, or type.""") def __init__(self, config=None, **kw): """ Public constructor Parameters ---------- config : :class:`~traitlets.config.Config` User configuration instance. `**kw` Additional keyword arguments passed to parent __init__ """ with_default_config = self.default_config if config: with_default_config.merge(config) super(Exporter, self).__init__(config=with_default_config, **kw) self._init_preprocessors() @property def default_config(self): return Config() def from_notebook_node(self, nb, resources=None, **kw): """ Convert a notebook from a notebook node instance. Parameters ---------- nb : :class:`~nbformat.NotebookNode` Notebook node (dict-like with attr-access) resources : dict Additional resources that can be accessed read/write by preprocessors and filters. `**kw` Ignored """ nb_copy = copy.deepcopy(nb) resources = self._init_resources(resources) if 'language' in nb['metadata']: resources['language'] = nb['metadata']['language'].lower() # Preprocess nb_copy, resources = self._preprocess(nb_copy, resources) return nb_copy, resources def from_filename(self, filename, resources=None, **kw): """ Convert a notebook from a notebook file. Parameters ---------- filename : str Full filename of the notebook file to open and convert. resources : dict Additional resources that can be accessed read/write by preprocessors and filters. `**kw` Ignored """ # Pull the metadata from the filesystem. if resources is None: resources = ResourcesDict() if not 'metadata' in resources or resources['metadata'] == '': resources['metadata'] = ResourcesDict() path, basename = os.path.split(filename) notebook_name = basename[:basename.rfind('.')] resources['metadata']['name'] = notebook_name resources['metadata']['path'] = path modified_date = datetime.datetime.fromtimestamp(os.path.getmtime(filename)) resources['metadata']['modified_date'] = modified_date.strftime(text.date_format) with io.open(filename, encoding='utf-8') as f: return self.from_file(f, resources=resources, **kw) def from_file(self, file_stream, resources=None, **kw): """ Convert a notebook from a notebook file. Parameters ---------- file_stream : file-like object Notebook file-like object to convert. resources : dict Additional resources that can be accessed read/write by preprocessors and filters. `**kw` Ignored """ return self.from_notebook_node(nbformat.read(file_stream, as_version=4), resources=resources, **kw) def register_preprocessor(self, preprocessor, enabled=False): """ Register a preprocessor. Preprocessors are classes that act upon the notebook before it is passed into the Jinja templating engine. preprocessors are also capable of passing additional information to the Jinja templating engine. Parameters ---------- preprocessor : :class:`~nbconvert.preprocessors.Preprocessor` A dotted module name, a type, or an instance enabled : bool Mark the preprocessor as enabled """ if preprocessor is None: raise TypeError('preprocessor') isclass = isinstance(preprocessor, type) constructed = not isclass # Handle preprocessor's registration based on it's type if constructed and isinstance(preprocessor, py3compat.string_types): # Preprocessor is a string, import the namespace and recursively call # this register_preprocessor method preprocessor_cls = import_item(preprocessor) return self.register_preprocessor(preprocessor_cls, enabled) if constructed and hasattr(preprocessor, '__call__'): # Preprocessor is a function, no need to construct it. # Register and return the preprocessor. if enabled: preprocessor.enabled = True self._preprocessors.append(preprocessor) return preprocessor elif isclass and issubclass(preprocessor, HasTraits): # Preprocessor is configurable. Make sure to pass in new default for # the enabled flag if one was specified. self.register_preprocessor(preprocessor(parent=self), enabled) elif isclass: # Preprocessor is not configurable, construct it self.register_preprocessor(preprocessor(), enabled) else: # Preprocessor is an instance of something without a __call__ # attribute. raise TypeError('preprocessor') def _init_preprocessors(self): """ Register all of the preprocessors needed for this exporter, disabled unless specified explicitly. """ self._preprocessors = [] # Load default preprocessors (not necessarly enabled by default). for preprocessor in self.default_preprocessors: self.register_preprocessor(preprocessor) # Load user-specified preprocessors. Enable by default. for preprocessor in self.preprocessors: self.register_preprocessor(preprocessor, enabled=True) def _init_resources(self, resources): #Make sure the resources dict is of ResourcesDict type. if resources is None: resources = ResourcesDict() if not isinstance(resources, ResourcesDict): new_resources = ResourcesDict() new_resources.update(resources) resources = new_resources #Make sure the metadata extension exists in resources if 'metadata' in resources: if not isinstance(resources['metadata'], ResourcesDict): new_metadata = ResourcesDict() new_metadata.update(resources['metadata']) resources['metadata'] = new_metadata else: resources['metadata'] = ResourcesDict() if not resources['metadata']['name']: resources['metadata']['name'] = 'Notebook' #Set the output extension resources['output_extension'] = self.file_extension return resources def _preprocess(self, nb, resources): """ Preprocess the notebook before passing it into the Jinja engine. To preprocess the notebook is to successively apply all the enabled preprocessors. Output from each preprocessor is passed along to the next one. Parameters ---------- nb : notebook node notebook that is being exported. resources : a dict of additional resources that can be accessed read/write by preprocessors """ # Do a copy.deepcopy first, # we are never safe enough with what the preprocessors could do. nbc = copy.deepcopy(nb) resc = copy.deepcopy(resources) #Run each preprocessor on the notebook. Carry the output along #to each preprocessor for preprocessor in self._preprocessors: nbc, resc = preprocessor(nbc, resc) return nbc, resc
import csv from datetime import datetime, date import json import os import re import six import tempfile from urlparse import urlparse from zipfile import ZipFile from bson import json_util from django.conf import settings from django.core.files.base import File from django.core.files.temp import NamedTemporaryFile from django.core.files.storage import get_storage_class from django.contrib.auth.models import User from django.shortcuts import render_to_response from django.utils.text import slugify from openpyxl.date_time import SharedDate from openpyxl.workbook import Workbook from pyxform.question import Question from pyxform.section import Section, RepeatingSection from savReaderWriter import SavWriter from json2xlsclient.client import Client from onadata.apps.fieldsight.models import Site from onadata.apps.logger.models import Attachment, Instance, XForm from onadata.apps.main.models.meta_data import MetaData from onadata.apps.viewer.models.export import Export from onadata.apps.viewer.models.parsed_instance import\ _is_invalid_for_mongo, _encode_for_mongo, dict_for_mongo,\ _decode_from_mongo from onadata.libs.utils.viewer_tools import create_attachments_zipfile from onadata.libs.utils.common_tags import ( ID, XFORM_ID_STRING, STATUS, ATTACHMENTS, GEOLOCATION, BAMBOO_DATASET_ID, DELETEDAT, USERFORM_ID, INDEX, PARENT_INDEX, PARENT_TABLE_NAME, SUBMISSION_TIME, UUID, TAGS, NOTES, SITE, FS_STATUS, FS_UUID, FS_PROJECT_UUID, FS_SITE_IDENTIFIER, FS_SITE_NAME, FS_SITE_ADDRESS, FS_SITE_PHONE, FS_SITE_SUPERVISOR) from onadata.libs.exceptions import J2XException from .analyser_export import generate_analyser from onadata.apps.fsforms.XFormMediaAttributes import get_questions_and_media_attributes from onadata.apps.fsforms.models import FInstance # this is Mongo Collection where we will store the parsed submissions xform_instances = settings.MONGO_DB.instances QUESTION_TYPES_TO_EXCLUDE = [ u'note', ] # the bind type of select multiples that we use to compare MULTIPLE_SELECT_BIND_TYPE = u"select" GEOPOINT_BIND_TYPE = u"geopoint" def encode_if_str(row, key, encode_dates=False): val = row.get(key) if isinstance(val, six.string_types): return val.encode('utf-8') if encode_dates and isinstance(val, datetime): return val.strftime('%Y-%m-%dT%H:%M:%S%z').encode('utf-8') if encode_dates and isinstance(val, date): return val.strftime('%Y-%m-%d').encode('utf-8') return val def question_types_to_exclude(_type): return _type in QUESTION_TYPES_TO_EXCLUDE class DictOrganizer(object): def set_dict_iterator(self, dict_iterator): self._dict_iterator = dict_iterator # Every section will get its own table # I need to think of an easy way to flatten out a dictionary # parent name, index, table name, data def _build_obs_from_dict(self, d, obs, table_name, parent_table_name, parent_index): if table_name not in obs: obs[table_name] = [] this_index = len(obs[table_name]) obs[table_name].append({ u"_parent_table_name": parent_table_name, u"_parent_index": parent_index, }) for k, v in d.items(): if type(v) != dict and type(v) != list: assert k not in obs[table_name][-1] obs[table_name][-1][k] = v obs[table_name][-1][u"_index"] = this_index for k, v in d.items(): if type(v) == dict: kwargs = { "d": v, "obs": obs, "table_name": k, "parent_table_name": table_name, "parent_index": this_index } self._build_obs_from_dict(**kwargs) if type(v) == list: for i, item in enumerate(v): kwargs = { "d": item, "obs": obs, "table_name": k, "parent_table_name": table_name, "parent_index": this_index, } self._build_obs_from_dict(**kwargs) return obs def get_observation_from_dict(self, d): result = {} assert len(d.keys()) == 1 root_name = d.keys()[0] kwargs = { "d": d[root_name], "obs": result, "table_name": root_name, "parent_table_name": u"", "parent_index": -1, } self._build_obs_from_dict(**kwargs) return result def dict_to_joined_export(data, index, indices, name): """ Converts a dict into one or more tabular datasets """ output = {} # TODO: test for _geolocation and attachment lists if isinstance(data, dict): for key, val in data.iteritems(): if isinstance(val, list) and key not in [NOTES, TAGS]: output[key] = [] for child in val: if key not in indices: indices[key] = 0 indices[key] += 1 child_index = indices[key] new_output = dict_to_joined_export( child, child_index, indices, key) d = {INDEX: child_index, PARENT_INDEX: index, PARENT_TABLE_NAME: name} # iterate over keys within new_output and append to # main output for out_key, out_val in new_output.iteritems(): if isinstance(out_val, list): if out_key not in output: output[out_key] = [] output[out_key].extend(out_val) else: d.update(out_val) output[key].append(d) else: if name not in output: output[name] = {} if key in [TAGS]: output[name][key] = ",".join(val) elif key in [NOTES]: output[name][key] = "\r\n".join( [v['note'] for v in val]) else: output[name][key] = val return output class ExportBuilder(object): IGNORED_COLUMNS = [XFORM_ID_STRING, STATUS, ATTACHMENTS, GEOLOCATION, BAMBOO_DATASET_ID, DELETEDAT] # fields we export but are not within the form's structure EXTRA_FIELDS = [ID, UUID, SUBMISSION_TIME, INDEX, PARENT_TABLE_NAME, PARENT_INDEX, TAGS, NOTES, SITE, FS_PROJECT_UUID, FS_UUID, FS_STATUS, FS_SITE_IDENTIFIER, FS_SITE_NAME, FS_SITE_ADDRESS, FS_SITE_PHONE, FS_SITE_SUPERVISOR] SPLIT_SELECT_MULTIPLES = True BINARY_SELECT_MULTIPLES = False # column group delimiters GROUP_DELIMITER_SLASH = '/' GROUP_DELIMITER_DOT = '.' GROUP_DELIMITER = GROUP_DELIMITER_SLASH GROUP_DELIMITERS = [GROUP_DELIMITER_SLASH, GROUP_DELIMITER_DOT] TYPES_TO_CONVERT = ['int', 'decimal', 'date'] # , 'dateTime'] CONVERT_FUNCS = { 'int': lambda x: int(x), 'decimal': lambda x: float(x), 'date': lambda x: ExportBuilder.string_to_date_with_xls_validation(x), 'dateTime': lambda x: datetime.strptime(x[:19], '%Y-%m-%dT%H:%M:%S') } XLS_SHEET_NAME_MAX_CHARS = 31 @classmethod def string_to_date_with_xls_validation(cls, date_str): date_obj = datetime.strptime(date_str, '%Y-%m-%d').date() try: SharedDate().datetime_to_julian(date_obj) except ValueError: return date_str else: return date_obj @classmethod def format_field_title(cls, abbreviated_xpath, field_delimiter): if field_delimiter != '/': return field_delimiter.join(abbreviated_xpath.split('/')) return abbreviated_xpath def set_survey(self, survey): # TODO resolve circular import from onadata.apps.viewer.models.data_dictionary import\ DataDictionary def build_sections( current_section, survey_element, sections, select_multiples, gps_fields, encoded_fields, field_delimiter='/'): for child in survey_element.children: current_section_name = current_section['name'] # if a section, recurs if isinstance(child, Section): # if its repeating, build a new section if isinstance(child, RepeatingSection): # section_name in recursive call changes section = { 'name': child.get_abbreviated_xpath(), 'elements': []} self.sections.append(section) build_sections( section, child, sections, select_multiples, gps_fields, encoded_fields, field_delimiter) else: # its a group, recurs using the same section build_sections( current_section, child, sections, select_multiples, gps_fields, encoded_fields, field_delimiter) elif isinstance(child, Question) and child.bind.get(u"type")\ not in QUESTION_TYPES_TO_EXCLUDE: # add to survey_sections if isinstance(child, Question): child_xpath = child.get_abbreviated_xpath() current_section['elements'].append({ 'title': ExportBuilder.format_field_title( child.get_abbreviated_xpath(), field_delimiter), 'xpath': child_xpath, 'type': child.bind.get(u"type") }) if _is_invalid_for_mongo(child_xpath): if current_section_name not in encoded_fields: encoded_fields[current_section_name] = {} encoded_fields[current_section_name].update( {child_xpath: _encode_for_mongo(child_xpath)}) # if its a select multiple, make columns out of its choices if child.bind.get(u"type") == MULTIPLE_SELECT_BIND_TYPE\ and self.SPLIT_SELECT_MULTIPLES: for c in child.children: _xpath = c.get_abbreviated_xpath() _title = ExportBuilder.format_field_title( _xpath, field_delimiter) choice = { 'title': _title, 'xpath': _xpath, 'type': 'string' } if choice not in current_section['elements']: current_section['elements'].append(choice) _append_xpaths_to_section( current_section_name, select_multiples, child.get_abbreviated_xpath(), [c.get_abbreviated_xpath() for c in child.children]) # split gps fields within this section if child.bind.get(u"type") == GEOPOINT_BIND_TYPE: # add columns for geopoint components xpaths = DataDictionary.get_additional_geopoint_xpaths( child.get_abbreviated_xpath()) current_section['elements'].extend( [ { 'title': ExportBuilder.format_field_title( xpath, field_delimiter), 'xpath': xpath, 'type': 'decimal' } for xpath in xpaths ]) _append_xpaths_to_section( current_section_name, gps_fields, child.get_abbreviated_xpath(), xpaths) def _append_xpaths_to_section(current_section_name, field_list, xpath, xpaths): if current_section_name not in field_list: field_list[current_section_name] = {} field_list[ current_section_name][xpath] = xpaths self.survey = survey self.select_multiples = {} self.gps_fields = {} self.encoded_fields = {} main_section = {'name': survey.name, 'elements': []} self.sections = [main_section] build_sections( main_section, self.survey, self.sections, self.select_multiples, self.gps_fields, self.encoded_fields, self.GROUP_DELIMITER) def section_by_name(self, name): matches = filter(lambda s: s['name'] == name, self.sections) assert(len(matches) == 1) return matches[0] @classmethod def split_select_multiples(cls, row, select_multiples): # for each select_multiple, get the associated data and split it for xpath, choices in select_multiples.iteritems(): # get the data matching this xpath data = row.get(xpath) selections = [] if data: selections = [ u'{0}/{1}'.format( xpath, selection) for selection in data.split()] if not cls.BINARY_SELECT_MULTIPLES: row.update(dict( [(choice, choice in selections if selections else None) for choice in choices])) else: YES = 1 NO = 0 row.update(dict( [(choice, YES if choice in selections else NO) for choice in choices])) return row @classmethod def split_gps_components(cls, row, gps_fields): # for each gps_field, get associated data and split it for xpath, gps_components in gps_fields.iteritems(): data = row.get(xpath) if data: gps_parts = data.split() if len(gps_parts) > 0: row.update(zip(gps_components, gps_parts)) return row @classmethod def decode_mongo_encoded_fields(cls, row, encoded_fields): for xpath, encoded_xpath in encoded_fields.iteritems(): if row.get(encoded_xpath): val = row.pop(encoded_xpath) row.update({xpath: val}) return row @classmethod def decode_mongo_encoded_section_names(cls, data): return dict([(_decode_from_mongo(k), v) for k, v in data.iteritems()]) @classmethod def convert_type(cls, value, data_type): """ Convert data to its native type e.g. string '1' to int 1 @param value: the string value to convert @param data_type: the native data type to convert to @return: the converted value """ func = ExportBuilder.CONVERT_FUNCS.get(data_type, lambda x: x) try: return func(value) except ValueError: return value def pre_process_row(self, row, section): # print(type(row),"Row##################################") """ Split select multiples, gps and decode . and $ """ section_name = section['name'] # first decode fields so that subsequent lookups # have decoded field names if section_name in self.encoded_fields: row = ExportBuilder.decode_mongo_encoded_fields( row, self.encoded_fields[section_name]) if self.SPLIT_SELECT_MULTIPLES and\ section_name in self.select_multiples: row = ExportBuilder.split_select_multiples( row, self.select_multiples[section_name]) if section_name in self.gps_fields: row = ExportBuilder.split_gps_components( row, self.gps_fields[section_name]) # convert to native types # print row for elm in section['elements']: # only convert if its in our list and its not empty, just to # optimize value = row.get(elm['xpath']) if elm['type'] in ExportBuilder.TYPES_TO_CONVERT\ and value is not None and value != '': row[elm['xpath']] = ExportBuilder.convert_type( value, elm['type']) try: site_id = row['fs_site'] site = Site.objects.get(pk=site_id) except Exception as e: print(str(e)," **************** NO Site") # print(str(row)) row['site_name'] = "" row['address'] = "" row['phone'] = "" row['identifier'] = "" else: row['site_name'] = site.name row['address'] = site.address row['phone'] = site.phone row['identifier'] = site.identifier return row def to_zipped_csv(self, path, data, *args): def write_row(row, csv_writer, fields): csv_writer.writerow( [encode_if_str(row, field) for field in fields]) csv_defs = {} for section in self.sections: csv_file = NamedTemporaryFile(suffix=".csv") csv_writer = csv.writer(csv_file) csv_defs[section['name']] = { 'csv_file': csv_file, 'csv_writer': csv_writer} # write headers for section in self.sections: fields = [element['title'] for element in section['elements']]\ + self.EXTRA_FIELDS csv_defs[section['name']]['csv_writer'].writerow( [f.encode('utf-8') for f in fields]) index = 1 indices = {} survey_name = self.survey.name for d in data: # decode mongo section names joined_export = dict_to_joined_export(d, index, indices, survey_name) output = ExportBuilder.decode_mongo_encoded_section_names( joined_export) # attach meta fields (index, parent_index, parent_table) # output has keys for every section if survey_name not in output: output[survey_name] = {} output[survey_name][INDEX] = index output[survey_name][PARENT_INDEX] = -1 for section in self.sections: # get data for this section and write to csv section_name = section['name'] csv_def = csv_defs[section_name] fields = [ element['xpath'] for element in section['elements']] + self.EXTRA_FIELDS csv_writer = csv_def['csv_writer'] # section name might not exist within the output, e.g. data was # not provided for said repeat - write test to check this row = output.get(section_name, None) if type(row) == dict: write_row( self.pre_process_row(row, section), csv_writer, fields) elif type(row) == list: for child_row in row: write_row( self.pre_process_row(child_row, section), csv_writer, fields) index += 1 # write zipfile with ZipFile(path, 'w') as zip_file: for section_name, csv_def in csv_defs.iteritems(): csv_file = csv_def['csv_file'] csv_file.seek(0) zip_file.write( csv_file.name, "_".join(section_name.split("/")) + ".csv") # close files when we are done for section_name, csv_def in csv_defs.iteritems(): csv_def['csv_file'].close() @classmethod def get_valid_sheet_name(cls, desired_name, existing_names): # a sheet name has to be <= 31 characters and not a duplicate of an # existing sheet # truncate sheet_name to XLSDataFrameBuilder.SHEET_NAME_MAX_CHARS new_sheet_name = \ desired_name[:cls.XLS_SHEET_NAME_MAX_CHARS] # make sure its unique within the list i = 1 generated_name = new_sheet_name while generated_name in existing_names: digit_length = len(str(i)) allowed_name_len = cls.XLS_SHEET_NAME_MAX_CHARS - \ digit_length # make name the required len if len(generated_name) > allowed_name_len: generated_name = generated_name[:allowed_name_len] generated_name = "{0}{1}".format(generated_name, i) i += 1 return generated_name def to_xls_export(self, path, data, username, id_string, *args): xform = XForm.objects.get( user__username__iexact=username, id_string__exact=id_string) json_question = json.loads(xform.json) parsedQuestions = get_questions_and_media_attributes(json_question['children']) from django.contrib.sites.models import Site as DjangoSite domain = DjangoSite.objects.get_current().domain def write_row(data, work_sheet, fields, work_sheet_titles): # work_sheet_titles = work_sheet_titles.append("fs_site") # update parent_table with the generated sheet's title data[PARENT_TABLE_NAME] = work_sheet_titles.get( data.get(PARENT_TABLE_NAME)) data_new = [] for f in fields: if f in data and f in parsedQuestions.get('media_attributes'): data_new.append('=HYPERLINK("http://'+domain+'/attachment/medium?media_file='+xform.user.username+'/attachments/'+data.get(f)+'", "Attachment")') else: if f == "fs_status": try: status=FInstance.objects.get(instance_id=data.get('_id')).get_form_status_display() except: status="No Status" data_new.append(status) else: data_new.append(data.get(f,'')) work_sheet.append(data_new) wb = Workbook(optimized_write=True) work_sheets = {} # map of section_names to generated_names work_sheet_titles = {} for section in self.sections: section_name = section['name'] work_sheet_title = ExportBuilder.get_valid_sheet_name( "_".join(section_name.split("/")), work_sheet_titles.values()) work_sheet_titles[section_name] = work_sheet_title work_sheets[section_name] = wb.create_sheet( title=work_sheet_title) # write the headers for section in self.sections: section_name = section['name'] headers = [ element['title'] for element in section['elements']] + self.EXTRA_FIELDS # get the worksheet ws = work_sheets[section_name] ws.append(headers) index = 1 indices = {} survey_name = self.survey.name for d in data: joined_export = dict_to_joined_export(d, index, indices, survey_name) output = ExportBuilder.decode_mongo_encoded_section_names( joined_export) # attach meta fields (index, parent_index, parent_table) # output has keys for every section if survey_name not in output: output[survey_name] = {} output[survey_name][INDEX] = index output[survey_name][PARENT_INDEX] = -1 for section in self.sections: # get data for this section and write to xls section_name = section['name'] fields = [ element['xpath'] for element in section['elements']] + self.EXTRA_FIELDS ws = work_sheets[section_name] # section might not exist within the output, e.g. data was # not provided for said repeat - write test to check this row = output.get(section_name, None) if type(row) == dict: write_row( self.pre_process_row(row, section), ws, fields, work_sheet_titles) elif type(row) == list: for child_row in row: write_row( self.pre_process_row(child_row, section), ws, fields, work_sheet_titles) index += 1 wb.save(filename=path) def to_analyser_export(self, path, data, username, xform_id_string, *args): # Get the XLSForm. xform = XForm.objects.get(user__username__iexact=username, id_string__exact=xform_id_string) xlsform_io= xform.to_xlsform() if xlsform_io is None: raise RuntimeError('XLSForm `{}` for user `{}` could not be retrieved from storage.'. format(xform_id_string, username)) prefix = slugify('analyser_data__{}__{}'.format(username, xform_id_string)) with tempfile.NamedTemporaryFile('w+b', prefix=prefix, suffix='.xlsx',) as xls_data: # Generate a new XLS export to work from. self.to_xls_export(xls_data.name, data) xls_data.file.seek(0) # Generate the analyser file. analyser_io= generate_analyser(xlsform_io, xls_data) # Write the generated analyser file to the specified path # ...which itself points to a temp file. with open(path, 'wb') as analyser_file: analyser_file.write(analyser_io.read()) def to_flat_csv_export( self, path, data, username, id_string, filter_query): # TODO resolve circular import from onadata.apps.viewer.pandas_mongo_bridge import\ CSVDataFrameBuilder csv_builder = CSVDataFrameBuilder( username, id_string, filter_query, self.GROUP_DELIMITER, self.SPLIT_SELECT_MULTIPLES, self.BINARY_SELECT_MULTIPLES) csv_builder.export_to(path) def to_zipped_sav(self, path, data, *args): def write_row(row, csv_writer, fields): sav_writer.writerow( [encode_if_str(row, field, True) for field in fields]) sav_defs = {} # write headers for section in self.sections: fields = [element['title'] for element in section['elements']]\ + self.EXTRA_FIELDS c = 0 var_labels = {} var_names = [] tmp_k = {} for field in fields: c += 1 var_name = 'var%d' % c var_labels[var_name] = field var_names.append(var_name) tmp_k[field] = var_name var_types = dict( [(tmp_k[element['title']], 0 if element['type'] in ['decimal', 'int'] else 255) for element in section['elements']] + [(tmp_k[item], 0 if item in ['_id', '_index', '_parent_index'] else 255) for item in self.EXTRA_FIELDS] ) sav_file = NamedTemporaryFile(suffix=".sav") sav_writer = SavWriter(sav_file.name, varNames=var_names, varTypes=var_types, varLabels=var_labels, ioUtf8=True) sav_defs[section['name']] = { 'sav_file': sav_file, 'sav_writer': sav_writer} index = 1 indices = {} survey_name = self.survey.name for d in data: # decode mongo section names joined_export = dict_to_joined_export(d, index, indices, survey_name) output = ExportBuilder.decode_mongo_encoded_section_names( joined_export) # attach meta fields (index, parent_index, parent_table) # output has keys for every section if survey_name not in output: output[survey_name] = {} output[survey_name][INDEX] = index output[survey_name][PARENT_INDEX] = -1 for section in self.sections: # get data for this section and write to csv section_name = section['name'] sav_def = sav_defs[section_name] fields = [ element['xpath'] for element in section['elements']] + self.EXTRA_FIELDS sav_writer = sav_def['sav_writer'] row = output.get(section_name, None) if type(row) == dict: write_row( self.pre_process_row(row, section), sav_writer, fields) elif type(row) == list: for child_row in row: write_row( self.pre_process_row(child_row, section), sav_writer, fields) index += 1 for section_name, sav_def in sav_defs.iteritems(): sav_def['sav_writer'].closeSavFile( sav_def['sav_writer'].fh, mode='wb') # write zipfile with ZipFile(path, 'w') as zip_file: for section_name, sav_def in sav_defs.iteritems(): sav_file = sav_def['sav_file'] sav_file.seek(0) zip_file.write( sav_file.name, "_".join(section_name.split("/")) + ".sav") # close files when we are done for section_name, sav_def in sav_defs.iteritems(): sav_def['sav_file'].close() def dict_to_flat_export(d, parent_index=0): pass def generate_export(export_type, extension, username, id_string, export_id=None, filter_query=None, group_delimiter='/', split_select_multiples=True, binary_select_multiples=False): """ Create appropriate export object given the export type """ export_type_func_map = { Export.XLS_EXPORT: 'to_xls_export', Export.CSV_EXPORT: 'to_flat_csv_export', Export.CSV_ZIP_EXPORT: 'to_zipped_csv', Export.SAV_ZIP_EXPORT: 'to_zipped_sav', Export.ANALYSER_EXPORT: 'to_analyser_export' } xform = XForm.objects.get( user__username__iexact=username, id_string__exact=id_string) # query mongo for the cursor records = query_mongo(username, id_string, filter_query) export_builder = ExportBuilder() export_builder.GROUP_DELIMITER = group_delimiter export_builder.SPLIT_SELECT_MULTIPLES = split_select_multiples export_builder.BINARY_SELECT_MULTIPLES = binary_select_multiples export_builder.set_survey(xform.data_dictionary().survey) prefix = slugify('{}_export__{}__{}'.format(export_type, username, id_string)) temp_file = NamedTemporaryFile(prefix=prefix, suffix=("." + extension)) # get the export function by export type func = getattr(export_builder, export_type_func_map[export_type]) func.__call__( temp_file.name, records, username, id_string, None) # generate filename basename = "%s_%s" % ( id_string, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) if export_type == Export.ANALYSER_EXPORT: # Analyser exports should be distinguished by more than just their file extension. basename= '{}_ANALYSER_{}'.format(id_string, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) filename = basename + "." + extension # check filename is unique while not Export.is_filename_unique(xform, filename): filename = increment_index_in_filename(filename) file_path = os.path.join( username, 'exports', id_string, export_type, filename) # TODO: if s3 storage, make private - how will we protect local storage?? storage = get_storage_class()() # seek to the beginning as required by storage classes temp_file.seek(0) export_filename = storage.save( file_path, File(temp_file, file_path)) temp_file.close() dir_name, basename = os.path.split(export_filename) # get or create export object if export_id: export = Export.objects.get(id=export_id) else: fsxf = filter_query.values()[0] # print("fsxf", fsxf) export = Export(xform=xform, export_type=export_type, fsxf_id=fsxf) export.filedir = dir_name export.filename = basename export.internal_status = Export.SUCCESSFUL # dont persist exports that have a filter if filter_query is None: export.save() export.save() return export def query_mongo(username, id_string, query=None, hide_deleted=True): # print("incoming query", query) qry = query qry["_deleted_at"] = {'$exists': False} # query = None # query = json.loads(query, object_hook=json_util.object_hook)\ # if query else {} # query = dict_for_mongo(query) # query[USERFORM_ID] = u'{0}_{1}'.format(username, id_string) # if hide_deleted: # query = {"$and": [query, {"_deleted_at": None}]} # query = {"$and": [query, qry]} # print(query) print("cpount", xform_instances.find(qry).count()) print("qry", qry) return xform_instances.find(qry) def should_create_new_export(xform, export_type, fsxf=None, site_id=0, version="0"): if site_id is None: site_id = 0 if Export.objects.filter( xform=xform, export_type=export_type, fsxf=fsxf, site=site_id, version=version).exists(): return False return True def newset_export_for(xform, export_type): """ Make sure you check that an export exists before calling this, it will a DoesNotExist exception otherwise """ return Export.objects.filter(xform=xform, export_type=export_type)\ .latest('created_on') def increment_index_in_filename(filename): """ filename should be in the form file.ext or file-2.ext - we check for the dash and index and increment appropriately """ # check for an index i.e. dash then number then dot extension regex = re.compile(r"(.+?)\-(\d+)(\..+)") match = regex.match(filename) if match: basename = match.groups()[0] index = int(match.groups()[1]) + 1 ext = match.groups()[2] else: index = 1 # split filename from ext basename, ext = os.path.splitext(filename) new_filename = "%s-%d%s" % (basename, index, ext) return new_filename def generate_attachments_zip_export( export_type, extension, username, id_string, export_id=None, filter_query=None): xform = XForm.objects.get(user__username=username, id_string=id_string) attachments = Attachment.objects.filter(instance__xform=xform) basename = "%s_%s" % (id_string, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) filename = basename + "." + extension file_path = os.path.join( username, 'exports', id_string, export_type, filename) with NamedTemporaryFile('wb+', prefix='media_zip_export_', suffix='.zip') as temporary_file: create_attachments_zipfile(attachments, temporary_file=temporary_file) export_filename = get_storage_class()().save( file_path, File(temporary_file, file_path)) dir_name, basename = os.path.split(export_filename) # get or create export object if(export_id): export = Export.objects.get(id=export_id) else: export = Export.objects.create(xform=xform, export_type=export_type) export.filedir = dir_name export.filename = basename export.internal_status = Export.SUCCESSFUL export.save() return export def generate_kml_export( export_type, extension, username, id_string, export_id=None, filter_query=None): user = User.objects.get(username=username) xform = XForm.objects.get(user__username=username, id_string=id_string) response = render_to_response( 'survey.kml', {'data': kml_export_data(id_string, user)}) basename = "%s_%s" % (id_string, datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) filename = basename + "." + extension file_path = os.path.join( username, 'exports', id_string, export_type, filename) storage = get_storage_class()() temp_file = NamedTemporaryFile(suffix=extension) temp_file.write(response.content) temp_file.seek(0) export_filename = storage.save( file_path, File(temp_file, file_path)) temp_file.close() dir_name, basename = os.path.split(export_filename) # get or create export object if(export_id): export = Export.objects.get(id=export_id) else: export = Export.objects.create(xform=xform, export_type=export_type) export.filedir = dir_name export.filename = basename export.internal_status = Export.SUCCESSFUL export.save() return export def kml_export_data(id_string, user): # TODO resolve circular import from onadata.apps.viewer.models.data_dictionary import DataDictionary dd = DataDictionary.objects.get(id_string=id_string, user=user) instances = Instance.objects.filter( xform__user=user, xform__id_string=id_string, deleted_at=None, geom__isnull=False ).order_by('id') data_for_template = [] for instance in instances: point = instance.point if point: data_for_template.append({ 'name': id_string, 'id': instance.uuid, 'lat': point.y, 'lng': point.x, }) return data_for_template def _get_records(instances): records = [] for instance in instances: record = instance.get_dict() # Get the keys for key in record: if '/' in key: # replace with _ record[key.replace('/', '_')]\ = record.pop(key) records.append(record) return records def _get_server_from_metadata(xform, meta, token): report_templates = MetaData.external_export(xform) if meta: try: int(meta) except ValueError: raise Exception(u"Invalid metadata pk {0}".format(meta)) # Get the external server from the metadata result = report_templates.get(pk=meta) server = result.external_export_url name = result.external_export_name elif token: server = token name = None else: # Take the latest value in the metadata if not report_templates: raise Exception( u"Could not find the template token: Please upload template.") server = report_templates[0].external_export_url name = report_templates[0].external_export_name return server, name def generate_external_export( export_type, username, id_string, export_id=None, token=None, filter_query=None, meta=None): xform = XForm.objects.get( user__username__iexact=username, id_string__exact=id_string) user = User.objects.get(username=username) server, name = _get_server_from_metadata(xform, meta, token) # dissect the url parsed_url = urlparse(server) token = parsed_url.path[5:] ser = parsed_url.scheme + '://' + parsed_url.netloc records = _get_records(Instance.objects.filter( xform__user=user, xform__id_string=id_string)) status_code = 0 if records and server: try: client = Client(ser) response = client.xls.create(token, json.dumps(records)) if hasattr(client.xls.conn, 'last_response'): status_code = client.xls.conn.last_response.status_code except Exception as e: raise J2XException( u"J2X client could not generate report. Server -> {0}," u" Error-> {1}".format(server, e) ) else: if not server: raise J2XException(u"External server not set") elif not records: raise J2XException( u"No record to export. Form -> {0}".format(id_string) ) # get or create export object if export_id: export = Export.objects.get(id=export_id) else: export = Export.objects.create(xform=xform, export_type=export_type) export.export_url = response if status_code == 201: export.internal_status = Export.SUCCESSFUL export.filename = name + '-' + response[5:] if name else response[5:] export.export_url = ser + response else: export.internal_status = Export.FAILED export.save() return export def upload_template_for_external_export(server, file_obj): try: client = Client(server) response = client.template.create(template_file=file_obj) if hasattr(client.template.conn, 'last_response'): status_code = client.template.conn.last_response.status_code except Exception as e: response = str(e) status_code = 500 return str(status_code) + '|' + response
# coding=utf-8 # Copyright (c) 2014-2018, F5 Networks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import hashlib import netaddr from operator import itemgetter from oslo_log import log as logging from f5_openstack_agent.lbaasv2.drivers.bigip.lbaas_service import \ LbaasServiceObject from f5_openstack_agent.lbaasv2.drivers.bigip import utils LOG = logging.getLogger(__name__) class UnsupportedProtocolException(Exception): pass class ServiceModelAdapter(object): """Class to translate LBaaS service objects to BIG-IP model objects. Creates BIG-IP model objects (dictionary of resource attributes) given an LBaaS service objet. """ def __init__(self, conf): """Initialize the service model adapter with config.""" self.conf = conf if self.conf.environment_prefix: self.prefix = self.conf.environment_prefix + '_' else: self.prefix = utils.OBJ_PREFIX + '_' self.esd = None def init_esd(self, esd): self.esd = esd def _get_pool_monitor(self, pool, service): """Return a reference to the pool monitor definition.""" pool_monitor_id = pool.get('healthmonitor_id', "") if not pool_monitor_id: return None monitors = service.get("healthmonitors", list()) for monitor in monitors: if monitor.get('id', "") == pool_monitor_id: return monitor return None def get_pool(self, service): pool = service["pool"] members = service.get('members', list()) loadbalancer = service["loadbalancer"] healthmonitor = self._get_pool_monitor(pool, service) return self._map_pool(loadbalancer, pool, healthmonitor, members) def snat_mode(self): return self.conf.f5_snat_mode def snat_count(self): return self.conf.f5_snat_addresses_per_subnet def vip_on_common_network(self, service): loadbalancer = service.get('loadbalancer', {}) network_id = loadbalancer.get('network_id', "") return (network_id in self.conf.common_network_ids) def init_pool_name(self, loadbalancer, pool): """Return a barebones pool object with name and partition.""" partition = self.get_folder_name(loadbalancer['tenant_id']) name = self.prefix + pool["id"] if pool else '' return {"name": name, "partition": partition} def get_resource_description(self, resource): if not isinstance(resource, dict): raise ValueError full_description = resource.get('name', "") description = resource.get('description', "") if full_description: full_description += ":" if description: full_description += (" %s" % (description)) elif description: full_description = description else: full_description = "" return full_description def get_virtual(self, service): listener = service["listener"] loadbalancer = service["loadbalancer"] listener["use_snat"] = self.snat_mode() if listener["use_snat"] and self.snat_count() > 0: listener["snat_pool_name"] = self.get_folder_name( loadbalancer["tenant_id"]) pool = self.get_vip_default_pool(service) if pool and "session_persistence" in pool: listener["session_persistence"] = pool["session_persistence"] listener_policies = self.get_listener_policies(service) vip = self._map_virtual(loadbalancer, listener, pool=pool, policies=listener_policies) return vip def get_listener_policies(self, service): """Return a map of listener L7 policy ids to a list of L7 rules.""" lbaas_service = LbaasServiceObject(service) listener_policies = list() listener = service.get('listener', None) if not listener: return listener_policies listener_l7policy_ids = listener.get('l7_policies', list()) LOG.debug("L7 debug: listener policies: %s", listener_l7policy_ids) for policy in listener_l7policy_ids: if self.is_esd(policy.get('name')): continue listener_policy = lbaas_service.get_l7policy(policy['id']) LOG.debug("L7 debug: listener policy: %s", listener_policy) if not listener_policy: LOG.warning("Referenced L7 policy %s for listener %s not " "found in service.", policy['id'], listener['id']) continue listener_l7policy_rules = list() rules = listener_policy.get('rules', list()) for rule in rules: l7policy_rule = lbaas_service.get_l7rule(rule['id']) if not l7policy_rule: LOG.warning("Referenced L7 rule %s for policy %s not " "found in service.", rule['id'], policy['id']) continue if l7policy_rule['provisioning_status'] != "PENDING_DELETE": listener_l7policy_rules.append(l7policy_rule) listener_policy['l7policy_rules'] = listener_l7policy_rules listener_policies.append(listener_policy) return listener_policies def get_virtual_name(self, service): vs_name = None if "listener" in service: listener = service["listener"] loadbalancer = service["loadbalancer"] vs_name = self._init_virtual_name(loadbalancer, listener) return vs_name def _init_virtual_name(self, loadbalancer, listener): name = self.prefix + listener["id"] partition = self.get_folder_name(loadbalancer['tenant_id']) return dict(name=name, partition=partition) def get_traffic_group(self, service): tg = "traffic-group-local-only" loadbalancer = service["loadbalancer"] if "traffic_group" in loadbalancer: tg = loadbalancer["traffic_group"] return tg @staticmethod def _pending_delete(resource): return ( resource.get('provisioning_status', "") == "PENDING_DELETE" ) def get_vip_default_pool(self, service): listener = service["listener"] pools = service.get("pools", list()) default_pool = None if "default_pool_id" in listener: for pool in pools: if listener['default_pool_id'] == pool['id']: if not self._pending_delete(pool): default_pool = pool break return default_pool def get_member(self, service): loadbalancer = service["loadbalancer"] member = service["member"] return self._map_member(loadbalancer, member) def get_member_node(self, service): loadbalancer = service["loadbalancer"] member = service["member"] return self._map_node(loadbalancer, member) def get_healthmonitor(self, service): healthmonitor = service["healthmonitor"] loadbalancer = service["loadbalancer"] return self._map_healthmonitor(loadbalancer, healthmonitor) def get_folder(self, service): loadbalancer = service["loadbalancer"] # XXX maybe ServiceModelAdapter should get the data it needs on # __init__? folder = None if "tenant_id" in loadbalancer: tenant_id = loadbalancer["tenant_id"] folder_name = self.get_folder_name(tenant_id) folder = {"name": folder_name, "subPath": "/", "fullPath": "/" + folder_name, "hidden": False, "inheritedDevicegroup": True} if "traffic_group" in loadbalancer: folder['trafficGroup'] = loadbalancer["traffic_group"] folder['inheritedTrafficGroup'] = False else: folder['inheritedTrafficGroup'] = True return folder def get_folder_name(self, tenant_id): # XXX Use of getter questionable move to @property? if tenant_id is not None: name = self.prefix + \ tenant_id.replace('/', '') else: name = "Common" return name def tenant_to_traffic_group(self, tenant_id, traffic_groups): # Hash tenant id to index of traffic group hexhash = hashlib.md5(tenant_id).hexdigest() tg_index = int(hexhash, 16) % len(traffic_groups) return traffic_groups[tg_index] def _map_healthmonitor(self, loadbalancer, lbaas_healthmonitor): healthmonitor = self.init_monitor_name(loadbalancer, lbaas_healthmonitor) healthmonitor["description"] = self.get_resource_description( lbaas_healthmonitor) # type if "type" in lbaas_healthmonitor: # healthmonitor["type"] = lbaas_healthmonitor["type"].lower() if (lbaas_healthmonitor["type"] == "HTTP" or lbaas_healthmonitor["type"] == "HTTPS"): # url path if "url_path" in lbaas_healthmonitor: healthmonitor["send"] = ("GET " + lbaas_healthmonitor["url_path"] + " HTTP/1.0\\r\\n\\r\\n") else: healthmonitor["send"] = "GET / HTTP/1.0\\r\\n\\r\\n" # expected codes healthmonitor["recv"] = self._get_recv_text( lbaas_healthmonitor) # interval - delay if "delay" in lbaas_healthmonitor: healthmonitor["interval"] = lbaas_healthmonitor["delay"] # timeout if "timeout" in lbaas_healthmonitor: if "max_retries" in lbaas_healthmonitor: timeout = (int(lbaas_healthmonitor["max_retries"]) * int(lbaas_healthmonitor["timeout"])) healthmonitor["timeout"] = timeout return healthmonitor def init_monitor_name(self, loadbalancer, monitor): name = self.prefix + monitor["id"] return {"name": name, "partition": self.get_folder_name(loadbalancer['tenant_id'])} def _get_recv_text(self, lbaas_healthmonitor): if "expected_codes" in lbaas_healthmonitor: try: if lbaas_healthmonitor['expected_codes'].find(",") > 0: status_codes = ( lbaas_healthmonitor['expected_codes'].split(',')) recv_text = "HTTP/1.(0|1) (" for status in status_codes: int(status) recv_text += status + "|" recv_text = recv_text[:-1] recv_text += ")" elif lbaas_healthmonitor['expected_codes'].find("-") > 0: status_range = ( lbaas_healthmonitor['expected_codes'].split('-')) start_range = status_range[0] int(start_range) stop_range = status_range[1] int(stop_range) recv_text = ( "HTTP/1.(0|1) [" + start_range + "-" + stop_range + "]" ) else: int(lbaas_healthmonitor['expected_codes']) recv_text = "HTTP/1.(0|1) " +\ lbaas_healthmonitor['expected_codes'] except Exception as exc: LOG.error( "invalid monitor: %s, expected_codes %s, setting to 200" % (exc, lbaas_healthmonitor['expected_codes'])) recv_text = "HTTP/1.(0|1) 200" else: recv_text = "HTTP/1.(0|1) 200" return recv_text def get_monitor_type(self, service): monitor_type = None lbaas_healthmonitor = service["healthmonitor"] if "type" in lbaas_healthmonitor: monitor_type = lbaas_healthmonitor["type"] return monitor_type def _map_pool(self, loadbalancer, lbaas_pool, lbaas_hm, lbaas_members): pool = self.init_pool_name(loadbalancer, lbaas_pool) pool["description"] = self.get_resource_description(pool) if "lb_algorithm" in lbaas_pool: lbaas_lb_method = lbaas_pool['lb_algorithm'].upper() pool['loadBalancingMode'] = \ self._set_lb_method(lbaas_lb_method, lbaas_members) # If source_ip lb method, add SOURCE_IP persistence to ensure # source IP loadbalancing. See issue #344 for details. if lbaas_pool['lb_algorithm'].upper() == 'SOURCE_IP': persist = lbaas_pool.get('session_persistence', None) if not persist: lbaas_pool['session_persistence'] = {'type': 'SOURCE_IP'} if lbaas_hm: hm = self.init_monitor_name(loadbalancer, lbaas_hm) pool["monitor"] = hm["name"] else: pool["monitor"] = "" members = list() for member in lbaas_members: provisioning_status = member.get('provisioning_status', "") if provisioning_status != "PENDING_DELETE": members.append(self._map_member(loadbalancer, member)) pool["members"] = members return pool def _set_lb_method(self, lbaas_lb_method, lbaas_members): """Set pool lb method depending on member attributes.""" lb_method = self._get_lb_method(lbaas_lb_method) if lbaas_lb_method == 'SOURCE_IP': return lb_method member_has_weight = False for member in lbaas_members: if 'weight' in member and member['weight'] > 1 and \ member['provisioning_status'] != 'PENDING_DELETE': member_has_weight = True break if member_has_weight: if lbaas_lb_method == 'LEAST_CONNECTIONS': return self._get_lb_method('RATIO_LEAST_CONNECTIONS') return self._get_lb_method('RATIO') return lb_method def _get_lb_method(self, method): lb_method = method.upper() if lb_method == 'LEAST_CONNECTIONS': return 'least-connections-member' elif lb_method == 'RATIO_LEAST_CONNECTIONS': return 'ratio-least-connections-member' elif lb_method == 'SOURCE_IP': return 'least-connections-node' elif lb_method == 'OBSERVED_MEMBER': return 'observed-member' elif lb_method == 'PREDICTIVE_MEMBER': return 'predictive-member' elif lb_method == 'RATIO': return 'ratio-member' else: return 'round-robin' def _map_virtual(self, loadbalancer, listener, pool=None, policies=None): if policies: LOG.debug("L7_debug: policies: %s", policies) vip = self._init_virtual_name(loadbalancer, listener) vip["description"] = self.get_resource_description(listener) if pool: pool_name = self.init_pool_name(loadbalancer, pool) vip['pool'] = pool_name.get('name', "") else: vip['pool'] = "" vip["connectionLimit"] = listener.get("connection_limit", 0) if vip["connectionLimit"] < 0: vip["connectionLimit"] = 0 port = listener.get("protocol_port", None) ip_address = loadbalancer.get("vip_address", None) if ip_address and port: if str(ip_address).endswith('%0'): ip_address = ip_address[:-2] if ':' in ip_address: vip['destination'] = ip_address + "." + str(port) else: vip['destination'] = ip_address + ":" + str(port) else: LOG.error("No VIP address or port specified") # differeniate the ipv4 and ipv6 cases pure_ip_address = ip_address.split("%")[0] ip_version = netaddr.IPAddress(pure_ip_address) if ip_version.version == 4: vip["mask"] = '255.255.255.255' elif ip_version.version == 6: vip["mask"] = 'ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff' else: LOG.error("Not a validate ip address") if "admin_state_up" in listener: if listener["admin_state_up"]: vip["enabled"] = True else: vip["disabled"] = True self._add_vlan_and_snat(listener, vip) self._add_profiles_session_persistence(listener, pool, vip) vip['rules'] = list() vip['policies'] = list() if policies: self._apply_l7_and_esd_policies(listener, policies, vip) return vip def _apply_l7_and_esd_policies(self, listener, policies, vip): if not policies: return partition = self.get_folder_name(listener['tenant_id']) policy_name = "wrapper_policy_" + str(listener['id']) bigip_policy = listener.get('f5_policy', {}) if bigip_policy.get('rules', list()): vip['policies'] = [{'name': policy_name, 'partition': partition}] esd_composite = dict() for policy in sorted( policies, key=itemgetter('position'), reverse=True): if policy['provisioning_status'] == "PENDING_DELETE": continue policy_name = policy.get('name', None) esd = self.esd.get_esd(policy_name) if esd: esd_composite.update(esd) if listener['protocol'] == 'TCP': self._apply_fastl4_esd(vip, esd_composite) else: self._apply_esd(vip, esd_composite) def get_esd(self, name): if self.esd: return self.esd.get_esd(name) return None def is_esd(self, name): return self.esd.get_esd(name) is not None def _add_profiles_session_persistence(self, listener, pool, vip): protocol = listener.get('protocol', "") if protocol not in ["HTTP", "HTTPS", "TCP", "TERMINATED_HTTPS"]: LOG.warning("Listener protocol unrecognized: %s", listener["protocol"]) vip["ipProtocol"] = "tcp" # if protocol is HTTPS, also use fastl4 if protocol == 'TCP' or protocol == 'HTTPS': virtual_type = 'fastl4' else: virtual_type = 'standard' if virtual_type == 'fastl4': vip['profiles'] = ['/Common/fastL4'] else: # add profiles for HTTP, HTTPS, TERMINATED_HTTPS protocols vip['profiles'] = ['/Common/http', '/Common/oneconnect'] vip['fallbackPersistence'] = '' vip['persist'] = [] persistence = None if pool: persistence = pool.get('session_persistence', None) lb_algorithm = pool.get('lb_algorithm', 'ROUND_ROBIN') valid_persist_types = ['SOURCE_IP', 'APP_COOKIE', 'HTTP_COOKIE'] if persistence: persistence_type = persistence.get('type', "") if persistence_type not in valid_persist_types: LOG.warning("Invalid peristence type: %s", persistence_type) return if persistence_type == 'APP_COOKIE': vip['persist'] = [{'name': 'app_cookie_' + vip['name']}] elif persistence_type == 'SOURCE_IP': vip['persist'] = [{'name': '/Common/source_addr'}] elif persistence_type == 'HTTP_COOKIE': vip['persist'] = [{'name': '/Common/cookie'}] if persistence_type != 'SOURCE_IP': if lb_algorithm == 'SOURCE_IP': vip['fallbackPersistence'] = '/Common/source_addr' if persistence_type in ['HTTP_COOKIE', 'APP_COOKIE']: vip['profiles'] = ['/Common/http', '/Common/oneconnect'] def get_vlan(self, vip, bigip, network_id): if network_id in bigip.assured_networks: vip['vlans'].append( bigip.assured_networks[network_id]) vip['vlansEnabled'] = True vip.pop('vlansDisabled', None) elif network_id in self.conf.common_network_ids: vip['vlans'].append( self.conf.common_network_ids[network_id]) vip['vlansEnabled'] = True vip.pop('vlansDisabled', None) def _add_vlan_and_snat(self, listener, vip): # snat if "use_snat" in listener and listener["use_snat"]: vip['sourceAddressTranslation'] = {} if "snat_pool_name" in listener: vip['sourceAddressTranslation']['type'] = 'snat' vip['sourceAddressTranslation']['pool'] = \ listener["snat_pool_name"] else: vip['sourceAddressTranslation']['type'] = 'automap' # default values for pinning the VS to a specific VLAN set vip['vlansDisabled'] = True vip['vlans'] = [] def _map_member(self, loadbalancer, lbaas_member): member = {} port = lbaas_member["protocol_port"] ip_address = lbaas_member["address"] if lbaas_member["admin_state_up"]: member["session"] = "user-enabled" else: member["session"] = "user-disabled" if lbaas_member["weight"] == 0: member["ratio"] = 1 member["session"] = "user-disabled" else: member["ratio"] = lbaas_member["weight"] if ':' in ip_address: member['name'] = ip_address + '.' + str(port) else: member['name'] = ip_address + ':' + str(port) member["partition"] = self.get_folder_name(loadbalancer["tenant_id"]) member["address"] = ip_address return member def _map_node(self, loadbalancer, lbaas_member): member = {} member["name"] = lbaas_member["address"] member["partition"] = self.get_folder_name(loadbalancer["tenant_id"]) return member def get_network_from_service(self, service, network_id): if 'networks' in service: return service['networks'][network_id] def get_subnet_from_service(self, service, subnet_id): if 'subnets' in service: return service['subnets'][subnet_id] def get_tls(self, service): tls = {} listener = service['listener'] if listener['protocol'] == 'TERMINATED_HTTPS': if 'default_tls_container_id' in listener and \ listener['default_tls_container_id']: tls['default_tls_container_id'] = \ listener['default_tls_container_id'] if 'sni_containers' in listener and listener['sni_containers']: tls['sni_containers'] = listener['sni_containers'] return tls def get_name(self, uuid): return self.prefix + str(uuid) def _apply_fastl4_esd(self, vip, esd): if not esd: return # Application of ESD implies some type of L7 traffic routing. Add # an HTTP profile. if 'lbaas_http_profile' in esd: vip['profiles'] = ["/Common/" + esd['lbaas_http_profile'], "/Common/fastL4"] else: vip['profiles'] = ["/Common/http", "/Common/fastL4"] # persistence if 'lbaas_persist' in esd: if vip.get('persist'): LOG.warning("Overwriting the existing VIP persist profile: %s", vip['persist']) vip['persist'] = [{'name': esd['lbaas_persist']}] if 'lbaas_fallback_persist' in esd and vip.get('persist'): if vip.get('fallbackPersistence'): LOG.warning( "Overwriting the existing VIP fallback persist " "profile: %s", vip['fallbackPersistence']) vip['fallbackPersistence'] = esd['lbaas_fallback_persist'] # iRules vip['rules'] = list() if 'lbaas_irule' in esd: irules = [] for irule in esd['lbaas_irule']: irules.append('/Common/' + irule) vip['rules'] = irules # L7 policies if 'lbaas_policy' in esd: if vip.get('policies'): LOG.warning( "LBaaS L7 policies and rules will be overridden " "by ESD policies") vip['policies'] = list() policies = list() for policy in esd['lbaas_policy']: policies.append({'name': policy, 'partition': 'Common'}) vip['policies'] = policies def _apply_esd(self, vip, esd): if not esd: return profiles = vip['profiles'] # start with server tcp profile if 'lbaas_stcp' in esd: # set serverside tcp profile profiles.append({'name': esd['lbaas_stcp'], 'partition': 'Common', 'context': 'serverside'}) # restrict client profile ctcp_context = 'clientside' else: # no serverside profile; use client profile for both ctcp_context = 'all' # must define client profile; default to tcp if not in ESD if 'lbaas_ctcp' in esd: ctcp_profile = esd['lbaas_ctcp'] else: ctcp_profile = 'tcp' profiles.append({'name': ctcp_profile, 'partition': 'Common', 'context': ctcp_context}) if 'lbaas_oneconnect_profile' in esd: profiles.remove('/Common/oneconnect') profiles.append('/Common/' + esd['lbaas_oneconnect_profile']) # SSL profiles if 'lbaas_cssl_profile' in esd: profiles.append({'name': esd['lbaas_cssl_profile'], 'partition': 'Common', 'context': 'clientside'}) if 'lbaas_sssl_profile' in esd: profiles.append({'name': esd['lbaas_sssl_profile'], 'partition': 'Common', 'context': 'serverside'}) if 'lbaas_http_profile' in esd: profiles.remove('/Common/http') profiles.append('/Common/' + esd['lbaas_http_profile']) # persistence if 'lbaas_persist' in esd: if vip.get('persist', None): LOG.warning("Overwriting the existing VIP persist profile: %s", vip['persist']) vip['persist'] = [{'name': esd['lbaas_persist']}] if 'lbaas_fallback_persist' in esd and vip.get('persist'): if vip.get('fallbackPersistence', None): LOG.warning( "Overwriting the existing VIP fallback persist " "profile: %s", vip['fallbackPersistence']) vip['fallbackPersistence'] = esd['lbaas_fallback_persist'] # iRules vip['rules'] = list() if 'lbaas_irule' in esd: irules = [] for irule in esd['lbaas_irule']: irules.append('/Common/' + irule) vip['rules'] = irules # L7 policies if 'lbaas_policy' in esd: if vip.get('policies'): LOG.warning( "LBaaS L7 policies and rules will be overridden " "by ESD policies") vip['policies'] = list() policies = list() for policy in esd['lbaas_policy']: policies.append({'name': policy, 'partition': 'Common'}) vip['policies'] = policies
from __future__ import absolute_import, division, unicode_literals from future.builtins import int, open, str from hashlib import md5 import os try: from urllib.parse import quote, unquote except ImportError: from urllib import quote, unquote from django.apps import apps from django.contrib import admin from django.contrib.auth import REDIRECT_FIELD_NAME from django.contrib.sites.models import Site from django.core.files import File from django.core.files.storage import default_storage from django.core.urlresolvers import reverse, resolve, NoReverseMatch from django.db.models import Model from django.template import Context, Node, Template, TemplateSyntaxError from django.template.base import (TOKEN_BLOCK, TOKEN_COMMENT, TOKEN_TEXT, TOKEN_VAR, TextNode) from django.template.defaultfilters import escape from django.template.loader import get_template from django.utils import translation from django.utils.html import strip_tags from django.utils.text import capfirst from mezzanine.conf import settings from mezzanine.core.fields import RichTextField from mezzanine.core.forms import get_edit_form from mezzanine.utils.cache import nevercache_token, cache_installed from mezzanine.utils.html import decode_entities from mezzanine.utils.importing import import_dotted_path from mezzanine.utils.sites import current_site_id, has_site_permission from mezzanine.utils.urls import admin_url from mezzanine.utils.views import is_editable from mezzanine import template register = template.Library() if "compressor" in settings.INSTALLED_APPS: @register.tag def compress(parser, token): """ Shadows django-compressor's compress tag so it can be loaded from ``mezzanine_tags``, allowing us to provide a dummy version when django-compressor isn't installed. """ from compressor.templatetags.compress import compress return compress(parser, token) else: @register.to_end_tag def compress(parsed, context, token): """ Dummy tag for fallback when django-compressor isn't installed. """ return parsed if cache_installed(): @register.tag def nevercache(parser, token): """ Tag for two phased rendering. Converts enclosed template code and content into text, which gets rendered separately in ``mezzanine.core.middleware.UpdateCacheMiddleware``. This is to bypass caching for the enclosed code and content. """ text = [] end_tag = "endnevercache" tag_mapping = { TOKEN_TEXT: ("", ""), TOKEN_VAR: ("{{", "}}"), TOKEN_BLOCK: ("{%", "%}"), TOKEN_COMMENT: ("{#", "#}"), } delimiter = nevercache_token() while parser.tokens: token = parser.next_token() if token.token_type == TOKEN_BLOCK and token.contents == end_tag: return TextNode(delimiter + "".join(text) + delimiter) start, end = tag_mapping[token.token_type] text.append("%s%s%s" % (start, token.contents, end)) parser.unclosed_block_tag(end_tag) else: @register.to_end_tag def nevercache(parsed, context, token): """ Dummy fallback ``nevercache`` for when caching is not configured. """ return parsed @register.simple_tag(takes_context=True) def fields_for(context, form, template="includes/form_fields.html"): """ Renders fields for a form with an optional template choice. """ context["form_for_fields"] = form return get_template(template).render(Context(context)) @register.inclusion_tag("includes/form_errors.html", takes_context=True) def errors_for(context, form): """ Renders an alert if the form has any errors. """ context["form"] = form return context @register.filter def sort_by(items, attr): """ General sort filter - sorts by either attribute or key. """ def key_func(item): try: return getattr(item, attr) except AttributeError: try: return item[attr] except TypeError: getattr(item, attr) # Reraise AttributeError return sorted(items, key=key_func) @register.filter def is_installed(app_name): """ Returns ``True`` if the given app name is in the ``INSTALLED_APPS`` setting. """ from warnings import warn warn("The is_installed filter is deprecated. Please use the tag " "{% ifinstalled appname %}{% endifinstalled %}") return app_name in settings.INSTALLED_APPS @register.tag def ifinstalled(parser, token): """ Old-style ``if`` tag that renders contents if the given app is installed. The main use case is: {% ifinstalled app_name %} {% include "app_name/template.html" %} {% endifinstalled %} so we need to manually pull out all tokens if the app isn't installed, since if we used a normal ``if`` tag with a False arg, the include tag will still try and find the template to include. """ try: tag, app = token.split_contents() except ValueError: raise TemplateSyntaxError("ifinstalled should be in the form: " "{% ifinstalled app_name %}" "{% endifinstalled %}") end_tag = "end" + tag unmatched_end_tag = 1 if app.strip("\"'") not in settings.INSTALLED_APPS: while unmatched_end_tag: token = parser.tokens.pop(0) if token.token_type == TOKEN_BLOCK: block_name = token.contents.split()[0] if block_name == tag: unmatched_end_tag += 1 if block_name == end_tag: unmatched_end_tag -= 1 parser.tokens.insert(0, token) nodelist = parser.parse((end_tag,)) parser.delete_first_token() class IfInstalledNode(Node): def render(self, context): return nodelist.render(context) return IfInstalledNode() @register.render_tag def set_short_url_for(context, token): """ Sets the ``short_url`` attribute of the given model for share links in the template. """ obj = context[token.split_contents()[1]] obj.set_short_url() return "" @register.simple_tag def gravatar_url(email, size=32): """ Return the full URL for a Gravatar given an email hash. """ bits = (md5(email.lower().encode("utf-8")).hexdigest(), size) return "//www.gravatar.com/avatar/%s?s=%s&d=identicon&r=PG" % bits @register.to_end_tag def metablock(parsed): """ Remove HTML tags, entities and superfluous characters from meta blocks. """ parsed = " ".join(parsed.replace("\n", "").split()).replace(" ,", ",") return escape(strip_tags(decode_entities(parsed))) @register.inclusion_tag("includes/pagination.html", takes_context=True) def pagination_for(context, current_page, page_var="page", exclude_vars=""): """ Include the pagination template and data for persisting querystring in pagination links. Can also contain a comma separated string of var names in the current querystring to exclude from the pagination links, via the ``exclude_vars`` arg. """ querystring = context["request"].GET.copy() exclude_vars = [v for v in exclude_vars.split(",") if v] + [page_var] for exclude_var in exclude_vars: if exclude_var in querystring: del querystring[exclude_var] querystring = querystring.urlencode() return { "current_page": current_page, "querystring": querystring, "page_var": page_var, } @register.inclusion_tag("includes/search_form.html", takes_context=True) def search_form(context, search_model_names=None): """ Includes the search form with a list of models to use as choices for filtering the search by. Models should be a string with models in the format ``app_label.model_name`` separated by spaces. The string ``all`` can also be used, in which case the models defined by the ``SEARCH_MODEL_CHOICES`` setting will be used. """ if not search_model_names or not settings.SEARCH_MODEL_CHOICES: search_model_names = [] elif search_model_names == "all": search_model_names = list(settings.SEARCH_MODEL_CHOICES) else: search_model_names = search_model_names.split(" ") search_model_choices = [] for model_name in search_model_names: try: model = apps.get_model(*model_name.split(".", 1)) except LookupError: pass else: verbose_name = model._meta.verbose_name_plural.capitalize() search_model_choices.append((verbose_name, model_name)) context["search_model_choices"] = sorted(search_model_choices) return context @register.simple_tag def thumbnail(image_url, width, height, upscale=True, quality=95, left=.5, top=.5, padding=False, padding_color="#fff"): """ Given the URL to an image, resizes the image using the given width and height on the first time it is requested, and returns the URL to the new resized image. If width or height are zero then original ratio is maintained. When ``upscale`` is False, images smaller than the given size will not be grown to fill that size. The given width and height thus act as maximum dimensions. """ if not image_url: return "" try: from PIL import Image, ImageFile, ImageOps except ImportError: return "" image_url = unquote(str(image_url)).split("?")[0] if image_url.startswith(settings.MEDIA_URL): image_url = image_url.replace(settings.MEDIA_URL, "", 1) image_dir, image_name = os.path.split(image_url) image_prefix, image_ext = os.path.splitext(image_name) filetype = {".png": "PNG", ".gif": "GIF"}.get(image_ext, "JPEG") thumb_name = "%s-%sx%s" % (image_prefix, width, height) if not upscale: thumb_name += "-no-upscale" if left != .5 or top != .5: left = min(1, max(0, left)) top = min(1, max(0, top)) thumb_name = "%s-%sx%s" % (thumb_name, left, top) thumb_name += "-padded-%s" % padding_color if padding else "" thumb_name = "%s%s" % (thumb_name, image_ext) # `image_name` is used here for the directory path, as each image # requires its own sub-directory using its own name - this is so # we can consistently delete all thumbnails for an individual # image, which is something we do in filebrowser when a new image # is written, allowing us to purge any previously generated # thumbnails that may match a new image name. thumb_dir = os.path.join(settings.MEDIA_ROOT, image_dir, settings.THUMBNAILS_DIR_NAME, image_name) if not os.path.exists(thumb_dir): try: os.makedirs(thumb_dir) except OSError: pass thumb_path = os.path.join(thumb_dir, thumb_name) thumb_url = "%s/%s/%s" % (settings.THUMBNAILS_DIR_NAME, quote(image_name.encode("utf-8")), quote(thumb_name.encode("utf-8"))) image_url_path = os.path.dirname(image_url) if image_url_path: thumb_url = "%s/%s" % (image_url_path, thumb_url) try: thumb_exists = os.path.exists(thumb_path) except UnicodeEncodeError: # The image that was saved to a filesystem with utf-8 support, # but somehow the locale has changed and the filesystem does not # support utf-8. from mezzanine.core.exceptions import FileSystemEncodingChanged raise FileSystemEncodingChanged() if thumb_exists: # Thumbnail exists, don't generate it. return thumb_url elif not default_storage.exists(image_url): # Requested image does not exist, just return its URL. return image_url f = default_storage.open(image_url) try: image = Image.open(f) except: # Invalid image format. return image_url image_info = image.info to_width = int(width) to_height = int(height) from_width = image.size[0] from_height = image.size[1] if not upscale: to_width = min(to_width, from_width) to_height = min(to_height, from_height) # Set dimensions. if to_width == 0: to_width = from_width * to_height // from_height elif to_height == 0: to_height = from_height * to_width // from_width if image.mode not in ("P", "L", "RGBA"): try: image = image.convert("RGBA") except: return image_url # Required for progressive jpgs. ImageFile.MAXBLOCK = 2 * (max(image.size) ** 2) # Padding. if padding and to_width and to_height: from_ratio = float(from_width) / from_height to_ratio = float(to_width) / to_height pad_size = None if to_ratio < from_ratio: pad_height = int(to_height * (float(from_width) / to_width)) pad_size = (from_width, pad_height) pad_top = (pad_height - from_height) // 2 pad_left = 0 elif to_ratio > from_ratio: pad_width = int(to_width * (float(from_height) / to_height)) pad_size = (pad_width, from_height) pad_top = 0 pad_left = (pad_width - from_width) // 2 if pad_size is not None: pad_container = Image.new("RGBA", pad_size, padding_color) pad_container.paste(image, (pad_left, pad_top)) image = pad_container # Create the thumbnail. to_size = (to_width, to_height) to_pos = (left, top) try: image = ImageOps.fit(image, to_size, Image.ANTIALIAS, 0, to_pos) image = image.save(thumb_path, filetype, quality=quality, **image_info) # Push a remote copy of the thumbnail if MEDIA_URL is # absolute. if "://" in settings.MEDIA_URL: with open(thumb_path, "rb") as f: default_storage.save(thumb_url, File(f)) except Exception: # If an error occurred, a corrupted image may have been saved, # so remove it, otherwise the check for it existing will just # return the corrupted image next time it's requested. try: os.remove(thumb_path) except Exception: pass return image_url return thumb_url @register.inclusion_tag("includes/editable_loader.html", takes_context=True) def editable_loader(context): """ Set up the required JS/CSS for the in-line editing toolbar and controls. """ user = context["request"].user context["has_site_permission"] = has_site_permission(user) if settings.INLINE_EDITING_ENABLED and context["has_site_permission"]: t = get_template("includes/editable_toolbar.html") context["REDIRECT_FIELD_NAME"] = REDIRECT_FIELD_NAME try: context["editable_obj"] except KeyError: context["editable_obj"] = context.get("page", None) context["toolbar"] = t.render(Context(context)) context["richtext_media"] = RichTextField().formfield().widget.media return context @register.filter def richtext_filters(content): """ Takes a value edited via the WYSIWYG editor, and passes it through each of the functions specified by the RICHTEXT_FILTERS setting. """ filter_names = settings.RICHTEXT_FILTERS if not filter_names: try: filter_names = [settings.RICHTEXT_FILTER] except AttributeError: pass else: from warnings import warn warn("The `RICHTEXT_FILTER` setting is deprecated in favor of " "the new plural setting `RICHTEXT_FILTERS`.") for filter_name in filter_names: filter_func = import_dotted_path(filter_name) content = filter_func(content) return content @register.filter def richtext_filter(content): """ Deprecated version of richtext_filters above. """ from warnings import warn warn("The `richtext_filter` template tag is deprecated in favor of " "the new plural tag `richtext_filters`.") return richtext_filters(content) @register.to_end_tag def editable(parsed, context, token): """ Add the required HTML to the parsed content for in-line editing, such as the icon and edit form if the object is deemed to be editable - either it has an ``editable`` method which returns ``True``, or the logged in user has change permissions for the model. """ def parse_field(field): field = field.split(".") obj = context.get(field.pop(0), None) attr = field.pop() while field: obj = getattr(obj, field.pop(0)) if callable(obj): # Allows {% editable page.get_content_model.content %} obj = obj() return obj, attr fields = [parse_field(f) for f in token.split_contents()[1:]] if fields: fields = [f for f in fields if len(f) == 2 and f[0] is fields[0][0]] if not parsed.strip(): try: parsed = "".join([str(getattr(*field)) for field in fields]) except AttributeError: pass if settings.INLINE_EDITING_ENABLED and fields and "request" in context: obj = fields[0][0] if isinstance(obj, Model) and is_editable(obj, context["request"]): field_names = ",".join([f[1] for f in fields]) context["editable_form"] = get_edit_form(obj, field_names) context["original"] = parsed t = get_template("includes/editable_form.html") return t.render(Context(context)) return parsed @register.simple_tag def try_url(url_name): """ Mimics Django's ``url`` template tag but fails silently. Used for url names in admin templates as these won't resolve when admin tests are running. """ from warnings import warn warn("try_url is deprecated, use the url tag with the 'as' arg instead.") try: url = reverse(url_name) except NoReverseMatch: return "" return url def admin_app_list(request): """ Adopted from ``django.contrib.admin.sites.AdminSite.index``. Returns a list of lists of models grouped and ordered according to ``mezzanine.conf.ADMIN_MENU_ORDER``. Called from the ``admin_dropdown_menu`` template tag as well as the ``app_list`` dashboard widget. """ app_dict = {} # Model or view --> (group index, group title, item index, item title). menu_order = {} for (group_index, group) in enumerate(settings.ADMIN_MENU_ORDER): group_title, items = group group_title = group_title.title() for (item_index, item) in enumerate(items): if isinstance(item, (tuple, list)): item_title, item = item else: item_title = None menu_order[item] = (group_index, group_title, item_index, item_title) # Add all registered models, using group and title from menu order. for (model, model_admin) in admin.site._registry.items(): opts = model._meta in_menu = not hasattr(model_admin, "in_menu") or model_admin.in_menu() if in_menu and request.user.has_module_perms(opts.app_label): perms = model_admin.get_model_perms(request) admin_url_name = "" if perms["change"]: admin_url_name = "changelist" change_url = admin_url(model, admin_url_name) else: change_url = None if perms["add"]: admin_url_name = "add" add_url = admin_url(model, admin_url_name) else: add_url = None if admin_url_name: model_label = "%s.%s" % (opts.app_label, opts.object_name) try: app_index, app_title, model_index, model_title = \ menu_order[model_label] except KeyError: app_index = None app_title = opts.app_label.title() model_index = None model_title = None else: del menu_order[model_label] if not model_title: model_title = capfirst(model._meta.verbose_name_plural) if app_title not in app_dict: app_dict[app_title] = { "index": app_index, "name": app_title, "models": [], } app_dict[app_title]["models"].append({ "index": model_index, "perms": model_admin.get_model_perms(request), "name": model_title, "admin_url": change_url, "add_url": add_url }) # Menu may also contain view or url pattern names given as (title, name). for (item_url, item) in menu_order.items(): app_index, app_title, item_index, item_title = item try: item_url = reverse(item_url) except NoReverseMatch: continue if app_title not in app_dict: app_dict[app_title] = { "index": app_index, "name": app_title, "models": [], } app_dict[app_title]["models"].append({ "index": item_index, "perms": {"custom": True}, "name": item_title, "admin_url": item_url, }) app_list = list(app_dict.values()) sort = lambda x: (x["index"] if x["index"] is not None else 999, x["name"]) for app in app_list: app["models"].sort(key=sort) app_list.sort(key=sort) return app_list @register.inclusion_tag("admin/includes/dropdown_menu.html", takes_context=True) def admin_dropdown_menu(context): """ Renders the app list for the admin dropdown menu navigation. """ user = context["request"].user if user.is_staff: context["dropdown_menu_app_list"] = admin_app_list(context["request"]) if user.is_superuser: sites = Site.objects.all() else: sites = user.sitepermissions.sites.all() context["dropdown_menu_sites"] = list(sites) context["dropdown_menu_selected_site_id"] = current_site_id() return context @register.inclusion_tag("admin/includes/app_list.html", takes_context=True) def app_list(context): """ Renders the app list for the admin dashboard widget. """ context["dashboard_app_list"] = admin_app_list(context["request"]) return context @register.inclusion_tag("admin/includes/recent_actions.html", takes_context=True) def recent_actions(context): """ Renders the recent actions list for the admin dashboard widget. """ return context @register.render_tag def dashboard_column(context, token): """ Takes an index for retrieving the sequence of template tags from ``mezzanine.conf.DASHBOARD_TAGS`` to render into the admin dashboard. """ column_index = int(token.split_contents()[1]) output = [] for tag in settings.DASHBOARD_TAGS[column_index]: t = Template("{%% load %s %%}{%% %s %%}" % tuple(tag.split("."))) output.append(t.render(Context(context))) return "".join(output) @register.simple_tag(takes_context=True) def translate_url(context, language): """ Translates the current URL for the given language code, eg: {% translate_url de %} """ try: request = context["request"] except KeyError: return "" view = resolve(request.path) current_language = translation.get_language() translation.activate(language) try: url = reverse(view.func, args=view.args, kwargs=view.kwargs) except NoReverseMatch: try: url_name = (view.url_name if not view.namespace else '%s:%s' % (view.namespace, view.url_name)) url = reverse(url_name, args=view.args, kwargs=view.kwargs) except NoReverseMatch: url_name = "admin:" + view.url_name url = reverse(url_name, args=view.args, kwargs=view.kwargs) translation.activate(current_language) if context['request'].META["QUERY_STRING"]: url += "?" + context['request'].META["QUERY_STRING"] return url
"""Tests for 'site'. Tests assume the initial paths in sys.path once the interpreter has begun executing have not been removed. """ import unittest import sys import os import shutil import subprocess from copy import copy, deepcopy from test.test_support import run_unittest, TESTFN, unlink, get_attribute import sysconfig from sysconfig import (get_paths, get_platform, get_config_vars, get_path, get_path_names, _INSTALL_SCHEMES, _get_default_scheme, _expand_vars, get_scheme_names, get_config_var) class TestSysConfig(unittest.TestCase): def setUp(self): """Make a copy of sys.path""" super(TestSysConfig, self).setUp() self.sys_path = sys.path[:] self.makefile = None # patching os.uname if hasattr(os, 'uname'): self.uname = os.uname self._uname = os.uname() else: self.uname = None self._uname = None os.uname = self._get_uname # saving the environment self.name = os.name self.platform = sys.platform self.version = sys.version self.sep = os.sep self.join = os.path.join self.isabs = os.path.isabs self.splitdrive = os.path.splitdrive self._config_vars = copy(sysconfig._CONFIG_VARS) self.old_environ = deepcopy(os.environ) def tearDown(self): """Restore sys.path""" sys.path[:] = self.sys_path if self.makefile is not None: os.unlink(self.makefile) self._cleanup_testfn() if self.uname is not None: os.uname = self.uname else: del os.uname os.name = self.name sys.platform = self.platform sys.version = self.version os.sep = self.sep os.path.join = self.join os.path.isabs = self.isabs os.path.splitdrive = self.splitdrive sysconfig._CONFIG_VARS = copy(self._config_vars) for key, value in self.old_environ.items(): if os.environ.get(key) != value: os.environ[key] = value for key in os.environ.keys(): if key not in self.old_environ: del os.environ[key] super(TestSysConfig, self).tearDown() def _set_uname(self, uname): self._uname = uname def _get_uname(self): return self._uname def _cleanup_testfn(self): path = TESTFN if os.path.isfile(path): os.remove(path) elif os.path.isdir(path): shutil.rmtree(path) def test_get_path_names(self): self.assertEquals(get_path_names(), sysconfig._SCHEME_KEYS) def test_get_paths(self): scheme = get_paths() default_scheme = _get_default_scheme() wanted = _expand_vars(default_scheme, None) wanted = wanted.items() wanted.sort() scheme = scheme.items() scheme.sort() self.assertEquals(scheme, wanted) def test_get_path(self): # xxx make real tests here for scheme in _INSTALL_SCHEMES: for name in _INSTALL_SCHEMES[scheme]: res = get_path(name, scheme) def test_get_config_vars(self): cvars = get_config_vars() self.assertIsInstance(cvars, dict) self.assertTrue(cvars) def test_get_platform(self): # windows XP, 32bits os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Intel)]') sys.platform = 'win32' self.assertEquals(get_platform(), 'win32') # windows XP, amd64 os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Amd64)]') sys.platform = 'win32' self.assertEquals(get_platform(), 'win-amd64') # windows XP, itanium os.name = 'nt' sys.version = ('2.4.4 (#71, Oct 18 2006, 08:34:43) ' '[MSC v.1310 32 bit (Itanium)]') sys.platform = 'win32' self.assertEquals(get_platform(), 'win-ia64') # macbook os.name = 'posix' sys.version = ('2.5 (r25:51918, Sep 19 2006, 08:49:13) ' '\n[GCC 4.0.1 (Apple Computer, Inc. build 5341)]') sys.platform = 'darwin' self._set_uname(('Darwin', 'macziade', '8.11.1', ('Darwin Kernel Version 8.11.1: ' 'Wed Oct 10 18:23:28 PDT 2007; ' 'root:xnu-792.25.20~1/RELEASE_I386'), 'PowerPC')) os.environ['MACOSX_DEPLOYMENT_TARGET'] = '10.3' get_config_vars()['CFLAGS'] = ('-fno-strict-aliasing -DNDEBUG -g ' '-fwrapv -O3 -Wall -Wstrict-prototypes') maxint = sys.maxint try: sys.maxint = 2147483647 self.assertEquals(get_platform(), 'macosx-10.3-ppc') sys.maxint = 9223372036854775807 self.assertEquals(get_platform(), 'macosx-10.3-ppc64') finally: sys.maxint = maxint self._set_uname(('Darwin', 'macziade', '8.11.1', ('Darwin Kernel Version 8.11.1: ' 'Wed Oct 10 18:23:28 PDT 2007; ' 'root:xnu-792.25.20~1/RELEASE_I386'), 'i386')) get_config_vars()['MACOSX_DEPLOYMENT_TARGET'] = '10.3' os.environ['MACOSX_DEPLOYMENT_TARGET'] = '10.3' get_config_vars()['CFLAGS'] = ('-fno-strict-aliasing -DNDEBUG -g ' '-fwrapv -O3 -Wall -Wstrict-prototypes') maxint = sys.maxint try: sys.maxint = 2147483647 self.assertEquals(get_platform(), 'macosx-10.3-i386') sys.maxint = 9223372036854775807 self.assertEquals(get_platform(), 'macosx-10.3-x86_64') finally: sys.maxint = maxint # macbook with fat binaries (fat, universal or fat64) os.environ['MACOSX_DEPLOYMENT_TARGET'] = '10.4' get_config_vars()['CFLAGS'] = ('-arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEquals(get_platform(), 'macosx-10.4-fat') get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEquals(get_platform(), 'macosx-10.4-intel') get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEquals(get_platform(), 'macosx-10.4-fat3') get_config_vars()['CFLAGS'] = ('-arch ppc64 -arch x86_64 -arch ppc -arch i386 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEquals(get_platform(), 'macosx-10.4-universal') get_config_vars()['CFLAGS'] = ('-arch x86_64 -arch ppc64 -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3') self.assertEquals(get_platform(), 'macosx-10.4-fat64') for arch in ('ppc', 'i386', 'x86_64', 'ppc64'): get_config_vars()['CFLAGS'] = ('-arch %s -isysroot ' '/Developer/SDKs/MacOSX10.4u.sdk ' '-fno-strict-aliasing -fno-common ' '-dynamic -DNDEBUG -g -O3'%(arch,)) self.assertEquals(get_platform(), 'macosx-10.4-%s'%(arch,)) # linux debian sarge os.name = 'posix' sys.version = ('2.3.5 (#1, Jul 4 2007, 17:28:59) ' '\n[GCC 4.1.2 20061115 (prerelease) (Debian 4.1.1-21)]') sys.platform = 'linux2' self._set_uname(('Linux', 'aglae', '2.6.21.1dedibox-r7', '#1 Mon Apr 30 17:25:38 CEST 2007', 'i686')) self.assertEquals(get_platform(), 'linux-i686') # XXX more platforms to tests here def test_get_config_h_filename(self): config_h = sysconfig.get_config_h_filename() self.assertTrue(os.path.isfile(config_h), config_h) def test_get_scheme_names(self): wanted = ('nt', 'nt_user', 'os2', 'os2_home', 'osx_framework_user', 'posix_home', 'posix_prefix', 'posix_user') self.assertEquals(get_scheme_names(), wanted) def test_symlink(self): # Issue 7880 symlink = get_attribute(os, "symlink") def get(python): cmd = [python, '-c', 'import sysconfig; print sysconfig.get_platform()'] p = subprocess.Popen(cmd, stdout=subprocess.PIPE) return p.communicate() real = os.path.realpath(sys.executable) link = os.path.abspath(TESTFN) symlink(real, link) try: self.assertEqual(get(real), get(link)) finally: unlink(link) def test_user_similar(self): # Issue 8759 : make sure the posix scheme for the users # is similar to the global posix_prefix one base = get_config_var('base') user = get_config_var('userbase') for name in ('stdlib', 'platstdlib', 'purelib', 'platlib'): global_path = get_path(name, 'posix_prefix') user_path = get_path(name, 'posix_user') self.assertEquals(user_path, global_path.replace(base, user)) def test_main(): run_unittest(TestSysConfig) if __name__ == "__main__": test_main()
# Copyright 2017 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Helpers for retrying functions with exponential back-off. The :class:`Retry` decorator can be used to retry functions that raise exceptions using exponential backoff. Because a exponential sleep algorithm is used, the retry is limited by a `deadline`. The deadline is the maxmimum amount of time a method can block. This is used instead of total number of retries because it is difficult to ascertain the amount of time a function can block when using total number of retries and exponential backoff. By default, this decorator will retry transient API errors (see :func:`if_transient_error`). For example: .. code-block:: python @retry.Retry() def call_flaky_rpc(): return client.flaky_rpc() # Will retry flaky_rpc() if it raises transient API errors. result = call_flaky_rpc() You can pass a custom predicate to retry on different exceptions, such as waiting for an eventually consistent item to be available: .. code-block:: python @retry.Retry(predicate=if_exception_type(exceptions.NotFound)) def check_if_exists(): return client.does_thing_exist() is_available = check_if_exists() Some client library methods apply retry automatically. These methods can accept a ``retry`` parameter that allows you to configure the behavior: .. code-block:: python my_retry = retry.Retry(deadline=60) result = client.some_method(retry=my_retry) """ from __future__ import unicode_literals import datetime import functools import logging import random import time import six from google.api_core import datetime_helpers from google.api_core import exceptions from google.api_core import general_helpers _LOGGER = logging.getLogger(__name__) _DEFAULT_INITIAL_DELAY = 1.0 # seconds _DEFAULT_MAXIMUM_DELAY = 60.0 # seconds _DEFAULT_DELAY_MULTIPLIER = 2.0 _DEFAULT_DEADLINE = 60.0 * 2.0 # seconds def if_exception_type(*exception_types): """Creates a predicate to check if the exception is of a given type. Args: exception_types (Sequence[:func:`type`]): The exception types to check for. Returns: Callable[Exception]: A predicate that returns True if the provided exception is of the given type(s). """ def if_exception_type_predicate(exception): """Bound predicate for checking an exception type.""" return isinstance(exception, exception_types) return if_exception_type_predicate # pylint: disable=invalid-name # Pylint sees this as a constant, but it is also an alias that should be # considered a function. if_transient_error = if_exception_type( (exceptions.InternalServerError, exceptions.TooManyRequests) ) """A predicate that checks if an exception is a transient API error. The following server errors are considered transient: - :class:`google.api_core.exceptions.InternalServerError` - HTTP 500, gRPC ``INTERNAL(13)`` and its subclasses. - :class:`google.api_core.exceptions.TooManyRequests` - HTTP 429 - :class:`google.api_core.exceptions.ResourceExhausted` - gRPC ``RESOURCE_EXHAUSTED(8)`` """ # pylint: enable=invalid-name def exponential_sleep_generator(initial, maximum, multiplier=_DEFAULT_DELAY_MULTIPLIER): """Generates sleep intervals based on the exponential back-off algorithm. This implements the `Truncated Exponential Back-off`_ algorithm. .. _Truncated Exponential Back-off: https://cloud.google.com/storage/docs/exponential-backoff Args: initial (float): The minimum about of time to delay. This must be greater than 0. maximum (float): The maximum about of time to delay. multiplier (float): The multiplier applied to the delay. Yields: float: successive sleep intervals. """ delay = initial while True: # Introduce jitter by yielding a delay that is uniformly distributed # to average out to the delay time. yield min(random.uniform(0.0, delay * 2.0), maximum) delay = delay * multiplier def retry_target(target, predicate, sleep_generator, deadline, on_error=None): """Call a function and retry if it fails. This is the lowest-level retry helper. Generally, you'll use the higher-level retry helper :class:`Retry`. Args: target(Callable): The function to call and retry. This must be a nullary function - apply arguments with `functools.partial`. predicate (Callable[Exception]): A callable used to determine if an exception raised by the target should be considered retryable. It should return True to retry or False otherwise. sleep_generator (Iterable[float]): An infinite iterator that determines how long to sleep between retries. deadline (float): How long to keep retrying the target. on_error (Callable): A function to call while processing a retryable exception. Any error raised by this function will *not* be caught. Returns: Any: the return value of the target function. Raises: google.api_core.RetryError: If the deadline is exceeded while retrying. ValueError: If the sleep generator stops yielding values. Exception: If the target raises a method that isn't retryable. """ if deadline is not None: deadline_datetime = datetime_helpers.utcnow() + datetime.timedelta( seconds=deadline ) else: deadline_datetime = None last_exc = None for sleep in sleep_generator: try: return target() # pylint: disable=broad-except # This function explicitly must deal with broad exceptions. except Exception as exc: if not predicate(exc): raise last_exc = exc if on_error is not None: on_error(exc) now = datetime_helpers.utcnow() if deadline_datetime is not None and deadline_datetime < now: six.raise_from( exceptions.RetryError( "Deadline of {:.1f}s exceeded while calling {}".format( deadline, target ), last_exc, ), last_exc, ) _LOGGER.debug( "Retrying due to {}, sleeping {:.1f}s ...".format(last_exc, sleep) ) time.sleep(sleep) raise ValueError("Sleep generator stopped yielding sleep values.") @six.python_2_unicode_compatible class Retry(object): """Exponential retry decorator. This class is a decorator used to add exponential back-off retry behavior to an RPC call. Although the default behavior is to retry transient API errors, a different predicate can be provided to retry other exceptions. Args: predicate (Callable[Exception]): A callable that should return ``True`` if the given exception is retryable. initial (float): The minimum about of time to delay in seconds. This must be greater than 0. maximum (float): The maximum about of time to delay in seconds. multiplier (float): The multiplier applied to the delay. deadline (float): How long to keep retrying in seconds. """ def __init__( self, predicate=if_transient_error, initial=_DEFAULT_INITIAL_DELAY, maximum=_DEFAULT_MAXIMUM_DELAY, multiplier=_DEFAULT_DELAY_MULTIPLIER, deadline=_DEFAULT_DEADLINE, ): self._predicate = predicate self._initial = initial self._multiplier = multiplier self._maximum = maximum self._deadline = deadline def __call__(self, func, on_error=None): """Wrap a callable with retry behavior. Args: func (Callable): The callable to add retry behavior to. on_error (Callable): A function to call while processing a retryable exception. Any error raised by this function will *not* be caught. Returns: Callable: A callable that will invoke ``func`` with retry behavior. """ @general_helpers.wraps(func) def retry_wrapped_func(*args, **kwargs): """A wrapper that calls target function with retry.""" target = functools.partial(func, *args, **kwargs) sleep_generator = exponential_sleep_generator( self._initial, self._maximum, multiplier=self._multiplier ) return retry_target( target, self._predicate, sleep_generator, self._deadline, on_error=on_error, ) return retry_wrapped_func def with_deadline(self, deadline): """Return a copy of this retry with the given deadline. Args: deadline (float): How long to keep retrying. Returns: Retry: A new retry instance with the given deadline. """ return Retry( predicate=self._predicate, initial=self._initial, maximum=self._maximum, multiplier=self._multiplier, deadline=deadline, ) def with_predicate(self, predicate): """Return a copy of this retry with the given predicate. Args: predicate (Callable[Exception]): A callable that should return ``True`` if the given exception is retryable. Returns: Retry: A new retry instance with the given predicate. """ return Retry( predicate=predicate, initial=self._initial, maximum=self._maximum, multiplier=self._multiplier, deadline=self._deadline, ) def with_delay(self, initial=None, maximum=None, multiplier=None): """Return a copy of this retry with the given delay options. Args: initial (float): The minimum about of time to delay. This must be greater than 0. maximum (float): The maximum about of time to delay. multiplier (float): The multiplier applied to the delay. Returns: Retry: A new retry instance with the given predicate. """ return Retry( predicate=self._predicate, initial=initial if initial is not None else self._initial, maximum=maximum if maximum is not None else self._maximum, multiplier=multiplier if maximum is not None else self._multiplier, deadline=self._deadline, ) def __str__(self): return ( "<Retry predicate={}, initial={:.1f}, maximum={:.1f}, " "multiplier={:.1f}, deadline={:.1f}>".format( self._predicate, self._initial, self._maximum, self._multiplier, self._deadline, ) )
# $Id$ # # Copyright (C) 2002-2006 Greg Landrum and Rational Discovery LLC # # @@ All Rights Reserved @@ # This file is part of the RDKit. # The contents are covered by the terms of the BSD license # which is included in the file license.txt, found at the root # of the RDKit source tree. # """ tools for interacting with chemdraw """ from __future__ import print_function import string, tempfile, os, time try: import pythoncom from win32com.client import gencache, Dispatch, constants import win32com.client.gencache cdxModule = win32com.client.gencache.EnsureModule("{5F646AAB-3B56-48D2-904C-A68D7989C251}", 0, 7, 0) except Exception: cdxModule = None _cdxVersion = 0 raise ImportError("ChemDraw version (at least version 7) not found.") else: _cdxVersion = 7 if cdxModule: from win32com.client import Dispatch import win32gui import re cdApp = None theDoc = None theObjs = None selectItem = None cleanItem = None centerItem = None def StartChemDraw(visible=True, openDoc=False, showDoc=False): """ launches chemdraw """ global cdApp, theDoc, theObjs, selectItem, cleanItem, centerItem if cdApp is not None: # if called more than once, do a restart holder = None selectItem = None cleanItem = None centerItem = None theObjs = None theDoc = None cdApp = None cdApp = Dispatch('ChemDraw.Application') if openDoc: theDoc = cdApp.Documents.Add() theObjs = theDoc.Objects else: theDoc = None selectItem = cdApp.MenuBars(1).Menus(2).MenuItems(8) cleanItem = cdApp.MenuBars(1).Menus(5).MenuItems(6) if _cdxVersion == 6: centerItem = cdApp.MenuBars(1).Menus(4).MenuItems(1) else: centerItem = cdApp.MenuBars(1).Menus(4).MenuItems(7) if visible: cdApp.Visible = 1 if theDoc and showDoc: theDoc.Activate() def ReactivateChemDraw(openDoc=True, showDoc=True): global cdApp, theDoc, theObjs cdApp.Visible = 1 if openDoc: theDoc = cdApp.Documents.Add() if theDoc and showDoc: theDoc.Activate() theObjs = theDoc.Objects # ------------------------------------------------------------------ # interactions with Chemdraw # ------------------------------------------------------------------ def CDXConvert(inData, inFormat, outFormat): """converts the data passed in from one format to another inFormat should be one of the following: chemical/x-cdx chemical/cdx chemical/x-daylight-smiles chemical/daylight-smiles chemical/x-mdl-isis chemical/mdl-isis chemical/x-mdl-molfile chemical/mdl-molfile chemical/x-mdl-rxn chemical/mdl-rxn chemical/x-mdl-tgf chemical/mdl-tgf chemical/x-questel-F1 chemical/x-questel-F1-query outFormat should be one of the preceding or: image/x-png image/png image/x-wmf image/wmf image/tiff application/postscript image/gif """ global theObjs, theDoc if cdApp is None: StartChemDraw() if theObjs is None: if theDoc is None: theDoc = cdApp.Documents.Add() theObjs = theDoc.Objects theObjs.SetData(inFormat, inData, pythoncom.Missing) outD = theObjs.GetData(outFormat) theObjs.Clear() return outD def CDXClean(inData, inFormat, outFormat): """calls the CDXLib Clean function on the data passed in. CDXLib_Clean attempts to clean (prettify) the data before doing an output conversion. It can be thought of as CDXConvert++. CDXClean supports the same input and output specifiers as CDXConvert (see above) """ global cdApp, theDoc, theObjs, selectItem, cleanItem if cdApp is None: StartChemDraw() if theObjs is None: if theDoc is None: theDoc = cdApp.Documents.Add() theObjs = theDoc.Objects theObjs.SetData(inFormat, inData, pythoncom.Missing) theObjs.Select() cleanItem.Execute() outD = theObjs.GetData(outFormat) theObjs.Clear() return outD def CDXDisplay(inData, inFormat='chemical/cdx', clear=1): """ displays the data in Chemdraw """ global cdApp, theDoc, theObjs, selectItem, cleanItem, centerItem if cdApp is None: StartChemDraw() try: theDoc.Activate() except Exception: ReactivateChemDraw() theObjs = theDoc.Objects if clear: theObjs.Clear() theObjs.SetData(inFormat, inData, pythoncom.Missing) return def CDXGrab(outFormat='chemical/x-mdl-molfile'): """ returns the contents of the active chemdraw document """ global cdApp, theDoc if cdApp is None: res = "" else: cdApp.Visible = 1 if not cdApp.ActiveDocument: ReactivateChemDraw() try: res = cdApp.ActiveDocument.Objects.GetData(outFormat) except Exception: res = "" return res def CloseChemdraw(): """ shuts down chemdraw """ global cdApp try: cdApp.Quit() except Exception: pass Exit() def Exit(): """ destroys our link to Chemdraw """ global cdApp cdApp = None def SaveChemDrawDoc(fileName='save.cdx'): """force chemdraw to save the active document NOTE: the extension of the filename will determine the format used to save the file. """ d = cdApp.ActiveDocument d.SaveAs(fileName) def CloseChemDrawDoc(): """force chemdraw to save the active document NOTE: the extension of the filename will determine the format used to save the file. """ d = cdApp.ActiveDocument d.Close() def RaiseWindowNamed(nameRe): # start by getting a list of all the windows: cb = lambda x, y: y.append(x) wins = [] win32gui.EnumWindows(cb, wins) # now check to see if any match our regexp: tgtWin = -1 for win in wins: txt = win32gui.GetWindowText(win) if nameRe.match(txt): tgtWin = win break if tgtWin >= 0: win32gui.ShowWindow(tgtWin, 1) win32gui.BringWindowToTop(tgtWin) def RaiseChemDraw(): e = re.compile('^ChemDraw') RaiseWindowNamed(e) try: from PIL import Image from io import StringIO def SmilesToPilImage(smilesStr): """takes a SMILES string and returns a PIL image using chemdraw """ return MolToPilImage(smilesStr, inFormat='chemical/daylight-smiles', outFormat='image/gif') def MolToPilImage(dataStr, inFormat='chemical/daylight-smiles', outFormat='image/gif'): """takes a molecule string and returns a PIL image using chemdraw """ # do the conversion... res = CDXConvert(dataStr, inFormat, outFormat) dataFile = StringIO(str(res)) img = Image.open(dataFile).convert('RGB') return img except ImportError: def SmilesToPilImage(smilesStr): print('You need to have PIL installed to use this functionality') return None def MolToPilImage(dataStr, inFormat='chemical/daylight-smiles', outFormat='image/gif'): print('You need to have PIL installed to use this functionality') return None # ------------------------------------------------------------------ # interactions with Chem3D # ------------------------------------------------------------------ c3dApp = None def StartChem3D(visible=0): """ launches Chem3D """ global c3dApp c3dApp = Dispatch('Chem3D.Application') if not c3dApp.Visible: c3dApp.Visible = visible def CloseChem3D(): """ shuts down Chem3D """ global c3dApp c3dApp.Quit() c3dApp = None availChem3DProps = ('DipoleMoment', 'BendEnergy', 'Non14VDWEnergy', 'StericEnergy', 'StretchBendEnergy', 'StretchEnergy', 'TorsionEnergy', 'VDW14Energy') def Add3DCoordsToMol(data, format, props={}): """ adds 3D coordinates to the data passed in using Chem3D **Arguments** - data: the molecular data - format: the format of _data_. Should be something accepted by _CDXConvert_ - props: (optional) a dictionary used to return calculated properties """ global c3dApp if c3dApp is None: StartChem3D() if format != 'chemical/mdl-molfile': molData = CDXClean(data, format, 'chemical/mdl-molfile') else: molData = data molFName = tempfile.mktemp('.mol') open(molFName, 'wb+').write(molData) doc = c3dApp.Documents.Open(molFName) if not doc: print('cannot open molecule') raise ValueError('No Molecule') # set up the MM2 job job = Dispatch('Chem3D.MM2Job') job.Type = 1 job.DisplayEveryIteration = 0 job.RecordEveryIteration = 0 # start the calculation... doc.MM2Compute(job) # and wait for it to finish while doc.ComputeStatus in [0x434f4d50, 0x50454e44]: pass #outFName = tempfile.mktemp('.mol') # this is horrible, but apparently Chem3D gets pissy with tempfiles: outFName = os.getcwd() + '/to3d.mol' doc.SaveAs(outFName) # generate the properties for prop in availChem3DProps: props[prop] = eval('doc.%s' % prop) doc.Close(0) os.unlink(molFName) c3dData = open(outFName, 'r').read() gone = 0 while not gone: try: os.unlink(outFName) except Exception: time.sleep(.5) else: gone = 1 return c3dData def OptimizeSDFile(inFileName, outFileName, problemFileName='problems.sdf', restartEvery=20): """ optimizes the structure of every molecule in the input SD file **Arguments** - inFileName: name of the input SD file - outFileName: name of the output SD file - problemFileName: (optional) name of the SD file used to store molecules which fail during the optimization process - restartEvery: (optional) Chem3D will be shut down and restarted every _restartEvery_ molecules to try and keep core leaks under control """ inFile = open(inFileName, 'r') outFile = open(outFileName, 'w+') problemFile = None props = {} lines = [] nextLine = inFile.readline() skip = 0 nDone = 0 t1 = time.time() while nextLine != '': if nextLine.find('M END') != -1: lines.append(nextLine) molBlock = string.join(lines, '') try: newMolBlock = Add3DCoordsToMol(molBlock, 'chemical/mdl-molfile', props=props) except Exception: badBlock = molBlock skip = 1 lines = [] else: skip = 0 lines = [newMolBlock] elif nextLine.find('$$$$') != -1: t2 = time.time() nDone += 1 print('finished molecule %d in %f seconds' % (nDone, time.time() - t1)) t1 = time.time() if nDone % restartEvery == 0: CloseChem3D() StartChem3D() outFile.close() outFile = open(outFileName, 'a') if not skip: for prop in props.keys(): lines.append('> <%s>\n%f\n\n' % (prop, props[prop])) lines.append(nextLine) outFile.write(string.join(lines, '')) lines = [] else: skip = 0 lines.append(nextLine) if problemFile is None: problemFile = open(problemFileName, 'w+') problemFile.write(badBlock) problemFile.write(string.join(lines, '')) lines = [] else: lines.append(nextLine) nextLine = inFile.readline() outFile.close() if problemFile is not None: problemFile.close() if __name__ == '__main__': inStr = 'CCC(C=O)CCC' img = SmilesToPilImage(inStr) img.save('foo.jpg') convStr = CDXClean(inStr, 'chemical/x-daylight-smiles', 'chemical/x-daylight-smiles') print('in:', inStr) print('out:', convStr) convStr = CDXConvert(inStr, 'chemical/x-daylight-smiles', 'chemical/x-mdl-molfile') print('in:', inStr) print('out:', convStr) convStr2 = CDXClean(convStr, 'chemical/x-mdl-molfile', 'chemical/x-mdl-molfile') print('out2:', convStr2) inStr = 'COc1ccc(c2onc(c2C(=O)NCCc3ccc(F)cc3)c4ccc(F)cc4)c(OC)c1' convStr = CDXConvert(inStr, 'chemical/x-daylight-smiles', 'chemical/x-mdl-molfile') out = open('test.mol', 'w+') out.write(convStr) out.close()
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from operator import itemgetter import warnings from jax import random, vmap from jax.lax import stop_gradient import jax.numpy as jnp from jax.scipy.special import logsumexp from numpyro.distributions.kl import kl_divergence from numpyro.distributions.util import scale_and_mask from numpyro.handlers import replay, seed, substitute, trace from numpyro.infer.util import get_importance_trace, log_density from numpyro.util import _validate_model, check_model_guide_match, find_stack_level class ELBO: """ Base class for all ELBO objectives. Subclasses should implement either :meth:`loss` or :meth:`loss_with_mutable_state`. :param num_particles: The number of particles/samples used to form the ELBO (gradient) estimators. """ """ Determines whether the ELBO objective can support inference of discrete latent variables. Subclasses that are capable of inferring discrete latent variables should override to `True` """ can_infer_discrete = False def __init__(self, num_particles=1): self.num_particles = num_particles def loss(self, rng_key, param_map, model, guide, *args, **kwargs): """ Evaluates the ELBO with an estimator that uses num_particles many samples/particles. :param jax.random.PRNGKey rng_key: random number generator seed. :param dict param_map: dictionary of current parameter values keyed by site name. :param model: Python callable with NumPyro primitives for the model. :param guide: Python callable with NumPyro primitives for the guide. :param args: arguments to the model / guide (these can possibly vary during the course of fitting). :param kwargs: keyword arguments to the model / guide (these can possibly vary during the course of fitting). :return: negative of the Evidence Lower Bound (ELBO) to be minimized. """ return self.loss_with_mutable_state( rng_key, param_map, model, guide, *args, **kwargs )["loss"] def loss_with_mutable_state( self, rng_key, param_map, model, guide, *args, **kwargs ): """ Likes :meth:`loss` but also update and return the mutable state, which stores the values at :func:`~numpyro.mutable` sites. :param jax.random.PRNGKey rng_key: random number generator seed. :param dict param_map: dictionary of current parameter values keyed by site name. :param model: Python callable with NumPyro primitives for the model. :param guide: Python callable with NumPyro primitives for the guide. :param args: arguments to the model / guide (these can possibly vary during the course of fitting). :param kwargs: keyword arguments to the model / guide (these can possibly vary during the course of fitting). :return: a tuple of ELBO loss and the mutable state """ raise NotImplementedError("This ELBO objective does not support mutable state.") class Trace_ELBO(ELBO): """ A trace implementation of ELBO-based SVI. The estimator is constructed along the lines of references [1] and [2]. There are no restrictions on the dependency structure of the model or the guide. This is the most basic implementation of the Evidence Lower Bound, which is the fundamental objective in Variational Inference. This implementation has various limitations (for example it only supports random variables with reparameterized samplers) but can be used as a template to build more sophisticated loss objectives. For more details, refer to http://pyro.ai/examples/svi_part_i.html. **References:** 1. *Automated Variational Inference in Probabilistic Programming*, David Wingate, Theo Weber 2. *Black Box Variational Inference*, Rajesh Ranganath, Sean Gerrish, David M. Blei :param num_particles: The number of particles/samples used to form the ELBO (gradient) estimators. """ def __init__(self, num_particles=1): self.num_particles = num_particles def loss_with_mutable_state( self, rng_key, param_map, model, guide, *args, **kwargs ): def single_particle_elbo(rng_key): params = param_map.copy() model_seed, guide_seed = random.split(rng_key) seeded_model = seed(model, model_seed) seeded_guide = seed(guide, guide_seed) guide_log_density, guide_trace = log_density( seeded_guide, args, kwargs, param_map ) mutable_params = { name: site["value"] for name, site in guide_trace.items() if site["type"] == "mutable" } params.update(mutable_params) seeded_model = replay(seeded_model, guide_trace) model_log_density, model_trace = log_density( seeded_model, args, kwargs, params ) check_model_guide_match(model_trace, guide_trace) _validate_model(model_trace, plate_warning="loose") mutable_params.update( { name: site["value"] for name, site in model_trace.items() if site["type"] == "mutable" } ) # log p(z) - log q(z) elbo_particle = model_log_density - guide_log_density if mutable_params: if self.num_particles == 1: return elbo_particle, mutable_params else: raise ValueError( "Currently, we only support mutable states with num_particles=1." ) else: return elbo_particle, None # Return (-elbo) since by convention we do gradient descent on a loss and # the ELBO is a lower bound that needs to be maximized. if self.num_particles == 1: elbo, mutable_state = single_particle_elbo(rng_key) return {"loss": -elbo, "mutable_state": mutable_state} else: rng_keys = random.split(rng_key, self.num_particles) elbos, mutable_state = vmap(single_particle_elbo)(rng_keys) return {"loss": -jnp.mean(elbos), "mutable_state": mutable_state} def _get_log_prob_sum(site): if site["intermediates"]: log_prob = site["fn"].log_prob(site["value"], site["intermediates"]) else: log_prob = site["fn"].log_prob(site["value"]) log_prob = scale_and_mask(log_prob, site["scale"]) return jnp.sum(log_prob) def _check_mean_field_requirement(model_trace, guide_trace): """ Checks that the guide and model sample sites are ordered identically. This is sufficient but not necessary for correctness. """ model_sites = [ name for name, site in model_trace.items() if site["type"] == "sample" and name in guide_trace ] guide_sites = [ name for name, site in guide_trace.items() if site["type"] == "sample" and name in model_trace ] assert set(model_sites) == set(guide_sites) if model_sites != guide_sites: warnings.warn( "Failed to verify mean field restriction on the guide. " "To eliminate this warning, ensure model and guide sites " "occur in the same order.\n" + "Model sites:\n " + "\n ".join(model_sites) + "Guide sites:\n " + "\n ".join(guide_sites), stacklevel=find_stack_level(), ), class TraceMeanField_ELBO(ELBO): """ A trace implementation of ELBO-based SVI. This is currently the only ELBO estimator in NumPyro that uses analytic KL divergences when those are available. .. warning:: This estimator may give incorrect results if the mean-field condition is not satisfied. The mean field condition is a sufficient but not necessary condition for this estimator to be correct. The precise condition is that for every latent variable `z` in the guide, its parents in the model must not include any latent variables that are descendants of `z` in the guide. Here 'parents in the model' and 'descendants in the guide' is with respect to the corresponding (statistical) dependency structure. For example, this condition is always satisfied if the model and guide have identical dependency structures. """ def loss_with_mutable_state( self, rng_key, param_map, model, guide, *args, **kwargs ): def single_particle_elbo(rng_key): params = param_map.copy() model_seed, guide_seed = random.split(rng_key) seeded_model = seed(model, model_seed) seeded_guide = seed(guide, guide_seed) subs_guide = substitute(seeded_guide, data=param_map) guide_trace = trace(subs_guide).get_trace(*args, **kwargs) mutable_params = { name: site["value"] for name, site in guide_trace.items() if site["type"] == "mutable" } params.update(mutable_params) subs_model = substitute(replay(seeded_model, guide_trace), data=params) model_trace = trace(subs_model).get_trace(*args, **kwargs) mutable_params.update( { name: site["value"] for name, site in model_trace.items() if site["type"] == "mutable" } ) check_model_guide_match(model_trace, guide_trace) _validate_model(model_trace, plate_warning="loose") _check_mean_field_requirement(model_trace, guide_trace) elbo_particle = 0 for name, model_site in model_trace.items(): if model_site["type"] == "sample": if model_site["is_observed"]: elbo_particle = elbo_particle + _get_log_prob_sum(model_site) else: guide_site = guide_trace[name] try: kl_qp = kl_divergence(guide_site["fn"], model_site["fn"]) kl_qp = scale_and_mask(kl_qp, scale=guide_site["scale"]) elbo_particle = elbo_particle - jnp.sum(kl_qp) except NotImplementedError: elbo_particle = ( elbo_particle + _get_log_prob_sum(model_site) - _get_log_prob_sum(guide_site) ) # handle auxiliary sites in the guide for name, site in guide_trace.items(): if site["type"] == "sample" and name not in model_trace: assert site["infer"].get("is_auxiliary") or site["is_observed"] elbo_particle = elbo_particle - _get_log_prob_sum(site) if mutable_params: if self.num_particles == 1: return elbo_particle, mutable_params else: raise ValueError( "Currently, we only support mutable states with num_particles=1." ) else: return elbo_particle, None if self.num_particles == 1: elbo, mutable_state = single_particle_elbo(rng_key) return {"loss": -elbo, "mutable_state": mutable_state} else: rng_keys = random.split(rng_key, self.num_particles) elbos, mutable_state = vmap(single_particle_elbo)(rng_keys) return {"loss": -jnp.mean(elbos), "mutable_state": mutable_state} class RenyiELBO(ELBO): r""" An implementation of Renyi's :math:`\alpha`-divergence variational inference following reference [1]. In order for the objective to be a strict lower bound, we require :math:`\alpha \ge 0`. Note, however, that according to reference [1], depending on the dataset :math:`\alpha < 0` might give better results. In the special case :math:`\alpha = 0`, the objective function is that of the important weighted autoencoder derived in reference [2]. .. note:: Setting :math:`\alpha < 1` gives a better bound than the usual ELBO. :param float alpha: The order of :math:`\alpha`-divergence. Here :math:`\alpha \neq 1`. Default is 0. :param num_particles: The number of particles/samples used to form the objective (gradient) estimator. Default is 2. **References:** 1. *Renyi Divergence Variational Inference*, Yingzhen Li, Richard E. Turner 2. *Importance Weighted Autoencoders*, Yuri Burda, Roger Grosse, Ruslan Salakhutdinov """ def __init__(self, alpha=0, num_particles=2): if alpha == 1: raise ValueError( "The order alpha should not be equal to 1. Please use ELBO class" "for the case alpha = 1." ) self.alpha = alpha super().__init__(num_particles=num_particles) def loss(self, rng_key, param_map, model, guide, *args, **kwargs): def single_particle_elbo(rng_key): model_seed, guide_seed = random.split(rng_key) seeded_model = seed(model, model_seed) seeded_guide = seed(guide, guide_seed) guide_log_density, guide_trace = log_density( seeded_guide, args, kwargs, param_map ) # NB: we only want to substitute params not available in guide_trace model_param_map = { k: v for k, v in param_map.items() if k not in guide_trace } seeded_model = replay(seeded_model, guide_trace) model_log_density, model_trace = log_density( seeded_model, args, kwargs, model_param_map ) check_model_guide_match(model_trace, guide_trace) _validate_model(model_trace, plate_warning="loose") # log p(z) - log q(z) elbo = model_log_density - guide_log_density return elbo rng_keys = random.split(rng_key, self.num_particles) elbos = vmap(single_particle_elbo)(rng_keys) scaled_elbos = (1.0 - self.alpha) * elbos avg_log_exp = logsumexp(scaled_elbos) - jnp.log(self.num_particles) weights = jnp.exp(scaled_elbos - avg_log_exp) renyi_elbo = avg_log_exp / (1.0 - self.alpha) weighted_elbo = jnp.dot(stop_gradient(weights), elbos) / self.num_particles return -(stop_gradient(renyi_elbo - weighted_elbo) + weighted_elbo) def _get_plate_stacks(trace): """ This builds a dict mapping site name to a set of plate stacks. Each plate stack is a list of :class:`CondIndepStackFrame`s corresponding to a :class:`plate`. This information is used by :class:`Trace_ELBO` and :class:`TraceGraph_ELBO`. """ return { name: [f for f in node["cond_indep_stack"]] for name, node in trace.items() if node["type"] == "sample" } class MultiFrameTensor(dict): """ A container for sums of Tensors among different :class:`plate` contexts. Used in :class:`~numpyro.infer.elbo.TraceGraph_ELBO` to simplify downstream cost computation logic. Example:: downstream_cost = MultiFrameTensor() for site in downstream_nodes: downstream_cost.add((site["cond_indep_stack"], site["log_prob"])) downstream_cost.add(*other_costs.items()) # add in bulk summed = downstream_cost.sum_to(target_site["cond_indep_stack"]) """ def __init__(self, *items): super().__init__() self.add(*items) def add(self, *items): """ Add a collection of (cond_indep_stack, tensor) pairs. Keys are ``cond_indep_stack``s, i.e. tuples of :class:`CondIndepStackFrame`s. Values are :class:`numpy.ndarray`s. """ for cond_indep_stack, value in items: frames = frozenset(f for f in cond_indep_stack) assert all(f.dim < 0 and -jnp.ndim(value) <= f.dim for f in frames) if frames in self: self[frames] = self[frames] + value else: self[frames] = value def sum_to(self, target_frames): total = None for frames, value in self.items(): for f in frames: if f not in target_frames and jnp.shape(value)[f.dim] != 1: value = value.sum(f.dim, keepdims=True) while jnp.shape(value) and jnp.shape(value)[0] == 1: value = value.squeeze(0) total = value if total is None else total + value return 0.0 if total is None else total def __repr__(self): return "%s(%s)" % ( type(self).__name__, ",\n\t".join(["({}, ...)".format(frames) for frames in self]), ) def _identify_dense_edges(trace): succ = {} for name, node in trace.items(): if node["type"] == "sample": succ[name] = set() for name, node in trace.items(): if node["type"] == "sample": for past_name, past_node in trace.items(): if past_node["type"] == "sample": if past_name == name: break # XXX: different from Pyro, we always add edge past_name -> name succ[past_name].add(name) return succ def _topological_sort(succ, reverse=False): """ Return a list of nodes (site names) in topologically sorted order. """ def dfs(site, visited): if site in visited: return for s in succ[site]: for node in dfs(s, visited): yield node visited.add(site) yield site visited = set() top_sorted = [] for s in succ: for node in dfs(s, visited): top_sorted.append(node) return top_sorted if reverse else list(reversed(top_sorted)) def _compute_downstream_costs(model_trace, guide_trace, non_reparam_nodes): model_successors = _identify_dense_edges(model_trace) guide_successors = _identify_dense_edges(guide_trace) # recursively compute downstream cost nodes for all sample sites in model and guide # (even though ultimately just need for non-reparameterizable sample sites) # 1. downstream costs used for rao-blackwellization # 2. model observe sites (as well as terms that arise from the model and guide having different # dependency structures) are taken care of via 'children_in_model' below topo_sort_guide_nodes = _topological_sort(guide_successors, reverse=True) topo_sort_guide_nodes = [ x for x in topo_sort_guide_nodes if guide_trace[x]["type"] == "sample" ] ordered_guide_nodes_dict = {n: i for i, n in enumerate(topo_sort_guide_nodes)} downstream_guide_cost_nodes = {} downstream_costs = {} stacks = _get_plate_stacks(model_trace) for node in topo_sort_guide_nodes: downstream_costs[node] = MultiFrameTensor( ( stacks[node], model_trace[node]["log_prob"] - guide_trace[node]["log_prob"], ) ) nodes_included_in_sum = set([node]) downstream_guide_cost_nodes[node] = set([node]) # make more efficient by ordering children appropriately (higher children first) children = [(k, -ordered_guide_nodes_dict[k]) for k in guide_successors[node]] sorted_children = sorted(children, key=itemgetter(1)) for child, _ in sorted_children: child_cost_nodes = downstream_guide_cost_nodes[child] downstream_guide_cost_nodes[node].update(child_cost_nodes) if nodes_included_in_sum.isdisjoint(child_cost_nodes): # avoid duplicates downstream_costs[node].add(*downstream_costs[child].items()) # XXX nodes_included_in_sum logic could be more fine-grained, possibly leading # to speed-ups in case there are many duplicates nodes_included_in_sum.update(child_cost_nodes) missing_downstream_costs = ( downstream_guide_cost_nodes[node] - nodes_included_in_sum ) # include terms we missed because we had to avoid duplicates for missing_node in missing_downstream_costs: downstream_costs[node].add( ( stacks[missing_node], model_trace[missing_node]["log_prob"] - guide_trace[missing_node]["log_prob"], ) ) # finish assembling complete downstream costs # (the above computation may be missing terms from model) for site in non_reparam_nodes: children_in_model = set() for node in downstream_guide_cost_nodes[site]: children_in_model.update(model_successors[node]) # remove terms accounted for above children_in_model.difference_update(downstream_guide_cost_nodes[site]) for child in children_in_model: assert model_trace[child]["type"] == "sample" downstream_costs[site].add((stacks[child], model_trace[child]["log_prob"])) downstream_guide_cost_nodes[site].update([child]) for k in non_reparam_nodes: downstream_costs[k] = downstream_costs[k].sum_to( guide_trace[k]["cond_indep_stack"] ) return downstream_costs, downstream_guide_cost_nodes class TraceGraph_ELBO(ELBO): """ A TraceGraph implementation of ELBO-based SVI. The gradient estimator is constructed along the lines of reference [1] specialized to the case of the ELBO. It supports arbitrary dependency structure for the model and guide. Where possible, conditional dependency information as recorded in the trace is used to reduce the variance of the gradient estimator. In particular two kinds of conditional dependency information are used to reduce variance: - the sequential order of samples (z is sampled after y => y does not depend on z) - :class:`~numpyro.plate` generators References [1] `Gradient Estimation Using Stochastic Computation Graphs`, John Schulman, Nicolas Heess, Theophane Weber, Pieter Abbeel """ can_infer_discrete = True def __init__(self, num_particles=1): super().__init__(num_particles=num_particles) def loss(self, rng_key, param_map, model, guide, *args, **kwargs): """ Evaluates the ELBO with an estimator that uses num_particles many samples/particles. :param jax.random.PRNGKey rng_key: random number generator seed. :param dict param_map: dictionary of current parameter values keyed by site name. :param model: Python callable with NumPyro primitives for the model. :param guide: Python callable with NumPyro primitives for the guide. :param args: arguments to the model / guide (these can possibly vary during the course of fitting). :param kwargs: keyword arguments to the model / guide (these can possibly vary during the course of fitting). :return: negative of the Evidence Lower Bound (ELBO) to be minimized. """ def single_particle_elbo(rng_key): model_seed, guide_seed = random.split(rng_key) seeded_model = seed(model, model_seed) seeded_guide = seed(guide, guide_seed) model_trace, guide_trace = get_importance_trace( seeded_model, seeded_guide, args, kwargs, param_map ) check_model_guide_match(model_trace, guide_trace) _validate_model(model_trace, plate_warning="strict") # XXX: different from Pyro, we don't support baseline_loss here non_reparam_nodes = { name for name, site in guide_trace.items() if site["type"] == "sample" and (not site["is_observed"]) and (not site["fn"].has_rsample) } if non_reparam_nodes: downstream_costs, _ = _compute_downstream_costs( model_trace, guide_trace, non_reparam_nodes ) elbo = 0.0 for site in model_trace.values(): if site["type"] == "sample": elbo = elbo + jnp.sum(site["log_prob"]) for name, site in guide_trace.items(): if site["type"] == "sample": log_prob_sum = jnp.sum(site["log_prob"]) if name in non_reparam_nodes: surrogate = jnp.sum( site["log_prob"] * stop_gradient(downstream_costs[name]) ) log_prob_sum = ( stop_gradient(log_prob_sum + surrogate) - surrogate ) elbo = elbo - log_prob_sum return elbo # Return (-elbo) since by convention we do gradient descent on a loss and # the ELBO is a lower bound that needs to be maximized. if self.num_particles == 1: return -single_particle_elbo(rng_key) else: rng_keys = random.split(rng_key, self.num_particles) return -jnp.mean(vmap(single_particle_elbo)(rng_keys))
""" Provide the functionality to group entities. For more details about this component, please refer to the documentation at https://home-assistant.io/components/group/ """ import asyncio import logging import os import voluptuous as vol from homeassistant import config as conf_util, core as ha from homeassistant.const import ( ATTR_ENTITY_ID, CONF_ICON, CONF_NAME, STATE_CLOSED, STATE_HOME, STATE_NOT_HOME, STATE_OFF, STATE_ON, STATE_OPEN, STATE_LOCKED, STATE_UNLOCKED, STATE_OK, STATE_PROBLEM, STATE_UNKNOWN, ATTR_ASSUMED_STATE, SERVICE_RELOAD) from homeassistant.core import callback from homeassistant.helpers.entity import Entity, async_generate_entity_id from homeassistant.helpers.entity_component import EntityComponent from homeassistant.helpers.event import async_track_state_change import homeassistant.helpers.config_validation as cv from homeassistant.util.async import run_coroutine_threadsafe DOMAIN = 'group' ENTITY_ID_FORMAT = DOMAIN + '.{}' CONF_ENTITIES = 'entities' CONF_VIEW = 'view' CONF_CONTROL = 'control' ATTR_ADD_ENTITIES = 'add_entities' ATTR_AUTO = 'auto' ATTR_CONTROL = 'control' ATTR_ENTITIES = 'entities' ATTR_ICON = 'icon' ATTR_NAME = 'name' ATTR_OBJECT_ID = 'object_id' ATTR_ORDER = 'order' ATTR_VIEW = 'view' ATTR_VISIBLE = 'visible' SERVICE_SET_VISIBILITY = 'set_visibility' SERVICE_SET = 'set' SERVICE_REMOVE = 'remove' CONTROL_TYPES = vol.In(['hidden', None]) SET_VISIBILITY_SERVICE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, vol.Required(ATTR_VISIBLE): cv.boolean }) RELOAD_SERVICE_SCHEMA = vol.Schema({}) SET_SERVICE_SCHEMA = vol.Schema({ vol.Required(ATTR_OBJECT_ID): cv.slug, vol.Optional(ATTR_NAME): cv.string, vol.Optional(ATTR_VIEW): cv.boolean, vol.Optional(ATTR_ICON): cv.string, vol.Optional(ATTR_CONTROL): CONTROL_TYPES, vol.Optional(ATTR_VISIBLE): cv.boolean, vol.Exclusive(ATTR_ENTITIES, 'entities'): cv.entity_ids, vol.Exclusive(ATTR_ADD_ENTITIES, 'entities'): cv.entity_ids, }) REMOVE_SERVICE_SCHEMA = vol.Schema({ vol.Required(ATTR_OBJECT_ID): cv.slug, }) _LOGGER = logging.getLogger(__name__) def _conf_preprocess(value): """Preprocess alternative configuration formats.""" if not isinstance(value, dict): value = {CONF_ENTITIES: value} return value GROUP_SCHEMA = vol.Schema({ vol.Optional(CONF_ENTITIES): vol.Any(cv.entity_ids, None), CONF_VIEW: cv.boolean, CONF_NAME: cv.string, CONF_ICON: cv.icon, CONF_CONTROL: CONTROL_TYPES, }) CONFIG_SCHEMA = vol.Schema({ DOMAIN: vol.Schema({cv.match_all: vol.All(_conf_preprocess, GROUP_SCHEMA)}) }, extra=vol.ALLOW_EXTRA) # List of ON/OFF state tuples for groupable states _GROUP_TYPES = [(STATE_ON, STATE_OFF), (STATE_HOME, STATE_NOT_HOME), (STATE_OPEN, STATE_CLOSED), (STATE_LOCKED, STATE_UNLOCKED), (STATE_PROBLEM, STATE_OK)] def _get_group_on_off(state): """Determine the group on/off states based on a state.""" for states in _GROUP_TYPES: if state in states: return states return None, None def is_on(hass, entity_id): """Test if the group state is in its ON-state.""" state = hass.states.get(entity_id) if state: group_on, _ = _get_group_on_off(state.state) # If we found a group_type, compare to ON-state return group_on is not None and state.state == group_on return False def reload(hass): """Reload the automation from config.""" hass.add_job(async_reload, hass) @callback def async_reload(hass): """Reload the automation from config.""" hass.async_add_job(hass.services.async_call(DOMAIN, SERVICE_RELOAD)) def set_visibility(hass, entity_id=None, visible=True): """Hide or shows a group.""" data = {ATTR_ENTITY_ID: entity_id, ATTR_VISIBLE: visible} hass.services.call(DOMAIN, SERVICE_SET_VISIBILITY, data) def set_group(hass, object_id, name=None, entity_ids=None, visible=None, icon=None, view=None, control=None, add=None): """Create a new user group.""" hass.add_job( async_set_group, hass, object_id, name, entity_ids, visible, icon, view, control, add) @callback def async_set_group(hass, object_id, name=None, entity_ids=None, visible=None, icon=None, view=None, control=None, add=None): """Create a new user group.""" data = { key: value for key, value in [ (ATTR_OBJECT_ID, object_id), (ATTR_NAME, name), (ATTR_ENTITIES, entity_ids), (ATTR_VISIBLE, visible), (ATTR_ICON, icon), (ATTR_VIEW, view), (ATTR_CONTROL, control), (ATTR_ADD_ENTITIES, add), ] if value is not None } hass.async_add_job(hass.services.async_call(DOMAIN, SERVICE_SET, data)) def remove(hass, name): """Remove a user group.""" hass.add_job(async_remove, hass, name) @callback def async_remove(hass, object_id): """Remove a user group.""" data = {ATTR_OBJECT_ID: object_id} hass.async_add_job(hass.services.async_call(DOMAIN, SERVICE_REMOVE, data)) def expand_entity_ids(hass, entity_ids): """Return entity_ids with group entity ids replaced by their members. Async friendly. """ found_ids = [] for entity_id in entity_ids: if not isinstance(entity_id, str): continue entity_id = entity_id.lower() try: # If entity_id points at a group, expand it domain, _ = ha.split_entity_id(entity_id) if domain == DOMAIN: found_ids.extend( ent_id for ent_id in expand_entity_ids(hass, get_entity_ids(hass, entity_id)) if ent_id not in found_ids) else: if entity_id not in found_ids: found_ids.append(entity_id) except AttributeError: # Raised by split_entity_id if entity_id is not a string pass return found_ids def get_entity_ids(hass, entity_id, domain_filter=None): """Get members of this group. Async friendly. """ group = hass.states.get(entity_id) if not group or ATTR_ENTITY_ID not in group.attributes: return [] entity_ids = group.attributes[ATTR_ENTITY_ID] if not domain_filter: return entity_ids domain_filter = domain_filter.lower() + '.' return [ent_id for ent_id in entity_ids if ent_id.startswith(domain_filter)] @asyncio.coroutine def async_setup(hass, config): """Set up all groups found definded in the configuration.""" component = EntityComponent(_LOGGER, DOMAIN, hass) service_groups = {} yield from _async_process_config(hass, config, component) descriptions = yield from hass.async_add_job( conf_util.load_yaml_config_file, os.path.join( os.path.dirname(__file__), 'services.yaml') ) @asyncio.coroutine def reload_service_handler(service): """Remove all groups and load new ones from config.""" conf = yield from component.async_prepare_reload() if conf is None: return yield from _async_process_config(hass, conf, component) hass.services.async_register( DOMAIN, SERVICE_RELOAD, reload_service_handler, descriptions[DOMAIN][SERVICE_RELOAD], schema=RELOAD_SERVICE_SCHEMA) @asyncio.coroutine def groups_service_handler(service): """Handle dynamic group service functions.""" object_id = service.data[ATTR_OBJECT_ID] # new group if service.service == SERVICE_SET and object_id not in service_groups: entity_ids = service.data.get(ATTR_ENTITIES) or \ service.data.get(ATTR_ADD_ENTITIES) or None extra_arg = {attr: service.data[attr] for attr in ( ATTR_VISIBLE, ATTR_ICON, ATTR_VIEW, ATTR_CONTROL ) if service.data.get(attr) is not None} new_group = yield from Group.async_create_group( hass, service.data.get(ATTR_NAME, object_id), object_id=object_id, entity_ids=entity_ids, user_defined=False, **extra_arg ) service_groups[object_id] = new_group return # update group if service.service == SERVICE_SET: group = service_groups[object_id] need_update = False if ATTR_ADD_ENTITIES in service.data: delta = service.data[ATTR_ADD_ENTITIES] entity_ids = set(group.tracking) | set(delta) yield from group.async_update_tracked_entity_ids(entity_ids) if ATTR_ENTITIES in service.data: entity_ids = service.data[ATTR_ENTITIES] yield from group.async_update_tracked_entity_ids(entity_ids) if ATTR_NAME in service.data: group.name = service.data[ATTR_NAME] need_update = True if ATTR_VISIBLE in service.data: group.visible = service.data[ATTR_VISIBLE] need_update = True if ATTR_ICON in service.data: group.icon = service.data[ATTR_ICON] need_update = True if ATTR_CONTROL in service.data: group.control = service.data[ATTR_CONTROL] need_update = True if ATTR_VIEW in service.data: group.view = service.data[ATTR_VIEW] need_update = True if need_update: yield from group.async_update_ha_state() return # remove group if service.service == SERVICE_REMOVE: if object_id not in service_groups: _LOGGER.warning("Group '%s' not exists!", object_id) return del_group = service_groups.pop(object_id) yield from del_group.async_stop() hass.services.async_register( DOMAIN, SERVICE_SET, groups_service_handler, descriptions[DOMAIN][SERVICE_SET], schema=SET_SERVICE_SCHEMA) hass.services.async_register( DOMAIN, SERVICE_REMOVE, groups_service_handler, descriptions[DOMAIN][SERVICE_REMOVE], schema=REMOVE_SERVICE_SCHEMA) @asyncio.coroutine def visibility_service_handler(service): """Change visibility of a group.""" visible = service.data.get(ATTR_VISIBLE) tasks = [] for group in component.async_extract_from_service(service, expand_group=False): group.visible = visible tasks.append(group.async_update_ha_state()) if tasks: yield from asyncio.wait(tasks, loop=hass.loop) hass.services.async_register( DOMAIN, SERVICE_SET_VISIBILITY, visibility_service_handler, descriptions[DOMAIN][SERVICE_SET_VISIBILITY], schema=SET_VISIBILITY_SERVICE_SCHEMA) return True @asyncio.coroutine def _async_process_config(hass, config, component): """Process group configuration.""" groups = [] for object_id, conf in config.get(DOMAIN, {}).items(): name = conf.get(CONF_NAME, object_id) entity_ids = conf.get(CONF_ENTITIES) or [] icon = conf.get(CONF_ICON) view = conf.get(CONF_VIEW) control = conf.get(CONF_CONTROL) # Don't create tasks and await them all. The order is important as # groups get a number based on creation order. group = yield from Group.async_create_group( hass, name, entity_ids, icon=icon, view=view, control=control, object_id=object_id) groups.append(group) if groups: yield from component.async_add_entities(groups) class Group(Entity): """Track a group of entity ids.""" def __init__(self, hass, name, order=None, visible=True, icon=None, view=False, control=None, user_defined=True): """Initialize a group. This Object has factory function for creation. """ self.hass = hass self._name = name self._state = STATE_UNKNOWN self._icon = icon self.view = view self.tracking = [] self.group_on = None self.group_off = None self.visible = visible self.control = control self._user_defined = user_defined self._order = order self._assumed_state = False self._async_unsub_state_changed = None @staticmethod def create_group(hass, name, entity_ids=None, user_defined=True, visible=True, icon=None, view=False, control=None, object_id=None): """Initialize a group.""" return run_coroutine_threadsafe( Group.async_create_group( hass, name, entity_ids, user_defined, visible, icon, view, control, object_id), hass.loop).result() @staticmethod @asyncio.coroutine def async_create_group(hass, name, entity_ids=None, user_defined=True, visible=True, icon=None, view=False, control=None, object_id=None): """Initialize a group. This method must be run in the event loop. """ group = Group( hass, name, order=len(hass.states.async_entity_ids(DOMAIN)), visible=visible, icon=icon, view=view, control=control, user_defined=user_defined ) group.entity_id = async_generate_entity_id( ENTITY_ID_FORMAT, object_id or name, hass=hass) # run other async stuff if entity_ids is not None: yield from group.async_update_tracked_entity_ids(entity_ids) else: yield from group.async_update_ha_state(True) return group @property def should_poll(self): """No need to poll because groups will update themselves.""" return False @property def name(self): """Return the name of the group.""" return self._name @name.setter def name(self, value): """Set Group name.""" self._name = value @property def state(self): """Return the state of the group.""" return self._state @property def icon(self): """Return the icon of the group.""" return self._icon @icon.setter def icon(self, value): """Set Icon for group.""" self._icon = value @property def hidden(self): """If group should be hidden or not.""" if self.visible and not self.view: return False return True @property def state_attributes(self): """Return the state attributes for the group.""" data = { ATTR_ENTITY_ID: self.tracking, ATTR_ORDER: self._order, } if not self._user_defined: data[ATTR_AUTO] = True if self.view: data[ATTR_VIEW] = True if self.control: data[ATTR_CONTROL] = self.control return data @property def assumed_state(self): """Test if any member has an assumed state.""" return self._assumed_state def update_tracked_entity_ids(self, entity_ids): """Update the member entity IDs.""" run_coroutine_threadsafe( self.async_update_tracked_entity_ids(entity_ids), self.hass.loop ).result() @asyncio.coroutine def async_update_tracked_entity_ids(self, entity_ids): """Update the member entity IDs. This method must be run in the event loop. """ yield from self.async_stop() self.tracking = tuple(ent_id.lower() for ent_id in entity_ids) self.group_on, self.group_off = None, None yield from self.async_update_ha_state(True) self.async_start() def start(self): """Start tracking members.""" self.hass.add_job(self.async_start) @callback def async_start(self): """Start tracking members. This method must be run in the event loop. """ if self._async_unsub_state_changed is None: self._async_unsub_state_changed = async_track_state_change( self.hass, self.tracking, self._async_state_changed_listener ) def stop(self): """Unregister the group from Home Assistant.""" run_coroutine_threadsafe(self.async_stop(), self.hass.loop).result() @asyncio.coroutine def async_stop(self): """Unregister the group from Home Assistant. This method must be run in the event loop. """ yield from self.async_remove() @asyncio.coroutine def async_update(self): """Query all members and determine current group state.""" self._state = STATE_UNKNOWN self._async_update_group_state() def async_remove(self): """Remove group from HASS. This method must be run in the event loop and returns a coroutine. """ if self._async_unsub_state_changed: self._async_unsub_state_changed() self._async_unsub_state_changed = None return super().async_remove() @asyncio.coroutine def _async_state_changed_listener(self, entity_id, old_state, new_state): """Respond to a member state changing. This method must be run in the event loop. """ # removed if self._async_unsub_state_changed is None: return self._async_update_group_state(new_state) yield from self.async_update_ha_state() @property def _tracking_states(self): """Return the states that the group is tracking.""" states = [] for entity_id in self.tracking: state = self.hass.states.get(entity_id) if state is not None: states.append(state) return states @callback def _async_update_group_state(self, tr_state=None): """Update group state. Optionally you can provide the only state changed since last update allowing this method to take shortcuts. This method must be run in the event loop. """ # To store current states of group entities. Might not be needed. states = None gr_state = self._state gr_on = self.group_on gr_off = self.group_off # We have not determined type of group yet if gr_on is None: if tr_state is None: states = self._tracking_states for state in states: gr_on, gr_off = \ _get_group_on_off(state.state) if gr_on is not None: break else: gr_on, gr_off = _get_group_on_off(tr_state.state) if gr_on is not None: self.group_on, self.group_off = gr_on, gr_off # We cannot determine state of the group if gr_on is None: return if tr_state is None or ((gr_state == gr_on and tr_state.state == gr_off) or tr_state.state not in (gr_on, gr_off)): if states is None: states = self._tracking_states if any(state.state == gr_on for state in states): self._state = gr_on else: self._state = gr_off elif tr_state.state in (gr_on, gr_off): self._state = tr_state.state if tr_state is None or self._assumed_state and \ not tr_state.attributes.get(ATTR_ASSUMED_STATE): if states is None: states = self._tracking_states self._assumed_state = any( state.attributes.get(ATTR_ASSUMED_STATE) for state in states) elif tr_state.attributes.get(ATTR_ASSUMED_STATE): self._assumed_state = True
# # Copyright (c) SAS Institute Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import copy import os import itertools import sys import threading import urllib2 from conary import callbacks from conary import conaryclient from conary import display from conary import errors from conary import trove from conary import trovetup from conary import versions from conary.deps import deps from conary.lib import api from conary.lib import log from conary.lib import util from conary.local import database from conary.repository import changeset, filecontainer from conary.conaryclient import cmdline, modelupdate from conary.conaryclient.cmdline import parseTroveSpec # FIXME client should instantiated once per execution of the command line # conary client class CriticalUpdateInfo(conaryclient.CriticalUpdateInfo): criticalTroveRegexps = ['conary:.*'] def locked(method): # this decorator used to be defined in UpdateCallback # The problem is you cannot subclass UpdateCallback and use the decorator # because python complains it is an unbound function. # And you can't define it as @staticmethod either, it would break the # decorated functions. # Somewhat related (staticmethod objects not callable) topic: # http://mail.python.org/pipermail/python-dev/2006-March/061948.html def wrapper(self, *args, **kwargs): self.lock.acquire() try: return method(self, *args, **kwargs) finally: self.lock.release() wrapper.__doc__ = method.__doc__ wrapper.func_name = method.func_name return wrapper class UpdateCallback(callbacks.LineOutput, callbacks.UpdateCallback): def done(self): """ @see: callbacks.UpdateCallback.done """ self._message('') def _message(self, text): """ Called when this callback object needs to output progress information. The information is written to stdout. @return: None """ callbacks.LineOutput._message(self, text) def update(self): """ Called by this callback object to update the status. This method sanitizes text. This method is not thread safe - obtain a lock before calling. @return: None """ t = "" if self.updateText: t += self.updateText if self.csText: t = self.csText + ' ' if t and len(t) < 76: t = t[:76] t += '...' self._message(t) @locked def updateMsg(self, text): """ Called when the update thread has status updates. @param text: new status text @type text: string @return: None """ self.updateText = text self.update() @locked def csMsg(self, text): """ Called when the download thread has status updates. @param text: new status text @type text: string @return: None """ self.csText = text self.update() def executingSystemModel(self): self.updateMsg("Processing system model") def loadingModelCache(self): self.updateMsg("Loading system model cache") def savingModelCache(self): self.updateMsg("Saving system model cache") def preparingChangeSet(self): """ @see: callbacks.ChangesetCallback.preparingChangeSet """ self.updateMsg("Preparing changeset request") def resolvingDependencies(self): """ @see: callbacks.UpdateCallback.resolvingDependencies """ self.updateMsg("Resolving dependencies") @locked def updateDone(self): """ @see: callbacks.UpdateCallback.updateDone """ self._message('') self.updateText = None @locked def _downloading(self, msg, got, rate, need): """ Called by this callback object to handle different kinds of download-related progress information. This method puts together download rate information. @param msg: status message @type msg: string @param got: number of bytes retrieved so far @type got: integer @param rate: bytes per second @type rate: integer @param need: number of bytes total to be retrieved @type need: integer @return: None """ # This function acquires a lock just because it looks at self.csHunk # and self.updateText directly. Otherwise, self.csMsg will acquire the # lock (which is now reentrant) if got == need: self.csMsg(None) elif need != 0: if self.csHunk[1] < 2 or not self.updateText: self.csMsg("%s %dKB (%d%%) of %dKB at %dKB/sec" % (msg, got/1024, (got*100)/need, need/1024, rate/1024)) else: self.csMsg("%s %d of %d: %dKB (%d%%) of %dKB at %dKB/sec" % ((msg,) + self.csHunk + \ (got/1024, (got*100)/need, need/1024, rate/1024))) else: # no idea how much we need, just keep on counting... self.csMsg("%s (got %dKB at %dKB/s so far)" % (msg, got/1024, rate/1024)) def downloadingFileContents(self, got, need): """ @see: callbacks.ChangesetCallback.downloadingFileContents """ self._downloading('Downloading files for changeset', got, self.rate, need) def downloadingChangeSet(self, got, need): """ @see: callbacks.ChangesetCallback.downloadingChangeSet """ self._downloading('Downloading', got, self.rate, need) def requestingFileContents(self): """ @see: callbacks.ChangesetCallback.requestingFileContents """ if self.csHunk[1] < 2: self.csMsg("Requesting file contents") else: self.csMsg("Requesting file contents for changeset %d of %d" % self.csHunk) def requestingChangeSet(self): """ @see: callbacks.ChangesetCallback.requestingChangeSet """ if self.csHunk[1] < 2: self.csMsg("Requesting changeset") else: self.csMsg("Requesting changeset %d of %d" % self.csHunk) def creatingRollback(self): """ @see: callbacks.UpdateCallback.creatingRollback """ self.updateMsg("Creating rollback") def preparingUpdate(self, troveNum, troveCount): """ @see: callbacks.UpdateCallback.preparingUpdate """ self.updateMsg("Preparing update (%d of %d)" % (troveNum, troveCount)) @locked def restoreFiles(self, size, totalSize): """ @see: callbacks.UpdateCallback.restoreFiles """ # Locked, because we modify self.restored if totalSize != 0: self.restored += size self.updateMsg("Writing %dk of %dk (%d%%)" % (self.restored / 1024 , totalSize / 1024, (self.restored * 100) / totalSize)) def removeFiles(self, fileNum, total): """ @see: callbacks.UpdateCallback.removeFiles """ if total != 0: self.updateMsg("Removing %d of %d (%d%%)" % (fileNum , total, (fileNum * 100) / total)) def creatingDatabaseTransaction(self, troveNum, troveCount): """ @see: callbacks.UpdateCallback.creatingDatabaseTransaction """ self.updateMsg("Creating database transaction (%d of %d)" % (troveNum, troveCount)) def updatingDatabase(self, step, stepNum, stepCount): if step == 'latest': self.updateMsg('Updating list of latest versions: (%d of %d)' % (stepNum, stepCount)) else: self.updateMsg('Updating database: (%d of %d)' % (stepNum, stepCount)) def runningPreTagHandlers(self): """ @see: callbacks.UpdateCallback.runningPreTagHandlers """ self.updateMsg("Running tag prescripts") def runningPostTagHandlers(self): """ @see: callbacks.UpdateCallback.runningPostTagHandlers """ self.updateMsg("Running tag post-scripts") def committingTransaction(self): """ @see: callbacks.UpdateCallback.committingTransaction """ self.updateMsg("Committing database transaction") @locked def setChangesetHunk(self, num, total): """ @see: callbacks.ChangesetCallback.setChangesetHunk """ self.csHunk = (num, total) @locked def setUpdateHunk(self, num, total): """ @see: callbacks.UpdateCallback.setUpdateHunk """ self.restored = 0 self.updateHunk = (num, total) @locked def setUpdateJob(self, jobs): """ @see: callbacks.UpdateCallback.setUpdateJob """ self._message('') if self.updateHunk[1] < 2: self.out.write('Applying update job:\n') else: self.out.write('Applying update job %d of %d:\n' % self.updateHunk) # erase anything that is currently displayed self._message('') self.formatter.prepareJobs(jobs) for line in self.formatter.formatJobTups(jobs, indent=' '): self.out.write(line + '\n') @locked def tagHandlerOutput(self, tag, msg, stderr = False): """ @see: callbacks.UpdateCallback.tagHandlerOutput """ self._message('') self.out.write('[%s] %s\n' % (tag, msg)) @locked def troveScriptOutput(self, typ, msg): """ @see: callbacks.UpdateCallback.troveScriptOutput """ self._message('') self.out.write("[%s] %s" % (typ, msg)) @locked def troveScriptFailure(self, typ, errcode): """ @see: callbacks.UpdateCallback.troveScriptFailure """ self._message('') self.out.write("[%s] %s" % (typ, errcode)) def capsuleSyncScan(self, capsuleType): self.updateMsg("Scanning for %s capsule changes" % capsuleType) def capsuleSyncCreate(self, capsuleType, name, num, total): self.updateMsg("Collecting modifications to %s database (%d of %d)" % (capsuleType, num, total)) def capsuleSyncApply(self, added, removed): self._message('') self.out.write('Synchronizing database with capsule changes\n') def __init__(self, cfg=None, modelFile=None): """ Initialize this callback object. @param cfg: Conary configuration @type cfg: A ConaryConfiguration object. @return: None """ callbacks.UpdateCallback.__init__(self) if cfg: self.setTrustThreshold(cfg.trustThreshold) callbacks.LineOutput.__init__(self) self.restored = 0 self.csHunk = (0, 0) self.updateHunk = (0, 0) self.csText = None self.updateText = None self.lock = threading.RLock() if cfg: fullVersions = cfg.fullVersions showFlavors = cfg.fullFlavors showLabels = cfg.showLabels baseFlavors = cfg.flavor showComponents = cfg.showComponents db = conaryclient.ConaryClient(cfg, modelFile=modelFile).db else: fullVersions = showFlavors = showLabels = db = baseFlavors = None showComponents = None self.formatter = display.JobTupFormatter(affinityDb=db) self.formatter.dcfg.setTroveDisplay(fullVersions=fullVersions, fullFlavors=showFlavors, showLabels=showLabels, baseFlavors=baseFlavors, showComponents=showComponents) self.formatter.dcfg.setJobDisplay(compressJobs=not showComponents) def displayChangedJobs(addedJobs, removedJobs, cfg): db = conaryclient.ConaryClient(cfg).db formatter = display.JobTupFormatter(affinityDb=db) formatter.dcfg.setTroveDisplay(fullVersions=cfg.fullVersions, fullFlavors=cfg.fullFlavors, showLabels=cfg.showLabels, baseFlavors=cfg.flavor, showComponents=cfg.showComponents) formatter.dcfg.setJobDisplay(compressJobs=not cfg.showComponents) formatter.prepareJobLists([removedJobs | addedJobs]) if removedJobs: print 'No longer part of job:' for line in formatter.formatJobTups(removedJobs, indent=' '): print line if addedJobs: print 'Added to job:' for line in formatter.formatJobTups(addedJobs, indent=' '): print line def displayUpdateInfo(updJob, cfg, noRestart=False): jobLists = updJob.getJobs() db = conaryclient.ConaryClient(cfg).db formatter = display.JobTupFormatter(affinityDb=db) formatter.dcfg.setTroveDisplay(fullVersions=cfg.fullVersions, fullFlavors=cfg.fullFlavors, showLabels=cfg.showLabels, baseFlavors=cfg.flavor, showComponents=cfg.showComponents) formatter.dcfg.setJobDisplay(compressJobs=not cfg.showComponents) formatter.prepareJobLists(jobLists) totalJobs = len(jobLists) for num, job in enumerate(jobLists): if totalJobs > 1: if num in updJob.getCriticalJobs(): print '** ', print 'Job %d of %d:' % (num + 1, totalJobs) for line in formatter.formatJobTups(job, indent=' '): print line if updJob.getCriticalJobs() and not noRestart: criticalJobs = updJob.getCriticalJobs() if len(criticalJobs) > 1: jobPlural = 's' else: jobPlural = '' jobList = ', '.join([str(x + 1) for x in criticalJobs]) print print '** The update will restart itself after job%s %s and continue updating' % (jobPlural, jobList) return @api.developerApi def doUpdate(cfg, changeSpecs, **kwargs): callback = kwargs.get('callback', None) if not callback: callback = callbacks.UpdateCallback(trustThreshold=cfg.trustThreshold) kwargs['callback'] = callback else: callback.setTrustThreshold(cfg.trustThreshold) syncChildren = kwargs.get('syncChildren', False) syncUpdate = kwargs.pop('syncUpdate', False) restartInfo = kwargs.get('restartInfo', None) if syncChildren or syncUpdate: installMissing = True else: installMissing = False kwargs['installMissing'] = installMissing fromChangesets = [] for path in kwargs.pop('fromFiles', []): cs = changeset.ChangeSetFromFile(path) fromChangesets.append(cs) kwargs['fromChangesets'] = fromChangesets # Look for items which look like files in the applyList and convert # them into fromChangesets w/ the primary sets for item in changeSpecs[:]: if os.access(item, os.R_OK): try: cs = changeset.ChangeSetFromFile(item) except: continue fromChangesets.append(cs) changeSpecs.remove(item) for troveTuple in cs.getPrimaryTroveList(): changeSpecs.append(trovetup.TroveTuple(*troveTuple).asString()) if kwargs.get('restartInfo', None): # We don't care about applyList, we will set it later applyList = None else: keepExisting = kwargs.get('keepExisting') updateByDefault = kwargs.get('updateByDefault', True) applyList = cmdline.parseChangeList(changeSpecs, keepExisting, updateByDefault, allowChangeSets=True) _updateTroves(cfg, applyList, **kwargs) # Clean up after ourselves if restartInfo: util.rmtree(restartInfo, ignore_errors=True) def doModelUpdate(cfg, sysmodel, modelFile, otherArgs, **kwargs): kwargs['systemModel'] = sysmodel kwargs['systemModelFile'] = modelFile kwargs['loadTroveCache'] = True kwargs.setdefault('updateByDefault', True) # erase is not default case kwargs.setdefault('model', False) kwargs.setdefault('keepExisting', True) # prefer "install" to "update" restartInfo = kwargs.get('restartInfo', None) patchArgs = kwargs.pop('patchSpec', None) fromChangesets = [] applyList = [] callback = kwargs.get('callback', None) if not callback: callback = callbacks.UpdateCallback(trustThreshold=cfg.trustThreshold) kwargs['callback'] = callback else: callback.setTrustThreshold(cfg.trustThreshold) if restartInfo is None: addArgs = [x[1:] for x in otherArgs if x.startswith('+')] rmArgs = [x[1:] for x in otherArgs if x.startswith('-')] defArgs = [x for x in otherArgs if not (x.startswith('+') or x.startswith('-'))] # find any default arguments that represent changesets to # install/update for defArg in list(defArgs): if kwargs['updateByDefault'] and os.path.isfile(defArg): try: cs = changeset.ChangeSetFromFile(defArg) fromChangesets.append((cs, defArg)) defArgs.remove(defArg) except filecontainer.BadContainer: # not a changeset, must be a trove name pass if kwargs['updateByDefault']: addArgs += defArgs else: rmArgs += defArgs if rmArgs: sysmodel.appendOpByName('erase', text=rmArgs) updateName = { False: 'update', True: 'install' }[kwargs['keepExisting']] branchArgs = {} for index, spec in enumerate(addArgs): try: troveSpec = trovetup.TroveSpec(spec) version = versions.Label(troveSpec.version) branchArgs[troveSpec] = index except: # Any exception is a parse failure in one of the # two steps, and so we do not convert that argument pass if branchArgs: client = conaryclient.ConaryClient(cfg) repos = client.getRepos() foundTroves = repos.findTroves(cfg.installLabelPath, branchArgs.keys(), defaultFlavor = cfg.flavor) for troveSpec in foundTroves: index = branchArgs[troveSpec] foundTrove = foundTroves[troveSpec][0] addArgs[index] = addArgs[index].replace( troveSpec.version, '%s/%s' %(foundTrove[1].trailingLabel(), foundTrove[1].trailingRevision())) disallowedChangesets = [] for cs, argName in fromChangesets: for troveTuple in cs.getPrimaryTroveList(): # group and redirect changesets will break the model the # next time it is run, so prevent them from getting in # the model in the first place if troveTuple[1].isOnLocalHost(): if troveTuple[0].startswith('group-'): disallowedChangesets.append((argName, 'group', trovetup.TroveTuple(*troveTuple).asString())) continue trvCs = cs.getNewTroveVersion(*troveTuple) if trvCs.getType() == trove.TROVE_TYPE_REDIRECT: disallowedChangesets.append((argName, 'redirect', trovetup.TroveTuple(*troveTuple).asString())) continue addArgs.append( trovetup.TroveTuple(*troveTuple).asString()) if disallowedChangesets: raise errors.ConaryError( 'group and redirect changesets on a local label' ' cannot be installed:\n ' + '\n '.join( '%s contains local %s: %s' % x for x in disallowedChangesets)) if addArgs: sysmodel.appendOpByName(updateName, text=addArgs) if patchArgs: sysmodel.appendOpByName('patch', text=patchArgs) kwargs['fromChangesets'] = [x[0] for x in fromChangesets] if kwargs.pop('model'): sysmodel.write(sys.stdout) sys.stdout.flush() return None keepExisting = kwargs.get('keepExisting') updateByDefault = kwargs.get('updateByDefault', True) applyList = cmdline.parseChangeList([], keepExisting, updateByDefault, allowChangeSets=True) else: # In the restart case, applyList == [] which says "sync to model" pass _updateTroves(cfg, applyList, **kwargs) # Clean up after ourselves if restartInfo: util.rmtree(restartInfo, ignore_errors=True) def _updateTroves(cfg, applyList, **kwargs): # Take out the apply-related keyword arguments applyDefaults = dict( replaceFiles = False, replaceManagedFiles = False, replaceUnmanagedFiles = False, replaceModifiedFiles = False, replaceModifiedConfigFiles = False, tagScript = None, justDatabase = False, skipCapsuleOps = False, info = False, keepJournal = False, noRestart = False, noScripts = False, ) applyKwargs = {} for k in applyDefaults: if k in kwargs: applyKwargs[k] = kwargs.pop(k) callback = kwargs.pop('callback') loadTroveCache = kwargs.pop('loadTroveCache', False) applyKwargs['test'] = kwargs.get('test', False) applyKwargs['localRollbacks'] = cfg.localRollbacks applyKwargs['autoPinList'] = cfg.pinTroves model = kwargs.pop('systemModel', None) modelFile = kwargs.pop('systemModelFile', None) modelGraph = kwargs.pop('modelGraph', None) modelTrace = kwargs.pop('modelTrace', None) noRestart = applyKwargs.get('noRestart', False) client = conaryclient.ConaryClient(cfg, modelFile=modelFile) client.setUpdateCallback(callback) if kwargs.pop('disconnected', False): client.disconnectRepos() migrate = kwargs.get('migrate', False) # even though we no longer differentiate forceMigrate, we still # remove it from kwargs to avoid confusing prepareUpdateJob kwargs.pop('forceMigrate', False) restartInfo = kwargs.get('restartInfo', None) # Initialize the critical update set applyCriticalOnly = kwargs.get('applyCriticalOnly', False) if kwargs.get('criticalUpdateInfo') is not None: kwargs['criticalUpdateInfo'].criticalOnly = applyCriticalOnly else: kwargs['criticalUpdateInfo'] = CriticalUpdateInfo(applyCriticalOnly) info = applyKwargs.pop('info', False) # Rename depCheck to resolveDeps depCheck = kwargs.pop('depCheck', True) kwargs['resolveDeps'] = depCheck if not info: client.checkWriteableRoot() # Unfortunately there's no easy way to make 'test' or 'info' mode work # with capsule sync, doubly so because it influences the decisions made # later on about what troves to update. So this will always really # apply, but the good news is that it never modifies the system outside # of the Conary DB. client.syncCapsuleDatabase(callback, makePins=True) updJob = client.newUpdateJob() try: if model: changeSetList = kwargs.get('fromChangesets', []) criticalUpdates = kwargs.get('criticalUpdateInfo', None) tc = modelupdate.CMLTroveCache(client.getDatabase(), client.getRepos(), callback = callback, changeSetList = changeSetList) tcPath = cfg.root + cfg.dbPath + '/modelcache' if loadTroveCache: if os.path.exists(tcPath): log.info("loading %s", tcPath) callback.loadingModelCache() tc.load(tcPath) ts = client.cmlGraph(model, changeSetList = changeSetList) if modelGraph is not None: ts.g.generateDotFile(modelGraph) suggMap = client._updateFromTroveSetGraph(updJob, ts, tc, fromChangesets = changeSetList, criticalUpdateInfo = criticalUpdates, callback = callback) if modelTrace is not None: ts.g.trace([ parseTroveSpec(x) for x in modelTrace ] ) finalModel = copy.deepcopy(model) if model.suggestSimplifications(tc, ts.g): log.info("possible system model simplifications found") ts2 = client.cmlGraph(model, changeSetList = changeSetList) updJob2 = client.newUpdateJob() try: suggMap2 = client._updateFromTroveSetGraph(updJob2, ts2, tc, fromChangesets = changeSetList, criticalUpdateInfo = criticalUpdates) except errors.TroveNotFound: log.info("bad model generated; bailing") else: if (suggMap == suggMap2 and updJob.getJobs() == updJob2.getJobs()): log.info("simplified model verfied; using it instead") ts = ts2 finalModel = model updJob = updJob2 suggMap = suggMap2 else: log.info("simplified model changed result; ignoring") model = finalModel modelFile.model = finalModel if tc.cacheModified(): log.info("saving %s", tcPath) callback.savingModelCache() tc.save(tcPath) callback.done() else: suggMap = client.prepareUpdateJob(updJob, applyList, **kwargs) except: callback.done() client.close() raise if info: callback.done() displayUpdateInfo(updJob, cfg, noRestart=noRestart) if restartInfo and not model: callback.done() newJobs = set(itertools.chain(*updJob.getJobs())) oldJobs = set(updJob.getItemList()) addedJobs = newJobs - oldJobs removedJobs = oldJobs - newJobs if addedJobs or removedJobs: print print 'NOTE: after critical updates were applied, the contents of the update were recalculated:' print displayChangedJobs(addedJobs, removedJobs, cfg) updJob.close() client.close() return if model: missingLocalTroves = model.getMissingLocalTroves(tc, ts) if missingLocalTroves: print 'Update would leave references to missing local troves:' for troveTup in missingLocalTroves: if not isinstance(troveTup, trovetup.TroveTuple): troveTup = trovetup.TroveTuple(troveTup) print "\t" + str(troveTup) client.close() return if suggMap: callback.done() dcfg = display.DisplayConfig() dcfg.setTroveDisplay(fullFlavors = cfg.fullFlavors, fullVersions = cfg.fullVersions, showLabels = cfg.showLabels) formatter = display.TroveTupFormatter(dcfg) print "Including extra troves to resolve dependencies:" print " ", items = sorted(set(formatter.formatNVF(*x) for x in itertools.chain(*suggMap.itervalues()))) print " ".join(items) askInteractive = cfg.interactive if restartInfo: callback.done() newJobs = set(itertools.chain(*updJob.getJobs())) oldJobs = set(updJob.getItemList()) addedJobs = newJobs - oldJobs removedJobs = oldJobs - newJobs if not model and addedJobs or removedJobs: print 'NOTE: after critical updates were applied, the contents of the update were recalculated:' displayChangedJobs(addedJobs, removedJobs, cfg) else: askInteractive = False if not updJob.jobs: # Nothing to do print 'Update would not modify system' if model and not kwargs.get('test'): # Make sure 'conary sync' clears model.next even if nothing needs # to be done. modelFile.closeSnapshot() updJob.close() client.close() return elif askInteractive: print 'The following updates will be performed:' displayUpdateInfo(updJob, cfg, noRestart=noRestart) if migrate and cfg.interactive: print ('Migrate erases all troves not referenced in the groups' ' specified.') if askInteractive: if migrate: style = 'migrate' else: style = 'update' okay = cmdline.askYn('continue with %s? [Y/n]' % style, default=True) if not okay: updJob.close() client.close() return if not noRestart and updJob.getCriticalJobs(): print "Performing critical system updates, will then restart update." try: restartDir = client.applyUpdateJob(updJob, **applyKwargs) finally: updJob.close() client.close() if restartDir: params = sys.argv # Write command line to disk import xmlrpclib cmdlinefile = open(os.path.join(restartDir, 'cmdline'), "w") cmdlinefile.write(xmlrpclib.dumps((params, ), methodresponse = True)) cmdlinefile.close() # CNY-980: we should have the whole script of changes to perform in # the restart directory (in the job list); if in migrate mode, re-exec # as regular update if migrate and 'migrate' in params: params[params.index('migrate')] = 'update' params.extend(['--restart-info=%s' % restartDir]) client.close() raise errors.ReexecRequired( 'Critical update completed, rerunning command...', params, restartDir) else: if (not kwargs.get('test', False)) and model: modelFile.closeSnapshot() class UpdateAllFormatter(object): def formatNVF(self, name, version, flavor): if version and (flavor is not None) and not flavor.isEmpty(): return "'%s=%s[%s]'" % (name, version.asString(), deps.formatFlavor(flavor)) if (flavor is not None) and not flavor.isEmpty(): return "'%s[%s]'" % (name, deps.formatFlavor(flavor)) if version: return "%s=%s" % (name, version.asString()) return name def updateAll(cfg, **kwargs): showItems = kwargs.pop('showItems', False) restartInfo = kwargs.get('restartInfo', None) migrate = kwargs.pop('migrate', False) modelArg = kwargs.pop('model', False) modelFile = kwargs.get('systemModelFile', None) model = kwargs.get('systemModel', None) infoArg = kwargs.get('info', False) if model and modelFile and modelFile.exists() and restartInfo is None: model.refreshVersionSnapshots() if modelArg: model.write(sys.stdout) sys.stdout.flush() return None kwargs['installMissing'] = kwargs['removeNotByDefault'] = migrate kwargs['callback'] = UpdateCallback(cfg) # load trove cache only if --info provided kwargs['loadTroveCache'] = infoArg client = conaryclient.ConaryClient(cfg) # We want to be careful not to break the old style display, for whoever # might have a parser for that output. withLongDisplay = (cfg.fullFlavors or cfg.fullVersions or cfg.showLabels) formatter = UpdateAllFormatter() if restartInfo or (model and modelFile and modelFile.exists()): updateItems = [] applyList = None else: if showItems and withLongDisplay: updateItems = client.getUpdateItemList() dcfg = display.DisplayConfig() dcfg.setTroveDisplay(fullFlavors = cfg.fullFlavors, fullVersions = cfg.fullVersions, showLabels = cfg.showLabels) formatter = display.TroveTupFormatter(dcfg) else: updateItems = client.fullUpdateItemList() applyList = [ (x[0], (None, None), x[1:], True) for x in updateItems ] if showItems: for (name, version, flavor) in sorted(updateItems, key=lambda x:x[0]): print formatter.formatNVF(name, version, flavor) return _updateTroves(cfg, applyList, **kwargs) # Clean up after ourselves if restartInfo: util.rmtree(restartInfo, ignore_errors=True) def changePins(cfg, troveStrList, pin = True, systemModel = None, systemModelFile = None, callback = None): client = conaryclient.ConaryClient(cfg) client.checkWriteableRoot() troveList = [] for item in troveStrList: name, ver, flv = parseTroveSpec(item) troves = client.db.findTrove(None, (name, ver, flv)) troveList += troves client.pinTroves(troveList, pin = pin) if systemModel and systemModelFile and not pin: doModelUpdate(cfg, systemModel, systemModelFile, [], callback=callback) def revert(cfg): conaryclient.ConaryClient.revertJournal(cfg)
#!/usr/bin/env python ### # (C) Copyright (2012-2015) Hewlett Packard Enterprise Development LP # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. ### from __future__ import print_function from __future__ import unicode_literals from __future__ import division from __future__ import absolute_import from builtins import range from future import standard_library standard_library.install_aliases() import sys import re PYTHON_VERSION = sys.version_info[:3] PY2 = (PYTHON_VERSION[0] == 2) if PY2: if PYTHON_VERSION < (2, 7, 9): raise Exception('Must use Python 2.7.9 or later') elif PYTHON_VERSION < (3, 4): raise Exception('Must use Python 3.4 or later') import hpOneView as hpov from pprint import pprint def acceptEULA(con): # See if we need to accept the EULA before we try to log in con.get_eula_status() try: if con.get_eula_status() is True: print('EULA display needed') con.set_eula('no') except Exception as e: print('EXCEPTION:') print(e) def login(con, credential): # Login with givin credentials try: con.login(credential) except: print('Login failed') def add_datacenter(fac, name, cool, coolMultiplier, currency, cost, lineVoltage, width, depth, deratingType, deratingPercent): datacenter = hpov.common.make_datacenter_dict(name, cool, coolMultiplier, currency, cost, lineVoltage, width, depth, deratingType, deratingPercent) ret = fac.add_datacenter(datacenter) if 'coolingMultiplier' in ret: print('Name: ', ret['name']) print('Cooling Capacity: ', ret['coolingCapacity']) print('Cooling Multiplier: ', ret['coolingMultiplier']) print('Cost Per Kilowatt Hour: ', ret['costPerKilowattHour']) print('Currency: ', ret['currency']) print('Default Power Line Voltage: ', ret['defaultPowerLineVoltage']) print('Derating Type: ', ret['deratingType']) print('Derating Percentage: ', ret['deratingPercentage']) print('Depth: ', ret['depth']) print('Width: ', ret['width']) else: pprint(ret) def main(): parser = argparse.ArgumentParser(add_help=True, formatter_class=argparse.RawTextHelpFormatter, description=''' Add a new Data Center resource Usage: ''') parser.add_argument('-a', dest='host', required=True, help=''' HPE OneView Appliance hostname or IP address''') parser.add_argument('-u', dest='user', required=False, default='Administrator', help=''' HPE OneView Username''') parser.add_argument('-p', dest='passwd', required=True, help=''' HPE OneView Password''') parser.add_argument('-c', dest='cert', required=False, help=''' Trusted SSL Certificate Bundle in PEM (Base64 Encoded DER) Format''') parser.add_argument('-y', dest='proxy', required=False, help=''' Proxy (host:port format''') parser.add_argument('-j', dest='domain', required=False, default='Local', help=''' HPE OneView Authorized Login Domain''') parser.add_argument('-n', dest='name', required=True, help=''' Name of the Data Center''') parser.add_argument('-co', dest='cool', type=int, default=0, required=False, help=''' Maximum cooling capacity for the data center in watts''') parser.add_argument('-cm', dest='coolMultiplier', required=False, default=1.5, type=float, help=''' The ratio of cooling costs to power costs of the IT equipment. This value represents the relative cost of cooling the system compared to the cost of powering the system. The default value of 1.5 indicates that it costs 1.5 as much to cool the system as it does to power the system. This value is multiplied by the kilowatt - hours used by the system to obtain the cooling kilowatt - hours that are used in the analysis section of graphs that display power consumption.''') parser.add_argument('-ct', dest='cost', type=float, required=False, help=''' Enegery cost per kilowatt-hour''') parser.add_argument('-cu', dest='currency', default='USD', required=False, help=''' The currency unit for energy cost, default is "USD"''') parser.add_argument('-lv', dest='lineVoltage', type=int, default=220, required=False, help=''' The default power line voltage used for watts/amps translation when voltage is not otherwise available (for example when summarizing power at the rack or data center level), default is 220''') parser.add_argument('-wi', dest='width', type=int, required=True, help=''' Data Center width in millimeters''') parser.add_argument('-de', dest='depth', type=int, required=True, help=''' Data Center depth in millimeters''') parser.add_argument('-dt', dest='deratingType', required=True, choices=['NaJp', 'Custom', 'None'], default='NaJp', help=''' The default power line voltage used for watts/amps translation when voltage is not otherwise available (for example when summarizing power at the rack or data center level''') parser.add_argument('-dp', dest='deratingPercent', required=False, type=float, help=''' Custom eletrical derating percentage, this value is specified by the drating type, unless the type is Custom, then is must be specified here''') args = parser.parse_args() credential = {'authLoginDomain': args.domain.upper(), 'userName': args.user, 'password': args.passwd} con = hpov.connection(args.host) fac = hpov.facilities(con) if args.proxy: con.set_proxy(args.proxy.split(':')[0], args.proxy.split(':')[1]) if args.cert: con.set_trusted_ssl_bundle(args.cert) if args.depth < 1000 or args.depth > 50000: print('Error, the depth of the data center must be between 1000 and 50000 millimeters') sys.exit() if args.width < 1000 or args.width > 50000: print('Error, the width of the data center must be between 1000 and 50000 millimeters') sys.exit() if args.deratingType == 'Custom' and not args.deratingPercent: print('Error, the derating percentage must be specified when using the Custom derating type') sys.exit() login(con, credential) acceptEULA(con) add_datacenter(fac, args.name, args.cool, args.coolMultiplier, args.currency, args.cost, args.lineVoltage, args.width, args.depth, args.deratingType, args.deratingPercent) if __name__ == '__main__': import sys import argparse sys.exit(main()) # vim:set shiftwidth=4 tabstop=4 expandtab textwidth=79:
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2012-2017 Snowflake Computing Inc. All right reserved. # from io import StringIO import pytest from snowflake.connector.compat import PY2 from snowflake.connector.util_text import split_statements def _to_unicode(sql): return sql.decode('utf-8') if PY2 and isinstance(sql, str) else sql def test_simple_sql(): with StringIO(_to_unicode("show tables")) as f: itr = split_statements(f) assert next(itr) == ('show tables', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode("show tables;")) as f: itr = split_statements(f) assert next(itr) == ('show tables;', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode("select 1;select 2")) as f: itr = split_statements(f) assert next(itr) == ('select 1;', False) assert next(itr) == ('select 2', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode("select 1;select 2;")) as f: itr = split_statements(f) assert next(itr) == ('select 1;', False) assert next(itr) == ('select 2;', False) with pytest.raises(StopIteration): next(itr) s = "select 1; -- test" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ('select 1; -- test', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ('select 1;', False) with pytest.raises(StopIteration): next(itr) s = "select /* test */ 1; -- test comment select 1;" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( 'select /* test */ 1; -- test comment select 1;', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ('select 1;', False) with pytest.raises(StopIteration): next(itr) def test_multiple_line_sql(): s = """select /* test */ 1; -- test comment select 23;""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( ('select /* test */ 1; -- test comment', False)) assert next(itr) == ('select 23;', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ('select 1;', False) assert next(itr) == ('select 23;', False) with pytest.raises(StopIteration): next(itr) s = """select /* test */ 1; -- test comment select 23; -- test comment 2""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( 'select /* test */ 1; -- test comment', False) assert next(itr) == ('select 23; -- test comment 2', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ('select 1;', False) assert next(itr) == ('select 23;', False) with pytest.raises(StopIteration): next(itr) s = """select /* test */ 1; -- test comment select 23; /* test comment 2 */ select 3""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( 'select /* test */ 1; -- test comment', False) assert next(itr) == ('select 23;', False) assert next(itr) == ('/* test comment 2 */ select 3', False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ('select 1;', False) assert next(itr) == ('select 23;', False) assert next(itr) == ('select 3', False) with pytest.raises(StopIteration): next(itr) s = """select /* test */ 1; -- test comment select 23; /* test comment 2 */ select 3;""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select /* test */ 1; -- test comment", False) assert next(itr) == ("select 23;", False) assert next(itr) == ("/* test comment 2\n*/ select 3;", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 1;", False) assert next(itr) == ("select 23;", False) assert next(itr) == ("select 3;", False) with pytest.raises(StopIteration): next(itr) s = """select /* test continued comments 1 continued comments 2 */ 1; -- test comment select 23; /* test comment 2 */ select 3;""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ("select /* test\n" " continued comments 1\n" " continued comments 2\n" " */ 1; -- test comment", False) assert next(itr) == ("select 23;", False) assert next(itr) == ("/* test comment 2\n*/ select 3;", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 1;", False) assert next(itr) == ("select 23;", False) assert next(itr) == ("select 3;", False) with pytest.raises(StopIteration): next(itr) def test_quotes(): s = """select 'hello', 1; -- test comment select 23,'hello""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'hello', 1; -- test comment", False) assert next(itr) == ("select 23,'hello", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 'hello', 1;", False) assert next(itr) == ("select 23,'hello", False) with pytest.raises(StopIteration): next(itr) s = """select 'he"llo', 1; -- test comment select "23,'hello" """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'he\"llo', 1; -- test comment", False) assert next(itr) == ("select \"23,'hello\"", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 'he\"llo', 1;", False) assert next(itr) == ("select \"23,'hello\"", False) with pytest.raises(StopIteration): next(itr) s = """select 'hello ', 1; -- test comment select "23,'hello" """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'hello\n', 1; -- test comment", False) assert next(itr) == ("select \"23,'hello\"", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 'hello\n', 1;", False) assert next(itr) == ("select \"23,'hello\"", False) with pytest.raises(StopIteration): next(itr) s = """select 'hello'' ', 1; -- test comment select "23,'','hello" """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'hello''\n', 1; -- test comment", False) assert next(itr) == ("select \"23,'','hello\"", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 'hello''\n', 1;", False) assert next(itr) == ("select \"23,'','hello\"", False) with pytest.raises(StopIteration): next(itr) def test_quotes_in_comments(): s = """select 'hello'; -- test comment 'hello2' in comment /* comment 'quote'*/ select true """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'hello'; -- test comment 'hello2' in comment", False) assert next(itr) == ( "/* comment 'quote'*/ select true", False) with pytest.raises(StopIteration): next(itr) def test_backslash(): s = """select 'hello\\', 1; -- test comment select 23,'\nhello""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ( "select 'hello\\', 1; -- test comment", False) assert next(itr) == ("select 23,'\nhello", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("select 'hello\\', 1;", False) assert next(itr) == ("select 23,'\nhello", False) with pytest.raises(StopIteration): next(itr) def test_file_with_slash_star(): s = """put file:///tmp/* @%tmp; ls @%tmp;""" with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ("put file:///tmp/* @%tmp;", True) assert next(itr) == ("ls @%tmp;", False) with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("put file:///tmp/* @%tmp;", True) assert next(itr) == ("ls @%tmp;", False) with pytest.raises(StopIteration): next(itr) s = """list @~; -- first half put file://$SELF_DIR/staging-test-data/*.csv.gz @~; put file://$SELF_DIR/staging-test-data/foo.csv.gz @~; put file://$SELF_DIR/staging-test-data/foo.csv.gz @~ overwrite=true; -- second half put file://$SELF_DIR/staging-test-data/foo.csv.gz @~/foo; put file://$SELF_DIR/staging-test-data/bar.csv.gz @~/bar; list @~; remove @~ pattern='.*.csv.gz'; list @~; """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f) assert next(itr) == ("list @~;", False) # no comment line is returned assert next(itr) == ( "-- first half\n" "put file://$SELF_DIR/staging-test-data/*.csv.gz @~;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~ " "overwrite=true;", True) # no comment line is returned assert next(itr) == ( "-- second half\n" "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~/foo;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/bar.csv.gz @~/bar;", True) # no empty line is returned assert next(itr) == ("list @~;", False) assert next(itr) == ("remove @~ pattern='.*.csv.gz';", False) assert next(itr) == ("list @~;", False) # last raises StopIteration with pytest.raises(StopIteration): next(itr) with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=True) assert next(itr) == ("list @~;", False) # no comment line is returned assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/*.csv.gz @~;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~ " "overwrite=true;", True) # no comment line is returned assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/foo.csv.gz @~/foo;", True) assert next(itr) == ( "put file://$SELF_DIR/staging-test-data/bar.csv.gz @~/bar;", True) # no empty line is returned assert next(itr) == ("list @~;", False) assert next(itr) == ("remove @~ pattern='.*.csv.gz';", False) assert next(itr) == ("list @~;", False) # last raises StopIteration with pytest.raises(StopIteration): next(itr) def test_sql_with_commands(): with StringIO(_to_unicode("""create or replace view aaa as select * from LINEITEM limit 1000; !spool $outfile show views like 'AAA'; !spool off drop view if exists aaa; show tables""")) as f: itr = split_statements(f) assert next(itr) == ("""create or replace view aaa as select * from LINEITEM limit 1000;""", False) assert next(itr) == ("""!spool $outfile""", False) assert next(itr) == ("show views like 'AAA';", False) assert next(itr) == ("!spool off", False) assert next(itr) == ("drop view if exists aaa;", False) assert next(itr) == ("show tables", False) with pytest.raises(StopIteration): next(itr) def test_sql_example1(): with StringIO(_to_unicode(""" create or replace table a(aa int, bb string); truncate a; rm @%a; put file://a.txt @%a; copy into a; select * from a; drop table if exists a;""")) as f: itr = split_statements(f) assert next(itr) == ( "create or replace table a(aa int, bb string);", False) assert next(itr) == ("truncate a;", False) assert next(itr) == ("rm @%a;", False) assert next(itr) == ("put file://a.txt @%a;", True) assert next(itr) == ("copy into a;", False) assert next(itr) == ("select * from a;", False) assert next(itr) == ("drop table if exists a;", False) with pytest.raises(StopIteration): next(itr) def test_space_before_put(): with StringIO(_to_unicode(""" -- sample data uploads PUT file:///tmp/data.txt @%ab; SELECT 1; /* 134 */ select /* 567*/ 345;> GET @%bcd file:///tmp/aaa.txt; """)) as f: itr = split_statements(f) assert next(itr) == ("""-- sample data uploads PUT file:///tmp/data.txt @%ab;""", True) assert next(itr) == ("""SELECT 1;""", False) assert next(itr) == ("""/* 134 */ select /* 567*/ 345;>""", False) assert next(itr) == ("""GET @%bcd file:///tmp/aaa.txt;""", True) with pytest.raises(StopIteration): next(itr) def test_empty_statement(): with StringIO(_to_unicode("""select 1; -- tail comment1 -- tail comment2 """)) as f: itr = split_statements(f) assert next(itr) == ("""select 1;""", False) assert next(itr) == ("""-- tail comment1 -- tail comment2""", None) with pytest.raises(StopIteration): next(itr) def test_multiple_comments(): s = """--- test comment 1 select /*another test comments*/ 1; -- test comment 2 -- test comment 3 select 2; """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=False) assert next(itr) == ( "--- test comment 1\n" "select /*another test comments*/ 1; -- test comment 2", False) assert next(itr) == ("-- test comment 3\nselect 2;", False) def test_comments_with_semicolon(): s = """--test ; select 1; """ with StringIO(_to_unicode(s)) as f: itr = split_statements(f, remove_comments=False) assert next(itr) == ( "--test ;\n" "select 1;", False ) with pytest.raises(StopIteration): next(itr)
#!/usr/bin/env python import sys import time import json #from multiprocessing import Process, Queue, Value,Array import robot_class from hokuyolx import HokuyoLX #import main_file import smach import roslib import smach_ros import rospy # import logging # logging.getLogger('rosout').setLevel(logging.CRITICAL) # class Filter(logging.Filter): # def filter(sf, record): # return 'State machine transitioning' not in record.msg # return 'State machine transitioning' not in record.msg # logging.getLogger('rosout').addFilter(Filter()) test_time = 0 duration = 2 def parse_strategy(strategy_text, config_dict): commands_nocomments = [[part.strip() for part in line.split(":")] for line in strategy_text.split('\n') if line[0] != '#'] def parameter_parse(command): def isfloat(value): # check if value can be converted to float try: float(value) return True except: return False if len(command) == 1: return [command[0], None] pars = command[1].split(',') # if it is a sequence of parameters in a command pars = map(lambda x: x.strip().split(' '), pars) # parsed any string not whitespace for i, par_vals in enumerate(pars): if not isfloat(par_vals[0].strip()):# check if parameter was a string parameter pars[i] = config_dict[' '.join(par_vals).strip()] # use hardcoded value from game_conf json else: pars[i] = [float(val) for val in par_vals] return [command[0], pars] return map(parameter_parse, commands_nocomments) class RobotInit(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): #ud.robot = Robot(config_data=ud.robot_data) # checking for button in a loop... #time.sleep(1) ud.robot = robot_class.Robot(config_data=ud.robot_data) ud.start_time = time.time() #time.sleep(test_time) time.sleep(1) return 'robot initialized' class Timer(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): #cnt = 10 while 'start_time' not in ud:# and cnt: print('>>> TIMER Waiting for data...') #cnt -=1 time.sleep(0.5) print('>>> TIMER GOT DATA! x = '+str(ud.start_time)) time.sleep(ud.duration) return 'time elapsed' class CommandHandler(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) sf.command_num = 0 def execute(sf, ud): #time.sleep(test_time) #print 'Command handler userdata keys', ud.__getattr__() while 'robot' not in ud: print 'Command handler userdata keys', '\n'.join([str(key) + str(ud[key]) for key in ud.keys()])#__contains__() print('>>> COMMAND HANDLER Waiting for data...') time.sleep(0.5) if not sf.command_num: print('>>> COMMAND HANDLER GOT ROBOT!') if sf.command_num == len(ud.parsed_strategy): return 'strategy ended' if sf.preempt_requested(): sf.service_preempt() return 'preempted' command = ud.parsed_strategy[sf.command_num] sf.command_num += 1 #ud.action = command[0] ud.parameter = command[1] return command[0].lower() def request_preempt(sf): """Overload the preempt request method just to spew an error.""" smach.State.request_preempt(sf) #rospy.logwarn("Preempted!") class Motion(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): time.sleep(test_time) return 'succeeded' def request_preempt(sf): """Overload the preempt request method just to spew an error.""" smach.State.request_preempt(sf) #rospy.logwarn("Preempted!") class TakeCylinder(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): time.sleep(test_time) return 'succeeded' class DropCylinder(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): time.sleep(test_time) return 'succeeded' class CollisionHandler(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): time.sleep(test_time) ud.new_point = None return 'succeeded' def request_preempt(sf): """Overload the preempt request method just to spew an error.""" smach.State.request_preempt(sf) #rospy.logwarn("Preempted!") class FunnyAction(smach.State): def __init__(sf, outcomes=[], input_keys=[], output_keys=[]): smach.State.__init__(sf, outcomes, input_keys, output_keys) def execute(sf, ud): time.sleep(test_time) return 'succeeded' def request_preempt(sf): """Overload the preempt request method just to spew an error.""" smach.State.request_preempt(sf) #rospy.logwarn("Preempted!") # gets called when ANY child state terminates def startup_child_term_cb(outcome_map): # terminate all running states if TIMER finished with outcome 'time elapsed' if outcome_map['TIMER'] == 'time elapsed': return True if outcome_map['ROBOT'] == 'aborted': return True # We need to wait for 90 seconds (when timer ends) # terminate all running states if ROBOT finished #if outcome_map['ROBOT']: # return True # in all other case, just keep running, don't terminate anything return False # gets called when ALL child states are terminated def startup_out_cb(outcome_map): if outcome_map['ROBOT'] == 'strategy ended': # print(outcome_map) return 'strategy succeeded' elif outcome_map['TIMER'] == 'time elapsed': return 'timer ended' elif outcome_map['ROBOT'] == 'aborted': return 'robot aborted' else: return 'strategy succeeded' def create_fsm(): game_fsm = smach.StateMachine(outcomes=['succeeded', 'aborted'], output_keys = []) with game_fsm: robot_strategy_fsm = smach.Concurrence( outcomes=['timer ended', 'strategy succeeded', 'robot aborted'], default_outcome='timer ended', input_keys=[], output_keys=[], child_termination_cb = startup_child_term_cb, # use instead of outcome_map outcome_cb = startup_out_cb ) with open(sys.argv[1]) as config_f: config_dict = json.load(config_f) robot_strategy_ud = robot_strategy_fsm.userdata robot_strategy_ud.robot_data = config_dict['robot data'] actions =[action_str.encode('ascii','ignore') for action_str in config_dict['strategy actions']] robot_strategy_ud.game_field = config_dict['game field'] with open(sys.argv[2]) as f_rob_strategy: robot_strategy_ud.parsed_strategy = parse_strategy(f_rob_strategy.read(),robot_strategy_ud.robot_data) robot_strategy_ud.duration = sys.argv[3] if len(sys.argv) > 3 else duration # 90 default seconds duration of the game timer #startup_ud.start_time = None smach.StateMachine.add('ROBOT STRATEGY', robot_strategy_fsm, transitions={'timer ended': 'FUNNY ACTION', 'strategy succeeded': 'FUNNY ACTION', 'robot aborted': 'aborted'}) smach.StateMachine.add('FUNNY ACTION', FunnyAction(outcomes=['succeeded', 'aborted'], input_keys=['robot', 'parameter', 'state'], output_keys=[]), transitions={'succeeded': 'succeeded', 'aborted': 'aborted'}) with robot_strategy_fsm: # Here we initialize and wait the end of it smach.Concurrence.add('ROBOT INIT', RobotInit(outcomes=['robot initialized', 'initialization failed'], input_keys=['robot_data', 'parsed_strategy'],#['robot_data'] output_keys=['start_time', 'robot', 'parsed_strategy'])) # transitions={'robot initialized': 'ROBOT STRATEGY', # 'initialization failed': 'aborted'}) smach.Concurrence.add('TIMER', Timer(outcomes=['time elapsed'], input_keys=['start_time', 'duration'], output_keys=['deadline1'])) sm_robot = smach.StateMachine(outcomes=['aborted', 'strategy ended', 'preempted'], input_keys = ['game_field', 'parsed_strategy', 'robot'], output_keys=[]) smach.Concurrence.add('ROBOT', sm_robot) with sm_robot: # Command Hadler # Actions as states smach.StateMachine.add('TAKE CYLINDER', TakeCylinder(outcomes=['succeeded', 'aborted'], input_keys=['parameter', 'robot'], output_keys=[]), #state = 0, 1, 2 0 - succeded, 1 - aborted transitions={'succeeded': 'COMMAND HANDLER', 'aborted': 'COMMAND HANDLER'}) smach.StateMachine.add('DROP CYLINDER', DropCylinder(outcomes=['succeeded', 'aborted'], input_keys=['parameter', 'robot'], output_keys=[]), #state = 0, 1, 2 0 - succeded, 1 - aborted transitions={'succeeded': 'COMMAND HANDLER', 'aborted': 'COMMAND HANDLER'}) motion_fsm = smach.Concurrence( outcomes=['succeeded', 'aborted'], default_outcome='succeeded', input_keys=['point', 'robot'], # parameter remapping output_keys=['new_point', 'robot'], #TODO# child_termination_cb = child_term_cb, // use instead of outcome_map #TODO# outcome_cb = out_cb, outcome_map = { 'succeeded': {'COLLISION HANDLER': 'succeeded', 'MOTION': 'succeeded'}, 'aborted': {'COLLISION HANDLER': 'aborted'}, #'aborted': {'ROBOT': 'aborted'} } ) smach.StateMachine.add('MOVE', motion_fsm, transitions={'succeeded': 'COMMAND HANDLER', 'aborted': 'COMMAND HANDLER'}, remapping = {'point':'parameter'}) with motion_fsm: smach.Concurrence.add('MOTION', Motion(outcomes=['succeeded', 'aborted'], input_keys=['point', 'robot'], output_keys=[])) smach.Concurrence.add('COLLISION HANDLER', CollisionHandler(outcomes=['succeeded', 'aborted'], input_keys=['point', 'robot'], output_keys=['new_point'])) command_handler_trans = {action:action.upper() for action in actions} # commands parsing for Command handler command_handler_trans.update({'strategy ended':'strategy ended', 'preempted':'preempted'}) smach.StateMachine.add('COMMAND HANDLER', CommandHandler(outcomes=actions + ['strategy ended'] + ['preempted'], input_keys=['parsed_strategy', 'robot'], output_keys=['parameter', 'robot']), transitions=command_handler_trans) # End Robot states initialisation, except Funny action #End of FSM description return game_fsm if __name__ == "__main__": tmp = time.time() fsm = create_fsm() rospy.init_node('FSM', anonymous=True) sis = smach_ros.IntrospectionServer('server_name', fsm, '/SM_ROOT') sis.start() # Execute the state machine fsm.execute() # Wait for ctrl-c to stop the application #rospy.spin() sis.stop() print 'FSM elapsed after: ', time.time() - tmp, ' sec'
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """SDK harness for executing Python Fns via the Fn API.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import abc import collections import contextlib import logging import queue import sys import threading import time import traceback from builtins import object from builtins import range from concurrent import futures import grpc from future.utils import raise_ from future.utils import with_metaclass from apache_beam.portability.api import beam_fn_api_pb2 from apache_beam.portability.api import beam_fn_api_pb2_grpc from apache_beam.runners.worker import bundle_processor from apache_beam.runners.worker import data_plane from apache_beam.runners.worker.worker_id_interceptor import WorkerIdInterceptor class SdkHarness(object): REQUEST_METHOD_PREFIX = '_request_' SCHEDULING_DELAY_THRESHOLD_SEC = 5*60 # 5 Minutes def __init__(self, control_address, worker_count, credentials=None, profiler_factory=None): self._alive = True self._worker_count = worker_count self._worker_index = 0 if credentials is None: logging.info('Creating insecure control channel.') self._control_channel = grpc.insecure_channel(control_address) else: logging.info('Creating secure control channel.') self._control_channel = grpc.secure_channel(control_address, credentials) grpc.channel_ready_future(self._control_channel).result(timeout=60) logging.info('Control channel established.') self._control_channel = grpc.intercept_channel( self._control_channel, WorkerIdInterceptor()) self._data_channel_factory = data_plane.GrpcClientDataChannelFactory( credentials) self._state_handler_factory = GrpcStateHandlerFactory() self._profiler_factory = profiler_factory self.workers = queue.Queue() # one thread is enough for getting the progress report. # Assumption: # Progress report generation should not do IO or wait on other resources. # Without wait, having multiple threads will not improve performance and # will only add complexity. self._progress_thread_pool = futures.ThreadPoolExecutor(max_workers=1) self._process_thread_pool = futures.ThreadPoolExecutor( max_workers=self._worker_count) self._monitoring_thread_pool = futures.ThreadPoolExecutor(max_workers=1) self._instruction_id_vs_worker = {} self._fns = {} self._responses = queue.Queue() self._process_bundle_queue = queue.Queue() self._unscheduled_process_bundle = {} logging.info('Initializing SDKHarness with %s workers.', self._worker_count) def run(self): control_stub = beam_fn_api_pb2_grpc.BeamFnControlStub(self._control_channel) no_more_work = object() # Create workers for _ in range(self._worker_count): # SdkHarness manage function registration and share self._fns with all # the workers. This is needed because function registration (register) # and exceution(process_bundle) are send over different request and we # do not really know which woker is going to process bundle # for a function till we get process_bundle request. Moreover # same function is reused by different process bundle calls and # potentially get executed by different worker. Hence we need a # centralized function list shared among all the workers. self.workers.put( SdkWorker( state_handler_factory=self._state_handler_factory, data_channel_factory=self._data_channel_factory, fns=self._fns, profiler_factory=self._profiler_factory)) self._monitoring_thread_pool.submit(self._monitor_process_bundle) def get_responses(): while True: response = self._responses.get() if response is no_more_work: return yield response for work_request in control_stub.Control(get_responses()): logging.debug('Got work %s', work_request.instruction_id) request_type = work_request.WhichOneof('request') # Name spacing the request method with 'request_'. The called method # will be like self.request_register(request) getattr(self, SdkHarness.REQUEST_METHOD_PREFIX + request_type)( work_request) logging.info('No more requests from control plane') logging.info('SDK Harness waiting for in-flight requests to complete') self._alive = False # Wait until existing requests are processed. self._progress_thread_pool.shutdown() self._process_thread_pool.shutdown() self._monitoring_thread_pool.shutdown(wait=False) # get_responses may be blocked on responses.get(), but we need to return # control to its caller. self._responses.put(no_more_work) # Stop all the workers and clean all the associated resources self._data_channel_factory.close() self._state_handler_factory.close() logging.info('Done consuming work.') def _execute(self, task, request): try: response = task() except Exception: # pylint: disable=broad-except traceback_string = traceback.format_exc() print(traceback_string, file=sys.stderr) logging.error( 'Error processing instruction %s. Original traceback is\n%s\n', request.instruction_id, traceback_string) response = beam_fn_api_pb2.InstructionResponse( instruction_id=request.instruction_id, error=traceback_string) self._responses.put(response) def _request_register(self, request): def task(): for process_bundle_descriptor in getattr( request, request.WhichOneof('request')).process_bundle_descriptor: self._fns[process_bundle_descriptor.id] = process_bundle_descriptor return beam_fn_api_pb2.InstructionResponse( instruction_id=request.instruction_id, register=beam_fn_api_pb2.RegisterResponse()) self._execute(task, request) def _request_process_bundle(self, request): def task(): # Take the free worker. Wait till a worker is free. worker = self.workers.get() # Get the first work item in the queue work = self._process_bundle_queue.get() # add the instuction_id vs worker map for progress reporting lookup self._instruction_id_vs_worker[work.instruction_id] = worker self._unscheduled_process_bundle.pop(work.instruction_id, None) try: self._execute(lambda: worker.do_instruction(work), work) finally: # Delete the instruction_id <-> worker mapping self._instruction_id_vs_worker.pop(work.instruction_id, None) # Put the worker back in the free worker pool self.workers.put(worker) # Create a task for each process_bundle request and schedule it self._process_bundle_queue.put(request) self._unscheduled_process_bundle[request.instruction_id] = time.time() self._process_thread_pool.submit(task) logging.debug( "Currently using %s threads." % len(self._process_thread_pool._threads)) def _request_process_bundle_progress(self, request): def task(): instruction_reference = getattr( request, request.WhichOneof('request')).instruction_reference if instruction_reference in self._instruction_id_vs_worker: self._execute( lambda: self._instruction_id_vs_worker[ instruction_reference ].do_instruction(request), request) else: self._execute(lambda: beam_fn_api_pb2.InstructionResponse( instruction_id=request.instruction_id, error=( 'Process bundle request not yet scheduled for instruction {}' if instruction_reference in self._unscheduled_process_bundle else 'Unknown process bundle instruction {}').format( instruction_reference)), request) self._progress_thread_pool.submit(task) def _monitor_process_bundle(self): """ Monitor the unscheduled bundles and log if a bundle is not scheduled for more than SCHEDULING_DELAY_THRESHOLD_SEC. """ while self._alive: time.sleep(SdkHarness.SCHEDULING_DELAY_THRESHOLD_SEC) # Check for bundles to be scheduled. if self._unscheduled_process_bundle: current_time = time.time() for instruction_id in self._unscheduled_process_bundle: request_time = None try: request_time = self._unscheduled_process_bundle[instruction_id] except KeyError: pass if request_time: scheduling_delay = current_time - request_time if scheduling_delay > SdkHarness.SCHEDULING_DELAY_THRESHOLD_SEC: logging.warn('Unable to schedule instruction %s for %s', instruction_id, scheduling_delay) class SdkWorker(object): def __init__(self, state_handler_factory, data_channel_factory, fns, profiler_factory=None): self.fns = fns self.state_handler_factory = state_handler_factory self.data_channel_factory = data_channel_factory self.active_bundle_processors = {} self.cached_bundle_processors = collections.defaultdict(list) self.profiler_factory = profiler_factory def do_instruction(self, request): request_type = request.WhichOneof('request') if request_type: # E.g. if register is set, this will call self.register(request.register)) return getattr(self, request_type)(getattr(request, request_type), request.instruction_id) else: raise NotImplementedError def register(self, request, instruction_id): for process_bundle_descriptor in request.process_bundle_descriptor: self.fns[process_bundle_descriptor.id] = process_bundle_descriptor return beam_fn_api_pb2.InstructionResponse( instruction_id=instruction_id, register=beam_fn_api_pb2.RegisterResponse()) def process_bundle(self, request, instruction_id): with self.get_bundle_processor( instruction_id, request.process_bundle_descriptor_reference) as bundle_processor: with self.maybe_profile(instruction_id): bundle_processor.process_bundle(instruction_id) return beam_fn_api_pb2.InstructionResponse( instruction_id=instruction_id, process_bundle=beam_fn_api_pb2.ProcessBundleResponse( metrics=bundle_processor.metrics(), monitoring_infos=bundle_processor.monitoring_infos())) @contextlib.contextmanager def get_bundle_processor(self, instruction_id, bundle_descriptor_id): try: # pop() is threadsafe processor = self.cached_bundle_processors[bundle_descriptor_id].pop() state_handler = processor.state_handler except IndexError: process_bundle_desc = self.fns[bundle_descriptor_id] state_handler = self.state_handler_factory.create_state_handler( process_bundle_desc.state_api_service_descriptor) processor = bundle_processor.BundleProcessor( process_bundle_desc, state_handler, self.data_channel_factory) try: self.active_bundle_processors[instruction_id] = processor with state_handler.process_instruction_id(instruction_id): yield processor finally: del self.active_bundle_processors[instruction_id] # Outside the finally block as we only want to re-use on success. processor.reset() self.cached_bundle_processors[bundle_descriptor_id].append(processor) def process_bundle_progress(self, request, instruction_id): # It is an error to get progress for a not-in-flight bundle. processor = self.active_bundle_processors.get(request.instruction_reference) return beam_fn_api_pb2.InstructionResponse( instruction_id=instruction_id, process_bundle_progress=beam_fn_api_pb2.ProcessBundleProgressResponse( metrics=processor.metrics() if processor else None, monitoring_infos=processor.monitoring_infos() if processor else [])) @contextlib.contextmanager def maybe_profile(self, instruction_id): if self.profiler_factory: profiler = self.profiler_factory(instruction_id) if profiler: with profiler: yield else: yield else: yield class StateHandlerFactory(with_metaclass(abc.ABCMeta, object)): """An abstract factory for creating ``DataChannel``.""" @abc.abstractmethod def create_state_handler(self, api_service_descriptor): """Returns a ``StateHandler`` from the given ApiServiceDescriptor.""" raise NotImplementedError(type(self)) @abc.abstractmethod def close(self): """Close all channels that this factory owns.""" raise NotImplementedError(type(self)) class GrpcStateHandlerFactory(StateHandlerFactory): """A factory for ``GrpcStateHandler``. Caches the created channels by ``state descriptor url``. """ def __init__(self): self._state_handler_cache = {} self._lock = threading.Lock() self._throwing_state_handler = ThrowingStateHandler() def create_state_handler(self, api_service_descriptor): if not api_service_descriptor: return self._throwing_state_handler url = api_service_descriptor.url if url not in self._state_handler_cache: with self._lock: if url not in self._state_handler_cache: logging.info('Creating channel for %s', url) grpc_channel = grpc.insecure_channel( url, # Options to have no limits (-1) on the size of the messages # received or sent over the data plane. The actual buffer size is # controlled in a layer above. options=[("grpc.max_receive_message_length", -1), ("grpc.max_send_message_length", -1)]) # Add workerId to the grpc channel grpc_channel = grpc.intercept_channel(grpc_channel, WorkerIdInterceptor()) self._state_handler_cache[url] = GrpcStateHandler( beam_fn_api_pb2_grpc.BeamFnStateStub(grpc_channel)) return self._state_handler_cache[url] def close(self): logging.info('Closing all cached gRPC state handlers.') for _, state_handler in self._state_handler_cache.items(): state_handler.done() self._state_handler_cache.clear() class ThrowingStateHandler(object): """A state handler that errors on any requests.""" def blocking_get(self, state_key, instruction_reference): raise RuntimeError( 'Unable to handle state requests for ProcessBundleDescriptor without ' 'out state ApiServiceDescriptor for instruction %s and state key %s.' % (state_key, instruction_reference)) def blocking_append(self, state_key, data, instruction_reference): raise RuntimeError( 'Unable to handle state requests for ProcessBundleDescriptor without ' 'out state ApiServiceDescriptor for instruction %s and state key %s.' % (state_key, instruction_reference)) def blocking_clear(self, state_key, instruction_reference): raise RuntimeError( 'Unable to handle state requests for ProcessBundleDescriptor without ' 'out state ApiServiceDescriptor for instruction %s and state key %s.' % (state_key, instruction_reference)) class GrpcStateHandler(object): _DONE = object() def __init__(self, state_stub): self._lock = threading.Lock() self._state_stub = state_stub self._requests = queue.Queue() self._responses_by_id = {} self._last_id = 0 self._exc_info = None self._context = threading.local() self.start() @contextlib.contextmanager def process_instruction_id(self, bundle_id): if getattr(self._context, 'process_instruction_id', None) is not None: raise RuntimeError( 'Already bound to %r' % self._context.process_instruction_id) self._context.process_instruction_id = bundle_id try: yield finally: self._context.process_instruction_id = None def start(self): self._done = False def request_iter(): while True: request = self._requests.get() if request is self._DONE or self._done: break yield request responses = self._state_stub.State(request_iter()) def pull_responses(): try: for response in responses: self._responses_by_id[response.id].set(response) if self._done: break except: # pylint: disable=bare-except self._exc_info = sys.exc_info() raise reader = threading.Thread(target=pull_responses, name='read_state') reader.daemon = True reader.start() def done(self): self._done = True self._requests.put(self._DONE) def blocking_get(self, state_key): response = self._blocking_request( beam_fn_api_pb2.StateRequest( state_key=state_key, get=beam_fn_api_pb2.StateGetRequest())) if response.get.continuation_token: raise NotImplementedError return response.get.data def blocking_append(self, state_key, data): self._blocking_request( beam_fn_api_pb2.StateRequest( state_key=state_key, append=beam_fn_api_pb2.StateAppendRequest(data=data))) def blocking_clear(self, state_key): self._blocking_request( beam_fn_api_pb2.StateRequest( state_key=state_key, clear=beam_fn_api_pb2.StateClearRequest())) def _blocking_request(self, request): request.id = self._next_id() request.instruction_reference = self._context.process_instruction_id self._responses_by_id[request.id] = future = _Future() self._requests.put(request) while not future.wait(timeout=1): if self._exc_info: t, v, tb = self._exc_info raise_(t, v, tb) elif self._done: raise RuntimeError() del self._responses_by_id[request.id] response = future.get() if response.error: raise RuntimeError(response.error) else: return response def _next_id(self): self._last_id += 1 return str(self._last_id) class _Future(object): """A simple future object to implement blocking requests. """ def __init__(self): self._event = threading.Event() def wait(self, timeout=None): return self._event.wait(timeout) def get(self, timeout=None): if self.wait(timeout): return self._value else: raise LookupError() def set(self, value): self._value = value self._event.set()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ GPLv3 license (ASTRA toolbox) Note that the TomoPhantom package is released under Apache License, Version 2.0 * Script to generate 3D analytical phantoms and their projection data using TomoPhantom * Synthetic flat fields are also genererated and noise incorporated into data together with normalisation errors. This simulates more challeneging data for reconstruction. * tomobar is required for reconstruction >>>>> Dependencies (reconstruction): <<<<< 1. ASTRA toolbox: conda install -c astra-toolbox astra-toolbox 2. tomobar: conda install -c dkazanc tomobar or install from https://github.com/dkazanc/ToMoBAR @author: Daniil Kazantsev """ import timeit import os import matplotlib.pyplot as plt import numpy as np import tomophantom from tomophantom import TomoP3D from tomophantom.supp.qualitymetrics import QualityTools from tomophantom.supp.flatsgen import synth_flats print ("Building 3D phantom using TomoPhantom software") tic=timeit.default_timer() model = 17 # select a model number from the library N_size = 256 # Define phantom dimensions using a scalar value (cubic phantom) path = os.path.dirname(tomophantom.__file__) path_library3D = os.path.join(path, "Phantom3DLibrary.dat") #This will generate a N_size x N_size x N_size phantom (3D) phantom_tm = TomoP3D.Model(model, N_size, path_library3D) toc=timeit.default_timer() Run_time = toc - tic print("Phantom has been built in {} seconds".format(Run_time)) sliceSel = int(0.5*N_size) #plt.gray() plt.figure() plt.subplot(131) plt.imshow(phantom_tm[sliceSel,:,:],vmin=0, vmax=1) plt.title('3D Phantom, axial view') plt.subplot(132) plt.imshow(phantom_tm[:,sliceSel,:],vmin=0, vmax=1) plt.title('3D Phantom, coronal view') plt.subplot(133) plt.imshow(phantom_tm[:,:,sliceSel],vmin=0, vmax=1) plt.title('3D Phantom, sagittal view') plt.show() # Projection geometry related parameters: Horiz_det = int(np.sqrt(2)*N_size) # detector column count (horizontal) Vert_det = N_size # detector row count (vertical) (no reason for it to be > N) angles_num = int(0.5*np.pi*N_size); # angles number angles = np.linspace(0.0,179.9,angles_num,dtype='float32') # in degrees angles_rad = angles*(np.pi/180.0) #%% print ("Building 3D analytical projection data with TomoPhantom") projData3D_analyt= TomoP3D.ModelSino(model, N_size, Horiz_det, Vert_det, angles, path_library3D) intens_max_clean = np.max(projData3D_analyt) sliceSel = 150 plt.figure() plt.subplot(131) plt.imshow(projData3D_analyt[:,sliceSel,:],vmin=0, vmax=intens_max_clean) plt.title('2D Projection (analytical)') plt.subplot(132) plt.imshow(projData3D_analyt[sliceSel,:,:],vmin=0, vmax=intens_max_clean) plt.title('Sinogram view') plt.subplot(133) plt.imshow(projData3D_analyt[:,:,sliceSel],vmin=0, vmax=intens_max_clean) plt.title('Tangentogram view') plt.show() #%% print ("Simulate synthetic flat fields, add flat field background to the projections and add noise") I0 = 15000; # Source intensity flatsnum = 20 # the number of the flat fields required [projData3D_noisy, flatsSIM] = synth_flats(projData3D_analyt, source_intensity = I0, source_variation=0.02,\ arguments_Bessel = (1,10,10,12),\ specklesize = 15,\ kbar = 0.3, jitter = 1.0, sigmasmooth = 3, flatsnum=flatsnum) #del projData3D_analyt plt.figure() plt.subplot(121) plt.imshow(projData3D_noisy[:,0,:]) plt.title('2D Projection (before normalisation)') plt.subplot(122) plt.imshow(flatsSIM[:,0,:]) plt.title('A selected simulated flat-field') plt.show() #%% print ("Normalise projections using ToMoBAR software") from tomobar.supp.suppTools import normaliser # normalise the data, the required format is [detectorsX, Projections, detectorsY] projData3D_norm = normaliser(projData3D_noisy, flatsSIM, darks=None, log='true', method='mean') #del projData3D_noisy intens_max = 0.3*np.max(projData3D_norm) sliceSel = 150 plt.figure() plt.subplot(131) plt.imshow(projData3D_norm[:,sliceSel,:],vmin=0, vmax=intens_max) plt.title('Normalised 2D Projection (erroneous)') plt.subplot(132) plt.imshow(projData3D_norm[sliceSel,:,:],vmin=0, vmax=intens_max) plt.title('Sinogram view') plt.subplot(133) plt.imshow(projData3D_norm[:,:,sliceSel],vmin=0, vmax=intens_max) plt.title('Tangentogram view') plt.show() #%% # initialise tomobar DIRECT reconstruction class ONCE from tomobar.methodsDIR import RecToolsDIR RectoolsDIR = RecToolsDIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only CenterRotOffset = None, # Center of Rotation (CoR) scalar (for 3D case only) AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions device_projector = 'gpu') print ("Reconstruction using FBP from tomobar") recNumerical= RectoolsDIR.FBP(projData3D_norm) # FBP reconstruction recNumerical *= intens_max_clean sliceSel = int(0.5*N_size) max_val = 1 #plt.gray() plt.figure() plt.subplot(131) plt.imshow(recNumerical[sliceSel,:,:],vmin=0, vmax=max_val) plt.title('3D Reconstruction, axial view') plt.subplot(132) plt.imshow(recNumerical[:,sliceSel,:],vmin=0, vmax=max_val) plt.title('3D Reconstruction, coronal view') plt.subplot(133) plt.imshow(recNumerical[:,:,sliceSel],vmin=0, vmax=max_val) plt.title('3D Reconstruction, sagittal view') plt.show() # calculate errors Qtools = QualityTools(phantom_tm, recNumerical) RMSE = Qtools.rmse() print("Root Mean Square Error is {}".format(RMSE)) #%% print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") print ("Reconstructing with FISTA-OS method using tomobar") print ("%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%") # initialise tomobar ITERATIVE reconstruction class ONCE from tomobar.methodsIR import RecToolsIR Rectools = RecToolsIR(DetectorsDimH = Horiz_det, # DetectorsDimH # detector dimension (horizontal) DetectorsDimV = Vert_det, # DetectorsDimV # detector dimension (vertical) for 3D case only CenterRotOffset = 0.0, # Center of Rotation (CoR) scalar (for 3D case only) AnglesVec = angles_rad, # array of angles in radians ObjSize = N_size, # a scalar to define reconstructed object dimensions datafidelity='LS',# data fidelity, choose LS, PWLS (wip), GH (wip), Student (wip) device_projector='gpu') #%% # prepare dictionaries with parameters: _data_ = {'projection_norm_data' : projData3D_norm, 'OS_number' : 10} # data dictionary lc = Rectools.powermethod(_data_) # calculate Lipschitz constant (run once to initialise) # algorithm parameters _algorithm_ = {'iterations' : 15, 'lipschitz_const' : lc} # adding regularisation using the CCPi regularisation toolkit _regularisation_ = {'method' : 'PD_TV', 'regul_param' : 0.0000035, 'iterations' : 80, 'device_regulariser': 'gpu'} RecFISTA_os_reg = Rectools.FISTA(_data_, _algorithm_, _regularisation_) RecFISTA_os_reg *= intens_max_clean sliceSel = int(0.5*N_size) max_val = 1 plt.figure() plt.subplot(131) plt.imshow(RecFISTA_os_reg[sliceSel,:,:],vmin=0, vmax=max_val) plt.title('3D FISTA-TV Reconstruction, axial view') plt.subplot(132) plt.imshow(RecFISTA_os_reg[:,sliceSel,:],vmin=0, vmax=max_val) plt.title('3D FISTA-TV Reconstruction, coronal view') plt.subplot(133) plt.imshow(RecFISTA_os_reg[:,:,sliceSel],vmin=0, vmax=max_val) plt.title('3D FISTA-TV Reconstruction, sagittal view') plt.show() #%%
# -*- coding: utf-8 -*- # # Copyright (c) 2016 VMware, Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ test_congress_haht ---------------------------------- Replicated policy engine high availability tests for `congress` module. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import import shutil import subprocess import sys import tempfile import time # Note: monkey patch to allow running this test standalone under 'nose' import eventlet eventlet.monkey_patch() from oslo_log import log as logging import requests import tenacity from congress.db import api as db from congress.db import db_policy_rules from congress.tests import base from congress.tests import helper LOG = logging.getLogger(__name__) class TestCongressHAHT(base.SqlTestCase): class client(object): version = '/v1' def __init__(self, port, host='0.0.0.0'): self.host = host self.port = port self.base_url = 'http://' + host + ':%d' % port def url(self, suffix=None): if suffix is None: return self.base_url else: return self.base_url + self.version + '/' + suffix def get(self, suffix=None): return requests.get(self.url(suffix)) def delete(self, suffix=None): return requests.delete(self.url(suffix)) def post(self, suffix=None, json=None): x = requests.post(self.url(suffix), json=json) # print("status: %s, text: %s" % (x.status_code, x.text)) return x def setUp(self): super(TestCongressHAHT, self).setUp() assert sys.executable is not None,\ 'test cannot proceed when sys.executable is None' # establish clean starting DB self.clean_db() shutil.copy(helper.test_path('haht/test.db.clean'), helper.test_path('haht/test.db')) self.clients = [] self.procs = [] self.outfiles = {} self.errfiles = {} self.pe1 = self.start_pe(1, 4001) self.pe2 = self.start_pe(2, 4002) def dump_nodes_logs(self): LOG.error('PE1 process output:\n%s' % self.read_output_file(self.outfiles[1])) LOG.error('PE2 process output:\n%s' % self.read_output_file(self.outfiles[2])) def clean_db(self): session = db.get_session() with session.begin(subtransactions=True): session.query(db_policy_rules.Policy).delete() session.query(db_policy_rules.PolicyRule).delete() def start_pe(self, num, port): self.outfiles[num] = tempfile.NamedTemporaryFile( mode='a+', suffix='.out', prefix='congress-pe%d-%d-' % (num, port), dir='/tmp') self.errfiles[num] = tempfile.NamedTemporaryFile( mode='a+', suffix='.err', prefix='congress-pe%d-%d-' % (num, port), dir='/tmp') args = [sys.executable, 'congress/server/congress_server.py', '--node-id', 'node_%d' % num, '--api', '--policy-engine', '--config-file', 'congress/tests/etc/congress.conf.test.ha_pe%d' % num] pe = subprocess.Popen(args, stdout=self.outfiles[num], stderr=self.outfiles[num], cwd=helper.root_path()) self.addCleanup(pe.kill) pe = self.client(port) try: helper.retry_check_function_return_value( lambda: pe.get().status_code, 200) except tenacity.RetryError: out = self.read_output_file(self.outfiles[num]) LOG.error('PE%d failed to start. Process output:\n%s' % (num, out)) raise return pe def read_output_file(self, file): file.flush() file.seek(0) return ''.join(file.readlines()) def tail(self, thing, length=20): lines = thing.split('\n') return '\n'.join(lines[-length:]) def test_policy_create_delete(self): # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) # check policy alice in PE1 self.assertEqual(self.pe1.get('policies/alice').status_code, 200) # check policy alice in PE2 helper.retry_check_function_return_value( lambda: self.pe2.get('policies/alice').status_code, 200) # create policy bob in PE2 self.assertEqual(self.pe2.post( suffix='policies', json={'name': 'bob'}).status_code, 201) # check policy bob in PE2 self.assertEqual(self.pe2.get('policies/bob').status_code, 200) # check policy bob in PE1 helper.retry_check_function_return_value( lambda: self.pe1.get('policies/bob').status_code, 200) # check policy listings self.assertEqual(len(self.pe1.get('policies').json()['results']), 4) self.assertEqual(len(self.pe2.get('policies').json()['results']), 4) # delete policy alice in PE2, and check deleted on both PE self.assertEqual(self.pe2.delete('policies/alice').status_code, 200) self.assertEqual(self.pe2.get('policies/alice').status_code, 404) helper.retry_check_function_return_value( lambda: self.pe1.get('policies/alice').status_code, 404) # delete policy bob in PE2, and check deleted on both PE self.assertEqual(self.pe2.delete('policies/bob').status_code, 200) self.assertEqual(self.pe2.get('policies/bob').status_code, 404) helper.retry_check_function_return_value( lambda: self.pe1.get('policies/bob').status_code, 404) def test_policy_rule_crud(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) # add rule to PE1 j = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} self.assertEqual(self.pe1.post( suffix='policies/alice/rules', json=j).status_code, 201) self.assertEqual( self.pe1.get('policies/alice/rules').status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 1) # retry necessary because of synchronization helper.retry_check_function_return_value( lambda: len(self.pe2.get('policies/alice/rules'). json()['results']), 1) # add rule to PE2 j = {'rule': 'q(1)', 'name': 'rule2'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 201) # check 2 rule in each pe self.assertEqual(len( self.pe2.get('policies/alice/rules').json()['results']), 2) self.assertEqual(len( self.pe1.get('policies/alice/rules').json()['results']), 2) # grab rule IDs rules = self.pe2.get('policies/alice/rules').json()['results'] id1 = next(x['id'] for x in rules if x['name'] == 'rule1') id2 = next(x['id'] for x in rules if x['name'] == 'rule2') # show rules by id self.assertEqual( self.pe1.get('policies/alice/rules/%s' % id1).status_code, 200) self.assertEqual( self.pe2.get('policies/alice/rules/%s' % id1).status_code, 200) self.assertEqual( self.pe1.get('policies/alice/rules/%s' % id2).status_code, 200) self.assertEqual( self.pe2.get('policies/alice/rules/%s' % id2).status_code, 200) # list tables self.assertEqual(len( self.pe1.get('policies/alice/tables').json()['results']), 2) self.assertEqual(len( self.pe2.get('policies/alice/tables').json()['results']), 2) # show tables self.assertEqual( self.pe1.get('policies/alice/tables/p').status_code, 200) self.assertEqual( self.pe2.get('policies/alice/tables/p').status_code, 200) self.assertEqual( self.pe1.get('policies/alice/tables/q').status_code, 200) self.assertEqual( self.pe2.get('policies/alice/tables/q').status_code, 200) # delete from PE1 and check both have 1 rule left self.assertEqual(self.pe1.delete( suffix='policies/alice/rules/%s' % id1).status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 1) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) # delete from PE2 and check both have 0 rules left self.assertEqual(self.pe2.delete( suffix='policies/alice/rules/%s' % id2).status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 0) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 0) except Exception: self.dump_nodes_logs() raise def test_conflicting_policy_create_delete(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) self.assertEqual(self.pe2.post( suffix='policies', json={'name': 'alice'}).status_code, 409) # create policy bob in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'bob'}).status_code, 201) self.assertEqual(self.pe2.delete( suffix='policies/bob').status_code, 200) self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'bob'}).status_code, 201) except Exception: LOG.error('PE1 process output:\n%s' % self.read_output_file(self.outfiles[1])) LOG.error('PE2 process output:\n%s' % self.read_output_file(self.outfiles[2])) raise def test_policy_rule_create_delete(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) # add rule to PE1 (retry since 500 on first attempt) j = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} self.assertEqual(self.pe1.post( suffix='policies/alice/rules', json=j).status_code, 201) self.assertEqual( self.pe1.get('policies/alice/rules').status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 1) time.sleep(10) # wait for sync before reading from PE2 self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) # add rule to PE2 j = {'rule': 'q(1)', 'name': 'rule2'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 201) # check 2 rule in each pe self.assertEqual(len( self.pe2.get('policies/alice/rules').json()['results']), 2) self.assertEqual(len( self.pe1.get('policies/alice/rules').json()['results']), 2) # grab rule IDs rules = self.pe2.get('policies/alice/rules').json()['results'] id1 = next(x['id'] for x in rules if x['name'] == 'rule1') id2 = next(x['id'] for x in rules if x['name'] == 'rule2') # delete from PE1 and check both have 1 rule left self.assertEqual(self.pe1.delete( suffix='policies/alice/rules/%s' % id1).status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 1) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) # delete from PE2 and check both have 0 rules left self.assertEqual(self.pe2.delete( suffix='policies/alice/rules/%s' % id2).status_code, 200) self.assertEqual( len(self.pe1.get('policies/alice/rules'). json()['results']), 0) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 0) except Exception: self.dump_nodes_logs() raise def test_policy_rule_create_delete_interference(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) j = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} rule_create_res = self.pe2.post( suffix='policies/alice/rules', json=j) self.assertEqual(rule_create_res.status_code, 201) rule_id = rule_create_res.json()['id'] self.assertEqual(self.pe1.delete( suffix='policies/alice/rules/%s' % rule_id).status_code, 200) self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 201) except Exception: self.dump_nodes_logs() raise def test_policy_rule_duplicate(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) j = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 201) self.assertEqual(self.pe1.post( suffix='policies/alice/rules', json=j).status_code, 409) self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 409) self.assertEqual( self.pe1.get('policies/alice/rules').status_code, 200) self.assertLessEqual( len(self.pe1.get('policies/alice/rules').json()['results']), 1) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) except Exception: self.dump_nodes_logs() raise def test_policy_rule_recursion(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) r1 = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} r2 = {'rule': 'q(x) :- p(x)', 'name': 'rule2'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=r1).status_code, 201) self.assertEqual(self.pe1.post( suffix='policies/alice/rules', json=r2).status_code, 400) self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=r2).status_code, 400) self.assertEqual( self.pe1.get('policies/alice/rules').status_code, 200) self.assertLessEqual( len(self.pe1.get('policies/alice/rules').json()['results']), 1) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) except Exception: self.dump_nodes_logs() raise def test_policy_rule_schema_mismatch(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) r1 = {'rule': 'p(x) :- q(x)', 'name': 'rule1'} r2 = {'rule': 'p(x) :- q(x, x)', 'name': 'rule2'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=r1).status_code, 201) self.assertEqual(self.pe1.post( suffix='policies/alice/rules', json=r2).status_code, 400) self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=r2).status_code, 400) self.assertEqual( self.pe1.get('policies/alice/rules').status_code, 200) self.assertLessEqual( len(self.pe1.get('policies/alice/rules').json()['results']), 1) self.assertEqual( self.pe2.get('policies/alice/rules').status_code, 200) self.assertEqual( len(self.pe2.get('policies/alice/rules'). json()['results']), 1) except Exception: self.dump_nodes_logs() raise def test_policy_rule_evaluation(self): try: # create policy alice in PE1 self.assertEqual(self.pe1.post( suffix='policies', json={'name': 'alice'}).status_code, 201) # add rule to PE1 j = {'rule': 'p(x) :- q(x)', 'name': 'rule0'} res = self.pe1.post( suffix='policies/alice/rules', json=j) self.assertEqual(res.status_code, 201) r_id = res.json()['id'] # add data to PE1 j = {'rule': ' q( 1 ) ', 'name': 'rule1'} res = self.pe1.post( suffix='policies/alice/rules', json=j) self.assertEqual(res.status_code, 201) q1_id = res.json()['id'] # # add data to PE2 j = {'rule': ' q ( 2 ) ', 'name': 'rule2'} self.assertEqual(self.pe2.post( suffix='policies/alice/rules', json=j).status_code, 201) # eval on PE1 helper.retry_check_function_return_value_table( lambda: [x['data'] for x in self.pe1.get('policies/alice/tables/p/rows').json()[ 'results']], [[1], [2]]) # eval on PE2 helper.retry_check_function_return_value_table( lambda: [x['data'] for x in self.pe2.get('policies/alice/tables/p/rows').json()[ 'results']], [[1], [2]]) self.assertEqual(self.pe1.delete( suffix='policies/alice/rules/%s' % q1_id).status_code, 200) # eval on PE1 helper.retry_check_function_return_value_table( lambda: [x['data'] for x in self.pe1.get('policies/alice/tables/p/rows').json()[ 'results']], [[2]]) # eval on PE2 helper.retry_check_function_return_value_table( lambda: [x['data'] for x in self.pe2.get('policies/alice/tables/p/rows').json()[ 'results']], [[2]]) self.assertEqual(self.pe2.delete( suffix='policies/alice/rules/%s' % r_id).status_code, 200) helper.retry_check_function_return_value(lambda: self.pe1.get( 'policies/alice/tables/p/rows').status_code, 404) helper.retry_check_function_return_value(lambda: self.pe2.get( 'policies/alice/tables/p/rows').status_code, 404) except Exception: self.dump_nodes_logs() raise
# coding=utf-8 # Copyright 2020 Google AI, Google Brain, the HuggingFace Inc. team and Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch ALBERT model with Patience-based Early Exit. """ import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.albert.modeling_albert import ( ALBERT_INPUTS_DOCSTRING, ALBERT_START_DOCSTRING, AlbertModel, AlbertPreTrainedModel, AlbertTransformer, ) logger = logging.getLogger(__name__) class AlbertTransformerWithPabee(AlbertTransformer): def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None): if current_layer == 0: hidden_states = self.embedding_hidden_mapping_in(hidden_states) else: hidden_states = hidden_states[0] layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups) # Index of the hidden group group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups)) layer_group_output = self.albert_layer_groups[group_idx]( hidden_states, attention_mask, head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group], ) hidden_states = layer_group_output[0] return (hidden_states,) @add_start_docstrings( "The bare ALBERT Model transformer with PABEE outputting raw hidden-states without any specific head on top.", ALBERT_START_DOCSTRING, ) class AlbertModelWithPabee(AlbertModel): def __init__(self, config): super().__init__(config) self.encoder = AlbertTransformerWithPabee(config) self.init_weights() self.patience = 0 self.inference_instances_num = 0 self.inference_layers_num = 0 self.regression_threshold = 0 def set_regression_threshold(self, threshold): self.regression_threshold = threshold def set_patience(self, patience): self.patience = patience def reset_stats(self): self.inference_instances_num = 0 self.inference_layers_num = 0 def log_stats(self): avg_inf_layers = self.inference_layers_num / self.inference_instances_num message = f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up = {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" print(message) @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_dropout=None, output_layers=None, regression=False, ): r""" Return: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`): Last layer hidden-state of the first token of the sequence (classification token) further processed by a Linear layer and a Tanh activation function. The Linear layer weights are trained from the next sentence prediction (classification) objective during pre-training. This output is usually *not* a good summary of the semantic content of the input, you're often better with averaging or pooling the sequence of hidden-states for the whole input sequence. hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds ) encoder_outputs = embedding_output if self.training: res = [] for i in range(self.config.num_hidden_layers): encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask, ) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) logits = output_layers[i](output_dropout(pooled_output)) res.append(logits) elif self.patience == 0: # Use all layers for inference encoder_outputs = self.encoder(encoder_outputs, extended_attention_mask, head_mask=head_mask) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)] else: patient_counter = 0 patient_result = None calculated_layer_num = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 encoder_outputs = self.encoder.adaptive_forward( encoder_outputs, current_layer=i, attention_mask=extended_attention_mask, head_mask=head_mask, ) pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0])) logits = output_layers[i](pooled_output) if regression: labels = logits.detach() if patient_result is not None: patient_labels = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: patient_counter = 0 else: labels = logits.detach().argmax(dim=1) if patient_result is not None: patient_labels = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(patient_labels)): patient_counter += 1 else: patient_counter = 0 patient_result = logits if patient_counter == self.patience: break res = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Albert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """, ALBERT_START_DOCSTRING, ) class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.albert = AlbertModelWithPabee(config) self.dropout = nn.Dropout(config.classifier_dropout_prob) self.classifiers = nn.ModuleList( [nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)] ) self.init_weights() @add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING) def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, ): r""" labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`): Labels for computing the sequence classification/regression loss. Indices should be in ``[0, ..., config.num_labels - 1]``. If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss), If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy). Returns: :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs: loss: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``: Classification (or regression if config.num_labels==1) loss. logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)`` Classification (or regression if config.num_labels==1) scores (before SoftMax). hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``): Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of shape :obj:`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the initial embedding outputs. attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``): Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape :obj:`(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. Examples:: from transformers import AlbertTokenizer from pabee import AlbertForSequenceClassificationWithPabee from torch import nn import torch tokenizer = AlbertTokenizer.from_pretrained('albert-base-v2') model = AlbertForSequenceClassificationWithPabee.from_pretrained('albert-base-v2') input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1 labels = torch.tensor([1]).unsqueeze(0) # Batch size 1 outputs = model(input_ids, labels=labels) loss, logits = outputs[:2] """ logits = self.albert( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_dropout=self.dropout, output_layers=self.classifiers, regression=self.num_labels == 1, ) outputs = (logits[-1],) if labels is not None: total_loss = None total_weights = 0 for ix, logits_item in enumerate(logits): if self.num_labels == 1: # We are doing regression loss_fct = MSELoss() loss = loss_fct(logits_item.view(-1), labels.view(-1)) else: loss_fct = CrossEntropyLoss() loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1)) if total_loss is None: total_loss = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 outputs = (total_loss / total_weights,) + outputs return outputs
import inspect import os import sys from django.apps import apps from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.db import DEFAULT_DB_ALIAS, connections from django.db.migrations.loader import MigrationLoader from django.utils.timezone import now from . import __version__ as VERSION from .conf import get_default_language from .utils import split_translated_fieldname try: from modeltranslation.translator import translator DJANGO_MODELTRANSLATION_AVAILABLE = True except ImportError: DJANGO_MODELTRANSLATION_AVAILABLE = False DEFAULT_LANGUAGE = get_default_language() def _raise_if_not_django_modeltranslation(): """Raise if we cannot import django-modeltranslation during migration""" if not DJANGO_MODELTRANSLATION_AVAILABLE: raise ImproperlyConfigured( "django-modeltranslation must be still installed when creating" "the modeltranslation -> modeltrans migrations." ) def get_translatable_models(): """ Get the translatable models according to django-modeltranslation !! only use to migrate from django-modeltranslation !! """ _raise_if_not_django_modeltranslation() return translator.get_registered_models() def get_translated_fields(Model): """ Enumerates the translated fields for a model according to django-modeltranslation. For example: title_nl, title_en, title_fr, body_nl, body_en, body_fr !! only use to migrate from django-modeltranslation !! """ _raise_if_not_django_modeltranslation() options = translator.get_options_for_model(Model) for original_field, fields in options.fields.items(): for translated in fields: yield translated.name def copy_translations(Model, fields): """ Copy translations for all items in the database for a Model with translations managed by django-modeltranslation into a json field `i18n` managed by django-modeltrans. Values for the default language will be copied to the original field. Arguments: Model: A (historical) Model from the migraton's app registry fields(iterable): list of fields to copy into their new places. """ for m in Model.objects.all(): m.i18n = {} for field in fields: value = getattr(m, field) if value in (None, ""): continue original_field, lang = split_translated_fieldname(field) if lang == DEFAULT_LANGUAGE: setattr(m, original_field, value) else: m.i18n[field] = value m.save() def get_latest_migration(app_name, connection=None): """ Get the name of the latest applied migration and raises if unapplied migrations exist for the app. Arguments: app_name(str): Name of the app. connection: database connection to get the latest migration for. Simplified version of https://github.com/django/django/blob/1.9.2/django/core/management/commands/showmigrations.py#L38-L77 """ if connection is None: connection = connections[DEFAULT_DB_ALIAS] loader = MigrationLoader(connection, ignore_no_migrations=True) graph = loader.graph last = None shown = set() for node in graph.leaf_nodes(app_name): for plan_node in graph.forwards_plan(node): if plan_node not in shown and plan_node[0] == app_name: if plan_node in loader.applied_migrations: last = plan_node[1] else: raise Exception("You have unapplied migration(s) for app {}".format(app_name)) shown.add(plan_node) return last def get_next_migration_filename(app_name, connection=None, migration_type="data"): """ Return name (including the absolute path) of the next migration to insert for this app """ latest_migration_name = get_latest_migration(app_name) next_migration_name = "{0:04d}_i18n_{1}_migration.py".format( int(latest_migration_name[0:4]) + 1, migration_type ) app_base_path = os.path.dirname(apps.get_app_config(app_name).module.__file__) return os.path.join(app_base_path, "migrations", next_migration_name) class I18nMigration(object): helper_functions = () template = """ # -*- coding: utf-8 -*- # Generated by django-modeltrans {version} on {timestamp} from __future__ import print_function, unicode_literals from django.db import migrations DEFAULT_LANGUAGE = "{DEFAULT_LANGUAGE}" {helpers} class Migration(migrations.Migration): dependencies = [ ("{app}", "{last_migration}"), ] operations = [ {operations} ] """ def __init__(self, app): self.models = [] self.app = app self.migration_filename = ( get_latest_migration(self.app) or "# TODO: manually insert latest migration here" ) def get_helper_functions(self): def to_str(fn): return inspect.getsource(fn) if callable(fn) else fn for fn in self.helper_functions: yield to_str(fn) for fn in self.get_extra_helper_functions(): yield to_str(fn) def get_extra_helper_functions(self): return [] def add_model(self, Model, fields): self.models.append((Model, fields)) def get_helper_src(self): return "\n\n".join(self.get_helper_functions()) def write(self, out=None): if out is None: out = sys.stdout out.write( self.template.format( version=VERSION, DEFAULT_LANGUAGE=getattr( settings, "MODELTRANSLATION_DEFAULT_LANGUAGE", get_default_language() ), timestamp=now().strftime("%Y-%m-%d %H:%M"), helpers=self.get_helper_src(), app=self.app, last_migration=self.migration_filename, operations=self.get_operations(), ) ) def write_migration_file(self): """ Write the migration to file. """ filename = get_next_migration_filename(self.app, migration_type=self.migration_type) with open(filename, "w") as f: self.write(f) return filename class I18nDataMigration(I18nMigration): migration_type = "data" helper_functions = (split_translated_fieldname, copy_translations) forwards_template = """ def forwards(apps, schema_editor): app = '{app}' todo = ( {todo}, ) for model, fields in todo: Model = apps.get_model(app, model) copy_translations(Model, fields) """ def get_extra_helper_functions(self): yield self.forwards_template.format( todo=",\n ".join( [str((Model.__name__, fields)) for Model, fields in self.models] ), app=self.app, ) def get_operations(self): return """ # The copying of values is (sort of) reversable by a no-op: # - values are copied into i18n (which is not used by anything but django-modeltrans) # - the default language is copied to the orignal field, which was not used # with django-modeltrans. migrations.RunPython(forwards, migrations.RunPython.noop), """
import copy import json import os import re from pydmrs.matching.exact_matching import dmrs_exact_matching from shapeworld.analyzers.ace import Ace from shapeworld.captions import Attribute, Relation, EntityType, Selector, Existential, Quantifier, NumberBound, ComparativeQuantifier, Proposition from shapeworld.realizers.dmrs.dmrs import Dmrs, SubDmrs, create_sortinfo from shapeworld.realizers.dmrs.realizer import prepare_ace, prepare_grammar int_regex = re.compile(pattern=r'^-?[0-9]+$') float_regex = re.compile(pattern=r'^-?[0-9]+.[0-9]+$') nested_tuple_regex = re.compile(pattern=r'^([a-z]+(\+[a-z]+)+)(,([a-z]+(\+[a-z]+)+))+$') tuple_regex = re.compile(pattern=r'^[a-z]+(,[a-z]+)+$') def parse_string(string): if int_regex.match(string): return int(string) elif float_regex.match(string): return float(string) elif nested_tuple_regex.match(string): return tuple(tuple(s.split('+')) for s in string.split(',')) elif tuple_regex.match(string): return tuple(string.split(',')) else: return str(string) class DmrsAnalyzer(object): def __init__(self, language): prepare_ace() prepare_grammar(language=language) directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), '..', 'realizers', 'dmrs') self.ace_path = os.path.join(directory, 'resources', 'ace') self.erg_path = os.path.join(directory, 'languages', language + '.dat') self.ace = Ace(executable=self.ace_path, grammar=self.erg_path) with open(os.path.join(directory, 'languages', language + '.json'), 'r') as filehandle: language = json.load(fp=filehandle) if 'sortinfos' in language: sortinfo_classes = dict() sortinfo_shortforms = dict() for cvarsort, sortinfo in language['sortinfos'].items(): assert 'features' in sortinfo sortinfo_class = create_sortinfo(cvarsort, tuple(sortinfo['features'])) sortinfo_classes[cvarsort] = sortinfo_class if 'shortform' in sortinfo: shortform = sortinfo['shortform'] assert all(feature in sortinfo_class.features for feature in shortform) assert all(len(key) == 1 and key not in '_?' for feature, kvs in shortform.items() for key in kvs) sortinfo_shortforms[cvarsort] = shortform else: sortinfo_classes = None sortinfo_shortforms = None self.unused = set() self.attributes = dict() self.attribute_by_key = dict() self.relation_attribute = None if 'attributes' in language: for predtype, values in language['attributes'].items(): predtype = parse_string(predtype) if predtype == 'relation': self.relation_attribute = Dmrs.parse(values['dmrs']) self.unused.add(('attribute', 'relation')) continue elif predtype not in self.attributes: self.attributes[predtype] = dict() for value, attribute in values.items(): value = parse_string(value) self.attributes[predtype][value] = Dmrs.parse(attribute['dmrs']) assert attribute['key'] not in self.attribute_by_key self.attribute_by_key[attribute['key']] = (predtype, value) self.unused.add(('attribute', predtype, value)) self.entity_type = None if 'type' in language: self.entity_type = Dmrs.parse(language['type']['dmrs']) self.unused.add(('type',)) self.selectors = dict() self.selector_by_key = dict() self.unique_selector = None if 'selectors' in language: for predtype, values in language['selectors'].items(): predtype = parse_string(predtype) if predtype == 'unique': self.unique_selector = Dmrs.parse(values['dmrs']) self.unused.add(('selector', 'unique')) continue elif predtype not in self.selectors: self.selectors[predtype] = dict() for value, selector in values.items(): value = parse_string(value) self.selectors[predtype][value] = Dmrs.parse(selector['dmrs']) assert selector['key'] not in self.selector_by_key self.selector_by_key[selector['key']] = (predtype, value) self.unused.add(('selector', predtype, value)) self.relations = dict() self.relation_by_key = dict() self.attribute_relation = None self.type_relation = None if 'relations' in language: for predtype, values in language['relations'].items(): predtype = parse_string(predtype) if predtype == 'attribute': self.attribute_relation = Dmrs.parse(values['dmrs']) self.unused.add(('relation', 'attribute')) continue elif predtype == 'type': self.type_relation = Dmrs.parse(values['dmrs']) self.unused.add(('relation', 'type')) continue elif predtype not in self.relations: self.relations[predtype] = dict() for value, relation in values.items(): value = parse_string(value) self.relations[predtype][value] = Dmrs.parse(relation['dmrs']) assert relation['key'] not in self.relation_by_key self.relation_by_key[relation['key']] = (predtype, value) self.unused.add(('relation', predtype, value)) self.existential = None self.type_existential = None self.selector_existential = None if 'existential' in language: if 'type' in language['existential']: self.type_existential = Dmrs.parse(language['existential']['type']['dmrs']) self.unused.add(('existential', 'type')) if 'selector' in language['existential']: self.selector_existential = Dmrs.parse(language['existential']['selector']['dmrs']) self.unused.add(('existential', 'selector')) self.quantifiers = dict() self.quantifier_by_key = dict() if 'quantifiers' in language: for qtype, qranges in language['quantifiers'].items(): qtype = parse_string(qtype) if qtype not in self.quantifiers: self.quantifiers[qtype] = dict() if qtype == 'composed': for identifier, quantifier in qranges.items(): identifier = parse_string(identifier) definition = tuple((str(qtype), str(qrange), quantity) for qtype, qrange, quantity in quantifier.pop('definition')) self.quantifiers[qtype][identifier] = {definition: Dmrs.parse(quantifier['dmrs'])} assert identifier not in self.quantifier_by_key self.quantifier_by_key[identifier] = (qtype, identifier, definition) self.unused.add(('quantifier', qtype, identifier, definition)) continue for qrange, quantities in qranges.items(): qrange = parse_string(qrange) if qrange not in self.quantifiers[qtype]: self.quantifiers[qtype][qrange] = dict() for quantity, quantifier in quantities.items(): quantity = parse_string(quantity) self.quantifiers[qtype][qrange][quantity] = Dmrs.parse(quantifier['dmrs']) assert quantifier['key'] not in self.quantifier_by_key self.quantifier_by_key[quantifier['key']] = (qtype, qrange, quantity) self.unused.add(('quantifier', qtype, qrange, quantity)) self.number_bounds = dict() self.number_bound_by_key = dict() if 'number-bounds' in language: for bound, number_bound in language['number-bounds'].items(): bound = parse_string(bound) self.number_bounds[bound] = Dmrs.parse(number_bound['dmrs']) assert number_bound['key'] not in self.number_bound_by_key self.number_bound_by_key[number_bound['key']] = (bound,) self.unused.add(('number-bound', bound)) self.comparative_quantifiers = dict() self.comparative_quantifier_by_key = dict() if 'comparative-quantifiers' in language: for qtype, qranges in language['comparative-quantifiers'].items(): qtype = parse_string(qtype) if qtype not in self.comparative_quantifiers: self.comparative_quantifiers[qtype] = dict() if qtype == 'composed': for identifier, comparative_quantifier in qranges.items(): identifier = parse_string(identifier) definition = tuple((str(qtype), str(qrange), quantity) for qtype, qrange, quantity in comparative_quantifier.pop('definition')) self.comparative_quantifiers[qtype][identifier] = {definition: Dmrs.parse(comparative_quantifier['dmrs'])} assert identifier not in self.comparative_quantifier_by_key self.comparative_quantifier_by_key[identifier] = (qtype, identifier, definition) self.unused.add(('comparative-quantifier', qtype, identifier, definition)) continue for qrange, quantities in qranges.items(): qrange = parse_string(qrange) if qrange not in self.comparative_quantifiers[qtype]: self.comparative_quantifiers[qtype][qrange] = dict() for quantity, quantifier in quantities.items(): quantity = parse_string(quantity) self.comparative_quantifiers[qtype][qrange][quantity] = Dmrs.parse(quantifier['dmrs']) assert quantifier['key'] not in self.comparative_quantifier_by_key self.comparative_quantifier_by_key[quantifier['key']] = (qtype, qrange, quantity) self.unused.add(('comparative-quantifier', qtype, qrange, quantity)) self.propositions = dict() self.proposition_by_key = dict() for connective, proposition in language['propositions'].items(): connective = parse_string(connective) if isinstance(proposition['dmrs'], list): self.propositions[connective] = tuple(Dmrs.parse(dmrs) for dmrs in proposition['dmrs']) else: self.propositions[connective] = Dmrs.parse(proposition['dmrs']) assert proposition['key'] not in self.proposition_by_key self.proposition_by_key[proposition['key']] = connective self.unused.add(('proposition', connective)) self.hierarchy = language['hierarchy'] self.pre_processing = list() self.pre_processing_by_key = dict() for n, paraphrase in enumerate(reversed(language['post-processing'])): search = Dmrs.parse(paraphrase['replace']) replace = Dmrs.parse(paraphrase.get('reverse', paraphrase['search'])) disable_hierarchy = paraphrase.get('disable_hierarchy', False) match_top_index = paraphrase.get('match_top_index', False) self.pre_processing.append((search, replace, disable_hierarchy, match_top_index)) assert paraphrase['key'] not in self.pre_processing_by_key self.pre_processing_by_key[paraphrase['key']] = n def analyze(self, sentences): captions = list() mrs_iter_iter = self.ace.parse(sentence_list=sentences) for mrs_iter in mrs_iter_iter: for k, mrs in enumerate(mrs_iter): if mrs is None: continue try: dmrs = mrs.convert_to(cls=Dmrs, copy_nodes=True) except Exception: continue analyses = self.analyze2(dmrs=dmrs) try: captions.append(next(analyses)) break except StopIteration: continue else: captions.append(None) return captions def analyze2(self, dmrs): # print(dmrs.dumps_xml()) for search, replace, disable_hierarchy, match_top_index in self.pre_processing: dmrs = dmrs.apply_paraphrases(paraphrases=[(search, replace)], hierarchy=(None if disable_hierarchy else self.hierarchy), match_top_index=match_top_index) # if any(str(node.pred) == '_if+and+only+if_x_1' for node in dmrs.iter_nodes()) and all(str(node.pred) != 'generic_entity' for node in dmrs.iter_nodes()): # print(dmrs.dumps_xml()) # if any(str(node.pred) == 'much-many_a' for node in dmrs.iter_nodes()) and all(str(node.pred) != 'generic_entity' for node in dmrs.iter_nodes()) and all(str(node.pred) != 'number_q' for node in dmrs.iter_nodes()) and all(str(node.pred) != 'loc_nonsp' for node in dmrs.iter_nodes()): # print(dmrs.dumps_xml()) # print('analyse', dmrs.dumps_xml()) # for caption_type in ('attribute', 'type', 'relation', 'existential', 'quantifier', 'number_bound', 'comparative_quantifier'): for caption, caption_dmrs in self.caption_with_dmrs(dmrs=dmrs): matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=True)) assert len(matches) <= 1 if len(matches) == 1 and len(caption_dmrs) == len(dmrs) and all(dmrs[matches[0][nodeid]].pred == caption_dmrs[nodeid].pred for nodeid in caption_dmrs): yield caption def attribute_caption(self, dmrs): # predtype: relation matches = list(dmrs_exact_matching(sub_dmrs=self.relation_attribute, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('attribute > relation') relation_nodeid = match[self.relation_attribute.anchors['attr'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=relation_nodeid) for relation, relation_dmrs in self.relation_caption(dmrs=unmatched_dmrs): attribute_dmrs = copy.deepcopy(self.relation_attribute) attribute_dmrs.compose(relation_dmrs, fusion={'attr': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=attribute_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: attribute = Attribute(predtype='relation', value=relation) self.unused.discard(('attribute', 'relation')) yield attribute, attribute_dmrs # predtype: * for predtype in self.attributes: for value in self.attributes[predtype]: # print(predtype, value) # print([str(node.pred) for node in self.attributes[predtype][value].iter_nodes()]) # print([str(node.pred) for node in dmrs.iter_nodes()]) matches = list(dmrs_exact_matching(sub_dmrs=self.attributes[predtype][value], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('attribute >', predtype, value) attribute_dmrs = copy.deepcopy(self.attributes[predtype][value]) attribute = Attribute(predtype=predtype, value=value) self.unused.discard(('attribute', predtype, value)) yield attribute, attribute_dmrs def type_caption(self, dmrs): # entity_ not if suffix matches = list(dmrs_exact_matching(sub_dmrs=self.entity_type, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('type > !') type_nodeid = match[self.entity_type.anchors['type'].nodeid] quant_nodeid = match[self.entity_type.anchors['quant'].nodeid] def next_attribute_caption(type_dmrs, unmatched_dmrs): no_match = True for attribute, attribute_dmrs in self.attribute_caption(dmrs=unmatched_dmrs): if type_dmrs.anchors['type'].pred != attribute_dmrs.anchors['type'].pred and not (type_dmrs.anchors['type'].pred.is_less_specific(attribute_dmrs.anchors['type'].pred, hierarchy=self.hierarchy) or type_dmrs.anchors['type'].pred.is_more_specific(attribute_dmrs.anchors['type'].pred, hierarchy=self.hierarchy)): continue next_type_dmrs = copy.deepcopy(type_dmrs) next_type_dmrs.compose(attribute_dmrs, fusion={'type': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) if all(nodeid in type_dmrs and next_type_dmrs[nodeid].pred == type_dmrs[nodeid].pred for nodeid in next_type_dmrs): continue matches = list(dmrs_exact_matching(sub_dmrs=next_type_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: no_match = False next_unmatched_dmrs = copy.deepcopy(unmatched_dmrs) next_unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in next_type_dmrs if match[nodeid] != type_nodeid and match[nodeid] != quant_nodeid) # attributes.append(attribute) for entity_type, next_type_dmrs in list(next_attribute_caption(type_dmrs=next_type_dmrs, unmatched_dmrs=next_unmatched_dmrs)): entity_type.value.append(attribute) yield entity_type, next_type_dmrs if no_match: entity_type = EntityType() yield entity_type, type_dmrs type_dmrs = copy.deepcopy(self.entity_type) unmatched_dmrs = SubDmrs(dmrs=dmrs) # attributes = list() for entity_type, type_dmrs in list(next_attribute_caption(type_dmrs=type_dmrs, unmatched_dmrs=unmatched_dmrs)): self.unused.discard(('type',)) yield entity_type, type_dmrs def selector_caption(self, dmrs): # predtype: unique matches = list(dmrs_exact_matching(sub_dmrs=self.unique_selector, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('selector > unique') unmatched_dmrs = SubDmrs(dmrs=dmrs) for entity_type, type_dmrs in self.type_caption(dmrs=unmatched_dmrs): selector_dmrs = copy.deepcopy(self.unique_selector) selector_dmrs.compose(type_dmrs, fusion={'scope': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=selector_dmrs, dmrs=dmrs, hierarchy=self.hierarchy)) if len(matches) >= 1: selector = Selector(predtype='unique', scope=entity_type) self.unused.discard(('selector', 'unique')) yield selector, selector_dmrs # predtype: * for predtype in self.selectors: for value in self.selectors[predtype]: selector_dmrs = self.selectors[predtype][value] matches = list(dmrs_exact_matching(sub_dmrs=selector_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('selector >', predtype, value) selector_nodeid = match[selector_dmrs.anchors['sel'].nodeid] scope_nodeid = match[selector_dmrs.anchors['scope'].nodeid] if predtype in Selector.comparison_selectors: comparison_nodeid = match[selector_dmrs.anchors['comp'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=scope_nodeid, exclude=(selector_nodeid, comparison_nodeid)) else: unmatched_dmrs = dmrs.subgraph(nodeid=scope_nodeid, exclude=(selector_nodeid,)) for scope, scope_dmrs in self.type_caption(dmrs=unmatched_dmrs): # print('selector > scope') scope_selector_dmrs = copy.deepcopy(selector_dmrs) scope_selector_dmrs.compose(scope_dmrs, fusion={'scope': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=scope_selector_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: if predtype in Selector.comparison_selectors: unmatched_dmrs = dmrs.subgraph(nodeid=comparison_nodeid, exclude=(selector_nodeid, scope_nodeid)) unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in scope_selector_dmrs if match[nodeid] != comparison_nodeid) for comparison, comparison_dmrs in self.selector_caption(dmrs=unmatched_dmrs): # print('selector > comparison') comp_selector_dmrs = copy.deepcopy(scope_selector_dmrs) comp_selector_dmrs.compose(comparison_dmrs, fusion={'comp': 'scope'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=comp_selector_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: selector = Selector(predtype=predtype, value=value, scope=scope, comparison=comparison) self.unused.discard(('relation', predtype, value)) yield selector, comp_selector_dmrs else: selector = Selector(predtype=predtype, value=value, scope=scope) self.unused.discard(('selector', predtype, value)) yield selector, scope_selector_dmrs def relation_caption(self, dmrs): # predtype: attribute matches = list(dmrs_exact_matching(sub_dmrs=self.attribute_relation, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('relation > attribute') relation_nodeid = match[self.attribute_relation.anchors['rel'].nodeid] type_nodeid = match[self.attribute_relation.anchors['type'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=type_nodeid, exclude=(relation_nodeid,)) for attribute, attribute_dmrs in self.attribute_caption(dmrs=unmatched_dmrs): relation_dmrs = copy.deepcopy(self.attribute_relation) relation_dmrs.compose(attribute_dmrs, fusion={'type': 'type'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=relation_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: relation = Relation(predtype='attribute', value=attribute) self.unused.discard(('relation', 'attribute')) yield relation, relation_dmrs # predtype: type matches = list(dmrs_exact_matching(sub_dmrs=self.type_relation, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('relation > type') relation_nodeid = match[self.type_relation.anchors['rel'].nodeid] type_nodeid = match[self.type_relation.anchors['type'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=type_nodeid, exclude=(relation_nodeid,)) for entity_type, type_dmrs in self.type_caption(dmrs=unmatched_dmrs): relation_dmrs = copy.deepcopy(self.type_relation) relation_dmrs.compose(type_dmrs, fusion={'type': 'type'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=relation_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: relation = Relation(predtype='type', value=entity_type) self.unused.discard(('relation', 'type')) yield relation, relation_dmrs # predtype: * for predtype in self.relations: for value in self.relations[predtype]: relation_dmrs = self.relations[predtype][value] matches = list(dmrs_exact_matching(sub_dmrs=relation_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('relation >', predtype, value) # print([str(node.pred) for node in self.relations[predtype][value].iter_nodes()]) # print([str(node.pred) for node in dmrs.iter_nodes()]) relation_nodeid = match[relation_dmrs.anchors['rel'].nodeid] reference_nodeid = match[relation_dmrs.anchors['ref'].nodeid] if predtype in Relation.meta_relations: unmatched_dmrs = dmrs.subgraph(nodeid=reference_nodeid, exclude=(relation_nodeid,)) unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in relation_dmrs if match[nodeid] != reference_nodeid) else: quantifier_nodeid = match[relation_dmrs.anchors['quant'].nodeid] if predtype in Relation.ternary_relations: comparison_nodeid = match[relation_dmrs.anchors['comp'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=reference_nodeid, exclude=(relation_nodeid, comparison_nodeid)) else: unmatched_dmrs = dmrs.subgraph(nodeid=reference_nodeid, exclude=(relation_nodeid,)) unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in relation_dmrs if match[nodeid] not in (reference_nodeid, quantifier_nodeid)) if predtype in Relation.meta_relations: reference_iter = self.relation_caption(dmrs=unmatched_dmrs) else: reference_iter = self.type_caption(dmrs=unmatched_dmrs) for reference, reference_dmrs in reference_iter: # print('relation > reference') ref_relation_dmrs = copy.deepcopy(relation_dmrs) if predtype in Relation.meta_relations: ref_relation_dmrs.compose(reference_dmrs, fusion={'ref': 'rel'}, hierarchy=self.hierarchy) else: ref_relation_dmrs.compose(reference_dmrs, fusion={'ref': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=ref_relation_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: if predtype in Relation.ternary_relations: unmatched_dmrs = dmrs.subgraph(nodeid=comparison_nodeid, exclude=(relation_nodeid, reference_nodeid)) unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in ref_relation_dmrs if match[nodeid] != comparison_nodeid) for comparison, comparison_dmrs in self.selector_caption(dmrs=unmatched_dmrs): # print('relation > comparison') comp_relation_dmrs = copy.deepcopy(ref_relation_dmrs) comp_relation_dmrs.compose(comparison_dmrs, fusion={'comp': 'scope'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=comp_relation_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: relation = Relation(predtype=predtype, value=value, reference=reference, comparison=comparison) self.unused.discard(('relation', predtype, value)) yield relation, comp_relation_dmrs else: relation = Relation(predtype=predtype, value=value, reference=reference) self.unused.discard(('relation', predtype, value)) yield relation, ref_relation_dmrs def existential_caption(self, dmrs): matches = list(dmrs_exact_matching(sub_dmrs=self.type_existential, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('existential type > restrictor') restrictor_nodeid = match[self.type_existential.anchors['rstr'].nodeid] body_nodeid = match[self.type_existential.anchors['body'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=restrictor_nodeid, exclude=(body_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid for restrictor, restrictor_dmrs in self.type_caption(dmrs=unmatched_dmrs): rstr_existential_dmrs = copy.deepcopy(self.type_existential) rstr_existential_dmrs.compose(restrictor_dmrs, fusion={'rstr': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=rstr_existential_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: # print('existential type > body') for match in matches: unmatched_dmrs = dmrs.subgraph(nodeid=body_nodeid, exclude=(restrictor_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in rstr_existential_dmrs if match[nodeid] != body_nodeid) for body, body_dmrs in self.relation_caption(dmrs=unmatched_dmrs): body_existential_dmrs = copy.deepcopy(rstr_existential_dmrs) body_existential_dmrs.compose(body_dmrs, fusion={'body': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=body_existential_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: existential = Existential(restrictor=restrictor, body=body) self.unused.discard(('existential', 'type')) yield existential, body_existential_dmrs matches = list(dmrs_exact_matching(sub_dmrs=self.selector_existential, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('existential selector > restrictor') restrictor_nodeid = match[self.selector_existential.anchors['rstr'].nodeid] body_nodeid = match[self.selector_existential.anchors['body'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=restrictor_nodeid, exclude=(body_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid for restrictor, restrictor_dmrs in self.selector_caption(dmrs=unmatched_dmrs): rstr_existential_dmrs = copy.deepcopy(self.selector_existential) rstr_existential_dmrs.compose(restrictor_dmrs, fusion={'rstr': 'scope'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=rstr_existential_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: # print('existential selector > body') for match in matches: unmatched_dmrs = dmrs.subgraph(nodeid=body_nodeid, exclude=(restrictor_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in rstr_existential_dmrs if match[nodeid] != body_nodeid) for body, body_dmrs in self.relation_caption(dmrs=unmatched_dmrs): body_existential_dmrs = copy.deepcopy(rstr_existential_dmrs) body_existential_dmrs.compose(body_dmrs, fusion={'body': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=body_existential_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: existential = Existential(restrictor=restrictor, body=body) self.unused.discard(('existential', 'selector')) yield existential, body_existential_dmrs def quantifier_caption(self, dmrs): for qtype in self.quantifiers: for qrange in self.quantifiers[qtype]: for quantity in self.quantifiers[qtype][qrange]: # if any(str(node.pred) == '_at+least_x_deg' for node in dmrs.iter_nodes()) and any(str(node.pred) == '_quarter_n_of' for node in dmrs.iter_nodes()) and any(str(node.pred) == '_at+least_x_deg' for node in self.quantifiers[qtype][qrange][quantity].iter_nodes()): # print([str(node) for node in dmrs.iter_nodes()]) # print([str(node) for node in self.quantifiers[qtype][qrange][quantity].iter_nodes()]) quantifier_dmrs = self.quantifiers[qtype][qrange][quantity] matches = list(dmrs_exact_matching(sub_dmrs=quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('quantifier > restrictor', qtype, qrange, quantity) restrictor_nodeid = match[quantifier_dmrs.anchors['rstr'].nodeid] body_nodeid = match[quantifier_dmrs.anchors['body'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=restrictor_nodeid, exclude=(body_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid for restrictor, restrictor_dmrs in self.type_caption(dmrs=unmatched_dmrs): # only one? rstr_quantifier_dmrs = copy.deepcopy(quantifier_dmrs) rstr_quantifier_dmrs.compose(restrictor_dmrs, fusion={'rstr': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) # print('rstr', rstr_quantifier_dmrs.dumps_xml()) # print('dmrs', dmrs.dumps_xml()) matches = list(dmrs_exact_matching(sub_dmrs=rstr_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('quantifier > body') unmatched_dmrs = dmrs.subgraph(nodeid=body_nodeid, exclude=(restrictor_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in rstr_quantifier_dmrs if match[nodeid] != body_nodeid) for body, body_dmrs in self.relation_caption(dmrs=unmatched_dmrs): # only one? body_quantifier_dmrs = copy.deepcopy(rstr_quantifier_dmrs) body_quantifier_dmrs.compose(body_dmrs, fusion={'body': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=body_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: quantifier = Quantifier(qtype=qtype, qrange=qrange, quantity=quantity, restrictor=restrictor, body=body) self.unused.discard(('quantifier', qtype, qrange, quantity)) yield quantifier, body_quantifier_dmrs def number_bound_caption(self, dmrs): for qtype in self.quantifiers: for qrange in self.quantifiers[qtype]: for quantity in self.quantifiers[qtype][qrange]: quantifier_dmrs = self.quantifiers[qtype][qrange][quantity] matches = list(dmrs_exact_matching(sub_dmrs=quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('number-bound > quantifier > restrictor', qtype, qrange, quantity) restrictor_nodeid = match[quantifier_dmrs.anchors['rstr'].nodeid] body_nodeid = match[quantifier_dmrs.anchors['body'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=restrictor_nodeid, exclude=(body_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid for bound in self.number_bounds: bound_dmrs = self.number_bounds[bound] matches = list(dmrs_exact_matching(sub_dmrs=bound_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('number-bound >', bound) scope_nodeid = match[bound_dmrs.anchors['scope'].nodeid] type_nodeid = match[bound_dmrs.anchors['type'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=scope_nodeid, exclude=(type_nodeid, body_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid for restrictor, restrictor_dmrs in self.type_caption(dmrs=unmatched_dmrs): rstr_bound_dmrs = copy.deepcopy(bound_dmrs) rstr_bound_dmrs.compose(restrictor_dmrs, fusion={'scope': 'type', 'tquant': 'quant'}, hierarchy=self.hierarchy) rstr_quantifier_dmrs = copy.deepcopy(quantifier_dmrs) rstr_quantifier_dmrs.compose(rstr_bound_dmrs, fusion={'rstr': 'type', 'quant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=rstr_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('number-bound > quantifier > body') unmatched_dmrs = dmrs.subgraph(nodeid=body_nodeid, exclude=(restrictor_nodeid,)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in rstr_quantifier_dmrs if match[nodeid] != body_nodeid) for body, body_dmrs in self.relation_caption(dmrs=unmatched_dmrs): # only one? body_quantifier_dmrs = copy.deepcopy(rstr_quantifier_dmrs) body_quantifier_dmrs.compose(body_dmrs, fusion={'body': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=body_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: quantifier = Quantifier(qtype=qtype, qrange=qrange, quantity=quantity, restrictor=restrictor, body=body) number_bound = NumberBound(bound=bound, quantifier=quantifier) self.unused.discard(('number-bound', bound)) yield number_bound, body_quantifier_dmrs def comparative_quantifier_caption(self, dmrs): for qtype in self.comparative_quantifiers: for qrange in self.comparative_quantifiers[qtype]: for quantity in self.comparative_quantifiers[qtype][qrange]: quantifier_dmrs = self.comparative_quantifiers[qtype][qrange][quantity] matches = list(dmrs_exact_matching(sub_dmrs=quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('comparative-quantifier > restrictor') restrictor_nodeid = match[quantifier_dmrs.anchors['rstr'].nodeid] restrictor_quantifier_nodeid = match[quantifier_dmrs.anchors['rquant'].nodeid] comparison_nodeid = match[quantifier_dmrs.anchors['comp'].nodeid] comparison_quantifier_nodeid = match[quantifier_dmrs.anchors['cquant'].nodeid] body_nodeid = match[quantifier_dmrs.anchors['body'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=restrictor_nodeid, exclude=(comparison_nodeid, comparison_quantifier_nodeid, body_nodeid)) # dmrs.index.nodeid, dmrs.top.nodeid for restrictor, restrictor_dmrs in self.type_caption(dmrs=unmatched_dmrs): rstr_quantifier_dmrs = copy.deepcopy(quantifier_dmrs) rstr_quantifier_dmrs.compose(restrictor_dmrs, fusion={'rstr': 'type', 'rquant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=rstr_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: # print('comparative-quantifier > comparison') for match in matches: unmatched_dmrs = dmrs.subgraph(nodeid=comparison_nodeid, exclude=(restrictor_nodeid, restrictor_quantifier_nodeid, body_nodeid)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in rstr_quantifier_dmrs if match[nodeid] not in (comparison_nodeid, comparison_quantifier_nodeid)) for comparison, comparison_dmrs in self.type_caption(dmrs=unmatched_dmrs): comp_quantifier_dmrs = copy.deepcopy(rstr_quantifier_dmrs) comp_quantifier_dmrs.compose(comparison_dmrs, fusion={'comp': 'type', 'cquant': 'quant'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=comp_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: # print('comparative-quantifier > body') for match in matches: unmatched_dmrs = dmrs.subgraph(nodeid=body_nodeid, exclude=(restrictor_nodeid, restrictor_quantifier_nodeid, comparison_nodeid, comparison_quantifier_nodeid)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in comp_quantifier_dmrs if match[nodeid] != body_nodeid) for body, body_dmrs in self.relation_caption(dmrs=unmatched_dmrs): body_quantifier_dmrs = copy.deepcopy(comp_quantifier_dmrs) body_quantifier_dmrs.compose(body_dmrs, fusion={'body': 'rel'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=body_quantifier_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: comparative_quantifier = ComparativeQuantifier(qtype=qtype, qrange=qrange, quantity=quantity, restrictor=restrictor, comparison=comparison, body=body) self.unused.discard(('comparative-quantifier', qtype, qrange, quantity)) yield comparative_quantifier, body_quantifier_dmrs def proposition_caption(self, dmrs): for proptype in self.propositions: if proptype in ('attribute', 'type', 'selector', 'relation', 'existential', 'quantifier', 'number-bound', 'comparative-quantifier'): continue proposition_dmrs = self.propositions[proptype] matches = list(dmrs_exact_matching(sub_dmrs=proposition_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('proposition > arg1') head_nodeid = match[proposition_dmrs.anchors['head'].nodeid] arg1_nodeid = match[proposition_dmrs.anchors['arg1'].nodeid] arg2_nodeid = match[proposition_dmrs.anchors['arg2'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=arg1_nodeid, exclude=(head_nodeid, arg2_nodeid)) # dmrs.index.nodeid, dmrs.top.nodeid for arg1, arg1_dmrs in self.caption_with_dmrs(dmrs=unmatched_dmrs): arg1_proposition_dmrs = copy.deepcopy(proposition_dmrs) arg1_proposition_dmrs.compose(arg1_dmrs, fusion={'arg1': 'head'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=arg1_proposition_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('proposition > arg2') unmatched_dmrs = dmrs.subgraph(nodeid=arg2_nodeid, exclude=(head_nodeid, arg1_nodeid)) # dmrs.index.nodeid, dmrs.top.nodeid unmatched_dmrs.remove_nodes(match[nodeid] for nodeid in arg1_proposition_dmrs if match[nodeid] != arg2_nodeid) for arg2, arg2_dmrs in self.caption_with_dmrs(dmrs=unmatched_dmrs): arg2_proposition_dmrs = copy.deepcopy(arg1_proposition_dmrs) arg2_proposition_dmrs.compose(arg2_dmrs, fusion={'arg2': 'head'}, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=arg2_proposition_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) >= 1: proposition = Proposition(proptype=proptype, clauses=(arg1, arg2)) self.unused.discard(('proposition', proptype)) yield proposition, arg2_proposition_dmrs def caption_with_dmrs(self, dmrs): yield from self.proposition_caption(dmrs=dmrs) if 'comparative-quantifier' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['comparative-quantifier'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > comparative-quantifier') quantifier_nodeid = match[self.propositions['comparative-quantifier'].anchors['head'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=quantifier_nodeid) # , dmrs.top.nodeid for comparative_quantifier, quantifier_dmrs in self.comparative_quantifier_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['comparative-quantifier']) caption_dmrs.compose(quantifier_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'comparative-quantifier')) yield comparative_quantifier, caption_dmrs if 'number-bound' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['number-bound'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > number-bound') bound_nodeid = match[self.propositions['number-bound'].anchors['head'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=bound_nodeid) # , dmrs.top.nodeid for number_bound, bound_dmrs in self.number_bound_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['number-bound']) caption_dmrs.compose(bound_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'number-bound')) yield number_bound, caption_dmrs if 'quantifier' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['quantifier'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > quantifier') quantifier_nodeid = match[self.propositions['quantifier'].anchors['head'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=quantifier_nodeid) # , dmrs.top.nodeid for quantifier, quantifier_dmrs in self.quantifier_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['quantifier']) caption_dmrs.compose(quantifier_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'quantifier')) yield quantifier, caption_dmrs if 'existential' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['existential'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > existential') existential_nodeid = match[self.propositions['existential'].anchors['head'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=existential_nodeid) # , dmrs.top.nodeid for existential, existential_dmrs in self.existential_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['existential']) caption_dmrs.compose(existential_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'existential')) yield existential, caption_dmrs if 'relation' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['relation'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > relation') relation_nodeid = match[self.propositions['relation'].anchors['rel'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=relation_nodeid) # , dmrs.top.nodeid for relation, relation_dmrs in self.relation_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['relation']) caption_dmrs.compose(relation_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'relation')) yield relation, caption_dmrs if 'selector' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['selector'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > selector') scope_nodeid = match[self.propositions['selector'].anchors['scope'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=scope_nodeid) # , dmrs.top.nodeid for selector, selector_dmrs in self.selector_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['selector']) caption_dmrs.compose(selector_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'selector')) yield selector, caption_dmrs if 'type' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['type'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > type') type_nodeid = match[self.propositions['type'].anchors['type'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=type_nodeid) # , dmrs.top.nodeid for entity_type, type_dmrs in self.type_caption(dmrs=unmatched_dmrs): # only one? caption_dmrs = copy.deepcopy(self.propositions['type']) caption_dmrs.compose(type_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'type')) yield entity_type, caption_dmrs if 'attribute' in self.propositions: matches = list(dmrs_exact_matching(sub_dmrs=self.propositions['attribute'], dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) for match in matches: # print('caption > attribute') attribute_nodeid = match[self.propositions['attribute'].anchors['type'].nodeid] unmatched_dmrs = dmrs.subgraph(nodeid=attribute_nodeid) # , dmrs.top.nodeid for attribute, attribute_dmrs in self.attribute_caption(dmrs=unmatched_dmrs): caption_dmrs = copy.deepcopy(self.propositions['attribute']) caption_dmrs.compose(attribute_dmrs, hierarchy=self.hierarchy) matches = list(dmrs_exact_matching(sub_dmrs=caption_dmrs, dmrs=dmrs, hierarchy=self.hierarchy, match_top_index=False)) if len(matches) == 1: self.unused.discard(('proposition', 'attribute')) yield attribute, caption_dmrs
# Copyright 2012 OpenStack Foundation # Copyright 2013 Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import json import time import urllib from tempest.api_schema.response.compute import servers as common_schema from tempest.api_schema.response.compute.v2 import servers as schema from tempest.common import rest_client from tempest.common import waiters from tempest import config from tempest import exceptions CONF = config.CONF class ServersClientJSON(rest_client.RestClient): def __init__(self, auth_provider): super(ServersClientJSON, self).__init__(auth_provider) self.service = CONF.compute.catalog_type def create_server(self, name, image_ref, flavor_ref, **kwargs): """ Creates an instance of a server. name (Required): The name of the server. image_ref (Required): Reference to the image used to build the server. flavor_ref (Required): The flavor used to build the server. Following optional keyword arguments are accepted: adminPass: Sets the initial root password. key_name: Key name of keypair that was created earlier. meta: A dictionary of values to be used as metadata. personality: A list of dictionaries for files to be injected into the server. security_groups: A list of security group dicts. networks: A list of network dicts with UUID and fixed_ip. user_data: User data for instance. availability_zone: Availability zone in which to launch instance. accessIPv4: The IPv4 access address for the server. accessIPv6: The IPv6 access address for the server. min_count: Count of minimum number of instances to launch. max_count: Count of maximum number of instances to launch. disk_config: Determines if user or admin controls disk configuration. return_reservation_id: Enable/Disable the return of reservation id block_device_mapping: Block device mapping for the server. block_device_mapping_v2: Block device mapping V2 for the server. """ post_body = { 'name': name, 'imageRef': image_ref, 'flavorRef': flavor_ref } for option in ['personality', 'adminPass', 'key_name', 'security_groups', 'networks', 'user_data', 'availability_zone', 'accessIPv4', 'accessIPv6', 'min_count', 'max_count', ('metadata', 'meta'), ('OS-DCF:diskConfig', 'disk_config'), 'return_reservation_id', 'block_device_mapping', 'block_device_mapping_v2']: if isinstance(option, tuple): post_param = option[0] key = option[1] else: post_param = option key = option value = kwargs.get(key) if value is not None: post_body[post_param] = value post_body = {'server': post_body} if 'sched_hints' in kwargs: hints = {'os:scheduler_hints': kwargs.get('sched_hints')} post_body = dict(post_body.items() + hints.items()) post_body = json.dumps(post_body) resp, body = self.post('servers', post_body) body = json.loads(body) # NOTE(maurosr): this deals with the case of multiple server create # with return reservation id set True if 'reservation_id' in body: return resp, body if CONF.compute_feature_enabled.enable_instance_password: create_schema = schema.create_server_with_admin_pass else: create_schema = schema.create_server self.validate_response(create_schema, resp, body) return resp, body['server'] def update_server(self, server_id, name=None, meta=None, accessIPv4=None, accessIPv6=None, disk_config=None): """ Updates the properties of an existing server. server_id: The id of an existing server. name: The name of the server. personality: A list of files to be injected into the server. accessIPv4: The IPv4 access address for the server. accessIPv6: The IPv6 access address for the server. """ post_body = {} if meta is not None: post_body['metadata'] = meta if name is not None: post_body['name'] = name if accessIPv4 is not None: post_body['accessIPv4'] = accessIPv4 if accessIPv6 is not None: post_body['accessIPv6'] = accessIPv6 if disk_config is not None: post_body['OS-DCF:diskConfig'] = disk_config post_body = json.dumps({'server': post_body}) resp, body = self.put("servers/%s" % str(server_id), post_body) body = json.loads(body) self.validate_response(schema.update_server, resp, body) return resp, body['server'] def get_server(self, server_id): """Returns the details of an existing server.""" resp, body = self.get("servers/%s" % str(server_id)) body = json.loads(body) self.validate_response(schema.get_server, resp, body) return resp, body['server'] def delete_server(self, server_id): """Deletes the given server.""" resp, body = self.delete("servers/%s" % str(server_id)) self.validate_response(common_schema.delete_server, resp, body) return resp, body def list_servers(self, params=None): """Lists all servers for a user.""" url = 'servers' if params: url += '?%s' % urllib.urlencode(params) resp, body = self.get(url) body = json.loads(body) self.validate_response(common_schema.list_servers, resp, body) return resp, body def list_servers_with_detail(self, params=None): """Lists all servers in detail for a user.""" url = 'servers/detail' if params: url += '?%s' % urllib.urlencode(params) resp, body = self.get(url) body = json.loads(body) self.validate_response(schema.list_servers_detail, resp, body) return resp, body def wait_for_server_status(self, server_id, status, extra_timeout=0, raise_on_error=True): """Waits for a server to reach a given status.""" return waiters.wait_for_server_status(self, server_id, status, extra_timeout=extra_timeout, raise_on_error=raise_on_error) def wait_for_server_termination(self, server_id, ignore_error=False): """Waits for server to reach termination.""" start_time = int(time.time()) while True: try: resp, body = self.get_server(server_id) except exceptions.NotFound: return server_status = body['status'] if server_status == 'ERROR' and not ignore_error: raise exceptions.BuildErrorException(server_id=server_id) if int(time.time()) - start_time >= self.build_timeout: raise exceptions.TimeoutException time.sleep(self.build_interval) def list_addresses(self, server_id): """Lists all addresses for a server.""" resp, body = self.get("servers/%s/ips" % str(server_id)) body = json.loads(body) self.validate_response(schema.list_addresses, resp, body) return resp, body['addresses'] def list_addresses_by_network(self, server_id, network_id): """Lists all addresses of a specific network type for a server.""" resp, body = self.get("servers/%s/ips/%s" % (str(server_id), network_id)) body = json.loads(body) self.validate_response(schema.list_addresses_by_network, resp, body) return resp, body def action(self, server_id, action_name, response_key, schema=common_schema.server_actions_common_schema, **kwargs): post_body = json.dumps({action_name: kwargs}) resp, body = self.post('servers/%s/action' % str(server_id), post_body) if response_key is not None: body = json.loads(body) # Check for Schema as 'None' because if we do not have any server # action schema implemented yet then they can pass 'None' to skip # the validation.Once all server action has their schema # implemented then, this check can be removed if every actions are # supposed to validate their response. # TODO(GMann): Remove the below 'if' check once all server actions # schema are implemented. if schema is not None: self.validate_response(schema, resp, body) body = body[response_key] else: self.validate_response(schema, resp, body) return resp, body def create_backup(self, server_id, backup_type, rotation, name): """Backup a server instance.""" return self.action(server_id, "createBackup", None, backup_type=backup_type, rotation=rotation, name=name) def change_password(self, server_id, adminPass): """Changes the root password for the server.""" return self.action(server_id, 'changePassword', None, adminPass=adminPass) def get_password(self, server_id): resp, body = self.get("servers/%s/os-server-password" % str(server_id)) body = json.loads(body) self.validate_response(common_schema.get_password, resp, body) return resp, body def delete_password(self, server_id): """ Removes the encrypted server password from the metadata server Note that this does not actually change the instance server password. """ resp, body = self.delete("servers/%s/os-server-password" % str(server_id)) self.validate_response(common_schema.server_actions_delete_password, resp, body) return resp, body def reboot(self, server_id, reboot_type): """Reboots a server.""" return self.action(server_id, 'reboot', None, type=reboot_type) def rebuild(self, server_id, image_ref, **kwargs): """Rebuilds a server with a new image.""" kwargs['imageRef'] = image_ref if 'disk_config' in kwargs: kwargs['OS-DCF:diskConfig'] = kwargs['disk_config'] del kwargs['disk_config'] if CONF.compute_feature_enabled.enable_instance_password: rebuild_schema = schema.rebuild_server_with_admin_pass else: rebuild_schema = schema.rebuild_server return self.action(server_id, 'rebuild', 'server', rebuild_schema, **kwargs) def resize(self, server_id, flavor_ref, **kwargs): """Changes the flavor of a server.""" kwargs['flavorRef'] = flavor_ref if 'disk_config' in kwargs: kwargs['OS-DCF:diskConfig'] = kwargs['disk_config'] del kwargs['disk_config'] return self.action(server_id, 'resize', None, **kwargs) def confirm_resize(self, server_id, **kwargs): """Confirms the flavor change for a server.""" return self.action(server_id, 'confirmResize', None, schema.server_actions_confirm_resize, **kwargs) def revert_resize(self, server_id, **kwargs): """Reverts a server back to its original flavor.""" return self.action(server_id, 'revertResize', None, **kwargs) def list_server_metadata(self, server_id): resp, body = self.get("servers/%s/metadata" % str(server_id)) body = json.loads(body) self.validate_response(common_schema.list_server_metadata, resp, body) return resp, body['metadata'] def set_server_metadata(self, server_id, meta, no_metadata_field=False): if no_metadata_field: post_body = "" else: post_body = json.dumps({'metadata': meta}) resp, body = self.put('servers/%s/metadata' % str(server_id), post_body) body = json.loads(body) self.validate_response(common_schema.set_server_metadata, resp, body) return resp, body['metadata'] def update_server_metadata(self, server_id, meta): post_body = json.dumps({'metadata': meta}) resp, body = self.post('servers/%s/metadata' % str(server_id), post_body) body = json.loads(body) self.validate_response(common_schema.update_server_metadata, resp, body) return resp, body['metadata'] def get_server_metadata_item(self, server_id, key): resp, body = self.get("servers/%s/metadata/%s" % (str(server_id), key)) body = json.loads(body) self.validate_response(schema.set_get_server_metadata_item, resp, body) return resp, body['meta'] def set_server_metadata_item(self, server_id, key, meta): post_body = json.dumps({'meta': meta}) resp, body = self.put('servers/%s/metadata/%s' % (str(server_id), key), post_body) body = json.loads(body) self.validate_response(schema.set_get_server_metadata_item, resp, body) return resp, body['meta'] def delete_server_metadata_item(self, server_id, key): resp, body = self.delete("servers/%s/metadata/%s" % (str(server_id), key)) self.validate_response(common_schema.delete_server_metadata_item, resp, body) return resp, body def stop(self, server_id, **kwargs): return self.action(server_id, 'os-stop', None, **kwargs) def start(self, server_id, **kwargs): return self.action(server_id, 'os-start', None, **kwargs) def attach_volume(self, server_id, volume_id, device='/dev/vdz'): """Attaches a volume to a server instance.""" post_body = json.dumps({ 'volumeAttachment': { 'volumeId': volume_id, 'device': device, } }) resp, body = self.post('servers/%s/os-volume_attachments' % server_id, post_body) body = json.loads(body) self.validate_response(schema.attach_volume, resp, body) return resp, body def detach_volume(self, server_id, volume_id): """Detaches a volume from a server instance.""" resp, body = self.delete('servers/%s/os-volume_attachments/%s' % (server_id, volume_id)) self.validate_response(schema.detach_volume, resp, body) return resp, body def add_security_group(self, server_id, name): """Adds a security group to the server.""" return self.action(server_id, 'addSecurityGroup', None, name=name) def remove_security_group(self, server_id, name): """Removes a security group from the server.""" return self.action(server_id, 'removeSecurityGroup', None, name=name) def live_migrate_server(self, server_id, dest_host, use_block_migration): """This should be called with administrator privileges .""" migrate_params = { "disk_over_commit": False, "block_migration": use_block_migration, "host": dest_host } req_body = json.dumps({'os-migrateLive': migrate_params}) resp, body = self.post("servers/%s/action" % str(server_id), req_body) self.validate_response(common_schema.server_actions_common_schema, resp, body) return resp, body def migrate_server(self, server_id, **kwargs): """Migrates a server to a new host.""" return self.action(server_id, 'migrate', None, **kwargs) def lock_server(self, server_id, **kwargs): """Locks the given server.""" return self.action(server_id, 'lock', None, **kwargs) def unlock_server(self, server_id, **kwargs): """UNlocks the given server.""" return self.action(server_id, 'unlock', None, **kwargs) def suspend_server(self, server_id, **kwargs): """Suspends the provided server.""" return self.action(server_id, 'suspend', None, **kwargs) def resume_server(self, server_id, **kwargs): """Un-suspends the provided server.""" return self.action(server_id, 'resume', None, **kwargs) def pause_server(self, server_id, **kwargs): """Pauses the provided server.""" return self.action(server_id, 'pause', None, **kwargs) def unpause_server(self, server_id, **kwargs): """Un-pauses the provided server.""" return self.action(server_id, 'unpause', None, **kwargs) def reset_state(self, server_id, state='error'): """Resets the state of a server to active/error.""" return self.action(server_id, 'os-resetState', None, state=state) def shelve_server(self, server_id, **kwargs): """Shelves the provided server.""" return self.action(server_id, 'shelve', None, **kwargs) def unshelve_server(self, server_id, **kwargs): """Un-shelves the provided server.""" return self.action(server_id, 'unshelve', None, **kwargs) def shelve_offload_server(self, server_id, **kwargs): """Shelve-offload the provided server.""" return self.action(server_id, 'shelveOffload', None, **kwargs) def get_console_output(self, server_id, length): kwargs = {'length': length} if length else {} return self.action(server_id, 'os-getConsoleOutput', 'output', common_schema.get_console_output, **kwargs) def list_virtual_interfaces(self, server_id): """ List the virtual interfaces used in an instance. """ resp, body = self.get('/'.join(['servers', server_id, 'os-virtual-interfaces'])) body = json.loads(body) self.validate_response(schema.list_virtual_interfaces, resp, body) return resp, body def rescue_server(self, server_id, **kwargs): """Rescue the provided server.""" return self.action(server_id, 'rescue', 'adminPass', schema.rescue_server, **kwargs) def unrescue_server(self, server_id): """Unrescue the provided server.""" return self.action(server_id, 'unrescue', None) def get_server_diagnostics(self, server_id): """Get the usage data for a server.""" resp, body = self.get("servers/%s/diagnostics" % str(server_id)) return resp, json.loads(body) def list_instance_actions(self, server_id): """List the provided server action.""" resp, body = self.get("servers/%s/os-instance-actions" % str(server_id)) body = json.loads(body) self.validate_response(schema.list_instance_actions, resp, body) return resp, body['instanceActions'] def get_instance_action(self, server_id, request_id): """Returns the action details of the provided server.""" resp, body = self.get("servers/%s/os-instance-actions/%s" % (str(server_id), str(request_id))) body = json.loads(body) self.validate_response(schema.get_instance_action, resp, body) return resp, body['instanceAction'] def force_delete_server(self, server_id, **kwargs): """Force delete a server.""" return self.action(server_id, 'forceDelete', None, **kwargs) def restore_soft_deleted_server(self, server_id, **kwargs): """Restore a soft-deleted server.""" return self.action(server_id, 'restore', None, **kwargs) def reset_network(self, server_id, **kwargs): """Resets the Network of a server""" return self.action(server_id, 'resetNetwork', None, **kwargs) def inject_network_info(self, server_id, **kwargs): """Inject the Network Info into server""" return self.action(server_id, 'injectNetworkInfo', None, **kwargs) def get_vnc_console(self, server_id, console_type): """Get URL of VNC console.""" return self.action(server_id, "os-getVNCConsole", "console", common_schema.get_vnc_console, type=console_type) def create_server_group(self, name, policies): """ Create the server group name : Name of the server-group policies : List of the policies - affinity/anti-affinity) """ post_body = { 'name': name, 'policies': policies, } post_body = json.dumps({'server_group': post_body}) resp, body = self.post('os-server-groups', post_body) body = json.loads(body) self.validate_response(schema.create_get_server_group, resp, body) return resp, body['server_group'] def delete_server_group(self, server_group_id): """Delete the given server-group.""" resp, body = self.delete("os-server-groups/%s" % str(server_group_id)) self.validate_response(schema.delete_server_group, resp, body) return resp, body def list_server_groups(self): """List the server-groups.""" resp, body = self.get("os-server-groups") body = json.loads(body) self.validate_response(schema.list_server_groups, resp, body) return resp, body['server_groups'] def get_server_group(self, server_group_id): """Get the details of given server_group.""" resp, body = self.get("os-server-groups/%s" % str(server_group_id)) body = json.loads(body) self.validate_response(schema.create_get_server_group, resp, body) return resp, body['server_group']
# -*- coding: utf-8 -*- from __future__ import absolute_import, print_function, with_statement import datetime import django import logging import mock import pytest import re import sys from django.conf import settings from django.core.exceptions import SuspiciousOperation from django.core.signals import got_request_exception from django.core.handlers.wsgi import WSGIRequest from django.http import QueryDict from django.template import TemplateSyntaxError from django.test import TestCase from django.test.client import Client as DjangoTestClient, ClientHandler as DjangoTestClientHandler from django.utils.translation import gettext_lazy from exam import fixture try: from django.urls import reverse except ImportError: # For Django version less than 1.10. from django.core.urlresolvers import reverse from raven.base import Client from raven.utils.compat import StringIO, iteritems, PY2, string_types, text_type from raven.contrib.django.client import DjangoClient, record_sql from raven.contrib.django.celery import CeleryClient from raven.contrib.django.handlers import SentryHandler from raven.contrib.django.models import ( SentryDjangoHandler, client, get_client ) from raven.contrib.django.middleware.wsgi import Sentry from raven.contrib.django.templatetags.raven import sentry_public_dsn from raven.contrib.django.views import is_valid_origin from raven.transport import HTTPTransport from raven.utils.serializer import transform from .views import AppError #from .models import MyTestModel DJANGO_15 = django.VERSION >= (1, 5, 0) DJANGO_18 = django.VERSION >= (1, 8, 0) DJANGO_110 = django.VERSION >= (1, 10, 0) MIDDLEWARE_ATTR = 'MIDDLEWARE' if DJANGO_110 else 'MIDDLEWARE_CLASSES' def make_request(): return WSGIRequest(environ={ 'wsgi.input': StringIO(), 'REQUEST_METHOD': 'POST', 'SERVER_NAME': 'testserver', 'SERVER_PORT': '80', 'CONTENT_TYPE': 'text/html', 'ACCEPT': 'text/html', }) class MockClientHandler(DjangoTestClientHandler): def __call__(self, environ, start_response=[]): # this pretends doesn't require start_response return super(MockClientHandler, self).__call__(environ) class MockSentryMiddleware(Sentry): def __call__(self, environ, start_response=[]): # this pretends doesn't require start_response return list(super(MockSentryMiddleware, self).__call__(environ, start_response)) class MockClient(DjangoClient): def __init__(self, *args, **kwargs): self.events = [] super(MockClient, self).__init__(*args, **kwargs) def send(self, **kwargs): self.events.append(kwargs) def is_enabled(self, **kwargs): return True class DisabledMockClient(MockClient): def is_enabled(self, **kwargs): return False class Settings(object): """ Allows you to define settings that are required for this function to work. >>> with Settings(SENTRY_LOGIN_URL='foo'): #doctest: +SKIP >>> print settings.SENTRY_LOGIN_URL #doctest: +SKIP """ NotDefined = object() def __init__(self, **overrides): self.overrides = overrides self._orig = {} def __enter__(self): for k, v in iteritems(self.overrides): self._orig[k] = getattr(settings, k, self.NotDefined) setattr(settings, k, v) def __exit__(self, exc_type, exc_value, traceback): for k, v in iteritems(self._orig): if v is self.NotDefined: delattr(settings, k) else: setattr(settings, k, v) class ClientProxyTest(TestCase): def test_proxy_responds_as_client(self): assert get_client() == client @mock.patch.object(MockClient, 'captureMessage') def test_basic(self, captureMessage): client.captureMessage(message='foo') captureMessage.assert_called_once_with(message='foo') @pytest.mark.usefixtures("user_instance") class DjangoClientTest(TestCase): # Fixture setup/teardown urls = 'tests.contrib.django.urls' def setUp(self): self.raven = get_client() self.handler = SentryDjangoHandler(self.raven) self.handler.install() self.addCleanup(self.handler.uninstall) def test_basic(self): self.raven.captureMessage(message='foo') assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'sentry.interfaces.Message' in event message = event['sentry.interfaces.Message'] assert message['message'] == 'foo' assert event['level'] == logging.ERROR assert event['message'] == 'foo' assert isinstance(event['timestamp'], datetime.datetime) def test_signal_integration(self): try: int(None) except Exception: got_request_exception.send(sender=self.__class__, request=None) else: self.fail('Expected an exception.') assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'TypeError' assert exc['value'], "int() argument must be a string or a number == not 'NoneType'" assert event['level'] == logging.ERROR assert event['message'], "TypeError: int() argument must be a string or a number == not 'NoneType'" @pytest.mark.skipif(sys.version_info[:2] == (2, 6), reason='Python 2.6') def test_view_exception(self): path = reverse('sentry-raise-exc') self.assertRaises(Exception, self.client.get, path) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'Exception' assert exc['value'] == 'view exception' assert event['level'] == logging.ERROR assert event['message'] == 'Exception: view exception' assert 'request' in event assert event['request']['url'] == 'http://testserver{}'.format(path) def test_request_data_unavailable_if_request_is_read(self): with Settings(**{MIDDLEWARE_ATTR: []}): path = reverse('sentry-readrequest-raise-exc') self.assertRaises( AppError, self.client.post, path, '{"a":"b"}', content_type='application/json') assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['request']['data'] == '<unavailable>' def test_djangorestframeworkcompatmiddleware_fills_request_data(self): with Settings(**{MIDDLEWARE_ATTR: [ 'raven.contrib.django.middleware.DjangoRestFrameworkCompatMiddleware']}): path = reverse('sentry-readrequest-raise-exc') self.assertRaises( AppError, self.client.post, path, '{"a":"b"}', content_type='application/json') assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['request']['data'] == '{"a":"b"}' def test_capture_event_with_request_middleware(self): path = reverse('sentry-trigger-event') resp = self.client.get(path) assert resp.status_code == 200 assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['message'] == 'test' assert 'request' in event assert event['request']['url'] == 'http://testserver{}'.format(path) def test_user_info(self): with Settings(**{MIDDLEWARE_ATTR: [ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware']}): self.assertRaises(Exception, self.client.get, reverse('sentry-raise-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'user' in event user_info = event['user'] assert user_info == {'ip_address': '127.0.0.1'} assert self.client.login(username='admin', password='password') self.assertRaises(Exception, self.client.get, reverse('sentry-raise-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'user' in event user_info = event['user'] assert user_info == { 'ip_address': '127.0.0.1', 'username': self.user.username, 'id': self.user.id, 'email': self.user.email, } @pytest.mark.skipif(not DJANGO_15, reason='< Django 1.5') def test_get_user_info_abstract_user(self): from django.db import models from django.http import HttpRequest from django.contrib.auth.models import AbstractBaseUser class MyUser(AbstractBaseUser): USERNAME_FIELD = 'username' username = models.CharField(max_length=32) email = models.EmailField() user = MyUser( username='admin', email='[email protected]', id=1, ) request = HttpRequest() request.META['REMOTE_ADDR'] = '127.0.0.1' request.user = user user_info = self.raven.get_user_info(request) assert user_info == { 'ip_address': '127.0.0.1', 'username': user.username, 'id': user.id, 'email': user.email, } request = HttpRequest() request.META['REMOTE_ADDR'] = '127.0.0.1' request.META['HTTP_X_FORWARDED_FOR'] = '1.1.1.1, 2.2.2.2' request.user = user user_info = self.raven.get_user_info(request) assert user_info == { 'ip_address': '1.1.1.1', 'username': user.username, 'id': user.id, 'email': user.email, } @pytest.mark.skipif(not DJANGO_110, reason='< Django 1.10') def test_get_user_info_is_authenticated_property(self): from django.db import models from django.http import HttpRequest from django.contrib.auth.models import AbstractBaseUser class MyUser(AbstractBaseUser): USERNAME_FIELD = 'username' username = models.CharField(max_length=32) email = models.EmailField() @property def is_authenticated(self): return True user = MyUser( username='admin', email='[email protected]', id=1, ) request = HttpRequest() request.META['REMOTE_ADDR'] = '127.0.0.1' request.user = user user_info = self.raven.get_user_info(request) assert user_info == { 'ip_address': '127.0.0.1', 'username': user.username, 'id': user.id, 'email': user.email, } request = HttpRequest() request.META['REMOTE_ADDR'] = '127.0.0.1' request.META['HTTP_X_FORWARDED_FOR'] = '1.1.1.1, 2.2.2.2' request.user = user user_info = self.raven.get_user_info(request) assert user_info == { 'ip_address': '1.1.1.1', 'username': user.username, 'id': user.id, 'email': user.email, } def test_request_middleware_exception(self): with Settings(**{MIDDLEWARE_ATTR: ['tests.contrib.django.middleware.BrokenRequestMiddleware']}): self.assertRaises(ImportError, self.client.get, reverse('sentry-raise-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'ImportError' assert exc['value'] == 'request' assert event['level'] == logging.ERROR assert event['message'] == 'ImportError: request' def test_response_middlware_exception(self): if django.VERSION[:2] < (1, 3): return with Settings(**{MIDDLEWARE_ATTR: ['tests.contrib.django.middleware.BrokenResponseMiddleware']}): self.assertRaises(ImportError, self.client.get, reverse('sentry-no-error')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'ImportError' assert exc['value'] == 'response' assert event['level'] == logging.ERROR assert event['message'] == 'ImportError: response' def test_broken_500_handler_with_middleware(self): with Settings(BREAK_THAT_500=True, INSTALLED_APPS=['raven.contrib.django']): client = DjangoTestClient(REMOTE_ADDR='127.0.0.1') client.handler = MockSentryMiddleware(MockClientHandler()) self.assertRaises(Exception, client.get, reverse('sentry-raise-exc')) assert len(self.raven.events) == 2 or 4 # TODO: ash remove duplicate client events event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'Exception' assert exc['value'] == 'view exception' assert event['level'] == logging.ERROR assert event['message'] == 'Exception: view exception' event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'ValueError' assert exc['value'] == 'handler500' assert event['level'] == logging.ERROR assert event['message'] == 'ValueError: handler500' def test_view_middleware_exception(self): with Settings(**{MIDDLEWARE_ATTR: ['tests.contrib.django.middleware.BrokenViewMiddleware']}): self.assertRaises(ImportError, self.client.get, reverse('sentry-raise-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'exception' in event exc = event['exception']['values'][-1] assert exc['type'] == 'ImportError' assert exc['value'] == 'view' assert event['level'] == logging.ERROR assert event['message'] == 'ImportError: view' @pytest.mark.skipif(DJANGO_18, reason='Django 1.8+ not supported') def test_template_name_as_view(self): self.assertRaises(TemplateSyntaxError, self.client.get, reverse('sentry-template-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['culprit'] == 'error.html' # def test_request_in_logging(self): # resp = self.client.get(reverse('sentry-log-request-exc')) # assert resp.status_code == 200 # assert len(self.raven.events) == 1 # event = self.raven.events.pop(0) # assert event['culprit'] == 'tests.contrib.django.views in logging_request_exc' # assert event['data']['META']['REMOTE_ADDR'] == '127.0.0.1' # TODO: Python bug #10805 @pytest.mark.skipif(not PY2, reason='Python 2') def test_record_none_exc_info(self): # sys.exc_info can return (None, None, None) if no exception is being # handled anywhere on the stack. See: # http://docs.python.org/library/sys.html#sys.exc_info record = logging.LogRecord( 'foo', logging.INFO, pathname=None, lineno=None, msg='test', args=(), exc_info=(None, None, None), ) handler = SentryHandler() handler.emit(record) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['message'] == 'test' def test_404_middleware(self): with Settings(**{MIDDLEWARE_ATTR: ['raven.contrib.django.middleware.Sentry404CatchMiddleware']}): resp = self.client.get('/non-existent-page') assert resp.status_code == 404 assert len(self.raven.events) == 1, [e['message'] for e in self.raven.events] event = self.raven.events.pop(0) assert event['level'] == logging.INFO assert event['logger'] == 'http404' assert 'request' in event http = event['request'] assert http['url'] == 'http://testserver/non-existent-page' assert http['method'] == 'GET' assert http['query_string'] == '' assert http['data'] is None def test_404_middleware_when_disabled(self): extra_settings = { MIDDLEWARE_ATTR: ['raven.contrib.django.middleware.Sentry404CatchMiddleware'], 'SENTRY_CLIENT': 'tests.contrib.django.tests.DisabledMockClient', } with Settings(**extra_settings): resp = self.client.get('/non-existent-page') assert resp.status_code == 404 assert self.raven.events == [] def test_invalid_client(self): extra_settings = { 'SENTRY_CLIENT': 'raven.contrib.django.DjangoClient', # default } # Should return fallback client (MockClient) client = get_client('nonexistent.and.invalid') # client should be valid, and the same as with the next call. assert client is get_client() with Settings(**extra_settings): assert isinstance(get_client(), DjangoClient) def test_transport_specification(self): extra_settings = { 'SENTRY_TRANSPORT': 'raven.transport.HTTPTransport', 'SENTRY_DSN': 'http://public:[email protected]/1', } with Settings(**extra_settings): client = get_client(reset=True) assert type(client.remote.get_transport()) is HTTPTransport def test_response_error_id_middleware(self): # TODO: test with 500s with Settings(**{MIDDLEWARE_ATTR: [ 'raven.contrib.django.middleware.SentryResponseErrorIdMiddleware', 'raven.contrib.django.middleware.Sentry404CatchMiddleware']}): resp = self.client.get('/non-existent-page') assert resp.status_code == 404 headers = dict(resp.items()) assert 'X-Sentry-ID' in headers assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert event['event_id'] == headers['X-Sentry-ID'] def test_get_client(self): assert get_client() == get_client() assert get_client('raven.base.Client').__class__ == Client assert get_client() == self.raven assert get_client('%s.%s' % (type(self.raven).__module__, type(self.raven).__name__)) == self.raven assert get_client() == self.raven def test_raw_post_data_partial_read(self): v = '{"foo": "bar"}' request = make_request() request.environ.update({ 'wsgi.input': StringIO(v + '\r\n\r\n'), 'CONTENT_TYPE': 'application/octet-stream', 'CONTENT_LENGTH': len(v), }) request.read(1) self.raven.captureMessage(message='foo', request=request) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'request' in event http = event['request'] assert http['method'] == 'POST' assert http['data'] == '<unavailable>' def test_read_post_data(self): request = make_request() request.POST = QueryDict("foo=bar&ham=spam") request.read(1) self.raven.captureMessage(message='foo', request=request) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'request' in event http = event['request'] assert http['method'] == 'POST' assert http['data'] == {'foo': 'bar', 'ham': 'spam'} def test_request_capture(self): request = make_request() request.read(1) self.raven.captureMessage(message='foo', request=request) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'request' in event http = event['request'] assert http['method'] == 'POST' assert http['data'] == '<unavailable>' assert 'headers' in http headers = http['headers'] assert 'Content-Type' in headers, headers.keys() assert headers['Content-Type'] == 'text/html' env = http['env'] assert 'SERVER_NAME' in env, env.keys() assert env['SERVER_NAME'] == 'testserver' assert 'SERVER_PORT' in env, env.keys() assert env['SERVER_PORT'] == '80' def test_marks_django_frames_correctly(self): self.assertRaises(TemplateSyntaxError, self.client.get, reverse('sentry-template-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) frames = event['exception']['values'][-1]['stacktrace']['frames'] for frame in frames: if frame['module'].startswith('django.'): assert frame.get('in_app') is False def test_adds_site_to_tags(self): self.assertRaises(TemplateSyntaxError, self.client.get, reverse('sentry-template-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) tags = event['tags'] assert 'site' in event['tags'] assert tags['site'] == 'example.com' def test_adds_site_to_tags_fallback(self): with Settings(SITE_ID=12345): # nonexistent site, should fallback to SITE_ID self.assertRaises(TemplateSyntaxError, self.client.get, reverse('sentry-template-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) tags = event['tags'] assert 'site' in event['tags'] assert tags['site'] == 12345 def test_settings_site_overrides_contrib(self): self.raven.site = 'FOO' self.assertRaises(TemplateSyntaxError, self.client.get, reverse('sentry-template-exc')) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) tags = event['tags'] assert 'site' in event['tags'] assert tags['site'] == 'FOO' @mock.patch.object(WSGIRequest, 'build_absolute_uri') def test_suspicious_operation_in_build_absolute_uri(self, build_absolute_uri): build_absolute_uri.side_effect = SuspiciousOperation() request = make_request() request.META['HTTP_HOST'] = 'example.com' result = self.raven.get_data_from_request(request) build_absolute_uri.assert_called_once_with() assert 'request' in result assert result['request']['url'] == 'http://example.com/' class DjangoTemplateTagTest(TestCase): @mock.patch('raven.contrib.django.DjangoClient.get_public_dsn') def test_sentry_public_dsn_no_args(self, get_public_dsn): sentry_public_dsn() get_public_dsn.assert_called_once_with(None) @mock.patch('raven.contrib.django.DjangoClient.get_public_dsn') def test_sentry_public_dsn_with_https(self, get_public_dsn): sentry_public_dsn('https') get_public_dsn.assert_called_once_with('https') class DjangoLoggingTest(TestCase): def setUp(self): self.logger = logging.getLogger(__name__) self.raven = get_client() def test_request_kwarg(self): handler = SentryHandler() logger = self.logger logger.handlers = [] logger.addHandler(handler) logger.error('This is a test error', extra={ 'request': WSGIRequest(environ={ 'wsgi.input': StringIO(), 'REQUEST_METHOD': 'POST', 'SERVER_NAME': 'testserver', 'SERVER_PORT': '80', 'CONTENT_TYPE': 'application/octet-stream', 'ACCEPT': 'application/json', }) }) assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'request' in event http = event['request'] assert http['method'] == 'POST' def test_tags(self): tags = {'tag1': 'test'} handler = SentryHandler(tags=tags) logger = self.logger logger.handlers = [] logger.addHandler(handler) logger.error('This is a test error') assert len(self.raven.events) == 1 event = self.raven.events.pop(0) assert 'tags' in event # event['tags'] also contains some other data, like 'site' assert 'tag1' in event['tags'] assert event['tags']['tag1'] == tags['tag1'] class CeleryIsolatedClientTest(TestCase): def setUp(self): self.client = CeleryClient( dsn='sync+http://public:[email protected]/1' ) @mock.patch('raven.contrib.django.celery.send_raw') def test_send_encoded(self, send_raw): self.client.send_encoded('foo') send_raw.delay.assert_called_once_with('foo') @mock.patch('raven.contrib.django.celery.send_raw') def test_without_eager(self, send_raw): """ Integration test to ensure it propagates all the way down and calls delay on the task. """ self.client.captureMessage(message='test') assert send_raw.delay.call_count == 1 class IsValidOriginTestCase(TestCase): def test_setting_empty(self): with Settings(SENTRY_ALLOW_ORIGIN=None): assert not is_valid_origin('http://example.com') def test_setting_all(self): with Settings(SENTRY_ALLOW_ORIGIN='*'): assert is_valid_origin('http://example.com') def test_setting_uri(self): with Settings(SENTRY_ALLOW_ORIGIN=['http://example.com']): assert is_valid_origin('http://example.com') def test_setting_regexp(self): with Settings(SENTRY_ALLOW_ORIGIN=[re.compile('https?\://(.*\.)?example\.com')]): assert is_valid_origin('http://example.com') class ReportViewTest(TestCase): urls = 'raven.contrib.django.urls' def setUp(self): super(ReportViewTest, self).setUp() self.path = reverse('raven-report', args=['1'], urlconf=self.urls) @mock.patch('raven.contrib.django.views.is_valid_origin') def test_calls_is_valid_origin_with_header(self, is_valid_origin): with self.settings(ROOT_URLCONF=self.urls): self.client.post(self.path, HTTP_ORIGIN='http://example.com') is_valid_origin.assert_called_once_with('http://example.com') @mock.patch('raven.contrib.django.views.is_valid_origin') def test_calls_is_valid_origin_with_header_as_get(self, is_valid_origin): with self.settings(ROOT_URLCONF=self.urls): self.client.get(self.path, HTTP_ORIGIN='http://example.com') is_valid_origin.assert_called_once_with('http://example.com') @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=False)) def test_fails_on_invalid_origin(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com') assert resp.status_code == 403 @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_options_call_sends_headers(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.options(self.path, HTTP_ORIGIN='http://example.com') assert resp.status_code == 200 assert resp['Access-Control-Allow-Origin'] == 'http://example.com' assert resp['Access-Control-Allow-Methods'], 'GET, POST == OPTIONS' @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_missing_data(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com') assert resp.status_code == 400 @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_invalid_data(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com', data='[1', content_type='application/octet-stream') assert resp.status_code == 400 @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_sends_data(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com', data='{}', content_type='application/octet-stream') assert resp.status_code == 200 event = client.events.pop(0) assert event == {'auth_header': None} @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_sends_authorization_header(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com', HTTP_AUTHORIZATION='Sentry foo/bar', data='{}', content_type='application/octet-stream') assert resp.status_code == 200 event = client.events.pop(0) assert event == {'auth_header': 'Sentry foo/bar'} @mock.patch('raven.contrib.django.views.is_valid_origin', mock.Mock(return_value=True)) def test_sends_x_sentry_auth_header(self): with self.settings(ROOT_URLCONF=self.urls): resp = self.client.post(self.path, HTTP_ORIGIN='http://example.com', HTTP_X_SENTRY_AUTH='Sentry foo/bar', data='{}', content_type='application/octet-stream') assert resp.status_code == 200 event = client.events.pop(0) assert event == {'auth_header': 'Sentry foo/bar'} class PromiseSerializerTestCase(TestCase): def test_basic(self): from django.utils.functional import lazy obj = lazy(lambda: 'bar', text_type)() res = transform(obj) expected = "'bar'" if not PY2 else "u'bar'" assert res == expected def test_handles_gettext_lazy(self): from django.utils.functional import lazy def fake_gettext(to_translate): return 'Igpay Atinlay' fake_gettext_lazy = lazy(fake_gettext, text_type) result = transform(fake_gettext_lazy("something")) assert isinstance(result, string_types) expected = "'Igpay Atinlay'" if not PY2 else "u'Igpay Atinlay'" assert result == expected def test_real_gettext_lazy(self): d = {text_type('lazy_translation'): gettext_lazy(text_type('testing'))} key = "'lazy_translation'" if not PY2 else "u'lazy_translation'" value = "'testing'" if not PY2 else "u'testing'" assert transform(d) == {key: value} class ModelInstanceSerializerTestCase(object): def test_basic(self, mytest_model): instance = mytest_model() result = transform(instance) assert isinstance(result, string_types) assert result == '<MyTestModel: MyTestModel object>' class QuerySetSerializerTestCase(object): def test_basic(self, mytest_model): from django.db.models.query import QuerySet obj = QuerySet(model=mytest_model) result = transform(obj) assert isinstance(result, string_types) assert result == '<QuerySet: model=MyTestModel>' class SentryExceptionHandlerTest(TestCase): @fixture def request(self): return make_request() @fixture def exc_info(self): return (ValueError, ValueError('lol world'), None) def setUp(self): super(SentryExceptionHandlerTest, self).setUp() self.client = get_client() self.handler = SentryDjangoHandler(self.client) @mock.patch.object(MockClient, 'captureException') @mock.patch('sys.exc_info') def test_does_capture_exception(self, exc_info, captureException): exc_info.return_value = self.exc_info self.handler.exception_handler(request=self.request) captureException.assert_called_once_with(exc_info=self.exc_info, request=self.request) @mock.patch.object(MockClient, 'send') @mock.patch('sys.exc_info') def test_does_exclude_filtered_types(self, exc_info, mock_send): exc_info.return_value = self.exc_info try: self.client.ignore_exceptions = set(['ValueError']) self.handler.exception_handler(request=self.request) finally: self.client.ignore_exceptions.clear() assert not mock_send.called @mock.patch.object(MockClient, 'send') @mock.patch('sys.exc_info') def test_ignore_exceptions_with_expression_match(self, exc_info, mock_send): exc_info.return_value = self.exc_info try: if not PY2: self.client.ignore_exceptions = set(['builtins.*']) else: self.client.ignore_exceptions = set(['exceptions.*']) self.handler.exception_handler(request=self.request) finally: self.client.ignore_exceptions.clear() assert not mock_send.called @mock.patch.object(MockClient, 'send') @mock.patch('sys.exc_info') def test_ignore_exceptions_with_module_match(self, exc_info, mock_send): exc_info.return_value = self.exc_info try: if not PY2: self.client.ignore_exceptions = set(['builtins.ValueError']) else: self.client.ignore_exceptions = set(['exceptions.ValueError']) self.handler.exception_handler(request=self.request) finally: self.client.ignore_exceptions.clear() assert not mock_send.called class SQLHookTestCase(TestCase): def test_wrong_params(self): query = 'SELECT COUNT(*) FROM mytestmodel WHERE id = %s' args = ['foobar', 42] record_sql(None, None, None, None, query, args) crumbs = get_client().context.breadcrumbs.get_buffer() self.assertEqual(crumbs[-1]['message'], query)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.pipeline import ClientRawResponse from .. import models class ListManagementTermOperations(object): """ListManagementTermOperations operations. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self.config = config def add_term( self, list_id, term, language, custom_headers=None, raw=False, **operation_config): """Add a term to the term list with list Id equal to list Id passed. :param list_id: List Id of the image list. :type list_id: str :param term: Term to be deleted :type term: str :param language: Language of the terms. :type language: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: object or ClientRawResponse if raw=true :rtype: object or ~msrest.pipeline.ClientRawResponse :raises: :class:`APIErrorException<azure.cognitiveservices.vision.contentmoderator.models.APIErrorException>` """ # Construct URL url = '/contentmoderator/lists/v1.0/termlists/{listId}/terms/{term}' path_format_arguments = { 'baseUrl': self._serialize.url("self.config.base_url", self.config.base_url, 'str', skip_quote=True), 'listId': self._serialize.url("list_id", list_id, 'str'), 'term': self._serialize.url("term", term, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['language'] = self._serialize.query("language", language, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.post(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [201]: raise models.APIErrorException(self._deserialize, response) deserialized = None if response.status_code == 201: deserialized = self._deserialize('object', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def delete_term( self, list_id, term, language, custom_headers=None, raw=False, **operation_config): """Deletes a term from the list with list Id equal to the list Id passed. :param list_id: List Id of the image list. :type list_id: str :param term: Term to be deleted :type term: str :param language: Language of the terms. :type language: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: str or ClientRawResponse if raw=true :rtype: str or ~msrest.pipeline.ClientRawResponse :raises: :class:`APIErrorException<azure.cognitiveservices.vision.contentmoderator.models.APIErrorException>` """ # Construct URL url = '/contentmoderator/lists/v1.0/termlists/{listId}/terms/{term}' path_format_arguments = { 'baseUrl': self._serialize.url("self.config.base_url", self.config.base_url, 'str', skip_quote=True), 'listId': self._serialize.url("list_id", list_id, 'str'), 'term': self._serialize.url("term", term, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['language'] = self._serialize.query("language", language, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [204]: raise models.APIErrorException(self._deserialize, response) deserialized = None if response.status_code == 204: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def get_all_terms( self, list_id, language, offset=None, limit=None, custom_headers=None, raw=False, **operation_config): """Gets all terms from the list with list Id equal to the list Id passed. :param list_id: List Id of the image list. :type list_id: str :param language: Language of the terms. :type language: str :param offset: The pagination start index. :type offset: int :param limit: The max limit. :type limit: int :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: Terms or ClientRawResponse if raw=true :rtype: ~azure.cognitiveservices.vision.contentmoderator.models.Terms or ~msrest.pipeline.ClientRawResponse :raises: :class:`APIErrorException<azure.cognitiveservices.vision.contentmoderator.models.APIErrorException>` """ # Construct URL url = '/contentmoderator/lists/v1.0/termlists/{listId}/terms' path_format_arguments = { 'baseUrl': self._serialize.url("self.config.base_url", self.config.base_url, 'str', skip_quote=True), 'listId': self._serialize.url("list_id", list_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['language'] = self._serialize.query("language", language, 'str') if offset is not None: query_parameters['offset'] = self._serialize.query("offset", offset, 'int') if limit is not None: query_parameters['limit'] = self._serialize.query("limit", limit, 'int') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.get(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [200]: raise models.APIErrorException(self._deserialize, response) deserialized = None if response.status_code == 200: deserialized = self._deserialize('Terms', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized def delete_all_terms( self, list_id, language, custom_headers=None, raw=False, **operation_config): """Deletes all terms from the list with list Id equal to the list Id passed. :param list_id: List Id of the image list. :type list_id: str :param language: Language of the terms. :type language: str :param dict custom_headers: headers that will be added to the request :param bool raw: returns the direct response alongside the deserialized response :param operation_config: :ref:`Operation configuration overrides<msrest:optionsforoperations>`. :return: str or ClientRawResponse if raw=true :rtype: str or ~msrest.pipeline.ClientRawResponse :raises: :class:`APIErrorException<azure.cognitiveservices.vision.contentmoderator.models.APIErrorException>` """ # Construct URL url = '/contentmoderator/lists/v1.0/termlists/{listId}/terms' path_format_arguments = { 'baseUrl': self._serialize.url("self.config.base_url", self.config.base_url, 'str', skip_quote=True), 'listId': self._serialize.url("list_id", list_id, 'str') } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} query_parameters['language'] = self._serialize.query("language", language, 'str') # Construct headers header_parameters = {} header_parameters['Content-Type'] = 'application/json; charset=utf-8' if custom_headers: header_parameters.update(custom_headers) # Construct and send request request = self._client.delete(url, query_parameters) response = self._client.send(request, header_parameters, stream=False, **operation_config) if response.status_code not in [204]: raise models.APIErrorException(self._deserialize, response) deserialized = None if response.status_code == 204: deserialized = self._deserialize('str', response) if raw: client_raw_response = ClientRawResponse(deserialized, response) return client_raw_response return deserialized
# -*- coding: utf-8 -*- """ werkzeug.wsgi ~~~~~~~~~~~~~ This module implements WSGI related helpers. :copyright: 2007 Pallets :license: BSD-3-Clause """ import io import re import warnings from functools import partial from functools import update_wrapper from itertools import chain from ._compat import BytesIO from ._compat import implements_iterator from ._compat import make_literal_wrapper from ._compat import string_types from ._compat import text_type from ._compat import to_bytes from ._compat import to_unicode from ._compat import try_coerce_native from ._compat import wsgi_get_bytes from ._internal import _encode_idna from .urls import uri_to_iri from .urls import url_join from .urls import url_parse from .urls import url_quote def responder(f): """Marks a function as responder. Decorate a function with it and it will automatically call the return value as WSGI application. Example:: @responder def application(environ, start_response): return Response('Hello World!') """ return update_wrapper(lambda *a: f(*a)(*a[-2:]), f) def get_current_url( environ, root_only=False, strip_querystring=False, host_only=False, trusted_hosts=None, ): """A handy helper function that recreates the full URL as IRI for the current request or parts of it. Here's an example: >>> from werkzeug.test import create_environ >>> env = create_environ("/?param=foo", "http://localhost/script") >>> get_current_url(env) 'http://localhost/script/?param=foo' >>> get_current_url(env, root_only=True) 'http://localhost/script/' >>> get_current_url(env, host_only=True) 'http://localhost/' >>> get_current_url(env, strip_querystring=True) 'http://localhost/script/' This optionally it verifies that the host is in a list of trusted hosts. If the host is not in there it will raise a :exc:`~werkzeug.exceptions.SecurityError`. Note that the string returned might contain unicode characters as the representation is an IRI not an URI. If you need an ASCII only representation you can use the :func:`~werkzeug.urls.iri_to_uri` function: >>> from werkzeug.urls import iri_to_uri >>> iri_to_uri(get_current_url(env)) 'http://localhost/script/?param=foo' :param environ: the WSGI environment to get the current URL from. :param root_only: set `True` if you only want the root URL. :param strip_querystring: set to `True` if you don't want the querystring. :param host_only: set to `True` if the host URL should be returned. :param trusted_hosts: a list of trusted hosts, see :func:`host_is_trusted` for more information. """ tmp = [environ["wsgi.url_scheme"], "://", get_host(environ, trusted_hosts)] cat = tmp.append if host_only: return uri_to_iri("".join(tmp) + "/") cat(url_quote(wsgi_get_bytes(environ.get("SCRIPT_NAME", ""))).rstrip("/")) cat("/") if not root_only: cat(url_quote(wsgi_get_bytes(environ.get("PATH_INFO", "")).lstrip(b"/"))) if not strip_querystring: qs = get_query_string(environ) if qs: cat("?" + qs) return uri_to_iri("".join(tmp)) def host_is_trusted(hostname, trusted_list): """Checks if a host is trusted against a list. This also takes care of port normalization. .. versionadded:: 0.9 :param hostname: the hostname to check :param trusted_list: a list of hostnames to check against. If a hostname starts with a dot it will match against all subdomains as well. """ if not hostname: return False if isinstance(trusted_list, string_types): trusted_list = [trusted_list] def _normalize(hostname): if ":" in hostname: hostname = hostname.rsplit(":", 1)[0] return _encode_idna(hostname) try: hostname = _normalize(hostname) except UnicodeError: return False for ref in trusted_list: if ref.startswith("."): ref = ref[1:] suffix_match = True else: suffix_match = False try: ref = _normalize(ref) except UnicodeError: return False if ref == hostname: return True if suffix_match and hostname.endswith(b"." + ref): return True return False def get_host(environ, trusted_hosts=None): """Return the host for the given WSGI environment. This first checks the ``Host`` header. If it's not present, then ``SERVER_NAME`` and ``SERVER_PORT`` are used. The host will only contain the port if it is different than the standard port for the protocol. Optionally, verify that the host is trusted using :func:`host_is_trusted` and raise a :exc:`~werkzeug.exceptions.SecurityError` if it is not. :param environ: The WSGI environment to get the host from. :param trusted_hosts: A list of trusted hosts. :return: Host, with port if necessary. :raise ~werkzeug.exceptions.SecurityError: If the host is not trusted. """ if "HTTP_HOST" in environ: rv = environ["HTTP_HOST"] if environ["wsgi.url_scheme"] == "http" and rv.endswith(":80"): rv = rv[:-3] elif environ["wsgi.url_scheme"] == "https" and rv.endswith(":443"): rv = rv[:-4] else: rv = environ["SERVER_NAME"] if (environ["wsgi.url_scheme"], environ["SERVER_PORT"]) not in ( ("https", "443"), ("http", "80"), ): rv += ":" + environ["SERVER_PORT"] if trusted_hosts is not None: if not host_is_trusted(rv, trusted_hosts): from .exceptions import SecurityError raise SecurityError('Host "%s" is not trusted' % rv) return rv def get_content_length(environ): """Returns the content length from the WSGI environment as integer. If it's not available or chunked transfer encoding is used, ``None`` is returned. .. versionadded:: 0.9 :param environ: the WSGI environ to fetch the content length from. """ if environ.get("HTTP_TRANSFER_ENCODING", "") == "chunked": return None content_length = environ.get("CONTENT_LENGTH") if content_length is not None: try: return max(0, int(content_length)) except (ValueError, TypeError): pass def get_input_stream(environ, safe_fallback=True): """Returns the input stream from the WSGI environment and wraps it in the most sensible way possible. The stream returned is not the raw WSGI stream in most cases but one that is safe to read from without taking into account the content length. If content length is not set, the stream will be empty for safety reasons. If the WSGI server supports chunked or infinite streams, it should set the ``wsgi.input_terminated`` value in the WSGI environ to indicate that. .. versionadded:: 0.9 :param environ: the WSGI environ to fetch the stream from. :param safe_fallback: use an empty stream as a safe fallback when the content length is not set. Disabling this allows infinite streams, which can be a denial-of-service risk. """ stream = environ["wsgi.input"] content_length = get_content_length(environ) # A wsgi extension that tells us if the input is terminated. In # that case we return the stream unchanged as we know we can safely # read it until the end. if environ.get("wsgi.input_terminated"): return stream # If the request doesn't specify a content length, returning the stream is # potentially dangerous because it could be infinite, malicious or not. If # safe_fallback is true, return an empty stream instead for safety. if content_length is None: return BytesIO() if safe_fallback else stream # Otherwise limit the stream to the content length return LimitedStream(stream, content_length) def get_query_string(environ): """Returns the `QUERY_STRING` from the WSGI environment. This also takes care about the WSGI decoding dance on Python 3 environments as a native string. The string returned will be restricted to ASCII characters. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the query string from. """ qs = wsgi_get_bytes(environ.get("QUERY_STRING", "")) # QUERY_STRING really should be ascii safe but some browsers # will send us some unicode stuff (I am looking at you IE). # In that case we want to urllib quote it badly. return try_coerce_native(url_quote(qs, safe=":&%=+$!*'(),")) def get_path_info(environ, charset="utf-8", errors="replace"): """Returns the `PATH_INFO` from the WSGI environment and properly decodes it. This also takes care about the WSGI decoding dance on Python 3 environments. if the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the path from. :param charset: the charset for the path info, or `None` if no decoding should be performed. :param errors: the decoding error handling. """ path = wsgi_get_bytes(environ.get("PATH_INFO", "")) return to_unicode(path, charset, errors, allow_none_charset=True) def get_script_name(environ, charset="utf-8", errors="replace"): """Returns the `SCRIPT_NAME` from the WSGI environment and properly decodes it. This also takes care about the WSGI decoding dance on Python 3 environments. if the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.9 :param environ: the WSGI environment object to get the path from. :param charset: the charset for the path, or `None` if no decoding should be performed. :param errors: the decoding error handling. """ path = wsgi_get_bytes(environ.get("SCRIPT_NAME", "")) return to_unicode(path, charset, errors, allow_none_charset=True) def pop_path_info(environ, charset="utf-8", errors="replace"): """Removes and returns the next segment of `PATH_INFO`, pushing it onto `SCRIPT_NAME`. Returns `None` if there is nothing left on `PATH_INFO`. If the `charset` is set to `None` a bytestring is returned. If there are empty segments (``'/foo//bar``) these are ignored but properly pushed to the `SCRIPT_NAME`: >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'} >>> pop_path_info(env) 'a' >>> env['SCRIPT_NAME'] '/foo/a' >>> pop_path_info(env) 'b' >>> env['SCRIPT_NAME'] '/foo/a/b' .. versionadded:: 0.5 .. versionchanged:: 0.9 The path is now decoded and a charset and encoding parameter can be provided. :param environ: the WSGI environment that is modified. """ path = environ.get("PATH_INFO") if not path: return None script_name = environ.get("SCRIPT_NAME", "") # shift multiple leading slashes over old_path = path path = path.lstrip("/") if path != old_path: script_name += "/" * (len(old_path) - len(path)) if "/" not in path: environ["PATH_INFO"] = "" environ["SCRIPT_NAME"] = script_name + path rv = wsgi_get_bytes(path) else: segment, path = path.split("/", 1) environ["PATH_INFO"] = "/" + path environ["SCRIPT_NAME"] = script_name + segment rv = wsgi_get_bytes(segment) return to_unicode(rv, charset, errors, allow_none_charset=True) def peek_path_info(environ, charset="utf-8", errors="replace"): """Returns the next segment on the `PATH_INFO` or `None` if there is none. Works like :func:`pop_path_info` without modifying the environment: >>> env = {'SCRIPT_NAME': '/foo', 'PATH_INFO': '/a/b'} >>> peek_path_info(env) 'a' >>> peek_path_info(env) 'a' If the `charset` is set to `None` a bytestring is returned. .. versionadded:: 0.5 .. versionchanged:: 0.9 The path is now decoded and a charset and encoding parameter can be provided. :param environ: the WSGI environment that is checked. """ segments = environ.get("PATH_INFO", "").lstrip("/").split("/", 1) if segments: return to_unicode( wsgi_get_bytes(segments[0]), charset, errors, allow_none_charset=True ) def extract_path_info( environ_or_baseurl, path_or_url, charset="utf-8", errors="werkzeug.url_quote", collapse_http_schemes=True, ): """Extracts the path info from the given URL (or WSGI environment) and path. The path info returned is a unicode string, not a bytestring suitable for a WSGI environment. The URLs might also be IRIs. If the path info could not be determined, `None` is returned. Some examples: >>> extract_path_info('http://example.com/app', '/app/hello') u'/hello' >>> extract_path_info('http://example.com/app', ... 'https://example.com/app/hello') u'/hello' >>> extract_path_info('http://example.com/app', ... 'https://example.com/app/hello', ... collapse_http_schemes=False) is None True Instead of providing a base URL you can also pass a WSGI environment. :param environ_or_baseurl: a WSGI environment dict, a base URL or base IRI. This is the root of the application. :param path_or_url: an absolute path from the server root, a relative path (in which case it's the path info) or a full URL. Also accepts IRIs and unicode parameters. :param charset: the charset for byte data in URLs :param errors: the error handling on decode :param collapse_http_schemes: if set to `False` the algorithm does not assume that http and https on the same server point to the same resource. .. versionchanged:: 0.15 The ``errors`` parameter defaults to leaving invalid bytes quoted instead of replacing them. .. versionadded:: 0.6 """ def _normalize_netloc(scheme, netloc): parts = netloc.split(u"@", 1)[-1].split(u":", 1) if len(parts) == 2: netloc, port = parts if (scheme == u"http" and port == u"80") or ( scheme == u"https" and port == u"443" ): port = None else: netloc = parts[0] port = None if port is not None: netloc += u":" + port return netloc # make sure whatever we are working on is a IRI and parse it path = uri_to_iri(path_or_url, charset, errors) if isinstance(environ_or_baseurl, dict): environ_or_baseurl = get_current_url(environ_or_baseurl, root_only=True) base_iri = uri_to_iri(environ_or_baseurl, charset, errors) base_scheme, base_netloc, base_path = url_parse(base_iri)[:3] cur_scheme, cur_netloc, cur_path, = url_parse(url_join(base_iri, path))[:3] # normalize the network location base_netloc = _normalize_netloc(base_scheme, base_netloc) cur_netloc = _normalize_netloc(cur_scheme, cur_netloc) # is that IRI even on a known HTTP scheme? if collapse_http_schemes: for scheme in base_scheme, cur_scheme: if scheme not in (u"http", u"https"): return None else: if not (base_scheme in (u"http", u"https") and base_scheme == cur_scheme): return None # are the netlocs compatible? if base_netloc != cur_netloc: return None # are we below the application path? base_path = base_path.rstrip(u"/") if not cur_path.startswith(base_path): return None return u"/" + cur_path[len(base_path) :].lstrip(u"/") @implements_iterator class ClosingIterator(object): """The WSGI specification requires that all middlewares and gateways respect the `close` callback of the iterable returned by the application. Because it is useful to add another close action to a returned iterable and adding a custom iterable is a boring task this class can be used for that:: return ClosingIterator(app(environ, start_response), [cleanup_session, cleanup_locals]) If there is just one close function it can be passed instead of the list. A closing iterator is not needed if the application uses response objects and finishes the processing if the response is started:: try: return response(environ, start_response) finally: cleanup_session() cleanup_locals() """ def __init__(self, iterable, callbacks=None): iterator = iter(iterable) self._next = partial(next, iterator) if callbacks is None: callbacks = [] elif callable(callbacks): callbacks = [callbacks] else: callbacks = list(callbacks) iterable_close = getattr(iterable, "close", None) if iterable_close: callbacks.insert(0, iterable_close) self._callbacks = callbacks def __iter__(self): return self def __next__(self): return self._next() def close(self): for callback in self._callbacks: callback() def wrap_file(environ, file, buffer_size=8192): """Wraps a file. This uses the WSGI server's file wrapper if available or otherwise the generic :class:`FileWrapper`. .. versionadded:: 0.5 If the file wrapper from the WSGI server is used it's important to not iterate over it from inside the application but to pass it through unchanged. If you want to pass out a file wrapper inside a response object you have to set :attr:`~BaseResponse.direct_passthrough` to `True`. More information about file wrappers are available in :pep:`333`. :param file: a :class:`file`-like object with a :meth:`~file.read` method. :param buffer_size: number of bytes for one iteration. """ return environ.get("wsgi.file_wrapper", FileWrapper)(file, buffer_size) @implements_iterator class FileWrapper(object): """This class can be used to convert a :class:`file`-like object into an iterable. It yields `buffer_size` blocks until the file is fully read. You should not use this class directly but rather use the :func:`wrap_file` function that uses the WSGI server's file wrapper support if it's available. .. versionadded:: 0.5 If you're using this object together with a :class:`BaseResponse` you have to use the `direct_passthrough` mode. :param file: a :class:`file`-like object with a :meth:`~file.read` method. :param buffer_size: number of bytes for one iteration. """ def __init__(self, file, buffer_size=8192): self.file = file self.buffer_size = buffer_size def close(self): if hasattr(self.file, "close"): self.file.close() def seekable(self): if hasattr(self.file, "seekable"): return self.file.seekable() if hasattr(self.file, "seek"): return True return False def seek(self, *args): if hasattr(self.file, "seek"): self.file.seek(*args) def tell(self): if hasattr(self.file, "tell"): return self.file.tell() return None def __iter__(self): return self def __next__(self): data = self.file.read(self.buffer_size) if data: return data raise StopIteration() @implements_iterator class _RangeWrapper(object): # private for now, but should we make it public in the future ? """This class can be used to convert an iterable object into an iterable that will only yield a piece of the underlying content. It yields blocks until the underlying stream range is fully read. The yielded blocks will have a size that can't exceed the original iterator defined block size, but that can be smaller. If you're using this object together with a :class:`BaseResponse` you have to use the `direct_passthrough` mode. :param iterable: an iterable object with a :meth:`__next__` method. :param start_byte: byte from which read will start. :param byte_range: how many bytes to read. """ def __init__(self, iterable, start_byte=0, byte_range=None): self.iterable = iter(iterable) self.byte_range = byte_range self.start_byte = start_byte self.end_byte = None if byte_range is not None: self.end_byte = self.start_byte + self.byte_range self.read_length = 0 self.seekable = hasattr(iterable, "seekable") and iterable.seekable() self.end_reached = False def __iter__(self): return self def _next_chunk(self): try: chunk = next(self.iterable) self.read_length += len(chunk) return chunk except StopIteration: self.end_reached = True raise def _first_iteration(self): chunk = None if self.seekable: self.iterable.seek(self.start_byte) self.read_length = self.iterable.tell() contextual_read_length = self.read_length else: while self.read_length <= self.start_byte: chunk = self._next_chunk() if chunk is not None: chunk = chunk[self.start_byte - self.read_length :] contextual_read_length = self.start_byte return chunk, contextual_read_length def _next(self): if self.end_reached: raise StopIteration() chunk = None contextual_read_length = self.read_length if self.read_length == 0: chunk, contextual_read_length = self._first_iteration() if chunk is None: chunk = self._next_chunk() if self.end_byte is not None and self.read_length >= self.end_byte: self.end_reached = True return chunk[: self.end_byte - contextual_read_length] return chunk def __next__(self): chunk = self._next() if chunk: return chunk self.end_reached = True raise StopIteration() def close(self): if hasattr(self.iterable, "close"): self.iterable.close() def _make_chunk_iter(stream, limit, buffer_size): """Helper for the line and chunk iter functions.""" if isinstance(stream, (bytes, bytearray, text_type)): raise TypeError( "Passed a string or byte object instead of true iterator or stream." ) if not hasattr(stream, "read"): for item in stream: if item: yield item return if not isinstance(stream, LimitedStream) and limit is not None: stream = LimitedStream(stream, limit) _read = stream.read while 1: item = _read(buffer_size) if not item: break yield item def make_line_iter(stream, limit=None, buffer_size=10 * 1024, cap_at_buffer=False): """Safely iterates line-based over an input stream. If the input stream is not a :class:`LimitedStream` the `limit` parameter is mandatory. This uses the stream's :meth:`~file.read` method internally as opposite to the :meth:`~file.readline` method that is unsafe and can only be used in violation of the WSGI specification. The same problem applies to the `__iter__` function of the input stream which calls :meth:`~file.readline` without arguments. If you need line-by-line processing it's strongly recommended to iterate over the input stream using this helper function. .. versionchanged:: 0.8 This function now ensures that the limit was reached. .. versionadded:: 0.9 added support for iterators as input stream. .. versionadded:: 0.11.10 added support for the `cap_at_buffer` parameter. :param stream: the stream or iterate to iterate over. :param limit: the limit in bytes for the stream. (Usually content length. Not necessary if the `stream` is a :class:`LimitedStream`. :param buffer_size: The optional buffer size. :param cap_at_buffer: if this is set chunks are split if they are longer than the buffer size. Internally this is implemented that the buffer size might be exhausted by a factor of two however. """ _iter = _make_chunk_iter(stream, limit, buffer_size) first_item = next(_iter, "") if not first_item: return s = make_literal_wrapper(first_item) empty = s("") cr = s("\r") lf = s("\n") crlf = s("\r\n") _iter = chain((first_item,), _iter) def _iter_basic_lines(): _join = empty.join buffer = [] while 1: new_data = next(_iter, "") if not new_data: break new_buf = [] buf_size = 0 for item in chain(buffer, new_data.splitlines(True)): new_buf.append(item) buf_size += len(item) if item and item[-1:] in crlf: yield _join(new_buf) new_buf = [] elif cap_at_buffer and buf_size >= buffer_size: rv = _join(new_buf) while len(rv) >= buffer_size: yield rv[:buffer_size] rv = rv[buffer_size:] new_buf = [rv] buffer = new_buf if buffer: yield _join(buffer) # This hackery is necessary to merge 'foo\r' and '\n' into one item # of 'foo\r\n' if we were unlucky and we hit a chunk boundary. previous = empty for item in _iter_basic_lines(): if item == lf and previous[-1:] == cr: previous += item item = empty if previous: yield previous previous = item if previous: yield previous def make_chunk_iter( stream, separator, limit=None, buffer_size=10 * 1024, cap_at_buffer=False ): """Works like :func:`make_line_iter` but accepts a separator which divides chunks. If you want newline based processing you should use :func:`make_line_iter` instead as it supports arbitrary newline markers. .. versionadded:: 0.8 .. versionadded:: 0.9 added support for iterators as input stream. .. versionadded:: 0.11.10 added support for the `cap_at_buffer` parameter. :param stream: the stream or iterate to iterate over. :param separator: the separator that divides chunks. :param limit: the limit in bytes for the stream. (Usually content length. Not necessary if the `stream` is otherwise already limited). :param buffer_size: The optional buffer size. :param cap_at_buffer: if this is set chunks are split if they are longer than the buffer size. Internally this is implemented that the buffer size might be exhausted by a factor of two however. """ _iter = _make_chunk_iter(stream, limit, buffer_size) first_item = next(_iter, "") if not first_item: return _iter = chain((first_item,), _iter) if isinstance(first_item, text_type): separator = to_unicode(separator) _split = re.compile(r"(%s)" % re.escape(separator)).split _join = u"".join else: separator = to_bytes(separator) _split = re.compile(b"(" + re.escape(separator) + b")").split _join = b"".join buffer = [] while 1: new_data = next(_iter, "") if not new_data: break chunks = _split(new_data) new_buf = [] buf_size = 0 for item in chain(buffer, chunks): if item == separator: yield _join(new_buf) new_buf = [] buf_size = 0 else: buf_size += len(item) new_buf.append(item) if cap_at_buffer and buf_size >= buffer_size: rv = _join(new_buf) while len(rv) >= buffer_size: yield rv[:buffer_size] rv = rv[buffer_size:] new_buf = [rv] buf_size = len(rv) buffer = new_buf if buffer: yield _join(buffer) @implements_iterator class LimitedStream(io.IOBase): """Wraps a stream so that it doesn't read more than n bytes. If the stream is exhausted and the caller tries to get more bytes from it :func:`on_exhausted` is called which by default returns an empty string. The return value of that function is forwarded to the reader function. So if it returns an empty string :meth:`read` will return an empty string as well. The limit however must never be higher than what the stream can output. Otherwise :meth:`readlines` will try to read past the limit. .. admonition:: Note on WSGI compliance calls to :meth:`readline` and :meth:`readlines` are not WSGI compliant because it passes a size argument to the readline methods. Unfortunately the WSGI PEP is not safely implementable without a size argument to :meth:`readline` because there is no EOF marker in the stream. As a result of that the use of :meth:`readline` is discouraged. For the same reason iterating over the :class:`LimitedStream` is not portable. It internally calls :meth:`readline`. We strongly suggest using :meth:`read` only or using the :func:`make_line_iter` which safely iterates line-based over a WSGI input stream. :param stream: the stream to wrap. :param limit: the limit for the stream, must not be longer than what the string can provide if the stream does not end with `EOF` (like `wsgi.input`) """ def __init__(self, stream, limit): self._read = stream.read self._readline = stream.readline self._pos = 0 self.limit = limit def __iter__(self): return self @property def is_exhausted(self): """If the stream is exhausted this attribute is `True`.""" return self._pos >= self.limit def on_exhausted(self): """This is called when the stream tries to read past the limit. The return value of this function is returned from the reading function. """ # Read null bytes from the stream so that we get the # correct end of stream marker. return self._read(0) def on_disconnect(self): """What should happen if a disconnect is detected? The return value of this function is returned from read functions in case the client went away. By default a :exc:`~werkzeug.exceptions.ClientDisconnected` exception is raised. """ from .exceptions import ClientDisconnected raise ClientDisconnected() def exhaust(self, chunk_size=1024 * 64): """Exhaust the stream. This consumes all the data left until the limit is reached. :param chunk_size: the size for a chunk. It will read the chunk until the stream is exhausted and throw away the results. """ to_read = self.limit - self._pos chunk = chunk_size while to_read > 0: chunk = min(to_read, chunk) self.read(chunk) to_read -= chunk def read(self, size=None): """Read `size` bytes or if size is not provided everything is read. :param size: the number of bytes read. """ if self._pos >= self.limit: return self.on_exhausted() if size is None or size == -1: # -1 is for consistence with file size = self.limit to_read = min(self.limit - self._pos, size) try: read = self._read(to_read) except (IOError, ValueError): return self.on_disconnect() if to_read and len(read) != to_read: return self.on_disconnect() self._pos += len(read) return read def readline(self, size=None): """Reads one line from the stream.""" if self._pos >= self.limit: return self.on_exhausted() if size is None: size = self.limit - self._pos else: size = min(size, self.limit - self._pos) try: line = self._readline(size) except (ValueError, IOError): return self.on_disconnect() if size and not line: return self.on_disconnect() self._pos += len(line) return line def readlines(self, size=None): """Reads a file into a list of strings. It calls :meth:`readline` until the file is read to the end. It does support the optional `size` argument if the underlaying stream supports it for `readline`. """ last_pos = self._pos result = [] if size is not None: end = min(self.limit, last_pos + size) else: end = self.limit while 1: if size is not None: size -= last_pos - self._pos if self._pos >= end: break result.append(self.readline(size)) if size is not None: last_pos = self._pos return result def tell(self): """Returns the position of the stream. .. versionadded:: 0.9 """ return self._pos def __next__(self): line = self.readline() if not line: raise StopIteration() return line def readable(self): return True # DEPRECATED from .middleware.dispatcher import DispatcherMiddleware as _DispatcherMiddleware from .middleware.http_proxy import ProxyMiddleware as _ProxyMiddleware from .middleware.shared_data import SharedDataMiddleware as _SharedDataMiddleware class ProxyMiddleware(_ProxyMiddleware): """ .. deprecated:: 0.15 ``werkzeug.wsgi.ProxyMiddleware`` has moved to :mod:`werkzeug.middleware.http_proxy`. This import will be removed in 1.0. """ def __init__(self, *args, **kwargs): warnings.warn( "'werkzeug.wsgi.ProxyMiddleware' has moved to 'werkzeug" ".middleware.http_proxy.ProxyMiddleware'. This import is" " deprecated as of version 0.15 and will be removed in" " version 1.0.", DeprecationWarning, stacklevel=2, ) super(ProxyMiddleware, self).__init__(*args, **kwargs) class SharedDataMiddleware(_SharedDataMiddleware): """ .. deprecated:: 0.15 ``werkzeug.wsgi.SharedDataMiddleware`` has moved to :mod:`werkzeug.middleware.shared_data`. This import will be removed in 1.0. """ def __init__(self, *args, **kwargs): warnings.warn( "'werkzeug.wsgi.SharedDataMiddleware' has moved to" " 'werkzeug.middleware.shared_data.SharedDataMiddleware'." " This import is deprecated as of version 0.15 and will be" " removed in version 1.0.", DeprecationWarning, stacklevel=2, ) super(SharedDataMiddleware, self).__init__(*args, **kwargs) class DispatcherMiddleware(_DispatcherMiddleware): """ .. deprecated:: 0.15 ``werkzeug.wsgi.DispatcherMiddleware`` has moved to :mod:`werkzeug.middleware.dispatcher`. This import will be removed in 1.0. """ def __init__(self, *args, **kwargs): warnings.warn( "'werkzeug.wsgi.DispatcherMiddleware' has moved to" " 'werkzeug.middleware.dispatcher.DispatcherMiddleware'." " This import is deprecated as of version 0.15 and will be" " removed in version 1.0.", DeprecationWarning, stacklevel=2, ) super(DispatcherMiddleware, self).__init__(*args, **kwargs)
from copy import deepcopy import numpy as np import matplotlib.pyplot as plt import struct from scipy.spatial.distance import hamming ################################################################################################## # Setting the path for searching modules ################################################################################################## import os import inspect current_directory = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) grandparent_directory = os.path.dirname(os.path.dirname(current_directory)) os.sys.path.insert(0,grandparent_directory) ################################################################################################## from brain.model.model import ModelFitLibrary from brain.machines.deep_belief_network import DBN from brain.machines.trbm import TRBM def binary(num): return ''.join(bin(ord(c)).replace('0b', '').rjust(8, '0') for c in struct.pack('!f', num)) def distance(x, y): d = 0. for i in xrange(len(x)): a = np.int32(list(binary(x[i]))) b = np.int32(list(binary(y[i]))) d = d + hamming(a,b) d = d / len(x) return d # def distance(x, y): # return np.sqrt(np.sum(np.square(np.sqrt(x) - np.sqrt(y)))) / np.sqrt(2) def rescale(arr, arr_min=None, arr_max=None): new_arr = np.array(np.abs(arr)) if arr_min == None: arr_min = np.min(new_arr, 0) #arr_min = arr_min - arr_min / 10. arr_max = np.max(new_arr, 0) #arr_max = arr_max + arr_max / 10. ranges = (arr_max - arr_min) + 1e-10 for i in xrange(new_arr.shape[0]): new_arr[i] = (new_arr[i] - arr_min) / ranges new_arr = np.clip(new_arr, 0., 1.) return new_arr, arr_min, arr_max def test_trial(index, fig1, fig2, title, \ train, retrain, test, \ train_data, retrain_data, test_data, anomalous_data, \ model_manager, curve_function, number_of_model_parameters, sequence_len, number_of_sequences): #training data network, arr_min, arr_max = train(train_data, curve_function, model_manager, number_of_model_parameters, sequence_len) long_term_memory = deepcopy(network) #test data - uniform data distances_same_distribution = test(test_data, arr_min, arr_max, curve_function, network, model_manager, number_of_model_parameters, sequence_len) threshold = np.mean(distances_same_distribution) + 2.5 * np.std(distances_same_distribution) #test data - zeros distances_other_distribution = test(anomalous_data, arr_min, arr_max, curve_function, network, model_manager, number_of_model_parameters, sequence_len, np.zeros(number_of_model_parameters)) #train long-term memory if type(retrain_data) is list: for i in xrange(len(retrain_data)): long_term_memory = retrain(retrain_data[i], arr_min, arr_max, long_term_memory, curve_function, model_manager, sequence_len) else: long_term_memory = retrain(retrain_data, arr_min, arr_max, long_term_memory, curve_function, model_manager, sequence_len) #test data - uniform data distances_same_distribution_lt = test(test_data, arr_min, arr_max, curve_function, long_term_memory, model_manager, number_of_model_parameters, sequence_len) threshold_lt = np.mean(distances_same_distribution_lt) + 2.5 * np.std(distances_same_distribution_lt) #test data - zeros y = np.zeros(len(anomalous_data)) distances_other_distribution_lt = test(anomalous_data, arr_min, arr_max, curve_function, long_term_memory, model_manager, number_of_model_parameters, sequence_len, np.zeros(number_of_model_parameters)) #distance plot plt.figure(1) fig1.add_subplot(3,3,index) plt.plot(np.ones(number_of_sequences) * threshold, 'g') plt.plot(distances_same_distribution, 'b') maximum_plot1 = max(distances_same_distribution) plt.plot(distances_other_distribution, 'r') maximum_plot2 = max(distances_other_distribution) plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') plt.figure(2) fig2.add_subplot(3,3,index) plt.plot(np.ones(number_of_sequences) * threshold_lt, 'g') plt.plot(distances_same_distribution_lt, 'b') maximum_plot1 = max(distances_same_distribution_lt) plt.plot(distances_other_distribution_lt, 'r') maximum_plot2 = max(distances_other_distribution_lt) plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') def test_feature_trial(index, fig1, fig2, title, train, retrain, train_with_models, test, \ train_data, retrain_data, test_data, anomalous_data, \ model_manager, sequence_len, number_of_sequences, use_bad_memory=False): #training data network, arr_min, arr_max = train(train_data, model_manager, sequence_len) long_term_memory = deepcopy(network) #test data - uniform data distances_same_distribution,_ = test(test_data, arr_min, arr_max, network, model_manager, sequence_len) threshold = np.mean(distances_same_distribution) + 2.5 * np.std(distances_same_distribution) #test data - zeros distances_other_distribution, _ = test(anomalous_data, arr_min, arr_max, network, model_manager, sequence_len) #train long-term memory if type(retrain_data) is list: for i in xrange(len(retrain_data)): long_term_memory = retrain(retrain_data[i], arr_min, arr_max, long_term_memory, None, model_manager, sequence_len, use_bad_memory=use_bad_memory) else: long_term_memory = retrain(retrain_data, arr_min, arr_max, long_term_memory, None, model_manager, sequence_len, use_bad_memory=use_bad_memory) #test data - uniform data distances_same_distribution_lt,_ = test(test_data, arr_min, arr_max, long_term_memory, model_manager, sequence_len) threshold_lt = np.mean(distances_same_distribution_lt) + 2.5 * np.std(distances_same_distribution_lt) #test data - zeros distances_other_distribution_lt,_ = test(anomalous_data, arr_min, arr_max, long_term_memory, model_manager, sequence_len) #distance plot plt.figure(1) fig1.add_subplot(3,3,index) plt.plot(np.ones(number_of_sequences) * threshold, 'g') plt.plot(distances_same_distribution, 'b') maximum_plot1 = max(distances_same_distribution) plt.plot(distances_other_distribution, 'r') maximum_plot2 = max(distances_other_distribution) plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') plt.figure(2) fig2.add_subplot(3,3,index) plt.plot(np.ones(number_of_sequences) * threshold_lt, 'g') plt.plot(distances_same_distribution_lt, 'b') maximum_plot1 = max(distances_same_distribution_lt) plt.plot(distances_other_distribution_lt, 'r') maximum_plot2 = max(distances_other_distribution_lt) plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') def test_sensor_trial(title, \ train, retrain, test, \ train_data, retrain_data, test_data, anomalous_data, \ model_manager, curve_function, number_of_model_parameters, sequence_len, number_of_sequences): network,arr_min, arr_max = train(train_data, curve_function, model_manager, number_of_model_parameters, sequence_len) long_term_memory = deepcopy(network) distances_no_faults = test(test_data,arr_min, arr_max, curve_function, network, model_manager, number_of_model_parameters, sequence_len) threshold = np.mean(distances_no_faults) + 2.5 * np.std(distances_no_faults) distances_faults = test(anomalous_data,arr_min, arr_max, curve_function, network, model_manager, number_of_model_parameters, sequence_len) if retrain_data != None: long_term_memory = retrain(retrain_data, arr_min, arr_max, long_term_memory, curve_function, model_manager, sequence_len) distances_no_faults_lt = test(test_data,arr_min, arr_max, curve_function, long_term_memory, model_manager, number_of_model_parameters, sequence_len) threshold_lt = np.mean(distances_no_faults_lt) + 2.5 * np.std(distances_no_faults_lt) distances_faults_lt = test(anomalous_data,arr_min, arr_max, curve_function, long_term_memory, model_manager, number_of_model_parameters, sequence_len) #distance plots plt.figure(1) plt.plot(np.ones(number_of_sequences) * threshold, 'g') plt.plot(distances_no_faults, 'b') plt.plot(distances_faults, 'r') plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') plt.figure(2) plt.plot(np.ones(number_of_sequences) * threshold_lt, 'g') plt.plot(distances_no_faults_lt, 'b') plt.plot(distances_faults_lt, 'r') plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') def test_sensor_feature_trial(title, \ train, retrain, test, \ train_data, retrain_data, test_data, anomalous_data, \ model_manager, sequence_len, number_of_sequences, use_bad_memory): network, arr_min, arr_max = train(train_data, model_manager, sequence_len) long_term_memory = deepcopy(network) distances_no_faults,_ = test(test_data, arr_min, arr_max, network, model_manager, sequence_len) threshold = np.mean(distances_no_faults) + 2.5 * np.std(distances_no_faults) distances_faults,_ = test(anomalous_data, arr_min, arr_max, network, model_manager, sequence_len) if retrain_data != None: long_term_memory = retrain(retrain_data, arr_min, arr_max, long_term_memory, None, model_manager, sequence_len) distances_no_faults_lt,_ = test(test_data, arr_min, arr_max, long_term_memory, model_manager, sequence_len) threshold_lt = np.mean(distances_no_faults_lt) + 2.5 * np.std(distances_no_faults_lt) distances_faults_lt,_ = test(anomalous_data, arr_min, arr_max, long_term_memory, model_manager, sequence_len) #distance plot plt.figure(1) plt.plot(np.ones(number_of_sequences) * threshold, 'g') plt.plot(distances_no_faults, 'b') plt.plot(distances_faults, 'r') plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') plt.figure(2) plt.plot(np.ones(number_of_sequences) * threshold_lt, 'g') plt.plot(distances_no_faults_lt, 'b') plt.plot(distances_faults_lt, 'r') plt.ylim((0, 1)) plt.title(title) plt.xlabel('t') plt.ylabel('distance') def generic_test(train, retrain, test, curve_functions, model_manager, number_of_model_parameters, sequence_len, number_of_sequences): for i in xrange(len(number_of_model_parameters)): figure = plt.figure(1) figure_lt = plt.figure(2) figure.suptitle('Noise-free data: ' + str(number_of_model_parameters[i]) + ' parameters') figure_lt.suptitle('Noise-free data: ' + str(number_of_model_parameters[i]) + ' parameters') anomalous_data = np.zeros(100) ############################# # Uniformly distributed data ############################# train_data = np.random.rand(1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.rand(1000)) test_data = np.random.rand(100) test_trial(1, figure, figure_lt, 'Uniform', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ############################# # Normally distributed data ############################# train_data = np.random.normal(0, 1, 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.normal(0, 1, 1000)) test_data = np.random.normal(0, 1, 100) test_trial(2, figure, figure_lt, 'Normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ################################# # Exponentially distributed data ################################# train_data = np.random.exponential(1, 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.exponential(1, 1000)) test_data = np.random.exponential(1, 100) test_trial(3, figure, figure_lt, 'Exponential', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ########################## # Exponential plus Normal ########################## train_data = np.random.exponential(1, 1000) + np.random.normal(0, 1, 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.exponential(1, 1000) + np.random.normal(0, 1, 1000)) test_data = np.random.exponential(1, 100) + np.random.normal(0, 1, 100) test_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ########################## # Exponential times Normal ########################## train_data = np.random.exponential(1, 1000) * np.random.normal(0, 1, 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.exponential(1, 1000) * np.random.normal(0, 1, 1000)) test_data = np.random.exponential(1, 100) * np.random.normal(0, 1, 100) test_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ####################### # Uniform times Normal ####################### train_data = np.random.rand(1000) * np.random.normal(0, 1, 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.rand(1000) * np.random.normal(0, 1, 1000)) test_data = np.random.rand(100) * np.random.normal(0, 1, 100) test_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ############# # Log-normal ############# train_data = np.random.lognormal(0., 1., 1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.lognormal(0., 1., 1000)) test_data = np.random.lognormal(0., 1., 100) test_trial(7, figure, figure_lt, 'Log-normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ######################## # Log-normal times Beta ######################## train_data = np.random.lognormal(0., 1., 1000) * np.random.beta(5.,3.,1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.lognormal(0., 1., 1000) * np.random.beta(5.,3.,1000)) test_data = np.random.lognormal(0., 1., 100) * np.random.beta(5.,3.,100) test_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) #################### # Normal times Beta #################### train_data = np.random.normal(4,10,1000) * np.random.beta(5.,3.,1000) retrain_data = list() for _ in xrange(10): retrain_data.append(np.random.normal(4,10,1000) * np.random.beta(5.,3.,1000)) test_data = np.random.normal(4,10,100) * np.random.beta(5.,3.,100) test_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) plt.show() ############# # Noisy data ############# for i in xrange(len(number_of_model_parameters)): figure = plt.figure(1) figure.suptitle('Noisy data: ' + str(number_of_model_parameters[i]) + ' parameters') figure_lt = plt.figure(2) figure_lt.suptitle('Noisy data: ' + str(number_of_model_parameters[i]) + ' parameters') ############################# # Uniformly distributed data ############################# train_data = list(np.random.rand(950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(1, figure, figure_lt, 'Uniform', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ############################# # Normally distributed data ############################# train_data = list(np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(2, figure, figure_lt, 'Normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ################################# # Exponentially distributed data ################################# train_data = list(np.random.exponential(1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(3, figure, figure_lt, 'Exponential', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ########################## # Exponential plus Normal ########################## train_data = list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) + np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ########################## # Exponential times Normal ########################## train_data = list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ####################### # Uniform times Normal ####################### train_data = list(np.random.rand(950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ############# # Log-normal ############# train_data = list(np.random.lognormal(0., 1., 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(7, figure, figure_lt, 'Log-normal', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) ######################## # Log-normal times beta ######################## train_data = list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) #################### # Normal times beta #################### train_data = list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(4,10,95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) plt.show() def generic_feature_test(train, retrain, train_with_models, test, model_manager, sequence_len, number_of_sequences): figure = plt.figure(1) figure_lt = plt.figure(2) figure.suptitle('Noise-free data') figure_lt.suptitle('Noise-free data') anomalous_data = np.zeros(100) ############################# # Uniformly distributed data ############################# train_data = np.random.rand(1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.rand(1000)) test_data = np.random.rand(100) test_feature_trial(1, figure, figure_lt, 'Uniform', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ############################# # Normally distributed data ############################# train_data = np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.normal(0, 1, 1000)) test_data = np.random.normal(0, 1, 100) test_feature_trial(2, figure, figure_lt, 'Normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ################################# # Exponentially distributed data ################################# train_data = np.random.exponential(1, 1000) retrain_data = np.random.exponential(1, 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.exponential(1, 1000)) test_feature_trial(3, figure, figure_lt, 'Exponential', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ########################## # Exponential plus Normal ########################## train_data = np.random.exponential(1, 1000) + np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.exponential(1, 1000) + np.random.normal(0, 1, 1000)) test_data = np.random.exponential(1, 100) + np.random.normal(0, 1, 100) test_feature_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ########################## # Exponential times Normal ########################## train_data = np.random.exponential(1, 1000) * np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.exponential(1, 1000) * np.random.normal(0, 1, 1000)) test_data = np.random.exponential(1, 100) * np.random.normal(0, 1, 100) test_feature_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ####################### # Uniform times Normal ####################### train_data = np.random.rand(1000) * np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.rand(1000) * np.random.normal(0, 1, 1000)) test_data = np.random.rand(100) * np.random.normal(0, 1, 100) test_feature_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ############# # Log-normal ############# train_data = np.random.lognormal(0., 1., 1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.lognormal(0., 1., 1000)) test_data = np.random.lognormal(0., 1., 100) test_feature_trial(7, figure, figure_lt, 'Log-normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ######################## # Log-normal times Beta ######################## train_data = np.random.lognormal(0., 1., 1000) * np.random.beta(5.,3.,1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.lognormal(0., 1., 1000) * np.random.beta(5.,3.,1000)) test_data = np.random.lognormal(0., 1., 100) * np.random.beta(5.,3.,100) test_feature_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) #################### # Normal times Beta #################### train_data = np.random.normal(4,10,1000) * np.random.beta(5.,3.,1000) retrain_data = list() for i in xrange(10): retrain_data.append(np.random.normal(4,10,1000) * np.random.beta(5.,3.,1000)) test_data = np.random.normal(4,10,100) * np.random.beta(5.,3.,100) test_feature_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) plt.show() ############# # Noisy data ############# figure = plt.figure(1) figure.suptitle('Noisy data') figure_lt = plt.figure(2) figure_lt.suptitle('Noisy data') ############################# # Uniformly distributed data ############################# train_data = list(np.random.rand(950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(1, figure, figure_lt, 'Uniform', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ############################# # Normally distributed data ############################# train_data = list(np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(2, figure, figure_lt, 'Normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ################################# # Exponentially distributed data ################################# train_data = list(np.random.exponential(1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(3, figure, figure_lt, 'Exponential', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ########################## # Exponential plus Normal ########################## train_data = list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) + np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ########################## # Exponential times Normal ########################## train_data = list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ####################### # Uniform times Normal ####################### train_data = list(np.random.rand(950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ############# # Log-normal ############# train_data = list(np.random.lognormal(0., 1., 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(7, figure, figure_lt, 'Log-normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) ######################## # Log-normal times beta ######################## train_data = list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) #################### # Normal times beta #################### train_data = list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(4,10,95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences) plt.show() def generic_feature_bad_memory_test(train, retrain, train_with_models, test, model_manager, sequence_len, number_of_sequences, use_bad_memory): figure = plt.figure(1) figure_lt = plt.figure(2) figure.suptitle('Noise-free data') figure_lt.suptitle('Noise-free data') anomalous_data = np.zeros(100) ############################# # Uniformly distributed data ############################# train_data = np.random.rand(1000) retrain_data = list() for i in xrange(10): data = list(np.random.rand(950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.rand(100) test_feature_trial(1, figure, figure_lt, 'Uniform', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ############################# # Normally distributed data ############################# train_data = np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): data = list(np.random.normal(0, 1, 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.normal(0, 1, 100) test_feature_trial(2, figure, figure_lt, 'Normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ################################# # Exponentially distributed data ################################# train_data = np.random.exponential(1, 1000) retrain_data = np.random.exponential(1, 1000) retrain_data = list() for i in xrange(10): data = list(np.random.exponential(1, 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_feature_trial(3, figure, figure_lt, 'Exponential', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ########################## # Exponential plus Normal ########################## train_data = np.random.exponential(1, 1000) + np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): data = list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.exponential(1, 100) + np.random.normal(0, 1, 100) test_feature_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ########################## # Exponential times Normal ########################## train_data = np.random.exponential(1, 1000) * np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): data = list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.exponential(1, 100) * np.random.normal(0, 1, 100) test_feature_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ####################### # Uniform times Normal ####################### train_data = np.random.rand(1000) * np.random.normal(0, 1, 1000) retrain_data = list() for i in xrange(10): data = list(np.random.rand(950) * np.random.normal(0, 1, 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.rand(100) * np.random.normal(0, 1, 100) test_feature_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ############# # Log-normal ############# train_data = np.random.lognormal(0., 1., 1000) retrain_data = list() for i in xrange(10): data = list(np.random.lognormal(0., 1., 950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.lognormal(0., 1., 100) test_feature_trial(7, figure, figure_lt, 'Log-normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ######################## # Log-normal times Beta ######################## train_data = np.random.lognormal(0., 1., 1000) * np.random.beta(5.,3.,1000) retrain_data = list() for i in xrange(10): data = list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.lognormal(0., 1., 100) * np.random.beta(5.,3.,100) test_feature_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) #################### # Normal times Beta #################### train_data = np.random.normal(4,10,1000) * np.random.beta(5.,3.,1000) retrain_data = list() for i in xrange(10): data = list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950)) for j in xrange(50): data.append(0) retrain_data.append(np.array(data)) test_data = np.random.normal(4,10,100) * np.random.beta(5.,3.,100) test_feature_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) plt.show() ############# # Noisy data ############# figure = plt.figure(1) figure.suptitle('Noisy data') figure_lt = plt.figure(2) figure_lt.suptitle('Noisy data') ############################# # Uniformly distributed data ############################# train_data = list(np.random.rand(950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(1, figure, figure_lt, 'Uniform', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ############################# # Normally distributed data ############################# train_data = list(np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(2, figure, figure_lt, 'Normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ################################# # Exponentially distributed data ################################# train_data = list(np.random.exponential(1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(3, figure, figure_lt, 'Exponential', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ########################## # Exponential plus Normal ########################## train_data = list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) + np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) + np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(4, figure, figure_lt, 'Exponential plus normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ########################## # Exponential times Normal ########################## train_data = list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.exponential(1, 950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.exponential(1, 95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(5, figure, figure_lt, 'Exponential times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ####################### # Uniform times Normal ####################### train_data = list(np.random.rand(950) * np.random.normal(0, 1, 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.rand(950) * np.random.normal(0, 1, 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.rand(95) * np.random.normal(0, 1, 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(6, figure, figure_lt, 'Uniform times normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ############# # Log-normal ############# train_data = list(np.random.lognormal(0., 1., 950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(7, figure, figure_lt, 'Log-normal', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) ######################## # Log-normal times beta ######################## train_data = list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.lognormal(0., 1., 950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.lognormal(0., 1., 95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(8, figure, figure_lt, 'Log-normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) #################### # Normal times beta #################### train_data = list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950)) for j in xrange(50): index = np.random.randint(0, len(train_data)) train_data.insert(index, 10.) train_data = np.array(train_data) retrain_data = list() for j in xrange(10): retrain_data.append(list(np.random.normal(4,10,950) * np.random.beta(5.,3.,950))) for _ in xrange(50): index = np.random.randint(0, len(retrain_data[j])) retrain_data[j].insert(index, 10.) retrain_data[j] = np.array(retrain_data[j]) test_data = list(np.random.normal(4,10,95) * np.random.beta(5.,3.,95)) for j in xrange(5): index = np.random.randint(0, len(test_data)) test_data.insert(index, 10.) test_data = np.array(test_data) test_feature_trial(9, figure, figure_lt, 'Normal times beta', train, retrain, train_with_models, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, use_bad_memory) plt.show() def generic_sensor_test(train_data, retrain_data, test_data, anomalous_data, train, retrain, test, curve_functions, model_manager, number_of_model_parameters, sequence_len, number_of_sequences): for i in xrange(len(number_of_model_parameters)): test_sensor_trial('', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, curve_functions[i], number_of_model_parameters[i], sequence_len, number_of_sequences) plt.show() def generic_sensor_feature_test(train_data, retrain_data, test_data, anomalous_data, train, retrain, train_with_models, test, model_manager, sequence_len, number_of_sequences, use_bad_memory): test_sensor_feature_trial('', train, retrain, test, train_data, retrain_data, test_data, anomalous_data, model_manager, sequence_len, number_of_sequences, False) plt.show()
#!/usr/bin/python __author__ = "Ryan Plyler" __version__ = 0.2 import sys import json import os ######################################################################## # Config ######################################################################## TODO_FILENAME = os.path.join(os.getcwd(), '.todo.list') ######################################################################## # Global Classes: bcolors Status ######################################################################## class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' RECV = '\033[33m' # yellow FAIL = '\033[91m' ENDC = '\033[0m' INFO = '\033[37m' WHITE = '\033[97m' class Status: PENDING = "PENDING" DONE = " DONE" ######################################################################## # Helper Fuctions: usage() nextID() ######################################################################## def usage(): print "\nUsage:" print "\ttodo | List the todos for the current directory" print "\ttodo show|list | Same as 'todo'" print "\ttodo new <new todo> | Create a new todo" print "\ttodo complete|done <todo-id> | Mark a todo as complete" print "\ttodo remove|rm|delete|del <todo-id> | Remove a todo" print "\ttodo undo <todo-id> | Undo a 'DONE' todo. Make it pending again." print "\ttodo purge | Delete all todos and todo savedata for the cwd" print "\ttodo help | Show this help" print def getLineCount(): with open(TODO_FILENAME) as f: lines = f.readlines() return len(lines) def readlines(): with open(TODO_FILENAME) as f: lines = f.readlines() linecount = len(lines) return lines, linecount def nextID(): """Get the the number of what the next todo ID should be""" return getLineCount() + 1 ######################################################################## # Core functionality functions: # newTodo() removeTodo(id) completeTodo(id) undoTodo(id) # showTodos() ######################################################################## def newTodo(content): formmated = bcolors.WHITE + "[" + "%id" + "] " + bcolors.ENDC + Status.PENDING + ": " + content + "\n" with open(TODO_FILENAME, "a") as f: f.write(formmated) print "Added todo #%d" % getLineCount() def removeTodo(id): id = int(id) lineCounter = 1 lines, linecount = readlines() todoRemoved = False newFile = open(TODO_FILENAME, 'w') for line in lines: # Write all the lines back to the file except the line number of id if lineCounter is not id: newFile.write(line) else: todoRemoved = True # increment the line counter lineCounter += 1 newFile.close() if todoRemoved: print "Removed todo #%s" % id else: print "No todo #%s found" % id def completeTodo(id): id = int(id) lines, linecount = readlines() todoCompleted = False newFile = open(TODO_FILENAME, 'w') lineCounter = 1 for line in lines: # Write all the lines back to the file except the line number of id if lineCounter == id: line = line.replace(Status.PENDING, Status.DONE) newFile.write(line) todoCompleted = True else: newFile.write(line) # increment the line counter lineCounter += 1 newFile.close() if todoCompleted: print "Completed todo #%s" % id else: print "No todo #%s found." % id def undoTodo(id): # oldFile = open(TODO_FILENAME, 'r') # lines = oldFile.readlines() # oldFile.close() # todoCompleted = False # newFile = open(TODO_FILENAME, 'w') # idFormmated = "[" + str(id) + "]" # # for line in lines: # if idFormmated in line: # line = line.replace(Status.DONE, Status.PENDING) # newFile.write(line) # todoCompleted = True # else: # newFile.write(line) # # newFile.close() # if todoCompleted: # print "Undid todo #" + id + " now its pending again..." # else: # print "No todo #" + id + " found." id = int(id) lines, linecount = readlines() todoCompleted = False newFile = open(TODO_FILENAME, 'w') lineCounter = 1 for line in lines: # Write all the lines back to the file except the line number of id if lineCounter == id: line = line.replace(Status.DONE, Status.PENDING) newFile.write(line) todoCompleted = True else: newFile.write(line) # increment the line counter lineCounter += 1 newFile.close() if todoCompleted: print "Undid todo #%s" % id else: print "No todo #%s found." % id def showTodos(): lineCounter = 1 try: lines, linecount = readlines() for line in lines: # if Status.PENDING in line: # line = line.replace(Status.PENDING, bcolors.FAIL + Status.PENDING + bcolors.ENDC) # elif Status.DONE in line: # line = line.replace(Status.DONE, bcolors.OKGREEN + Status.DONE + bcolors.ENDC) # sys.stdout.write(line) # Auto assign the todo ID based on the the line its on in the todo.list file line = line.replace("%id", str(lineCounter)) if Status.PENDING in line: line = line.replace(Status.PENDING, bcolors.FAIL + Status.PENDING + bcolors.ENDC) elif Status.DONE in line: line = line.replace(Status.DONE, bcolors.OKGREEN + Status.DONE + bcolors.ENDC) sys.stdout.write(line) lineCounter += 1 except IOError: print "No todos created for this directory yet" ######################################################################## # Parse command line arguments ######################################################################## if len(sys.argv) == 1: showTodos() elif sys.argv[1] == "new": content = " ".join(sys.argv[2:]) newTodo(content) elif sys.argv[1] == "complete" or sys.argv[1] == "done": completeTodo(sys.argv[2]) elif sys.argv[1] == "undo": undoTodo(sys.argv[2]) elif sys.argv[1] == "remove" or sys.argv[1] == "delete" or sys.argv[1] == "del" or sys.argv[1] == "rm": if len(sys.argv) < 3: print "You must specify a todo ID to remove." else: removeTodo(sys.argv[2]) elif sys.argv[1] == "show" or sys.argv[1] == "list": showTodos() elif sys.argv[1] == "help": usage() elif sys.argv[1] == "purge": ans = raw_input("Are you sure you want to delete and remove all traces of todos? (y/n): ") if ans == 'y': if os.path.isfile(TODO_FILENAME): os.remove(str(TODO_FILENAME)) print "Removed todo file" else: print "Could not delete todo file" else: print "Aborting deletion" else: print "Unknown operation: " + sys.argv[1] usage() ######################################################################## # Cleanup and exit ########################################################################
from matplotlib import pyplot as plt, patches from scipy.spatial import distance from sklearn.manifold import MDS import numpy as np import os import basics import rater_analysis import svg_polygons import Voronoi import geometry # Globals label_font_size = 10 # points axis_font_size = 8 # points legend_font_size = 10 # points figure_width = 5.5 # inches def plot_all(chain_wide_palette=True, use_rgb=False, spectrum=[0.5, 1.0], show_prototypes=False, label_cells=False, join_contiguous_cells=False, save_location=False): for experiment in range(0, len(basics.chain_codes)): plot_experiment(experiment+1, chain_wide_palette, use_rgb, spectrum, show_prototypes, label_cells, join_contiguous_cells, save_location) def plot_experiment(experiment, chain_wide_palette=True, use_rgb=False, spectrum=[0.5, 1.0], show_prototypes=False, label_cells=False, join_contiguous_cells=False, save_location=False): # Set directory for saving, and create it if it doesn't exist if save_location == False: save_location = basics.desktop_location save_location += str(experiment) + '/' if os.path.exists(save_location) == True: if raw_input(save_location + ' already exists. Do you want to overwrite? (y/n) ') != 'y': return else: os.makedirs(save_location) for chain in basics.chain_codes[experiment-1]: print('Chain: ' + chain) plot_chain(chain, experiment, chain_wide_palette, use_rgb, spectrum, show_prototypes, label_cells, join_contiguous_cells, False, save_location) def plot_chain(chain, experiment=None, chain_wide_palette=True, use_rgb=False, spectrum=[0.5, 1.0], show_prototypes=False, label_cells=False, join_contiguous_cells=False, random_seed=False, save_location=False): # Determine experiment number if none is supplied if experiment == None: experiment = basics.determine_experiment_number(chain) # If one palette has been requested, get all strings from entire chain and create a colour palette if chain_wide_palette == True: print('Generating colour palette...') all_strings = [] for generation in range(0, 11): all_strings += basics.getWords(experiment, chain, generation, 's') colour_palette, random_seed = generate_colour_palette(all_strings, use_rgb, spectrum, random_seed) else: colour_palette = None # Set directory for saving, and create it if it doesn't exist if save_location == False: save_location = basics.desktop_location save_location += chain + '_' + str(random_seed) + '/' if os.path.exists(save_location) == True: if raw_input(save_location + ' already exists. Do you want to overwrite? (y/n) ') != 'y': return else: os.makedirs(save_location) # Produce a plot for each generation print('Generating graphics...') for generation in range(0, 11): plot(chain, generation, experiment, colour_palette, use_rgb, spectrum, show_prototypes, label_cells, join_contiguous_cells, False, random_seed, save_location) def plot(chain, generation, experiment=None, colour_palette=None, use_rgb=False, spectrum=[0.5, 1.0], show_prototypes=False, label_cells=False, join_contiguous_cells=False, colour_candidates=False, random_seed=False, save_location=False): # Determine experiment number if none supplied if experiment == None: experiment = basics.determine_experiment_number(chain) # Get strings and triangles for this generation strings = basics.getWords(experiment, chain, generation, 's') triangles = basics.getTriangles(experiment, chain, generation, 's') # Pick a colour palette if none has been supplied if colour_palette == None: colour_palette, random_seed = generate_colour_palette(strings, use_rgb, spectrum, random_seed) chain_palette = False else: chain_palette = True if type(colour_candidates) == int: candidate_num = '_' + str(random_seed) else: candidate_num = '' # Organize strings and triangles into categories word_dict = {} triangle_dict = {} for i in range(0, len(strings)): if strings[i] in word_dict.keys(): word_dict[strings[i]].append(i) triangle_dict[strings[i]].append(triangles[i]) else: word_dict[strings[i]] = [i] triangle_dict[strings[i]] = [triangles[i]] # Set up subplot in top left plt.subplots(figsize=(figure_width, figure_width/1.375)) ax1 = plt.subplot2grid((11,2), (0,0), rowspan=7) # Determine the optimum size for the grid of triangle images / grid of legend labels # (a square number larger than the number of unique strings) for square in [1, 4, 9, 16, 25, 36, 49]: if square >= len(word_dict.keys()): break grid_size = int(np.sqrt(square)) # Rearrange words so that they'll appear in alphabetical order along rows of the legend words = rearrange(word_dict.keys(), grid_size) # Plot MDS coordinates and the Voronoi polygons for word in words: indices = word_dict[word] colour, colour_light = colour_palette[word] X, Y = triangle_coordinates[indices, 0], triangle_coordinates[indices, 1] plt.scatter(X, Y, c=colour_light, label=word, marker='o', s=12, linewidth=0, zorder=0) plt.scatter(X, Y, c=colour, marker='o', s=12, linewidth=0, zorder=2) if join_contiguous_cells == True: regional_polys = Voronoi.join_contiguous_polygons(voronoi_polygons[indices]) for poly in regional_polys: ax1.add_patch(patches.Polygon(poly, facecolor=colour_light, edgecolor='white', linewidth=0.5, zorder=1)) else: for i in indices: ax1.add_patch(patches.Polygon(voronoi_polygons[i], facecolor=colour_light, edgecolor='white', linewidth=0.5, zorder=0)) if label_cells == True: x, y = centroid(voronoi_polygons[i]) ax1.text(x, y, word, {'fontsize':5}, ha='center', va='center') # Set axis style plt.xlim(-1, 1) plt.ylim(-1, 1) plt.xlabel("MDS dimension 1", fontsize=label_font_size) plt.ylabel("MDS dimension 2", fontsize=label_font_size) plt.xticks(fontsize=axis_font_size) plt.yticks(fontsize=axis_font_size) # Set up subplot at bottom for legend ax2 = plt.subplot2grid((11,2), (7,0), colspan=2) plt.axis('off') # Produce the legend handles, labels = ax1.get_legend_handles_labels() ax2.legend(handles, labels, loc='upper center', bbox_to_anchor=[0.45, 0.5], frameon=False, prop={'size':legend_font_size}, ncol=grid_size, scatterpoints=1, handletextpad=0.01, markerscale=2.5) # Tighten plot layout plt.tight_layout(pad=0.2, h_pad=0.0) # Determine filename and directory if none has been specified if type(save_location) == bool and save_location == False: save_location = basics.desktop_location if chain_palette == True: filename = save_location + chain + str(generation) + '.svg' else: filename = save_location + chain + str(generation) + '_' + str(random_seed) + '.svg' # Save matplotlib plot as SVG file plt.savefig(filename) plt.close() # Draw the triangle images and splice them into the matplotlib SVG file triangle_code = draw_triangles(triangle_dict, colour_palette, show_prototypes, grid_size) splice_in_triangles(filename, triangle_code) # If multiple colour palette candidates have been requested, run plot() again. if colour_candidates > 1: plot(chain, generation, experiment, None, use_rgb, spectrum, show_prototypes, label_cells, join_contiguous_cells, colour_candidates-1, False, save_location) def generate_colour_palette(strings, use_rgb=False, spectrum=[0.0, 1.0], random_seed=False): # Get list of unique strings words = list(set(strings)) # If there's only one word, just map that word to a grey colour and return, since # it won't make sense to arrange the words in colour space. if len(words) == 1: return {words[0] : ('#B1B0CB', '#D8D8E5')} # Create distance matrix giving normalized Levenshtein distances between the words string_distances = np.array(basics.stringDistances(words), dtype=float) string_distance_matrix = distance.squareform(string_distances, 'tomatrix') if type(random_seed) != int: # Pick a random number for the MDS algorithm random_seed = np.random.randint(1, 1000000) hex_colour_values = [] if use_rgb == True: # Run distance matrix through MDS to determine the position of each word in 3-dimensional space string_mds = MDS(dissimilarity='precomputed', n_components=3, n_init=25, max_iter=2000, random_state=random_seed) string_coordinates = string_mds.fit_transform(string_distance_matrix) # Scale the dimensions of the space over the interval [0, 255] to create an RGB colour space. # The spectrum argument determines how much of the colour space will be used, allowing you to # avoid very dark and very light colours. for dim in range(0, 3): minimum = string_coordinates[:, dim].min() difference = string_coordinates[:, dim].max() - minimum string_coordinates[:, dim] = (((string_coordinates[:, dim] - minimum) / difference) * (255 * (spectrum[1] - spectrum[0]))) + (255 * spectrum[0]) # Convert RGB values to hexadecimal triplets (the light version is for the Voronoi cells) for r, g, b in string_coordinates: hex_colour = rgb_to_hex((r, g, b)) hex_colour_light = rgb_to_hex(lighten((r, g, b))) hex_colour_values.append((hex_colour, hex_colour_light)) else: # Run distance matrix through MDS to determine the position of each word in 2-dimensional space string_mds = MDS(dissimilarity='precomputed', n_components=2, n_init=25, max_iter=2000, random_state=random_seed) string_coordinates = string_mds.fit_transform(string_distance_matrix) # Convert Cartesian coordinates to polar coordinates polar_coordinates = np.array([polarize(point) for point in string_coordinates]) # Rescale the saturation coordinates in the specified spectrum minimum = polar_coordinates[:, 1].min() difference = polar_coordinates[:, 1].max() - minimum polar_coordinates[:, 1] = (((polar_coordinates[:, 1] - minimum) / difference) * (spectrum[1] - spectrum[0])) + (spectrum[0]) # Convert HSV values to hexadecimal triplets via RGB, keeping V (brightness) constant # The light version is for the Voronoi cells for h, s in polar_coordinates: hex_colour = rgb_to_hex(hsv_to_rgb(h, s, 0.8)) hex_colour_light = rgb_to_hex(hsv_to_rgb(h, s, 1.0)) hex_colour_values.append((hex_colour, hex_colour_light)) #print('Correspondence: %s' % correspondence_correlation(string_distances, string_coordinates)) #print('Stress-1: %s' % stress_1(string_mds.stress_, string_distances)) # Return the colour palette and the random seed return dict(zip(words, hex_colour_values)), random_seed def draw_triangles(triangles, colour_palette, show_prototypes, grid_size): # Alphabetize words so they can be plotted alphabetically words = sorted(triangles.keys()) # Set up a Canvas object and clear it (WHY THE HELL DOES IT NEED TO BE CLEARED!!!) canvas = svg_polygons.Canvas(figure_width*72, (figure_width/1.375)*72) canvas.clear() # Determine the size of each triangle cell, giving 5 points of cell spacing point_size = (171.2 / grid_size) - 5.0 # Determine scaling factor by which all triangles will need to be scaled scale_factor = point_size / 500.0 # Determine the radius of the orienting spots and the width of the strokes radius = 8.0 * scale_factor stroke = max([0.5, 2.0 * scale_factor]) # Start at cell 0,0 x_position = 0 y_position = 0 # For each of the words... for word in words: # Determine the offset and colour, and draw the bounding box to the canvas offset = np.array([(figure_width*72*0.575) + (x_position * point_size) + (x_position * 5.0), 6.45 + (y_position * point_size) + (y_position * 5.0)]) colour, colour_light = colour_palette[word] canvas.add_box(offset, point_size, point_size) # For each triangle labelled by this word... for triangle in triangles[word]: # Translate and scale the triangle, and draw it to the canvas trans_triangle = (triangle * scale_factor) + offset canvas.add_polygon(trans_triangle, border_colour=colour, stroke_width=stroke) canvas.add_circle(trans_triangle[0], radius, border_colour=colour, fill_colour=colour) # If there's more than one triangle in the set, produce a prototype and draw it to the canvas if len(triangles[word]) > 1 and show_prototypes == True: prototype = make_prototype(triangles[word], False) trans_prototype = (prototype * scale_factor) + offset canvas.add_polygon(trans_prototype, border_colour=colour, fill_colour=colour_light, stroke_width=stroke) # Increment the x and y positions if x_position < grid_size-1: x_position += 1 else: x_position = 0 y_position += 1 # Turn the canvas objects into SVG code canvas.write_everything() # Return the SVG code for the canvas return canvas.canvas def make_prototype(triangles, spot_based=True): trans_triangles = [] for t in triangles: # Centralize the triangle in the plane t += np.array([250.0, 250.0]) - geometry.centroid(t) # If non-spot-based pototype is requested, swap the vertices around so that vertex 1 is # the pointiest one. if spot_based == False: angles = [geometry.angle(t,1), geometry.angle(t,2), geometry.angle(t,3)] min_angle = angles.index(min(angles)) if min_angle == 0: t = np.array([t[0], t[1], t[2]]) elif min_angle == 1: t = np.array([t[1], t[2], t[0]]) elif min_angle == 2: t = np.array([t[2], t[0], t[1]]) # Rotate the triangle around its centroid so that vertex 1 points North t = geometry.rotate(t) # Ensure that vertex 2 is to the left of vertex 3 to prevent cancelling out if t[1,0] > t[2,0]: t = np.array([t[0], t[2], t[1]]) trans_triangles.append(t) # Reformat as Numpy array and take the mean of the coordinates to form the prototype trans_triangles = np.asarray(trans_triangles, dtype=float) prototype = trans_triangles.mean(axis=0) # Shift the prototype such that its bounding box is vertically centralized in the plane prototype[:, 1] += ((500.0 - (max([prototype[1,1], prototype[2,1]]) - prototype[0,1])) / 2.0) - prototype[0,1] return prototype # Rearrange a list of words so that when displayed in a Matplotlib legend, they will be # alphabetical along the rows, rather than down the columns. def rearrange(words, grid_size): words = sorted(words) words_rearranged = [] for i in range(grid_size): for j in range(grid_size): try: words_rearranged.append(words[(j*grid_size)+i]) except IndexError: break return words_rearranged # Opens an SVG file and splices in some extra SVG code at the end def splice_in_triangles(filename, triangle_code): f = open(filename, 'r') graph_code = f.read() f.close() final_code = graph_code.replace('</svg>', triangle_code + '\n\n</svg>') f = open(filename, 'w') f.write(final_code) f.close() # Convert RGB value to hexadecimal triplet def rgb_to_hex(rgb): return '#' + ''.join(map(chr, map(int, map(round, rgb)))).encode('hex') # Convert hue [0,2pi], saturation [0,1], and brightness [0,1] into RGB def hsv_to_rgb(h, s, v): if s == 0.0: return v*255, v*255, v*255 # saturation is 0, so return white h /= 2 * np.pi # scale hue (expressed in radians) in [0,1] i = int(h*6.) f = (h*6.)-i p, q, t = v*(1.-s), v*(1.-s*f), v*(1.-s*(1.-f)) i %= 6 if i == 0: return v*255, t*255, p*255 elif i == 1: return q*255, v*255, p*255 elif i == 2: return p*255, v*255, t*255 elif i == 3: return p*255, q*255, v*255 elif i == 4: return t*255, p*255, v*255 return v*255, p*255, q*255 # Lighten a colour by blending in 50% white def lighten(rgb): return light(rgb[0]), light(rgb[1]), light(rgb[2]) def light(val): return int(round(val + ((255 - val) * 0.5))) # Return the centroid of an arbitrary polygon # https://en.wikipedia.org/wiki/Centroid#Centroid_of_polygon def centroid(polygon): n = len(polygon) a_sum, x_sum, y_sum = 0.0, 0.0, 0.0 for i in range(0, n): if i == n - 1: j = 0 else: j = i + 1 p = (polygon[i][0] * polygon[j][1]) - (polygon[j][0] * polygon[i][1]) a_sum += p x_sum += (polygon[i][0] + polygon[j][0]) * p y_sum += (polygon[i][1] + polygon[j][1]) * p f = 1.0 / (6.0 * (0.5 * a_sum)) return f * x_sum, f * y_sum # Calculate the Euclidean distance in n-dimensional space def ED(a, b): return np.sqrt(sum([(a[i]-b[i])**2 for i in range(0, len(a))])) # Convert Cartesian coordinates to polar coordinates def polarize(xy): # Angular coordinate phi = np.arctan2(xy[1], xy[0]) if phi < 0.0: phi += 2.0 * np.pi # Radial coordinate r = np.sqrt(xy[0]**2 + xy[1]**2) return phi, r # Calculate the correspondence correlation - how well do the distances in # MDS space correlate with the original distances def correspondence_correlation(distances, mds_coordinates): n = len(mds_coordinates) mds_distances = [ED(mds_coordinates[i], mds_coordinates[j]) for i in range(n) for j in range(i+1, n)] return np.corrcoef(distances, mds_distances)[0,1] # Calculate stress-1 def stress_1(raw_stress, distances): return np.sqrt(raw_stress / sum(distances ** 2)) # Get dissimilarity ratings and format as square distance matrix triangle_distances = rater_analysis.reliable_distance_array triangle_distance_matrix = distance.squareform(triangle_distances, 'tomatrix') # Run ratings through MDS to get coordinates in 2-dimensional space triangle_mds = MDS(dissimilarity="precomputed", n_components=2, n_init=25, max_iter=2000, random_state=10) triangle_coordinates = triangle_mds.fit_transform(triangle_distance_matrix) # Scale each dimension over the interval [-0.9, 0.9] for a tidy plot for dim in range(0, triangle_coordinates.shape[1]): minimum = triangle_coordinates[:, dim].min() difference = triangle_coordinates[:, dim].max() - minimum triangle_coordinates[:, dim] = (((triangle_coordinates[:, dim] - minimum) / difference) * 1.8) - 0.9 # Compute the Voronoi polygons for these MDS coordinates voronoi_polygons = Voronoi.polygons(triangle_coordinates, [[-1,-1], [-1,1], [1,1], [1,-1]]) # Print MDS goodness-of-fit stats #print('Correspondence: %s' % correspondence_correlation(triangle_distances, triangle_coordinates)) #print('Stress-1: %s' % stress_1(triangle_mds.stress_, triangle_distances))
from game import Mode from dmd import TextLayer, GroupedLayer class ServiceModeSkeleton(Mode): """Service Mode List base class.""" def __init__(self, game, priority, font): super(ServiceModeSkeleton, self).__init__(game, priority) self.name = "" self.title_layer = TextLayer(1, 1, font, "left") self.item_layer = TextLayer(128/2, 12, font, "center") self.instruction_layer = TextLayer(1, 25, font, "left") self.layer = GroupedLayer(128, 32, [self.title_layer, self.item_layer, self.instruction_layer]) self.no_exit_switch = game.machine_type == 'sternWhitestar' def mode_started(self): self.title_layer.set_text(str(self.name)) self.game.sound.play('service_enter') def mode_stopped(self): self.game.sound.play('service_exit') def disable(self): pass def sw_down_active(self, sw): if self.game.switches.enter.is_active(): self.game.modes.remove(self) return True def sw_exit_active(self, sw): self.game.modes.remove(self) return True class ServiceModeList(ServiceModeSkeleton): """Service Mode List base class.""" def __init__(self, game, priority, font): super(ServiceModeList, self).__init__(game, priority, font) self.items = [] def mode_started(self): super(ServiceModeList, self).mode_started() self.iterator = 0 self.change_item() def change_item(self): ctr = 0 for item in self.items: if (ctr == self.iterator): self.item = item ctr += 1 self.max = ctr - 1 self.item_layer.set_text(self.item.name) def sw_up_active(self,sw): if self.game.switches.enter.is_inactive(): self.item.disable() if (self.iterator < self.max): self.iterator += 1 self.game.sound.play('service_next') self.change_item() return True def sw_down_active(self,sw): if self.game.switches.enter.is_inactive(): self.item.disable() if (self.iterator > 0): self.iterator -= 1 self.game.sound.play('service_previous') self.change_item() elif self.no_exit_switch: self.exit() return True def sw_enter_active(self,sw): self.game.modes.add(self.item) return True def exit(self): self.item.disable() self.game.modes.remove(self) return True class ServiceMode(ServiceModeList): """Service Mode.""" def __init__(self, game, priority, font, extra_tests=[]): super(ServiceMode, self).__init__(game, priority,font) #self.title_layer.set_text('Service Mode') self.name = 'Service Mode' self.tests = Tests(self.game, self.priority+1, font, extra_tests) self.items = [self.tests] if len(self.game.settings) > 0: self.settings = Settings(self.game, self.priority+1, font, 'Settings', self.game.settings) self.items.append(self.settings) # if len(self.game.game_data) > 0: # self.statistics = Statistics(self.game, self.priority+1, font, 'Statistics', self.game.game_data) # self.items.append(self.statistics) class Tests(ServiceModeList): """Service Mode.""" def __init__(self, game, priority, font, extra_tests=[]): super(Tests, self).__init__(game, priority,font) #self.title_layer.set_text('Tests') self.name = 'Tests' self.lamp_test = LampTest(self.game, self.priority+1, font) self.coil_test = CoilTest(self.game, self.priority+1, font) self.switch_test = SwitchTest(self.game, self.priority+1, font) self.items = [self.switch_test, self.lamp_test, self.coil_test] for test in extra_tests: self.items.append(test) class LampTest(ServiceModeList): """Lamp Test""" def __init__(self, game, priority, font): super(LampTest, self).__init__(game, priority,font) self.name = "Lamp Test" self.items = self.game.lamps def change_item(self): super(LampTest, self).change_item() self.item.schedule(schedule=0x00ff00ff, cycle_seconds=0, now=True) def sw_enter_active(self,sw): return True class CoilTest(ServiceModeList): """Coil Test""" def __init__(self, game, priority, font): super(CoilTest, self).__init__(game, priority, font) self.name = "Coil Test" self.title_layer.set_text('Coil Test - Enter btn: mode') self.instruction_layer.set_text('Pulse with start button') self.items = self.game.coils def mode_started(self): super(CoilTest, self).mode_started() self.action = 'manual' if self.game.lamps.has_key('startButton'): self.game.lamps.startButton.schedule(schedule=0xff00ff00, cycle_seconds=0, now=False) self.delay(name='auto', event_type=None, delay=2.0, handler=self.process_auto) def process_auto(self): if (self.action == 'auto'): self.item.pulse(20) self.delay(name='auto', event_type=None, delay=2.0, handler=self.process_auto) def sw_enter_active(self,sw): if (self.action == 'manual'): self.action = 'auto' if self.game.lamps.has_key('startButton'): self.game.lamps.startButton.disable() self.instruction_layer.set_text('Auto pulse') elif (self.action == 'auto'): self.action = 'manual' if self.game.lamps.has_key('startButton'): self.game.lamps.startButton.schedule(schedule=0xff00ff00, cycle_seconds=0, now=False) self.instruction_layer.set_text('Pulse with start button') return True def sw_startButton_active(self,sw): if (self.action == 'manual'): self.item.pulse(20) return True class SwitchTest(ServiceModeSkeleton): """Switch Test""" def __init__(self, game, priority, font): super(SwitchTest, self).__init__(game, priority,font) self.name = "Switch Test" for switch in self.game.switches: if self.game.machine_type == 'sternWhitestar': add_handler = 1 elif switch != self.game.switches.exit: add_handler = 1 else: add_handler = 0 if add_handler: self.add_switch_handler(name=switch.name, event_type='inactive', delay=None, handler=self.switch_handler) self.add_switch_handler(name=switch.name, event_type='active', delay=None, handler=self.switch_handler) def switch_handler(self, sw): if (sw.state): self.game.sound.play('service_switch_edge') self.item_layer.set_text(sw.name + ' - ' + str(sw.state)) return True def sw_enter_active(self,sw): return True class Statistics(ServiceModeList): """Service Mode.""" def __init__(self, game, priority, font, name, itemlist): super(Statistics, self).__init__(game, priority,font) #self.title_layer.set_text('Settings') self.name = name self.items = [] for section in itemlist: self.items.append( StatsDisplay( self.game, priority + 1, font, str(section),itemlist[section] )) class StatsDisplay(ServiceModeList): """Coil Test""" def __init__(self, game, priority, font, name, itemlist): super(StatsDisplay, self).__init__(game, priority, font) self.name = name self.value_layer = TextLayer(128/2, 22, font, "center") self.items = [] for item in sorted(itemlist.iterkeys()): if type(itemlist[item])==type({}): self.items.append( HighScoreItem(str(item), itemlist[item]['name'], itemlist[item]['score']) ) else: self.items.append( StatsItem(str(item), itemlist[item]) ) self.layer = GroupedLayer(128, 32, [self.title_layer, self.item_layer, self.value_layer]) def mode_started(self): super(StatsDisplay, self).mode_started() def change_item(self): super(StatsDisplay, self).change_item() try: self.item.score except: self.item.score = 'None' if self.item.score == 'None': self.value_layer.set_text(str(self.item.value)) else: self.value_layer.set_text(self.item.value + ": " + str(self.item.score)) def sw_enter_active(self, sw): return True class StatsItem: """Service Mode.""" def __init__(self, name, value): self.name = name self.value = value def disable(self): pass class HighScoreItem: """Service Mode.""" def __init__(self, name, value, score): self.name = name self.value = value self.score = score def disable(self): pass class SwitchTest(ServiceModeSkeleton): """Switch Test""" def __init__(self, game, priority, font): super(SwitchTest, self).__init__(game, priority,font) self.name = "Switch Test" for switch in self.game.switches: if self.game.machine_type == 'sternWhitestar': add_handler = 1 elif switch != self.game.switches.exit: add_handler = 1 else: add_handler = 0 if add_handler: self.add_switch_handler(name=switch.name, event_type='inactive', delay=None, handler=self.switch_handler) self.add_switch_handler(name=switch.name, event_type='active', delay=None, handler=self.switch_handler) def switch_handler(self, sw): if (sw.state): self.game.sound.play('service_switch_edge') self.item_layer.set_text(sw.name + ' - ' + str(sw.state)) return True def sw_enter_active(self,sw): return True class Settings(ServiceModeList): """Service Mode.""" def __init__(self, game, priority, font, name, itemlist): super(Settings, self).__init__(game, priority,font) #self.title_layer.set_text('Settings') self.name = name self.items = [] self.font = font for section in sorted(itemlist.iterkeys()): self.items.append( SettingsEditor( self.game, priority + 1, font, str(section),itemlist[section] )) class SettingsEditor(ServiceModeList): """Service Mode.""" def __init__(self, game, priority, font, name, itemlist): super(SettingsEditor, self).__init__(game, priority, font) self.title_layer = TextLayer(1, 1, font, "left") self.item_layer = TextLayer(128/2, 12, font, "center") self.instruction_layer = TextLayer(1, 25, font, "left") self.no_exit_switch = game.machine_type == 'sternWhitestar' #self.title_layer.set_text('Settings') self.name = name self.items = [] self.value_layer = TextLayer(128/2, 19, font, "center") self.layer = GroupedLayer(128, 32, [self.title_layer, self.item_layer, self.value_layer, self.instruction_layer]) for item in sorted(itemlist.iterkeys()): #self.items.append( EditItem(str(item), itemlist[item]['options'], itemlist[item]['value'] ) ) if 'increments' in itemlist[item]: num_options = (itemlist[item]['options'][1]-itemlist[item]['options'][0]) / itemlist[item]['increments'] option_list = [] for i in range(0,num_options): option_list.append(itemlist[item]['options'][0] + (i * itemlist[item]['increments'])) self.items.append( EditItem(str(item), option_list, self.game.user_settings[self.name][item]) ) else: self.items.append( EditItem(str(item), itemlist[item]['options'], self.game.user_settings[self.name][item]) ) self.state = 'nav' self.stop_blinking = True self.item = self.items[0] self.value_layer.set_text(str(self.item.value)) self.option_index = self.item.options.index(self.item.value) def mode_started(self): super(SettingsEditor, self).mode_started() def mode_stopped(self): self.game.sound.play('service_exit') def sw_enter_active(self, sw): if not self.no_exit_switch: self.process_enter() return True def process_enter(self): if self.state == 'nav': self.state = 'edit' self.blink = True self.stop_blinking = False self.delay(name='blink', event_type=None, delay=.3, handler=self.blinker) else: self.state = 'nav' self.instruction_layer.set_text("Change saved") self.delay(name='change_complete', event_type=None, delay=1, handler=self.change_complete) self.game.sound.play('service_save') self.game.user_settings[self.name][self.item.name]=self.item.value self.stop_blinking = True self.game.save_settings() def sw_exit_active(self, sw): self.process_exit() return True def process_exit(self): if self.state == 'nav': self.game.modes.remove(self) else: self.state = 'nav' self.value_layer.set_text(str(self.item.value)) self.stop_blinking = True self.game.sound.play('service_cancel') self.instruction_layer.set_text("Change cancelled") self.delay(name='change_complete', event_type=None, delay=1, handler=self.change_complete) def sw_up_active(self, sw): if self.game.switches.enter.is_inactive(): self.process_up() else: self.process_enter() return True def process_up(self): if self.state == 'nav': self.item.disable() if (self.iterator < self.max): self.iterator += 1 self.game.sound.play('service_next') self.change_item() else: if self.option_index < (len(self.item.options) - 1): self.option_index += 1 self.item.value = self.item.options[self.option_index] self.value_layer.set_text(str(self.item.value)) def sw_down_active(self, sw): if self.game.switches.enter.is_inactive(): self.process_down() else: self.process_exit() return True def process_down(self): if self.state == 'nav': self.item.disable() if (self.iterator > 0): self.iterator -= 1 self.game.sound.play('service_previous') self.change_item() else: if self.option_index > 0: self.option_index -= 1 self.item.value = self.item.options[self.option_index] self.value_layer.set_text(str(self.item.value)) def change_item(self): ctr = 0 for item in self.items: if ctr == self.iterator: self.item = item ctr += 1 self.max = ctr - 1 self.item_layer.set_text(self.item.name) self.value_layer.set_text(str(self.item.value)) self.option_index = self.item.options.index(self.item.value) def disable(self): pass def blinker(self): if self.blink: self.value_layer.set_text(str(self.item.value)) self.blink = False else: self.value_layer.set_text("") self.blink = True if not self.stop_blinking: self.delay(name='blink', event_type=None, delay=.3, handler=self.blinker) else: self.value_layer.set_text(str(self.item.value)) def change_complete(self): self.instruction_layer.set_text("") class EditItem: """Service Mode.""" def __init__(self, name, options, value): self.name = name self.options = options self.value = value def disable(self): pass
from common.tests import ViewTestCase from common import api from common import clean from common import exception from common import util class LoginTest(ViewTestCase): def test_login_when_signed_out(self): r = self.login_and_get(None, '/login') self.assertContains(r, "Forgot your password?") self.assertContains(r, "Sign Up Now") self.assertTemplateUsed(r, 'login/templates/login.html') def test_login_when_signed_in(self): r = self.login_and_get('popular', '/login') r = self.assertRedirectsPrefix(r, '/user/popular/overview') self.assertTemplateUsed(r, 'actor/templates/overview.html') self.assertTemplateUsed(r, 'common/templates/flash.html') def test_login_redirect_to(self): r = self.login_and_get('popular', '/login', {'redirect_to': '/channel'}) r = self.assertRedirectsPrefix(r, '/channel') self.assertTemplateUsed(r, 'channel/templates/index.html') self.assertTemplateUsed(r, 'common/templates/flash.html') def test_login(self): log = 'popular' pwd = self.passwords[clean.nick(log)] r = self.client.post('/login', {'log': log, 'pwd': pwd}) r = self.assertRedirectsPrefix(r, '/user/popular/overview') self.assertTemplateUsed(r, 'actor/templates/overview.html') self.assertTemplateUsed(r, 'common/templates/flash.html') def test_login_with_confirmed_email(self): log = 'hotness' pwd = self.passwords[clean.nick(log)] confirmed_email = '[email protected]' r = self.client.post('/login', {'log': confirmed_email, 'pwd': pwd}) r = self.assertRedirectsPrefix(r, '/user/hotness/overview') self.assertTemplateUsed(r, 'actor/templates/overview.html') self.assertTemplateUsed(r, 'common/templates/flash.html') def test_login_bad_password(self): log = 'popular' pwd = 'BAD PASSWORD' r = self.client.post('/login', {'log': log, 'pwd': pwd}) self.assert_error_contains(r, 'Invalid username or password') self.assertTemplateUsed(r, 'login/templates/login.html') def test_login_bad_user(self): log = 'BAD USER' pwd = 'BAD PASSWORD' r = self.client.post('/login', {'log': log, 'pwd': pwd}) self.assert_error_contains(r, 'Invalid username or password') self.assertTemplateUsed(r, 'login/templates/login.html') def test_login_user_cleanup(self): log = 'broken' pwd = self.passwords[clean.nick(log)] actor_ref_pre = api.actor_get(api.ROOT, log) self.assert_(not actor_ref_pre.normalized_nick) self.assertRaises(exception.ApiException, api.stream_get_presence, api.ROOT, log) self.assertRaises(exception.ApiException, api.stream_get_comment, api.ROOT, log) r = self.client.post('/login', {'log': log, 'pwd': pwd}) r = self.assertRedirectsPrefix(r, '/user/broken/overview') actor_ref_post = api.actor_get(api.ROOT, log) self.assert_(actor_ref_post.normalized_nick) self.assert_(api.stream_get_presence(api.ROOT, log)) self.assert_(api.stream_get_comment(api.ROOT, log)) def test_login_deleted(self): log = 'popular' pwd = self.passwords[clean.nick(log)] r = self.client.post('/login', {'log': log, 'pwd': pwd}) r = self.assertRedirectsPrefix(r, '/user/popular/overview') self.assertTemplateUsed(r, 'actor/templates/overview.html') self.assertTemplateUsed(r, 'common/templates/flash.html') api.actor_remove(api.ROOT, 'popular') r = self.client.post('/login', {'log': log, 'pwd': pwd}) self.assert_error_contains(r, 'Invalid username') self.assertTemplateUsed(r, 'login/templates/login.html') # Test cases and expected outcomes: # 'annoying', 'girlfriend' do not have an emails associated # 'hermit' has an unconfirmed email class LoginForgotTest(ViewTestCase): ##### Forgot password tests: def test_login_forgot_already_logged_in(self): r = self.login_and_get('popular', '/login/forgot') # User gets sent back to the home page. Unfortunately, since this is # 'prefix', it will match a redirect anywhere. :( r = self.assertRedirectsPrefix(r, '/', target_status_code=302) # For this reason, test the second redirect: r = self.assertRedirectsPrefix(r, '/user/popular/overview') def test_login_forgot(self): r = self.client.get('/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') def test_login_forgot_nick_popular(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'popular', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') def test_login_reset(self): self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'popular', }) email = api.email_get_actor(api.ROOT, 'popular') activation_ref = api.activation_get(api.ROOT, email, 'password_lost', email) self.assert_(activation_ref) hash = util.hash_generic(activation_ref.code) r = self.client.get('/login/reset', {'email' : email, 'hash' : hash}) self.assertContains(r, 'Your password has been reset') # once it's used, the activation link cannot be used again r = self.client.get('/login/reset', {'email' : email, 'hash' : hash}) self.assertRedirectsPrefix(r, '/error', target_status_code=200) # User enters 'popular', 'popular' has a confirmed email. # - Send notification to that email. def test_nick_confirmed(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'popular', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') # User enters 'hermit', 'hermit' has an unconfirmed email # - Send notification to that email. def test_nick_unconfirmed(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'hermit', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') # TODO(termie): stub # User enters 'popular', 'popular' has an unconfirmed email (shared with other # users) # - Send notification to that email. def test_nick_multiple_unconfirmed(self): pass # User enters 'annoying', 'annoying' does not have an email # - Tough shit. def test_nick_no_email(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'annoying', }) self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'does not have an email') # User enters a user that doesn't exist # - Tough shit. def test_unknown_nick(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'idontexist', }) self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'not found') # User enters '[email protected]', a confirmed email for 'popular' # - Send notification to that email. def test_email_confirmed(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : '[email protected]', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') # User enters '[email protected]', an unconfirmed email for 'hermit' # - Send notification to that email def test_email_unconfirmed(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : '[email protected]', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') # TODO(termie): stub # User enters '[email protected]', an unconfirmed email for 'popular', 'unpopular' # - Tough shit. def test_email_multiple_unconfirmed(self): pass # User enters '[email protected]', which doesn't map to anything # - Tough shit. def test_email_notfound(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : '[email protected]', }) self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'does not match any accounts') class LoginResetTest(ViewTestCase): #def test_mixed_case(self): # activation_ref = api.activation_create(api.ROOT, '[email protected]', 'password_lost', '[email protected]') # code = util.hash_generic(activation_ref) def test_login_forgot_nick_mixed_case(self): r = self.client.post('/login/forgot', { '_nonce': util.create_nonce(None, 'login_forgot'), 'login_forgot' : '', 'nick_or_email' : 'CapitalPunishment', }) r = self.assertRedirectsPrefix(r, '/login/forgot') self.assertTemplateUsed(r, 'login/templates/forgot.html') self.assertContains(r, 'New Password Emailed') self.assertTemplateUsed(r, 'common/templates/flash.html') class LogoutTest(ViewTestCase): # Once user is logged out, we should not display the "Signed in as XXX" msg. # See issue 336 for details def test_logout_does_not_remain_signed_in(self): r = self.login_and_get('popular', '/login') self.assertRedirectsPrefix(r, '/user/popular/overview') r = self.client.get('/logout') self.assertTemplateUsed(r, 'login/templates/logout.html') self.assertNotContains(r, "Signed in as")
# Copyright (c) 2019, Michael Boyle # See LICENSE file for details: <https://github.com/moble/spherical_functions/blob/master/LICENSE> """Evaluating Wigner D matrices, spin-weighted spherical harmonics, and related. This module contains code for evaluating the Wigner 3j symbols, the Wigner D matrices, scalar spherical harmonics, and spin-weighted spherical harmonics. The code is wrapped by numba where possible, allowing the results to be delivered at speeds approaching or exceeding speeds attained by pure C code. """ from ._version import __version__ __all__ = ['Wigner3j', 'Wigner_D_element', 'Wigner_D_matrices', 'SWSH', 'SWSH_grid', 'factorial', 'binomial_coefficient', 'ladder_operator_coefficient'] import functools import numpy as np import numba as nb from math import factorial import os.path jit = njit = functools.partial(nb.njit, cache=True) jitclass = nb.experimental.jitclass # Module constants ell_max = 32 # More than 29, and you get roundoff building quickly epsilon = 1.e-15 error_on_bad_indices = True # The coefficient files # binomial_coefficients.npy # ladder_operator_coefficients.npy # Wigner_coefficients.npy # were originally produced with the code in `_generate_coefficients.py`. # Factorial factorials = np.array([float(factorial(i)) for i in range(171)]) @njit('f8(i8)') def factorial(i): return factorials[i] # Binomial coefficients _binomial_coefficients = np.load(os.path.join(os.path.dirname(__file__), 'binomial_coefficients.npy')) @njit('f8(i8,i8)') def binomial_coefficient(n, k): return _binomial_coefficients[(n * (n + 1)) // 2 + k] # Ladder-operator coefficients _ladder_operator_coefficients = np.load(os.path.join(os.path.dirname(__file__), 'ladder_operator_coefficients.npy')) @njit('f8(i8,i8)') def _ladder_operator_coefficient(twoell, twom): return _ladder_operator_coefficients[((twoell + 2) * twoell + twom) // 2] @njit('f8(f8,f8)') def ladder_operator_coefficient(ell, m): return _ladder_operator_coefficient(round(2*ell), round(2*m)) # Coefficients used in constructing the Wigner D matrices _Wigner_coefficients = np.load(os.path.join(os.path.dirname(__file__), 'Wigner_coefficients.npy')) @njit('i8(i8,i8,i8)') def _Wigner_index(twoell, twomp, twom): return twoell*((2*twoell + 3)*twoell + 1) // 6 + (twoell + twomp)//2 * (twoell + 1) + (twoell + twom)//2 @njit('f8(i8,i8,i8)') def _Wigner_coefficient(twoell, twomp, twom): return _Wigner_coefficients[_Wigner_index(twoell, twomp, twom)] @njit('f8(f8,f8,f8)') def Wigner_coefficient(ell, mp, m): return _Wigner_coefficient(round(2*ell), round(2*mp), round(2*m)) def LM_range(ell_min, ell_max): """Array of (ell,m) indices in standard order This function returns an array of essentially [[ell,m] for ell in range(ell_min, ell_max+1) for m in range(-ell,ell+1)] This is, for example, the order assumed for mode data in the `waveforms` module. """ # # Sympy commands to calculate the total size: # from sympy import symbols, summation # ell_min,ell,ell_max = symbols('ell_min,ell,ell_max', integer=True) # summation((2*ell + 1), (ell, ell_min, ell_max)) LM = np.empty((ell_max * (ell_max + 2) - ell_min ** 2 + 1, 2), dtype=int) _LM_range(ell_min, ell_max, LM) return LM @njit('void(i8,i8,i8[:,:])') def _LM_range(ell_min, ell_max, LM): i = 0 for ell in range(ell_min, ell_max + 1): for m in range(-ell, ell + 1): LM[i, 0] = ell LM[i, 1] = m i += 1 @njit('i8(i8,i8,i8)') def LM_index(ell, m, ell_min): """Array index for given (ell,m) mode Assuming an array of [[ell,m] for ell in range(ell_min, ell_max+1) for m in range(-ell,ell+1)] this function returns the index of the (ell,m) element. (Note that ell_max doesn't actually come into this calculation, so it is not taken as an argument to the function.) This can be calculated in sympy as from sympy import symbols, summation ell,m,ell_min, = symbols('ell,m,ell_min,', integer=True) summation(2*ell + 1, (ell, ell_min, ell-1)) + (ell+m) """ return ell * (ell + 1) - ell_min ** 2 + m @njit('i8(i8,i8)') def LM_total_size(ell_min, ell_max): """Total array size of (ell,m) components Assuming an array of [[ell,m] for ell in range(ell_min, ell_max+1) for m in range(-ell,ell+1)] this function returns the total size of that array. This can be calculated in sympy as from sympy import symbols, summation ell,ell_min,ell_max = symbols('ell,ell_min,ell_max', integer=True) summation(2*ell + 1, (ell, ell_min, ell_max)) """ return ell_max * (ell_max + 2) - ell_min ** 2 + 1 def LM_deduce_ell_max(size, ell_min=0): ell_max = int(np.sqrt(size + ell_min**2) - 1) if ell_max * (ell_max + 2) - ell_min ** 2 + 1 != size: raise ValueError(f"The input size {size} does not correspond to a possible array of modes with ell_min {ell_min}.") return ell_max def LMpM_range(ell_min, ell_max): """Array of (ell,mp,m) indices in standard order This function returns an array of essentially [[ell,mp,m] for ell in range(ell_min, ell_max+1) for mp in range(-ell,ell+1) for m in range(-ell,ell+1)] This is, for instance, the array of indices of the Wigner D matrices constructed by this module. """ # # Sympy commands to calculate the total size: # from sympy import symbols, summation # ell_min,ell,ell_max = symbols('ell_min,ell,ell_max', integer=True) # summation((2*ell + 1)**2, (ell, ell_min, ell_max)) if abs(round(ell_max)-ell_max) > 1e-10 or abs(round(ell_min)-ell_min) > 1e-10: error = ("LMpM_range is only intended for integer values of ell.\n" + "Input values ell_min={0} and ell_max={1} are not valid.\n".format(ell_min, ell_max) + "Try `LMpM_range_half_integer` instead.") raise ValueError(error) LMpM = np.empty(((ell_max * (11 + ell_max * (12 + 4 * ell_max)) + ell_min * (1 - 4 * ell_min ** 2) + 3) // 3, 3), dtype=int) _LMpM_range(ell_min, ell_max, LMpM) return LMpM @njit('void(i8,i8,i8[:,:])') def _LMpM_range(ell_min, ell_max, LMpM): i = 0 for ell in range(ell_min, ell_max + 1): for mp in range(-ell, ell + 1): for m in range(-ell, ell + 1): LMpM[i, 0] = ell LMpM[i, 1] = mp LMpM[i, 2] = m i += 1 def LMpM_range_half_integer(ell_min, ell_max): """Array of (ell,mp,m) indices in standard order, including half-integer values This function returns an array of essentially [[twoell/2, twomp/2, twom/2] for twoell in range(2*ell_min, 2(ell_max+1) for twomp in range(-twoell, twoell+1, 2) for twom in range(-twoell, twoell+1, 2)] See also: LMpM_range """ # # Sympy commands to calculate the total size: # from sympy import symbols, summation # twoell_min,twoell,twoell_max = symbols('twoell_min,twoell,twoell_max', integer=True) # summation((twoell + 1)**2, (twoell, twoell_min, twoell_max)) LMpM = np.empty((int(((8*ell_max + 18)*ell_max + 13)*ell_max + 3 - ((8 * ell_min + 6) * ell_min + 1)*ell_min) // 3, 3), dtype=float) _LMpM_range_half_integer(round(2*ell_min), round(2*ell_max), LMpM) return LMpM @njit('void(i8,i8,f8[:,:])') def _LMpM_range_half_integer(twoell_min, twoell_max, LMpM): i = 0 for twoell in range(twoell_min, twoell_max + 1): for twomp in range(-twoell, twoell + 1, 2): for twom in range(-twoell, twoell + 1, 2): LMpM[i, 0] = twoell / 2 LMpM[i, 1] = twomp / 2 LMpM[i, 2] = twom / 2 i += 1 @njit('i8(i8,i8,i8,i8)') def LMpM_index(ell, mp, m, ell_min): """Array index for given (ell,mp,m) mode Assuming an array (e.g., Wigner D matrices) in the order [[ell,mp,m] for ell in range(ell_min, ell_max+1) for mp in range(-ell,ell+1) for m in range(-ell,ell+1)] this function returns the index of the (ell,mp,m) element. (Note that ell_max doesn't actually come into this calculation, so it is not taken as an argument to the function.) This can be calculated in sympy as from sympy import symbols, summation ell,mp,m,ell_min, = symbols('ell,mp,m,ell_min,', integer=True) summation((2*ell + 1)**2, (ell, ell_min, ell-1)) + (2*ell+1)*(ell+mp) + (ell+m) """ # raw output is: 4*ell**3/3 + 2*ell**2 + 2*ell*mp + 5*ell/3 - 4*ell_min**3/3 + ell_min/3 + m + mp # We rearrange that to act more nicely return (((4 * ell + 6) * ell + 6 * mp + 5) * ell + ell_min * (1 - 4 * ell_min ** 2) + 3 * (m + mp)) // 3 @njit('i8(i8, i8)') def LMpM_total_size(ell_min, ell_max): """Total array size of Wigner D matrix Assuming an array (e.g., Wigner D matrices) in the order [[ell,mp,m] for ell in range(ell_min, ell_max+1) for mp in range(-ell,ell+1) for m in range(-ell,ell+1)] this function returns the total size of that array. This can be calculated in sympy as from sympy import symbols, summation ell,ell_min,ell_max = symbols('ell,ell_min,ell_max', integer=True) summation((2*ell + 1)**2, (ell, ell_min, ell_max)) """ # raw output is: 4*ell_max**3/3 + 4*ell_max**2 + 11*ell_max/3 - 4*ell_min**3/3 + ell_min/3 + 1 # We rearrange that to act more nicely return (((4 * ell_max + 12) * ell_max + 11) * ell_max + (-4 * ell_min ** 2 + 1) * ell_min + 3) // 3 def theta_phi(n_theta, n_phi): """Construct (theta, phi) grid This grid is in the order expected by spinsfast Parameters ========== n_theta: int Number of points in the theta direction n_phi: int Number of points in the phi direction Returns ======= theta_phi_grid: ndarray Array of pairs of floats giving the respective [theta, phi] pairs. The shape of this array is (n_theta, n_phi, 2). """ return np.array([[[theta, phi] for phi in np.linspace(0.0, 2*np.pi, num=n_phi, endpoint=False)] for theta in np.linspace(0.0, np.pi, num=n_theta, endpoint=True)]) from .WignerD import (Wigner_D_element, _Wigner_D_element, Wigner_D_matrices, _Wigner_D_matrices, _linear_matrix_index, _linear_matrix_diagonal_index, _linear_matrix_offset, _total_size_D_matrices) from .SWSH import SWSH, SWSH_grid, _SWSH # sYlm, Ylm from .SWSH_modes import Modes from .SWSH_grids import Grid from .mode_conversions import (constant_as_ell_0_mode, constant_from_ell_0_mode, vector_as_ell_1_modes, vector_from_ell_1_modes, eth_GHP, ethbar_GHP, eth_NP, ethbar_NP, ethbar_inverse_NP) from .multiplication import multiply from .recursions import complex_powers, Wigner3jCalculator, Wigner3j, clebsch_gordan